File size: 8,676 Bytes
c8b512d 5bcc058 ba6be5b 79aed54 5bcc058 ba6be5b 5bcc058 ba6be5b 5bcc058 ba6be5b 5bcc058 ba6be5b 5bcc058 ba6be5b 09fb13f ba6be5b 09fb13f ba6be5b 09fb13f ba6be5b 09fb13f ba6be5b 09fb13f ba6be5b 79aed54 ec78f8d 79aed54 ec78f8d 79aed54 ec78f8d 79aed54 ec78f8d 79aed54 ec78f8d 79aed54 ec78f8d 79aed54 ec78f8d 79aed54 ec78f8d 79aed54 ec78f8d 79aed54 ec78f8d 79aed54 ec78f8d 79aed54 ec78f8d 79aed54 c8b512d 4a0e5e6 eea39c6 4a0e5e6 eea39c6 5540fdf 4a0e5e6 a602180 4a0e5e6 fe4e3d2 b360ddf eea39c6 b360ddf eea39c6 b360ddf eea39c6 b360ddf eea39c6 b360ddf eea39c6 b360ddf fe4e3d2 b360ddf eea39c6 2795a73 b360ddf eea39c6 b360ddf eea39c6 b360ddf eea39c6 b360ddf 2795a73 eea39c6 b360ddf eea39c6 b360ddf eea39c6 b360ddf eea39c6 b360ddf eea39c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
---
language: en
license: cc-by-4.0
tags:
- deberta
- deberta-v3
datasets:
- squad_v2
base_model: microsoft/deberta-v3-base
model-index:
- name: deepset/deberta-v3-base-squad2
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: squad_v2
type: squad_v2
config: squad_v2
split: validation
metrics:
- type: exact_match
value: 83.8248
name: Exact Match
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2IyZTEyYzNlOTAwZmFlNWRiZTdiNzQzMTUyM2FmZTQ3ZWQwNWZmMzc2ZDVhYWYyMzkxOTUyMGNlMWY0M2E5MiIsInZlcnNpb24iOjF9.y8KvfefMLI977BYun0X1rAq5qudmezW_UJe9mh6sYBoiWaBosDO5TRnEGR1BHzdxmv2EgPK_PSomtZvb043jBQ
- type: f1
value: 87.41
name: F1
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWVhNjAwM2Q5N2Y3MGU4ZWY3N2Y0MmNjYWYwYmQzNTdiYWExODhkYmQ1YjIwM2I1ODEzNWIxZDI1ZWQ1YWRjNSIsInZlcnNpb24iOjF9.Jk0v1ZheLRFz6k9iNAgCMMZtPYj5eVwUCku4E76wRYc-jHPmiUuxvNiNkn6NW-jkBD8bJGMqDSjJyVpVMn9pBA
- task:
type: question-answering
name: Question Answering
dataset:
name: squad
type: squad
config: plain_text
split: validation
metrics:
- type: exact_match
value: 84.9678
name: Exact Match
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWUxYTg4MzU3YTdmMDRmMGM0NjFjMTcwNGM3YzljM2RkMTc1ZGNhMDQwMTgwNGI0ZDE4ZGMxZTE3YjY5YzQ0ZiIsInZlcnNpb24iOjF9.KKaJ1UtikNe2g6T8XhLoWNtL9X4dHHyl_O4VZ5LreBT9nXneGc21lI1AW3n8KXTFGemzRpRMvmCDyKVDHucdDQ
- type: f1
value: 92.2777
name: F1
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDU0ZTQwMzg4ZDY1ZWYxOGIxMzY2ODljZTBkMTNlYjA0ODBjNjcxNTg3ZDliYWU1YTdkYTM2NTIxOTg1MGM4OCIsInZlcnNpb24iOjF9.8VHg1BXx6gLw_K7MUK2QSE80Y9guiVR8n8K8nX4laGsLibxv5u_yDv9F3ahbUa1eZG_bbidl93TY2qFUiYHtAQ
- task:
type: question-answering
name: Question Answering
dataset:
name: adversarial_qa
type: adversarial_qa
config: adversarialQA
split: validation
metrics:
- type: exact_match
value: 30.733
name: Exact Match
- type: f1
value: 44.099
name: F1
- task:
type: question-answering
name: Question Answering
dataset:
name: squad_adversarial
type: squad_adversarial
config: AddOneSent
split: validation
metrics:
- type: exact_match
value: 79.295
name: Exact Match
- type: f1
value: 86.609
name: F1
- task:
type: question-answering
name: Question Answering
dataset:
name: squadshifts amazon
type: squadshifts
config: amazon
split: test
metrics:
- type: exact_match
value: 68.680
name: Exact Match
- type: f1
value: 83.832
name: F1
- task:
type: question-answering
name: Question Answering
dataset:
name: squadshifts new_wiki
type: squadshifts
config: new_wiki
split: test
metrics:
- type: exact_match
value: 80.171
name: Exact Match
- type: f1
value: 90.452
name: F1
- task:
type: question-answering
name: Question Answering
dataset:
name: squadshifts nyt
type: squadshifts
config: nyt
split: test
metrics:
- type: exact_match
value: 81.570
name: Exact Match
- type: f1
value: 90.644
name: F1
- task:
type: question-answering
name: Question Answering
dataset:
name: squadshifts reddit
type: squadshifts
config: reddit
split: test
metrics:
- type: exact_match
value: 66.990
name: Exact Match
- type: f1
value: 80.231
name: F1
---
# deberta-v3-base for Extractive QA
This is the [deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering.
## Overview
**Language model:** deberta-v3-base
**Language:** English
**Downstream-task:** Extractive QA
**Training data:** SQuAD 2.0
**Eval data:** SQuAD 2.0
**Code:** See [an example extractive QA pipeline built with Haystack](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline)
**Infrastructure**: 1x NVIDIA A10G
## Hyperparameters
```
batch_size = 12
n_epochs = 4
base_LM_model = "deberta-v3-base"
max_seq_len = 512
learning_rate = 2e-5
lr_schedule = LinearWarmup
warmup_proportion = 0.2
doc_stride = 128
max_query_length = 64
```
## Usage
### In Haystack
Haystack is an AI orchestration framework to build customizable, production-ready LLM applications. You can use this model in Haystack to do extractive question answering on documents.
To load and run the model with [Haystack](https://github.com/deepset-ai/haystack/):
```python
# After running pip install haystack-ai "transformers[torch,sentencepiece]"
from haystack import Document
from haystack.components.readers import ExtractiveReader
docs = [
Document(content="Python is a popular programming language"),
Document(content="python ist eine beliebte Programmiersprache"),
]
reader = ExtractiveReader(model="deepset/roberta-base-squad2")
reader.warm_up()
question = "What is a popular programming language?"
result = reader.run(query=question, documents=docs)
# {'answers': [ExtractedAnswer(query='What is a popular programming language?', score=0.5740374326705933, data='python', document=Document(id=..., content: '...'), context=None, document_offset=ExtractedAnswer.Span(start=0, end=6),...)]}
```
For a complete example with an extractive question answering pipeline that scales over many documents, check out the [corresponding Haystack tutorial](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline).
### In Transformers
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "deepset/roberta-base-squad2"
# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
'question': 'Why is model conversion important?',
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```
## Authors
**Sebastian Lee:** sebastian.lee [at] deepset.ai
**Timo M枚ller:** timo.moeller [at] deepset.ai
**Malte Pietsch:** malte.pietsch [at] deepset.ai
## About us
<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3">
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/>
</div>
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/>
</div>
</div>
[deepset](http://deepset.ai/) is the company behind the production-ready open-source AI framework [Haystack](https://haystack.deepset.ai/).
Some of our other work:
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")](https://huggingface.co/deepset/tinyroberta-squad2)
- [German BERT](https://deepset.ai/german-bert), [GermanQuAD and GermanDPR](https://deepset.ai/germanquad), [German embedding model](https://huggingface.co/mixedbread-ai/deepset-mxbai-embed-de-large-v1)
- [deepset Cloud](https://www.deepset.ai/deepset-cloud-product), [deepset Studio](https://www.deepset.ai/deepset-studio)
## Get in touch and join the Haystack community
<p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>.
We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p>
[Twitter](https://twitter.com/Haystack_AI) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://haystack.deepset.ai/) | [YouTube](https://www.youtube.com/@deepset_ai)
By the way: [we're hiring!](http://www.deepset.ai/jobs) |