Datasets:

Modalities:
Text
Formats:
text
Languages:
English
ArXiv:
DOI:
Libraries:
Datasets
License:
yoshitomo-matsubara commited on
Commit
121b315
·
1 Parent(s): 9ebc491

Add problem table, supp info, and README

Browse files
Files changed (4) hide show
  1. README.md +183 -0
  2. problem_table.pdf +0 -0
  3. problem_table.png +3 -0
  4. supp_info.json +1 -0
README.md ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pretty_name: SRSD-Feynman (Easy w/ Dummy Variables)
3
+ annotations_creators:
4
+ - expert
5
+ language_creators:
6
+ - expert-generated
7
+ language:
8
+ - en
9
+ license:
10
+ - mit
11
+ multilinguality:
12
+ - monolingual
13
+ size_categories:
14
+ - 100K<n<1M
15
+ source_datasets:
16
+ - extended
17
+ task_categories:
18
+ - symbolic-regression
19
+ task_ids: []
20
+ ---
21
+
22
+ # Dataset Card for SRSD-Feynman (Easy set with Dummy Variables)
23
+
24
+ ## Table of Contents
25
+ - [Table of Contents](#table-of-contents)
26
+ - [Dataset Description](#dataset-description)
27
+ - [Dataset Summary](#dataset-summary)
28
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
29
+ - [Languages](#languages)
30
+ - [Dataset Structure](#dataset-structure)
31
+ - [Data Instances](#data-instances)
32
+ - [Data Fields](#data-fields)
33
+ - [Data Splits](#data-splits)
34
+ - [Dataset Creation](#dataset-creation)
35
+ - [Curation Rationale](#curation-rationale)
36
+ - [Source Data](#source-data)
37
+ - [Annotations](#annotations)
38
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
39
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
40
+ - [Social Impact of Dataset](#social-impact-of-dataset)
41
+ - [Discussion of Biases](#discussion-of-biases)
42
+ - [Other Known Limitations](#other-known-limitations)
43
+ - [Additional Information](#additional-information)
44
+ - [Dataset Curators](#dataset-curators)
45
+ - [Licensing Information](#licensing-information)
46
+ - [Citation Information](#citation-information)
47
+ - [Contributions](#contributions)
48
+
49
+ ## Dataset Description
50
+
51
+ - **Homepage:**
52
+ - **Repository:** https://github.com/omron-sinicx/srsd-benchmark
53
+ - **Paper:** [Rethinking Symbolic Regression Datasets and Benchmarks for Scientific Discovery](https://arxiv.org/abs/2206.10540)
54
+ - **Point of Contact:** [Yoshitaka Ushiku](mailto:[email protected])
55
+
56
+ ### Dataset Summary
57
+
58
+ Our SRSD (Feynman) datasets are designed to discuss the performance of Symbolic Regression for Scientific Discovery.
59
+ We carefully reviewed the properties of each formula and its variables in [the Feynman Symbolic Regression Database](https://space.mit.edu/home/tegmark/aifeynman.html) to design reasonably realistic sampling range of values so that our SRSD datasets can be used for evaluating the potential of SRSD such as whether or not an SR method con (re)discover physical laws from such datasets.
60
+
61
+ This is the ***Easy set with dummy variables*** of our SRSD-Feynman datasets, which consists of the following 30 different physics formulas:
62
+
63
+ [![Click here to open a PDF file](problem_table.png)](https://huggingface.co/datasets/yoshitomo-matsubara/srsd-feynman_easy_dummy/resolve/main/problem_table.pdf)
64
+
65
+ Dummy variables were randomly generated, and symbolic regression models should not use the dummy variables as part of their predictions.
66
+
67
+ The following datasets contain
68
+ **1 dummy variable**: I.12.1, I.12.4, I.12.5, I.18.12, I.25.13, I.47.23
69
+
70
+ **2 dummy variables**: I.14.3, I.18.16, I.43.16, II.3.24, II.8.31, II.10.9, II.13.17, II.15.5, II.27.18, III.7.38, III.12.43
71
+
72
+ **3 dummy variables**: I.14.4, I.26.2, I.27.6, I.30.5, II.2.42, II.4.23, II.15.4, II.27.16, II.34.11, II.34.29b, II.38.3, II.38.14, III.15.27
73
+
74
+ More details of these datasets are provided in [the paper and its supplementary material](https://arxiv.org/abs/2206.10540).
75
+
76
+ ### Supported Tasks and Leaderboards
77
+
78
+ Symbolic Regression
79
+
80
+ ## Dataset Structure
81
+
82
+ ### Data Instances
83
+
84
+ Tabular data + Ground-truth equation per equation
85
+
86
+ Tabular data: (num_samples, num_variables+1), where the last (rightmost) column indicate output of the target function for given variables.
87
+ Note that the number of variables (`num_variables`) varies from equation to equation.
88
+
89
+ Ground-truth equation: *pickled* symbolic representation (equation with symbols in sympy) of the target function.
90
+
91
+
92
+ ### Data Fields
93
+
94
+ For each dataset, we have
95
+ 1. train split (txt file, whitespace as a delimiter)
96
+ 2. val split (txt file, whitespace as a delimiter)
97
+ 3. test split (txt file, whitespace as a delimiter)
98
+ 4. true equation (pickle file for sympy object)
99
+
100
+ ### Data Splits
101
+
102
+ - train: 8,000 samples per equation
103
+ - val: 1,000 samples per equation
104
+ - test: 1,000 samples per equation
105
+
106
+ ## Dataset Creation
107
+
108
+ ### Curation Rationale
109
+
110
+ We chose target equations based on [the Feynman Symbolic Regression Database](https://space.mit.edu/home/tegmark/aifeynman.html).
111
+
112
+ ### Annotations
113
+
114
+ #### Annotation process
115
+
116
+ We significantly revised the sampling range for each variable from the annotations in the Feynman Symbolic Regression Database.
117
+ First, we checked the properties of each variable and treat physical constants (e.g., light speed, gravitational constant) as constants.
118
+ Next, variable ranges were defined to correspond to each typical physics experiment to confirm the physical phenomenon for each equation.
119
+ In cases where a specific experiment is difficult to be assumed, ranges were set within which the corresponding physical phenomenon can be seen.
120
+ Generally, the ranges are set to be sampled on log scales within their orders as 10^2 in order to take both large and small changes in value as the order changes.
121
+ Variables such as angles, for which a linear distribution is expected are set to be sampled uniformly.
122
+ In addition, variables that take a specific sign were set to be sampled within that range.
123
+
124
+ #### Who are the annotators?
125
+
126
+ The main annotators are
127
+ - Naoya Chiba (@nchiba)
128
+ - Ryo Igarashi (@rigarash)
129
+
130
+
131
+
132
+ ### Personal and Sensitive Information
133
+
134
+ N/A
135
+
136
+ ## Considerations for Using the Data
137
+
138
+ ### Social Impact of Dataset
139
+
140
+ We annotated this dataset, assuming typical physical experiments. The dataset will engage research on symbolic regression for scientific discovery (SRSD) and help researchers discuss the potential of symbolic regression methods towards data-driven scientific discovery.
141
+
142
+ ### Discussion of Biases
143
+
144
+ Our choices of target equations are based on [the Feynman Symbolic Regression Database](https://space.mit.edu/home/tegmark/aifeynman.html), which are focused on a field of Physics.
145
+
146
+ ### Other Known Limitations
147
+
148
+ Some variables used in our datasets indicate some numbers (counts), which should be treated as integer.
149
+ Due to the capacity of 32-bit integer, however, we treated some of such variables as float e.g., number of molecules (10^{23} - 10^{25})
150
+
151
+ ## Additional Information
152
+
153
+ ### Dataset Curators
154
+
155
+ The main curators are
156
+ - Naoya Chiba (@nchiba)
157
+ - Ryo Igarashi (@rigarash)
158
+
159
+ ### Licensing Information
160
+
161
+ MIT License
162
+
163
+ ### Citation Information
164
+
165
+ [[Preprint](https://arxiv.org/abs/2206.10540)]
166
+ ```bibtex
167
+ @article{matsubara2022rethinking,
168
+ title={Rethinking Symbolic Regression Datasets and Benchmarks for Scientific Discovery},
169
+ author={Matsubara, Yoshitomo and Chiba, Naoya and Igarashi, Ryo and Ushiku, Yoshitaka},
170
+ journal={arXiv preprint arXiv:2206.10540},
171
+ year={2022}
172
+ }
173
+ ```
174
+
175
+ ### Contributions
176
+
177
+ Authors:
178
+ - Yoshitomo Matsubara (@yoshitomo-matsubara)
179
+ - Naoya Chiba (@nchiba)
180
+ - Ryo Igarashi (@rigarash)
181
+ - Yoshitaka Ushiku (@yushiku)
182
+
183
+
problem_table.pdf ADDED
Binary file (199 kB). View file
 
problem_table.png ADDED

Git LFS Details

  • SHA256: 9308cfc48166a4494d06a0cd2e376a8b96f1f62ae8eb9fadfedb979428fe96c7
  • Pointer size: 131 Bytes
  • Size of remote file: 776 kB
supp_info.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"feynman-ii.38.14": {"dataset_class_key": "feynman-ii.38.14", "sympy_eq_str": "x0/(2*x3 + 2)", "sympy_eq_srepr": "Mul(Symbol('x0', real=True, hermitian=True, finite=True, infinite=False, complex=True, commutative=True, extended_real=True, imaginary=False), Pow(Add(Mul(Integer(2), Symbol('x3', commutative=True)), Integer(2)), Integer(-1)))", "dummy_vars": ["x1", "x2", "x4"], "symbols": ["$\\mu$", "$Y$", "$\\sigma$"], "symbols_descs": ["Rigidity modulus", "Young's modulus", "Poisson coefficient"], "si-derived_units": ["$Pa$", "$Pa$", "$1$"], "si_units": ["$kg \\cdot m^{-1} \\cdot s^{-2}$", "$kg \\cdot m^{-1} \\cdot s^{-2}$", "$1$"], "properties": ["V, F, P", "V, F, P", "V, F, P"]}, "feynman-iii.7.38": {"dataset_class_key": "feynman-iii.7.38", "sympy_eq_str": "6.03682463024449e+33*pi*x0*x3", "sympy_eq_srepr": "Mul(Float('6.0368246302444918e+33', precision=53), pi, Symbol('x0', real=True, finite=True, hermitian=True, imaginary=False, commutative=True, complex=True, infinite=False, extended_real=True), Symbol('x3', commutative=True))", "dummy_vars": ["x1", "x2"], "symbols": ["$\\omega$", "$\\mu$", "$B$", "$h$"], "symbols_descs": ["Precession frequency", "Magnetic moment", "Magnetic flux density", "Planck constant"], "si-derived_units": ["$rad$", "$J/T$", "$T$", "$J \\cdot s$"], "si_units": ["$1$", "$m^2 \\cdot A$", "$kg \\cdot s^{-2} \\cdot A^{-1}$", "$kg \\cdot m^2 \\cdot s^{-1}$"], "properties": ["V, F", "V, F", "V, F", "C, F, P"]}, "feynman-ii.8.31": {"dataset_class_key": "feynman-ii.8.31", "sympy_eq_str": "4.427e-12*x1**2", "sympy_eq_srepr": "Mul(Float('4.4269999999999996e-12', precision=53), Pow(Symbol('x1', real=True, finite=True, hermitian=True, imaginary=False, commutative=True, complex=True, infinite=False, extended_real=True), Integer(2)))", "dummy_vars": ["x0", "x2"], "symbols": ["$u$", "$\\epsilon$", "$E$"], "symbols_descs": ["Energy", "Vacuum permittivity", "Magnitude of electric field"], "si-derived_units": ["$J$", "$F/m$", "$V/m$"], "si_units": ["$kg \\cdot m^2 \\cdot s^{-2}$", "$kg^{-1} \\cdot m^{-3} \\cdot s^4 \\cdot A^2$", "$kg \\cdot m \\cdot s^{-3} \\cdot A^{-1}$"], "properties": ["V, F", "C, F, P", "V, F, P"]}, "feynman-iii.12.43": {"dataset_class_key": "feynman-iii.12.43", "sympy_eq_str": "3.313e-34*x1/pi", "sympy_eq_srepr": "Mul(Float('3.3129999999999999e-34', precision=53), Pow(pi, Integer(-1)), Symbol('x1', real=True, finite=True, hermitian=True, imaginary=False, commutative=True, complex=True, infinite=False, extended_real=True))", "dummy_vars": ["x0", "x2"], "symbols": ["$J$", "$m$", "$h$"], "symbols_descs": ["Spin magnetic moment", "Spin state", "Planck constant"], "si-derived_units": ["$J \\cdot s$", "$1$", "$J \\cdot s$"], "si_units": ["$kg \\cdot m^2 \\cdot s^{-1}$", "$1$", "$kg \\cdot m^2 \\cdot s^{-1}$"], "properties": ["V, F", "V, I,NN", "C, F, P"]}, "feynman-ii.27.18": {"dataset_class_key": "feynman-ii.27.18", "sympy_eq_str": "8.854e-12*x0**2", "sympy_eq_srepr": "Mul(Float('8.8539999999999992e-12', precision=53), Pow(Symbol('x0', real=True, finite=True, hermitian=True, imaginary=False, commutative=True, complex=True, infinite=False, extended_real=True), Integer(2)))", "dummy_vars": ["x1", "x2"], "symbols": ["$u$", "$\\epsilon$", "$E$"], "symbols_descs": ["Energy density", "Vacuum permittivity", "Magnitude of electric field"], "si-derived_units": ["$J/m^3$", "$F/m$", "$V/m$"], "si_units": ["$kg \\cdot m^{-1} \\cdot s^{-2}$", "$kg^{-1} \\cdot m^{-3} \\cdot s^4 \\cdot A^2$", "$kg \\cdot m \\cdot s^{-3} \\cdot A^{-1}$"], "properties": ["V, F, P", "C, F, P", "V, F, P"]}, "feynman-ii.34.29b": {"dataset_class_key": "feynman-ii.34.29b", "sympy_eq_str": "27992786230.9085*pi*x2*x4*x5", "sympy_eq_srepr": "Mul(Float('27992786230.908546', precision=53), pi, Symbol('x2', commutative=True), Symbol('x4', commutative=True), Symbol('x5', commutative=True))", "dummy_vars": ["x0", "x1", "x3"], "symbols": ["$U$", "$g$", "$\\mu$", "$B$", "$J_z$", "$h$"], "symbols_descs": ["Energy", "g-factor", "Bohr magneton", "Magnetic field strength", "Element of angular momentum", "Planck constant"], "si-derived_units": ["$J$", "$1$", "$J/T$", "$T$", "$J \\cdot s$", "$J \\cdot s$"], "si_units": ["$kg \\cdot m^2 \\cdot s^{-2}$", "$1$", "$m^2 \\cdot A$", "$kg \\cdot s^{-2} \\cdot A^{-1}$", "$kg \\cdot m^2 \\cdot s^{-1}$", "$kg \\cdot m^2 \\cdot s^{-1}$"], "properties": ["V, F, P", "V, F", "C, F, P", "V, F", "V, F", "C, F, P"]}, "feynman-i.26.2": {"dataset_class_key": "feynman-i.26.2", "sympy_eq_str": "sin(x1)/sin(x3)", "sympy_eq_srepr": "Mul(sin(Symbol('x1', real=True, hermitian=True, complex=True, commutative=True, extended_real=True, infinite=False, finite=True, imaginary=False)), Pow(sin(Symbol('x3', commutative=True)), Integer(-1)))", "dummy_vars": ["x0", "x2", "x4"], "symbols": ["$n$", "$\\theta_1$", "$\\theta_2$"], "symbols_descs": ["Relative refractive index", "Refraction angle 1", "Refraction angle 2"], "si-derived_units": ["$1$", "$rad$", "$rad$"], "si_units": ["$1$", "$1$", "$1$"], "properties": ["V, F, P", "V, F", "V, F"]}, "feynman-ii.13.17": {"dataset_class_key": "feynman-ii.13.17", "sympy_eq_str": "6.28331859077038e-7*x0/(pi*x2)", "sympy_eq_srepr": "Mul(Float('6.2833185907703779e-7', precision=53), Pow(pi, Integer(-1)), Symbol('x0', real=True, finite=True, hermitian=True, imaginary=False, commutative=True, complex=True, infinite=False, extended_real=True), Pow(Symbol('x2', commutative=True), Integer(-1)))", "dummy_vars": ["x1", "x3"], "symbols": ["$B$", "$\\epsilon$", "$c$", "$I$", "$r$"], "symbols_descs": ["The magnitude of the magnetic field", "Vacuum permittivity", "Speed of light", "Electric current", "Radius"], "si-derived_units": ["$T$", "$F/m$", "$m/s$", "$A$", "$m$"], "si_units": ["$kg \\cdot s^{-2} \\cdot A^{-1}$", "$kg^{-1} \\cdot m^{-3} \\cdot s^4 \\cdot A^2$", "$m \\cdot s^{-1}$", "$A$", "$m$"], "properties": ["V, F", "C, F, P", "C, F, P", "V, F", "V, F, P"]}, "feynman-i.47.23": {"dataset_class_key": "feynman-i.47.23", "sympy_eq_str": "sqrt(x0*x1/x3)", "sympy_eq_srepr": "Pow(Mul(Symbol('x0', real=True, hermitian=True, complex=True, commutative=True, extended_real=True, infinite=False, finite=True, imaginary=False), Symbol('x1', real=True, hermitian=True, complex=True, commutative=True, extended_real=True, infinite=False, finite=True, imaginary=False), Pow(Symbol('x3', commutative=True), Integer(-1))), Rational(1, 2))", "dummy_vars": ["x2"], "symbols": ["$c$", "$\\gamma$", "$P$", "$\\rho$"], "symbols_descs": ["Velocity of sound", "Heat capacity ratio", "Atmospheric pressure", "Density of air"], "si-derived_units": ["$m/s$", "$1$", "$Pa$", "$kg \\cdot m^{-3}$"], "si_units": ["$m \\cdot s^{-1}$", "$1$", "$kg \\cdot m^{-1} \\cdot s^{-2}$", "$kg \\cdot m^{-3}$"], "properties": ["V, F, P", "V, F, P", "V, F, P", "V, F, P"]}, "feynman-i.30.5": {"dataset_class_key": "feynman-i.30.5", "sympy_eq_str": "x1/(x2*sin(x3))", "sympy_eq_srepr": "Mul(Symbol('x1', real=True, finite=True, hermitian=True, imaginary=False, commutative=True, complex=True, infinite=False, extended_real=True), Pow(Symbol('x2', commutative=True), Integer(-1)), Pow(sin(Symbol('x3', commutative=True)), Integer(-1)))", "dummy_vars": ["x0", "x4", "x5"], "symbols": ["$d$", "$\\lambda$", "$n$", "$\\theta$"], "symbols_descs": ["Interplanar distance", "Wavelength of X-ray", "The number of phase difference", "Incidence/Reflection angle"], "si-derived_units": ["$m$", "$m$", "$1$", "$rad$"], "si_units": ["$m$", "$m$", "$1$", "$1$"], "properties": ["V, F, P", "V, F, P", "V, I, P", "V, F"]}, "feynman-i.12.4": {"dataset_class_key": "feynman-i.12.4", "sympy_eq_str": "28235825615.541*x0/(pi*x1**2)", "sympy_eq_srepr": "Mul(Float('28235825615.541', precision=53), Pow(pi, Integer(-1)), Symbol('x0', real=True, hermitian=True, complex=True, commutative=True, extended_real=True, infinite=False, finite=True, imaginary=False), Pow(Symbol('x1', real=True, hermitian=True, complex=True, commutative=True, extended_real=True, infinite=False, finite=True, imaginary=False), Integer(-2)))", "dummy_vars": ["x2"], "symbols": ["$E$", "$q_1$", "$r$", "$\\epsilon$"], "symbols_descs": ["Magnitude of electric field", "Electric charge", "Distance", "Vacuum permittivity"], "si-derived_units": ["$V/m$", "$C$", "$m$", "$F/m$"], "si_units": ["$kg \\cdot m \\cdot s^{-3} \\cdot A^{-1}$", "$s \\cdot A$", "$m$", "$kg^{-1} \\cdot m^{-3} \\cdot s^4 \\cdot A^2$"], "properties": ["V, F", "V, F", "V, F, P", "C, F, P"]}, "feynman-ii.34.11": {"dataset_class_key": "feynman-ii.34.11", "sympy_eq_str": "x0*x2*x4/(2*x5)", "sympy_eq_srepr": "Mul(Rational(1, 2), Symbol('x0', real=True, hermitian=True, complex=True, commutative=True, extended_real=True, infinite=False, finite=True, imaginary=False), Symbol('x2', commutative=True), Symbol('x4', commutative=True), Pow(Symbol('x5', commutative=True), Integer(-1)))", "dummy_vars": ["x1", "x3", "x6"], "symbols": ["$\\omega$", "$g$", "$q$", "$B$", "$m$"], "symbols_descs": ["Angular frequency", "g-factor", "Electric charge", "Magnetic field strength", "Mass"], "si-derived_units": ["$rad/s$", "$1$", "$C$", "$T$", "$kg$"], "si_units": ["$rad \\cdot s^{-1}$", "$1$", "$s \\cdot A$", "$kg \\cdot s^{-2} \\cdot A^{-1}$", "$kg$"], "properties": ["V, F", "V, F", "V, F", "V, F", "V, F, P"]}, "feynman-ii.3.24": {"dataset_class_key": "feynman-ii.3.24", "sympy_eq_str": "x1/(4*pi*x2**2)", "sympy_eq_srepr": "Mul(Rational(1, 4), Pow(pi, Integer(-1)), Symbol('x1', real=True, hermitian=True, finite=True, infinite=False, complex=True, commutative=True, extended_real=True, imaginary=False), Pow(Symbol('x2', commutative=True), Integer(-2)))", "dummy_vars": ["x0", "x3"], "symbols": ["$h$", "$W$", "$r$"], "symbols_descs": ["Heat flux", "Work", "Distance"], "si-derived_units": ["$J/m^2$", "$J$", "$m$"], "si_units": ["$kg \\cdot s^{-2}$", "$kg \\cdot m^2 \\cdot s^{-2}$", "$m$"], "properties": ["V, F", "V, F", "V, F, P"]}, "feynman-i.43.16": {"dataset_class_key": "feynman-i.43.16", "sympy_eq_str": "x0*x1*x3/x4", "sympy_eq_srepr": "Mul(Symbol('x0', real=True, hermitian=True, complex=True, commutative=True, extended_real=True, infinite=False, finite=True, imaginary=False), Symbol('x1', real=True, hermitian=True, complex=True, commutative=True, extended_real=True, infinite=False, finite=True, imaginary=False), Symbol('x3', commutative=True), Pow(Symbol('x4', commutative=True), Integer(-1)))", "dummy_vars": ["x2", "x5"], "symbols": ["$v$", "$\\mu$", "$q$", "$V$", "$d$"], "symbols_descs": ["Velocity", "Ionic conductivity", "Electric charge of ions", "Voltage", "Distance"], "si-derived_units": ["$m/s$", "$s/kg$", "$C$", "$V$", "$m$"], "si_units": ["$m \\cdot s^{-1}$", "$kg^{-1} \\cdot s$", "$s \\cdot A$", "$kg \\cdot m^2 \\cdot s^{-3} \\cdot A^{-1}$", "$m$"], "properties": ["V, F", "V, F", "V, F", "V, F", "V, F, P"]}, "feynman-ii.2.42": {"dataset_class_key": "feynman-ii.2.42", "sympy_eq_str": "x0*x4*(x2 - x3)/x6", "sympy_eq_srepr": "Mul(Symbol('x0', real=True, hermitian=True, complex=True, commutative=True, extended_real=True, infinite=False, finite=True, imaginary=False), Symbol('x4', commutative=True), Pow(Symbol('x6', commutative=True), Integer(-1)), Add(Symbol('x2', commutative=True), Mul(Integer(-1), Symbol('x3', commutative=True))))", "dummy_vars": ["x1", "x5", "x7"], "symbols": ["$J$", "$\\kappa$", "$T_2$", "$T_1$", "$A$", "$d$"], "symbols_descs": ["Rate of heat flow", "Thermal conductivity", "Temperature", "Temperature", "Area", "Length"], "si-derived_units": ["$W$", "$W/(m \\cdot K)$", "$K$", "$K$", "$m^2$", "$m$"], "si_units": ["$kg \\cdot m^2 \\cdot s^{-3}$", "$kg \\cdot m \\cdot s^{-3} \\cdot K^{-1}$", "$K$", "$K$", "$m^2$", "$m$"], "properties": ["V, F", "V, F, P", "V, F, P", "V, F, P", "V, F, P", "V, F, P"]}, "feynman-ii.10.9": {"dataset_class_key": "feynman-ii.10.9", "sympy_eq_str": "112943302462.164*x0/(x2 + 1)", "sympy_eq_srepr": "Mul(Float('112943302462.164', precision=53), Symbol('x0', real=True, finite=True, hermitian=True, imaginary=False, commutative=True, complex=True, infinite=False, extended_real=True), Pow(Add(Symbol('x2', commutative=True), Integer(1)), Integer(-1)))", "dummy_vars": ["x1", "x3"], "symbols": ["$E$", "$\\sigma_\\text{free}$", "$\\epsilon$", "$\\chi$"], "symbols_descs": ["Electric field", "Surface charge", "Vacuum permittivity", "Electric susceptibility"], "si-derived_units": ["$V/m$", "$C/m^2$", "$F/m$", "$1$"], "si_units": ["$kg \\cdot m \\cdot s^{-3} \\cdot A^{-1}$", "$m \\cdot ^{-2} \\cdot s \\cdot A$", "$kg^{-1} \\cdot m^{-3} \\cdot s^4 \\cdot A^2$", "$1$"], "properties": ["V, F", "V, F", "C, F, P", "V, F, P"]}, "feynman-iii.15.27": {"dataset_class_key": "feynman-iii.15.27", "sympy_eq_str": "2*pi*x0/(x1*x4)", "sympy_eq_srepr": "Mul(Integer(2), pi, Symbol('x0', real=True, hermitian=True, complex=True, commutative=True, extended_real=True, infinite=False, finite=True, imaginary=False), Pow(Symbol('x1', real=True, hermitian=True, complex=True, commutative=True, extended_real=True, infinite=False, finite=True, imaginary=False), Integer(-1)), Pow(Symbol('x4', commutative=True), Integer(-1)))", "dummy_vars": ["x2", "x3", "x5"], "symbols": ["$k$", "$s$", "$N$", "$b$"], "symbols_descs": ["Wavenumber", "Parameter of state", "Number of atoms", "Lattice constant"], "si-derived_units": ["$m^{-1}$", "$1$", "$1$", "$m$"], "si_units": ["$m^{-1}$", "$1$", "$1$", "$m$"], "properties": ["V, F", "V, I", "V, I,P", "V, F, P"]}, "feynman-i.18.12": {"dataset_class_key": "feynman-i.18.12", "sympy_eq_str": "x0*x1*sin(x3)", "sympy_eq_srepr": "Mul(Symbol('x0', real=True, hermitian=True, complex=True, commutative=True, extended_real=True, infinite=False, finite=True, imaginary=False), Symbol('x1', real=True, hermitian=True, complex=True, commutative=True, extended_real=True, infinite=False, finite=True, imaginary=False), sin(Symbol('x3', commutative=True)))", "dummy_vars": ["x2"], "symbols": ["$\\tau$", "$r$", "$F$", "$\\theta$"], "symbols_descs": ["Torque", "Distance", "Force", "Angle"], "si-derived_units": ["$N \\cdot m$", "$m$", "$N$", "$rad$"], "si_units": ["$kg \\cdot m^2 \\cdot s^{-2}$", "$m$", "$kg \\cdot m \\cdot s^{-2}$", "$1$"], "properties": ["V, F", "V, F, P", "V, F", "V, F, NN"]}, "feynman-i.27.6": {"dataset_class_key": "feynman-i.27.6", "sympy_eq_str": "1/(x3/x4 + 1/x1)", "sympy_eq_srepr": "Pow(Add(Mul(Symbol('x3', commutative=True), Pow(Symbol('x4', commutative=True), Integer(-1))), Pow(Symbol('x1', real=True, hermitian=True, complex=True, commutative=True, extended_real=True, infinite=False, finite=True, imaginary=False), Integer(-1))), Integer(-1))", "dummy_vars": ["x0", "x2", "x5"], "symbols": ["$f$", "$d_1$", "$n$", "$d_2$"], "symbols_descs": ["Focal length", "Distance", "Refractive index", "Distance"], "si-derived_units": ["$m$", "$m$", "$1$", "$m$"], "si_units": ["$m$", "$m$", "$1$", "$m$"], "properties": ["V, F", "V, F, P", "V, F, P,", "V, F, P"]}, "feynman-i.14.3": {"dataset_class_key": "feynman-i.14.3", "sympy_eq_str": "9.80665*x0*x1", "sympy_eq_srepr": "Mul(Float('9.8066499999999994', precision=53), Symbol('x0', real=True, finite=True, hermitian=True, imaginary=False, commutative=True, complex=True, infinite=False, extended_real=True), Symbol('x1', real=True, finite=True, hermitian=True, imaginary=False, commutative=True, complex=True, infinite=False, extended_real=True))", "dummy_vars": ["x2", "x3"], "symbols": ["$U$", "$m$", "$g$", "$z$"], "symbols_descs": ["Potential energy", "Mass", "Gravitational acceleration", "Height"], "si-derived_units": ["$J$", "$kg$", "$m/s^2$", "$m$"], "si_units": ["$kg \\cdot m^2 \\cdot s^{-2}$", "$kg$", "$m \\cdot s^{-2}$", "$m$"], "properties": ["V, F, P", "V, F, P", "C, F, P", "V, F"]}, "feynman-i.18.16": {"dataset_class_key": "feynman-i.18.16", "sympy_eq_str": "x0*x1*x3*sin(x4)", "sympy_eq_srepr": "Mul(Symbol('x0', real=True, hermitian=True, complex=True, commutative=True, extended_real=True, infinite=False, finite=True, imaginary=False), Symbol('x1', real=True, hermitian=True, complex=True, commutative=True, extended_real=True, infinite=False, finite=True, imaginary=False), Symbol('x3', commutative=True), sin(Symbol('x4', commutative=True)))", "dummy_vars": ["x2", "x5"], "symbols": ["$L$", "$m$", "$r$", "$v$", "$\\theta$"], "symbols_descs": ["Angular momentum", "Mass", "Distance", "Velocity", "Angle"], "si-derived_units": ["$kg \\cdot m^2/s$", "$kg$", "$m$", "$m/s$", "$rad$"], "si_units": ["$kg \\cdot m^2 \\cdot s^{-1}$", "$kg$", "$m$", "$m \\cdot s^{-1}$", "$1$"], "properties": ["V, F", "V, F, P", "V, F, P", "V, F, P", "V, F, NN"]}, "feynman-ii.27.16": {"dataset_class_key": "feynman-ii.27.16", "sympy_eq_str": "0.002654362423132*x2**2", "sympy_eq_srepr": "Mul(Float('0.0026543624231319999', precision=53), Pow(Symbol('x2', commutative=True), Integer(2)))", "dummy_vars": ["x0", "x1", "x3"], "symbols": ["$L$", "$\\epsilon$", "$c$", "$E$"], "symbols_descs": ["Radiance", "Vacuum permittivity", "Speed of light", "Magnitude of electric field"], "si-derived_units": ["$W/(sr \\cdot m^2)$", "$F/m$", "$m/s$", "$V/m$"], "si_units": ["$kg \\cdot s^{-3}$", "$kg^{-1} \\cdot m^{-3} \\cdot s^4 \\cdot A^2$", "$m \\cdot s^{-1}$", "$kg \\cdot m \\cdot s^{-3} \\cdot A^{-1}$"], "properties": ["V, F", "C, F, P", "C, F, P", "V, F, P"]}, "feynman-ii.4.23": {"dataset_class_key": "feynman-ii.4.23", "sympy_eq_str": "28235825615.541*x1/(pi*x4)", "sympy_eq_srepr": "Mul(Float('28235825615.541', precision=53), Pow(pi, Integer(-1)), Symbol('x1', real=True, finite=True, hermitian=True, imaginary=False, commutative=True, complex=True, infinite=False, extended_real=True), Pow(Symbol('x4', commutative=True), Integer(-1)))", "dummy_vars": ["x0", "x2", "x3"], "symbols": ["$\\phi$", "$q$", "$\\epsilon$", "$r$"], "symbols_descs": ["Electric potential", "Electric charge", "Vacuum permittivity", "Distance"], "si-derived_units": ["$V$", "$C$", "$F/m$", "$m$"], "si_units": ["$kg \\cdot m^2 \\cdot s^{-3} \\cdot A^{-1}$", "$s \\cdot A$", "$kg^{-1} \\cdot m^{-3} \\cdot s^4 \\cdot A^2$", "$m$"], "properties": ["V, F", "V, F", "C, F, P", "V, F, P"]}, "feynman-i.12.5": {"dataset_class_key": "feynman-i.12.5", "sympy_eq_str": "x0*x1", "sympy_eq_srepr": "Mul(Symbol('x0', real=True, hermitian=True, finite=True, infinite=False, complex=True, commutative=True, extended_real=True, imaginary=False), Symbol('x1', real=True, hermitian=True, finite=True, infinite=False, complex=True, commutative=True, extended_real=True, imaginary=False))", "dummy_vars": ["x2"], "symbols": ["$F$", "$q_2$", "$E$"], "symbols_descs": ["Force", "Electric charge", "Electric field"], "si-derived_units": ["$N$", "$C$", "$V/m$"], "si_units": ["$kg \\cdot m \\cdot s^{-2}$", "$s \\cdot A$", "$kg \\cdot m \\cdot s^{-3} \\cdot A^{-1}$"], "properties": ["V, F", "V, F", "V, F"]}, "feynman-ii.38.3": {"dataset_class_key": "feynman-ii.38.3", "sympy_eq_str": "x1*x3*x4/x6", "sympy_eq_srepr": "Mul(Symbol('x1', real=True, finite=True, hermitian=True, imaginary=False, commutative=True, complex=True, infinite=False, extended_real=True), Symbol('x3', commutative=True), Symbol('x4', commutative=True), Pow(Symbol('x6', commutative=True), Integer(-1)))", "dummy_vars": ["x0", "x2", "x5"], "symbols": ["$F$", "$Y$", "$A$", "$\\delta l$", "$l$"], "symbols_descs": ["Force", "Young's modulus", "Area", "Displacement", "Length"], "si-derived_units": ["$N$", "$Pa$", "$m^2$", "$m$", "$m$"], "si_units": ["$kg \\cdot m \\cdot s^{-2}$", "$kg \\cdot m^{-1} \\cdot s^{-2}$", "$m^2$", "$m$", "$m$"], "properties": ["V, F", "V, F, P", "V, F, P", "V, F", "V, F, P"]}, "feynman-i.14.4": {"dataset_class_key": "feynman-i.14.4", "sympy_eq_str": "0.5*x1*x2**2", "sympy_eq_srepr": "Mul(Float('0.5', precision=53), Symbol('x1', real=True, finite=True, hermitian=True, imaginary=False, commutative=True, complex=True, infinite=False, extended_real=True), Pow(Symbol('x2', commutative=True), Integer(2)))", "dummy_vars": ["x0", "x3", "x4"], "symbols": ["$U$", "$k_\\text{spring}$", "$x$"], "symbols_descs": ["Elastic energy", "Spring constant", "Position"], "si-derived_units": ["$J$", "$N/m$", "$m$"], "si_units": ["$kg \\cdot m^2 \\cdot s^{-2}$", "$kg \\cdot s^{-2}$", "$m$"], "properties": ["V, F, P", "V, F, P", "V, F"]}, "feynman-i.25.13": {"dataset_class_key": "feynman-i.25.13", "sympy_eq_str": "x1/x2", "sympy_eq_srepr": "Mul(Symbol('x1', real=True, finite=True, hermitian=True, imaginary=False, commutative=True, complex=True, infinite=False, extended_real=True), Pow(Symbol('x2', commutative=True), Integer(-1)))", "dummy_vars": ["x0"], "symbols": ["$V$", "$q$", "$C$"], "symbols_descs": ["Voltage", "Electric charge", "Electrostatic Capacitance"], "si-derived_units": ["$V$", "$C$", "$F$"], "si_units": ["$kg \\cdot m^2 \\cdot s^{-3} \\cdot A^{-1}$", "$s \\cdot A$", "$kg^{-1} \\cdot m^{-2} \\cdot s^4 \\cdot A^2$"], "properties": ["V, F", "V, F", "V, F, P"]}, "feynman-ii.15.5": {"dataset_class_key": "feynman-ii.15.5", "sympy_eq_str": "-x1*x2*cos(x3)", "sympy_eq_srepr": "Mul(Integer(-1), Symbol('x1', real=True, finite=True, hermitian=True, imaginary=False, commutative=True, complex=True, infinite=False, extended_real=True), Symbol('x2', commutative=True), cos(Symbol('x3', commutative=True)))", "dummy_vars": ["x0", "x4"], "symbols": ["$U$", "$p$", "$E$", "$\\theta$"], "symbols_descs": ["Energy", "Electric dipole moment", "Magnitude of electric field", "Angle"], "si-derived_units": ["$J$", "$C \\cdot m$", "$V/m$", "$rad$"], "si_units": ["$kg \\cdot m^2 \\cdot s^{-2}$", "$m \\cdot s \\cdot A$", "$kg \\cdot m \\cdot s^{-3} \\cdot A^{-1}$", "$1$"], "properties": ["V, F", "V, F", "V, F", "V, F"]}, "feynman-ii.15.4": {"dataset_class_key": "feynman-ii.15.4", "sympy_eq_str": "-x0*x3*cos(x4)", "sympy_eq_srepr": "Mul(Integer(-1), Symbol('x0', real=True, hermitian=True, complex=True, commutative=True, extended_real=True, infinite=False, finite=True, imaginary=False), Symbol('x3', commutative=True), cos(Symbol('x4', commutative=True)))", "dummy_vars": ["x1", "x2", "x5"], "symbols": ["$U$", "$\\mu$", "$B$", "$\\theta$"], "symbols_descs": ["Energy from magnetic field", "Magnetic dipole moment", "Magnetic field strength", "Angle"], "si-derived_units": ["$J$", "$J/T$", "$T$", "$rad$"], "si_units": ["$kg \\cdot m^2 \\cdot s^{-2}$", "$m^2 \\cdot A$", "$kg \\cdot s^{-2} \\cdot A^{-1}$", "$1$"], "properties": ["V, F", "V, F", "V, F", "V, F, NN"]}, "feynman-i.12.1": {"dataset_class_key": "feynman-i.12.1", "sympy_eq_str": "x0*x1", "sympy_eq_srepr": "Mul(Symbol('x0', real=True, hermitian=True, finite=True, infinite=False, complex=True, commutative=True, extended_real=True, imaginary=False), Symbol('x1', real=True, hermitian=True, finite=True, infinite=False, complex=True, commutative=True, extended_real=True, imaginary=False))", "dummy_vars": ["x2"], "symbols": ["$F$", "$\\mu$", "$N_\\text{n}$"], "symbols_descs": ["Force of friction", "Coefficient of friction", "Normal force"], "si-derived_units": ["$N$", "$1$", "$N$"], "si_units": ["$kg \\cdot m \\cdot s^{-2}$", "$1$", "$kg \\cdot m \\cdot s^{-2}$"], "properties": ["V, F, P", "V, F, P", "V, F, P"]}}