Datasets:
Yeb Havinga
commited on
Commit
·
501f190
1
Parent(s):
09f5119
Add dataset
Browse files- README.md +156 -0
- src/create_dataset.py +168 -0
- src/create_opensub_imdb_joined.py +126 -0
- src/episode_opensubtitles.json.gz +3 -0
- train.jsonl.gz +3 -0
README.md
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- found
|
4 |
+
language_creators:
|
5 |
+
- found
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
- nl
|
9 |
+
license:
|
10 |
+
- unknown
|
11 |
+
multilinguality:
|
12 |
+
- multilingual
|
13 |
+
size_categories:
|
14 |
+
- 10K<n<100K
|
15 |
+
- 1M<n<10M
|
16 |
+
- n<1K
|
17 |
+
source_datasets:
|
18 |
+
- original
|
19 |
+
task_categories:
|
20 |
+
- translation
|
21 |
+
task_ids: []
|
22 |
+
pretty_name: OpenSubtitles En Nl
|
23 |
+
---
|
24 |
+
|
25 |
+
# Dataset Card for OpenSubtitles
|
26 |
+
|
27 |
+
## Table of Contents
|
28 |
+
- [Dataset Description](#dataset-description)
|
29 |
+
- [Dataset Summary](#dataset-summary)
|
30 |
+
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
31 |
+
- [Languages](#languages)
|
32 |
+
- [Dataset Structure](#dataset-structure)
|
33 |
+
- [Data Instances](#data-instances)
|
34 |
+
- [Data Fields](#data-fields)
|
35 |
+
- [Data Splits](#data-splits)
|
36 |
+
- [Dataset Creation](#dataset-creation)
|
37 |
+
- [Curation Rationale](#curation-rationale)
|
38 |
+
- [Source Data](#source-data)
|
39 |
+
- [Annotations](#annotations)
|
40 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
41 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
42 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
43 |
+
- [Discussion of Biases](#discussion-of-biases)
|
44 |
+
- [Other Known Limitations](#other-known-limitations)
|
45 |
+
- [Additional Information](#additional-information)
|
46 |
+
- [Dataset Curators](#dataset-curators)
|
47 |
+
- [Licensing Information](#licensing-information)
|
48 |
+
- [Citation Information](#citation-information)
|
49 |
+
- [Contributions](#contributions)
|
50 |
+
|
51 |
+
## Dataset Description
|
52 |
+
|
53 |
+
- **Homepage:** http://opus.nlpl.eu/OpenSubtitles.php
|
54 |
+
- **Repository:** None
|
55 |
+
- **Paper:** http://www.lrec-conf.org/proceedings/lrec2016/pdf/62_Paper.pdf
|
56 |
+
- **Leaderboard:** [More Information Needed]
|
57 |
+
- **Point of Contact:** [More Information Needed]
|
58 |
+
|
59 |
+
### Dataset Summary
|
60 |
+
|
61 |
+
This dataset is a subset from the en-nl open_subtitles dataset.
|
62 |
+
It contains only subtitles of tv shows that have a rating of at least 8.0 with at least 1000 votes.
|
63 |
+
The subtitles are also ordered and appended into buffers several lengths, with a maximum of 370 tokens
|
64 |
+
as tokenized by the 'yhavinga/ul2-base-dutch' tokenizer.
|
65 |
+
|
66 |
+
|
67 |
+
### Supported Tasks and Leaderboards
|
68 |
+
|
69 |
+
[More Information Needed]
|
70 |
+
|
71 |
+
### Languages
|
72 |
+
|
73 |
+
The languages in the dataset are:
|
74 |
+
- en
|
75 |
+
- nl
|
76 |
+
|
77 |
+
## Dataset Structure
|
78 |
+
|
79 |
+
### Data Instances
|
80 |
+
|
81 |
+
Here are some examples of questions and facts:
|
82 |
+
|
83 |
+
|
84 |
+
### Data Fields
|
85 |
+
|
86 |
+
[More Information Needed]
|
87 |
+
|
88 |
+
### Data Splits
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
## Dataset Creation
|
93 |
+
|
94 |
+
### Curation Rationale
|
95 |
+
|
96 |
+
[More Information Needed]
|
97 |
+
|
98 |
+
### Source Data
|
99 |
+
|
100 |
+
[More Information Needed]
|
101 |
+
|
102 |
+
#### Initial Data Collection and Normalization
|
103 |
+
|
104 |
+
[More Information Needed]
|
105 |
+
|
106 |
+
#### Who are the source language producers?
|
107 |
+
|
108 |
+
[More Information Needed]
|
109 |
+
|
110 |
+
### Annotations
|
111 |
+
|
112 |
+
[More Information Needed]
|
113 |
+
|
114 |
+
#### Annotation process
|
115 |
+
|
116 |
+
[More Information Needed]
|
117 |
+
|
118 |
+
#### Who are the annotators?
|
119 |
+
|
120 |
+
[More Information Needed]
|
121 |
+
|
122 |
+
### Personal and Sensitive Information
|
123 |
+
|
124 |
+
[More Information Needed]
|
125 |
+
|
126 |
+
## Considerations for Using the Data
|
127 |
+
|
128 |
+
### Social Impact of Dataset
|
129 |
+
|
130 |
+
[More Information Needed]
|
131 |
+
|
132 |
+
### Discussion of Biases
|
133 |
+
|
134 |
+
[More Information Needed]
|
135 |
+
|
136 |
+
### Other Known Limitations
|
137 |
+
|
138 |
+
[More Information Needed]
|
139 |
+
|
140 |
+
## Additional Information
|
141 |
+
|
142 |
+
### Dataset Curators
|
143 |
+
|
144 |
+
[More Information Needed]
|
145 |
+
|
146 |
+
### Licensing Information
|
147 |
+
|
148 |
+
[More Information Needed]
|
149 |
+
|
150 |
+
### Citation Information
|
151 |
+
|
152 |
+
[More Information Needed]
|
153 |
+
|
154 |
+
### Contributions
|
155 |
+
|
156 |
+
Thanks to [@abhishekkrthakur](https://github.com/abhishekkrthakur) for adding the open_subtitles dataset.
|
src/create_dataset.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gzip
|
2 |
+
import json
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import pandas as pd
|
6 |
+
from transformers import AutoTokenizer
|
7 |
+
|
8 |
+
COLLATE_LENGTH = 370
|
9 |
+
|
10 |
+
|
11 |
+
def emit(line_id, nl_str, en_str, nl_l, en_l):
|
12 |
+
obj = {
|
13 |
+
"id": line_id,
|
14 |
+
"translation": {
|
15 |
+
"nl": nl_str.strip(),
|
16 |
+
"en": en_str.strip(),
|
17 |
+
},
|
18 |
+
"nl_len": nl_l,
|
19 |
+
"en_len": en_l,
|
20 |
+
}
|
21 |
+
writer.write(str.encode(json.dumps(obj)))
|
22 |
+
writer.write("\n".encode("utf-8"))
|
23 |
+
|
24 |
+
|
25 |
+
class TokenLength:
|
26 |
+
def __init__(self, tokenizer):
|
27 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
28 |
+
tokenizer, max_length=4096, truncation=False, use_fast=False
|
29 |
+
)
|
30 |
+
|
31 |
+
def __call__(self, text: str):
|
32 |
+
return len(self.tokenizer.encode(text, max_length=4096, truncation=False))
|
33 |
+
|
34 |
+
|
35 |
+
class Counter:
|
36 |
+
def __init__(self, start=0):
|
37 |
+
self.count = start
|
38 |
+
|
39 |
+
def __call__(self):
|
40 |
+
self.count += 1
|
41 |
+
return self.count
|
42 |
+
|
43 |
+
|
44 |
+
class Buffer:
|
45 |
+
def __init__(
|
46 |
+
self,
|
47 |
+
id: int,
|
48 |
+
emit_lines: bool,
|
49 |
+
max_length: int,
|
50 |
+
en_prefix="",
|
51 |
+
):
|
52 |
+
self.id = id
|
53 |
+
self.emit_lines = emit_lines
|
54 |
+
self.max_length = max_length
|
55 |
+
self.en_prefix = en_prefix
|
56 |
+
self.counter = Counter()
|
57 |
+
self.nl_l = None
|
58 |
+
self.en_l = None
|
59 |
+
self.nl_buf = None
|
60 |
+
self.en_buf = None
|
61 |
+
self.cur_max_length = None
|
62 |
+
self.reset()
|
63 |
+
|
64 |
+
def set_cur_max_length(self):
|
65 |
+
"""You can check the distribution with the following code:
|
66 |
+
%matplotlib notebook
|
67 |
+
import numpy as np
|
68 |
+
import matplotlib.pyplot as plt
|
69 |
+
|
70 |
+
plt.rcParams['figure.figsize'] = [9.5,6]
|
71 |
+
fig, ax = plt.subplots(1, 1)
|
72 |
+
|
73 |
+
r = np.random.beta(20,8,102000)
|
74 |
+
ax.hist(r, density=True, histtype='stepfilled', alpha=0.2, bins=200)
|
75 |
+
ax.legend(loc='best', frameon=False)
|
76 |
+
plt.show()
|
77 |
+
"""
|
78 |
+
self.cur_max_length = int(self.max_length * np.random.beta(20, 8))
|
79 |
+
|
80 |
+
def reset(self):
|
81 |
+
self.nl_l = None
|
82 |
+
self.en_l = None
|
83 |
+
self.nl_buf = None
|
84 |
+
self.en_buf = None
|
85 |
+
self.set_cur_max_length()
|
86 |
+
|
87 |
+
def add_ok(self, nl_str, en_str, separator="\n"):
|
88 |
+
"""If the new text fits within the max_length tokens, add it, else return False"""
|
89 |
+
nl_new = self.nl_buf + f"{separator}{nl_str}" if self.nl_buf else nl_str
|
90 |
+
en_new = self.en_buf + f"{separator}{en_str}" if self.en_buf else en_str
|
91 |
+
nl_new_l = token_length(nl_new)
|
92 |
+
en_new_l = token_length(en_new)
|
93 |
+
# Check if we can add it or if the result would be too long
|
94 |
+
if (
|
95 |
+
nl_new_l > self.cur_max_length
|
96 |
+
or token_length(self.en_prefix + en_new) > self.cur_max_length
|
97 |
+
):
|
98 |
+
return False
|
99 |
+
else:
|
100 |
+
self.nl_buf = nl_new
|
101 |
+
self.en_buf = en_new
|
102 |
+
self.nl_l = nl_new_l
|
103 |
+
self.en_l = en_new_l
|
104 |
+
return True
|
105 |
+
|
106 |
+
def emit(self, row, separator):
|
107 |
+
nl_str = row.translation["nl"]
|
108 |
+
en_str = row.translation["en"]
|
109 |
+
nl_id = row.meta["sentenceIds"]["nl"]
|
110 |
+
en_id = row.meta["sentenceIds"]["en"]
|
111 |
+
|
112 |
+
# if one of the sentences ends on a . but the other doesn't, add a dot to the other
|
113 |
+
if nl_str.endswith(".") and not en_str.endswith("."):
|
114 |
+
en_str += "."
|
115 |
+
elif en_str.endswith(".") and not nl_str.endswith("."):
|
116 |
+
nl_str += "."
|
117 |
+
# Strip any leading "- " or "- " from the sentences
|
118 |
+
nl_str = nl_str.lstrip("- ")
|
119 |
+
en_str = en_str.lstrip("- ")
|
120 |
+
|
121 |
+
nl_len = token_length(nl_str)
|
122 |
+
en_len = token_length(en_str)
|
123 |
+
if self.emit_lines and nl_len <= COLLATE_LENGTH and en_len <= COLLATE_LENGTH:
|
124 |
+
emit(
|
125 |
+
line_id=f"{row.tconst}-nl{nl_id}-en{en_id}-l-",
|
126 |
+
nl_str=nl_str,
|
127 |
+
en_str=en_str,
|
128 |
+
nl_l=nl_len,
|
129 |
+
en_l=en_len,
|
130 |
+
)
|
131 |
+
if self.add_ok(nl_str.strip(), en_str.strip(), separator):
|
132 |
+
return
|
133 |
+
|
134 |
+
# If buf.add returns false, we've hit the maximum length boundary, so emit the current buffer, if it is not Empty
|
135 |
+
if self.nl_buf:
|
136 |
+
emit(
|
137 |
+
line_id=f"{row.tconst}-b{self.id}-{self.counter()}",
|
138 |
+
nl_str=self.nl_buf,
|
139 |
+
en_str=self.en_buf,
|
140 |
+
nl_l=self.nl_l,
|
141 |
+
en_l=self.en_l,
|
142 |
+
)
|
143 |
+
# After emit of the buffer, we reset the buffer
|
144 |
+
self.reset()
|
145 |
+
|
146 |
+
# Add the first line in this new buffer
|
147 |
+
result = self.add_ok(nl_str.strip(), en_str.strip())
|
148 |
+
if not result:
|
149 |
+
self.reset()
|
150 |
+
|
151 |
+
|
152 |
+
if __name__ == "__main__":
|
153 |
+
token_length = TokenLength(tokenizer="yhavinga/ul2-base-dutch")
|
154 |
+
line_counter = Counter()
|
155 |
+
|
156 |
+
buffers = [
|
157 |
+
Buffer(
|
158 |
+
id=index, emit_lines=(index == 0), max_length=buf_max_length, en_prefix=""
|
159 |
+
)
|
160 |
+
for index, buf_max_length in enumerate([0.6 * 370, 370])
|
161 |
+
]
|
162 |
+
|
163 |
+
df = pd.read_json("episode_opensubtitles.json.gz", lines=True)
|
164 |
+
|
165 |
+
with gzip.open("outfile", mode="wb") as writer:
|
166 |
+
for row in df.itertuples():
|
167 |
+
for buffer in buffers:
|
168 |
+
buffer.emit(row, separator="\n")
|
src/create_opensub_imdb_joined.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import duckdb as duckdb
|
2 |
+
import pandas as pd
|
3 |
+
import tabulate
|
4 |
+
from datasets import load_dataset
|
5 |
+
|
6 |
+
cursor = duckdb.connect()
|
7 |
+
cursor.execute("PRAGMA threads=4")
|
8 |
+
|
9 |
+
NROWS = 100000000
|
10 |
+
NA_VALUES = "\\N"
|
11 |
+
|
12 |
+
dataset = load_dataset("open_subtitles", lang1="en", lang2="nl", split="train")
|
13 |
+
open_subtitles = dataset.data.table
|
14 |
+
print(
|
15 |
+
tabulate.tabulate(
|
16 |
+
cursor.execute(f"SELECT * FROM open_subtitles LIMIT 5").fetchdf(),
|
17 |
+
headers="keys",
|
18 |
+
tablefmt="psql",
|
19 |
+
)
|
20 |
+
)
|
21 |
+
|
22 |
+
# title_akas = pd.read_csv('title.akas.tsv.gz', sep='\t', na_values=NA_VALUES, nrows=NROWS)
|
23 |
+
# title_df = cursor.execute("SELECT * from title_akas limit 5").fetch_df()
|
24 |
+
# print(tabulate.tabulate(title_df, headers="keys", tablefmt="psql"))
|
25 |
+
|
26 |
+
title_basics = pd.read_csv(
|
27 |
+
"title.basics.tsv.gz", sep="\t", na_values=NA_VALUES, nrows=NROWS
|
28 |
+
)
|
29 |
+
basics_df = cursor.execute("SELECT * from title_basics limit 5").fetch_df()
|
30 |
+
print(tabulate.tabulate(basics_df, headers="keys", tablefmt="psql"))
|
31 |
+
|
32 |
+
title_episodes = pd.read_csv(
|
33 |
+
"title.episode.tsv.gz", sep="\t", na_values=NA_VALUES, nrows=NROWS
|
34 |
+
)
|
35 |
+
episodes_df = cursor.execute("SELECT * from title_episodes limit 5").fetch_df()
|
36 |
+
print(tabulate.tabulate(episodes_df, headers="keys", tablefmt="psql"))
|
37 |
+
|
38 |
+
title_ratings = pd.read_csv(
|
39 |
+
"title.ratings.tsv.gz", sep="\t", na_values=NA_VALUES, nrows=NROWS
|
40 |
+
)
|
41 |
+
ratings_df = cursor.execute("SELECT * from title_ratings limit 5").fetch_df()
|
42 |
+
print(tabulate.tabulate(ratings_df, headers="keys", tablefmt="psql"))
|
43 |
+
|
44 |
+
# # FIGURE OUT HOW WE CAN JOIN THE SUBTITLE DATASET WITH THE IMDB DATASET
|
45 |
+
# count_join_subtitle_title_akas = cursor.execute(
|
46 |
+
# """
|
47 |
+
# SELECT COUNT(*) FROM open_subtitles JOIN title_akas ON 'tt' || open_subtitles.meta.imdbId = title_akas.titleId
|
48 |
+
# """
|
49 |
+
# ).fetchall()
|
50 |
+
# print(f"Count join subtitle title akas: {count_join_subtitle_title_akas}")
|
51 |
+
#
|
52 |
+
# count_join_subtitle_title_basics = cursor.execute(
|
53 |
+
# """
|
54 |
+
# SELECT COUNT(*) FROM open_subtitles JOIN title_basics ON 'tt' || open_subtitles.meta.imdbId = title_basics.tconst
|
55 |
+
# """
|
56 |
+
# ).fetchdf()
|
57 |
+
# print(f"Count join subtitle title basics: {count_join_subtitle_title_basics}")
|
58 |
+
#
|
59 |
+
# count_join_subtitle_title_episodes = cursor.execute(
|
60 |
+
# """
|
61 |
+
# SELECT COUNT(*) FROM open_subtitles JOIN title_episodes ON 'tt' || open_subtitles.meta.imdbId = title_episodes.tconst
|
62 |
+
# """
|
63 |
+
# ).fetchdf()
|
64 |
+
# print(f"Count join subtitle title episodes: {count_join_subtitle_title_episodes}")
|
65 |
+
#
|
66 |
+
# count_join_subtitle_title_episodes_parent = cursor.execute(
|
67 |
+
# """
|
68 |
+
# SELECT COUNT(*) FROM open_subtitles JOIN title_episodes ON 'tt' || open_subtitles.meta.imdbId = title_episodes.parentTconst
|
69 |
+
# """
|
70 |
+
# ).fetchdf()
|
71 |
+
# print(f"Count join subtitle title episodes parent: {count_join_subtitle_title_episodes_parent}")
|
72 |
+
#
|
73 |
+
# count_join_subtitle_title_ratings = cursor.execute(
|
74 |
+
# """
|
75 |
+
# SELECT COUNT(*) FROM open_subtitles JOIN title_ratings ON 'tt' || open_subtitles.meta.imdbId = title_ratings.tconst
|
76 |
+
# """
|
77 |
+
# ).fetchdf()
|
78 |
+
# print(f"Count join subtitle title ratings: {count_join_subtitle_title_ratings}")
|
79 |
+
|
80 |
+
|
81 |
+
# join title_episode with its parent title_basics and title_ratings
|
82 |
+
episode_detail = cursor.execute(
|
83 |
+
"""
|
84 |
+
SELECT
|
85 |
+
open_subtitles.id,
|
86 |
+
open_subtitles.translation,
|
87 |
+
open_subtitles.meta,
|
88 |
+
title_basics.tconst,
|
89 |
+
title_basics.primaryTitle,
|
90 |
+
title_basics.startYear,
|
91 |
+
title_basics.endYear,
|
92 |
+
title_basics.genres,
|
93 |
+
title_basics.runtimeMinutes,
|
94 |
+
title_basics.titleType,
|
95 |
+
title_basics.isAdult,
|
96 |
+
title_ratings.tconst AS rating_tconst,
|
97 |
+
title_ratings.averageRating,
|
98 |
+
title_ratings.numVotes,
|
99 |
+
title_episodes.tconst as episode_tconst,
|
100 |
+
title_episodes.parentTconst,
|
101 |
+
title_episodes.seasonNumber,
|
102 |
+
title_episodes.episodeNumber
|
103 |
+
FROM
|
104 |
+
title_episodes
|
105 |
+
INNER JOIN
|
106 |
+
title_basics
|
107 |
+
ON
|
108 |
+
title_episodes.parentTconst = title_basics.tconst
|
109 |
+
INNER JOIN
|
110 |
+
title_ratings
|
111 |
+
ON
|
112 |
+
title_episodes.tconst = title_ratings.tconst
|
113 |
+
INNER JOIN
|
114 |
+
open_subtitles
|
115 |
+
ON
|
116 |
+
title_episodes.tconst = 'tt' || open_subtitles.meta.imdbId
|
117 |
+
WHERE isAdult == 0
|
118 |
+
and averageRating > 8.0
|
119 |
+
and numVotes > 1000
|
120 |
+
ORDER BY startYear, episode_tconst, seasonNumber, episodeNumber, meta.sentenceIds.en
|
121 |
+
"""
|
122 |
+
).fetch_df()
|
123 |
+
print(tabulate.tabulate(episode_detail[:5], headers="keys", tablefmt="psql"))
|
124 |
+
|
125 |
+
# write episode_detail to json file
|
126 |
+
episode_detail.to_json("episode_opensubtitles.json", orient="records", lines=True)
|
src/episode_opensubtitles.json.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:612bc5d454dbbe15fd03200be5a174cd22a02fae628b7f7391db874a1786b186
|
3 |
+
size 139127032
|
train.jsonl.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aceec2f2def4ce2ffedea50b1899116adbf16c49cf565c049908a4b523bd5a4f
|
3 |
+
size 155466680
|