File size: 1,234 Bytes
5a5090f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
---
tags: autotrain
language: unk
widget:
- text: "I love AutoTrain 🤗"
datasets:
- deepesh0x/autotrain-data-bert_wikipedia_sst_2
co2_eq_emissions: 16.686945384446037
---

# Model Trained Using AutoTrain

- Problem type: Binary Classification
- Model ID: 1034235513
- CO2 Emissions (in grams): 16.686945384446037

## Validation Metrics

- Loss: 0.14450643956661224
- Accuracy: 0.9527839643652561
- Precision: 0.9565852363250132
- Recall: 0.9588767633750332
- AUC: 0.9872179498202862
- F1: 0.9577296291373122

## Usage

You can use cURL to access this model:

```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' /static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2Fdeepesh0x%2Fautotrain-bert_wikipedia_sst_2-1034235513%3C%2Fspan%3E
```

Or Python API:

```
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("deepesh0x/autotrain-bert_wikipedia_sst_2-1034235513", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("deepesh0x/autotrain-bert_wikipedia_sst_2-1034235513", use_auth_token=True)

inputs = tokenizer("I love AutoTrain", return_tensors="pt")

outputs = model(**inputs)
```