Datasets:

Tasks:
Other
Languages:
English
ArXiv:
License:
few_rel / few_rel.py
system's picture
system HF staff
Update files from the datasets library (from 1.6.1)
2a5c144
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""FewRel Dataset."""
import json
import datasets
_CITATION = """@inproceedings{han-etal-2018-fewrel,
title = "{F}ew{R}el: A Large-Scale Supervised Few-Shot Relation Classification Dataset with State-of-the-Art Evaluation",
author = "Han, Xu and Zhu, Hao and Yu, Pengfei and Wang, Ziyun and Yao, Yuan and Liu, Zhiyuan and Sun, Maosong",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/D18-1514",
doi = "10.18653/v1/D18-1514",
pages = "4803--4809"
}
@inproceedings{gao-etal-2019-fewrel,
title = "{F}ew{R}el 2.0: Towards More Challenging Few-Shot Relation Classification",
author = "Gao, Tianyu and Han, Xu and Zhu, Hao and Liu, Zhiyuan and Li, Peng and Sun, Maosong and Zhou, Jie",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/D19-1649",
doi = "10.18653/v1/D19-1649",
pages = "6251--6256"
}
"""
_DESCRIPTION = """\
FewRel is a large-scale few-shot relation extraction dataset, which contains more than one hundred relations and tens of thousands of annotated instances cross different domains.
"""
_HOMEPAGE = "https://thunlp.github.io/"
_LICENSE = "https://raw.githubusercontent.com/thunlp/FewRel/master/LICENSE"
DATA_URL = "https://raw.githubusercontent.com/thunlp/FewRel/master/data/"
_URLs = {
"train_wiki": DATA_URL + "train_wiki.json",
"val_nyt": DATA_URL + "val_nyt.json",
"val_pubmed": DATA_URL + "val_pubmed.json",
"val_semeval": DATA_URL + "val_semeval.json",
"val_wiki": DATA_URL + "val_wiki.json",
"pid2name": DATA_URL + "pid2name.json",
"pubmed_unsupervised": DATA_URL + "pubmed_unsupervised.json",
}
class FewRel(datasets.GeneratorBasedBuilder):
"""The FewRelDataset."""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="default", version=VERSION, description="This covers the entire FewRel dataset."),
]
def _info(self):
features = datasets.Features(
{
"relation": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"head": {
"text": datasets.Value("string"),
"type": datasets.Value("string"),
"indices": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
},
"tail": {
"text": datasets.Value("string"),
"type": datasets.Value("string"),
"indices": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
},
"names": datasets.Sequence(datasets.Value("string"))
# These are the features of your dataset like images, labels ...
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
data_dir = dl_manager.download_and_extract(_URLs)
return [
datasets.SplitGenerator(
name=datasets.Split(key),
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir[key],
"pid2name": data_dir["pid2name"],
"return_names": key in ["train_wiki", "val_wiki", "val_nyt"],
},
)
for key in data_dir.keys()
if key != "pid2name"
]
def _generate_examples(self, filepath, pid2name, return_names):
"""Yields examples."""
pid2name_dict = {}
with open(pid2name, encoding="utf-8") as f:
data = json.load(f)
for key in list(data.keys()):
name_1 = data[key][0]
name_2 = data[key][1]
pid2name_dict[key] = [name_1, name_2]
with open(filepath, encoding="utf-8") as f:
data = json.load(f)
if isinstance(data, dict):
id = 0
for key in list(data.keys()):
for items in data[key]:
tokens = items["tokens"]
h_0 = items["h"][0]
h_1 = items["h"][1]
h_2 = items["h"][2]
t_0 = items["t"][0]
t_1 = items["t"][1]
t_2 = items["t"][2]
id += 1
yield id, {
"relation": key,
"tokens": tokens,
"head": {"text": h_0, "type": h_1, "indices": h_2},
"tail": {"text": t_0, "type": t_1, "indices": t_2},
"names": pid2name_dict[key]
if return_names
else [
key,
],
}
else: # For `pubmed_unsupervised.json`
id = 0
for items in data:
tokens = items["tokens"]
h_0 = items["h"][0]
h_1 = items["h"][1]
h_2 = items["h"][2]
t_0 = items["t"][0]
t_1 = items["t"][1]
t_2 = items["t"][2]
id += 1
yield id, {
"relation": "",
"tokens": tokens,
"head": {"text": h_0, "type": h_1, "indices": h_2},
"tail": {"text": t_0, "type": t_1, "indices": t_2},
"names": [
"",
],
}