File size: 1,980 Bytes
ee8301e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import io
from pathlib import Path
import torch
def save_tensor(tensor, name):
f = io.BytesIO()
torch.save(tensor, f, _use_new_zipfile_serialization=True)
with open(name, "wb") as out_f:
out_f.write(f.getbuffer())
def process_forward_dump(dump_path: Path, output_path: Path):
output_path.mkdir(exist_ok=True, parents=True)
data = torch.load(dump_path)
arg_names = [
"bg",
"means3D",
"colors_precomp",
"opacities",
"scales",
"rotations",
"scale_modifier",
"cov3Ds_precomp",
"viewmatrix",
"projmatrix",
"tanfovx",
"tanfovy",
"image_height",
"image_width",
"sh",
"sh_degree",
"campos",
"prefiltered",
"debug",
]
for tensor, name in zip(data, arg_names):
save_tensor(tensor, str(output_path / name) + ".pt")
def process_backward_dump(dump_path: Path, output_path: Path):
output_path.mkdir(exist_ok=True, parents=True)
data = torch.load(dump_path)
arg_names = [
"bg",
"means3D",
"radii",
"colors_precomp",
"scales",
"rotations",
"scale_modifier",
"cov3Ds_precomp",
"viewmatrix",
"projmatrix",
"tanfovx",
"tanfovy",
"grad_out_color",
"grad_depth",
"grad_out_alpha",
"sh",
"sh_degree",
"campos",
"geomBuffer",
"num_rendered",
"binningBuffer",
"imgBuffer",
"alpha",
"debug"
]
for tensor, name in zip(data, arg_names):
save_tensor(tensor, str(output_path / name) + ".pt")
if __name__ == '__main__':
global_path = Path("/home/vy/projects/gaussian-rasterizer/test_data")
process_forward_dump(global_path / "snapshot_fw.dump", global_path / "forward_tensors")
process_backward_dump(global_path / "snapshot_bw.dump", global_path / "backward_tensors")
|