Moreno La Quatra commited on
Commit
a067ff6
·
1 Parent(s): bdf75cc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -3
README.md CHANGED
@@ -21,15 +21,44 @@ model-index:
21
  metrics:
22
  - name: Test WER
23
  type: wer
24
- value: 0.2960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
  should probably proofread and complete it, then remove this comment. -->
29
 
30
- # wav2vec2-xls-r-1b-italian-augmented-cv-ls
31
 
32
- This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the None dataset.
33
  It achieves the following results on the evaluation set:
34
  - Loss: 0.2428
35
  - Wer: 0.2960
 
21
  metrics:
22
  - name: Test WER
23
  type: wer
24
+ value: 32.74
25
+ - name: Test CER
26
+ type: cer
27
+ value: 7.83
28
+ - name: Test WER (+LM)
29
+ type: wer
30
+ value: 19.55
31
+ - name: Test CER (+LM)
32
+ type: cer
33
+ value: 5.59
34
+ - task:
35
+ name: Automatic Speech Recognition
36
+ type: automatic-speech-recognition
37
+ dataset:
38
+ name: Robust Speech Event - Dev Data
39
+ type: speech-recognition-community-v2/dev_data
40
+ args: it
41
+ metrics:
42
+ - name: Test WER
43
+ type: wer
44
+ value: 43.23
45
+ - name: Test CER
46
+ type: cer
47
+ value: 13.37
48
+ - name: Test WER (+LM)
49
+ type: wer
50
+ value: 27.51
51
+ - name: Test CER (+LM)
52
+ type: cer
53
+ value: 10.69
54
  ---
55
 
56
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
57
  should probably proofread and complete it, then remove this comment. -->
58
 
59
+ # wav2vec2-xls-r-1b-italian-robust
60
 
61
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the Common Voice 7 & Libri Speech datasets.
62
  It achieves the following results on the evaluation set:
63
  - Loss: 0.2428
64
  - Wer: 0.2960