|
"""WMT: Translate dataset.""" |
|
|
|
|
|
import codecs |
|
import functools |
|
import glob |
|
import gzip |
|
import itertools |
|
import os |
|
import re |
|
import xml.etree.cElementTree as ElementTree |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_DESCRIPTION = """\ |
|
Translation dataset based on the data from statmt.org. |
|
|
|
Versions exist for different years using a combination of data |
|
sources. The base `wmt` allows you to create a custom dataset by choosing |
|
your own data/language pair. This can be done as follows: |
|
|
|
```python |
|
from datasets import inspect_dataset, load_dataset_builder |
|
|
|
inspect_dataset("wmt19", "path/to/scripts") |
|
builder = load_dataset_builder( |
|
"path/to/scripts/wmt_utils.py", |
|
language_pair=("fr", "de"), |
|
subsets={ |
|
datasets.Split.TRAIN: ["commoncrawl_frde"], |
|
datasets.Split.VALIDATION: ["euelections_dev2019"], |
|
}, |
|
) |
|
|
|
# Standard version |
|
builder.download_and_prepare() |
|
ds = builder.as_dataset() |
|
|
|
# Streamable version |
|
ds = builder.as_streaming_dataset() |
|
``` |
|
|
|
""" |
|
|
|
|
|
CWMT_SUBSET_NAMES = ["casia2015", "casict2011", "casict2015", "datum2015", "datum2017", "neu2017"] |
|
|
|
|
|
class SubDataset: |
|
"""Class to keep track of information on a sub-dataset of WMT.""" |
|
|
|
def __init__(self, name, target, sources, url, path, manual_dl_files=None): |
|
"""Sub-dataset of WMT. |
|
|
|
Args: |
|
name: `string`, a unique dataset identifier. |
|
target: `string`, the target language code. |
|
sources: `set<string>`, the set of source language codes. |
|
url: `string` or `(string, string)`, URL(s) or URL template(s) specifying |
|
where to download the raw data from. If two strings are provided, the |
|
first is used for the source language and the second for the target. |
|
Template strings can either contain '{src}' placeholders that will be |
|
filled in with the source language code, '{0}' and '{1}' placeholders |
|
that will be filled in with the source and target language codes in |
|
alphabetical order, or all 3. |
|
path: `string` or `(string, string)`, path(s) or path template(s) |
|
specifing the path to the raw data relative to the root of the |
|
downloaded archive. If two strings are provided, the dataset is assumed |
|
to be made up of parallel text files, the first being the source and the |
|
second the target. If one string is provided, both languages are assumed |
|
to be stored within the same file and the extension is used to determine |
|
how to parse it. Template strings should be formatted the same as in |
|
`url`. |
|
manual_dl_files: `<list>(string)` (optional), the list of files that must |
|
be manually downloaded to the data directory. |
|
""" |
|
self._paths = (path,) if isinstance(path, str) else path |
|
self._urls = (url,) if isinstance(url, str) else url |
|
self._manual_dl_files = manual_dl_files if manual_dl_files else [] |
|
self.name = name |
|
self.target = target |
|
self.sources = set(sources) |
|
|
|
def _inject_language(self, src, strings): |
|
"""Injects languages into (potentially) template strings.""" |
|
if src not in self.sources: |
|
raise ValueError(f"Invalid source for '{self.name}': {src}") |
|
|
|
def _format_string(s): |
|
if "{0}" in s and "{1}" and "{src}" in s: |
|
return s.format(*sorted([src, self.target]), src=src) |
|
elif "{0}" in s and "{1}" in s: |
|
return s.format(*sorted([src, self.target])) |
|
elif "{src}" in s: |
|
return s.format(src=src) |
|
else: |
|
return s |
|
|
|
return [_format_string(s) for s in strings] |
|
|
|
def get_url(self, src): |
|
return self._inject_language(src, self._urls) |
|
|
|
def get_manual_dl_files(self, src): |
|
return self._inject_language(src, self._manual_dl_files) |
|
|
|
def get_path(self, src): |
|
return self._inject_language(src, self._paths) |
|
|
|
|
|
|
|
_TRAIN_SUBSETS = [ |
|
|
|
SubDataset( |
|
name="commoncrawl", |
|
target="en", |
|
sources={"cs", "de", "es", "fr", "ru"}, |
|
url="https://huggingface.co/datasets/wmt/wmt13/resolve/main-zip/training-parallel-commoncrawl.zip", |
|
path=("commoncrawl.{src}-en.{src}", "commoncrawl.{src}-en.en"), |
|
), |
|
SubDataset( |
|
name="commoncrawl_frde", |
|
target="de", |
|
sources={"fr"}, |
|
url=( |
|
"https://huggingface.co/datasets/wmt/wmt19/resolve/main/translation-task/fr-de/bitexts/commoncrawl.fr.gz", |
|
"https://huggingface.co/datasets/wmt/wmt19/resolve/main/translation-task/fr-de/bitexts/commoncrawl.de.gz", |
|
), |
|
path=("", ""), |
|
), |
|
SubDataset( |
|
name="czeng_10", |
|
target="en", |
|
sources={"cs"}, |
|
url="http://ufal.mff.cuni.cz/czeng/czeng10", |
|
manual_dl_files=["data-plaintext-format.%d.tar" % i for i in range(10)], |
|
|
|
|
|
path=("data.plaintext-format/??train.gz",) * 10, |
|
), |
|
SubDataset( |
|
name="czeng_16pre", |
|
target="en", |
|
sources={"cs"}, |
|
url="http://ufal.mff.cuni.cz/czeng/czeng16pre", |
|
manual_dl_files=["czeng16pre.deduped-ignoring-sections.txt.gz"], |
|
path="", |
|
), |
|
SubDataset( |
|
name="czeng_16", |
|
target="en", |
|
sources={"cs"}, |
|
url="http://ufal.mff.cuni.cz/czeng", |
|
manual_dl_files=["data-plaintext-format.%d.tar" % i for i in range(10)], |
|
|
|
|
|
path=("data.plaintext-format/??train.gz",) * 10, |
|
), |
|
SubDataset( |
|
|
|
|
|
name="czeng_17", |
|
target="en", |
|
sources={"cs"}, |
|
url="http://ufal.mff.cuni.cz/czeng", |
|
manual_dl_files=["data-plaintext-format.%d.tar" % i for i in range(10)], |
|
|
|
|
|
path=("data.plaintext-format/??train.gz",) * 10, |
|
), |
|
SubDataset( |
|
name="dcep_v1", |
|
target="en", |
|
sources={"lv"}, |
|
url="https://huggingface.co/datasets/wmt/wmt17/resolve/main-zip/translation-task/dcep.lv-en.v1.zip", |
|
path=("dcep.en-lv/dcep.lv", "dcep.en-lv/dcep.en"), |
|
), |
|
SubDataset( |
|
name="europarl_v7", |
|
target="en", |
|
sources={"cs", "de", "es", "fr"}, |
|
url="https://huggingface.co/datasets/wmt/wmt13/resolve/main-zip/training-parallel-europarl-v7.zip", |
|
path=("training/europarl-v7.{src}-en.{src}", "training/europarl-v7.{src}-en.en"), |
|
), |
|
SubDataset( |
|
name="europarl_v7_frde", |
|
target="de", |
|
sources={"fr"}, |
|
url=( |
|
"https://huggingface.co/datasets/wmt/wmt19/resolve/main/translation-task/fr-de/bitexts/europarl-v7.fr.gz", |
|
"https://huggingface.co/datasets/wmt/wmt19/resolve/main/translation-task/fr-de/bitexts/europarl-v7.de.gz", |
|
), |
|
path=("", ""), |
|
), |
|
SubDataset( |
|
name="europarl_v8_18", |
|
target="en", |
|
sources={"et", "fi"}, |
|
url="https://huggingface.co/datasets/wmt/wmt18/resolve/main-zip/translation-task/training-parallel-ep-v8.zip", |
|
path=("training/europarl-v8.{src}-en.{src}", "training/europarl-v8.{src}-en.en"), |
|
), |
|
SubDataset( |
|
name="europarl_v8_16", |
|
target="en", |
|
sources={"fi", "ro"}, |
|
url="https://huggingface.co/datasets/wmt/wmt16/resolve/main-zip/translation-task/training-parallel-ep-v8.zip", |
|
path=("training-parallel-ep-v8/europarl-v8.{src}-en.{src}", "training-parallel-ep-v8/europarl-v8.{src}-en.en"), |
|
), |
|
SubDataset( |
|
name="europarl_v9", |
|
target="en", |
|
sources={"cs", "de", "fi", "lt"}, |
|
url="https://huggingface.co/datasets/wmt/europarl/resolve/main/v9/training/europarl-v9.{src}-en.tsv.gz", |
|
path="", |
|
), |
|
SubDataset( |
|
name="gigafren", |
|
target="en", |
|
sources={"fr"}, |
|
url="https://huggingface.co/datasets/wmt/wmt10/resolve/main-zip/training-giga-fren.zip", |
|
path=("giga-fren.release2.fixed.fr.gz", "giga-fren.release2.fixed.en.gz"), |
|
), |
|
SubDataset( |
|
name="hindencorp_01", |
|
target="en", |
|
sources={"hi"}, |
|
url="http://ufallab.ms.mff.cuni.cz/~bojar/hindencorp", |
|
manual_dl_files=["hindencorp0.1.gz"], |
|
path="", |
|
), |
|
SubDataset( |
|
name="leta_v1", |
|
target="en", |
|
sources={"lv"}, |
|
url="https://huggingface.co/datasets/wmt/wmt17/resolve/main-zip/translation-task/leta.v1.zip", |
|
path=("LETA-lv-en/leta.lv", "LETA-lv-en/leta.en"), |
|
), |
|
SubDataset( |
|
name="multiun", |
|
target="en", |
|
sources={"es", "fr"}, |
|
url="https://huggingface.co/datasets/wmt/wmt13/resolve/main-zip/training-parallel-un.zip", |
|
path=("un/undoc.2000.{src}-en.{src}", "un/undoc.2000.{src}-en.en"), |
|
), |
|
SubDataset( |
|
name="newscommentary_v9", |
|
target="en", |
|
sources={"cs", "de", "fr", "ru"}, |
|
url="https://huggingface.co/datasets/wmt/wmt14/resolve/main-zip/training-parallel-nc-v9.zip", |
|
path=("training/news-commentary-v9.{src}-en.{src}", "training/news-commentary-v9.{src}-en.en"), |
|
), |
|
SubDataset( |
|
name="newscommentary_v10", |
|
target="en", |
|
sources={"cs", "de", "fr", "ru"}, |
|
url="https://huggingface.co/datasets/wmt/wmt15/resolve/main-zip/training-parallel-nc-v10.zip", |
|
path=("news-commentary-v10.{src}-en.{src}", "news-commentary-v10.{src}-en.en"), |
|
), |
|
SubDataset( |
|
name="newscommentary_v11", |
|
target="en", |
|
sources={"cs", "de", "ru"}, |
|
url="https://huggingface.co/datasets/wmt/wmt16/resolve/main-zip/translation-task/training-parallel-nc-v11.zip", |
|
path=( |
|
"training-parallel-nc-v11/news-commentary-v11.{src}-en.{src}", |
|
"training-parallel-nc-v11/news-commentary-v11.{src}-en.en", |
|
), |
|
), |
|
SubDataset( |
|
name="newscommentary_v12", |
|
target="en", |
|
sources={"cs", "de", "ru", "zh"}, |
|
url="https://huggingface.co/datasets/wmt/wmt17/resolve/main-zip/translation-task/training-parallel-nc-v12.zip", |
|
path=("training/news-commentary-v12.{src}-en.{src}", "training/news-commentary-v12.{src}-en.en"), |
|
), |
|
SubDataset( |
|
name="newscommentary_v13", |
|
target="en", |
|
sources={"cs", "de", "ru", "zh"}, |
|
url="https://huggingface.co/datasets/wmt/wmt18/resolve/main-zip/translation-task/training-parallel-nc-v13.zip", |
|
path=( |
|
"training-parallel-nc-v13/news-commentary-v13.{src}-en.{src}", |
|
"training-parallel-nc-v13/news-commentary-v13.{src}-en.en", |
|
), |
|
), |
|
SubDataset( |
|
name="newscommentary_v14", |
|
target="en", |
|
sources={"cs", "de", "kk", "ru", "zh"}, |
|
url="http://data.statmt.org/news-commentary/v14/training/news-commentary-v14.{0}-{1}.tsv.gz", |
|
path="", |
|
), |
|
SubDataset( |
|
name="newscommentary_v14_frde", |
|
target="de", |
|
sources={"fr"}, |
|
url="http://data.statmt.org/news-commentary/v14/training/news-commentary-v14.de-fr.tsv.gz", |
|
path="", |
|
), |
|
SubDataset( |
|
name="onlinebooks_v1", |
|
target="en", |
|
sources={"lv"}, |
|
url="https://huggingface.co/datasets/wmt/wmt17/resolve/main-zip/translation-task/books.lv-en.v1.zip", |
|
path=("farewell/farewell.lv", "farewell/farewell.en"), |
|
), |
|
SubDataset( |
|
name="paracrawl_v1", |
|
target="en", |
|
sources={"cs", "de", "et", "fi", "ru"}, |
|
url="https://s3.amazonaws.com/web-language-models/paracrawl/release1/paracrawl-release1.en-{src}.zipporah0-dedup-clean.tgz", |
|
path=( |
|
"paracrawl-release1.en-{src}.zipporah0-dedup-clean.{src}", |
|
"paracrawl-release1.en-{src}.zipporah0-dedup-clean.en", |
|
), |
|
), |
|
SubDataset( |
|
name="paracrawl_v1_ru", |
|
target="en", |
|
sources={"ru"}, |
|
url="https://s3.amazonaws.com/web-language-models/paracrawl/release1/paracrawl-release1.en-ru.zipporah0-dedup-clean.tgz", |
|
path=( |
|
"paracrawl-release1.en-ru.zipporah0-dedup-clean.ru", |
|
"paracrawl-release1.en-ru.zipporah0-dedup-clean.en", |
|
), |
|
), |
|
SubDataset( |
|
name="paracrawl_v3", |
|
target="en", |
|
sources={"cs", "de", "fi", "lt"}, |
|
url="https://s3.amazonaws.com/web-language-models/paracrawl/release3/en-{src}.bicleaner07.tmx.gz", |
|
path="", |
|
), |
|
SubDataset( |
|
name="paracrawl_v3_frde", |
|
target="de", |
|
sources={"fr"}, |
|
url=( |
|
"https://huggingface.co/datasets/wmt/wmt19/resolve/main/translation-task/fr-de/bitexts/de-fr.bicleaner07.de.gz", |
|
"https://huggingface.co/datasets/wmt/wmt19/resolve/main/translation-task/fr-de/bitexts/de-fr.bicleaner07.fr.gz", |
|
), |
|
path=("", ""), |
|
), |
|
SubDataset( |
|
name="rapid_2016", |
|
target="en", |
|
sources={"de", "et", "fi"}, |
|
url="https://huggingface.co/datasets/wmt/wmt18/resolve/main-zip/translation-task/rapid2016.zip", |
|
path=("rapid2016.{0}-{1}.{src}", "rapid2016.{0}-{1}.en"), |
|
), |
|
SubDataset( |
|
name="rapid_2016_ltfi", |
|
target="en", |
|
sources={"fi", "lt"}, |
|
url="https://tilde-model.s3-eu-west-1.amazonaws.com/rapid2016.en-{src}.tmx.zip", |
|
path="rapid2016.en-{src}.tmx", |
|
), |
|
SubDataset( |
|
name="rapid_2019", |
|
target="en", |
|
sources={"de"}, |
|
url="https://s3-eu-west-1.amazonaws.com/tilde-model/rapid2019.de-en.zip", |
|
path=("rapid2019.de-en.de", "rapid2019.de-en.en"), |
|
), |
|
SubDataset( |
|
name="setimes_2", |
|
target="en", |
|
sources={"ro", "tr"}, |
|
url="https://opus.nlpl.eu/download.php?f=SETIMES/v2/tmx/en-{src}.tmx.gz", |
|
path="", |
|
), |
|
SubDataset( |
|
name="uncorpus_v1", |
|
target="en", |
|
sources={"ru", "zh"}, |
|
url="https://huggingface.co/datasets/wmt/uncorpus/resolve/main-zip/UNv1.0.en-{src}.zip", |
|
path=("en-{src}/UNv1.0.en-{src}.{src}", "en-{src}/UNv1.0.en-{src}.en"), |
|
), |
|
SubDataset( |
|
name="wikiheadlines_fi", |
|
target="en", |
|
sources={"fi"}, |
|
url="https://huggingface.co/datasets/wmt/wmt15/resolve/main-zip/wiki-titles.zip", |
|
path="wiki/fi-en/titles.fi-en", |
|
), |
|
SubDataset( |
|
name="wikiheadlines_hi", |
|
target="en", |
|
sources={"hi"}, |
|
url="https://huggingface.co/datasets/wmt/wmt14/resolve/main-zip/wiki-titles.zip", |
|
path="wiki/hi-en/wiki-titles.hi-en", |
|
), |
|
SubDataset( |
|
|
|
name="wikiheadlines_ru", |
|
target="en", |
|
sources={"ru"}, |
|
url="https://huggingface.co/datasets/wmt/wmt15/resolve/main-zip/wiki-titles.zip", |
|
path="wiki/ru-en/wiki.ru-en", |
|
), |
|
SubDataset( |
|
name="wikititles_v1", |
|
target="en", |
|
sources={"cs", "de", "fi", "gu", "kk", "lt", "ru", "zh"}, |
|
url="https://huggingface.co/datasets/wmt/wikititles/resolve/main/v1/wikititles-v1.{src}-en.tsv.gz", |
|
path="", |
|
), |
|
SubDataset( |
|
name="yakut", |
|
target="ru", |
|
sources={"sah"}, |
|
url="https://huggingface.co/datasets/wmt/yakut/resolve/main/data/yakut.zip", |
|
path="yakut/sah-ru.parallel.uniq.tsv", |
|
), |
|
SubDataset( |
|
name="yandexcorpus", |
|
target="en", |
|
sources={"ru"}, |
|
url="https://translate.yandex.ru/corpus?lang=en", |
|
manual_dl_files=["1mcorpus.zip"], |
|
path=("corpus.en_ru.1m.ru", "corpus.en_ru.1m.en"), |
|
), |
|
|
|
] + [ |
|
SubDataset( |
|
name=ss, |
|
target="en", |
|
sources={"zh"}, |
|
url="https://huggingface.co/datasets/wmt/wmt18/resolve/main/cwmt-wmt/%s.zip" % ss, |
|
path=("%s/*_c[hn].txt" % ss, "%s/*_en.txt" % ss), |
|
) |
|
for ss in CWMT_SUBSET_NAMES |
|
] |
|
|
|
_DEV_SUBSETS = [ |
|
SubDataset( |
|
name="euelections_dev2019", |
|
target="de", |
|
sources={"fr"}, |
|
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip", |
|
path=("dev/euelections_dev2019.fr-de.src.fr", "dev/euelections_dev2019.fr-de.tgt.de"), |
|
), |
|
SubDataset( |
|
name="newsdev2014", |
|
target="en", |
|
sources={"hi"}, |
|
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip", |
|
path=("dev/newsdev2014.hi", "dev/newsdev2014.en"), |
|
), |
|
SubDataset( |
|
name="newsdev2015", |
|
target="en", |
|
sources={"fi"}, |
|
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip", |
|
path=("dev/newsdev2015-fien-src.{src}.sgm", "dev/newsdev2015-fien-ref.en.sgm"), |
|
), |
|
SubDataset( |
|
name="newsdiscussdev2015", |
|
target="en", |
|
sources={"ro", "tr"}, |
|
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip", |
|
path=("dev/newsdiscussdev2015-{src}en-src.{src}.sgm", "dev/newsdiscussdev2015-{src}en-ref.en.sgm"), |
|
), |
|
SubDataset( |
|
name="newsdev2016", |
|
target="en", |
|
sources={"ro", "tr"}, |
|
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip", |
|
path=("dev/newsdev2016-{src}en-src.{src}.sgm", "dev/newsdev2016-{src}en-ref.en.sgm"), |
|
), |
|
SubDataset( |
|
name="newsdev2017", |
|
target="en", |
|
sources={"lv", "zh"}, |
|
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip", |
|
path=("dev/newsdev2017-{src}en-src.{src}.sgm", "dev/newsdev2017-{src}en-ref.en.sgm"), |
|
), |
|
SubDataset( |
|
name="newsdev2018", |
|
target="en", |
|
sources={"et"}, |
|
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip", |
|
path=("dev/newsdev2018-{src}en-src.{src}.sgm", "dev/newsdev2018-{src}en-ref.en.sgm"), |
|
), |
|
SubDataset( |
|
name="newsdev2019", |
|
target="en", |
|
sources={"gu", "kk", "lt"}, |
|
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip", |
|
path=("dev/newsdev2019-{src}en-src.{src}.sgm", "dev/newsdev2019-{src}en-ref.en.sgm"), |
|
), |
|
SubDataset( |
|
name="newsdiscussdev2015", |
|
target="en", |
|
sources={"fr"}, |
|
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip", |
|
path=("dev/newsdiscussdev2015-{src}en-src.{src}.sgm", "dev/newsdiscussdev2015-{src}en-ref.en.sgm"), |
|
), |
|
SubDataset( |
|
name="newsdiscusstest2015", |
|
target="en", |
|
sources={"fr"}, |
|
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip", |
|
path=("dev/newsdiscusstest2015-{src}en-src.{src}.sgm", "dev/newsdiscusstest2015-{src}en-ref.en.sgm"), |
|
), |
|
SubDataset( |
|
name="newssyscomb2009", |
|
target="en", |
|
sources={"cs", "de", "es", "fr"}, |
|
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip", |
|
path=("dev/newssyscomb2009.{src}", "dev/newssyscomb2009.en"), |
|
), |
|
SubDataset( |
|
name="newstest2008", |
|
target="en", |
|
sources={"cs", "de", "es", "fr", "hu"}, |
|
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip", |
|
path=("dev/news-test2008.{src}", "dev/news-test2008.en"), |
|
), |
|
SubDataset( |
|
name="newstest2009", |
|
target="en", |
|
sources={"cs", "de", "es", "fr"}, |
|
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip", |
|
path=("dev/newstest2009.{src}", "dev/newstest2009.en"), |
|
), |
|
SubDataset( |
|
name="newstest2010", |
|
target="en", |
|
sources={"cs", "de", "es", "fr"}, |
|
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip", |
|
path=("dev/newstest2010.{src}", "dev/newstest2010.en"), |
|
), |
|
SubDataset( |
|
name="newstest2011", |
|
target="en", |
|
sources={"cs", "de", "es", "fr"}, |
|
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip", |
|
path=("dev/newstest2011.{src}", "dev/newstest2011.en"), |
|
), |
|
SubDataset( |
|
name="newstest2012", |
|
target="en", |
|
sources={"cs", "de", "es", "fr", "ru"}, |
|
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip", |
|
path=("dev/newstest2012.{src}", "dev/newstest2012.en"), |
|
), |
|
SubDataset( |
|
name="newstest2013", |
|
target="en", |
|
sources={"cs", "de", "es", "fr", "ru"}, |
|
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip", |
|
path=("dev/newstest2013.{src}", "dev/newstest2013.en"), |
|
), |
|
SubDataset( |
|
name="newstest2014", |
|
target="en", |
|
sources={"cs", "de", "es", "fr", "hi", "ru"}, |
|
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip", |
|
path=("dev/newstest2014-{src}en-src.{src}.sgm", "dev/newstest2014-{src}en-ref.en.sgm"), |
|
), |
|
SubDataset( |
|
name="newstest2015", |
|
target="en", |
|
sources={"cs", "de", "fi", "ru"}, |
|
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip", |
|
path=("dev/newstest2015-{src}en-src.{src}.sgm", "dev/newstest2015-{src}en-ref.en.sgm"), |
|
), |
|
SubDataset( |
|
name="newsdiscusstest2015", |
|
target="en", |
|
sources={"fr"}, |
|
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip", |
|
path=("dev/newsdiscusstest2015-{src}en-src.{src}.sgm", "dev/newsdiscusstest2015-{src}en-ref.en.sgm"), |
|
), |
|
SubDataset( |
|
name="newstest2016", |
|
target="en", |
|
sources={"cs", "de", "fi", "ro", "ru", "tr"}, |
|
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip", |
|
path=("dev/newstest2016-{src}en-src.{src}.sgm", "dev/newstest2016-{src}en-ref.en.sgm"), |
|
), |
|
SubDataset( |
|
name="newstestB2016", |
|
target="en", |
|
sources={"fi"}, |
|
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip", |
|
path=("dev/newstestB2016-enfi-ref.{src}.sgm", "dev/newstestB2016-enfi-src.en.sgm"), |
|
), |
|
SubDataset( |
|
name="newstest2017", |
|
target="en", |
|
sources={"cs", "de", "fi", "lv", "ru", "tr", "zh"}, |
|
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip", |
|
path=("dev/newstest2017-{src}en-src.{src}.sgm", "dev/newstest2017-{src}en-ref.en.sgm"), |
|
), |
|
SubDataset( |
|
name="newstestB2017", |
|
target="en", |
|
sources={"fi"}, |
|
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip", |
|
path=("dev/newstestB2017-fien-src.fi.sgm", "dev/newstestB2017-fien-ref.en.sgm"), |
|
), |
|
SubDataset( |
|
name="newstest2018", |
|
target="en", |
|
sources={"cs", "de", "et", "fi", "ru", "tr", "zh"}, |
|
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip", |
|
path=("dev/newstest2018-{src}en-src.{src}.sgm", "dev/newstest2018-{src}en-ref.en.sgm"), |
|
), |
|
] |
|
|
|
DATASET_MAP = {dataset.name: dataset for dataset in _TRAIN_SUBSETS + _DEV_SUBSETS} |
|
|
|
_CZENG17_FILTER = SubDataset( |
|
name="czeng17_filter", |
|
target="en", |
|
sources={"cs"}, |
|
url="http://ufal.mff.cuni.cz/czeng/download.php?f=convert_czeng16_to_17.pl.zip", |
|
path="convert_czeng16_to_17.pl", |
|
) |
|
|
|
|
|
class WmtConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for WMT.""" |
|
|
|
def __init__(self, url=None, citation=None, description=None, language_pair=(None, None), subsets=None, **kwargs): |
|
"""BuilderConfig for WMT. |
|
|
|
Args: |
|
url: The reference URL for the dataset. |
|
citation: The paper citation for the dataset. |
|
description: The description of the dataset. |
|
language_pair: pair of languages that will be used for translation. Should |
|
contain 2 letter coded strings. For example: ("en", "de"). |
|
configuration for the `datasets.features.text.TextEncoder` used for the |
|
`datasets.features.text.Translation` features. |
|
subsets: Dict[split, list[str]]. List of the subset to use for each of the |
|
split. Note that WMT subclasses overwrite this parameter. |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
name = "%s-%s" % (language_pair[0], language_pair[1]) |
|
if "name" in kwargs: |
|
name += "." + kwargs.pop("name") |
|
|
|
super(WmtConfig, self).__init__(name=name, description=description, **kwargs) |
|
|
|
self.url = url or "http://www.statmt.org" |
|
self.citation = citation |
|
self.language_pair = language_pair |
|
self.subsets = subsets |
|
|
|
|
|
|
|
if language_pair[1] in ["cs", "hi", "ru"]: |
|
assert NotImplementedError(f"The dataset for {language_pair[1]}-en is currently not fully supported.") |
|
|
|
|
|
|
|
class Wmt(datasets.GeneratorBasedBuilder): |
|
"""WMT translation dataset.""" |
|
|
|
BUILDER_CONFIG_CLASS = WmtConfig |
|
|
|
def __init__(self, *args, **kwargs): |
|
super(Wmt, self).__init__(*args, **kwargs) |
|
|
|
@property |
|
def _subsets(self): |
|
"""Subsets that make up each split of the dataset.""" |
|
raise NotImplementedError("This is a abstract method") |
|
|
|
@property |
|
def subsets(self): |
|
"""Subsets that make up each split of the dataset for the language pair.""" |
|
source, target = self.config.language_pair |
|
filtered_subsets = {} |
|
subsets = self._subsets if self.config.subsets is None else self.config.subsets |
|
for split, ss_names in subsets.items(): |
|
filtered_subsets[split] = [] |
|
for ss_name in ss_names: |
|
dataset = DATASET_MAP[ss_name] |
|
if dataset.target != target or source not in dataset.sources: |
|
logger.info("Skipping sub-dataset that does not include language pair: %s", ss_name) |
|
else: |
|
filtered_subsets[split].append(ss_name) |
|
logger.info("Using sub-datasets: %s", filtered_subsets) |
|
return filtered_subsets |
|
|
|
def _info(self): |
|
src, target = self.config.language_pair |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{"translation": datasets.features.Translation(languages=self.config.language_pair)} |
|
), |
|
supervised_keys=(src, target), |
|
homepage=self.config.url, |
|
citation=self.config.citation, |
|
) |
|
|
|
def _vocab_text_gen(self, split_subsets, extraction_map, language): |
|
for _, ex in self._generate_examples(split_subsets, extraction_map, with_translation=False): |
|
yield ex[language] |
|
|
|
def _split_generators(self, dl_manager): |
|
source, _ = self.config.language_pair |
|
manual_paths_dict = {} |
|
urls_to_download = {} |
|
for ss_name in itertools.chain.from_iterable(self.subsets.values()): |
|
if ss_name == "czeng_17": |
|
|
|
|
|
|
|
urls_to_download[_CZENG17_FILTER.name] = _CZENG17_FILTER.get_url(source) |
|
|
|
|
|
dataset = DATASET_MAP[ss_name] |
|
if dataset.get_manual_dl_files(source): |
|
|
|
|
|
logger.info("Skipping {dataset.name} for now. Incomplete dataset for {self.config.name}") |
|
continue |
|
|
|
|
|
manual_dl_files = dataset.get_manual_dl_files(source) |
|
manual_paths = [ |
|
os.path.join(os.path.abspath(os.path.expanduser(dl_manager.manual_dir)), fname) |
|
for fname in manual_dl_files |
|
] |
|
assert all( |
|
os.path.exists(path) for path in manual_paths |
|
), f"For {dataset.name}, you must manually download the following file(s) from {dataset.get_url(source)} and place them in {dl_manager.manual_dir}: {', '.join(manual_dl_files)}" |
|
|
|
|
|
manual_paths_dict[ss_name] = manual_paths |
|
else: |
|
urls_to_download[ss_name] = dataset.get_url(source) |
|
|
|
|
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
manual_files = dl_manager.extract(manual_paths_dict) |
|
extraction_map = dict(downloaded_files, **manual_files) |
|
|
|
for language in self.config.language_pair: |
|
self._vocab_text_gen(self.subsets[datasets.Split.TRAIN], extraction_map, language) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=split, gen_kwargs={"split_subsets": split_subsets, "extraction_map": extraction_map} |
|
) |
|
for split, split_subsets in self.subsets.items() |
|
] |
|
|
|
def _generate_examples(self, split_subsets, extraction_map, with_translation=True): |
|
"""Returns the examples in the raw (text) form.""" |
|
source, _ = self.config.language_pair |
|
|
|
def _get_local_paths(dataset, extract_dirs): |
|
rel_paths = dataset.get_path(source) |
|
if len(extract_dirs) == 1: |
|
extract_dirs = extract_dirs * len(rel_paths) |
|
return [ |
|
os.path.join(ex_dir, rel_path) if rel_path else ex_dir |
|
for ex_dir, rel_path in zip(extract_dirs, rel_paths) |
|
] |
|
|
|
def _get_filenames(dataset): |
|
rel_paths = dataset.get_path(source) |
|
urls = dataset.get_url(source) |
|
if len(urls) == 1: |
|
urls = urls * len(rel_paths) |
|
return [rel_path if rel_path else os.path.basename(url) for url, rel_path in zip(urls, rel_paths)] |
|
|
|
for ss_name in split_subsets: |
|
|
|
|
|
dataset = DATASET_MAP[ss_name] |
|
source, _ = self.config.language_pair |
|
if dataset.get_manual_dl_files(source): |
|
logger.info(f"Skipping {dataset.name} for now. Incomplete dataset for {self.config.name}") |
|
continue |
|
|
|
|
|
logger.info("Generating examples from: %s", ss_name) |
|
dataset = DATASET_MAP[ss_name] |
|
extract_dirs = extraction_map[ss_name] |
|
files = _get_local_paths(dataset, extract_dirs) |
|
filenames = _get_filenames(dataset) |
|
|
|
sub_generator_args = tuple(files) |
|
|
|
if ss_name.startswith("czeng"): |
|
if ss_name.endswith("16pre"): |
|
sub_generator = functools.partial(_parse_tsv, language_pair=("en", "cs")) |
|
sub_generator_args += tuple(filenames) |
|
elif ss_name.endswith("17"): |
|
filter_path = _get_local_paths(_CZENG17_FILTER, extraction_map[_CZENG17_FILTER.name])[0] |
|
sub_generator = functools.partial(_parse_czeng, filter_path=filter_path) |
|
else: |
|
sub_generator = _parse_czeng |
|
elif ss_name == "hindencorp_01": |
|
sub_generator = _parse_hindencorp |
|
elif ss_name == "yakut": |
|
sub_generator, sub_generator_args = YakutParser.create_generator( |
|
sub_generator_args=sub_generator_args, config=self.config |
|
) |
|
elif len(files) == 2: |
|
if ss_name.endswith("_frde"): |
|
sub_generator = _parse_frde_bitext |
|
else: |
|
sub_generator = _parse_parallel_sentences |
|
sub_generator_args += tuple(filenames) |
|
elif len(files) == 1: |
|
fname = filenames[0] |
|
|
|
|
|
if ".tsv" in fname: |
|
sub_generator = _parse_tsv |
|
sub_generator_args += tuple(filenames) |
|
elif ( |
|
ss_name.startswith("newscommentary_v14") |
|
or ss_name.startswith("europarl_v9") |
|
or ss_name.startswith("wikititles_v1") |
|
): |
|
sub_generator = functools.partial(_parse_tsv, language_pair=self.config.language_pair) |
|
sub_generator_args += tuple(filenames) |
|
elif "tmx" in fname or ss_name.startswith("paracrawl_v3"): |
|
sub_generator = _parse_tmx |
|
elif ss_name.startswith("wikiheadlines"): |
|
sub_generator = _parse_wikiheadlines |
|
else: |
|
raise ValueError("Unsupported file format: %s" % fname) |
|
else: |
|
raise ValueError("Invalid number of files: %d" % len(files)) |
|
|
|
for sub_key, ex in sub_generator(*sub_generator_args): |
|
if not all(ex.values()): |
|
continue |
|
|
|
|
|
key = f"{ss_name}/{sub_key}" |
|
if with_translation is True: |
|
ex = {"translation": ex} |
|
yield key, ex |
|
|
|
|
|
def _parse_parallel_sentences(f1, f2, filename1, filename2): |
|
"""Returns examples from parallel SGML or text files, which may be gzipped.""" |
|
|
|
def _parse_text(path, original_filename): |
|
"""Returns the sentences from a single text file, which may be gzipped.""" |
|
split_path = original_filename.split(".") |
|
|
|
if split_path[-1] == "gz": |
|
lang = split_path[-2] |
|
|
|
def gen(): |
|
with open(path, "rb") as f, gzip.GzipFile(fileobj=f) as g: |
|
for line in g: |
|
yield line.decode("utf-8").rstrip() |
|
|
|
return gen(), lang |
|
|
|
if split_path[-1] == "txt": |
|
|
|
lang = split_path[-2].split("_")[-1] |
|
lang = "zh" if lang in ("ch", "cn", "c[hn]") else lang |
|
else: |
|
lang = split_path[-1] |
|
|
|
def gen(): |
|
with open(path, "rb") as f: |
|
for line in f: |
|
yield line.decode("utf-8").rstrip() |
|
|
|
return gen(), lang |
|
|
|
def _parse_sgm(path, original_filename): |
|
"""Returns sentences from a single SGML file.""" |
|
lang = original_filename.split(".")[-2] |
|
|
|
|
|
seg_re = re.compile(r"<seg id=\"\d+\">(.*)</seg>") |
|
|
|
def gen(): |
|
with open(path, encoding="utf-8") as f: |
|
for line in f: |
|
seg_match = re.match(seg_re, line) |
|
if seg_match: |
|
assert len(seg_match.groups()) == 1 |
|
yield seg_match.groups()[0] |
|
|
|
return gen(), lang |
|
|
|
parse_file = _parse_sgm if os.path.basename(f1).endswith(".sgm") else _parse_text |
|
|
|
|
|
|
|
f1_files = sorted(glob.glob(f1)) |
|
f2_files = sorted(glob.glob(f2)) |
|
|
|
assert f1_files and f2_files, "No matching files found: %s, %s." % (f1, f2) |
|
assert len(f1_files) == len(f2_files), "Number of files do not match: %d vs %d for %s vs %s." % ( |
|
len(f1_files), |
|
len(f2_files), |
|
f1, |
|
f2, |
|
) |
|
|
|
for f_id, (f1_i, f2_i) in enumerate(zip(sorted(f1_files), sorted(f2_files))): |
|
l1_sentences, l1 = parse_file(f1_i, filename1) |
|
l2_sentences, l2 = parse_file(f2_i, filename2) |
|
|
|
for line_id, (s1, s2) in enumerate(zip(l1_sentences, l2_sentences)): |
|
key = f"{f_id}/{line_id}" |
|
yield key, {l1: s1, l2: s2} |
|
|
|
|
|
def _parse_frde_bitext(fr_path, de_path): |
|
with open(fr_path, encoding="utf-8") as fr_f: |
|
with open(de_path, encoding="utf-8") as de_f: |
|
for line_id, (s1, s2) in enumerate(zip(fr_f, de_f)): |
|
yield line_id, {"fr": s1.rstrip(), "de": s2.rstrip()} |
|
|
|
|
|
def _parse_tmx(path): |
|
"""Generates examples from TMX file.""" |
|
|
|
def _get_tuv_lang(tuv): |
|
for k, v in tuv.items(): |
|
if k.endswith("}lang"): |
|
return v |
|
raise AssertionError("Language not found in `tuv` attributes.") |
|
|
|
def _get_tuv_seg(tuv): |
|
segs = tuv.findall("seg") |
|
assert len(segs) == 1, "Invalid number of segments: %d" % len(segs) |
|
return segs[0].text |
|
|
|
with open(path, "rb") as f: |
|
|
|
utf_f = codecs.getreader("utf-8")(f) |
|
for line_id, (_, elem) in enumerate(ElementTree.iterparse(utf_f)): |
|
if elem.tag == "tu": |
|
yield line_id, {_get_tuv_lang(tuv): _get_tuv_seg(tuv) for tuv in elem.iterfind("tuv")} |
|
elem.clear() |
|
|
|
|
|
def _parse_tsv(path, filename=None, language_pair=None, skiprows=None): |
|
"""Generates examples from TSV file.""" |
|
if language_pair is None: |
|
lang_match = re.match(r".*\.([a-z][a-z])-([a-z][a-z])\.tsv", filename) |
|
assert lang_match is not None, "Invalid TSV filename: %s" % filename |
|
l1, l2 = lang_match.groups() |
|
else: |
|
l1, l2 = language_pair |
|
with open(path, encoding="utf-8") as f: |
|
for key, line in enumerate(f): |
|
if skiprows and key < skiprows: |
|
continue |
|
cols = line.split("\t") |
|
if len(cols) != 2: |
|
logger.warning("Skipping line %d in TSV (%s) with %d != 2 columns.", j, path, len(cols)) |
|
continue |
|
s1, s2 = cols |
|
yield key, {l1: s1.strip(), l2: s2.strip()} |
|
|
|
|
|
def _parse_wikiheadlines(path): |
|
"""Generates examples from Wikiheadlines dataset file.""" |
|
lang_match = re.match(r".*\.([a-z][a-z])-([a-z][a-z])$", path) |
|
assert lang_match is not None, "Invalid Wikiheadlines filename: %s" % path |
|
l1, l2 = lang_match.groups() |
|
with open(path, encoding="utf-8") as f: |
|
for line_id, line in enumerate(f): |
|
s1, s2 = line.split("|||") |
|
yield line_id, {l1: s1.strip(), l2: s2.strip()} |
|
|
|
|
|
def _parse_czeng(*paths, **kwargs): |
|
"""Generates examples from CzEng v1.6, with optional filtering for v1.7.""" |
|
filter_path = kwargs.get("filter_path", None) |
|
if filter_path: |
|
re_block = re.compile(r"^[^-]+-b(\d+)-\d\d[tde]") |
|
with open(filter_path, encoding="utf-8") as f: |
|
bad_blocks = {blk for blk in re.search(r"qw{([\s\d]*)}", f.read()).groups()[0].split()} |
|
logger.info("Loaded %d bad blocks to filter from CzEng v1.6 to make v1.7.", len(bad_blocks)) |
|
|
|
for path in paths: |
|
for gz_path in sorted(glob.glob(path)): |
|
with open(gz_path, "rb") as g, gzip.GzipFile(fileobj=g) as f: |
|
filename = os.path.basename(gz_path) |
|
for line_id, line in enumerate(f): |
|
line = line.decode("utf-8") |
|
if not line.strip(): |
|
continue |
|
id_, unused_score, cs, en = line.split("\t") |
|
if filter_path: |
|
block_match = re.match(re_block, id_) |
|
if block_match and block_match.groups()[0] in bad_blocks: |
|
continue |
|
sub_key = f"{filename}/{line_id}" |
|
yield sub_key, { |
|
"cs": cs.strip(), |
|
"en": en.strip(), |
|
} |
|
|
|
|
|
def _parse_hindencorp(path): |
|
with open(path, encoding="utf-8") as f: |
|
for line_id, line in enumerate(f): |
|
split_line = line.split("\t") |
|
if len(split_line) != 5: |
|
logger.warning("Skipping invalid HindEnCorp line: %s", line) |
|
continue |
|
yield line_id, {"translation": {"en": split_line[3].strip(), "hi": split_line[4].strip()}} |
|
|
|
|
|
class YakutParser: |
|
@staticmethod |
|
def create_generator(sub_generator_args=None, config=None): |
|
sub_generator = functools.partial(_parse_tsv, language_pair=config.language_pair, skiprows=1) |
|
return sub_generator, sub_generator_args |
|
|