Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
sentiment-classification
Size:
10K - 100K
License:
File size: 11,534 Bytes
22a96ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import functools
import json
import logging
import os
import pprint
from typing import Tuple
from datasets import get_dataset_config_names, load_dataset, get_dataset_split_names
import jax
import numpy as np
from flax import jax_utils
from flax.jax_utils import pad_shard_unpad
from transformers import AutoTokenizer, FlaxAutoModelForSeq2SeqLM
import pandas as pd
logger = logging.getLogger(__name__)
DATASET_NAME = "imdb"
OUTPUT_DIR = "./imdb_dutch"
MODEL_370 = "yhavinga/ul2-large-en-nl"
# BATCH_SIZE = 64
BATCH_SIZE = 32
# BATCH_SIZE = 2
MODEL_MAX_LENGTH = 370
MAX_WORDS = int(MODEL_MAX_LENGTH / 3)
END_MARKS = (".", "?", "!", '"', "'", "\n")
class FlaxModel:
def __init__(self, model_name: str, tokenizer_name: str, tokenizer_args={}):
"""
Initializes the FlaxModel with the specified model and tokenizer names, as well as tokenizer arguments.
"""
self.model = FlaxAutoModelForSeq2SeqLM.from_pretrained(
model_name, use_auth_token=True
)
self.model.params = self.model.to_fp32(self.model.params, mask=None)
self.tokenizer_args = {
# "model_max_length": self.model.config.max_length,
**tokenizer_args,
}
self.tokenizer = AutoTokenizer.from_pretrained(
tokenizer_name, use_auth_token=True, **self.tokenizer_args
)
# if not (
# self.model.config.max_length
# == self.tokenizer.model_max_length
# == self.tokenizer_args.get("model_max_length")
# ):
# print(
# f"Warning: model max length {self.model.config.max_length} != tokenizer max length {self.tokenizer.model_max_length} != tokenizer_args max length {tokenizer_args.get('model_max_length')}"
# )
# raise ValueError("Model and tokenizer max_length should be equal")
self.params = jax_utils.replicate(self.model.params)
kwargs = {
"max_length": self.tokenizer.model_max_length,
"length_penalty": 1.0,
"num_beams": 4,
"early_stopping": True,
}
def shard(xs):
local_device_count = jax.local_device_count()
return jax.tree_map(
lambda x: x.reshape((local_device_count, -1) + x.shape[1:]), xs
)
def generate_step(params, batch):
self.model.params = params
output_ids = self.model.generate(
batch["input_ids"], attention_mask=batch["attention_mask"], **kwargs
)
return output_ids.sequences
self.p_generate_step = jax.pmap(generate_step, "batch")
@functools.lru_cache()
def translate_batch(self, texts: Tuple[str]):
overflowed = False
texts = list(texts)
if self.model.config.prefix:
texts = [self.model.config.prefix + x for x in texts]
texts = [x.replace("\n", "<n>").replace("<br />", "<n>") for x in texts]
inputs = self.tokenizer(
texts,
max_length=self.tokenizer_args.get("model_max_length"),
truncation=True,
padding="max_length",
return_tensors="np",
)
if not np.array_equal(
inputs.data["input_ids"][:, self.tokenizer.model_max_length - 1],
np.zeros(BATCH_SIZE),
):
overflowed = True
return BATCH_SIZE * [""], overflowed
batch = inputs.data
print(f"Batch inputs shape is {batch['input_ids'].shape}")
translated = pad_shard_unpad(self.p_generate_step)(self.params, batch)
predictions = jax.device_get(
translated.reshape(-1, self.tokenizer.model_max_length)
)
if not np.array_equal(
predictions[:, self.tokenizer.model_max_length - 1],
np.zeros(BATCH_SIZE),
):
overflowed = True
output = [
self.tokenizer.decode(t, skip_special_tokens=False) for t in predictions
]
# If there is <extra_id in the output, remove it and everything after it
output = [
x.replace("<pad>", "").replace("</s>", "").split("<extra_id")[0]
for x in output
]
output = [x.replace("<n>", "<br />").strip() for x in output]
return output, overflowed
def split_text(text):
text_parts = []
current_part = ""
def split_on_end_marks(text):
sentences = []
current_sentence = ""
for char in text:
if char in END_MARKS:
sentences.append(current_sentence + char)
current_sentence = ""
else:
current_sentence += char
# Add the final sentence if it wasn't ended by an end of line mark
if current_sentence:
sentences.append(current_sentence)
return sentences
text_lines = split_on_end_marks(text)
for line in text_lines:
# If adding the line to the current part would not exceed MAX_WORDS words, add it to the current part
if len((current_part + line).split()) <= MAX_WORDS:
current_part += line
# If adding the line to the current part would exceed 200 characters, add the current part to the list and reset the current part
else:
if len(current_part) > 0:
text_parts.append(current_part)
while len(line.split()) > MAX_WORDS:
# print(f"Line {line} is longer than MAX_WORDS words")
current_part = " ".join(line.split()[:MAX_WORDS])
text_parts.append(current_part + " ")
line = " ".join(line.split()[MAX_WORDS:])
current_part = line
# Add the final part to the list
text_parts.append(current_part)
text_parts[-1] = text_parts[-1].rstrip()
return text_parts
def test_split_text():
# Test with single line that is less than MAX_WORDS words
text = " ".join([f"n{i}" for i in range(MAX_WORDS - 20)])
a = list(text)
a[150] = END_MARKS[0]
text = "".join(a)
text_parts = split_text(text)
assert text_parts == [text]
# Test with single line that is exactly MAX_WORDS words
text = " ".join([f"n{i}" for i in range(MAX_WORDS)])
a = list(text)
a[10] = END_MARKS[0]
text = "".join(a)
text_parts = split_text(text)
assert text_parts == [text]
# Test with single line that is more than MAX_WORDS words
text = " ".join([f"n{i}" for i in range(MAX_WORDS + 1)])
a = list(text)
a[150] = END_MARKS[0]
text = "".join(a)
text_parts = split_text(text)
assert text_parts == [text[:151], text[151:]]
# Test with multiple lines, none of which are more than 200 characters
text = "\n".join([f"n{i}" for i in range(10)])
text_parts = split_text(text)
assert text_parts == [text]
# Test with 500 words
text = " ".join([f"n{i}" for i in range(500)])
a = list(text)
a[150] = END_MARKS[0]
a[300] = END_MARKS[0]
a[550] = END_MARKS[0]
a[600] = END_MARKS[0]
a[750] = END_MARKS[0]
a[900] = END_MARKS[0]
a[950] = END_MARKS[0]
a[1000] = END_MARKS[0]
text = "".join(a)
text_parts = split_text(text)
assert all(
[len(x.split()) <= MAX_WORDS for x in text_parts]
), "Not all text parts are less than MAX_WORDS words"
assert "".join(text_parts) == text, "Text parts concatenated != original text"
test_split_text()
def get_file_lines(filename):
"""
Get the number of lines in a file, 0 if the file does not exist.
"""
lines = 0
if os.path.exists(filename):
with open(filename) as f:
with open(filename, "r") as f:
lines = len(f.readlines())
print(f"{filename} already has {lines} lines")
return lines
SEP = "\n"
# SEP="<unk>"
def main():
os.makedirs(OUTPUT_DIR, exist_ok=True)
model_370 = FlaxModel(
MODEL_370, MODEL_370, tokenizer_args={"model_max_length": MODEL_MAX_LENGTH}
)
for config in get_dataset_config_names(DATASET_NAME):
print(f"Processing config {config}")
ds = load_dataset(DATASET_NAME, config)
# for split in ["validation"]:
for split in get_dataset_split_names(DATASET_NAME, config):
output_file = f"{OUTPUT_DIR}/{DATASET_NAME}_dutch_{config}-{split}.json"
num_examples = len(ds[split])
# fn = partial(encode_in_single_text, validation=(split == "validation"))
# single_text_ds = ds[split].map(fn, num_proc=6).sort("length", reverse=True)
# # fn = partial(batch_single_text_decode, validation=(split == "validation"))
# # decoded_ds = single_text_ds.map(fn, num_proc=6)
#
lines = get_file_lines(output_file)
start_batch_index = lines // BATCH_SIZE
with open(output_file, mode="ab" if lines else "wb") as writer:
for batch_index in range(start_batch_index, num_examples // BATCH_SIZE):
ds_split = ds[split]
batch = ds_split[
batch_index * BATCH_SIZE : (batch_index + 1) * BATCH_SIZE
]
print(
f"Translating batch {batch_index} of {num_examples // BATCH_SIZE}"
)
translated, overflow = model_370.translate_batch(
tuple(batch["text"])
)
translated_batch = [{"text": x} for x in translated]
if overflow:
batch_text_splitted = [
split_text(text) for text in batch["text"]
]
max_parts = max(
[len(text) for text in batch_text_splitted]
)
text_translated = [""] * BATCH_SIZE
for part_index in range(max_parts):
text_parts_i = [
text[part_index] if part_index < len(text) else ""
for text in batch_text_splitted
]
(
text_part_translated,
overflow,
) = model_370.translate_batch(tuple(text_parts_i))
if overflow:
print(
f"This shouldn't happen, overflow on a splitted text: {text_parts_i}"
)
for bi in range(BATCH_SIZE):
text_translated[bi] += " " + text_part_translated[bi] if text_parts_i[bi] != "" else ""
for bi in range(BATCH_SIZE):
translated_batch[bi]["text"] = text_translated[bi].strip()
# write each object in the batch as a separate line
for bi in range(BATCH_SIZE):
example = {
"text": translated_batch[bi]["text"],
"text_en": batch["text"][bi],
"label": batch["label"][bi],
}
pprint.pprint(example)
writer.write(json.dumps(example).encode("utf-8"))
writer.write("\n".encode("utf-8"))
if __name__ == "__main__":
main()
|