thennal commited on
Commit
e2c7747
·
1 Parent(s): 06966e2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -2
README.md CHANGED
@@ -15,7 +15,74 @@ dataset_info:
15
  num_examples: 2000
16
  download_size: 797772747
17
  dataset_size: 717976082.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  ---
19
- # Dataset Card for "GMaSC"
20
 
21
- [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  num_examples: 2000
16
  download_size: 797772747
17
  dataset_size: 717976082.0
18
+ annotations_creators:
19
+ - expert-generated
20
+ language:
21
+ - ml
22
+ language_creators:
23
+ - found
24
+ license:
25
+ - cc-by-sa-4.0
26
+ multilinguality:
27
+ - monolingual
28
+ pretty_name: GEC Barton Hill Malayalam Speech Corpus
29
+ size_categories:
30
+ - 1K<n<10K
31
+ source_datasets:
32
+ - original
33
+ tags: []
34
+ task_categories:
35
+ - text-to-speech
36
+ - automatic-speech-recognition
37
+ task_ids: []
38
  ---
 
39
 
40
+ # GMaSC: GEC Barton Hill Malayalam Speech Corpus
41
+
42
+ **GMaSC** is a Malayalam text and speech corpus created by the Government Engineering College Barton Hill with an emphasis on Malayalam-accented English. The corpus contains 2,000 text-audio pairs of Malayalam sentences spoken by 2 speakers, totalling in approximately 139 minutes of audio. Each sentences has at least one English word common in Malayalam speech.
43
+
44
+ ## Dataset Structure
45
+ The dataset consists of 2,000 instances with fields `text`, `speaker`, and `audio`. The audio is mono, sampled at 48kH. The transcription is normalized and only includes Malayalam characters and common punctuation. The table given below specifies how the 2,000 instances are split between the speakers, along with some basic speaker info:
46
+
47
+
48
+ | Speaker | Gender | Age | Time (HH:MM:SS) | Sentences |
49
+ | --- | --- | --- | --- | --- |
50
+ | Sonia | Female | 43 | 01:02:17 | 1,000 |
51
+ | Anil | Male | 48 | 01:17:23 | 1,000 |
52
+ | **Total** | | | **02:19:40** | **2,000** |
53
+
54
+ ### Data Instances
55
+ An example instance is given below:
56
+ ```json
57
+ {'text': 'സൗജന്യ ആയുർവേദ മെഡിക്കൽ ക്യാമ്പ്',
58
+ 'speaker': 'Sonia',
59
+ 'audio': {'path': None,
60
+ 'array': array([0.00036621, 0.00033569, 0.0005188 , ..., 0.00094604, 0.00091553,
61
+ 0.00094604]),
62
+ 'sampling_rate': 48000}}
63
+ ```
64
+
65
+ ### Data Fields
66
+ - **text** (str): Transcription of the audio file
67
+ - **speaker** (str): The name of the speaker
68
+ - **audio** (dict): Audio object including loaded audio array, sampling rate and path to audio (always None)
69
+
70
+ ### Data Splits
71
+
72
+ We provide all the data in a single `train` split. The loaded dataset object thus looks like this:
73
+ ```json
74
+ DatasetDict({
75
+ train: Dataset({
76
+ features: ['text', 'speaker', 'audio'],
77
+ num_rows: 2000
78
+ })
79
+ })
80
+ ```
81
+
82
+ ## Additional Information
83
+
84
+ ### Licensing
85
+ The corpus is made available under the [Creative Commons license (CC BY-SA 4.0)](https://creativecommons.org/licenses/by-sa/4.0/).
86
+
87
+
88
+