hungchiayu
commited on
Create handler.py
Browse files- handler.py +128 -0
handler.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
import logger
|
3 |
+
import spaces
|
4 |
+
import gradio as gr
|
5 |
+
import json
|
6 |
+
import torch
|
7 |
+
import wavio
|
8 |
+
from tqdm import tqdm
|
9 |
+
from huggingface_hub import snapshot_download
|
10 |
+
from models import AudioDiffusion, DDPMScheduler
|
11 |
+
from audioldm.audio.stft import TacotronSTFT
|
12 |
+
from audioldm.variational_autoencoder import AutoencoderKL
|
13 |
+
from pydub import AudioSegment
|
14 |
+
from gradio import Markdown
|
15 |
+
|
16 |
+
import torch
|
17 |
+
#from diffusers.models.autoencoder_kl import AutoencoderKL
|
18 |
+
from diffusers.models.unet_2d_condition import UNet2DConditionModel
|
19 |
+
from diffusers import DiffusionPipeline,AudioPipelineOutput
|
20 |
+
from transformers import CLIPTextModel, T5EncoderModel, AutoModel, T5Tokenizer, T5TokenizerFast
|
21 |
+
from typing import Union
|
22 |
+
from diffusers.utils.torch_utils import randn_tensor
|
23 |
+
from tqdm import tqdm
|
24 |
+
|
25 |
+
class Tango:
|
26 |
+
def __init__(self, name="declare-lab/tango2", device=device_selection):
|
27 |
+
|
28 |
+
path = snapshot_download(repo_id=name)
|
29 |
+
|
30 |
+
vae_config = json.load(open("{}/vae_config.json".format(path)))
|
31 |
+
stft_config = json.load(open("{}/stft_config.json".format(path)))
|
32 |
+
main_config = json.load(open("{}/main_config.json".format(path)))
|
33 |
+
|
34 |
+
self.vae = AutoencoderKL(**vae_config).to(device)
|
35 |
+
self.stft = TacotronSTFT(**stft_config).to(device)
|
36 |
+
self.model = AudioDiffusion(**main_config).to(device)
|
37 |
+
|
38 |
+
vae_weights = torch.load("{}/pytorch_model_vae.bin".format(path), map_location=device)
|
39 |
+
stft_weights = torch.load("{}/pytorch_model_stft.bin".format(path), map_location=device)
|
40 |
+
main_weights = torch.load("{}/pytorch_model_main.bin".format(path), map_location=device)
|
41 |
+
|
42 |
+
self.vae.load_state_dict(vae_weights)
|
43 |
+
self.stft.load_state_dict(stft_weights)
|
44 |
+
self.model.load_state_dict(main_weights)
|
45 |
+
|
46 |
+
print ("Successfully loaded checkpoint from:", name)
|
47 |
+
|
48 |
+
self.vae.eval()
|
49 |
+
self.stft.eval()
|
50 |
+
self.model.eval()
|
51 |
+
|
52 |
+
self.scheduler = DDPMScheduler.from_pretrained(main_config["scheduler_name"], subfolder="scheduler")
|
53 |
+
|
54 |
+
def chunks(self, lst, n):
|
55 |
+
""" Yield successive n-sized chunks from a list. """
|
56 |
+
for i in range(0, len(lst), n):
|
57 |
+
yield lst[i:i + n]
|
58 |
+
|
59 |
+
def generate(self, prompt, steps=100, guidance=3, samples=1, disable_progress=True):
|
60 |
+
""" Genrate audio for a single prompt string. """
|
61 |
+
with torch.no_grad():
|
62 |
+
latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress=disable_progress)
|
63 |
+
mel = self.vae.decode_first_stage(latents)
|
64 |
+
wave = self.vae.decode_to_waveform(mel)
|
65 |
+
return wave[0]
|
66 |
+
|
67 |
+
def generate_for_batch(self, prompts, steps=200, guidance=3, samples=1, batch_size=8, disable_progress=True):
|
68 |
+
""" Genrate audio for a list of prompt strings. """
|
69 |
+
outputs = []
|
70 |
+
for k in tqdm(range(0, len(prompts), batch_size)):
|
71 |
+
batch = prompts[k: k+batch_size]
|
72 |
+
with torch.no_grad():
|
73 |
+
latents = self.model.inference(batch, self.scheduler, steps, guidance, samples, disable_progress=disable_progress)
|
74 |
+
mel = self.vae.decode_first_stage(latents)
|
75 |
+
wave = self.vae.decode_to_waveform(mel)
|
76 |
+
outputs += [item for item in wave]
|
77 |
+
if samples == 1:
|
78 |
+
return outputs
|
79 |
+
else:
|
80 |
+
return list(self.chunks(outputs, samples))
|
81 |
+
|
82 |
+
# Initialize TANGO
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
class EndpointHandler():
|
88 |
+
def __init__(self, path=""):
|
89 |
+
# Preload all the elements you are going to need at inference.
|
90 |
+
# pseudo:
|
91 |
+
self.model= tango(device='cuda')
|
92 |
+
|
93 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
94 |
+
"""
|
95 |
+
data args:
|
96 |
+
inputs (:obj: `str` | `PIL.Image` | `np.array`)
|
97 |
+
kwargs
|
98 |
+
Return:
|
99 |
+
A :obj:`list` | `dict`: will be serialized and returned
|
100 |
+
"""
|
101 |
+
|
102 |
+
# pseudo
|
103 |
+
# self.model(input)
|
104 |
+
inputs = data.pop("inputs", data)
|
105 |
+
|
106 |
+
logger.info(f"Received incoming request with {data=}")
|
107 |
+
|
108 |
+
if "inputs" in data and isinstance(data["inputs"], str):
|
109 |
+
prompt = data.pop("inputs")
|
110 |
+
elif "prompt" in data and isinstance(data["prompt"], str):
|
111 |
+
prompt = data.pop("prompt")
|
112 |
+
else:
|
113 |
+
raise ValueError(
|
114 |
+
"Provided input body must contain either the key `inputs` or `prompt` with the"
|
115 |
+
" prompt to use for the image generation, and it needs to be a non-empty string."
|
116 |
+
)
|
117 |
+
|
118 |
+
parameters = data.pop("parameters", {})
|
119 |
+
|
120 |
+
num_inference_steps = parameters.get("num_inference_steps", 30)
|
121 |
+
width = parameters.get("width", 1024)
|
122 |
+
height = parameters.get("height", 768)
|
123 |
+
guidance_scale = parameters.get("guidance_scale", 3.5)
|
124 |
+
|
125 |
+
# seed generator (seed cannot be provided as is but via a generator)
|
126 |
+
seed = parameters.get("seed", 0)
|
127 |
+
generator = torch.manual_seed(seed)
|
128 |
+
|