""" NER dataset compiled by T-NER library https://github.com/asahi417/tner/tree/master/tner """ import json from itertools import chain import datasets logger = datasets.logging.get_logger(__name__) _DESCRIPTION = """[TweetNER7](TBA)""" _NAME = "tweetner7" _VERSION = "1.0.4" _CITATION = """ TBA """ _HOME_PAGE = "https://github.com/asahi417/tner" _URL = f'https://huggingface.co/datasets/tner/{_NAME}/raw/main/dataset' _URLS = { # str(datasets.Split.TEST): [f'{_URL}/2021.test.json'], # str(datasets.Split.VALIDATION): [f'{_URL}/2020.dev.json'], # str(datasets.Split.TRAIN): [f'{_URL}/2020.train.json'], f'{str(datasets.Split.TEST)}_2020': [f'{_URL}/2020.test.json'], f'{str(datasets.Split.TEST)}_2021': [f'{_URL}/2021.test.json'], # f'{str(datasets.Split.TEST)}_all': [f'{_URL}/2020.test.json', f'{_URL}/2021.test.json'], f'{str(datasets.Split.VALIDATION)}_2020': [f'{_URL}/2020.dev.json'], f'{str(datasets.Split.VALIDATION)}_2021': [f'{_URL}/2021.dev.json'], # f'{str(datasets.Split.VALIDATION)}_all': [f'{_URL}/2020.dev.json', f'{_URL}/2021.dev.json'], f'{str(datasets.Split.TRAIN)}_2020': [f'{_URL}/2020.train.json'], f'{str(datasets.Split.TRAIN)}_2021': [f'{_URL}/2021.train.json'], f'{str(datasets.Split.TRAIN)}_all': [f'{_URL}/2020.train.json', f'{_URL}/2021.train.json'], f'{str(datasets.Split.VALIDATION)}_random': [f'{_URL}/random.dev.json'], f'{str(datasets.Split.TRAIN)}_random': [f'{_URL}/random.train.json'], f'extra_2020': [f'{_URL}/extra/2020.extra{i:02d}.json' for i in range(9)], f'extra_2021': [f'{_URL}/extra/2021.extra{i:02d}.json' for i in range(10)] } class TweetNER7Config(datasets.BuilderConfig): """BuilderConfig""" def __init__(self, **kwargs): """BuilderConfig. Args: **kwargs: keyword arguments forwarded to super. """ super(TweetNER7Config, self).__init__(**kwargs) class TweetNER7(datasets.GeneratorBasedBuilder): """Dataset.""" BUILDER_CONFIGS = [ TweetNER7Config(name=_NAME, version=datasets.Version(_VERSION), description=_DESCRIPTION), ] def _split_generators(self, dl_manager): downloaded_file = dl_manager.download_and_extract(_URLS) return [datasets.SplitGenerator(name=i, gen_kwargs={"filepaths": downloaded_file[i]}) for i in _URLS.keys()] def _generate_examples(self, filepaths): _key = 0 for filepath in filepaths: logger.info(f"generating examples from = {filepath}") with open(filepath, encoding="utf-8") as f: _list = [i for i in f.read().split('\n') if len(i) > 0] for i in _list: data = json.loads(i) yield _key, data _key += 1 def _info(self): names = ['B-corporation', 'B-creative_work', 'B-event', 'B-group', 'B-location', 'B-person', 'B-product', 'I-corporation', 'I-creative_work', 'I-event', 'I-group', 'I-location', 'I-person', 'I-product', 'O'] return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "tags": datasets.Sequence(datasets.features.ClassLabel(names=names)), "id": datasets.Value("string"), "date": datasets.Value("string") } ), supervised_keys=None, homepage=_HOME_PAGE, citation=_CITATION, )