|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""TREC Product Search dataset.""" |
|
|
|
import json |
|
|
|
import datasets |
|
|
|
_CITATION = """ |
|
|
|
""" |
|
|
|
_DESCRIPTION = "dataset load script for TREC Product Search Corpus" |
|
|
|
_DATASET_URLS = { |
|
'train': "https://huggingface.co/datasets/trec-product-search/Product-Search-Corpus-v0.1/resolve/main/corpus.jsonl.gz ", |
|
} |
|
|
|
|
|
class TRECProductCorpus(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("0.0.1") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(version=VERSION, |
|
description="TREC Product Search Corpus"), |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{'docid': datasets.Value('string'), 'title': datasets.Value('string'), 'text': datasets.Value('string')} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
supervised_keys=None, |
|
|
|
homepage="", |
|
|
|
license="", |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
if self.config.data_files: |
|
downloaded_files = self.config.data_files |
|
else: |
|
downloaded_files = dl_manager.download_and_extract(_DATASET_URLS) |
|
splits = [ |
|
datasets.SplitGenerator( |
|
name=split, |
|
gen_kwargs={ |
|
"files": [downloaded_files[split]] if isinstance(downloaded_files[split], str) else downloaded_files[split], |
|
}, |
|
) for split in downloaded_files |
|
] |
|
return splits |
|
|
|
def _generate_examples(self, files): |
|
"""Yields examples.""" |
|
for filepath in files: |
|
with open(filepath, encoding="utf-8") as f: |
|
for line in f: |
|
data = json.loads(line) |
|
yield data['docid'], data |
|
|