Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
sentiment-classification
Size:
10K - 100K
License:
import functools | |
import json | |
import logging | |
import os | |
import pprint | |
from typing import Tuple | |
from datasets import get_dataset_config_names, load_dataset, get_dataset_split_names | |
import jax | |
import numpy as np | |
from flax import jax_utils | |
from flax.jax_utils import pad_shard_unpad | |
from transformers import AutoTokenizer, FlaxAutoModelForSeq2SeqLM | |
import pandas as pd | |
logger = logging.getLogger(__name__) | |
DATASET_NAME = "imdb" | |
OUTPUT_DIR = "./imdb_dutch" | |
MODEL_370 = "yhavinga/ul2-large-en-nl" | |
# BATCH_SIZE = 64 | |
BATCH_SIZE = 32 | |
# BATCH_SIZE = 2 | |
MODEL_MAX_LENGTH = 370 | |
MAX_WORDS = int(MODEL_MAX_LENGTH / 3) | |
END_MARKS = (".", "?", "!", '"', "'", "\n") | |
class FlaxModel: | |
def __init__(self, model_name: str, tokenizer_name: str, tokenizer_args={}): | |
""" | |
Initializes the FlaxModel with the specified model and tokenizer names, as well as tokenizer arguments. | |
""" | |
self.model = FlaxAutoModelForSeq2SeqLM.from_pretrained( | |
model_name, use_auth_token=True | |
) | |
self.model.params = self.model.to_fp32(self.model.params, mask=None) | |
self.tokenizer_args = { | |
# "model_max_length": self.model.config.max_length, | |
**tokenizer_args, | |
} | |
self.tokenizer = AutoTokenizer.from_pretrained( | |
tokenizer_name, use_auth_token=True, **self.tokenizer_args | |
) | |
# if not ( | |
# self.model.config.max_length | |
# == self.tokenizer.model_max_length | |
# == self.tokenizer_args.get("model_max_length") | |
# ): | |
# print( | |
# f"Warning: model max length {self.model.config.max_length} != tokenizer max length {self.tokenizer.model_max_length} != tokenizer_args max length {tokenizer_args.get('model_max_length')}" | |
# ) | |
# raise ValueError("Model and tokenizer max_length should be equal") | |
self.params = jax_utils.replicate(self.model.params) | |
kwargs = { | |
"max_length": self.tokenizer.model_max_length, | |
"length_penalty": 1.0, | |
"num_beams": 4, | |
"early_stopping": True, | |
} | |
def shard(xs): | |
local_device_count = jax.local_device_count() | |
return jax.tree_map( | |
lambda x: x.reshape((local_device_count, -1) + x.shape[1:]), xs | |
) | |
def generate_step(params, batch): | |
self.model.params = params | |
output_ids = self.model.generate( | |
batch["input_ids"], attention_mask=batch["attention_mask"], **kwargs | |
) | |
return output_ids.sequences | |
self.p_generate_step = jax.pmap(generate_step, "batch") | |
def translate_batch(self, texts: Tuple[str]): | |
overflowed = False | |
texts = list(texts) | |
if self.model.config.prefix: | |
texts = [self.model.config.prefix + x for x in texts] | |
texts = [x.replace("\n", "<n>").replace("<br />", "<n>") for x in texts] | |
inputs = self.tokenizer( | |
texts, | |
max_length=self.tokenizer_args.get("model_max_length"), | |
truncation=True, | |
padding="max_length", | |
return_tensors="np", | |
) | |
if not np.array_equal( | |
inputs.data["input_ids"][:, self.tokenizer.model_max_length - 1], | |
np.zeros(BATCH_SIZE), | |
): | |
overflowed = True | |
return BATCH_SIZE * [""], overflowed | |
batch = inputs.data | |
print(f"Batch inputs shape is {batch['input_ids'].shape}") | |
translated = pad_shard_unpad(self.p_generate_step)(self.params, batch) | |
predictions = jax.device_get( | |
translated.reshape(-1, self.tokenizer.model_max_length) | |
) | |
if not np.array_equal( | |
predictions[:, self.tokenizer.model_max_length - 1], | |
np.zeros(BATCH_SIZE), | |
): | |
overflowed = True | |
output = [ | |
self.tokenizer.decode(t, skip_special_tokens=False) for t in predictions | |
] | |
# If there is <extra_id in the output, remove it and everything after it | |
output = [ | |
x.replace("<pad>", "").replace("</s>", "").split("<extra_id")[0] | |
for x in output | |
] | |
output = [x.replace("<n>", "<br />").strip() for x in output] | |
return output, overflowed | |
def split_text(text): | |
text_parts = [] | |
current_part = "" | |
def split_on_end_marks(text): | |
sentences = [] | |
current_sentence = "" | |
for char in text: | |
if char in END_MARKS: | |
sentences.append(current_sentence + char) | |
current_sentence = "" | |
else: | |
current_sentence += char | |
# Add the final sentence if it wasn't ended by an end of line mark | |
if current_sentence: | |
sentences.append(current_sentence) | |
return sentences | |
text_lines = split_on_end_marks(text) | |
for line in text_lines: | |
# If adding the line to the current part would not exceed MAX_WORDS words, add it to the current part | |
if len((current_part + line).split()) <= MAX_WORDS: | |
current_part += line | |
# If adding the line to the current part would exceed 200 characters, add the current part to the list and reset the current part | |
else: | |
if len(current_part) > 0: | |
text_parts.append(current_part) | |
while len(line.split()) > MAX_WORDS: | |
# print(f"Line {line} is longer than MAX_WORDS words") | |
current_part = " ".join(line.split()[:MAX_WORDS]) | |
text_parts.append(current_part + " ") | |
line = " ".join(line.split()[MAX_WORDS:]) | |
current_part = line | |
# Add the final part to the list | |
text_parts.append(current_part) | |
text_parts[-1] = text_parts[-1].rstrip() | |
return text_parts | |
def test_split_text(): | |
# Test with single line that is less than MAX_WORDS words | |
text = " ".join([f"n{i}" for i in range(MAX_WORDS - 20)]) | |
a = list(text) | |
a[150] = END_MARKS[0] | |
text = "".join(a) | |
text_parts = split_text(text) | |
assert text_parts == [text] | |
# Test with single line that is exactly MAX_WORDS words | |
text = " ".join([f"n{i}" for i in range(MAX_WORDS)]) | |
a = list(text) | |
a[10] = END_MARKS[0] | |
text = "".join(a) | |
text_parts = split_text(text) | |
assert text_parts == [text] | |
# Test with single line that is more than MAX_WORDS words | |
text = " ".join([f"n{i}" for i in range(MAX_WORDS + 1)]) | |
a = list(text) | |
a[150] = END_MARKS[0] | |
text = "".join(a) | |
text_parts = split_text(text) | |
assert text_parts == [text[:151], text[151:]] | |
# Test with multiple lines, none of which are more than 200 characters | |
text = "\n".join([f"n{i}" for i in range(10)]) | |
text_parts = split_text(text) | |
assert text_parts == [text] | |
# Test with 500 words | |
text = " ".join([f"n{i}" for i in range(500)]) | |
a = list(text) | |
a[150] = END_MARKS[0] | |
a[300] = END_MARKS[0] | |
a[550] = END_MARKS[0] | |
a[600] = END_MARKS[0] | |
a[750] = END_MARKS[0] | |
a[900] = END_MARKS[0] | |
a[950] = END_MARKS[0] | |
a[1000] = END_MARKS[0] | |
text = "".join(a) | |
text_parts = split_text(text) | |
assert all( | |
[len(x.split()) <= MAX_WORDS for x in text_parts] | |
), "Not all text parts are less than MAX_WORDS words" | |
assert "".join(text_parts) == text, "Text parts concatenated != original text" | |
test_split_text() | |
def get_file_lines(filename): | |
""" | |
Get the number of lines in a file, 0 if the file does not exist. | |
""" | |
lines = 0 | |
if os.path.exists(filename): | |
with open(filename) as f: | |
with open(filename, "r") as f: | |
lines = len(f.readlines()) | |
print(f"{filename} already has {lines} lines") | |
return lines | |
SEP = "\n" | |
# SEP="<unk>" | |
def main(): | |
os.makedirs(OUTPUT_DIR, exist_ok=True) | |
model_370 = FlaxModel( | |
MODEL_370, MODEL_370, tokenizer_args={"model_max_length": MODEL_MAX_LENGTH} | |
) | |
for config in get_dataset_config_names(DATASET_NAME): | |
print(f"Processing config {config}") | |
ds = load_dataset(DATASET_NAME, config) | |
# for split in ["validation"]: | |
for split in get_dataset_split_names(DATASET_NAME, config): | |
output_file = f"{OUTPUT_DIR}/{DATASET_NAME}_dutch_{config}-{split}.json" | |
num_examples = len(ds[split]) | |
# fn = partial(encode_in_single_text, validation=(split == "validation")) | |
# single_text_ds = ds[split].map(fn, num_proc=6).sort("length", reverse=True) | |
# # fn = partial(batch_single_text_decode, validation=(split == "validation")) | |
# # decoded_ds = single_text_ds.map(fn, num_proc=6) | |
# | |
lines = get_file_lines(output_file) | |
start_batch_index = lines // BATCH_SIZE | |
with open(output_file, mode="ab" if lines else "wb") as writer: | |
for batch_index in range(start_batch_index, num_examples // BATCH_SIZE): | |
ds_split = ds[split] | |
batch = ds_split[ | |
batch_index * BATCH_SIZE : (batch_index + 1) * BATCH_SIZE | |
] | |
print( | |
f"Translating batch {batch_index} of {num_examples // BATCH_SIZE}" | |
) | |
translated, overflow = model_370.translate_batch( | |
tuple(batch["text"]) | |
) | |
translated_batch = [{"text": x} for x in translated] | |
if overflow: | |
batch_text_splitted = [ | |
split_text(text) for text in batch["text"] | |
] | |
max_parts = max( | |
[len(text) for text in batch_text_splitted] | |
) | |
text_translated = [""] * BATCH_SIZE | |
for part_index in range(max_parts): | |
text_parts_i = [ | |
text[part_index] if part_index < len(text) else "" | |
for text in batch_text_splitted | |
] | |
( | |
text_part_translated, | |
overflow, | |
) = model_370.translate_batch(tuple(text_parts_i)) | |
if overflow: | |
print( | |
f"This shouldn't happen, overflow on a splitted text: {text_parts_i}" | |
) | |
for bi in range(BATCH_SIZE): | |
text_translated[bi] += " " + text_part_translated[bi] if text_parts_i[bi] != "" else "" | |
for bi in range(BATCH_SIZE): | |
translated_batch[bi]["text"] = text_translated[bi].strip() | |
# write each object in the batch as a separate line | |
for bi in range(BATCH_SIZE): | |
example = { | |
"text": translated_batch[bi]["text"], | |
"text_en": batch["text"][bi], | |
"label": batch["label"][bi], | |
} | |
pprint.pprint(example) | |
writer.write(json.dumps(example).encode("utf-8")) | |
writer.write("\n".encode("utf-8")) | |
if __name__ == "__main__": | |
main() | |