File size: 1,234 Bytes
5a5090f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
---
tags: autotrain
language: unk
widget:
- text: "I love AutoTrain 🤗"
datasets:
- deepesh0x/autotrain-data-bert_wikipedia_sst_2
co2_eq_emissions: 16.686945384446037
---
# Model Trained Using AutoTrain
- Problem type: Binary Classification
- Model ID: 1034235513
- CO2 Emissions (in grams): 16.686945384446037
## Validation Metrics
- Loss: 0.14450643956661224
- Accuracy: 0.9527839643652561
- Precision: 0.9565852363250132
- Recall: 0.9588767633750332
- AUC: 0.9872179498202862
- F1: 0.9577296291373122
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' /static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2Fdeepesh0x%2Fautotrain-bert_wikipedia_sst_2-1034235513%3C%2Fspan%3E
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("deepesh0x/autotrain-bert_wikipedia_sst_2-1034235513", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("deepesh0x/autotrain-bert_wikipedia_sst_2-1034235513", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
``` |