--- license: llama3 library_name: peft tags: - alignment-handbook - trl - orpo - generated_from_trainer base_model: meta-llama/Meta-Llama-3-8B datasets: - mlabonne/orpo-dpo-mix-40k model-index: - name: llama-3-orpo-qlora results: [] --- # llama-3-orpo-qlora This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the mlabonne/orpo-dpo-mix-40k dataset. It achieves the following results on the evaluation set: - Loss: 1.0581 - Rewards/chosen: -0.0823 - Rewards/rejected: -0.2496 - Rewards/accuracies: 0.7879 - Rewards/margins: 0.1673 - Logps/rejected: -2.4958 - Logps/chosen: -0.8230 - Logits/rejected: -1.0347 - Logits/chosen: -0.9355 - Nll Loss: 1.0625 - Log Odds Ratio: -0.3947 - Log Odds Chosen: 2.1017 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 77 - distributed_type: multi-GPU - num_devices: 3 - gradient_accumulation_steps: 4 - total_train_batch_size: 24 - total_eval_batch_size: 6 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 30 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | Log Odds Ratio | Log Odds Chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|:--------------:|:---------------:| | 1.2408 | 0.9998 | 1639 | 1.1078 | -0.0850 | -0.1592 | 0.7045 | 0.0742 | -1.5920 | -0.8498 | -0.9217 | -0.9313 | 1.1014 | -0.4987 | 1.0714 | | 1.2158 | 1.9997 | 3278 | 1.0768 | -0.0818 | -0.1961 | 0.7273 | 0.1143 | -1.9613 | -0.8183 | -0.7536 | -0.7772 | 1.0726 | -0.4562 | 1.5271 | | 1.0891 | 2.9995 | 4917 | 1.0654 | -0.0820 | -0.2184 | 0.7197 | 0.1365 | -2.1845 | -0.8200 | -0.9358 | -0.8876 | 1.0648 | -0.4458 | 1.7377 | | 1.0521 | 3.9994 | 6556 | 1.0605 | -0.0824 | -0.2405 | 0.7727 | 0.1581 | -2.4049 | -0.8244 | -0.9998 | -0.8917 | 1.0630 | -0.4060 | 1.9929 | | 1.0763 | 4.9992 | 8195 | 1.0581 | -0.0823 | -0.2496 | 0.7879 | 0.1673 | -2.4958 | -0.8230 | -1.0347 | -0.9355 | 1.0625 | -0.3947 | 2.1017 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.2 - Pytorch 2.3.1 - Datasets 2.19.2 - Tokenizers 0.19.1