# coding=utf-8 # Copyright 2023 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """NINJAL Ainu folklore corpus""" import os import json import datasets _DESCRIPTION = "" _CITATION = "" _HOMEPAGE_URL = "" _BASE_PATH = "data/" _DATA_URL = _BASE_PATH + "audio/{split}.tar.gz" _META_URL = _BASE_PATH + "{split}.json" class AinuFolkloreConfig(datasets.BuilderConfig): def __init__(self, name, **kwargs): super().__init__(name=name, version=datasets.Version("0.0.0", ""), **kwargs) class AinuFolklore(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [AinuFolkloreConfig("all")] def _info(self): task_templates = None features = datasets.Features( { "id": datasets.Value("string"), "audio": datasets.features.Audio(sampling_rate=16_000), "transcription": datasets.Value("string"), "speaker": datasets.Value("string"), "surface": datasets.Value("string"), "underlying": datasets.Value("string"), "gloss": datasets.Value("string"), "translation": datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=("audio", "transcription"), homepage=_HOMEPAGE_URL, citation=_CITATION, task_templates=task_templates, ) def _split_generators(self, dl_manager): splits = ["train", "dev", "test"] data_urls = {split: [_DATA_URL.format(split=split)] for split in splits} meta_urls = {split: [_META_URL.format(split=split)] for split in splits} archive_paths = dl_manager.download(data_urls) local_extracted_archives = ( dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {} ) archive_iters = { split: [dl_manager.iter_archive(path) for path in paths] for split, paths in archive_paths.items() } meta_paths = dl_manager.download(meta_urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "local_extracted_archives": local_extracted_archives.get( "train", [None] * len(meta_paths.get("train")) ), "archive_iters": archive_iters.get("train"), "text_paths": meta_paths.get("train"), }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "local_extracted_archives": local_extracted_archives.get( "dev", [None] * len(meta_paths.get("dev")) ), "archive_iters": archive_iters.get("dev"), "text_paths": meta_paths.get("dev"), }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "local_extracted_archives": local_extracted_archives.get( "test", [None] * len(meta_paths.get("test")) ), "archive_iters": archive_iters.get("test"), "text_paths": meta_paths.get("test"), }, ), ] def _generate_examples(self, local_extracted_archives, archive_iters, text_paths): assert len(local_extracted_archives) == len(archive_iters) == len(text_paths) key = 0 for archive, text_path, local_extracted_path in zip( archive_iters, text_paths, local_extracted_archives ): with open(text_path, encoding="utf-8") as fin: data = json.load(fin) for audio_path, audio_file in archive: audio_filename = audio_path.split("/")[-1] if audio_filename not in data: continue result = data[audio_filename] extracted_audio_path = ( os.path.join(local_extracted_path, audio_filename) if local_extracted_path is not None else None ) result["audio"] = {"path": audio_path, "bytes": audio_file.read()} yield key, result key += 1