import csv import glob import os import textwrap from dataclasses import dataclass import tqdm import datasets from datasets.tasks import AutomaticSpeechRecognition from typing import List LANGUAGES = ["afr", "amh", "azz", "nbl", "nso", "sot", "ssw", "swa", "tos", "tsn", "tso", "ven", "wol", "xho", "xty", "zul"] class MLSuperbConfig(datasets.BuilderConfig): """BuilderConfig for Superb.""" def __init__(self, name, **kwargs): super(MLSuperbConfig, self).__init__(name=name, version=datasets.Version("2.19.0"), **kwargs) class MLSuperb(datasets.GeneratorBasedBuilder): DEFAULT_WRITER_BATCH_SIZE = 1000 URL = "https://224sh3.s3.amazonaws.com/ml_superb_subset.zip" # BUILDER_CONFIG_CLASS = MLSuperbConfig BUILDER_CONFIGS = [ MLSuperbConfig( name=lang, ) for lang in LANGUAGES ] def _info(self): features = datasets.Features( { "audio": datasets.Value("string"), "sentence": datasets.Value("string"), } ) return datasets.DatasetInfo( features=features, supervised_keys=None, version=self.config.version, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: urls_to_download = self.URL downloaded_files = dl_manager.download_and_extract(urls_to_download) downloaded_files = downloaded_files + "/ml_superb_subset/" + self.config.name # downloaded_files = "./ml_superb_subset/" + self.config.name # downloaded_files = "ml-superb-subset" "/ml_superb_subset/" + self.config.name splits = ("train10min", "train1hr", "dev", "test") split_to_filename = { "train10min": 'transcript_10min_train.txt', "train1hr": 'transcript_1h_train.txt', "dev": 'transcript_10min_dev.txt', "test": 'transcript_10min_test.txt', } split_generators = [] split_names = { "train10min": datasets.Split.TRAIN, "train1hr": datasets.Split.TRAIN, "dev": datasets.Split.VALIDATION, "test": datasets.Split.TEST, } for split in splits: split_generators.append( datasets.SplitGenerator( name=split, gen_kwargs={ 'wavs_path' : downloaded_files + "/wav/", "transcript_path": downloaded_files + "/" + split_to_filename[split], }, ), ) return split_generators def _generate_examples(self, wavs_path, transcript_path): data_fields = list(self._info().features.keys()) metadata = {} with open(transcript_path, encoding="utf-8") as f: reader = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONE) if len(next(reader)) == 1: reader = csv.reader(f, delimiter=" ", quoting=csv.QUOTE_NONE) for row in reader: id_ = row[0] if not row[0].endswith(".wav"): row[0] += ".wav" metadata[row[0]] = " ".join(row[2:]) yield id_, { "audio": wavs_path + row[0], "sentence": " ".join(row[2:]), "id": id_, } else: for row in reader: # print(row) id_ = row[0] if not row[0].endswith(".wav"): row[0] += ".wav" metadata[row[0]] = row[-1] yield id_, { "audio": wavs_path + row[0], "sentence": row[-1], "id": id_, }