Krooz commited on
Commit
4a82596
·
verified ·
1 Parent(s): 61dc97b

Updated the sample code to avoid warning

Browse files

UserWarning: `do_sample` is set to `False`. However, `top_p` is set to `0.95` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `top_p`.

Files changed (1) hide show
  1. README.md +2 -1
README.md CHANGED
@@ -38,6 +38,7 @@ deepseek-coder-33b-instruct is a 33B parameter model initialized from deepseek-c
38
  Here give some examples of how to use our model.
39
  #### Chat Model Inference
40
  ```python
 
41
  from transformers import AutoTokenizer, AutoModelForCausalLM
42
  tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-6.7b-instruct", trust_remote_code=True)
43
  model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-6.7b-instruct", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
@@ -46,7 +47,7 @@ messages=[
46
  ]
47
  inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
48
  # tokenizer.eos_token_id is the id of <|EOT|> token
49
- outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
50
  print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
51
  ```
52
 
 
38
  Here give some examples of how to use our model.
39
  #### Chat Model Inference
40
  ```python
41
+ import torch
42
  from transformers import AutoTokenizer, AutoModelForCausalLM
43
  tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-6.7b-instruct", trust_remote_code=True)
44
  model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-6.7b-instruct", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
 
47
  ]
48
  inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
49
  # tokenizer.eos_token_id is the id of <|EOT|> token
50
+ outputs = model.generate(inputs, max_new_tokens=512, do_sample=True, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
51
  print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
52
  ```
53