File size: 11,145 Bytes
cb715ae 357d568 cb715ae 357d568 cb715ae 27174aa cb715ae 357d568 cb715ae 357d568 cb715ae 357d568 cb715ae 357d568 cb715ae 357d568 cb715ae 357d568 cb715ae 357d568 cb715ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
# Copyright 2023 Together Computer
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""RedPajama V2: Quality annotated Web Text Documents."""
import json
import datasets
import traceback
import os
import gzip
logger = datasets.logging.get_logger(__name__)
_DESCRIPTION = """\
RedPajama V2 is a dataset of web documents and their quality signals.
"""
with open("_CC_SNAPSHOT_IDS", "r") as f:
_CC_SNAPSHOT_IDS = [line.strip() for line in f]
with open("_QUALITY_SIGNAL_TAGS", "r") as f:
_QUALITY_SIGNAL_TAGS = [line.strip() for line in f]
_URL_BASE = 'https://data.together.xyz/redpajama-data-v2/v1.0.0'
_LANGUAGES = ("en", "de", "fr", "es", "it")
_SAMPLE_SNAPSHOT_ID = "2023-06"
_LISTINGS_PATTERN = "urls/{language}-{snapshot}-{partition}.txt"
class RedPajamaDataV2Config(datasets.BuilderConfig):
"""BuilderConfig for RedPajama."""
def __init__(self, *args, language, partition, snapshots, **kwargs):
"""BuilderConfig for RedPajama.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(RedPajamaDataV2Config, self).__init__(**kwargs)
self.partition = partition
self.snapshots = snapshots
self.language = language
_BUILDER_CONFIGS = [
RedPajamaDataV2Config(
name=f'_sample',
partition='sample',
snapshots=None,
language=None,
version=datasets.Version("1.0.0", ""),
description=f"RedPajamaV2 Sample",
),
# this one is just an alias for the sample
RedPajamaDataV2Config(
name=f'sample',
partition='sample',
snapshots=None,
language=None,
version=datasets.Version("1.0.0", ""),
description=f"RedPajamaV2 Sample",
)
]
for lang in _LANGUAGES:
_BUILDER_CONFIGS.extend(
[
# single snapshot
RedPajamaDataV2Config(
name=f'{lang}-head-middle-{snapshot}',
partition='head_middle',
snapshots=[snapshot],
language=lang,
version=datasets.Version("1.0.0", ""),
description=f"RedPajamaV2 head-middle {lang}-{snapshot}",
)
for snapshot in _CC_SNAPSHOT_IDS
] + [
# all snapshots
RedPajamaDataV2Config(
name=f'{lang}-head-middle-all',
partition='head_middle',
snapshots=_CC_SNAPSHOT_IDS,
language=lang,
version=datasets.Version("1.0.0", ""),
description=f"RedPajamaV2 head-middle {lang}"
)
]
)
_BUILDER_CONFIGS.extend(
[
# single snapshot
RedPajamaDataV2Config(
name=f'{lang}-tail-{snapshot}',
partition='tail',
snapshots=[snapshot],
language=lang,
version=datasets.Version("1.0.0", ""),
description=f"RedPajamaV2 tail {lang}-{snapshot}",
)
for snapshot in _CC_SNAPSHOT_IDS
] + [
# all snapshots
RedPajamaDataV2Config(
name=f'{lang}-tail-all',
partition='tail',
snapshots=_CC_SNAPSHOT_IDS,
language=lang,
version=datasets.Version("1.0.0", ""),
description=f"RedPajamaV2 tail {lang}"
)
]
)
class RedPajamaV2(datasets.GeneratorBasedBuilder):
""" RedPajama V2: Quality annotated Web Text Documents. """
BUILDER_CONFIGS = _BUILDER_CONFIGS
def _info(self):
if self.config.partition == "tail":
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"raw_content": datasets.Value("string"),
"doc_id": datasets.Value("string"),
"meta": datasets.Value("string"),
}
),
supervised_keys=None,
)
else:
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"raw_content": datasets.Value("string"),
"doc_id": datasets.Value("string"),
"meta": datasets.Value("string"),
"quality_signals": datasets.Value("string")
}
),
supervised_keys=None,
)
def _split_generators_sample(self, dl_manager):
# fetch documents
with open("sample/sample_listings.txt", "r") as fd:
listings = [line.strip() for line in fd]
# fetch documents
docs_files = dl_manager.download({
_SAMPLE_SNAPSHOT_ID: [
f"sample/documents/{lst}.json.gz" for lst in listings
]
})
# fetch quality signals
signals_files = dl_manager.download({
_SAMPLE_SNAPSHOT_ID: [
f"sample/quality_signals/{lst}.signals.json.gz"
for lst in listings
]
})
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"documents_files": {
_SAMPLE_SNAPSHOT_ID: docs_files[_SAMPLE_SNAPSHOT_ID]
},
"quality_signals_files": {
_SAMPLE_SNAPSHOT_ID: signals_files[_SAMPLE_SNAPSHOT_ID]
}
}
)
]
def _split_generators_full(self, dl_manager):
url_lists = dl_manager.download_and_extract({
snapshot_id: _LISTINGS_PATTERN.format(
language=self.config.language,
snapshot=snapshot_id,
partition=self.config.partition,
)
for snapshot_id in self.config.snapshots
})
listings_ids = {}
for snapshot_id, listings_file in url_lists.items():
with open(listings_file, encoding="utf-8") as f:
listings_ids[snapshot_id] = [line.strip() for line in f]
# build urls pointing to documents
document_urls = {
snapshot_id: [
os.path.join(_URL_BASE, f"documents/{lst_id}.json.gz")
for lst_id in listings_ids[snapshot_id]
]
for snapshot_id in self.config.snapshots
}
documents_files = dl_manager.download(document_urls)
# build urls pointing to quality signals
if self.config.partition == "head_middle":
quality_signals_urls = {
snapshot_id: [
os.path.join(
_URL_BASE,
f"quality_signals/{lst_id}.signals.json.gz"
)
for lst_id in listings_ids[snapshot_id]
]
for snapshot_id in self.config.snapshots
}
quality_signals_files = dl_manager.download(
quality_signals_urls
)
else:
quality_signals_files = {}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"documents_files": {
snapshot_id: documents_files[snapshot_id]
for snapshot_id in self.config.snapshots
},
"quality_signals_files": {
snapshot_id: quality_signals_files.get(snapshot_id)
for snapshot_id in self.config.snapshots
}
}
)
]
def _split_generators(self, dl_manager):
if self.config.name == "sample":
return self._split_generators_sample(dl_manager)
return self._split_generators_full(dl_manager)
def _generate_examples(self, documents_files, quality_signals_files):
""" This function returns examples """
snapshots = list(documents_files.keys())
key = 0
for snapshot in snapshots:
docs_files = documents_files[snapshot]
if self.config.partition in ("head_middle", "sample"):
qs_files = quality_signals_files[snapshot]
else:
qs_files = None
assert len(docs_files) == len(qs_files)
for doc_file, qs_file in zip(docs_files, qs_files):
with gzip.open(doc_file, "rt", encoding="utf-8") as df:
with gzip.open(qs_file, "rt", encoding="utf-8") as qf:
for row, (doc, qs) in enumerate(zip(df, qf)):
try:
doc = json.loads(doc)
qs = json.loads(qs)
doc_id = qs["id"]
meta = {
"url": doc["url"],
"language": doc["language"],
"source_domain": doc["source_domain"],
"date_download": doc["date_download"],
"digest": doc["digest"],
}
if self.config.partition == "tail":
yield key, {
"raw_content": doc["raw_content"],
"doc_id": doc_id,
"meta": json.dumps(meta),
}
else:
yield key, {
"raw_content": doc["raw_content"],
"doc_id": doc_id,
"meta": json.dumps(meta),
"quality_signals": json.dumps(
qs["quality_signals"]
),
}
key += 1
except Exception as e:
print(f'doc_file: {doc_file}')
print(f'qs_file: {qs_file}')
print(f'row: {row}')
traceback.print_exc()
raise e
|