|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""args.me Dataset""" |
|
|
|
|
|
import json |
|
|
|
import datasets |
|
|
|
_CITATION = """\ |
|
@dataset{yamen_ajjour_2020_4139439, |
|
author = {Yamen Ajjour and |
|
Henning Wachsmuth and |
|
Johannes Kiesel and |
|
Martin Potthast and |
|
Matthias Hagen and |
|
Benno Stein}, |
|
title = {args.me corpus}, |
|
month = oct, |
|
year = 2020, |
|
publisher = {Zenodo}, |
|
version = {1.0-cleaned}, |
|
doi = {10.5281/zenodo.4139439}, |
|
url = {https://doi.org/10.5281/zenodo.4139439} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
The args.me corpus (version 1.0, cleaned) comprises 382 545 arguments crawled from four debate portals in the middle of 2019. The debate portals are Debatewise, IDebate.org, Debatepedia, and Debate.org. The arguments are extracted using heuristics that are designed for each debate portal. |
|
""" |
|
|
|
_HOMEPAGE = "https://zenodo.org/record/4139439" |
|
|
|
_LICENSE = "https://creativecommons.org/licenses/by/4.0/legalcode" |
|
|
|
|
|
_REPO = "https://huggingface.co/datasets/webis/args_me/resolve/main" |
|
_URLs = { |
|
'corpus': f"{_REPO}/args-me.jsonl", |
|
|
|
|
|
} |
|
|
|
|
|
class ArgsMe(datasets.GeneratorBasedBuilder): |
|
"""382,545 arguments crawled from debate portals""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="corpus", version=VERSION, description="The args.me dataset"), |
|
datasets.BuilderConfig(name="topics", version=VERSION, description="The args.me dataset"), |
|
datasets.BuilderConfig(name="judgments", version=VERSION, description="The args.me dataset"), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "corpus" |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"argument": datasets.Value("string"), |
|
"conclusion": datasets.Value("string"), |
|
"stance": datasets.Value("string"), |
|
"id": datasets.Value("string") |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
URL = _URLs[self.config.name] |
|
data_file = dl_manager.download(URL) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_file": data_file, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_file): |
|
""" Yields examples as (key, example) tuples. """ |
|
|
|
|
|
with open(data_file, encoding="utf-8") as f: |
|
for row in f: |
|
data = json.loads(row) |
|
id_ = data['id'] |
|
content = data["premises"][0] |
|
yield id_, { |
|
"argument": content['text'], |
|
"conclusion": data["conclusion"], |
|
"stance": content['stance'], |
|
"id": id_ |
|
} |
|
|