|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Multi-XScience Dataset.""" |
|
|
|
|
|
import json |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """ |
|
@article{lu2020multi, |
|
title={Multi-XScience: A Large-scale Dataset for Extreme Multi-document Summarization of Scientific Articles}, |
|
author={Lu, Yao and Dong, Yue and Charlin, Laurent}, |
|
journal={arXiv preprint arXiv:2010.14235}, |
|
year={2020} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
Multi-XScience, a large-scale multi-document summarization dataset created from scientific articles. Multi-XScience introduces a challenging multi-document summarization task: writing the related-work section of a paper based on its abstract and the articles it references. |
|
""" |
|
|
|
_URL_TRAIN = "https://raw.githubusercontent.com/yaolu/Multi-XScience/master/data/train.json.gz" |
|
_URL_TEST = "https://raw.githubusercontent.com/yaolu/Multi-XScience/master/data/test.json.gz" |
|
_URL_VAL = "https://raw.githubusercontent.com/yaolu/Multi-XScience/master/data/val.json.gz" |
|
|
|
|
|
class MultiXScienceSum(datasets.GeneratorBasedBuilder): |
|
""" "Multi-XScience Dataset.""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
def _info(selif): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"aid": datasets.Value("string"), |
|
"mid": datasets.Value("string"), |
|
"abstract": datasets.Value("string"), |
|
"related_work": datasets.Value("string"), |
|
"ref_abstract": datasets.Sequence( |
|
{ |
|
"cite_N": datasets.Value("string"), |
|
"mid": datasets.Value("string"), |
|
"abstract": datasets.Value("string"), |
|
}, |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://github.com/yaolu/Multi-XScience", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
train_path = dl_manager.download_and_extract(_URL_TRAIN) |
|
test_path = dl_manager.download_and_extract(_URL_TEST) |
|
val_path = dl_manager.download_and_extract(_URL_VAL) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"path": train_path}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"path": test_path}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"path": val_path}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, path=None): |
|
"""Yields examples.""" |
|
with open(path, encoding="utf-8") as f: |
|
data = json.load(f) |
|
f.close() |
|
|
|
for idx, el in enumerate(data): |
|
cite_n = list(el["ref_abstract"].keys()) |
|
cite_n_mid = [el["ref_abstract"][cite]["mid"] for cite in cite_n] |
|
cite_n_abstract = [el["ref_abstract"][cite]["abstract"] for cite in cite_n] |
|
tmp = {"cite_N": cite_n, "mid": cite_n_mid, "abstract": cite_n_abstract} |
|
d = el.copy() |
|
d["ref_abstract"] = tmp |
|
yield idx, d |
|
|