Updated the sample code to avoid warning
Browse filesUserWarning: `do_sample` is set to `False`. However, `top_p` is set to `0.95` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `top_p`.
README.md
CHANGED
@@ -38,6 +38,7 @@ deepseek-coder-33b-instruct is a 33B parameter model initialized from deepseek-c
|
|
38 |
Here give some examples of how to use our model.
|
39 |
#### Chat Model Inference
|
40 |
```python
|
|
|
41 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
42 |
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-6.7b-instruct", trust_remote_code=True)
|
43 |
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-6.7b-instruct", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
|
@@ -46,7 +47,7 @@ messages=[
|
|
46 |
]
|
47 |
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
48 |
# tokenizer.eos_token_id is the id of <|EOT|> token
|
49 |
-
outputs = model.generate(inputs, max_new_tokens=512, do_sample=
|
50 |
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
|
51 |
```
|
52 |
|
|
|
38 |
Here give some examples of how to use our model.
|
39 |
#### Chat Model Inference
|
40 |
```python
|
41 |
+
import torch
|
42 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
43 |
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-6.7b-instruct", trust_remote_code=True)
|
44 |
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-6.7b-instruct", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
|
|
|
47 |
]
|
48 |
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
49 |
# tokenizer.eos_token_id is the id of <|EOT|> token
|
50 |
+
outputs = model.generate(inputs, max_new_tokens=512, do_sample=True, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
|
51 |
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
|
52 |
```
|
53 |
|