--- language: - pt license: apache-2.0 tags: - whisper-event - generated_from_trainer base_model: openai/whisper-medium datasets: - mozilla-foundation/common_voice_17_0 - google/fleurs - facebook/multilingual_librispeech metrics: - wer model-index: - name: Whisper Medium Mixed-Portuguese results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_17_0 pt type: mozilla-foundation/common_voice_17_0 config: pt split: test args: pt metrics: - type: wer value: 7.122989865404904 name: Wer - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs type: google/fleurs config: pt_br split: test metrics: - type: wer value: 8.1 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: facebook/multilingual_librispeech type: facebook/multilingual_librispeech config: portuguese split: test metrics: - type: wer value: 13.57 name: WER pipeline_tag: automatic-speech-recognition --- # Whisper Medium Mixed-Portuguese This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the pt datasets: - mozilla-foundation/common_voice_17_0 - google/fleurs - facebook/multilingual_librispeech It achieves the following results on the evaluation set: - Loss: 0.1353 - Wer: 7.1230 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.1116 | 0.2 | 1000 | 0.1570 | 8.5824 | | 0.105 | 0.4 | 2000 | 0.1484 | 7.9398 | | 0.0783 | 0.6 | 3000 | 0.1374 | 7.4475 | | 0.1703 | 0.8 | 4000 | 0.1370 | 7.2413 | | 0.0977 | 1.0622 | 5000 | 0.1353 | 7.1230 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1