--- task_categories: - summarization - text-generation language: - en pretty_name: BookSum Summarization Dataset Clean size_categories: - 1K ## Chapters Dataset | Split | Total Sum. | Missing Sum. | Successfully Processed | Rows | |---------|------------|--------------|------------------------|------| | Train | 9712 | 178 | 9534 (98.17%) | 5653 | | Test | 1432 | 0 | 1432 (100.0%) | 950 | | Val | 1485 | 0 | 1485 (100.0%) | 854 |
## Books Dataset | Split | Total Sum. | Missing Sum. | Successfully Processed | Rows | |---------|------------|--------------|------------------------|------| | Train | 314 | 0 | 314 (100.0%) | 151 | | Test | 46 | 0 | 46 (100.0%) | 17 | | Val | 45 | 0 | 45 (100.0%) | 19 |
# Structure: ``` Chapters Dataset 0 - bid (book id) NOT unique for each row 1 - book_title 2 - chapter_id 3 - text (raw chapter text) 4 - summary [] (list of summaries from different sources) - {source, text (summary), analysis} ... 5 - is_aggregate (bool) (if true, then the text contains more than one chapter) Books Dataset: 0 - bid (book id) unique for each row 1 - title 2 - text (raw text) 4 - summary [] (list of summaries from different sources) - {source, text (summary), analysis} ... ``` # Usage ``` from datasets import load_dataset book_data = load_dataset("ubaada/booksum-complete-cleanedy", "books") chapter_data = load_dataset("ubaada/booksum-complete-cleaned", "chapters") ```