

Praise for The Art of Agile Development

“Jim Shore and Shane Warden expertly explain the practices and benefits of Extreme
Programming. They offer advice from their real-world experiences in leading teams.
They answer questions about the practices and show contraindications—ways that a
practice may be misapplied. They offer alternatives you can try if there are impediments
to applying a practice, such as the lack of an on-site customer.

“The explanations do not stop with just the practices. Discussion of people-related issues,
such as strategies for creating trust and team cohesiveness, rounds out the book.”

— Ken Pugh, author of the Jolt-Award-winning book, Prefactoring

“I will leave a copy of this book with every team I visit.”

— Brian Marick, Exampler Consulting

endorsements Page i Thursday, October 11, 2007 10:37 PM

endorsements Page ii Thursday, October 11, 2007 10:37 PM

The Art of Agile Development

Other resources from O’Reilly

Related titles Beautiful Code

Extreme Programming Pocket
Guide

Prefactoring

Applied Software Project
Management

oreilly.com oreilly.com is more than a complete catalog of O’Reilly books.
You’ll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-
ferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

The Art of Agile Development

James Shore and Shane Warden

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

The Art of Agile Development
by James Shore and Shane Warden

Copyright © 2008 O’Reilly Media, Inc., Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mary O’Brien
Copy Editor: Sarah Schneider
Production Editor: Sarah Schneider
Proofreader: Sada Preisch

Indexer: Joe Wizda
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
October 2007: First Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Theory in Practice series designations,
The Art of Agile Development, and related trade dress are trademarks of O’Reilly Media, Inc.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

TM

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-52767-5
ISBN-13: 978-0-596-52767-9

[C]

http://safari.oreilly.com

To our families.

Table of Contents

Preface . xiii

Part I. Getting Started

1. Why Agile? . 3
Understanding Success 4
Beyond Deadlines 4
The Importance of Organizational Success 5
Enter Agility 6

2. How to Be Agile . 9
Agile Methods 9
Don’t Make Your Own Method 10
The Road to Mastery 11
Find a Mentor 12

3. Understanding XP . 15
The XP Lifecycle 18
The XP Team 27
XP Concepts 39

4. Adopting XP . 43
Is XP Right for Us? 43
Go! 51
Assess Your Agility 62

Part II. Practicing XP

5. Thinking . 69
Pair Programming 71
Energized Work 79
Informative Workspace 83

IX

Root-Cause Analysis 88
Retrospectives 91

6. Collaborating . 99
Trust 102
Sit Together 112
Real Customer Involvement 120
Ubiquitous Language 124
Stand-Up Meetings 129
Coding Standards 133
Iteration Demo 138
Reporting 144

7. Releasing . 153
“Done Done” 156
No Bugs 160
Version Control 169
Ten-Minute Build 177
Continuous Integration 183
Collective Code Ownership 191
Documentation 195

8. Planning . 199
Vision 201
Release Planning 206
The Planning Game 219
Risk Management 224
Iteration Planning 233
Slack 246
Stories 253
Estimating 260

9. Developing . 271
Incremental Requirements 273
Customer Tests 278
Test-Driven Development 285
Refactoring 303
Simple Design 314
Incremental Design and Architecture 321
Spike Solutions 331
Performance Optimization 335
Exploratory Testing 341

X T A B L E O F C O N T E N T S

Part III. Mastering Agility

10. Values and Principles . 353
Commonalities 353
About Values, Principles, and Practices 354
Further Reading 354

11. Improve the Process . 357
Understand Your Project 357
Tune and Adapt 358
Break the Rules 359

12. Rely on People . 361
Build Effective Relationships 361
Let the Right People Do the Right Things 363
Build the Process for the People 364

13. Eliminate Waste . 367
Work in Small, Reversible Steps 367
Fail Fast 369
Maximize Work Not Done 370
Pursue Throughput 371

14. Deliver Value . 375
Exploit Your Agility 375
Only Releasable Code Has Value 376
Deliver Business Results 378
Deliver Frequently 379

15. Seek Technical Excellence . 381
Software Doesn’t Exist 381
Design Is for Understanding 382
Design Trade-offs 383
Quality with a Name 383
Great Design 383
Universal Design Principles 384
Principles in Practice 387
Pursue Mastery 388

References . 391

Index . 397

T A B L E O F C O N T E N T S XI

Preface

Q: How do you get to Carnegie Hall?

A: Practice, man, practice!

We want to help you master the art of agile development.

Agile development, like any approach to team-based software development, is a fundamentally
human art, one subject to the vagaries of individuals and their interactions. To master agile development,
you must learn to evaluate myriad possibilities, moment to moment, and intuitively pick the best course
of action.

How can you possibly learn such a difficult skill? Practice!

First and foremost, this book is a detailed description of one way to practice agile development: Extreme
Programming (XP). It’s a practical guide that, if followed mindfully, will allow you to successfully bring
agile development in the form of XP to your team—or will help you decide that it’s not a good choice
in your situation.

Our second purpose is to help you master the art of agile development. Mastering agility means going
beyond our cookbook of practices. Agile development is too context-sensitive for one approach to be
entirely appropriate, and too nuanced for any book to teach you how to master it. Mastery comes from
within: from experience and from an intuitive understanding of ripples caused by the pebble of a choice.

We can’t teach you how your choices will ripple throughout your organization. We don’t try. You must
provide the nuance and understanding. This is the only way to master the art. Follow the practices.
Watch what happens. Think about why they worked... or didn’t work. Then do them again. What was
the same? What was different? Why? Then do it again. And again.

At first, you may struggle to understand how to do each practice. They may look easy on paper, but
putting some practices into action may be difficult. Keep practicing until they’re easy.

As XP gets easier, you will discover that some of our rules don’t work for you. In the beginning, you
won’t be able to tell if the problem is in our rules or in the way you’re following them. Keep practicing
until you’re certain. When you are, break the rules. Modify our guidance to work better for your specific
situation.

Parts I and II of this book contain our approach to XP. Part I helps you get started with Extreme
Programming; Part II provides detailed guidance for each of XP’s practices. Parts I and II should keep
you occupied for many months.

XIII

When you’re ready to break the rules, turn to Part III. A word of warning: there is nothing in Part III
that will help you practice XP. Instead, it’s full of ideas that will help you understand XP and agile
development more deeply.

One day you’ll discover that rules no longer hold any interest for you. After all, XP and agile
development aren’t about following rules. “It’s about simplicity and feedback, communication and
trust,” you’ll think. “It’s about delivering value—and having the courage to do the right thing at the
right time.” You’ll evaluate myriad possibilities, moment to moment, and intuitively pick the best course
of action.

When you do, pass this book on to someone else, dog-eared and ragged though it may be, so that they
too can master the art of agile development.

For the Pragmatists
What if you don’t want to master a so-called art? What if you just want to develop good software?

Don’t worry—this book is for you, too. Parts I and II are just what you need. We took our years of
experience with agile development and Extreme Programming and distilled them into a single, clearly
defined, comprehensive approach.

This approach allows us to use plain, straightforward language without caveats or digressions. We get
to include a lot of practical tips. We candidly describe when our approach won’t work and what
alternatives to consider when it doesn’t.

There’s a downside to discussing just one approach: no single methodology is appropriate for everyone.
Our advice may not be appropriate for your team or situation. Be sure to read Chapter 4 before putting
our advice into practice.

You may be able to adopt part of XP even if you can’t adopt all of it. The “Contraindications” section of
each practice in Part II describes when a practice is inappropriate. If this applies to your situation, the
“Alternatives” section will help you decide what to do instead.

Don’t go too far and automatically assume that a particular practice won’t work for you. Some of the
ideas in this book are counterintuitive or just don’t sound like fun. Most of them work best in concert
with the others. If you can, try the practices as written for a few months, gain some real-world
experience on how they work in your environment, and then change them.

We’ve been putting these ideas into practice for years. In the right environment, they really work. Agile
development has been more fun, and more successful, than any other approach to team software
development we’ve tried. Come join the ride.

Who Should Read This Book
This book is for anyone who is, will be, or wants to be part of an agile team. That includes programmers,
of course, but it also includes domain experts, testers, projects managers, architects, designers, and
business analysts. Agile teams are cross-functional; this book reflects that fact.

If you’re a leader or you’re interested in bringing agile development to your team or organization, you
should read the whole book from cover to cover. Part I introduces agile concepts and describes how to
adopt XP. Part II describes each of XP’s practices in detail. Part III goes beyond XP, looking at the
principles that allow you to create your own agile method by customizing XP to your particular situation.

XIV P R E F A C E

If you just want to learn enough to do your job, you can focus primarily on Part II. Start with
Chapter 3 in Part I to get an overview, then read through the practices in Part II that apply to your work.
Each practice starts with a description of the audience it applies to, such as “Programmers,” “Customers,”
or “Testers.”

If you’re merely curious about agile development, start by reading Part I. Again, Chapter 3 provides a
good introduction. Afterwards, take a look at the practices in Part II. Start with the ones that look most
interesting; you can read them in any order.

About the Études
Have you ever heard a musician playing scales? That’s an étude (if a boring one). An étude teaches
mastery through precise and careful repetition. Eventually, the étude is abandoned, but the skills
remain.

Extreme Programming is our étude for software development. We hope that practicing Extreme
Programming week after week will help you master agile development. Eventually, you’ll change your
practices, but the underlying principles will remain.

Besides the overarching étude of Extreme Programming, we’ve included a mini-étude for each major
theme of agile development. Beginning agile teams can use the études to refine their practice of agile
development. As you gain experience, look deeper; use the études to help connect Part II’s detailed
practices to Part III’s general principles.

NOTE
These études are also useful for teams not currently practicing XP.

Either way, the études require thought to be effective. Each étude provides information, but it doesn’t
tell you how to act on that information. Think about it. What did you learn from the étude? What was
frustrating or exciting? How does that information affect your work? What will you do about it? Without
attention and reflection—that is, mindfulness—the études are just games.

NOTE
It’s no coincidence that you need mindfulness to master the art of agile development
as well. You have to think about more than XP’s practices for it to be effective.

Like musical études, our mini-études work best when you repeat them. We’ve designed them to take
half an hour, so you can (and should) practice them every day for a week or more. Unlike musical
études, these agile exercises work best when you include your whole team. The more you all understand
about the process and where everyone fits in, the better you will work together.

To start, you need a quiet work area capable of holding everyone in your team comfortably. There
should be a whiteboard or wall where you can hang or post index cards between meetings. There must
also be sufficient space to break into groups of two or three people and to talk softly without disturbing
other groups.

We’ve found it valuable to use a timer, whether a stopwatch or a kitchen timer, to keep the session
moving. Each étude has a few parts of 5 to 10 minutes. Although that time will seem to flow quickly

P R E F A C E XV

on your first day, respect the time limits. You’ll perform the étude again tomorrow, so it’s OK if you
don’t finish everything.

Choose one member of your team to facilitate the étude by watching the time (perhaps calling out “one
minute remaining” when appropriate) and promoting discussion. Again, the first session may be hard,
but a good facilitator can encourage everyone to continue.

At the end of each étude, we recommend spending a few minutes debriefing. What did you learn? Are
there questions and ideas you can follow up on during your regular work? If you’ve been trying this
exercise for more than a week, are you still getting valuable results?

If you’re new to XP and agile development, we strongly recommend that you perform each étude while
you study the related chapter as a team. Besides exploring one particular theme in agile development,
each étude can illuminate an aspect of how your team works together on your agile project.

About Pronouns
We speak in first-person singular rather than first-person plural in the rest of this book. (We say “I,”
not “we.”) We include a lot of personal anecdotes and experiences, and the singular form works better
as a result. However, this book is unquestionably the result of a partnership between two authors and
our use of the word “I” is merely a convenience.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this book in your
programs and documentation. You do not need to contact us for permission unless you’re reproducing
a significant portion of the code. For example, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting example code
does not require permission. Incorporating a significant amount of example code from this book into
your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: “The Art of Agile Development by James Shore and Shane Warden.
Copyright 2008 O’Reilly Media, Inc., 978-0-596-52767-9.”

If you feel your use of code examples falls outside fair use or the permission given above, feel free to
contact us at permissions@oreilly.com.

Safari® Enabled
When you see a Safari® Enabled icon on the cover of your favorite technology book, that means the
book is available online through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick answers
when you need the most accurate, current information. Try it for free at http://safari.oreilly.com.

XVI P R E F A C E

http://safari.oreilly.com

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You
can access this page at:

http://www.oreilly.com/catalog/9780596527679

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O’Reilly Network, see
our web site at:

http://www.oreilly.com

Acknowledgments
We owe a debt of gratitude to Elisabeth Hendrickson for her contribution of the “Exploratory Testing”
section. Her expertise and writing skill made the material sparkle. For more of Elisabeth’s writing, visit
http://www.testobsessed.com/.

We stole good ideas wherever we could find them. Kent Beck, Ron Jeffries, and Ward Cunningham
each had a hand in the ideas that led to XP, and we stole liberally from those. In addition to XP itself,
Kent Beck introduced us to the idea of XP practices as études. Ward Cunningham introduced us to the
notion of technical debt, a concept we use heavily. Brian Marick’s series of essays, “Agile Testing
Directions,”* influenced our thoughts on agile testing and the role of testers on agile teams.

James had the opportunity to work with Joshua Kerievsky on an Industrial XP (IXP)† project for half a
year. He learned a lot from that project; the Vision practice in particular was inspired by IXP’s Project
Chartering practice. David Schwartz and Amy Schwab of True North pgs, Inc.,‡ provided the specific
vision format that we use, as well as the term project community. Their Mastering Projects workshop is
excellent; take it when you have the opportunity.

Thank you to our editor, Mary Treseler O’Brien, for providing vision (where necessary), trust (where
appropriate), and deadlines (where frightening). This book would not be what it is without you gently
nudging us in directions different from our original ideas.

Thanks also to our army of reviewers, who provided over one thousand comments and suggestions on
our mailing list. In particular, thanks to Adrian Howard, Adrian Sutton, Ann Barcomb, Andy Lester,

* http://www.testing.com/cgi-bin/blog/2004/05/26

† http://www.industrialxp.org/

‡ http://www.projectcommunity.com/

P R E F A C E XVII

http://www.oreilly.com/catalog/9780596527679
http://www.oreilly.com
http://www.testobsessed.com/
http://www.testing.com/cgi-bin/blog/2004/05/26
http://www.industrialxp.org/
http://www.projectcommunity.com/

Anthony Williams, Bas Vodde, Bill Caputo, Bob Corrick, Brad Appleton, Chris Wheeler, Clarke Ching,
Daði Ingólfsson, Diana Larsen, Erik Petersen, George Dinwiddie, Ilja Preuß, Jason Yip, Jeff Olfert, Jeffery
Palermo, Jonathan Clarke, Keith Ray, Kevin Rutherford, Kim Gräsman, Lisa Crispin, Mark Waite,
Nicholas Evans, Philippe Antras, Randy Coulman, Robert Schmitt, Ron Jeffries, Shane Duan, Tim
Haughton, and Tony Byrne for their extensive comments. Special thanks to Brian Marick, Ken Pugh,
and Mark Streibeck for their comments on the completed draft.

James Shore
Every work builds on what came before. I was fortunate to have not just one, but many giants to stand
on. Without the inspired work of Kent Beck, Alistair Cockburn,Ward Cunningham, Tom DeMarco,
Martin Fowler, Ron Jeffries, Timothy Lister, Steve McConnell, and Gerald Weinberg, I wouldn’t have
anything close to the understanding of software development I have today. It’s thanks to their example
that this book exists. In particular, thanks to Alistair Cockburn for generously inviting me to his
roundtable and introducing me to the agile community.

If giants enabled me to contribute to this book, then Kim Eaves and the Denali team brought the
stepladder. Without their enthusiastic support, I never would have been able to try that crazy XP thing.
Thanks also to Rob Myers for his ever-friendly consideration of my rants.

I also gratefully acknowledge my coauthor and friend, Shane Warden. This project morphed from a
little 100-page second edition into a 400-page monster. You didn’t complain once. Thanks for putting
up with me. (And hey! Nice book.)

Finally, thank you, Neeru, my loving and patient wife. I used to think authors thanking their families
was cliché. Now I understand. I couldn’t have finished this book without your support.

Shane Warden
Thanks to Jim for arguing with me while writing the first version of this book (it’s better for it) and for
convincing me that the second edition was worth doing.

Thanks to Allison and Andrew for the tools we used to write this book.

Thanks to my family for supporting me (and not grumbling too much while I sat upstairs and wrote
very slowly), and to my friends for dragging me out of my house once in a while.

Thanks also to the other contributors to Parrot and Perl 6 for being unwitting collaborators, examples,
and victims of some of the ideas in this book. The work we do continually amazes me.

XVIII P R E F A C E

PART I

Getting Started

CHAPTER 1

Why Agile?

Agile development is popular. All the cool kids are doing it: Google, Yahoo, Symantec, Microsoft, and
the list goes on.* I know of one company that has already changed its name to Agili-something in order
to ride the bandwagon. (They called me in to pitch their “agile process,” which, upon further inspection,
was nothing more than outsourced offshore development, done in a different country than usual.) I
fully expect the big consulting companies to start offering Certified Agile Processes and Certified Agile
Consultants—for astronomical fees, of course—any day now.

Please don’t get sucked into that mess.

In 1986, [Brooks] famously predicted that there were no silver bullets: that by 1996, no single
technology or management technique would offer a tenfold increase in productivity, reliability, or
simplicity. None did.

Agile development isn’t a silver bullet, either.

In fact, I don’t recommend adopting agile development solely to increase productivity. Its benefits—
even the ability to release software more frequently—come from working differently, not from working
faster. Although anecdotal evidence indicates that agile teams have above-average productivity,† that
shouldn’t be your primary motivation. Your team will need time to learn agile development. While they
learn—and it will take a quarter or two—they’ll go slower, not faster. In addition, emphasizing
productivity might encourage your team to take shortcuts and to be less rigorous in their work, which
could actually harm productivity.

Agile development may be the cool thing to do right now, but that’s no reason to use it. When you
consider using agile development, only one question matters.

Will agile development help us be more successful?

* Source: various experience reports at the Extreme Programming and Agile conferences.

† See, for example, [Van Schooenderwoert], [Mah], and [Anderson 2006].

3

When you can answer that question, you’ll know whether agile development is right for you.

Understanding Success
The traditional idea of success is delivery on time, on budget, and according to specification. [Standish]
provides some classic definitions:

Successful
“Completed on time, on budget, with all features and
functions as originally specified.”

Challenged
“Completed and operational but over budget, over the
time estimate, [with] fewer features and functions than originally specified.”

Impaired
“Cancelled at some point during the development cycle.”

Despite their popularity, there’s something wrong with these definitions. A project can be successful
even if it never makes a dime. It can be challenged even if it delivers millions of dollars in revenue.

CIO Magazine commented on this oddity:

Projects that were found to meet all of the traditional criteria for success—time, budget and
specifications—may still be failures in the end because they fail to appeal to the intended users
or because they ultimately fail to add much value to the business.

... Similarly, projects considered failures according to traditional IT metrics may wind up being
successes because despite cost, time or specification problems, the system is loved by its target
audience or provides unexpected value. For example, at a financial services company, a new
system... was six months late and cost more than twice the original estimate (final cost was
$5.7 million). But the project ultimately created a more adaptive organization (after 13
months) and was judged to be a great success—the company had a $33 million reduction in
write-off accounts, and the reduced time-to-value and increased capacity resulted in a 50
percent increase in the number of concurrent collection strategy tests in production.*

Beyond Deadlines
There has to be more to success than meeting deadlines... but what?

When I was a kid, I was happy just to play around. I loved the challenge of programming. When I got
a program to work, it was a major victory. Back then, even a program that didn’t work was a success
of some sort, as long as I had fun writing it. My definition of success centered on personal rewards.

As I gained experience, my software became more complicated and I often lost track of how it worked.
I had to abandon some programs before they were finished. I began to believe that maintainability was
the key to success—an idea that was confirmed as I entered the workforce and began working with
teams of other programmers. I prided myself on producing elegant, maintainable code. Success meant
technical excellence.

Despite their popularity, there’s
something wrong with these

definitions.

* R. Ryan Nelson, “Applied Insight—Tracks in the Snow,” CIO Magazine, http://www.cio.com/archive/090106/applied.html.

4 C H A P T E R 1 :   W H Y A G I L E ?

http://www.cio.com/archive/090106/applied.html

Despite good code, some projects flopped. Even impeccably executed projects could elicit yawns from
users. I came to realize that my project teams were part of a larger ecosystem involving dozens,
hundreds, or even thousands of people. My projects needed to satisfy those people ... particularly the
ones signing my paycheck. In fact, for the people funding the work, the value of the software had to
exceed its cost. Success meant delivering value to the organization.

These definitions aren’t incompatible. All three types of success are important (see Figure 1-1). Without
personal success, you’ll have trouble motivating yourself and employees. Without technical success,
your source code will eventually collapse under its own weight. Without organizational success, your
team may find that they’re no longer wanted in the company.

The Importance of Organizational Success
Organizational success is often neglected by software teams in favor of the more easily achieved technical
and personal successes. Rest assured, however, that even if you’re not taking responsibility for
organizational success, the broader organization is judging your team at this level. Senior
management and executives aren’t likely to care if your software is elegant, maintainable, or even
beloved by its users; they care about results. That’s their return on investment in your project. If you
don’t achieve this sort of success, they’ll take steps to ensure that you do.

Unfortunately, senior managers don’t usually have the time or perspective to apply a nuanced solution
to each project. They wield swords, not scalpels. They rightly expect their project teams to take care of
fine details.

When managers are unhappy with your team’s results, the swords come out. Costs are the most obvious
target. There are two easy ways to cut them: set aggressive deadlines to reduce development time, or
ship the work to a country with a lower cost of labor. Or both.

These are clumsy techniques. Aggressive deadlines end up increasing schedules rather than reducing
them [McConnell 1996] (p. 220), and offshoring has hidden costs [Overby].

Do aggressive deadlines and the threat of offshoring sound familiar? If so, it’s time for your team to take
back responsibility for its success: not just for personal or technical success, but for organizational success
as well.

Organizational
success

Technical
success

Personal
success

Figure 1-1. Types of success

T H E I M P O R T A N C E O F O R G A N I Z A T I O N A L S U C C E S S 5

WHAT DO ORGANIZATIONS VALUE?
Although some projects’ value comes directly from sales, there’s more to organizational value than revenue.
Projects provide value in many ways, and you can’t always measure that value in dollars and cents.

Aside from revenue and cost savings, sources of value include:*

• Competitive differentiation

• Brand projection

• Enhanced customer loyalty

• Satisfying regulatory requirements

• Original research

• Strategic information

Enter Agility
Will agile development help you be more successful? It might. Agile development focuses on achieving
personal, technical, and organizational successes. If you’re having trouble with any of these areas, agile
development might help.

Organizational Success
Agile methods achieve organizational successes by focusing on delivering value and decreasing costs.
This directly translates to increased return on investment. Agile methods also set expectations early in
the project, so if your project won’t be an organizational success, you’ll find out early enough to cancel
it before your organization has spent much money.

Specifically, agile teams increase value by including business experts and by focusing development
efforts on the core value that the project provides for the organization. Agile projects release their most
valuable features first and release new versions frequently, which dramatically increases value. When
business needs change or when new information is discovered, agile teams change direction to match.
In fact, an experienced agile team will actually seek out unexpected opportunities to improve its plans.

Agile teams decrease costs as well. They do this partly by technical excellence; the best agile projects
generate only a few bugs per month. They also eliminate waste by cancelling bad projects early and
replacing expensive development practices with simpler ones. Agile teams communicate quickly and
accurately, and they make progress even when key individuals are unavailable. They regularly review
their process and continually improve their code, making the software easier to maintain and enhance
over time.

* Based partly on [Denne & Cleland-Huang].

6 C H A P T E R 1 :   W H Y A G I L E ?

Technical Success
Extreme Programming, the agile method I focus on in this book, is particularly adept at achieving
technical successes. XP programmers work together, which helps them keep track of the nitpicky details
necessary for great work and ensures that at least two people review every piece of code. Programmers
continuously integrate their code, which enables the team to release the software whenever it makes
business sense. The whole team focuses on finishing each feature completely before starting the next,
which prevents unexpected delays before release and allows the team to change direction at will.

In addition to the structure of development, Extreme Programming includes advanced technical
practices that lead to technical excellence. The most well-known practice is test-driven development,
which helps programmers write code that does exactly what they think it will. XP teams also create
simple, ever-evolving designs that are easy to modify when plans change.

Personal Success
Personal success is, well, personal. Agile development may not satisfy all of your requirements for
personal success. However, once you get used to it, you’ll probably find a lot to like about it, no matter
who you are:

Executives and senior management
They will appreciate the team’s focus on providing a solid return on investment and the software’s
longevity.

Users, stakeholders, domain experts, and product managers
They will appreciate their ability to influence the direction of software development, the team’s
focus on delivering useful and valuable software, and increased delivery frequency.

Project and product managers
They will appreciate their ability to change direction as business needs change, the team’s ability
to make and meet commitments, and improved stakeholder satifaction.

Developers
They will appreciate their improved quality of life resulting from increased technical quality, greater
influence over estimates and schedules, and team autonomy.

Testers
They will appreciate their integration as first-class members of the team, their ability to influence
quality at all stages of the project, and more challenging, less repetitious work.

Working on agile teams has provided some of the most enjoyable moments in my career. Imagine the
camaraderie of a team that works together to identify and deliver products of lasting value, with each
team member enthusiastically contributing to a smooth-running whole. Imagine how it feels to take
responsibility for your area of expertise, whether technical, business, or management, with the rest of
the team trusting your professional judgment and ability. Imagine how pleasant it is to address the
frustrations of your project and to see quality improve over time.

Agile development changes the game. Developing and delivering software in a new way will take a lot
of work and thought. Yet if you do it consistently and rigorously, you’ll experience amazing things:
you’ll ship truly valuable software on a regular basis. You’ll demonstrate progress on a weekly basis.
You’ll have the most fun you’ve ever had in software development.

Ready? Let’s go.

E N T E R A G I L I T Y 7

CHAPTER 2

How to Be Agile

What does it mean to “be agile”?

The answer is more complicated than you might think. Agile development isn’t a specific process you
can follow. No team practices the Agile method. There’s no such thing.

Agile development is a philosophy. It’s a way of thinking about software development. The canonical
description of this way of thinking is the Agile Manifesto, a collection of 4 values (Figure 2-1) and 12
principles (Figure 2-2).

To “be agile,” you need to put the agile values and principles into practice.

Agile Methods
A method, or process, is a way of working. Whenever you do something, you’re following a process. Some
processes are written, as when assembling a piece of furniture; others are ad hoc and informal, as when
I clean my house.

Agile methods are processes that support the agile philosophy. Examples include Extreme Programming
and Scrum.

Agile methods consist of individual elements called practices. Practices include using version control,
setting coding standards, and giving weekly demos to your stakeholders. Most of these practices have
been around for years. Agile methods combine them in unique ways, accentuating those parts that
support the agile philosophy, discarding the rest, and mixing in a few new ideas. The result is a lean,
powerful, self-reinforcing package.

9

Don’t Make Your Own Method
Just as established agile methods combine existing practices, you might want to create your own agile
method by mixing together practices from various agile methods. At first glance, this doesn’t seem too
hard. There are scores of good agile practices to choose from.

However, creating a brand-new agile method is a bad idea if you’ve never used agile development
before. Just as there’s more to programming than writing code, there’s more to agile development than
the practices. The practices are an expression of underlying agile principles. (For more on agile principles,
see Part III.) Unless you understand those principles intimately—that is, unless you’ve already mastered
the art of agile development—you’re probably not going to choose the right practices. Agile practices
often perform double- and triple-duty, solving multiple software development problems simultaneously
and supporting each other in clever and surprising ways.

Robert C. Martin
Steve Mellor
Ken Schwaber
Jeff Sutherland
Dave Thomas

Manifesto for Agile Software Development

We are uncovering better ways of developing software
by doing it and helping others do it. Through this work
we have come to value:

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan

That is, while there is value in the items on the right,
we value the items on the left more.

2001, the above authors
This declaration may be freely copied in any form,

but only in its entirety through this notice.

Kent Beck
Mike Beedle
Arie van Bennekum
Alistair Cockburn
Ward Cunningham
Martin Fowler

James Grenning
Jim Highsmith
Andrew Hunt
Ron Jeffries
Jon Kern
Brian Marick

Figure 2-1. Agile values

10 C H A P T E R 2 :   H O W T O B E A G I L E

Every project and situation is unique, of course, so it’s a good idea to have an agile method that’s
customized to your situation. Rather than making an agile method from scratch, start with an existing,
proven method and iteratively refine it. Apply it to your situation, note where it works and doesn’t,
make an educated guess about how to improve, and repeat. That’s what experts do.

The Road to Mastery
The core thesis of this book is that mastering the art of agile development requires real-world experience
using a specific, well-defined agile method. I’ve chosen Extreme Programming for this purpose. It has
several advantages:

Principles behind the Agile Manifesto

We follow these principles:
Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

Welcome changing requirements, even late in development. Agile
processes harness change for the customer’s competitive advantage.

Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale.

Business people and developers must work together daily
throughout the project.

Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the
job done.

The most efficient and effective method of conveying information to
and within a development team is face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development. The sponsors,
developers, and users should be able to maintain a constant
pace indefinitely.

Continuous attention to technical excellence and good design
enhances agility.

Simplicity, the art of maximizing the amount of work not done,
is essential.

The best architectures, requirements, and designs emerge from
self-organizing teams.

At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

Figure 2-2. Agile principles

T H E R O A D T O M A S T E R Y 11

• Of all the agile methods I know, XP is the most complete. It places a strong emphasis on technical
practices in addition to the more common teamwork and structural practices.

• XP has undergone intense scrutiny. There are thousands of pages of explanations, experience
reports, and critiques out there. Its capabilities and limitations are very well understood.

• I have a lot of experience with XP, which allows me to share insights and practical tips that will
help you apply XP more easily.

To master the art of agile development—or simply to use XP to be more successful—follow these steps:

1. Decide why you want to use agile development. Will it
make your team and organization more successful?
How? (For ideas, see “Enter Agility” in Chapter 1.)

2. Determine whether this book’s approach will work for
your team. (See “Is XP Right for Us?” in Chapter 4.)

3. Adopt as many of XP’s practices as you can. (See Chapter 4.) XP’s practices are self-reinforcing, so
it works best when you use all of them together.

4. Follow the XP practices rigorously and consistently. (See Part II.) If a practice doesn’t work, try
following the book approach more closely. Teams new to XP often underapply its practices. Expect
to take two or three months to start feeling comfortable with the practices and another two to six
months for them to become second nature.

5. As you become confident that you are practicing XP correctly—again, give it several months—start
experimenting with changes that aren’t “by the book.” (See Part III.) Each time you make a change,
observe what happens and make further improvements.

Find a Mentor
As you adapt XP to your situation, you’re likely to run into problems and challenges. I provide solutions
for a wide variety of common problems, but you’re still likely to encounter situations that I don’t cover.
For these situations, you need a mentor: an outside expert who has mastered the art of agile development.

NOTE
If you can get an expert to coach your team directly, that’s even better. However, even
master coaches benefit from an outside perspective when they encounter problems.

The hardest part of finding a mentor is finding someone with enough experience in agile development.
Sources to try include:

• Other groups practicing XP in your organization

• Other companies practicing XP in your area

• A local XP/Agile user group

• XP/Agile consultants

• The XP mailing list: extremeprogramming@yahoogroups.com

Teams new to XP often
underapply its practices.

12 C H A P T E R 2 :   H O W T O B E A G I L E

I can’t predict every problem you’ll encounter, but I can help you see when things are going wrong.
Throughout this book, I’ve scattered advice such as: “If you can’t demonstrate progress weekly, it’s a
clear sign that your project is in trouble. Slow down for a week and figure out what’s going wrong. Ask
your mentor for help.”

When I tell you to ask your mentor for help, I mean that the correct solution depends on the details of
your situation. Your mentor can help you troubleshoot the problem and offer situation-specific advice.

F I N D A M E N T O R 13

CHAPTER 3

Understanding XP

“Welcome to the team, Pat,” said Kim, smiling at the recent graduate. “Let me show you around. As I
said during the interview, we’re an XP shop. You may find that things are a little different here than
you learned in school.”

“I’m eager to get started,” said Pat. “I took a software engineering course in school, and they taught us
about the software development lifecycle. That made a lot of sense. There was a bit about XP, but it
sounded like it was mostly about working in pairs and writing tests first. Is that right?”

“Not exactly,” said Kim. “We do use pair programming, and we do write tests first, but there’s much
more to XP than that. Why don’t you ask me some questions? I’ll explain how XP is different than what
you learned.”

Pat thought for a moment. “Well, one thing I know from my course is that all development methods
use the software development lifecycle: analysis, design, coding, and testing [see Figure 3-1]. Which
phase are you in right now? Analysis? Design? Or is it coding or testing?”

“Yes!” Kim grinned. She couldn’t help a bit of showmanship.

“I don’t understand. Which is it?”

“All of them. We’re working on analysis, design, coding, and testing. Simultaneously. Oh, and we deploy
the software every week, too.”

Pat looked confused. Was she pulling his leg?

Kim laughed. “You’ll see! Let me show you around.

“This is our team room. As you can see, we all sit together in one big workspace. This helps us collaborate
more effectively.”

Kim led Pat over to a big whiteboard where a man stood frowning at dozens of index cards. “Brian, I’d
like you to meet Pat, our new programmer. Brian is our product manager. What are you working on
right now?”

1 5

“I’m trying to figure out how we should modify our release plan based on the feedback from the user
meeting last week. Our users love what we’ve done so far, but they also have some really good
suggestions. I’m trying to decide if their suggestions are worth postponing the feature we were planning
to start next week. Our success has made us visible throughout the company, so requests are starting
to flood in. I need to figure out how to keep us on track without alienating too many people.”

“Sounds tough,” Kim said. “So, would you say that you’re working on requirements, then?”

“I’m working on making our stakeholders happy,” Brian shrugged, turning back to the whiteboard.

“Don’t mind him,” Kim whispered to Pat as they walked away. “He’s under a lot of pressure right now.
This whole project was his idea. It’s already saved the company two and a half million dollars, but now
there’s some political stuff going on. Luckily, we programmers don’t have to worry about that. Brian
and Rachel take care of it—Rachel’s our project manager.”

“Wait... I thought Brian was the project manager?”

“No, Brian is the product manager. He’s in charge of deciding what we build, with the help of stakeholders
and other team members, of course. Rachel is the project manager—she helps things run smoothly. She
helps management understand what we’re doing and gets us what we need, like when she convinced
Facilities to tear down the cubicle walls and give us this nice open workspace.

“Let me introduce you to some more members of the team,” Kim continued, leading Pat over to two
people sitting at a workstation. “This is Mary and Jeff. Mary is a mechanical engineer. She normally
works in manufacturing, but we asked her to join us as an on-site customer for this project so she can
help us understand the issues they face on the floor. Jeff is one of our testers. He’s particularly good at
finding holes in requirements. Guys, this is Pat, our new programmer.”

Pat nodded hello. “I think I recognize what you’re doing. That looks like a requirements document.”

“Sort of,” Jeff replied. “These are our customer tests for this iteration. They help us know if the software’s
doing what it’s supposed to.”

“Customer tests?” Pat asked.

Plan Analysis Design Code Test Deploy
Pl

an

A
na

ly
si

s

D
es

ig
n

Co
de

Te
st

D
ep

lo
y

$

Pl
an

A
na

ly
si

s

D
es

ig
n

Co
de

Te
st

D
ep

lo
y

$

Pl
an

A
na

ly
si

s

D
es

ig
n

Co
de

Te
st

D
ep

lo
y

$

$(a) Waterfall lifecycle

(b) Iterative lifecycle

3 – 24 months

1 – 3 months 1 – 3 months 1 – 3 months

$ = Potential release

Figure 3-1. Traditional lifecycles

16 C H A P T E R 3 :   U N D E R S T A N D I N G X P

Mary spoke up. “They’re really examples. This particular set focuses on placement of inventory in the
warehouse. We want the most frequently used inventory to be the easiest to access, but there are other
concerns as well. We’re putting in examples of different selections of inventory and how they should
be stored.”

“You can see how things are progressing,” Jeff continued. “Here, I’ll test these examples.” He pressed a
button on the keyboard, and a copy of the document popped up on the screen. Some sections of the
document were green. Others were red.

“You can see that the early examples are green—that means the programmers have those working.
These later ones are red because they cover special cases that the programmers haven’t coded yet. And
this one here is brand-new. Mary realized there were some edge cases we hadn’t properly considered.
You can see that some of these cases are actually OK—they’re green—but some of them need more
work. We’re about to tell the programmers about them.”

“Actually, you can go ahead and do that, Jeff,” said Mary, as they heard a muffled curse from the area
of the whiteboard. “It sounds like Brian could use my help with the release plan. Nice to meet you, Pat.”

“Come on,” said Jeff. “Kim and I will introduce you to the other programmers.”

“Sure,” said Pat. “But first—this document you were working on. Is it a requirements document or a
test document?”

“Both,” Jeff said, with a twinkle in his eye. “And neither. It’s a way to make sure that we get the hard
stuff right. Does it really matter what we call it?”

“You seem pretty casual about this,” Pat said. “I did an internship last year and nobody at that company
could even think about coding until the requirements and design plans were signed off. And here you
are, adding features and revising your requirements right in the middle of coding!”

“It’s just crazy enough to work,” said Jeff.

“In other words,” Kim added, “we used to have formal process gates and signoffs, too. We used to spend
days arguing in meetings about the smallest details in our documents. Now, we focus on doing the right
things right, not on what documents we’ve signed off. It takes a lot less work. Because we work on
everything together, from requirements to delivery, we make fewer mistakes and can figure out
problems much more easily.”

“Things were different for me,” Jeff added. “I haven’t been here as long as Kim. In my last company,
we didn’t have any structure at all. People just did what they felt was right. That worked OK when we
were starting out, but after a few years we started having terrible problems with quality. We were always
under the gun to meet deadlines, and we were constantly running into surprises that prevented us from
releasing on time. Here, although we’re still able to do what we think is right, there’s enough structure
for everyone to understand what’s going on and make constant progress.”

“It’s made our life easier,” Kim said enthusiastically. “We get a lot more done...”

“...and it’s higher quality,” Jeff finished. “You’ve got to watch out for Kim—she’ll never stop raving
about how great it is to work together.” He grinned. “She’s right, you know. It is. Now let’s go tell the
other programmers about the new examples Mary and I added.”

U N D E R S T A N D I N G X P 17

The XP Lifecycle
One of the most astonishing premises of XP is that you can eliminate requirements, design, and testing
phases as well as the formal documents that go with them.

This premise is so far off from the way we typically learn to develop software that many people dismiss
it as a delusional fantasy. “These XP folks obviously don’t know what they’re talking about,” they say.
“Just last month I was on a project that failed due to inadequate requirements and design. We need
more requirements, design, and testing, not less!”

That’s true. Software projects do need more requirements, design, and testing—which is why XP teams
work on these activities every day. Yes, every day.

You see, XP emphasizes face-to-face collaboration. This is so effective in eliminating communication
delays and misunderstandings that the team no longer needs distinct phases. This allows them to work
on all activities every day—with simultaneous phases—as shown in Figure 3-2.

Using simultanous phases, an XP team produces deployable software every week. In each iteration, the
team analyzes, designs, codes, tests, and deploys a subset of features.

Although this approach doesn’t necessarily mean that the team is more productive,* it does mean that
the team gets feedback much more frequently. As a result, the team can easily connect successes and
failures to their underlying causes. The amount of unproven work is very small, which allows the team
to correct some mistakes on the fly, as when coding reveals a design flaw, or when a customer review
reveals that a user interface layout is confusing or ugly.

The tight feedback loop also allows XP teams to refine their plans quickly. It’s much easier for a customer
to refine a feature idea if she can request it and start to explore a working prototype within a few days.
The same principle applies for tests, design, and team policy. Any information you learn in one phase
can change the way you think about the rest of the software. If you find a design defect during coding
or testing, you can use that knowledge as you continue to analyze requirements and design the system
in subsequent iterations.

Ite
ra

tio
n

$

1 week

$ $

Ite
ra

tio
n

Ite
ra

tio
n

Ite
ra

tio
n

Pl
an

D
ep

lo
y

Analysis
Design
Code

Test

$ = Potential release

Figure 3-2. XP lifecycle

* Productivity is notoriously difficult to study. I’m not aware of any formal research on XP productivity, although anecdotal evidence
indicates that agile teams are more productive than traditional teams.

18 C H A P T E R 3 :   U N D E R S T A N D I N G X P

How It Works
XP teams perform nearly every software development activity simultaneously. Analysis, design, coding,
testing, and even deployment occur with rapid frequency.

That’s a lot to do simultaneously. XP does it by working in iterations: week-long increments of work.
Every week, the team does a bit of release planning, a bit of design, a bit of coding, a bit of testing, and
so forth. They work on stories: very small features, or parts of features, that have customer value. Every
week, the team commits to delivering four to ten stories. Throughout the week, they work on all phases
of development for each story. At the end of the week, they deploy their software for internal review.
(In some cases, they deploy it to actual customers.)

The following sections show how traditional phase-based activities correspond to an XP iteration.

Planning

Every XP team includes several business experts—the on-site customers—who are responsible for making
business decisions. The on-site customers point the project in the right direction by clarifying the project
vision, creating stories, constructing a release plan, and managing risks. Programmers provide estimates
and suggestions, which are blended with customer priorities in a process called the planning game.
Together, the team strives to create small, frequent releases that maximize value.

The planning effort is most intense during the first few weeks of the project. During the remainder of
the project, customers continue to review and improve the vision and the release plan to account for
new opportunities and unexpected events.

In addition to the overall release plan, the team creates a detailed plan for the upcoming week at the
beginning of each iteration. The team touches base every day in a brief stand-up meeting, and its
informative workspace keeps everyone informed about the project status.

Analysis

Rather than using an upfront analysis phase to define requirements, on-site customers sit with the team
full-time. On-site customers may or may not be real customers depending on the type of project, but
they are the people best qualified to determine what the software should do.

On-site customers are responsible for figuring out the requirements for the software. To do so, they use
their own knowledge as customers combined with traditional requirements-gathering techniques.
When programmers need information, they simply ask. Customers are responsible for organizing their
work so they are ready when programmers ask for information. They figure out the general
requirements for a story before the programmers estimate it and the detailed requirements before the
programmers implement it.

Some requirements are tricky or difficult to understand. Customers formalize these requirements, with
the assistance of testers, by creating customer tests: detailed, automatically checked examples. Customers
and testers create the customer tests for a story around the same time that programmers implement the
story. To assist in communication, programmers use a ubiquitous language in their design and code.

The user interface (UI) look and feel doesn’t benefit from automated customer tests. For the UI,
customers work with the team to create sketches of the application screens. In some cases, customers
work alongside programmers as they use a UI builder to create a screen. Some teams include an
interaction designer who’s responsible for the application’s UI.

T H E X P L I F E C Y C L E 19

Design and Coding

XP uses incremental design and architecture to continuously create and improve the design in small
steps. This work is driven by test-driven development (TDD), an activity that inextricably weaves together
testing, coding, design, and architecture. To support this process, programmers work in pairs, which
increases the amount of brainpower brought to bear on each task and ensures that one person in each
pair always has time to think about larger design issues.

Programmers are also responsible for managing their development environment. They use a version
control system for configuration management and maintain their own automated build. Programmers
integrate their code every few hours and ensure that every integration is technically capable of
deployment.

To support this effort, programmers also maintain coding standards and share ownership of the code.
The team shares a joint aesthetic for the code, and everyone is expected to fix problems in the code
regardless of who wrote it.

Testing

XP includes a sophisticated suite of testing practices. Each member of the team—programmers,
customers, and testers—makes his own contribution to software quality. Well-functioning XP teams
produce only a handful of bugs per month in completed work.

Programmers provide the first line of defense with test-driven development. TDD produces automated
unit and integration tests. In some cases, programmers may also create end-to-end tests. These tests
help ensure that the software does what the programmers intended.

Likewise, customer tests help ensure that the programmers’ intent matches customers’ expectations.
Customers review work in progress to ensure that the UI works the way they expect. They also produce
examples for programmers to automate that provide examples of tricky business rules.

Finally, testers help the team understand whether their efforts are in fact producing high-quality code.
They use exploratory testing to look for surprises and gaps in the software. When the testers find a bug,
the team conducts root-cause analysis and considers how to improve their process to prevent similar
bugs from occuring in the future. Testers also explore the software’s nonfunctional characteristics, such
as performance and stability. Customers then use this information to decide whether to create additional
stories.

The team doesn’t perform any manual regression testing. TDD and customer testing leads to a
sophisticated suite of automated regression tests. When bugs are found, programmers create automated
tests to show that the bugs have been resolved. This suite is sufficient to prevent regressions. Every time
programmers integrate (once every few hours), they run the entire suite of regression tests to check if
anything has broken.

The team also supports their quality efforts through pair programming, energized work, and iteration
slack. These practices enhance the brainpower that each team member has available for creating high-
quality software.

Deployment

XP teams keep their software ready to deploy at the end of any iteration. They deploy the software to
internal stakeholders every week in preparation for the weekly iteration demo. Deployment to real
customers is scheduled according to business needs.

20 C H A P T E R 3 :   U N D E R S T A N D I N G X P

As long as the team is active, it maintains the software it has released. Depending on the organization,
the team may also support its own software (a batman is helpful in this case; see “Iteration Planning”
in Chapter 8). In other cases, a separate support team may take over. Similarly, when the project ends,
the team may hand off maintenance duties to another team. In this case, the team creates
documentation and provides training as necessary during its last few weeks.

XP PRACTICES BY PHASE
The following table shows how XP’s practices correspond to traditional phases. Remember that XP uses
iterations rather than phases; teams perform every one of these activities each week. Most are performed
every day.

Table 3-1. XP Practices by Phase

XP Practices Planning Analysis Design & Coding Testing Deployment

Thinking

Pair Programming ✓ ✓

Energized Work ✓ ✓ ✓ ✓ ✓
Informative Workspace ✓

Root-Cause Analysis ✓ ✓

Retrospectives ✓ ✓

Collaborating

Trust ✓ ✓ ✓ ✓ ✓
Sit Together ✓ ✓ ✓ ✓

Real Customer Involvement ✓

Ubiquitous Language ✓

Stand-Up Meetings ✓

Coding Standards ✓

Iteration Demo ✓
Reporting ✓ ✓ ✓ ✓ ✓
Releasing

“Done Done” ✓ ✓
No Bugs ✓ ✓

Version Control ✓

Ten-Minute Build ✓ ✓
Continuous Integration ✓ ✓
CollectiveCode Ownership ✓

Documentation ✓
Planning

T H E X P L I F E C Y C L E 21

XP Practices Planning Analysis Design & Coding Testing Deployment

Vision ✓ ✓

Release Planning ✓ ✓

The Planning Game ✓ ✓

Risk Management ✓

Iteration Planning ✓ ✓

Slack ✓ ✓

Stories ✓ ✓

Estimating ✓

Developing

Incremental Requirements ✓ ✓

Customer Tests ✓ ✓

Test-Driven Development ✓ ✓

Refactoring ✓

Simple Design ✓

Incremental Design and Architecture ✓

Spike Solutions ✓

Performance Optimization ✓

Exploratory Testing ✓

Our Story Continues
“Hey, guys, I’d like you to meet Pat, our new programmer,” Kim announced. She, Jeff, and Pat had
walked over to a series of large tables. Index cards and pencils were scattered around the tables, and
whiteboards covered the walls. Six programmers were working in pairs at three of the workstations.

“Hi, Pat,” the team chorused. Kim introduced everyone.

“Welcome aboard,” said Justin, one of the programmers. He stood up and grabbed a rubber chicken
from a nearby desk. “Kevin and I are going to integrate our changes now,” he announced to the rest of
the group. A few people nodded abstractly, already intent on their work.

“Mary and I just made some changes to the customer tests,” said Jeff. “Who’s working on the warehouse
story?”

“That’s us,” said Justin. “What’s up?”

“We added some examples to cover some new edge cases. I think they’re pretty straightforward, but if
you have any questions, let us know.”

“Will do,” Justin replied. “We were about to finish off the last of the business logic for that story anyway.
We’ll take a look at it as soon as we’ve checked in.”

22 C H A P T E R 3 :   U N D E R S T A N D I N G X P

“Thanks!” Jeff went off to meet Mary and Brian at the planning board.

“Before you start on your next task, Justin, do you have a few minutes?” Kim asked.

Justin glanced at his pairing partner, Kevin, who was listening in. He gave Justin a thumbs up.

“Sure. We’re just waiting for the build’s tests to finish, anyway.”

“Great,” Kim said. “I’m helping Pat get oriented, and he wanted to know which phase of development
we’re working on. Can you explain what you’ve been doing?”

Justin flashed Pat a knowing look. “She’s on the ’simultaneous phases’ kick, huh? I’m sorry.” He
laughed. “Just kidding, Kim! It is pretty different.

“I’m sure Kim is dying to hear me say this: yes, we’re doing testing, design, coding, and integration all
at once. We deploy every week—because we do internal development, we actually deploy to
production—but deployment happens automatically. The real deployment work happens when we
update our deployment scripts, which we do as needed throughout the week.”

“Right now Kevin and I are integrating, which is something everybody does every few hours. Before
that, we were using test-driven development and refactoring to test, code, and design simultaneously.”
Justin pointed to another pair at a workstation. “Jerry and Suri are doing a in-depth review of a story
we finished yesterday. Suri is our other tester—she’s very good at exploratory testing.” He looked at the
third pair, who were talking intensely and sketching on the whiteboard. “And it looks like Mark and
Allison over there are working on a larger design problem. We use incremental design and architecture,
so we’re constantly looking for ways to improve our design.”

Allison looked up. “Actually, I think this is something the whole group should see. Can we get
everyone’s attention for a moment?”

“Sure,” said Jerry, pushing away from his desk. He glanced at his partner, who nodded. “We needed a
break anyway.”

As Allison started sketching on the whiteboard, Pat thought about what he’d seen. Brian was working
on planning. Jeff and Mary were working on requirements and tests—no, examples. Kevin and Justin
were integrating, and had been testing, designing, and coding a few minutes earlier. Mark and Allison
were designing. And Jerry and Suri were doing more testing.

Except that it wasn’t quite that simple. Everything seemed fluid; people kept changing what they were
working on. Jeff and Mary had gone backward, from requirements to planning, and all the programmers
had jumped from integration and testing to design. He frowned. How was he going to keep track of it all?

“Don’t worry,” said Kim quietly. She had noticed his discomfort. “It’s not as confusing as it seems. Jeff
has it right: don’t worry about what to call what we’re doing. We’re all doing the same thing—getting
stuff done. We work together to make it happen, and we jump back and forth between all the normal
development activities as the situation dictates. If you focus on what we’re delivering rather than trying
to figure out what phase of development we’re in, it will all make sense.”

Pat shook his head. “How do you know what you have to do, though? It looks like chaos.”

Kim pointed at a whiteboard filled with index cards. “There’s our plan for this week. Green are finished
and white are remaining. It’s Monday morning and we release on Wednesday, so we have about half
a week to go. You tell me; what’s our progress?”

Pat looked at the board. About half the cards had a green circle around them. “About halfway through?”
he guessed.

T H E X P L I F E C Y C L E 23

Kim beamed. “Perfect! We keep those cards up-to-date. Just keep that in mind for the first week or two
and you’ll do fine!”

A LITTLE LIE
I’ve pretended that the only way to do XP is the way I’ve described it in this book. Actually, that’s not really
true. The essence of XP isn’t its practices, but its approach to software development. [Beck 2004] describes XP
as including a philosophy of software development, a body of practices, a set of complementary principles,
and a community. Every experienced XP team will have its own way of practicing XP. As you master the art of
agile development, you will, too.

In Parts I and II of this book, I’m going to perpetuate the little lie that there’s just one way to do XP. It’s a lot
easier to learn XP that way. As you learn, keep in mind that no practice is set in stone. You’re always free to
experiment with changes. See “The Road to Mastery” in Chapter 2 and then turn to Part III for guidance.

There are a few differences between my approach to XP and what you’ll find in other XP books. Most of the
differences are minor stylistic issues, but I’ve also made a few important changes to XP’s planning and
acceptance testing practices. I made these changes to address common problems I observed when working
with XP teams. Like XP itself, these changes are the result of several years of iterative refinement.

One of the problems I’ve noticed with XP teams is that the on-site customers often have difficulty with release
planning. XP gives them the freedom to change their mind at will, and they do—too much. They slip into agile
thrashing, which means they overreact to every opportunity, changing direction every time something new
comes up. As a result, the team never finishes anything valuable and has trouble showing progress.

To help prevent this problem, I’ve added the Vision practice and gone into more detail about appropriate
release planning. I’ve also added the Risk Management practice to help teams understand how to make reliable
long-term commitments.

I’ve also noticed that teams struggle with XP’s automated acceptance tests. Although they are intended to “allow
the customer to know when the system works and tell the programmers what needs to be done” [Jeffries et
al.], I’ve found that they’re often too limited to truly fulfill this role. In fact, some customers worry that, by
defining acceptance tests, they’ll be stuck with software that passes the letter of the tests but fails to fulfill the
spirit of their expectations. Worse, most teams implement these tests as system-level tests that take a lot of
work to create and maintain. They run slowly and lead to build and integration problems. In short, I’ve found
that automated acceptance tests cost more than they’re worth.

In this book, I’ve replaced automated acceptance tests with customer reviews, customer testing, and
exploratory testing. Customer reviews involve customers throughout the development process, allowing them
to communicate the spirit as well as the letter of their needs. Customer testing is a variant of automated
acceptance testing that focuses on small, targeted tests rather than system-level tests. Its purpose is to
communicate complicated business rules rather than confirming that a story has been completed properly.
Exploratory testing provides an after-the-fact check on the team’s practices. When the team is working well,
they should produce nearly zero bugs. Exploratory testing helps the team have confidence that this is true.

Despite these changes, I’ve only added three brand-new practices in this book (Table 3-2). None of these
practices are my invention; I adapted them from other methods and have proven them in real-world projects.

24 C H A P T E R 3 :   U N D E R S T A N D I N G X P

Table 3-2. Practices new to XP

New practice Reason

Vision Focuses efforts and helps counteract common “agile thrashing” problem

Risk Management Improves team’s ability to make and meet commitments; reduces costs

Exploratory Testing Improves quality and helps integrate testers

However, there are several practices that mature XP teams practice intuitively, but aren’t explicitly listed as
practices in other XP books. I’ve added those as well (Table 3-3).

Table 3-3. Clarifying practices

Clarifying practice

Retrospectives

Trust

Ubiquitous Language

Stand-Up Meetings

Iteration Demo

Reporting

“Done Done”

No Bugs

Version Control

Documentation

Customer Testing

Spike Solutions

Performance Optimization

There are a few practices in standard XP that I’ve rarely seen in use and don’t practice myself (Table 3-4). I’ve
removed them from this book.

Table 3-4. Practices not in this book

Removed practice Reason

Metaphor Replaced with Ubiquitous Language

Shrinking Teams No personal experience; not essential

Negotiated Scope Contract Minimal personal experience; not essential

Pay-Per-Use No personal experience; not essential

Table 3-5 below shows how the practices in this book correspond to Beck’s XP practices. I’ve also included a
column for Scrum, another popular agile method.

Key: n/a: This practice is not part of the method, although some teams may add it. implied: Although this idea
isn’t a practice in the method, its presence is assumed or described in another way.

T H E X P L I F E C Y C L E 25

Table 3-5. Practices cross-reference

This Book 2nd Edition XPa 1st Edition XPb Scrumc

Thinking

Pair Programming Pair Programming Pair Programming n/a

Energized Work Energized Work 40-Hour Week implied

Informative Workspace Informative Workspace implied implied

Root-Cause Analysis Root-Cause Analysis implied implied

Retrospectives implied implied implied

Collaborating

Trust implied implied implied

(in Trust) Team Continuity n/a implied

Sit Together Sit Together implied Open Working Environment

implied Whole Team On-Site Customer Scrum Team

Real Customer Involvmenet Real Customer Involvement implied implied

Ubiquitous Language implied (replaces Metaphor) n/a

Stand-Up Meetings implied implied Daily Scrum

Coding Standards implied Coding Standards n/a

Iteration Demo implied implied Sprint Review

Reporting implied implied implied

Releasing

“Done Done” implied implied implied

No Bugs implied implied n/a

Version Control implied implied n/a

(in Version Control) Single Code Base implied n/a

Ten-Minute Build Ten-Minute Build implied n/a

Continuous Integration Continuous Integration Continuous Integration n/a

Collective Code Ownership Shared Code Collective Ownership n/a

Documentation implied implied implied

Planning

Vison n/a n/a implied

Release Planning Quarterly Cycle Small Releases Product Backlog

(in Release Planning) Incremental Deployment implied implied

(in Release Planning) Daily Deployment implied n/a

The Planning Game implied The Planning Game implied

Risk Management n/a n/a n/a

Iteration Planning Weekly Cycle implied Sprints

26 C H A P T E R 3 :   U N D E R S T A N D I N G X P

This Book 2nd Edition XPa 1st Edition XPb Scrumc

Slack Slack implied implied

Stories Stories implied Backlog Items

Estimating implied implied Estimating

Developing

Incremental Requirements implied implied implied

Customer Tests implied Testing n/a

Test-Driven Development Test-First Programming Testing n/a

Refactoring implied Refactoring n/a

Simple Design Incremental Design Simple Design n/a

Incremental Design and Architecture Incremental Design Simple Design n/a

Spike Solutions implied implied n/a

Performance Optimization implied implied n/a

Exploratory Testing n/a n/a n/a

(Not in This Book)

n/a Shrinking Teams n/a n/a

n/a Negotiated Scope Contract implied n/a

n/a Pay-Per-Use n/a n/a

implied implied implied Scrum Master

implied implied implied Product Owner

n/a n/a n/a Abnormal Sprint Termination

n/a n/a n/a Sprint Goal

a [Beck 2004]
b [Beck 1999]
c [Schwaber & Beedle]

The XP Team
Working solo on your own project—“scratching your own itch”—can be a lot of fun. There are no
questions about which features to work on, how things ought to work, if the software works correctly,
or whether stakeholders are happy. All the answers are right there in one brain.

Team software development is different. The same information is spread out among many members of
the team. Different people know:

• How to design and program the software (programmers, designers, and architects)

• Why the software is important (product manager)

T H E X P T E A M 27

• The rules the software should follow (domain experts)

• How the software should behave (interaction designers)

• How the user interface should look (graphic designers)

• Where defects are likely to hide (testers)

• How to interact with the rest of the company (project manager)

• Where to improve work habits (coach)

All of this knowledge is necessary for success. XP acknowledges this reality by creating cross-functional
teams composed of diverse people who can fulfill all the team’s roles.

The Whole Team
XP teams sit together in an open workspace. At the beginning of each iteration, the team meets for a
series of activities: an iteration demo, a retrospective, and iteration planning. These typically take two
to four hours in total. The team also meets for daily stand-up meetings, which usually take five to ten
minutes each.

Other than these scheduled activities, everyone on the team plans his own work. That doesn’t mean
everybody works independently; they just aren’t on an explicit schedule. Team members work out the
details of each meeting when they need to. Sometimes it’s as informal as somebody standing up and
announcing across the shared workspace that he would like to discuss an issue. This self-organization is
a hallmark of agile teams.

On-Site Customers
On-site customers—often just called customers—are responsible for defining the software the team builds.
The rest of the team can and should contribute suggestions and ideas, but the customers are ultimately
responsible for determining what stakeholders find valuable.

Customers’ most important activity is release planning. This is a multifaceted activity. Customers need
to evangelize the project’s vision; identify features and stories; determine how to group features into
small, frequent releases; manage risks; and create an achievable plan by coordinating with programmers
and playing the planning game.

On-site customers may or may not be real customers, depending on the type of project. Regardless,
customers are responsible for refining their plans by soliciting feedback from real customers and other
stakeholders. One of the venues for this feedback is the weekly iteration demo, which customers lead.

In addition to planning, customers are responsible for providing programmers with requirements details
upon request. XP uses requirements documents only as memory aids for customers. Customers
themselves act as living requirements documents, researching information in time for programmer use
and providing it as needed. Customers also help communicate requirements by creating mock-ups,
reviewing work in progress, and creating detailed customer tests that clarify complex business rules.
The entire team must sit together for this communication to take place effectively.

Typically, product managers, domain experts, interaction designers, and business analysts play the role
of the on-site customer. One of the most difficult aspects of creating a cross-functional team is finding
people qualified and willing to be on-site customers. Don’t neglect this role; it’s essential to increasing
the value of the product you deliver. A great team will produce technically excellent software without

28 C H A P T E R 3 :   U N D E R S T A N D I N G X P

on-site customers, but to truly succeed, your software must also bring value to its investors. This requires
the perspective of on-site customers.

NOTE
Include exactly one product manager and enough other on-site customers for them to
stay one step ahead of the programmers. As a rule of thumb, start with two on-site
customers (including the product manager) for every three programmers.

[Coffin] describes an experience with two nearly identical teams, one that did not have on-site
customers and one that did. The team with no on-site customers took fifteen months to produce a
product with mediocre value.

The total cost of the project exceeded initial expectations and the application under delivered
on the user’s functional expectations for the system... real business value was not delivered
until the second and third [releases] and even then the new system was not perceived as
valuable by its users because it required them to change while providing no significant benefit.

A team composed of many of the same developers, at the same company, using the same process, later
produced a product with compelling value in less than three months.

The first production release was ready after 9 weeks of development... it surpassed scheduling
and functional expectations, while still coming in on-budget.... In the first two months of live
production usage over 25,000 citations were entered using the new system. The application
development team continued to deliver new releases to production approximately every six
weeks thereafter. Every release was an exciting opportunity for the team of developers and
users to provide value to the company and to improve the user’s ability to accomplish their jobs.

One of the primary reasons for this success was customer involvement.

Many of the shortcomings of the [first] system stemmed from a breakdown in the collaborative
atmosphere that was initially established. Had users been more involved throughout the
project, the end result would have been a system that much more closely aligned with their
actual needs. They would have had a greater sense of ownership and communication between
the various groups would have been less tense.

...

The success of the [second] system caused many people in the organization to take note and
embrace the lessons learned in this project... other projects teams restructured their physical
arrangements into a shared project room as the [second] team had done.

Customer involvement makes a huge difference in product
success. Make an extra effort to include customers. One way
to do so is to move to their offices rather than asking them to
move to your office. Make sure the customers agree and that
there’s adequate space available.

If the customers won’t move to
the team, move the team to the

customers.

T H E X P T E A M 29

WHY SO MANY CUSTOMERS?
Two customers for every three programmers seems like a lot, doesn’t it? Initially I started with a much smaller
ratio, but I often observed customers struggling to keep up with the programmers. Eventually I arrived at the
two-to-three ratio after trying different ratios on several successful teams. I also asked other XP coaches about
their experiences. The consensus was that the two-to-three ratio was about right.

Most of those projects involved complex problem domains, so if your software is fairly straightforward, you
may be able to have fewer customers. Keep in mind that customers have a lot of work to do. They need to figure
out what provides the most value, set the appropriate priorities for the work, identify all the details that
programmers will ask about, and fit in time for customer reviews and testing. They need to do all this while
staying one step ahead of the programmers, who are right behind them, crunching through stories like freight
trains. It’s a big job. Don’t underestimate it.

The product manager (aka product owner)

The product manager has only one job on an XP project, but it’s a doozy. That job is to maintain and
promote the product vision. In practice, this means documenting the vision, sharing it with stakeholders,
incorporating feedback, generating features and stories, setting priorities for release planning, providing
direction for the team’s on-site customers, reviewing work in progress, leading iteration demos,
involving real customers, and dealing with organizational politics.

NOTE
In addition to maintaining and promoting the product vision, product managers are
also often responsible for ensuring a successful deployment of the product to market.
That may mean advertising and promotion, setting up training, and so forth. These
ordinary product management responsibilities are out of the scope of this book.

The best product managers have deep understandings of their markets, whether the market is one
organization (as with custom software) or many (as with commercial software). Good product managers
have an intuitive understanding of what the software will provide and why it’s the most important thing
their project teams can do with their time.

A great product manager also has a rare combination of skills. In addition to vision, she must have the
authority to make difficult trade-off decisions about what goes into the product and what stays out. She
must have the political savvy to align diverse stakeholder interests, consolidate them into the product
vision, and effectively say “no” to wishes that can’t be accommodated.

Product managers of this caliber often have a lot of demands on their time. You may have trouble getting
enough attention. Persevere. Theirs is one of the most crucial roles on the team. Enlist the help of your
project manager and remind people that software development is very expensive. If the software isn’t
valuable enough to warrant the time of a good product manager—a product manager who could mean
the difference between success and failure—perhaps it isn’t worth developing in the first place.

Make sure your product manager is committed to the project full-time. Once a team is running
smoothly, the product manager might start cutting back on his participation. Although domain experts
and other on-site customers can fill in for the product manager for a time, the project is likely to start

30 C H A P T E R 3 :   U N D E R S T A N D I N G X P

drifting off-course unless the product manager participates in every iteration. [Rooney] experienced
that problem, with regrettable results:

We weren’t sure what our priorities were. We weren’t exactly sure what to work on next. We
pulled stories from the overall list, but there was precious little from the Customer [product
manager] in terms of what we should be working on. This went on for a few months.

Then, we found out that the Gold Owner [executive sponsor] was pissed—really pissed. We
hadn’t been working on what this person thought we should.

In a predictable environment, and by delegating to a solid set of on-site customers, a product manager
might be able to spend most of his time on other things, but he should still participate in every
retrospective, every iteration demo, and most release planning sessions.

Some companies have a committee play the role of product manager, but I advise against this approach.
The team needs a consistent vision to follow, and I’ve found that committees have trouble creating
consistent, compelling visions. When I’ve seen committees succeed, it’s been because one committee
member acted as de facto product manager. I recommend that you explicitly find a product manager.
Her role may be nothing more than consolidating the ideas of the committee into a single vision, and
that’s likely to keep her hands full. Be sure to choose a product manager with plenty of political acumen
in this case.

Domain experts (aka subject matter experts)

Most software operates in a particular industry, such as finance, that has its own specialized rules for
doing business. To succeed in that industry, the software must implement those rules faithfully and
exactly. These rules are domain rules, and knowledge of these rules is domain knowledge.

Most programmers have gaps in their domain knowledge, even if they’ve worked in an industry for
years. In many cases, the industry itself doesn’t clearly define all its rules. The basics may be clear, but
there are nitpicky details where domain rules are implicit or even contradictory.

The team’s domain experts are responsible for figuring out these details and having the answers at their
fingertips. Domain experts, also known as subject matter experts, are experts in their field. Examples include
financial analysts and PhD chemists.

Domain experts spend most of their time with the team, figuring out the details of upcoming stories
and standing ready to answer questions when programmers ask. For complex rules, they create
customer tests (often with the help of testers) to help convey nuances.

NOTE
On small teams, product managers often double as domain experts.

Interaction designers

The user interface is the public face of the product. For many users, the UI is the product. They judge
the product’s quality solely on their perception of the UI.

Interaction designers help define the product UI. Their job focuses on understanding users, their needs,
and how they will interact with the product. They perform such tasks as interviewing users, creating
user personas, reviewing paper prototypes with users, and observing usage of actual software.

T H E X P T E A M 31

NOTE
Don’t confuse graphic design with interaction design. Graphic designers convey ideas
and moods via images and layout. Interaction designers focus on the types of people
using the product, their needs, and how the product can most seamlessly meet those
needs.

You may not have a professional interaction designer on staff. Some companies fill this role with a
graphic designer, the product manager, or a programmer.

Interaction designers divide their time between working with the team and working with users. They
contribute to release planning by advising the team on user needs and priorities. During each iteration,
they help the team create mock-ups of UI elements for that iteration’s stories. As each story approaches
completion, they review the look and feel of the UI and confirm that it works as expected.

The fast, iterative, feedback-oriented nature of XP development leads to a different environment than
interaction designers may be used to. Rather than spending time researching users and defining
behaviors before development begins, interaction designers must iteratively refine their models
concurrently with iterative refinement of the program itself.

Although interaction design is different in XP than in other methods, it is not necessarily diminished.
XP produces working software every week, which provides a rich grist for the interaction designer’s
mill. Designers have the opportunity to take real software to users, observe their usage patterns, and
use that feedback to effect changes as soon as one week later.

Business analysts

On nonagile teams, business analysts typically act as liaisons between the customers and developers, by
clarifying and refining customer needs into a functional requirements specification.

On an XP team, business analysts augment a team that already contains a product manager and domain
experts. The analyst continues to clarify and refine customer needs, but the analyst does so in support
of the other on-site customers, not as a replacement for them. Analysts help customers think of details
they might otherwise forget and help programmers express technical trade-offs in business terms.

Programmers
A great product vision requires solid execution. The bulk of the XP team consists of software developers
in a variety of specialties. Each of these developers contributes directly to creating working code. To
emphasize this, XP calls all developers programmers.

NOTE
Include between 4 and 10 programmers. In addition to the usual range of expertise,
be sure to include at least one senior programmer, designer, or architect who has
significant design experience and is comfortable working in a hands-on coding
environment. This will help the team succeed at XP’s incremental design and
architecture.

32 C H A P T E R 3 :   U N D E R S T A N D I N G X P

If the customers’ job is to maximize the value of the product, then the programmers’ job is to minimize
its cost. Programmers are responsible for finding the most effective way of delivering the stories in the
plan. To this end, programmers provide effort estimates, suggest alternatives, and help customers create
an achievable plan by playing the planning game.

Programmers spend most of their time pair programming. Using test-driven development, they write
tests, implement code, refactor, and incrementally design and architect the application. They pay careful
attention to design quality, and they’re keenly aware of technical debt (for an explanation of technical
debt, see “XP Concepts” later in this chapter) and its impact on development time and future
maintenance costs.

Programmers also ensure that the customers may choose to release the software at the end of any
iteration. With the help of the whole team, the programmers strive to produce no bugs in completed
software. They maintain a ten-minute build that can build a complete release package at any time. They
use version control and practice continuous integration, keeping all but the last few hours’ work
integrated and passing its tests.

This work is a joint effort of all the programmers. At the beginning of the project, the programmers
establish coding standards that allow them to collectively share responsibility for the code. Programmers
have the right and the responsibility to fix any problem they see, no matter which part of the application
it touches.

Programmers rely on customers for information about the software to be built. Rather than guessing
when they have a question, they ask one of the on-site customers. To enable these conversations,
programmers build their software to use a ubiquitous language. They assist in customer testing by
automating the customers’ examples.

Finally, programmers help ensure the long-term maintainability of the product by providing
documentation at appropriate times.

Designers and architects

Everybody codes on an XP team, and everybody designs. Test-driven development combines design,
tests, and coding into a single, ongoing activity.

Expert designers and architects are still necessary. They contribute by guiding the team’s incremental
design and architecture efforts and by helping team members see ways of simplifying complex designs.
They act as peers—that is, as programmers—rather than teachers, guiding rather than dictating.

Technical specialists

In addition to the obvious titles (programmer, developer, software engineer), the XP “programmer” role
includes other software development roles. The programmers could include a database designer, a
security expert, or a network architect. XP programmers are generalizing specialists. Although each
person has his own area of expertise, everybody is expected to work on any part of the system that
needs attention. (See “Collective Code Ownership” in Chapter 7 for more.)

T H E X P T E A M 33

Testers
Testers help XP teams produce quality results from the beginning. Testers apply their critical thinking
skills to help customers consider all possibilities when envisioning the product. They help customers
identify holes in the requirements and assist in customer testing.*

NOTE
Include enough testers for them to stay one step ahead of the programmers. As a rule
of thumb, start with one tester for every four programmers.

Testers also act as technical investigators for the team. They use exploratory testing to help the team
identify whether it is successfully preventing bugs from reaching finished code. Testers also provide
information about the software’s nonfunctional characteristics, such as performance, scalability, and
stability, by using both exploratory testing and long-running automated tests.

However, testers don’t exhaustively test the software for bugs. Rather than relying on testers to find
bugs for programmers to fix, the team should produce nearly bug-free code on their own. When testers
find bugs, they help the rest of the team figure out what went wrong so that the team as a whole can
prevent those kinds of bugs from occurring in the future.

These responsibilities require creative thinking, flexibility, and experience defining test plans. Because
XP automates repetitive testing rather than performing manual regression testing, testers who are used
to self-directed work are the best fit.

Some XP teams don’t include dedicated testers. If you don’t have testers on your team, programmers
and customers should share this role.

WHY SO FEW TESTERS?
As with the customer ratio, I arrived at the one-to-four tester-to-programmer ratio through trial and error. In
fact, that ratio may be a little high. Successful teams I’ve worked with have had ratios as low as one tester for
every six programmers, and some XP teams have no testers at all.

Manual script-based testing, particularly regression testing, is extremely labor-intensive and requires high
tester-to-programmer ratios. XP doesn’t use this sort of testing. Furthermore, programmers create most of the
automated tests (during test-driven development), which further reduces the need for testers.

If you’re working with existing code and have to do a lot of manual regression testing, your tester-to-programmer
ratio will probably be higher than I’ve suggested here.

Coaches
XP teams self-organize, which means each member of the team figures out how he can best help the team
move forward at any given moment. XP teams eschew traditional management roles.

* This disc�
XP doesn’t include testers as a distinct role.

34 C H A P T E R 3 :   U N D E R S T A N D I N G X P

Instead, XP leaders lead by example, helping the team reach its potential rather than creating jobs and
assigning tasks. To emphasize this difference, XP leaders are called coaches. Over time, as the team gains
experience and self-organizes, explicit leadership becomes less necessary and leadership roles
dynamically switch from person to person as situations dictate.

A coach’s work is subtle; it enables the team to succeed. Coaches help the team start their process by
arranging for a shared workspace and making sure that the team includes the right people. They help
set up conditions for energized work, and they assist the team in creating an informative workspace.

One of the most important things the coaches can do is to help the team interact with the rest of the
organization. They help the team generate organizational trust and goodwill, and they often take
responsibility for any reporting needed.

Coaches also help the team members maintain their self-discipline, helping them remain in control of
challenging practices such as risk management, test-driven development, slack, and incremental design
and architecture.

NOTE
The coach differs from your mentor (see “Find a Mentor” in Chapter 2). Your mentor
is someone outside the team who you can turn to for advice.

The programmer-coach

Every team needs a programmer-coach to help the other programmers with XP’s technical practices.
Programmer-coaches are often senior developers and may have titles such as “technical lead” or
“architect.” They can even be functional managers. While some programmer-coaches make good all-
around coaches, others require the assistance of a project manager.

Programmer-coaches also act as normal programmers and participate fully in software development.

The project manager

Project managers help the team work with the rest of the organization. They are usually good at coaching
nonprogramming practices. Some functional managers fit into this role as well. However, most project
managers lack the technical expertise to coach XP’s programming practices, which necessitates the
assistance of a programmer-coach.

Project managers may also double as customers.

NOTE
Include a programmer-coach and consider including a project manager.

Other Team Members
The preceding roles are a few of the most common team roles, but this list is by no means comprehensive.
The absence of a role does not mean the expertise is inappropriate for an XP team; an XP team should
include exactly the expertise necessary to complete the project successfully and cost-effectively. For
example, one team I worked with included a technical writer and an ISO 9001 analyst.

T H E X P T E A M 35

The Project Community
Projects don’t live in a vaccuum; every team has an ecosystem surrounding it. This ecosystem extends
beyond the team to the project community, which includes everyone who affects or is affected by the
project.* Keep this community in mind as you begin your XP project, as everybody within it can have
an impact on your success.

Two members of your project community that you may forget to consider are your organization’s
Human Resources and Facilities departments. Human Resources often handles performance reviews
and compensation. Their mechanisms may not be compatible with XP’s team-based effort (see “Trust”
in Chapter 6). Similarly, in order to use XP, you’ll need the help of Facilities to create an open workspace
(see “Sit Together” in Chapter 6).

Stakeholders

Stakeholders form a large subset of your project community. Not only are they affected by your project,
they have an active interest in its success. Stakeholders may include end users, purchasers, managers,
and executives. Although they don’t participate in day-to-day development, do invite them to attend
each iteration demo. The on-site customers—particularly the product manager—are responsible for
understanding the needs of your stakeholders, deciding which needs are most important, and knowing
how to best meet those needs.

The executive sponsor

The executive sponsor is particularly important: he holds the purse strings for your project. Take extra
care to identify your executive sponsor and understand what he wants from your project. He’s your
ultimate customer. Be sure to provide him with regular demos and confirm that the project is proceeding
according to his expectations.

XP PRACTICES BY ROLE
The following table shows the practices you should learn to practice XP. You can always learn more, of course!
In particular, if you’re in a leadership role (or would like to be), you should study all the practices.

Table 3-6. XP Practices by Role

XP Practices On-Site Customers Programmers Testers Coaches

Thinking

Pair Programming ✓

Energized Work • • • ✓
Informative Workspace • • • ✓
Root-Cause Analysis • • • ✓
• = You will be involved with this practice. Studying it will be helpful, but not necessary.

✓ = You should study this practice carefully.

* Thanks to David Schmaltz and Amy Schwartz of True North pgs, Inc., for this term.

36 C H A P T E R 3 :   U N D E R S T A N D I N G X P

XP Practices On-Site Customers Programmers Testers Coaches

Retrospectives • • • ✓
Collaborating

Trust • • • ✓
Sit Together • • • ✓
Real Customer Involvement • ✓
Ubiquitous Language ✓

Stand-Up Meetings • • • ✓
Coding Standards • ✓
Iteration Demo ✓ ✓ • •

Reporting • • • ✓
Releasing

“Done Done” ✓ ✓ ✓ ✓
No Bugs • ✓ ✓ ✓
Version Control • ✓ •

Ten-Minute Build ✓

Continuous Integration ✓

Collective Code Ownership ✓

Documentation • • ✓
Planning

Vision ✓ ✓
Release Planning ✓ ✓
The Planning Game • • ✓
Risk Management • • • ✓
Iteration Planning • ✓ ✓
Slack • ✓
Stories • • • ✓
Estimating ✓

Developing

Incremental Requirements ✓ ✓ ✓
Customer Tests ✓ ✓ ✓

Test-Driven Development ✓ •

Refactoring ✓

Simple Design ✓

• = You will be involved with this practice. Studying it will be helpful, but not necessary.

✓ = You should study this practice carefully.

T H E X P T E A M 37

XP Practices On-Site Customers Programmers Testers Coaches

Incremental Design and Architecture ✓

Spike Solutions ✓

Performance Optimization • ✓

Exploratory Testing ✓

• = You will be involved with this practice. Studying it will be helpful, but not necessary.

✓ = You should study this practice carefully.

Filling Roles
The exact structure of your team isn’t that important as long as it has all the knowledge it needs. The
makeup of your team will probably depend more on your organization’s traditions than on anything
else.

In other words, if project managers and testers are typical for your organization, include them. If they’re
not, you don’t necessarily need to hire them. You don’t have to have one person for each role—some
people can fill multiple roles. Just keep in mind that someone has to perform those duties even if no
one has a specific job title saying so.

At a minimum, however, I prefer to see one person clearly designated as “product manager” (who may
do other customer-y things) and one person clearly defined as “programmer-coach” (who also does
programmer-y things).

The other roles may blend together. Product managers are usually domain experts and can often fill the
project manager’s shoes, too. One of the customers may be able to play the role of interaction designer,
possibly with the help of a UI programmer. On the programming side, many programmers are generalists
and understand a variety of technologies. In the absence of testers, both programmers and customers
should pick up the slack.

Team Size
The guidelines in this book assume teams with 4 to 10 programmers (5 to 20 total team members). For
new teams, four to six programmers is a good starting point.

Applying the staffing guidelines to a team of 6 programmers produces a team that also includes 4
customers, 1 tester, and a project manager, for a total team size of 12 people. Twelve people turns out
to be a natural limit for team collaboration.

XP teams can be as small as one experienced programmer and one product manager, but full XP might
be overkill for such a small team. The smallest team I would use with full XP consists of five people:
four programmers (one acting as coach)and one product manager (who also acts as project manager,
domain expert, and tester). A team of this size might find that the product manager is overburdened; if
so, the programmers will have to pitch in. Adding a domain expert or tester will help.

38 C H A P T E R 3 :   U N D E R S T A N D I N G X P

On the other end of the spectrum, starting with 10 programmers produces a 20-person team that
includes 6 customers, 3 testers, and a project manager. You can create even larger XP teams, but they
require special practices that are out of the scope of this book.

Before you scale your team to more than 12 people, however,
remember that large teams incur extra communication and
process overhead, and thus reduce individual productivity.
The combined overhead might even reduce overall
productivity. If possible, hire more experienced, more productive team members rather than scaling to
a large team.

A 20-person team is advanced XP. Avoid creating a team of this size until your organization has had
extended success with a smaller team. If you’re working with a team of this size, continuous review,
adjustment, and an experienced coach are critical.

Full-Time Team Members
All the team members should sit with the team full-time and give the project their complete attention.
This particularly applies to customers, who are often surprised by the level of involvement XP requires
of them.

Some organizations like to assign people to multiple projects simultaneously. This fractional assignment
is particularly common in matrix-managed organizations. (If team members have two managers, one for
their project and one for their function, you are probably in a matrixed organization.)

If your company practices fractional assignment, I have some
good news. You can instantly improve productivity by
reassigning people to only one project at a time. Fractional
assignment is dreadfully counterproductive: fractional
workers don’t bond with their teams, they often aren’t
around to hear conversations and answer questions, and they must task switch, which incurs a
significant hidden penalty. “[T]he minimum penalty is 15 percent... Fragmented knowledge workers
may look busy, but a lot of their busyness is just thrashing” [DeMarco 2002] (p. 19–20).

NOTE
If your team deals with a lot of ad hoc requests, you may benefit from using a batman,
discussed in “Iteration Planning” in Chapter 8.

That’s not to say everyone needs to work with the team for the entire duration of the project. You can
bring someone in to consult on a problem temporarily. However, while she works with the team, she
should be fully engaged and available.

XP Concepts
As with any specialized field, XP has its own vocabulary. This vocabulary distills several important
concepts into snappy descriptions. Any serious discussion of XP (and of agile in general) uses this
vocabulary. Some of the most common ideas follow.

Prefer better to bigger.

Fractional assignment is
dreadfully counterproductive.

X P C O N C E P T S 39

Refactoring
There are multiple ways of expressing the same concept in source code. Some are better
than others. Refactoring is the process of changing the structure of code—rephrasing it—
without changing its meaning or behavior. It’s used to improve code quality, to fight
off software’s unavoidable entropy, and to ease adding new features.

Technical Debt
Imagine a customer rushing down the hallway to your desk. “It’s a bug!” she cries, out of breath. “We
have to fix it now.” You can think of two solutions: the right way and the fast way. You just know she’ll
watch over your shoulder until you fix it. So you choose the fast way, ignoring the little itchy feeling
that you’re making the code a bit messier.

Technical debt is the total amount of less-than-perfect design and implementation decisions in your
project. This includes quick and dirty hacks intended just to get something working right now! and design
decisions that may no longer apply due to business changes. Technical debt can even come from
development practices such as an unwieldy build process or incomplete test coverage. It lurks in gigantic
methods filled with commented-out code and “TODO: not sure why this works” comments. These dark
corners of poor formatting, unintelligible control flow, and insufficient testing breed bugs like mad.

The bill for this debt often comes in the form of higher maintenance costs. There may not be a single
lump sum to pay, but simple tasks that ought to take minutes may stretch into hours or afternoons. You
might not even notice it except for a looming sense of dread when you read a new bug report and
suspect it’s in that part of the code.

Left unchecked, technical debt grows to overwhelm software projects. Software costs millions of dollars
to develop, and even small projects cost hundreds of thousands. It’s foolish to throw away that
investment and rewrite the software, but it happens all the time. Why? Unchecked technical debt makes
the software more expensive to modify than to reimplement. What a waste.

XP takes a fanatical approach to technical debt. The key to managing it is to be constantly vigilant. Avoid
shortcuts, use simple design, refactor relentlessly... in short, apply XP’s development practices (see
Chapter 9).

Timeboxing
Some activities invariably stretch to fill the available time. There’s always a bit more polish you can put
on a program or a bit more design you can discuss in a meeting. Yet at some point you need to make a
decision. At some point you’ve identified as many options as you ever will.

Recognizing the point at which you have enough information is not easy. If you use timeboxing, you set
aside a specific block of time for your research or discussion and stop when your time is up, regardless
of your progress.

This is both difficult and valuable. It’s difficult to stop working on a problem when the solution may be
seconds away. However, recognizing when you’ve made as much progress as possible is an important
time-management skill. Timeboxing meetings, for example, can reduce wasted discussion.

Ally

Refactoring (p. 303)

40 C H A P T E R 3 :   U N D E R S T A N D I N G X P

The Last Responsible Moment
XP views a potential change as an opportunity to exploit; it’s the chance to learn something significant.
This is why XP teams delay commitment until the last responsible moment.*

Note that the phrase is the last responsible moment, not the last possible moment. As [Poppendieck &
Poppendieck] says, make decisions at “the moment at which failing to make a decision eliminates an
important alternative. If commitments are delayed beyond the last responsible moment, then decisions
are made by default, which is generally not a good approach to making decisions.”

By delaying decisions until this crucial point, you increase the accuracy of your decisions, decrease your
workload, and decrease the impact of changes. Why? A delay gives you time to increase the amount of
information you have when you make a decision, which increases the likelihood it is a correct decision.
That, in turn, decreases your workload by reducing the amount of rework that results from incorrect
decisions. Changes are easier because they are less likely to invalidate decisions or incur additional
rework.

See “Release Planning” in Chapter 8 for an example of applying this concept.

Stories
Stories represent self-contained, individual elements of the project. They tend to correspond to individual
features and typically represent one or two days of work.

Stories are customer-centric, describing the results in terms of business results. They’re not
implementation details, nor are they full requirements specifications. They are traditionally just an index
card’s worth of information used for scheduling purposes. See “Stories” in Chapter 8 for more
information.

Iterations
An iteration is the full cycle of design-code-verify-release practiced by XP teams. It’s a timebox that is
usually one to three weeks long. (I recommend one-week iterations for new teams; see “Iteration
Planning” in Chapter 8) Each iteration begins with the customer selecting which stories the team will
implement during the iteration, and it ends with the team producing software that the customer can
install and use.

The beginning of each iteration represents a point at which the customer can change the direction of
the project. Smaller iterations allow more frequent adjustment. Fixed-size iterations provide a well-
timed rhythm of development.

Though it may seem that small and frequent iterations contain a lot of planning overhead, the amount
of planning tends to be proportional to the length of the iteration.

See “Iteration Planning” for more details about XP iterations.

* The Lean Construction Institute coined the term “last responsible moment.” [Poppendieck & Poppendieck] popularized it in
relation to software development.

X P C O N C E P T S 41

Velocity
In well-designed systems, programmer estimates of effort tend to be consistent but not accurate.
Programmers also experience interruptions that prevent effort estimates from corresponding to calendar
time. Velocity is a simple way of mapping estimates to the calendar. It’s the total of the estimates for the
stories finished in an iteration.

In general, the team should be able to achieve the same velocity in every iteration. This allows the team
to make iteration commitments and predict release dates. The units measured are deliberately vague;
velocity is a technique for converting effort estimates to calendar time and has no relation to
productivity. See “Velocity” in Chapter 8 for more information.

Theory of Constraints
[Goldratt 1992]’s Theory of Constraints says, in part, that every system has a single constraint that
determines the overall throughput of the system. This book assumes that programmers are the
constraint on your team. Regardless of how much work testers and customers do, many software teams
can only complete their projects as quickly as the programmers can program them. If the rest of the
team outpaces the programmers, the work piles up, falls out of date and needs reworking, and slows
the programmers further.

Therefore, the programmers set the pace, and their estimates are used for planning. As long as the
programmers are the constraint, the customers and testers will have more slack in their schedules, and
they’ll have enough time to get their work done before the programmers need it.

Although this book assumes that programmers are the constraint, they may not be. Legacy projects in
particular sometimes have a constraint of testing, not programming. The responsibility for estimates and
velocity always goes to the constraint: in this case, the testers. Programmers have less to do than testers
and manage their workload so that they are finished by the time testers are ready to test a story.

What should the nonconstraints do in their spare time? Help eliminate the constraint. If testers are the
constraint, programmers might introduce and improve automated tests.

Mindfulness
Agility—the ability to respond effectively to change—requires that everyone pay attention to the process
and practices of development. This is mindfulness.

Sometimes pending changes can be subtle. You may realize your technical debt is starting to grow when
adding a new feature becomes more difficult this week than last week. You may notice the amount and
tone of feedback you receive from your customers change.

XP offers plenty of opportunities to collect feedback from the code, from your coworkers, and from
every activity you perform. Take advantage of these. Pay attention. See what changes and what doesn’t,
and discuss the results frequently.

42 C H A P T E R 3 :   U N D E R S T A N D I N G X P

CHAPTER 4

Adopting XP

“I can see how XP would work for IT projects, but product development is different.” —a product
development team

“I can see how XP would work for product development, but IT projects are different.” —an
in-house IT development team

Before adopting XP, you need to decide whether it’s appropriate for your situation. Often, people’s
default reaction to hearing about XP is to say, “Well, of course that works for other teams, but it couldn’t
possibly work for us.”

Question that assumption. I’ve helped a wide variety of teams
adopt XP: 20-person teams and 1-person teams; huge
corporations and small startups; shrinkwrap, in-house, and
outsourced software vendors; proprietary and open source
developers. Through these experiences, I’ve learned that
software teams are more similar than they are different. XP’s
applicability has far more to do with your organization and the people involved than with the type of
project you’re working on.

Is XP Right for Us?
You can adopt XP in many different conditions, although the practices you use will vary depending on
your situation. The practices in this book were chosen to give you the greatest chance of success. That
leads to some prerequisites and recommendations about your team’s environment. You don’t have meet
these criteria exactly, but it’s worth trying to change your environment so that you do. This will give
you the best chance of succeeding. As Martin Fowler said:*

XP’s applicability is based on
organizations and people, not

types of projects.

* http://martinfowler.com/bliki/EnterpriseRails.html.

4 3

http://martinfowler.com/bliki/EnterpriseRails.html

In this sense I see a startling parallel between DHH [David Heinemeier Hansson, creator of
Ruby on Rails] and Kent Beck. For either of them, if you present them with a constrained
world, they’ll look at constraints we take for granted, consider them to be unessential, and
create a world without them. I don’t have that quality, I tend to try to work within the
constraints gradually pushing at them, while they just stick some intellectual dynamite under
them and move on. That’s why they can create things like Extreme Programming and Rails
which really give the industry a jolt.

In other words, if your organization puts a barrier between your work and success, don’t just put up
with it—find a way to remove it. It’s your best path to success.

Similarly, if you want to practice XP, do everything you can to meet the following prerequisites and
recommendations. This is a lot more effective than working around limitations.

Prerequisite #1: Management Support
It’s very difficult to use XP in the face of opposition from management. Active support is best. To practice
XP as described in this book, you will need the following:

• A common workspace with pairing stations. (See “Sit Together” in Chapter 6.)

• Team members solely allocated to the XP project. (See “The XP Team” in Chapter 3.)

• A product manager, on-site customers, and integrated testers. (Also discussed in “The XP Team” in
Chapter 3.)

You will often need management’s help to get the previous three items. In addition, the more
management provides the following things, the better:

• Team authority over the entire development process, including builds, database schema, and
version control

• Compensation and review practices that are compatible with team-based effort

• Acceptance of new ways of demonstrating progress and showing results (see “Reporting” in
Chapter 6)

• Patience with lowered productivity while the team learns

If management isn’t supportive...

If you want management to support your adoption of XP, they need to believe in its benefits. Think
about what the decision-makers care about. What does an organizational success mean to your
management? What does a personal success mean? How will adopting XP help them achieve those
successes? What are the risks of trying XP, how will you mitigate those risks, and what makes XP worth
the risks? Talk in terms of your managers’ ideas of success, not your own success.

If you have a trusted manager you can turn to, ask for her help and advice. If not, talk to your mentor
(see “Find a Mentor” in Chapter 2). Fearless Change: Patterns for Introducing New Ideas [Manns & Rising]
is another good resource.

If management refuses your overtures, then XP probably isn’t appropriate for your team. You may be
able to demonstrate XP’s value incrementally by adopting some standalone practices (see “Extremities:
Applying Bits and Pieces of XP,” later in this chapter).

44 C H A P T E R 4 :   A D O P T I N G X P

Prerequisite #2: Team Agreement
Just as important as management support is the team’s agreement to use XP. If team members don’t
want to use XP, it’s not likely to work. XP assumes good faith on the part of team members—there’s no
way to force the process on somebody who’s resisting it.

If people resist...

It’s never a good idea to force someone to practice XP against his will. In the best case, he’ll find some
way to leave the team, quitting if necessary. In the worst case, he’ll remain on the team and silently
sabotage your efforts.

Reluctant skeptics are OK. If somebody says, “I don’t want to practice XP, but I see that the rest of you
do, so I’ll give it a fair chance for a few months,” that’s fine. She may end up liking it. If not, after a few
months have gone by, you’ll have a better idea of what you can do to meet the whole team’s needs.

NOTE
One way to help people agree to try XP is to promise to revisit the decision on a specific
date. (Allow two or three months if you can.) At that point, if the team doesn’t want
to continue using XP, stop.

If only one or two people refuse to use XP, and they’re interested in working on another project, let
them transfer so the rest of the team can use XP. If no such project is available, or if a significant portion
of the team is against using XP, don’t use it.

Prerequisite #3: A Colocated Team
XP relies on fast, high-bandwidth communication for many of its practices. In order to achieve that
communication, your team members needs to sit together in the same room.

If your team isn’t colocated...

Colocation makes a big difference in team effectiveness. Don’t assume that your team can’t sit together;
be sure that bringing the team together is your first option.

That said, it’s OK if one or two noncentral team members are off-site some of the time. You’ll be
surprised, though, at how much more difficult it is to interact with them. (Actually, they’re no more
difficult to interact with than before; it’s the rest of the team that’s improved.) Talk with your mentor
(see “Find a Mentor” in Chapter 2) about how to best deal with the problem.

If a lot of people are off-site, if a central figure is often absent, or if your team is split across multiple
locations, you need help beyond this book. You can use XP or another agile method with a distributed
team, but it’s a complicated problem that’s outside the scope of our discussion. Ask your mentor for
help, and see “Sit Together” in Chapter 6 for more ideas.

I S X P R I G H T F O R U S ? 45

Prerequisite #4: On-Site Customers
On-site customers are critical to the success of an XP team.
They, led by the product manager, determine which features
the team will develop. In other words, their decisions
determine the value of the software.

Of all the on-site customers, the product manager is likely the
most important. She makes the final determination of value.
A good product manager will choose features that provide value to your organization. A poor product
manager will dither time away on inconsequential features.

Domain experts, and possibly interaction designers, are also important. They take the place of an upfront
requirements phase, sitting with the team to plan upcoming features and answering questions about
what the software needs to do.

If your product manager is too busy to be on-site...

If you have an experienced product manager who makes high-level decisions about features and
priorities, but who isn’t available to sit with the team full-time, you may be able to ask a business analyst
or one of the other on-site customers to act as a proxy. The proxy’s job is to act in the product manager’s
stead to make decisions about details while following the actual product manager’s high-level decisions.

This can work well if your proxy has the authority to act in place of the product manager. If the proxy
is unable to answer questions on his own and needs to confirm every decision with the real product
manager, he will introduce too many delays for this book’s approach to XP to work well.

If your product manager is inexperienced...

This may be OK as long as she has a more experienced colleague she turns to for advice.

If you can’t get a product manager at all...

Although good product managers are in high demand, the absence of a product manager is a big danger
sign. The right person for the job may not have the title of “product manager” (see “Real Customer
Involvement” in Chapter 6), but XP requires that somebody with business expertise take responsibility
for determining and prioritizing features.

Remind your organization of the cost of development (presumably, hundreds of thousands of dollars)
and the value the software will bring to them (hopefully, millions of dollars). That value hinges on the
participation of a good product manager. Is that really something they want to scrimp on?

If you can’t find a product manager, someone from the development team can play the part. However,
this may be a dangerous approach because this person is unlikely to have the business expertise
necessary to deliver an organizational success. If you can’t get a product manager, talk with your mentor
about how to compensate.

If you can’t get other on-site customers...

Because XP doesn’t have an upfront requirements phase, the work of figuring out requirements happens
concurrently with software development. This compresses the overall schedule, and it means that at
least one person—usually several—needs to work on requirements full-time.

The on-site customers’ decisions
determine the value of the

software.

46 C H A P T E R 4 :   A D O P T I N G X P

Unless you have a small team, this work is probably more than a product manager can handle alone.
Typically, the product manager delegates the details to a set of domain experts. In applications that
involve a sophisticated user interface, an interaction designer may be involved as well. This allows the
product manager to focus on coordinating with stakeholders and resolving questions of value and
priorities.

Some business analysts may be domain experts. Be careful of using business analysts that aren’t already
experts in the domain; although they can relay information from true experts, this process invariably
introduces misunderstandings and delays.

As long as somebody is playing the on-site customer role, you can use XP. However, the less expertise
your on-site customers have, the more risk there is to the value of your software.

Prerequisite #5: The Right Team Size
I wrote this book for teams as large as 20 people and as small as 1 person. For teams new to XP, however,
I recommend 4 to 6 programmers and no more than 12 people on the team (see “The XP Team” in
Chapter 3). I also recommend having an even number of programmers so that everyone can pair
program (see “Pair Programming” in Chapter 5). If you have ongoing support needs, add one more
programmer for a total of five or seven so that the team can have a batman (see “Iteration Planning” in
Chapter 8).

Teams with fewer than four programmers are less likely to have the intellectual diversity they need.
They’ll also have trouble using pair programming, an important support mechanism in XP. Large teams
face coordination challenges. Although experienced teams can handle those challenges smoothly, a new
XP team will struggle.

If you don’t have even pairs...

The easiest solution to this problem is to add or drop one programmer so you have even pairs. If you
can’t do that, the XP practices are still appropriate for you, but try to find useful nonproduction code
work for the programmer who isn’t pairing. This will help the team consistently apply XP’s technical
practices and will improve code quality.

If your team is larger than seven programmers...

The coordination challenges of a large team can make learning XP more difficult. Consider hiring an
experienced XP coach to lead the team through the transition. You may also benefit from hiring another
experienced XP programmer to assist the coach in mentoring the team.

If your team is larger than 10 programmers, you need guidance that’s outside the scope of this book.
Hire a coach with experience in scaling XP to large teams.

If your team is smaller than four programmers...

Most of the XP practices are still appropriate for you, but you probably won’t be able to pair program
much. In this situation, it’s best if your team members are conscientious programmers who are
passionate about producing high-quality code. That passion will help them apply XP’s technical practices
with discipline.

You may also have trouble getting on-site customers to sit with you full-time. Instead, sit close to them
so you can get their attention when you need it.

I S X P R I G H T F O R U S ? 47

If you have many developers working solo...

Some organizations—particularly IT organizations—have a lot of small projects rather than one big
project. They structure their work to assign one programmer to each project.

Although this approach has the advantage of connecting programmers directly with projects, it has
several disadvantages. It’s high-risk: every project is the responsibility of one programmer, so that any
programmer who leaves orphans a project. Her replacement may have to learn it from first principles.

Code quality can also be a challenge. Projects don’t benefit from peer review, so the code is often
idiosyncratic. Stovepipe systems, in which each programmer solves the same problem in different ways,
appear. Junior programmers, lacking the guidance of their more senior peers, create convoluted,
kludgey systems and have few opportunities to learn better approaches. Senior programmers, not
realizing the inexperience of their more junior peers, create overly sophisticated code that others have
trouble understanding.

You may be able to combine four to seven of these programmers into a single XP team that works on
one project at a time, which allows it to complete projects more quickly (see “Release Planning” in
Chapter 8). By working together, senior developers have the opportunity to mentor junior developers,
and the team can eliminate stovepipe systems.

Combining your programmers into a single team has some drawbacks. The biggest is likely to be a
perceived lack of responsiveness. Although projects will be finished more quickly, customers will no
longer have a dedicated programmer to talk to about the status of their projects. The team will only
work on one project at a time, so other customers may feel they are being ignored.

To resolve these problems, consider dedicating one programmer to deal with customer requests and
minor changes (see “Iteration Planning” in Chapter 8). You’ll also need an influential, unbiased business
person to play the product manager role, addressing conflicts between customers and making
prioritization decisions.

Prerequisite #6: Use All the Practices
You may be tempted to ignore or remove some XP practices, particularly ones that make team members
uncomfortable. Be careful of this. XP is designed to have very little waste. Nearly every practice directly
contributes to the production of valuable software.

For example, pair programming supports collective code ownership, which is necessary for refactoring.
Refactoring allows incremental design and architecture. Incremental design and architecture enables
customer-driven planning and frequent releases, which are the key to XP’s ability to increase value and
deliver successful software.

XP doesn’t require perfection—it’s OK if you accidentally misapply a practice from time to time—but it
rarely works well if you arbitrarily remove pieces.

If practices don’t fit...

You may think that some XP practices aren’t appropriate for your organization. That may be true, but
it’s possible you just feel uncomfortable or unfamiliar with a practice. Are you sure the practice won’t
work, or do you just not want to do it? XP will work much better if you give all the practices a fair
chance rather than picking and choosing the ones you like.

48 C H A P T E R 4 :   A D O P T I N G X P

If you’re sure a practice won’t work, you need to replace it. For example, in order to achieve the benefits
of collective code ownership without pair programming, you must provide another way for people to
share knowledge about the codebase. (You’ll also have to find ways to replace the other benefits of
pairing.)

Replacing practices requires continuous refinement and an in-depth understanding of XP. Ask your
mentor for help (see “Find a Mentor” in Chapter 2) and consider hiring an experienced XP coach.

Recommendation #1: A Brand-New Codebase
Easily changed code is vital to XP. If your code is cumbersome to change, you’ll have difficulty with XP’s
technical practices, and that difficulty will spill over into XP’s planning practices.

XP teams put a lot of effort into keeping their code clean and easy to change. If you have a brand-new
codebase, this is easy to do. If you have to work with existing code, you can still practice XP, but it will
be more difficult. Even well-maintained code is unlikely to have the simple design and suite of
automated unit tests that XP requires (and produces). New XP teams often experience an epiphany
between the second and fourth months. “This is the best code I’ve ever worked with!” they say, and
start to see the power of XP.

To understand and appreciate XP’s technical practices fully, you need to experience the practices
meshing together to give you complete confidence in your code, tests, and build. You need to feel the
delight of making big improvements with small changes. You’re unlikely to have that experience when
working with existing code. If you can, leave preexisting code to experienced XP teams.

If you have preexisting code...

You can dig your way out of this hole. See “Applying XP to an Existing Project,” later in this chapter.

Recommendation #2: Strong Design Skills
Simple, easily changed design is XP’s core enabler. This means at least one person on the team—
preferably a natural leader—needs to have strong design skills.

It’s hard to tell if somebody has strong design skills unless you have strong design skills yourself. One
clue to look for is an understanding and appreciation of domain-driven design. It requires a crucial shift
in thinking—from imperative procedural design to declarative object-oriented design—that
programmers with poor design skills can have difficulty grasping.

If no one has strong design skills...

Even lacking a person with strong design skills, you’ll probably do as well with XP as you would with
any method—perhaps better, because XP includes specific technology practices and advice. However,
that doesn’t mean you’ll be successful. Take it slow and steady, and seek out as much experienced help
as you can get.

Meanwhile, start learning! [Evans]’ Domain-Driven Design is a good place to start, as is [Fowler 2002a]’s
Patterns of Enterprise Application Architecture. Consider taking a course or hiring somebody to join the team
as a mentor. Be careful, though—strong design skills, while essential, are surprisingly rare. Ask someone
with good design skills to help you vet your choice.

I S X P R I G H T F O R U S ? 49

Recommendation #3: A Language That’s Easy to Refactor
XP relies on refactoring to continuously improve existing designs, so any language that makes
refactoring difficult will make XP difficult. Of the currently popular languages, object-oriented and
dynamic languages with garbage collection are the easiest to refactor. C and C++, for example, are more
difficult to refactor.

If your language is hard to refactor...

You can still use XP, but it’s a good idea to include someone on your team who has experience with
refactoring in your language, if you can.

Recommendation #4: An Experienced Programmer-Coach
Some people are natural leaders. They’re decisive, but appreciate others’ views; competent, but
respectful of others’ abilities. Team members respect and trust them. You can recognize a leader by her
influence—regardless of her title, people turn to a leader for advice.

NOTE
Leadership is independent of title or position. You can identify leaders by their
followers, not by their desire to give orders. To identify the real leaders on your team,
look for the people that team members want to follow.

XP relies on self-organizing teams. This kind of team doesn’t have a predefined hierarchy; instead, the
team decides for itself who is in charge of what. These roles are usually informal. In fact, in a mature
XP team, there is no one leader. Team members seamlessly defer leadership responsibilities from one
person to the next, moment to moment, depending on the task at hand and the expertise of those
involved.

When your team first forms, though, it won’t work together so easily. Somebody will need to help the
team remember to follow the XP practices consistently and rigorously. This is particularly important for
programmers, who have the most difficult practices to learn.

In other words, your team needs a coach. The best coaches are natural leaders—people who remind
others to do the right thing by virtue of who they are rather than the orders they give. Your coach also
needs to be an experienced programmer so she can help the team with XP’s technical practices.

If you have no obvious coach...

Explain the situation to the team and ask them to choose a coach by consensus. In other words, ask
them to pick one person that they can all agree would be a good coach.

NOTE
In consensus decisions, everyone has a veto. A quick way to perform a consensus vote
is to ask everyone to hold their thumbs out. Thumbs up means “I agree.” Thumbs
sideways means “I’ll go with the team’s decision.” Thumbs down means “I disagree
and want to explain why.”

50 C H A P T E R 4 :   A D O P T I N G X P

If you can’t pick a coach by consensus, your team may be too fractured to use XP. If there’s someone
you can hire that the team would trust, that may help. Be sure to tell whoever you hire that you weren’t
able to reach consensus on this issue—an experienced XP coach will see it as a danger sign and should
speak to team members before accepting.

If your leaders are inexperienced...

Good leaders aren’t always experienced developers, but a good coach should look for subtle cues that
indicate upcoming problems, which does require experience. An experienced developer is your best
coach.

If your leaders are inexperienced, you may want to try pair coaching. Pick one person who’s a good leader
and one person who has a lot of experience. Make sure they get along well. Ask the two coaches to
work together to help the team remember to practice XP consistently and rigorously.

If you’re assigned a poor coach...

Your organization may assign somebody to be coach who isn’t a good leader. In this case, if the assigned
coach recognizes the problem, pair coaching may work for you.

If the assigned coach doesn’t recognize the problem and he’s damaging the team’s ability to function,
discuss the situation with your mentor or a manager you trust. This is a delicate situation that requires
context-specific advice.

Recommendation #5: A Friendly and Cohesive Team
XP requires that everybody work together to meet team goals. There’s no provision for someone to work
in isolation, so it’s best if team members enjoy working together.

If your team doesn’t get along...

XP requires people to work together. Combined with the pressure of weekly deliveries, this can help
team members learn to trust and respect each other. However, it’s possible for a team to implode from
the pressure. Try including a team member who is level-headed and has a calming influence.

If team members won’t even attempt to work together, don’t use XP. If there’s just one person whose
behavior encourages other people’s bad behavior, you might be able to solve the problem by moving
him to a different team.

Go!
Are you ready to adopt XP? Great! Your first step is to arrange for your open workspace (see “Sit
Together” in Chapter 6). Start solving this problem now. It will probably take longer than you expect.

Next, find an appropriate project for the team to work on. Look for a project that’s valuable, but be wary
of projects that will be under intense scrutiny. You need room to make mistakes as you learn.

G O ! 51

NOTE
Avoid taking a project with low value as a “learning opportunity.” You’ll have trouble
involving customers and achieving an organizational success. Your organization could
view the project as a failure even if it’s a technical success.

At the same time, figure out who will be on your team. “The XP Team” in Chapter 3 provides some
suggestions for team structure. Talk with your project’s executive sponsor and other stakeholders about
who to include as your on-site customers. (See “Real Customer Involvement” in Chapter 6 for ideas.)
Be sure your team members want to try XP.

As you’re forming your team, consider hiring an experienced XP coach to work with the team full-time.
Although a coach isn’t necessary—I learned XP by reading about it and trying it—a good coach will
make things go more smoothly.

EXTREME SHOPPING
As your project start date draws near, you’ll need supplies for the team’s open workspace. The following is a
good shopping list.

Equipment:

• Pairing stations (see “Pair Programming” in Chapter 5).

• A dedicated build machine (see “Continuous Integration” in Chapter 7).

• Noise-dampening partitions to define your team’s workspace and prevent noise pollution (see “Sit
Together” in Chapter 6).

• Plenty of wall-mounted whiteboards for discussions and charts (see “Informative Workspace” in
Chapter 5). Ferrous (magnetic) whiteboards are best because you can stick index cards to them with
magnets.

• Two big magnetic whiteboards for your release and iteration plans. I like using a two-sided, six-foot
magnetic whiteboard on wheels—it allows me to move the plan into a meeting room. Some teams prefer
corkboards, but I think they make it too hard to slide cards around.

• A large plastic perpetual calendar (three months or more) for marking important dates and planned
absences (see “Informative Workspace” in Chapter 5).

• A plush toy to act as your integration token (see “Continuous Integration” in Chapter 7).

• Miscellaneous toys and conversation pieces to inspire discussion and interaction among team members.

• Any other equipment you normally use.

Software:

• A unit-testing tool such as the xUnit family (see “Test-Driven Development” in Chapter 9).

• An automated build tool such as the Ant family (see “Ten-Minute Build” in Chapter 7).

• Any other software you normally use.

NOTE
Continuous integration software is not required (see “Continuous Integration” in Chapter 7).

52 C H A P T E R 4 :   A D O P T I N G X P

Supplies:

• Index cards—start with 5,000 of white and 2,000 of each color you want. Be sure to choose colors that all
members of your team can distinguish (7 to 10 percent of men have a degree of color blindness).

• Pencils for index cards. (Don’t use pens; you’ll need to make changes from time to time.)

• Food (see “Energized Work” in Chapter 5 and “Trust” in Chapter 6).

• Flip charts and something sticky but nonmarking (such as blue painters tape or poster tack) for hanging
charts (see “Informative Workspace” in Chapter 5).

• Dry-erase markers for whiteboards, water-based flip-chart markers for flip charts,* and wet-erase markers
for the perpetual calendar. (Be sure the markers are easily distinguishable!)

• Magnets for sticking papers to whiteboards. Office supply stores sell thin, flexible magnets that work well.
Make sure they’re powerful enough to hold an index card or two to the board.

• Any other supplies you normally use.

The Challenge of Change
It’s a fact of life: change makes people uncomfortable. XP is probably a big change for your team. If you
previously used a rigid, document-centric process, XP will seem loose and informal. If you previously
had no process, XP will seem strict and disciplined. Either way, expect team members and stakeholders
to be uncomfortable. This discomfort can extend into the larger organization.

Discomfort and a feeling of chaos is normal for any team undergoing change, but that doesn’t make it
less challenging. Expect the chaotic feeling to continue for at least two months. Give yourselves four to
nine months to feel truly comfortable with your new process. If you’re adopting XP incrementally, it
will take longer.

To survive the transformation, you need to know why you are making this change. What benefits does
it provide to the organization? To the team? Most importantly, what benefits does it provide to each
individual? As you struggle with the chaos of change, remember these benefits.

A supportive work environment is also important. Team members are likely to experience defense
reactions to the lack of familiar structure. Expect mood swings and erratic behavior. Some team
members may lash out or refuse to cooperate. Acknowledge the discomfort people are experiencing,
and help team members find constructive outlets for their frustration.

NOTE
The Satir Change Model is one way of understanding teams’ reactions to change.
[Smith] has a good article on the Satir model at http://www.stevenmsmith.com/my-
articles/article/the-satir-change-model.html that includes tips for helping team
members through each stage.

* Avoid permanent markers; they bleed through the paper and damage your whiteboard if you use the wrong pen by
mistake.

G O ! 53

http://www.stevenmsmith.com/my-articles/article/the-satir-change-model.html
http://www.stevenmsmith.com/my-articles/article/the-satir-change-model.html

Your stakeholders may be uncomfortable with your team’s new approach to planning and reporting
progress. Managers and executives may see the team’s initial chaos as a sign that XP won’t work. To
help everyone feel more comfortable, consider giving them this pledge:

Our pledge to users, management, and other stakeholders.

We promise to:

• Make steady progress

• Finish the features that you consider most valuable first

• Show you working software that reflects our progess every week, on (day of week) at
(time) in (location)

• Be honest and open with you about our successes, challenges, and what we can reasonably
provide

In return, we ask you to be patient with changes in our productivity and understanding of our
mistakes as we learn this new way of working over the next two quarters.

Final Preparation
Before starting XP, it’s a good idea to discuss working agreements—that is, which practices your team will
follow and how your practice of XP will differ from what I describe in this book. (I recommend following
the book as closely as you can until you’ve had several months of experience.) Discuss your roles and
what you expect from each other. It’s best to hold these conversations as collaborative team discussions.
Try to avoid assigning roles or giving people orders.

In the final weeks before starting your new XP project, review the practices in Part II. Try some of the
practices in your current work and consider taking courses on the practices that seem challenging.

When you’ve finished these preparations, if you have a greenfield project—meaning your team is creating
a new codebase from scratch—you’re ready to go. Review the practices in Part II one more time, take
a deep breath, and start your first iteration.

“Wait!” you may say. “Isn’t there a way we can ease into this?”

Well... yes. You can follow the incremental approach that legacy projects use, but if you have a greenfield
project, it’s actually easier and faster to adopt all the practices at once. It’s the chaos and uncertainty of
change that makes adopting XP difficult, not the practices themselves. If you adopt XP incrementally,
every new practice will disrupt the equilibrium you’ll be fighting to achieve. You’ll actually extend the
period of chaos and uncertainty, making the transition all the more difficult. In my experience, teams
that adopt XP incrementally make substantial improvements, but it’s the teams that adopt it all at once
that really excel.

Be bold. You have the right people, the right workplace, and the will to succeed. Do it!

SECOND ADOPTER SYNDROME
I’ve noticed a suprising trend among companies that adopt XP: the first team is often very successful, inspiring
the organization to use XP on more projects, but then this second wave of XP projects struggles.

I call this second adopter syndrome. My theory is that the first XP project gets all the support it needs: eager
participants, organizational patience, outside help, and a valuable but noncritical project.

54 C H A P T E R 4 :   A D O P T I N G X P

Then, thinking that employees now understand XP, the organization provides little support for the second
wave of projects. They staff the teams with people who don’t want to use XP, provide no outside help, and
impose more schedule pressure.

To avoid second adopter syndrome, remember that success on one team doesn’t automatically guarantee
success on another team. Every team needs support when it adopts XP for the first time.

Applying XP to a Brand-New Project (Recommended)
When starting a brand-new XP project, expect the first three or four weeks to be pretty chaotic as
everyone gets up to speed. During the first month, on-site customers will be working out the release
plan, programmers will be establishing their technical infrastructure, and everyone will be learning how
to work together.

Some people think the best way to overcome this chaos is to
take a week or two at the beginning of the project to work
on planning and technical infrastructure before starting the
first iteration. Although there’s some merit to this idea, an
XP team should plan and build technical infrastructure
incrementally and continuously throughout the project as
needed. Starting with a real iteration on the first day helps establish this good habit.

Your very first activity is to plan your first iteration. Normally, this involves selecting
stories from the release plan, but you won’t have a release plan yet. Instead, think of
one feature that will definitely be part of your first release. Brainstorm a few must-have
stories for that feature. These first few stories should sketch out a “vertical stripe” (see
Figure 8-3) of your application. If the application involves user interaction, create a
story to display the initial screen or web page. If it includes reporting, create a story for a bare-bones
report. If it requires installation, create a story for a bare-bones installer.

Don’t expect much from these initial stories. The programmers’ estimates for them will be fairly high
because they need to establish some technical infrastructure. As a result, the stories should do very little.
The report might display headers and footers, but no line items. The installer might just be a .zip file.
The initial screen might have nothing more than your logo on it.

These basic stories will give you ideas for more stories that will add missing details.
Brainstorm 10 to 20 in the first planning session and have the programmers estimate
them. These should keep the programmers busy for several iterations. Try to choose
stories that the programmers already understand well; this will reduce the amount of
time customers need to spend answering programmer questions so they can focus on
creating the release plan.

Iteration planning is a little more difficult during the first iteration because you haven’t
established a velocity yet. Just make your best guess about what your velocity might
be. (Some teams add up the available programmer-hours and divide by π.) During the
iteration, work on just one or two stories at a time and check your progress every day.
This will help you deliver completed stories even if your initial plan is wildly inaccurate.

After you’ve finished planning, programmers should start establishing their technical infrastructure. Set
up an integration machine, create your version control repository, and so forth. (I recommend creating

Plan and build infrastructure
incrementally throughout the

entire project.

Ally

Release Planning (p. 206)

Ally

Estimating (p. 260)

Ally

Iteration Planning (p. 233)

G O ! 55

engineering tasks for these items during iteration planning. See “Iteration Planning” in Chapter 8 for
more about the role of engineering tasks in iteration planning.) Once that’s set up, start working on
your stories.

During the first iteration, it’s a good idea to have all the programmers work on the first few stories as a
group. Set up a projector so the whole team navigates while one person drives. (See “Pair
Programming” in Chapter 5 for an explanation of driving and navigating.) Sometimes individual
programmers (or pairs) peel off to take care of some necessary issue, such as installing a version control
system or setting up the programmers’ workstations, but for the most part you should work as a team.
This reduces the chaos that occurs when multiple people work on a tiny project and allows you to jointly
establish initial conventions, such as project structure, filenames and namespaces, and basic design
choices.

After the first few days, the fundamentals should be well-established and the project
should be large enough for people to work on separate parts without unduly interfering
with each other. At this point, you can break into pairs and work normally. It’s also a
good time to schedule your first coding standards discussion. For that first meeting, you
can usually just document what you agreed on while working as a group.

While the programmers are working on stories, customers and testers should work on
the vision and release plan. First, work with stakeholders to create the product vision.
You probably already have an idea what the vision for the project is; now formalize it.
Finalizing the vision can take a few weeks, so while that’s in progress, brainstorm the
stories for your first feature. Start thinking about other features you want to include,
and pick a date for your first release. Decide on your planning horizons as well. (See
“Release Planning” in Chapter 8 for more about planning horizons.)

Each subsequent iteration will be a little easier to plan. The programmers’ estimates will stabilize and
your velocity will become predictable. You’ll be able to estimate the scope of your next release and fill
out your planning horizons. The feeling of chaos will subside as the team works in a steady, predictable
rhythm.

Applying XP to an Existing Project
Greenfield projects can adopt all the XP practices at once. You’ll experience some bumps along the way,
but you’ll typically have things figured out in four to nine months.

If you’re working with an existing codebase that has no tests, particularly one that’s been around for a
year or more—in other words, if you have a legacy project—you can achieve the same results, but it will
take more time. In this case, adopt XP incrementally.

NOTE
In this discussion, I assume you have a project burdened with a lot of technical debt
and a high bug rate. If your situation isn’t that bad, this process is still appropriate, if
much easier.

The big decision

Other than change itself, the biggest challenge in applying XP to an existing project is not writing tests,
refactoring, or cleaning up your bug database. The biggest challenge is setting aside enough time to pay
down technical debt.

Ally

Coding Standards (p. 133)

Allies

Vision (p. 201)
Release Planning (p. 206)

56 C H A P T E R 4 :   A D O P T I N G X P

If you have a typical legacy project, your current velocity is a polite fiction based on shortcuts. In other
words, you incur new technical debt in order to meet your deadlines. To improve productivity and
reduce bug production, not only do you need to stop incurring new technical debt, you need to set aside
extra slack (see “Slack” in Chapter 8) for paying down the existing debt. This double hit will cause your
velocity to go down. It might go down a lot.

Fortunately, as your technical debt decreases, your velocity will rise again. Eventually it will surpass
your current velocity. This can take a while. Depending on the amount of technical debt you have and
how much slack you set aside for paying it down, expect your velocity to remain low for at least a
quarter, probably more.

NOTE
The more slack you provide for paying down technical debt, the lower your velocity
will be, but the less time it will take for your velocity to rise again. Think of velocity
as cash flow: the more principal you pay on your debt, the less cash you have each
week, but the more quickly you can stop paying interest.

Setting aside slack is a painful decision. However, if you don’t stop accumulating technical debt, your
velocity will continue to decrease and your defect production rate will increase. Eventually, the cost of
development will exceed the value of even simple changes. Your organization will either shelve the
product or rewrite it at great expense.

Product managers, avoid this fate by acting decisively now. This is your best option for turning a debt-
ridden legacy project into a long-term asset.

NOTE
You can also rewrite the project from scratch or stop for several weeks to do nothing
but pay down technical debt. Although these approaches take less effort than
incremental debt paydown, they’re risky. These efforts often take much longer than
expected, and you lose feedback from stakeholders as well as the opportunity to take
advantage of new business opportunities in the meantime.

Bring order to chaos

The first thing you need to do is bring structure to your project. Many legacy projects have a chaotic
approach to planning, even if they started out well.

Start by introducing XP’s structural practices. Move the team, including customers and testers, into a
shared workspace, start pair-programming, conduct iteration planning and retrospectives, and so forth.
Apply:

• All the “Thinking” practices (Chapter 5)

• All the “Collaborating” practices (Chapter 6)

• All the “Planning” practices (Chapter 8)

• Version control, collective code ownership, and “done done” (described in Chapter 7), and customer
reviews (see “Incremental Requirements” in Chapter 9)

G O ! 57

Two-, three-, or even four-week iterations may be best for you. Start with two-week iterations. In
particularly challenging environments, you may have trouble making your stories both small and
customer-valued (see “Stories” in Chapter 8). Consider increasing your iteration length, but talk to your
mentor (see “Find a Mentor” in Chapter 2) before doing so.

NOTE
At this point, your method is very similar to the Scrum method. You may find Scrum
courses and reading material useful.

Other than working more closely together, the biggest changes will be to planning. Take your existing
project plan and convert each line item into a story card. If the stories aren’t customer-centric, that’s
OK for now; once the team is used to working in iterations, the customers and the project manager
should start revising the stories to make them more customer-centric.

When you are comfortable with the structural practices, begin introducing technical practices.

Pay down technical debt

The biggest problem facing legacy projects is usually excessive technical debt. You need to stop the
bleeding by preventing more technical debt from occurring. First, create a ten-minute build. Follow up
with continuous integration. Introduce test-driven development.

Meanwhile, reduce existing technical debt by introducing extra slack into your iterations (see “Slack”
in Chapter 8). Use it to pay down technical debt as described in “How to Introduce Slack,” also in
Chapter 8. At first, your clean-up efforts will seem fruitless, but over time, you’ll see greater and greater
benefits to quality and productivity. As your code quality improves, introduce the remaining practices
in Chapter 7 and Chapter 9.

These first steps will allow you to steadily pay down technical debt while continuing to make progress
on new stories. As the bug rate for new code drops, you can start organizing your bug backlog.

Organize your backlog

If your team is like most teams, your bug database is full of to-dos, questions, feature requests, and
genuine defects. Customers and testers, go through the database and eliminate duplicates and
unimportant issues. Close feature requests by turning them into stories or rejecting them. Find another
way to address to-dos and questions. When you’re done, the only items remaining should be genuine
defects.

NOTE
If users expect to ask questions through your bug database, consider leaving the
questions in the database. You risk alienating your users by requiring them to use a
different forum.*

Depending on the size of your bug database, you may not be able to do this work in a single session.
Chip away at it every iteration, just as the programmers do with technical debt.

* Thanks to Erik Petersen for this insight.

58 C H A P T E R 4 :   A D O P T I N G X P

If your bug database is in use by stakeholders, support personnel, or other people outside the team, find
a way to keep new entries clean. You may be able to institute new policies for using the database, but
your best approach is probably to review, clean up, and categorize new entries every day.

Fix important bugs

Either way, as your bug database becomes a reliable bug repository, make a fix or don’t fix decision for
each bug. You should probably involve the product manager at some level and you may need the
programmers to estimate the cost of fixing some of the bugs.

Close or defer all the bugs that you decide not to fix in this release. You can revisit them when you plan
the next release. At this point, all that remains in the database is bugs that you will fix. Turn these bugs
into stories, have the programmers estimate any that remain unestimated, and put them in the release
plan.

NOTE
If you have a lot of bugs, consider spreading bug fixes throughout your plan. Although
normally it’s better to fix bugs immediately, spreading out the bugs will allow you to
deliver feature enhancements in each iteration, which may be better for stakeholder
relations.

Over the remainder of the release, fix the bugs and work on preventing their causes as described in
“No Bugs” in Chapter 7. Continue to pay down technical debt and start applying a bit of root-cause
analysis as well.

Move testers forward

When you start this process, your testers will probably spend their time testing each release prior to
delivery. A large part of their workload is likely to be manual regression testing. The programmers’ focus
on test-driven development will slowly create an automated regression suite and reduce the pressure
on the testers.

As time passes, productivity improves, and as programmers have less need to pay down
technical debt, use your iteration slack to automate the remaining manual regression
tests. You may need to create end-to-end tests at first. Over time, refactor the end-to-
end tests into more focused unit and integration tests.

With the regression testing burden eliminated and the team producing few new bugs, the testers will
have time available for other work. Take advantage of this opportunity to finish integrating the testers
into the team. Move them forward in the process so that, rather than testing after a development phase,
they help the team produce higher quality code from the beginning. Have them work with customers
to find holes in requirements (see “Customer Tests” in Chapter 9) and begin conducting exploratory
testing (see “Exploratory Testing” in Chapter 9).

Emerge from the darkness

This process will allow you to reduce technical debt, increase code quality, and remove defects. As you
do, productivity will increase. At first, your progress will be imperceptible. Depending on the amount
of technical debt you face, it could take many months to get to the ideal of nearly zero new bugs each

Ally

Slack (p. 246)

G O ! 59

month. It will take months more to finish your regression test suite, eliminate the need for a separate
pre-release testing phase, and integrate your testers.

As long as each iteration has less debt than the previous, however, you will get there. It will take time
and hard work, but it will be well worth it. After the first few months, you should start seeing progress
in the form of more reliable estimates and more enjoyable programming.

NOTE
If you don’t see progress within two months, there may be something wrong. Talk to
your mentor (see “Find a Mentor” in Chapter 2) for advice.

Applying XP in a Phased-Based Organization
XP assumes that you use iterations, not phases, which makes using XP in a phase-based environment
difficult. If your organization uses a phase-based approach to development, you may be able to use the
XP development practices (see Chapter 7 and Chapter 9) even if you can’t use the other practices.

Your organization may want to try XP within your existing phase-based structure. Your best course of
action is to convince your organization to let you try XP’s simultaneous phases. If that doesn’t work,
you may be able to shoehorn XP into a phase-based structure. It’s difficult and the exact approach
depends on your organization. The following suggestions are a starting point; talk to your mentor for
more specific advice.

Mandatory planning phase

Your organization may have a planning phase or planning gate that expects you to deliver a detailed
plan. If you can, allocate a month for the planning phase and use it to run four actual iterations. (You
may be able to combine the planning phase and analysis phase to get more time.) Use the approach
described in “Release Planning” in Chapter 8 to create your release plan during those first iterations.
You’ll end up with a good plan and you will have finished some actual software, too.

If you can’t use this approach, whatever approach your organization currently uses for planning will
be fine, although it probably won’t be as accurate as conducting actual iterations.

Mandatory analysis phase

If your organization conducts an upfront analysis phase, you may receive a
requirements document as a fait accompli. In this case, decompose the requirements
document into stories. One starting point is to create a story out of each sentence
including the words “must,” “shall,” or “should.”

If instead you need to create your own requirements document, XP doesn’t have much to add. Use
traditional requirements-gathering techniques in this situation, perhaps using iterations and
requirements-gathering stories for structure.

Requirements documents aren’t a replacement for a good
product manager or on-site customers. Without those
people, you will have difficulty filling in missing details in the
requirements documents. You will also have more trouble
making good schedule/scope trade-offs.

Ally

Stories (p. 253)

Requirements documents can’t
replace on-site customers.

60 C H A P T E R 4 :   A D O P T I N G X P

Mandatory design phase

XP assumes the use of incremental design and architecture that is intimately tied to
programming with test-driven development. An upfront design phase has little to add
to this approach.

If you can, conduct actual XP iterations during the design phase and work on the first
stories in your release plan. Use the time to create an initial design and architecture
incrementally. Document the results in your design document.

XP focuses on improving and adapting the design throughout the project. Simple design is central to
doing so. Dedicated design phases often lead to complex designs, so minimize the amount of time you
spend on upfront design if you can.

Mandatory coding phase

XP fits well into the coding phase. Break your coding phase into one-week iterations and conduct XP
as normal.

Mandatory testing phase

XP performs a lot of testing every iteration. A phase-based organization that considers XP to be the
coding phase and expects a long testing phase might schedule too little time for coding and too much
time for testing. However, testing is an important part of XP and should remain integrated.

Mandatory deployment phase

With a good build, you should be ready to deploy at the end of any iteration. You can
schedule XP’s wrap-up activities for the deployment phase.

Extremities: Applying Bits and Pieces of XP
What if your team doesn’t meet this book’s conditions for using XP? What then?

Although you won’t be able to use all the XP practices in this book, you may be able to add some practices
to your existing method. Several practices are easy to adopt and are likely to make an immediate
difference:

Iterations

If you struggle with frequent interruptions, try adopting day-long iterations (see “Iteration Planning”
in Chapter 8). Use the planning game (see “The Planning Game” in Chapter 8) and the team’s measured
velocity (discussed in “Estimating” in Chapter 8) to conduct a joint planning session at the beginning
of each day, then defer all interruptions until the next planning meeting, which will be less than a day
away. Be sure to have programmers estimate their own tasks.

If you aren’t interrupted frequently, but still feel a sense of chaos in your planning, try using weekly
iterations (see “Iterations” in Chapter 3). In this case, you may also benefit from daily stand-up meetings
(see “Stand-Up Meetings” in Chapter 6) and weekly iteration demos (see “Iteration Demo” in
Chapter 6). As time goes on, consider using index cards for planning and a big chart to show upcoming
work, as described in “Release Planning” in Chapter 8.

Allies

Incremental Design and
Architecture (p. 321)
Simple Design (p. 314)

Ally

Ten-Minute Build (p. 177)

G O ! 61

Retrospectives

Frequent retrospectives (see “Retrospectives” in Chapter 5) are an excellent way for your team to adapt
and improve its process. If your team has the authority to make any improvements to its process, try
scheduling weekly or biweekly retrospectives.

Ten-minute build

A fast, automated build will make a big difference to your quality of life, and it will open up opportunities
for other improvements as well. See “Ten-Minute Build” in Chapter 7 for more.

Continuous integration

Continuous integration not only decreases integration problems, it also drives improvements to your
build and tests. See “Continuous Integration” in Chapter 7 for more.

Test-driven development

Although test-driven development (see “Test-Driven Development” in Chapter 9) isn’t as easy to adopt
as the other practices, it’s very powerful. Test-driven development is the basis for reducing bugs,
increasing development speed, improving your ability to refactor, and decreasing technical debt. It can
take some time to master, so be patient.

Other practices

Other XP practices might help, so review Part II. Many of the practices there require the support of other
practices, so be sure to read each practice’s “Contraindications” section carefully before trying it.

Assess Your Agility
Suppose you’ve been using XP for a few months. How can you tell if you’re doing it properly? The
ultimate measure is the success of your project, but you may wish to review and assess your approach
to XP as well.

To help you do this, I’ve created a quiz that focuses on five important aspects of agile development. It
explores results rather than specific practices, so you can score well even after customizing XP to your
situation. If you aren’t using XP at all, you can also use this quiz to assess your current approach.

This quiz assesses typical sources of risk. Your goal should be to achieve the maximum score in each
category—which is well within the grasp of experienced XP teams. Any score less than the maximum
indicates risk, and an opportunity for improvement.

To take the quiz, answer the following questions and enter your scores on a photocopy of the blank
radar diagram (Figure 4-2). Don’t give partial credit for any question, and if you aren’t sure of the
answer, give yourself zero points. The result should look something like Figure 4-1. The score of the
lowest spoke identifies your risk, as follows:

• 75 points or less: immediate improvement required (red)

• 75 to 96 points: improvement necessary (yellow)

• 97, 98, or 99: improvement possible (green)

• 100: no further improvement needed

62 C H A P T E R 4 :   A D O P T I N G X P

NOTE
The point values for each answer come from an algorithm that ensures correct risk
assessment of the total score.* This leads to some odd variations in scores. Don’t read
too much into the disparities between the values of individual questions.

To see the XP solution for each of these questions, cross-reference the sections listed under “XP Practices”
in Tables 4-1 through 4-5.

Self-Assessment Quiz

Table 4-1. Thinking

Question Yes No XP Practices

Do programmers critique all production code with at least one other programmer? 5 0 Pair Programming

25

50

75
80
85
90

96
97
98
99
100

Collaborating

Thinking

Developing

Planning Releasing

Figure 4-1. Example assessment

* Each question has a red, yellow, or green risk level. A zero score on any question leads to a total score no better than the
corresponding color. Questions with scores between 25 and 75 are “red” questions, questions with scores between 3 and 22 are
“yellow” questions, and questions with scores of 1 or 2 are “green” questions. Changing the risk level of one question requires
reweighting the remainder: all red questions must total 75 points, all yellow questions must total 22 points, and all green questions
must total 2 points. To preserve proper scoring, there may be no more than three red questions and seven yellow questions.

A S S E S S Y O U R A G I L I T Y 63

Question Yes No XP Practices

Do all team members consistently, thoughtfully, and rigorously apply all the practices that
the team has agreed to use?

75 0 Pair Programming; Root-Cause
Analysis; Retrospectives

Are team members generally focused and engaged at work? 5 0 Energized Work

Are nearly all team members aware of their progress toward meeting team goals? 4 0 Informative Workspace

Do any problems recur more than once per quarter? 0 5 Root-Cause Analysis;
Retrospectives

Does the team improve its process in some way at least once per month? 5 0 Retrospectives

Table 4-2. Collaborating

Question Yes No XP Practices

Do programmers ever make guesses rather than getting answers to questions? 0 75 The XP Team

Are programmers usually able to start getting information (as opposed to sending a request
and waiting for a response) as soon as they discover their need for it?

4 0 Sit Together

Do team members generally communicate without confusion? 4 0 Sit Together; Ubiquitous
Language

Do nearly all team members trust each other? 4 0 The XP Team; Sit Together

Do team members generally know what other team members are working on? 1 0 Stand-Up Meetings

25

50

75
80
85
90

96
97
98
99
100

Collaborating

Thinking

Developing

Planning Releasing

Figure 4-2. Self-assessment chart

64 C H A P T E R 4 :   A D O P T I N G X P

Question Yes No XP Practices

Does the team demonstrate its progress to stakeholders at least once per month? 4 0 Iteration Demo; Reporting

Does the team provide a working installation of its software for stakeholders to try at least
once per month?

1 0 Iteration Demo

Are all important stakeholders currently happy with the team’s progress? 3 0 Reporting; Iteration Demo; Real
Customer Involvement

Do all important stakeholders currently trust the team’s ability to deliver? 3 0 Trust; Reporting

Table 4-3. Releasing

Question Yes No XP Practices

Can any programmer on the team currently build and test the software, and get an unambiguous
success/fail result, using a single command?

25 0 Ten-Minute Build

Can any programmer on the team currently build a tested, deployable release using a single
command?

5 0 Ten-Minute Build

Do all team members use version control for all project-related artifacts that aren’t automatically
generated?

25 0 Version Control

Can any programmer build and test the software on any development workstation with nothing
but a clean check-out from version control?

25 0 Version Control

When a programmer gets the latest code, is he nearly always confident that it will build successfully
and pass all its tests?

5 0 Continuous Integration

Do all programmers integrate their work with the main body of code at least once per day? 4 0 Continuous Integration

Does the integration build currently complete in fewer than 10 minutes? 4 0 Ten-Minute Build

Do nearly all programmers share a joint aesthetic for the code? 1 0 Coding Standards

Do programmers usually improve the code when they see opportunities, regardless of who originally
wrote it?

4 0 Collective Code
Ownership; Refactoring

Are fewer than five bugs per month discovered in the team’s finished work? 1 0 No Bugs

Table 4-4. Planning

Question Yes No XP Practices

Do nearly all team members understand what they are building, why they’re building it, and what
stakeholders consider success?

25 0 Vision

Do all important stakeholders agree on what the team is building, why, and what the stakeholders
jointly consider success?

25 0 Vision

Does the team have a plan for achieving success? 4 0 Release Planning

Does the team regularly seek out new information and use it to improve its plan for success? 2 0 Release Planning

Does the team’s plan incorporate the expertise of business people as well as programmers, and do
nearly all involved agree the plan is achievable?

3 0 The Planning Game

Are nearly all the line items in the team’s plan customer-centric, results-oriented, and order-
independent?

4 0 Stories

A S S E S S Y O U R A G I L I T Y 65

Question Yes No XP Practices

Does the team compare its progress to the plan at predefined, timeboxed intervals, no longer than
one month apart, and revise its plan accordingly?

4 0 Iterations

Does the team make delivery commitments prior to each timeboxed interval, then nearly always
deliver on those commitments?

4 0 Iterations; “Done
Done”; Slack;
Estimating

After a line item in the plan is marked “complete,” do team members later perform unexpected
additional work, such as bug fixes or release polish, to finish it?

0 25 “Done Done”

Does the team nearly always deliver on its release commitments? 3 0 Risk Management

Table 4-5. Developing

Question Yes No XP Practices

Are programmers nearly always confident that the code they’ve written recently does what
they intended it to?

25 0 Test-Driven Development

Are all programmers comfortable making changes to the code? 25 0 Test-Driven Development

Do programmers have more than one debug session per week that exceeds 10 minutes? 0 3 Test-Driven Development

Do all programmers agree that the code is at least slightly better each week than it was the
week before?

25 0 Refactoring; Incremental Design
and Architecture

Does the team deliver customer-valued stories every iteration? 3 0 Iterations; Incremental Design
and Architecture

Do unexpected design changes require difficult or costly changes to existing code? 0 3 Simple Design

Do programmers use working code to give them information about technical problems? 1 0 Spike Solutions

Do any programmers optimize code without conducting performance tests first? 0 3 Performance Optimization

Do programmers ever spend more than an hour optimizing code without customers’
approval?

0 3 Performance Optimization

Are on-site customers rarely surprised by the behavior of the software at the end of an
iteration?

4 0 Incremental Requirements

Is there more than one bug per month in the business logic of completed stories? 0 3 Customer Tests

Are any team members unsure about the quality of the software the team is producing? 0 1 Exploratory Testing; Iteration
Demo; Real Customer
Involvement

66 C H A P T E R 4 :   A D O P T I N G X P

PART II

Practicing XP

CHAPTER 5

Thinking

What’s wrong with this sentence?

What we really need is more keyboards cranking out code.

That’s a quote from a manager I once worked with. In a way, he was right: you will never give your
customer what she wants without typing on a keyboard.

But that wasn’t our problem. I later realized our progress had a single bottleneck: the availability of our
staging environment. More keyboards wouldn’t have helped, even if we had more programmers sitting
at them. If we had realized this sooner, we would have been much more productive.

Sometimes the biggest gains in productivity come from stopping to think about what you’re doing,
why you’re doing it, and whether it’s a good idea. The best developers don’t just find something that
works and use it; they also question why it works, try to understand it, and then improve it.

XP doesn’t require experts. It does require a habit of mindfulness. This chapter contains five practices to
help mindful developers excel:

• Pair programming doubles the brainpower available during coding, and gives one person in each
pair the opportunity to think about strategic, long-term issues.

• Energized work acknowledges that developers do their best, most productive work when they’re
energized and motivated.

• An informative workspace gives the whole team more opportunities to notice what’s working well
and what isn’t.

• Root-cause analysis is a useful tool for identifying the underlying causes of your problems.

• Retrospectives provide a way to analyze and improve the entire development process.

6 9

“THINKING” MINI-ÉTUDE
The purpose of this étude is to practice mindfulness. If you’re new to agile development, you may use it to help
you understand the XP practices, even if you’re not currently using XP. If you’re an experienced agile
practitioner, review Chapter 11 and use this étude to consider how you can go beyond the practices in this book.

Conduct this étude for a timeboxed half-hour every day for as long as it is useful. Expect to feel rushed by the
deadline at first. If the étude becomes stale, discuss how you can change it to make it interesting again.

You will need multiple copies of this book (if you don’t have enough copies on hand, you can make photocopies
of specific practices for the purpose of this exercise), paper, and writing implements.

Step 1. Start by forming pairs. Try for heterogeneous pairs—have a programmer work with a customer, a
customer work with a tester, and so forth, rather than pairing by job description. Work with a new partner
every day.

Step 2. (Timebox this step to 15 minutes.) Within your pair, pick one practice from Part II of this book and discuss
one of the following sets of questions. Pick a practice that neither of you have discussed before, even if you
didn’t get to lead a discussion yesterday. Timebox your discussion to fifteen minutes. It’s OK not to finish the
section, particularly if you haven’t read it before. You’ll have the chance to read it again.

If you aren’t using the practice:

• What about the practice would be easy to do? What would be hard? What sounds ridiculous or silly?

• How does it differ from your previous experiences?

• What would have to be true in order for you to use the practice exactly as written?

If you are using the practice:

• What aspects of the practice do you do differently than the book says? (Observations only—no reasons.)

• If you were to follow the practice exactly as written, what would happen?

• What one experimental change could you try that would give you new insight about the practice?
(Experiments to prove that the practice is inappropriate are OK.)

Step 3. (Timebox this step to 15 minutes.) Choose three pairs to lead discussions of their answers. Try to pick
pairs so that, over time, everyone gets to lead equally. Timebox each presentation to five minutes.

70 C H A P T E R 5 :   T H I N K I N G

Pair Programming
We help each other succeed.

Do you want somebody to watch over your shoulder all day?
Do you want to waste half your time sitting in sullen silence watching somebody else code?

Of course not. Nobody does—especially not people who pair program.

Pair programming is one of the first things people notice about XP. Two people working at the same
keyboard? It’s weird. It’s also extremely powerful and, once you get used to it, tons of fun. Most
programmers I know who tried pairing for a month find that they prefer it to programming alone.

Why Pair?
This chapter is called Thinking, yet I included pair programming as the first practice. That’s because pair
programming is all about increasing your brainpower.

When you pair, one person codes—the driver. The other person is the navigator, whose job is to think.
As navigator, sometimes you think about what the driver is typing. (Don’t rush to point out missing
semicolons, though. That’s annoying.) Sometimes you think about what tasks to work on next and
sometimes you think about how your work best fits into the overall design.

This arrangement leaves the driver free to work on the tactical challenges of creating rigorous,
syntactically correct code without worrying about the big picture, and it gives the navigator the
opportunity to consider strategic issues without being distracted by the details of coding. Together, the
driver and navigator create higher-quality work more quickly than either could produce on their own.*

Pairing also reinforces good programming habits. XP’s reliance on continuous testing and design
refinement takes a lot of self-discipline. When pairing, you’ll have positive peer pressure to perform
these difficult but crucial tasks. You’ll spread coding knowledge and tips throughout the team.

You’ll also spend more time in flow—that highly productive state in which you’re totally focused on the
code. It’s a different kind of flow than normal because you’re working with a partner, but it’s far more
resilient to interruptions. To start with, you’ll discover that your office mates are far less likely to
interrupt you when you’re working with someone. When they do, one person will handle the
interruption while the other continues his train of thought. Further, you’ll find yourself paying more
attention to the conversation with your programming partner than to surrounding noise; it fades into
the background.

If that isn’t enough, pairing really is a lot of fun. The added brainpower will help you get past roadblocks
more easily. For the most part, you’ll be collaborating with smart, like-minded people. Plus, if your
wrists get sore from typing, you can hand off the keyboard to your partner and continue to be
productive.

Audience

Programmers, Whole Team

* One study found that pairing takes about 15 percent more effort than one individual working alone, but produces results more
quickly and with 15 percent fewer defects [Cockburn & Williams]. Every team is different, so take these results with a grain of salt.

P A I R P R O G R A M M I N G 71

How to Pair
I recommend pair programming on all production code. Many teams who pair frequently, but not
exclusively, discover that they find more defects in solo code. A good rule of thumb is to pair on anything
that you need to maintain, which includes tests and the build script.

When you start working on a task, ask another programmer to work with you. If another programmer
asks for help, make yourself available. Never assign partners: pairs are fluid, forming naturally and
shifting throughout the day. Over time, pair with everyone on the team. This will improve team
cohesion and spread design skills and knowledge throughout the team.

When you need a fresh perspective, switch partners. I usually
switch when I’m feeling frustrated or stuck. Have one person
stay on the task and bring the new partner up to speed. Often,
even explaining the problem to someone new will help you
resolve it.

It’s a good idea to switch partners several times per day even if you don’t feel stuck. This will help keep
everyone informed and moving quickly. I switch whenever I finish a task. If I’m working on a big task,
I switch within four hours.

When you sit down to pair together, make sure you’re physically comfortable. Position your chairs side
by side, allowing for each other’s personal space, and make sure the monitor is clearly visible. When
you’re driving, place the keyboard directly in front of you. Keep an eye out for this one—for some
reason, people pairing tend to contort themselves to reach the keyboard and mouse rather than moving
them closer.

Paired programmers produce code through conversation. As you drive or navigate,
think out loud. Take small, frequent design steps—test-driven development works
best—and talk about your assumptions, short-term goals, general direction, and any
relevant history of the feature or project. If you’re confused about something, ask
questions. The discussion may enlighten your partner as much as it does you.

NOTE
When a pair goes dark—talks less, lowers their voices, or doesn’t switch off with other
pairs—it’s often a sign of technical difficulty.

Expect to feel tired at the end of the day. Pairs typically feel that they have worked
harder and accomplished more together than when working alone. Practice energized
work to maintain your ability to pair every day.

Driving and Navigating
When you start pairing, expect to feel clumsy and fumble-
fingered as you drive. You may feel that your navigator sees
ideas and problems much more quickly than you do. She
does—navigators have more time to think than drivers do.
The situation will be reversed when you navigate. Pairing will feel natural in time.

When navigating, expect to feel like you want to step in and take the keyboard away from your partner.
Relax; your driver will often communicate an idea with both words and code. He’ll make typos and

Get a fresh perspective by
switching partners.

Ally

Test-Driven Development
(p. 285)

Ally

Energized Work (p. 79)

Pairing will feel natural in time.

72 C H A P T E R 5 :   T H I N K I N G

little mistakes—give him time to correct them himself. Use your extra brainpower to think about the
greater picture. What other tests do you need to write? How does this code fit into the rest of the system?
Is there duplication you need to remove? Can the code be more clear? Can the overall design be better?

As navigator, help your driver be more productive. Think about what’s going to happen next and be
prepared with suggestions. When I’m navigating, I like to keep an index card in front of me. Rather
than interrupting the driver when I think of an issue, I write my ideas on the index card and wait for a
break in the action to bring them up. At the end of the pairing session, I tear up the card and throw it
away.

Similarly, when a question arises, take a moment to look up the answer while the driver
continues to work. Some teams keep spare laptops on hand for this purpose. If you
need more than a few minutes, research the solution together. Sometimes the best way
to do this is to split up, pursue parallel lines of inquiry, and come back together to share
what you have learned. Spike solutions are a particularly powerful approach.

As you pair, switch roles frequently—at least every half hour, and possibly every few minutes. If you’re
navigating and find yourself telling the driver which keys to press, ask for the keyboard. If you’re driving
and need a break, pass the keyboard off to your navigator.

PAIRING TIPS
• Pair on everything you’ll need to maintain.

• Allow pairs to form fluidly rather than assigning partners.

• Switch partners when you need a fresh perspective.

• Avoid pairing with the same person for more than a day at a time.

• Sit comfortably, side by side.

• Produce code through conversation. Collaborate, don’t critique.

• Switch driver and navigator roles frequently.

Pairing Stations
To enjoy pair programming, good pairing stations are essential. You need plenty of room for both people
to sit side by side. Typical cubicles, with a workstation located in a corner, won’t work. They’re
uncomfortable and require one person to sit behind another, adding psychological as well as physical
barriers to peer collaboration.

You don’t need fancy furniture to make a good pairing station; the best ones I’ve seen are just simple
folding tables found at any good office supply store. They should be six feet long, so that two people
can sit comfortably side by side, and at least four feet deep. Each table needs a high-powered
development workstation. I like to plug in two keyboards and mice so each person can have a set.

Splurge on large monitors so that both people can see clearly. Some teams mirror the display onto two
monitors, which makes things a little easier to see, but you may find yourself pointing to the wrong
monitor. Others prefer to spread one desktop across two monitors.

Ally

Spike Solutions (p. 331)

P A I R P R O G R A M M I N G 73

NOTE
For ideas about where to put the pairing stations, see “Sit Together” in Chapter 6.

Challenges
Pairing can be uncomfortable at first, as it may require you to collaborate more than you’re used to.
These feelings are natural and typically go away after a month or two, but you have to face some
challenges.

Comfort

It bears repeating: pairing is no fun if you’re uncomfortable. When you sit down to pair, adjust your
position and equipment so you can sit comfortably. Clear debris off the desk and make sure there’s room
for your legs, feet, and knees.

Some people (like me) need a lot of personal space. Others like to get up close and personal. When you
start to pair, discuss your personal space needs and ask about your partner’s.

Similarly, while it goes without saying that personal hygiene is critical, remember that strong flavors
such as coffee, garlic, onions, and spicy foods can lead to foul breath. Decide as a team, before any issues
come up, how to notify people of challenging personal habits respectfully.

Mismatched Skills

Pairing is a collaboration between peers, but sometimes a senior developer will pair with a junior
developer. Rather than treating these occasions as student/teacher situations, restore the peer balance
by creating opportunities for both participants to learn. For example, if you know you’ll be pairing with
a junior developer, you can ask him to research a topic that no one else knows, such as the inner
workings of a library that the team depends on. Give everyone a chance to be an expert.

Communication style

New drivers sometimes have difficulty involving their partners; they can take over the
keyboard and shut down communication. To practice communicating and switching
roles while pairing, consider ping-pong pairing. In this exercise, one person writes a test.
The other person makes it pass and writes a new test. Then the first person makes it
pass and repeats the process by writing another test.

The flip side of too little communication is too much communication—or rather, too much blunt
communication. Frank criticism of code and design is valuable, but it may be difficult to appreciate at
first. Different people have different thresholds, so pay attention to how your partner receives your
comments. Try transforming declarations (such as “This method is too long”) into questions or
suggestions (“Could we make this method shorter?” or “Should we extract this code block into a new
method?”). Adopt an attitude of collaborative problem solving.

Ally

Test-Driven Development
(p. 285)

74 C H A P T E R 5 :   T H I N K I N G

Tools and keybindings

Even if you don’t fall victim to the endless vi versus emacs editor war, you may find
your coworkers’ tool preferences annoying. Try to standardize on a particular toolset.
Some teams even create a standard image and check it into version control. When you
discuss coding standards, discuss these issues as well.

Questions
Isn’t it wasteful to have two people do the work of one?

In pair programming, two people aren’t really doing the work of one. Although only one keyboard is
in use, there’s more to programming than that. As Ward Cunningham said, “If you don’t think carefully,
you might think that programming is just typing statements in a programming language.”* In pair
programming, one person is programming and the other is thinking ahead, anticipating problems, and
strategizing.

If you’re looking for hard data, [Williams] has a chapter on pairing research. Keep in mind that the
number of variables in software development make it notoriously difficult to conduct large-scale
controlled studies. Sometimes the best way to know whether something will work for your team is just
to try it.

How can I convince my team or organization to try pair programming?

Ask permission to try it as an experiment. Set aside a month in which everyone pairs on all production
code. Be sure to keep going for the entire month, as pair programming may be difficult and
uncomfortable for the first few weeks.

Don’t just ask permission of management; be sure your fellow team members are interested in trying
pairing as well. The only programmers I know who tried pairing for a month and didn’t like it are the
ones who were forced to do it against their will.

Do we really have to pair program all the time?

This is a decision that your whole team should make together. Before you decide, try pairing on all
production code (everything you need to maintain) for a month. You may enjoy it more than you
expect.

Regardless of your rule, you will still produce code that you don’t need to maintain. (Spike solutions
are one example.) These may benefit from individual study.

Some production tasks are so repetitive that they don’t
require the extra brainpower a pair provides. Before
abandoning pairing, however, consider why your design
requires so much repetition. It could be an indication of a
design flaw. Use the navigator’s extra time to think about
design improvements and consider discussing it with your
whole team.

How can I concentrate with someone talking to me?

When you navigate, you shouldn’t have too much trouble staying several steps ahead

Ally

Coding Standards (p. 133)

If you’re bored while pairing,
consider how you can make your

design less repetitive.

Ally

Simple Design (p. 314)

* http://en.wikiquote.org/wiki/Ward_Cunningham

P A I R P R O G R A M M I N G 75

http://en.wikiquote.org/wiki/Ward_Cunningham

of your driver. If you do have trouble, ask your driver to think out loud so you can understand her
thought process.

As driver, you may sometimes find that you’re having trouble concentrating. Let your navigator know—
she may have a suggestion that will help you get through the roadblock. At other times, you may just
need a few moments of silence to think through the problem.

If you find yourself in this situation a lot, you may be taking
steps that are too large. Use test-driven development and take
very small steps. Rely on your navigator to keep track of what
you still need to do (tell him if you have an idea; he’ll write
it down) and focus only on the few lines of code needed to
make the next test pass.

If you are working with a technology you don’t completely understand, consider taking
a few minutes to work on a spike solution. You and your partner can work on this
together or separately.

What if we have an odd number of programmers?

A programmer flying solo can do productive tasks that don’t involve production code.
She can research new technologies, or learn more about a technology the team is using. She can pair
with a customer or tester to review recent changes, polish the application, or do exploratory testing.
She can be the team’s batman (see “Iteration Planning” in Chapter 8).

Alternatively, a solo programmer may wish to spend some time reviewing the overall design—either to
improve his own understanding, or to come up with ideas for improving problem areas. If a large
refactoring is partially complete, the team may wish to authorize a conscientious programmer to finish
those refactorings.

If your team is on the smaller side, you may run out of useful solo tasks. In this case, consider relaxing
the “no production code” rule or bringing in another programmer.

There are only two (or three) of us. Should we still pair all the time?

Even a saint will get on your nerves if you have to pair with him day-in, day-out. Use your own
judgment about when to pair and when you need time to yourself. If you feel fine but your partner is
getting cranky, don’t escalate; just say you’re tired and need a break.

I pair programmed with the same person for three months straight during a two-person project. I think
it helped that we had a large office and a big desk; it gave us room to move around. We also kept a mini-
fridge stocked with goodies.

Even with these comforts, I had my cranky moments. Perhaps the most important factor was that my
partner was a very laid-back, easy-going person who put up with my occasional bad mood.

We get engrossed in our work and forget to switch pairs. How can we encourage more frequent pair switching?

One approach is to remember that you can switch when you feel stuck or frustrated. In fact, that is a
perfect time to switch partners and get a fresh perspective.

Some teams use kitchen timers to switch partners at strictly defined intervals. [Belshee] reports
interesting results from switching every 90 minutes. While this could be a great way to get in the habit
of switching pairs, make sure everybody is willing to try it.

If you have trouble
concentrating, try taking smaller

steps.

Allies

Test-Driven Development
(p. 285)
Spike Solutions (p. 331)

76 C H A P T E R 5 :   T H I N K I N G

How can we pair remotely?

You can use a phone headset and a desktop sharing tool such as VNC or NetMeeting to pair remotely.
I have heard of teams who use individual workstations with shared screen sessions and VoIP
applications.

When I tried this, I found it to be a poor substitute for pairing in person. XP teams usually sit together,
so remote pairing isn’t often necessary.

Results
When you pair program well, you find yourself focusing intently on the code and on your work with
your partner. You experience fewer interruptions and distractions. When interrupted, one person deals
with the problem while the other continues working. Afterward, you slide back into the flow of work
immediately. At the end of the day, you feel tired yet satisfied. You enjoy the intense focus and the
camaraderie of working with your teammates.

The team as a whole enjoys higher quality code. Technical debt decreases. Knowledge travels quickly
through the team, raising everyone’s level of competence and helping to integrate new team members
quickly.

Contraindications
Pairing requires a comfortable work environment (see “Sit Together” in Chapter 6 for design options).
Most offices and cubicles just aren’t set up that way. If your workspace doesn’t allow programmers to
sit side by side comfortably, either change the workspace or don’t pair program.

Similarly, if your team doesn’t sit together, pairing may not work for you. Although you can pair
remotely, it’s not as good as in-person.

Programmer resistance may be another reason to avoid pairing. Pairing is a big change to programmers’
work styles and you may encounter resistance. I usually work around this by asking people to try it for
a month or two before making a final decision. If they still resist, you’re probably better off avoiding
pairing rather than forcing anyone to pair against his will.

Alternatives
Pairing is a very powerful tool. It reduces defects, improves design quality, shares knowledge amongst
team members, supports self-discipline, and reduces distractions, all without sacrificing productivity. If
you cannot pair program, you need alternatives.

Formal code inspections can reduce defects, improve quality, and support self-discipline. However, my
experience is that programmers have trouble including inspections in their schedules, even when
they’re in favor of them. Pairing is easier to do consistently, and it provides feedback much more quickly
than scheduled inspections. If you’re going to use inspections in place of pairing, add some sort of
support mechanism to help them take place.

Inspections alone are unlikely to share knowledge as thoroughly as collective code ownership requires.
If you cannot pair program, consider avoiding collective ownership, at least at first.

P A I R P R O G R A M M I N G 77

If you’d still like to have collective code ownership, you need an alternative mechanism for sharing
knowledge about the state of the codebase. I’ve formed regular study groups in which programmers
meet daily for a timeboxed half-hour to review and discuss the design.

I’m not aware of any other tool that helps reduce distractions as well as pair
programming does. However, I find that I succumb to more frequent distractions when
I’m tired. In the absence of pairing, put more emphasis on energized work.

Further Reading
Pair Programming Illuminated [Williams] discusses pair programming in depth.

“The Costs and Benefits of Pair Programming” [Cockburn & Williams] reports on Laurie Williams’ initial
study of pair programming.

“Promiscuous Pairing and Beginner’s Mind: Embrace Inexperience” [Belshee] is an intriguing look at
the benefits of switching pairs at strict intervals.

“Adventures in Promiscuous Pairing: Seeking Beginner’s Mind” [Lacey] explores the costs and
challenges of promiscuous pairing. It’s a must-read if you plan to try Belshee’s approach.

Peer Reviews in Software: A Practical Guide [Wiegers 2001] discusses formal inspections and peer reviews.

Ally

Energized Work (p. 79)

78 C H A P T E R 5 :   T H I N K I N G

Energized Work
We work at a pace that allows us to do our best, most productive work
indefinitely.

I enjoy programming. I enjoy solving problems, writing good code, watching tests pass, and especially
removing code while refactoring. I program in my spare time and sometimes even think about work in
the shower.

In other words, I love my work. Yet put me on a team with unclear goals, little collective responsibility,
and infighting, and I’ll wake up dreading going into work. I’ll put in my hours at the office, but I’ll be
tempted to spend my mornings reading email and my afternoons picking at code while surfing through
marginally related technical web sites.

We’ve all been in this situation. Because we’re professionals, we strive to produce quality work even
when we feel demoralized. Still, consider the times of greatest productivity in your career. Do you notice
a big difference when you wake up and feel blessed to go into work? Isn’t it much more satisfying to
leave on time at the end of the day, knowing that you accomplished something solid and useful?

XP’s practice of energized work recognizes that, although professionals can do good work under difficult
circumstances, they do their best, most productive work when they’re energized and motivated.

How to Be Energized
One of the simplest ways to be energized is to take care of
yourself. Go home on time every day. Spend time with family
and friends and engage in activities that take your mind off
of work. Eat healthy foods, exercise, and get plenty of sleep.
While you’re busy with these other things, your brain will turn over the events of the day. You’ll often
have new insights in the morning.

If quality time off is the yin of energized work, focused work is the yang. While at work, give it your
full attention. Turn off interruptions such as email and instant messaging. Silence your phones. Ask
your project manager to shield you from unnecessary meetings and organizational politics.

When the yin and yang mesh perfectly, you’ll wake up in the morning well-rested and eager to start
your day. At the end of the day, you’ll be tired—though not exhausted—and satisfied with the work
you’ve done.

This isn’t easy. Energized work requires a supportive workplace and home life. It’s also a personal choice;
there’s no way to force someone to be energized. However, you can remove roadblocks.

Supporting Energized Work
One of my favorite techniques as a coach is to remind people
to go home on time. Tired people make mistakes and take
shortcuts. The resulting errors can end up costing more than
the work is worth. This is particularly true when someone is
sick; in addition to doing poor work, she could infect other
people.

Audience

Coaches, Whole Team

Go home on time.

Stay home when you’re sick.
You risk getting other people

sick, too.

E N E R G I Z E D W O R K 79

Pair programming is another way to encourage energized work. It encourages focus
like no other practice I know. After a full day of pairing, you’ll be tired but satisfied.
It’s particularly useful when you’re not at your best: pairing with someone who’s alert
can help you stay focused.

It may sound silly, but having healthy food available in the workplace is another good way to support
energized work. Breakfast really is the most important meal of the day. Mid-afternoon lows are also
common. Cereal, milk, vegetables, and energy snacks are a good choice. Donuts and junk food, while
popular, contribute to the mid-afternoon crash.

The nature of the work also makes a difference. [McConnell 1996] reports that software
developers are motivated to do good, intellectually challenging work. Not every project
can feed the poor or solve NP-complete problems, but a clear, compelling statement of
why the product is important can go a long way. Creating and communicating this
vision is the product manager’s responsibility.

An achievable goal goes hand-in-hand with a compelling vision. Nothing destroys
morale faster than being held accountable for an unachievable goal. The planning game
addresses this issue by combining customer value with developer estimates to create
achievable plans.

Speaking of plans, every organization has some amount of politics. Sometimes, politics lead to healthy
negotiation and compromising. Other times, they lead to unreasonable demands and blaming. The
project manager should deal with these politics, letting the team know what’s important and shielding
them from what isn’t.

The project manager can also help team members do fulfilling work by pushing back
unnecessary meetings and conference calls. Providing an informative workspace and
appropriate reporting can eliminate the need for status meetings. In an environment
with a lot of external distractions, consider setting aside core hours each day—maybe
just an hour or two to start—during which everyone agrees not to interrupt the team.

Finally, jelled teams have a lot of energy. They’re a lot of fun, too. You can recognize
a jelled team by how much its members enjoy spending time together. They go to lunch together, share
in-jokes, and may even socialize outside of work. As with energized work, you can’t force jelling, but
you can encourage it; many of XP’s practices do so. The classic work on this subject, [DeMarco & Lister
1999]’s Peopleware, is well worth reading.

Taking Breaks
When you make more mistakes than progress, it’s time to
take a break. If you’re like me, that’s the hardest time to stop.
I feel like the solution is just around the corner—even if it’s
been just around the corner for the last 45 minutes—and I
don’t want to stop until I find it. That’s why it’s helpful for
someone else to remind me to stop. After a break or a good night’s sleep, I usually see my mistake right
away.

Sometimes a snack or walk around the building is good enough. For programmers, switching pairs can
help. If it’s already the end of the day, though, going home is a good idea.

You can usually tell when somebody needs a break. Angry concentration, cursing at the computer, and
abrupt movements are all signs. In a highly collaborative environment, going dark—not talking—can

Ally

Pair Programming (p. 71)

Ally

Vision (p. 201)

Ally

The Planning Game (p. 219)

Allies

Informative Workspace (p.
83)
Reporting (p. 144)

Stop when you’re making more
mistakes than progress.

80 C H A P T E R 5 :   T H I N K I N G

also be a sign that someone needs a break. When I notice a pair of programmers whispering to each
other, I ask how long it’s been since their last passing test. I often get a sheepish reply, and that’s when
I remind them to take a break.

Suggesting a break requires a certain amount of delicacy. If someone respects you as a leader, then you
might be able to just tell him to stop working. Otherwise, get him away from the problem for a minute
so he can clear his head. Try asking him to help you for a moment, or to take a short walk with you to
discuss some issue you’re facing.

Questions
What if I’m not ready to check in my code and it’s time to go home?

If you’re practicing test-driven development and continuous integration, your code
should be ready to check in every few minutes. If you’re struggling with a problem and
can’t check in, go home anyway. Often the answer will be obvious in the morning.

Some teams revert (delete) code that doesn’t pass all its tests at the end of the day. This
sounds harsh, but it’s a good idea: if you can’t easily check in, you’ve gone far off track.
You’ll do better work in the morning. If you’re practicing continuous integration well,
the loss of code will be minimal and you’ll still have learned from the experience.

I work in a startup and 40 hours just isn’t enough. Can I work longer hours?

A startup environment often has a lot of excitement and
camaraderie. This leads to more energy and might mean that
you can work long hours and still focus. On the other hand,
startups sometimes confuse long work hours with dedication
to the cause. Be careful not to let dedication override your
good judgment about when you’re too tired to make useful contributions.

We have an important deadline and there’s no way to make it without putting our heads down and pushing through.
Do we set aside energized work for now?

A sprint to the finish line might boost your energy. There’s nothing quite like a late-night codefest when
the team brings in pizza, everybody works hard, all cylinders fire, and the work comes together at the
last moment. A great sprint can help the team jell, giving it a sense of accomplishment in the face of
adversity. However...

Sprinting to the finish line is one thing; sprinting for miles is
another. Extended overtime will not solve your schedule
problems. In fact, it has serious negative consequences.
DeMarco calls extended overtime “an important
productivity-reduction technique,” leading to reduced
quality, personnel burnout, increased turnover of staff, and ineffective use of time during normal hours
[DeMarco 2002] (p. 64).

If you work overtime one week (whatever “overtime” means in your situation), don’t work overtime
again the next week. If I see a team sprinting more than once or twice per quarter, I look for deeper
problems.

Allies

Test-Driven Development
(p. 285)
Continuous Integration (p.
183)

If you dread going to work in the
morning, you aren’t energized.

Extended overtime will not solve
your schedule problems.

E N E R G I Z E D W O R K 81

Results
When your team is energized, there’s a sense of excitement and camaraderie. As a group, you pay
attention to detail and look for opportunities to improve your work habits. You make consistent progress
every week and feel able to maintain that progress indefinitely. You value health over short-term
progress and feel productive and successful.

Contraindications
Energized work is not an excuse to goof off. Generate trust by putting in a fair day’s work.

Some organizations may make energized work difficult. If your organization uses the number of hours
worked as a yardstick to judge dedication, you may be better off sacrificing energized work and working
long hours. The choice between quality of life and career advancement is a personal one that only you
and your family can make.

Alternatives
If your organization makes energized work difficult, mistakes are more likely. Pair
programming can help tired programmers stay focused and catch each other’s errors.
Additional testing may be necessary to find the extra defects. If you can, add additional
contingency time to your release plan for fixing them.

The extreme form of this sort of organization is the death march organization, which requires (or
“strongly encourages”) employees to work extensive overtime week after week. Sadly, “Death march
projects are the norm, not the exception” [Yourdon] (p. ix).

To add insult to injury, [DeMarco & Lister 2003] (p. 161) weighs in: “In our experience, the one common
characteristic among death-march projects is low expected value. They are projects aimed at putting
out products of monumental insignificance. The only real justification for the death march is that with
value so minuscule, doing the project at normal cost would clearly result in costs that are greater than
benefits... if the project is so essential, why can’t the company spend the time and money to do it
properly?”

Further Reading
Peopleware [DeMarco & Lister 1999] is a classic work on programmer motivation and productivity. It
should be at the top of every software development manager’s reading list.

Rapid Development [McConnell 1996] has a chapter called “Motivation” with a nice chart comparing
programmer motivations to the motivations of managers and the general population.

Slack [DeMarco 2002] looks at the effects of extended overtime and overscheduling.

Death March [Yourdon] describes how to survive a “death march” project.

Ally

Pair Programming (p. 71)

82 C H A P T E R 5 :   T H I N K I N G

Informative Workspace
We are tuned in to the status of our project.

Your workspace is the cockpit of your development effort. Just
as a pilot surrounds himself with information necessary to fly a plane, arrange your workspace with
information necessary to steer your project: create an informative workspace.

An informative workspace broadcasts information into the room. When people take a break, they will
sometimes wander over and stare at the information surrounding them. Sometimes, that brief zone-
out will result in an aha moment of discovery.

An informative workspace also allows people to sense the state of the project just by walking into the
room. It conveys status information without interrupting team members and helps improve stakeholder
trust.

Subtle Cues
The essence of an informative workspace is information. One
simple source of information is the feel of the room. A
healthy project is energized. There’s a buzz in the air—not
tension, but activity. People converse, work together, and
make the occasional joke. It’s not rushed or hurried, but it’s
clearly productive. When a pair needs help, other pairs
notice, lend their assistance, then return to their tasks. When a pair completes something well, everyone
celebrates for a moment.

An unhealthy project is quiet and tense. Team members don’t talk much, if at all. It feels drab and bleak.
People live by the clock, punching in and punching out—or worse, watching to see who is the first one
to dare to leave.

Besides the feel of the room, other cues communicate useful information quickly and subconsciously.
If the build token is away from the integration machine, it’s not safe to check out the code right now.
By mid-iteration, unless about half the cards on the iteration plan are done, the team is going faster or
slower than anticipated.

An informative workspace also provides ways for people to
communicate. This usually means plenty of whiteboards
around the walls and stacks of index cards. A collaborative
design sketch on a whiteboard can often communicate an
idea far more quickly and effectively than a half-hour
PowerPoint presentation. Index cards are great for Class-Responsibility Collaboration (CRC) design
sessions, retrospectives, and planning with user stories.

NOTE
Whiteboard design sessions labelled “Do Not Erase” for more than a few days may
indicate a problem. Any programmer on the team should be able to re-create the design
from memory, perhaps with a bit of help from reviewing the source code. If permanent
design diagrams are indispensible, you may benefit from simplifying your design and
sharing code ownership.

Audience

Whole Team

Simply poking your head into a
project room should give you
information about the project.

You can never have too many
whiteboards.

I N F O R M A T I V E W O R K S P A C E 83

Big Visible Charts
An essential aspect of an informative workspace is the big visible chart. The goal of a big visible chart is
to display information so simply and unambiguously that it communicates even from across the room.

The iteration and release planning boards are ubiquitous examples of such a chart. You’ll see variants
of these planning boards in every XP project. For examples, see the release planning board shown in
Figure 8-4 and the iteration planning board shown in Figure 8-9.

Another useful status chart is a team calendar, which shows important dates, iteration numbers, and
when team members will be out of the office (along with contact information, if appropriate). A large
plastic perpetual calendar, available at most office supply stores, works well here.

Hand-Drawn Charts
Avoid the reflexive temptation to computerize your charts.
The benefits of the informative workspace stem from the
information being constantly visible from everywhere in the
room. It’s difficult and expensive for computerized charts to
meet that criterion; you’d have to install plasma screens or projectors everywhere.

Even if you can afford big screens everywhere, you will constantly change the types of charts you
display. This is easier with flip charts and whiteboards than with computers, as creating or modifying a
chart is as simple as drawing with pen and paper. Don’t let a spreadsheet or project management
software constrain what you can track.

Process Improvement Charts
One type of big visible chart measures specific issues that the team wants to improve.
Often, the issues come up during a retrospective. Unlike the planning boards or team
calendar, which stay posted, post these charts only as long as necessary.

Create process improvement charts as a team decision, and maintain them as a team
responsibility. When you agree to create a chart, agree to keep it up-to-date. For some charts, this means
taking 30 seconds to mark the board when the status changes. Each team member should update his
own status. Some charts involve collecting some information at the end of the day. For these, collectively
choose someone to update the chart.

There are many possible types of process improvement charts; they take forms as diverse as the types
of problems that teams experience. The principle behind all of them is the same: they appeal to our
innate desire for improvement. If you show progress toward a mutual goal, people will usually try to
improve their status.

NOTE
I try to create charts in which a line going up or a box filled in indicates improvement.
It’s a small way to improve clarity. Don’t knock yourself out trying to follow this
guideline, though: it’s more important to get back to work than to twist your
measurements to make a line go up rather than down.

Don’t rush to computerize.

Ally

Retrospectives (p. 91)

84 C H A P T E R 5 :   T H I N K I N G

Consider the problems you’re facing and what kind of chart, if any, would help. As an example, XP
teams have successfully used charts to help improve:

• Amount of pairing, by tracking the percentage of time spent pairing versus the percentage of time
spent flying solo

• Pair switching, by tracking how many of the possible pairing combinations actually paired during
each iteration (see Figure 5-1)

• Build performance, by tracking the number of tests executed per second

• Support responsiveness, by tracking the age of the oldest support request (an early chart, which
tracked the number of outstanding requests, resulted in hard requests being ignored)

• Needless interruptions, by tracking the number of hours spent on nonstory work each iteration

Try not to go overboard with your process improvement charts. If you post too many, they’ll lose their
effectiveness. My maximum is three to five charts. That’s not to say that your only decorations should
be a handful of charts. Team memorabilia, toys, and works in progress are also welcome. Just make sure
the important charts stand out.

Gaming
Although having too many process improvement charts can reduce their impact, a bigger problem
occurs when the team has too much interest in a chart, that is, in improving a number on a chart. They
often start gaming the process. Gaming occurs when people try to improve a number at the expense of
overall progress.

For example, if programmers focus too much on improving the number of tests in the system, they
might be reluctant to remove out-of-date tests, making maintenance more difficult, or they might add
unnecessary or redundant tests. They may not even realize they’re doing so.

To alleviate this problem, use process improvement charts with discretion. Discuss new charts as a team.
Carefully tie charts to the results you want to see. Review their use often and take them down after an
iteration or two. By that time, a chart has either done its job or it isn’t going to help.

(a) Pair combinations

MO

JS

SW

NS

MV

SS
MO JS SW NS MV SS

25

11

50

75

100

12 13 14 15 18 19 20 21 22

(b) Tests per second

Date

A
ve

ra
ge

 te
st

s
p

er
 s

ec
on

d

Goal

Figure 5-1. Sample process improvement charts

I N F O R M A T I V E W O R K S P A C E 85

Above all, never use workspace charts in performance
evaluations. Don’t report them outside the team. People who
feel judged according to their performance on a chart are
much more likely to engage in gaming. See “Reporting” in
Chapter 6 for ideas about what to report instead.

Questions
We need to share status with people who can’t or won’t visit the team workspace regularly. How do we do that
without computerized charts?

A digital camera can effectively capture a whiteboard or other chart. You can even point a webcam at
a chart and webcast it. Get creative.

Remember, though, that most information in the team workspace is for the team’s use
only. Reporting team progress outside of the team is a separate issue.

Our charts are constantly out of date. How can I get team members to keep them up-to-date?

The first question to ask is, “Did the team really agree to this chart?” An informative
workspace is for the team’s benefit, so if team members aren’t keeping a chart up-to-date, they may not
think that it’s beneficial. It’s possible that the team is passively-aggressively ignoring the chart rather
than telling you that they don’t want it.

I find that when no one updates the charts, it’s because I’m
being too controlling about them. Dialing back the amount
of involvement I have with the charts is often enough to get
the team to step in. Sometimes that means putting up with
not-quite-perfect charts or sloppy handwriting, but it pays
off.

If all else fails, discuss the issue during the retrospective or a stand-up meeting. Share your frustration,
and ask for the team’s help in resolving the issue. Prepare to abandon some favorite charts if the team
doesn’t need them.

Results
When you have an informative workspace, you have up-to-the-minute information about all the
important issues your team is facing. You know exactly how far you’ve come and how far you have to
go in your current plan, you know whether the team is progressing well or having difficulty, and you
know how well you’re solving problems.

Contraindications
If your team doesn’t sit together in a shared workspace, you probably won’t be able to create an effective
informative workspace.

Never use workspace charts in a
performance evaluation.

Ally

Reporting (p. 144)

If people won’t take
responsibility, perhaps you’re

being too controlling.

86 C H A P T E R 5 :   T H I N K I N G

Alternatives
If your team doesn’t sit together, but has adjacent cubicles or offices, you might be able
to achieve some of the benefits of an informative workspace by posting information in
the halls or a common area. Teams that are more widely distributed may use electronic
tools supplemented with daily stand-up meetings.

A traditional alternative is the weekly status meeting, but I find these dreary wastes of time that delay
and confuse important information.

Further Reading
Agile Software Development [Cockburn] has an interesting section called “Convection Currents of
Information” that describes information as heat and big visible charts as “information radiators.”

Ally

Stand-Up Meetings (p. 129)

I N F O R M A T I V E W O R K S P A C E 87

Root-Cause Analysis
We prevent mistakes by fixing our process.

When I hear about a serious mistake on my project, my natural
reaction is to get angry or frustrated. I want to blame someone for screwing up.

Unfortunately, this response ignores the reality of Murphy’s Law. If something can go wrong, it will.
People are, well, people. Everybody makes mistakes. I certainly do. Aggressively laying blame might
cause people to hide their mistakes, or to try to pin them on others, but this dysfunctional behavior
won’t actually prevent mistakes.

Instead of getting angry, I try to remember Norm Kerth’s Prime Directive: everybody is doing the best
job they can given their abilities and knowledge (see “Retrospectives” later in this chapter for the full
text of the Prime Directive). Rather than blaming people, I blame the process. What is it about the way
we work that allowed this mistake to happen? How can we change the way we work so that it’s harder
for something to go wrong?

This is root-cause analysis.

How to Find the Root Cause
A classic approach to root-cause analysis is to ask “why” five times. Here’s a real-world example.

Problem: When we start working on a new task, we spend a lot of time getting the code into a working
state.

Why? Because the build is often broken in source control.

Why? Because people check in code without running their tests.

It’s easy to stop here and say, “Aha! We found the problem. People need to run their tests before checking
in.” That is a correct answer, as running tests before check-in is part of continuous integration. But it’s
also already part of the process. People know they should run the tests, they just aren’t doing it. Dig
deeper.

Why don’t they run tests before checking in? Because sometimes the tests take longer to run than people
have available.

Why do the tests take so long? Because tests spend a lot of time in database setup and teardown.

Why? Because our design makes it difficult to test business logic without touching the database.

Asking “why” five times reveals a much more interesting answer than “people aren’t running tests.” It
helps you move away from blaming team members and toward identifying an underlying, fixable
problem. In this example, the solution is clear, if not easy: the design needs improvement.

How to Fix the Root Cause
Root-cause analysis is a technique you can use for every problem you encounter, from the trivial to the
significant. You can ask yourself “why” at any time. You can even fix some problems just by improving
your own work habits.

Audience

Whole Team

88 C H A P T E R 5 :   T H I N K I N G

More often, however, fixing root causes requires other people to cooperate. If your
team has control over the root cause, gather the team members, share your thoughts,
and ask for their help in solving the problem. A retrospective might be a good time for
this.

If the root cause is outside the team’s control entirely, then solving the problem may be difficult or
impossible. For example, if your problem is “not enough pairing” and you identify the root cause as “we
need more comfortable desks,” your team may need the help of Facilities to fix it.

In this case, solving the problem is a matter of coordinating with the larger organization. Your project
manager should be able to help. In the meantime, consider alternate solutions that are within your
control.

When Not to Fix the Root Cause
When you first start applying root-cause analysis, you’ll find many more problems than you can address
simultaneously. Work on a few at a time. I like to chip away at the biggest problem while simultaneously
picking off low-hanging fruit.

Over time, work will go more smoothly. Mistakes will become less severe and less frequent. Eventually
—it can take months or years—mistakes will be notably rare.

At this point, you may face the temptation to over-apply
root-cause analysis. Beware of thinking that you can prevent
all possible mistakes. Fixing a root cause may add overhead
to the process. Before changing the process, ask yourself
whether the problem is common enough to warrant the
overhead.

Questions
Who should participate in root-cause analysis?

I usually conduct root-cause analysis in the privacy of my own thoughts, then share my conclusions
and reasoning with others. Include whomever is necessary to fix the root cause.

When should we conduct root-cause analysis?

You can use root-cause analysis any time you notice a problem—when you find a bug, when you notice
a mistake, as you’re navigating, and in retrospectives. It need only take a few seconds. Keep your brain
turned on and use root-cause analysis all the time.

We know what our problems are. Why do we need to bother with root-cause analysis?

If you already understand the underlying causes of your problems, and you’re making progress on fixing
them, then you have already conducted root-cause analysis. However, it’s easy to get stuck on a
particular solution. Asking “why” five times may give you new insight.

How do we avoid blaming individuals?

If your root cause points to an individual, ask “why” again. Why did that person do what she did? How
was it possible for her to make that mistake? Keep digging until you learn how to prevent that mistake
in the future.

Ally

Retrospectives (p. 91)

A mistake-proof process is
neither achievable nor desirable.

R O O T - C A U S E A N A L Y S I S 89

Keep in mind that lectures and punitive approaches are usually ineffective. It’s better to make it difficult
for people to make mistakes than to expect them always to do the right thing.

Results
When root-cause analysis is an instinctive reaction, your team values fixing problems rather than placing
blame. Your first reaction to a problem is to ask how it could have possibly happened. Rather than
feeling threatened by problems and trying to hide them, you raise them publicly and work to solve them.

Contraindications
The primary danger of root-cause analysis is that, ultimately, every problem has a cause outside of your
control.

Don’t use this as an excuse not to take action. If a root cause is beyond your control, work with someone
(such as your project manager) who has experience coordinating with other groups. In the meantime,
solve the intermediate problems. Focus on what is in your control.

Although few organizations actively discourage root-cause analysis, you may find that it is socially
unacceptable. If your efforts are called “disruptive” or a “waste of time,” you may be better off avoiding
root-cause analysis.

Alternatives
You can always perform root-cause analysis in the privacy of your thoughts. You’ll probably find that
a lot of causes are beyond your control. Try to channel your frustration into energy for fixing processes
that you can influence.

90 C H A P T E R 5 :   T H I N K I N G

Retrospectives
We continually improve our work habits.

No process is perfect. Your team is unique, as are the situations
you encounter, and they change all the time. You must continually update your process to match your
changing situations. Retrospectives are a great tool for doing so.

Types of Retrospectives
The most common retrospective, the iteration retrospective, occurs at the end of every iteration.

In addition to iteration retrospectives, you can also conduct longer, more intensive retrospectives at
crucial milestones. These release retrospectives, project retrospectives, and surprise retrospectives (conducted
when an unexpected event changes your situation) give you a chance to reflect more deeply on your
experiences and condense key lessons to share with the rest of the organization.

These other retrospectives are out of the scope of this book. They work best when conducted by neutral
third parties, so consider bringing in an experienced retrospective facilitator. Larger organizations may
have such facilitators on staff (start by asking the HR department), or you can bring in an outside
consultant. If you’d like to conduct them yourself, [Derby & Larsen] and [Kerth] are great resources.

How to Conduct an Iteration Retrospective
Anybody can facilitate an iteration retrospective if the team gets along well. An experienced, neutral
facilitator is best to start with. When the retrospectives run smoothly, give other people a chance to try.

Everyone on the team should participate in each retrospective. In order to give participants a chance to
speak their minds openly, non-team members should not attend.

I timebox my retrospectives to exactly one hour. Your first few retrospectives will probably run long.
Give it an extra half-hour, but don’t be shy about politely wrapping up and moving to the next step.
The whole team will get better with practice, and the next retrospective is only a week away.

I keep the following schedule in mind as I conduct a retrospective. Don’t try to match the schedule
exactly; let events follow their natural pace:

1. Norm Kerth’s Prime Directive

2. Brainstorming (30 minutes)

3. Mute Mapping (10 minutes)

4. Retrospective objective (20 minutes)

After you’ve acclimated to this format, change it. The retrospective is a great venue for trying new ideas.
[Derby & Larsen] is full of ideas for iteration retrospectives.

Retrospectives are a powerful tool that can actually be damaging when conducted poorly. The process
I describe here skips some important safety exercises for the sake of brevity. Pay particular attention to
the contraindications before trying this practice.

Audience

Whole Team

R E T R O S P E C T I V E S 91

Step 1: The Prime Directive
In his essay, “The Effective Post-Fire Critique,” New York City Fire Department Chief Frank
Montagna writes:

Firefighters, as all humans, make mistakes. When firefighters make a mistake on the job,
however, it can be life-threatening to themselves, to their coworkers, and to the public they
serve. Nonetheless, firefighters will continue to make mistakes and on occasion will repeat a
mistake.

Everyone makes mistakes, even when lives are on the line.
The retrospective is an opportunity to learn and improve. The
team should never use the retrospective to place blame or
attack individuals.

As facilitator, it’s your job to nip destructive behavior in the
bud. To this end, I start each retrospective by repeating Norm
Kerth’s Prime Directive. I write it at the top of the whiteboard:

Regardless of what we discover today, we understand and truly believe that everyone did the
best job they could, given what they knew at the time, their skills and abilities, the resources
available, and the situation at hand.

I ask each attendee in turn if he agrees to the Prime Directive and wait for a verbal “yes.” If not, I ask
if he can set aside his skepticism just for this one meeting. If an attendee still won’t agree, I won’t conduct
the retrospective.

NOTE
If someone speaks once during a retrospective, she is more likely to speak again. By
waiting for verbal agreement, you encourage more participation.

Step 2: Brainstorming
If everyone agrees to the Prime Directive, hand out index cards and pencils, then write the following
headings on the whiteboard:

• Enjoyable

• Frustrating

• Puzzling

• Same

• More

• Less

Ask the group to reflect on the events of the iteration and brainstorm ideas that fall into these categories.
Think of events that were enjoyable, frustrating, and puzzling, and consider what you’d like to see
increase, decrease, and remain the same. Write each idea on a separate index card. As facilitator, you
can write down your ideas, too—just be careful not to dominate the discussion.

Never use a retrospective to
place blame or attack

individuals.

92 C H A P T E R 5 :   T H I N K I N G

NOTE
Ideas that are out of the team’s control are fine.

People can come up with as many ideas as they like. Five to 10 each is typical. There’s no need to have
an idea in each category, or to limit the ideas in a category. Any topic is fair game, from the banal (“more
cookies”) to the taboo (“frustrating: impossible deadline”). If people are reluctant to say what they really
think, try reading the cards anonymously.

Ask people to read out their cards as they finish each one, then hand them in. Stick the cards up on the
board under their headings. If you don’t have a ferrous whiteboard, use sticky notes instead of index
cards.

NOTE
Wait until step 3 to group similar cards. It improves the flow of the restrospective.

If people have trouble getting started, describe what happened during the iteration. (“Wednesday, we
had our planning session....”) This approach takes longer, but it might be a good way to jump-start things
when you first start doing retrospectives.

As people read their cards, others will come up with new ideas. The conversation will feed on itself.
Don’t worry if two people suggest the same idea—just put them all up on the board. Expect several
dozen cards, at least.

As the conversation winds down, check the time. If you have plenty of extra time, let the silences stretch
out. Someone will often say something that he has held back, and this may start a new round of ideas.
If you’re running out of time, however, take advantage of the pause to move on to the next stage.

Step 3: Mute Mapping
Mute mapping is a variant of affinity mapping in which no one speaks. It’s a great way to categorize a lot
of ideas quickly.

You need plenty of space for this. Invite everyone to stand up, go over to the whiteboard, and slide cards
around. There are three rules:

1. Put related cards close together.

2. Put unrelated cards far apart.

3. No talking.

If two people disagree on where to place a card, they have to work out a compromise without talking.

This exercise should take about 10 minutes, depending on the size of the team. As before, when activity
dies down, check the time and either wait for more ideas or move on.

Once mute mapping is complete, there should be clear groups of cards on the whiteboard. Ask everyone
to sit down, then take a marker and draw a circle around each group. Don’t try to identify the groups
yet; just draw the circles. If you have a couple of outlier cards, draw circles around those, too. Each
circle represents a category. You can have as many as you need.

R E T R O S P E C T I V E S 93

Once you have circled the categories, read a sampling of cards from each circle and ask the team to
name the category. Don’t try to come up with a perfect name, and don’t move cards between categories.
(There’s always next time.) Help the group move quickly through this step. The names aren’t that
important, and trying for perfection can easily drag this step out.

Finally, after you have circled and named all the categories, vote on which categories should be
improved during the next iteration. I like to hand out little magnetic dots to represent votes; stickers
also work well. Give each person five votes. Participants can put all their votes on one category if they
wish, or spread their votes amongst several categories.

Step 4: Retrospective Objective
After the voting ends, one category should be the clear winner. If not, don’t spend too much time; flip
a coin or something.

Discard the cards from the other categories. If someone wants to take a card to work on individually,
that’s fine, but not necessary. Remember, you’ll do another retrospective next week. Important issues
will recur.

NOTE
Frustrated that your favorite category lost? Wait a month or two. If it’s important, it
will win eventually.

Now that the team has picked a category to focus on, it’s time to come up with options
for improving it. This is a good time to apply your root-cause analysis skills. Read the
cards in the category again, then brainstorm some ideas. Half a dozen should suffice.

Don’t be too detailed when coming up with ideas for improvement. A general direction
is good enough. For example, if “pairing” is the issue, then “switching pairs more often” could be one
suggestion, “ping-pong pairing” could be another, and “switching at specific times” could be a third.

When you have several ideas, ask the group which one they think is best. If there isn’t a clear consensus,
vote.

This final vote is your retrospective objective. Pick just one—it will help you focus. The retrospective
objective is the goal that the whole team will work toward during the next iteration. Figure out how to
keep track of the objective and who should work out the details.

After the Retrospective
The retrospective serves two purposes: sharing ideas gives the team a chance to grow closer, and coming
up with a specific solution gives the team a chance to improve.

The thing I dislike about iteration retrospectives is that they often don’t lead to specific changes. It’s easy
to leave the retrospective and think, “Well, that’s done until next week.” If you’re like me, the ensuing
lack of action can be a little frustrating.

To avoid this frustration, make sure someone is responsible for following through on the retrospective
objective. It’s not that person’s job to push or own the objective—that’s for the whole team—but it is
his job to remind people when appropriate.

Ally

Root-Cause Analysis (p. 88)

94 C H A P T E R 5 :   T H I N K I N G

To encourage follow-through, make the retrospective objective part of the iteration.
For general behavior changes, such as “switch pairs more often,” consider adding a big
visible chart to your informative workspace. For specific actions, such as “improve
database abstraction layer,” create task cards and put them in your iteration plan.

Questions
What if management isn’t committed to making things better?

Although some ideas may require the assistance of others, if those people can’t or won’t help, refocus
your ideas to what you can do. The retrospective is an opportunity for you to decide, as a team, how to
improve your own process, not the processes of others.

Your project manager may be able to help convey your needs to management and other groups.

Despite my best efforts as facilitator, our retrospectives always degenerate into blaming and arguing. What can I do?

This is a tough situation, and there may not be anything you can do. If there are just one or two people
who like to place blame, try talking to them alone beforehand. Describe what you see happening and
your concern that it’s disrupting the retrospective. Rather than adopting a parental attitude, ask for their
help in solving the problem and be open to their concerns.

If a few people constantly argue with each other, talk to them together. Explain that you’re concerned
their arguing is making other people uncomfortable. Again, ask for their help.

If the problem is widespread across the group, the same approach—talking about it—applies. This time,
hold the discussion as part of the retrospective, or even in place of it. Share what you’ve observed, and
ask the group for their observations and ideas about how to solve the problem. Be careful: this discussion
is only helpful if the group can hold it without further arguing.

If all else fails, you may need to stop holding retrospectives for a while. Consider bringing an
organizational development (OD) expert to facilitate your next retrospective.

We come up with good retrospective objectives, but then nothing happens. What are we doing wrong?

Your ideas may be too big. Remember, you only have one week, and you have to do your other work,
too. Try making plans that are smaller scale—perhaps a few hours of work—and follow up every day.

Another possibility is that you don’t have enough slack in your schedule. When you
have a completely full workload, nonessential tasks such as improving your work habits
go undone. (The sad irony is that improving your work habits will give you more time.)

Finally, it’s possible that the team doesn’t feel like they truly have a voice in the
retrospective. Take an honest look at the way you conduct it. Are you leading the team by the nose
rather than facilitating? Consider having someone else facilitate the next retrospective.

Some people won’t speak up in the retrospective. How can I encourage them to participate?

It’s possible they’re just shy. It’s not necessary for everyone to participate all the time. Waiting for a
verbal response to the Prime Directive can help break the ice.

On the other hand, they may have something they want to say but don’t feel safe doing it. [Derby &
Larsen] have some good suggestions about how to incorporate safety exercises into the retrospective.
You can also try talking with them individually outside of the retrospective.

Allies

Informative Workspace (p.
83)
Iteration Planning (p. 233)

Ally

Slack (p. 246)

R E T R O S P E C T I V E S 95

One group of people (such as testers) always gets outvoted in the retrospective. How can we meet their needs, too?

Over time, every major issue will get its fair share of attention. Give the retrospectives a few months
before deciding that a particular group is disenfranchised. One team in my experience had a few testers
that felt their issue was being ignored. A month later, after the team had addressed another issue, the
testers’ concern was on the top of everyone’s list.

If time doesn’t solve the problem—and be patient to start—you can use weighted dot voting, in which
some people get more dot votes than others. If you can do this without recrimination, it may be a good
way to level the playing field.

Another option is for one group to pick a different retrospective objective to focus on in addition to the
general retrospective objective.

Our retrospectives always take too long. How can we go faster?

It’s OK to be decisive about wrapping things up and moving on. There’s always next week. If the group
is taking a long time brainstorming ideas or mute mapping, you might say something like, “OK, we’re
running out of time. Take two minutes to write down your final thoughts (or make final changes) and
then we’ll move on.”

That said, I prefer to let a retrospective go long and take its natural course during the first month or so.
This will allow people to get used to the flow of the retrospective without stressing too much about
timelines.

The retrospective takes so much time. Can we do it less often?

It depends on how much your process needs improvement. An established team may not need as many
iteration retrospectives as a new team. I would continue to conduct retrospectives at least every other
week.

If you feel that your retrospective isn’t accomplishing much, perhaps the real problem is that you need
a change of pace. Try a different approach. [Derby & Larsen] has many ideas to try.

Results
When your team conducts retrospectives well, your ability to develop and deliver software steadily
improves. The whole team grows closer and more cohesive, and each group has more respect for the
issues other groups face. You are honest and open about your successes and failures and are more
comfortable with change.

Contraindications
The biggest danger in a retrospective is that it will become a venue for acrimony rather than for
constructive problem solving. A skilled facilitator can help prevent this, but you probably don’t have
such a facilitator on hand. Be very cautious about conducting retrospectives if some team members tend
to lash out, attack, or blame others.

The retrospective recipe described here assumes that your team gets along fairly well. If your team
doesn’t get along well enough to use this recipe, refer to [Derby & Larsen] for more options and consider
bringing in an outside facilitator.

96 C H A P T E R 5 :   T H I N K I N G

If only one or two team members are disruptive, and attempts to work the problem through with them
are ineffective, you may be better off removing them from the team. Their antisocial influence probably
extends beyond the retrospective, hurting teamwork and productivity.

Alternatives
There are many ways to conduct retrospectives. See [Derby & Larsen] for ideas.

I’m not aware of any other techniques that allow you to improve your process and team cohesiveness
as well as retrospectives do. Some organizations define organization-wide processes. Others assign
responsibility for the process to a project manager, technical lead, or architect. Although these
approaches might lead to a good initial process, they don’t usually lead to continuous process
improvement, and neither approach fosters team cohesiveness.

Further Reading
Project Retrospectives [Kerth] is the definitive resource for project retrospectives.

Agile Retrospectives [Derby & Larsen] picks up where [Kerth] leaves off, discussing techniques for
conducting all sorts of agile retrospectives.

“The Effective Post-Fire Critique” [Montagna] is a fascinating look at how a life-and-death profession
approaches retrospectives.

R E T R O S P E C T I V E S 97

CHAPTER 6

Collaborating

Sometimes I like to imagine software development as a pulsing web of light, with blips of information
flowing along lines from far-flung points. The information races toward the development team, which
is a brilliant, complex tangle of lines, then funnels into a glowing core of software too bright to look at.

I’m a little weird that way.

There’s truth to the idea, though. Software development is all about information. The more effectively
your programmers can access and understand the information they need, the more effective they will
be at creating software. The better information customers and managers have, the better they can
manage the schedule and provide feedback to the programmers.

Communication in the real world is a lot messier than it is in my image. There are no glowing lines to
sterilely transport information from one brain to another. Instead, people have to work together. They
have to ask questions, discuss ideas, and even disagree.

This chapter contains eight practices to help your team and its stakeholders collaborate efficiently and
effectively:

• Trust is essential for the team to thrive.

• Sitting together leads to fast, accurate communication.

• Real customer involvement helps the team understand what to build.

• A ubiquitous language helps team members understand each other.

• Stand-up meetings keep team members informed.

• Coding standards provide a template for seamlessly joining the team’s work together.

• Iteration demos keep the team’s efforts aligned with stakeholder goals.

• Reporting helps reassure the organization that the team is working well.

9 9

“COLLABORATING” MINI-ÉTUDE
The purpose of this étude is to explore the flow of information in your project. If you’re new to agile development,
you may use it to help you understand how collaboration occurs in your project, even if you’re not currently
using XP. If you’re an experienced agile practitioner, review Chapter 12 and use this étude to help you modify
your process to remove communication bottlenecks.

Conduct this étude for a timeboxed half-hour every day for as long as it is useful. Expect to feel rushed by the
deadline at first. If the étude becomes stale, discuss how you can change it to make it interesting again.

You will need white, red, yellow, and green index cards; an empty table or magnetic whiteboard for your
information flow map; and writing implements for everyone.

Step 1. Start by forming pairs. Try for heterogeneous pairs—have a programmer work with a customer, a
customer work with a tester, and so forth, rather than pairing by job description. Work with a new partner
every day.

Step 2. (Timebox this step to 10 minutes.) Within your pair, discuss the kinds of information that you need in
order to do your job, or that other people need from you in order to do their job. Choose one example that you
have personally observed or experienced. If you can’t think of anything new, pick an existing card and skip to
Step 3.

Information usually flows in both directions. For example, during a customer review, a developer may ask a
customer if the software behaves correctly. Alternatively, a customer may ask a developer to show her what
the software does. Choose just one direction.

Reflect on all the times you remember needing or providing this information. How long did it take? For
information you needed, think of the calendar time needed from the moment you realized you needed the
information to the moment you received it. For information you provided, think of the total effort that you and
other team members spent preparing and providing the information.

Next, think of the typical time required for this piece of information. If the typical time required is less than 10
minutes, take a green index card. If it’s less than a day, take a yellow index card. If it’s a day or longer, take a
red index card. Write down the type of information involved, the group that you get it from (or give it to), the
role you play, and the time required, as shown in Figure 6-1.

Step 3. (Timebox this step to 10 minutes.) Within your pair, discuss things that your team can do to reduce or
eliminate the time required to get or provide this information. Pick one and write it on a white card.

Figure 6-1. Sample cards

100 C H A P T E R 6 :   C O L L A B O R A T I N G

Step 4. (Timebox this step to 10 minutes.) As a team, discuss all the cards generated by all the pairs. Consider
these questions:

• Where are the bottlenecks in receiving information?

• Which latencies are most painful in your current process?

• Which flow is most important to optimize in your next iteration?

• What is the root cause of those latencies?

• What will you do next iteration to improve information flow?

After everyone has had a chance to share their cards, add them to the table. Place colored cards on the table
so that the cards visually show information flow. For example, if an interaction designer gets information about
usage from real customers and gives it to the development team, those two cards would be placed side by side.
Place white cards underneath colored cards.

C O L L A B O R A T I N G 101

Trust
We work together effectively and without fear.

When a group of people comes together to work as a team, they
go through a series of group dynamics known as “Forming, Storming, Norming, and
Performing” [Tuckman]. It takes the team some time to get through each of these stages. They make
progress, fall back, bicker, and get along. Over time—often months—and with adequate support and a
bit of luck, they get to know each other and work well together. The team jells. Productivity shoots up.
They do really amazing work.

What does it take to achieve this level of productivity? The team must take joint responsibility for their
work. Team members need to think of the rest of the team as “us,” not “them.” If a team member notices
something that needs doing, she takes responsibility for it, even if it’s not her specialty: she does it, finds
someone to help her do it, or recruits someone else to take care of it.

Conversely, team members must rely on each other for help. When one member of a team encounters
a question that she cannot answer, she doesn’t hesitate to ask someone who does know the answer.
Sometimes these quick questions turn into longer pairing sessions.

Trust is essential for the team to perform this well. You need to trust that taking time to help others
won’t make you look unproductive. You need to trust that you’ll be treated with respect when you ask
for help or disagree with someone.

The organization needs to trust the team, too. XP is strange and different at first. It doesn’t provide the
normal indicators of progress that managers are accustomed to seeing. It takes trust to believe that the
team will deliver a success.

Trust doesn’t magically appear—you have to work at it. Here are some strategies for generating trust in
your XP team.

Team Strategy #1: Customer-Programmer Empathy
Many organizations I’ve worked with have struggled with an “us versus them” attitude between
customers and programmers. Customers often feel that programmers don’t care enough about their
needs and deadlines, some of which, if missed, could cost them their jobs. Programmers often feel forced
into commitments they can’t meet, hurting their health and relationships.

Sometimes the acrimony is so intense that the groups actually start doing what the others fear:
programmers react by inflating estimates and focusing on technical toys at the expense of necessary
features; customers react by ignoring programmer estimates and applying schedule pressure. This
sometimes happens even when there’s no overt face-to-face hostility.

This is a difficult situation with no easy answer. Such badly broken trust takes a long time to heal.
Because neither group can force the other to bridge the gap, you have to focus on changing your own
attitude.

I find that the biggest missing component in this situation is empathy for the other group’s position.
Programmers, remember that customers have corporate masters that demand results. Bonuses, career
advancement, and even job security depend on successful delivery, and the demands aren’t always
reasonable. Customers must deliver results anyway.

Audience

Whole Team, Coaches

102 C H A P T E R 6 :   C O L L A B O R A T I N G

Customers, remember that ignoring or overriding programmers’ professional recommendations about
timelines often leads to serious personal consequences for programmers. “Death march teams are the
norm, not the exception... [These teams] are often found working 13- to 14-hour days, six days a week...
In [“ugly” death march projects], it’s not uncommon to see one or two of the project team members
collapse from exhaustion, suffer ulcers or a nervous breakdown, or experience a divorce” [Yourdon]
(p. ix, p. 4, p. 61). The commonality of these experiences among programmers leads to apathy and
cynicism about schedules and commitments.

Sitting together is the most effective way I know to build empathy. Each group gets to
see that the others are working just as hard. Retrospectives also help, if your team can
avoid placing blame. Programmers can help by being respectful of customer goals, and
customers can help by being respectful of programmer estimates and technical
recommendations. All of this is easier with energized work.

Team Strategy #2: Programmer-Tester Empathy
I’ve also seen “us versus them” attitudes between programmers and testers, although it isn’t quite as
prevalent as customer-programmer discord. When it occurs, programmers tend not to show respect for
the testers’ abilities, and testers see their mission as shooting down the programmers’ work.

As with customer-programmer discord, empathy and respect are the keys to better relations.
Programmers, remember that testing takes skill and careful work, just as programming does. Take
advantage of testers’ abilities to find mistakes you would never consider, and thank them for helping
prevent embarrassing problems from reaching stakeholders and users. Testers, focus on the team’s joint
goal: releasing a great product. When you find a mistake, it’s not an occasion for celebration or gloating.
Remember, too, that everybody makes mistakes, and mistakes aren’t a sign of incompetence or laziness.

Team Strategy #3: Eat Together
Another good way to improve team cohesiveness is to eat
together. Something about sharing meals breaks down
barriers and fosters team cohesiveness. Try providing a free
meal once per week. If you have the meal brought into the
office, set a table and serve the food family-style to prevent
people from taking the food back to their desks. If you go to a restaurant, ask for a single long table
rather than separate tables.

Team Strategy #4: Team Continuity
After a project ends, the team typically breaks up. All the wonderful trust and cohesiveness that the
team has formed is lost. The next project starts with a brand-new team, and they have to struggle
through the four phases of team formation all over again.

You can avoid this waste by keeping productive teams together. Most organizations think of people as
the basic “resource” in the company. Instead, think of the team as the resource. Rather than assigning
people to projects, assign a team to a project. Have people join teams and stick together for multiple
projects.

Some teams will be more effective than others. Take advantage of this by using the most effective teams
as a training ground for other teams. Rotate junior members into those teams so they can learn from

Allies

Sit Together (p. 112)
Retrospectives (p. 91)
Energized Work (p. 79)

A good way to improve team
cohesiveness is to eat together.

T R U S T 103

the best, and rotate experienced team members out to lead teams of their own. If you do this gradually,
the team culture and trust will remain intact.

NOTE
Team continuity is an advanced practice—not because it’s hard to do, but because it
challenges normal organizational structures. While team continuity is valuable, you
don’t need to do it to be successful.

Impressions
I know somebody who worked in a company with two project teams. One used XP, met its
commitments, and delivered regularly. The team next door struggled: it fell behind schedule and didn’t
have any working software to show. Yet when the company downsized, it let the XP team members go
rather than the other team!

Why? When management looked in on the struggling team, they saw programmers working hard, long
hours with their heads down and UML diagrams papering the walls. When they looked in on the XP
team, they saw people talking, laughing, and going home at five with nothing but rough sketches and
charts on the whiteboards.

Like it or not, our projects don’t exist in a vaccuum. XP can seem strange and different to an organization
that hasn’t seen it before. “Are they really working?” outsiders wonder. “It’s noisy and confusing. I don’t
want to work that way. If it succeeds, will they force me to do it, too?”

Ironically, the more successful XP is, the more these worries grow. Alistair Cockburn calls them
organizational antibodies.* If left unchecked, organizational antibodies will overcome and dismantle an
otherwise successful XP team.

No matter how effective you are at meeting your technical commitments, you’re in trouble without the
good will of your stakeholders. Yes, meeting schedules and technical expectations helps, but the
nontechnical, interpersonal skills—soft skills—your team practices may be just as important to building
trust in your team.

Does this sound unfair or illogical? Surely your ability to deliver high-quality software is all that really
matters.

It is unfair and illogical. It’s also the way people think—even programmers. If your stakeholders don’t
trust you, they won’t participate in your team, which hurts your ability to deliver valuable software.
They might even campaign against you.

Don’t wait for them to realize how your work can help them. Show them.

Organizational Strategy #1: Show Some Hustle
“Things may come to those who wait, but only the things left by those who hustle.” —Abraham
Lincoln†

Several years ago, I hired a small local moving company to move my belongings from one apartment
to another. When the movers arrived, I was surprised to see them hustle—they moved quickly from the

* Via personal communication.

† Thanks to George Dinwiddie for this quote.

104 C H A P T E R 6 :   C O L L A B O R A T I N G

van to the apartment and back. This was particularly unexpected because I was paying them by the
hour. There was no advantage for them to move so quickly.

Those movers impressed me. I felt that they were dedicated to meeting my needs and respecting my
pocketbook. If I still lived in that city and needed to move again, I would hire them in an instant. They
earned my goodwill—and my trust.

In the case of a software team, hustle is energized, productive work. It’s the sense that
the team is putting in a fair day’s work for a fair day’s pay. Energized work, an
informative workspace, appropriate reporting, and iteration demos all help convey this
feeling of productivity.

Organizational Strategy #2: Deliver on Commitments
If your stakeholders have worked with software teams before, they probably have
plenty of war wounds from slipped schedules, unfixed defects, and wasted money. In addition, they
probably don’t know much about software development. That puts them in the uncomfortable position
of relying on your work, having had poor results before, and being unable to tell if your work is any
better.

Meanwhile, your team consumes thousands of dollars every week in salary and support. How do
stakeholders know that you’re spending their money wisely? How do they know that the team is even
competent?

Stakeholders may not know how to evaluate your process, but they can evaluate results. Two kinds of
results speak particularly clearly to them: working software and delivering on commitments.

Fortunately, XP teams demonstrate both of these results every week. You make a
commitment to deliver working software when you build your iteration and release
plans. You demonstrate that you’ve met the iteration commitment in the iteration
demo, exactly one week later, and you demonstrate that you’ve met the release
commitment on your predefined release date.

This week-in, week-out delivery builds stakeholder trust like nothing I’ve ever seen.
It’s extremely powerful. All you have to do is create a plan that you can achieve... and
then achieve it.

Organizational Strategy #3: Manage Problems
Did I say, “All you have to do?” Silly me. It’s not that easy.

First, you need to plan well (see Chapter 8). Second, as the poet said, “The best laid schemes o’ mice
an’ men / Gang aft a-gley.”*

In other words, some iterations don’t sail smoothly into port on the last day. What do you do when
your best laid plans gang a-gley?

Actually, that’s your chance to shine. Anyone can look good when life goes according to plan. Your true
character shows when you deal with unexpected problems.

Allies

Energized Work (p. 79)
Informative Workspace (p.
83)
Reporting (p. 144)
Iteration Demo (p. 138)

Allies

Iteration Planning (p. 233)
Release Planning (p. 206)
Iteration Demo (p. 138)
Risk Management (p. 224)

* “To a Mouse,” by renowned Scottish poet Robert Burns. The poem starts, “Wee, sleekit, cow’rin, tim’rous beastie, / O, what a
panic’s in thy breastie!” This reminds me of how I felt when I was asked to integrate a project after a year of unintegrated
development.

T R U S T 105

The first thing to do is to limit your exposure to problems. Work on the hardest, most uncertain tasks
early in the iteration. You’ll find problems sooner, and you’ll have more time to fix them.

When you encounter a problem, start by letting the whole team know about it. Bring it up by the next
stand-up meeting at the very latest. This gives the entire team a chance to help solve the problem.

If the setback is relatively small, you might be able to absorb it into the iteration by
using some of your iteration slack. Options for absorbing the problem include reducing
noncritical refactorings, postponing a nonessential meeting, or even (as a team
decision) cancelling research time. I personally volunteer to work an hour or so longer
each day until we have resolved the problem—or the iteration ends, whichever comes
first—as long as my family commitments permit.

Some problems are too big to absorb no matter how much slack you have. If this is the case, get together
as a whole team as soon as possible and replan. You may need to remove an entire story or you might
be able to reduce the scope of some stories. (For more about what to do when things go wrong, see
“Iteration Planning” in Chapter 8.)

When you’ve identified a problem, let the stakeholders know
about it. They’ll appreciate your professionalism even if they
don’t like the problem. I usually wait until the iteration demo
to explain problems that we solved on our own, but bring
bigger problems to stakeholders’ attentions right away. The
product manager is probably the best person to decide who to talk to and when.

The sooner your stakeholders know about a problem (and believe me, they’ll find out eventually), the
more time they have to work around it. I include an analysis of the possible solutions as well as their
technical costs. It can take a lot of courage to have this discussion—but addressing a problem successfully
can build trust like nothing else.

Be careful, though. It’s easy to focus too much on meeting your commitments in such a way that actually
damages trust. Suppose you need a few more hours in an iteration to finish a particularly valuable story.
A little bit of overtime is fine. Sprinting with a burst of more overtime can even be good for team morale
and cohesiveness under the right conditions (see “Energized Work” in Chapter 5). Relying on overtime
to meet overcommitment saps the team’s energy and reduces your ability to absorb problems. Ironically,
it leads to more missed commitments; you implicitly promise your stakeholders more than you can
deliver for the price they expect to pay in time and resources.

If you find yourself using a lot of overtime, something is
wrong. Most iterations shouldn’t have problems. When a
problem does occur, you should usually be able to solve it by
using slack, not overtime. I look for systemic problems if I see
a team exceeding 10 percent overtime in more than one
iteration per quarter.

Organizational Strategy #4: Respect Customer Goals
When XP teams first form, it usually takes individual members a while to think of themselves as part
of a single team. In the beginning, programmers, testers, and customers often see themselves as separate
groups.

New on-site customers are often particularly skittish. Being part of a development team feels awkward;
they’d rather work in their normal offices with their normal colleagues. Those colleagues are often

Ally

Slack (p. 246)

The bigger the problem, the
sooner you should disclose it.

Reliance on overtime indicates a
systemic problem.

106 C H A P T E R 6 :   C O L L A B O R A T I N G

influential members of the company. If the customers are unhappy, those feelings transmit directly back
to stakeholders.

When starting a new XP project, programmers should make an extra effort to welcome the customers.
One particularly effective way to do so is to treat customer goals with respect. This may even mean
suppressing, for a time, cynical programmer jokes about schedules and suits.

Being respectful goes both ways, and customers should also suppress their natural tendencies to
complain about schedules and argue with estimates. I’m emphasizing the programmer’s role here
because it plays such a big part in stakeholder perceptions.

Another way for programmers to take customer goals seriously is to come up with creative alternatives
for meeting those goals. If customers want something that may take a long time or involves tremendous
technical risks, suggest alternate approaches to reach the same underlying goal for less cost. If there’s a
more impressive way of meeting a goal that customers haven’t considered, by all means mention it—
especially if it’s not too hard.

As programmers and customers have these conversations, barriers will be broken and trust will develop.
As stakeholders see that, their trust in the team will blossom as well.

You can also build trust directly with stakeholders. Consider this: the next time a stakeholder stops you
in the hallway with a request, what would happen if you immediately and cheerfully took him to a
stack of index cards, helped him write the story, and then brought them both to the attention of the
product manager for scheduling?

This might be a 10-minute interruption for you, but imagine how the stakeholder would feel. You
responded to his concern, helped him express it, and took immediate steps to get it into the plan.

That’s worth infinitely more to him than firing an email into a black hole of your request tracking system.

Organizational Strategy #5: Promote the Team
You can also promote the team more directly. One team posted pictures and charts on the outer wall
of the workspace that showed what they were working on and how it was progressing. Another invited
anyone and everyone in the company to attend its iteration demos.

Being open about what you’re doing will also help people appreciate your team. Other people in the
company are likely to be curious, and a little wary, about your strange new approach to software
development. That curiosity can easily turn to resentment if the team seems insular or stuck-up.

You can be open in many ways. Consider holding brown-bag lunch sessions describing the process,
public code-fests in which you demonstrate your code and XP technical practices, or an “XP open-house
day” in which you invite people to see what you’re doing and even participate for a little while. If you
like flair, you can even wear buttons or hats around the office that say “Ask me about XP.”

Organizational Strategy #6: Be Honest
In your enthusiasm to demonstrate progress, be careful not to step over the line. Borderline behavior
includes glossing over known defects in an iteration demo, taking credit for stories that are not 100
percent complete, and extending the iteration for a few days in order to finish everything in the plan.

These are minor frauds, yes. You may even think that “fraud” is too strong a word—but all of these
behaviors give stakeholders the impression that you’ve done more than you actually have.

T R U S T 107

There’s a practical reason not to do these things: stakeholders will expect you to complete the remaining
features just as quickly, when in fact you haven’t even finished the first set. You’ll build up a backlog
of work that looks done but isn’t. At some point, you’ll have to finish that backlog, and the resulting
schedule slip will produce confusion, disappointment, and even anger.

Even scrupulously honest teams can run into this problem.
In a desire to look good, teams sometimes sign up for more
stories than they can implement well. They get the work
done, but they take shortcuts and don’t do enough design
and refactoring. The design suffers, defects creep in, and the
team finds itself suddenly going much slower while
struggling to improve code quality.

Similarly, don’t yield to the temptation to count stories that aren’t “done done”. If a
story isn’t completely finished, it doesn’t count toward your velocity. Don’t even take
partial credit for the story. There’s an old programming joke: the first 90 percent takes
90 percent of the time... and the last 10 percent takes 90 percent of the time. Until the
story is totally done, it’s impossible to say for certain how much is left.

THE CHALLENGE OF TRUTH-TELLING
The most challenging project I’ve ever coached had a tight deadline. (Don’t they all?) Our end-customer was a
critical customer: a large institution that represented the majority of our income. If we didn’t satisfy them, we
risked losing a huge chunk of vital business.

Knowing what was at stake, I made a reliable release plan our top priority. Six weeks later, we had not only
implemented the first six weeks of stories, we also had a reliable estimate of our velocity and a complete
estimated list of remaining stories.

It showed us coming in late—very late. We needed to deliver in seven months. According to the release plan,
we would deliver in thirteen.

The project manager and I took the release plan to our director. Things went downhill. He forbade us from
sharing the news with the end-customer. Instead, he ordered us to make the original deadline work any way
we could.

We knew that we couldn’t make the deadline work. We didn’t have enough time to add staff; it would take too
long for them to become familiar with the codebase. We couldn’t cut scope because we wouldn’t admit the
problem to our customer.

Our jobs were on the line and we tried to make it work. We ignored Brooks’ Law,* hired a bunch of programmers,
and did everything we could to ramp them up quickly without distracting the productive members of the team.
Despite our best efforts, we shipped defect-ridden software six months late—within a few weeks of our original
prediction. We lost the customer.

We might have lost the customer even if we had told them the truth. It’s impossible to say. My experience,
however, is that customers, stakeholders, and executives appreciate being made part of the solution. When
you demonstrate progress on a weekly basis, you establish credibility and trust. With that credibility and trust
in place, stakeholders have a greater interest in working with you to balance trade-offs and achieve their goals.

Only sign up for as many stories
as the team can reliably

complete.

Ally

“Done Done” (p. 156)

* “[A]dding manpower to a late software project makes it later” [Brooks] (p. 25).

108 C H A P T E R 6 :   C O L L A B O R A T I N G

I won’t involve myself in hiding information again. Schedules can’t keep secrets; there are no miraculous
turnarounds; the true ship date comes out eventually.

Instead, I go out of my way to present the most accurate picture I can. If a defect must be fixed in this release,
I schedule the fix before new features. If our velocity is lower than I want, I nonetheless report delivery dates
based on our actual velocity. That’s reality, and only by being honest about reality can I effectively manage the
consequences.

Questions
Our team seems to be stuck in the “Storming” stage of team development. How can we advance?

Give it time. Teams don’t always progress through the stages of development in an orderly manner.
One day, everything may seem rosy; the next, calamitous. Storming is necessary for the team to progress:
members need to learn how to disagree with each other. You can help by letting people know that
disagreement is normal and acceptable. Find ways to make it safe to disagree.

If the team seems like it hasn’t made any progress in a month or two, ask for help. Talk to your mentor
(see “Find a Mentor” in Chapter 2) or an organizational development expert. (Your HR department
might have somebody on staff. You can also hire an OD consultant.) If there’s somebody on the team
who is particularly disruptive, consider whether the team would be better off if he moved to a different
project.

Isn’t it more important that we be good rather than look good?

Both are important. Do great work and make sure your organization knows it.

I thought overtime didn’t solve schedule problems. Why did you recommend overtime?

Overtime won’t solve your schedule problems, especially systemic ones, but it might help if you have a
small hiccup to resolve. The key point to remember is that, while overtime can help solve small
problems, it mustn’t be the first or only tool in your kit.

Why bring big problems to stakeholders’ attentions before smaller, already-solved problems? That seems backward.

Problems tend to grow over time. The sooner you disclose a problem, the more time you have to solve
it. It reduces panic, too: early in the project, people are less stressed about deadlines and have more
mental energy for problems.

You said programmers should keep jokes about the schedule to themselves. Isn’t this just the same as telling
programmers to shut up and meet the schedule, no matter how ridiculous?

Certainly not. Everybody on the team should speak up and tell the truth when they see a problem.
However, there’s a big difference between discussing a real problem and simply being cynical.

Many programmers have cynical tendencies. That’s OK, but be aware that customers’ careers are often
on the line. They may not be able to tell the difference between a real joke and a complaint disguised
as a joke. An inappropriate joke can set their adrenaline pumping just as easily as a real problem can.

Venting is counterproductive when there’s a better way to address the root of the problem.

T R U S T 109

What if we’ve committed to finishing a story and then discover that we can’t possibly finish it this iteration?

Mistakes happen; it’s inevitable. Perhaps programmers underestimated the technical challenge of a
story. Perhaps customers neglected to mention an important aspect of the story. Either way, finding the
problem early and reworking the plan is your best solution. If you can’t, admit your mistake and make
a better plan for the next iteration. (See “Iteration Planning” in Chapter 8 for more about changing your
plans when something goes wrong.)

Like overtime, reworking the plan shouldn’t happen too often. I look for underlying systemic problems
if it happens more than once per quarter.

Results
When you have a team that works well together, you cooperate to meet your goals and solve your
problems. You collectively decide priorities and collaboratively allocate tasks. The atmosphere in the
team room is busy but relaxed, and you genuinely enjoy working with your teammates.

When you establish trust within your organization and with your stakeholders, you demonstrate the
value of the project and your team. You acknowledge mistakes, challenges, and problems, and you find
solutions instead of trying to hide them until they blow up. You seek solutions instead of blame.

Contraindications
Compensation practices can make teamwork difficult. An XP team produces results through group
effort. If your organization relies on individual task assignment for personnel evaluation, teamwork
may suffer. Similarly, ranking on a curve—in which at least one team member must be marked
unsatisfactory, regardless of performance—has a destructive effect on team cohesion. These practices
can transform your team into a group of competing individuals, which will hurt your ability to practice
XP.

Even without harmful compensation practices, team members may not trust each other. This is a
problem, but it isn’t necessarily debilitating. Team members that must deliver software weekly in pursuit
of a common goal will learn to trust each other... or implode from the pressure. Unfortunately, I can’t
tell you which outcome will happen to your team.

If the team doesn’t sit together, it’s much harder for good teamwork to occur, and if
team members also don’t trust each other, it’s unlikely that trust will ever develop. Be
careful of using XP if the team doesn’t sit together.

Alternatives
Trust is vital for agile projects—perhaps for any project. I’m not sure it’s possible to work on an agile
project without it.

Further Reading
The Wisdom of Teams [Katzenbach & Smith], which organizational development consultant Diana Larsen
describes as “the best book about teams extant.”

“Developmental Sequences in Small Groups” [Tuckman] introduces the team development sequence
of “Forming, Storming, Norming, and Performing.”

Ally

Sit Together (p. 112)

110 C H A P T E R 6 :   C O L L A B O R A T I N G

The Trusted Advisor [Maister et al] is a good resource for generating organizational trust.

The Power of a Positive No [Ury] describes how to say no respectfully when it’s necessary while preserving
important relationships. Diana Larsen desribes this ability as “probably more important than any
amount of negotiating skill in building trust.”

T R U S T 111

Sit Together
We communicate rapidly and accurately.

If you’ve tried to conduct a team meeting via speakerphone, you
know how much of a difference face-to-face conversations make. Compared to an in-person discussion,
teleconferences are slow and stutter-filled, with uncomfortable gaps in the conversation and people
talking over each other.

What you may not have realized is how much this affects your work.

Imagine you’re a programmer on a nonagile team and you need to clarify something in your
requirements document in order to finish an algorithm. You fire off an email to your domain expert,
Mary, then take a break to stretch your legs and get some coffee.

When you get back, Mary still hasn’t responded, so you check out a few technical blogs you’ve been
meaning to read. Half an hour later, your inbox chimes. Mary has responded.

Uh-oh... it looks like Mary misunderstood your message and answered the wrong question. You send
another query, but you really can’t afford to wait any longer. You take your best guess at the answer—
after all, you’ve been working at this company for a long time, and you know most of the answers—
and get back to work.

A day later, after exchanging a few more emails, you’ve hashed out the correct answer with Mary. It
wasn’t exactly what you thought, but you were pretty close. You go back and fix your code. While
you’re in there, you realize there’s an edge case nobody’s handled yet.

You could bug Mary for the answer, but this is a very obscure case. It’s probably never going to happen
in the field. Besides, Mary’s very busy, and you promised you’d have this feature done yesterday. (In
fact, you were done yesterday, except for all these nitpicky little details.) You put in the most likely
answer and move on.

Accommodating Poor Communication
As the distance between people grows, the effectiveness of their communication decreases.
Misunderstandings occur and delays creep in. People start guessing to avoid the hassle of waiting for
answers. Mistakes appear.

To combat this problem, most development methods attempt to reduce the need for direct
communication. It’s a sensible response. If questions lead to delays and errors, reduce the need to ask
questions!

The primary tools teams use to reduce reliance on direct communication are development phases and
work-in-progress documents. For example, in the requirements phase, business analysts talk to
customers and then produce a requirements document. Later, if a programmer has a question, he
doesn’t need to talk to an expert; he can simply look up the answer in the document.

It’s a sensible idea, but it has flaws. The authors of the documents need to anticipate which questions
will come up and write clearly enough to avoid misinterpretations. This is hard to do well. In practice,
it’s impossible to anticipate all possible questions. Also, adding up-front documentation phases stretches
out the development process.

Audience

Whole Team, Coaches

112 C H A P T E R 6 :   C O L L A B O R A T I N G

A Better Way
In XP, the whole team—including experts in business, design, programming, and testing—sits together
in a open workspace. When you have a question, you need only turn your head and ask. You get an
instant response, and if something isn’t clear, you can discuss it at the whiteboard.

Consider the previous story from this new perspective. You’re a programmer and you need some
information from your domain expert, Mary, in order to code an algorithm.

This time, rather than sending an email, you turn your head. “Mary, can you clarify something for me?”

Mary says, “Sure. What do you need?”

You explain the problem, and Mary gives her answer. “No, no,” you reply. “That’s a different problem.
Here, let me show you on the whiteboard.”

A few minutes later, you’ve hashed out the issue and you’re back to coding again. Whoops! There’s an
edge case you hadn’t considered. “Wait a second, Mary,” you say. “There’s something we didn’t
consider. What about….”

After some more discussion, the answer is clear. You’re a little surprised: Mary’s answer was completely
different than you expected. It’s good that you talked it over. Now, back to work! The code is due today,
and it took 20 whole minutes to figure out this nitpicky little issue.

Exploiting Great Communication
Sitting together eliminates the waste caused by waiting for an answer, which dramatically improves
productivity. In a field study of six colocated teams, [Teasley et al.] found that sitting together doubled
productivity and cut time to market to almost one-third of the company baseline.

Those results are worth repeating: the teams delivered software in one-third their normal time. After the
pilot study, 11 more teams achieved the same result. This success led the company to invest heavily in
open workspaces, by building a new facility in the U.S. that supports 112 such teams and making plans
for similar sites in Europe.

How can sitting together yield such impressive results? Communication.

Although programming is the emblematic activity of software development, communication is the real
key to software success. As [Teasley et al.] report, “Past studies have indicated that less than 30 percent
of a programmer’s time is spent on traditional programming tasks and less than 20 percent of the time
is spent on coding. The rest of the time is spent on meetings, problem resolution with the team, resolving
issues with customers, product testing, etc.”

My experience is that programmers on XP teams spend a far greater percentage of their time
programming. I attribute that to the increased communication effectiveness of sitting together. Rather
than sitting in hour-long meetings, conversations last only as long as needed and involve only the people
necessary.

Teams that sit together not only get rapid answers to their questions, they experience what [Cockburn]
calls osmotic communication. Have you ever been talking with someone in a crowded room and then heard
your name out of the blue? Even though you were focusing on your conversation, your brain was
paying attention to all the other conversations in the room. When it heard your name, it replayed the

S I T T O G E T H E R 113

sounds into your conscious mind. You not only hear your name, you hear a bit of the conversation
around it, too, in a phenomenon known as the cocktail party effect.*

Imagine a team that sits together. Team members are concentrating on their work and talking quietly
with their partners. Then somebody mentions something about managing database connections, and
another programmer perks up. “Oh, Tom and I refactored the database connection pool last week. You
don’t need to manage the connections manually anymore.” When team members are comfortable
speaking up like this, it happens often (at least once per day) and saves time and money every time.

There’s another hidden benefit to sitting together: it helps
teams jell and breaks down us-versus-them attitudes
between groups. In contrast, distance seems to encourage
adversarial relationships and blaming “those people.”
Whenever I see this (for example, between programmers and
testers), I suggest that they sit together. This helps the groups
interact socially and gain respect for each other
professionally.

Secrets of Sitting Together
To get the most out of sitting together, be sure you have a complete team (see “The XP Team” in
Chapter 3). It’s important that people be physically present to answer questions. If someone must be
absent often—product managers tend to fall into this category—make sure that someone else on the
team can answer the same questions. A domain expert is often a good backup for a traveling product
manager.

Similarly, sit close enough to each other that you can have a quick discussion without getting up from
your desk or shouting. This will also help encourage osmotic communication, which relies on team
members overhearing conversations.

Available instant help doesn’t do any good if you don’t ask
for it. Many organizations discourage interruptions, but I
encourage them on my XP teams. There’s no sense in banging
your head against a wall when the person with the answer is
right across the room. To support this attitude, many teams have a rule: “We must always help when
asked.”

Interruptions disrupt flow and ruin productivity, so this rule may sound foolish. It takes a programmer
15 minutes or more to get back into flow after an interruption [DeMarco & Lister 1999].

Fortunately, with pair programming, flow works differently. The delay doesn’t seem
to occur. One programmer answers the question and the other keeps thinking about
the problem at hand. When the interruption is over, a quick “Where were we?” gets
work moving again.

Pairing helps in a few other ways, too. Osmotic communication depends on a buzz of conversation in
the room. If people aren’t pairing, there’s less talking. Pairing also makes it easier for programmers to
ignore irrelevant background conversations.

When I see an adversarial
relationship between separate

groups in a team, I suggest that
they sit together.

Ask for help when you’re stuck.

Ally

Pair Programming (p. 71)

* The best layman’s description of the cocktail party effect I’ve seen is on Wikipedia: http://en.wikipedia.org/wiki/Cocktail_party_effect.

114 C H A P T E R 6 :   C O L L A B O R A T I N G

http://en.wikipedia.org/wiki/Cocktail_party_effect

Making Room
Sitting together is one of those things that’s easy to say and hard to do. It’s not that the act itself is
difficult—the real problem is finding space.

NOTE
Start arranging for a shared workspace now.

A team that sits in adjacent cubicles can convert them into an adequate shared workspace, but even
with cubicles, it takes time and money to hire people to rearrange the walls.

When I say “time,” I mean weeks or even months.

In a smaller company, you might be able to take matters (and screwdrivers) into your own hands. In a
larger company, you could run afoul of Facilities if you do that. That may be a worthwhile cost, but talk
to your project manager first. She should have some insight on the best way to get a shared workspace.

While you’re waiting for construction on your dream workspace to finish, a big conference room is a
good alternative. One team I worked with set up shop in the company boardroom for six weeks while
they waited for their workspace to be ready.

Designing Your Workspace
Your team will produce a buzz of conversation in its workspace. Because they’ll be working together,
this buzz won’t be too distracting for team members. For people outside the team, however, it can be
very distracting. Make sure there’s good sound insulation between your team and the rest of the
organization.

Within the workspace, group people according to the conversations they most need to overhear.
Programmers should all sit next to each other because they collaborate moment-to-moment. Testers
should be nearby so programmers can overhear them talk about issues. Domain experts and interaction
designers don’t need to be quite so close, but should be close enough to answer questions without
shouting.

The product manager and project manager are most likely to have conversations that would distract the
team. They should sit close enough to be part of the buzz but not so close that their conversations are
distracting.

An open workspace doesn’t leave much room for privacy,
and pair programming stations aren’t very personal. This loss
of individuality can make people uncomfortable. Be sure that
everyone has a space they can call their own. You also need
an additional enclosed room with a door, or cubes away from
the open workspace, so people can have privacy for personal phone calls and individual meetings.

As you design your workspace, be sure to include plenty of whiteboards and wall space
for an informative workspace. Try to have at least 24 linear feet of whiteboard space,
magnetic if possible. You can never have too many whiteboards.

Some teams include a projector in their workspace. This is a great idea, as it allows the
team to collaborate on a problem without moving to a conference room.

Leave room for individuality in
your workspace.

Ally

Informative Workspace (p.
83)

S I T T O G E T H E R 115

Finally, the center of an XP workspace is typically a set of pairing stations. I like to have the stations
facing each other so people can see each other easily. A hollow triangle, square, or oval setup works
well. Provide a few more pairing stations than there are programming pairs. This allows testers and
customers to pair as well (either with each other or with programmers), and it provides programmers
with space to work solo when they need to.

NOTE
For information on building a good pairing station, see “Pair Programming” in
Chapter 6.

Sample Workspaces
The sample workspace in Figure 6-2 was designed for a team of 13. They had six programmers, six
pairing stations, and a series of cubbies for personal effects. Nonprogrammers worked close to the pairing
stations so they could be part of the conversation even when they weren’t pairing. Programmers’ cubbies
were at the far end because they typically sat at the pairing stations. For privacy, people adjourned to
the far end of the workspace or went to one of the small conference rooms down the hall.

In addition to the pairing stations, everybody had a laptop for personal work and email. The pairing
stations all used a group login so any team member could work at them.

Before creating this workspace, the team had been sitting in cubicles in the same part of the office. To
create the workspace, they reconfigured the inner walls.

This workspace was good, but not perfect. It didn’t have nearly enough wall space for charts and
whiteboards and nonprogrammers didn’t have enough desk space. On the plus side, there was plenty
of room to accommodate people at the pairing stations, which meant that customers paired with
programmers frequently, and there were also extra cubbies for bringing people into the team
temporarily.

Rolling whiteboards

Figure 6-2. A sample workspace

116 C H A P T E R 6 :   C O L L A B O R A T I N G

A small workspace

The small workspace in Figure 6-3 was created by an up-and-coming startup when they moved into
new offices. They were still pretty small so they couldn’t create a fancy workspace. They had a team of
seven: six programmers and a product manager.

This team arranged its five pairing stations along a long wall. They had a table on the side for meetings,
and charts and whiteboards on dividers surrounded them. The programmers had a pod of half-cubicles
on the other side for personal effects, and there were small conference rooms close by for privacy.

This was a great workspace with one serious problem: the product manager wasn’t in earshot and didn’t
participate in team discussion. The team couldn’t get ready answers to its questions and often struggled
with requirements.

Adopting an Open Workspace
Some team members may resist moving to an open workspace. Common concerns include loss of
individuality and privacy, implied reduction in status from losing a private office, and managers not
recognizing individual contributions. Team members may also mention worries about distractions and
noise, but I find that this is usually a cover for one of the other concerns.

As with pair programming, most people come to enjoy the benefits that sitting together provides, but
it can take a few months. In [Teasley et al.]’s study, team members initially preferred cubicles to the
open workspace, but by the end of the study, they preferred the open workspace.

However, forcing people to sit together in hopes that they’ll
come to like it is a bad idea. When I’ve forced team members
to do so, they’ve invariably found a way to leave the team,
even if it meant quitting the company. Instead, talk with the
team about their concerns and the trade-offs of moving to an

Don’t force people to sit together
against their will.

Whiteboard

Figure 6-3. A small workspace

S I T T O G E T H E R 117

open workspace. Discuss how team members will be evaluated in the new system and what provisions
for privacy you can make. You may be able to address some concerns by providing a shared workspace
in addition to existing offices and cubicles.

If a large portion of the team is against the open workspace, sitting together is probably not a good
choice. If you only have one or two adamant objectors and the rest of the team wants to sit together,
you may wish to sit together anyway and allow the objectors to move to a different team.

Questions
How can I concentrate with all that background noise?

A team that’s working together in a shared workspace produces a busy hum of activity. This can be
distracting at first, but most people get used to it in time.

For programmers, pair programming is an excellent way to focus your attention away
from the background noise. You won’t notice it if you’re pairing. Nonprogrammers can
work in pairs, too.

If you work alone and find the background noise distracting, put on headphones, wear
earplugs, or sit further away from the team for a time. You’ll miss out on osmotic communication, but
at least you’ll be able to concentrate.

Sometimes, the team gets a little noisy and rambunctious. It’s
OK to ask for quiet—the sound in the team room should be
a hum, not a full-throated chorus. Some teams have a bell for
team members to ring when they want the team to be more
quiet.

When one person is interrupted, the whole team stops what they’re doing to listen. What can we do to prevent people
from being distracted so easily?

Especially in the beginning of the project, it’s possible that the whole team really does need to hear these
conversations. As time goes on, team members will learn which conversations they can comfortably
ignore.

If this is a continuing problem, try stepping a little further away from the pairing stations when a
conversation lasts more than a few minutes. Interested team members can join the conversation, and
the rest of the team can continue working.

What if I need privacy for phone calls?

Some people, particularly customers and project managers, need to take a lot of calls as they work.
Either situate them further away from the rest of the team or arrange for an enclosed office with a door.
Keep the door open as often as possible to allow information to flow smoothly.

Results
When your team sits together, communication is much more effective. You stop guessing at answers
and ask more questions. You overhear other people’s conversations and contribute answers you may
not expect. Team members spontaneously form cross-functional groups to solve problems. There’s a
sense of camaraderie and mutual respect.

Ally

Pair Programming (p. 71)

Pairing makes background
conversations fade away.

118 C H A P T E R 6 :   C O L L A B O R A T I N G

Contraindications
The hardest part about sitting together is finding room for the open workspace. Cubicles, even adjacent
cubicles, won’t provide the benefits that an open workspace does. Start working on this problem now
as it can take months to resolve.

Don’t force the team to sit together against their will. Adamant objectors will find a way to leave the
team, and possibly the company.

Be careful about sitting together if programmers don’t pair program. Solitary programming requires a
quiet workspace. Pair programming, on the other hand, enables programmers to ignore the noise.

Alternatives
Sitting together is one of the most powerful practices in XP. It’s important for communication and team
dynamics. Sitting apart tends to fray fragile relationships, particularly between different functional
groups, and puts your team at a disadvantage. If your team is in a single location, you’re better off
figuring out how to sit together.

If you have a multisite team, consider turning each site into
its own team. For example, if programmers are in one site
and customers are in another, the programmers may engage
some business analysts to act as proxy customers. In this
scenario, the customers and development team should still
work together, face-to-face, for several weeks at the beginning of each release.

If you have multiple teams of programmers, consider separating their responsibilities so that each works
on entirely different codebases. [Evans] has an excellent discussion of the options for doing so.

You can practice XP with a single multisite team, but it requires a lot of travel. [Yap] has a good
experience report describing how her team made this work 24 hours a day across 3 time zones. She
focused on maximizing communication by regularly flying team members to a single location for several
weeks at a time. They also conducted daily phone calls between locations.

If your whole team cannot sit together and you still wish to
practice XP, talk to your mentor (see “Find a Mentor” in
Chapter 2) about your options and hire experienced XP
coaches for each site.

Further Reading
Agile Software Development [Cockburn] has an excellent chapter on communication. Chapter 3,
“Communicating, Cooperating Teams,” discusses information radiators, communication quality, and
many other concepts related to sitting together.

If you can’t sit together, “Follow the Sun: Distributed Extreme Programming Development” [Yap] is an
interesting experience report describing a single XP team divided into three locations, each eight hours
apart.

Similarly, Domain-Driven Design [Evans] has an excellent discussion of coordinating multiple
development teams in Chapter 14, “Maintaining Model Integrity.” While the book’s focus is object-
oriented domain models, this chapter is applicable to many design paradigms.

Multisite teams are difficult and
expensive.

If you can’t sit together, talk to
your mentor about your options.

S I T T O G E T H E R 119

Real Customer Involvement
We understand the goals and frustrations of our customers and end-
users.

An XP team I worked with included a chemist whose previous job involved the software that the team
was working to replace. She was an invaluable resource, full of insight about what did and didn’t work
with the old product. We were lucky to have her as one of our on-site customers—thanks to her, we
created a more valuable product.

In an XP team, on-site customers are responsible for choosing and prioritizing features. The value of the
project is in their hands. This is a big responsibility—as an on-site customer, how do you know which
features to choose?

Some of that knowledge comes from your expertise in the problem domain and with previous versions
of the software. You can’t think of everything, though. Your daily involvement with the project,
although crucial, includes the risk of tunnel vision—you can get so caught up in the daily details of the
project that you lose track of your real customers’ interests.

To widen your perspective, you need to involve real customers. The best approach to doing so depends
on who you’re building your software for.

Personal Development
In personal development, the development team is its own customer. They’re developing the software for
their own use. As a result, there’s no need to involve external customers—the team is the real customer.

NOTE
I include this type of development primarily for completeness. Most personal
development is for small, throwaway applications that don’t involve a full-blown XP
team.

In-House Custom Development
In-house custom development occurs when your organization asks your team to build something for the
organization’s own use. This is classic IT development. It may include writing software to streamline
operations, automation for the company’s factories, or producing reports for accounting.

In this environment, the team has multiple customers to serve: the executive sponsor who pays for the
software and the end-users who use the software. Their goals may not be in alignment. In the worst
case, you may have a committee of sponsors and multiple user groups to satisfy.

Despite this challenge, in-house custom development makes it easy to involve real customers because
they’re easily accessible. The best approach is to bring your customers onto the team—to turn your
real customers into on-site customers.

To do so, recruit your executive sponsor or one of his trusted lieutenants to be your product manager.
He will make decisions about priorities, reflecting the desire of the executive sponsor to create software
that provides value to the organization.

Audience

Coaches, Customers

120 C H A P T E R 6 :   C O L L A B O R A T I N G

Also recruit some end-users of the software to act as domain experts. As with the chemist mentioned
in the introduction, they will provide valuable information about how real people use the software.
They will reflect the end-users’ desire to use software that makes their jobs better.

NOTE
If your software has multiple sponsors or user groups, use the ideas in “Vertical-
Market Software,” later in this chapter.

To avoid tunnel vision, the product manager and other on-site customers should solicit
feedback from their colleagues by demonstrating some of the builds created for the
iteration demo and discussing their plans for the future.

Outsourced Custom Development
Outsourced custom development is similar to in-house development, but you may not have the connections
that an in-house team does. As a result, you may not be able to recruit real customers to act as the
team’s on-site customers.

Still, you should try. One way to recruit real customers is to move your team to your customer’s offices
rather than asking them to join you at yours.

If you can’t bring real customers onto the team, make an extra effort to involve them.
Meet in person with your real customers for the first week or two of the project so you
can discuss the project vision and initial release plan. If you’re located near each other,
meet again for each iteration demo, retrospective, and planning session.

If you’re far enough apart that regular visits aren’t feasible, stay in touch via instant
messaging and phone conferences. Try to meet face-to-face at least once per month to discuss plans. If
you are so far apart that monthly meetings aren’t feasible, meet at least once per release.

Vertical-Market Software
Unlike custom development, vertical-market software is developed for many organizations. Like custom
development, however, it’s built for a particular industry and it’s often customized for each customer.

Because vertical-market software has multiple customers,
each with customized needs, you have to be careful about
giving real customers too much control over the direction of
the product. You could end up making a product that, while
fitting your on-site customer’s needs perfectly, alienates your
remaining customers.

Instead, your organization should appoint a product manager who understands the
needs of your real customers impeccably. His job—and it’s a tough one—is to take into
account all your real customers’ needs and combine them into a single, compelling
vision.

Rather than involving real customers as members of the team, create opportunities to
solicit their feedback. Some companies create a customer review board filled with their most important
customers. They share their release plans with these customers and—on a rotating basis—provide
installable iteration demo releases for customers to try.

Ally

Iteration Demo (p. 138)

Allies

Vision (p. 201)
Release Planning (p. 206)

Be careful about giving real
customers too much control over

vertical-market software.

Allies

Vision (p. 201)
Iteration Demo (p. 138)

R E A L C U S T O M E R I N V O L V E M E N T 121

Depending on your relationship with your customers, you may be able to ask your customers to donate
real end-users to join the team as on-site domain experts. Alternatively, as with the chemist in the
introduction, you may wish to hire previous end-users to be your domain experts.

In addition to the close relationship with your customer review board, you may also solicit feedback
through trade shows and other traditional sources.

Horizontal-Market Software
Horizontal-market software is the visible tip of the software development iceberg: software that’s intended
to be used across a wide range of industries. The rows of shrinkwrapped software boxes at your local
electronics store are a good example of horizontal-market software. So are many web sites.

As with vertical-market software, it’s probably better to set limits on the control that real customers
have over the direction of horizontal-market software. Horizontal-market software needs to appeal to
a wide audience, and real customers aren’t likely to have that perspective. Again, an in-house product
manager who creates a compelling vision based on all customers’ needs is a better choice.

As a horizontal-market developer, your organization may not have the close ties with customers that
vertical-market developers do. Thus, a customer review board may not be a good option for you. Instead,
find other ways to involve customers: focus groups, user experience testing, community previews, beta
releases, and so forth.

NOTE
Web-based software, with its invisible deployment, offers a powerful option for
involving real customers. You can roll out minimalist features, mark them “beta,” and
watch customer reactions. Another option, reportedly used by Amazon, is to deploy
changes to a small percentage of visitors and observe how their usage patterns change.

Questions
Who should we use as on-site customers when we can’t include real customers on the team?

You organization should supply a product manager and domain experts. See “The XP Team” in
Chapter 3.

We’re creating a web site for our marketing department. What kind of development is that?

At first glance, this may seem like custom development, but because the actual audience for the web
site is the outside world, it’s closer to vertical-market or horizontal-market development. The product
manager should come from the marketing department, if possible, but you should also solicit the input
of people who will be visiting the site.

Results
When you include real customers, you improve your knowledge about how they use the software in
practice. You have a better understanding of their goals and frustrations, and you use that knowledge
to revise what you produce. You increase your chances of delivering a truly useful and thus successful
product.

122 C H A P T E R 6 :   C O L L A B O R A T I N G

Contraindications
One danger of involving real customers is that they won’t necessarily reflect the needs
of all your customers. Be careful that they don’t steer you toward creating software
that’s only useful for them. Your project should remain based on a compelling vision.
Customer desires inform the vision and may even change it, but ultimately the product
manager holds final responsibility for product direction.

End-users often think in terms of improving their existing way of working, rather than in terms of
finding completely new ways of working. This is another reason why end-users should be involved but
not in control. If innovation is important to your project, give innovative thinkers—such as a visionary
product manager or interaction designer—a prominent role on your team.

Alternatives
Real customer involvement is helpful but not crucial. Sometimes the best software comes from people
who have a strong vision and pursue it vigorously. The resulting software tends to be either completely
new or a strong rethinking of existing products.

In the absence of real customer involvement, be sure to have a visionary product manager. It’s best if
this person understands the domain well, but you can also hire domain experts to join the team.

Still, feedback from real customers is always informative, even if you choose to ignore it. It’s especially
useful when you’ve deployed software to them; their reaction to working software gives you valuable
information about how likely you are to reach the greatest levels of success.

Ally

Vision (p. 201)

R E A L C U S T O M E R I N V O L V E M E N T 123

Ubiquitous Language
We understand each other.

Try describing the business logic in your current system to a
nonprogrammer domain expert. Are you able to explain how the system works in terms the domain
expert understands? Can you avoid programmer jargon, such as the names of design patterns or coding
styles? Is your domain expert able to identify potential problems in your business logic?

If not, you need a ubiquitous language.

The Domain Expertise Conundrum
One of the challenges of professional software development is that programmers aren’t necessarily
experts in the areas for which they write software. For example, I’ve helped write software that controls
factory robots, directs complex financial transactions, and analyzes data from scientific instruments.
When I started on these projects, I knew nothing about those things.

It’s a conundrum. The people who are experts in the problem domain—the domain experts—are rarely
qualified to write software. The people who are qualified to write software—the programmers—don’t
always understand the problem domain.

NOTE
Hiring programmers with expertise in a particular domain will reduce this problem,
but it won’t eliminate it. In addition, given the choice between a great programmer
with no domain experience and a poor programmer with lots of domain experience, I
would choose the better programmer.

Overcoming this challenge is, fundamentally, an issue of communication. Domain experts communicate
their expertise to programmers, who in turn encode that knowledge in software. The challenge is
communicating that information clearly and accurately.

Two Languages
Imagine for a moment that you’re driving to a job interview. You forgot your map, so you’re getting
directions from a friend on your cell phone (hands free, of course!).

“I just passed a gas station on the right,” you say. “That was a major intersection.”

“Wait...” says your friend, as he puzzles over a map. “What street are you on? Which direction
are you going?”

“I can’t tell!” you yelp, slamming on the brakes as a bright yellow sports car cuts you off. “Uh...
sorry. It’s a pretty twisty road—does that help? Wait... I just passed Hanover.”

“Hanover Street or Hanover Loop?” asks your friend.

The problem in this scenario is that you and your friend are speaking two different languages. You’re
talking about what you see on the road and your friend is talking about what he sees on his map. You

Audience

Programmers

124 C H A P T E R 6 :   C O L L A B O R A T I N G

need to translate between the two, and that adds delay and error. You’ll get to your job interview
eventually, but you’ll probably miss a few turns along the way and you might not get there on time.

A similar problem occurs between programmers and domain experts. Programmers program in the
language of technology: classes, methods, algorithms, and databases. Domain experts talk in the
language of their domain: financial models, chip fabrication plants, and the like.

You could try to translate between the two languages, but it will add delays and errors. You’d produce
some software eventually, but you’d probably introduce some bugs along the way. Instead, pick just
one language for the whole team to use—a ubiquitous language.

How to Speak the Same Language
Programmers should speak the language of their domain experts, not the other way around.

Imagine you’re creating a piece of software for typesetting musical scores. The publishing house you’re
working for provides an XML description of the music, and you need to render it properly. This is a
difficult task, filled with seemingly minor stylistic choices that are vitally important to your customers.

In this situation, you could focus on XML elements, parents, children, and attributes. You could talk
about device contexts, bitmaps, and glyphs. If you did, your conversation might sound something like
this:

Programmer: “We were wondering how we should render this clef element. For example, if
the element’s first child is G and the second child is 2, but the octave-change element is -1,
which glyph should we use? Is it a treble clef?”

Domain expert: (Thinking, “I have no idea what these guys are talking about. But if I admit it, they’ll
respond with something even more confusing. I’d better fake it.”) “Um... sure, G, that’s treble. Good
work.”

Instead, focus on domain terms rather than technical terms.

Programmer: “We were wondering how we should print this G clef. It’s on the second line of
the staff but one octave lower. Is that a treble clef?”

Domain expert: (Thinking, “An easy one. Good.”) “That’s often used for tenor parts in choral
music. It’s a treble clef, yes, but because it’s an octave lower we use two symbols rather than
one. Here, I’ll show you an example.”

The domain expert’s answer is different in the second example because he understands the question.
The conversation in the first example would have led to a bug.

Ubiquitous Language in Code
As a programmer, you might have trouble speaking the language of your domain experts. When you’re
working on a tough problem, it’s difficult to make the mental translation from the language of code to
the language of the domain.

A better approach is to design your code to use the language of the domain. You can name your classes,
methods, and variables anything. Why not use the terms that your domain experts use?

U B I Q U I T O U S L A N G U A G E 125

This is more than learning the domain to write the software;
this is reflecting in code how the users of the software think
and speak about their work. By encoding your understanding
of the domain, you refine your knowledge and—due to
code’s uncompromising need for precision—expose gaps in
your knowledge that would otherwise result in bugs.

To continue the example, a program to typeset a musical score based on XML input could be designed
around XML concepts. A better approach, though, would be to design it around domain concepts, as
shown in Figure 6-4.

One powerful way to design your application to speak the language of the domain is to create a domain
model. This process deserves its own book; [Evans] and [Wirfs-Brock & McKean] are two worthy
examples.

NOTE
The process of creating a domain-centric design is domain-driven design or domain
modelling. Some people consider it synonymous with object-oriented design. In this
case, domain-centric design is sometimes called “true” object-oriented design in order
to contrast it with object-oriented designs that don’t emphasize domain concepts.

Refining the Ubiquitous Language
The ubiquitous language informs programmers, but the programmers’ need for rigorous formalization
also informs the rest of the team. I often see situations in which programmers ask a question—inspired
by a coding problem—that in turn causes domain experts to question some of their assumptions.

Your ubiquitous language, therefore, is a living language. It’s only as good as its ability to reflect reality.
As you learn new things, improve the language as well. There are three caveats about doing this,
however.

First, ensure that the whole team—especially the domain experts—understands and agrees with the
changes you’re proposing. This will probably require a conversation to resolve any conflicts. Embrace
that!

Reflect how the users think and
speak about their work.

Entity Attribute1 *
child*

1 Parent

XML-centric design (simplified)

Score Measure1 *

Staff

Note

1..*

*

Domain-centric design (simplified)

Figure 6-4. XML and domain-centric design

126 C H A P T E R 6 :   C O L L A B O R A T I N G

Second, check that the changes clarify your understanding of the business requirements. It may seem
clearer to make a change, but the language must still reflect what the users need to accomplish with
the software. Keep out programmer jargon—you can help domain experts refine their understanding
of complicated corner cases, but don’t replace their language with your own.

Third, update the design of the software with the change. The model and the ubiquitous language must
always stay in sync. A change to the language implies a change to the model. Yes, this does mean that
you should refactor the code when your understanding of the domain changes. Delaying these changes
introduces an insidious type of technical debt: a mismatch between your design and reality, which will
lead to ugly kludges and bugs.

Questions
Should we avoid the use of technical terms altogether? Our business domain doesn’t mention anything about GUI
widgets or a database.

It’s OK to use technical language in areas that are unrelated to the domain. For example, it’s probably
best to call a database connection a “connection” and a button a “button.” However, you should typically
encapsulate these technical details behind a domain-centric face.

Results
When you share a common language between customers and programmers, you reduce the risk of
miscommunication. When you use this common language within the design and implementation of
the software, you produce code that’s easier to understand and modify.

When the whole team uses the ubiquitous language while sitting together, everyone can overhear
domain discussions, especially during pairing sessions. Team members overhear domain and
implementation discussions and join in the conversation to resolve questions and expose hidden
assumptions.

Contraindications
If you don’t have any domain experts sitting with your team, you may have trouble
understanding the domain experts’ thought process deeply enough to have a
ubiquitous language. Attempting a ubiquitous language is even more important in this
situation, though, as it will allow you to communicate more effectively with domain
experts when you do have the opportunity to speak with them.

On the other hand, some problems are so technical they don’t involve non-programmer
domain knowledge at all. Compilers and web servers are examples of this category. If you’re building
this sort of software, the language of technology is the language of the domain. You’ll still have a
ubiquitous language, but that language will be technical.

Some teams have no experience creating domain-centric designs. If this is true of your team, proceed
with caution. Domain-centric designs require a shift in thinking that can be difficult. See “Further
Reading” at the end of this section to get started, and consider hiring a programmer with experience in
this area to help you learn.

Allies

Real Customer Involvement
(p. 120)
Sit Together (p. 112)

U B I Q U I T O U S L A N G U A G E 127

Alternatives
It’s always a good idea to speak the language of your domain experts. However, avoiding a domain-
centric design can lead to simpler designs in small, technology-centric projects involving trivial business
rules. Be careful, though: this design approach leads to defects and complex, unmaintainable designs in
larger projects. See [Fowler 2002a] for further discussion of this trade-off.

NOTE
Even small XP projects typically involve four programmers working for several
months, so most XP projects are big enough to need a domain-centric design. Talk to
your mentor (see “Find a Mentor” in Chapter 2) before deciding to use another
approach.

Further Reading
Domain-Driven Design [Evans] is an excellent and thorough discussion of how to create a domain-centric
design.

Object Design [Wirfs-Brock & McKean] discusses roles, responsibilities, and behaviors in the context of
modelling applications.

Patterns of Enterprise Application Architecture [Fowler 2002a] has a good discussion of the trade-offs
between domain models and other architectural approaches.

128 C H A P T E R 6 :   C O L L A B O R A T I N G

Stand-Up Meetings
We know what our teammates are doing.

I have a special antipathy for status meetings. You know—a
manager reads a list of tasks and asks about each one in turn. They seem to go on forever, although my
part in them is typically only five minutes. I learn something new in perhaps 10 of the other minutes.
The remaining 45 minutes are pure waste.

There’s a good reason that organizations hold status meetings: people need to know
what’s going on. XP projects have a more effective mechanism: informative workspaces
and the daily stand-up meeting.

How to Hold a Daily Stand-Up Meeting
A stand-up meeting is very simple. At a pre-set time every day, the whole team stands in a circle. One at
a time, each person briefly describes new information that the team should know.

NOTE
I prefer to stand in an empty area of the team room rather than around a table—it feels
a little more friendly that way. If you have room near the planning boards, that’s a
particularly good spot for the stand-up.

Some teams use a formal variant of the stand-up called the Daily Scrum [Schwaber & Beedle]. It comes
from an agile process also called Scrum. In the Daily Scrum, participants specifically answer three
questions:

1. What did I do yesterday?

2. What will I do today?

3. What problems are preventing me from making progress?

I prefer a more informal approach, but both styles are valid. Try both and use whichever approach works
best for you.

One problem with stand-up meetings is that they interrupt
the day. This is a particular problem for morning stand-ups;
because team members know the meeting will interrupt their
work, they sometimes wait for the stand-up to end before
starting to work. If people arrive at different times, early
arrivals sometimes just waste time until the stand-up starts. You can reduce this problem by moving
the stand-up to later in the day, such as just before lunch.

Be Brief
The purpose of a stand-up meeting is to give everybody a rough idea of where the team is. It’s not to
give a complete inventory of everything happening in the project. The primary virtue of the stand-up
meeting is brevity. That’s why we stand: our tired feet remind us to keep the meeting short.

Audience

Whole Team

Ally

Informative Workspace (p.
83)

Don’t wait for the stand-up to
start your day.

S T A N D - U P M E E T I N G S 129

Each person usually only needs to say a few sentences about
her status. Thirty seconds per person is usually enough. More
detailed discussions should take place in smaller meetings
with only the people involved. Here are some examples:

A programmer:

Yesterday, Bob and I refactored the database pooling logic. Check it out—we made some nice
simplifications to the way you connect to the database. I’m open today, and I’d enjoy doing
something GUI-related.

The product manager:

As you know, I’ve been away at the trade show for the last week, getting some great feedback
on the user interface and where we’re going with the product. We need to make a few changes
to the release plan; I’ll be working with the other customers today to work out the details. I
can give a lunch-and-learn in a day or two if you want to know more. [Several team members
express enthusiasm.]

A domain expert:

After you guys [nodding to the programmers] asked us about that financial rule yesterday, I
talked it over with Chris and there was more to it than we originally thought. I have some
updates to our customer tests that I’d like to go over with somebody.

A programmer responds:

I’ve been working in that area; I can pair with you any time today.

If the stand-up lasts longer than 10 minutes—15 at the very most—it’s taking too long. If people typically
speak for 30 seconds each, then a team of 10 should be able to have a 5-minute stand-up meeting on
most days.

Brevity is a tough art to master. To practice, try writing your statement on an index card in advance,
then read from the card during the stand-up.

Another approach is to timebox the stand-up. Set a timer for 5 or 10 minutes, depending on the size of
the team. When the timer goes off, the meeting is over, even if there are some people who haven’t
spoken yet. At first, you’ll find that the meeting is cut off prematurely, but the feedback should help
people learn to speak more briefly after a week or two.

If you’re tactful, you can also interrupt extended reports or conversations and ask that people hold the
discussion in a smaller group after the stand-up.

Questions
Can people outside the team attend the stand-up?

Yes; I ask that outsiders stand outside the circle and not speak unless they have something brief and
relevant to add.

Thirty seconds per person is
usually enough.

130 C H A P T E R 6 :   C O L L A B O R A T I N G

Some people, due to their position or personality, disrupt the smooth flow of the stand-
up. If they’re not members of the team, I prefer to use other mechanisms to keep them
up-to-date, such as the informative workspace, reports, and iteration demos. The
product manager or project manager are probably the best people to manage this
relationship.

Participants are being too brief. What should we do?

If they rush to finish quickly, participants might devolve into
no-content statements like “same as yesterday” or “nothing
new.” If this happens a lot, gently remind participants to go
into a bit more detail.

People are always late to the stand-up. Can we treat them to parking-
lot therapy?

I’ve been tempted to introduce Mr. Laggard to Mr. Baseball Bat myself. Keep in mind that this is illegal
in most countries and tough on team cohesiveness.

Instead, the most effective way I know of combatting this problem is to start and end meetings on time
even if people are absent.

We don’t sit together. Can we still have stand-up meetings?

Yes; you can either convene in a common location, or you can use speakerphones and a teleconference.
If you can possibly stand together, do—stand-up meetings by teleconference are a lot less effective. I
find that people tend to ramble.

You can improve a teleconference stand-up by investing in good phone equipment, reminding people
to stand up even when they’re off-site, and being diligent about taking conversations offline.

Results
When you conduct daily stand-up meetings, the whole team is aware of issues and challenges that other
team members face, and it takes action to remove them. Everyone knows the project’s current status
and what the other team members are working on.

Contraindications
Don’t let the daily stand-up stifle communication. Some
teams find themselves waiting for the stand-up rather than
going over and talking to someone when they need to. If you
find this happening, eliminating the stand-up for a little while
may actually improve communication.

Beware of leaders who dominate the stand-up. As reviewer Jonathan Clarke so aptly put it, the ideal
leader is “a charismatic but impatient colleague who will hurry and curtail speakers.” The stand-up is a
meeting of equals—no one person should dominate.

Allies

Informative Workspace (p.
83)
Reporting (p. 144)
Iteration Demo (p. 138)

Combine brevity with an
unhurried calm.

Communicate issues as soon as
they come up.

S T A N D - U P M E E T I N G S 131

Alternatives
If you can’t conduct a daily stand-up meeting, you need to stay in touch in some other way. If your
team sits together, the resulting natural communication may actually be sufficient. Watch for unpleasant
surprises that more communication can prevent.

Another alternative is the traditional weekly status meeting. I find these more effective when team
members submit their statuses to a single moderator who can present collated information in 10 or 15
minutes. However, I’ve also seen this approach fall apart quickly.

Further Reading
“It’s Not Just Standing Up: Patterns for Daily Stand-up Meetings” [Yip], at http://www.martinfowler.com/
articles/itsNotJustStandingUp.html, is a nice collection of patterns for stand-up meetings.

“Stand-Up Meeting Antipatterns” [Miller], at http://fishbowl.pastiche.org/2003/11/19/
standup_meeting_antipatterns, takes the opposite approach and describes common antipatterns and their
solutions.

132 C H A P T E R 6 :   C O L L A B O R A T I N G

http://www.martinfowler.com/articles/itsNotJustStandingUp.html
http://www.martinfowler.com/articles/itsNotJustStandingUp.html
http://fishbowl.pastiche.org/2003/11/19/standup_meeting_antipatterns
http://fishbowl.pastiche.org/2003/11/19/standup_meeting_antipatterns

Coding Standards
We embrace a joint aesthetic.

Back in the days of the telegraph, as the story goes, telegraph
operators could recognize each other on the basis of how they keyed their dots and dashes. Each operator
had a unique style, or fist, that experts could recognize easily. Programmers have style, too. We each
have our own way of producing code. We refine our style over years until we think it’s the most
readable, the most compact, or the most informative it can be.

Individual style is great when you’re working alone. In team software development, however, the goal
is to create a collective work that is greater than any individual could create on his own. Arguing about
whose style is best gets in the way; it’s easier to work together in a single style.

XP suggests creating a coding standard: guidelines to which all developers agree to adhere when
programming.

Beyond Formatting
I once led a team of four programmers who had widely differing approaches to formatting. When we
discussed coding standards, I catalogued three different approaches to braces and tabs. Each approach
had its own vigorous defender. I didn’t want us to get bogged down in arguments, so I said that people
could use whatever brace style they wanted.

The result was predictable: we had three different approaches to formatting in our code. I even saw two
different ways of indenting within a single, short method.

You know what surprised me? It wasn’t that bad. Sure, the layout was ugly, and I would have preferred
consistency, but the code was still readable. In the end, the rest of our coding standard mattered much
more than formatting.

We all agreed that clearly named variables and short methods were important. We agreed to use
assertions to make our code fail fast, not to optimize without measurements, and never to pass null
references between objects. We agreed on how we should and shouldn’t handle exceptions, what to do
about debugging code, and when and where to log events. These standards helped us far more than a
consistent formatting style would have because each one had a concrete benefit. Perhaps that’s why we
were able to agree on them when we couldn’t agree on formatting styles.

Don’t get me wrong: a consistent formatting standard is good. If you can agree on one, do! However,
when you’re putting together your coding standard, don’t fall into the trap of arguing about formatting.
There are more important issues.

How to Create a Coding Standard
Creating a coding standard is an exercise in building
consensus. It may be one of the first things that programmers
do as a team. Over time, you’ll amend and improve the
standards. The most important thing you may learn from
creating the coding standard is how to disagree
constructively.

Audience

Programmers

The most important thing you
will learn is how to disagree.

C O D I N G S T A N D A R D S 133

To that end, I recommend applying two guidelines:

1. Create the minimal set of standards you can live with.

2. Focus on consistency and consensus over perfection.

Hold your first discussion of coding standards during the first iteration. The project will typically start
out with some discussion of stories and vision, then some release planning and iteration planning (see
“Go!” in Chapter 4). After iteration planning, customers and testers will continue working on the release
plan. That’s a great time for programmers to talk about coding standards.

The best way to start your coding standard is often to select an industry-standard style guide for your
language. This will take care of formatting questions and allow you to focus on design-related questions.
If you’re not sure what it should encompass, starting points include:

• Development practices (start with the practices in Chapter 9 and Chapter 7)

• Tools, keybindings, and IDE

• File and directory layout

• Build conventions

• Error handling and assertions

• Approach to events and logging

• Design conventions (such as how to deal with null references)

Limit your initial discussion to just one hour. Write down
what you agree on. If you disagree about something, move
on. You can come back to it later.

NOTE
I like to write each item that we agree upon on a flip chart so we can tape it to a wall
in our open workspace. If you can find a neutral observer to take notes (such as your
project manager), so much the better.

If you have trouble, take a step back and talk about your goals for the software and the results you
would like to see. Agree about these issues first, even if you disagree about specific approaches. You will
have many opportunities to improve your standard. Make the most important decisions now, and move
on.

Depending on your team, this may be a contentious discussion. If that’s the case, consider bringing in
a professional facilitator to redirect the discussion to your team goals when the things get heated. Your
HR department might be able to provide someone, or you can use an outside consultant.

Plan to hold another one-hour coding standard meeting a few days later, and another one a few weeks
after that. The long break will allow you to learn to work together and to try out your ideas in practice.
If there’s still disagreement, experiment with one approach or the other, then revisit the issue.

Hold these initial meetings as often as they’re useful. After that, change the standard
at any time. Just stand up, announce your intention to the team, and, if everybody
agrees, change the flip chart. Retrospectives are another good time to discuss changes
to the coding standard.

Focus on agreements.

Ally

Retrospectives (p. 91)

134 C H A P T E R 6 :   C O L L A B O R A T I N G

NOTE
The thumb vote is a quick way to check for consensus. Someone asks a question and
everyone holds their thumb up (meaning “I agree”), sideways (“I’ll go along with the
group”), or down (“I disagree and want to explain why”).

Over time, some of the items in the standard will become second nature. Cross them off to make room
for more important issues. As you work together, you will recognize ways in which new standards can
help. Add these new standards to the list in the same way as before, as long as everybody agrees to try
them.

No matter what standards you choose, someone will be probably unhappy with some guideline even
with a consensus-based approach. You’ll probably find some practices jarring and grating at first. Over
time, you’ll get used to it. Coding standards are, in many ways, an aesthetic choice: it doesn’t really
matter what the standard is, as long as it’s consistent and thoughtful. One of the marks of a professional
is the willingness to put aside personal aesthetics for a team aesthetic.

Dealing with Disagreement
It’s possible to pressure a dissenter into accepting a coding standard she doesn’t agree with, but it’s
probably not a good idea. Doing so is a good way to create resentment and discord.

Instead, remember that few decisions are irrevocable in agile development; mistakes are opportunities
to learn and improve. Ward Cunninghman put it well:*

It was a turning point in my programming career when I realized that I didn’t have to win
every argument. I’d be talking about code with someone, and I’d say, “I think the best way to
do it is A.” And they’d say, “I think the best way to do it is B.” I’d say, “Well no, it’s really A.”
And they’d say, “Well, we want to do B.” It was a turning point for me when I could say, “Fine.
Do B. It’s not going to hurt us that much if I’m wrong. It’s not going to hurt us that much if
I’m right and you do B, because, we can correct mistakes. So [let’s] find out if it’s a mistake.”

Go ahead and leave the contested item out of the standard. Maybe lack of standardization in that area
will lead to a mess. If it does, the team will learn from the experience and you can change the standard.

Adhering to the Standard
People make mistakes. Pair programming helps developers catch mistakes and maintain
self-discipline. It provides a way to discuss formatting and coding questions not
addressed by the guidelines. It’s an also an excellent way to improve the standard; it’s
much easier to suggest an improvement when you can talk it over with someone first.

Collective code ownership also helps people adhere to the standard, because many
different people will edit the same piece of code. Code tends to settle on the standard
as a result.

There are less effective approaches. Some teams use automated tools to check their source code for
adherence to the coding standard. Others program their version control system to reformat files upon

Allies

Pair Programming (p. 71)
Collective Code Ownership
(p. 191)

* http://en.wikiquote.org/wiki/Ward_Cunningham

C O D I N G S T A N D A R D S 135

http://en.wikiquote.org/wiki/Ward_Cunningham

check-in. I don’t like either approach; to me, the latter says that you don’t trust people to make good
decisions on their own, and the former tends to raise false warnings.

I’ve also heard of teams who elevate their coding standards
to requirements and punish infractions. The idea of enforcing
a coding standard leaves a bad taste in my mouth. Your
teammates are presumably professionals who pride
themselves on doing good work. No coding standard can
substitute for professional judgment. Try not to get too upset when you see people deviating from the
standard.

Assume your colleagues are professional and well-meaning. If someone is not following the standard,
assume that there’s a good reason—even if all the evidence is to the contrary. Your challenge is to find
that reason and address it. This approach shows respect for others and will improve others’ respect for
you.

NOTE
Before you do anything, ask yourself whether the coding standard was really a team
effort. If everybody agreed to every item, they should have no problem following the
standard.

Start by talking with your colleague alone to see if there’s a disagreement. Take an attitude of
collaborative problem solving: instead of saying, “Why aren’t you propagating exceptions like we
agreed?” ask, “What do you think about the ‘propagate exceptions’ standard we agreed on? Should we
keep it?” Give objections full consideration, raise them with the rest of the team, and consider changing
the standard.

If the objector agrees with the standard but isn’t applying it, it’s possible that the standard isn’t
appropriate in every situation. Ask about specific cases you’ve noticed. Again, be collaborative, not
confrontational. Say something like, “I think we’re on the same page regarding the importance of
propagating exceptions. In that case, can you explain what’s happening in this method? I don’t
understand why this code doesn’t propagate the exception here.”

During this discussion, you may learn that the objector doesn’t understand the standard. By this time,
you should be in a good situation to discuss the standard and what it means. If he’s a junior programmer
and needs more help, coordinate with the rest of the team to make sure he gets plenty of pairing time
with experienced developers.

There is another possibility for teams new to XP. Switching to XP is a big change and can make people
feel like they’ve lost control; sometimes they react by picking small things that they refuse to change.
An obstinate desire to stick with a particular coding standard, regardless of the wishes of the rest of the
team, might be a symptom of this reaction.

In this case, your best solution may be to let the infractions slide for several months. Over time, as team
members become more comfortable with the changes in their environment, they’ll relax and be more
willing to compromise.

Assume your colleagues are
professional and well-meaning.

136 C H A P T E R 6 :   C O L L A B O R A T I N G

Questions
We have legacy code that doesn’t fit our standard. Should we fix it?

Leave old code alone if it works and you don’t need to read or touch it otherwise. It’s expensive and
risky to spend a lot of time fixing legacy code upfront. Instead, as you modify and refactor those sections
of code, bring them up to the new coding standards. When you fix a bug, add a feature, or improve
abstraction and factoring, use the new standards on everything you modify.

You can also use an automated tool to perform large-scale formatting changes. Don’t spend too much
time on this, but if you can do it easily, you might as well. I prefer to integrate immediately before and
after such an operation because reformatting changes tend to disguise other changes. Be aware that
making such large-scale changes can render your version control system’s change history much more
difficult to read.

Results
When you agree on coding standards and conventions, you improve the maintainability and readability
of your code. You can take up different tasks in different subsystems with greater ease. Pair programming
moves much more smoothly, and you look for ways to improve the expressability and robustness of
your code as you write it.

Contraindications
Don’t allow coding standards to become a divisive issue for your team.

Alternatives
Some teams work together so well that they don’t need a written coding standard; their coding standard
is implicit.

If you have a new team, however, create a written coding standard even if everybody gets along well.
New teams often go through an initial honeymoon period in which team members are reluctant to
disagree with each other. Eventually, disagreements will come out. It’s much better to create a standard
before problems escalate.

C O D I N G S T A N D A R D S 137

Iteration Demo
We keep it real.

An XP team produces working software every week, starting
with the very first week.

Sound impossible? It’s not. It’s merely difficult. It takes a lot of discipline to keep that pace. Programmers
need discipline to keep the code clean so they can continue to make progress. Customers need discipline
to fully understand and communicate one set of features before starting another. Testers need discipline
to work on software that changes daily.

The rewards for this hard work are significantly reduced risk, a lot of energy and fun, and the satisfaction
of doing great work and seeing progress. The biggest challenge is keeping your momentum.

The iteration demo is a powerful way to do so. First, it’s a concrete demonstration of the team’s progress.
The team is proud to show off its work, and stakeholders are happy to see progress.

Second, the demos help the team be honest about its
progress. Iteration demos are open to all stakeholders, and
some companies even invite external customers to attend. It’s
harder to succumb to the temptation to push an iteration
deadline “just one day” when stakeholders expect a demo.

Finally, the demo is an opportunity to solicit regular feedback from the customers. Nothing speaks more
clearly to stakeholders than working, usable software. Demonstrating your project makes it and your
progress immediately visible and concrete. It gives stakeholders an opportunity to understand what
they’re getting and to change direction if they need to.

Regular delivery is central to successful XP. The iteration demo is a concrete indication of that progress.
When schedule problems occur (they always do), an iteration demo makes it harder to avoid reality—
and facing reality gives you the opportunity to manage it.

How to Conduct an Iteration Demo
Anybody on the team can conduct the iteration demo, but I recommend that the product manager do
so. He has the best understanding of the stakeholders’ point of view and speaks their language. His
leadership also emphasizes the role of the product manager in steering the product.

Invite anybody who’s interested. The whole team, key stakeholders, and the executive sponsor should
attend as often as possible. Include real customers when appropriate. Other teams working nearby and
people who are curious about the XP process are welcome as well. If you can’t get everyone in a room,
use a teleconference and desktop-sharing software.

NOTE
If you have a particularly large audience, you may need to set some ground rules about
questions and interruptions to prevent the demo from taking too long. I tell attendees
that the product manager will be available for further discussion after the meeting.

Audience

Product Manager, Whole Team

Iteration demos help keep the
team honest.

138 C H A P T E R 6 :   C O L L A B O R A T I N G

The entire demo should take about 10 minutes. (After all, it’s only been a week since the last one.) If
it runs long, I look for ways to bring it to a close before it reaches half an hour.

Because this meeting is so short, I highly recommend starting on time, even if some people aren’t
present. This will send the message that you value attendees’ time as well as the available time to work
on the project. Both the product manager and the demo should be available for further discussion and
exploration after the meeting.

Once everyone is together, briefly describe the features
scheduled for the iteration and their value to the project. If
the plan changed during the middle of the iteration, explain
what happened. Don’t sugarcoat or gloss over problems. Full
disclosure will raise your credibility. By neither simplifying
nor exaggerating problems, you demonstrate your team’s ability to deal with problems professionally.
Here is an example:

Last week, we scheduled five stories in the area of online bookings. These stories revolved
around adding polish to our flight reservation system. That system was already functionally
complete, but we want it to be more impressive and usable for our customers.

We finished all the stories we had planned, but we had to change the itinerary story, as I’ll
show you in a moment. It turned out to have some performance problems, so we had to find
another solution. It’s not exactly what we had planned, but we’re happy with the result and
we don’t intend to spend any more time on it.

After your introduction, go through the list of stories one at a time. Read the story, add
any necessary explanation, and demonstrate that the story is finished. Use customer
tests to demonstrate stories without a user interface.

Demonstrator: Our first story was to automatically fill in the user’s billing
information if they put in their frequent flyer number. First, I’ll bring up the front page... click
“reservations”... type in our test frequent flyer number... and there, you can see that the billing
information fills in automatically.

Audience member: What if they fill in the billing information first?

Demonstrator: In that case, the billing information is left unchanged. [Demonstrates.]

If you come to a story that didn’t work out as planned, provide a straightforward explanation. Don’t be
defensive; simply explain what happened.

Demonstrator: Our next story involves the itinerary. As I mentioned, we had to change this
story. You may remember that our original story was to show flight segments on an animated
globe. The programmers had some concerns about performance, so they did a test and it turned
out that rendering the globe would double our datacenter costs.

Audience member: Why is it so expensive?

Programmer: Many animations are unique, and we have to render them on the server. As a
result, the server has to render a custom animated .GIF for each person. Because it’s 3-D, it
takes a lot of CPU, which means we would need more powerful hardware in the datacenter.
We might be able to cache some of the .GIFs, but we’d need to take a close look at usage stats
before we could say whether that would work.

Demonstrator: We didn’t want to spend time on performance optimizations, and the increased
hardware cost wasn’t worth it. None of our competitors have a map of flight segments at all,

Calmly describe problems and
how you handled them.

Ally

Customer Tests (p. 278)

I T E R A T I O N D E M O 139

so we decided a simpler 2-D map would be good enough. We had already used up some of our
time for this story, though, and we didn’t have enough time left to animate the map. After
seeing the result [demonstrates] we decided it was good enough for now. We intend to move
on to new features rather than spending more time on the itinerary.

Once the demo is complete, tell stakeholders how they can run the software themselves. Make an
installer available on the network, or provide a server for stakeholder use, or something similar. You
can also cut short side discussions by directing people to the sample installation.

Two Key Questions
At the end of the demo, ask your executive sponsor two key questions:*

1. Is our work to date satisfactory?

2. May we continue?

These questions help keep the project on track and remind your sponsor to speak up if she’s unhappy.
You should be communicating well enough with your sponsor that her answers are never a surprise.

NOTE
Your sponsor isn’t likely to attend all the demos, although that’s preferable. You can
increase the likelihood of her attending by keeping the demo short. If she doesn’t come
at all, the product manager should conduct a private demo—and ask the two key
questions—at least once per month.

Sometimes, she may answer “no” to the first question, or she may answer “yes” but be clearly reluctant.
These are early indicators that something is going wrong. After the demo, talk with your sponsor and
find out what she’s unhappy about. Take immediate action to correct the problem.

NOTE
Sometimes your sponsor will be unhappy because she wants the team to go faster. See
“Estimating” in Chapter 8 for a discussion of how to improve your velocity. “Risk
Management,” also in Chapter 8, has a discussion of what to do when you can’t meet
your sponsor’s expectations.

In rare cases, the executive sponsor will answer “no” to the second question. You should never hear
this answer—it indicates a serious breakdown in communication.

If you do hear this answer, you’re done. Meet with your sponsor after the demo and confirm that she
wants the team to stop. Let her know that you’re prepared to ship what was demonstrated today and
you’d like one final week to wrap things up. Try to find out what went wrong, and include your sponsor
in the project retrospective, if possible.

* Thanks to Joshua Kerievsky of Industrial Logic for introducing me to this technique.

140 C H A P T E R 6 :   C O L L A B O R A T I N G

Weekly Deployment Is Essential
The iteration demo isn’t just a dog and pony show; it’s a way to prove that you’re making real progress
every iteration. Always provide an actual release that stakeholders can try for themselves after the demo.
Even if they are not interested in trying a demo release, create it anyway; with a good automated build,
it takes only a moment. If you can’t create a release, your project may be in trouble.

One of the biggest schedule risks in software is the hidden time between “we’re done” and “we’ve
shipped.” Teams often have to spend several extra weeks (or months) after the end of the planned
schedule to make their product buildable and shippable. Releasing a usable demo every iteration
mitigates this risk.

If you’re starting a new codebase, be sure that the code is deployable every iteration. This will help stave
off technical debt. The weekly rhythm of iteration demos and stakeholder releases is an excellent way
to keep the code releasable. Chapter 7 describes how to do so.

If you’re working on a legacy codebase, weekly deployment may not yet be possible. Your build system
may be incomplete, you may not have an adequate demo environment, or the installer may not yet be
written. If so, this indicates a large chunk of technical debt. See “Applying XP to an Existing Project” in
Chapter 4 for suggestions on how to address this problem while continuing to satisfy stakeholders.

Questions
What do we do if the stakeholders keep interrupting and asking questions during the demo?

A certain number of questions is normal, particularly when you start giving demos. Over time, as
stakeholders adapt to the weekly rhythm, you should see fewer interruptions.

For the first month or so, you can establish goodwill by ignoring the half-hour guideline and answering
every question. After the first month, the product manager can politely ask stakeholders to direct further
questions to him after the meeting.

What do we do if stakeholders keep nitpicking our choices?

Nitpicking is also normal, particularly in the beginning. It’s usually a sign of genuine interest in the
product, so don’t take it too personally. Write the ideas down on cards, as with any story, and have the
product manager prioritize them after the meeting. Resist the temptation to address, prioritize, or begin
designing solutions in the meeting. Not only does this extend the meeting, it reduces the discipline of
the normal planning practices.

If nitpicking continues after the first month, it may be a sign that the on-site customers
are missing something. Take a closer look at the complaints to see if there’s a deeper
problem. Root-cause analysis may help.

The stakeholders are excited by what they see and want to add a bunch of features. They’re good
ideas, but we don’t have time for them—we need to move on to another part of the product. What should we do?

Don’t say “no” during the iteration demo. Don’t say “yes,” either. Simply thank the stakeholders for
their suggestions, and write them down as stories. After the demo is over, the product manager should
take a close look at the suggestions and their value relative to the overall vision. If they don’t fit into
the schedule, she should make that decision and communicate it to the stakeholders.

Ally

Root-Cause Analysis (p. 88)

I T E R A T I O N D E M O 141

We completely blew this iteration and don’t have anything to show. What do we do?

It will be hard, but you need to be honest about what happened. Take responsibility as a team (rather
than blaming individuals or functional groups), try not to be defensive, and let stakeholders know what
you’re doing to prevent the same thing from happening again. Here is an example:

This week, I’m afraid we have nothing to show. We planned to work on flight tracking this
week, but we underestimated the difficulty of interfacing with the backend airline systems.
We discovered that we need our own test environment for the systems because our suppliers’
systems are unreliable.

We identified this problem early in the iteration, and we thought we could work around it.
We did, but not in time to finish any stories. We should have replanned the iteration and
created smaller stories that we could finish as soon as we encountered this issue. Now we know,
and we’ll be more proactive about replanning next time.

The problems with interfacing with the airlines’ systems will affect many of our stories. To
prevent further surprises, we’ve revised our estimates. This pushes our best-case release date
out by three weeks, which uses up most of our risk buffer. We’re still on target for our scheduled
release, but we’ll have to cut features if we encounter any other major problems between now
and then.

I’m sorry for the bad news and welcome any suggestions. We can take a few questions now,
and I’ll be available for further discussion after we finish planning the upcoming iteration.

Results
When you conduct a weekly iteration demo and demo release, you instill trust in stakeholders, and the
team is confident in its ability to deliver. You share problems forthrightly, which allows you to manage
them and helps prevent them from ballooning out of control.

Contraindications
Because the iteration demo is highly visible, you may be tempted to fake a demo. You might show a
user interface that doesn’t have any logic behind it, or purposefully avoid showing an action that has a
significant defect.

Instead, be clear about the software’s limitations and what
you intend to do about them. Faking progress leads
stakeholders to believe that you have greater capacity than
you actually do. They’ll expect you to continue at the inflated
rate, and you’ll steadily fall behind. For more on the dangers
of overpromoting, see “Organizational Strategy #6: Be Honest,” earlier in this chapter.

If you can’t demonstrate progress weekly, it’s a clear sign that your project is in trouble. Slow down for
a week, and figure out what’s going wrong. Ask your mentor for help. The problem may be as simple
as trying to do too much work.

Inability to demo is a clear
danger sign.

142 C H A P T E R 6 :   C O L L A B O R A T I N G

Some teams hold a demo every week but can’t actually deploy software for stakeholder
use every week. This is a common indicator of technical debt. It reflects a deficiency in
the team’s build process and its ability to get stories “done done.”

Alternatives
The iteration demo is a clear indication of your ability to deliver: either you have the ability to
demonstrate new features every week, or you don’t. Your executive sponsor either gives you permission
to continue, or he doesn’t. I’m not aware of any alternatives that provide such valuable feedback.

Some teams conduct real releases at the end of each iteration rather than a demo. This is a great addition
to the practice, if you can do it.

Allies

Ten-Minute Build (p. 177)
“Done Done” (p. 156)

I T E R A T I O N D E M O 143

Reporting
We inspire trust in the team’s decisions.

You’re part of a whole team. Everybody sits together. An
informative workspace clearly tracks your progress. All the information you need is at your fingertips.
Why do you need reports?

Actually, you don’t need them. The people who aren’t on your team, particularly upper management
and stakeholders, do. They have a big investment in you and the project, and they want to know how
well it’s working.

Types of Reports
Progress reports are exactly that: reports on the progress of the team, such as an iteration demo or a release
plan. Although progress reports seem to exist so that stakeholders can monitor and correct the team’s
direction, that’s not their purpose. Instead, good progress reports allow stakeholders to trust the team’s
decisions.

Management reports are for upper management. They provide high-level information that allows
management to analyze trends and set goals. It’s not information you can pick up by casually lingering
in an open workspace for an hour or two every month; it includes trends in throughput or defect rates.

What kinds of reports do you need to build trust and satisfy strategic needs? It depends on the
stakeholders. Some stakeholders are hands-off and just want to see progress toward a goal; others want
to know more details so they can build broader knowledge. You may need to produce a variety of reports
for different audiences.

Be careful, though—reports take time and energy away from development, so don’t produce every
report you can imagine. Provide just enough reporting to satisfy key stakeholders. The project manager
and product manager should combine their knowledge of stakeholders to gauge the proper level of
reporting. The best way to know, of course, is to ask.

The range of reports you can produce is as broad as your imagination. The following sections list some
that I’ve found particularly useful or, contrarily, common and unhelpful. The first set of reports are a
normal byproduct of the whole team’s work. The rest are usually the project manager’s responsibility,
though they depend on some input from the rest of the team.

Progress Reports to Provide
XP teams have a pronounced advantage when it comes to reporting progress: they make observable
progress every week, which removes the need for guesswork. Furthermore, XP teams create several
progress reports as a normal byproduct of their work.

Useful and free? There’s little not to like about these four reports.

Audience

Coaches, Upper Management

144 C H A P T E R 6 :   C O L L A B O R A T I N G

Vision statement

Your on-site customers should create and update a vision statement that describes what
you’re doing, why you’re doing it, and how you’ll know if you’re successful. This
provides important context for other reports. Post it prominently and reference it in
conversation.

Weekly demo

Nothing is as powerful at demonstrating progress as working software. Invite
stakeholders to the weekly iteration demo. They probably won’t attend every week,
but the mere fact that you hold weekly demos will build confidence in your work.

Release and iteration plans

The release and iteration planning boards already posted in your workspace provide great detail about
progress. (See Figure 8-4, a release planning board, and Figure 8-9, an iteration planning board.) Invite
stakeholders to look at them any time they want detailed status information.

For off-site stakeholders, consider using a webcam or regularly posted digital photos to broadcast the
plans.

Burn-up chart

A burn-up chart is an excellent way to get a bird’s-eye view of the project (see Figure 8-7). It shows
progress and predicts a completion date. Most teams produce a burn-up chart when they update their
release plan.

Progress Reports to Consider
If your stakeholders want more information, consider
providing one or more of the following reports. Avoid
providing them by default; each takes time that you could
spend on development instead.

Roadmap

Some stakeholders may want more detail than the vision statement provides, but not the overwhelming
detail of the release and iteration plans. For these stakeholders, consider maintaining a document or
slide deck that summarizes planned releases and the significant features in each one.

Status email

A weekly status email can supplement the iteration demo. I like to include a list of the stories completed
for each iteration and their value. I also include our current range of probable completion scope and
dates, and I explain any changes from the previous report.

If you added or removed stories from the schedule, explain that here, too. An honest appraisal of your
work is part of an accurate status report.

Ally

Vision (p. 201)

Ally

Iteration Demo (p. 138)

Only produce reports that are
strictly necessary.

R E P O R T I N G 145

Management Reports to Consider
Whereas progress reports demonstrate that the team will meet its goals, management reports
demonstrate that the team is working well. As with progress reports, report only what you must.

Productivity

Software development productivity is notoriously difficult to measure [Fowler 2003]. It sounds simple—
productivity is the amount of production over time—but in software, we don’t have an objective way
to measure production. What’s the size of a feature?

NOTE
We can measure the software’s size by counting function points or lines of code, but
that’s akin to measuring cell phone features in cubic inches.

Instead of trying to measure features, measure the team’s impact on the business. Create an objective
measure of value, such as return on investment. You can base it on revenue, cost savings, or some other
valuable result.

Coming up with an objective measure of value is the most difficult part of reporting productivity. I can’t
provide specific guidance because the metric depends on what’s important to your business. Your
product manager and upper management should be able to help create this measure.

Once you have a measure, track its value every iteration. Until the team releases software to production,
this number will trend downward, below zero. The team will be incurring costs but not generating value.
After a release, the trend should turn upward.

The primary complaint I hear about this metric is that it’s partially outside of the team’s control. What
if the sales staff doesn’t sell the software? What if the business users aren’t interested in the software?

These are valid concerns, but they ignore the reality of organizational success. For your team to achieve
an organizational success, not just a technical success, your software must provide business value. This
productivity metric reflects that fact.

To score well on this metric, you should have a team that includes on-site customers.
These customers will figure out what customers or users want and show key
stakeholders how to sell or use the software. By doing so, they will help turn technically
excellent software into truly valuable software.

Throughput

Throughput is the number of features the team can develop in a particular amount of time. To avoid
difficult questions such as “What’s a feature?,” measure the amount of time between the moment the
team agrees to develop some idea and the moment that idea is in production and available for general
use. The less time, the better.

Defects

Anyone can produce software quickly if it doesn’t have to work. Consider counterbalancing your
throughput report with defect counts.

Ally

Real Customer Involvement
(p. 120)

146 C H A P T E R 6 :   C O L L A B O R A T I N G

One of the biggest challenges of counting defects is figuring out the difference between a defect and
intentional behavior. Decide who will arbitrate these discussions early so you can avoid arguments.

When you count the defects is just as important as how you count them. On an XP team,
finding and fixing defects is a normal part of the process. To avoid overcounting defects,
wait until you have marked a story as “done done” and completed its iteration before
marking something as a defect.

Time usage

If the project is under time pressure—and projects usually are—stakeholders may want to know that
the team is using its time wisely. Often, when the team mentions its velocity, stakeholders question it.
“Why does it take 6 programmers a week to finish 12 days of work? Shouldn’t they finish 30 days of
work in that time?”

Although I prefer that stakeholders trust the team to schedule its tasks wisely, that trust takes time to
develop. In the beginning, I often produce a report that shows how the programmers are using their
time. This report requires that programmers track their time in detail, so I stop producing it as soon as
possible, typically after a month or two. To keep the burden low, I ask programmers to write their times
on the back of each iteration task card (see Figure 6-5) and hand them in to the project manager for
collating into these categories:

• Unaccounted and nonproject work (time spent on other projects, administration, company-wide
meetings, etc.)

• Out of office (vacation and sick days)

• Improving skills (training, research time, etc.)

• Planning (time spent in planning activities, including the retrospective and iteration demo)

• Developing (time spent testing, coding, refactoring, and designing)

Graph the total time in each category in an area chart with “Developing” on the bottom and
“Unaccounted” on top. I mark the bottom three categories green; the fourth yellow; and the top white
(see Figure 6-6).

Ally

“Done Done” (p. 156)

8:45 12:30 3.75
1:00 5:30 4.25
8:00 12:00 4
2:45 4:15 1.5

–.25

13.50

Figure 6-5. Time tracking example

R E P O R T I N G 147

Once the report is in place, stakeholders may still wonder why velocity doesn’t match effort. Explain
that velocity includes a scaling factor to account for estimate error and overhead. See “Explaining
Estimates” in Chapter 8 for more ideas.

Reports to Avoid
Some reports, although common, don’t provide useful information. “Estimating” in Chapter 8 provides
suggestions for explaining your estimates and velocity.

NOTE
If a stakeholder asks you for one of these reports, don’t flatly refuse. Instead, find out
why she wants the report and see if there’s a better way to meet her need.

Source lines of code (SLOC) and function points

Source lines of code (SLOC) and its language-independent cousin, function points, are common approaches
to measuring software size. Unfortunately, they’re also used for measuring productivity. As with a fancy
cell phone, however, software’s size does not necessarily correlate to features or value.

Well-designed code is modular; it supports multiple features without duplication. The better the design,
the less duplication, and thus the fewer lines of code. This sort of careful design takes time and effort,
but results in fewer bugs and software that’s easier to change.

Reporting SLOC (or function points) encourages your team
to produce more lines of code per day. Rather than increasing
its productivity, your team is most likely to spend less time
on design quality. SLOC production will go up, true, but
design quality will go down. Research shows that the more
lines of code a program has, the more defects it is likely to have and the more it will cost to develop.

Reporting SLOC encourages
defects and high costs.

Figure 6-6. Time usage report

148 C H A P T E R 6 :   C O L L A B O R A T I N G

All in all, SLOC and function points are flawed productivity metrics. They can be useful for end-of-
project comparisons to industry averages, but avoid using it in a weekly report.

Number of stories

Some people think they can use the number of stories delivered each iteration as a measure of
productivity. Don’t do that. Stories have nothing to do with productivity.

A normal-sized team will typically work on 4 to 10 stories every iteration. To achieve this goal, they
combine and split stories as needed. A team doing this job well will deliver a consistent number of stories
each iteration regardless of its productivity.

Velocity

If a team estimates its stories in advance, an improvement in
velocity may result from an improvement in productivity.
Unfortunately, there’s no way to differentiate between
productivity changes and inconsistent estimates. Because
you can artificially improve velocity by incurring technical
debt, I strongly recommend against using velocity as a measure of productivity.

Above all, never compare velocity across teams. Different teams will have different ways of estimating.
Their velocities have nothing in common.

NOTE
Measuring the variation in velocity may produce interesting information for discussion
in the retrospective (see “Retrospectives” in Chapter 5), but the information is too
ambiguous to report outside the team.

Code quality

There’s no substitute for developer expertise in the area of code quality. The available code quality
metrics, such as cyclomatic code complexity, all require expert interpretation. There is no single set of
metrics that clearly shows design or code quality. The metrics merely recommend areas that deserve
further investigation.

Avoid reporting code quality metrics. They are a useful tool for developers but they’re too ambiguous
for reporting to stakeholders.

Questions
What do you mean, “Progress reports are for stakeholder trust”? Shouldn’t we also report when we need help with
something?

Absolutely. However, progress reports are for status; you shouldn’t assume that anyone actually reads
them. Sometimes their existence is enough to satisfy stakeholders that you’re on track.

When you need a stakeholder’s help, whether to learn more
about the business priorities or to overcome a hurdle, ask for
it. Don’t rely on stakeholders to notice something in the
reports.

Never compare velocity across
teams.

Talk to stakeholders directly
when you need their help.

R E P O R T I N G 149

What if some of our stakeholders want to micromanage us?

The product manager and project manager should manage the stakeholders. They should give them
what they need while shielding the team from their micromanagement. They need to be tactful, yet firm.

Isn’t this just busywork? We have an informative workspace, stand-up meetings, and iteration demos. Stakeholders
and managers can visit any time. Why do they need reports?

If your stakeholders attend your meetings and get sufficient value out of them, you probably don’t need
reports. In that case, the project manager should talk to stakeholders about cancelling unnecessary
reports.

Until you reach that point, don’t assume that writing solid code, delivering working software, and
meeting real business needs will make everyone realize your value as a team. Sometimes you just need
to staple a cover page to your TPS report in order to fit in.

What if programmers don’t want to track their time for the time usage report? They say they have better things to do.

They’re right—tracking time is a wasteful activity. However, the team has to balance the need to satisfy
stakeholders with the need to use its time wisely.

You can make this decision easier to swallow in two ways. First, don’t mandate the report unilaterally.
Instead, discuss the reasons to produce reports as a team and come to a joint conclusion about which
reports to provide. Keep in mind that some team members have greater practical insight about the
consequences of reporting, or of not reporting, than others.

Second, do everything you can to keep the time-tracking burden low. When it’s time to produce the
report, the project manager should collate the data rather than asking programmers to do so.

Why should the project manager do all the grunt work for the reports? Shouldn’t he delegate that work?

The project manager’s job is to help the team work smoothly. He should never add to the workload of
the people on the critical path. Instead, he should remove roadblocks from the path, and reports are
one of those roadblocks.

Our organization measures employees individually based on the contents of certain reports. What do we do?

XP teams produce work as a team, not individually, so this is a difficult situation. First, the project
manager should review the evaluation policy with HR and upper management. If there is any flexibility
in the process, take advantage of it.

If there’s no flexibility, work within the review process as much as you can. Highlight teamwork
wherever possible. When the team implements a particularly valuable feature, be sure to mention
everyone’s contribution.

Results
Appropriate reporting will help stakeholders trust that your team is doing good work. Over time, the
need for reports will decrease, and you will be able to report less information less frequently.

Contraindications
Time spent on reports is time not spent developing. Technically speaking, reports are wasteful because
they don’t contribute to development progress. As a result, I prefer to produce as few reports as possible.

150 C H A P T E R 6 :   C O L L A B O R A T I N G

Computerized planning may seem to make reporting easier.
Unfortunately, it tends to do so at the expense of
collaborative, dynamic planning (see “The Planning Game”
in Chapter 8), and an informative workspace. That’s
backward: it optimizes a wasteful activity at the expense of
productive activities.

To avoid creating reports manually, I use the iteration demo, planning boards, and the burn-up chart
as my only reports whenever I can. They are a normal part of the process and require no extra effort to
produce. I use webcams or a digital camera to broadcast the boards if necessary.

I prefer not to report time usage, as it’s time-consuming to produce and programmers don’t like to collect
the data, but I usually have to. While I only report it when I sense concern from important stakeholders
about the team’s velocity, that concern is typical for companies new to XP. Reevaluate this need about
once a month, and stop producing the time usage report as soon as you can.

Alternatives
Frequent communication can sometimes take the place of formal reporting. If this option is available to
you, it’s a better option.

Further Reading
Why Does Software Cost So Much? [DeMarco 1995] contains an essay titled “Mad About Measurement”
that discusses challenges of measuring performance, and includes a brief investigation into the results
of reporting cyclomatic code complexity.

“Cannot Measure Productivity” [Fowler 2003] discusses the challenges of measuring software
development productivity in more detail than I do here. http://www.martinfowler.com/bliki/
CannotMeasureProductivity.html.

Don’t let reporting compromise
the benefits of card-based

planning.

R E P O R T I N G 151

http://www.martinfowler.com/bliki/CannotMeasureProductivity.html
http://www.martinfowler.com/bliki/CannotMeasureProductivity.html

CHAPTER 7

Releasing

What is the value of code? Agile developers value “working software over comprehensive
documentation.”* Does that mean a requirements document has no value? Does it mean unfinished
code has no value?

Like a rock at the top of a hill, code has potential—potential energy for the rock and potential value for
the code. It takes a push to realize that potential. The rock has to be pushed onto a slope in order to
gain kinetic energy; the software has to be pushed into production in order to gain value.

It’s easy to tell how much you need to push a rock. Big rock? Big push. Little rock? Little push. Software
isn’t so simple—it often looks ready to ship long before it’s actually done. It’s my experience that teams
underestimate how hard it will be to push their software into production.

To make things more difficult, software’s potential value changes. If nothing ever pushes that rock, it
will sit on top of its hill forever; its potential energy won’t change. Software, alas, sits on a hill that
undulates. You can usually tell when your hill is becoming a valley, but if you need weeks or months
to get your software rolling, it might be sitting in a ditch by the time you’re ready to push.

In order to meet commitments and take advantage of opportunities, you must be able to push your
software into production within minutes. This chapter contains 6 practices that give you leverage to
turn your big release push into a 10-minute tap:

• "done done" ensures that completed work is ready to release.

• No bugs allows you to release your software without a separate testing phase.

• Version control allows team members to work together without stepping on each other’s toes.

• A ten-minute build builds a tested release package in under 10 minutes.

• Continuous integration prevents a long, risky integration phase.

• Collective code ownership allows the team to solve problems no matter where they may lie.

* The Agile Manifesto, http://www.agilemanifesto.org/.

1 5 3

http://www.agilemanifesto.org/

• Post-hoc documentation decreases the cost of documentation and increases its accuracy.

“RELEASING” MINI-ÉTUDE
The purpose of this étude is to examine pushing software into production. If you’re new to agile development,
you may use it to create a map of all the steps involved in releasing software, even if you’re not currently using
XP. If you’re an experienced agile practitioner, review Chapter 13 and use this étude to help you modify your
process to remove communication bottlenecks.

Conduct this étude for a timeboxed half-hour every day for as long as it is useful. Expect to feel rushed by the
deadline at first. If the étude becomes stale, discuss how you can change it to make it interesting again.

You will need red and green index cards, an empty table or magnetic whiteboard for your value stream
map,* and writing implements for everyone.

Step 1. Start by forming heterogeneous pairs—have a programmer work with a customer, a customer work
with a tester, and so forth, rather than pairing by job description. Work with a new partner every day.

Step 2. (Timebox this step to 10 minutes.) Within pairs, consider all the activities that have to happen between
the time someone has an idea and when you can release it to real users or customers. Count an iteration as
one activity, and group together any activities that take less than a day. Consider time spent waiting as an
activity, too. If you can’t think of anything new, pick an existing card and skip to Step 3.

Choose at least one task, and write it on a red card. Reflect on all the times you have performed this activity. If
you have released software, use your experience; do not speculate. How long did it take? Think in terms of
calendar time, not effort. Write three times down on the card: the shortest time you can remember, the
longest time you can remember, and the typical time required. (See Figure 7-1.)

Step 3. (Timebox this step to 10 minutes.) Discuss things that your team can do to reduce the time required for
this activity or to eliminate it entirely. Choose just one idea and write it on a green card.

Step 4. (Timebox this step to 15 minutes.) As a team, discuss your cards and place them on the table or whiteboard
in a value stream map. Place activities (red cards) that must happen first before activities that can happen
afterward. (See Figure 7-2.) If you’re using a whiteboard, draw arrows between the cards to make the flow of
work more clear. Place green cards underneath red cards.

Consider these discussion questions:

* The value stream map was inspired by [Poppendieck & Poppendieck].

Figure 7-1. A sample card

154 C H A P T E R 7 :   R E L E A S I N G

• At which step does work pile up?

• Which results surprise you?

• Who is the constraint in the overall system? How can you improve the performance of the overall system?

• Are there green cards with ideas you can adopt now?

Product
manager
approves

On-site customers
decide requirements

details

Iteration

Wait for other
stories in this

release to finish

System testing
with hardware

Field test Customer trials

General
release!

Figure 7-2. A sample value stream map

R E L E A S I N G 155

“Done Done”
We’re done when we’re production-ready.

“Hey, Liz!” Rebecca sticks her head into Liz’s office. “Did you
finish that new feature yet?”

Liz nods. “Hold on a sec,” she says, without pausing in her typing. A flurry of keystrokes crescendos and
then ends with a flourish. “Done!” She swivels around to look at Rebecca. “It only took me half a day,
too.”

“Wow, that’s impressive,” says Rebecca. “We figured it would take at least a day, probably two. Can I
look at it now?”

“Well, not quite,” says Liz. “I haven’t integrated the new code yet.”

“OK,” Rebecca says. “But once you do that, I can look at it, right? I’m eager to show it to our new clients.
They picked us precisely because of this feature. I’m going to install the new build on their test bed so
they can play with it.”

Liz frowns. “Well, I wouldn’t show it to anybody. I haven’t tested it yet. And you can’t install it
anywhere—I haven’t updated the installer or the database schema generator.”

“I don’t understand,” Rebecca grumbles. “I thought you said you were done!”

“I am,” insists Liz. “I finished coding just as you walked in. Here, I’ll show you.”

“No, no, I don’t need to see the code,” Rebecca says. “I need to be able to show this to our customers.
I need it to be finished. Really finished.”

“Well, why didn’t you say so?” says Liz. “This feature is done—it’s all coded up. It’s just not done done.
Give me a few more days.”

Production-Ready Software
Wouldn’t it be nice if, once you finished a story, you never
had to come back to it? That’s the idea behind “done done.” A
completed story isn’t a lump of unintegrated, untested code.
It’s ready to deploy.

Partially finished stories result in hidden costs to your project.
When it’s time to release, you have to complete an
unpredictable amount of work. This destabilizes your release planning efforts and prevents you from
meeting your commitments.

To avoid this problem, make sure all of your planned stories are “done done” at the end of each iteration.
You should be able to deploy the software at the end of any iteration, although normally you’ll wait
until more features have been developed.

What does it take for software to be “done done”? That depends on your organization. I often explain
that a story is only complete when the customers can use it as they intended. Create a checklist that
shows the story completion criteria. I write mine on the iteration planning board:

Audience

Whole Team

You should able to deploy the
software at the end of any

iteration.

156 C H A P T E R 7 :   R E L E A S I N G

• Tested (all unit, integration, and customer tests finished)

• Coded (all code written)

• Designed (code refactored to the team’s satisfaction)

• Integrated (the story works from end to end—typically, UI to database—and fits into the rest of the
software)

• Builds (the build script includes any new modules)

• Installs (the build script includes the story in the automated installer)

• Migrates (the build script updates database schema if necessary; the installer migrates data when
appropriate)

• Reviewed (customers have reviewed the story and confirmed that it meets their expectations)

• Fixed (all known bugs have been fixed or scheduled as their own stories)

• Accepted (customers agree that the story is finished)

Some teams add “Documented” to this list, meaning that the story has documentation
and help text. This is most appropriate when you have a technical writer as part of your
team.

Other teams include “Performance” and “Scalability” in their “done done” list, but these
can lead to premature optimization. I prefer to schedule performance, scalability, and similar issues with
dedicated stories (see “Performance Optimization” in Chapter 9).

How to Be “Done Done”
XP works best when you make a little progress on every
aspect of your work every day, rather than reserving the last
few days of your iteration for getting stories “done done.”
This is an easier way to work, once you get used to it, and it
reduces the risk of finding unfinished work at the end of the
iteration.

Use test-driven development to combine testing, coding, and designing. When working
on an engineering task, make sure it integrates with the existing code. Use continuous
integration and keep the 10-minute build up-to-date. Create an engineering task (see
“Incremental Requirements” in Chapter 9 for more discussion of customer reviews) for
updating the installer, and have one pair work on it in parallel with the other tasks for
the story.

Just as importantly, include your on-site customers in your work. As you work on a
UI task, show an on-site customer what the screen will look like, even if it doesn’t work
yet (see “Customer review” in Chapter 9). Customers often want to tweak a UI when they see it for the
first time. This can lead to a surprising amount of last-minute work if you delay any demos to the end
of the iteration.

Similarly, as you integrate various pieces, run the software to make sure the pieces all
work together. While this shouldn’t take the place of testing, it’s a good check to help
prevent you from missing anything. Enlist the help of the testers on occasion, and ask
them to show you exploratory testing techniques. (Again, this review doesn’t replace
real exploratory testing.)

Ally

The Whole Team (p. 28)

Make a little progress on every
aspect of your work every day.

Allies

Test-Driven Development
(p. 285)
Continuous Integration (p.
183)
Ten-Minute Build (p. 177)

Ally

Exploratory Testing (p. 341)

“ D O N E D O N E ” 157

Throughout this process, you may find mistakes, errors, or outright bugs. When you
do, fix them right away—then improve your work habits to prevent that kind of error
from occurring again.

When you believe the story is “done done,” show it to your customers for final
acceptance review. Because you reviewed your progress with customers throughout the iteration, this
should only take a few minutes.

Making Time
This may seem like an impossibly large amount of work to do in just one week. It’s easier to do if you
work on it throughout the iteration rather than saving it up for the last day or two. The real secret,
though, is to make your stories small enough that you can completely finish them all in a single week.

Many teams new to XP create stories that are too large to get “done done.” They finish all the coding,
but they don’t have enough time to completely finish the story—perhaps the UI is a little off, or a bug
snuck through the cracks.

Remember, you are in control of your schedule. You decide how many stories to sign up for and how
big they are. Make any story smaller by splitting it into multiple parts (see “Stories” in Chapter 8) and
only working on one of the pieces this iteration.

Creating large stories is a natural mistake, but some teams compound the problem by thinking, “Well,
we really did finish the story, except for that one little bug.” They give themselves credit for the story,
which inflates their velocity and perpetuates the problem.

If you have trouble getting your stories “done done,” don’t
count those stories toward your velocity (see “Velocity” in
Chapter 8). Even if the story only has a few minor UI bugs,
count it as a zero when calculating your velocity. This will
lower your velocity, which will help you choose a more
manageable amount of work in your next iteration. (“Estimating” in Chapter 8 has more details about
using velocity to balance your workload.)

You may find this lowers your velocity so much that you can only schedule one or two stories in an
iteration. This means that your stories were too large to begin with. Split the stories you have, and work
on making future stories smaller.

Questions
How does testers’ work fit into “done done”?

In addition to helping customers and programmers, testers are responsible for
nonfunctional testing and exploratory testing. Typically, they do these only after stories
are “done done.” They may perform some nonfunctional tests, however, in the context
of a specific performance story.

Regardless, the testers are part of the team, and everyone on the team is responsible for helping the
team meet its commitment to deliver “done done” stories at the end of the iteration. Practically speaking,
this usually means that testers help customers with customer testing, and they may help programmers
and customers review the work in progress.

Ally

No Bugs (p. 160)

If a story isn’t “done done,” don’t
count it toward your velocity.

Ally

Exploratory Testing (p. 341)

158 C H A P T E R 7 :   R E L E A S I N G

What if we release a story we think is “done done,” but then we find a bug or stakeholders tell us they want changes?

If you can absorb the change with your iteration slack, go ahead and make the change.
Turn larger changes into new stories.

This sort of feedback is normal—expect it. The product manager should decide whether
the changes are appropriate, and if they are, he should modify the release plan. If you
are constantly surprised by stakeholder changes, consider whether your on-site customers truly reflect
your stakeholder community.

Results
When your stories are “done done,” you avoid unexpected batches of work and spread wrap-up and
polish work throughout the iteration. Customers and testers have a steady workload through the entire
iteration. The final customer acceptance demonstration takes only a few minutes. At the end of each
iteration, your software is ready to demonstrate to stakeholders with the scheduled stories working to
their satisfaction.

Contraindications
This practice may seem advanced. It’s not, but it does require self-discipline. To be
“done done” every week, you must also work in iterations and use small, customer-
centric stories.

In addition, you need a whole team—one that includes customers and testers (and
perhaps a technical writer) in addition to programmers. The whole team must sit
together. If they don’t, the programmers won’t be able to get the feedback they need
in order to finish the stories in time.

Finally, you need incremental design and architecture and test-driven development in
order to test, code, and design each story in such a short timeframe.

Alternatives
This practice is the cornerstone of XP planning. If you aren’t “done done” at every iteration, your velocity
will be unreliable. You won’t be able to ship at any time. This will disrupt your release planning and
prevent you from meeting your commitments, which will in turn damage stakeholder trust. It will
probably lead to increased stress and pressure on the team, hurt team morale, and damage the team’s
capacity for energized work.

The alternative to being “done done” is to fill the end of your schedule with make-up work. You will
end up with an indeterminate amount of work to fix bugs, polish the UI, create an installer, and so
forth. Although many teams operate this way, it will damage your credibility and your ability to deliver.
I don’t recommend it.

Ally

Slack (p. 246)

Allies

Iterations (p. 41)
Stories (p. 253)
Sit Together (p. 112)
Incremental Design and
Architecture (p. 321)
Test-Driven Development
(p. 285)

“ D O N E D O N E ” 159

No Bugs
We confidently release without a dedicated testing phase.

Let’s cook up a bug pie. First, start with a nice, challenging
language. How about C? We’ll season it with a dash of assembly.

Next, add extra bugs by mixing in concurrent programming. Our old friends Safety and Liveness are
happy to fight each other over who provides the most bugs. They supplied the Java multithreading
library with bugs for years!

Now we need a really difficult problem domain. How about real-time embedded systems?

To top off this disaster recipe, we need the right kind of programmers. Let’s see... experts... no... senior
developers... no... aha! Novices! Just what we need.

Take your ingredients—C, real-time embedded systems, multitasking, and don’t forget the novices—
add a little assembly for seasoning, shake well, and bake for three years. (I do love me a bug pie.)

Here’s how it turns out:

The GMS team delivered this product after three years of development [60,638 lines of code],
having encountered a total of 51 defects during that time. The open bug list never had more
than two items at a time. Productivity was measured at almost three times the level for
comparable embedded software teams. The first field test units were delivered after
approximately six months into development. After that point, the software team supported
the other engineering disciplines while continuing to do software enhancements.*

These folks had everything stacked against them—except their coach and her approach to software
development. If they can do it, so can you.

How Is This Possible?
If you’re on a team with a bug count in the hundreds, the idea of “no bugs” probably sounds ridiculous.
I’ll admit: “no bugs” is an ideal to strive for, not something your team will necessarily achieve.

However, XP teams can achieve dramatically lower bug rates. [Van Schooenderwoert]’s team averaged
one and a half bugs per month in a very difficult domain. In an independent analysis of a company
practicing a variant of XP, QSM Associates reported an average reduction from 2,270 defects to 381
defects [Mah].

You might think improvements like this are terribly expensive. They’re not. In fact, agile teams tend to
have above-average productivity.†

Evidence for these results is as yet anecdotal. Scientific studies of complete software development
methodologies are rare due to the large number of variables involved. While there are organizations
that draw performance conclusions by aggregating hundreds of projects, none that I am aware of have
enough data to draw conclusions on agile projects in general, let alone XP specifically. (QSM Associates

Audience

Whole Team

* “Embedded Agile Project by the Numbers with Newbies” [Van Schooenderwoert].

† See, for example, [Van Schooenderwoert], [Mah], and [Anderson 2006].

160 C H A P T E R 7 :   R E L E A S I N G

is a well-regarded example of such an organization; as of June 2006, they only had data from a few
agile projects.*)

In the absence of conclusive proof, how can you know if your team will achieve these results? There’s
only one way to know for sure: try it and see. It doesn’t take superpowers. Teams of novices coached
by an experienced developer have done it. All you need is commitment to follow the XP practices
rigorously and support from your organization to do so.

How to Achieve Nearly Zero Bugs
Many approaches to improving software quality revolve around finding and removing more defects†

through traditional testing, inspection, and automated analysis.

The agile approach is to generate fewer defects. This isn’t a matter of finding defects earlier; it’s a question
of not generating them at all.

For example, [Van Schooenderwoert] delivered 21 bugs to customers. Working from Capers Jones’ data,
Van Schooenderwoert says that a “best in class” team building their software would have generated 460
defects, found 95 percent of them, and delivered 23 to their customer.‡ In contrast, Van
Schooenderwoert’s team generated 51 defects, found 59 percent of them, and delivered 21 to their
customer. At 0.22 defects per function point, this result far exceeds Capers Jones’ best-in-class
expectation of two defects per function point.

To achieve these results, XP uses a potent cocktail of techniques:

1. Write fewer bugs by using a wide variety of technical and organizational practices.

2. Eliminate bug breeding grounds by refactoring poorly designed code.

3. Fix bugs quickly to reduce their impact, write tests to prevent them from reoccurring, then fix the
associated design flaws that are likely to breed more bugs.

4. Test your process by using exploratory testing to expose systemic problems and hidden assumptions.

5. Fix your process by uncovering categories of mistakes and making those mistakes impossible.

This may seem like a lot to do, but most of it comes naturally as part of the XP process. Most of these
activities improve productivity by increasing code quality or by removing obstacles. If you do them as
part of XP, you won’t have to do many of the other more expensive activities that other teams perform,
such as an exhaustive upfront requirements gathering phase, disruptive code inspections, or a separate
bug-fixing phase.

Ingredient #1: Write Fewer Bugs
Don’t worry—I’m not going to wave my hands and say, “Too many bugs? No problem! Just write fewer
bugs!” To stop writing bugs, you have to take a rigorous, thoughtful approach to software development.

* Personal communication with Michael Mah of QSM Associates.

† I use “defect” synonymously with “bug.”

‡ An “average” team would have generated 1,035, found 80 percent, and delivered 207.

N O B U G S 161

Start with test-driven development (TDD), which is a proven technique for reducing
the number of defects you generate [Janzen & Saiedian]. It leads to a comprehensive
suite of unit and integration tests, and perhaps more importantly, it structures your
work into small, easily verifiable steps. Teams using TDD report that they rarely need
to use a debugger.

To enhance the benefits of test-driven development, work sensible hours and program
all production code in pairs. This improves your brainpower, which helps you make
fewer mistakes and allows you to see mistakes more quickly. Pair programming also
provides positive peer pressure, which helps you maintain the self-discipline you need
to follow defect-reduction practices.

Test-driven development helps you eliminate coding defects, but code isn’t your only
source of defects. You can also produce good code that does the wrong thing. To prevent
these requirements-oriented defects, work closely with your stakeholders. Enlist on-
site customers to sit with your team. Use customer tests to help communicate complicated domain rules.
Have testers work with customers to find and fix gaps in their approach to requirements. Demonstrate
your software to stakeholders every week, and act on their feedback.

Supplement these practices with good coding standards and a “done done” checklist. These will help
you remember and avoid common mistakes.

Ingredient #2: Eliminate Bug Breeding Grounds
Writing fewer bugs is an important first step to reducing the number of defects your team generates. If
you accomplish that much, you’re well ahead of most teams. Don’t stop now, though. You can generate
even fewer defects.

Even with test-driven development, your software will accumulate technical debt over time. Most of it
will be in your design, making your code defect-prone and difficult to change, and it will tend to
congregate in specific parts of the system. According to [Boehm], about 20 percent of the modules in a
program are typically responsible for about 80 percent of the errors.

These design flaws are unavoidable. Sometimes a design that
looks good when you first create it won’t hold up over time.
Sometimes a shortcut that seems like an acceptable
compromise will come back to bite you. Sometimes your
requirements change and your design will need to change as well.

Whatever its cause, technical debt leads to complicated, confusing code that’s hard to get right. It breeds
bugs. To generate fewer defects, pay down your debt.

Although you could dedicate a week or two to fixing these problems, the best way to
pay off your debt is to make small improvements every week. Keep new code clean by
creating simple designs and refactoring as you go. Use the slack in each iteration to pay
down debt in old code.

Ingredient #3: Fix Bugs Now
Programmers know that the longer you wait to fix a bug, the more it costs to fix [McConnell 1996] (p.
75). In addition, unfixed bugs probably indicate further problems. Each bug is the result of a flaw in

Allies

Test-Driven Development
(p. 285)
Energized Work (p. 79)
Pair Programming (p. 71)
Sit Together (p. 112)
Customer Tests (p. 278)
Exploratory Testing (p. 341)
Iteration Demo (p. 138)
Coding Standards (p. 133)
“Done Done” (p. 156)

Technical debt breeds bugs.

Allies

Simple Design (p. 314)
Refactoring (p. 303)
Slack (p. 246)

162 C H A P T E R 7 :   R E L E A S I N G

your system that’s likely to breed more mistakes. Fix it now and you’ll improve both quality and
productivity.

To fix the bug, start by writing an automated test that demonstrates the bug. It could be a unit test,
integration test, or customer test, depending on what kind of defect you’ve found. Once you have a
failing test, fix the bug. Get a green bar.

Don’t congratulate yourself yet—you’ve fixed the problem, but you haven’t solved the underlying
cause. Why did that bug occur? Discuss the code with your pairing partner. Is there a design flaw that
made this bug possible? Can you change an API to make such bugs more obvious? Is there some way
to refactor the code that would make this kind of bug less likely? Improve your design. If you’ve
identified a systemic problem, discuss it with the rest of your team in your next stand-up meeting or
iteration retrospective. Tell people what went wrong so they can avoid that mistake in the future.

Fixing bugs quickly requires the whole team to participate. Programmers, use collective
code ownership so that any pair can fix a buggy module. Customers and testers,
personally bring new bugs to the attention of a programmer and help him reproduce
it. These actions are easiest when the whole team sits together.

In practice, it’s not possible to fix every bug right away. You may be in the middle of
working on something else when you find a bug. When this happens to me, I ask my
navigator to write the problem on our to-do list. We come back to it 10 or 20 minutes later, when we
come to a good stopping point.

Some bugs are too big to fix while you’re in the middle of another task. For these, I
write the bug on a story card and announce it to the team. (Some teams use red story
cards for this purpose.) We collectively decide if there’s enough slack in the iteration
to fix the bug and still meet our other commitments. If there is, we create tasks for the
newly created story and pairs volunteer for them as normal. Sometimes your only task
will be “fix the bug.” I use the story card as its own task card when this happens.

If there isn’t enough slack to fix the bug, estimate the cost to fix it and ask your product manager to
decide whether to fix it in this release. If it’s important enough to fix, schedule it into the very next
iteration.

NOTE
Although you may wish to fix every bug right away, you need to consider its cost and
value before doing so. Some bugs are expensive to fix but have limited impact; these
are often not worth fixing. However, because bugs generally become more expensive
to fix over time, you should typically only choose between “fix” (as soon as possible)
or “don’t fix” (until a later release).

DON’T PLAY THE BUG BLAME GAME
FEATURE

—License plate seen on a Volkswagon Beetle

If you tell a programmer there’s a bug in his software, you’re likely to get a prickly response: “That’s not a bug,
it’s a feature!” or “What did you do wrong?”

Allies

Collective Code Ownership
(p. 191)
Sit Together (p. 112)

Ally

Slack (p. 246)

N O B U G S 163

I suspect this is because “bug” usually means “you screwed up.”* Arguing about whether something is a bug
often seems to be a fancy approach to finger-pointing. Some folks have taken this to a high art, making elaborate
distinctions between bugs, defects, faults, errors, issues, anomalies, and of course, unintentional features. I
prefer to avoid formal categorizations. What really matters is whether you will do or not do something,
regardless of whether that something is fixing a bug or implementing a feature.

Mistakes do occur, of course, and we want to prevent those mistakes. Pointing fingers is counterproductive.
The whole team—on-site customers, testers, and programmers—is responsible for delivering valuable
software. Regardless of who made the mistake, the whole team is responsible for preventing it from reaching
stakeholders. To that end, when I think about bugs, I focus on what the team delivers, not where the bug came
from.

NOTE
A bug or defect is any behavior of your software that will unpleasantly surprise important
stakeholders.

Before you yell “bug!”, however, there are a few things to know:

• If the team finds and fixes a problem as part of its normal work—in other words, before a story is “done
done”—it’s not a bug.

• If the on-site customers have intentionally decided that the software should behave this way, it’s not a
bug. (Some of your software’s behavior will be unpleasant to stakeholders—you can’t please all people
all the time—but hopefully it won’t be a surprise.)

Remembering these things won’t help you settle contract disputes, so don’t use them for formal bug
categorization. Instead, change the way you think about bugs. Stop worrying about who made what mistake,
and start focusing on what you can do, as a team, to increase value by delivering fewer bugs.

Ingredient #4: Test Your Process
These practices will dramatically cut down the number of bugs in your system. However, they only
prevent bugs you expect. Before you can write a test to prevent a problem, you have to realize the
problem can occur.

Exploratory testing, in the hands of a good—some may say diabolical—tester, is an
invaluable way to broaden your understanding of the types of problems that can occur.
An exploratory tester uses her intuition and experience to tell her what kinds of
problems programmers and customers have the most trouble considering. For example,
she might unplug her network cable in the middle of an operation or perform a SQL
injection attack on your database.

If your team has typical adversarial relationships between programmers, customers, and testers, these
sorts of unfair tests might elicit bitter griping from programmers. Remember, though—you’re all in this
together. The testers expose holes in your thought process and, by doing so, save you from having to

Ally

Exploratory Testing (p. 341)

* Thanks to Ron Jeffries for this insight.

164 C H A P T E R 7 :   R E L E A S I N G

make uncomfortable apologies to stakeholders or from dramatic failures in production. Congratulate
your testers on their ingenuity—and as you write tests, remember the problems they have exposed.

Exploratory testing is a very effective way of finding unexpected bugs. It’s so effective that the rest of
the team might start to get a little lazy.

Don’t rely on exploratory testing to find bugs in your
software. (Really!) Your primary defense against bugs is test-
driven development and all the other good practices I’ve
mentioned. Instead, use exploratory testing to test your
process. When an exploratory test finds a bug, it’s a sign that
your work habits—your process—have a hole in them. Fix
the bug, then fix your process.

Testers, only conduct exploratory testing on stories that the team agrees are “done done.” Programmers
and customers, if your testers find any problems, think of them as bugs. Take steps to prevent them
from occurring, just as you would for any other bug. Aim for a defect rate of under one or two bugs per
month including bugs found in exploratory testing.

A good exploratory tester will find more bugs than you expect. To make the bug rate go down, fix your
process.

Ingredient #5: Fix Your Process
Some bugs occur because we’re human. (D’oh!) More often, bugs indicate an unknown flaw in our
approach. When the number of bugs you generate gets low enough, you can do something usually
associated with NASA’s Space Shuttle software: root-cause analysis and process improvement on every
bug.

NOTE
Even if your defect count isn’t low enough to allow you to do root-cause analysis of
every bug, consider randomly picking a bug each iteration for further analysis.

When you fix a bug, start by writing an automated test and improving your design to make the bug less
likely. This is the beginning of root-cause analysis, but you can go even further.

As you write the test and fix the design, ask questions. Why was there no test
preventing this bug? Why does the design need fixing? Use the “five whys” technique
to consider the root cause. Then, as a team, discuss possible root causes and decide how
best to change your work habits to make that kind of bug more difficult.

MAKING MISTAKES IMPOSSIBLE
The best way to fix your process is to make mistakes impossible. For example, if you have a problem with UI
field lengths being inconsistent with database field lengths, you could change your design to base one value
off the other.

The next best solution is to find mistakes automatically. For example, you could write a test to check all UI and
database fields for consistency and run that test as part of every build.

Think of exploratory testing as
testing your process, not your

software.

Ally

Root-Cause Analysis (p. 88)

N O B U G S 165

The least effective approach (but better than nothing!) is to add a manual step to your process. For example,
you could add “check modified database/UI fields for length consistency” to your “done done” checklist.

Next, ask yourselves if the root cause of this bug could also have led to other bugs you haven’t yet found.
Testers, ask yourselves if this type of mistake reveals a blind spot in the team’s thinking. Perform
additional testing to explore these questions.

Invert Your Expectations
If you follow these practices, bugs should be a rarity. Your next step is to treat them that way. Rather
than shrugging your shoulders when a bug occurs—“Oh yeah, another bug, that’s what happens in
software”—be shocked and dismayed. “That’s our fourth bug this month! Why do we have so many
bugs?”

I’m not so naïve as to suggest that the power of belief will eliminate bugs, but if you’re already close,
the shift in attitude will help you make the leap from reducing bugs to nearly eliminating bugs. You’ll
spend more energy on discovering and fixing root causes.

For this reason, I recommend that new XP teams not install a bug database. If you’re only generating a
bug or two per month, you don’t need a database to keep track of your bugs; you can just process them
as they come in. Explicitly not providing a database helps create the attitude that bugs are abnormal. It
also removes the temptation to use the database as a substitute for direct, personal communication.

Depending on your industry, you may need a formal way to track defects so a database may be
appropriate. However, I never assume a database will be necessary until the requirements of the
situation prove it. Even then, I look for ways to use our existing process to meet the regulatory or
organizational requirements. Although some shudder at the informality, archiving red bug cards in a
drawer may suffice.

Even if you are able to eliminate your bug database, you still need to be able to reproduce bugs. You
may need screenshots, core dumps, and so forth. If you fix bugs as soon as they come in, you may be
able to work directly out of your email inbox. Otherwise, you can keep this information in the same
place that you keep other requirements details. (See “Incremental Requirements” in Chapter 9.)

Questions
If novices can do this, what’s stopping management from firing everybody and hiring novices?

All else remaining equal, experienced developers will always produce better results and more quickly
than novices. If you have the option to bring high-quality people into your team, do it.

The point is that these practices are within the grasp of average teams—even teams of novices, as long
as they have an experienced coach. They won’t achieve zero bugs, but they are likely to achieve better
results than they would otherwise.

How do we prevent security defects and other challenging bugs?

The approach I’ve described only prevents bugs you think to prevent. Security, concurrency, and other
difficult problem domains may introduce defects you never considered.

166 C H A P T E R 7 :   R E L E A S I N G

In this situation, using exploratory testing to test and fix your process is even more important. You may
need to hire a specialist tester, such as a security expert, to probe for problems and teach the team how
to prevent such problems in the future.

How long should we spend working on a bug before we convert it into a story?

It depends on how much slack you have left in the iteration. Early in the iteration,
when there’s still a lot of slack, I might spend as much as four pair-hours on a defect.
Later, when there’s less slack, I might only spend 10 minutes on it.

Bugs are usually harder to find than to fix, so enlist the help of the testers. The fix often
takes mere minutes once you’ve isolated the problem.

If our guideline is to fix bugs as soon as we find them, won’t we have the unconscious temptation to overlook bugs?

Perhaps. This is one reason we pair: pairing helps us maintain our team discipline. If you find yourself
succumbing to the temptation to ignore a bug, write it on a story card rather than let it slide by. Tell the
rest of the team about the bug, and ask somebody to volunteer to fix it.

If we don’t find any bugs, how do we know that our testers are doing exploratory testing correctly?

It’s a bit of conundrum: the team is supposed to prevent bugs from occurring in “done done” stories, so
exploratory testing shouldn’t find anything. Yet if exploratory testing doesn’t find anything, you could
be testing the wrong things.

If bugs are particularly devastating for your project, ask an independent testing group to test a few of
your iteration releases. If they don’t find anything surprising, then you can have confidence in your
exploratory testing approach.

This is probably overkill for most teams. If you’re following the practices and your testers haven’t found
anything, you can comfortably release your software. Reevaluate your approach if your stakeholders
or customers find a significant bug.

We have a large amount of legacy code. How can we adopt this policy without going mad?

Most legacy code doesn’t have any tests and is chock-full of bugs. You can dig your way out of this hole,
but it will take a lot of time and effort. See “Applying XP to an Existing Project” in Chapter 4 for details.

Results
When you produce nearly zero bugs, you are confident in the quality of your software. You’re
comfortable releasing your software to production without further testing at the end of any iteration.
Stakeholders, customers, and users rarely encounter unpleasant surprises, and you spend your time
producing great software instead of fighting fires.

Contraindications
“No Bugs” depends on the support and structure of all of XP. To achieve these results, you need to
practice nearly all of the XP practices rigorously:

• All the “Thinking” practices are necessary (Pair Programing, Energized Work, Informative
Workspace, Root-Cause Analysis, and Retrospectives); they help you improve your process, and
they help programmers notice mistakes as they code.

• All the “Collaborating” practices except “Reporting” are necessary (Trust, Sit Together, Real
Customer Involvement, Ubiquitous Language, Stand-Up Meetings, Coding Standards, and Iteration

Ally

Slack (p. 246)

N O B U G S 167

Demo); most help prevent requirements defects, and the rest help programmers coordinate with
each other.

• All the “Releasing” practices except “Documentation” are necessary (“Done Done,” No Bugs,
Version Control, Ten-Minute Build, Continuous Integration, and Collective Code Ownership);
most help keep the code organized and clean. “Done Done” helps prevent inadvertent omissions.

• All the “Planning” practices except “Risk Management” are necessary (Vision, Release Planning,
The Planning Game, Iteration Planning, Slack, Stories, and Estimating); they provide structure and
support for the other practices.

• All the “Developing” practices except “Spike Solutions” are necessary (Test-Driven Development,
Refactoring, Simple Design, Incremental Design and Architecture, Performance Optimization,
Customer Reviews, Customer Testing, Exploratory Testing); they improve design quality, reduce
requirements defects, and provide a way for testers to be involved in defect prevention as well as
defect detection.

If you aren’t using all these practices, don’t expect dramatic reductions in defects. Conversely, if you
have a project that’s in XP’s sweet spot (see “Is XP Right for Us?” in Chapter 4) and you’re using all the
XP practices, more than a few bugs per month may indicate a problem with your approach to XP. You
need time to learn the practices, of course, but if you don’t see improvements in your bug rates within
a few months, consider asking for help (see “Find a Mentor” in Chapter 2).

Alternatives
You can also reduce bugs by using more and higher quality testing (including inspection or automated
analysis) to find and fix a higher percentage of bugs. However, testers will need some time to review
and test your code, which will prevent you from being “done done” and ready to ship at the end of each
iteration.

Further Reading
“Embedded Agile Project by the Numbers with Newbies” [Van Schooenderwoert] expands on the
embedded C project described in the introduction.

168 C H A P T E R 7 :   R E L E A S I N G

Version Control
We keep all our project artifacts in a single, authoritative place.

To work as a team, you need some way to coordinate your
source code, tests, and other important project artifacts. A version control system provides a central
repository that helps coordinate changes to files and also provides a history of changes.

A project without version control may have snippets of code scattered among developer machines,
networked drives, and even removable media. The build process may involve one or more people
scrambling to find the latest versions of several files, trying to put them in the right places, and only
succeeding through the application of copious caffeine, pizza, and stress.

A project with version control uses the version control system to mediate changes. It’s
an orderly process in which developers get the latest code from the server, do their
work, run all the tests to confirm their code works, then check in their changes. This
process, called continuous integration, occurs several times a day for each pair.

NOTE
If you aren’t familiar with the basics of version control, start learning now. Learning
to use a version control system effectively may take a few days, but the benefits are so
great that it is well worth the effort.

VERSION CONTROL TERMINOLOGY
Different version control systems use different terminology. Here are the terms I use throughout this book:

Repository
The repository is the master storage for all your files and and their history. It’s typically stored on the
version control server. Each standalone project should have its own repository.

Sandbox
Also known as a working copy, a sandbox is what team members work out of on their local development
machines. (Don’t ever put a sandbox on a shared drive. If other people want to develop, they can make
their own sandbox.) The sandbox contains a copy of all the files in the repository from a particular point
in time.

Check out
To create a sandbox, check out a copy of the repository. In some version control systems, this term means
“update and lock.”

Update
Update your sandbox to get the latest changes from the repository. You can also update to a particular
point in the past.

Lock
A lock prevents anybody from editing a file but you.

Check in or commit
Check in the files in your sandbox to save them into the repository.

Audience

Programmers

Ally

Continuous Integration (p.
183)

V E R S I O N C O N T R O L 169

Revert
Revert your sandbox to throw away your changes and return to the point of your last update. This is handy
when you’ve broken your local build and can’t figure out how to get it working again. Sometimes reverting
is faster than debugging, especially if you have checked in recently.

Tip or head
The tip or head of the repository contains the latest changes that have been checked in. When you update
your sandbox, you get the files at the tip. (This changes somewhat when you use branches.)

Tag or label
A tag or label marks a particular time in the history of the repository, allowing you to easily access it again.

Roll back
Roll back a check-in to remove it from the tip of the repository. The mechanism for doing so varies
depending on the version control system you use.

Branch
A branch occurs when you split the repository into distinct “alternate histories,” a process known as
branching. All the files exist in each branch, and you can edit files in one branch independently of all
other branches.

Merge
A merge is the process of combining multiple changes and resolving any conflicts. If two programmers
change a file separately and both check it in, the second programmer will need to merge in the first person’s
changes.

Concurrent Editing
If multiple developers modify the same file without using version control, they’re likely to accidentally
overwrite each other’s changes. To avoid this pain, some developers turn to a locking model of version
control: when they work on a file, they lock it to prevent anyone else from making changes. The files
in their sandboxes are read-only until locked. If you have to check out a file in order to work on it, then
you’re using a locking model.

While this approach solves the problem of accidentally overwriting changes, it can
cause other, more serious problems. A locking model makes it difficult to make changes.
Team members have to carefully coordinate who is working on which file, and that
stifles their ability to refactor and make other beneficial changes. To get around this,
teams often turn to strong code ownership, which is the worst of the code ownership
models because only one person has the authority to modify a particular file. Collective
code ownership is a better approach, but it’s very hard to do if you use file locking.

Instead of a locking model, use a concurrent model of version control. This model allows two people to
edit the same file simultaneously. The version control system automatically merges their changes—
nothing gets overwritten accidentally. If two people edit the exact same lines of code, the version control
system prompts them to merge the two lines manually.

Ally

Collective Code Ownership
(p. 191)

170 C H A P T E R 7 :   R E L E A S I N G

Automatic merges may seem risky. They would be risky if it weren’t for continuous
integration and the automated build. Continuous integration reduces the scope of
merges to a manageable level, and the build, with its comprehensive test suite, confirms
that merges work properly.

Time Travel
One of the most powerful uses of a version control system is the ability to go back in time. You can
update your sandbox with all the files from a particular point in the past.

This allows you to use diff debugging. When you find a challenging bug that you can’t debug normally,
go back in time to an old version of the code when the bug didn’t exist. Then go forward and backward
until you isolate the exact check-in that introduced the bug. You can review the changes in that check-
in alone to get insight into the cause of the bug. With continuous integration, the number of changes
will be small.

NOTE
A powerful technique for diff debugging is the binary chop, in which you cut the
possible number of changes in half with each test. If you know that version 500 doesn’t
have the bug and your current version, 700, does, then check version 600. If the bug
is present in version 600, it was introduced somewhere between 500 and 599, so now
check version 550. If the bug is not present in version 600, it was introduced
somewhere between version 601 and 700, so check version 650. By applying a bit of
logic and halving the search space each time, you can quickly isolate the exact version.

A bit of clever code could even automate this search with an automated test.*

Time travel is also useful for reproducing bugs. If somebody reports a bug and you can’t reproduce it,
try using the same version of the code that the reporter is using. If you can reproduce the behavior in
the old version but not in the current version, especially with a unit test, you can be confident that the
bug is and will remain fixed.

Whole Project
It should be obvious that you should store your source code in version control. It’s less obvious that you
should store everything else in there, too. Although most version control systems allow you to go back
in time, it doesn’t do you any good unless you can build the exact version you had at that time. Storing
the whole project in version control—including the build system—gives you the ability to re-create old
versions of the project in full.

As much as possible, keep all your tools, libraries, documentation, and everything else related to the
project in version control. Tools and libraries are particularly important. If you leave them out, at some
point you’ll update one of them, and then you’ll no longer be able to go back to a time before the update.
Or, if you do, you’ll have to painstakingly remember which version of the tool you used to use and
manually replace it.

Allies

Continuous Integration (p.
183)
Ten-Minute Build (p. 177)

* Thanks to Andreas Kö for demonstrating this.

V E R S I O N C O N T R O L 171

For similar reasons, store the entire project in a single repository. Although it may seem natural to split
the project into multiple repositories—perhaps one for each deliverable, or one for source code and one
for documentation—this approach increases the opportunities for things to get out of sync.

Perform your update and commit actions on the whole tree as well. Typically, this means updating or
committing from the top-level directory. It may be tempting to commit only the directory you’ve been
working in, but that leaves you vulnerable to the possibility of having your sandbox split across two
separate versions.

The only project-related artifact I don’t keep in version
control is generated code. Your automated build should re-
create generated code automatically.

There is one remaining exception to what belongs in version
control: code you plan to throw away. Spike solutions (see
“Spike Solutions” in Chapter 9), experiments, and research projects may remain unintegrated, unless
they produce concrete documentation or other artifacts that will be useful for the project. Check in only
the useful pieces of the experiment. Discard the rest.

Customers and Version Control
Customer data should go in the repository, too. That includes documentation, notes on requirements
(see “Incremental Requirements” in Chapter 9), technical writing such as manuals, and customer tests
(see “Customer Tests” in Chapter 9).

When I mention this to programmers, they worry that the version control system will be too complex
for customers to use. Don’t underestimate your customers. While it’s true that some version control
systems are very complex, most have user-friendly interfaces. For example, the TortoiseSvn Windows
client for the open-source Subversion version control system is particularly nice.

Even if your version control system is somewhat arcane, you can always create a pair of simple shell
scripts or batch files—one for update and one for commit—and teach your customers how to run them.
If you sit together, you can always help your customers when they need to do something more
sophisticated, such as time travel or merging.

Keep It Clean
One of the most important ideas in XP is that you keep the
code clean and ready to ship. It starts with your sandbox.
Although you have to break the build in your sandbox in
order to make progress, confine it to your sandbox. Never
check in code that breaks the build. This allows anybody to
update at any time without worrying about breaking their build—and that, in turn, allows everyone to
work smoothly and share changes easily.

NOTE
You can even minimize broken builds in your sandbox. With good test-driven
development, you’re never more than five minutes away from a working build.

Leave generated code out of the
repository.

Always check in code that builds
and passes all tests.

172 C H A P T E R 7 :   R E L E A S I N G

Because your build automatically creates a release, any code that builds is theoretically ready to release.
In practice, the code may be clean but the software itself won’t be ready for the outside world. Stories
will be half-done, user interface elements will be missing, and some things won’t entirely work.

By the end of each iteration, you will have finished all these loose ends. Each story will be “done done,”
and you will deploy the software to stakeholders as part of your iteration demo. This software represents
a genuine increment of value for your organization. Make sure you can return to it at any time by
tagging the tip of the repository. I usually name mine “Iteration X,” where X is the number of the
iterations we have conducted.

Not every end-of-iteration release to stakeholders gets released to customers. Although it contains
completed stories, it may not have enough to warrant a release. When you conduct an actual release,
add another tag to the end-of-iteration build to mark the release. I usually name mine “Release Y,“
where Y is the number of releases we have conducted.

NOTE
Although your build should theoretically work from any sandbox, save yourself
potential headaches by performing release builds from a new, pristine sandbox. The
first time you spend an hour discovering that you’ve broken a release build by
accidentally including an old file, you’ll resolve never to do it again.

To summarize, your code goes through four levels of completion:

1. Broken. This only happens in your sandbox.

2. Builds and passes all tests. All versions in your repository are at least at this level.

3. Ready to demo to stakeholders. Any version marked with the “Iteration X" tag is ready for stakeholders
to try.

4. Ready to release to real users and customers. Any version marked with the “Release Y" tag is production-
ready.

Single Codebase
One of the most devastating mistakes a team can make is to duplicate their codebase. It’s easy to do.
First, a customer innocently requests a customized version of your software. To deliver this version
quickly, it seems simple to duplicate the codebase, make the changes, and ship it. Yet that copy and paste
customization doubles the number of lines of code that you need to maintain.

I’ve seen this cripple a team’s ability to deliver working
software on a timely schedule. It’s nearly impossible to
recombine a duplicated codebase without heroic and
immediate action. That one click doesn’t just lead to technical
debt; it leads to indentured servitude.

Unfortunately, version control systems actually make this mistake easier to make. Most of these systems
provide the option to branch your code—that is, to split the repository into two separate lines of
development. This is essentially the same thing as duplicating your codebase.

Branches have their uses, but using them to provide multiple customized versions of your software is
risky. Although version control systems provide mechanisms for keeping multiple branches
synchronized, doing so is tedious work that steadily becomes more difficult over time. Instead, design

Duplicating your codebase will
cripple your ability to deliver.

V E R S I O N C O N T R O L 173

your code to support multiple configurations. Use a plug-in architecture, a configuration file, or factor
out a common library or framework. Top it off with a build and delivery process that creates multiple
versions.

Appropriate Uses of Branches
Branches work best when they are short-lived or when you use them for small numbers of changes. If
you support old versions of your software, a branch for each version is the best place to put bug fixes
and minor enhancements for those versions.

Some teams create a branch in preparation for a release. Half the team continues to perform new work,
and the other half attempts to stabilize the old version. In XP, your code shouldn’t require stabilization,
so it’s more useful to create such a branch at the point of release, not in preparation for release.

NOTE
To eliminate the need for a branch entirely, automatically migrate your customers and
users to the latest version every time you release.

Branches can also be useful for continuous integration and other code management tasks. These private
branches live for less than a day. You don’t need private branches to successfully practice XP, but if you’re
familiar with this approach, feel free to use it.

Questions
Which version control system should I use?

There are plenty of options. In the open source realm, Subversion is popular and particularly good when
combined with the TortoiseSvn frontend. Of the proprietary options, Perforce gets good reviews,
although I haven’t tried it myself.

Avoid Visual SourceSafe (VSS). VSS is a popular choice for Microsoft teams, but it has numerous flaws
and problems with repository corruption—an unacceptable defect in a version control system.

Your organization may already provide a recommended version control system. If it meets your needs,
use it. Otherwise, maintaining your own version control system isn’t much work and requires little of
a server besides disk space.

Should we really keep all our tools and libraries in version control?

Yes, as much as possible. If you install tools and libraries manually, two undesirable things will happen.
First, whenever you make an update, everyone will have to manually update their computer. Second,
at some point in the future you’ll want to build an earlier version, and you’ll spend several hours
struggling to remember which versions of which tools you need to install.

Some teams address these concerns by creating a “tools and libraries” document and putting it in source
control, but it’s a pain to keep such a document up-to-date. Keeping your tools and libraries in source
control is a simpler, more effective method.

Some tools and libraries require special installation, particularly on Windows, which makes this strategy
more difficult. They don’t all need installation, though—some just come with an installer because it’s a
cultural expectation. See if you can use them without installing them, and try to avoid those that you
can’t easily use without special configuration.

174 C H A P T E R 7 :   R E L E A S I N G

For tools that require installation, I put their install packages in version control, but I don’t install them
automatically in the build script. The same is true for tools that are useful but not necessary for the
build, such as IDEs and diff tools.

How can we store our database in version control?

Rather than storing the database itself in version control, set up your build to initialize
your database schema and migrate between versions. Store the scripts to do this in
version control.

How much of our core platform should we include in version control?

In order for time travel to work, you need to be able to exactly reproduce your build environment for
any point in the past. In theory, everything required to build should be in version control, including
your compiler, language framework, and even your database management system (DBMS) and
operating system (OS). Unfortunately, this isn’t always practical. I include as much as I can, but I don’t
usually include my DBMS or operating system.

Some teams keep an image of their entire OS and installed software in version control. This is an
intriguing idea, but I haven’t tried it.

With so many things in version control, how can I update as quickly as I need to?

Slow updates may be a sign of a poor-quality version control system. The speed of better systems depends
on the number of files that have changed, not the total number of files in the system.

One way to make your updates faster is to be selective about what parts of your tools and libraries you
include. Rather than including the entire distribution—documentation, source code, and all—include
only the bare minimum needed to build. Many tools only need a handful of files to execute. Include
distribution package files in case someone needs more details in the future.

How should we integrate source code from other projects? We have read-only access to their repositories.

If you don’t intend to change their code and you plan on updating infrequently, you can manually copy
their source code into your repository.

If you have more sophisticated needs, many version control systems will allow you to integrate with
other repositories. Your system will automatically fetch their latest changes when you update. It will
even merge your changes to their source code with their updates. Check your version control system’s
documentation for more details.

Be cautious of making local changes to third-party source code; this is essentially a branch, and it incurs
the same synchronization challenges and maintenance overhead that any long-lived branch does. If you
find yourself making modifications beyond vendor-supplied configuration files, consider pushing those
changes upstream, back to the vendor, as soon as possible.

We sometimes share code with other teams and departments. Should we give them access to our repository?

Certainly. You may wish to provide read-only access unless you have well-defined ways of coordinating
changes from other teams.

Results
With good version control practices, you are easily able to coordinate changes with other members of
the team. You easily reproduce old versions of your software when you need to. Long after your project
has finished, your organization can recover your code and rebuild it when they need to.

Ally

Ten-Minute Build (p. 177)

V E R S I O N C O N T R O L 175

Contraindications
You should always use some form of version control, even on small one-person projects. Version control
will act as a backup and protect you when you make sweeping changes.

Concurrent editing, on the other hand, can be dangerous if an automatic merge fails
and goes undetected. Be sure you have a decent build if you allow concurrent edits.
Concurrent editing is also safer and easier if you practice continuous integration and
have good tests.

Alternatives
There is no practical alternative to version control.

You may choose to use file locking rather than concurrent editing. Unfortunately, this approach makes
refactoring and collective code ownership very difficult, if not impossible. You can alleviate this
somewhat by keeping a list of proposed refactorings and scheduling them, but the added overhead is
likely to discourage people from suggesting significant refactorings.

Further Reading
Pragmatic Version Control Using Subversion [Mason] is a good introduction to the nuts and bolts of version
control that specifically focuses on Subversion.

Source Control HOWTO [Sink], at http://www.ericsink.com/scm/source_control.html, is a helpful introduction
to version control for programmers with a Microsoft background.

Software Configuration Management Patterns: Effective Teamwork, Practical Integration [Berczuk & Appleton]
goes into much more detail about the ways in which to use version control.

Allies

Ten-Minute Build (p. 177)
Continuous Integration (p.
183)
Test-Driven Development
(p. 285)

176 C H A P T E R 7 :   R E L E A S I N G

http://www.ericsink.com/scm/source_control.html

Ten-Minute Build
We eliminate build and configuration hassles.

Here’s an ideal to strive for. Imagine you’ve just hired a new
programmer. On the programmer’s first day, you walk him over to the shiny new computer you just
added to your open workspace.

“We’ve found that keeping everything in version control and having a really great automated build
makes us a lot faster,” you say. “Here, I’ll show you. This computer is new, so it doesn’t have any of our
stuff on it yet.”

You sit down together. “OK, go ahead and check out the source tree.” You walk him through the process
and the source tree starts downloading. “This will take a while because we have all our build tools and
libraries in version control, too. Don’t worry—like any good version control system, it brings down
changes, so it’s only slow the first time. We keep tools and libraries in version control because it allows
us to update them easily. Come on, let me show you around the office while it downloads.”

After giving him the tour, you come back. “Good, it’s finished,” you say. “Now watch this—this is my
favorite part. Go to the root of the source tree and type build.”

The new programmer complies, then watches as build information flies by. “It’s not just building the
source code,” you explain. “We have a complex application that requires a web server, multiple web
services, and several databases. In the past, when we hired a new programmer, he would spend his first
couple of weeks just configuring his workstation. Test environments were even worse. We used to idle
the whole team for days while we wrestled with problems in the test environment. Even when the
environment worked, we all had to share one environment and we couldn’t run tests at the same time.

“All that has changed. We’ve automated all of our setup. Anybody can build and run all the tests on
their own machine, any time they want. I could even disconnect from the network right now and it
would keep building. The build script is doing everything: it’s configuring a local web server, initializing
a local database... everything.

“Ah! It’s almost done. It’s built the app and configured the services. Now it’s running the tests. This part
used to be really slow, but we’ve made it much faster lately by improving our unit tests so we could get
rid of our end-to-end tests.”

Suddenly, everything stops. The cursor blinks quietly. At the bottom of the console is a message: BUILD
SUCCESSFUL.

“That’s it,” you say proudly. “Everything works. I have so much confidence in our build and tests that
I could take this and install it on our production servers today. In fact, we could do that right now, if
we wanted to, just by giving our build a different command.

“You’re going to enjoy working here.” You give the new programmer a friendly smile. “It used to be
hell getting even the simplest things done. Now, it’s like butter. Everything just works.”

Automate Your Build
What if you could build and test your entire product—or create a deployment package—at any time,
just by pushing a button? How much easier would that make your life?

Audience

Programmers

T E N - M I N U T E B U I L D 177

Producing a build is often a frustrating and lengthy experience. This frustration can spill over to the rest
of your work. “Can we release the software?” “With a few days of work.” “Does the software work?”
“My piece does, but I can’t build everything.” “Is the demo ready?” “We ran into a problem with the
build—tell everyone to come back in an hour.”

Sadly, build automation is easy to overlook in the rush to
finish features. If you don’t have an automated build, start
working on one now. It’s one of the easiest things you can
do to make your life better.

How to Automate
There are plenty of useful build tools available, depending on your platform and choice of language. If
you’re using Java, take a look at Ant. In .NET, NAnt and MSBuild are popular. Make is the old standby
for C and C++. Perl, Python, and Ruby each have their preferred build tools as well.

Your build should be comprehensive but not complex. In addition to compiling your source code and
running tests, it should configure registry settings, initialize database schemas, set up web servers, launch
processes—everything you need to build and test your software from scratch without human
intervention. Once you get the basics working, add the ability to create a production release, either by
creating an install file or actually deploying to servers.

NOTE
Construct your build so that it provides a single, unambiguous result: SUCCESS or
FAILURE. You will run the build dozens of times per day. Manual checks are slow, error-
prone, and—after the umpteenth time—seriously annoying.

A key component of a successful automated build is the local
build. A local build will allow you to build and test at any time
without worrying about other people’s activities. You’ll do
this every few minutes in XP, so independence is important.
It will also make your builds run faster.

Be cautious of IDEs and other tools that promise to manage
your build automatically. Their capability often begins and ends with compiling source code. Instead,
take control of your build script. Take the time to understand exactly how and why it works and when
to change it. Rather than starting with a pre-made template, you might be better off creating a
completely new script. You’ll learn more, and you’ll be able to eliminate the complexity a generic script
adds.

The details are up to you. In my build scripts, I prefer to have all autogenerated content go into a single
directory called build/. The output of each major step (such as compiling source code, running tests,
collating files into a release, or building a release package) goes into a separate directory under build/.
This structure allows me to inspect the results of the build process and—if anything goes wrong—wipe
the slate clean and start over.

Automating your build is one of
the easiest ways to improve

morale and increase
productivity.

You should be able to build even
when disconnected from the

network.

178 C H A P T E R 7 :   R E L E A S I N G

When to Automate
At the start of the project, in the very first iteration, set up a bare-bones build system. The goal of this
first iteration is to produce the simplest possible product that exercises your entire system. That includes
delivering a working—if minimal—product to stakeholders.

Because the product is so small and simple at this stage,
creating a high-quality automated build is easy. Don’t try to
cover all the possible build scenarios you need in the future.
Just make sure you can build, test, and deploy this one simple
product—even if it does little more than “Hello, world!” At
this stage, deployment might be as simple as creating a .zip
file.

Once you have the seed of your build script, it’s easy to improve. Every iteration, as
you add features that require more out of your build, improve your script. Use your
build script every time you integrate. To make sure it stays up-to-date, never configure
the integration machine manually. If you find that something needs configuration,
modify the build script to configure it for you.

Automating Legacy Projects
If you want to add a build script to an existing system, I have good news and bad news. The good news
is that creating a comprehensive build script is one of the easiest ways to improve your life. The bad
news is that you probably have a bunch of technical debt to pay off, so it won’t happen overnight.

As with any agile plan, the best approach is to work in small stages that provide value as soon as possible.
If you have a particularly complex system with lots of components, work on one component at a time,
starting with the one that’s most error-prone or frustrating to build manually.

Once you’ve picked the right component to automate, start by getting it to compile. That’s usually an
easy step, and it allows you to make progress right away.

Next, add the ability to run unit tests and make sure they pass. You probably compile and run unit tests
in your IDE already, so this may not seem like a big improvement. Stick with it; making your build script
able to prove itself is an important step. You won’t have to check the results manually anymore.

Your next step depends on what’s causing you the most grief. What is the most annoying thing about
your current build process? What configuration issue springs up to waste a few hours every week?
Automate that. Repeat with the next-biggest annoyance until you have automated everything. Once
you’ve finished this, congratulations! You’ve eliminated all your build annoyances. You’re ahead of
most teams: you have a good build script.

Now it’s time to make a great build script. Take a look at how you deploy. Do you create a release package
such as an installer, or do you deploy directly to the production servers? Either way, start automating
the biggest annoyances in your deployment process, one at a time. As before, repeat with the next-
biggest annoyance until you run out of nits to pick.

This won’t happen overnight, but try to make progress every week. If you can solve one annoyance
every week, no matter how small, you’ll see noticeable improvement within a month. As you work on
other things, try not to add new debt. Include all new work in the build script from the beginning.

Use the build script to configure
the integration machine. Don’t

configure it manually.

Ally

Continuous Integration (p.
183)

T E N - M I N U T E B U I L D 179

Ten Minutes or Less
A great build script puts your team way ahead of most software teams. After you get over the rush of
being able to build the whole system at any time you want, you’ll probably notice something new: the
build is slow.

With continuous integration, you integrate every few hours. Each integration involves two builds: one
on your machine and one on the integration machine. You need to wait for both builds to finish before
continuing because you can never let the build break in XP. If the build breaks, you have to roll back
your changes.

A 10-minute build leads to a 20-minute integration cycle. That’s a pretty long delay. I prefer a 10- or
15-minute integration cycle. That’s about the amount of time it takes to stretch my legs, get some coffee,
and talk over our work with my pairing partner.

The easiest way to keep the build under 5 minutes (with a 10-minute maximum) is to keep the build
times down from the beginning. One team I worked with started to look for ways to speed up the build
whenever it exceeded 100 seconds.

Many new XP teams make the mistake of letting their build get too long. If you’re in that boat, don’t
worry. You can fix long build times in the same agile way you fix all technical debt: piece by piece,
focusing on making useful progress at each step.

For most teams, their tests are the source of a slow build.
Usually it’s because their tests aren’t focused enough. Look
for common problems: are you writing end-to-end tests
when you should be writing unit tests and integration tests?
Do your unit tests talk to a database, network, or file system?

You should be able to run about 100 unit tests per second. Unit tests should comprise the majority of
your tests. A fraction (less than 10 percent) should be integration tests, which checks that two
components synchronize properly. When the rest of your tests provide good coverage, only a handful—
if any—need to be end-to-end tests. See “Speed Matters in Chapter 9 for more information.

Although tests are the most common cause of slow builds, if compilation speed becomes a problem,
consider optimizing code layout or using a compilation cache or incremental compilation. You could
also use a distributed compilation system or take the best machine available for use as the build master.
Don’t forget to take advantage of the dependency evaluation features of your build tool: you don’t need
to rebuild things that haven’t changed.

In the worst-case scenario, you may need to split your build into a “fast” build that you run frequently
and a “slow” build that an integration server runs when you check in (see “Continuous Integration,”
later in this chapter). Be careful—this approach leads to more build failures than a single, fast build does.
Keep working on making your build faster.

Questions
Who’s responsible for maintaining the build script?

All the programmers are responsible for maintaining the script. As the codebase evolves, the build script
should evolve with it.

At first, one person will probably be more knowledgeable about the script than others. When you need
to update the script, pair with this person and learn all you can.

Slow tests are the most common
cause of slow builds.

180 C H A P T E R 7 :   R E L E A S I N G

The build script is the center of your project automation universe. The more you know about how to
automate your builds, the easier your life will become and the faster you’ll be able to get work done.

We have a configuration management (CM) department that’s responsible for maintaining our builds. We aren’t
allowed to modify the script ourselves. What do we do?

You need to be able to update your scripts continuously to meet your specific needs. It’s unlikely that
anybody can be more responsive to your needs than you are. If the CM department is a bottleneck, ask
your project manager for help. He may be able to give you control over the scripts.

Alternatively, you might be able to use a two-stage build in which you run your own scripts privately
before handing over control to the CM department.

How do we find time to improve our build?

Improving your build directly improves your productivity and quality of life. It’s
important enough to include in every iteration as part of your everyday work. The best
way to do this is to include enough slack in your iteration for taking care of technical
debt such as slow builds. If a particular story will require changes to the build script,
include that time in your story estimate.

Should we really keep all our tools and libraries in version control?

Yes, as much as possible. See “Version Control” earlier in this chapter for details.

Does the build have to be under 10 minutes? We’re at 11.

Ten minutes is a good rule of thumb. Your build is too long when pairs move on to other tasks before
the integration cycle completes.

We use an IDE with an integrated build system. How can we automate our build process?

Many IDEs use an underlying build script that you can control. If not, you may be better off using a
different IDE. Your other alternative is to have a separate command line–based build system, such as
Ant, NAnt, or make. You risk duplicating information about dependencies, but sometimes that cost is
worthwhile.

We have different target and development environments. How do we make this build work?

If possible, use a cross compiler. If that doesn’t work, consider using a cross-platform build tool. The
benefits of testing the build on your development platform outweigh the initial work in creating a
portable system.

How can we build our entire product when we rely on third-party software and hardware?

Even if your product relies on yet-to-be-built custom hardware or unavailable third-party systems, you
still need to build and test your part of the product. If you don’t, you’ll discover a ton of integration and
bug-fixing work when the system becomes available.

A common solution for this scenario is to build a simulator for the missing system, which allows you to
build integration tests. When the missing system becomes available, the integration tests help you
determine if the assumptions you built into the simulator were correct.

Missing components add risk to your project, so try to get your hands on a test system as soon as possible.

How often should we build from scratch?

At least once per iteration. Building from scratch is often much slower than an incremental build, so it
depends on how fast the build is and how good your build system is. If you don’t trust your build system,

Ally

Slack (p. 246)

T E N - M I N U T E B U I L D 181

build from scratch more often. You can set up a smoke-testing system that builds the project from scratch
on every check-in.

My preference is to reduce build times so that incremental builds are unnecessary, or to fix the bugs in
the build system so I trust the incremental builds. Even so, I prefer to build from scratch before delivering
to customers.

Results
With a good automated build, you can build a release any time you want. When somebody new joins
the team, or when you need to wipe a workstation and start fresh, it’s a simple matter of downloading
the latest code from the repository and running the build.

When your build is fast and well-automated, you build and test the whole system more frequently. You
catch bugs earlier and, as a result, spend less time debugging. You integrate your software frequently
without relying on complex background build systems, which reduces integration problems.

Contraindications
Every project should have a good automated build. Even if you have a system that’s difficult to build,
you can start chipping away at the problem today.

Some projects are too large for the 10-minute rule to be effective. Before you assume this is true for
your project, take a close look at your build procedures. You can often reduce the build time much more
than you realize.

Alternatives
If the project truly is too large to build in 10 minutes, it’s probably under development by multiple teams
or subteams. Consider splitting the project into independent pieces that you can build and test
separately.

If you can’t build your system in less than 10 minutes (yet), establish a maximum acceptable threshhold
and stick to it. Drawing this line helps identify a point beyond which you will not allow more technical
debt to accumulate. Like a sink full of dishes two hours before a dinner party, the time limit is a good
impetus to do some cleaning.

182 C H A P T E R 7 :   R E L E A S I N G

Continuous Integration
We keep our code ready to ship.

Most software development efforts have a hidden delay between
when the team says “we’re done” and when the software is actually ready to ship. Sometimes that delay
can stretch on for months. It’s the little things: merging everyone’s pieces together, creating an installer,
prepopulating the database, building the manual, and so forth. Meanwhile, the team gets stressed out
because they forgot how long these things take. They rush, leave out helpful build automation, and
introduce more bugs and delays.

Continuous integration is a better approach. It keeps
everybody’s code integrated and builds release infrastructure
along with the rest of the application. The ultimate goal of
continuous integration is to be able to deploy all but the last
few hours of work at any time.

Practically speaking, you won’t actually release software in the middle of an iteration. Stories will be
half-done and features will be incomplete. The point is to be technologically ready to release even if you’re
not functionally ready to release.

Why It Works
If you’ve ever experienced a painful multiday (or multiweek) integration, integrating every few hours
probably seems foolish. Why go through that hell so often?

Actually, short cycles make integration less painful. Shorter cycles lead to smaller changes, which means
there are fewer chances for your changes to overlap with someone else’s.

That’s not to say collisions don’t happen. They do. They’re just not very frequent because everybody’s
changes are so small.

NOTE
Collisions are most likely when you’re making wide-ranging changes. When you do,
let the rest of the team know beforehand so they can integrate their changes and be
ready to deal with yours.

How to Practice Continuous Integration
In order to be ready to deploy all but the last few hours of work, your team needs to do two things:

1. Integrate your code every few hours.

2. Keep your build, tests, and other release infrastructure up-to-date.

To integrate, update your sandbox with the latest code from the repository, make sure
everything builds, then commit your code back to the repository. You can integrate
any time you have a successful build. With test-driven development, that should
happen every few minutes. I integrate whenever I make a significant change to the
code or create something I think the rest of the team will want right away.

Audience

Programmers

The ultimate goal is to be able to
deploy at any time.

Ally

Test-Driven Development
(p. 285)

C O N T I N U O U S I N T E G R A T I O N 183

NOTE
Many teams have a rule that you have to integrate before you go home at the end of
the day. If you can’t integrate, they say, something has gone wrong and you should
throw away your code and start fresh the next day. This rule seems harsh, but it’s
actually a very good rule. With test-driven development, if you can’t integrate within
a few minutes, you’re likely stuck.

Each integration should get as close to a real release as
possible. The goal is to make preparing for a release such an
ordinary occurrence that, when you actually do ship, it’s a
nonevent.* Some teams that use continuous integration
automatically burn an installation CD every time they
integrate. Others create a disk image or, for network-
deployed products, automatically deploy to staging servers.

Never Break the Build
When was the last time you spent hours chasing down a bug in your code, only to find that it was a
problem with your computer’s configuration or in somebody else’s code? Conversely, when was the
last time you spent hours blaming your computer’s configuration (or somebody else’s code), only to
find that the problem was in code you just wrote?

On typical projects, when we integrate, we don’t have confidence in the quality of our code or in the
quality of the code in the repository. The scope of possible errors is wide; if anything goes wrong, we’re
not sure where to look.

Reducing the scope of possible errors is the key to developing quickly. If you have total confidence that
your software worked five minutes ago, then only the actions you’ve taken in the last five minutes could
cause it to fail now. That reduces the scope of the problem so much that you can often figure it out just
by looking at the error message—there’s no debugging necessary.

To achieve this, agree as a team never to break the build. This
is easier than it sounds: you can actually guarantee that the
build will never break (well, almost never) by following a
little script.

The Continuous Integration Script
To guarantee an always-working build, you have to solve two problems. First, you need to make sure
that what works on your computer will work on anybody’s computer. (How often have you heard the
phrase, “But it worked on my machine!”?) Second, you need to make sure nobody gets code that hasn’t
been proven to build successfully.

To do this, you need a spare development machine to act as a central integration machine. You also
need some sort of physical object to act as an integration token. (I use a rubber chicken. Stuffed toys
work well, too.)

Toss out your recent changes and
start over when you get badly

stuck.

Agree as a team never to break
the build.

* ... except for the release party, of course.

184 C H A P T E R 7 :   R E L E A S I N G

With an integration machine and integration token, you can ensure a working build in several simple
steps.

To update from the repository

1. Check that the integration token is available. If it isn’t, another pair is checking in unproven code
and you need to wait until they finish.

2. Get the latest changes from the repository. Others can get changes at the same time, but don’t let
anybody take the integration token until you finish.

Run a full build to make sure everything compiles and passes tests after you get the code. If it doesn’t,
something went wrong. The most common problem is a configuration issue on your machine. Try
running a build on the integration machine. If it works, debug the problem on your machine. If it doesn’t
work, find the previous integrators and beat them about the head and shoulders, if only figuratively.

To integrate

1. Update from the repository (follow the previous script). Resolve any integration conflicts and run
the build (including tests) to prove that the update worked.

2. Get the integration token and check in your code.

3. Go over to the integration machine, get the changes, and run the build (including tests).

4. Replace the integration token.

If the build fails on the integration machine, you have to fix the problem before you give up the
integration token. The fastest way to do so is to roll back your changes. However, if nobody is waiting
for the token, you can just fix the problem on your machine and check in again.

Avoid fixing problems manually on the integration machine. If the build worked on your machine, you
probably forgot to add a file or a new configuration to the build script. In either case, if you correct the
problem manually, the next people to get the code won’t be able to build.

CONTINUOUS INTEGRATION SERVERS
There’s a lively community of open-source continuous integration servers (also called CI servers). The
granddaddy of them all is CruiseControl, pioneered by ThoughtWorks employees.

A continuous integration server starts the build automatically after check-in. If the build fails, it notifies the
team. Some people try to use a continuous integration server instead of the continuous integration script
discussed earlier. This doesn’t quite work because without an integration token, team members can
accidentally check out code that hasn’t yet been proven to work.

Another common mistake is using a continuous integration server to shame team members into improving
their build practices. Although the “wow factor” of a CI server can sometimes inspire people to do so, it only
works if people are really willing to make an effort to check in good code. I’ve heard many reports of people
who tried to use a CI server to enforce compliance, only to end up fixing all the build failures themselves while
the rest of the team ignored their strong-arming.

If your team sits together and has a fast build, you don’t need the added complexity of a CI server. Simply walk
over to the integration machine and start the build when you check in. It only takes a few seconds—less time
than it takes for a CI server to notice your check-in—and gives you an excuse to stretch your legs.

C O N T I N U O U S I N T E G R A T I O N 185

If you do install a CI server, don’t let it distract you. Focus on mastering the practice of continuous integration,
not the tool. Integrate frequently, never break the build, and keep your release infrastructure up-to-date.

Introducing Continuous Integration
The most important part of adopting continuous integration
is getting people to agree to integrate frequently (every few
hours) and never to break the build. Agreement is the key to
adopting continuous integration because there’s no way to
force people not to break the build.

If you’re starting with XP on a brand-new project, continuous
integration is easy to do. In the first iteration, install a version control system. Introduce a 10-minute
build with the first story, and grow your release infrastructure along with the rest of your application.
If you are disciplined about continuing these good habits, you’ll have no trouble using continuous
integration throughout your project.

If you’re introducing XP to an existing project, your tests and build may not yet be good enough for
continuous integration. Start by automating your build (see “Ten-Minute Build” earlier in this chapter),
then add tests. Slowly improve your release infrastructure until you can deploy at any time.

Dealing with Slow Builds
The most common problem facing teams practicing continuous integration is slow
builds. Whenever possible, keep your build under 10 minutes. On new projects, you
should be able to keep your build under 10 minutes all the time. On a legacy project,
you may not achieve that goal right away. You can still practice continuous integration,
but it comes at a cost.

When you use the integration script discussed earlier, you’re using synchronous integration—you’re
confirming that the build and tests succeed before moving on to your next task. If the build is too slow,
synchronous integration becomes untenable. (For me, 20 or 30 minutes is too slow.) In this case, you
can use asynchronous integration instead. Rather than waiting for the build to complete, start your next
task immediately after starting the build, without waiting for the build and tests to succeed.

The biggest problem with asynchronous integration is that it tends to result in broken builds. If you
check in code that doesn’t work, you have to interrupt what you’re doing when the build breaks half
an hour or an hour later. If anyone else checked out that code in the meantime, their build won’t work
either. If the pair that broke the build has gone home or to lunch, someone else has to clean up the
mess. In practice, the desire to keep working on the task at hand often overrides the need to fix the build.

If you have a very slow build, asynchronous integration may be your only option. If you must use this,
a continuous integration server is the best way to do so. It will keep track of what to build and will
automatically notify you when the build has finished.

Over time, continue to improve your build script and tests
(see “Ten-Minute Build” earlier in this chapter). Once the
build time gets down to a reasonable number (15 or 20
minutes), switch to synchronous integration. Continue

Get the team to agree to
continuous integration rather

than imposing it on them.

Ally

Ten-Minute Build (p. 177)

Switch to synchronous
integration when you can.

186 C H A P T E R 7 :   R E L E A S I N G

improving the speed of the build and tests until synchronous integration feels like a pleasant break
rather than a waste of time.

Multistage Integration Builds
Some teams have sophisticated tests, measuring such qualities as performance, load, or stability, that
simply cannot finish in under 10 minutes. For these teams, multistage integration is a good idea.

A multistage integration consists of two separate builds. The normal 10-minute build, or commit build,
contains all the normal items necessary to prove that the software works: unit tests, integration tests,
and a handful of end-to-end tests (see “Test-Driven Development” in Chapter 9 for more about these
types of tests). This build runs synchronously as usual.

In addition to the regular build, a slower secondary build runs asynchronously. This build contains the
additional tests that do not run in a normal build: performance tests, load tests, and stability tests.

Although a multistage build is a good idea for a mature
project with sophisticated testing, most teams I encounter use
multistage integration as a workaround for a slow test suite.
I prefer to improve the test suite instead; it’s more valuable
to get better feedback more often.

If this is the case for you, a multistage integration might help you transition from asynchronous to
synchronous integration. However, although a multistage build is better than completely asynchronous
integration, don’t let it stop you from continuing to improve your tests. Switch to fully synchronous
integration when you can; only synchronous integration guarantees a known-good build.

Questions
I know we’re supposed to integrate at least every four hours, but what if our current story or task takes longer than
that?

You can integrate at any time, even when the task or story you’re working on is only partially done.
The only requirement is that the code builds and passes its tests.

What should we do while we’re waiting for the integration build to complete?

Take a break. Get a cup of tea. Perform ergonomic stretches. Talk with your partner
about design, refactoring opportunities, or next steps. If your build is under 10 minutes,
you should have time to clear your head and consider the big picture without feeling
like you’re wasting time.

Isn’t asynchronous integration more efficient than synchronous integration?

Although asynchronous integration may seem like a more
efficient use of time, in practice it tends to disrupt flow and
leads to broken builds. If the build fails, you have to interrupt
your new task to roll back and fix the old one. This means
you must leave your new task half-done, switch contexts
(and sometimes partners) to fix the problem, then switch back. It’s wasteful and annoying.

Instead of switching gears in the middle of a task, many teams let the build remain broken for a few
hours while they finish the new task. If other people integrate during this time, the existing failures
hide any new failures in their integration. Problems compound and cause a vicious cycle: painful

Prefer improved tests to a
multistage integration.

Ally

Ten-Minute Build (p. 177)

Synchronous integration
reduces integration problems.

C O N T I N U O U S I N T E G R A T I O N 187

integrations lead to longer broken builds, which lead to more integration problems, which lead to more
painful integrations. I’ve seen teams that practice asynchronous integration leave the build broken for
days at a time.

Remember, too, that the build should run in under 10 minutes. Given a fast build, the supposed
inefficiency of synchronous integration is trivial, especially as you can use that time to reflect on your
work and talk about the big picture.

Are you saying that asynchronous integration will never work?

You can make asynchronous integration work if you’re disciplined about keeping the build running
fast, checking in frequently, running the build locally before checking in, and fixing problems as soon
as they’re discovered. In other words, do all the good things you’re supposed to do with continuous
integration.

Synchronous integration makes you confront these issues head on, which is why it’s so valuable.
Asynchronous integration, unfortunately, makes it all too easy to ignore slow and broken builds. You
don’t have to ignore them, of course, but my experience is that teams using asynchronous integration
have slow and broken builds much more often than teams using synchronous integration.

Ron Jeffries said it best:*

When I visit clients with asynchronous builds, I see these things happening, I think it’s fair to
say invariably:

1. The “overnight” build breaks at least once when I’m there;

2. The build lamp goes red at least once when I’m there, and stays that way for more than
an hour.

With a synchronous build, once in a while you hear one pair say “Oh, shjt.”

I’m all for more automation. But I think an asynch build is like shutting your eyes right when
you drive through the intersection.

Our version control system doesn’t allow us to roll back quickly. What should we do?

The overriding rule of the known-good build is that you must know the build works when
you put the integration token back. Usually, that means checking in, running the build
on the integration machine, and seeing it pass. Sometimes—we hope not often—it
means rolling back your check-in, running the old build, and seeing that pass instead.

If your version control system cannot support this, consider getting one that does. Not being able to
revert easily to a known-good point in history is a big danger sign. You need to be able to revert a broken
build with as much speed and as little pain as possible so you can get out of the way of other people
waiting to integrate. If your version control can’t do this for you, create an automated script that will.

One way to script this is to check out the older version to a temporary sandbox. Delete all the files in
the regular sandbox except for the version control system’s metadata files, then copy all the
nonmetadata files over from the older version. This will allow you to check in the old version on top of
the new one.

Ally

Version Control (p. 169)

* Via the art of agile mailing list, http://tech.groups.yahoo.com/group/art-of-agile/message/365.

188 C H A P T E R 7 :   R E L E A S I N G

http://tech.groups.yahoo.com/group/art-of-agile/message/365

We rolled back our check-in, but the build is still failing on the integration machine. What do we do now?

Oops—you’ve almost certainly exposed some sort of configuration bug. It’s possible the bug was in your
just-integrated build script, but it’s equally possible there was a latent bug in one of the previous scripts
and you accidently exposed it. (Lucky you.)

Either way, the build has to work before you give up the integration token. Now you debug the problem.
Enlist the help of the rest of the team if you need to; a broken integration machine is a problem that
affects everybody.

Why do we need an integration machine? Can’t we just integrate locally and check in?

In theory, if the build works on your local machine, it should work on any machine. In practice, don’t
count on it. The integration machine is a nice, pristine environment that helps prove the build will work
anywhere. For example, I occasionally forget to check in a file; watching the build fail on the integration
machine when it passed on mine makes my mistake obvious.

Nothing’s perfect, but building on the integration machine does eliminate the majority of cross-machine
build problems.

I seem to always run into problems when I integrate. What am I doing wrong?

One cause of integration problems is infrequent integration. The less often you integrate, the more
changes you have to merge. Try integrating more often.

Another possibility is that your code tends to overlap with someone else’s. Try talking more about what
you’re working on and coordinating more closely with the pairs that are working on related code.

If you’re getting a lot of failures on the integration machine, you probably need to do more local builds
before checking in. Run a full build (with tests) before you integrate to make sure your code is OK, then
another full build (with tests) afterward to make sure the integrated code is OK. If that build succeeds,
you shouldn’t have any problems on the integration machine.

I’m constantly fixing the build when other people break it. How can I get them to take continuous integration
seriously?

It’s possible that your teammates haven’t all bought into the idea of continuous integration. I often see
teams in which only one or two people have any interest in continuous integration. Sometimes they
try to force continuous integration on their teammates, usually by installing a continuous integration
server without their consent. It’s no surprise that the team reacts to this sort of behavior by ignoring
broken builds. In fact, it may actually decrease their motivation to keep the build running clean.

Talk to the team about continuous integration before trying to adopt it. Discuss the trade-offs as a group,
collaboratively, and make a group decision about whether to apply it.

If your team has agreed to use continuous integration but is constantly breaking the build anyway,
perhaps you’re using asynchronous integration. Try switching to synchronous integration, and follow
the integration script exactly.

Results
When you integrate continuously, releases are a painless event. Your team experiences fewer
integration conflicts and confusing integration bugs. The on-site customers see progress in the form of
working code as the iteration progesses.

C O N T I N U O U S I N T E G R A T I O N 189

Contraindications
Don’t try to force continuous integration on a group that hasn’t agreed to it. This practice takes
everyone’s willful cooperation.

Using continuous integration without a version control system and a 10-minute build
is painful.

Synchronous integration becomes frustrating if the build is longer than 10 minutes and
too wasteful if the build is very slow. My threshhold is 20 minutes. The best solution
is to speed up the build.

A physical integration token only works if all the developers sit together. You can use a continuous
integration server or an electronic integration token instead, but be careful to find one that’s as easy to
use and as obvious as a physical token.

Integration tokens don’t work at all for very large teams; people spend too much time waiting to
integrate. Use private branches in your version control system instead. Check your code into a private
branch, build the branch on an integration machine—you can have several—then promote the branch
to the mainline if the build succeeds.

Alternatives
If you can’t perform synchronous continuous integration, try using a CI server and asynchronous
integration. This will likely lead to more problems than synchronous integration, but it’s the best of the
alternatives.

If you don’t have an automated build, you won’t be able to practice asynchronous integration. Delaying
integration is a very high-risk activity. Instead, create an automated build as soon as possible, and start
practicing one of the forms of continuous integration.

Some teams perform a daily build and smoke test. Continuous integration is a more advanced version
of the same practice; if you have a daily build and smoke test, you can migrate to continuous integration.
Start with asynchronous integration and steadily improve your build and tests until you can use
synchronous integration.

Allies

Version Control (p. 169)
Ten-Minute Build (p. 177)

190 C H A P T E R 7 :   R E L E A S I N G

Collective Code Ownership
We are all responsible for high-quality code.

There’s a metric for the risk imposed by concentrating
knowledge in just a few people’s heads—it’s called the truck number. How many people can get hit by a
truck before the project suffers irreparable harm?

It’s a grim thought, but it addresses a real risk. What happens when a critical person goes on holiday,
stays home with a sick child, takes a new job, or suddenly retires? How much time will you spend
training a replacement?

Collective code ownership spreads responsibility for maintaining the code to all the programmers. Collective
code ownership is exactly what it sounds like: everyone shares reponsibility for the quality of the code.
No single person claims ownership over any part of the system, and anyone can make any necessary
changes anywhere.

In fact, improved code quality may be the most important
part of collective code ownership. Collective ownership
allows—no, expects—everyone to fix problems they find. If
you encounter duplication, unclear names, or even poorly
designed code, it doesn’t matter who wrote it. It’s your code.
Fix it!

Making Collective Ownership Work
Collective code ownership requires letting go of a little bit of ego. Rather than taking pride in your code,
take pride in your team’s code. Rather than complaining when someone edits your code, enjoy how the
code improves when you’re not working on it. Rather than pushing your personal design vision, discuss
design possibilities with the other programmers and agree on a shared solution.

Collective ownership requires a joint commitment from team
members to produce good code. When you see a problem, fix
it. When writing new code, don’t do a half-hearted job and
assume somebody else will fix your mistakes. Write the best
code you can.

On the other hand, collective ownership means you don’t have to be perfect. If you’ve produced code
that works, is of reasonable quality, and you’re not sure how to make it better, don’t hesitate to let it
go. Someone else will improve it later, if and when it needs it.

Working with Unfamiliar Code
If you’re working on a project that has knowledge silos—in other words, little pockets of code that only
one or two people understand—then collective code ownership might seem daunting. How can you
take ownership of code that you don’t understand?

Audience

Programmers

Fix problems no matter where
you find them.

Always leave the code a little
better than you found it.

C O L L E C T I V E C O D E O W N E R S H I P 191

To begin, take advantage of pair programming. When somebody picks a task involving
code you don’t understand, volunteer to pair with him. When you work on a task, ask
the local expert to pair with you. Similarly, if you need to work on some unfamiliar
code, take advantage of your shared workspace to ask a question or two.

Rely on your inference skills as well. You don’t need to know exactly what’s happening
in every line of code. In a well-designed system, all you need to know is what each package (or
namespace) is responsible for. Then you can infer high-level class responsibilities and method behaviors
from their names. (See “Refactoring” in Chapter 9.)

NOTE
Inferring high-level design from a brief review of the code is a black-belt design skill
that’s well worth learning. Take advantage of every opportunity to practice. Check
your inferences by asking an expert to summarize class responsibilities and
relationships.

Rely on the unit tests for further documentation and as your safety net. If you’re not sure how something
works, change it anyway and see what the tests say. An effective test suite will tell you when your
assumptions are wrong.

As you work, look for opportunities to refactor the code. I often find that refactoring
code helps me understand it. It benefits the next person, too; well-factored code tends
toward simplicity, clarity, and appropriate levels of abstraction.

If you’re just getting started with XP, you might not yet have a great set of unit tests
and the design might be a little flaky. In this case, you may not be able to infer the design, rely on unit
tests, or refactor, so pairing with somebody who knows the code well becomes more important. Be sure
to spend time introducing unit tests and refactoring so that the next person can take ownership of the
code without extra help.

Hidden Benefits
“Of course nobody can understand it... it’s job security!”

—Old programmer joke

It’s not easy to let a great piece of code out of your hands. It can be difficult to subsume the desire to
take credit for a particularly clever or elegant solution, but it’s necessary so your team can take advantage
of all the benefits of collaboration.

It’s also good for you as a programmer. Why? The whole codebase is yours—not just to modify, but to
support and improve. You get to expand your skills. Even if you’re an absolute database guru, you don’t
have to write only database code throughout the project. If writing a little UI code sounds interesting,
find a programming partner and have at it.

You also don’t have to carry the maintenance burden for a piece of code someone assigned you to write.
Generally, the pair that finds a bug fixes the bug. They don’t need your permission. Even better, they
don’t necessarily need your help; they may know the code now as well as you did when you wrote it.

It’s a little scary at first to come into work and not know exactly what you’ll work on, but it’s also freeing.
You no longer have long subprojects lingering overnight or over the weekend. You get variety and
challenge and change. Try it—you’ll like it.

Allies

Pair Programming (p. 71)
Sit Together (p. 112)

Ally

Refactoring (p. 303)

192 C H A P T E R 7 :   R E L E A S I N G

Questions
We have a really good UI designer/database programmer/scalability guru. Why not take advantage of those skills
and specialties?

Please do! Collective code ownership shares knowledge and improves skills, but it won’t make everyone
an expert at everything.

Don’t let specialization prevent you from learning other things, though. If your specialty is databases
and the team is working on user interfaces this week, take on a user interface task. It can only improve
your skills.

How can everyone learn the entire codebase?

People naturally gravitate to one part of the system or another. They become experts in particular areas.
Everybody gains a general understanding of the overall codebase, but each person only knows the details
of what he’s worked with recently.

The tests and simple design allow this approach to work. Simple design and its focus on code clarity
make it easier to understand unfamiliar code. The tests act both as a safety net and as documentation.

Doesn’t collective ownership increase the possibility of merge conflicts?

It does, and so it also requires continuous integration. Continuous integration decreases
the chances of merge conflicts.

In the first week or two of the project, when there isn’t much code, conflicts are more
likely. Treat the code gently for the first couple of iterations. Talk together frequently
and discuss your plans. As you progress, the codebase will grow, so there will be more
room to make changes without conflict.

We have some pretty junior programmers, and I don’t trust them with my code. What should we do?

Rather than turning your junior programmers loose on the code, make sure they pair with experienced
members of the team. Keep an eye on their work and talk through design decisions and trade-offs. How
else will they learn your business domain, learn your codebase, or mature as developers?

Different programmers on our team are responsible for different projects. Should the team collectively own all these
projects?

If you have combined programmers working on several projects into a single team (as described in the
discussion of team size in “Is XP Right for Us?” in Chapter 4), then yes, the whole team should take
responsibility for all code. If your programmers have formed multiple separate teams, then they usually
should not share ownership across teams.

Results
When you practice collective code ownership, you constantly make minor improvements to all parts of
the codebase, and you find that the code you’ve written improves without your help. When a team
member leaves or takes a vacation, the rest of the team continues to be productive.

Contraindications
Don’t use collective code ownership as an excuse for no code ownership. Managers have a saying:
“Shared responsibility is no responsibility at all.” Don’t let that happen to your code. Collective code

Ally

Continuous Integration (p.
183)

C O L L E C T I V E C O D E O W N E R S H I P 193

ownership doesn’t mean someone else is responsible for the code; it means you are responsible for the
code—all of it. (Fortunately, the rest of the team is there to help you.)

Collective code ownership requires good communication. Without it, the team cannot
maintain a shared vision, and code quality will suffer. Several XP practices help provide
this communication: a team that includes experienced designers, sitting together, and
pair programming.

Although they are not strictly necessary, good design and tests make collective code
ownership easier. Proceed with caution unless you use test-driven development, simple
design, and agree on coding standards. To take advantage of collective ownership’s
ability to improve code quality, the team must practice relentless refactoring.

To coordinate changes, you must use continuous integration and a concurrent model
of version control.

Alternatives
A typical alternative to collective code ownership is strong code ownership, in which each
module has a specific owner and only that person may make changes. A variant is weak
code ownership, in which one person owns a module but others can make changes as
long as they coordinate with the owner. Neither approach, however, shares knowledge
or enables refactoring as well as collective ownership does.

If you cannot use collective code ownership, you need to adopt other techniques to
spread knowledge and encourage refactoring. Pair programming may be your best
choice. Consider holding weekly design workshops to review the overall design and to
brainstorm improvements.

I recommend against strong code ownership. It encourages rigid silos of knowledge, which makes you
vulnerable to any team member’s absence. Weak code ownership is a better choice, although it still
doesn’t provide the benefits of collective ownership.

Allies

Sit Together (p. 112)
Pair Programming (p. 71)

Allies

Test-Driven Development
(p. 285)
Simple Design (p. 314)
Coding Standards (p. 133)
Refactoring (p. 303)

Allies

Continuous Integration (p.
183)
Version Control (p. 169)

Ally

Pair Programming (p. 71)

194 C H A P T E R 7 :   R E L E A S I N G

Documentation
We communicate necessary information effectively.

The word documentation is full of meaning. It can mean written
instructions for end-users, or detailed specifications, or an explanation of APIs and their use. Still, these
are all forms of communication—that’s the commonality.

Communication happens all the time in a project. Sometimes it helps you get your work done; you ask
a specific question, get a specific answer, and use that to solve a specific problem. This is the purpose of
work-in-progress documentation, such as requirements documents and design documents.

Other communication provides business value, as with product documentation, such as user manuals and
API documentation. A third type—handoff documentation—supports the long-term viability of the project
by ensuring that important information is communicated to future workers.

Work-In-Progress Documentation
In XP, the whole team sits together to promote the first type of communication. Close contact with
domain experts and the use of ubiquitous language create a powerful oral tradition that transmits
information when necessary. There’s no substitute for face-to-face communication. Even a phone call
loses important nuances in conversation.

XP teams also use test-driven development to create a comprehensive test suite. When done well, this
captures and communicates details about implementation decisions as unambiguous, executable design
specifications that are readable, runnable, and modifiable by other developers. Similarly, the team uses
customer testing to communicate information about hard-to-understand domain details. A ubiquitous
language helps further reveal the intent and purpose of the code.

The team does document some things, such as the vision statement and story cards, but these act more
as reminders than as formal documentation. At any time, the team can and should jot down notes that
help them do their work, such as design sketches on a whiteboard, details on a story card, or hard-to-
remember requirements in a wiki or spreadsheet.

In other words, XP teams don’t need traditional written documentation to do their work. The XP
practices support work-in-progress communication in other ways—ways that are actually more effective
than written documentation.

Product Documentation
Some projects need to produce specific kinds of documentation to provide business value. Examples
include user manuals, comprehensive API reference documentation, and reports. One team I worked
with created code coverage metrics—not because they needed them, but because senior management
wanted the report to see if XP would increase the amount of unit testing.

Because this documentation carries measurable business value but isn’t otherwise
necessary for the team to do its work, schedule it in the same way as all customer-
valued work: with a story. Create, estimate, and prioritize stories for product
documentation just as you would any other story.

Audience

Whole Team

Allies

Stories (p. 253)
The Planning Game (p. 219)

D O C U M E N T A T I O N 195

Handoff Documentation
If you’re setting the code aside or preparing to hand off the project to another team (perhaps as part of
final delivery), create a small set of documents recording big decisions and information. Your goal is to
summarize the most important information you’ve learned while creating the software—the kind of
information necessary to sustain and maintain the project.

Besides an overview of the project and how it evolved in design and features, your summary should
include nonobvious information. Error conditions are important. What can go wrong, when might it
occur, and what are the possible remedies? Are there any traps or sections of the code where the most
straightforward approach was inappropriate? Do certain situations reoccur and need special treatment?

This is all information you’ve discovered through development as you’ve learned from writing the code.
In clear written form, this information helps mitigate the risk of handing the code to a fresh group.

As an alternative to handoff documentation, you can gradually migrate ownership from
one team to another. Exploit pair programming and collective code ownership to move
new developers and other personnel onto the project and to move the previous set off
in phases. Instead of a sharp break (or big thud) as one team’s involvement ends and
the other begins, the same osmotic communication that helps a team grow can help
transition, repopulate, or shrink a team.

Questions
Isn’t it a risk to reduce the amount of documentation?

It could be. In order to reduce documentation, you have to replace it with some other form of
communication. That’s what XP does.

Increasing the amount of written communication also increases your risk. What if that information goes
out of date? How much time does someone need to spend updating that documentation, and could that
person spend that time updating the tests or refactoring the code to communicate that information more
clearly?

The real risk is in decreasing the amount and accuracy of appropriate communication for your project,
not in favoring one medium of communication. Favoring written communication may decrease your
agility, but favoring spoken communication may require more work to disseminate information to the
people who need it.

Results
When you communicate in the appropriate ways, you spread necessary information effectively. You
reduce the amount of overhead in communication. You mitigate risk by presenting only necessary
information.

Contraindications
Alistair Cockburndescribes a variant of Extreme Programming called “Pretty Adventuresome
Programming”:*

Allies

Pair Programming (p. 71)
Collective Code Ownership
(p. 191)

* http://c2.com/cgi/wiki?PrettyAdventuresomeProgramming. (http://c2.com/cgi/wiki?PrettyAdventuresomeProgramming)

196 C H A P T E R 7 :   R E L E A S I N G

http://c2.com/cgi/wiki?PrettyAdventuresomeProgramming
http://c2.com/cgi/wiki?PrettyAdventuresomeProgramming

A PrettyAdventuresomeProgrammer says:

“Wow! That ExtremeProgramming stuff is neat! We almost do it, too! Let’s see...

“Extreme Programming requires:

• You do pair programming.

• You deliver an increment every three* weeks.

• You have a user on the team full time.

• You have regression unit tests that pass 100% of the time.

• You have automated acceptance tests which define the behavior of the system.

“As a reward for doing those,

• You don’t put comments in the code.

• You don’t write any requirements or design documentation.

“Now on this project, we’re pretty close...

• well, actually a couple of our guys sit in the basement, a couple on the 5th floor, and a
couple 2 hours drive from here, so we don’t do pair programming,

• and actually, we deliver our increments every 4-6 months,

• we don’t have users anywhere in sight,

• and we don’t have any unit tests,

"but at least we don’t have any design documentation,* and we don’t comment our code much! So
in a sense, you’re right, we’re almost doing ExtremeProgramming!”

Those people aren’t doing XP, they are doing PAP [Pretty Adventuresome Programming]. PAP
is using XP (in name) to legitimize not doing the things one doesn’t want to do, without doing
the XP practices that protects one from not doing the other things. E.g., changing the code all
the time, but not writing unit tests; not writing documentation, but not writing clear code
either. Not...(almost anything)... but not sitting close together. etc.*

In other words, continue to create documentation until you have practices in place to
take its place. You have to be rigorous in your practice of XP in order to stop writing
work-in-progress documentation. Particularly important is a whole team (with all the
team roles filled—see “The XP Team” in Chapter 3) that sits together.

Some organizations value written documentation so highly that you can’t eliminate work-in-progress
documents. In my experience, these organizations usually aren’t interested in trying XP. If yours is like
that, but it wants to do XP anyway, talk with management about why those documents are important
and whether XP can replace them. Perhaps handoff documents are an acceptable compromise. If not,

Ally

Sit Together (p. 112)

* Most teams now use one- or two-week iterations. I recommend one-week iterations for new teams; see “Iteration
Planning” in Chapter 8.

* Emphasis in original.

* Alistair later added, “I am interested in having available a sarcasm-filled, derisively delivered phrase to hit people with who
u�
numbers [Alistair means that you don’t have to go as far as XP does to be successful], but I have no patience with people
who slap the XP logo on frankly sloppy development.”

D O C U M E N T A T I O N 197

don’t eliminate work-in-progress documents. Either schedule the documents with stories or include the
cost of creating and updating documents in your estimates.

Alternatives
If you think of documents as communication mechanisms rather than simply printed paper, you’ll see that
there are a wide variety of alternatives for documentation. Different media have different strengths.
Face-to-face conversations are very high bandwidth but can’t be referenced later, whereas written
documents are very low bandwidth (and easily misunderstood) but can be referred to again and again.

Alistair Cockburn suggests an intriguing alternative to written documents for handoff documentation:
rather than creating a design overview, use a video camera to record a whiteboard conversation between
an eloquent team member and a programmer who doesn’t understand the system. Accompany the
video with a table of contents that provides timestamps for each portion of the conversation.

198 C H A P T E R 7 :   R E L E A S I N G

CHAPTER 8

Planning

Today I talked to a friend who wanted to know how I organized software projects. His team has grown
rapidly, and their attempts to create and manage detailed plans are spiraling out of control. “It just
doesn’t scale,” he sighed.

The larger your project becomes, the harder it is to plan everything in advance. The more chaotic your
environment, the more likely it is that your plans will be thrown off by some unexpected event. Yet in
this chaos lies opportunity.

Rather than trying to plan for every eventuality, embrace the possibilities that change brings you. This
attitude is very different from facing change with clenched jaws and white knuckles. In this state of
mind, we welcome surprise. We marvel at the power we have to identify and take advantage of new
opportunities. The open horizon stretches before us. We know in which direction we need to travel,
and we have the flexibility in our plan to choose the best way to get there. We’ll know it when we find
it.

This approach may sound like it’s out of control. It would be, except for eight practices that allow you
to control the chaos of endless possibility:

• Vision reveals where the project is going and why it’s going there.

• Release Planning provides a roadmap for reaching your destination.

• The Planning Game combines the expertise of the whole team to create achievable plans.

• Risk Management allows the team to make and meet long-term commitments.

• Iteration Planning provides structure to the team’s daily activities.

• Slack allows the team to reliably deliver results every iteration.

• Stories form the line items in the team’s plan.

• Estimating enables the team to predict how long its work will take.

1 9 9

“PLANNING” MINI-ÉTUDE
The purpose of this étude is to discuss the effect of change on value. If you’re new to agile development, you
may use it to better understand the purpose of your project and how each story adds value. If you’re an
experienced agile practitioner, review Chapter 14 and use this étude to help you adapt your plans.

Conduct this étude for a timeboxed half-hour every day for as long as it is useful. Expect to feel rushed by the
deadline at first. If the étude becomes stale, discuss how you can change it to make it interesting again.

You will need three different colors of index cards, an empty table or whiteboard, and writing implements.

Step 1. Start by forming pairs. Try for heterogenous pairs.

Step 2. (Timebox this step to five minutes.) Within your pair, choose an unimplemented story and discuss why
it’s valuable to the customer. Write the primary reason on an index card.

Step 3. (Timebox this step to five minutes.) Within your pair, brainstorm ideas that would provide even more
value, whether by changing the existing story or by creating a new story. Write one idea on an index card of a
different color.

Step 4. (Timebox this step to five minutes.) Still within your pair, devise an experiment that would prove whether
your new idea would work in practice—without actually trying the idea itself. What can you do to test the
concept behind your idea? Write the test on an index card of a third color.

Step 5. (Timebox this step to 15 minutes.) Return to the group. Choose three pairs. Give each pair five minutes
to lead a discussion of their findings. Post the resulting cards on the table or whiteboard for as long as you
perform this étude.

Discussion questions may include:

• What types of value are there in the cards?

• What would be hard to do? What would be easy?

• How well does your work reflect the potential value of the project?

• Which concrete experiments should you conduct in the next iteration?

200 C H A P T E R 8 :   P L A N N I N G

Vision
We know why our work is important and how we’ll be successful.

Vision. If there’s a more derided word in the corporate
vocabulary, I don’t know what it is. This word brings to mind bland corporate-speak: “Our vision is to
serve customers while maximizing stakeholder value and upholding the family values of our
employees.” Bleh. Content-free baloney.

Don’t worry—that’s not what you’re going to do.

Product Vision
Before a project is a project, someone in the company has an idea. Suppose it’s someone in the Wizzle-
Frobitz company.* “Hey!” he says, sitting bolt upright in bed. “We could frobitz the wizzles so much
better if we had some software that sorted the wizzles first!”

Maybe it’s not quite that dramatic. The point is, projects start out as ideas focused on results. Sell more
hardware by bundling better software. Attract bigger customers by scaling more effectively. Open up a
new market by offering a new service. The idea is so compelling that it gets funding, and the project
begins.

Somewhere in the transition from idea to project, the compelling part—the vision of a better future—
often gets lost. Details crowd it out. You have to hire programmers, domain experts, and interaction
designers. You must create stories, schedule iterations, and report on progress. Hustle, people, hustle!

That’s a shame, because nothing matters more than delivering the vision. The goal of the entire project
is to frobitz wizzles better. If the details are perfect (the wizzles are sorted with elegance and precision)
but the vision is forgotten (the wizzle sorter doesn’t work with the frobitzer), then the software will
probably fail. Conversely, if you ship something that helps frobitz wizzles better than anything else, does
it really matter how you did it?

Where Visions Come From
Sometimes the vision for a project strikes as a single, compelling idea. One person gets a bright idea,
evangelizes it, and gets approval to pursue it. This person is a visionary.

More often, the vision isn’t so clear. There are multiple visionaries, each with their own unique idea of
what the project should deliver.

Either way, the project needs a single vision. Someone must unify, communicate, and promote the
vision to the team and to stakeholders. That someone is the product manager.

Identifying the Vision
Like the children’s game of telephone, every step between the visionaries and the product manager
reduces the product manager’s ability to accurately maintain and effectively promote the vision.

Audience

Product Manager, Customers

* Not a real company.

V I S I O N 201

If you only have one visionary, the best approach is to have that visionary act as product manager. This
reduces the possibility of any telephone-game confusion. As long as the vision is both worthwhile and
achievable, the visionary’s day-to-day involvement as product manager greatly improves the project’s
chances of delivering an impressive product.

If the visionary isn’t available to participate fully, as is often the case, someone else must be the product
manager. Ask the visionary to recommend a trusted lieutenant or protégé: someone who has regular
interaction with the visionary and understands how he thinks.

Frequently, a project will have multiple visionaries. This is particularly common in custom software
development. If this is the case on your project, you need to help the visionaries combine their ideas
into a single, cohesive vision.

Before you go too far down that road, however, ask yourself whether you actually have multiple
projects. Is each vision significantly different? Can you execute them serially, one vision at a time, as
separate projects built by the same team on a single codebase? If you can, that may be your best solution.

If you can’t tease apart the visions (do try!), you’re in for a tough job. In this case, the role of the product
manager must change. Rather than being a visionary himself, the product manager facilitates discussion
between multiple visionaries. The best person for the job is one who understands the business well,
already knows each of the visionaries, and has political savvy and good facilitation skills.

It might be more accurate to call this sort of product manager a product facilitator or customer coach, but
I’ll stick with product manager for consistency.

Documenting the Vision
After you’ve worked with visionaries to create a cohesive vision, document it in a vision statement. It’s
best to do this collaboratively, as doing so will reveal areas of disagreement and confusion. Without a
vision statement, it’s all too easy to gloss over disagreements and end up with an unsatisfactory product.

Once created, the vision statement will help you maintain and promote the vision. It will act as a vehicle
for discussions about the vision and a touchpoint to remind stakeholders why the project is valuable.

Don’t forget that the vision statement should be a living document: the product manager should review
it on a regular basis and make improvements. However, as a fundamental statement of the project’s
purpose, it may not change much.

How to Create a Vision Statement
The vision statement documents three things: what the project should accomplish, why it is valuable,
and the project’s success criteria.

The vision statement can be short. I limit mine to a single page. Remember, the vision
statement is a clear and simple way of describing why the project deserves to exist. It’s
not a roadmap; that’s the purpose of release planning.

In the first section—what the project should accomplish—describe the problem or
opportunity that the project will address, expressed as an end result. Be specific, but not prescriptive.
Leave room for the team to work out the details.

Here is a real vision statement describing “Sasquatch,” a product developed by two entrepreneurs who
started a new company:

Ally

Release Planning (p. 206)

202 C H A P T E R 8 :   P L A N N I N G

Sasquatch helps teams collaborate over long distance. It enables the high-quality team
dynamics that occur when teams gather around a table and use index cards to brainstorm,
prioritize, and reflect.

Sasquatch’s focus is collaboration and simplicity. It is not a project management tool, a tracking
tool, or a retrospectives tool. Instead, it is a free-form sandbox that can fulfill any of these
purposes. Sasquatch assumes that participants are well-meaning and create their own rules. It
does not incorporate mechanisms to enforce particular behaviors among participants.

Sasquatch exudes quality. Customers find it a joy to use, although they would be hard-pressed
to say why. It is full of small touches that make the experience more enjoyable.

Collaboration, simplicity, and quality take precedence over breadth of features. Sasquatch
development focuses on polishing existing features to a high gloss before adding new ones.

In the second section, describe why the project is valuable.

Sasquatch is valuable to our customers because long-distance collaboration is so difficult
without it. Even with desktop sharing tools, one person becomes the bottleneck for all
discussion. Teams used to the power of gathering around a table chafe at these restrictions.
Sasquatch gives everyone an opportunity to participate. It makes long-distance collaboration
effective and even enjoyable.

Sasquatch is valuable to us because it gives us an opportunity to create an entrepreneurial
product. Sasquatch’s success will allow us to form our own product company and make a good
living doing work that we love.

In the final section, describe the project’s success criteria: how you will know that the project has
succeeded and when you will decide. Choose concrete, clear, and unambiguous targets:

We will deploy Sasquatch in multiple stages with increasing measures of success at each stage.

In the first stage, we will demonstrate a proof-of-concept at a major Agile event. We will be
successful if we attract a positive response from agile experts.

In the second stage, we will make a Sasquatch beta available for free use. We will be successful
if at least 10 teams use it on a regular basis for real-world projects within 6 months.

In the third stage, we will convert Sasquatch to a pay service. We will be successful if it grosses
at least $1,000 in the first three months.

In the fourth stage, we will rely on Sasquatch for our income. We will be successful if it meets
our minimum monthly income requirements within one year of accepting payment.

Promoting the Vision
After creating the vision statement, post it prominently as part of the team’s informative
workspace. Use the vision to evangelize the project to stakeholders and to explain the
priority (or deprioritization) of specific stories.

Be sure to include the visionaries in product decisions. Invite them to release planning
sessions. Make sure they see iteration demos, even if that means a private showing.
Involve them in discussions with real customers. Solicit their feedback about progress, ask for their help
in improving the plan, and give them opportunities to write stories. They can even be an invaluable
resource in company politics, as successful visionaries are often senior and influential.

Ally

Informative Workspace (p.
83)

V I S I O N 203

Including your visionaries may be difficult, but make the effort; distance between the team and its
visionaries decreases the team’s understanding of the product it’s building. While the vision statement
is necessary and valuable, a visionary’s personal passion and excitement for the product communicates
far more clearly. If the team interacts with the visionary frequently, they’ll understand the product’s
purpose better and they’ll come up with more ideas for increasing value and decreasing cost.

NOTE
When I’m faced with an inaccessible visionary, I don’t assume that the problem is
insurmountable. Because the participation of the visionaries is so valuable, I take extra
steps to include visionaries in any way I can. I don’t take organizational structures for
granted, and I push to remove barriers.

If the visionaries cannot meet with the team at all, then the product manager will have to go to them
to share the plan, get feedback, and conduct private demos. This is the least effective way of involving
the visionaries, and you must decide if the product manager understands the vision well enough to act
in their stead. Ask your mentor for help making this decision. If you conclude that the product manager
doesn’t understand the vision well, talk with your executive sponsor about the risks of continuing, and
consider that your team may be better off doing something else until the visionaries are available.

Questions
Discussing the vision has led to contentious arguments. Should we stop talking about our vision?

Even if there are big disagreements about the vision, you should still pursue a unified vision. Otherwise,
the final product will be just as fragmented and unsatisfactory as the vision is. You may benefit from
engaging the services of a professional facilitator to help mediate the discussions.

Our organization already has a template for vision statements. Can we use it?

Certainly. Be sure you cover what, why, and success criteria. Find a way to fit those topics into the template.
Keep your vision statement to a single page if you can.

Our visionary finds it very difficult to communicate a cohesive vision. What can we do when it changes?

Rapidly shifting goals tend to be common with entrepreneurial visionaries. It isn’t due to lack of vision
or consistency; instead, your visionary sees a variety of opportunities and changes direction to match.

If the vision is constantly changing, this may be a sign that what you think of as the vision is just a
temporary strategy in a larger, overarching vision. Take your concerns to the visionary and stakeholders
and try to identify that larger vision.

If you succeed in discovering the larger vision, adaptive release planning (see “Adapt
Your Plans” later in this chapter) can help you keep up with your visionary. Adaptive
planning’s emphasis on learning and on taking advantage of opportunities will fit in
perfectly with your visionary’s entrepreneurial spirit.

Your visionary may continue to shift direction more quickly than you can implement
her ideas. Wild and unpredictable shifts make it difficult to develop software effectively. The planning
game helps; stick with the normal mechanism of scheduling and implementing stories. Your product
manager should act as a buffer in this case, protecting the team from rapid shifts and explaining to your
visionary what the team can reasonably accomplish.

Allies

Release Planning (p. 206)
The Planning Game (p. 219)

204 C H A P T E R 8 :   P L A N N I N G

Can individual iterations and releases have smaller visions?

Of course! This works particularly well with release planning—it can be a great way to help customers
choose the priority of stories as they plan their next release.

I’m less fond of visions for iteration planning, just because iterations are so short and simple that the
extra effort usually isn’t worth it.

Results
When your project has a clear and compelling vision, prioritizing stories is easy. You can easily see which
stories to keep and which to leave out. Programmers contribute to planning discussions by suggesting
ways to maximize value while minimizing development cost. Your release plan incorporates small
releases that deliver value.

When the visionary promotes the vision well, everyone understands why the project is important to
the company. Team members experience higher morale, stakeholders trust the team more, and the
organization supports the project.

Contraindications
Always pursue a unified vision for your projects, even at the risk of discovering there isn’t one. If the
project isn’t worth doing, it’s better to cancel it now than after spending a lot of money.

Alternatives
Some project communities are so small and tightly knit that everyone knows the vision. However, even
these teams can benefit from creating a one-page vision statement. The only alternative to a clear vision
is a confusing one—or no vision at all.

Further Reading
Some of the ideas in this section were inspired by the “Mastering Projects” workshop presented by True
North pgs, Inc. If you have the opportunity to attend their workshop, take advantage of it.

V I S I O N 205

Release Planning
We plan for success.

Imagine you’ve been freed from the shackles of deadlines.
“Maximize our return on investment,” your boss says. “We’ve already talked about the vision for this
project. I’m counting on you to work out the details. Create your own plans and set your own release
dates—just make sure we get a good return on our investment.”

Now what?

One Project at a Time
First, work on only one project at a time. Many teams work on several projects simultaneously, which
is a mistake. Task-switching has a substantial cost: “[T]he minimum penalty is 15 percent... Fragmented
knowledge workers may look busy, but a lot of their busyness is just thrashing” [DeMarco 2002].
Working on one project at a time allows you to release each project as you complete it, which increasees
the total value of your work.

Consider a team that has two projects. In this simplified example, each project has equal value; when
complete, each project will yield $$ in value every month. Each project takes three months to complete.

NOTE
Although I’m describing value in dollar signs, money isn’t the only source of value.
Value can be intangible as well.

In Scenario A (see Figure 8-1), the team works on both projects simultaneously. To avoid task-switching
penalties, they switch between projects every month. They finish Project 1 after five months and Project
2 after six. At the end of the seventh month, the team has earned $$$$$$.

In Scenario B, the team works on just one project at a time. They release Project 1 at the end of the
third month. It starts making money while they work on Project 2, which they complete after the sixth
month, as before. Although the team’s productivity didn’t change—the projects still took six months—
they earned more money from Project 1. By the end of the seventh month, they earned $$$$$$$$$$.
That’s nearly twice as much value with no additional effort.

Something this easy ought to be criminal. What’s really astounding is the number of teams that work
on simultaneous projects anyway.

Release Early, Release Often
Releasing early is an even better idea when you’re working on a single project. If you group your most
valuable features together and release them first, you can achieve startling improvements in value.

Consider another example team. This team has just one project. In Scenario A (see Figure 8-2), they
build and release it after six months. The project is worth $$$$$ per month, so at the end of the seventh
month, they’ve earned $$$$$.

Audience

Product Manager, Customers

206 C H A P T E R 8 :   P L A N N I N G

In Scenario B, the team groups the most valuable features together, works on them first, and releases
them after three months. The first release starts making $$$ per month. They then work on the
remaining features and release them at the end of the sixth month. As before, their productivity hasn’t
changed. All that’s changed is their release plan. Yet due to the income from the first release, the team
has made $$$$$$$$$$$$$$ by the end of the end of the seventh month—nearly triple that of Scenario
A with its single release.

These scenarios are necessarily simplified. Software by Numbers [Denne & Cleland-Huang] has a more
sophisticated example that uses real numbers and calculates value over the entire life of the product
(see Table 8-1). In their example, the authors convert a five-year project with two end-of-project
releases (Scenario A) into five yearly releases ordered by value (Scenario B). As before, the team’s
productivity remains the same.

Table 8-1. Realistic example of frequent releases

 Scenario A Scenario B

Total Cost $4.3 million $4.712 million

Revenue $5.6 million $7.8 million

Investment $2.76 million $1.64 million

Payback $1.288 million $3.088 million

Net Present Value @ 10% $194,000 $1.594 million

Internal Rate of Return 12.8% 36.3%

Project 1

Project 2

Month 1 2 3 4 5 6 7

$$

$$

Release

Release

$$$$$$

Scenario A

Project 1

Project 2

Month 1 2 3 4 5 6 7

$$

$$

Release

Release

$$$$$$$$$$

Scenario B

$$ $$ $$

Figure 8-1. Effects of multitasking on value

R E L E A S E P L A N N I N G 207

Scenario A is a marginal investment somewhat equivalent to obtaining a 12.8 percent interest rate. It
requires an investment of $2.76 million and yields profits of $1.288 million. Considering the risk of
software development, the investors can put that money to better use elsewhere. The project should
not be funded.

Scenario B—the same project released more often—is an excellent investment somewhat equivalent to
obtaining a 36.3 percent interest rate. Although Scenario B costs more because it conducts more releases,
those releases allow the project to be self-funding. As a result, it requires a smaller investment of $1.64
million and yields profits of $3.088 million. This project is well worth funding.

Look at these results again. Each of these examples shows dramatic increases in value. Yet nothing
changed except the order in which the teams released their features!

BENEFITS FOR PROGRAMMERS
Frequent releases are good for the organization. What’s it worth to developers? Releases are painful, with flag
days and repository freezes and rushes to complete, right?

Slow down. Breathe. Frequent releases can actually make your life easier.

By delivering tested, working, valuable software to your stakeholders regularly, you increase trust. Your
stakeholders request a feature and soon see results. There’s quick feedback between planning a release and
getting the software. You will also get feedback from stakeholders more quickly. This allows you to learn and
adapt.

There are technical benefits, too. One secret of XP is that doing hard things often and in small doses takes away
most of the risk and almost all the pain. If you have the discipline to set up the necessary infrastructure to make

Release 1

Month 1 2 3 4 5 6

Scenario A

Release 1

Release 2

Month 1 2 3 4 5 6 7

$$$

$$

Release

Release

$$$$$$$$$$$$$$

Scenario B

$$$ $$$ $$$

7

Release

$$$$$$$$$$

Figure 8-2. Effect of frequent releases on value

208 C H A P T E R 8 :   P L A N N I N G

a release at any point (with continuous integration and a 10-minute build), doing so takes only slightly more
work than checking in your code and running the complete test suite.

Imagine eliminating all the stress of tracking down changes from a dozen branches and trying to merge multiple
new features simultaneously to make a demo for a trade show next week that you just found out about on
Thursday morning—because you can make a release at any time. Life is much better this way.

How to Release Frequently
Releasing frequently doesn’t mean setting aggressive deadlines. In fact, aggressive deadlines extend
schedules rather than reducing them [McConnell 1996] (p. 220). Instead, release more often by
including less in each release. Minimum marketable features [Denne & Cleland-Huang] are an excellent
tool for doing so.

A minimum marketable feature, or MMF, is the smallest set of functionality that provides value to your
market, whether that market is internal users (as with custom software) or external customers (as with
commercial software). MMFs provide value in many ways, such as competitive differentiation, revenue
generation, and cost savings.

As you create your release plan, think in terms of stakeholder value. Sometimes it’s helpful to think of
stories and how they make up a single MMF. Other times, you may think of MMFs that you can later
decompose into stories. Don’t forget the minimum part of minimum marketable feature—try to make
each feature as small as possible.

Once you have minimal features, group them into possible releases. This is a brainstorming exercise,
not your final plan, so try a variety of groupings. Think of ways to minimize the number of features
needed in each release.

The most difficult part of this exercise is figuring out how to make small releases. It’s one thing for a
feature to be marketable, and another for a whole release to be marketable. This is particularly difficult
when you’re launching a new product. To succeed, focus on what sets your product apart, not the
features it needs to match the competition.

An Example
Imagine you’re the product manager for a team that’s creating a new word processor. The market for
word processors is quite mature, so it might seem impossible to create a small first release. There’s so
much to do just to match the competition, let alone to provide something new and compelling. You need
basic formatting, spellchecking, grammar checking, tables, images, printing... the list goes on forever.

Approaching a word processor project in this way is daunting to the point where it may seem like a
worthless effort. Rather than trying to match the competition, focus on the features that make your
word processor unique. Release those features first—they probably have the most value.

Suppose that the competitive differentiation for your word processor is its powerful collaboration
capabilities and web-based hosting. The first release might have four features: basic formatting, printing,
web-based hosting, and collaboration. You could post this first release as a technical preview to start
generating buzz. Later releases could improve on the base features and justify charging a fee: tables,
images, and lists in one release, spellchecking and grammar checking in another, and so on.

R E L E A S E P L A N N I N G 209

If this seems foolish, consider Writely, the online word processing application. It doesn’t have the
breadth of features that Microsoft Word does, and it probably won’t for many years. Instead, it focuses
on what sets it apart: collaboration, remote document editing, secure online storage, and ease of use.*

According to venture capitalist Peter Rip, the developers released the first alpha of Writely two weeks
after they decided to create it.† How much is releasing early worth? Ask Google. Ten months later, they
bought Writely,‡ even though Writely still didn’t come close to Microsoft Word’s feature set.§ Writely
is now known as Google Docs.

CUSTOMERS AND FREQUENT RELEASES
“Our customers don’t want releases that frequently!”

This may be true. Sometimes your customers won’t accept releases as frequently as you deliver them. They
may have regulatory requirements that necessitate rigorous testing and certification before they can install
new versions.

Sometimes resistance to frequent releases comes from the hidden costs of upgrading. Perhaps upgrades
require a difficult or costly installation process. Perhaps your organization has a history of requiring a series
of hotfixes before a new release is stable.

Whatever the reason, the key to making frequent releases is to decrease the real or perceived costs of upgrading.
Add an upgrade feature that notifies users of new versions and installs them automatically. Provide well-tested
upgrade utilities that automatically convert user data.

Hosted applications, such as web applications, provide the ultimate in release flexibility. These allow you to
release at any time, possibly without users even noticing. Some XP teams with hosted software and a mature
set of existing features actually release every day.

Adapt Your Plans
If such significant results are possible from frequent releases, imagine what you could accomplish if you
could also increase the value of each release. This is actually pretty easy: after each release, collect
stakeholder feedback, cancel work on features that turned out to be unimportant, and put more effort
into those features that stakeholders find most valuable.

With XP, you can change your plans more often than once per release. XP allows you to adjust your
plan every iteration. Why? To react to unexpected challenges quickly. More importantly, it allows you
to take advantage of opportunities. Where do these opportunities come from? You create them.

The beginning of every software project is when you know the least about what will make the software
valuable. You might know a lot about its value, but you will always know more after you talk with
stakeholders, show them demos, and conduct actual releases. As you continue, you will discover that

* http://www.writely.com/.

† “Writely is the seed of a Big idea,” http://earlystagevc.typepad.com/earlystagevc/2005/09/writely_is_the_.html.

‡ “Writely—The Back Story,” http://earlystagevc.typepad.com/earlystagevc/2006/03/sam_steve_and_j.html.

§ “Only in a bubble is Google’s web WP an Office-killer,” http://www.theregister.co.uk/2006/03/10/google_writely_analysis/.

210 C H A P T E R 8 :   P L A N N I N G

http://www.writely.com/
http://earlystagevc.typepad.com/earlystagevc/2005/09/writely_is_the_.html
http://earlystagevc.typepad.com/earlystagevc/2006/03/sam_steve_and_j.html
http://www.theregister.co.uk/2006/03/10/google_writely_analysis/

some of your initial opinions about value were incorrect. No plan is perfect, but if you change your plan
to reflect what you’ve learned—if you adapt—you create more value.

To increase the value of your software, create opportunities to learn. Think of your plan as a plan for
learning as much as it is a plan for implementation. Focus on what you don’t know. What are you uncertain
about? What might be a good idea? Which good ideas can you prove in practice? Don’t just speculate—
create experiments. Include a way of testing each uncertainty.

For example, if you were creating a collaborative online word processor, you might not be sure how
extensive your support for importing Microsoft Word documents should be. Some sort of support is
necessary, but how much? Supporting all possible Word documents would take a long time to
implement and prevent you from adding other, possibly more valuable features. Too little support could
damage your credibility and cause you to lose customers.

To test this uncertainty, you could add a rudimentary import feature to your software (clearly marked
“experimental”), release it, and have it create a report on the capabilities needed to support the types
of documents that real users try to import. The information you gather will help you adapt your plan
and increase your product’s value.

NOTE
Web users are used to “beta” web applications, so releasing an experimental feature
is possible in that context. A project with less forgiving users may require the use of
a pre-release program, focus groups, or some other feedback mechanism.

Keep Your Options Open
To take the most advantage of the opportunities you create, build a plan that allows you to release at
any time. Don’t get me wrong—the point is not to actually release all the time, but to enable you to
release at any time.

Why do this? It allows you to keep your options open. If an
important but completely new opportunity comes along, you
can release what you have and immediately change
directions to take advantage of the opportunity. Similarly, if
there’s some sort of disaster, such as the project’s surprise
cancellation, you can release what you have anyway. At any
time, you should be able to release a product that has value
proportional to the investment you’ve made.

To release at any time, build your plan so that each story stands alone. Subsequent stories can build on
previous stories, but each one should be releasable on its own. For example, one item in your plan might
be “Provide login screen,” and the next might be “Allow login screen to have client-specific branding.”
The second item enhances the first, but the first is releasable on its own.

Suppose you’re creating a system that gets data from a user, validates the data, and writes it to a database.
You might initially create a story for each step: “Get data,” “Validate data,” and “Write data to database.”
These are sometimes called horizontal stripes. This is an easy way to create stories, but it prevents you
from releasing, or even effectively reviewing, the software until you finish all three stories. It gives you
less flexibility in planning, too, because the three stories form an all-or-nothing clump in your schedule.

At any time, you should be able
to release a product that has

value proportional to the
investment you’ve made.

R E L E A S E P L A N N I N G 211

A better approach is to create stories that do all three tasks but provide narrower individual utility. For
example, you might create the stories “Process customer data,” “Process shipping address,” and “Process
billing information.” These are vertical stripes (see Figure 8-3).

Don’t worry too much if you have trouble making your stories perfectly releasable. It takes practice.
Releasable stories give you more flexibility in planning, but a few story clumps in your plan won’t hurt
much. With experience, you’ll learn to make your plans less lumpy.

How to Create a Release Plan
There are two basic types of plans: scopeboxed plans and timeboxed plans. A scopeboxed plan defines the
features the team will build in advance, but the release date is uncertain. A timeboxed plan defines the
release date in advance, but the specific features that release will include are uncertain.

NOTE
Some people try to fix the release date and features. This can only end in tears; given
the uncertainty and risk of software development, making this work requires adding
a huge amount of padding to your schedule, sacrificing quality, working disastrous
amounts of overtime, or all of the above.

Timeboxed plans are almost always better. They constrain the amount of work you can do and force
people to make difficult but important prioritization decisions. This requires the team to identify
cheaper, more valuable alternatives to some requests. Without a timebox, your plan will include more
low-value features.

To create your timeboxed plan, first choose your release dates. I like to schedule releases at regular
intervals, such as once per month and no more than three months apart.

Application

Get data

Validate data

Write to database

Custom
er

data

Shipping
address

Billing
inform

ation

Figure 8-3. Horizontal and vertical stripes

212 C H A P T E R 8 :   P L A N N I N G

NOTE
Does it seem odd to set the release date before deciding on features or estimates? Don’t
worry—you’ll constrain your plan to fit into the time available.

Now flesh out your plan by using your project vision to guide you in brainstorming
minimum marketable features. Decompose these into specific stories, and work with
the programmers to get estimates. Using the estimates as a guide, prioritize the stories
so that the highest-value, lowest-cost stories are done first. (For more details, see “The
Planning Game” later in this chapter.)

NOTE
To brainstorm features and stories, use the vision to guide you, turn to interaction
designers for ideas, and involve stakeholders as appropriate. Classic requirements
gathering techniques may also help; see “Further Reading” at the end of this section
for suggestions.

The end result will be a single list of prioritized stories. Using your velocity, risk factors,
and story estimates, you can predict how many stories each release will include (see
“Risk Management” later this chapter). With that information as a guide, discuss
options for reducing costs and splitting stories so that each release provides a lot of
value.

This final list of stories is your release plan. Post it prominently (I use a magnetic
whiteboard—see Figure 8-4) and refer to it during iteration planning. Every week,
consider what you’ve learned from stakeholders and discuss how you can use that
information to improve your plan.

Allies

Vision (p. 201)
Stories (p. 253)
Estimating (p. 260)

Ally

Risk Management (p. 224)

Ally

Iteration Planning (p. 233)

Figure 8-4. A release planning board

R E L E A S E P L A N N I N G 213

“DONE DONE” AND RELEASE PLANNING
“Done done” applies to release planning as well as to stories. Just as you shouldn’t postpone
tasks until the end of an iteration, don’t postpone stories until the end of a release.

Every feature should be “done done” before you start on the next feature. This means you need
to schedule stories for reports, administration interfaces, security, performance, scalability, UI
polish, and installers as appropriate. In particular, schedule bug-fix stories right away unless you’ve decided
that they’re not worth fixing in this release.

Planning at the Last Responsible Moment
It takes a lot of time and effort to brainstorm stories, estimate them, and prioritize them. If you’re
adapting your plan as you go, some of that effort will be wasted. To reduce waste, plan at the last
responsible moment. The last responsible moment is the last moment at which you can responsibly make
a decision (see “XP Concepts” in Chapter 3). In practice, this means that the further away a particular
event is, the less detail your release plan needs to contain.

Another way to look at this is to think in terms of planning horizons. Your planning horizon detemines
how far you look into the future. Many projects try to determine every requirement for the project up
front, thus using a planning horizon that extends to the end of the project.

To plan at the last responsible moment, use a tiered set of planning horizons. Use long planning horizons
for general plans and short planning horizons for specific, detailed plans, as shown in Figure 8-5.

Your planning horizons depend on your situation and comfort level. The more commitments you need
to make to stakeholders, the longer your detailed planning horizons should be. The more uncertain
your situation is, or the more likely you are to learn new things that will change your plan, the shorter
your planning horizons should be. If you aren’t sure which planning horizons to use, ask your mentor
for guidance. Here are some good starting points:

• Define the vision for the entire project.

• Define the release date for the next two releases.

• Define the minimum marketable features for the current release, and start to place
features that won’t fit in this release into the next release.

• Define all the stories for the current feature and most of the current release. Place
stories that don’t fit into the next release.

• Estimate and prioritize stories for the current iteration and the following three iterations.

• Determine detailed requirements and customer tests for the stories in the current iteration.

ADAPTIVE PLANNING IN ACTION
A few years ago, my wife and I took a two-month trip to Europe. It was easily the biggest, most complicated trip
we’ve taken. We knew we couldn’t plan it all in advance, so we used an adaptive approach.

Ally

No Bugs (p. 160)

Allies

Vision (p. 201)
Stories (p. 253)
Estimating (p. 260)
Customer Tests (p. 278)

214 C H A P T E R 8 :   P L A N N I N G

We started with our vision for the trip. No, we didn’t write a vision statement (she won’t let me be that geeky),
but we did agree that our goal for the trip was to visit a wide variety of European cities instead of going to one
place and staying there. We discussed the countries we wanted to see, but we didn’t make any decisions that
would commit us to visiting a particular set.

We identified the last responsible moment for various decisions in our trip. Airline tickets generally get more
expensive over time, so we booked our flight to London months in advance and made plans to stay with relatives
there at the beginning and end of our trip. Hotels, however, only need a few days’ notice. (In fact, too much
advance notice means they might lose your reservation.)

We also took steps that would give us more options. We found a good guidebook that covered all of Europe.
We purchased a EuroRail pass, which allowed us to use Europe’s excellent rail system to travel through the
continent. Although we thought we knew which countries we intended to visit, we spent extra money for a
pass that would allow us to visit any European country.

With these general decisions made, we left the details for the last responsible moment. While on the trip, a
few days before leaving for our next destination, we decided which country and city to visit next. We stopped
by the train station, looked up departure times, and made reservations when necessary. We looked up
candidate hotels in our guidebook and emailed the three most promising, then went back to enjoying the
current city. The next day, we confirmed one of the hotel reservations. On the last day, we lazed about, picked
a time to leave from list of train departure times, then boarded the train. We would arrive in the new city four
or five hours later, drop off our belongings at the hotel, and go explore... then start the process over by thinking
about the next city and country.

Time until story is developed

D
et

ai
le

d
, n

ar
ro

w
 v

ie
w

Now 1 week 4 weeks 3 months 6 months Entire
project

D
et

ai
le

d
re

qu
ire

m
en

ts
,

cu
st

om
er

 te
st

s

Es
tim

at
ed

, p
ri

or
iti

es
,

st
or

ie
s

Al
l f

ea
tu

re
s

an
d

m
os

t
of

 th
e

st
or

ie
s

So
m

e
fe

at
ur

es
 a

nd
al

l r
el

ea
se

 d
at

es

Pr
oj

ec
t v

is
io

n

Implement!

G
en

er
al

, b
ro

ad
 v

ie
w

Figure 8-5. Planning horizons

R E L E A S E P L A N N I N G 215

This approach not only gave us flexibility, it was easy and relaxing. Because we only made our reservations a
day or two in advance, no hotel ever lost or confused our reservations. If we found that we particularly enjoyed
a city, we stayed longer. If we didn’t like it, we left early. On previous vacations, we had been slaves to a pre-
planned itinerary, fretting over details for the entire trip. On this much longer and more complicated trip, we
only had to think about the details for our next few days.

The flexibility also allowed us to experience things that we never would have otherwise. In Italy, we discovered
that our intention to go to Turkey would eat up a huge amount of time in travel. We exploited our EuroRail
passes and went to northern Europe instead and ended up having some of our most memorable experiences
in cities we had never expected to visit.

By creating a rough plan in advance, keeping our options open, and making detailed decisions at the last
responsible moment, we had a much better vacation than we would have had otherwise. Similarly, when you
use adaptive planning in software development, unpredictable opportunities arise and allow you to increase
the value of your software.

Adaptive Planning and Organizational Culture
Does the idea of spending two months travelling in a foreign country without advance hotel reservations
seem scary? In practice, it was easy and relaxing, but when I tell the story of our adaptively planned
trip to Europe (see the “Adaptive Planning in Action” sidebar), audiences get nervous.

Organizations often have a similar reaction to adaptive planning. An adaptive plan
works to achieve a vision. However, just as my wife and I achieved our vision—“have
fun visiting a lot of European cities”—but didn’t know exactly which cities we would
visit, an adaptive team will achieve its vision even though it cannot say exactly what
it will deliver.

No aspect of agile development challenges organizational culture more than the transition to adaptive
planning. It requires changes not only to the development team, but to reporting, evaluation, and
executive oversight. The choice of adaptive planning extends to surprisingly diverse parts of the project
community, and people often have a shocked or emotional reaction to the idea.

As a result, you may not be able to influence a change to
adaptive planning. Unless you have executive support, any
change that does occur will probably be slow and gradual.
Even with executive support, this change is difficult.

You can work within your organization’s culture to do
adaptive planning under the radar. Use adaptive planning, but set your planning horizons to match the
organization’s expectations. Generally, estimating and prioritizing stories for the remainder of the
current release is enough. This works best if you have small, frequent releases.

As your stakeholders and executives gain trust in your ability to deliver, you may be able to shorten
your detailed planning horizons and migrate further toward an adaptive plan.

Ally

Vision (p. 201)

Work within your organization’s
culture.

216 C H A P T E R 8 :   P L A N N I N G

Questions
I thought we were supposed to release every week. Is this different?

You may be confusing iterations with releases. Although the team should release software to internal
stakeholders every week as part of the iteration demo, you may not choose to release to end-users or
real customers that often.

Weekly releases are a great choice if you have the opportunity. Your ability to do so will depend on
your business needs.

If we don’t plan the entire project in detail, what should we tell our stakeholders about our plans?

Although you may not plan out all the details of your project in advance, you should have plenty of
detail to share with stakeholders. You should always know the overall vision for the project. Depending
on your planning horizons, you will probably have a list of the features for the next release as well as
a planned date for that release. You will also have specific, estimated stories for near-term work.

If your stakeholders need more information or predictability, you may need longer planning horizons.
In any event, be sure to let stakeholders know that this is your current plan and that it is subject to
change if you find better ways of meeting the project vision.

Planning at the last responsible moment means we can’t show exactly what we’ll deliver. Doesn’t that require too
much trust from stakeholders?

Any development effort requires that the organization trust the team to do its job. If stakeholders require
a detailed plan in order to trust you, use longer planning horizons that allow you to provide the plan
they desire.

If we use short planning horizons, how can we be sure we’ll deliver on the project vision?

If you’re not sure you can deliver on the project vision, focus your plan on discovering whether you
can. You may need to extend your planning horizons or create a small, limited-availability release to
test crucial concepts. The details depend on your situation, so if you’re not sure what to do, ask your
mentor for guidance.

No matter your decision, clearly convey your concern to stakeholders, and let them know how you
intend to address the uncertainty.

Results
When you create, maintain, and communicate a good release plan, the team and stakeholders all know
where the project is heading. The plan shows how the team will meet the project vision, and team
members are confident the plan is achievable. You complete features and release high-quality software
regularly and consistently.

If you are adapting your plan well, you consistently seek out opportunities to learn new things about
your plan, your product, and your stakeholders. As you learn, you modify your plan to take advantage
of new insights. Stakeholders and the team agree that each release is better than originally planned.

Contraindications
Not all of these ideas are appropriate for everyone. I’ve put the easiest ones first, but even the easy ones
have limitations.

R E L E A S E P L A N N I N G 217

Working on one project at a time is an easy, smart way to increase your return on investment. Despite its
usefulness, working on one project at a time is anathema to some organizations. Proceed with caution.

Releasing frequently requires that your customers and users be able to accept more frequent releases. This
is a no-brainer for most web-based software because users don’t have to do anything to get updates.
Other software might require painful software rollouts, and some even require substantial testing and
certification. That makes frequent releases more difficult.

Adaptive planning requires that your organization define project success in terms of value rather than
“delivered on time, on budget, and as specified.” This can be a tough idea for some organizations to
swallow. You may be able to assuage fears about adaptive plans by committing to a specific release date
but leaving the details of the release unspecified.

Keeping your options open—that is, being ready to release, and thus change directions, at
any time—requires a sophisticated development approach. Practices such as test-driven
development, continuous integration, and incremental design and architecture help.

Tiered planning horizons require a cohesive vision and regular updates to the plan. Use
them when you can reliably revisit the plan at least once per iteration. Be sure your
team includes a product manager and on-site customers who are responsible for
maintaining the plan.

Finally, be cautious of plans without a predefined release date or a release date more
than three months in the future. Without the checkpoint and urgency of a near-term
release, these plans risk wandering off course.

Alternatives
The classic alternative to adaptive release planning is predictive release planning, in which the entire plan
is created in advance. This can work in stable environments, but it tends to have trouble reacting to
changes.

If you don’t use incremental design and architecture, [Denne & Cleland-Huang]
provide a sophisticated Incremental Funding Methodology that shows how to prioritize
technical infrastructure alongside features. However, XP’s use of incremental design
neatly sidesteps this need.

Finally, teams with an established product and a relatively small need for changes and
enhancements don’t always need a release plan. Rather than thinking in terms of features or releases,
these teams work from a small story backlog and release small enhancements every iteration. In some
cases, they conduct daily deployment. You could think of this as an adaptive plan with a very short
planning horizon.

Further Reading
Software by Numbers [Denne & Cleland-Huang] provides a compelling and detailed case for conducting
frequent releases.

Agile Software Development Ecosystems [Highsmith] has an excellent discussion of adaptive planning in
Chapter 15.

Lean Software Development [Poppendieck & Poppendieck] discusses postponing decisions and keeping
your options open in Chapter 3.

Allies

Test-Driven Development
(p. 285)
Continuous Integration (p.
183)
Incremental Design and
Architecture (p. 321)

Ally

Incremental Design and
Architecture (p. 321)

218 C H A P T E R 8 :   P L A N N I N G

The Planning Game
Our plans take advantage of both business and technology expertise.

You may know when and what to release, but how do you
actually construct your release plan? That’s where the planning game comes in.

In economics, a game is something in which “players select actions and the payoffs depend on the actions
of all players.”* The study of these games “deals with strategies for maximizing gains and minimizing
losses... [and are] widely applied in the solution of various decision making problems.”†

That describes the planning game perfectly. It’s a structured approach to creating the best possible plan
given the information available.

The planning game is most notable for the way it maximizes the amount of information contributed to
the plan. It is strikingly effective. Although it has limitations, if you work within them, I know of no
better way to plan.

How to Play
XP assumes that customers have the most information about value: what best serves the organization.
Programmers have the most information about costs: what it will take to implement and maintain those
features. To be successful, the team needs to maximize value while minimizing costs. A successful plan
needs to take into account information from both groups, as every decision to do something is also a
decision not to do something else.

Accordingly, the planning game requires the participation of both customers and programmers. (Testers
may assist, but they do not have an explicit role in the planning game.) It’s a cooperative game; the team
as a whole wins or loses, not individual players.

Because programmers have the most information about costs—they’re most qualified to say how long
it will take to implement a story—they estimate.

Because customers have the most information about value—they’re most qualified to say what is
important—they prioritize.

Neither group creates the plan unilaterally. Instead, both groups come together, each with their areas
of expertise, and play the planning game:

1. Anyone creates a story or selects an unplanned story.

2. Programmers estimate the story.

3. Customers place the story into the plan in order of its relative priority.

4. The steps are repeated until all stories have been estimated and placed into the
plan.

Audience

Whole Team

Allies

Stories (p. 253)
Estimating (p. 260)

* Deardorff’s Glossary of International Economics, http://www-personal.umich.edu/~alandear/glossary/g.html.

† Dictionary definition of “game theory,” http://dictionary.reference.com/search?q=game theory&x=0&y=0.

T H E P L A N N I N G G A M E 219

http://www-personal.umich.edu/~alandear/glossary/g.html
http://dictionary.reference.com/search?q=game%20theory&x=0&y=0

NOTE
The planning game doesn’t always follow this neat and orderly format. As long as
programmers estimate and customers prioritize, the details aren’t important. For
example, the programmers may estimate a stack of stories all at once for the customers
to prioritize later. Typically, most stories are created at the beginning of each release,
during initial release planning sessions, as the team brainstorms what to include.

During the planning game, programmers and customers may ask each other questions about estimates
and priorities, but each group has final say over its area of expertise.

The result of the planning game is a plan: a single list of stories in priority order. Even if two stories are
of equivalent priority, one must come before the other. If you’re not sure which to put first, pick one
at random.

Overcoming disagreements

Release planning is always a difficult process because there are many more stories to do than there is
time available to do them. Also, each stakeholder has his own priorities, and balancing these desires is
challenging. Tempers rise and the discussion gets heated—or worse, some people sit back and tune out,
only to complain later. This struggle is natural and happens on any project, XP or not, that tries to
prioritize conflicting needs.

My favorite way to plan is to gather the team, along with important stakeholders,
around a large conference table. Customers write stories on index cards, programmers
estimate them, and customers place them on the table in priority order. One end of the
table represents the stories to do first, and the other end represents stories to do last.
The plan tends to grow from the ends toward the middle, with the most difficult
decisions revolving around stories that are neither critical nor useless.

Using index cards and spreading them out on a table allows
participants to point to stories and move them around. It
reduces infighting by demonstrating the amount of work to
be done in a visible way. The conversation focuses on the
cards and their relative priorities rather than on vague
discussions of principles or on “must have/not important”
distinctions.

ON DISAPPOINTMENT
The planning game is certain to give you information that makes you unhappy. You may feel tempted to blame
the messenger and stop playing the planning game, or stop using XP altogether. That would be a mistake. As
David Schmaltz of True North pgs says, every project has a fixed amount of disappointment associated with
it. You can either use the planning game to dole out the disappointment in measured doses... or save it all up
for the end.

Ally

Stories (p. 253)

Use index cards to focus
disagreements away from

individuals.

220 C H A P T E R 8 :   P L A N N I N G

How to Win
When customers and programmers work directly together throughout this process, something amazing
happens. I call it the miracle of collaboration. It really is a miracle because time appears out of nowhere.

Like all miracles, it’s not easy to achieve. When programmers give an estimate, customers often ask a
question that causes every programmer’s teeth to grind: “Why does it cost so much?”

The instictive reaction to this question is defensive: “It costs so much because software development is
hard, damn it! Why are you questioning me!?”

Programmers, there’s a better way to react. Reword the customer’s question in your head into a simple
request for information: “Why is this expensive?” Answer by talking about what’s easy and what’s
difficult.

For example, imagine that a product manager requests a toaster to automatically pop up the toast when
it finishes. The programmers reply that the feature is very expensive, and when the product manager
asks why, the programmers calmly answer, “Well, popping up the toast is easy; that’s just a spring. But
detecting when the toast is done—that’s new. We’ll need an optical sensor and some custom brownness-
detecting software.”

This gives the product manager an opportunity to ask, “What about all those other toasters out there?
How do they know when the toast is done?”

The programmers respond, “They use a timer, but that doesn’t really detect when the toast is done. It’s
just a kludge.”

Now the product manager can reply, “That’s OK! Our customers don’t want a super toaster. They just
want a regular toaster. Use a timer like everyone else.”

“Oh, OK. Well, that won’t be expensive at all.”

When you have honest and open dialog between customers and programmers, the miracle of
collaboration occurs and extra time appears out of nowhere. Without communication, customers tend
not to know what’s easy and what’s not, and they end up planning stories that are difficult to implement.
Similarly, programmers tend not to know what customers think is important, and they end up
implementing stories that aren’t valuable.

With collaboration, the conflicting tendencies can be reconciled. For example, a customer could ask for
something unimportant but difficult, and the programmers could point out the expense and offer easier
alternatives. The product manager could then change directions and save time. Time appears out of
nowhere. It’s the miracle of collaboration.

Questions
Won’t programmers pad their estimates or slack off if they have this much control over the plan?

In my experience, programmers are highly educated professionals with high motivation to meet
customer expectations. [McConnell 1996] validates this experience: “Software developers like to work.
The best way to motivate developers is to provide an environment that makes it easy for them to focus
on what they like doing most, which is developing software... [Developers] have high achievement
motivation: they will work to the objectives you specify, but you have to tell them what those objectives
are” [McConnell 1996] (pp. 255–256).

T H E P L A N N I N G G A M E 221

Although programmer estimates may be higher than you like, it’s most likely because they want to set
realistic expectations. If the estimates do turn out to be too high, the team will achieve a higher velocity
and automatically do more each iteration to compensate.

Won’t customers neglect important technical issues if they have this much control over the plan?

Customers want to ship a solid, usable product. They have to balance that desire with the desire to meet
crucial market windows. As a result, they may sometimes ask for options that compromise important
technical capabilities. They do so because they aren’t aware of the nuances of technical trade-offs in the
same way that programmers are.

As a programmer, you are most qualified to make decisions on technical issues, just as the customers
are most qualified to make decisions on business issues. When the customers ask for an explanation of
an estimate, don’t describe the technical options. Instead, interpret the technology and describe the
options in terms of business impact.

Rather than describing the options like this:

We’re thinking about using a Mark 4 Wizzle-Frobitz optical sensor here for optimal release
detection. We could use a Mark 1 spring-loaded countdown timer, too. We’d have to write
some custom software to use the Mark 4, but it’s very sophisticated, cutting-edge stuff and it
will allow us to detect the exact degree of brownness of the bread. The Mark 1 is ancient tech
without dynamic detection abilities, but it won’t take any extra time to implement. Which
would you prefer?

Try this instead:

We have two choices for popping up toast. We can use either an optical sensor or a timer. The
optical sensor will allow us to toast the bread to the user’s exact preference, but it will increase
our estimate by three days. The timer won’t take any extra time but the user is more likely to
have undercooked or burned toast. Which would you prefer?

If a technical option simply isn’t appropriate, don’t mention it, or mention your decision in passing as
part of the cost of doing business:

Because this is the first iteration, we need to install a version control system. We’ve included
that cost in the estimate for our first story.

Our product manager doesn’t want to prioritize. He says everything is important. What can we do?

Be firm. Yes, everything is important, but something has to come first and something will come last.
Someone has to make the tough schedule decisions. That’s the product manager’s job.

Results
When you play the planning game well, both customers and programmers feel that
they have contributed to the plan. Any feelings of pressure and stress are focused on
the constraints of the plan and possible options, rather than on individuals and groups.
Programmers suggest technical options for reducing scope while maintaining the
project vision. Customers ruthlessly prioritize the stories that best serve the vision.

Ally

Vision (p. 201)

222 C H A P T E R 8 :   P L A N N I N G

Contraindications
The planning game is an easy, effective approach that relies on many of XP’s simplifying assumptions,
such as:

• Customer-centric stories

• Story dependencies that customers can manage effectively (in practice, this means
no technical dependencies and simple business dependencies)

• Customers capable of making wise prioritization decisions

• Programmers capable of making consistent estimates

If these conditions are not true on your team, you may not be able to take advantage of the planning
game.

The planning game also relies on the programmers’ abilities to implement design and
architecture incrementally. Without this capability, the team will find itself creating
technical stories or strange story dependencies that make planning more difficult.

Finally, the planning game assumes that the team has a single dominant constraint (for
more information about the theory of constraints, see “XP Concepts” in Chapter 3). It’s
very rare for a system to exhibit two constraints simultaneously, so this shouldn’t be a problem.
Similarly, the planning game assumes that the programmers are the constraint. If this isn’t true for your
team, discuss your options with your mentor.

Alternatives
There are a wide variety of project planning approaches. The most popular seems to be Gantt charts that
assume task-based plans and schedule what each individual person will do.

In contrast to that approach, the planning game focuses on what the team produces, not on what
individuals do. The team has the discretion to figure out how to produce each story and organizes itself
to finish the work on time.

This focus on results, rather than on tasks, combined with the planning game’s ability to balance
customer and programmer expertise, makes it the most effective approach to software planning I’ve
experienced. However, if you wish to use another approach to planning, you can do so. Talk with your
mentor about how to make your preferred approach to planning work with the rest of the XP practices.

Allies

Stories (p. 253)
The Whole Team (p. 28)
Estimating (p. 260)

Ally

Incremental Design and
Architecture (p. 321)

T H E P L A N N I N G G A M E 223

Risk Management
We make and meet long term commitments.

The following statement is nearly true:

Our team delivers a predictable amount of work every iteration. Because we had a velocity of
14 story points last week, we’ll deliver 14 story points this week, and next week, and the next.
By combining our velocity with our release plan, we can commit to a specific release schedule!

Good XP teams do achieve a stable velocity. Unfortunately, velocity only reflects the issues the team
normally faces. Life always has some additional curve balls to throw. Team members get sick and take
vacations; hard drives crash, and although the backups worked, the restore doesn’t; stakeholders
suddenly realize that the software you’ve been showing them for the last two months needs some major
tweaks before it’s ready to use.

Despite these uncertainties, your stakeholders need schedule commitments that they can rely upon.
Risk management allows you to make and meet these commitments.

A Generic Risk-Management Plan
Every project faces a set of common risks: turnover, new requirements, work disruption, and so forth.
These risks act as a multiplier on your estimates, doubling or tripling the amount of time it takes to finish
your work.

How much of a multiplier do these risks entail? It depends on your organization. In a perfect world,
your organization would have a database of the type shown in Figure 8-6.* It would show the chance
of completing before various risk multipliers.

Audience

Project Manager, Whole Team

* Reprinted from [Little].

10

Actual

Cu
m

u
la

ti
ve

 d
is

tr
ib

u
ti

on
 (%

)

20

30

40

50

60

70

80

90

100

0
0.1 1.0 10.0

DeMarco data

DeMarco lognormal

Landmark data

Landmark lognormal

Estimate

Figure 8-6. An example of historical project data

224 C H A P T E R 8 :   P L A N N I N G

Because most organizations don’t have this information available, I’ve provided some generic risk
multipliers instead. (See Table 8-2.) These multipliers show your chances of meeting various schedules.
For example, in a “Risky” approach, you have a 10 percent chance of finishing according to your
estimated schedule. Doubling your estimates gives you a 50 percent chance of on-time completion, and
to be virtually certain of meeting your schedule, you have to quadruple your estimates.

Table 8-2. Generic risk multipliers

Process approach

Percent chance Rigorousa Riskyb Description

10% x1 x1 Almost impossible (“ignore”)

50% x1.4 x2 50-50 chance (“stretch goal”)

90% x1.8 x4 Virtually certain (“commit”)

a These figures are based on DeMarco & Lister’s RISKOLOGY simulator, version 4a, available from http://www.systemsguild.com/riskology.html. I used the
standard settings but turned off productivity variance, as velocity would automatically adjust for that risk.

b These figures are based on [Little].

If you use the XP practices—in particular, if you’re strict about being “done done” every
iteration, your velocity is stable, and you fix all your bugs each iteration—then your
risk is lowered. Use the risk multiplier in the “Rigorous” column. On the other hand,
if you’re not strict about being “done done” every iteration, if your velocity is unstable,
or if you postpone bugs and other work for future iterations, then use the risk multiplier
in the “Risky” column.

NOTE
These risk multipliers illustrate an important difference between risky and rigorous
appraoches. Both can get lucky and deliver according to their estimates. Risky
approaches, however, take a lot longer when things go wrong. They require much
more padding in order to make and meet commitments.

Although these numbers come from studies of hundreds of industry projects, those projects didn’t use
XP. As a result, I’ve guessed somewhat at how accurately they apply to XP. However, unless your
company has a database of prior projects to turn to, they are your best starting point.

Project-Specific Risks
Using the XP practices and applying risk multipliers will help contain the risks that are common to all
projects. The generic risk multipliers include the normal risks of a flawed release plan, ordinary
requirements growth, and employee turnover. In addition to these risks, you probably face some that
are specific to your project. To manage these, create a risk census—that is, a list of the risks your project
faces that focuses on your project’s unique risks.

Allies

“Done Done” (p. 156)
No Bugs (p. 160)

R I S K M A N A G E M E N T 225

http://www.systemsguild.com/riskology.html

[DeMarco & Lister 2003] suggest starting work on your census by brainstorming catastrophes. Gather
the whole team and hand out index cards. Remind team members that during this exercise, negative
thinking is not only OK, it’s necessary. Ask them to consider ways in which the project could fail. Write
several questions on the board:*

1. What about the project keeps you up at night?

2. Imagine it’s a year after the project’s disastrous failure and you’re being interviewed about what
went wrong. What happened?

3. Imagine your best dreams for the project, then write down the opposite.

4. How could the project fail without anyone being at fault?

5. How could the project fail if it were the stakeholders’ faults? The customers’ faults? Testers?
Programmers? Management? Your fault? Etc.

6. How could the project succeed but leave one specific stakeholder unsatisfied or angry?

Write your answers on the cards, then read them aloud to inspire further thoughts. Some people may
be more comfortable speaking out if a neutral facilitator reads the cards anonymously.

Once you have your list of catastrophes, brainstorm scenarios that could lead to those
catastrophes. From those scenarios, imagine possible root causes. These root causes are
your risks: the causes of scenarios that will lead to catastrophic results.

For example, if you’re creating an online application, one catastrophe might be
“extended downtime.” A scenario leading to that catastrophe would be “excessively high demand,” and
root causes include “denial of service attack” and “more popular than expected.”

After you’ve finished brainstorming risks, let the rest of the team return to their iteration while you
consider the risks within a smaller group. (Include a cross-section of the team.) For each risk, determine:

• Estimated probability—I prefer “high,” “medium,” and “low.”

• Specific impact to project if it occurs—dollars lost, days delayed, and project cancellation are
common possibilities.

You may be able to discard some risks as unimportant immediately. I ignore unlikely risks with low
impact and all risks with negligible impact. Your generic risk multipler accounts for those already.

For the remainder, decide whether you will avoid the risk by not taking the risky action; contain it by
reserving extra time or money, as with the risk multiplier; or mitigate it by taking steps to reduce its
impact. You can combine these actions. (You can also ignore the risk, but that’s irresponsible now that
you’ve identified it as important.)

For the risks you decide to handle, determine transition indicators, mitigation and contingency activities,
and your risk exposure.

• Transition indicators tell you when the risk will come true. It’s human nature to downplay upcoming
risks, so choose indicators that are objective rather than subjective. For example, if your risk is
“unexpected popularity causes extended downtime,” then your transition indicator might be
“server utilization trend shows upcoming utilization over 80 percent.”

• Mitigation activities reduce the impact of the risk. Mitigation happens in advance, regardless of
whether the risk comes to pass. Create stories for them and add them to your release plan. To

Ally

Root-Cause Analysis (p. 88)

* Based on [DeMarco & Lister 2003] (p. 117)

226 C H A P T E R 8 :   P L A N N I N G

continue the example, possible stories include “support horizontal scalability” and “prepare load
balancer.”

• Contingency activities also reduce the impact of the risk, but they are only necessary if the risk occurs.
They often depend on mitigation activities that you perform in advance. For example, “purchase
more bandwidth from ISP,” “install load balancer,” and “purchase and prepare additional frontend
servers.”

• Risk exposure reflects how much time or money you should set aside to contain the risk. To calculate
this, first estimate the numerical probability of the risk and then multiply that by the impact. When
considering your impact, remember that you will have already paid for mitigation activities, but
contingency activities are part of the impact. For example, you might believe that downtime due
to popularity is 35 percent likely, and the impact is three days of additional programmer time and
$20,000 for bandwidth, colocation fees, and new equipment. Your total risk exposure is $7,000
and one day.

Some risks have a 100 percent chance of occurring. These are no longer risks—they are reality. Update
your release plan to deal with them.

Other risks can kill your project if they occur. For example, a corporate reorganization might disband
the team. Pass these risks on to your executive sponsor as assumptions or requirements. (“We assume
that, in the event of a reorg, the team will remain intact and assigned to this project.”) Other than
documenting that you did so, and perhaps scheduling some mitigation stories, there’s no need to manage
them further.

For the remaining risks, update your release plan to address them. You will need stories for mitigation
activities, and you may need stories to help you monitor transition indicators. For example, if your risk
is “unexpected popularity overloads server capacity,” you might schedule the story “prepare additional
servers in case of high demand” to mitigate the risk, and “server load trend report” to help you monitor
the risk.

You also need to set aside time, and possibly money, for contingency activities. Don’t schedule any
contingency stories yet—you don’t know if you’ll need them. Instead, add up your risk exposure and
apply dollar exposure to the budget and day exposure to the schedule. Some risks will occur and others
won’t, but on average, the impact will be equal to your risk exposure.

MONITORING RISKS
One of the hardest things about project-specific risks is remembering to follow up on them. It’s human nature
to avoid unpleasant possibilities. The best way I’ve found to monitor risks is to assign someone to track them.
The project manager is a good choice for this role, but you can choose anybody on the team. However, choose
someone who’s not the team’s constraint. It’s more important for them to do things that no one else can do.

Every week, review your project-specific risks and check the transition indicators. Consider whether the risks
are still applicable, and ask yourself if any new risks have come to light.

NOTE
I write project-specific risks on yellow cards and put them on the release planning board.

R I S K M A N A G E M E N T 227

How to Make a Release Commitment
With your risk exposure and risk multipliers, you can predict how many story points
you can finish before your release date. Start with your timeboxed release date from
your release plan. (Using scopeboxed release planning? See the “Predicting Release
Dates” sidebar.) Figure out how many iterations remain until your release date and
subtract your risk exposure. Multiply by your velocity to determine the number of
points remaining in your schedule, then divide by each risk multiplier to calculate your chances of
finishing various numbers of story points.

risk_adjusted_points_remaining = (iterations_remaining - risk_exposure) * velocity / risk_multiplier

For example, if you’re using a rigorous approach, your release is 12 iterations away, your velocity is 14
points, and your risk exposure is one iteration, you would calculate the range of possibilities as:

points remaining = (12 - 1) * 14 = 154 points
10 percent chance: 154 / 1 = 154 points
50 percent chance: 154 / 1.4 = 110 points
90 percent chance: 154 / 1.8 = 86 points

In other words, when it’s time to release, you’re 90 percent likely to have finished 86 more points of
work, 50 percent likely to have finished 110 more points, and only 10 percent likely to have finished
154 more points.

You can show this visually with a burn-up chart, shown in Figure 8-7.* Every week, note how many
story points you have completed, how many total points exist in your next release (completed plus
remaining stories), and your range of risk-adjusted points remaining. Plot them on the burn-up chart
as shown in the figure.

Ally

Release Planning (p. 206)

* According to John Brewer (http://tech.groups.yahoo.com/group/extremeprogramming/message/81856), the burn-up chart was created by
Phil Goodwin as a variant of Scrum’s burn-down charts. I’ve modified it further to include risk-based commitments.

Figure 8-7. A burn-up chart

228 C H A P T E R 8 :   P L A N N I N G

http://tech.groups.yahoo.com/group/extremeprogramming/message/81856

Use your burn-up chart and release plan to provide stakeholders with a list of features you’re committing
to deliver on the release date. I commit to delivering features that are 90 percent likely to be finished,
and I describe features between 50 and 90 percent likely as stretch goals. I don’t mention features that
we’re less than 50 percent likely to complete.

PREDICTING RELEASE DATES
I recommend using timeboxed plans with a fixed release date—they’re less risky. However, you can predict
a release date for a given set of stories. To do so, start with the total number of points in the stories you want
to deliver. Divide by your velocity to get the number of iterations required to finish those stories, then multiply
by each risk multiplier. Finish by adding your risk exposure to each risk-adjusted prediction.

risk_adjusted_iterations_remaining = (points_remaining / velocity * risk_multiplier) + risk_exposure

Success over Schedule
The majority of this discussion of risk management has
focused on managing the risk to your schedule commitments.
However, your real goal should be to deliver an
organizational success—to deliver software that provides
substantial value to your organization, as guided by the
success criteria in your project vision.

Taking too long can put that success at risk, so rapid delivery is important. Just don’t
forget about the real goal. As you evaluate your risks, think about the risk to the success
of the project, not just the risk to the schedule. Take advantage of adaptive release
planning. Sometimes you’re better off taking an extra month to deliver a great result,
rather than just a good one.

When Your Commitment Isn’t Good Enough
Someday, someone will ask you to commit to a schedule that your predictions show is impossible to
achieve. The best way to make the schedule work is to reduce scope or extend the release date. If you
can’t do so personally, ask your manager or product manager to help.

If you can’t change your plan, you may be able to improve your velocity (see “Estimating” later in this
chapter). This is a long shot, so don’t put too much hope in it.

It’s also possible that your pessimistic predictions are the result of using a risky process.
You can improve the quality of your predictions by being more rigorous in your
approach. Make sure you’re “done done” every iteration and include enough slack to
have a stable velocity. Doing so will decrease your velocity, but it will also decrease
your risk and allow you to use risk multipliers from the “Rigorous” column, which may
lead to a better overall schedule.

Success is more than a delivery
date.

Ally

Vision (p. 201)

Ally

Release Planning (p. 206)

Allies

“Done Done” (p. 156)
Slack (p. 246)

R I S K M A N A G E M E N T 229

Typically, though, your schedule is what it is. If you can’t change scope or the date,
you can usually change little else. As time passes and your team builds trust with
stakeholders, people may become more interested in options for reducing scope or
extending the delivery date. In the meantime, don’t promise to take on more work
than you can deliver. Piling on work will increase technical debt and hurt the schedule.
Instead, state the team’s limitations clearly and unequivocally.

If that isn’t satisfactory, ask if there’s another project the team can work on that will yield more value.
Don’t be confrontational, but don’t give in, either. As a leader, you have an obligation to the team—
and to your organization—to tell the truth.

In some organizations, inflexible demands to “make it work” are questionable attempts to squeeze more
productivity out of the team. Sadly, applying pressure to a development team tends to reduce quality
without improving productivity. In this sort of organization, as the true nature of the schedule becomes
more difficult to ignore, management tends to respond by laying on pressure and “strongly encouraging”
overtime.

Look at the other projects in the organization. What happens when they are late? Does management
respond rationally, or do they respond by increasing pressure and punishing team members?

If it’s the latter, decide now whether you value your job enough to put up with the eventual pressure.
If not, start looking for other job opportunities immediately. (Once the pressure and mandatory
overtime begin, you may not have enough time or energy for a job hunt.) If your organization is large
enough, you may also be able to transfer to another team or division.

As a tool of last resort, if you’re ready to resign and you’re responsible for plans and schedules, it’s
entirely professional to demand respect. One way to do so is to say, “Because you no longer trust my
advice with regard to our schedule, I am unable to do the job you hired me to do. My only choice is to
resign. Here is my resignation letter.”

This sometimes gets the message through when nothing else will work, but it’s a big stick to wield, and
it could easily cause resentment. Be careful. “Over my dead body!” you say. “Here’s your noose,” says
the organization.

Questions
What should we tell our stakeholders about risks?

It depends how much detail each stakeholder wants. For some, a commitment and stretch goal may be
enough. Others may want more detailed information.

Be sure to share your risk census and burn-up chart with your executive sponsor and other executives.
Formally transfer responsibility for the project assumptions (those risks that will kill the project if they
come true). Your assumptions are the executives’ risks.

Your risk multipliers are too high. Can I use a lower multiplier?

Are your replacement multipliers based on objective data? Is that data representative of the project
you’re about to do? If so, go ahead and use them. If not, be careful. You can lower the multiplier, but
changing the planned schedule won’t change the actual result.

Ally

Trust (p. 102)

230 C H A P T E R 8 :   P L A N N I N G

We’re using a scopeboxed plan, and our stakeholders want a single delivery date rather than a risk-based range.
What should we do?

Your project manager or product manager might be able to help you convince the organization to accept
a risk-based range of dates. Talk with them about the best way to present your case.

If you must have a single date, pick a single risk multiplier to apply. Which one you choose depends on
your organization. A higher risk multiplier improves your chances of success but makes the schedule
look worse. A lower risk multiplier makes the schedule look better but reduces your chances of meeting
that schedule.

Many organizations have acclimated to slipping delivery dates. Managers in these organizations
intuitively apply an informal risk multiplier in their head when they hear a date. In this sort of
organization, applying a large risk multiplier might make the schedule seem ridiculously long.

Consider other projects in your organization. Do they usually come in on time? What happens if they
don’t? Talk with your project manager and product manager about management and stakeholder
expectations. These discussions should help you choose the correct risk multiplier for your organization.
Remember, though, using a risk-based range of dates is a better option, and using a timeboxed schedule
is better than using a scopeboxed schedule.

Results
With good risk management, you deliver on your commitments even in the face of disruptions.
Stakeholders trust and rely on you, knowing that when they need something challenging yet valuable,
they can count on you to deliver it.

Contraindications
Use risk management only for external commitments. Within the team, focus your efforts on achieving
the unadjusted release plan as scheduled. Otherwise, your work is likely to expand to meet the deadline.
Figure 8-8* shows how a culture of doubling estimates at one company prevented most projects from
finishing early without reducing the percentage of projects that finished late.

Be careful of using risk management in an organization that brags that “failure is not an option.” You
may face criticism for looking for risks. You may still be able to present your risk-derived schedule as a
commitment or stretch goal, but publicizing your risk census may be a risk itself.

Alternatives
Risk management is primarily an organizational decision rather than an individual team decision. If
your organization has already institutionalized risk management, they may mandate a different
approach. Your only trouble may be integrating it into XP’s simultaneous phases; to do so, use this
description as a starting point and consider asking your mentor (see “Find a Mentor” in Chapter 2) for
advice specific to your situation.

Some organizations add a risk buffer to individual estimates rather than the overall project schedule.
As Figure 8-8 illustrates, this tends to lead to waste.

* Reprinted from [Little].

R I S K M A N A G E M E N T 231

Further Reading
Waltzing with Bears: Managing Risk on Software Projects [DeMarco & Lister 2003] provides more detail and
considers risk management from an organizational perspective. My favorite quote comes from the back
cover: “If there’s no risk on your next project, don’t do it.”

10

Actual duration

Cu
m

u
la

ti
ve

 d
is

tr
ib

u
ti

on
 (%

)

20

30

40

50

60

70

80

90

100

0
0.1 1.0 10.0

Raw data

Truncated lognormal

Initial estimate

Figure 8-8. Just double the estimate

232 C H A P T E R 8 :   P L A N N I N G

Iteration Planning
We stop at predetermined, unchangeable time intervals and compare
reality to plan.

Iterations are the heartbeat of an XP project. When an iteration starts, stories flow in
to the team as they select the most valuable stories from the release plan. Over the
course of the iteration, the team breathes those stories to life. By the end of the iteration,
they’ve pumped out working, tested software for each story and are ready to begin the
cycle again.

Iterations are an important safety mechanism. Every week, the team stops, looks at what it’s
accomplished, and shares those accomplishments with stakeholders. By doing so, the team coordinates
its activities and communicates its progress to the rest of the organization. Most importantly, iterations
counter a common risk in software projects: the tendency for work to take longer than expected.

The Iteration Timebox
Programming schedules die in inches. At first you’re on schedule: “I’ll be done once I finish this test.”
Then you’re limping: “I’ll be done as soon as I fix this bug.” Then gasping: “I’ll be done as soon as I
research this API flaw... no, really.” Before you know it, two days have gone by and your task has taken
twice as long as you estimated.

Death by inches sneaks up on a team. Each delay is only a few hours, so it doesn’t feel like a delay, but
they multiply across the thousands of tasks in a project. The cumulative effects are devastating.

Iterations allow you to avoid this surprise. Iterations are exactly one week long and have a strictly
defined completion time. This is a timebox: work ends at a particular time regardless of how much you’ve
finished. Although the iteration timebox doesn’t prevent problems, it reveals them, which gives you the
opportunity to correct the situation.

In XP, the iteration demo marks the end of the iteration. Schedule the demo at the
same time every week. Most teams schedule the demo first thing in the morning, which
gives them a bit of extra slack the evening before for dealing with minor problems.

The Iteration Schedule
Iterations follow a consistent, unchanging schedule:

• Demonstrate previous iteration (up to half an hour)

• Hold retrospective on previous iteration (one hour)

• Plan iteration (half an hour to four hours)

• Commit to delivering stories (five minutes)

• Develop stories (remainder of iteration)

• Prepare release (less than 10 minutes)

Audience

Whole Team

Allies

Stories (p. 253)
Release Planning (p. 206)

Allies

Iteration Demo (p. 138)
Slack (p. 246)

Allies

Iteration Demo (p. 138)
Retrospectives (p. 91)
Ten-Minute Build (p. 177)

I T E R A T I O N P L A N N I N G 233

Many teams start their iterations on Monday morning and
end Friday evening, but I prefer iterations that start on
Wednesday morning. This allows people to leave early on
Friday or take Monday off without missing important events.
It also allows the team to conduct releases before the
weekend.

How to Plan an Iteration
After the iteration demo and retrospective are complete, iteration planning begins. Start
by measuring the velocity of the previous iteration. Take all the stories that are “done
done” and add up their original estimates. This number is the amount of story points
you can reasonably expect to complete in the upcoming iteration.

NOTE
Be sure to use estimated time, not actual time, when calculating velocity. This allows
the velocity to account for interruptions and other overhead.

With your velocity in hand, you can select the stories to work on this iteration. Ask
your customers to select the most important stories from the release plan. Select stories
that exactly add up to the team’s velocity. You may need to split stories (see “Stories”
later in this chapter) or include one or two less important stories to make the estimates
add up perfectly.

NOTE
Avoid using the iteration planning meeting for extensive release planning. Do the bulk
of your release planning during the previous iteration.

Because the iteration planning meeting takes stories from the front of the release plan, you should have
already estimated and prioritized those stories. As a result, selecting stories for the iteration plan should
only take a few minutes, with perhaps 10 or 15 minutes more to explain:

Product Manager: OK, here we are again. What is it this time? Iteration 23? [Writes “Iteration 23”
at top of the blank iteration planning whiteboard.] What was our velocity in the previous iteration?

Programmer: [Counts up stories.] Fourteen, same as usual.

Product Manager: [Writes “Velocity: 14” on the whiteboard.] OK, let’s roll the release planning board
in here. [Helps drag the planning board over, then points at it.] The other customers and I had some
tough decisions to make after our recent release. Our users love what we’ve been doing, which
is good, and they’re making all kinds of suggestions, which is also good, but some of their ideas
could easily derail us, which is not so good. Anyway, you don’t need to worry about that.
Bottom line is that we’re sticking with the same plan as before, at least for this next iteration.
So, let’s see, 14 points... [starts picking stories off of the release planning board] 3... 5... 6, 7... 10...
12... 14. [He puts them on the table.] All right, everybody, that’s our iteration. Good luck—I have
to go talk with our division VP. Mary’s going to stick around to answer any questions you have
about these stories. I’ll be back this afternoon if you need anything.

Choose an iteration start time
that works for your team, and

stick with it.

Ally

“Done Done” (p. 156)

Ally

Release Planning (p. 206)

234 C H A P T E R 8 :   P L A N N I N G

Mary: Good luck, Brian. [The product manager leaves.] We’ve talked about these stories before,
so I’ll just refresh your memory...

After you have chosen the stories for the iteration, everybody but the programmers can leave the
meeting, although anybody is welcome to stay if she likes. At least one customer should stick around
to answer programmer questions and to keep an ear out for misunderstandings.

NOTE
The team’s constraint determines how much the team can do in each iteration (see
“XP Concepts” in Chapter 3 for more about the Theory of Constraints). This book
assumes programmers are the constraint, so the iteration plan is based entirely on
programmer tasks and estimates. Other team members may conduct their own
iteration planning sessions if they wish, but it isn't required.

At this point, the real work of iteration planning begins. Start by breaking down the stories into
engineering tasks.

Engineering tasks are concrete tasks for the programmers to complete. Unlike stories, engineering tasks
don’t need to be customer-centric. Instead, they’re programmer-centric. Typical engineering tasks
include:

• Update build script

• Implement domain logic

• Add database table and associated ORM objects

• Create new UI form

Brainstorm the tasks you need in order to finish all the iteration’s stories. Some tasks will be specific to
a single story; others will be useful for multiple stories. Focus only on tasks that are necessary for
completing the iteration’s stories. Don’t worry about all-hands meetings, vacations, or other
interruptions.

NOTE
Some nonprogramming stories, such as a story to estimate a stack of other stories, can’t
be broken into tasks. Reestimate the story in terms of ideal hours (see “Estimating”
later in this chapter) and leave it at that.

Brainstorming tasks is a design activity. If everybody has the same ideas about how to develop the
software, it should go fairly quickly. If not, it’s a great opportunity for discussion before coding begins.
You don’t need to go into too much detail. Each engineering task should take a pair one to three hours
to complete. (This translates into about two to six hours of estimated effort.) Let pairs figure out the
details of each task when they get to them.

As each team member has an idea for a task, he should write it down on a card, read it out loud, and
put it on the table. Everybody can work at once. You’ll be able to discard duplicate or inappropriate
tasks later.

As you work, take advantage of your on-site customer’s presence to ask about the detailed requirements
for each story. What do the customers expect when the story is done?

I T E R A T I O N P L A N N I N G 235

Amy, John, Kim, Fred, Belinda, and Joe continue planning. Mary, one of the on-site customers,
sits off to the side, working on email.

“OK, here we are again,” deadpans John, mimicking their product manager.

Amy snickers. “These stories look pretty straightforward to me. Obviously, we need to
implement new domain logic for each story. This warehouse stocking story looks like it will
affect the warehouse and SKU classes.” She takes an index card and writes, “Update warehouse
and SKU classes for warehouse stocking.”

“Speaking of products, now that we’re going to be storing the weight of each SKU, we need
to update the SKU class for that, too,” says Belinda. She takes another card and writes, “Update
SKU class to include weight.” She pauses to consider. “Maybe that’s too small to be a task.”

Joe speaks up. “That weight story is mostly a UI change at this point. We’ll need to update the
SKU configuration screen and the administration screen. We can put weight into the SKU class
at the same time.” He starts writing another task card.

“Wait a second, Joe.” Mary looks up from her email. “Did you say that the weight issue was
only a UI change?”

“That’s right,” says Joe.

“That’s not entirely true,” says Mary. “Although we mostly need to add the ability to enter
weight into the system for later use, we do want it to show up on our inventory report.”

“Oh, good to know,” says Joe. He writes, “Update inventory report with SKU weight” on a task
card.

Kim and Fred have been talking off to the side. Now they speak up. “We’ve made some cards
for the database changes we’ll need this iteration,” Kim says. “Also, I think we need to update
our build script to do a better job of updating schemas, so I wrote a task card for that, too.”

“Sounds good,” says John. “Now, I think these other stories also need domain logic changes...”

After you’ve finished brainstorming tasks, spread them out on the table and look at the whole picture.
Are these tasks enough to finish all the stories? Are there any duplicates or overlaps? Is anybody
uncertain about how the plan works with the way the software is currently designed? Discuss and fix
any problems.

Next, estimate the tasks. As with brainstorming, this can
occur in parallel, with individual programmers picking up
cards, writing estimates, and putting them back. Call out the
estimates as you finish them. If you hear somebody call out
an estimate you disagree with, stop to discuss it and come to
consensus.

Estimate the tasks in ideal hours. How long would the task take if you had perfect focus on the task,
suffered no interruptions, and could have the help of anybody on the team? Estimate in person-hours
as well: a task that takes a pair two hours is a four-hour estimate. If any of the tasks are bigger than six
hours of effort, split them into smaller tasks. Combine small tasks that are less than an hour or two.

Finally, stop and take a look at the plan again. Does anybody disagree with any of the estimates? Does
everything still fit together?

Finish brainstorming before you
start estimating.

236 C H A P T E R 8 :   P L A N N I N G

As a final check, add up the estimates and compare them to the total task estimates
from your previous iteration. Using this plan, can you commit to delivering all the
stories? Is there enough slack in the plan for dealing with unexpected problems?

NOTE
Comparing the total of your task estimates to last week’s total will help you get a feel
for whether the iteration is achievable. The two numbers don’t need to match exactly.

Don’t bother comparing your estimate to the actual number of hours you’ll be working.
There are too many variables outside of your control, such as estimate accuracy,
interruptions, and nonproject meetings, for there to be a useful corollation.

You may discover that you aren’t comfortable committing to the plan you have. If so,
see if there are any tasks you can remove or simplify. Discuss the situation with your
on-site customers. Can you replace a difficult part of a story with something easier but
equally valuable? If not, split or remove a story.

Similarly, if you feel that you can commit to doing more, add a story to the plan.

Continue to adjust the plan until the team is ready to commit to delivering its stories. With experience,
you should be able to make plans that don’t need adjustment.

The Commitment Ceremony
Commitment is a bold statement. It means that you’re making a promise to your team and to stakeholders
to deliver all the stories in the iteration plan. It means that you think the plan is achievable and that
you take responsibility, as part of the team, for delivering the stories.

Hold a little ceremony at the end of the iteration planning
meeting. Gather the whole team together—customers,
testers, and programmers—and ask everyone to look at the
stories. Remind everybody that the team is about to commit
to delivering these stories at the end of the iteration. Ask each
person, in turn, if he can commit to doing so. Wait for a verbal
“yes.”

It’s OK to say “no.” If anybody seems uncomfortable saying “yes” out loud, remind them that “no” is a
perfectly fine answer. If somebody does say no, discuss the reason as a team and adjust the plan
accordingly.

Commitment is important because it helps the team consistently deliver iterations as
promised, which is the best way to build trust in the team’s ability. Commitment gives
people an opportunity to raise concerns before it’s too late. As a pleasant side effect, it
helps the team feel motivated to work together to solve problems during the iteration.

Ally

Slack (p. 246)

Ally

Stories (p. 253)

Openly discuss problems
without pressuring anybody to

commit.

Ally

Trust (p. 102)

I T E R A T I O N P L A N N I N G 237

After the Planning Session
After you finish planning the iteration, work begins. Decide how you’ll deliver on your
commitment. In practice, this usually means that programmers volunteer to work on
a task and ask for someone to pair with them. As pairs finish their tasks, they break
apart. Individuals pick up new tasks from the board and form new pairs.

Other team members each have their duties as well. This book assumes that programmers are the
constraint in the system (see “XP Concepts” in Chapter 3 for more about the Theory of Constraints), so
other team members may not have a task planning board like the programmers do. Instead, the
customers and testers keep an eye on the programmers’ progress and organize their work so it’s ready
when the programmers need it. This maximizes the productivity of the whole team.

As work continues, revise the iteration plan to reflect the
changing situation. (Keep track of your original task and
story estimates, though, so you can use them when you plan
the next iteration.) Remember that your commitment is to
deliver stories, not tasks, and ask whether your current plan
will succeed in that goal.

At the end of the iteration, release your completed software to stakeholders. With a
good 10-minute build, this shouldn’t require any more than a button press and a few
minutes’ wait. The following morning, start a new iteration by demonstrating what
you completed the night before.

Dealing with Long Planning Sessions
Iteration planning should take anywhere from half an hour to four hours. Most of that time should be
for discussion of engineering tasks. For established XP teams, assuming they start their iteration demo
first thing in the morning, planning typically ends by lunchtime.

New teams often have difficulty finishing planning so quickly. This is normal during the first several
iterations. It will take a little while for you to learn your problem space, typical approaches to design
problems, and how best to work together.

If iteration planning still takes a long time after the first month or so, look for ways to speed it up. One
common problem is spending too much time doing release planning during the iteration planning
meeting. Most release planning should happen during the previous iteration, primarily among
customers, while the programmers work on stories. Picking stories for the iteration plan should be a
simple matter of taking stories from the front of the release plan. It should only take a few minutes
because you won’t estimate or discuss priorities.

NOTE
The team may have a few new stories as a result of stakeholder comments during the
iteration demo. In general, though, the customers should have already prioritized most
of the stories.

Long planning sessions also result from spending a lot of time trying to break down the stories into
engineering tasks. This may be a result of doing too much design work. Although iteration planning is
a design activity, it’s a very high-level one. Most of the real design work will happen during the iteration

Ally

Pair Programming (p. 71)

Every team member is
responsible for the successful

delivery of the iteration’s stories.

Ally

Ten-Minute Build (p. 177)

238 C H A P T E R 8 :   P L A N N I N G

as pairs work on specific tasks. If you spend much time discussing possible design details, ask yourself
whether you really need to solve these problems in order to come up with good engineering tasks.

If you find that team members don’t understand the existing design, or if you have long
discussions about how it works, you may lack shared design understanding. Remedy
this problem with collective code ownership and more pair programming.

If you find yourselves speculating about possible design choices, your problem may be
a result of trying to make your design too general. Remember to keep the design simple.
Focus on the requirements that you have today. Trust pairs doing test-driven
development to make good decisions on their own.

Design speculation can also occur when you don’t understand the requirements well.
Take advantage of the on-site customer in your meeting. Ask him to explain the details
of each story and why the system needs to behave in a particular way.

Tracking the Iteration
Like your release plan, your iteration plan should be a prominent part of your
informative workspace. Put your stories and tasks on a magnetic whiteboard, as shown
in Figure 8-9. When you start work on a task, take it off of the whiteboard and clip it
to your workstation. (Mark your initials on the whiteboard so people know where the
task went.) As you finish each task, put it back on the board and circle it with a green
marker.

One of the difficulties in iteration planning is identifying that things are going wrong
in time to fix them. I take a brief look at our progress every day. Is there a task that’s
been in progress for more than a day? It might be a problem. If it’s halfway through the iteration, are
about half the cards marked green? If not, we might not finish everything on time.

After the iteration ends, take your cards down from the board, add a card on top with some vital statistics
(iteration number, dates, whatever else you think is relevant), clip them together, and file them in a

Allies

Collective Code Ownership
(p. 191)
Pair Programming (p. 71)

Allies

Simple Design (p. 314)
Test-Driven Development
(p. 285)

Ally

Sit Together (p. 112)

Ally

Informative Workspace (p.
83)

Figure 8-9. An iteration planning board

I T E R A T I O N P L A N N I N G 239

drawer. Alternatively, you can just throw them away. You’re unlikely to come back to the cards, but
most teams prefer archiving them just in case.

When Things Go Wrong
Does making a big deal out of commitment mean that you always deliver everything as promised? No,
of course not. Commitment is about working around problems and doing what’s necessary to deliver
the iteration’s stories—but sometimes a problem comes up that you can’t work around.

When you discover a problem that threatens your iteration commitment, first see if
there’s any way you can change your plan so that you still meet your commitments.
Would using some of your iteration slack help? Is there an engineering task that you
can simplify or postpone? Discuss your options as a team and revise your plan.

Sometimes the problem will be too big to absorb. In this case, you’ll usually need to reduce the scope
of the iteration. Typically, this involves splitting or removing a story. As a team, discuss your options
and make the appropriate choice.

NOTE
Always stay in control of your iteration, even if you have to change your plan to do so.
Any iteration that delivers all of the stories in the current plan—even if you changed
the plan—is a success.

Under no circumstances, however, should you change the iteration deadline.

After changing the plan, the customers should reestablish trust with stakeholders by explaining what
happened, why, and what the team is doing to prevent this sort of problem in the future.

Despite your best efforts, you may have a bad week and end up with nothing at all to demonstrate to
your stakeholders. Some teams declare a lost iteration when this happens. They roll back their code and
use their previous velocity as if the lost iteration never happened. Every team makes mistakes, so this
is a fine approach as long as it happens rarely (less than once per quarter). If it happens more often,
something is wrong. Ask your mentor for help.

Partially Done Work
At the end of the iteration, every story should be “done done.” Partially completed
stories should be rare: they reflect a planning problem. That said, they will happen
occasionally, particularly when you’re new to XP.

Some teams think that the best way to handle partially completed stories is to delete
all the code for uncompleted stories and deliver only what’s completely done. This sounds harsh, but
it’s a good idea. “With true timeboxing, the software is either accepted or thrown away at the timebox
deadline. That makes it clear that the quality level must be acceptable at all times. The success of
timeboxing depends on being able to meet tight schedules by limiting the product’s scope, not its
quality” [McConnell 1996] (p. 581).

Ally

Slack (p. 246)

Ally

“Done Done” (p. 156)

240 C H A P T E R 8 :   P L A N N I N G

If you follow this practice, you probably won’t throw away
much code—the iteration is only a week long. Starting fresh
may require you to rewrite code, but you’ll retain everything
you learned when you wrote it the first time. The second
attempt will often produce better code and you may even
finish more quickly.

If you think this is extreme, as long as you know you will definitely work on that story
during the next iteration, it’s OK to keep the code. However, if you will not
immediately continue to work on that story, it’s best to delete the code. Get it out of
your way. It’s technical debt and baggage. If you ever need it, you can always get it out
of version control.

Emergency Requests
It’s inevitable: you’re on the third day of the iteration, everything is going well, and a customer comes
up to you and says, “Pat, we really need to get this story in.” What do you do?

As a programmer, it’s very tempting to tell your customer to take a hike—right over the edge of a cliff.
Changing direction in the middle of an iteration, after all, means an interruption in concentration,
delays, and lost work.

On the other hand, responsiveness to business needs is a core agile value, so suppress that homicidal
urge, smile, and provide your customer with options.

You can change the iteration schedule under the condition that you take out as much work as you add.
In other words, if you’re adding a two-point story to the plan, a two-point story needs to come out of
the plan.

In addition, you may only replace stories that you haven’t started yet. A two-point story that’s half-
done isn’t a two-point story anymore—but it’s not a one-point story, either. It’s too difficult to tell how
much work you have left on a story until it’s “done done,” and replacing it will lead to technical debt
in the form of half-finished code.

Before making any changes, however, remember that your next planning meeting is less than a week
away. Rather than inserting chaos into the team’s work, ask yourself how much of an emergency you’re
really facing. Maybe it can wait until the next planning meeting. After all, it’s only a day or three away.

The Batman
Dealing with an emergency request every now and then is fine—it’s a great way for the team to be
responsive. On the other hand, an emergency in every iteration means that something is wrong.

After the second or third iteration in a row with an emergency request, take a look at what’s happening.
Perhaps your on-site customers need to be more disciplined about release planning. Perhaps
stakeholders need stronger reminders that requests can wait until the next iteration. Often the requests
will die down as your organization adapts to the iteration heartbeat.

In some cases, however, the team has a legitimate need to provide ongoing support for ad hoc requests.
If this is true for your team, sacrifice a programmer to be the batman.

You may delete code, but you
won’t delete what you’ve

learned.

Ally

Version Control (p. 169)

I T E R A T I O N P L A N N I N G 241

NOTE
Some teams have a dedicated phone for emergency support requests; this is, of course,
the bat-phone.

“Batman” is a military term as well as a comic book character: it refers to a soldier assigned to deal with
chores so that officers can focus on officering. On an XP team, the batman deals with organizational
emergencies and support requests so the other programmers can focus on programmering. The batman
has no other duties: he doesn’t work on stories or the iteration plan.

Rotate a new programmer into the batman role every iteration to prevent burn-out. If the load is
particularly high, you may need two or more batmen per iteration.

Depending on your situation, you may be better off using daily iterations rather than a batman. A daily
iteration allows you to postpone all emergencies until the next morning, which enables the team to
focus better (see the “Daily Iterations” sidebar). It’s appropriate for teams that primarily deal with small
ad hoc issues, such as bug fixes and minor enhancements, and don’t have a long-term release plan.

DAILY ITERATIONS
If you have a particularly chaotic environment, you probably won’t be able to use a lot of the XP practices.
However, iterations—particularly daily iterations—can be a great way to bring structure to this environment.

One team I worked with was struggling under a crushing load of support requests. They had resorted to
firefighting: they responded to whichever request seemed like the biggest emergency.

We instituted a simple daily iteration—nothing else—in which the team prioritized
outstanding support requests using the planning game. They deferred any new requests that
came in during the day until the next planning game. That was acceptable because the team
planned every morning.

The results were remarkable. Productivity increased, morale shot up, and the team actually found itself with
free time. Daily iterations helped the team tame the chaos and, in so doing, dramatically improved their
effectiveness.

If you find yourself struggling with firefighting, daily iterations might help your team, too.

Questions
How should we schedule time for fixing bugs?

You should fix bugs as soon as you find them, preferably as you work on each task.
This time is part of the overhead of your iteration. Don’t batch them up for fixing later,
even if “later” is as soon as the end of the iteration.

Ally

The Planning Game (p. 219)

Ally

No Bugs (p. 160)

242 C H A P T E R 8 :   P L A N N I N G

Some bugs will be too big to absorb into your iteration slack. Create story cards for these
and schedule them as soon as possible—or decide that they aren’t worth fixing at all.

If we don’t estimate stories during iteration planning, when do we estimate stories?

Estimate new stories as they appear throughout the iteration. If this is too much of an
interruption, batch up the stories and estimate them at a particular time every day.

If you have a lot of stories to estimate, as often happens near the beginning of a project, schedule time
for estimation with a story.

All the available tasks depend on tasks that other pairs are working on right now. What should I work on?

This happens less frequently than you might think; breaking stories into engineering tasks helps
modularize the design. However, it does happen.

It’s OK to have two pairs working on the same class. In this case, discuss the issue and come to agreement
about the names of the class and the public methods that both pairs will be using. Then pick one pair
to write the class. The other pair creates the exact same class but, instead of writing real code, they stub
in some hardcoded return values.

When you integrate, replace the fake class with the real one and make sure the tests still pass.

What should the batman do when there are no outstanding support requests?

Whatever she likes, as long as she can easily put it aside when a support request comes in. Don’t try to
squeeze every last drop of efficiency out of the batman; doing so will likely slow the team down and
make the batman’s job even more tedious.

Results
When you use iterations well, your team has a consistent, predictable velocity. Stakeholders know what
to expect from the team and trust that it will deliver on its commitments. The team discovers mistakes
quickly and deals with them while still meeting its commitments. Rarely, the team meets its
commitments by replanning, changing its commitments, and communicating these changes to
stakeholders.

Contraindications
XP’s iterations assume the use of customer-centric stories. To successfully deliver
software in such a short timescale, the team must use simultaneous phases as well as
simple design and incremental design and architecture. If you don’t use these practices,
XP-style iterations probably won’t work for you.

In order to achieve a consistent velocity and deliver on commitments, your iteration
must include slack. Never artificially inflate your velocity. Similarly, don’t use
commitment as a club. Never force team members to commit to a plan they don’t agree
with.

Ally

Slack (p. 246)

Allies

Stories (p. 253)
Simple Design (p. 314)
Incremental Design and
Architecture (p. 321)

Ally

Slack (p. 246)

I T E R A T I O N P L A N N I N G 243

Energized work is also important. Without it, the team will have trouble maintaining
equilibrium and a stable velocity.

Finally, there’s little value to a strict iteration schedule unless you pay close attention
to the feedback cycles of velocity, planning, and frequent releases. A disciplined
iteration schedule may improve predictability and estimation, but you must notice and
react to changes in order to take advantage of it.

Alternatives
Some methods use longer iterations that release to real customers, not just to internal stakeholders, at
the end of each iteration. Other methods use independent phases instead of simultaneous phases and
iterations. Either of these approaches can work, but most of XP’s practices assume the presence of short
iterations. If you don’t use XP-style iterations, talk with your mentor about whether XP will work in
your situation.

Some established XP teams don’t use engineering tasks at all. Instead, they use very small stories that
can each be finished in less than a day. This approach works best for established products. Other teams
use engineering tasks but don’t estimate them. Either approach can work well, but they’re advanced
techniques. I recommend explicitly creating and estimating engineering tasks to start.

Iteration length

Throughout this book, I’ve assumed that your team uses one-week iterations. However, iterations may
be of any length. Many teams prefer two-week iterations.

I’ve found that shorter iteration lengths are better for teams new to XP. Teams seem to mature in their
understanding of XP based on how many iterations they’ve undertaken rather than how many weeks
they’ve experienced. As a result, shorter iterations means more rapid improvement for a team new to
XP.

Short iterations allow the team to practice core XP skills more frequently. A short iteration leads to more
planning, more internal releases, more iteration demos, and more retrospectives. They reduce the team’s
ability to use overtime to cover up scheduling flaws, which helps the team learn to estimate and plan
well.

One-week iterations also make decisions easier by reducing schedule risk. If a discussion is taking too
long, you can say, “This may not be perfect, but we’ll review it again next week.” This makes planning
and retrospectives easier.

On the other hand, one-week iterations put more pressure on the team. This makes
energized work more difficult and can limit refactoring. Velocity is less stable in one-
week iterations, because even one holiday represents a big loss of time for the iteration.

I prefer one-week iterations for new teams. For established teams that are comfortable
with all the XP practices, I prefer two-week iterations. Two-week iterations are a little
less stressful and lead to a more stable velocity.

Three and four-week iterations seem too long to me. They don’t provide enough feedback to the team
or the larger organization. However, if you think that a longer iteration would be useful for your team,
please try it. Be careful: longer iterations are more sensitive to mistakes, because it takes longer to expose
and to recover from those mistakes.

Ally

Energized Work (p. 79)

Ally

Release Early, Release Often
(p. 206)

Allies

Energized Work (p. 79)
Refactoring (p. 303)

244 C H A P T E R 8 :   P L A N N I N G

Don’t use longer iterations if you feel that you need more
time to get your work done. Longer iterations won’t change
the amount of time you have; they only change how often
you check your progress. If you have difficulty getting your
work done, shorten your iteration length (to a minimum of
one week) and look at what you’re doing to support energized work. Be sure to reduce
your workload in each iteration proportionally. Shortening your iteration length will
reduce the amount of work you have to do each iteration and will help you identify
problems in your process.

Some teams base their iterations on a number of business days rather than a calendar.
For example, rather than having a seven calendar-day iteration, the team’s iterations
are five business days long. This is helpful for one-week iterations because it reduces
the impact of holidays on the team’s velocity. However, I don’t recommend business-
day iterations because they’re harder to schedule with stakeholders. The regular
heartbeat of the XP team is an excellent way to generate trust, and business-day iterations don’t have
the same impact. It’s nice to know that Wednesday is always the start of a new iteration.

Further Reading
Agile Estimating and Planning [Cohn] and Planning Extreme Programming [Beck & Fowler] each provide
alternative ways of approaching iteration planning.

Shorten your iteration length if
you’re having trouble with XP.

Ally

Energized Work (p. 79)

Ally

Trust (p. 102)

I T E R A T I O N P L A N N I N G 245

Slack
We deliver on our iteration commitments.

Imagine that the power cable for your workstation is just barely
long enough to reach the wall receptacle. You can plug it in if you stretch it taut, but
the slightest vibration will cause the plug to pop out of the wall and the power to go
off. You’ll lose everything you were working on.

I can’t afford to have my computer losing power at the slightest provocation. My work’s
too important for that. In this situation, I would move the computer closer to the outlet so that it could
handle some minor bumps. (Then I would tape the cord to the floor so people couldn’t trip over it,
install an uninterruptable power supply, and invest in a continuous backup server.)

Your project plans are also too important to be disrupted by the slightest provocation. Like the power
cord, they need slack.

How Much Slack?
The amount of slack you need doesn’t depend on the number of problems you face. It depends on the
randomness of problems. If you always experience exactly 20 hours of problems in each iteration, your
velocity will automatically compensate. However, if you experience between 20 and 30 hours of
problems in each iteration, your velocity will bounce up and down. You need 10 hours of slack to
stabilize your velocity and to ensure that you’ll meet your commitments.

These numbers are just for illustration. Instead of measuring the number of hours you spend on
problems, take advantage of velocity’s feedback loop (see “Estimating” later in this chapter for more
about velocity). If your velocity bounces around a lot, stop signing up for more stories than your velocity
allows. This will cause your velocity to settle at a lower number that incorporates enough slack for your
team. On the other hand, if your velocity is rock solid, try reducing slack by committing to a small extra
story next iteration.

How to Introduce Slack
One way to introduce slack into your iterations might be to schedule no work on the last day or two of
your iteration. This would give you slack, but it would be pretty wasteful. A better approach is to
schedule useful, important work that isn’t time-critical—work you can set aside in case of an
emergency. Paying down technical debt fits the bill perfectly.

NOTE
Only the constraint needs slack. The rest of the team organizes their work around the
constraint’s schedule, resulting in slack for the entire team. (“XP Concepts” in
Chapter 3 discusses the Theory of Constraints in more detail.)

In this book, I’ve assumed that programmers are your team’s constraint. If that isn’t
true for your team, you will need slack that is appropriate for your constraint. Talk to
your mentor (see “Find a Mentor” in Chapter 2) about how to modify this advice for
your specific situation.

Audience

Programmers, Coaches

Ally

Iterations (p. 41)

246 C H A P T E R 8 :   P L A N N I N G

Even the best teams inadvertantly accumulate technical debt. Although you should always make your
code as clean as you can, some technical debt will slip by unnoticed.

Rather than doing the bare minimum necessary to keep your head above water, be
generous in refactoring and cleaning up technical debt in existing code. Every iteration,
look for opportunities to make existing code better. Make this part of your everyday
work. Every time I find myself scratching my head over a variable or method name, I
change it. If I see some code that’s no longer in use, I delete it.

In addition to these small improvements, look for opportunities to make larger changes. Perhaps the
code uses primitives rather than introducing a new type, or perhaps a class needs to have some of its
responsibilities extracted into a new class.

NOTE
I notice technical debt most when I navigate during pair programming. When a
problem slows us down and I find myself feeling irritated, that inspires me to suggest
that we fix it.

Paying down technical debt directly increases team productivity, so I spend a lot of time on it throughout
the iteration. I usually spend about eight hours per week paying down technical debt, but other members
of my teams spend only a few hours. A good rule of thumb is to spend 10 percent of the iteration on
technical debt.

Don’t spend all your time on a single problem. Refactor
throughout the iteration—an hour encapsulating a structure
here, two hours fixing class responsibilities there. Each
refactoring should address a specific, relatively small
problem. Sometimes you’ll fix only part of a larger problem—
that’s OK as long as it makes the code better. If your team pays down technical debt every week, you’ll
have the opportunity to see and fix remaining problems in the future.

As you fix technical debt, focus on fixes that make your current work easier. Don’t go looking for
technical debt that’s unrelated to stories you’re currently working on. If you consistently relate your
improvements to your current work, you’ll automatically put the most effort into the most frequently
modified and most valuable parts of the system.

Research Time
To keep up with their constantly expanding field, programmers must continually improve their skills.
In doing so, they will often learn things that enhance their work on the project.

Dedicated research time is an excellent way to encourage learning and add additional slack into your
iterations. To introduce it, set aside half a day for each programmer to conduct self-directed research on
a topic of his choice. Be completely hands-off. I recommend only two rules: don’t spend this time on
project stories or tasks, and don’t modify any project code.

NOTE
If you’re concerned about people goofing off, provide lunch the next day and ask that
people share what they’ve done in informal peer discussion. This is a good way to
share knowledge anyway.

Ally

Refactoring (p. 303)

Perform big refactorings
incrementally.

S L A C K 247

I’ve introduced this technique to several teams, and it’s paid dividends each time. Two weeks after
introducing research time at one organization, the product manager told me that research time was the
most valuable time the team spent, and suggested that we double it.

Research time works because programmers are typically motivated by a desire to do good work,
particularly when they’re self-directed. Most programmers have a natural desire to make their lives
easier and to impress their colleagues. As a result, the work done in research time often has a surprisingly
high return for the project.

Research time is particularly valuable for XP teams. The continuous drumbeat of iteration deadlines is
great for reducing risk and motivating the team to excel, but it can lead to tunnel vision. Dedicated
research time gives programmers a chance to widen their ranges, which often leads to insights about
how to develop more effectively.

NOTE
I schedule research time for the morning of the penultimate day of the iteration. This
is late enough in the iteration that we can use the time as slack if we need to, but not
so late to distract programmers with the upcoming deadline. Mornings are better than
afternoons because it’s harder to start on time when production code is occupying your
attention.

For research time to be effective, you must focus. Half a day can go by very quickly. It’s easy to think
of research time as a catch-all for postponed meetings. Be strict about avoiding interruptions and enlist
the help of the project manager. Ignore your email, turn off your IM, and use your web browser only
for specific research.

When you first adopt research time, you might have trouble deciding what to work on. Think about
what has puzzled you recently. Would you like to learn more about the details of your UI framework?
Is there a programming language you’ve wanted to try but your organization doesn’t use? Has real-time
networking always fascinated you?

As you do your research, create spike solutions—small standalone programs—that
demonstrate what you’ve learned. Avoid trying to make software that’s generally
useful; that will reduce the amount of time available to pursue core ideas. If something
turns out to deserve further work, create and schedule a story for it.

When Your Iteration Commitment Is at Risk
Research time and paying down technical debt are important tasks that enhance your programmers’
skills and allow them to deliver more quickly. Paying down technical debt, in particular, should be part
of every iteration. However, if your iteration commitments are at risk, it’s OK to set these two tasks
aside temporarily in order to meet those commitments.

Use refactoring as a shock absorber

Before starting a big refactoring to pay down technical debt, consider the iteration plan and think about
the kinds of problems the team has encountered. If the iteration is going smoothly, go ahead and
refactor. If you’ve encountered problems or you’re a little behind schedule, shrug your shoulders and
work on meeting your iteration commitment instead. You’ll have another opportunity to fix the

Ally

Spike Solutions (p. 331)

248 C H A P T E R 8 :   P L A N N I N G

problem later. By varying the amount of time you spend paying down technical debt, you can ensure
that most iterations come in exactly on time.

NOTE
Continue refactoring new code as you write it. It’s OK to defer cleaning up existing
technical debt temporarily, but incurring new technical debt will hurt your
productivity.

Incur a little voluntary overtime

Every iteration experiences a few bumps. Varying the time you spend paying down
technical debt is your first line of defense. Rarely, though, a problem sneaks past. In
this case, if family commitments permit, I voluntarily work a few extra hours. Overtime
is unusual in the companies I work with, so an extra hour a day once in a while isn’t
a big deal. Another programmer or two will often volunteer to do the same.

NOTE
Be careful not to overuse overtime. Overuse will sap team members’ ability to do good
work. You can use it to clean up after small problems, but each programmer should
only contribute an hour or so per day, and only voluntarily.

Cancel research time

Some problems will be too significant to clean up in overtime. In this case, consider cancelling research
time in order to address the problem. First, though, take a second look at whether you need to replan
the iteration instead (see “Iteration Planning” earlier in this chapter). When problems are big, even
cancelling research time may not be enough.

Don’t Cross the Line
Slack is a wonderful tool. It helps you meet your commitments and gives you time to perform important,
nonurgent tasks that improve your productivity.

Be careful, though. Although slack is a wonderful way to handle transitory problems, it can also disguise
systemic problems. If you rely on slack to finish your stories in every iteration, that time isn’t really
slack—it’s required.

To return to the power cord example, suppose that your workstation is on a jiggly desk. Every time you
type, the desk jiggles a bit and the power cord pops out. You could add just enough slack to the cord to
handle your typing, but that wouldn’t really be slack; it’s necessary to use the computer at all. If anything
else happens while you’re typing—say, Bob from marketing gives you a friendly slap on the back—the
cord will still pop out.

If you work overtime, cancel research time, or don’t pay
down any technical debt for two or three iterations in a row,
you’ve overcommitted and have no slack. Congratulate
yourself for delivering on your commitments anyway. Now
add slack by reducing your velocity.

Ally

Energized Work (p. 79)

If you consistently use most of
your slack, you’ve
overcommitted.

S L A C K 249

Making enough time for these nonurgent tasks is difficult. With a deadline rushing head-first toward
you, it’s difficult to imagine spending any time that doesn’t directly contribute to getting stories out the
door. New XP teams especially struggle with this. Don’t give up. Slack is essential to meeting
commitments, and that is the key to successful XP.

Reducing the Need for Slack
In my experience, there are two big sources of randomness on XP teams: customer unavailability and
technical debt. Both lead to an unpredictable environment, make estimating difficult, and require you
to have more slack in order to meet your commitments.

If programmers have to wait for customer answers as they work, you can reduce the need for slack by
making customers more available to answer programmer questions. They may not like that—customers
are often surprised by the amount of time XP needs from them—but if you explain that it will help
improve velocity, they may be more interested in helping.

On the other hand, if programmers often encounter unexpected technical delays, such as surprising
design problems, difficulty integrating, or unavailability of a key staging environment, then your need
for slack is due to too much technical debt. Fortunately, using your slack to pay down technical debt
will automatically reduce the amount of slack you need in the future.

Questions
If our commitment is at risk, shouldn’t we stop pair programming or using test-driven development? Meeting our
commitment is most important, right?

First, pair programming and test-driven development (TDD) should allow you to
deliver more quickly, not more slowly. However, they do have a learning curve—
particularly TDD—so it’s true that avoiding TDD might allow you to meet your
commitments in the early stages of your project.

However, you shouldn’t use them as slack. Pair programming, test-driven
development, and similar practices maintain your capability to deliver high-quality
code. If you don’t do them, you will immediately incur technical debt and hurt your productivity. You
may meet this iteration’s commitments, but you’ll do so at the expense of the next iteration. If your
existing slack options aren’t enough, you need to replan your iteration, as discussed in“Iteration
Planning” earlier in this chapter.

In contrast, paying down technical debt, going home on time, and conducting research enhance your
capability to deliver. Using them as slack once in a while won’t hurt.

Research time sounds like professional development. Shouldn’t programmers do that on their own time?

In my experience, research time pays dividends within a few months. It’s worthwhile even without an
explicit policy of encouraging professional development.

However, if research time isn’t appropriate for your organization, you can increase the amount of time
you spend paying down technical debt instead.

Allies

Pair Programming (p. 71)
Test-Driven Development
(p. 285)

250 C H A P T E R 8 :   P L A N N I N G

Should we pair program during research time?

You can if you want, but you don’t have to. Treat it as you would any other spike.

Shouldn’t a project have just one buffer at the end of the project rather than a lot of little buffers?

The book Critical Chain [Goldratt 1997] argues for creating a single buffer at the end of
a project rather than padding each estimate. It’s good advice, and adding slack to each
iteration might seem to contradict that.

However, an XP team makes a commitment to deliver every week. In a sense, an XP team conducts a
series of one-week projects, each with a commitment to stakeholders and its own small buffer protecting
that commitment. This commitment is necessary for stakeholder trust, to take advantage of feedback,
and to overcome the inherently high risk of software projects. Without it, the project would drift off
course.

XP avoids Parkinson’s Law (“work expands to fill the time available”) and Student Syndrome (“work is
delayed until its deadline”) by performing important but nonurgent tasks in the buffer.

Results
When you incorporate slack into your iterations, you consistently meet your iteration commitments.
You rarely need overtime. In addition, by spending so much time paying down technical debt, your
code steadily improves, increasing your productivity and making further enhancements easier.

Contraindications
The danger of thinking of these tasks as slack is thinking they aren’t important. They’re actually vital,
and a team that doesn’t perform these tasks will slow down over time. They’re just not time-critical like
your iteration commitment is. Don’t use slack as an excuse to set aside these tasks indefinitely.

In addition, never incur technical debt in the name of slack. If you can’t meet your
iteration commitments while performing standard XP tasks, replan the iteration
instead. Practices you should never use as slack include test-driven development,
refactoring new code, pair programming, and making sure stories are “done done.”

Finally, don’t use try to use iteration slack to meet release commitments. There isn’t
enough iteration slack to make a meaningful difference to your release commitments—
in fact, removing slack from your iterations could easily add so much chaos to your
process that productivity actually goes down. Use risk management to provide slack for
your release commitments.

Alternatives
Slack allows you to be “done done” and meet your iteration commitments. It enables a consistent
velocity. It provides an opportunity for extra refactoring. It reduces technical debt and increases team
capability. I’m not aware of any alternatives that provide all these benefits.

Rather than including slack at the iteration level, some teams add a safety buffer to every estimate. As
[Goldratt 1997] explains, this leads to delays and often doesn’t improve the team’s ability to meet their
commitments.

Ally

Spike Solutions (p. 331)

Allies

Test-Driven Development
(p. 285)
Refactoring (p. 303)
Pair Programming (p. 71)
“Done Done” (p. 156)

Ally

Risk Management (p. 224)

S L A C K 251

Many organizations, however, choose not to include any slack in their plans. It’s no coincidence that
these organizations have trouble meeting commitments. They also waste a lot of time thrashing around
as they attempt to achieve the unachievable.

Reading groups

Some teams form a reading group rather than conducting research time. This is an excellent alternative
to research time, particularly for teams that are interested in discussing fundamental ideas rather than
exploring new technologies.

One way to do so is to take turns reading sections of a book or an article out loud and then discussing
them. This approach has the advantage of not requiring advance preparation, which promotes more
active participation. One person should act as facilitator and inspire discussion by asking questions about
each section.

A reading group can easily spend half a day per week in productive conversation. To take this book as
an example, you could probably discuss one or two practice sections per session.

Silver stories

Other teams schedule silver stories for slack. These are less-important stories that the team can set aside
if they need extra time. I prefer to pay down technical debt instead because teams often neglect this
crucial task.

The difficulty with silver stories is that you need to set aside slack tasks at a moment’s notice. If you do
that to a silver story, you’ll leave behind technical debt in the form of half-done code. If you use silver
stories, be sure to delete all code related to the story if you have to put it aside.

I’ve also observed that silver stories hurt programmer morale. If the team needs to use some slack, they
don’t finish all the stories on the board. Even though the silver stories were bonus stories, it doesn’t feel
like that in practice. In contrast, any time spent paying down technical debt directly improves
programmers’ quality of life. That’s a win.

Further Reading
Slack: Getting Past Burnout, Busywork, and the Myth of Total Efficiency [DeMarco 2002] provides a compelling
case for providing slack throughout the organization.

The Goal and Critical Chain [Goldratt 1992] and [Goldratt 1997] are two business novels that make the
case for using slack (or “buffers”), instead of padding estimates, to protect commitments and increase
throughput.

“Silicon Valley Patterns Study of Domain-Driven Design” (http://domaindrivendesign.org/discussion/
siliconvalleypatterns/index.html) is an interesting transcript of some meetings of a long-running and highly
successful reading group.

252 C H A P T E R 8 :   P L A N N I N G

http://domaindrivendesign.org/discussion/siliconvalleypatterns/index.html
http://domaindrivendesign.org/discussion/siliconvalleypatterns/index.html

Stories
We plan our work in small, customer-centric pieces.

Stories may be the most misunderstood entity in all of XP.
They’re not requirements. They’re not use cases. They’re not even narratives. They’re much simpler
than that.

Stories are for planning. They’re simple one- or two-line descriptions of work the team
should produce. Alistair Cockburn calls them “promissory notes for future
conversation.”* Everything that stakeholders want the team to produce should have a
story, for example:

• “Warehouse inventory report”

• “Full-screen demo option for job fair”

• “TPS report for upcoming investor dog-and-pony show”

• “Customizable corporate branding on user login screen”

This isn’t enough detail for the team to implement and release working software, nor
is that the intent of stories. A story is a placeholder for a detailed discussion about
requirements. Customers are responsible for having the requirements details available
when the rest of the team needs them.

Although stories are short, they still have two important characteristics:

1. Stories represent customer value and are written in the customers’ terminology. (The best stories are
actually written by customers.) They describe an end-result that the customer values, not
implementation details.

2. Stories have clear completion criteria. Customers can describe an objective test that would allow
programmers to tell when they’ve successfully implemented the story.

The following examples are not stories:

• “Automate integration build” does not represent customer value.

• “Deploy to staging server outside the firewall” describes implementation details rather than an end-
result, and it doesn’t use customer terminology. “Provide demo that customer review board can
use” would be better.

• “Improve performance” has no clear completion criteria. Similarly, “Make it fast enough for my
boss to be happy” lacks objective completion criteria. “Searches complete within one second” is
better.

Story Cards
Write stories on index cards.

Audience

Whole Team

Ally

Release Planning (p. 206)

Ally

Incremental Requirements
(p. 273)

* http://c2.com/cgi/wiki?UserStory.

S T O R I E S 253

http://c2.com/cgi/wiki?UserStory

NOTE
I prefer 3×5-inch cards because they fit into my pocket.

This isn’t the result of some strange Ludditian urge on the part of XP’s creators; it’s a deliberate choice
based on the strengths of the medium. You see, physical cards have one feature that no conglomeration
of pixels has: they’re tactile. You can pick them up and move them around. This gives them power.

During release planning, customers and stakeholders gather around a big table to select
stories for the next release. It’s a difficult process of balancing competing desires. Index
cards help prevent these disputes by visually showing priorities, making the scope of
the work more clear, and directing conflicts toward the plan rather than toward
personalities, as discussed in “The Planning Game” earlier in this chapter.

Story cards also form an essential part of an informative workspace. After the planning
meeting, move the cards to the release planning board—a big, six-foot whiteboard,
placed prominently in the team’s open workspace (see Figure 8-4). You can post
hundreds of cards and still see them all clearly. For each iteration, place the story cards
to finish during the iteration on the iteration planning board (another big whiteboard;
see Figure 8-9) and move them around to indicate your status and progress. Both of
these boards are clearly visible throughout the team room and constantly broadcast information to the
team.

Index cards also help you be responsive to stakeholders.
When you talk with a stakeholder and she has a suggestion,
invite her to write it down on a blank index card. I always
carry cards with me for precisely this purpose. Afterward,
take the stakeholder and her card to the product manager.
They can walk over to the release planning board and discuss
the story’s place in the overall vision. Again, physical cards focus the discussion on relative priorities
rather than on contentious “approved/disapproved” decisions.

If the product manager and stakeholder decide to add the story to the release plan, they
can take it to the programmers right away. A brief discussion allows the programmers
to estimate the story. Developers write their estimate—and possibly a few notes—on
the card, and then the stakeholder and product manager place the card into the release
plan.

Physical index cards enable these ways of working in a very
easy and natural way that’s surprisingly difficult to replicate
with computerized tools. Although you can use software,
index cards just work better: they’re easier to set up and
manipulate, make it easier to see trends and the big picture,
and allow you to change your process with no configuration
or programming.

Most people are skeptical about the value of index cards at first, so if you feel that way, you’re not alone.
The best way to evaluate the value of physical story cards is to try them for a few months, then decide
whether to keep them.

Ally

Release Planning (p. 206)

Ally

Informative Workspace (p.
83)

Use index cards to be more
responsive to stakeholder

suggestions.

Ally

Estimating (p. 260)

Index cards are simpler and more
effective than computerized

tools.

254 C H A P T E R 8 :   P L A N N I N G

Customer-Centricity
Stories need to be customer-centric. Write them from the on-site customers’ point of view,
and make sure they provide something that customers care about. On-site customers
are in charge of priorities in the planning game, so if a story has no customer value,
your customers won’t—and shouldn’t—include it in the plan.

NOTE
A good way to ensure that your stories are customer-centric is to ask your customers
to write the stories themselves.

One practical result of customer-centric stories is that you won’t have stories for technical issues. There
should be no “Create a build script” story, for example—customers wouldn’t know how to prioritize it.
Although programmers can tell customers where the technical stories belong in the plan, that disrupts
the balance of power over the scope of the project and can leave customers feeling disenfranchised.

Instead, include any technical considerations in the estimate for each story. If a story requires that the
programmers create or update a build script, for example, include that cost when estimating for that
story.

NOTE
Including technical costs in stories, rather than having dedicated technical stories,
requires incremental design and architecture.

Customer-centric stories aren’t necessarily always valuable to the end-user, but they should always be
valuable to the on-site customers. For example, a story to produce a tradeshow demo doesn’t help end-
users, but it helps the customers sell the product.

Splitting and Combining Stories
Although stories can start at any size, it is difficult to estimate stories that are too large or too small. Split
large stories; combine small ones.

The right size for a story depends on your velocity. You
should be able to complete 4 to 10 stories in each iteration.
Split and combine stories to reach this goal. For example, a
team with a velocity of 10 days per iteration might split stories
with estimates of more than 2 days and combine stories that
are less than half a day.

Combining stories is easy. Take several similar stories, staple their cards together, and write your new
estimate on the front.

Splitting stories is more difficult because it tempts you away from vertical stripes and releasable stories
(discussed in “Release Planning” earlier in this chapter). It’s easiest to just create a new story for each
step in the previous story. Unfortunately, this approach leads to story clumps. Instead, consider the
essence of the story. Peel away all the other issues and write them as new stories. [Cohn] has an excellent
chapter on how to do this in his book Agile Estimating and Planning. He summarizes various options for
splitting stories:

Ally

The Planning Game (p. 219)

Select story sizes such that you
complete 4 to 10 each iteration.

S T O R I E S 255

• Split large stories along the boundaries of the data supported by the story.

• Split large stories based on the operations that are performed within the story.

• Split large stories into separate CRUD (Create, Read, Update, Delete) operations.

• Consider removing cross-cutting concerns (such as security, logging, error handling, and
so on) and creating two versions of the story: one with and one without support for the
cross-cutting concern.

• Consider splitting a large story by separating the functional and nonfunctional
(performance, stability, scalability, and so forth) aspects into separate stories.

• Separate a large story into smaller stories if the smaller stories have different priorities.

Special Stories
Most stories will add new capabilities to your software, but any action that requires the team’s time and
is not a part of their normal work needs a story.

Documentation stories

XP teams need very little documentation to do their work (see “Documentation” in
Chapter 7), but you may need the team to produce documentation for other reasons.
Create documentation stories just like any other: make them customer-centric and
make sure you can identify specific completion criteria. An example of a documentation
story is “Produce user manual.”

“Nonfunctional” stories

Performance, scalability, and stability—so-called nonfunctional requirements—should
be scheduled with stories, too. Be sure that these stories have precise completion
criteria. See “Performance Optimization” in Chapter 9 for more.

Bug stories

Ideally, your team will fix bugs as soon as they find them, before declaring a story
“done done.” Nobody’s perfect, though, and you will miss some bugs. Schedule these
bugs with story cards, such as “Fix multiple-user editing bug.” Schedule them as soon
as possible to keep your code clean and reduce your need for bug-tracking software.

Bug stories can be difficult to estimate. Often, the biggest timesink in debugging is
figuring out what’s wrong, and you usually can’t estimate how long that will take. Instead, provide a
timeboxed estimate: “We’ll spend up to a day investigating this bug. If we haven’t fixed it by then, we’ll
schedule another story.”

Spike stories

Sometimes programmers won’t be able to estimate a story because they don’t know
enough about the technology required to implement the story. In this case, create a
story to research that technology. An example of a research story is “Figure out how
to estimate ‘Send HTML’ story.” Programmers will often use a spike solution (see “Spike
Solutions” in Chapter 9) to research the technology, so these sorts of stories are typically
called spike stories.

Ally

Documentation (p. 195)

Ally

Performance Optimization
(p. 335)

Allies

No Bugs (p. 160)
“Done Done” (p. 156)

Ally

Spike Solutions (p. 331)

256 C H A P T E R 8 :   P L A N N I N G

Word these stories in terms of the goal, not the research that needs to be done. When programmers
work on a research story, they only need to do enough work to make their estimate for the real story.
They shouldn’t try to figure out all the details or solve the entire problem.

Programmers can usually estimate how long it will take to research a technology even if they don’t know
the technology in question. If they can’t estimate the research time, timebox the story as you do with
bug stories. I find that a day is plenty of time for most spike stories, and half a day is sufficient for most.

Estimating

Other than spike stories, you normally don’t need to schedule time for the programmers to estimate
stories—you can just ask them for an estimate at any time. It’s part of the overhead of the iteration, as
are support requests and other unscheduled interruptions. If your programmers feel that estimating is
too much of an interruption, try putting new story cards in a pile for the programmers to estimate when
it’s convenient.

Sometimes you’ll have a large number of new stories to estimate. In this case, it might be worth creating
a story card for estimating those stories.

Meetings

Like estimating, most meetings are part of the normal overhead of the iteration. If you have an unusual
time commitment, such as training or an off-site day, you can reserve time for it with a story.

Architecture, design, refactoring, and technical infrastructure

Don’t create stories for technical details. Technical tasks are part of the cost of
implementing stories and should be part of the estimates. Use incremental design and
architecture to break large technical requirements into small pieces that you can
implement incrementally.

Questions
Are index cards really more effective than computerized tools? What about reporting?

See our discussion of reporting (“Reporting” in Chapter 6) for more information.

What about backups? Won’t the cards get lost?

If you exercise reasonable care, you’re unlikely to lose cards. The only time I’ve seen a team lose their
cards was when they created them and then left them in an ignored pile somewhere on their boss’ desk
for six months.

That said, there’s always the possibility of fire or other disaster. If the risk of losing cards is too great for
you, consider taking a digital photo of the release planning board every week or so. An eight-megapixel
camera has sufficient resolution to capture a six-foot whiteboard and all the detail on the cards.

Why do you recommend sizing stories so that we can complete 4 to 10 stories per iteration?

If you only have a few stories in an iteration, it’s harder to see that you’re making progress, which
increases the risk that you won’t see problems in time to correct them. In addition, if something goes
wrong and you can’t finish a story, it will represent a large percentage of your work. Too many stories,
on the other hand, increase your planning and estimating burden. Each story becomes smaller, making
it harder to see the big picture.

Ally

Incremental Design and
Architecture (p. 321)

S T O R I E S 257

An average of 6 stories per iteration leads to a 3-month release plan (the maximum I recommend)
consisting of 78 stories. That’s a nice number. It gives you flexibility in planning without overwhelming
you with details.

Our customers understand programming. Can we create programmer-centric technical stories?

It’s much more difficult to create customer-centric stories than programmer-centric stories, so it’s
tempting to find excuses for avoiding them. “Our customers don’t mind if we have programmer-centric
stories” is one such excuse. Try to avoid it.

Even if your customers really do have the ability to prioritize programmer-centric stories, customer-
centric stories lead to better plans. Remember, your goal is to create stories that allow you to release the
software at any time. Programmer-centric stories usually don’t have that property.

If your customers are programmers—if you’re writing software for programmers, such as a library or
framework—then your stories should use a programmer-centric language (see “Ubiquitous Language”
in Chapter 6). Even so, they should reflect your customers’ perspective. Create stories about your
customers’ needs, not your plans to fulfill their needs.

How can we encourage stakeholders to use stories for requesting features?

When a stakeholder asks you for a feature, take out an index card and invite him to write it down so it
can be scheduled. For electronic requests, an on-site customer should follow up, either by speaking to
the requester in person or creating the story card himself.

If stakeholders refuse to use stories, the product manager can manage this relationship by providing
stakeholders what they want to see and translating stakeholders’ wishes into stories for the team.

Results
When you use stories well, the on-site customers understand all the work they approve and schedule.
You work on small, manageable, and independent pieces and can deliver complete features frequently.
The project always represents the best possible value to the customer at any point in time.

Contraindications
Stories are no replacement for requirements. You need another way of getting details, whether through
expert customers on-site (the XP way) or a requirements document (the traditional way).

Be very cautious of using customer-centric stories without also using most of the XP
development practices (see Chapter 9). Customer-centric stories depend on the ability
to implement infrastructure incrementally with incremental design and architecture.
Without this ability, you’re likely to incur greater technical debt.

Physical index cards are only appropriate if the team sits together, or at least has a
common area in which they congregate. Experienced distributed teams often keep
physical index cards at the main site and copy the cards into the electronic system. This
is an administrative headache, but for these teams, the benefits of physical cards make
the added work worthwhile.

Some organizations are skittish about using informal planning tools. If important members of your
organization require a formal Gantt chart, you may need to provide it. Your project manager can help
you make this decision. As with a distributed team, you may find it valuable to use physical cards as
your primary source, then duplicate the information into the tool.

Ally

Incremental Design and
Architecture (p. 321)

Ally

Sit Together (p. 112)

258 C H A P T E R 8 :   P L A N N I N G

Alternatives
For teams that don’t use stories, the main distinction between stories and the line items in most plans
is that stories are customer-centric. If you can’t use customer-centric stories for some reason, customers
cannot participate effectively in the planning game. This will eliminate one of its primary benefits: the
ability to create better plans by blending information from both customers and programmers.
Unfortunately, no alternative practice will help.

Another distinctive feature of stories is the use of index cards. Physical cards offer many benefits over
electronic tools, but you can still use electronic tools if necessary. Some teams track their stories using
spreadsheets, and others use dedicated agile planning tools. None of these approaches, however, provide
the benefits of physical index cards.

Further Reading
Agile Estimating and Planning [Cohn] discusses options for splitting stories in Chapter 12.

S T O R I E S 259

Estimating
We provide reliable estimates.

Programmers often consider estimating to be a black art—one
of the most difficult things they must do. Many programmers find that they consistently estimate too
low. To counter this problem, they pad their estimates (multiplying by three is a common approach),
but sometimes even these rough guesses are too low.

Are good estimates possible? Of course! You just need to focus on your strengths.

What Works (and Doesn’t) in Estimating
One reason estimating is so difficult is that programmers can rarely predict how they will spend their
time. A task that requires eight hours of uninterrupted concentration can take two or three days if the
programmer must deal with constant interruptions. It can take even longer if the programmer works
on another task at the same time.

Part of the secret to making good estimates is to predict the
effort, not the calendar time, that a project will take. Make
your estimates in terms of ideal engineering days (often called
story points), which are the number of days a task would take
if you focused on it entirely and experienced no interruptions.

Using ideal time alone won’t lead to accurate estimates. I’ve asked some teams I’ve worked with to
measure exactly how long each task takes them (one team gave me 18 months of data), and even though
we estimated in ideal time, the estimates were never accurate.

Still, they were consistent. For example, one team always estimated their stories at about 60 percent of
the time they actually needed. This may not sound very promising. How useful can inaccurate estimates
be, especially if they don’t correlate to calendar time? Velocity holds the key.

Velocity
Although estimates are almost never accurate, they are consistently inaccurate. While the estimate
accuracy of individual estimates is all over the map—one estimate might be half the actual time, another
might be 20 percent more than the actual time—the estimates are consistent in aggregate. Additionally,
although each iteration experiences a different set of interruptions, the amount of time required for the
interruptions also tends to be consistent from iteration to iteration.

As a result, you can reliably convert estimates to calendar time if you aggregate all the stories in an
iteration. A single scaling factor is all you need.

This is where velocity comes in. Your velocity is the number of story points you can complete in an
iteration. It’s a simple yet surprisingly sophisticated tool. It uses a feedback loop, which means every
iteration’s velocity reflects what the team actually achieved in the previous iteration.

NOTE
To predict your next iteration’s velocity, add the estimates of the stories that were
“done done” in the previous iteration.

Audience

Programmers

Estimate in ideal time.

260 C H A P T E R 8 :   P L A N N I N G

This feedback leads to a magical effect. When the team underestimates their workload, they are unable
to finish all their stories by the iteration deadline. This causes their velocity to go down, which in turn
reduces the team’s workload, allowing them to finish everything on time the following week.

Similarly, if the team overestimates their workload, they find themselves able to finish more stories by
the iteration deadline. This causes their velocity to go up, which increases the team’s workload to match
their capacity.

Velocity is an extremely effective way of balancing the team’s workload. In a mature XP team, velocity
is stable enough to predict schedules with a high degree of accuracy (see “Risk Management” earlier in
this chapter).

Velocity and the Iteration Timebox
Velocity relies upon a strict iteration timebox. To make velocity work, never count stories that aren’t
“done done” at the end of the iteration. Never allow the iteration deadline to slip, not even by a few hours.

You may be tempted to cheat a bit and work longer hours, or to slip the iteration
deadline, in order to finish your stories and make your velocity a little higher. Don’t
do that! Artificially raising velocity sabotages the equilibrium of the feedback cycle. If
you continue to do it, your velocity will gyrate out of control, which will likely reduce
your capacity for energized work in the process. This will further damage your
equilibrium and your ability to meet your commitments.

NOTE
One project manager wanted to add a few days to the beginning of an iteration so his
team could “hit the ground running” and have a higher velocity to show to
stakeholders. By doing so, he set the team up for failure: they couldn’t keep that pace
in the following iteration. Remember that velocity is for predicting schedules, not
judging productivity. See “Reporting” in Chapter 6 for ideas about what to report to
stakeholders.

Velocity tends to be unstable at the beginning of a project. Give it three or four iterations
to stabilize. After that point, you should achieve the same velocity every iteration,
unless there’s a holiday during the iteration. Use your iteration slack to ensure that you
consistently meet your commitments every iteration. I look for deeper problems if the
team’s velocity changes more than one or twice per quarter.

TIPS FOR ACCURATE ESTIMATES
You can have accurate estimates if you:

1. Estimate in terms of ideal engineering days (story points), not calendar time

2. Use velocity to determine how many story points the team can finish in an iteration

3. Use iteration slack to smooth over surprises and deliver on time every iteration

4. Use risk management to adjust for risks to the overall release plan

Ally

Energized Work (p. 79)

Ally

Slack (p. 246)

E S T I M A T I N G 261

How to Make Consistent Estimates
There’s a secret to estimating: experts automatically make consistent estimates.* All you
have to do is use a consistent estimating technique. When you estimate, pick a single,
optimistic value. How long will the story take if you experience no interruptions, can
pair with anyone else on the team, and everything goes well? There’s no need to pad
your estimates or provide a probabilistic range with this approach. Velocity
automatically applies the appropriate amount of padding for short-term estimates and risk management
adds padding for long-term estimates.

There are two corollaries to this secret. First, if you’re an
expert but you don’t trust your ability to make estimates,
relax. You automatically make good estimates. Just imagine
the work you’re going to do and pick the first number that
comes into your head. It won’t be right, but it will be
consistent with your other estimates. That’s sufficient.

Second, if you’re not an expert, the way to make good estimates is to become an expert. This isn’t as
hard as it sounds. An expert is just a beginner with lots of experience. To become an expert, make a lot
of estimates with relatively short timescales and pay attention to the results. In other words, follow the
XP practices.

All the programmers should participate in estimating. At least one customer should be present to answer
questions. Once the programmers have all the information they need, one programmer will suggest an
estimate. Allow this to happen naturally. The person who is most comfortable will speak first. Often
this is the person who has the most expertise.

NOTE
I assume that programmers are your constraint in this book (see “Theory of
Constraints” in Chapter 3), which means they should be the only ones estimating
stories. The system constraint determines how quickly you can deliver your final
product, so only the constraint’s estimates are necessary. If programmers aren’t the
constraint on your team, talk with your mentor about how to adjust XP for your
situation.

If the suggested estimate doesn’t sound right, or if you don’t understand where it came from, ask for
details. Alternatively, if you’re a programmer, provide your own estimate and explain your reasoning.
The ensuing discussion will clarify the estimate. When all the programmers confirm an estimate, write
it on the card.

NOTE
If you don’t know a part of the system well, practice making estimates for that part of
the system in your head, then compare your estimate with those of the experts. When
your estimate is different, ask why.

Ally

Risk Management (p. 224)

To make a good estimate, go with
your gut.

* Unless you have a lot of technical debt. If you do, add more iteration slack (see “Slack" earlier in this chapter) to compensate for
the inconsistency.

262 C H A P T E R 8 :   P L A N N I N G

At first, different team members will have differing ideas of how long something should take. This will
lead to inconsistent estimates. If the team makes estimates as a group, programmers will automatically
synchronize their estimates within the first several iterations.

Comparing your estimates to the actual time required for each story or task may also give you the
feedback you need to become more consistent. To do so, track your time as described in “Time usage”
in Chapter 6.

How to Estimate Stories
Estimate stories in story points. To begin, think of a story point as an ideal day.

NOTE
It’s OK to estimate in half-points, but quarter-points shouldn’t be necessary.

When you start estimating a story, imagine the engineering tasks you will need to implement it. Ask
your on-site customers about their expectations, and focus on those things that would affect your
estimate. If you encounter something that seems expensive, provide the customers with less costly
alternatives.

As you gain experience with the project, you will begin to make estimates intuitively rather than
mentally breaking them down into engineering tasks. Often, you’ll think in terms of similar stories
rather than ideal days. For example, you might think that a particular story is a typical report, and typical
reports are one point. Or you might think that a story is a complicated report, but not twice as difficult
as a regular report, and estimate it at one and a half points.

Sometimes you will need more information to make an accurate estimate. In this case, make a note on
the card. If you need more information from your customers, write “??” (for “unanswered questions”)
in place of the estimate. If you need to research a piece of technology further, write “Spike” in place of
the estimate and create a spike solution story (see “Spike Solutions” in Chapter 9).

The team has gathered to estimate stories. Mary, one of the on-site customers, starts the discussion. Amy,
Jo, and Kim are all programmers.

Mary: Here’s our next story. [She reads the story card aloud, then puts it on the table.] “Report on
parts inventory in warehouse.”

Amy: We’ve done so many reports by now that a new one shouldn’t be too much trouble.
They’re typically one point each. We already track parts inventory, so there’s no new data for
us to manage. Is there anything unusual about this report?

Mary: I don’t think so. We put together a mock-up. [She pulls out a printout and hands it to Amy.]

Amy: This looks pretty straightforward. [She puts the paper on the table. The other programmers take
a look.]

Joe: Mary, what’s this age column you have here?

Mary: That’s the number of business days since the part entered the warehouse.

Joe: You need business days, not calendar days?

Mary: That’s right.

E S T I M A T I N G 263

Joe: What about holidays?

Mary: We only want to count days that we’re actually in operation. No weekends, holidays, or
scheduled shutdowns.

Kim: Joe, I see what you’re getting at. Mary, that’s going to increase our estimate because we
don’t currently track scheduled shutdowns. We would need a new UI, or a data feed, in order
to know that information. It could add to the complexity of the admin screens, and you and
Brian have said that ease of admin is important to you. Do you really need age to be that
accurate?

Mary: Hmm. Well, the exact number isn’t that important, but if we’re going to provide a piece
of information, I would prefer it to be accurate. What about holidays—can you do that?

Kim: Can we assume that the holidays will be the same every year?

Mary: Not necessarily, but they won’t change very often.

Kim: OK, then we can put them in the config file for now rather than creating a UI for them.
That would make this story cheaper.

Mary: You know, I’m going to need to look into this some more. This field isn’t that important
and I don’t think it’s going to be worth the added administration burden. Rather than business
days, let’s just make it the number of calendar weeks. I’ll make a separate story for dealing
with business days. [She takes a card and writes, “Report part inventory age in business days, not
calendar weeks. No holidays, weekends, or scheduled shutdowns.”]

Kim: Sounds good. That should be pretty easy then, because we already track when the part
went into the warehouse. What about the UI?

Mary: All we need to do is add it to the list of reports on the reporting screen.

Kim: I think I’m ready to estimate. [Looks at other programmers.] This looks like a pretty standard
report to me. It’s another specialization for our reporting layer with a few minor logic changes.
I’d say it’s one point.

Joe: That’s what I was thinking, too. Anybody else?

[The other programmers nod.]

Joe: One point. [He writes “1” on the story card.] Mary, I don’t think we can estimate the business
day story you just created until you know what kind of UI you want for it.

Mary: That’s fair. [Writes “??” on the business day card.] Our next story...

How to Estimate Iteration Tasks
During iteration planning, programmers create engineering tasks that allow them to
deliver the stories planned for the iteration. Each engineering task is a concrete,
technical task such as “update build script” or “implement domain logic.”

Estimate engineering tasks in ideal hours rather than ideal days. When you think about
the estimate, be sure to include everything necessary for the task to be “done done”—
testing, customer review, and so forth. See “Iteration Planning” earlier in this chapter
for more information.

Ally

Iteration Planning (p. 233)

Ally

“Done Done” (p. 156)

264 C H A P T E R 8 :   P L A N N I N G

When Estimating Is Difficult
If the programmers understand the requirements and are experts in the required technology, they
should be able to estimate a story in less than a minute. If the programmers need to discuss the
technology, or if they need to ask questions of the customers, then estimating may take longer. I look
for ways to bring discussions to a close if an estimate takes longer than five minutes, and I look for
deeper problems if every story involves detailed discussion.

One common cause of slow estimating is inadequate customer preparation. To make their estimates,
programmers often ask questions the customers haven’t considered. In some cases, customers will
disagree on the answer and need to work it out.

A customer huddle—in which the customers briefly discuss the issue, come to a decision, and return—is
one way to handle this. Another way is to write “??” in place of the estimate and move on to the next
story. The customers then work out the details at their own pace, and the programmers estimate the
story later.

Expect the customers to be unprepared for programmer questions during the first several iterations.
Over time, they will learn to anticipate most of the questions programmers will ask.

Programmer inexperience can also cause slow estimating. If the programmers don’t
understand the problem domain well, they will need to ask a lot of questions before
they can make an estimate. As with inadequate customer preparation, this problem
will go away in time. If the programmers don’t understand the technology, however,
immediately create a spike story (see “Spike stories” earlier in this chapter) and move
on.

Some programmers try to figure out all the details of the requirements before making an estimate.
However, only those issues that would change the estimate by a half-point or more are relevant. It takes
practice to figure out which details are important and which you can safely ignore.

This sort of overattention to detail sometimes occurs when a programmer is reluctant to make estimates.
A programmer who worries that someone will use her estimate against her in the future will spend too
much time trying to make her estimate perfect rather than settling on her first impression.

Programmer reluctance may be a sign of organizational difficulties or excessive
schedule pressure, or it may stem from past experiences that have nothing to do with
the current project. In the latter case, the programmers usually come to trust the team
over time.

To help address these issues during the estimation phase, ask leading questions. For example:

• Do we need a customer huddle on this issue?

• Should we mark this “??” and come back to it later?

• Should we make a spike for this story?

• Do we have enough information to estimate this story?

• Will that information change your estimate?

• We’ve spent five minutes on this story. Should we come back to it later?

Ally

Spike Solutions (p. 331)

Ally

Trust (p. 102)

E S T I M A T I N G 265

Explaining Estimates
It’s almost a law of physics: customers and stakeholders are invariably disappointed with the amount
of features their teams can provide. Sometimes they express that disappointment out loud. The best
way to deal with this is to ignore the tone and treat the comments as straightforward requests for
information.

In fact, a certain amount of back-and-forth is healthy: it helps the team focus on the high-value, low-
cost elements of the customers’ ideas. (See “How to Win” earlier in this chapter.)

One common customer response is, “Why does that cost so much?” Resist the urge to defend yourself
and your sacred honor, pause to collect your thoughts, then list the issues you considered when coming
up with the estimate. Suggest options for reducing the cost of the story by reducing scope.

Your explanation will usually satisfy your customers. In some cases, they’ll ask for more information.
Again, treat these questions as simple requests. If there’s something you don’t know, admit it, and
explain why you made your estimate anyway. If a question reveals something that you haven’t
considered, change your estimate.

Be careful, though: the questions may cause you to doubt
your estimate. Your initial, gut-feel estimate is most likely
correct. Only change your estimate if you learn something
genuinely new. Don’t change it just because you feel
pressured. As the programmers who will be implementing
the stories, you are the most qualified to make the estimates.
Be polite, but firm:

I’m sorry you don’t like these estimates. We believe our estimates are correct, but if they’re
too pessimistic, our velocity will automatically increase to compensate. We have a professional
obligation to you and this organization to give you the best estimates we know how, even if
they are disappointing, and that’s what we’re doing.

If a customer reacts with disbelief or browbeats you, he may not realize how disrespectful he’s being.
Sometimes making him aware of his behavior can help:

From your body language and the snort you just made, I’m getting the impression that you
don’t respect or trust our professionalism. Is that what you intended?

Customers and stakeholders may also be confused by the idea of story points. I start by providing a
simplified explanation:

A story point is an estimation technique that automatically compensates for overhead and
estimate error. Our velocity is 10, which means we can accomplish 10 points per week.

If the questioner pushes for more information, I explain all the details of ideal days and velocity. That
often inspires concern: “If our velocity is 10 ideal days and we have 6 programmers, shouldn’t our
velocity be 30?”

You can try to explain that ideal days aren’t the same as developer days, but that has never worked for
me. Now I just offer to provide detailed information:

Generally speaking, our velocity is 10 because of estimate error and overhead. If you like, we’ll
perform a detailed audit of our work next week and tell you exactly where the time is going.
Would that be useful?

(“Reporting” in Chapter 6 discusses time usage reports in detail.)

Politely but firmly refuse to
change your estimates when

pressured.

266 C H A P T E R 8 :   P L A N N I N G

These questions often dissipate as customers and stakeholders gain trust in the team’s ability to deliver.
If they don’t, or if the problems are particularly bad, enlist the help of your project manager to defuse
the situation. “Team Strategy #1: Customer-Programmer Empathy” in Chapter 6 has further
suggestions.

How to Improve Your Velocity
Your velocity can suffer for many reasons. The following options might allow you to improve your
velocity.

Pay down technical debt

The most common technical problem is excessive technical debt (see “Technical
Debt”). This has a greater impact on team productivity than any other factor does. Make
code quality a priority and your velocity will improve dramatically. However, this isn’t
a quick fix. Teams with excessive technical debt often have months—or even years—
of cleanup ahead of them. Rather than stopping work to pay down technical debt, fix
it incrementally. Iteration slack is the best way to do so, although you may not see a noticeable
improvement for several months.

Improve customer involvement

If your customers aren’t available to answer questions when programmers need them,
programmers have to either wait or make guesses about the answers. Both of these
hurt velocity. To improve your velocity, make sure that a customer is always available
to answer programmer questions.

Support energized work

Tired, burned-out programmers make costly mistakes and don’t put forth their full
effort. If your organization has been putting pressure on the team, or if programmers
have worked a lot of extra hours, shield the programmers from organizational pressure
and consider instituting a no-overtime policy.

Offload programmer duties

If programmers are the constraint for your team—as this book assumes—then hand any work that other
people can do to other people. Find ways to excuse programmers from unnecessary meetings, shield
them from interruptions, and have somebody else take care of organizational bureaucracy such as time
sheets and expense reports. You could even hire an administrative assistant for the team to handle all
non-project-related matters.

Provide needed resources

Most programming teams have all the resources they need. However, if your programmers complain
about slow computers, insufficient RAM, or unavailability of key materials, get those resources for them.
It’s always surprising when a company nickle-and-dimes its software teams. Does it make sense to save
$5,000 in equipment costs if it costs your team half an hour per programmer every day? A team of six
programmers will recoup that cost within a month. And what about the opportunity costs of delivering
fewer features?

Ally

Slack (p. 246)

Ally

Sit Together (p. 112)

Ally

Energized Work (p. 79)

E S T I M A T I N G 267

Add programmers (carefully)

Velocity is related to the number of programmers on your team, but unless your project
is woefully understaffed and experienced personnel are readily available, adding people
won’t make an immediate difference. As [Brooks] famously said, “Adding people to a
late project only makes it later.” Expect new employees to take a month or two to be
productive. Pair programming, collective code ownership, and a shared workspace will
help reduce that time, though adding junior programmers to the team can actually
decrease productivity.

Likewise, adding to large teams can cause communication challenges that decrease productivity. Six
programmers is my preferred size for an XP team, and I readily add good programmers to reach that
number. Past 6, I am very cautious about adding programmers, and I avoid team sizes greater than 10
programmers.

Questions
How do we modify our velocity if we add or remove programmers?

If you add or remove only one person, try leaving your velocity unchanged and see what happens.
Another option is to adjust your velocity proportionally to the change. Either way, your velocity will
adjust to the correct number after another iteration.

How can we have a stable velocity? Team members take vacations, get sick, and so forth.

Your iteration slack should handle minor variations in people’s availability. If a large
percentage of the team is away, as during a holiday, your velocity may go down for an
iteration. This is normal. Your velocity should return to normal in the next iteration.

If you have a small number of programmers—four or fewer—you may find that even
one day of absence is enough to affect your velocity. In this case, you may wish to use two-week
iterations. See the end of “Iteration Planning” earlier in this chapter for a discussion of the trade-offs.

What should we use as our velocity at the beginning of the project?

For your first iteration, just make your best guess. Set your velocity for the following iteration based on
what you actually complete. Expect your velocity to take three or four iterations to stabilize.

Your organization may want you to make release commitments before your velocity has stabilized. The
best approach is to say, “I don’t have a schedule estimate yet, but we’re working on it. I can promise
you an estimate in three or four weeks. We need the time to calibrate the developers’ estimates to what
they actually produce.”

Isn’t it a waste of time for all the programmers to estimate stories together?

It does take a lot of programmer-hours for all the programmers to estimate together, but this isn’t wasted
time. Estimating sessions are not just for estimation—they’re also a crucial first step in communicating
and clarifying requirements. Programmers ask questions and clarify details, which often leads to ideas
the customers haven’t considered. Sometimes this collaboration reduces the overall cost of the project.
(See “The Planning Game” earlier in this chapter.)

All the programmers need to be present to ensure they understand what they will be building. Having
the programmers together also increases estimate accuracy.

Allies

Pair Programming (p. 71)
Collective Code Ownership
(p. 191)
Sit Together (p. 112)

Ally

Slack (p. 246)

268 C H A P T E R 8 :   P L A N N I N G

What if we don’t ask the right questions of the customer and miss something?

Sometimes you will miss something important. If Joe hadn’t asked Mary about the age column, the
team would have missed a major problem and their estimate would have been wrong. These mistakes
happen. Information obvious to customers isn’t always obvious to programmers.

Although you cannot prevent these mistakes, you can reduce them. If all the programmers estimate
together, they’re more likely to ask the right questions. Mistakes will also decrease as the team becomes
more experienced in making estimates. Customers will learn what details to provide, and programmers
will learn which questions to ask.

In the meantime, don’t worry unless you encounter these surprises often. Address unexpected details
when they come up. (See “Iteration Planning” earlier in this chapter.)

If unexpected details frequently surprise you, and the problem doesn’t improve with experience, ask
your mentor for help.

When should we reestimate our stories?

Story estimates don’t need to be accurate, just self-consistent. As a result, you only need to reestimate
a story when your understanding of it changes in a way that affects its difficulty or scope.

To make our estimates, we made some assumptions about the design. What if the design changes?

XP uses incremental design and architecture, so the whole design gradually improves
over time. As a result, your estimates will usually remain consistent with each other.

How do we deal with technical dependencies in our stories?

With proper incremental design and architecture, technical dependencies should be
rare, although they can happen. I typically make a note in the estimate field: “Six (four
if story Foo done first).”

If you find yourself making more than a few of these notes, something is wrong with your approach to
incremental design. Ask your mentor for help.

What if we want to get a rough estimate of project length—without doing release planning—before the project begins?

[DeMarco 2002] has argued that organizations set project deadlines based on the value of the project.
In other words, the project is only worth doing if you can complete it before the deadline. (Some
organizations play games with deadlines in order to compensate for expected overruns, but assume the
deadline is accurate in this discussion.)

If this is true—and it coincides with my experience—then the estimate for the project isn’t as important
as whether you can finish it before the deadline.

To judge whether a project is worth pursuing, gather the project visionary, a seasoned
project manager, and a senior programmer or two (preferably ones that would be on
the project). Ask the visionary to describe the project’s goals and deadline, then ask the
project manager and programmers if they think it’s possible. If it is, then you should
gather the team and perform some real estimating, release planning, and risk
management by conducting the first three or four iterations of the project.

This approach takes about four weeks and yields a release date that you can commit to. [McConnell
2005] provides additional options that are faster but less reliable.

Allies

Refactoring (p. 303)
Incremental Design and
Architecture (p. 321)

Allies

Release Planning (p. 206)
Risk Management (p. 224)

E S T I M A T I N G 269

Results
When you estimate well, your velocity is consistent and predictable with each iteration. You make
commitments and meet them reliably. Estimation is fast and easy, and you can estimate most stories in
a minute or two.

Contraindications
This approach to estimating assumes that programmers are the constraint (see “XP Concepts” in
Chapter 3 for more about the Theory of Constraints). It also depends on fixed-length iterations , small
stories, and tasks. If these conditions aren’t present, you need to use a different approach to estimating.

This approach also requires trust: developers need to believe they can give accurate
estimates without being attacked, and customers and stakeholders need to believe the
developers are providing honest estimates. That trust may not be present at first, but if
it doesn’t develop, you’ll run into trouble.

Regardless of your approach to estimating, never use missed estimates to attack developers. This is a
quick and easy way to destroy trust.

Alternatives
There are many approaches to estimating. The one I’ve described has the benefit of being both accurate
and simple. However, its dependency on release planning for long-term estimates makes it labor-
intensive for initial project estimates. See [McConnell 2005] for other options.

Further Reading
Agile Estimating and Planning [Cohn] describes a variety of approaches to agile estimation.

Software Estimation: Demystifying the Black Art [McConnell 2005] provides a comprehensive look at
traditional approaches to estimation.

Ally

Trust (p. 102)

270 C H A P T E R 8 :   P L A N N I N G

CHAPTER 9

Developing

Imagine you’ve given up the world of software to become a master chef. After years of study and
practice, you’ve reached the top of your profession. One day you receive the ultimate invitation: to cook
for 500 attendees at a $10,000-a-plate fundraiser.

A limo takes you from your chartered plane to the venue, and you and your cooks walk confidently
into a kitchen... only to stop in shock. The kitchen is a mess: rotting food, unwashed cooking
implements, standing water in the sinks. It’s the morning of the event. You have 12 hours.

What do you do? You roll up your sleeves and start cleaning. As soon as the first space is clear, a few
cooks begin the longest and most complicated food preparation. Others head to the market to get fresh
ingredients. The rest keep cleaning. Working around the mess will take too long.

It’s a lesson you’ve learned from software over and over again.

Software development requires the cooperation of everyone on the team. Programmers are often called
“developers,” but in reality everyone on the team is part of the development effort. When you share
the work, customers identify the next requirements while programmers work on the current ones.
Testers help the team figure out how to stop introducing bugs. Programmers spread the cost of technical
infrastructure over the entire life of the project. Above all, everyone helps keep everything clean.

The best way I know to reduce the cost of writing software is to improve the internal quality of its code
and design. I’ve never seen high quality on a well-managed project fail to repay its investment. It always
reduces the cost of development in the short term as well as in the long term. On a successful XP project,
there’s an amazing feeling—the feeling of being absolutely safe to change absolutely anything
without worry.

Here are nine practices that keep the code clean and allow the entire team to contribute to development:

• Incremental Requirements allows the team to get started while customers work out requirements
details.

• Customer Tests help communicate tricky domain rules.

2 7 1

• Test-Driven Development allows programmers to be confident that their code does what they think it
should.

• Refactoring enables programmers to improve code quality without changing its behavior.

• Simple Design allows the design to change to support any feature request, no matter how surprising.

• Incremental Design and Architecture allows programmers to work on features in parallel with technical
infrastructure.

• Spike Solutions use controlled experiments to provide information.

• Performance Optimization uses hard data to drive optimization efforts.

• Exploratory Testing enables testers to identify gaps in the team’s thought processes.

“DEVELOPING” MINI-ÉTUDE
The purpose of this étude is to practice reflective design. If you’re new to agile development, you may use it
to understand your codebase and identify design improvements, even if you’re not currently using XP. If you’re
an experienced agile practitioner, review Chapter 15 and use this étude to discover process changes that will
help your team improve its approach to design.

Conduct this étude for a timeboxed half-hour every day for as long as it is useful. Expect to feel rushed by the
deadline at first. If the étude becomes stale, discuss how you can change it to make it interesting again.

This étude is for programmers only. You will need pairing workstations, paper, and writing implements.

Step 1. Form pairs. Try to pair with someone you haven’t paired with recently.

Step 2. (Timebox this step to 15 minutes.) Look through your code and choose a discrete unit to analyze. Pick
something that you have not previously discussed in the larger group. You may choose a method, a class, or
an entire subsystem. Don’t spend too long picking something; if you have trouble deciding, pick at random.

Reverse-engineer the design of the code by reading it. Model the design with a flow diagram, UML, CRC cards,
or whatever technique you prefer. Identify any flaws in the code and its design, and discuss how to fix them.
Create a new model that shows what the design will look like after it has been fixed.

If you have time, discuss specific refactoring steps that will allow you to migrate from the current design to
your improved design in small, controlled steps.

Step 3. (Timebox this step to 15 minutes.) Within the entire group of programmers, choose three pairs to lead
a discussion based on their findings. Each pair has five minutes.

Consider these discussion questions:

• Which sections of the code did you choose?

• What was your initial reaction to the code?

• What are the benefits and drawbacks of the proposals?

• Which specific refactorings can you perform based on your findings?

272 C H A P T E R 9 :   D E V E L O P I N G

Incremental Requirements
We define requirements in parallel with other work.

A team using an up-front requirements phase keeps their
requirements in a requirements document. An XP team doesn’t have a requirements phase and story
cards aren’t miniature requirements documents, so where do requirements come from?

The Living Requirements Document
In XP, the on-site customers sit with the team. They’re expected to have all the
information about requirements at their fingertips. When somebody needs to know
something about the requirements for the project, she asks one of the on-site customers
rather than looking in a document.

Face-to-face communication is much more effective than written communication, as [Cockburn]
discusses, and it allows XP to save time by eliminating a long requirements analysis phase. However,
requirements work is still necessary. The on-site customers need to understand the requirements for
the software before they can explain it.

The key to successful requirements analysis in XP is expert customers. Involve real
customers, an experienced product manager, and experts in your problem domain (see
“The XP Team” in Chapter 3 and “Real Customer Involvement” in Chapter 6). Many
of the requirements for your software will be intuitively obvious to the right customers.

NOTE
If you have trouble with requirements, your team may not include the right customers.

Some requirements will necessitate even expert customers to consider a variety of options or do some
research before making a decision. Customers, you can and should include other team members in your
discussions if it helps clarify your options. For example, you may wish to include a programmer in your
discussion of user interface options so you can strike a balance between an impressive UI and low
implementation cost.

Write down any requirements you might forget. These notes are primarily for your use
as customers so you can easily answer questions in the future and to remind you of the
decisions you made. They don’t need to be detailed or formal requirements documents;
keep them simple and short. When creating screen mock-ups, for example, I often
prefer to create a sketch on a whiteboard and take a digital photo. I can create and
photograph a whiteboard sketch in a fraction of the time it takes me to make a mock-up using an
electronic tool.

NOTE
Some teams store their requirements notes in a Wiki or database, but I prefer to use
normal office tools and check the files into version control. Doing this allows you to
use all of the tools at your disposal, such as word processors, spreadsheets, and
presentation software. It also keeps requirements documents synchronized with the
rest of the project and allows you to travel back in time to previous versions.

Audience

Customers

Ally

Sit Together (p. 112)

Ally

Real Customer Involvement
(p. 120)

Ally

Version Control (p. 169)

I N C R E M E N T A L R E Q U I R E M E N T S 273

Work Incrementally
Work on requirements incrementally, in parallel with the rest of the team’s work. This makes your work
easier and ensures that the rest of the team won’t have to wait to get started. Your work will typically
parallel your release-planning horizons, discussed in “Release Planning” in Chapter 8).

Vision, features, and stories

Start by clarifying your project vision, then identify features and stories as described in
“Release Planning” in Chapter 6. These initial ideas will guide the rest of your
requirements work.

Rough expectations

Figure out what a story means to you and how you’ll know it’s finished slightly before you ask
programmers to estimate it. As they estimate, programmers will ask questions about your expectations;
try to anticipate those questions and have answers ready. (Over time, you’ll learn what sorts of questions
your programmers will ask.) A rough sketch of the visible aspects of the story might help.

NOTE
Sometimes the best way to create a UI mock-up is to work in collaboration with the
programmers. The iteration-planning meeting might be the best time for this work.

Mock-ups, customer tests, and completion criteria

Figure out the details for each story just before programmers start implementing it.
Create rough mock-ups that show what you expect the work to look like when it’s
done. Prepare customer tests that provide examples of tricky domain concepts, and
describe what “done done” means for each story. You’ll typically wait for the
corresponding iteration to begin before doing most of this work.

Customer review

While stories are under development, before they’re “done
done,” review each story to make sure it works as you
expected. You don’t need to exhaustively test the
application—you can rely on the programmers to test their
work—but you should check those areas in which
programmers might think differently than you do. These
areas include terminology, screen layout, and interactions between screen elements.

NOTE
Prior to seeing the application in action, every conversation is theoretical. You can
discuss options and costs, but until you have an implementation, everyone can only
imagine how the choices will feel. Only working applications show you what you’re
really going to get.

Allies

Vision (p. 201)
Release Planning (p. 206)

Allies

Customer Tests (p. 278)
“Done Done” (p. 156)

Only working applications show
customers what they’re really

going to get.

274 C H A P T E R 9 :   D E V E L O P I N G

Some of your findings will reveal errors due to miscommunication or misunderstanding. Others, while
meeting your requirements, won’t work as well in practice as you had hoped. In either case, the solution
is the same: talk with the programmers about making changes. You can even pair with programmers
as they work on the fixes.

Many changes will be minor, and the programmers will usually be able to fix them as
part of their iteration slack. If there are major changes, however, the programmers may
not have time to fix them in the current iteration. (This can happen even when the
change seems minor from the customer’s perspective.) Create story cards for these
changes. Before scheduling such a story into your release plan, consider whether the
value of the change is worth its cost.

Over time, programmers will learn about your expectations for the application. Expect the number of
issues you discover to decline each iteration.

A CUSTOMER REVIEW SESSION
By Elisabeth Hendrickson

“Jill, do you have a moment?” Mary asked, walking over to Jill’s workstation. “I need to review
a story and I was hoping you could show me some of your exploratory testing techniques.”

“Sure, I’d be happy to,” Jill said. “What’s the charter for our session?”

“I want to explore the Defaults story that Pradeep and Jan are working on,” Mary said. “They’re
not done yet, but they said that the UI is mostly filled in. I wanted to make sure they’re going in the right direction.”

“OK,” Jill said as she wrote “Explore Defaults UI” on a card. “Let’s start by setting some explicit defaults in the
Preferences page.” She navigated to that area of the application, and Mary picked up a notepad, ready to take
notes.

Jill reached the Preferences page. “Here are the defaults users can set explicitly,” she said, pointing at the
screen. “Is this what you were expecting?”

Mary nodded. “We sketched out a mock-up of the screen with the programmers earlier in the iteration. Now
that I look at it, though, it seems crowded. I think an icon would be better than those repeated Set Default links.”
She made a note to bring up the issue with the programmers.

“Let’s look at the default credit cards next,” Jill said. “It’s newest.”

Mary took the mouse and clicked over to the credit cards screen. “This user has several credit cards, and one
has already been marked as the default. We should be able to change it by clicking this radio button,” she said,
and did so. “Nice! I like how they enabled the Undo button when I clicked. But does the save button have to
be labeled Submit?” She laughed as she made a few notes. “I feel like I’m on the set of a B movie whenever I
see that. Submit to your computer master, puny mortal!"

Jill grinned. “I never thought of it that way.” She paused to consider. “Let’s use the zero/one/many heuristic*

to see what happens when we create a new user with no credit cards.” She created a new user, logged in, then
navigated back to the Preferences page. The default credit card area on the page showed the heading and no
credit cards.

Ally

Slack (p. 246)

Ally

Exploratory Testing (p. 341)

* See “Exploratory Testing” later in this chapter.

I N C R E M E N T A L R E Q U I R E M E N T S 275

“Hmmm,” Mary said, then pointed at the screen. “I hadn’t thought about this before, but I’d like to have an Add
New Card button here. Users will be able to add credit cards both here and on the Payment Method page when
they go to check out. I wonder if Pradeep and Jan have time to get that in this iteration?” She made a note to
talk to the programmers about the new button.

“In the meantime, we can add a new credit card from the payment screen,” Jill said. “I wonder what happens
when you add the first card...”

Questions
Our customers don’t know what the team should build. What should we do?

Do you have a clear, compelling vision? If so, your customers should know where to
start. If you don’t, you may not have the right customers on your team. In this case,
you can use traditional requirements gathering techniques (see “Further Reading” at
the end of this section) to determine the software’s requirements, but you’re better off
involving real experts (see “The XP Team” in Chapter 3 and “Real Customer
Involvement” in Chapter 6).

What if the customer review finds too many problems for us to deal with?

This is most likely to happen at the beginning of the project, before programmers have learned what
the customers like. If this happens to you, spend more time with programmers so that your perspective
is captured sooner and more accurately. In some cases, customers should pair with programmers as they
work on error-prone areas.

As a programmer, I’m offended by some of the things customers find in their reviews. They’re too nitpicky.

Things that can seem nitpicky to programmers—such as the color of the screen background, or a few
pixels of alignment in the UI—represent polish and professionalism to customers. This goes both ways:
some things that seem important to programmers, such as quality code and refactoring, often seem like
unnecessary perfectionism to customers.

Rather than getting upset about these differences of perspective, try to learn what your customers care
about and why. As you learn, you will anticipate your customers’ needs better, which will reduce the
need to make changes.

Results
When customers work out requirements incrementally, programmers are able to work on established
stories while customers figure out the details for future stories. Customers have ready answers to
requirements questions, which allows estimation and iteration planning to proceed quickly and
smoothly. By the time a story is “done done,” it reflects the customers’ expectations, and customers
experience no unpleasant surprises.

Ally

Vision (p. 201)

276 C H A P T E R 9 :   D E V E L O P I N G

Contraindications
In order to incrementally define requirements, the team must include on-site
customers who are dedicated to working out requirements details throughout the
entire project. Without this dedicated resource, your team will struggle with insufficient
and unclear requirements.

When performing customer reviews, think of them as tools for conveying the
customers’ perspective rather than as bug-hunting sessions. The programmers should
be able to produce code that’s nearly bug-free (see “No Bugs” in Chapter 7); the purpose
of the review is to bring customers’ expectations and programmers’ work into
alignment.

Alternatives
The traditional approach to requirements definition is to perform requirements analysis sessions and
document the results. This requires an up-front requirements gathering phase, which takes extra time
and introduces communication errors.

You can use an up-front analysis phase with XP, but good on-site customers should make that
unecessary.

Further Reading
Software Requirements [Wiegers 1999] is a good resource for classic approaches to requirements gathering.

Ally

Sit Together (p. 112)

Ally

No Bugs (p. 160)

I N C R E M E N T A L R E Q U I R E M E N T S 277

Customer Tests
We implement tricky domain concepts correctly.

Customers have specialized expertise, or domain knowledge, that
programmers don’t have. Some areas of the application—what programmers call
domain rules—require this expertise. You need to make sure that the programmers
understand the domain rules well enough to code them properly in the application.
Customer tests help customers communicate their expertise.

Don’t worry; this isn’t as complicated as it sounds. Customer tests are really just
examples. Your programmers turn them into automated tests, which they then use to
check that they’ve implemented the domain rules correctly. Once the tests are passing,
the programmers will include them in their 10-minute build, which will inform the
programmers if they ever do anything to break the tests.

To create customer tests, follow the Describe, Demonstrate, Develop processes outlined in the next section.
Use this process during the iteration in which you develop the corresponding stories.

Describe
At the beginning of the iteration, look at your stories and
decide whether there are any aspects that programmers
might misunderstand. You don’t need to provide examples
for everything. Customer tests are for communication, not for
proving that the software works. (See “No Bugs” in
Chapter 7.)

For example, if one of your stories is “Allow invoice deleting,” you don’t need to explain how invoices
are deleted. Programmers understand what it means to delete something. However, you might need
examples that show when it’s OK to delete an invoice, especially if there are complicated rules to ensure
that invoices aren’t deleted inappropriately.

NOTE
If you’re not sure what the programmers might misunderstand, ask. Be careful, though;
when business experts and programmers first sit down to create customer tests, both
groups are often surprised by the extent of existing misunderstandings.

Once you’ve identified potential misunderstandings, gather the team at a whiteboard and summarize
the story in question. Briefly describe how the story should work and the rules you’re going to provide
examples for. It’s OK to take questions, but don’t get stuck on this step.

For example, a discussion of invoice deletion might go like this:

Customer: One of the stories in this iteration is to add support for deleting invoices. In addition
to the screen mock-ups we’ve given you, we thought some customer tests would be
appropriate. Deleting invoices isn’t as simple as it appears because we have to maintain an
audit trail.

Audience

Whole Team

Ally

Ubiquitous Language (p.
124)

Ally

Ten-Minute Build (p. 177)

Customer tests are for
communication.

278 C H A P T E R 9 :   D E V E L O P I N G

There are a bunch of rules around this issue. I’ll get into the details in a moment, but the basic
rule is that it’s OK to delete invoices that haven’t been sent to customers—because presumably
that kind of invoice was a mistake. Once an invoice has been sent to a customer, it can only
be deleted by a manager. Even then, we have to save a copy for auditing purposes.

Programmer: When an invoice hasn’t been sent and gets deleted, is it audited?

Customer: No—in that case, it’s just deleted. I’ll provide some examples in a moment.

Demonstrate
After a brief discussion of the rules, provide concrete examples that illustrate the scenario. Tables are
often the most natural way to describe this information, but you don’t need to worry about formatting.
Just get the examples on the whiteboard. The scenario might continue like this:

Customer (cont.): As an example, this invoice hasn’t been sent to customers, so an Account Rep
can delete it.

Sent User OK to delete

N Account Rep Y

In fact, anybody can delete it—CSRs, managers, and admins.

Sent User OK to delete

N CSR Y

N Manager Y

N Admin Y

But once it’s sent, only managers and admins can delete it, and even then it’s audited.

Sent User OK to delete

Y Account Rep N

Y CSR N

Y Manager Audited

Y Admin Audited

Also, it’s not a simple case of whether something has been sent or not. “Sent” actually means
one of several conditions. If you’ve done anything that could have resulted in a customer seeing
the invoice, we consider it “Sent.” Now only a manager or admin can delete it.

Sent User OK to delete

Printed Account Rep N

Exported Account Rep N

Posted to Web Account Rep N

C U S T O M E R T E S T S 279

Sent User OK to delete

Emailed Account Rep N

NOTE
As you provide examples, be completely specific. It’s tempting to create generic
examples, such as “This invoice hasn’t been sent to customers, so anybody can delete
it,” but those get confusing quickly and programmers can’t automate them. Provide
specifics. “This invoice hasn’t been sent to customers, so an account rep can delete it.”
This will require you to create more examples—that’s a good thing.

Your discussion probably won’t be as smooth and clean as in this example. As you discuss business rules,
you’ll jump back and forth between describing the rules and demonstrating them with examples. You’ll
probably discover special cases you hadn’t considered. In some cases, you might even discover whole
new categories of rules you need customer tests for.

One particularly effective way to work is to elaborate on a theme. Start by discussing the most basic case
and providing a few examples. Next, describe a special case or additional detail and provide a few more
examples. Continue in this way, working from simplest to most complicated, until you have described
all aspects of the rule.

You don’t need to show all possible examples. Remember, the purpose here is to communicate, not to
exhaustively test the application. You only need enough examples to show the differences in the rules.
A handful of examples per case is usually enough, and sometimes just one or two is sufficient.

Develop
When you’ve covered enough ground, document your discussion so the programmers can start working
on implementing your rules. This is also a good time to evaluate whether the examples are in a format
that works well for automated testing. If not, discuss alternatives with the programmers. The
conversation might go like this:

Programmer: OK, I think we understand what’s going on here. We’d like to change your third
set of examples, though—the ones where you say “Y” for “Sent.” Our invoices don’t have a
“Sent” property. We’ll calculate that from the other properties you mentioned. Is it OK if we
use “Emailed” instead?

Customer: Yeah, that’s fine. Anything that sends it works for that example.

Don’t formalize your examples too soon. While you’re brainstorming, it’s often easiest to work on the
whiteboard. Wait until you’ve worked out all the examples around a particular business rule (or part
of a business rule) before formalizing it. This will help you focus on the business rule rather than
formatting details.

In some cases, you may discover that you have more examples and rules to discuss than you realized.
The act of creating specific examples often reveals scenarios you hadn’t considered. Testers are
particularly good at finding these. If you have a lot of issues to discuss, consider letting some or all of
the programmers get started on the examples you have while you figure out the rest of the details.

280 C H A P T E R 9 :   D E V E L O P I N G

Programmers, once you have some examples, you can start
implementing the code using normal test-driven
development. Don’t use the customer tests as a substitute for
writing your own tests. Although it’s possible to drive your
development with customer tests—in fact, this can feel quite
natural and productive—the tests don’t provide the fine-
grained support that TDD does. Over time, you’ll discover holes in your implementation
and regression suite. Instead, pick a business rule, implement it with TDD, then confirm
that the associated customer tests pass.

Focus on Business Rules
One of the most common mistakes in creating customer tests is describing what happens in the user
interface rather than providing examples of business rules. For example, to show that an account rep
must not delete a mailed invoice, you might make the mistake of writing this:

1. Log in as an account rep

2. Create new invoice

3. Enter data

4. Save invoice

5. Email invoice to customer

6. Check if invoice can be deleted (should be “no”)

What happened to the core idea? It’s too hard to see. Compare that to the previous approach:

Sent User OK to delete

Emailed Account Rep N

Good examples focus on the essence of your rules. Rather than imagining how those rules might work
in the application, just think about what the rules are. If you weren’t creating an application at all, how
would you describe those rules to a colleague? Talk about things rather than actions. Sometimes it helps
to think in terms of a template: “When (scenario X), then (scenario Y).”

It takes a bit of practice to think this way, but the results are worth it. The tests become more compact,
easier to maintain, and (when implemented correctly) faster to run.

Ask Customers to Lead
Team members, watch out for a common pitfall in customer
testing: no customers! Some teams have programmers and
testers do all the work of customer testing, and some teams
don’t involve their customers at all. In others, a customer is
present only as a mute observer. Don’t forget the “customer”
in “customer tests.” The purpose of these activities to bring the customer’s knowledge and perspective
to the team’s work. If programmers or testers take the reins, you’ve lost that benefit and missed the point.

In some cases, customers may not be willing to take the lead. Programmers and testers may be able to
solve this problem by asking the customers for their help. When programmers need domain expertise,

Don’t use customer tests as a
substitute for test-driven

development.

Ally

Test-Driven Development
(p. 285)

Remember the “customer” in
“customer tests.”

C U S T O M E R T E S T S 281

they can ask customers to join the team as they discuss examples. One particularly effective technique
is to ask for an explanation of a business rule, pretend to be confused, then hand a customer the
whiteboard marker and ask him to draw an example on the board.

NOTE
If customers won’t participate in customer testing at all, this may indicate a problem
with your relationship with the customers. Ask your mentor (see “Find a Mentor” in
Chapter 2) to help you troubleshoot the situation.

TESTERS’ ROLE
Testers play an important support role in customer testing. Although the customers should lead the effort, they
benefit from testers’ technical expertise and ability to imagine diverse scenarios. While customers should
generate the initial examples, testers should suggest scenarios that customers don’t think of.

On the other hand, testers should be careful not to try to cover every possible scenario. The goal of the exercise
is to help the team understand the customers’ perspective, not to exhaustively test the application.

Automating the Examples
Programmers may use any tool they like to turn the customers’ examples into automated tests. Ward
Cunningham’s Fit (Framework for Integrated Test),* is specifically designed for this purpose. It allows you
to use HTML to mix descriptions and tables, just as in my invoice auditing example, then runs the tables
through programmer-created fixtures to execute the tests.

NOTE
See http://fit.c2.com/ or [Mugridge & Cunningham] for details about using Fit. It’s
available in several languages, including Java, .NET, Python, Perl, and C++.

You may be interested in FitNesse at http://fitnesse.org/, a variant of Fit. FitNesse is a
complete IDE for Fit that uses a Wiki for editing and running tests. (Fit is a command-
line tool and works with anything that produces tables in HTML.)

Fit is a great tool for customer tests because it allows customers to review, run, and
even expand on their own tests. Although programmers have to write the fixtures,
customers can easily add to or modify existing tables to check an idea. Testers can also
modify the tests as an aid to exploratory testing. Because the tests are written in HTML,
they can use any HTML editor to modify the tests, including Microsoft Word.

Programmers, don’t make Fit too complicated. It’s a deceptively simple tool. Your fixtures should work
like unit tests, focusing on just a few domain objects. For example, the invoice auditing example would
use a custom ColumnFixture. Each column in the table corresponds to a variable or method in the fixture.
The code is almost trivial (see Example 9-1).

Ally

Exploratory Testing (p. 341)

* Available free at http://fit.c2.com/.

282 C H A P T E R 9 :   D E V E L O P I N G

http://fit.c2.com/
http://fitnesse.org/
http://fit.c2.com/

Example 9-1. Example fixture (C#)

 public class InvoiceAuditingFixture : ColumnFixture
 {
 public InvoiceStatus Sent;
 public UserRole User;

 public Permission OkayToDelete() {
 InvoiceAuditer auditer = new InvoiceAuditer(User, InvoiceStatus)
 return auditer.DeletePermission;
 }
 }

Using Fit in this way requires a ubiquitous language and good design. A dedicated
domain layer with Whole Value objects* works best. Without it, you may have to write
end-to-end tests, with all the challenges that entails. If you have trouble using Fit, talk
to your mentor about whether your design needs work.

NOTE
I often see programmers try to make a complete library of generic fixtures so that no
one need write another fixture. That misses the point of Fit, which is to segregate
customer-written examples from programmer implementation. If you make generic
fixtures, the implementation details will have to go into the tests, which will make
them too complicated and obscure the underlying examples.

Questions
When do programmers run the customer tests?

Once the tests are passing, make them a standard part of your
10-minute build. Like programmers’ tests, you should fix them immediately if they
ever break.

Should we expand the customer tests when we think of a new scenario?

Absolutely! Often, the tests will continue to pass. That’s good news; leave the new
scenario in place to act as documentation for future readers. If the new test doesn’t
pass, talk with the programmers about whether they can fix it with iteration slack or
whether you need a new story.

What about acceptance testing (also called functional testing)?

Automated acceptance tests tend to be brittle and slow. I’ve replaced acceptance tests
with customer reviews (see “Customer review” later in this chapter) and a variety of
other techniques (see “A Little Lie” in Chapter 3).

Ally

Ubiquitous Language (p.
124)

Most tests can be expressed with
a simple ColumnFixture or

RowFixture.

Ally

Ten-Minute Build (p. 177)

Ally

Slack (p. 246)

Ally

No Bugs (p. 160)

* See Domain-Driven Design [Evans] for a discussion of domain layers, and see http://c2.com/ppr/checks.html#1 [Cunningham] for
information about Whole Value.

C U S T O M E R T E S T S 283

http://c2.com/ppr/checks.html#1

Results
When you use customer tests well, you reduce the number of mistakes in your domain
logic. You discuss domain rules in concrete, unambiguous terms and often discover
special cases you hadn’t considered. The examples influence the design of the code and
help promote a ubiquitous language. When written well, the customer tests run quickly
and require no more maintenance than unit tests do.

Contraindications
Don’t use customer tests as a substitute for test-driven development. Customer tests
are a tool to help communicate challenging business rules, not a comprehensive
automated testing tool. In particular, Fit doesn’t work well as a test scripting tool—it
doesn’t have variables, loops, or subroutines. (Some people have attempted to add
these things to Fit, but it’s not pretty.) Real programming tools, such as xUnit or Watir,
are better for test scripting.

In addition, customer tests require domain experts. The real value of the process is the
conversation that explores and exposes the customers’ business requirements and
domain knowledge. If your customers are unavailable, those conversations won’t
happen.

Finally, because Fit tests are written in HTML, Fit carries more of a maintenance burden
than xUnit frameworks do. Automated refactorings won’t extend to your Fit tests. To keep your
maintenance costs down, avoid creating customer tests for every business rule. Focus on the tests that
will help improve programmer understanding, and avoid further maintenance costs by refactoring your
customer tests regularly. Similar stories will have similar tests: consolidate your tests whenever you
have the opportunity.

Alternatives
Some teams have testers, not customers, write customer tests. Although this introduces another barrier
between the customers’ knowledge and the programmers’ code, I have seen it succeed. It may be your
best choice when customers aren’t readily available.

Customer tests don’t have to use Fit or FitNesse. Theoretically, you can write them in any testing tool,
including xUnit, although I haven’t seen anybody do this.

Further Reading
Fit for Developing Software [Mugridge & Cunningham] is the definitive reference for Fit.

“Agile Requirements” [Shore 2005a], online at http://www.jamesshore.com/Blog/Agile-Requirements.html,
is a series of essays about agile requirements, customer testing, and Fit.

Ally

Ubiquitous Language (p.
124)

Ally

Test-Driven Development
(p. 285)

Allies

The Whole Team (p. 28)
Sit Together (p. 112)

284 C H A P T E R 9 :   D E V E L O P I N G

http://www.jamesshore.com/Blog/Agile-Requirements.html

Test-Driven Development
We produce well-designed, well-tested, and well-factored code in
small, verifiable steps.

“What programming languages really need is a ‘DWIM’ instruction,” the joke goes. “Do what I mean,
not what I say.”

Programming is demanding. It requires perfection, consistently, for months and years of effort. At best,
mistakes lead to code that won’t compile. At worst, they lead to bugs that lie in wait and pounce at the
moment that does the most damage.

People aren’t so good at perfection. No wonder, then, that software is buggy.

Wouldn’t it be cool if there were a tool that alerted you to programming mistakes moments after you
made them—a tool so powerful that it virtually eliminated the need for debugging?

There is such a tool, or rather, a technique. It’s test-driven development, and it actually delivers these
results.

Test-driven development, or TDD, is a rapid cycle of testing, coding, and refactoring. When adding a feature,
a pair may perform dozens of these cycles, implementing and refining the software in baby steps until
there is nothing left to add and nothing left to take away. Research shows that TDD substantially reduces
the incidence of defects [Janzen & Saiedian]. When used properly, it also helps improve your design,
documents your public interfaces, and guards against future mistakes.

TDD isn’t perfect, of course. (Is anything?) TDD is difficult to use on legacy codebases. Even with
greenfield systems, it takes a few months of steady use to overcome the learning curve. Try it anyway—
although TDD benefits from other XP practices, it doesn’t require them. You can use it on almost any
project.

Why TDD Works
Back in the days of punch cards, programmers laboriously hand-checked their code to make sure it
would compile. A compile error could lead to failed batch jobs and intense debugging sessions to look
for the misplaced character.

Getting code to compile isn’t such a big deal anymore. Most IDEs check your syntax as you type, and
some even compile every time you save. The feedback loop is so fast that errors are easy to find and fix.
If something doesn’t compile, there isn’t much code to check.

Test-driven development applies the same principle to programmer intent. Just as modern compilers
provide more feedback on the syntax of your code, TDD cranks up the feedback on the execution of
your code. Every few minutes—as often as every 20 or 30 seconds—TDD verifies that the code does what
you think it should do. If something goes wrong, there are only a few lines of code to check. Mistakes
are easy to find and fix.

TDD uses an approach similar to double-entry bookkeeping. You communicate your intentions twice,
stating the same idea in different ways: first with a test, then with production code. When they match,
it’s likely they were both coded correctly. If they don’t, there’s a mistake somewhere.

Audience

Programmers

T E S T - D R I V E N D E V E L O P M E N T 285

NOTE
It’s theoretically possible for the test and code to both be wrong in exactly the same
way, thereby making it seem like everything’s OK when it’s not. In practice, unless
you cut-and-paste between the test and production code, this is so rare it’s not worth
worrying about.

In TDD, the tests are written from the perspective of a class’ public interface. They focus on the class’
behavior, not its implementation. Programmers write each test before the corresponding production code.
This focuses their attention on creating interfaces that are easy to use rather than easy to implement,
which improves the design of the interface.

After TDD is finished, the tests remain. They’re checked in with the rest of the code, and they act as
living documentation of the code. More importantly, programmers run all the tests with (nearly) every
build, ensuring that code continues to work as originally intended. If someone accidentally changes the
code’s behavior—for example, with a misguided refactoring—the tests fail, signalling the mistake.

How to Use TDD
You can start using TDD today. It’s one of those things that takes moments to learn and a lifetime to
master.

NOTE
The basic steps of TDD are easy to learn, but the mindset takes a while to sink in. Until
it does, TDD will likely seem clumsy, slow, and awkward. Give yourself two or three
months of full-time TDD use to adjust.

Imagine TDD as a small, fast-spinning motor. It operates in a
very short cycle that repeats over and over again. Every few
minutes, this cycle ratchets your code forward a notch,
providing code that—although it may not be finished—has
been tested, designed, coded, and is ready to check in.

To use TDD, follow the “red, green, refactor” cycle illustrated
in Figure 9-1. With experience, unless you’re doing a lot of
refactoring, each cycle will take fewer than five minutes. Repeat the cycle until your work is finished.
You can stop and integrate whenever all your tests pass, which should be every few minutes.

Step 1: Think

TDD uses small tests to force you to write your code—you only write enough code to make the tests
pass. The XP saying is, “Don’t write any production code unless you have a failing test.”

Your first step, therefore, is to engage in a rather odd thought process. Imagine what behavior you want
your code to have, then think of a small increment that will require fewer than five lines of code. Next,
think of a test—also a few lines of code—that will fail unless that behavior is present.

In other words, think of a test that will force you to add the next few lines of production code. This is
the hardest part of TDD because the concept of tests driving your code seems backward, and because it
can be difficult to think in small increments.

Every few minutes, TDD
provides proven code that has

been tested, designed, and
coded.

286 C H A P T E R 9 :   D E V E L O P I N G

Pair programming helps. While the driver tries to make the current test pass, the
navigator should stay a few steps ahead, thinking of tests that will drive the code to the
next increment.

Step 2: Red bar

Now write the test. Write only enough code for the current increment of behavior—typically fewer than
five lines of code. If it takes more, that’s OK, just try for a smaller increment next time.

Code in terms of the class’ behavior and its public interface, not how you think you will implement the
internals of the class. Respect encapsulation. In the first few tests, this often means you write your test
to use method and class names that don’t exist yet. This is intentional—it forces you to design your class’
interface from the perspective of a user of the class, not as its implementer.

After the test is coded, run your entire suite of tests and watch the new test fail. In most TDD testing
tools, this will result in a red progress bar.

This is your first opportunity to compare your intent with what’s actually happening. If the test
doesn’t fail, or if it fails in a different way than you expected, something is wrong. Perhaps your test is
broken, or it doesn’t test what you thought it did. Troubleshoot the problem; you should always be able
to predict what’s happening with the code.

NOTE
It’s just as important to troubleshoot unexpected successes as it is to troubleshoot
unexpected failures. Your goal isn’t merely to have tests that work; it’s to remain in
control of your code—to always know what the code is doing and why.

Step 3: Green bar

Next, write just enough production code to get the test to pass. Again, you should usually need less than
five lines of code. Don’t worry about design purity or conceptual elegance—just do what you need to
do to make the test pass. Sometimes you can just hardcode the answer. This is OK because you’ll be
refactoring in a moment.

Ally

Pair Programming (p. 71)

Think

Red bar

Green bar

Refactor

Figure 9-1. The TDD cycle

T E S T - D R I V E N D E V E L O P M E N T 287

Run your tests again, and watch all the tests pass. This will
result in a green progress bar.

This is your second opportunity to compare your intent with
reality. If the test fails, get back to known-good code as
quickly as you can. Often, you or your pairing partner can
see the problem by taking a second look at the code you just
wrote. If you can’t see the problem, consider erasing the new code and trying again. Sometimes it’s best
to delete the new test (it’s only a few lines of code, after all) and start the cycle over with a smaller
increment.

NOTE
Remaining in control is key. It’s OK to back up a few steps if that puts you back in
control of your code. If you can’t bring yourself to revert right away, set a 5- or 10-
minute timer. Make a deal with your pairing partner that you’ll revert to known-good
code if you haven’t solved the problem when the timer goes off.

Step 4: Refactor

With all your tests passing again, you can now refactor without worrying about
breaking anything. Review the code and look for possible improvements. Ask your
navigator if he’s made any notes.

For each problem you see, refactor the code to fix it. Work in a series of very small
refactorings—a minute or two each, certainly not longer than five minutes—and run the tests after each
one. They should always pass. As before, if the test doesn’t pass and the answer isn’t immediately
obvious, undo the refactoring and get back to known-good code.

Refactor as many times as you like. Make your design as good as you can, but limit it to the code’s
existing behavior. Don’t anticipate future needs, and certainly don’t add new behavior. Remember,
refactorings aren’t supposed to change behavior. New behavior requires a failing test.

Step 5: Repeat

When you’re ready to add new behavior, start the cycle over again.

Each time you finish the TDD cycle, you add a tiny bit of well-
tested, well-designed code. The key to success with TDD is
small increments. Typically, you’ll run through several cycles
very quickly, then spend more time on refactoring for a cycle
or two, then speed up again.

With practice, you can finish more than 20 cycles in an hour. Don’t focus too much on how fast you
go, though. That might tempt you to skip refactoring and design, which are too important to skip.
Instead, take very small steps, run the tests frequently, and minimize the time you spend with a red bar.

A TDD Example
I recently recorded how I used TDD to solve a sample problem. The increments are very small—they
may even seem ridiculously small—but this makes finding mistakes easy, and that helps me go faster.

When your tests fail and you
can’t figure out why, revert to

known-good code.

Ally

Refactoring (p. 303)

The key to TDD is small
increments.

288 C H A P T E R 9 :   D E V E L O P I N G

NOTE
Programmers new to TDD are often surprised at how small each increment can be.
Although you might think that only beginners need to work in small steps, my
experience is the reverse: the more TDD experience you have, the smaller steps you
take and the faster you go.

As you read, keep in mind that it takes far longer to explain an example like this than to program it. I
completed each step in a matter of seconds.

The task

Imagine you need to program a Java class to parse an HTTP query string.* You’ve decided to use TDD
to do so.

One name/value pair

Step 1: Think. The first step is to imagine the features you want the code to have. My first thought was,
“I need my class to separate name/value pairs into a HashMap.” Unfortunately, this would take more than
five lines to code, so I needed to think of a smaller increment.

Often, the best way to make the increments smaller is to start with seemingly trivial cases. “I need my
class to put one name/value pair into a HashMap,” I thought, which sounded like it would do the trick.

Step 2: Red Bar. The next step is to write the test. Remember, this is partially an exercise in interface
design. In this example, my first temptation was to call the class QueryStringParser, but that’s not very
object-oriented. I settled on QueryString.

As I wrote the test, I realized that a class named QueryString wouldn’t return a HashMap; it would
encapsulate the HashMap. It would provide a method such as valueFor(name) to access the name/value pairs.

NOTE
Note that thinking about the test forced me to figure out how I wanted to design my
code.

Building that seemed like it would require too much code for one increment, so I decided to have this
test to drive the creation of a count() method instead. I decided that the count() method would return
the total number of name/value pairs. My test checked that it would work when there was just one pair.

 public void testOneNameValuePair() {
 QueryString qs = new QueryString("name=value");
 assertEquals(1, qs.count());
 }

The code didn’t compile, so I wrote a do-nothing QueryString class and count() method.

 public class QueryString {
 public QueryString(String queryString) {}
 public int count() { return 0; }
 }

That gave me the red bar I expected.

* Pretend you’re in an alternate reality without a gazillion libraries that already do this.

T E S T - D R I V E N D E V E L O P M E N T 289

Step 3: Green Bar. To make this test pass, I hardcoded the right answer. I could have programmed a better
solution, but I wasn’t sure how I wanted the code to work. Would it count the number of equals signs?
Not all query strings have equals signs. I decided to punt.

 public int count() { return 1; }

Green bar.

NOTE
Note that although I had ideas about how I would finish writing this class, I didn’t
commit myself to any particular course of action in advance. I remained open to
discovering new approaches as I worked.

Step 4: Refactor. I didn’t like the QueryString name, but I had another test in mind and I was eager to get
to it. I made a note to fix the name on an index card—perhaps HttpQuery would be better. I’d see how
I felt next time through the cycle.

Step 5: Repeat. Yup.

An empty string

Think. I wanted to force myself to get rid of that hardcoded return 1, but I didn’t want to have to deal
with multiple query strings yet. My next increment would probably be about the valueFor() method,
and I wanted to avoid the complexity of multiple queries. I decided that testing an empty string would
require me to code count() properly without making future increments too difficult.

Red Bar. New test.

 public void testNoNameValuePairs() {
 QueryString qs = new QueryString("");
 assertEquals(0, qs.count());
 }

Red bar. Expected: <0> but was: <1>. No surprise there.

This inspired two thoughts. First, that I should test the case of a null argument to the QueryString
constructor. Second, because I was starting to see duplication in my tests, I should refactor that. I added
both notes to my index card.

290 C H A P T E R 9 :   D E V E L O P I N G

Green bar. Now I had to stop and think. What was the fastest way for me to get back to a green bar? I
decided to check if the query string was blank.

 public class QueryString {
 private String _query

 public QueryString(string queryString) {
 _query = queryString;
 }

 public int count() {
 if ("".equals(_query)) return 0;
 else return 1;
 }
 }

Refactor. I double-checked my to-do list . I needed to refactor the tests, but I decided to wait for another
test to demonstrate the need. “Three strikes and you refactor,” as the saying goes.

It was time to do the cycle again.

testNull()

Think. My list included testNull(), which meant I needed to test the case when the query string is null.
I decided to put that in.

Red Bar. This test forced me to think about what behavior I wanted when the value was null. I’ve always
been a fan of code that fails fast, so I decided that a null value was illegal. This meant the code should
throw an exception telling callers not to use null values. (“Simple Design,” later in this chapter, discusses
failing fast in detail.)

 public void testNull() {
 try {
 QueryString qs = new QueryString(null)
 fail("Should throw exception");
 }
 catch (NullPointerException e) {
 // expected
 }
 }

Green Bar. Piece of cake.

 public QueryString(String queryString) {
 if (queryString == null) throw new NullPointerException();

 _query = queryString;
 }

T E S T - D R I V E N D E V E L O P M E N T 291

Refactor. I still needed to refactor my tests, but the new test didn’t have enough in common with the old
tests to make me feel it was necessary. The production code looked OK, too, and there wasn’t anything
significant on my index card. No refactorings this time.

NOTE
Although I don’t refactor on every cycle, I always stop and seriously consider whether
my design needs refactoring.

valueFor()

Think. OK, now what? The easy tests were done. I decided to put some meat on the class and implement
the valueFor() method. Given a name of a name/value pair in the query string, this method would return
the associated value.

As I thought about this test, I realized I also needed a test to show what happens when the name doesn’t
exist. I wrote that on my index card for later.

Red Bar. To make the tests fail, I added a new assertion at the end of my existing
testOneNameValuePair() test.

 public void testOneNameValuePair() {
 QueryString qs = new QueryString("name=value");
 assertEquals(1, qs.count());
 assertEquals("value", qs.valueFor("name"));
 }

Green Bar. This test made me think for a moment. Could the split() method work? I thought it would.

 public String valueFor(String name) {
 String[] nameAndValue = _query.split("=");
 return nameAndValue[1];
 }

This code passed the tests, but it was incomplete. What if there was more than one equals sign, or no
equals signs? It needed proper error handling. I made a note to add tests for those scenarios.

Refactor. The names were bugging me. I decided that QueryString was OK, if not perfect. The qs in the
tests was sloppy, so I renamed it query.

292 C H A P T E R 9 :   D E V E L O P I N G

Multiple name/value pairs

Think. I had a note reminding me to take care of error handling in valueFor(), but I wanted to tackle
something more meaty. I decided to add a test for multiple name/value pairs.

Red Bar. When dealing with a variable number of items, I usually test the case of zero items, one item,
and three items. I had already tested zero and one, so now I tested three.

 public void testMultipleNameValuePairs() {
 QueryString query = new QueryString("name1=value1&name2=value2&name3=value3");
 assertEquals("value1", query.valueFor("name1"));
 assertEquals("value2", query.valueFor("name2"));
 assertEquals("value3", query.valueFor("name3"));
 }

I could have written an assertion for count() rather than valueFor(), but the real substance was in the
valueFor() method. I made a note to test count() next.

Green Bar. My initial thought was that the split() technique would work again.

 public String valueFor(String name) {
 String[] pairs = _query.split("&");
 for (String pair : pairs) {
 String[] nameAndValue = pair.split("=");
 if (nameAndValue[0].equals(name)) return nameAndValue[1];
 }
 throw new RuntimeException(name + " not found");
 }

Ewww... that felt like a hack. But the test passed!

NOTE
It’s better to get to a green bar quickly than to try for perfect code. A green bar keeps
you in control of your code and allows you to experiment with refactorings that clean
up your hack.

Refactor: The additions to valueFor() felt hackish. I took a second look. The two issues that bothered me
the most were the nameAndValue array and the RuntimeException. An attempt to refactor nameAndValue led
to worse code, so I backed out the refactoring and decided to leave it alone for another cycle.

The RuntimeException was worse; it’s better to throw a custom exception. In this case, though, the Java
convention is to return null rather than throw an exception. I already had a note that I should test the
case where name isn’t found; I revised it to say that the correct behavior was to return null.

Reviewing further, I saw that my duplicated test logic had reached three duplications. Time to refactor—
or so I thought. After a second look, I realized that the only duplication between the tests was that I

T E S T - D R I V E N D E V E L O P M E N T 293

was constructing a QueryString object each time. Everything else was different, including QueryString’s
constructor parameters. The tests didn’t need refactoring after all. I scratched that note off my list.

In fact, the code was looking pretty good... better than I initially thought, at least. I’m too hard on myself.

Multiple count()

Think. After reviewing my notes, I realized I should probably test degenerate uses of the ampersand,
such as two ampersands in a row. I made a note to add tests for that. At the time, though, I wanted to
get the count() method working properly with multiple name/value pairs.

Red Bar. I added the count() assertion to my test. It failed as expected.

 public void testMultipleNameValuePairs() {
 QueryString query = new QueryString("name1=value1&name2=value2&name3=value3");
 assertEquals(3, query.count());
 assertEquals("value1", query.valueFor("name1"));
 assertEquals("value2", query.valueFor("name2"));
 assertEquals("value3", query.valueFor("name3"));
 }

Green Bar. To get this test to pass, I stole my existing code from valueFor() and modified it. This was
blatant duplication, but I planned to refactor as soon as I saw the green bar.

 public int count() {
 String[] pairs = _query.split("&");
 return pairs.length;
 }

I was able to delete more of the copied code than I expected. To my surprise, however, it didn’t pass!
The test failed in the case of an empty query string: expected: <0> but was: <1>. I had forgotten that
split() returned the original string when the split character isn’t found. My code expected it to return
an empty array when no split occurred.

I added a guard clause that took care of the problem. It felt like a hack, so I planned to take a closer look
after the tests passed.

 public int count() {
 if ("".equals(_query)) return 0;
 String[] pairs = _query.split("&");
 return pairs.length;
 }

Refactor. This time I definitely needed to refactor. The duplication between count() and valueFor() wasn’t
too strong—it was just one line—but they both parsed the query string, which was a duplication of
function if not code. I decided to fix it.

294 C H A P T E R 9 :   D E V E L O P I N G

At first, I wasn’t sure how to fix the problem. I decided to try to parse the query string into a HashMap,
as I had originally considered. To keep the refactoring small, I left count() alone at first and just modified
valueFor(). It was a small change.

 public String valueFor(String name) {
 HashMap<String, String> map = new HashMap<String, String>();

 String[] pairs = _query.split("&");
 for (String pair : pairs) {
 String[] nameAndValue = pair.split("=");
 map.put(nameAndValue[0], nameAndValue[1]);
 }
 return map.get(name);
 }

NOTE
This refactoring eliminated the exception that I threw when name wasn’t found.
Technically, it changed the behavior of the program. However, because I hadn’t yet
written a test for that behavior, I didn’t care. I made sure I had a note to test that case
later (I did) and kept going.

This code parsed the query string during every call to valueFor(), which wasn’t a great idea. I had kept
the code in valueFor() to keep the refactoring simple. Now I wanted to move it out of valueFor() into
the constructor. This required a sequence of refactorings, as described in “Refactoring,” later in this
chapter.

I reran the tests after each of these refactorings to make sure that I hadn’t broken anything... and in
fact, one refactoring did break the tests. When I called the parser from the constructor,
testNoNameValuePairs()—the empty query test—bit me again, causing an exception in the parser. I added
a guard clause as before, which solved the problem.

After all that refactoring, the tests and production code were nice and clean.

 public class QueryStringTest extends TestCase {
 public void testOneNameValuePair() {
 QueryString query = new QueryString("name=value");
 assertEquals(1, query.count());
 assertEquals("value", query.valueFor("name"));
 }

 public void testMultipleNameValuePairs() {
 QueryString query = new QueryString("name1=value1&name2=value2&name3=value3");
 assertEquals(3, query.count());
 assertEquals("value1", query.valueFor("name1"));
 assertEquals("value2", query.valueFor("name2"));
 assertEquals("value3", query.valueFor("name3"));
 }

 public void testNoNameValuePairs() {
 QueryString query = new QueryString("");
 assertEquals(0, query.count());
 }

 public void testNull() {
 try {
 QueryString query = new QueryString(null);
 fail("Should throw exception");
 }

T E S T - D R I V E N D E V E L O P M E N T 295

 catch (NullPointerException e) {
 // expected
 }
 }
 }

 public class QueryString {
 private HashMap<String, String> _map = new HashMap<String, String>();

 public QueryString(String queryString) {
 if (queryString == null) throw new NullPointerException();
 parseQueryString(queryString);
 }

 public int count() {
 return _map.size();
 }

 public String valueFor(String name) {
 return _map.get(name);
 }

 private void parseQueryString(String query) {
 if ("".equals(query)) return;

 String[] pairs = query.split("&");
 for (String pair : pairs) {
 String[] nameAndValue = pair.split("=");
 _map.put(nameAndValue[0], nameAndValue[1]);
 }
 }
 }

Your turn

The class wasn’t done—it still needed to handle degenerate uses of the equals and ampersand signs, and
it didn’t fully implement the query string specification yet, either.* In the interest of space, though, I
leave the remaining behavior as an exercise for you to complete yourself. As you try it, remember to
take very small steps and to check for refactorings every time through the cycle.

Testing Tools
To use TDD, you need a testing framework. The most popular are the open source xUnit tools, such as
JUnit (for Java) and NUnit (for .NET). Although these tools have different authors, they typically share
the basic philosophy of Kent Beck’s pioneering SUnit.

* For example, the semicolon works like the ampersand in query strings.

296 C H A P T E R 9 :   D E V E L O P I N G

NOTE
Instructions for specific tools are out of the scope of this book. Introductory guides for
each tool are easily found online.

If your platform doesn’t have an xUnit tool, you can build your own. Although the existing tools often
provide GUIs and other fancy features, none of that is necessary. All you need is a way to run all your
test methods as a single suite, a few assert methods, and an unambiguous pass or fail result when the
test suite is done.

Speed Matters
As with programming itself, TDD has myriad nuances to master. The good news is that the basic steps
alone—red, green, refactor—will lead to very good results. Over time, you’ll fine-tune your approach.

One of the nuances of TDD is test speed—not the frequency of each increment, which is also important,
but how long it takes to run all the tests. In TDD, you run the tests as often as one or two times every
minute. They must be fast. If they aren’t, they’ll be a distraction rather than a help. You won’t run them
as frequently, which reduces the primary benefit of TDD: micro-increments of proof.

[Nielsen] reports that users lose interest and switch tasks when the computer makes them wait more
than 10 seconds. Computers only seem “fast” when they make users wait less than a second.

Although Nielsen’s research explored the area of user
interface design, I’ve found it to be true when running tests
as well. If they take more than 10 seconds, I’m tempted to
check my email, surf the Web, or otherwise distract myself.
Then it takes several minutes for me to get back to work. To
avoid this delay, make sure your tests take under 10 seconds to run. Less than a second is even better.

An easy way to keep your test times down is to run a subset of tests during the TDD cycle. Periodically
run the whole test suite to make sure you haven’t accidentally broken something, particularly before
integrating and during refactorings that affect multiple classes.

Running a subset does incur the risk that you’ll make a mistake without realizing it, which leads to
annoying debugging problems later. Advanced practitioners design their tests to run quickly. This
requires that they make trade-offs between three basic types of automated tests:

• Unit tests, which run at a rate of hundreds per second

• Focused integration tests, which run at a rate of a handful per second

• End-to-end tests, which often require seconds per test

The vast majority of your tests should be unit tests. A small fraction should be integration tests, and
only a few should be end-to-end tests.

Unit Tests
Unit tests focus just on the class or method at hand. They run entirely in memory, which makes them
very fast. Depending on your platform, your testing tool should be able to run at least 100 unit tests per
second.

[Feathers] provides an excellent definition of a unit test:

Make sure your tests take under
10 seconds to run.

T E S T - D R I V E N D E V E L O P M E N T 297

Unit tests run fast. If they don’t run fast, they aren’t unit tests.

Other kinds of tests often masquerade as unit tests. A test is not a unit test if:

1. It talks to a database

2. It communicates across a network

3. It touches the file system

4. You have to do special things to your environment (such as editing configuration files) to
run it

Tests that do these things are integration tests, not unit tests.

Creating unit tests requires good design.A highly coupled system—a big ball of mud, or spaghetti software—
makes it difficult to write unit tests. If you have trouble doing this, or if Feathers’ definition seems
impossibly idealistic, it’s a sign of problems in your design. Look for ways to decouple your code so that
each class, or set of related classes, may be tested in isolation. See “Simple Design” later in this chapter
for ideas, and consider asking your mentor for help.

MOCK OBJECTS
Mock objects are a popular tool for isolating classes for unit testing. When using mock objects, your test
substitutes its own object (the “mock object”) for an object that talks to the outside world. The mock object
checks that it is called correctly and provides a pre-scripted response. In doing so, it avoids time-consuming
communication to a database, network socket, or other outside entity.

Beware of mock objects. They add complexity and tie your test to the implementation of your code. When
you’re tempted to use a mock object, ask yourself if there’s a way you could improve the design of your code
so that a mock object isn’t necessary. Can you decouple your code from the external dependency more cleanly?
Can you provide the data it needs—in the constructor, perhaps—rather than having it get the data itself?

Mock objects are a useful technique, and sometimes they’re the best way to test your code. Before you assume
that a mock object is appropriate for your situation, however, take a second look at your design. You might
have an opportunity for improvement.

Focused Integration Tests
Unit tests aren’t enough. At some point, your code has to talk to the outside world. You can use TDD
for that code, too.

A test that causes your code to talk to a database, communicate across the network, touch the file system,
or otherwise leave the bounds of its own process is an integration test. The best integration tests are focused
integration tests, which test just one interaction with the outside world.

NOTE
You may think of an integration test as a test that checks that the whole system fits
together properly. I call that kind of test an end-to-end test.

298 C H A P T E R 9 :   D E V E L O P I N G

One of the challenges of using integration tests is the need to prepare the external dependency to be
tested. Tests should run exactly the same way every time, regardless of which order you run them in
or the state of the machine prior to running them. This is easy with unit tests but harder with integration
tests. If you’re testing your ability to select data from a database table, that data needs to be in the
database.

Make sure each integration test can run entirely on its own.
It should set up the environment it needs and then restore
the previous environment afterwards. Be sure to do so even
if the test fails or an exception is thrown. Nothing is more
frustrating than a test suite that intermittently fails.
Integration tests that don’t set up and tear down their test environment properly are common culprits.

NOTE
If you have a test that fails intermittently, don’t ignore it, even if you can “fix” the
failure by running the tests twice in a row. Intermittent failures are an example of
technical debt. They make your tests more frustrating to run and disguise real failures.

You shouldn’t need many integration tests. The best integration tests have a narrow focus; each checks
just one aspect of your program’s ability to talk to the outside world. The number of focused integration
tests in your test suite should be proportional to the types of external interactions your program has,
not the overall size of the program. (In contrast, the number of unit tests you have is proportional to
the overall size of the program.)

If you need a lot of integration tests, it’s a sign of design problems. It may mean that the code that talks
to the outside world isn’t cohesive. For example, if all your business objects talk directly to a database,
you’ll need integration tests for each one. A better design would be to have just one class that talks to
the database. The business objects would talk to that class.* In this scenario, only the database class
would need integration tests. The business objects could use ordinary unit tests.

End-to-End Tests
In a perfect world, the unit tests and focused integration tests mesh perfectly to give you total confidence
in your tests and code. You should be able to make any changes you want without fear, comfortable in
the knowledge that if you make a mistake, your tests will catch them.

How can you be sure your unit tests and integration tests mesh perfectly? One way is to write end-to-
end tests. End-to-end tests exercise large swaths of the system, starting at (or just behind) the user
interface, passing through the business layer, touching the database, and returning. Acceptance tests
and functional tests are common examples of end-to-end tests. Some people also call them integration
tests, although I reserve that term for focused integration tests.

End-to-end tests can give you more confidence in your code, but they suffer from many problems.
They’re difficult to create because they require error-prone and labor-intensive setup and teardown
procedures. They’re brittle and tend to break whenever any part of the system or its setup data changes.
They’re very slow—they run in seconds or even minutes per test, rather than multiple tests per second.
They provide a false sense of security, by exercising so many branches in the code that it’s difficult to
say which parts of the code are actually covered.

Make sure each test is isolated
from the others.

* A still better design might involve a persistence layer.

T E S T - D R I V E N D E V E L O P M E N T 299

Instead of end-to-end tests, use exploratory testing to check the effectiveness of your
unit and integration tests. When your exploratory tests find a problem, use that
information to improve your approach to unit and integration testing, rather than
introducing end-to-end tests.

NOTE
Don’t use exploratory testing to find bugs; use it to determine if your unit tests and
integration tests mesh properly. When you find an issue, improve your TDD strategy.

In some cases, limitations in your design may prevent unit and integration tests from testing your code
sufficiently. This often happens when you have legacy code. In that case, end-to-end tests are a necessary
evil. Think of them as technical debt: strive to make them unecessary, and replace them with unit and
integration tests whenever you have the opportunity.

TDD and Legacy Code
[Feathers] says legacy code is “code without tests.” I think of it as “code you’re afraid to change.” This is
usually the same thing.

The challenge of legacy code is that, because it was created without tests, it usually isn’t designed for
testability. In order to introduce tests, you need to change the code. In order to change the code with
confidence, you need to introduce tests. It’s this kind of chicken-and-egg problem that makes legacy
code so difficult to work with.

To make matters worse, legacy code has often accumulated a lot of technical debt. (It’s hard to remove
technical debt when you’re afraid to change existing code.) You may have trouble understanding how
everything fits together. Methods and functions may have side effects that aren’t apparent.

One way to approach this problem is to introduce end-to-end smoke tests. These tests exercise common
usage scenarios involving the component you want to change. They aren’t sufficient to give you total
confidence in your changes, but they at least alert you when you make a big mistake.

With the smoke tests in place, you can start introducing unit tests. The challenge here is finding isolated
components to test, as legacy code is often tightly coupled code. Instead, look for ways for your test to
strategically interrupt program execution. [Feathers] calls these opportunities seams. For example, in an
object-oriented language, if a method has a dependency you want to avoid, your test can call a test-
specific subclass that overrides and stubs out the offending method.

Finding and exploiting seams often leads to ugly code. It’s a case of temporarily making the code worse
so you can then make it better. Once you’ve introduced tests, refactor the code to make it test-friendly,
then improve your tests so they aren’t so ugly. Then you can proceed with normal TDD.

Adding tests to legacy code is a complex subject that deserves its own book. Fortunately, [Feathers]’
Working Effectively with Legacy Code is exactly that book.

Ally

Exploratory Testing (p. 341)

300 C H A P T E R 9 :   D E V E L O P I N G

Questions
What do I need to test when using TDD?

The saying is, “Test everything that can possibly break.” To determine if something could possibly break,
I think, “Do I have absolute confidence that I’m doing this correctly, and that nobody in the future will
inadvertently break this code?”

I’ve learned through painful experience that I can break nearly anything, so I test nearly everything.
The only exception is code without any logic, such as simple accessors and mutators (getters and setters),
or a method that only calls another method.

You don’t need to test third-party code unless you have some reason to distrust it.

How do I test private methods?

As I did in my extended QueryString example, start by testing public methods. As you refactor, some of
that code will move into private methods, but the existing tests will still thoroughly test its behavior.

If your code is so complex that you need to test a private method directly, this may be a sign that you
should refactor. You may benefit from moving the private methods into their own class and providing
a public interface. The “Replace Method with Method Object” refactoring [Fowler 1999] (p. 135) may
help.

How can I use TDD when developing a user interface?

TDD is particularly difficult with user interfaces because most UI frameworks weren’t designed with
testability in mind. Many people compromise by writing a very thin, untested translation layer that only
forwards UI calls to a presentation layer. They keep all their UI logic in the presentation layer and use
TDD on that layer as normal.

There are some tools that allow you to test a UI directly, perhaps by making HTTP calls (for web-based
software), or by pressing buttons or simulating window events (for client-based software). These are
essentially integration tests, and they suffer similar speed and maintainability challenges as other
integration tests. Despite the challenges, these tools can be helpful.

You talked about refactoring your test code. Does anyone really do this?

Yes. I do, and everybody should. Tests are just code. The normal rules of good development apply: avoid
duplication, choose good names, factor, and design well.

I’ve seen otherwise-fine projects go off the rails because of brittle and fragile test suites. By making TDD
a central facet of development, you’ve committed to maintaining your test code just as much as you’ve
committed to maintaining the rest of the code. Take it just as seriously.

Results
When you use TDD properly, you find that you spend little time debugging. Although you continue to
make mistakes, you find those mistakes very quickly and have little difficulty fixing them. You have
total confidence that the whole codebase is well-tested, which allows you to aggressively refactor at
every opportunity, confident in the knowledge that the tests will catch any mistakes.

T E S T - D R I V E N D E V E L O P M E N T 301

Contraindications
Although TDD is a very valuable tool, it does have a two- or three-month learning curve. It’s easy to
apply to toy problems such as the QueryString example, but translating that experience to larger systems
takes time. Legacy code, proper unit test isolation, and integration tests are particularly difficult to
master. On the other hand, the sooner you start using TDD, the sooner you’ll figure it out, so don’t let
these challenges stop you.

Be careful when applying TDD without permission. Learning TDD could slow you down temporarily.
This could backfire and cause your organization to reject TDD without proper consideration. I’ve found
that combining testing time with development time when providing estimates helps alleviate pushback
for dedicated developer testing.

Also be cautious about being the only one to use TDD on your team. You may find that your teammates
break your tests and don’t fix them. It’s better to get the whole team to agree to try it together.

Alternatives
TDD is the heart of XP’s programming pratices. Without it, all of XP’s other technical practices will be
much harder to use.

A common misinterpretation of TDD is to design your entire class first, then write all its test methods,
then write the code. This approach is frustrating and slow, and it doesn’t allow you to learn as you go.

Another misguided approach is to write your tests after you write your production code. This is very
difficult to do well—production code must be designed for testability, and it’s hard to do so unless you
write the tests first. It doesn’t help that writing tests after the fact is boring. In practice, the temptation
to move on to the next task usually overwhelms the desire for well-tested code.

Although you can use these alternatives to introduce tests to your code, TDD isn’t just about testing.
It’s really about using very small increments to produce high-quality, known-good code. I’m not aware
of any alternatives that provide TDD’s ability to catch and fix mistakes quickly.

Further Reading
Test-driven development is one of the most heavily explored aspects of Extreme Programming. There
are several excellent books on various aspects of TDD. Most are focused on Java and JUnit, but their
ideas are applicable to other languages as well.

Test-Driven Development: By Example [Beck 2002] is a good introduction to TDD. If you liked the
QueryString example, you’ll like the extended examples in this book. The TDD patterns in Part III are
particularly good.

Test-Driven Development: A Practical Guide [Astels] provides a larger example that covers a complete project.
Reviewers praise its inclusion of UI testing.

JUnit Recipes [Rainsberger] is a comprehensive book discussing a wide variety of testing problems,
including a thorough discussion of testing J2EE.

Working Effectively with Legacy Code [Feathers] is a must-have for anybody working with legacy code.

302 C H A P T E R 9 :   D E V E L O P I N G

Refactoring
Every day, our code is slightly better than it was the day before.

Entropy always wins. Eventually, chaos turns your beautifully
imagined and well-designed code into a big mess of spaghetti.

At least, that’s the way it used to be, before refactoring. Refactoring is the process of changing the design
of your code without changing its behavior—what it does stays the same, but how it does it changes.
Refactorings are also reversible; sometimes one form is better than another for certain cases. Just as you
can change the expression x2 - 1 to (x + 1)(x - 1) and back, you can change the design of your code—
and once you can do that, you can keep entropy at bay.

Reflective Design
Refactoring enables an approach to design I call reflective design. In addition to creating a design and
coding it, you can now analyze the design of existing code and improve it. One of the best ways to
identify improvements is with code smells: condensed nuggets of wisdom that help you identify common
problems in design.

A code smell doesn’t necessarily mean there’s a problem with the design. It’s like a funky smell in the
kitchen: it could indicate that it’s time to take out the garbage, or it could just mean that Uncle Gabriel
is cooking with a particularly pungent cheese. Either way, when you smell something funny, take a
closer look.

[Fowler 1999], writing with Kent Beck, has an excellent discussion of code smells. It’s well worth
reading. Here are a summary of the smells I find most often, including some that Fowler and Beck didn’t
mention.*

Divergent Change and Shotgun Surgery

These two smells help you identify cohesion problems in your code. Divergent Change occurs when
unrelated changes affect the same class. It’s an indication that your class involves too many concepts.
Split it, and give each concept its own home.

Shotgun Surgery is just the opposite: it occurs when you have to modify multiple classes to support
changes to a single idea. This indicates that the concept is represented in many places throughout your
code. Find or create a single home for the idea.

Primitive Obsession and Data Clumps

Some implementations represent high-level design concepts with primitive types. For example, a
decimal might represent dollars. This is the Primitive Obsession code smell. Fix it by encapsulating the
concept in a class.

Data Clumps are similar. They occur when several primitives represent a concept as a group. For example,
several strings might represent an address. Rather than being encapsulated in a single class, however,
the data just clumps together. When you see batches of variables consistently passed around together,

Audience

Programmers

* Wannabee Static, Time Dependency, Half-Baked Objects, and Coddling Nulls are new in this book.

R E F A C T O R I N G 303

you’re probably facing a Data Clump. As with Primitive Obsession, encapsulate the concept in a single
class.

Data Class and Wannabee Static Class

One of the most common mistakes I see in object-oriented design is when programmers put their data
and code in separate classes. This often leads to duplicate data-manipulation code. When you have a
class that’s little more than instance variables combined with accessors and mutators (getters and
setters), you have a Data Class. Similarly, when you have a class that contains methods but no meaningful
per-object state, you have a Wannabee Static Class.

NOTE
One way to detect a Wannabee Static Class is to ask yourself if you could change all
of the methods and instance variables into statics (also called class methods and
variables) without breaking anything.

Ironically, one of the primary strengths of object-oriented programming is its ability to combine data
with the code that operates on that data. Data Classes and Wannabee Statics are twins separated at birth.
Reunite them by combining instance variables with the methods that operate on those variables.

Coddling Nulls

Null references pose a particular challenge to programmers: they’re occasionally useful, but most they
often indicate invalid states or other error conditions. Programmers are usually unsure what to do when
they receive a null reference; their methods often check for null references and then return null
themselves.

Coddling Nulls like this leads to complex methods and error-prone software. Errors suppressed with
null cascade deeper into the application, causing unpredictable failures later in the execution of the
software. Sometimes the null makes it into the database, leading to recurring application failures.

Instead of Coddling Nulls, adopt a fail fast strategy (see “Simple Design” later in this chapter). Don’t
allow null as a parameter to any method, constructor, or property unless it has explicitly defined
semantics. Throw exceptions to signify errors rather than returning null. Make sure that any unexpected
null reference will cause the code to throw an exception, either as a result of being dereferenced or by
hitting an explicit assertion.

Time Dependencies and Half-Baked Objects

Time Dependencies occur when a class’ methods must be called in a specific order. Half-Baked Objects are
a special case of Time Dependency: they must first be constructed, then initialized with a method call,
then used.

Time Dependencies often indicate an encapsulation problem. Rather than managing its state itself, the
class expects its callers to manage some of its state. This results in bugs and duplicate code in callers.
Look for ways to encapsulate the class’ state more effectively. In some cases, you may find that your
class has too many responsibilities and would benefit from being split into multiple classes.

304 C H A P T E R 9 :   D E V E L O P I N G

Analyzing Existing Code
Reflective design requires that you understand the design of existing code. The easiest way to do so is
to ask someone else on the team. A conversation around a whiteboard design sketch is a great way to
learn.

In some cases, no one on the team will understand the design, or you may wish to dive into the code
yourself. When you do, focus on the responsibilities and interactions of each major component. What is
the purpose of this package or namespace? What does this class represent? How does it interact with
other packages, namespaces, and classes?

For example, NUnitAsp is a tool for unit testing ASP.NET code-behind logic. One of its classes is
HttpClient, which you might infer makes calls to an HTTP (web) server—presumably an ASP.NET web
server.

To confirm that assumption, look at the names of the class’ methods and instance variables.
HttpClient has methods named GetPage, FollowLink, SubmitForm, and HasCookie, along with some
USER_AGENT constants and several related methods and properties. In total, it seems pretty clear that
HttpClient emulates a web browser.

Now expand that understanding to related elements. Which classes does this class depend on? Which
classes depend on this one? What are their responsibilities? As you learn, diagram your growing
understanding on a whiteboard.

Creating a UML sequence diagram* can be helpful for understanding how individual methods interact
with the rest of the system. Start with a method you want to understand and look at each line in turn,
recursively adding each called method to your sequence diagram. This is fairly time-consuming, so I
only recommend it if you’re confused about how or why a method works.

NOTE
Round-trip engineering tools will automatically generate UML diagrams by analyzing
source code. I prefer to generate my diagrams by hand on a whiteboard. My goal isn’t
merely to create a diagram—my true goal is to understand the design. Creating the
diagram by hand requires me to study the code more deeply, which allows me to learn
and understand more.

Although these techniques are useful for understanding the design of unfamiliar code, you shouldn’t
need them often. You should already have a good understanding of most parts of your software, or be
able to talk to someone on the team who does. Unless you’re dealing with a lot of legacy code, you
should rarely have trouble understanding the design of existing code: your team wrote it, after all. If
you find yourself needing these techniques often, something is wrong—ask your mentor for help.

How to Refactor
Reflective design helps you understand what to change; refactoring gives you the ability to make those
changes. When you refactor, proceed in a series of small transformations. (Confusingly, each type of
transformation is also called a refactoring.) Each refactoring is like making a turn on a Rubik’s cube. To

* [Fowler & Scott] is a good resource for learning more about UML.

R E F A C T O R I N G 305

achieve anything significant, you have to string together several individual refactorings, just as you have
to string together several turns to solve the cube.

The fact that refactoring is a sequence of small
transformations sometimes gets lost on people new to
refactoring. Refactoring isn’t rewriting. You don’t just change
the design of your code; to refactor well, you need to make
that change in a series of controlled steps. Each step should only take a few moments,
and your tests should pass after each one.

There are a wide variety of individual refactorings. [Fowler 1999]’s Refactoring is the
classic work on the subject. It contains an in-depth catalog of refactoring, and is well
worth studying—I learned more about good code from reading that book than from
any other.

You don’t need to memorize all the individual refactorings. Instead, try to learn the mindset behind the
refactorings. Work from the book in the beginning. Over time, you’ll learn how to refactor intuitively,
creating each refactoring as you need it.

NOTE
Some IDEs offer automated refactorings. Although this is helpful for automating some
tedious refactorings, learn how to refactor manually, too. There are many more
refactoring options available to you than your IDE provides.

Refactoring in Action
Any significant design change requires a sequence of refactorings. Learning how to change your design
through a series of small refactorings is a valuable skill. Once you’ve mastered it, you can make dramatic
design changes without breaking anything. You can even do this in pieces, by fixing part of the design
one day and the rest of it another day.

To illustrate this point, I’ll show each step in the simple refactoring from my TDD example (see the TDD
example in “Test-Driven Development” earlier in this chapter). Note how small each step is. Working
in small steps enables you to remain in control of the code, prevents confusion, and allows you to work
very quickly.

NOTE
Don’t let the small scale of this example distract you from the main point: making
changes in a series of small, controlled steps. For larger examples, see “Further
Reading” at the end of this section.

The purpose of this example was to create an HTTP query string parser. At this point, I had a working,
bare-bones parser (see “A TDD Example” earlier in this chapter). Here are the tests:

 public class QueryStringTest extends TestCase {

 public void testOneNameValuePair() {
 QueryString query = new QueryString("name=value");
 assertEquals(1, query.count());
 assertEquals("value", query.valueFor("name"));
 }

Refactoring isn’t rewriting.

Ally

Test-Driven Development
(p. 285)

306 C H A P T E R 9 :   D E V E L O P I N G

 public void testMultipleNameValuePairs() {
 QueryString query = new QueryString("name1=value1&name2=value2&name3=value3");
 assertEquals(3, query.count());
 assertEquals("value1", query.valueFor("name1"));
 assertEquals("value2", query.valueFor("name2"));
 assertEquals("value3", query.valueFor("name3"));
 }

 public void testNoNameValuePairs() {
 QueryString query = new QueryString("");
 assertEquals(0, query.count());
 }

 public void testNull() {
 try {
 QueryString query = new QueryString(null);
 fail("Should throw exception");
 }
 catch (NullPointerException e) {
 // expected
 }
 }
 }

The code worked—it passed all the tests—but it was ugly. Both the count() and valueFor() methods had
duplicate parsing code. I wanted to eliminate this duplication and put parsing in just one place.

 public class QueryString {
 private String _query;

 public QueryString(String queryString) {
 if (queryString == null) throw new NullPointerException();
 _query = queryString;
 }

 public int count() {
 if ("".equals(_query)) return 0;
 String[] pairs = _query.split("&");
 return pairs.length;
 }

 public String valueFor(String name) {
 String[] pairs = _query.split("&");
 for (String pair : pairs) {
 String[] nameAndValue = pair.split("=");
 if (nameAndValue[0].equals(name)) return nameAndValue[1];
 }
 throw new RuntimeException(name + " not found");
 }
 }

To eliminate the duplication, I needed a single method that could do all the parsing. The other methods
would work with the results of the parse rather than doing any parsing of their own. I decided that this
parser, called from the constructor, would parse the data into a HashMap.

Although I could have done this in one giant step by moving the body of valueFor() into a
parseQueryString() method and then hacking until the tests passed again, I knew from hard-won
experience that it was faster to proceed in small steps.

My first step was to introduce HashMap() into valueFor(). This would make valueFor() look just like the
parseQueryString() method I needed. Once it did, I could extract out parseQueryString() easily.

R E F A C T O R I N G 307

 public String valueFor(String name) {
 HashMap<String, String> map = new HashMap<String, String>();

 String[] pairs = _query.split("&");
 for (String pair : pairs) {
 String[] nameAndValue = pair.split("=");
 map.put(nameAndValue[0], nameAndValue[1]);
 }
 return map.get(name);
 }

After making this refactoring, I ran the tests. They passed.

NOTE
By removing the RuntimeException, I had changed the behavior of the code when the
name was not found. That was OK because the RuntimeException was just an assertion
about an unimplemented feature. I hadn’t yet written any tests around it. If I had, I
would have changed the code to maintain the existing behavior.

Now I could extract the parsing logic into its own method. I used my IDE’s built-in Extract Method
refactoring to do so.

 public String valueFor(String name) {
 HashMap<String, String> map = parseQueryString();
 return map.get(name);
 }

 private HashMap<String, String> parseQueryString() {
 HashMap<String, String> map = new HashMap<String, String>();

 String[] pairs = _query.split("&");
 for (String pair : pairs) {
 String[] nameAndValue = pair.split("=");
 map.put(nameAndValue[0], nameAndValue[1]);
 }
 return map;
 }

The tests passed again, of course. With such small steps, I’d be surprised if they didn’t. That’s the point:
by taking small steps, I remain in complete control of my changes, which reduces surprises.

I now had a parseQueryString() method, but it was only available to valueFor(). My next step was to
make it available to all methods. To do so, I created a _map instance variable and had
parseQueryString() use it.

 public class QueryString {
 private String _query;
 private HashMap<String, String> _map = new HashMap<String, String>();

 ...

 public String valueFor(String name) {
 HashMap<String, String> map = parseQueryString();
 return map.get(name);
 }

308 C H A P T E R 9 :   D E V E L O P I N G

 private HashMap<String, String> parseQueryString() {
 String[] pairs = _query.split("&");
 for (String pair : pairs) {
 String[] nameAndValue = pair.split("=");
 _map.put(nameAndValue[0], nameAndValue[1]);
 }
 return _map;
 }
 }

This is a trickier refactoring than it seems. Whenever you switch from a local variable to an instance
variable, the order of operations can get confused. That’s why I continued to have parseQueryString()
return _map, even though it was now available as an instance variable. I wanted to make sure this first
step passed its tests before proceeding to my next step, which was to get rid of the unnecessary return.

 public class QueryString {
 private String _query;
 private HashMap<String, String> _map = new HashMap<String, String>();

 ...

 public String valueFor(String name) {
 parseQueryString();
 return _map.get(name);
 }

 private void parseQueryString() {
 String[] pairs = _query.split("&");
 for (String pair : pairs) {
 String[] nameAndValue = pair.split("=");
 _map.put(nameAndValue[0], nameAndValue[1]);
 }
 }
 }

The tests passed again.

Because parseQueryString() now stood entirely on its own, its only relationship to valueFor() was that
it had to be called before valueFor()’s return statement. I was finally ready to achieve my goal of calling
parseQueryString() from the constructor.

 public class QueryString {
 private String _query;
 private HashMap<String, String> _map = new HashMap<String, String>();

 public QueryString(String queryString) {
 if (queryString == null) throw new NullPointerException();
 _query = queryString;
 parseQueryString();
 }

 ...

 public String valueFor(String name) {
 return _map.get(name);
 }

 ...

 }

R E F A C T O R I N G 309

This seemed like a simple refactoring. After all, I moved only one line of code. Yet when I ran my tests,
they failed. My parse method didn’t work with an empty string—a degenerate case that I hadn’t yet
implemented in valueFor(). It wasn’t a problem as long as only valueFor() ever called
parseQueryString(), but it showed up now that I called parseQueryString() in the constructor.

NOTE
This shows why taking small steps is such a good idea. Because I had only changed
one line of code, I knew exactly what had gone wrong.

The problem was easy to fix with a guard clause.

 private void parseQueryString() {
 if ("".equals(_query)) return;

 String[] pairs = _query.split("&");
 for (String pair : pairs) {
 String[] nameAndValue = pair.split("=");
 _map.put(nameAndValue[0], nameAndValue[1]);
 }
 }

At this point, I was nearly done. The dupliate parsing in the count() method caused all of this mess, and
I was ready to refactor it to use the _map variable rather than do its own parsing. It went from:

 public int count() {
 if ("".equals(_query)) return 0;
 String[] pairs = _query.split("&");
 return pairs.length;
 }

to:

 public int count() {
 return _map.size();
 }

I love it when I can delete code.

I reviewed the code and saw just one loose end remaining: the _query instance variable that stored the
unparsed query string. I no longer needed it anywhere but parseQueryString(), so I demoted it from an
instance variable to a parseQueryString() parameter.

 public class QueryString {
 private HashMap<String, String> _map = new HashMap<String, String>();

 public QueryString(String queryString) {
 if (queryString == null) throw new NullPointerException();
 parseQueryString(queryString);
 }

 public int count() {
 return _map.size();
 }

 public String valueFor(String name) {
 return _map.get(name);
 }

310 C H A P T E R 9 :   D E V E L O P I N G

 private void parseQueryString(String query) {
 if ("".equals(query)) return;

 String[] pairs = query.split("&");
 for (String pair : pairs) {
 String[] nameAndValue = pair.split("=");
 _map.put(nameAndValue[0], nameAndValue[1]);
 }
 }
 }

When you compare the initial code to this code, there’s little in common. Yet this change took place as
a series of small, careful refactorings. Although it took me a long time to describe the steps, each
individual refactoring took a matter of seconds in practice. The whole series occurred in a few minutes.

Questions
How often should we refactor?

Constantly. Perform little refactorings as you use TDD and bigger refactorings every
week. Every week, your design should be better than it was the week before. (See
“Incremental Design and Architecture” later in this chapter.)

Isn’t refactoring rework? Shouldn’t we design our code correctly from the beginning?

If it were possible to design your code perfectly from the beginning, then refactoring would be rework.
However, as anybody who’s worked with large systems knows, mistakes always creep in. It isn’t possible
to design software perfectly. That’s why refactoring is important. Rather than bemoan the errors in the
design, celebrate your ability to fix them.

What about our database? That’s what really needs improvement.

You can refactor databases, too. Just as with normal refactorings, the trick is to proceed in small,
behavior-preserving steps. For example, to rename a table, you can create a new table, copy the data
from one to the next, update constraints, update stored procedures and applications, then delete the
old table.* See “Further Reading” at the end of this section for more.

How can we make large design changes without conflicting with other team members?

Take advantage of communication and continuous integration. Before taking on a
refactoring that will touch a bunch of code, check in your existing code and let people
know what you’re about to do. Sometimes other pairs can reduce the chance of
integration conflicts by mirroring any renaming you’re planning to do. (IDEs with
refactoring support make such renaming painless.)

During the refactoring, I like to use the distributed version control system SVK, built atop Subversion.
It allows me to commit my changes to a local repository one at a time, then push all of them to the main
repository when I reach the point of integration. This doesn’t prevent conflicts with other pairs, but it
allows me to checkpoint locally, which reduces my need to disturb anyone else before I finish.

Ally

Incremental Design and
Architecture (p. 321)

Ally

Continuous Integration (p.
183)

* These steps assume that the database isn’t live during the refactoring. A live refactoring would have a few more steps.

R E F A C T O R I N G 311

My refactoring broke the tests! They passed, but then we changed some code and now they fail. What happened?

It’s possible you made a mistake in refactoring, but if not, it could be a sign of poor tests. They might
test the code’s implementation rather than its behavior. Undo the refactoring and take a look at the tests;
you may need to refactor them.

Is refactoring tests actually worthwhile?

Absolutely! Too many developers forget to do this and find themselves maintaining tests that are brittle
and difficult to change. Tests have to be maintained just as much as production code does, so they’re
valid targets for refactoring, too.

Exercise caution when refactoring tests. It’s easier to unwittingly break a test than it is
to break production code because you can make the test pass when it shouldn’t. I like
to temporarily change my production code to make the tests fail just to show that they
still can. Pair programming also helps.

Sometimes it’s valuable to leave more duplication in your tests than you would in the code itself. Tests
have a documentation value, and reducing duplication and increasing abstraction can sometimes
obscure the intent of the tests. This can be a tough judgment call—err on the side of eliminating
duplication.

Results
When you use refactoring as an everyday part of your toolkit, the code constantly improves. You make
significant design changes safely and confidently. Every week, the code is at least slightly better than it
was the week before.

Contraindications
Refactoring requires good tests. Without it, it’s dangerous because you can’t easily tell
whether your changes have modified behavior. When I have to deal with untested
legacy code, I often write a few end-to-end tests first to provide a safety net for
refactoring.

Refactoring also requires collective code ownership. Any significant design changes will
require that you change all parts of the code. Collective code ownership makes this
possible. Similarly, refactoring requires continuous integration. Without it, each
integration will be a nightmare of conflicting changes.

It’s possible to spend too much time refactoring. You don’t need to refactor code that’s
unrelated to your present work. Similarly, balance your need to deliver stories with
the need to have good code. As long as the code is better than it was when you started,
you’re doing enough. In particular, if you think the code could be better, but you’re
not sure how to improve it, it’s OK to leave it for someone else to improve later.

Alternatives
There is no real alternative to refactoring. No matter how carefully you design, all code accumulates
technical debt. Without refactoring, that technical debt will eventually overwhelm you, leaving you to
choose between rewriting the software (at great expense and risk) or abandoning it entirely.

Ally

Pair Programming (p. 71)

Ally

Test-Driven Development
(p. 285)

Allies

Collective Code Ownership
(p. 191)
Continuous Integration (p.
183)

312 C H A P T E R 9 :   D E V E L O P I N G

Further Reading
“Clean Code: Args—A Command-line Argument Parser” [Martin 2005] is a rare treasure: a detailed
walk-through of an extended refactoring. If you liked my refactoring example but want more, read this
article. It’s online at http://www.objectmentor.com/resources/articles/Clean_Code_Args.pdf.

Refactoring: Improving the Design of Existing Code [Fowler 1999] is the definitive reference for refactoring.
It’s also a great read. Buy it.

Refactoring to Patterns [Kerievsky] takes Fowler’s work one step further, showing how refactorings can
string together to achieve significant design changes. It’s a good way to learn more about how to use
individual refactorings to achieve big results.

Refactoring Databases: Evolutionary Database Design [Ambler & Sadalage] shows how refactoring can apply
to database schemas.

R E F A C T O R I N G 313

http://www.objectmentor.com/resources/articles/Clean_Code_Args.pdf

Simple Design
Our design is easy to modify and maintain.

Perfection is achieved, not when there is nothing more to
add, but when there is nothing left to take away. —Antoine de Saint-Exupéry, author of The
Little Prince

Any intelligent fool can make things bigger, more complex and more violent. It takes a touch
of genius and a lot of courage to move in the opposite direction. —Albert Einstein

When writing code, agile developers often stop to ask themselves, “What is the simplest thing that could
possibly work?” They seem to be obssessed with simplicity. Rather than anticipating changes and
providing extensibility hooks and plug-in points, they create a simple design that anticipates as little as
possible, as cleanly as possible. Unintuitively, this results in designs that are ready for any change,
anticipated or not.

This may seem silly. How can a design be ready for any change? Isn’t the job of a good designer or
architect to anticipate future changes and make sure the design can be extended to support them?
Doesn’t Design Patterns: Elements of Reusable Software say that the key to maximizing reuse is to
anticipate changes and design accordingly?

I’ll let Erich Gamma, coauthor of Design Patterns, answer these questions. In the following excerpt,
Gamma is interviewed by Bill Venners.*

Venners: The GoF book [Design Patterns] says, “The key to maximizing reuse lies in anticipating
new requirements and changes to existing requirements, and in designing your systems so
they can evolve accordingly. To design a system so that it’s robust to such changes, you must
consider how the system might need to change over its lifetime. A design that doesn’t take
change into account risks major redesign in the future.” That seems contradictory to the XP
philosophy.

Gamma: It contradicts absolutely with XP. It says you should think ahead. You should speculate.
You should speculate about flexibility. Well yes, I matured too and XP reminds us that it is
expensive to speculate about flexibility, so I probably wouldn’t write this exactly this way
anymore. To add flexibility, you really have to be able to justify it by a requirement. If you
don’t have a requirement up front, then I wouldn’t put a hook for flexibility in my system up
front.

But I don’t think XP and [design] patterns are conflicting. It’s how you use patterns. The XP
guys have patterns in their toolbox, it’s just that they refactor to the patterns once they need
the flexibility. Whereas we said in the book ten years ago, no, you can also anticipate. You start
your design and you use them there up-front. In your up-front design you use patterns, and
the XP guys don’t do that.

Venners: So what do the XP guys do first, if they don’t use patterns? They just write the code?

Gamma: They write a test.

Audience

Programmers

* “Erich Gamma on Flexibility and Reuse: A Conversation with Erich Gamma, Part II,” http://www.artima.com/lejava/articles/reuse.html.

314 C H A P T E R 9 :   D E V E L O P I N G

http://www.artima.com/lejava/articles/reuse.html

Venners: Yes, they code up the test. And then when they implement it, they just implement
the code to make the test work. Then when they look back, they refactor, and maybe
implement a pattern?

Gamma: Or when there’s a new requirement. I really like flexibility that’s requirement driven.
That’s also what we do in Eclipse. When it comes to exposing more API, we do that on demand.
We expose API gradually. When clients tell us, “Oh, I had to use or duplicate all these internal
classes. I really don’t want to do that,” when we see the need, then we say, OK, we’ll make
the investment of publishing this as an API, make it a commitment. So I really think about it
in smaller steps, we do not want to commit to an API before its time.

BECK ON SIMPLICITY
In the first edition of Extreme Programming Explained, Kent Beck described simple design as code that passes
its tests and meets four guidelines, with the earlier guidelines taking precedence over the later ones:

1. The system (code and tests together) must communicate everything you want to communicate.

2. The system must contain no duplicate code. (Guidelines 1 and 2 together constitute the Once and Only
Once rule).

3. The system should have the fewest possible classes.

4. The system should have the fewest possible methods.

In the second edition, he rephrased the advice:

1. Appropriate for the intended audience. It doesn’t matter how brilliant and elegant a piece of design is; if
the people who need to work with it don’t understand it, it isn’t simple for them.

2. Communicative. Every idea that needs to be communicated is represented in the system. Like words in
a vocabulary, the elements of the system communicate to future readers.

3. Factored. Duplication of logic or structure makes code hard to understand and modify.

4. Minimal. Within the above three constraints, the system should have the fewest elements possible. Fewer
elements means less to test, document, and communicate.

Simple doesn’t mean simplistic. Don’t make boneheaded
design decisions in the name of reducing the number of
classes and methods. A simple design is clean and elegant,
not something you throw together with the least thought
possible. Here are some points to keep in mind as you strive for simplicity.

You Aren’t Gonna Need It (YAGNI)
This pithy XP saying sums up an important aspect of simple design: avoid speculative coding. Whenever
you’re tempted to add something to your design, ask yourself if it supports the stories and features you’re
currently delivering. If not, well... you aren’t gonna need it. Your design could change. Your customers’
minds could change.

Simple, not simplistic.

S I M P L E D E S I G N 315

Similarly, remove code that’s no longer in use. You’ll make the design smaller, simpler,
and easier to understand. If you need it again in the future, you can always get it out
of version control. For now, it’s a maintenance burden you don’t need.

We do this because excess code makes change difficult. Speculative design, added to
make specific changes easy, often turns out to be wrong in some way, which actually makes changes
more difficult. It’s usually easier to add to a design than to fix a design that’s wrong. The incorrect design
has code that depends on it, sometimes locking bad decisions in place.

Once and Only Once
Once and only once is a surprisingly powerful design guideline. As Martin Fowler said:*

One of the things I’ve been trying to do is look for simpler [rules] or rules underpinning good
or bad design. I think one of the most valuable rules is avoid duplication. “Once and only once”
is the Extreme Programming phrase. The authors of The Pragmatic Programmer [Hunt &
Thomas] use “don’t repeat yourself,” or the DRY principle.

You can almost do this as an exercise. Look at some program and see if there’s some duplication.
Then, without really thinking about what it is you’re trying to achieve, just pigheadedly try to
remove that duplication. Time and time again, I’ve found that by simply removing duplication
I accidentally stumble onto a really nice elegant pattern. It’s quite remarkable how often that
is the case. I often find that a nice design can come from just being really anal about getting
rid of duplicated code.

There’s even more to this idea than removing duplication. Think of it this way:

Express every concept once. (And only once).†

In other words, don’t just eliminate duplication; make sure that every important concept has an explicit
representation in your design. As [Hunt & Thomas] phrase their DRY Principle: “Every piece of
knowledge must have a single, unambiguous, authoritative representation within a system.”

An effective way to make your code express itself once (and only once) is to be explicit about core
concepts. Rather than expressing these concepts with a primitive data type, create a new type. For
example, rather than representing dollar amounts with a decimal data type, create a Dollars class. (See
Example 9-2.)

Example 9-2. Simple value type

 public class Dollars {
 private decimal _dollars;
 public Dollars(decimal dollars) { _dollars = dollars; }
 public decimal AsDecimal() { return _dollars; }
 public boolean Equals(object o) {...}
 }

Although using basic data types may seem simpler—it’s one less class, after all—it actually makes your
design more complex. Your code doesn’t have a place for the concept. As a result, every time someone
works with that concept, the code may need to reimplement basic behavior, such as string parsing and
formatting, which results in widespread duplication. This duplication will likely be only fragments of

Ally

Version Control (p. 169)

* http://www.artima.com/intv/principlesP.html.

† Thanks to Andrew Black for this insight.

316 C H A P T E R 9 :   D E V E L O P I N G

http://www.artima.com/intv/principlesP.html

code, but the net weight of those fragments will make your code hard to change. For example, if you
decide to change the display of dollar amounts—perhaps you want negative amounts to be red—you
must find every little fragment of formatting code and fix it.

Instead, make sure that every concept has a home. Don’t generalize; just make sure the basic concept
has an explicit representation. Over time, as needed, add code (such as formatting and parsing) to your
type. By starting with a simple but explicit representation of the concept, you provide a location for
those future changes to congregate. Without it, they will tend to accumulate in other methods and lead
to duplication and complex code.

Self-Documenting Code
Simplicity is in the eye of the beholder. It doesn’t matter much if you think the design is simple; if the
rest of your team or future maintainers of your software find it too complicated, then it is.

To avoid this problem, use idioms and patterns that are common for your language and team. It’s OK
to introduce new ideas, too, but run them past other team members first. Be sure to use names that
clearly reflect the intent of your variables, methods, classes, and other entities.

Pair programming will help you create simple code. If you have trouble understanding
something your partner wrote, discuss the situation and try to find a better way to
express the concept. Before you use a comment to explain something, ask your partner
how to make the code express its intent without needing a comment.

NOTE
Comments aren’t bad, but they are a sign that your code is more complex than it needs
to be. Try to eliminate the need for comments when you can. You can’t just arbitrarily
delete comments, of course—first make the code so expressive that the comments no
longer add value.

Isolate Third-Party Components
A hidden source of duplication lies in calls to third-party components. When you have these calls spread
throughout your code, replacing or augmenting that component becomes difficult. If you discover that
the component isn’t sufficient for your needs, you could be in trouble.

To prevent this problem, isolate your third-party components behind an interface that you control. Ask
yourself, “When I need to upgrade or change this component, how hard will it be?” In object-oriented
languages, consider using the Adapter pattern [Gamma et al.] rather than instantiating third-party classes
directly. For frameworks that require that you extend their classes, create your own base classes that
extend the framework classes, rather than extending the classes directly.

NOTE
Isolating third-party components also allows you to extend the features of the
component and gives you a convenient interface to write tests against if you need to.

Create your adapter incrementally. Instead of supporting every feature of the component in your
adapter, support only what you need today. Write the adapter’s interface to match your needs, not the
interface of the component. This will make it easier to use and to replace when necessary.

Ally

Pair Programming (p. 71)

S I M P L E D E S I G N 317

Isolating third-party components reduces duplication at the cost of making your code slightly more
complex. Some components, such as Java’s J2SE or the .NET framework, are so pervasive that isolating
them makes little sense. Make the decision to isolate common components according to the risk that
you’ll need to replace or augment that component. For example, I would use the Java or .NET String
class directly, without an adapter, but I might consider isolating .NET’s cryptography libraries or
elements of the J2EE framework.

Limit Published Interfaces
Published interfaces reduce your ability to make changes. Once the public interface to a class or other
module is published so that people outside the team may use it, changing it requires great expense and
effort. Because other people might be using the interface, changing it can sabotage their efforts.

Some teams approach design as if every public interface were also a published interface. This internal
publication assumes that, once defined, a public interface should never change. This is a bad idea—it
prevents you from improving your design over time. A better approach is to change your nonpublished
interfaces whenever you need, updating callers accordingly.

If your code is used outside your team, then you do need published interfaces. Each one, however, is a
commitment to a design decision that you may wish to change in the future. Minimize the number of
interfaces you expose to the outside world, and ask if the benefit of having other teams use your code
is really worth the cost.* (Sometimes it is, but don’t automatically assume so.) Postpone publishing
interfaces as long as possible to allow your design to improve and settle.

In some cases, as with teams creating a library for third-party use, the entire purpose of the project is
to create a published interface. In that case, your API is your product. Still, the smaller the interface,
the better—it’s much easier to add new elements to your API than to remove or change incorrect
elements. Make the interface as small as is practical.

As Erich Gamma said in the interview, “When it comes to exposing more API [in Eclipse, the open
source Java IDE], we do that on demand. We expose API gradually... when we see the need, then we
say, OK, we’ll make the investment of publishing this as an API, make it a commitment. So I really think
about it in smaller steps, we do not want to commit to an API before its time.”

NOTE
When developing a library, you can develop your interface incrementally and then
freeze it only when you release. Still, it’s probably a good idea to think ahead to future
changes and consider whether anything about the API you’re about to publish will
make those changes difficult.

Fail Fast
One of the pitfalls of simple design is that your design will be incomplete. Some elements won’t work
because no one has needed them before.

* [Brooks] estimated that making code externally reusable increases costs threefold. That estimate probably doesn’t apply to modern
development, but there’s still a nontrivial cost associated with creating reusable components. “Object-oriented” doesn’t mean
“automatic reuse,” despite early claims to the contrary.

318 C H A P T E R 9 :   D E V E L O P I N G

To prevent these gaps from being a problem, write your code to fail fast. Use assertions to signal the
limits of your design; if someone tries to use something that isn’t implemented, the assertion will cause
his tests to fail.

NOTE
Sometimes you can have more expressive assertions by writing your own assertion
facility, rather than using your language’s built-in facility. I like to create a class called
Assert (Assume and Require are good synonyms if Assert is unavailable) and implement
class (static) methods such as notNull(object), unreachableCode() and impossibleException
(exception).

Questions
What if we know we’re going to need a feature? Shouldn’t we put in a design hook for it?

In XP, the plan can change every week. Unless you’re implementing the feature that very week, don’t
put the hook in. The plan could change, leaving you stuck with unneeded code.

Plus, if you’re using incremental design and architecture properly, your code will
actually be easier to modify in the future than it is today. Saving the change for later
will save time and money.

What if ignoring a feature will make it harder to implement in the future?

A simple design should make arbitrary changes possible by reducing duplication and
limiting the scope of changes. If ignoring a potential feature could make it more difficult, you should
look for ways to eliminate that risk without explicitly coding support for the feature. “Incremental
Design and Architecture,” later in this chapter, has more about risk-driven architecture.

Results
When you create simple designs, you avoid adding support for any features other than the ones you’re
working on in the current iteration. You finish work more quickly as a result. When you use simple
design well, your design supports arbitrary changes easily. Although new features might require a lot
of new code, changes to existing code are localized and straightforward.

Contraindications
Simple design requires continuous improvement through refactoring and incremental
design and architecture. Without these, your design will fail to evolve with your
requirements.

Don’t use simple design as an excuse for poor design. Simplicity requires careful
thought. As the Einstein quote at the beginning of this section says, it’s a lot easier to
create complex designs than simple ones. Don’t pretend “simple” means “fastest” or
“easiest.”

Ally

Incremental Design and
Architecture (p. 321)

Allies

Refactoring (p. 303)
Incremental Design and
Architecture (p. 321)

S I M P L E D E S I G N 319

Pair programming and collective code ownership, though not strictly necessary for
simple design, will help your team devote the brainpower needed to create truly simple
designs.

Alternatives
Until recently, the accepted best practice in design followed the advice Erich Gamma now disavows:
“The key to maximizing reuse lies in anticipating new requirements and changes to existing
requirements, and in designing your systems so they can evolve accordingly.”

A team can have success with this approach, but it depends on how well they anticipate new
requirements. If the team’s expectations are too far off, they might need to rewrite a lot of code that
was based on bad assumptions. Some changes may affect so much code that they’re considered
impossible. If you follow this approach, it’s best to hire designers who have a lot of experience in your
specific industry. They’re more likely to correctly anticipate changes.

Further Reading
Martin Fowler has a collection of his excellent IEEE Design columns online at http://
www.martinfowler.com/articles.html#IDAOPDBC. Many of these columns discuss core concepts that help
in creating a simple design.

The Pragmatic Programmer: From Journeyman to Master [Hunt & Thomas] contains a wealth of design
information that will help you create simple, flexible designs. Practices of an Agile Developer [Subramaniam
& Hunt] is its spiritual successor, offering similarly pithy advice, though with less emphasis on design
and coding.

Prefactoring [Pugh] also has good advice for creating simple, flexible designs.

“Fail Fast” [Shore 2004b] discusses that concept in more detail. It is available at http://
www.martinfowler.com/ieeeSoftware/failFast.pdf.

Allies

Pair Programming (p. 71)
Collective Code Ownership
(p. 191)

320 C H A P T E R 9 :   D E V E L O P I N G

http://www.martinfowler.com/articles.html#IDAOPDBC
http://www.martinfowler.com/articles.html#IDAOPDBC
http://www.martinfowler.com/ieeeSoftware/failFast.pdf
http://www.martinfowler.com/ieeeSoftware/failFast.pdf

Incremental Design and Architecture
We deliver stories every week without compromising design quality.

XP makes challenging demands of its programmers: every week,
programmers should finish 4 to 10 customer-valued stories. Every week, customers
may revise the current plan and introduce entirely new stories—with no advance
notice. This regimen starts with the first week of the project.

In other words, as a programmer you must be able to produce customer value, from
scratch, in a single week. No advance preparation is possible. You can’t set aside several
weeks for building a domain model or persistence framework; your customers need you to deliver
completed stories.

Fortunately, XP provides a solution for this dilemma: incremental design (also called evolutionary design)
allows you to build technical infrastructure (such as domain models and persistence frameworks)
incrementally, in small pieces, as you deliver stories.

How It Works
Incremental design applies the concepts introduced in test-driven development to all
levels of design. Like test-driven development, programmers work in small steps,
proving each before moving to the next. This takes place in three parts: start by creating
the simplest design that could possibly work, incrementally add to it as the needs of the
software evolve, and continuously improve the design by reflecting on its strengths and
weaknesses.

To be specific, when you first create a design element—whether it’s a new method, a
new class, or a new architecture—be completely specific. Create a simple design that
solves only the problem you face at the moment, no matter how easy it may seem to
solve more general problems.

This is difficult! Experienced programmers think in abstractions. In fact, the ability to think in
abstractions is often a sign of a good programmer. Coding for one specific scenario will seem strange,
even unprofessional.

Do it anyway. The abstractions will come. Waiting to make
them will enable you to create designs that are simpler and
more powerful.

The second time you work with a design element, modify the
design to make it more general—but only general enough to
solve the two problems it needs to solve. Next, review the
design and make improvements. Simplify and clarify the code.

The third time you work with a design element, generalize it further—but again, just
enough to solve the three problems at hand. A small tweak to the design is usually
enough. It will be pretty general at this point. Again, review the design, simplify, and
clarify.

Audience

Programmers

Allies

Iterations (p. 41)
Stories (p. 253)

Ally

Test-Driven Development
(p. 285)

Ally

Simple Design (p. 314)

Waiting to create abstractions
will enable you to create designs

that are simple and powerful.

Ally

Refactoring (p. 303)

I N C R E M E N T A L D E S I G N A N D A R C H I T E C T U R E 321

Continue this pattern. By the fourth or fifth time you work with a design element—be it a method, a
class, or something bigger—you’ll typically find that its abstraction is perfect for your needs. Best of all,
because you allowed practical needs to drive your design, it will be simple yet powerful.

NOTE
You can see this process in action in test-driven development. TDD is an example of
incremental design at the level of methods and individual classes. Incremental design
goes further than TDD, however, scaling to classes, packages, and even application
architecture.

INCONCEIVABLE!
I have to admit I was very skeptical of incremental design when I first heard about it. I felt that up-front design
was the only responsible approach. The first time my team tried incremental design, we mixed up-front design
with incremental design. We designed the architecture up-front, feeling it was too important to leave until
later. Over time, however, experience showed us that many of those initial design decisions had serious flaws.
We used incremental design not only to fix the flaws, but to produce far better alternatives. When I left the
project eighteen months later, it had the best design of any code I’ve ever seen.

That project taught me to trust incremental design. It’s different from traditional design approaches, but it’s
also strikingly effective—and more forgiving of mistakes. Software projects usually succumb to bit rot and get
more difficult to modify over time. With incremental design, the reverse tends to be true: software actually gets
easier to modify over time. Incremental design is so effective, it’s now my preferred design approach for any
project, XP or otherwise.

Continuous Design
Incremental design initially creates every design element—method, class, namespace, or even
architecture—to solve a specific problem. Additional customer requests guide the incremental evolution
of the design. This requires continuous attention to the design, albeit at different timescales. Methods
evolve in minutes; architectures evolve over months.

No matter what level of design you’re looking at, the design tends to improve in bursts. Typically, you’ll
implement code into the existing design for several cycles, making minor changes as you go. Then
something will give you an idea for a new design approach, which will require a series of refactorings
to support it. [Evans] calls this a breakthrough (see Figure 9-2). Breakthroughs happen at all levels of
the design, from methods to architectures.

Breakthroughs are the result of important insights and lead to substantial improvements to the design.
(If they don’t, they’re not worth implementing.) You can see a small, method-scale breakthrough at the
end of “A TDD Example” earlier in this chapter.

322 C H A P T E R 9 :   D E V E L O P I N G

Incrementally Designing Methods
You’ve seen this level of incremental design before: it’s test-driven development. While
the driver implements, the navigator thinks about the design. She looks for overly
complex code and missing elements, which she writes on her notecard. She thinks
about which features the code should support next, what design changes might be
necessary, and which tests may guide the code in the proper direction. During the
refactoring step of TDD, both members of the pair look at the code, discuss opportunities
for improvements, and review the navigator’s notes.

NOTE
The roles of driver and navigator aren’t as cut-and-dried as I imply. It’s OK for drivers
to think about design and for navigators to make implementation suggestions.

Method refactorings happen every few minutes. Breakthroughs may happen several times per hour and
can take 10 minutes or more to complete.

Incrementally Designing Classes
When TDD is performed well, the design of individual classes and methods is beautiful: they’re simple,
elegant, and easy to use. This isn’t enough. Without attention to the interaction between classes, the
overall system design will be muddy and confusing.

During TDD, the navigator should also consider the wider
scope. Ask yourself these questions: are there similarities
between the code you’re implementing and other code in the
system? Are class responsibilities clearly defined and
concepts clearly represented? How well does this class
interact with other classes?

When you see a problem, jot it down on your card. During one of the refactoring steps of TDD—usually,
when you’re not in the middle of something else—bring up the issue, discuss solutions with your

Allies

Test-Driven Development
(p. 285)
Pair Programming (p. 71)

Nothing clarifies a design issue
like working code.

Time/Refactoring

V
al

u
e

Breakthrough

Figure 9-2. Breakthrough

I N C R E M E N T A L D E S I G N A N D A R C H I T E C T U R E 323

partner, and refactor. If you think your design change will significantly affect other members of the
team, take a quick break to discuss it around a whiteboard.

NOTE
Don’t let design discussions turn into long, drawn-out disagreements. Follow the 10-
minute rule: if you disagree on a design direction for 10 minutes, try one and see how
it works in practice. If you have a particularly strong disagreement, split up and try
both as spike solutions. Nothing clarifies a design issue like working code.

Class-level refactorings happen several times per day. Depending on your design,
breakthroughs may happen a few times per week and can take several hours to
complete. (Nonetheless, remember to proceed in small, test-verified steps.) Use your
iteration slack to complete breakthrough refactorings. In some cases, you won’t have
time to finish all the refactorings you identify. That’s OK; as long as the design is better
at the end of the week than it was at the beginning, you’re doing enough.

NOTE
Avoid creating TODO comments or story/task cards for postponed refactorings. If the
problem is common enough for you or others to notice it again, it will get fixed
eventually. If not, then it probably isn’t worth fixing. There are always more
opportunities to refactor than time to do it all; TODOs or refactoring cards add undue
stress to the team without adding much value.

Incrementally Designing Architecture
Large programs use overarching organizational structures called architecture. For example, many
programs segregate user interface classes, business logic classes, and persistence classes into their own
namespaces; this is a classic three-layer architecture. Other designs have the application pass the flow of
control from one machine to the next in an n-tier architecture.

These architectures are implemented through the use of recurring patterns. They aren’t design patterns
in the formal Gang of Four* sense. Instead, they’re standard conventions specific to your codebase. For
example, in a three-layer architecture, every business logic class will probably be part of a “business
logic” namespace, may inherit from a generic “business object” base class, and probably interfaces with
its persistence layer counterpart in a standard way.

These recurring patterns embody your application architecture. Although they lead to consistent code,
they’re also a form of duplication, which makes changes to your architecture more difficult.

Fortunately, you can also design architectures incrementally. As with other types of continuous design,
use TDD and pair programming as your primary vehicle. While your software grows, be conservative
in introducing new architectural patterns: introduce just what you need to for the amount of code you
have and the features you support at the moment. Before introducing a new pattern, ask yourself if the
duplication is really necessary. Perhaps there’s some language feature you can use that will reduce your
need to rely on the pattern.

Ally

Slack (p. 246)

* The “Gang of Four” is a common nickname for the authors of Design Patterns, a book that introduced design patterns to the
mainstream.

324 C H A P T E R 9 :   D E V E L O P I N G

In my experience, breakthroughs in architecture happen every few months. (This
estimate will vary widely depending on your team members and code quality.)
Refactoring to support the breakthrough can take several weeks or longer because of
the amount of duplication involved. Although changes to your architecture may be
tedious, they usually aren’t difficult once you’ve identified the new architectural
pattern. Start by trying out the new pattern in just one part of your design. Let it sit for a while—a week
or two—to make sure the change works well in practice. Once you’re sure it does, bring the rest of the
system into compliance with the new structure. Refactor each class you touch as you perform your
everyday work, and use some of your slack in each iteration to fix other classes.

Keep delivering stories while you refactor. Although you
could take a break from new development to refactor, that
would disenfranchise your customers. Balance technical
excellence with delivering value. Neither can take
precedence over the other. This may lead to inconsistencies
within the code during the changeover, but fortunately, that’s mostly an aesthetic problem—more
annoying than problematic.

NOTE
Introducing architectural patterns incrementally helps reduce the need for
multiiteration refactorings. It’s easier to expand an architecture than it is to simplify
one that’s too ambitious.

Risk-Driven Architecture
Architecture may seem too essential not to design up-front. Some problems do seem too expensive to
solve incrementally, but I’ve found that nearly everything is easy to change if you eliminate duplication
and embrace simplicity. Common thought is that distributed processing, persistence,
internationalization, security, and transaction structure are so complex that you must consider them
from the start of your project. I disagree; I’ve dealt with all of them incrementally [Shore 2004a].

NOTE
Two issues that remain difficult to change are choice of programming language and
platform. I wouldn’t want to make those decisions incrementally!

Of course, no design is perfect. Even with simple design, some of your code will contain
duplication, and some will be too complex. There’s always more refactoring to do than
time to do it. That’s where risk-driven architecture comes in.

Although I’ve emphasized designing for the present, it’s OK to think about future
problems. Just don’t implement any solutions to stories that you haven’t yet scheduled.

What do you do when you see a hard problem coming? For example, what if you know that
internationalizing your code is expensive and only going to get more expensive? Your power lies in
your ability to choose which refactorings to work on. Although it would be inappropriate to implement
features your customers haven’t asked for, you can direct your refactoring efforts toward reducing risk.
Anything that improves the current design is OK—so choose improvements that also reduce future risk.

Ally

Slack (p. 246)

Balance technical excellence
with delivering value.

Ally

Simple Design (p. 314)

I N C R E M E N T A L D E S I G N A N D A R C H I T E C T U R E 325

To apply risk-driven architecture, consider what it is about your design that concerns you and eliminate
duplication around those concepts. For example, if your internationalization concern is that you always
format numbers, dates, and other variables in the local style, look for ways to reduce duplication in your
variable formatting. One way to do so is to make sure every concept has its own class (as described in
“Once and Only Once” earlier in this chapter), then condense all formatting around each concept into
a single method within each class, as shown in Figure 9-3. If there’s still a lot of duplication, the Strategy
pattern would allow you to condense the formatting code even further.

Limit your efforts to improving your existing design. Don’t actually implement support for localized
formats until your customers ask for them. Once you’ve eliminated duplication around a concept—for
example, once there’s only one method in your entire system that renders numbers as strings—changing
its implementation will be just as easy later as it is now.

NOTE
A team I worked with replaced an entire database connection pooling library in half
a pair-day. Although we didn’t anticipate this need, it was still easy because we had
previously eliminated all duplication around database connection management. There
was just one method in the entire system that created, opened, and closed connections,
which made writing our own connection pool manager almost trivially easy.*

USING STORIES TO REDUCE RISK
Another great way to reduce technical risk is to ask your customers to schedule stories that will allow you to
work on the risky area. For example, to address the number localization risk, you could create a story such as
“Localize application for Spain” (or any European country). This story expresses customer value, yet addresses
an internationalization risk.

UI Class A

UI Class C

UI Class B

private String renderCurrency() {
 ...
}

(a) Risk: Every class duplicates
the currency rendering algorithm.
If it is internationalized, changing
it will be difficult and expensive.

UI Class A

UI Class C

UI Class B

public String render() {
 ...
}

(b) No Risk: The currency rendering
algorithm is only implemented

in the Currency class. If it is
internationalized, only one

method needs changing.

Currency

Figure 9-3. Use risk to drive refactoring

* We did have to make it thread-safe, so it wasn’t entirely trivial.

326 C H A P T E R 9 :   D E V E L O P I N G

Your customers have final say over story priorities, however, and their sense of risk and value may not match
yours. Don’t feel too bad if this happens; you can still use refactorings to reduce your risk.

It’s Not Just Coding
Although incremental design focuses heavily on test-driven development and
refactoring as an enabler, it isn’t about coding. When you use TDD, incremental design,
and pair programming well, every pairing session involves a lot of conversation about
design. In fact, that’s what all the (relevant) conversations are about. As Ron Jeffries
likes to say, design is so important in XP that we do it all the time. Some of the design
discussions are very detailed and nitpicky, such as, “What should we name this
method?” Others are much higher-level, such as, “These two classes share some
responsibilities. We should split them apart and make a third class.”

Have design discussions away from the keyboard as often as you think is necessary, and use whatever
modelling techniques you find helpful. Try to keep them informal and collaborative; sketches on a
whiteboard work well. Some people like to use CRC (Class, Responsibility, Collaborator) cards.

Some of your discussions will be predictive, meaning you’ll discuss how you can change your design to
support some feature that you haven’t yet added to the code. Others will be reflective, meaning you’ll
discuss how to change your design to better support existing features.

NOTE
Beware of getting trapped in analysis paralysis and spending too much time trying to
figure out a design. If a design direction isn’t clear after 10 minutes or so, you probably
need more information. Continue using TDD and making those refactorings that are
obvious, and a solution will eventually become clear.

Reflective design (discussed in more detail in “Refactoring” earlier in this chapter) is always helpful in
XP. I like to sketch UML diagrams on a whiteboard to illustrate problems in the current design and
possible solutions. When my teams discover a breakthrough refactoring at the class or architecture level,
we gather around a whiteboard to discuss it and sketch our options.

Predictive design is less helpful in XP, but it’s still a useful tool. As you’re adding a new
feature, use it to help you decide which tests to write next in TDD. On a larger scale,
use predictive design to consider risks and perform risk-driven architecture.

The trick to using predictive design in XP is keeping your design simple and focusing
only on the features it currently supports. Although it’s OK to predict how your design
will change when you add new features, you shouldn’t actually implement those changes until you’re
working on the stories in question. When you do, you should keep your mind open to other ways of
implementing those features. Sometimes the act of coding with test-driven development will reveal
possibilities you hadn’t considered.

Given these caveats, I find that I use predictive design less and less as I become more experienced with
incremental design. That’s not because it’s “against the rules”—I’m perfectly happy breaking rules—but
because working incrementally and reflectively has genuinely yielded better results for me.

Try it yourself, and find the balance between predictive and reflective design that works best for you.

Allies

Test-Driven Development
(p. 285)
Refactoring (p. 303)
Pair Programming (p. 71)

Ally

Test-Driven Development
(p. 285)

I N C R E M E N T A L D E S I G N A N D A R C H I T E C T U R E 327

Questions
Isn’t incremental design more expensive than up-front design?

Just the opposite, actually, in my experience. There are two reasons for this. First, because incremental
design implements just enough code to support the current requirements, you start delivering features
much more quickly with incremental design. Second, when a predicted requirement changes, you
haven’t coded any parts of the design to support it, so you haven’t wasted any effort.

Even if requirements never changed, incremental design would still be more effective, as it leads to
design breakthroughs on a regular basis. Each breakthrough allows you to see new possibilities and
eventually leads to another breakthrough—sort of like walking through a hilly forest in which the top
of each hill reveals a new, higher hill you couldn’t see before. This continual series of breakthroughs
substantially improves your design.

What if we get the design absolutely wrong and have to backtrack to add a new feature?

Sometimes a breakthrough will lead you to see a completely new way of approaching your design. In
this case, refactoring may seem like backtracking. This happens to everyone and is not a bad thing. The
nature of breakthroughs—especially at the class and architectural level—is that you usually don’t see
them until after you’ve lived with the current design for a while.

Our organization (or customer) requires comprehensive design documentation. How can we satisfy this requirement?

Ask them to schedule it with a story, then estimate and deliver it as you would any
other story. Remind them that the design will change over time. The most effective
option is to schedule documentation stories for the last iteration.

If your organization requires up-front design documentation, the only way to provide
it is to engage in up-front design. Try to keep your design efforts small and simple. If you can, use
incremental design once you actually start coding.

Results
When you use incremental design well, every iteration advances the software’s features and design in
equal measure. You have no need to skip coding for an iteration for refactoring or design. Every week,
the quality of the software is better than it was the week before. As time goes on, the software becomes
increasingly easy to maintain and extend.

Contraindications
Incremental design requires simple design and constant improvement. Don’t try to use
incremental design without a commitment to continuous daily improvement (in XP
terms, merciless refactoring). This requires self-discipline and a strong desire for high-
quality code from at least one team member. Because nobody can do that all the time,
pair programming, collective code ownership, energized work, and slack are important
support mechanisms.

Ally

Documentation (p. 195)

Allies

Refactoring (p. 303)
Simple Design (p. 314)
Pair Programming (p. 71)
Collective Code Ownership
(p. 191)
Energized Work (p. 79)
Slack (p. 246)

328 C H A P T E R 9 :   D E V E L O P I N G

Test-driven development is also important for incremental design. Its explicit
refactoring step, repeated every few minutes, gives pairs continual opportunities to stop
and make design improvements. Pair programming helps in this area, too, by making
sure that half the team’s programmers—as navigators—always have an opportunity to
consider design improvements.

Be sure your team sits together and communicates well if you’re using incremental
design. Without constant communication about class and architectural refactorings,
your design will fragment and diverge. Agree on coding standards so that everyone
follows the same patterns.

Anything that makes continuous improvement difficult will make incremental design
difficult. Published interfaces are an example; because they are difficult to change after
publication, incremental design may not be appropriate for published interfaces. (You
can still use incremental design for the implementation of those interfaces.) Similarly,
any language or platform that makes refactoring difficult will also inhibit your use of
incremental design.

Finally, some organizations place organizational rather than technical impediments on refactoring, as
with organizations that require up-front design documentation or have rigidly controlled database
schemas. Incremental design may not be appropriate in these situations.

Alternatives
If you are uncomfortable with XP’s approach to incremental design, you can hedge your bets by
combining it with up-front design. Start with an up-front design stage, and then commit completely to
XP-style incremental design. Although it will delay the start of your first iteration (and may require
some up-front requirements work, too), this approach has the advantage of providing a safety net
without incurring too much risk.

NOTE
If you’re feeling bold, use XP’s iterative design directly, without the safety net.
Incremental design is powerful, effective, and inexpensive. The added effort of an up-
front design stage isn’t necessary.

There are other alternatives to incremental design, but I don’t think they would work well with XP.
One option is to use another type of incremental design, one more like up-front design, that does some
up-front design at the beginning of every iteration, rather than relying on simple design and refactoring
to the extent that XP does.

I haven’t tried other incremental design approaches with XP because they seem to interact clumsily
with XP’s short iterations. The design sessions could be too short and small to create a cohesive
architecture on their own. Without XP’s focus on simple design and merciless refactoring, a single design
might not evolve.

Another alternative is to design everything up-front. This could work in an environment with very few
requirements changes (or a prescient designer), but it’s likely to break down with XP’s adaptive plans
and tiered planning horizons (see “Release Planning” in Chapter 8).

Ally

Test-Driven Development
(p. 285)

Allies

Sit Together (p. 112)
Coding Standards (p. 133)

Ally

Refactoring (p. 303)

I N C R E M E N T A L D E S I G N A N D A R C H I T E C T U R E 329

Further Reading
“Is Design Dead?” [Fowler 2000], online at http://www.martinfowler.com/articles/designDead.html, discusses
evolutionary design from a slightly skeptical perspective.

“Continuous Design” [Shore 2004a] discusses my experiences with difficult challenges in incremental
design, such as internationalization and security. It is available at http://www.martinfowler.com/
ieeeSoftware/continuousDesign.pdf.

330 C H A P T E R 9 :   D E V E L O P I N G

http://www.martinfowler.com/articles/designDead.html
http://www.martinfowler.com/ieeeSoftware/continuousDesign.pdf
http://www.martinfowler.com/ieeeSoftware/continuousDesign.pdf

Spike Solutions
We perform small, isolated experiments when we need more
information.

You’ve probably noticed by now that XP values concrete data over speculation. Whenever you’re faced
with a question, don’t speculate about the answer—conduct an experiment! Figure out how you can
use real data to make progress.

That’s what spike solutions are for, too.

About Spikes
A spike solution, or spike, is a technical investigation. It’s a small experiment to research the answer to a
problem. For example, a programmer might not know whether Java throws an exception on arithmetic
overflow. A quick 10-minute spike will answer the question.

 public class ArithmeticOverflowSpike {
 public static void main(String[] args) {
 try {
 int a = Integer.MAX_VALUE + 1;
 System.out.println("No exception: a = " + a);
 }
 catch (Throwable e) {
 System.out.println("Exception: " + e);
 }
 }
 }

 No exception: a = -2147483648

NOTE
Although this example is written as a standalone program, small spikes such as this
one can also be written inside your test framework. Although they don’t actually call
your production code, the test framework provides a convenient way to quickly run
the spike and report on the results.

Performing the Experiment
The best way to implement a spike is usually to create a small program or test that demonstrates the
feature in question. You can read as many books and tutorials as you like, but it’s my experience that
nothing helps me understand a problem more than writing working code. It’s important to work from
a practical point of view, not just a theoretical one.

Writing code, however, often takes longer than reading a tutorial. Reduce that time by writing small,
standalone programs. You can ignore the complexities necessary to write production code—just focus
on getting something working. Run from the command line or your test framework. Hardcode values.
Ignore user input, unless absolutely necessary. I often end up with programs a few dozen lines long that
run almost everything from main().

Audience

Programmers

S P I K E S O L U T I O N S 331

Of course, this approach means you can’t reuse this code in
your actual production codebase, as you didn’t develop it
with all your normal discipline and care. That’s fine. It’s an
experiment. When you finish, throw it away, check it in as
documentation, or share it with your colleagues, but don’t
treat it as anything other than an experiment.

NOTE
I discard the spikes I create to clarify a technical question (such as “Does this language
throw an exception on arithmetic overflow?”), but generally keep the ones that
demonstrate how to accomplish a specific task (such as “How do I send HTML
email?”). I keep a separate spikes/ directory in my repository just for these sorts of
spikes.

DESIGN SPIKES
Sometimes you’ll need to test an approach to your production code. Perhaps you want to see how a design
possibility will work in practice, or you need to see how a persistence framework will work on your production
code.

In this case, go ahead and work on production code. Be sure to check in your latest changes before you start
the spike, and be careful not to check in any of your spike code.

Scheduling Spikes
Most spikes are performed on the spur of the moment. You see a need to clarify a small
technical issue, and you write a quick spike to do so. If the spike takes more than a few
minutes, your iteration slack absorbs the cost.

If you anticipate the need for a spike when estimating a story, include the time in your
story estimate. Sometimes you won’t be able to estimate a story at all until you’ve done your research;
in this case, create a spike story and estimate that instead (see “Stories” in Chapter 8).

Questions
Your spike example is terrible! Don’t you know that you should never catch Throwable?

Exactly. Production code should never catch Throwable, but a spike isn’t production code. Spike solutions
are the one time that you can forget about writing good code and focus just on short-term results. (That
said, for larger spikes, you may find code that’s too sloppy is hard to work with and slows you down.)

Should we pair on spikes?

It’s up to you. Because spikes aren’t production code, even teams with strict pair programming rules
don’t require writing spikes in pairs.

Spike solutions clarify technical
issues by setting aside the

complexities of production code.

Ally

Slack (p. 246)

332 C H A P T E R 9 :   D E V E L O P I N G

One very effective way to pair on a spike is to have one person research the technology while the other
person codes. Another option is for both people to work independently on separate approaches, each
doing their own research and coding, then coming together to review progress and share ideas.

Should we really throw away the code from our spikes?

Unless you think someone will refer to it later, toss it. Remember, the purpose of a spike solution is to
give you the information and experience to know how to solve a problem, not to produce the code that
solves it.

How often should we do spikes?

Perform a spike whenever you have a question about if or how some piece of technology will work.

What if the spike reveals that the problem is more difficult than we thought?

That’s good; it gives you more information. Perhaps the customer will reconsider the value of the feature,
or perhaps you need to think of another way to accomplish what you want.

Once, a customer asked me for a feature I thought might work in a certain way, but my spike
demonstrated that the relevant Internet standard actually prohibited the desired behavior. We came up
with a different design for implementing the larger feature.

Results
When you clarify technical questions with well-directed, isolated experiments, you spend less time
speculating about how your program will work. You focus your debugging and exploratory
programming on the problem at hand rather than on the ways in which your production code might
be interacting with your experiment.

Contraindications
Avoid the temptation to create useful or generic programs out of your spikes. Focus your work on
answering a specific technical question, and stop working on the spike as soon as it answers that
question. Similarly, there’s no need to create a spike when you already understand a technology well.

Don’t use spikes as an excuse to avoid disciplined test-driven development and
refactoring. Never copy spike code into production code. Even if it is exactly what you
need, rewrite it using test-driven development so that it meets your production code
standards.

Alternatives
Spike solutions are a learning technique based on performing small, concrete experiments. Some people
perform these experiments in their production code, which can work well for small experiments (such
as the arithmetic overflow example), but it increases the scope of possible error. If something doesn’t
work as expected, is it because your understanding of the technology is wrong? Is it due to an unseen
interaction with the production code or test framework? Standalone spikes eliminate this uncertainty.

For stories that you can’t estimate accurately, an alternative to scheduling a spike story is to provide a
high estimate. This is risky because some stories will take longer than your highest estimate, and some
may not be possible at all.

Ally

Test-Driven Development
(p. 285)

S P I K E S O L U T I O N S 333

Another option is to research problems by reading about the underlying theory and finding code snippets
in books or online. This is often a good way to get started on a spike, but the best way to really understand
what’s going on is to create your own spike. Simplify and adapt the example. Why does it work? What
happens when you change default parameters? Use the spike to clarify your understanding.

334 C H A P T E R 9 :   D E V E L O P I N G

Performance Optimization
We optimize when there’s a proven need.

Our organization had a problem.* Every transaction our
software processed had a three-second latency. During peak business hours, transactions piled up—and
with our recent surge in sales, the lag sometimes became hours. We cringed every time the phone rang;
our customers were upset.

We knew what the problem was: we had recently changed our order preprocessing code. I remember
thinking at the time that we might need to start caching the intermediate results of expensive database
queries. I had even asked our customers to schedule a performance story. Other stories had been more
important, but now performance was top priority.

I checked out the latest code and built it. All tests passed, as usual. Carlann suggested that we create an
end-to-end performance test to demonstrate the problem. We created a test that placed 100
simultaneous orders, then ran it under our profiler.

The numbers confirmed my fears: the average transaction took around 3.2 seconds, with a standard
deviation too small to be significant. The program spent nearly all that time within a single method:
verify_order_id(). We started our investigation there.

I was pretty sure a cache was the right answer, but the profiler pointed to another possibility. The method
retrieved a list of active order IDs on every invocation, regardless of the validity of the provided ID.
Carlann suggested discounting obviously flawed IDs before testing potentially valid ones, so I made the
change and we reran the tests. All passed. Unfortunately, that had no effect on the profile. We rolled
back the change.

Next, we agreed to implement the cache. Carlann coded a naïve cache. I started to worry about cache
coherency, so I added a test to see what happened when a cached order went active. The test failed.
Carlann fixed the bug in the cache code, and all tests passed again.

NOTE
Cache coherency requires that the data in the cache change when the data in the
underlying data store changes and vice versa. It’s easy to get wrong.

Unfortunately, all that effort was a waste. The performance was actually slightly worse than before, and
the caching code had bloated our previously elegant method into a big mess. We sat in silence for a
minute.

What else could it be? Was there a processor bug? Would we have to figure out some way to dump our
JIT-compiled code so that we could graph the processor pipelines executing assembly code? Was there
a problem with memory pages, or some garbage collector bug? The profiling statistics were clear. As far
as we could tell, we had done everything correctly. I reverted all our changes and ran the profiler again:
3.2 seconds per transaction. What were we missing?

Over lunch that day, Carlann and I shared our performance testing woes with the team. “Why don’t
you let me take a look at it?” offered Nate. “Maybe a fresh pair of eyes will help.”

Audience

Programmers, Testers

* This is a fictionalized account inspired by real experiences.

P E R F O R M A N C E O P T I M I Z A T I O N 335

Carlann and I nodded, only too glad to move on to something else. We formed new pairs and worked
on nice simple problems for the rest of the day.

The next morning, at the stand-up meeting, Janice told us that she and Nate had found the answer. As
it turned out, my initial preconceptions had blinded us to an obvious problem.

There was another method inlined within verify_order_id() that didn’t show up in the profiler. We
didn’t look at it because I was sure I understood the code. Janice and Nate, however, stepped through
the code. They found a method that was trying to making an unnecessary network connection on each
transaction. Fixing it lopped three full seconds off each transaction. They had fixed the problem in less
than half an hour.

Oh, and the cache I was sure we would need? We haven’t needed it yet.

How to Optimize
Modern computers are complex. Reading a single line of a file from a disk requires the coordination of
the CPU, the kernel, a virtual file system, a system bus, the hard drive controller, the hard drive cache,
OS buffers, system memory, and scheduling pipelines. Every component exists to solve a problem, and
each has certain tricks to squeeze out performance. Is the data in a cache? Which cache? How’s your
memory aligned? Are you reading asynchronously or are you blocking? There are so many variables
it’s nearly impossible to predict the general performance of any single method.

The days in which a programmer could accurately predict
performance by counting instruction clock cycles are long
gone, yet some still approach performance with a simplistic,
brute-force mindset. They make random guesses about
performance based on 20-line test programs, flail around
while writing code the first time, leave a twisty mess in the
real program, and then take a long lunch.

Sometimes that even works. More often, it leaves a complex mess that doesn’t benefit overall
performance. It can actually make your code slower.

A holistic approach is the only accurate way to optimize such complex systems. Measure the
performance of the entire system, make an educated guess about what to change, then remeasure. If
the performance gets better, keep the change. If it doesn’t, discard it. Once your performance test passes,
stop—you’re done. Look for any missed refactoring opportunities and run your test suite one more time.
Then integrate.

Usually, your performance test will be an end-to-end test. Although I avoid end-to-end tests in other
situations (because they’re slow and fragile—see “Test-Driven Development” earlier in this chapter),
they are often the only accurate way to reproduce real-world performance conditions.

You may be able to use your existing testing tool, such as xUnit, to write your performance tests.
Sometimes you get better results from a specialized tool. Either way, encode your performance criteria
into the test. Have it return a single, unambiguous pass/fail result as well as performance statistics.

If the test doesn’t pass, use the test as input to your profiler.
Use the profiler to find the bottlenecks, and focus your efforts
on reducing them. Although optimizations often make code
more complex, keep your code as clean and simple as
possible.

The days in which a programmer
could predict performance by
counting instructions are long

gone.

Use a profiler to guide your
optimization efforts.

336 C H A P T E R 9 :   D E V E L O P I N G

If you’re adding new code, such as a cache, use test-driven development to create that
code. If you’re removing or refactoring code, you may not need any new tests, but be
sure to run your test suite after each change.

When to Optimize
Optimization has two major drawbacks: it often leads to
complex, buggy code, and it takes time away from delivering
features. Neither is in your customer’s interests. Optimize
only when it serves a real, measurable need.

That doesn’t mean you should write stupid code. It means
your priority should be code that’s clean and elegant. Once a story is done, if you’re still concerned
about performance, run a test. If performance is a problem, fix it—but let your customer make the
business decision about how important that fix is.

XP has an excellent mechanism for prioritizing customer needs: the combination of
user stories and release planning. In other words, schedule performance optimization
just like any other customer-valued work: with a story.

Of course, customers aren’t always aware of the need for performance stories, especially
not ones with highly technical requirements. If you have a concern about potential
performance problems in part of the system, explain your concern in terms of business tradeoffs and
risks. They still might not agree. That’s OK—they’re the experts on business value and priorities. It’s
their responsibility, and their decision.

Similarly, you have a responsibility to maintain an efficient development environment. If your tests
start to take too long, go ahead and optimize until you meet a concrete goal, such as five or ten minutes.
Keep in mind that the most common cause of a slow build is too much emphasis on end-to-end tests,
not slow code.

TESTERS AND PERFORMANCE
When I work with dedicated testers, they often act as technical investigators for the team. One of the ways they
do this is to investigate nonfunctional requirements (also called parafunctional requirements) such as
performance.

Testers should help customers articulate their nonfunctional requirements, then create and maintain test suites
that evaluate the software’s ability to meet those requirements. These test suites can test stability as well as
performance and scalability.

How to Write a Performance Story
Like all stories, performance stories need a concrete, customer-valued goal. A typical story will express
that goal in one or more of these terms:

Throughput
How many operations should complete in a given period of time?

Ally

Test-Driven Development
(p. 285)

Performance optimizations must
serve the customer’s needs.

Allies

Stories (p. 253)
Release Planning (p. 206)

P E R F O R M A N C E O P T I M I Z A T I O N 337

Latency
How much delay is acceptable between starting and completing a single operation?

Responsiveness
How much delay is acceptable between starting an operation and receiving feedback about that
operation? What kind of feedback is necessary? (Note that latency and responsiveness are related
but different. Although good latency leads to good responsiveness, it’s possible to have good
responsiveness even with poor latency.)

When writing performance stories, think about acceptable performance—the minimum necessary for
satisfactory results—and best possible performance—the point at which further optimization adds little
value.

Why have two performance numbers? Performance optimization can consume an infinite amount of
time. Sometimes you reach your “best” goal early; this tells you when to stop. Other times you struggle
even to meet the “acceptable” goal; this tells you when to keep going.

For example, a story for a server system could be, “Throughput of at least 100 transactions per minute
(1,000 is best). Latency of six seconds per transaction (one second is best).” A client system might have
the story, “Show progress bar within 1 second of click (0.1 second is best), and complete search within
10 seconds (1 second is best).”

Also consider the conditions under which your story must perform. What kind of workstation or servers
will the software run on? What kind of network bandwidth and latency will be available? What other
loads will affect the system? How many people will be using it simultaneously? The answers to these
questions are likely the same for all stories. Help your customers determine the answers. If you have a
standard deployment platform or a minimum platform recommendation, you can base your answers
on this standard.

ESTIMATING PERFORMANCE STORIES
You’ll often have difficulty estimating performance stories. As with fixing bugs, the cost of optimization stories
depends on how long it takes you to find the cause of the performance problem, and you often won’t know
how long it will take until you actually find it.

To estimate performance stories, timebox your estimate as you do with bug stories (see “Stories” in
Chapter 8). If you can’t solve the problem within the timeboxed estimate, use that information to create a new
optimization story with a more accurate estimate, to schedule for a subsequent iteration.

Questions
Why not optimize as we go? We know a section of code will be slow.

How can you really know until you measure it? If your optimization doesn’t affect code maintainability
or effort—for example, if you have a choice between sorting libraries and you believe one would be
faster for your situation—then it’s OK to put it in.

338 C H A P T E R 9 :   D E V E L O P I N G

That’s not usually the case. Like any other work, the choice to optimize is the choice
not to do something else. It’s a mistake to spend time optimizing code instead of adding
a feature the customer wants. Further, optimizing code tends to increase complexity,
which is in direct conflict with the goal of producing a simple design. Although we
sometimes need to optimize, we shouldn’t reduce maintainability when there’s no
direct customer value.

If you suspect a performance problem, ask your on-site customers for a ballpark estimate of acceptable
performance and run a few tests to see if there’s anything to worry about. If there is, talk to your
customers about creating and scheduling a story.

How do we write a performance test for situations involving thousands of transactions from many clients?

Good stress-testing tools exist for many network protocols, ranging from ad hoc shell scripts running
telnet and netcat sessions to professional benchmarking applications. Your testers or QA department
can recommend specific tools.

Our performance tests take too long to run. How can we maintain a 10-minute build?

Good performance tests often take a long time to run, and they may cause your build to take more time
than you like. This is one of the few cases in which a multistage build (discussed in “Continuous
Integration” in Chapter 7) is appropriate. Run your performance tests asynchronously, as a separate
build from your standard 10-minute build (see “Ten-Minute Build” in Chapter 7), when you integrate.

Our customers don’t want to write performance stories. They say we should write the software to be fast from the
beginning. How can we deal with this?

“Fast” is an abstract idea. Do they mean latency should be low? Should throughput be high? Should
the application scale better than linearly with increased activity? Is there a point at which performance
can plateau, or suffer, or regress? Is UI responsiveness more important than backend processing speed?

These goals need quantification and require programming time to meet. You can include them as part
of existing stories, but separating them into their own stories gives your on-site customers more
flexibility in scheduling and achieving business value.

Results
When you optimize code as necessary, you invest in activities that customers have identified as valuable
over perceived benefit. You quantify necessary performance improvements and can capture that
information in executable tests. You measure, test, and gather feedback to lead you to acceptable
solutions for reasonable investments of time and effort. Your code is more maintainable, and you favor
simple and straightforward code over highly optimized code.

Contraindications
Software is a complex system based on the interrelationship
of many interacting parts. It’s easy to guess wrong when it
comes to performance.

Therefore, don’t optimize code without specific performance
criteria and objective proof, such as a performance test, that
you’re not yet meeting that criteria. Throw away optimizations that don’t objectively improve
performance.

Ally

Simple Design (p. 314)

It’s easy to guess wrong when it
comes to performance.

P E R F O R M A N C E O P T I M I Z A T I O N 339

Be cautious of optimizing without tests; optimization often adds complexity and increases the risk of
defects.

Alternatives
There are no good alternatives to measurement-based optimization.

Many programmers attempt to optimize all code as they write it, often basing their optimizations on
programmer folklore about what’s “fast.” Sometimes these beliefs come from trivial programs that
execute an algorithm 1,000 times. A common example of this is a program that compares the speed of
StringBuffer to string concatenation in Java or .NET.

Unfortunately, this approach to optimization focuses on trivial algorithmic tricks. Network and hard
drive latency are much bigger bottlenecks than CPU performance in modern computing. In other words,
if your program talks over a network or writes data to a hard drive—most database updates do both—
it probably doesn’t matter how fast your string concatenations are.

On the other hand, some programs are CPU-bound. Some database queries are easy to cache and don’t
substantially affect performance. The only way to be sure about a bottleneck is to measure performance
under real-world conditions.

Further Reading
“Yet Another Optimization Article” [Fowler 2002b] also discusses the importance of measurement-
based optimization. It’s available online at http://www.martinfowler.com/ieeeSoftware/yetOptimization.pdf.

340 C H A P T E R 9 :   D E V E L O P I N G

http://www.martinfowler.com/ieeeSoftware/yetOptimization.pdf

Exploratory Testing
By Elisabeth Hendrickson

We discover surprises and untested conditions.

XP teams have no separate QA department. There’s no independent group of people
responsible for assessing and ensuring the quality of the final release. Instead, the whole
team—customers, programmers, and testers—is responsible for the outcome. On
traditional teams, the QA group is often rewarded for finding bugs. On XP teams, there’s
no incentive program for finding or removing bugs. The goal in XP isn’t to find and
remove bugs; the goal is not to write bugs in the first place. In a well-functioning team,
bugs are a rarity—only a handful per month.

Does that mean testers have no place on an XP team? No! Good testers have the ability to look at software
from a new perspective, to find surprises, gaps, and holes. It takes time for the team to learn which
mistakes to avoid. By providing essential information about what the team overlooks, testers enable the
team to improve their work habits and achieve their goal of producing zero bugs.

NOTE
Beware of misinterpreting the testers’ role as one of process improvement and
enforcement. Don’t set up quality gates or monitor adherence to the process. The whole
team is responsible for process improvement. Testers are respected peers in this
process, providing information that allows the whole team to benefit.

One particularly effective way of finding surprises, gaps, and holes is exploratory testing: a style of testing
in which you learn about the software while simultaneously designing and executing tests, using
feedback from the previous test to inform the next. Exploratory testing enables you to discover emergent
behavior, unexpected side effects, holes in the implementation (and thus in the automated test
coverage), and risks related to quality attributes that cross story boundaries such as security,
performance, and reliability. It’s the perfect complement to XP’s raft of automated testing techniques.

Exploratory testing predates XP. [Kaner] coined the term in the book Testing Computer Software, although
the practice of exploratory testing certainly preceded the book, probably by decades. Since the book
came out, people such as Cem Kaner, James and Jonathan Bach, James Lyndsay, Jonathan Kohl, and
Elisabeth Hendrickson have extended the concept of exploratory testing into a discipline.

About Exploratory Testing
Philosophically, exploratory testing is similar to test-driven development and incremental design: rather
than designing a huge suite of tests up-front, you design a single test in your head, execute it against
the software, and see what happens. The result of each test leads you to design the next, allowing you
to pursue directions that you wouldn’t have anticipated if you had attempted to design all the tests up-
front. Each test is a little experiment that investigates the capabilities and limitations of the emerging
software.

Exploratory testing can be done manually or with the assistance of automation. Its defining characteristic
is not how we drive the software but rather the tight feedback loop between test design, test execution,
and results interpretation.

Audience

Testers

Allies

No Bugs (p. 160)
The Whole Team (p. 28)

E X P L O R A T O R Y T E S T I N G 341

Exploratory testing works best when the software is ready to be explored—that is, when
stories are “done done.” You don’t have to test stories that were finished in the current
iteration. It’s nice to have that sort of rapid feedback, but some stories won’t be “done
done” until the last day of the iteration. That’s OK—remember, you’re not using
exploratory testing to guarantee quality; you’re using it provide information about how
the team’s process guarantees quality.

NOTE
This switch in mindset takes a little while to get used to. Your exploratory testing is
not a means of evaluating the software through exhaustive testing. Instead, you’re
acting as a technical investigator—checking weak points to help the team discover
ways to prevent bugs. You can also use exploratory testing to provide the team with
other useful data, such as information about the software’s performance characteristics.

Exploratory testers use the following four tools to explore the software.

Tool #1: Charters
Some people claim that exploratory testing is simply haphazard poking at the software under test. This
isn’t true, any more than the idea that American explorers Lewis and Clark mapped the Northwest by
haphazardly tromping about in the woods. Before they headed into the wilderness, Lewis and Clark
knew where they were headed and why they were going. President Thomas Jefferson had given them
a charter:*

The Object of your mission is to explore the Missouri river & such principal stream of it as by
[its] course and communication with the waters of the Pacific ocean, whether the Columbia,
Oregon, Colorado or any other river may offer the most direct & practicable water
communication across this continent for the purpose of commerce.

Similarly, before beginning an exploratory session, a tester should have some idea of what to explore
in the system and what kinds of things to look for. This charter helps keep the session focused.

NOTE
An exploratory session typically lasts one to two hours.

The charter for a given exploratory session might come from a just-completed story (e.g., “Explore the
Coupon feature”). It might relate to the interaction among a collection of stories (e.g., “Explore
interactions between the Coupon feature and the Bulk Discount feature”). It might involve a quality
attribute, such as stability, reliability, or performance (“Look for evidence that the Coupon feature
impacts performance”). Generate charters by working with the team to understand what information
would be the most useful to move the project forward.

Charters are the testing equivalent of a story. Like stories, they work best when written down. They
may be as informal as a line on a whiteboard or a card, but a written charter provides a touchstone the
tester can refer to in order to ensure she’s still on track.

Ally

“Done Done” (p. 156)

* http://www.lewis-clark.org/content/content-article.asp?ArticleID=1047.

342 C H A P T E R 9 :   D E V E L O P I N G

http://www.lewis-clark.org/content/content-article.asp?ArticleID=1047

Tool #2: Observation
Automated tests only verify the behavior that programmers write them to verify, but humans are
capable of noticing subtle clues that suggest all is not right. Exploratory testers are continuously alert
for anything out of the ordinary. This may be an editable form field that should be read-only, a hard
drive that spun up when the software should not be doing any disk access, or a value in a report that
looks out of place.

Such observations lead exploratory testers to ask more questions, run more tests, and explore in new
directions. For example, a tester may notice that a web-based system uses parameters in the URL. “Aha!”
thinks the tester. “I can easily edit the URL.” Where the URL says http://stage.example.com/edit?id=42, the
tester substitutes http://stage.example.com/edit?id=9999999.

Tool #3: Notetaking
While exploring, it’s all too easy to forget where you’ve been and where you’re going. Exploratory
testers keep a notepad beside them as they explore and periodically take notes on the actions they take.
You can also use screen recorders such as Camtasia to keep track of what you do. After all, it’s quite
frustrating to discover a bug only to find that you have no idea what you did to cause the software to
react that way. Notes and recordings tell you what you were doing not just at the time you encountered
surprising behavior but also in the minutes or hours before.

Be especially careful to keep notes about anything that deserves further investigation. If you cannot
follow a path of testing in the current session, you want to remember to explore that area in more detail
later. These are opportunities for further exploratory testing.

Tool #4: Heuristics
Remember that exploratory testing involves simultaneously designing and executing tests. Some test
design techniques are well known, such as boundary testing. If you have a field that’s supposed to accept
numbers from 0–100, you’ll probably try valid values like 0, 100, and something in the middle, and
invalid values like –1 and 101. Even if you had never heard the term boundary testing, you’d probably
consider trying such tests.

A heuristic is a guide: a technique that aids in your explorations. Boundary testing is an example of a
test heuristic. Experienced testers use a variety of heuristics, gleaned from an understanding of how
software systems work as well as from experience and intuition about what causes software to break.
You can improve your exploratory efforts by creating and maintaining a catalog of heuristics that are
worth remembering when exploring your software. Of course, that same catalog can also be a welcome
reference for the programmers as they implement the software.

Some of your heuristics will be specific to your domain. For example, if you work with networking
software, you must inevitably work with IP addresses. You probably test your software to see how it
handles invalid IP addresses (“999.999.999.999”), special IP addresses (“127.0.0.1”), and IPv6 style
addresses (“::1/128”). Others are applicable to nearly any software project. The following are a few to
get you started.

E X P L O R A T O R Y T E S T I N G 343

http://stage.example.com/edit?id=42
http://stage.example.com/edit?id=9999999

None, Some, All

For example, if your users can have permissions, try creating users with no permissions, some
permissions, and all permissions. In one system I tested, the system treated users with no permissions
as administrators. Granting a user no permissions resulted in the user having root access.

Goldilocks: too big, too small, just right

Boundary tests on a numeric field are one example of Golidlocks tests. Another example might be
uploading an image file: try uploading a 3 MB picture (too big), a file with nothing in it (too small), and
a file of comfortable size (50 KB).

Position: beginning, middle, end

Position can apply to an edit control: edit at the beginning of a line, middle of a line, end of a line. It
can apply to the location of data in a file being parsed. It can apply to an item selected from a list, or
where you’re inserting an item into a list.

Count: zero, one, many

For example, you could create invoices with zero line items, one line item, and many line items. Or you
might perform a search for zero items, one item, or many pages of items. Many systems have a small
typographical error related to plurals—that is, they report “1 items found” instead of “1 item found.”

Similarly, count can apply in numerous situations: a count of dependent data records (a customer with
zero addresses, one address, many addresses, or a group with zero members, one member, many
members), a count of events (zero transactions, one transaction, many simultaneous transactions), or
anything else that can be counted.

CRUD: create, read, update, delete

For each type of entity, and each data field, try to create it, read it, update it, and delete it. Now try
CRUD it while violating system constraints such as permissions. Try to CRUD in combination with
Goldilocks, Position, Count, and Select heuristics. For example, delete the last line item on an invoice,
then read it; update the first line item; delete a customer with zero, one, or many invoices, etc.

Command Injection

Wherever your software supports text coming from an external source (such as a UI or a Web Services
interface), ensure it doesn’t ever interpret incoming text as a command—whether an SQL, a JavaScript,
or a shell/command-line command. For example, a single quote in a text field will sometimes raise SQL
exceptions; entering the word tester's will cause some applications to respond with an SQL error.

Data Type Attacks

For each type of input, try values that push common boundaries or that violate integrity constraints.
Some examples: in date fields, try February 29 and 30. Also try dates more than 100 years ago. Try
invalid times, like 13:75. For numbers, try the huge (4,294,967,297 = 2^32 + 1) and the tiny
(0.0000000000000001). Try scientific notation (1E-16). Try negative numbers, particularly where
negative numbers should not be allowed, as with purchase price. For strings, try entering long strings

344 C H A P T E R 9 :   D E V E L O P I N G

(more than 5,000 characters), leaving fields blank, and entering a single space. Try various characters
including common field delimiters (` | / \ , ; : & < > ^ * ? Tab). The list could go on, but you get the idea.

An Example
“Let’s decide on a charter for this session,” Jill said, settling into the seat next to Michael. Jill was one
of the team’s testers; Michael was a programmer. “What should we focus on?”

“You know us,” Michael replied. “Our code doesn’t have any bugs!” He grinned, knowing what was
coming.

“Oooh, you’ll pay for that one.” Jill smiled. “Although I have to say our quality is better than any other
team I’ve worked with. How many bugs did we have last month?”

“It’s been a bit high, actually.” Michael counted on his fingers. “There was that installer issue... and the
networking problem....” He paused. “Four.”

“Let’s see how that holds up. What’s new in the code?”

“Some fairly routine stuff,” Michael said. “One thing that’s brand-new is our support for multilingual
input. But there’s nothing to find there—we tested it thoroughly.”

“I love a challenge!” Jill said with a wicked grin. “Besides, character-set issues are a rich source of bugs.
Let’s take a look at that.”

“Sure.” Michael wrote a card for the session: Explore Internationalization. He clipped the card to the
monitor so it would remind them to keep on track.

Jill took the keyboard first. “Let’s start with the basics. That will help us know what’s going wrong if
we see anything strange later on.” As she navigated to a data entry screen, Michael wrote the date and
time at the top of a new page in his notepad and prepared to take notes.

Jill opened up a character viewer and pasted together a string of gibberish: German, Hebrew, Greek,
Japanese, and Arabic characters. “Let’s use the CRUD heuristic to make sure this stuff gets into the
database and comes back properly.” Moving quickly, she saved the text, opened up a database viewer
to make sure it was present in the database, then closed the application and reloaded it. Everything was
intact. Next, she edited the string, saved it again, and repeated her check. Finally, she deleted the entry.
“Looks good.”

“Wait a minute,” Michael said. “I just had an idea. We’re not supposed to allow the user to save blank
strings. What if we use a Unicode space rather than a regular space?”

“I’ll try it.” Jill went back to work. Everything she tried was successfully blocked. “It all looks good so
far, but I have a special trick.” She grinned as she typed #FEFF into her character viewer. “This character
used to mean ‘zero-width no-break space.’ Now it’s just a byte-order mark. Either way, it’s the nastiest
character I can throw at your input routines.” She pressed Save.

Nothing happened. “Score one for the good guys,” Jill murmured. “The data input widgets look fairly
solid. I know from past experience that you’ve abstracted those widgets so that if one is working, they’re
probably all working.” Michael nodded, and she added, “I might want to double-check a few of those
later, but I think our time is better spent elsewhere.”

“OK, what should we look at next?” Michael asked.

“A few things come to mind for us to check: data comparison, sorting, and translation to other formats.
Unicode diacritical marks can be encoded in several ways, so two strings that are technically identical

E X P L O R A T O R Y T E S T I N G 345

might not be encoded using the same bytes. Sorting is problematic because Unicode characters aren’t
sorted in the same order that they’re represented in binary...”

“...and format translation is nasty because of all the different code page and character-set issues out
there,” Michael finished. He wrote the three ideas—data comparison, sorting, and translation—on his
notepad.

“You said it,” Jill agreed. “How about starting with the nasty one?”

“Sounds good.” Michael reached for the keyboard. “My turn to type,” he said, smiling. He handed Jill
the notepad so she could continue the notetaking. “Now, where could the code page issues be
lurking...?”

When You Find Bugs
Exploratory testing provides feedback about the software and also about the
effectiveness of the team’s process. When it reveals a bug, it indicates that the team
may not be working as effectively as it could. To remedy, fix your software and your
process as described in “No Bugs” in Chapter 7.

If you’ve already used the feedback from exploratory testing to improve both the software and the
process, but you’re consistently finding a lot of bugs, it means the process is still broken. Don’t give up:
look for root causes and keep plugging away. It’s often a simple case of trying to do too much in too
little time.

When the bugs are rampant, you may be tempted to add a QA department to catch the bugs. This may
provide a temporary fix, but it’s the first step down a slippery slope. Here is an example:

Imagine a team that has been struggling with velocity because stories just never seem to be “done done,”
as is often the case when customers finds bugs in “done” stories. The programmers are frustrated that
they can’t seem to prevent or detect the problems that result in their customers rejecting stories.

“I give up,” says Wilma to her partner, Betty. “This story is taking too long, and there are too many
other stories in the queue. Let’s ask Jeff to test this and tell us where all the problems are. He’s good at
finding bugs.”

In fact, Jeff is great at finding bugs. The next morning he delivers a stack of sticky notes to Wilma and
Betty that detail a bunch of bugs. They fix the bugs and deliver the story. The customer accepts it, smiling
for the first time in weeks. “That was great!” says Wilma. “We finally finished something!”

On the next story, Betty turns to Wilma and says, “You know, Jeff was so good at finding bugs in the
last story....”

“Yeah,” Wilma agrees. “Even though there are some more error conditions we could think through,
let’s see what Jeff has to say.”

The pattern continues. The more that programmers rely on testers to find bugs for them,
the fewer bugs they find themselves. Testers find more and more bugs, but in the end,
quality gets worse.* The key to having no bugs is not to get better testers, but for the
team to take responsibility for producing bug-free software—before testers try it. Instead
of relying on testers to get the bugs out, use the information that exploratory testing
provides to improve your process.

Ally

No Bugs (p. 160)

Ally

No Bugs (p. 160)

* I wrote about this effect in "Better Testing, Worse Quality,” at http://testobsessed.com/wordpress/wp-content/uploads/2006/12/btwq.pdf.
Page past the end of the slideshow to find it.

346 C H A P T E R 9 :   D E V E L O P I N G

http://testobsessed.com/wordpress/wp-content/uploads/2006/12/btwq.pdf

Questions
Should testers pair with other members of the team?

This is up to your team. Pairing with programmers and customers helps break down some of the natural
barriers between testers and other team members, and it helps information flow better throughout the
team. On the other hand, programmers may not always have time to pair with testers. Find a good
balance.

Won’t the burden of exploratory testing keep getting bigger over the course of the project?

It shouldn’t. Sometimes teams use exploratory testing as a form of manual regression testing; with each
iteration, they explore the new features, and the existing features, and the interactions, and so on. They
put so much on the list of things to explore that the time needed for exploratory testing during the
iteration becomes unmanageable.

The flaw in this approach is using exploratory testing as a means of regression testing.
Use test-driven development to create a comprehensive, automated regression test
suite. Focus your exploratory testing on new features (and their interactions with
existing features), particularly those features that do things differently from previous
features.

Just as you timebox your releases and work on just the most important features, you can timebox your
explorations and test just the most important charters.

How can we get better at exploratory testing?

Exploratory testing involves a set of skills that can be learned. To improve, you should:

Practice
You can test more than the software your team is developing. Whenever you use software for your
own purposes, like word processing or email, try testing it. Also consider applying your testing skills
to open source projects.

Get feedback
Find out what surprises other people discovered, and ask yourself why you didn’t see them.
Sometimes it’s because there were more test conditions you might have tried, so you can add new
tricks to your heuristics toolbox. Other times it’s because you didn’t understand the significance of
what you were seeing; you saw the same behavior but didn’t recognize it as a bug.

Share tips and techniques
You can share ideas within your team, and you can reach out to the broader community. Online
discussion forums are a good place to start. Other options include round table–style meetings. For
example, James Bach hosts WHET, the Workshop on Heuristics and Exploratory Techniques, and
James Lyndsay hosts LEWT, the London Exploratory Workshop in Testing. Both are gathering
places where testers share stories and experiences.

Results
When you use exploratory testing, you discover information about both the software and the process
used to create that software. You sometimes discover missing test cases, incomplete or incorrect
understanding of the story, and conversations that should have happened but didn’t. Each surprise gives
you an opportunity to improve both the software and your development practices. As a team, you use
this information to improve your process and reduce the number of bugs found in the future.

Ally

Test-Driven Development
(p. 285)

E X P L O R A T O R Y T E S T I N G 347

Contraindications
Don’t attempt to use exploratory testing as a regression testing strategy. Regression tests should be
automated.

Only do exploratory testing when it is likely to uncover new information and you are in a position to
act on that information. If, for example, there is already a list of known bugs for a given story, additional
exploratory testing will waste time rediscovering known issues. Fix the bugs first.

Alternatives
You can use exploratory testing as a mechanism for bug hunting when working with software,
particularly legacy software, that you suspect to be buggy. However, beware of relying on exploratory
testing or any other testing approach to ensure all the bugs are caught. They won’t be.

Some teams don’t do any manual or end-to-end testing with XP. These teams are using another
mechanism to confirm that they don’t produce bugs—presumably, they’re relying on user feedback.
This is OK if you actually don’t produce bugs, which is certainly possible, but it’s better to confirm that
before giving software to users. Still, you might get away with it if the software isn’t mission-critical and
you have forgiving users.

Other teams use testers in a more traditional role, relying on them to find bugs rather than committing
to deliver bug-free code. In my experience, these teams have lower quality and higher bug rates,
probably as a result of the “Better Testing, Worse Quality” dynamic.

Further Reading
“General Functionality and Stability Test Procedure for Microsoft Windows Logo, Desktop Applications
Edition” [Bach 1999] is the first widely published reference on how to do exploratory testing. The
WinLogo certification assures customers that the software behaves itself on Windows. But how do you
create a systematic process for assessing the capabilities and limitations of an arbitrary desktop
application in a consistent way? Microsoft turned to James Bach, already well known for his work on
exploratory testing. The resulting test procedure was made available to independent software vendors
(ISVs) and used by certifiers like Veritest. It’s online at http://www.testingcraft.com/bach-exploratory-
procedure.pdf.

“Session-Based Test Management” [Bach 2000] is the first published article that explains in detail how
to use session-based test management, which James Bach and his brother Jonathan devised, and which
I discussed as Charters and Sessions earlier in this chapter. One of the challenges of exploratory testing
is how to manage the process: stay focused, track progress, and ensure the effort continues to yield
value. This is the solution. The article is online at http://www.satisfice.com/articles/sbtm.pdf.

“Did I Remember To” [Hunter] is a great list of heuristics, framed as things to remember to test. The list
is particularly great for Windows applications, but it includes ideas that are applicable to other
technologies as well. It’s online at http://blogs.msdn.com/micahel/articles/175571.aspx.

“Rigorous Exploratory Testing” [Hendrickson] sets out to debunk the myth that exploratory testing is
just banging on keyboards, and discusses how exploratory testing can be rigorous without being formal.
The article is online at http://www.testobsessed.com/2006/04/19/rigorous-exploratory-testing/.

348 C H A P T E R 9 :   D E V E L O P I N G

http://www.testingcraft.com/bach-exploratory-procedure.pdf
http://www.testingcraft.com/bach-exploratory-procedure.pdf
http://www.satisfice.com/articles/sbtm.pdf
http://blogs.msdn.com/micahel/articles/175571.aspx
http://www.testobsessed.com/2006/04/19/rigorous-exploratory-testing/

“User Profiles and Exploratory Testing” [Kohl 2005a] is a nice reminder that different users experience
software in different ways, and it provides guidance on characterizing user behavior to support
exploratory testing. It’s online at http://www.kohl.ca/blog/archives/000104.html.

“Exploratory Testing on Agile Teams” [Kohl 2005b] presents a case study of using automation-assisted
exploratory testing to isolate a defect on an Agile project—which flouts the belief that exploratory testing
is a purely manual activity. It complements this chapter nicely. Read it online at http://www.informit.com/
articles/article.asp?p=405514&rl=1.

“A Survey of Exploratory Testing” [Marick] provides a nice collection of published work related to
exploratory testing, including [Bach 1999]’s “General Functionality and Stability Test Procedure for
Microsoft Windows Logo.” Online at http://www.testingcraft.com/exploratory.html.

“Exploring Exploratory Testing” [Tinkham & Kaner] is an in-depth discussion of how exploratory testers
do what they do, including strategies such as questioning and using heuristics. Based on work funded
in part by an NSF grant, this paper elaborates on exploratory testing practices missing from the then-
current draft of the IEEE’s Software Engineering Body of Knowledge (SWEBOK). Available online at http://
www.testingeducation.org/a/explore.pdf.

E X P L O R A T O R Y T E S T I N G 349

http://www.kohl.ca/blog/archives/000104.html
http://www.informit.com/articles/article.asp?p=405514&rl=1
http://www.informit.com/articles/article.asp?p=405514&rl=1
http://www.testingcraft.com/exploratory.html
http://www.testingeducation.org/a/explore.pdf
http://www.testingeducation.org/a/explore.pdf

PART III

Mastering Agility

CHAPTER 10

Values and Principles

Until now, I’ve talked about a very specific approach to agility: one style of applying XP’s practices.
That’s only the beginning.

No process is perfect. Every approach to development has some potential for improvement. Ultimately,
your goal is to remove every barrier between your team and the success of your project, and fluidly
adapt your approach as conditions change. That is agility.

To master the art of agile development, you need experience and mindfulness. Experience helps you see
how agile methods work. Mindfulness helps you understand your experiences. Experience again allows
you to experiment with changes. Mindfulness again allows you to reflect on why your experiments
worked—or didn’t work—in practice. Experience and mindfulness, endlessly joined, are the path to
mastery.

So far, this book has focused on experience. Before you can reflect on how agile methods work, you
need to experience an agile method working. With its emphasis on practicing XP, this book has given
you the tools to do so.

Yet practicing XP isn’t enough—you need mindfulness, too. You must pay attention to what happens
around you. You must think about what’s happening and, more importantly, why it’s happening. Ask
questions. Make small changes. Observe the results. I can’t teach you mindfulness; only you have the
power to do it.

I can, however, give you some things to think about as you learn. The XP practices are a manifestation
of deeper agile values and principles. Think about these as you use XP. When your situation changes,
use the values and principles to guide you in changing your practices.

Commonalities
Can any set of principles really represent agile development? After all, agility is just an umbrella term
for a variety of methods, most of which came about long before the term “agile” was coined.

3 5 3

The answer is yes: agile methods do share common values and principles. In researching this part of the
book, I collected over a hundred different values and principles from several agile sources.* They formed
five themes: Improve the Process, Rely on People, Eliminate Waste, Deliver Value, and Seek Technical
Excellence. Each is compatible with any of the specific agile methods.

The following chapters explain these themes in terms of principles and practices. Each chapter includes
anecdotes about applying the principles to situations beyond standard XP. Where possible, I’ve borrowed
existing names for specific principles.

About Values, Principles, and Practices
Values are ideals. They’re abstract, yet identifiable and distinct. For example, XP’s values are:

Courage
To make the right decisions, even when they’re difficult, and to tell stakeholders the truth when
they need to hear it

Communication
To give the right people the right information when they can use it to its maximum advantage

Simplicity
To discard the things we want but don’t actually need

Feedback
To learn the appropriate lessons at every possible opportunity

Respect
To treat ourselves and others with dignity, and to acknowledge expertise and our mutual desire for
success

Principles are applications of those ideals to an industry. For example, the value of simplicity leads us to
focus on the essentials of development. As [Beck 2004] puts it, this principle is to “travel
light.” [Cockburn] says, “Excess methodology weight is costly,” and “Discipline, skills, and
understanding counter process, formality, and documentation.”

Practices are principles applied to a specific type of project. XP’s practices, for example, call for colocated
teams of up to 20 people. “Sit Together” in Chapter 6 and “The Whole Team” in Chapter 3 embody the
principles of simplicity because face-to-face communication reduces the need for formal requirements
documentation.

Further Reading
The following books are excellent resources that go into far more detail than I have room for here. Each
has a different focus, so they complement each other nicely.

Agile Software Development [Cockburn] focuses on the “individuals and interactions” aspect of agile
development. Most of his thoughts correspond to the principles I outline in Chapter 12.

* [Beck et al.], [Beck 1999], [Beck 2004], [Cockburn], [Highsmith], [Poppendieck & Poppendieck], [Schwaber & Beedle],
[Subramaniam & Hunt], [Shore 2005b], and [Stapleton].

354 C H A P T E R 1 0 :   V A L U E S A N D P R I N C I P L E S

Lean Software Development: An Agile Toolkit for Software Development Managers [Poppendieck &
Poppendieck] applies concepts from Lean Manufacturing to agile development, with emphasis on the
principles that I describe in Chapter 13 and Chapter 14.

Agile Management for Software Engineering [Anderson 2003] is a bit dense, but it has detailed coverage of
the Theory of Constraints, which I discuss in “Pursue Throughput” in Chapter 13.

Practices of an Agile Developer [Subramaniam & Hunt] is an easy-to-read collection of guidelines and advice
for agile developers, similar to what I discuss in Chapter 15.

Agile Software Development Ecosystems [Highsmith] looks at several agile methods through the lens of
people and principles. Read this if you want to understand agile development in depth.

Extreme Programming Explained [Beck 1999], [Beck 2004] discusses the thought process behind XP. It
will give you more insight into how agile principles relate to the XP practices. Try to get both editions,
if you can; they describe the same basic process from very different perspectives. Studying both books
and looking for the underlying commonalities will teach you a lot about agile values and principles.

F U R T H E R R E A D I N G 355

CHAPTER 11

Improve the Process

Agile methods are more than a list of practices to follow. When your team has learned how to perform
them effectively, you can become a great team by using the practices to modify your process.

Throughout this book, I’ve drawn attention to places where the way you perform XP may vary from
how I explain it. No two teams are exactly alike. You’ll do some things differently because you have
different people and different needs. As you master the art of agile development, you’ll learn how and
when to modify your process to take advantage of your specific situation and opportunities.

Understand Your Project
To improve your process, you must understand how it affects your project. You need to take advantage
of feedback—from the code, from the team, from customers and stakeholders—so you can understand
what works well and what doesn’t. Always pay attention to what’s happening around you. Ask “why”:
why do we follow this practice? Why is this practice working? Why isn’t this practice working?

Ask team members for their thoughts. There’s an element of truth in every complaint, so encourage
open discussion. As a team, reflect on what you’ve learned. When you discover something new, be a
mentor; when you have questions, ask a mentor. Help each other understand what you’re doing and
why.

In Practice
XP is full of feedback loops—giant conduits of information that you should use to improve your work.
Root-cause analysis and retrospectives clearly improve the team’s understanding, and other practices
reinforce the principles in more subtle ways.

For example, sitting and working together as a whole team gives team members opportunities to observe
and absorb information. This is tactical feedback, and it can reveal strategic issues when something

3 5 7

unexpected happens. Stand-up meetings and the informative workspace contribute to an information-
rich environment.

Perhaps counterintuitively, the practices of energized work, slack, and pair programming also spread
useful information. When team members are under pressure, they have trouble thinking about ways
they can improve their work. Energized work and slack reduce that pressure. Pair programming gives
one person in each pair time to think about strategy.

Test-driven development, exploratory testing, real customer involvement, iteration demos, and
frequent releases all provide information about the project, from code to user response.

Beyond Practices
Large and successful free and open source software projects often see a lot of turnover. In the five years
I’ve worked on one of these projects, dozens of people have come and gone. That’s normal, especially
for volunteers. It can take some time and effort to manage that change in personnel.

Recently, the project lead and our most prolific contributor had to reduce their time commitments. It
took us a few months to realize we had lost ground, especially because no one had taken over the project
lead’s job of producing timely releases. With everyone else reviewing changes and implementing
features, our process assumed the lead was still making releases.

This experience helped us see that tying such an important task to a single person was a mistake. To fix
it, we all agreed to divide the work. Every month, one of us takes final responsibility for creating the
release; this person produces the final tested bundle, makes the appropriate announcements, and
uploads the bundle to the master distribution site. With six people available and a release schedule
planned to the day, we’ve found a much healthier rhythm for making regular releases. If one or more
developers are unavailable, several other people can perform the same function. It’s worked—we’ve
regained our velocity and started to attract new developers again.

Tune and Adapt
When you see the need for a change, modify your process. Make the change for your team alone; though
your team may be one of many, it’s OK to do things differently. Every team’s needs are different.

These changes require tuning. Think of them as experiments; make small, isolated changes that allow
you to understand the results. Be specific about your expectations and about the measurements for
judging success. These changes are sources of feedback and learning. Use the results of your experiments
to make further changes. Iterate until you’re satisfied with the results.

Some experiments will fail, and others may actually make the process worse. Team members need to
be flexible and adaptive. Your team needs to have the courage to experiment and occasionally fail.

Changing your process requires you to have a holistic view of what you do and why. New agile teams
should be cautious about changing their process, as they don’t yet have the experience necessary to give
them that holistic understanding. Once you have the experience, use the feedback from your changes
to improve your process and your understanding of agility.

358 C H A P T E R 1 1 :   I M P R O V E T H E P R O C E S S

In Practice
Tuning and adapting is implicit in XP; teams are supposed to make changes whenever they have a reason
to do so. Many XP teams use retrospectives to give themselves a more explicit venue for considering
changes. I’ve made retrospectives an explicit practice in this book as well.

The courage to adapt is an important principle, but it’s not explicit in any single XP practice. Rather, it’s
a facet of XP’s Courage value. Similarly, the need for a holistic view has been an ongoing theme in this
book, but no specific practice reflects that principle. Instead, it’s part of XP’s Feedback value.

Beyond Practices
My anecdote about changing our team’s release process made it sound like it went more smoothly than
it really did. When the project lead left, he took with him much of the knowledge needed to produce a
release, knowledge that existed only in his head and not in permanent documents anywhere. We knew
this, but decided to take over the release process anyway.

Why? First, we had no choice if we wanted to return to monthly releases, even if there were problems
with the process. More importantly, this was the best way we could think of to identify problems with
our written process. If someone could follow the instructions to produce a full release, even if he had
never made a release before, the instructions were good. If not, he could make a list of problems and
we’d address them as a group.

That’s what happened. We discovered several problems—our distribution system wouldn’t distribute
our release to the global mirrors, it didn’t index our files correctly, and our automatic installer completely
failed to configure the source code for custom builds. Fixing each problem required us to improve our
overall process.

We made some mistakes, but it was worth it. We’ve conducted several monthly releases so far. Though
the first few were rocky, they’ve improved over time. It’s painless to release our software again.

Break the Rules
Rules are important—they exist for a reason. Yet rules can’t anticipate all situations. When established
conventions thwart your attempts to succeed, it’s time to break the rules.

How do you know when to break the rules? First, you need to understand them and their reasons for
existing. That comes with experience. Once you understand the rules, exercise pragmatic idealism:
establish an underlying set of ideals—such as the agile principles—based on practical results. Embrace
your ideals, but ground them in pragmatism. For example, “We want to avoid integration hell” is a
pragmatic result that leads to the ideal of “We will never check in code that doesn’t build or pass its tests.”

With the guidance of your principles, question existing conventions. Ask yourself, “Why do we follow
this rule? Do we really need it?” Modify, work around, or break the rules that prevent you from
achieving success.

Remember, though, that organizational support is central to success. If you break a rule, you might step
on someone’s toes. Be prepared to explain your experiment. You’ll find it’s easier to get away with
breaking rules when you’ve demonstrated that you’re trustworthy and effective.

B R E A K T H E R U L E S 359

In Practice
Rule-breaking exists more in XP folklore than in XP practices. For example, early XP teams told stories
of coming in to work on a weekend to dismantle cubicle walls, assuming that it would be easier to ask
forgiveness than permission. Ron Jeffries, one of XP’s earliest proponents, is famous for saying, “They’re
just rules”* in regard to the XP practices. He later clarified his statement:

They’re not rules, OK? They’re techniques. They’re tools we apply. They’re habits. They’re
practices—things we practice.... They are, however, darn good things to know how to do, and
do well.†

Beyond Practices
One of the seemingly inviolate rules of XP is that you always keep code quality high. It’s even an agile
principle (see “Eliminate Technical Debt” in Chapter 15). Yet even this rule is just a rule.

As cofounder of a brand-new startup, I had an opportunity to show our software at an industry
conference. We had a spike solution (see “Spike Solutions” in Chapter 9) that demonstrated some
concepts of our software, but it had no tests. We had four weeks to produce a compelling demo.

The right thing to do would have been to redevelop the spike using proper test-driven development. In
another situation, I would have done so. Yet in this case, my partner wasn’t as familiar with TDD as I
was. I had other time commitments and couldn’t do much development work. Our choices were for
me to forgo my other commitments and use TDD, introduce technical debt by developing the spike, or
have no demo for the conference.

We chose to develop the spike. Breaking the rules didn’t bother us as much as the fact that developing
the spike would incur large amounts of technical debt, but the trade-off seemed worthwhile. We created
a great demo to show, and the product was a big hit at the conference. Then we came home and felt
the pain of our decision. Four weeks of accumulated technical debt stalled our little startup for almost
three months. That’s a long time.

Still, breaking the rules was the right decision for us under the circumstances. The buzz we generated
around our product made the cost of technical debt worthwhile. The key to our success was that we
carefully and knowledgeably broke a rule to achieve a specific purpose. We were also lucky. None of our
competitors introduced a similar feature in the several months that we spent paying down our debt.

* “They’re just rules!”, http://www.xprogramming.com/Practices/justrule.htm.

† “I was wrong. They’re not rules!”, http://www.xprogramming.com/xpmag/jatNotRules.htm.

360 C H A P T E R 1 1 :   I M P R O V E T H E P R O C E S S

http://www.xprogramming.com/Practices/justrule.htm
http://www.xprogramming.com/xpmag/jatNotRules.htm

CHAPTER 12

Rely on People

Alistair Cockburn’s 1999 paper, “Characterizing people as non-linear, first-order components in
software development,” argues that the people involved in making software affect the project as much
as any method or practice. Although Cockburn calls this “stupendously obvious,” he rightly describes
it as often overlooked.

Almost every challenge in building great software is, in some way, a people problem. That challenge
may be communicating effectively, dealing with the unpredictability of moods and motives, or figuring
out how to harness people’s desire to do the right thing for the team and the project. Few problems are
solely technical.

Agile methods put people and their interactions at the center of all decisions. How can we best work
together? How can we communicate effectively? Successful software projects must address these
questions.

Build Effective Relationships
Unless you’re writing software by and for yourself, you will have to deal with at least one other person
somewhere during the process. A grudging détente is not enough; you need to work together
effectively. This means forming solid working relationships that are built on honesty, trust, cooperation,
openness, and mutual respect.

You can’t force people to do this. The best your agile method can do is support these sorts of relationships.
For example, one way to engender healthy interaction is to have people sit together and collaborate in
pursuit of common goals.

It’s far easier, unfortunately, to craft your method in a way that discourages healthy relationships. An
extreme example (sadly, one that actually happens) is forcing all developer communication with
stakeholders to go through business analysts. As another example, a sure way to damage programmer/
tester relationships is to require them to communicate solely through the bug-tracking system.

3 6 1

Blame-oriented cultures also sabotage relationships. Get rid of blame by introducing collaboration and
avoiding practices that indicate a lack of trust. Rather than forcing stakeholders to sign a requirements
document, work together to identify and clarify requirements and review progress iteratively. Rather
than telling developers that they can’t produce any bugs and testers that they must find all the bugs,
ask developers and testers to work together to ensure that customers don’t find any bugs.

It’s easy—especially for technical people—to get caught up in the details of a particular solution.
Encourage cooperation and experimentation while respecting the distinction between ideas and people.
Credit isn’t important. Being right isn’t important. Treating your team members with respect and
cooperating to produce great software is important.

In Practice
Although no process can enforce effective relationships, XP does a good job of enabling them. The most
obvious example is the use of a cross-functional team in a common workspace. With the weekly iteration
demo, teams reach out to stakeholders as well. XP also emphasizes the importance of including real
customers in the process.

Everyday practices such as stand-up meetings, collective code ownership, ubiquitous language, the
planning game, and pair programming help reinforce the idea that team members work together to
achieve common goals.

Beyond Practices
XP recommends colocated teams for a reason: it’s much easier to communicate and form solid working
relationships when you’re all in the same room. Yet some teams can’t or won’t sit together. How do
you deal with this challenge?

One of my hobbies is working on a long-term free software project, which consists of a core team of
developers located around the globe. We communicate virtually, and this has led to some challenges.

For example, one developer—I’ll call him “Bob”—has an abrupt communication style. This occasionally
leads to friction with people who don’t know Bob well and think he’s being rude. In fact, he’s just not
a native English speaker and is laconic by nature. This sort of problem seems to occur in all distributed
teams; it’s easy to assume the worst about someone’s motivation when you can’t talk face-to-face.

To prevent the problems from escalating, our team decided to meet in person as often as possible—
typically three or four times a year. Bob attended a recent gathering, and afterward, team members
commented that they understood his communication style much better. They realized it wasn’t
personal, but rather an artifact of his culture.

Our team also instituted weekly meetings. They’re virtual meetings, but they help us understand what
everyone is working on. The meetings contribute to our cohesiveness and shared direction, and they
help curtail unhelpful tangents.

A distributed team—particularly one that’s staffed with part-time volunteers, as ours is—always faces
communication challenges, so it’s important to address them and make changes that enable you to work
and communicate better.

362 C H A P T E R 1 2 :   R E L Y O N P E O P L E

Let the Right People Do the Right Things
A functioning team is not enough. You need to have the right people working well together. You need
a diverse range of expertise. Once you find the right people, trust them to do their jobs. Instead of
creating a process that protects your organization from its employees, create a process that enables team
members to excel.

Give the team control over its own work. They’re the experts—that’s why they’re on the team. Trust
them, and back up that trust by giving them authority over the project’s success. If you can’t trust your
team, you don’t have the right people. No one is perfect, but you need a team that, as a whole, you can
trust.

NOTE
Authority over day-to-day decisions extends to your agile process as well. Use the agile
principles to change your own process rather than allowing someone to impose process
changes.

Within the team, anyone can be a leader. Encourage team members to turn to the person or people
most qualified to make a necessary decision. For example, when you need design decisions, ask your
senior programmers for help. When you need business decisions, ask your most experienced
businessperson to make the right choice.

Leadership doesn’t mean pounding on the table or shouting, “I’m most senior, so we’ll do it my way!”
Leadership comes by leading. If the team thinks you’re most qualified to make a decision, they’ll follow
your guidance. If not, don’t act as if you have authority over them, even if you think you do. Managers,
rather than telling the team what to do, let the team tell you what they need you to do to help them
succeed.

In Practice
This principle has two parts: first, get the right people, then give them the power do their work right.
XP supports the first part by including customers and testers on the team and involving real customers
when appropriate.

XP supports the second part—giving team members the power to do their work right—with many of
its practices. XP has a coach, not a team lead, who helps, not directs, team members. The planning game
helps the team share leadership by acknowledging the expertise of both developers and business experts.
As XP teams mature, they practice self-organization; they leave behind rules about who is in charge of
what, and instead turn to the natural leader for the current task.

Beyond Practices
Adrian Howard tells the story of a team taking responsibility for its success, which helped the
organization give it the authority it needed:*

I worked on a (nonagile) project a few years ago where we had a big cork board that had cards
for the tasks each of us was doing divided into three areas:

* Originally posted to the XP mailing list, http://tech.groups.yahoo.com/group/extremeprogramming/message/88438. Used with permission.

L E T T H E R I G H T P E O P L E D O T H E R I G H T T H I N G S 363

http://tech.groups.yahoo.com/group/extremeprogramming/message/88438

1. Todo

2. In progress (subdivided by developer)

3. Done

Cards migrated from 1->2->3 over time. Big open plan office so everybody could see the board.

We were initially cursed by interruptions... we drew management’s attention to the deadline
slippage they caused with very little effect. The development team was regularly shouted at
for missing deadlines. Much sadness, overtime and crying into pints.

After some discussion the dev team created a new policy with the cards. As soon as somebody
was asked to do something not related to an in-progress task they would get up and, taking
the interrupter to the board, move their current in-progress card back to the todo area of the
cork board. Only then would they go and solve the new problem.

After a couple of weeks an area below the “todo” section evolved into a[n] “on hold” section
—and we asked the interrupter to initial the card when we moved it.

This pretty much stopped trivial interruptions stone cold dead. It also killed the previous blame-
the-team culture for deadline slippage. People actually started apologising to us when the
deadline slipped!

No new information was being gathered. We had always kept comprehensive time sheets and
could always point to what we had been doing. What had changed was that the big public
display of progress was visibly going backwards when we were interrupted—and the whole
company could see it every time it happened, as it happened (and who was causing it).

Build the Process for the People
Agile methods recognize the humanity at the core of software development. Agile methods are built
around people, not machines. Working effectively requires an understanding deeper than the surface
mechanics of how people interact or who makes decisions.

One aspect of humanity is that we’re fallible. We make mistakes, forget important practices, and
obstinately refuse to do things that are good for us—especially when we’re tired or under stress.

We have strengths, too. We are creative, playful, and—under the right circumstances—passionate and
driven to succeed. No machine can match these characteristics.

As you modify your agile method, work with these essential strengths and weaknesses. Don’t require
perfection; instead, build your process to identify and fix mistakes quickly. Do take advantage of your
team’s creativity. If a task is boring and repetitive, automate it.

Have fun, too. Software development may be big business, but the best developers I know love their
jobs. They’re passionate about their projects, and they also joke and play. The great teams I know
socialize outside of work. There’s no way for your agile method to enforce this, but you can create the
conditions for it to happen by identifying and eliminating the barriers to natural social interaction.

In Practice
XP’s demand for self-discipline seems to violate this principle of understanding human weakness. People
aren’t good at being self-disciplined all the time, so how can XP succeed?

364 C H A P T E R 1 2 :   R E L Y O N P E O P L E

XP handles the challenge of self-discipline in several ways. First, software developers love to produce
high-quality work; once they see the quality of code that XP provides, they tend to love it. They may
not always stay disciplined about the practices, but they generally want to follow the practices. Allowing
people to take responsibility for their own quality encourages them to work to their full potential.

Second, energized work and pair programming give developers the support they need to be disciplined.
Developers that want to follow the practices are most likely to break them when they feel tired or
frustrated. Energized work reduces the likelihood of this happening. Pair programming provides positive
peer pressure and additional support; if one member of the pair feels like taking an ill-advised shortcut,
the other often reins him in.

Finally, while XP requires that the team be generally disciplined, it doesn’t require perfection. If a pair
makes a poor decision, collective code ownership means that another pair is likely to see it and fix it
later. Ultimately, XP assumes that the design is fluid—refactoring and incremental design make it much
easier to fix mistakes, while iterative design and adaptive planning put the most valuable features of the
code under continual review.

XP works with the team’s essential humanity in other ways, too. Among them are the automated build,
which replaces tedious tasks with automated scripts, and test-driven development, which uses baby
steps and constant feedback to help programmers spot and fix mistakes as soon as they occur.

Beyond Practices
A friend—“Mel”—used to work for a small consulting company. The shop had three to five developers
and twice that many clients at any time, so it was common for them to work on several projects during
the week. To simplify billing, the company used a custom time-tracking application that ran constantly
in Windows, requiring developers to enter different billing codes whenever they changed tasks.

That single application was the only reason the developers needed to use Windows, as they deployed
almost exclusively to Linux-based platforms. The lack of access to native tools occasionally caused
problems. Regular task-switching—the reason for the time-tracking application—was often a more
serious problem among the developers than minute-by-minute statistics.

Mel’s solution had two parts. First, he dedicated his mornings to small tasks such as addressing bug
reports or minor enhancements or customer requests. The minimum billable unit was 15 minutes,
which was just about enough time to get into a flow state for any particular project. This left his
afternoons (his most productive time) for longer tasks of two to four hours. Very few customer requests
needed immediate solutions, and most of the customers were on the East Coast with a three-hour time
difference; when he returned from lunch at 1 p.m., his customers were preparing to leave for the day.

The second part of the solution was using index cards to record task times. This was often faster than
finding the right billing codes in the application. It also meant that Mel could boot his computer into
Linux and stay there, then enter his stats into the application on another machine just before leaving
for the day. The other developers noticed Mel’s productivity increase, and he was only too happy to
share his ideas. When their manager realized that everyone had switched to a new system, the results
were inarguable. The developers were happier and more productive.

B U I L D T H E P R O C E S S F O R T H E P E O P L E 365

CHAPTER 13

Eliminate Waste

It’s difficult to change the course of a heavy cruise ship, whereas a river kayak dances through rapids
with the slightest touch of the paddle. Although a cruise ship has its place, the kayak is much more agile.

Agility requires flexibility and a lean process, stripped to its essentials. Anything more is wasteful.
Eliminate it! The less you have to do, the less time your work will take, the less it will cost, and the more
quickly you will deliver.

You can’t just cut out practices, though. What’s really necessary? How can you tell if something helps
or hinders you? What actually gets good software to the people who need it? Answering these questions
helps you eliminate waste from your process and increase your agility.

Work in Small, Reversible Steps
The easiest way to reduce waste is to reduce the amount of work you may have to throw away. This
means breaking your work down into its smallest possible units and verifying them separately.

Sometimes while debugging, I see multiple problems and their solutions at once. Shotgun debugging is
tempting, but if I try several different solutions simultaneously and fix the bug, I may not know which
solution actually worked. This also usually leaves a mess behind. Incremental change is a better approach.
I make one well-reasoned change, observe and verify its effects, and decide whether to commit to the
change or revert it. I learn more and come up with better—and cleaner—solutions.

This may sound like taking baby steps, and it is. Though I can work for 10 or 15 minutes on a feature
and get it mostly right, the quality of my code improves immensely when I focus on a very small part
and spend time perfecting that one tiny piece before continuing. These short, quick steps build on each
other; I rarely have to revert any changes.

If the step doesn’t work, I’ve spent a minute or two learning something and can backtrack a few
moments to position myself to make further progress. These frequent course corrections help me get
where I really want to go. Baby steps reduce the scope of possible errors to only the most recent changes,
which are small and fresh in my mind.

3 6 7

In Practice
The desire to solve big, hairy problems is common in developers. Pair programming helps us encourage
each other to take small steps to avoid unnecessary embellishments. Further, the navigator concentrates
on the big picture so that both developers can maintain perspective of the system as a whole.

Test-driven development tprovides a natural rhythm with its think-test-design-code-refactor cycle. The
successful end of every cycle produces a stable checkpoint at which the entire system works as designed;
it’s a solid foothold from which to continue. If you go wrong, you can quickly revert to the prior known-
good state.

At a higher level, stories limit the total amount of work required for any one pairing session. The
maximum size of a step cannot exceed a few days. As well, continuous integration spreads working
code throughout the whole team. The project makes continual, always-releasable progress at a reliable
pace.

Finally, refactoring enables incremental design. The design of the system proceeds in small steps as
needed. As developers add features, their understanding of the sufficient and necessary design will
evolve; refactoring allows them to refine the system to meet its optimal current design.

Beyond Practices
Last summer, I introduced a friend to pair programming. She wanted to automate a family history
project, and we agreed to write a parser for some sample genealogical data. The file format was complex,
with some interesting rules and fields neither of us understood, but she knew which data we needed
to process and which data we could safely ignore.

We started by writing a simple skeleton driven by tests. Could we load a file by name effectively? Would
we get reasonable errors for exceptional conditions?

Then the fun began. I copied the first few records out of the sample file for test data and wrote a single
test: could our parser identify the first record type? Then I pushed the keyboard to her and said, “Make
it pass.”

“What good is being able to read one record, and just the type?” she wondered, but she added two lines
of code and the test passed. I asked her to write the next test. She wrote one line to check if we could
identify the person’s name from that record and pushed the keyboard back my way.

I wrote three lines of code. The test passed. Then I wrote a test to identify the next record type. Of course
it failed. As I passed back the keyboard, we discussed ways to make it pass. I suggested hardcoding the
second type in the parsing method. She looked doubtful but did it anyway, and the tests all passed.

“It’s time to refactor,” I said, and we generalized the method by reducing its code. With her next test, I
had to parse another piece of data from both record types. This took one line.

We continued that way for two hours, adding more and more of the sample file to our test data as we
passed more tests. Each time we encountered a new feature of the file format, we nibbled away at it
with tiny tests. By the end of that time, we hadn’t finished, but we had a small amount of code and a
comprehensive test suite that would serve her well for further development.

368 C H A P T E R 1 3 :   E L I M I N A T E W A S T E

Fail Fast
It may seem obvious, but failure is another source of waste. Unfortunately, the only way to avoid failure
entirely is to avoid doing anything worthwhile. That’s no way to excel. As [DeMarco & Lister 2003]
said, “Projects with no real risks are losers. They are almost always devoid of benefit; that’s why they
weren’t done years ago.”

Instead of trying to avoid failure, embrace it. Think, “If this project is sure to fail, I want to know that
as soon as possible.” Look for ways to gather information that will tell you about the project’s likelihood
of failure. Conduct experiments on risk-prone areas to see if they fail in practice. The sooner you can
cancel a doomed project, the less time, effort, and money you’ll waste on it.

Failing fast applies to all aspects of your work, to examples as small as buying a bag of a new type of
coffee bean rather than a crate. It frees you from worrying excessively about whether a decision is good
or bad. If you’re not sure, structure your work so that you expose errors as soon as they occur. If it fails,
let it fail quickly, rather than lingering in limbo. Either way, invest only as much time and as many
resources as you need to be sure of your results.

With these principles guiding your decisions, you’ll fear failure less. If failure doesn’t hurt, then it’s OK
to fail. You’ll be free to experiment and take risks. Capitalize on this freedom: if you have an idea, don’t
speculate about whether it’s a good idea—try it! Create an experiment that will fail fast, and see what
happens.

In Practice
One of the challenges of adopting XP is that it tends to expose problems. For example, iterations, velocity,
and the planning game shine the harsh light of fact on your schedule aspirations.

This is intentional: it’s one of the ways XP helps projects fail fast. If your desired schedule is unachievable,
you should know that. If the project is still worthwhile, either reduce scope or change your schedule.
Otherwise, cancel the project. This may seem harsh, but it’s really just a reflection of the “fail fast”
philosophy.

This mindset can be foreign for organizations new to XP. It’s particularly troubling to organizations that
habitually create unrealistic schedules. When XP fails fast in this sort of organization, blame—not
credit—often falls on XP. Yet cancelling a project early isn’t a sign of failure in XP teams; it’s a success.
The team prevented a doomed project from wasting hundreds of thousands of dollars! That’s worth
celebrating.

Beyond Practices
I once led a development team on a project with an “aggressive schedule.” Seasoned developers
recognize this phrase as a code for impending disaster. The schedule implicitly required the team to
sacrifice their lives in a misguided attempt to achieve the unachievable.

I knew before I started that we had little chance of success. I accepted the job anyway, knowing that
we could at least fail fast. This was a mistake. I shouldn’t have assumed.

Because there were clear danger signs for the project, our first task was to gather more information. We
conducted three two-week iterations and created a release plan. Six weeks after starting the project, we
had a reliable release date. It showed us coming in very late.

F A I L F A S T 369

I thought this was good news—a textbook example of failing fast. We had performed an experiment
that confirmed our fears, so now it was time to take action: change the scope of the project, change the
date, or cancel the project. We had a golden opportunity to take a potential failure and turn it into a
success, either by adjusting our plan or cutting our losses.

Unfortunately, I hadn’t done my homework. The organization wasn’t ready to accept the possibility of
failure. Rather than address the problem, management tried to force the team to meet the original
schedule. After realizing that management wouldn’t give us the support we needed to succeed, I
eventually resigned.

Management pressured the remaining team members to work late nights and weekends—a typical
death-march project—to no avail. The project delivered very late, within a few weeks of our velocity-
based prediction, and the company lost the client. Because the organizational culture made it impossible
to fail fast, the project was doomed to fail slowly.

How could the team have succeeded? In a sense, we couldn’t. There was no way for this project to
achieve its original schedule, scope, and budget. (Unsurprisingly, that plan had no connection to the
programmers’ estimates.) The best we could have done was to fail fast, then change the plan.

What could I have done differently? My mistake was taking on the project in the first place. I knew the
existing schedule was unrealistic, and I assumed that objective proof of this would be enough to change
everyone’s mind. I should have checked this assumption and—when it proved incorrect—declined the
project.

What could the organization have done differently? Several things. It could have adopted an
incremental delivery strategy, where we’d release the software after every iteration in the hope of
delivering value more quickly. It could have cut the scope of the first milestone to a manageable set of
features. Finally, it could have increased the available resources (up to a point) to allow us to increase
our velocity.

Unfortunately, this organization couldn’t face failure, which prevented them from changing their plan.
Organizations that can face failure are capable of embracing change in their projects. Paradoxically,
facing failure gives them the ability to turn potential failures into successes.

Maximize Work Not Done
The agile community has a saying: “Simplicity is the art of maximizing the work not done.” This idea is
central to eliminating waste. To make your process more agile, do less.

However, you can’t take so much out of your process that it no longer works. As Albert Einstein said,
“Everything should be made as simple as possible, but not one bit simpler.” Often, this means
approaching your work in a new way.

Simplifying your process sometimes means sacrificing formal structures while increasing rigor. For
example, an elegant mathematical proof sketched on the back of a napkin may be rigorous, but it’s
informal. Similarly, sitting with customers decreases the amount of formal requirements documentation
you create, but it substantially increases your ability to understand requirements.

Solutions come from feedback, communication, self-discipline, and trust. Feedback and direct
communication reduce the need for intermediate deliverables. Self-discipline allows team members to
work without the binding overhead of formal structures. Trust can replace the need to wait days—or
longer—for formal signoffs.

370 C H A P T E R 1 3 :   E L I M I N A T E W A S T E

Paring down your practices to the responsible essentials and removing bottlenecks lets you travel light.
You can maximize the time you spend producing releasable software and improve the team’s ability to
focus on what’s really important.

In Practice
XP aggressively eliminates waste, more so than any method I know. It’s what makes XP extreme.

By having teams sit together and communicate directly, XP eliminates the need for intermediate
requirements documents. By using close programmer collaboration and incremental design, XP eschews
written design documents.

XP also eliminates waste by reusing practices in multiple roles. The obvious benefit of pair programming,
for example, is continuous code review, but it also spreads knowledge throughout the team, promotes
self-discipline, and reduces distractions. Collective code ownership not only enables incremental design
and architecture, it removes the time wasted while you wait for someone else to make a necessary API
change.

Beyond Practices
ISO 9001 certification is an essential competitive requirement for some organizations. I helped one such
organization develop control software for their high-end equipment. This was the organization’s first
XP project, so we had to figure out how to make ISO 9001 certification work with XP. Our challenge
was to do so without the waste of unnecessary documentation procedures.

Nobody on the team was an expert in ISO 9001, so we started by asking one of the organization’s internal
ISO 9001 auditors for help. (This was an example of the “Let the Right People Do the Right Things”
principle, covered in Chapter 12.) From the auditor, we learned that ISO 9001 didn’t mandate any
particular process; it just required that we had a process that achieved certain goals, that we could prove
we had such a process, and that we proved we were following the process.

This gave us the flexibility we needed. To keep our process simple, we reused our existing practices to
meet our ISO 9001 rules. Rather than creating thick requirements documents and test plans to
demonstrate that we tested our product adequately, we structured our existing customer testing practice
to fill the need. In addition to demonstrating conclusively that our software fulfilled its necessary
functions, the customer tests showed that we followed our own internal processes.

Pursue Throughput
A final source of waste isn’t immediately obvious. The manufacturing industry calls it inventory. In
software development, it’s unreleased software. Either way, it’s partially done work—work that has cost
money but has yet to deliver any value.

Partially done work represents unrealized investment. It’s waste in the form of opportunity cost, where
the investment hasn’t yet produced value but you can’t use the resources it cost for anything else.

Partially done work also hurts throughput, which is the amount of time it takes for a new idea to become
useful software. Low throughput introduces more waste. The longer it takes to develop an idea, the
greater the likelihood that some change of plans will invalidate some of the partially done work.

P U R S U E T H R O U G H P U T 371

To minimize partially done work and wasted effort, maximize your throughput. Find the step in your
process that has the most work waiting to be done. That’s your constraint: the one part of your process
that determines your overall throughput. In my experience, the constraint in software projects is often
the developers. The rate at which they implement stories governs the amount of work everyone else
can do.

To maximize throughput, the constraint needs to work at maximum productivity, whereas the other
elements of your process don’t. To minimize partially finished work, nonconstraints should produce
only enough work to keep the constraint busy, but not so much that there’s a big pile of outstanding
work. Outstanding work means greater opportunity costs and more potential for lost productivity due
to changes.

Minimizing partially done work means that everyone but the constraint will be working at less than
maximum efficiency. That’s OK. Efficiency is expendable in other activities. In fact, it’s important that
nonconstraints have extra time available so they can respond to any needs that the constraint might
have, thus keeping the constraint maximally productive.

NOTE
These ideas come from The Theory of Constraints. For more information, see [Goldratt
1997], an excellent and readable introduction. For discussion specific to software
development, see [Anderson 2003].

In Practice
XP planning focuses on throughput and minimizing work in progress. It’s central to the iteration
structure. Every iteration takes an idea—a story—from concept to completion. Each story must be “done
done” by the end of the iteration.

XP’s emphasis on programmer productivity—often at the cost of other team members’ productivity—
is another example of this principle. Although having customers sit with the team full-time may not be
the most efficient use of the customers’ time, it increases programmer productivity. If programmers are
the constraint, as XP assumes, this increases the team’s overall throughput and productivity.

Beyond Practices
Our project faced a tight schedule, so we tried to speed things up by adding more people to the project.
In the span of a month, we increased the team size from 7 programmers to 14 programmers, then to
18 programmers. Most of the new programmers were junior-level.

This is a mistake as old as software itself. Fred Brooks stated it as Brooks’ Law in 1975: “Adding manpower
to a late software project makes it later” [Brooks] (p. 25).

In this particular project, management ignored our protestations about adding people, so we decided to
give it our best effort. Rather than having everyone work at maximum efficiency, we focused on
maximizing throughput.

We started by increasing the size of the initial development team—the Core Team—only slightly, adding
just one person. The remaining six developers formed the SWAT Team. Their job was not to work on
production software, but to remove roadblocks that hindered the core development team. Every few
weeks, we swapped one or two people between the two teams to share knowledge.

372 C H A P T E R 1 3 :   E L I M I N A T E W A S T E

This structure worked well for us. It was a legacy project, so there were a lot of hindrances blocking
development. One of the first problems the SWAT Team handled was fixing the build script, which
would often fail due to Windows registry or DLL locking issues. By fixing this, the SWAT Team enabled
the Core Team to work more smoothly.

Later, we had to add four more inexperienced programmers. We had run out of space by this time.
Lacking a better option, we put the new programmers in a vacant area two flights of stairs away. We
continued to focus our efforts on maintaining throughput. Not wanting to spread our experienced
developers thin, we kept them concentrated in the Core Team, and since the SWAT Team was working
well, we decided to leave the new team out of the loop. We deliberately gave them noncritical
assignments to keep them out of our hair.

Overall, this approach was a modest success. By focusing on throughput rather than individual
efficiency, we were able to withstand the change. We more than doubled our team size, with mostly
junior developers, without harming our productivity. Although our productivity didn’t go up, such a
deluge of people would normally cause a team to come to a complete standstill. As it was, pursuing
throughput allowed us to maintain our forward momentum. In better circumstances—fewer new
developers, or developers with more experience—we could have actually increased our productivity.

P U R S U E T H R O U G H P U T 373

CHAPTER 14

Deliver Value

Your software only begins to have real value when it reaches users. Only at that point do you start to
generate trust, to get the most important kinds of feedback, and to demonstrate a useful return on
investment. That’s why successful agile projects deliver value early, often, and repeatedly.

Exploit Your Agility
Simplicity of code and process are aesthetically pleasing. Yet there’s a more important reason why agility
helps you create great software: it improves your ability to recognize and take advantage of new
opportunities.

If you could predict to the hour how long your project would take, know what risks would and wouldn’t
happen, and completely eliminate all surprises, you wouldn’t need agility—you would succeed with
any development method.

However, what you don’t know is exciting. A new crisis or happy discovery next week could completely
change the rules of the game. You may discover a brilliant new technique that simplifies your code, or
your customer may develop a new business practice that saves time and money.

Want to deliver real value? Take advantage of what you’ve learned and change your direction
appropriately. Adapting your point of view to welcome changing requirements gives you great
opportunities. Delivering value to your customer is your most important job. Aggressively pursuing
feedback from your customer, from real users, from other team members, and from your code itself as
early and as often as possible allows you to continue to learn and improve your understanding of the
project. It also reveals new opportunities as they appear.

Agility requires you to work in small steps, not giant leaps. A small initial investment of time and
resources, properly applied, begins producing quantifiable value immediately. As well, committing to
small amounts of change makes change itself more possible. This is most evident when customer
requirements outline their needs at a very high level, through stories that promise further clarification
during development.

3 7 5

Aggressively seeking feedback and working in small steps allows you to defer your investment of
resources until the last responsible moment. You can start to see the value from a piece of work as you
need it, rather than hoping to benefit from it someday in the future.

In Practice
XP exploits agility by removing the time between taking an action and observing its results, which
improves your ability to learn from this feedback. This is especially apparent when the whole team sits
together. Developing features closely with the on-site customer allows you to identify potential
misunderstandings and provides nearly instant responses to questions. Including real customers in the
process with frequent deliveries of the actual software demonstrates its current value to them.

XP allows changes in focus through short work cycles. Using simultaneous phases enables you to put a
lesson into practice almost immediately, without having to wait for the next requirements gathering or
testing or development phase to roll back around in the schedule. The short work unit of iterations and
frequent demos and releases create a reliable rhythm to make measured process adjustments. Slack
provides spare time to make small but necessary changes within an iteration without having to make
difficult choices about cutting essential activities.

Beyond Practices
I worked for a small startup whose major product was an inventory management system targeted at a
specific retail industry. We had the top retailers and manufacturers lined up to buy our project. We were
months away from delivery when our biggest customer ran into a problem: the license for their existing
point-of-sale system suddenly expired. The software included a call-home system that checked with the
vendor before starting.

Our plans included developing our own POS system, but that was at least several months away. Our
current system managed inventory, but we hadn’t done specific research on supporting various terminal
types, credit card scanners, and receipt printers.

This was our largest customer, and without its business, we’d never succeed.

After discussing our options and the project’s requirements with the customer, we decided that we could
build just enough of the POS system within six weeks that they could switch to our software and avoid
a $30,000 payment to the other vendor.

We were very fortunate that our existing customers needed very little work from us in that period. We
shifted two-thirds of our development team to the POS project. Though we started from an open source
project we’d found earlier, we ended up customizing it heavily.

After two weeks of development, we delivered the first iteration on a new machine we had built for the
customer to test. We delivered weekly after that. Though it was hard work, we gradually added new
features based on the way our customer did business. Finally, the only remaining task was to change a
few lines in the GUI configuration to match the customer’s store colors. We saved our customer plenty
of money, and we saved our account.

Only Releasable Code Has Value
Having the best, most beautiful code in the world matters very little unless it does what the customer
wants. It’s also true that having code that meets customer needs perfectly has little value unless the

376 C H A P T E R 1 4 :   D E L I V E R V A L U E

customer can actually use it. Until your software reaches the people who need it, it has only potential
value.

Delivering actual value means delivering real software. Unreleasable code has no value. Working
software is the primary measure of your progress. At every point, it should be possible to stop the project
and have actual value proportional to your investment in producing the software.

Any functional team can change its focus in a week or a month, but can they do so while maximizing
their investment of time and resources to deliver software regularly? Do they really finish code—does
“done” mean “done done”—or do they leave an expanding wake of half-finished code? Do they keep
their project releasable at any time?

Agility and flexibility are wonderful things, especially when combined with iterative incremental
development. Throughput is important! Besides reducing thrashing and waste, it provides much better
feedback, and not just in terms of the code’s quality. Only code that you can actually release to customers
can provide real feedback on how well you’re providing value to your customers.

That feedback is invaluable.

In Practice
The most important practice is that of “done done,” where work is either complete or incomplete. This
unambiguous measure of progress immediately lets you know where you stand.

Test-driven development produces a safety net that catches regressions and deviations from customer
requirements. A well-written test suite can quickly identify any failures that may reduce the value of
the software. Similarly, continuous integration ensures that the project works as a whole multiple times
per day. It forces any mistakes or accidents to appear soon after their introduction, when they’re easiest
to fix. The 10-minute build reduces the bottlenecks in this process to support its frequency.

Practicing “no bugs” is a good reminder that deferring important and specific decisions decreases the
project’s value—especially if those decisions come directly from real customer feedback.

Beyond Practices
I was once on a project that had been running for four months and was only a few weeks away from
its deadline when it was abruptly halted. “We’re way over budget and didn’t realize it,” the manager
told me. “Everybody has to go home tomorrow.”

We were all contractors, but the suddeness of the project’s cancellation surprised us. I stayed on for one
more week to train one of the organization’s employees—“Joe”—just in case they had the opportunity
to pick up the code again in the future.

Although this wasn’t an XP project, we had been working in iterations. We hadn’t deployed any of the
iteration releases (I now know that would have been a good idea), but the last iteration’s result was
ready to deploy. Joe and I did so, then spent the rest of the week fixing some known bugs.

This might have been a textbook example of good project management, except for one problem: our
release wasn’t usable. We had worked on features in priority order, but our customers gave us the wrong
priorities! A feature they had described as least important for the first release was in fact vitally
important: security. That feature was last on our list, so we hadn’t implemented it. If we had deployed
our interim releases, we would have discovered the problem. Instead, it blindsided us and left the
company without anything of value.

O N L Y R E L E A S A B L E C O D E H A S V A L U E 377

Fortunately, the company brought us back a few months later and we finished the application.

Deliver Business Results
What if you could best meet your customer’s need without writing any software? Would you do it?
Could you do it?

Someday that may happen to you. It may not be as dramatic as telling a recurring customer that he’ll
get better results if you don’t write software, but you may have to choose between delivering code and
delivering business results.

Value isn’t really about software, after all. Your goal is to deliver something useful for the customer.
The software is merely how you do that. The single most essential criterion for your success is the fitness
of the project for its business purposes. Everything else is secondary—not useless by any means, but of
lesser importance.

For example, agile teams value working software over comprehensive documentation. Documentation
is valuable—communicating what the software must do and how it works is important—but your first
priority is to meet your customer’s needs. Sometimes that means producing good documentation.
Usually it means delivering good software, but not always. The primary goal is always to provide the
most valuable business results possible.

In Practice
XP encourages close involvement with actual customers by bringing them into the team, so they can
measure progress and make decisions based on business value every day. Real customer involvement
allows the on-site customer to review these values with end-users and keep the plan on track. Their
vision provides answers to the questions most important to the project.

XP approaches its schedule in terms of customer value. The team works on stories phrased from the
customer’s point of view and verifiable by customer testing. After each iteration, the iteration demo
shows the team’s current progress to stakeholders, allowing them to verify that the results are valuable
and to decide whether to continue development.

Beyond Practices
A friend—“Aaron”—recently spent a man-month writing 1,500 lines of prototype code that generated
$7.8 million in revenue during its first demo.

As a graduate student, he interned with a technology company doing research on handwriting
recognition with digital pens containing sensors and recording equipment. A customer made an off-
hand remark about how useful it might be to use those special pens with printed maps. Suddenly, Aaron
had a research assignment.

The largest potential customer used an existing software package to send map data to field agents to
plan routes and identify waypoints. Aaron modified the pen software to send coordinate information
on printed pages. Then he found a way to encode the pen’s necessary calibration data on color laser
printouts. The final step was to use the API of the customer’s software to enter special pen events—
mark waypoint, identify route, etc. In effect, all of his code merely replaced the clunky mouse-based UI
with the act of drawing on a custom-printed map, then docking the pen.

378 C H A P T E R 1 4 :   D E L I V E R V A L U E

A few minutes into the first demo, the customer led the sales rep to the control room for a field exercise.
After installing the software and connecting the pen’s dock, the rep handed the pen and a printed map
to one of the techs. The tech had never seen the product before and had no training, but he immediately
circled an objective on the map and docked the pen. In seconds, the objective appeared on the vehicle
displays as well as on the PDAs of the field agents.

The customer placed an order for a license and hardware for everyone at the location. That’s business
results.

Deliver Frequently
If you have a business problem, a solution to that problem today is much more valuable than a solution
to that problem in six months—especially if the solution will be the same then as it is now. Value is
more than just doing what the customer needs. It’s doing what the customer needs when the customer
needs it.

Delivering working, valuable software frequently makes your software more valuable. This is especially
true when a real customer promotes the most valuable stories to the start of the project. Delivering
working software as fast as possible enables two important feedback loops. One is from actual customers
to the developers, where the customers use the software and communicate how well it meets their
needs. The other is from the team to the customers, where the team communicates by demonstrating
how trustworthy and capable it is.

Frequent delivery tightens those loops. Customers see that their involvement in the process makes a
real difference to their work. Developers see that they’re helping real people solve real problems. The
highest priority of any software project is to deliver value, frequently and continuously, and by doing
so, to satisfy the customer. Success follows.

In Practice
Once you’ve identified what the customer really needs and what makes the software valuable, XP’s
technical practices help you achieve fast and frequent releases. Short iterations keep the schedule light
and manageable by dividing the whole project into week-long cycles, culminating in a deliverable
project demonstrated in the iteration demo. This allows you to deliver once a week, if not sooner.

Practicing the art of “done done” with discipline keeps you on track, helping you identify how much
work you have finished and can do while reminding you to pursue throughput. Keeping a ten-minute
build reminds you to reduce or remove any unnecessary technical bottlenecks to producing a release.
The less work and frustration, and the more automation, the easier it is to deliver a freshly tested,
working new build.

Beyond Practices
According to founder Cal Henderson,* the photo-sharing web site Flickr has practiced frequent delivery
from its earliest days. There was no single decision to do so; it was just an extension of how its founders
worked. Rather than batching up new features, they released them to users as soon as possible. This
helped simplify their development and reduced the cost of fixing bugs.

* Via personal communication.

D E L I V E R F R E Q U E N T L Y 379

The early days of Flickr were somewhat informal. When there were only three committers on the
project, asking if the trunk was ready to deploy required asking only two other people. Now the team
assumes that the trunk is always ready to deploy to the live site. The most important component of this
process is a group of strong and responsible developers who appreciate the chance to manage, code,
test, stage, and deploy features. The rest of the work is standard agility—working in small cycles, rigorous
testing, fixing bugs immediately, and taking many small risks.

The results are powerful. When a user posts a bug to the forum, the team can often fix the problem and
deploy the new code to the live site within minutes. There’s no need to wait for other people to finish
a new feature. It’s surprisingly low-risk, too. According to Henderson, “The number of nontrivial
rollbacks on the Flickr code base is still zero.”

380 C H A P T E R 1 4 :   D E L I V E R V A L U E

CHAPTER 15

Seek Technical Excellence

I like logical frameworks and structures. When I think about technical excellence, I can’t help but
wonder: “What’s the intellectual basis for design? What does it mean to have a good design?”

Unfortunately, many discussions of “good” design focus on specific techniques. These discussions often
involve assumptions that one particular technology is better than another, or that rich object-oriented
domain models or stored procedures or service-oriented architectures are obviously good.

With so many conflicting points of view about what’s obviously good, only one thing is clear: good isn’t
obvious.

Some folks describe good design as elegant or pretty. They say that it has the Quality Without a Name
(QWAN)—an ineffable sense of rightness in the design. The term comes from Christopher Alexander,a
building architect whose thoughts on patterns inspired software’s patterns movement.

I have a lot of sympathy for QWAN. Good design is Truth and Beauty. There’s just one problem. My
QWAN is not your QWAN. My Truth and Beauty is your Falsehood and Defilement. My beautiful
domain models are uglier than your stored procedures, and vice versa.

QWAN is just too vague. I want a better definition of good design.

Software Doesn’t Exist
Let me digress for a moment: software doesn’t exist. OK, I exaggerate—but only slightly.

When you run a program, your computer loads a long series of magnetic fields from your hard drive
and translates them into capacitances in RAM. Transistors in the CPU interpret those charges, sending
the results out to peripherals such as your video card. More transistors in your monitor selectively allow
light to shine through colored dots onto your screen.

Yet none of that is software. Software isn’t even ones and zeros; it’s magnets, electricity, and light. The
only way to create software is to toggle electrical switches up and down—or to use existing software to
create it for you.

3 8 1

You write software, though, don’t you?

Actually, you write a very detailed specification for a program that writes the software for you. This
special program translates your specification into machine instructions, then directs the computer’s
operating system to save those instructions as magnetic fields on the hard drive. Once they’re there,
you can run your program, copy it, share it, or whatever.

You probably see the punchline coming. The specification is the source code. The program that translates
the specification into software is the compiler. Jack Reeves explores the implications in his famous essay,
“What is Software Design?”*

Design Is for Understanding
If source code is design, then what is design? Why do we bother with all these UML diagrams and CRC
cards and discussions around a whiteboard?

All these things are abstractions—even source code. The reality of software’s billions of evanescent
electrical charges is inconceivably complex, so we create simplified models that we can understand.
Some of these models, like source code, are machine-translatable. Others, like UML, are not—at least
not yet.

Early source code was assembly language: a very thin abstraction over the hardware. Programs were
much simpler back then, but assembly language was hard to understand. Programmers drew flow charts
to visualize the design.

Why don’t we use flow charts anymore? Our programming languages are so much more expressive
that we don’t need them! You can read a method and see the flow of control.

Before structured programming:

 1000 NS% = (80 - LEN(T$)) / 2
 1010 S$ = ""
 1020 IF NS% = 0 GOTO 1060
 1030 S$ = S$ + " "
 1040 NS% = NS% - 1
 1050 GOTO 1020
 1060 PRINT S$ + T$
 1070 RETURN

After structured programming:

 public void PrintCenteredString(string text) {
 int center = (LINE_LENGTH - text.Length) / 2;
 string spaces = "";

 for (int i = 0; i < center; i++) {
 spaces += " ";
 }

 Print(spaces + text);
 }

OK, it’s not entirely true that modern languages make the flow of control obvious. We still run across
huge 1,000-line methods that are so convoluted we can’t understand them without the help of a design
sketch. But that’s bad design, isn’t it?

* http://www.bleading-edge.com/Publications/C++Journal/Cpjour2.htm.

382 C H A P T E R 1 5 :   S E E K T E C H N I C A L E X C E L L E N C E

http://www.bleading-edge.com/Publications/C++Journal/Cpjour2.htm

Design Trade-offs
When the engineers at Boeing design a passenger airplane, they constantly have to trade off safety, fuel
efficiency, passenger capacity, and production cost. Programmers rarely have to make those kinds of
decisions these days. The assembly programmers of yesteryear had tough decisions between using lots
of memory (space) or making the software fast (speed). Now, we almost never face such speed/space
trade-offs. Our machines are so fast and have so much RAM that once-beloved hand optimizations
rarely matter.

In fact, our computers are so fast that modern languages actually waste computing resources. With an
optimizing compiler, C is just as good as assembly language. C++ adds virtual method lookups—four
bytes per method and an extra level of indirection. Java and C# add a complete intermediate language
that runs in a virtual machine atop the normal machine. Ruby* interprets the entire program on every
invocation!

How wasteful. So why is Ruby on Rails so popular? How is it possible that Java and C# succeed? What
do they provide that makes their waste worthwhile? Why aren’t we all programming in C?

Quality with a Name
A good airplane design balances the trade-offs of safety, carrying capacity, fuel consumption, and
manufacturing costs. A great airplane design gives you better safety, and more people, for less fuel, at a
cheaper price than the competition.

What about software? If we’re not balancing speed/space trade-offs, what are we doing?

Actually, there is one trade-off that we make over and over again. Java, C#, and Ruby demonstrate that
we are often willing to sacrifice computer time in order to save programmer time and effort.

Some programmers flinch at the thought of wasting computer time and making “slow” programs.
However, wasting cheap computer time to save programmer resources is a wise design decision.
Programmers are often the most expensive component in software development.

If good design is the art of maximizing the benefits of our trade-offs—and if software design’s only real
trade-off is between machine performance and programmer time—then the definition of “good software
design” becomes crystal clear:

A good software design minimizes the time required to create, modify, and maintain the software while achieving
acceptable runtime performance.

Oh, and it has to work. That’s nonnegotiable. If a Boeing jet can’t fly, its fuel efficiency doesn’t matter.
Similarly, a software design must work.

Great Design
Equating good design with the ease of maintenance is not a new idea, but stating it this way leads to
some interesting conclusions:

1. Design quality is people-sensitive. Programmers, even those of equivalent competence, have varying
levels of expertise. A design that assumes Java idioms may be incomprehensible to a programmer

* Prior to Ruby 2, that is.

D E S I G N T R A D E - O F F S 383

who’s only familiar with Perl, and vice versa. Because design quality relies so heavily on
programmer time, it’s very sensitive to which programmers are doing the work. A good design takes
this into account.

2. Design quality is change-specific. Software is often designed to be easy to change in specific ways. This
can make other changes difficult. A design that’s good for some changes may be bad in others. A
genuinely good design correctly anticipates the changes that actually occur.

3. Modification and maintenance time are more important than creation time. It bears repeating that most
software spends far more time in maintenance than in initial development. When you consider
that even unreleased software often requires modifications to its design, the importance of creation
time shrinks even further. A good design focuses on minimizing modification and maintenance
time over minimizing creation time.

4. Design quality is unpredictable. If a good design minimizes programmer time, and it varies depending
on the people doing the work and the changes required, then there’s no way to predict the quality
of a design. You can have an informed opinion, but ultimately the proof of a good design is in how
it deals with change.

Furthermore, great designs:

• Are easy to modify by the people who most frequently work within them

• Easily support unexpected changes

• Are easy to maintain

• Prove their value by becoming steadily easier to modify over years of changes and upgrades

Universal Design Principles
In the absence of design quality measurements, there is no objective way to prove that one design
approach is better than another. Still, there are a few universal principles—which seem to apply to any
programming language or platform—that point the way.

None of these ideas are my invention. How could they be? They’re all old, worn, well-loved principles.
They’re so old you may have lost track of them amidst the incessant drum-beating over new fads. Here’s
a reminder.

The Source Code Is the (Final) Design
Continue to sketch UML diagrams. Discuss design over CRC cards. Produce pretty wall charts on giant
printers if you want. Abstractions like these are indispensible tools for clarifying a design. Just don’t
confuse these artifacts with a completed design. Remember, your design has to work. That’s
nonnegotiable. Any design that you can’t turn into software automatically is incomplete.

If you’re an architect or designer and you don’t produce code, it’s programmers who finish your design
for you. They’ll fill in the inevitable gaps, and they’ll encounter and solve problems you didn’t anticipate.
If you slough this detail work off onto junior staff, the final design could be lower quality than you
expected. Get your hands dirty. Follow your design down to the code.

384 C H A P T E R 1 5 :   S E E K T E C H N I C A L E X C E L L E N C E

Don’t Repeat Yourself (DRY)
This clever name for a well-known principle comes from Dave Thomas and Andy Hunt. Don’t Repeat
Yourself is more than just avoiding cut-and-paste coding. It’s having one cohesive location and canonical
representation for every concept in the final design—anything from “the way we interface with a
database” to “the business rule for dealing with weekends and holidays.”

Eliminating duplication decreases the time required to make changes. You need only change one part
of the code. It also decreases the risk of introducing a defect by making a necessary change in one place
but not in another.

Be Cohesive
This old chestnut is no less essential for its age.*

A cohesive design places closely related concepts closer together. A classic example is the concept of a
date and an operation to determine the next business day. This is a well-known benefit of object-
oriented programming: in OOP, you can group data and related operations into the same class.
Cohesion extends beyond a single class, though. You can improve cohesion by grouping related files
into a single directory, or by putting documentation closer to the parts of the design it documents.

Cohesion improves design quality because it makes designs easier to understand. Related concepts
cluster together, which allows the reader to see how they fit together into the big picture. Cohesion
reduces error by improving the reader’s ability to see how changes to one concept affect others. Cohesion
also makes duplication more apparent.

Decouple
Different parts of a design are coupled when a change to one part of the design necessitates a change to
another part. Coupling isn’t necessarily bad—for example, if you change the date format, you may have
to change the routine to calculate the next business day.

Problems occur when a change to one part of the design requires a change to an unrelated part of the
design. Either programmers spend extra time ferreting out these changes, or they miss them entirely
and introduce defects. The more tenuous the relationship between two concepts, the more loosely
coupled they should be. Conversely, the more closely related two concepts are, the more tightly coupled
they may be.

Eliminating duplication, making designs cohesive, and decoupling all attack the same problem from
different angles. They tie together to improve the quality of a design by reducing the impact of changes.
They allow programmers to focus their efforts on a specific section of the design and give programmers
confidence that they don’t need to search through the entire design for possible changes. They reduce
defects by eliminating the possibility that unrelated parts of the design also need to change.

* Coupling and cohesion come from [Constantine]’s 1968 work on structured programming, “Segmentation and Design Strategies
�
phrased his ideas more generally.

U N I V E R S A L D E S I G N P R I N C I P L E S 385

Clarify, Simplify, and Refine
If good designs are easy for other people to modify and maintain, then one way to create a good design
is to create one that’s easy to read.

When I write code, I write it for the future. I assume that people I’ll never meet will read and judge my
design. As a result, I spend a lot of time making my code very easy to understand. Alistair Cockburn
describes it as writing screechingly obvious code:*

Times used to be when people who were really conscientious wrote Squeaky Clean Code.
Others, watching them, thought they were wasting their time. I got a shock one day when I
realized that Squeaky Clean Code isn’t good enough.

...

It occurred to me that where they went down a dead end was because the method’s contents
did not match its name. These people were basically looking for a sign in the browser that
would say, “Type in here, buddy!”

That’s when I recognized that they needed ScreechinglyObviousCode.

At the time [1995], it was considered an OK thing to do to have an event method,
doubleClicked or similar, and inside that method to do whatever needed to be done. That
would be allowed under Squeaky Clean Code. However, in ScreechinglyObviousCode, it
wouldn’t, because the method doubleClicked only says that something was double clicked,
and not what would happen. So let’s say that it should refresh the pane or something. There
should therefore be a method called refreshPane, and doubleClick would only contain the one
line: self refreshPane.

The people fixing the bug knew there was a problem refreshing the pane, but had to dig to
learn that refreshing the pane was being done inside doubleClick. It would have saved them
much effort if the method refreshPane was clearly marked in the method list in the [Smalltalk]
browser, so they could go straight there.... The reading of the code is then, simply: “When a
doubleClicked event occurs, refresh the pane” rather than “When a doubleClicked event
occurs, do all this stuff, which, by the way, if you read carefully, you will notice refreshes the
pane.”

Screechingly obvious code is easier to produce through iterative simplification and refinement. Bob
Martin has a great example of this in “Clean Code: Args—A Command-Line Argument Parser.”†

Fail Fast
A design that fails fast (see Chapter 13) reveals its flaws quickly. One way to do this is to have a
sophisticated test suite as part of the design, as with test-driven development. Another approach is use
a tool such as assertions to check for inappropriate results and fail if they occur. Design by Contract
[Meyer] makes designs fail fast with runtime checks of class invariants and method pre- and post-
conditions.

Failing fast improves design by making errors visible more quickly, when it’s cheaper to fix them.

* http://c2.com/cgi/wiki?ScreechinglyObviousCode

† http://www.objectmentor.com/resources/articles/Clean_Code_Args.pdf

386 C H A P T E R 1 5 :   S E E K T E C H N I C A L E X C E L L E N C E

http://c2.com/cgi/wiki?ScreechinglyObviousCode
http://www.objectmentor.com/resources/articles/Clean_Code_Args.pdf

Optimize from Measurements
Everyone can quote Tony Hoare about premature optimization,* at least until they reach their pet
optimizations. Optimized code is often unreadable; it’s usually tricky and prone to defects. If good design
means reducing programmer time, then optimization is the exact opposite of good design.

Of course, good design does more than just reduce programmer time. According to my definition, it
“minimizes the time required to create, modify, and maintain the software while achieving acceptable
runtime performance.”

Although well-designed code is often fast code, it isn’t always fast. Optimization (see “Performance
Optimization” in Chapter 9) is sometimes necessary. Optimizing later allows you to do it in the smartest
way possible: when you’ve refined the code, when it’s cheapest to modify, and when performance
profiling can help direct your optimization effort to the most effective improvements.

Delaying optimization can be scary. It feels unprofessional to let obviously slow designs slide by. Still,
it’s usually the right choice.

Eliminate Technical Debt
You probably aren’t lucky enough to work on a project that follows these principles all the time. (I rarely
am.) Even if you are, you’re likely to make mistakes from time to time. (I certainly do.)

Despite our best intentions, technical debt creeps into our systems. A lot of it—perhaps most of it—is in
our designs. This bit rot slowly saps the quality of even the best designs.

Eliminating technical debt through continuous code maintenance and refactoring has only recently
been recognized as a design principle, and some people still question it. It’s no less essential for the
controversy. In fact, it may be the most important of all the design principles. By focusing on removing
technical debt, a team can overcome any number of poor design decisions.

Principles in Practice
These universal design principles provide good guidance, but they don’t help with specific languages or
platforms. That’s why you need design principles for specific languages, such as Martin’s list of the
principles of object-oriented class design.† Unfortunately, when you take universal design principles
and turn them into specific design advice, you lose something important: context. Every design decision
occurs in the context of the whole design—the problem domain, other design decisions, the time
schedule, other team members’ capabilities, etc.

Context makes every piece of specific design advice suspect. Yes, you should listen to it—there’s a lot
of wisdom out there—but exercise healthy skepticism. Ask yourself, “When is this not true?” and “What
is the author assuming?”

Consider the simple and popular “instance variables must be private” design rule. As one of the most
widely repeated design rules, it often gets applied without real thought. That’s a shame because without
context, the rule is meaningless and easily misused.

* “Premature optimization is the root of all evil.”

† The Single Responsibility Principle, Open-Closed Principle, Liskov Substitution Principle, Dependency-Inversion Principle, and
Interface Segregation Principle.

P R I N C I P L E S I N P R A C T I C E 387

It’s true that instance variables should often be private, but if you want to understand the rule and when
to break it, ask why. Why make instance variables private? One reason is that private variables enforce
encapsulation. But why should anyone care about encapsulation?

The real reason private variables (and encapsulation) are good is that they help enforce decoupling.
Decoupled code is good, right? Not always. Appropriately decoupled code is good, but it’s OK for closely
related concepts to be tightly coupled.

However, closely related concepts should also be cohesive. They should be close together in the code. In
object-oriented programming languages, closely related concepts often belong in the same class.

This is where the “instance variables must be private” rule comes from. When you have an urge to make
an instance variable public, it’s a sign that you have both a cohesion problem and a coupling problem.
You have a cohesion problem because closely related concepts aren’t in the same class. You have a
coupling problem because concepts that the code structure says are unrelated must change together.

The real problem is that programmers follow the letter of the rule without stopping to consider the
context. Rather than taking the time to think about coupling and cohesion, many programmers just
slap a public accessor and mutator (getter and setter) on a private variable.

Now what good does that do?

 public class MySillyClass {
 private string _myFakeEncapsulatedVariable;

 public string getMyFakeEncapsulatedVariable() {
 return _myFakeEncapsulatedVariable;
 }

 public void setMyFakeEncapsulatedVariable(string var) {
 _myFakeEncapsulatedVariable = var;
 }
 }

From a coupling standpoint, there’s very little difference between this code and code that uses a public
variable. The code follows the letter of the rule, but ignores its spirit: don’t let other classes have access
to your implementation details! From a design perspective, a public variable is equivalent to this code,
and it would certainly make a poor design decision more obvious.

Pursue Mastery
A good software design minimizes the time required to create, modify, and maintain the
software while achieving acceptable runtime performance.

This definition, and the conclusions it leads to, are the most important things I keep in mind when
considering a design. I follow some core design principles, and I have some techniques that are useful
for the languages I work with. However, I’m willing to throw away even the design principles if they
get in the way of reducing programmer time and, most importantly, solving real customer problems.

388 C H A P T E R 1 5 :   S E E K T E C H N I C A L E X C E L L E N C E

The same is true of agile software development. Ultimately, what matters is success, however you define
it. The practices, principles, and values are merely guides along the way. Start by following the practices
rigorously. Learn what the principles mean. Break the rules, experiment, see what works, and learn
some more. Share your insights and passion, and learn even more.

Over time, with discipline and success, even the principles will seem less important. When doing the
right thing is instinct and intuition, finely honed by experience, it’s time to leave rules and principles
behind. When you produce great software for a valuable purpose and pass your wisdom on to the next
generation of projects, you will have mastered the art of successful software development.

P U R S U E M A S T E R Y 389

References

[Ambler & Sadalage] Ambler, Scott, and Pramodkumar Sadalage. 2006. Refactoring Databases:
Evolutionary Database Design. Boston: Addison-Wesley Professional.

[Anderson 2003] Anderson, David. 2003. Agile Management for Software Engineering: Applying the Theory
of Constraints for Business Results. Upper Saddle River, NJ: Prentice Hall.

[Anderson 2006] Anderson, David. 2006. “HP gets 3.4x productivity gain from Agile Management
techniques” (posted March 15). Agile Management blog. http://www.agilemanagement.net/Articles/
Weblog/HPgets3.4xproductivitygai.html

[Astels] Astels, David. 2003. Test Driven Development: A Practical Guide. Upper Saddle River, NJ: Prentice
Hall.

[Bach 1999] Bach, James. 1999. “General Functionality and Stability Test Procedure for Microsoft
Windows Logo, Desktop Applications Edition.” http://www.testingcraft.com/bach-exploratory-
procedure.pdf

[Bach 2000] Bach, Jonathan. 2000. “Session-Based Test Management.” http://www.satisfice.com/articles/
sbtm.pdf

[Beck 1999] Beck, Kent. 1999. Extreme Programming Explained, First edition. Boston: Addison-Wesley
Professional.

[Beck 2002] Beck, Kent. 2002. Test Driven Development: By Example. Boston: Addison-Wesley
Professional.

[Beck 2004] Beck, Kent. 2004. Extreme Programming Explained, Second edition. Boston: Addison-Wesley
Professional.

[Beck & Fowler] Beck, Kent, and Martin Fowler. 2000. Planning Extreme Programming. Boston: Addison-
Wesley Professional.

[Beck et al.] Beck, Kent et al. 2001. Manifesto for Agile Software Development. http://agilemanifesto.org/

[Belshee] Belshee, Arlo. 2005. “Promiscuous Pairing and Beginner’s Mind: Embrace Inexperience.”
Proceedings of the Agile Development Conference (July 24-29). Washington, DC: IEEE Computer Society,
125-131. http://dx.doi.org/10.1109/ADC.2005.37

[Berczuk & Appleton] Berczuk, Stephen P., and Brad Appleton. 2002. Software Configuration Management
Patterns: Effective Teamwork, Practical Integration. Boston: Addison-Wesley Professional.

[Boehm] Boehm, Barry. 1987. “Industrial Software Metrics Top 10 List.” IEEE Software. 4(9): 84-85.

3 9 1

http://www.agilemanagement.net/Articles/Weblog/HPgets3.4xproductivitygai.html
http://www.agilemanagement.net/Articles/Weblog/HPgets3.4xproductivitygai.html
http://www.testingcraft.com/bach-exploratory-procedure.pdf
http://www.testingcraft.com/bach-exploratory-procedure.pdf
http://www.satisfice.com/articles/sbtm.pdf
http://www.satisfice.com/articles/sbtm.pdf
http://agilemanifesto.org/
http://dx.doi.org/10.1109/ADC.2005.3

[Brooks] Brooks, Frederick P. 1995. The Mythical Man-Month: Essays on Software Engineering, 20th
Anniversary Edition. Boston: Addison-Wesley Professional.

[Cockburn] Cockburn, Alistair. 2001. Agile Software Development. Boston: Addison-Wesley Professional.

[Cockburn & Williams] Cockburn, Alistair, and Laurie Williams. 2001. “The Costs and Benefits of Pair
Programming.” Extreme Programming Examined. Eds Succi, G., Marchesi, M., 223-247. Boston:
Addison-Wesley. http://www.cs.utah.edu/~lwilliam/Papers/XPSardinia.PDF

[Coffin] Coffin, Rod. 2006. “A Tale of Two Projects.” The Conference on AGILE 2006 (July 23-28).
Washington, DC: IEEE Computer Society, 155-164. http://dx.doi.org/10.1109/AGILE.2006.3

[Cohn] Cohn, Mike. 2005. Agile Estimating and Planning. Upper Saddle River, NJ: Prentice Hall.

[Constantine] Constantine, Larry. 1968. “Segmentation and Design Strategies for Modular
Programming.” Eds. T. O. Barnett and L. L. Constantine. Modular Programming: Proceedings of a National
Symposium. Cambridge, MA: Information & Systems Press.

[Cunningham] Cunningham, Ward. 1994. “The CHECKS Pattern Language of Information Integrity.”
http://c2.com/ppr/checks.html

[DeMarco 1995] DeMarco, Tom. 1995. Why Does Software Cost So Much?: And Other Puzzles of the Information
Age. New York: Dorset House Publishing Co.

[DeMarco 2002] DeMarco, Tom. 2002. Slack: Getting Past Burnout, Busywork, and the Myth of Total
Efficiency. New York: Broadway Books.

[DeMarco & Lister 1999] DeMarco, Tom, and Timothy Lister. 1999. Peopleware: Productive Projects and
Teams. New York: Dorset House Publishing Co.

[DeMarco & Lister 2003] DeMarco, Tom, and Timothy Lister. 2003. Waltzing With Bears: Managing Risk
on Software Projects. New York: Dorset House Publishing Co.

[Denne & Cleland-Huang] Denne, Mark, and Jane Cleland-Huang. 2003. Software by Numbers: Low-Risk,
High-Return Development. Upper Saddle River, NJ: Prentice Hall.

[Derby & Larsen] Derby, Esther, and Diana Larsen. 2006. Agile Retrospectives: Making Good Teams Great.
Raleigh and Dallas: Pragmatic Bookshelf.

[Evans] Evans, Eric. 2003. Domain-Driven Design: Tackling Complexity in the Heart of Software. Boston:
Addison-Wesley Professional.

[Feathers] Feathers, Michael. 2004. Working Effectively with Legacy Code. Upper Saddle River, NJ: Prentice
Hall.

[Fowler 1999] Fowler, Martin. 1999. Refactoring: Improving the Design of Existing Code//citetitle>. Boston:
Addison-Wesley Professional..

[Fowler 2000] Fowler, Martin. 2000. “Is Design Dead?” http://www.martinfowler.com/articles/
designDead.html

[Fowler 2002a] Fowler, Martin. 2002. Patterns of Enterprise Application Architecture. Boston: Addison-
Wesley Professional.

[Fowler 2002b] Fowler, Martin. 2002. “Yet Another Optimization Article.” http://www.martinfowler.com/
ieeeSoftware/yetOptimization.pdf

[Fowler 2003] Fowler, Martin. 2003. “Cannot Measure Productivity.” http://www.martinfowler.com/bliki/
CannotMeasureProductivity.html

392 R E F E R E N C E S

http://www.cs.utah.edu/~lwilliam/Papers/XPSardinia.PDF
http://dx.doi.org/10.1109/AGILE.2006.3
http://c2.com/ppr/checks.html
http://www.martinfowler.com/articles/designDead.html
http://www.martinfowler.com/articles/designDead.html
http://www.martinfowler.com/ieeeSoftware/yetOptimization.pdf
http://www.martinfowler.com/ieeeSoftware/yetOptimization.pdf
http://www.martinfowler.com/bliki/CannotMeasureProductivity.html
http://www.martinfowler.com/bliki/CannotMeasureProductivity.html

[Fowler & Scott] Fowler, Martin, and Kendall Scott. 1999. UML Distilled: A Brief Guide to the Standard
Object Modeling Language, Second Edition. Boston: Addison-Wesley Professional.

[Gamma et al.] Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides ["Gang of Four"].
1995. Design Patterns: Elements of Reusable Object-Oriented Software. Boston: Addison-Wesley
Professional.

[Goldratt 1992] Goldratt, Eliyahu M. 1992. The Goal: A Process of Ongoing Improvement. Great Barrington,
MA: North River Press.

[Goldratt 1997] Goldratt, Eliyahu M. 1997. Critical Chain: A Business Novel. Great Barrington, MA: North
River Press.

[Hendrickson] Hendrickson, Elisabeth. 2006. “Rigorous Exploratory Testing” (posted April 19). http://
www.testobsessed.com/2006/04/19/rigorous-exploratory-testing/

[Highsmith] Highsmith, Jim. 2002. Agile Software Development Ecosystems. Boston: Addison-Wesley
Professional.

[Hunt & Thomas] Hunt, Andrew, and David Thomas. 1999. The Pragmatic Programmer: From Journeyman
to Master. Boston: Addison-Wesley Professional.

[Hunter] Hunter, Michael ["The Braidy Tester"] 2004. “Did I Remember To” (posted July 7). http://
blogs.msdn.com/micaheVarticles/175571.aspx

[Janzen & Saiedian] Janzen, David, and Hossein Saiedian. 2005. “Test-Driven Development: Concepts,
Taxonomy, and Future Direction.” IEEE Computer Society. 38(9): 43-50.

[Jeffries et al.] Jeffries, Ron, Ann Anderson, and Chet Hendrickson. 2000. Extreme Programming
Installed. Boston: Addison-Wesley Professional.

[Kaner] Kaner, Cem. 1987. Testing Computer Software. Blue Ridge Summit, PA: TAB Books.

[Katzenbach & Smith] Katzenbach, Jon R., and Douglas K. Smith. 1994. The Wisdom of Teams: Creating
the High-Performance Organization. New York: HarperBusiness.

[Kerievsky] Kerievsky, Joshua. 2004. Refactoring to Patterns. Boston: Addison-Wesley Professional.

[Kerth] Kerth, Norman. 2001. Project Retrospectives: A Handbook for Team Reviews. New York: Dorset House
Publishing Co.

[Kohl 2005a] Kohl, Jonathan. 2005. “User Profiles and Exploratory Testing” (posted June 12). http://
www.kohl.ca/blog/archives/000104.html

[Kohl 2005b] Kohl, Jonathan. 2005. “Exploratory Testing on Agile Teams.” InformIT, Nov 18. http://
www.informit.com/articles/article.aspx?p=405514

[Kohn] Kohn, Alfie. 1999. Punished By Rewards: The Trouble with Gold Stars, Incentive Plans, A’s, Praise, and
Other Bribes. Boston: Mariner Books.

[Lacey] Lacey, Mitch. 2006. “Adventures in Promiscuous Pairing: Seeking Beginner’s Mind.” Proceedings
of the Conference on AGILE 2006 (July 23-28). Washington, DC: IEEE Computer Society, 263-269. http://
dx.doi.org/10.1109/AGILE.2006.7

[Little] Little, Todd. 2006. “Schedule Estimation and Uncertainty Surrounding the Cone of Uncertainty.”
IEEE Software. 23(3): 48-54. http://www.toddlittleweb.com/Papers/Little%20Cone%20of%
20Uncertainty.pdf

R E F E R E N C E S 393

http://www.testobsessed.com/2006/04/19/rigorous-exploratory-testing/
http://www.testobsessed.com/2006/04/19/rigorous-exploratory-testing/
http://%20blogs.msdn.com/micaheVarticles/175571.aspx
http://%20blogs.msdn.com/micaheVarticles/175571.aspx
http://www.kohl.ca/blog/archives/000104.html
http://www.kohl.ca/blog/archives/000104.html
http://www.informit.com/articles/article.aspx?p=405514
http://www.informit.com/articles/article.aspx?p=405514
http://dx.doi.org/10.1109/AGILE.2006.7
http://dx.doi.org/10.1109/AGILE.2006.7
http://www.toddlittleweb.com/Papers/Little%2520Cone%2520of%2520Uncertainty.pdf
http://www.toddlittleweb.com/Papers/Little%2520Cone%2520of%2520Uncertainty.pdf

[Mah] Mah, Michael. 2006. “Agile Productivity Metrics” Keynote Address, Better Software Conference
& EXPO, Las Vegas, June 2006. http://www.sqe.com/Events/Archive/bsc2006/keynotes.html

[Maister et al] Maister, David, Charles Green, Robert Galford. 2000. The Trusted Advisor. New York: Free
Press.

[Manns & Rising] Manns, Mary Lynn, and Linda Rising. 2004. Fearless Change: Patterns for Introducing
New Ideas. Boston: Addison-Wesley.

[Marick] Marick, Brian. A Survey of Exploratory Testing. http://www.testingcraft.com/exploratory.html

[Martin 2002] Martin, Robert C. 2002. Agile Software Development, Principles, Patterns, and Practices. Upper
Saddle River, NJ: Prentice Hall.

[Martin 2005] Martin, Robert C. 2005. “Clean Code: Args—A Command-line Argument Parser.”
Published on the Object Mentor, Inc. web site (Nov 26). http://www.objectmentor.com/resources/articles/
Clean_Code_Args.pdf

[Mason] Mason, Mike. 2006. Pragmatic Version Control: Using Subversion (The Pragmatic Starter Kit Series),
Second Edition. Raleigh and Dallas: Pragmatic Bookshelf.

[McConnell 1996] McConnell, Steve. 1996. Rapid Development: Taming Wild Software Schedules. Redmond,
WA: Microsoft Press.

[McConnell 2005] McConnell, Steve. 2006. Software Estimation: Demystifying the Black Art. Redmond,
WA: Microsoft Press.

[Meyer] Meyer, Bertrand. 2000. Object-Oriented Software Construction, Second Edition. Upper Saddle River,
NJ: Prentice Hall.

[Miller] Miller, Charles. 2003. “Stand-Up Meeting Antipatterns” (posted November 19). The Fishbowl
blog. http://fishbowl.pastiche.org/2003/11/19/standup_meeting_antipatterns

[Montagna] Montagna, Frank C. 1996. “The Effective Postfire Critique.” Fire Engineering magazine,
July 1. http://www.chiefmontagna.com/Articles/pdf/critique.pdf

[Mugridge & Cunningham] Mugridge, Rick, and Ward Cunningham. 2005. Fit for Developing Software:
Framework for Integrated Tests. Upper Saddle River, NJ: Prentice Hall.

[Nielsen] Nielsen, Jakob. 1999. Designing Web Usability: The Practice of Simplicity. Berkeley, CA: Peachpit
Press.

[Overby] Overby, Stephanie. 2003. “The Hidden Costs of Offshore Outsourcing Offshore Outsourcing
the Money.” CIO. magazine, Sept 1. http://www.cio.com/archive/090103/money.html

[Poppendieck & Poppendieck] Poppendieck, Mary, and Tom Poppendieck. 2003. Lean Software
Development: An Agile Toolkit for Software Development Managers. Boston: Addison-Wesley Professional.

[Pugh] Pugh, Ken. 2005. Prefactoring. Sebastopol, CA: O’Reilly Media, Inc.

[Rainsberger] Rainsberger, J. B. 2004. Junit Recipes: Practical Methods for Programmer Testing. Greenwich,
CT: Manning Publications, Co.

[Rooney] Rooney, Dave. 2006. “The Disengaged Customer” (posted Jan 20). The Agile Artisan blog.
http://agileartisan.blogspot.com/2006/01/disengaged-customer-introduction.html

[Schwaber & Beedle] Schwaber, Ken, and Mike Beedle. 2001. Agile Software Development with SCRUM.
Upper Saddle River, NJ: Prentice Hall.

394 R E F E R E N C E S

http://www.sqe.com/Events/Archive/bsc2006/keynotes.html
http://www.testingcraft.com/exploratory.html
http://www.objectmentor.com/resources/articles/Clean_Code_Args.pdf
http://www.objectmentor.com/resources/articles/Clean_Code_Args.pdf
http://fishbowl.pastiche.org/2003/11/19/standup_meeting_antipatterns
http://www.chiefmontagna.com/Articles/pdf
http://www.cio.com/archive/090103/money.html
http://agileartisan.blogspot.com/2006/01/disengaged-customer-introduction.html

[Shore 2004a] Shore, Jim. 2004. “Continuous Design.” IEEE Software 21(1):20-22. http://
www.martinfowler.com/ieeeSoftware/continuousDesign.pdf

[Shore 2004b] Shore, Jim. 2004. “Fail Fast.” IEEE Software 21(5):21-25. http://www.martinfowler.com/
ieeeSoftware/failFast.pdf

[Shore 2005a] Shore, Jim. 2005. “Agile Requirements” (posted Nov 30). http://www.jamesshore.com/Blog/
Agile-Requirements.html

[Shore 2005b] Shore, Jim. 2005. Agile development resources. http://c2.com/cgi/wiki?JimShore

[Sink] Sink, Eric. 2004. “Source Control HOWTO” (posted Aug 27). Eric Weblog. http://www.ericsink.com/
scm/source_control.html

[Smith] Smith, Steven M. 1997. “The Satir Change Model” (posted Oct 4). Steven M. Smith & Associates,
LLC. http://www.stevenmsmith.com/my-articles/article/the-satir-change-model.html

[Standish] Standish Group. 1994. “The CHAOS Report.” The Standish Group International, Inc. http://
www.standishgroup.com/sample_research/chaos_1994_1.php

[Stapleton] Stapleton, Jennifer. 1997. DSDM: A Framework for Business Centered Development. Boston:
Addison-Wesley Professional.

[Subramaniam & Hunt] Subramaniam, Venkat, and Andy Hunt. 2006. Practices of an Agile Developer:
Working in the Real World. Raleigh and Dallas: Pragmatic Bookshelf.

[Teasley et al.] Teasley, Stephanie, Lisa Covi, M. S. Krishnan, Judith Olson. 2002. “Rapid Software
Development Through Team Collocation.” IEEE Trans. Softw. Eng. 28(7):671-83. http://dx.doi.org/
10.1109/TSE.2002.1019481

[Tinkham & Kaner] Tinkham, Andy, and Cem Kaner. 2003. “Exploring Exploratory Testing.” Presented
at SQE’s Software Testing, Analysis & Review Conference, Orlando, FL, July 2003. http://
www.testingeducation.org/a/explore.pdf

[Tuckman] Tuckman, B. W. 1965. “Developmental sequences in small groups.” Psychological Bulletin
63:384-99. http://dennislearningcenter.osu.edu/references/GROUP%20DEV%20ARTICLE.doc

[Ury] Ury, William. 2007. The Power of a Positive No: How to Say No and Still Get to Yes. New York: Bantam
Books.

[Van Schooenderwoert] Van Schooenderwoert, Nancy. 2006. “Embedded Agile Project by the Numbers
with Newbies.” The Conference on AGILE 2006 (July 23-28). Washington, DC: IEEE Computer Society,
351-366. http://dx.doi.org/10.1109/AGILE.2006.24

[Wiegers 1999] Wiegers, Karl E. 1999. Software Requirements. Redmond, WA: Microsoft Press.

[Wiegers 2001] Wiegers, Karl E. 2001. Peer Reviews in Software: A Practical Guide. Boston: Addison-Wesley
Professional.

[Williams] Williams, Laurie. 2002. Pair Programming Illuminated. Boston: Addison-Wesley Professional.

[Wirfs-Brock & McKean] Wirfs-Brock, Rebecca, and Alan McKean. 2002. Object Design: Roles,
Responsibilities, and Collaborations. Boston: Addison-Wesley Professional.

[Yap] Yap, Monica. 2005. “Follow the Sun: Distributed Extreme Programming Development.” The
Conference on AGILE 2006 (July 23-28). Washington, DC: IEEE Computer Society, 218-224. http://
dx.doi.org/10.1109/ADC.2005.26

R E F E R E N C E S 395

http://www.martinfowler.com/ieeeSoftware/continuousDesign.pdf
http://www.martinfowler.com/ieeeSoftware/continuousDesign.pdf
http://www.martinfowler.com/ieeeSoftware/failFast.pdf
http://www.martinfowler.com/ieeeSoftware/failFast.pdf
http://www.jamesshore.com/Blog/Agile-Requirements.html
http://www.jamesshore.com/Blog/Agile-Requirements.html
http://c2.com/cgi/wiki?JimShore
http://www.ericsink.com/scm/source_control.html
http://www.ericsink.com/scm/source_control.html
http://www.stevenmsmith.com/my-articles/article/the-satir-change-model.html
http://www.standishgroup.com/sample_research/chaos_1994_1.php
http://www.standishgroup.com/sample_research/chaos_1994_1.php
http://dx.doi.org/10.1109/TSE.2002.1019481
http://dx.doi.org/10.1109/TSE.2002.1019481
http://www.testingeducation.org/a/explore.pdf
http://www.testingeducation.org/a/explore.pdf
http://dennislearningcenter.osu.edu/references/GROUP%2520DEV%2520ARTICLE.doc
http://dx.doi.org/10.1109/AGILE.2006.24
http://dx.doi.org/10.1109/ADC.2005.26
http://dx.doi.org/10.1109/ADC.2005.26

[Yip] Yip, Jason. 2006. “It’s Not Just Standing Up: Patterns of Daily Stand-up Meetings.” http://
www.martinfowler.com/articles/itsNotJustStandingUp.html

[Yourdon] Yourdon, Edward. 1999. Death March: The Complete Software Developer’s Guide to Surviving
‘Mission Impossible’ Projects. Upper Saddle River, NJ: Prentice Hall.

396 R E F E R E N C E S

http://www.martinfowler.com/articles/itsNotJustStandingUp.html
http://www.martinfowler.com/articles/itsNotJustStandingUp.html

Index

A
Adapter pattern, 317
adaptive planning, 210

agile principles and, 375
entrepreneurs and, 204
example, 214
organizational culture, 216

adopting XP, 43–63
Agile Estimating and Planning (Cohn), 255
Agile methods, 9

principles, 353
successes and, 6

agile thrashing, 24
Alexander, Christopher, 381
analysis paralysis, 327
analysis phase, 60–61

adopting XP and, 60
eliminating, 273
XP lifecycle and, 17

architects, 23, 27, 33
adopting XP and, 35
Alexander, Christopher, 381
process improvement (retrospective alternative)

and, 97
simple design and, 243

architecture, 20, 257
asynchronous integration, 186

broken builds and, 186
efficiency of, 187
multistage builds and, 187
performance tests and, 336

automation, 178, 282

B
baby steps, 365, 367
background noise, 118
batman, 39, 47, 241
Beck, Kent, 44, 296

acknowledgment of, xvii
simplicity, on, 315
XP differences and, 24

big ball of mud, 298
big visible chart, 84
binary chop, 171
bit rot, 387

(see also technical debt)
boundary testing, 343
brainstorming, 92, 235
branches (version control), 170, 174
breakthroughs in continuous design, 322
breeding grounds (bugs), eliminating, 162
Brooks’ Law, 108, 372
bugs, 25 (see no bugs)
build machine (integration machine), 52, 157
burn-up charts, 145, 228
business analysts, 28, 32

agile principles and, 361
customer proxies and, 46
poor communication, accommodating, 99

business rules/logic (see domain knowledge)

C
cache coherency, 335
calendar time, 100
challenged projects, 4
change, challenges of in teams, 53
charters, xvii, 342

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

397

charts, 84–85
check in (version control), 169
check out (version control), 169
CI (continuous integration) servers, 185
clarifying practices, 25
Class, Responsibility, Collaborator (see CRC cards)
coaches, 28, 34, 47

mentors and, 12, 35
staffing, 38

Cockburn, Alistair, xviii, 104, 113, 196, 386
face-to-face communication, 273
stories and, 253

cocktail party effect, 114
coddling nulls, 304
code

preexisting, 49 (see preexisting code)
refactoring, 50
self-documenting, 317

code inspections, 77
code smells, 303–304
codebase, single, 173
coding phase, 61

adopting XP and, 61
XP lifecycle and, 21

coding standards, 133–138
adopting, 117
bugs and, 148
collective code ownership and, 170
creating, 39, 99, 133–135
disagreement and, 136
enforcing, 136
incremental design and, 269
legacy code and, 137
pair programming and, 57
programmers and, 33
starting out, 56
XP lifecycle and, 20

cohesion, 385
collaboration, 99–151, 203

adopting XP and, 54, 161
agile pronciples and, 314
benefits of, 114, 192
customers, importance to, 120–124
design and, 269
étude, 100
miracle of, 221
pair programming and, 69–79
planning game and, 195, 271
requirements and, 235

team size and, 38
vision and, 191
XP lifecycle and, 18

collective code ownership, 20, 33, 153, 191–195
benefits of, 191–192
bugs and, 162
coding standards, 135
handoff documentation, alternative to, 196
pair programming, 77
planning sessions and, 239
programmers and, 33, 268
refactoring and, 312
ten-minute build and, 180
velocity, improving and, 268
version control and, 170, 175, 194
XP lifecycle and, 21

colocation of teams (see sit together)
command injection, 344
commit (version control), 169
commit build, 187
commitments, 105, 237

bugs and, 163
defending, 229
design, 314, 318
“done done” and, 153, 159
iteration, 110, 237, 239, 244–252
last responsible moment and, 41
planning horizons and, 214–216
product managers, 30
release, 159, 224–232, 268
slack and, 246
trust and, 102–106, 110
velocity and, 42, 268

communication, 113, 195
(see also collaboration)
agile principles and, 363
bug databases and, 166
customer tests and, 278–285, 284
design and, 315, 328
documentation and, 195–198
domain knowledge, 124
executive sponsor and, 140
informative workspace and, 83
iteration demo and, 138
iteration planning and, 233, 243
osmotic, 113, 118
pair programming and, 74, 114
planning game and, 222
refactoring and, 311

398 I N D E X

releases and, 213, 228
requirements, 28, 268, 273, 277, 284
sitting together, importance of, 45, 112–114, 118
stand-up meetings and, 131
team size and, 39, 268
ubiquitous language and, 125
vision and, 201–206
XP lifecycle and, 18, 19
XP value, 354

compensation (pay), 36, 44, 110, 150
concepts (XP), 39–42
concurrent model (version control), 170
contingency, 227
continuous design, 322
continuous integration, 33, 62, 169, 183–191

adopting XP and, 56, 61, 186
asynchronous, 186–189
collective code ownership and, 193
“done done”, 157
frequent releases of software and, 208
informative workspace and, 83
legacy code and, 58
machine, 52, 184, 189
multistage, 187
performance tests and, 338
problems, 187
programmers and, 33
refactoring and, 311
release planning and, 208, 218
script, 184–185
servers, 185–186
slow builds and, 186
synchronous, 186
ten-minute build and, 180
version control, 171
XP lifecycle and, 20

cooperative games, 219
costs in planning game, 219
coupling, 385
CRC (Class, Responsibility, Collaborator) cards, 83,

327, 384
cross-functional teams, 28
CRUD (Create, Read, Update, Delete), 256, 344
Cunningham, Ward, xvii, 75, 282
custom development, 120
customer huddles, 265
customer review boards, 121
customer reviews, 24, 274
customer tests, 24, 25, 271, 278–285, 281

acceptance tests, contrasted with, 24, 283
bugs and, 161
communicating with, 278–282
customers and, 28, 31, 278
documentation as, 195, 278–282
domain experts and, 31
“done done” and, 156
ISO 9001 and, 371
iteration demo and, 139
no bugs, writing, 162
planning and, 214
programmers and, 33, 278
requirements and, 274
testers and, 34, 282
version control and, 171, 172
XP lifecycle and, 19

customer-centricity, 255
customers, 28–32

coaches, 202
domain experts and, 31
frequent releases and, 210
incremental requirements and, 273–278
on-site (see on-site customers)
programmer discord, 107
real (see real customers)
value, 253

customers tests
iteration demos, 139

D
daily deployment, 210, 218
Daily Scrum, 129
data classes, 304
data clumps, 303
data type attacks, 344
databases

authority over, 44
bug/issue trackers, 58, 165
“done done” and, 156
incremental design and, 328
nulls and, 304
refactoring, 311
requirements trackers, 273
risks (historical), 224
ten-minute build and, 180
tests and, 299
version control and, 174

deadlines, 4
Brooks’ Law and, 108

I N D E X 399

customers and, 102
energized work and, 82
estimating and, 262, 269
iteration, 138, 239, 261
iteration demo and, 138
release planning and, 209, 212, 269
risk management and, 229, 231
success and, 229
timebox, 240
velocity and, 261
writing software and, 5

death marches, 82, 103
debugging

diff, 171
estimating, 256
reducing, 184, 367
reverting (version control) and, 170
spike solutions and, 333
stories, 256
ten-minute build and, 182
test-driven development and, 162, 285, 297, 301

decoupling, 385
defects, reporting, 146

(see also no bugs)
delivering value, 5, 375–380
demo, iteration (see iteration demo)
deployment, 20

adopting XP and, 61
continuous integration and, 183
daily, 218
“done done” and, 156
feedback from, 121
iteration demo and, 141–143
phase, 19, 61
product manager and, 30
real customers and, 203
tagging (version control) and, 173
ten-minute build and, 180
weekly, 141–143, 156
XP lifecycle and, 18–27

Describe, Demonstrate, Develop process, 278
design, 18

continuous, 329
incremental (see incremental design)
phase, 18, 61
predictive, 303
quality, 383
reflective, 303
simple (see simple design)

skills, importance of, 49
trade-offs, 383
XP lifecycle and, 18–27

Design Patterns (Gamma et al.), 314
design spikes, 332
designers, 27, 28, 33

database, 33
graphic, 28, 32
interaction, 28, 31–32, 38, 46, 47, 213
software, 27, 33, 312, 387

(see also architects)
developers (see programmers)
developing, 271–349
DHH (David Heinemeier Hansson), 44
diff debugging, 171
distributed teams, 45, 87, 119, 258, 362

(see also sit together)
divergent change, 303
documentation, 21, 25, 195–198

(see also communication)
agile principles and, 354, 361, 370
code (self-documenting), 317
coding standards, 56
design, 328, 385
“done done” and, 156
phase-based organizations and, 60–61
product manager and, 30
programmers and, 33
reporting and, 144–151
requirements, 28, 60, 277, 362

incremental, 273
sitting together (communication), effects on, 110
spike solutions as, 331
stories, 256
tests as, 192, 285, 312
version control and, 171
vision, 30, 202
work-in-progress, 195
XP lifecycle and, 21

domain experts (subject matter experts), 28, 31, 124
communicating with, 124–128, 278–284
customer tests and, 278–285
importance of, 46
involving, 121
on-site customers, 46
stand-up meetings and, 130
ubiquitous language and, 124–128

domain knowledge/rules/logic, 31, 278
communicating, 28, 124–128, 278–285

400 I N D E X

domain models, 126
domain-driven design, 49, 126
“done done”, 25, 156–160, 174

agile principles and, 379
bugs and, 147, 162, 164, 256, 346
checklist, 156
estimating and, 264
exploratory testing and, 165, 342
features, 214
iteration demo and, 143
mistakes and, 241
release planning and, 214
requirements and, 274
risk management and, 225, 229
slack and, 251
stories, 156
trust and, 108
velocity and, 234, 240, 260

Don’t Repeat Yourself (DRY), 316, 385
drivers (pair programming), 71, 72
DRY (Don't Repeat Yourself), 316, 385

E
elaborating on a theme, 280
emails (reporting), 145
end-to-end tests, 297, 298

disadvantages of, 299
legacy code and, 300, 312
performance optimization and, 336
slow builds and, 180

energized work, 20, 69, 79, 105
coaches and, 34
“done done” and, 159, 261
informative workspace and, 83
iteration planning and, 243–245, 261
no bugs, 162
overtime and, 249
pair programming and, 72, 77, 78
pressure and, 159, 244
slack and, 249
startups and, 81
supporting, 79
taking breaks, 80
trust and, 102, 104
velocity and, 261, 267
XP lifecycle and, 20

engineering tasks, 235, 238–239, 243, 244
estimating, 263, 264

equipment for workspaces, 52

estimates, 33, 199, 260–270
consistent, 262
defending, 266
difficulty making, 265
doubling, 225, 231
explaining, 222, 266
improving, 267–268
incorrect, 142, 269
index cards, writing stories and, 254
initial, 55
iteration planning and, 234–237
learning to make, 244
padding, 251
performance optimization, 337, 338
planning game and, 219
programmers and, 33
release planning and, 213, 214, 219, 225, 231
requirements and, 274, 276
risk management and, 224, 231
scheduling, 257
spike solutions and, 332, 333
story, 234, 243, 254, 263, 274

size and, 255
success and, 4
tasks, 236, 244
technical debt and, 249
technical infrastructure and, 255, 257
Theory of Constraints and, 42, 235
timeboxed, 256
trust and, 102, 221
velocity and, 260, 266
XP lifecycle and, 19

études, xv, 70, 100, 154, 200, 272
evolutionary design, 321

(see also incremental design/architecture)
executive sponsor, 36, 103, 204

involving, 52, 54, 138, 227
existing code (see preexisting code)
existing projects, 56–60, 227

(see also legacy code)
expert customers, 273
experts (mentors), 12
exploratory testing, 272, 282, 341–349

acceptance tests and, 24
bugs and, 164, 167, 346
customer reviews and, 275
customer tests and, 282
“done done”, 157
end-to-end, 300

I N D E X 401

example, 345–346
heuristics, 343–345
legacy code and, 59, 348
pair programming and, 76
producing high-quality code, 20
test-driven development (TDD) and, 300
testers and, 34
XP lifecycle and, 20

exposure (risk), 227
Extreme Programming (see XP)

F
Facilities department, 36
fail fast, 318, 369–370, 386
firefighting, 92, 242
fist, 133
Fit (Framework for Integrated Test), 282
FitNesse, 282
fixtures (Fit), executing tests, 282
flow, 71, 187
focused integration tests, 298
formatting (style), 133
Fowler, Martin, xviii, 43, 316
fractional assignment, 39
full-time team members, 39
function points, 146, 148

bugs and, 161

G
games (economics), 219

(see also planning game)
gaming, 85
Gamma et al., 314
going dark (paired programming), 72
Goldilocks heuristic, 344
good design (software), 381–389
graphic designers, 28, 32
green bar (TDD), 287
greenfield projects, 54

H
half-baked objects, 304
hand-drawn charts, 84
handoff documentation, 196
Hansson, David Heinemeier (DHH), 44
head (version control), 170
heuristics, 343
hiring (see staffing guidelines)

Hoare, Tony, 387
horizontal stripes, creating stories, 211
horizontal-market software, 122
HR (human resources) department, 36, 150
hustle, 104

I
ideal engineering days (story points), 260
impaired projects, 4
in-house custom development, 120
incremental change, 367
incremental design/architecture, 321–331

architecture and, 324–326
classes and, 323–324
coaches and, 34–35
continuous design and, 322
cost of, 328
designers/architects and, 33
documentation and, 328
“done done” and, 159
estimating and, 269
iterations and, 243
methods and, 323
modeling and, 327
phase-based organizations and, 61
planning game and, 223
predictive and, 327
programmers and, 32–33
reflective design and, 327
release planning and, 218
simple design and, 319
stories and, 255, 257, 258, 269
XP lifecycle and, 20

incremental requirements, 19, 32, 271–278
on-site customers and, 28
stories, 253

index cards, 83, 92
archiving, 166, 239, 257
backups, 257
bugs on, 163, 166, 256
charters (exploratory testing) on, 342
contraindications, 258
CRC (Class, Responsibility, Collaborator), 327
estimates on, 262
incremental design with, 323–324
informative workspace and, 83
pair programming with, 73, 290–296
planning with, 83, 151, 213, 227, 239
purchasing, 53

402 I N D E X

refactoring/to-do, 324
retrospectives and, 226
risk management with, 225, 227
stakeholders and, 141, 258
stand-up meetings, preparing with, 130
stories on, 41, 61, 141, 163, 220, 253–257
tasks on, 235–236, 239
test-driven development (TDD) with, 290–296,

323
timeboxing and, 100
tracking with, 147, 227, 239
trust, building with, 107
value of, 151, 220, 253–254
whiteboards, sticking to, 52

Industrial XP (IXP), xvii
informative workspace, 52, 69, 83–88

charts, 84–86
coaches and, 35
communicating with, 131, 144, 150
designing, 115
energized work and, 80
hustling, 105
index cards, writing stories and, 254
iteration plan, tracking in, 239
release plan, tracking in, 213, 228
retrospectives and, 95
stand-up meetings, 129
story cards and, 254
vision and, 203
XP lifecycle and, 19

integration
tests, 298
tokens, 184

integration machine (build machine), 52, 157
interaction designers, 28, 31
internal publication (interfaces), 318
inventory, 371
ISO 9001, 35, 371
iteration demos, 20, 25, 138–144

customers and, 20
executive sponsor and, 36, 138
hustling, 105
in-house custom development and, 121
no bugs, writing, 162
on-site customers and, 28
product manager and, 31, 138
stakeholders, 36
team and, 28
trust and, 105, 107–109

XP lifecycle and, 20
iteration planning, whiteboard, 52, 239–240
iterations, 19, 41, 55, 199, 233–246

adopting, 54–56, 61
commitment, 237
commitments, 248
daily, 242
demos (see iteration demos)
“done done” and, 159
emergencies and, 240–242
first, 54–56
legacy code and, 57
length, 244–245
lost, 240
mistakes and, 105, 240, 248
phase-based organizations and, 60–61
planning, 233–245
projects, 213
retrospective, 91
slack and, 246–252
tasks, estimating, 264
tracking, 239
velocity and, 261
XP lifecycle and, 18–27

J
Jeffries, Ron, xvii, 188, 327, 360
JUnit, 296

K
Kerth, Norm, 88, 92
keybindings when pair programming, 75
knowledge silos, 191

L
label (version control), 170
last responsible moment, 41

release planning and, 214, 217
requirements and, 274

legacy code/projects, 56–60
adopting XP and, 56
bugs and, 167
coding standards and, 137
continuous integration and, 186
exploratory testing and, 348
iteration demos and, 141
refactoring and, 312
ten-minute build and, 179

I N D E X 403

test-driven development and, 300
Theory of Constraints and, 42

lifecycles, 18–27
local builds, 178–182
locking model (version control), 170
lost iterations, 240

M
maintainability of software projects, 4
management

bugs and, 166
change and, 54, 95
coaches and, 34
commitments to, 54, 228–230
pledge to, 54
pressure from, 229–230
reporting to, 144–148
retrospectives and, 94
success and, 5, 7
support, importance of, 44
trust and, 104–109

manifesto for Agile software development, 9
mastery, pursuing, xiii, 11, 353, 388
matrix-managed organizations, 39
mentors, 12

coaches, contrasted with, 12
colocated teams and, 45

merciless refactoring, 328
(see also refactoring)

merging (version control), 170
methods (process), 6, 9

customizing (refining), 11, 353, 357
incrementally designing, 323

mindfulness, 42
études and, xv, 70
mastering agility and, xiii, 353
practicing, 70
XP, required for, 69

mini-études, xv, 154
minimum marketable feature (MMF), 209
miracle of collaboration, 221
mitigation (risk management), 226
MMF (minimum marketable feature), 209
mock objects, 298
mock-ups, 28, 32, 274
modeling (domain), 126
Montagna, Frank, 92
multipliers (risk), 224, 230
multistage integration builds, 187

mute mapping, 93

N
n-tier architecture, 324
navigating, 71, 75

bugs and, 163
first iteration, 56
incremental design and, 323, 328
root-cause analysis and, 89
slack and, 246

network architect, 33
no bugs, 25, 160–169

adopting XP and, 167
agile principles and, 362
communication and, 124, 163, 362
customer reviews and, 277
customer tests and, 162, 278
“done done”, 158
expectations, 166
exploratory testing and, 24, 164, 167, 341–342,

346, 347, 348
legacy code and, 59, 167
novices, 166
novices and, 161
pair programming and, 162
planning and, 242, 256
programmers and, 33, 161–163
reproducing, 171
risk and, 225
security and, 166
stories, 256
technical debt and, 40
ten-minute build and, 182
test-driven development and, 62, 162, 285
testers, 164
testers and, 34, 162
time dependencies and, 304
ubiquitous language and, 125, 126, 127
XP lifecycle and, 20

no silver bullets, 3
noncolocated teams, 45, 86, 119, 258, 362

(see also sit together)
none, some, all heuristic, 344
nonfunctional/parafunctional requirements, 20, 256,

337
nulls, coddling, 304
NUnit, 296
NUnitAsp, 305

404 I N D E X

O
object-oriented programming/design (OOP), 126

static classes, 304
strong design skills and, 49

OD (organizational development), 95, 109
on-site customers, 19, 28–32, 46, 120
once and only once (OAOO), 315, 316
opportunity costs, 267, 371
optimization (see performance optimization)
oral tradition, 195
organizational

adaptive planning and, 216
antibodies, 104
culture, 103, 216, 231, 363
development (OD), 95
successes, 5–7

osmotic communication, 113
outsourced custom development, 121
overtime, 106, 249, 267

iteration length and, 244
productivity reduction from, 81

P
pair coaching, 51
pair programming, 33, 47, 69–79, 71–79

challenges, 74
coding standards and, 135
collaboration, 100
contraindications, 77
energized work and, 80, 82
first iteration and, 56
how to, 72
management support and, 44
no bugs, writing, 162
planning sessions and, 239
self-documenting code, 317
TDD and, 287
team size and, 47
velocity and, 268
waste, elimiating, 368
XP lifecycle and, 20

pairing stations, 52, 73, 116
parafunctional (nonfunctional) requirements, 20,

256, 337
Parkinson’s Law, 251
pay (compensation), 36, 44
performance, 157
performance optimization, 20, 25, 272, 335–340

continuous integration and, 188
“done done”, 158
stories and, 254

personal development, 120
personal rewards of writing software, 4
personal success, 7
phase-based organizations, 60–61, 216
philosophy, agile development, 9
ping-pong pairing, 74
planning, 199–270

(see also release planning, iteration planning,
planning game)

planning game, 19, 199, 219–224
energized work and, 80
iterations and, 61
on-site customers, 28
programmers and, 33

planning horizons, 214, 217
planning phase, 60
position heuristic, 344
PowerPoint presentations, 83
practices (methods), 9, 25, 48, 354
pragmatic idealism, 359
predicitive release planning, 218
predictive design, 327
preexisting code, 49

analyzing, 305
(see also legacy code)

Pretty Adventuresome Programming, 196
Prime Directive (Kerth), 92, 95
primitive obsession, 303
principles, agile, 353

practice, 387
private branches (version control), 174
process improvement charts, 84
processes (see methods)
product documentation, 195
product facilitators, 202
product managers, 27, 28, 30–31, 202

bugs and, 163
involving, 46
on-site, 46
stand-up meetings and, 130

product vision, 201
documenting, 202
promoting, 30

production-ready software, 156
productivity

agile development, 160

I N D E X 405

legacy code and, 56
team size and, 39

programmer-coaches, 35
(see also coaches)

programmer-tester empathy, 103
programmers, 27, 32–34

stand-up meetings, 130
velocity and, 267

progress reports, 144, 145
project community, 36
project managers, 28

coaches and, 35
project retrospectives, 91
project-specific risks, 225
projects, understanding, 357
proxy customers, 46, 119
published interfaces, 318

Q
quality, 161–168

measuring, 149
refactoring and, 40
technical debt, 267, 360
testers and, 34, 346

quality assurance (QA), 20, 341, 346
(see also testing, testers)

QWAN (Quality Without a Name), 381

R
reading groups for research, 252
real customers, 120–124

feedback from, 20, 32, 203, 379
incremental requirements and, 273
iteration demos and, 138
on-site customers, contrasted with, 19

“red, green, refactor” cycle, 286
refactoring, 33, 40, 272, 303–314

bugs, writing, 162
incremental design/architecture, 321
pair programming and, 76
slack and, 247
TDD and, 288
technical debt, paying down, 248

reflective design, 303–304
regression tests, 20, 34, 59, 281, 347
relationships, 99

(see also collaboration)
building effective, 102–112, 361–362

release planning, 31, 56, 199, 206–219

brand-new project, applying, 55
commitments, making, 228
“done done”, 159
early and often, 206
index cards, writing stories and, 254
iteration planning, 233
on-site customers and, 28
outsourced custom development and, 121
phase-based organization and, 60
product managers and, 31
production-ready software, 156
stories, 253
vision statements, creating, 202
XP lifecycle and, 19

release retrospectives, 91
releasing software, 153–198
reporting, 25, 144–151

coaching teams and, 35
energized work and, 80
hustling, 105
informative workspaces and, 86
stand-up meetings and, 131

repositories (version control), 169, 185
requirements, 18
research time, 247
retrospectives, 25, 62, 69, 91–97

coding standards and, 134
informative workspaces and, 86
iteration schedule and, 233
objective, 94
process improvement charts, 84
product managers and, 31
root causes and, 89
trust, building, 103
XP lifecycle and, 20

revert (version control), 170
Rip, Peter, 210
risk census, 225
risk exposure, 227
risk management, 19, 24, 199, 224–233

coaches and, 35
estimates, making, 262
incremental design/architecture and, 325
on-site customers and, 28
planning projects and, 213

risk-driven architecture, 325
roadmaps, 145
roles, filling, 38
rolling back (version control), 170

406 I N D E X

root-cause analysis, 20, 69, 88–90, 165
risk management and, 226

round-trip engineering, 305
Ruby on Rails, 44
rules (domain) (see domain knowledge)

S
sandbox (version control), 169
Satir Change Model, 53
schedules, 91

deadlines and, 209, 269
overtime and, 81

scopeboxed plans, 212, 231
screechingly obvious code, 386
Scrum, 9

Daily, 129
seams (refactoring), 300
second adopter syndrome, 54
secondary builds, 187
self-documenting code, 317
self-organization, 28, 34

teams, 50
shotgun surgery, 303
silver bullets, 3
silver stories, 252
simple design, 61, 272, 314–321

bugs and, 162
incremental design/architecture and, 321, 325
pair programming and, 75

simultaneous phases, 18
phase-based organizations, 60–61

single codebase, 173
sit together, 19, 28, 112–120

(see also distributed teams)
coaches and, 35
documentation and, 195
“done done”, 159
incremental requirements and, 273
index cards, using, 258
no bugs, writing, 162
planning sessions and, 239
trust, building, 103
velocity and, 267, 268
version control and, 172
workspaces, designing, 115

slack, 20, 95, 199, 246–252
bugs, writing, 162
coaches and, 35
“done done”, 159

incremental requirements and, 275
problems, managing, 106
technical debt, 267
ten-minute build and, 181
velocity and, 261

SLOC (Source Lines Of Code), 148
slow builds, 180, 186
smells (code), 303–304
software, 381
software, types of, 120–122
source code, 384

(see also design)
Source Lines Of Code (SLOC), 148
spike solutions, 25, 172, 272, 331–335

driving and navigating, 73
estimating, 265
pair programming and, 76
performing, 331
slack and, 248
stories, 256

stakeholders, 36, 231
stand-up meetings, 19, 25, 61, 129–133

informative workspaces and, 86, 129
static classes, 304
status emails, 145
stories, 41, 149, 219, 253–260

cards, 253–254
documentation and, 195
“done done” and, 159
estimating, 263–264
horizontal/vertical stripes, 212
iteration planning and, 233
on-site customers and, 28
planning, 199
XP lifecycle and, 19

story points (ideal engineering days), 260
stovepipe systems, 48
stretch goals, 229
strong code ownership, 194
student syndrome, 251
subject matter experts (domain experts), 31
success of projects, 4

management support and, 44
SUnit, 296
supplies for workspaces, 53
surprise retrospectives, 91
sustaining documentation, 195
SWAT team, 372
synchronous integration, 186

I N D E X 407

asynchronous integration, contrasted with, 186,
188

T
tagging (version control), 170
taking breaks, 80
task-switching, cost of, 39, 206
TDD (test-driven development), 20
teams, 27–39

agreements, 45
colocated, 45
continuity, 103
promoting, 107
size, 38, 47–48
trust amongst, 35

technical debt, 40
bugs, writing, 162
eliminating, 387
legacy projects and, 56, 58
slack and, 246
velocity and, 267

technical excellence, 4, 381–389
technical infrastructure, establishing, 55, 183, 186,

257, 321–331
technical specialists, 33
technical success, 7
ten-minute build, 20, 33, 62, 141, 177–183

automating, 177
continuous integration and, 186
customer tests and, 278
“done done”, 157
frequent releases of software and, 208
iteration schedule, 233
planning sessions and, 238
technical debt, paying down, 58
version control and, 175

test-driven development (TDD), 20, 33, 62, 272, 285–
303

coaches and, 35
continuous integration and, 183
documentation and, 195
“done done”, 157, 159
incremental design/architecture, 321
no bugs, writing, 162
pair programming and, 72, 76
phase-based organization, 61
refactoring and, 306
slack and, 250
technical, paying down, 58

ten-minute build and, 177
waste, elimiating, 368

testers, 28, 34, 59
Theory of Constraints and, 42, 238

testing (see no bugs)
practices in XP lifestyles, 20

testing phase (phase-based organization), 61
testing tools (TDD), 296
tests, customer (see customer tests)
Theory of Constraints, 42, 372
third-party components, 317
throughput, 146, 371
thumb vote, 135
time dependencies, 304
time usage report, 147
timeboxed plans, 212
timeboxing, 40, 100, 233
tip (version control), 170
tools

TDD, testing, 296
toolsets when programming in pairs, 75

transition indicators (risk management), 226
trust, 25, 102–112

estimating, 265
frequent releases of software and, 208
risk management and, 230
teams, 35

U
ubiquitous language, 19, 25, 124, 125

customer tests and, 283
documentation and, 195
programmers and, 33
XP lifecycle and, 19

UI (user interface), 31
UML sequence diagram, 305
unfamiliar code, 191
unit tests, 297
unreleased software, 371
updating (version control), 169, 185
user interface (UI), 31

V
values, 9, 353–355

planning games, 219
velocity, 149

estimating, 260–261
iterations and, 61
mapping estimates for programming, 42, 57

408 I N D E X

slack and, 246
version control, 20, 25, 169–177

continuous integration and, 186
incremental requirements and, 273
programmers and, 33
ten-minute build and, 177

vertical stripes (stories), 212
vertical-market software, 121
visible charts, 84
vision, 199–205, 202

(see also product vision)
documentation and, 195
energized work, 80
incremental requirements and, 274
statement, 145

visionaries, 201
VSS (Visual SourceSafe), 174

W
wannabee static class (smell), 304
waste, eliminating, 367–373
weak code ownership, 194
weekly demos (see iteration demos)
whiteboards, 83
whole team, 114

(see also teams)
“done done”, 157
exploratory testing, 341

work-in-progress documentation, 195
working agreements, 54, 133–144
working copies (version control), 169
workspaces, 51

adopting an open, 117
designing, 115
informative, 19, 52
sample, 116
shared, using coaches, 35

X
XML, 126
XP (Extreme Programming), 7

adopting, 43–63
lifecycles, 18–27
understanding, 15–42

xUnit tools, 296

Y
YAGNI (You Aren’t Gonna Need It), 315

I N D E X 409

About the Authors
James Shore, signatory number 10 to the Agile Manifesto, has been coaching agile teams large and
small before they were called agile. He brings both breadth and depth to his discussion of agile
development. In 2005, the Agile Alliance recognized James with their most significant award, the
Gordon Pask Award for Contributions to Agile Practice. James is an internationally recognized speaker
who consults for companies interested in agile development. He writes about agile development on his
top-ranked blog, jamesshore.com.

Shane Warden is the technical editor of the O’Reilly Network, specializing in programming, Linux,
and open source development. Among other books for O’Reilly, he is the author of the Extreme
Programming Pocket Guide, which distilled Extreme Programming into a concise explanation and
reference. Many readers have commented that they buy copies for all of their customers to explain how
they work. Ward Cunningham (cocreator of Extreme Programming) considers it the best explanation
of the practice.

Colophon
The cover image is from www.veer.com. The cover fonts are Berthold Akzidenz Grotesk and Orator. The
text font is Adobe’s Meridien; the heading font is ITC Bailey.

	The Art of Agile Development
	Table of Contents
	Preface
	For the Pragmatists
	Who Should Read This Book
	About the Études
	About Pronouns
	Using Code Examples
	Safari® Enabled
	How to Contact Us
	Acknowledgments
	James Shore
	Shane Warden

	Part I. Getting Started
	Chapter 1. Why Agile?
	Understanding Success
	Beyond Deadlines
	The Importance of Organizational Success
	Enter Agility
	Organizational Success
	Technical Success
	Personal Success

	Chapter 2. How to Be Agile
	Agile Methods
	Don’t Make Your Own Method
	The Road to Mastery
	Find a Mentor

	Chapter 3. Understanding XP
	The XP Lifecycle
	How It Works
	Planning
	Analysis
	Design and Coding
	Testing
	Deployment

	Our Story Continues

	The XP Team
	The Whole Team
	On-Site Customers
	The product manager (aka product owner)
	Domain experts (aka subject matter experts)
	Interaction designers
	Business analysts

	Programmers
	Designers and architects
	Technical specialists

	Testers
	Coaches
	The programmer-coach
	The project manager

	Other Team Members
	The Project Community
	Stakeholders
	The executive sponsor

	Filling Roles
	Team Size
	Full-Time Team Members

	XP Concepts
	Refactoring
	Technical Debt
	Timeboxing
	The Last Responsible Moment
	Stories
	Iterations
	Velocity
	Theory of Constraints
	Mindfulness

	Chapter 4. Adopting XP
	Is XP Right for Us?
	Prerequisite #1: Management Support
	If management isn’t supportive...

	Prerequisite #2: Team Agreement
	If people resist...

	Prerequisite #3: A Colocated Team
	If your team isn’t colocated...

	Prerequisite #4: On-Site Customers
	If your product manager is too busy to be on-site...
	If your product manager is inexperienced...
	If you can’t get a product manager at all...
	If you can’t get other on-site customers...

	Prerequisite #5: The Right Team Size
	If you don’t have even pairs...
	If your team is larger than seven programmers...
	If your team is smaller than four programmers...
	If you have many developers working solo...

	Prerequisite #6: Use All the Practices
	If practices don’t fit...

	Recommendation #1: A Brand-New Codebase
	If you have preexisting code...

	Recommendation #2: Strong Design Skills
	If no one has strong design skills...

	Recommendation #3: A Language That’s Easy to Refactor
	If your language is hard to refactor...

	Recommendation #4: An Experienced Programmer-Coach
	If you have no obvious coach...
	If your leaders are inexperienced...
	If you’re assigned a poor coach...

	Recommendation #5: A Friendly and Cohesive Team
	If your team doesn’t get along...

	Go!
	The Challenge of Change
	Final Preparation
	Applying XP to a Brand-New Project (Recommended)
	Applying XP to an Existing Project
	The big decision
	Bring order to chaos
	Pay down technical debt
	Organize your backlog
	Fix important bugs
	Move testers forward
	Emerge from the darkness

	Applying XP in a Phased-Based Organization
	Mandatory planning phase
	Mandatory analysis phase
	Mandatory design phase
	Mandatory coding phase
	Mandatory testing phase
	Mandatory deployment phase

	Extremities: Applying Bits and Pieces of XP
	Iterations
	Retrospectives
	Ten-minute build
	Continuous integration
	Test-driven development
	Other practices

	Assess Your Agility
	Self-Assessment Quiz

	Part II. Practicing XP
	Chapter 5. Thinking
	Pair Programming
	Why Pair?
	How to Pair
	Driving and Navigating
	Pairing Stations
	Challenges
	Comfort
	Mismatched Skills
	Communication style
	Tools and keybindings

	Questions
	Results
	Contraindications
	Alternatives
	Further Reading

	Energized Work
	How to Be Energized
	Supporting Energized Work
	Taking Breaks
	Questions
	Results
	Contraindications
	Alternatives
	Further Reading

	Informative Workspace
	Subtle Cues
	Big Visible Charts
	Hand-Drawn Charts
	Process Improvement Charts
	Gaming
	Questions
	Results
	Contraindications
	Alternatives
	Further Reading

	Root-Cause Analysis
	How to Find the Root Cause
	How to Fix the Root Cause
	When Not to Fix the Root Cause
	Questions
	Results
	Contraindications
	Alternatives

	Retrospectives
	Types of Retrospectives
	How to Conduct an Iteration Retrospective
	Step 1: The Prime Directive
	Step 2: Brainstorming
	Step 3: Mute Mapping
	Step 4: Retrospective Objective
	After the Retrospective
	Questions
	Results
	Contraindications
	Alternatives
	Further Reading

	Chapter 6. Collaborating
	Trust
	Team Strategy #1: Customer-Programmer Empathy
	Team Strategy #2: Programmer-Tester Empathy
	Team Strategy #3: Eat Together
	Team Strategy #4: Team Continuity
	Impressions
	Organizational Strategy #1: Show Some Hustle
	Organizational Strategy #2: Deliver on Commitments
	Organizational Strategy #3: Manage Problems
	Organizational Strategy #4: Respect Customer Goals
	Organizational Strategy #5: Promote the Team
	Organizational Strategy #6: Be Honest
	Questions
	Results
	Contraindications
	Alternatives
	Further Reading

	Sit Together
	Accommodating Poor Communication
	A Better Way
	Exploiting Great Communication
	Secrets of Sitting Together
	Making Room
	Designing Your Workspace
	Sample Workspaces
	A small workspace

	Adopting an Open Workspace
	Questions
	Results
	Contraindications
	Alternatives
	Further Reading

	Real Customer Involvement
	Personal Development
	In-House Custom Development
	Outsourced Custom Development
	Vertical-Market Software
	Horizontal-Market Software
	Questions
	Results
	Contraindications
	Alternatives

	Ubiquitous Language
	The Domain Expertise Conundrum
	Two Languages
	How to Speak the Same Language
	Ubiquitous Language in Code
	Refining the Ubiquitous Language
	Questions
	Results
	Contraindications
	Alternatives
	Further Reading

	Stand-Up Meetings
	How to Hold a Daily Stand-Up Meeting
	Be Brief
	Questions
	Results
	Contraindications
	Alternatives
	Further Reading

	Coding Standards
	Beyond Formatting
	How to Create a Coding Standard
	Dealing with Disagreement
	Adhering to the Standard
	Questions
	Results
	Contraindications
	Alternatives

	Iteration Demo
	How to Conduct an Iteration Demo
	Two Key Questions
	Weekly Deployment Is Essential
	Questions
	Results
	Contraindications
	Alternatives

	Reporting
	Types of Reports
	Progress Reports to Provide
	Vision statement
	Weekly demo
	Release and iteration plans
	Burn-up chart

	Progress Reports to Consider
	Roadmap
	Status email

	Management Reports to Consider
	Productivity
	Throughput
	Defects
	Time usage

	Reports to Avoid
	Source lines of code (SLOC) and function points
	Number of stories
	Velocity
	Code quality

	Questions
	Results
	Contraindications
	Alternatives
	Further Reading

	Chapter 7. Releasing
	“Done Done”
	Production-Ready Software
	How to Be “Done Done”
	Making Time
	Questions
	Results
	Contraindications
	Alternatives

	No Bugs
	How Is This Possible?
	How to Achieve Nearly Zero Bugs
	Ingredient #1: Write Fewer Bugs
	Ingredient #2: Eliminate Bug Breeding Grounds
	Ingredient #3: Fix Bugs Now
	Ingredient #4: Test Your Process
	Ingredient #5: Fix Your Process
	Invert Your Expectations
	Questions
	Results
	Contraindications
	Alternatives
	Further Reading

	Version Control
	Concurrent Editing
	Time Travel
	Whole Project
	Customers and Version Control
	Keep It Clean
	Single Codebase
	Appropriate Uses of Branches
	Questions
	Results
	Contraindications
	Alternatives
	Further Reading

	Ten-Minute Build
	Automate Your Build
	How to Automate
	When to Automate
	Automating Legacy Projects
	Ten Minutes or Less
	Questions
	Results
	Contraindications
	Alternatives

	Continuous Integration
	Why It Works
	How to Practice Continuous Integration
	Never Break the Build
	The Continuous Integration Script
	To update from the repository
	To integrate

	Introducing Continuous Integration
	Dealing with Slow Builds
	Multistage Integration Builds
	Questions
	Results
	Contraindications
	Alternatives

	Collective Code Ownership
	Making Collective Ownership Work
	Working with Unfamiliar Code
	Hidden Benefits
	Questions
	Results
	Contraindications
	Alternatives

	Documentation
	Work-In-Progress Documentation
	Product Documentation
	Handoff Documentation
	Questions
	Results
	Contraindications
	Alternatives

	Chapter 8. Planning
	Vision
	Product Vision
	Where Visions Come From
	Identifying the Vision
	Documenting the Vision
	How to Create a Vision Statement
	Promoting the Vision
	Questions
	Results
	Contraindications
	Alternatives
	Further Reading

	Release Planning
	One Project at a Time
	Release Early, Release Often
	How to Release Frequently
	An Example
	Adapt Your Plans
	Keep Your Options Open
	How to Create a Release Plan
	Planning at the Last Responsible Moment
	Adaptive Planning and Organizational Culture
	Questions
	Results
	Contraindications
	Alternatives
	Further Reading

	The Planning Game
	How to Play
	Overcoming disagreements

	How to Win
	Questions
	Results
	Contraindications
	Alternatives

	Risk Management
	A Generic Risk-Management Plan
	Project-Specific Risks
	How to Make a Release Commitment
	Success over Schedule
	When Your Commitment Isn’t Good Enough
	Questions
	Results
	Contraindications
	Alternatives
	Further Reading

	Iteration Planning
	The Iteration Timebox
	The Iteration Schedule
	How to Plan an Iteration
	The Commitment Ceremony
	After the Planning Session
	Dealing with Long Planning Sessions
	Tracking the Iteration
	When Things Go Wrong
	Partially Done Work
	Emergency Requests
	The Batman
	Questions
	Results
	Contraindications
	Alternatives
	Iteration length

	Further Reading

	Slack
	How Much Slack?
	How to Introduce Slack
	Research Time
	When Your Iteration Commitment Is at Risk
	Use refactoring as a shock absorber
	Incur a little voluntary overtime
	Cancel research time

	Don’t Cross the Line
	Reducing the Need for Slack
	Questions
	Results
	Contraindications
	Alternatives
	Reading groups
	Silver stories

	Further Reading

	Stories
	Story Cards
	Customer-Centricity
	Splitting and Combining Stories
	Special Stories
	Documentation stories
	“Nonfunctional” stories
	Bug stories
	Spike stories
	Estimating
	Meetings
	Architecture, design, refactoring, and technical infrastructure

	Questions
	Results
	Contraindications
	Alternatives
	Further Reading

	Estimating
	What Works (and Doesn’t) in Estimating
	Velocity
	Velocity and the Iteration Timebox
	How to Make Consistent Estimates
	How to Estimate Stories
	How to Estimate Iteration Tasks
	When Estimating Is Difficult
	Explaining Estimates
	How to Improve Your Velocity
	Pay down technical debt
	Improve customer involvement
	Support energized work
	Offload programmer duties
	Provide needed resources
	Add programmers (carefully)

	Questions
	Results
	Contraindications
	Alternatives
	Further Reading

	Chapter 9. Developing
	Incremental Requirements
	The Living Requirements Document
	Work Incrementally
	Vision, features, and stories
	Rough expectations
	Mock-ups, customer tests, and completion criteria
	Customer review

	Questions
	Results
	Contraindications
	Alternatives
	Further Reading

	Customer Tests
	Describe
	Demonstrate
	Develop
	Focus on Business Rules
	Ask Customers to Lead
	Automating the Examples
	Questions
	Results
	Contraindications
	Alternatives
	Further Reading

	Test-Driven Development
	Why TDD Works
	How to Use TDD
	Step 1: Think
	Step 2: Red bar
	Step 3: Green bar
	Step 4: Refactor
	Step 5: Repeat

	A TDD Example
	The task
	One name/value pair
	An empty string
	testNull()
	valueFor()
	Multiple name/value pairs
	Multiple count()
	Your turn

	Testing Tools
	Speed Matters
	Unit Tests
	Focused Integration Tests
	End-to-End Tests
	TDD and Legacy Code
	Questions
	Results
	Contraindications
	Alternatives
	Further Reading

	Refactoring
	Reflective Design
	Divergent Change and Shotgun Surgery
	Primitive Obsession and Data Clumps
	Data Class and Wannabee Static Class
	Coddling Nulls
	Time Dependencies and Half-Baked Objects

	Analyzing Existing Code
	How to Refactor
	Refactoring in Action
	Questions
	Results
	Contraindications
	Alternatives
	Further Reading

	Simple Design
	You Aren’t Gonna Need It (YAGNI)
	Once and Only Once
	Self-Documenting Code
	Isolate Third-Party Components
	Limit Published Interfaces
	Fail Fast
	Questions
	Results
	Contraindications
	Alternatives
	Further Reading

	Incremental Design and Architecture
	How It Works
	Continuous Design
	Incrementally Designing Methods
	Incrementally Designing Classes
	Incrementally Designing Architecture
	Risk-Driven Architecture
	It’s Not Just Coding
	Questions
	Results
	Contraindications
	Alternatives
	Further Reading

	Spike Solutions
	About Spikes
	Performing the Experiment
	Scheduling Spikes
	Questions
	Results
	Contraindications
	Alternatives

	Performance Optimization
	How to Optimize
	When to Optimize
	How to Write a Performance Story
	Questions
	Results
	Contraindications
	Alternatives
	Further Reading

	Exploratory Testing
	About Exploratory Testing
	Tool #1: Charters
	Tool #2: Observation
	Tool #3: Notetaking
	Tool #4: Heuristics
	None, Some, All
	Goldilocks: too big, too small, just right
	Position: beginning, middle, end
	Count: zero, one, many
	CRUD: create, read, update, delete
	Command Injection
	Data Type Attacks

	An Example
	When You Find Bugs
	Questions
	Results
	Contraindications
	Alternatives
	Further Reading

	Part III. Mastering Agility
	Chapter 10. Values and Principles
	Commonalities
	About Values, Principles, and Practices
	Further Reading

	Chapter 11. Improve the Process
	Understand Your Project
	In Practice
	Beyond Practices

	Tune and Adapt
	In Practice
	Beyond Practices

	Break the Rules
	In Practice
	Beyond Practices

	Chapter 12. Rely on People
	Build Effective Relationships
	In Practice
	Beyond Practices

	Let the Right People Do the Right Things
	In Practice
	Beyond Practices

	Build the Process for the People
	In Practice
	Beyond Practices

	Chapter 13. Eliminate Waste
	Work in Small, Reversible Steps
	In Practice
	Beyond Practices

	Fail Fast
	In Practice
	Beyond Practices

	Maximize Work Not Done
	In Practice
	Beyond Practices

	Pursue Throughput
	In Practice
	Beyond Practices

	Chapter 14. Deliver Value
	Exploit Your Agility
	In Practice
	Beyond Practices

	Only Releasable Code Has Value
	In Practice
	Beyond Practices

	Deliver Business Results
	In Practice
	Beyond Practices

	Deliver Frequently
	In Practice
	Beyond Practices

	Chapter 15. Seek Technical Excellence
	Software Doesn’t Exist
	Design Is for Understanding
	Design Trade-offs
	Quality with a Name
	Great Design
	Universal Design Principles
	The Source Code Is the (Final) Design
	Don’t Repeat Yourself (DRY)
	Be Cohesive
	Decouple
	Clarify, Simplify, and Refine
	Fail Fast
	Optimize from Measurements
	Eliminate Technical Debt

	Principles in Practice
	Pursue Mastery

	References
	Index

