

Head First Servlets and JSP™
Second Edition

by Bryan Basham, Kathy Sierra, and Bert Bates

Copyright © 2008 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Series Creators:		 Kathy Sierra, Bert Bates

Series Editor:		 Brett D. McLaughlin

Design Editor:		 Louise Barr

Cover Designers:		 Edie Freedman, Steve Fehler, Louise Barr

Production Editor:		 Sanders Kleinfeld

Indexer:			 Julie Hawks

Interior Decorators:	 Kathy Sierra and Bert Bates

Servlet Wrangler:		 Bryan Basham

Assistant to
the Front Controller:	 Bert Bates

Printing History:
August 2004: First Edition.

March 2008: Second Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations,
Head First Servlets and JSP™, Second Edition, and related trade dress are trademarks of O’Reilly Media, Inc. Java
and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems,
Inc., in the United States and other countries. O’Reilly Media, Inc. is independent of Sun Microsystems.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

In other words, if you use anything in Head First Servlets & JSP™ to, say, run a nuclear power plant or air
traffic control system, you’re on your own. Readers of this book should be advised that the authors hope
you remember them, should you create a huge, successful dotcom as a result of reading this book. We’ll
take stock options, beer, or dark chocolate

ISBN: 978-0-596-51668-0

[M]

table of contents

ix

Table of Contents (Summary)

Table of Contents (the real thing)
Intro

Who is this book for?	 xx

We know what your brain is thinking	 xxi

Metacognition	 xxiii

Bend your brain into submission	 xv

What you need for this book	 xxvi

Passing the certification exam	 xxviii

Technical reviewers	 xxx

Acknowledgments	 xxxi

 	 Intro	 xix

1	 Why use Servlets & JSPs: an introduction	 1

2	 Web App Architecture: high-level overview	 37

3	 Mini MVC Tutorial: hands-on MVC	 67

4	 Being a Servlet: request AND response	 93

5	 Being a Web App: attributes and listeners	 147

6	 Conversational state: session management	 223

7	 Being a JSP: using JSP	 281

8	 Script-free pages: scriptless JSP	 343

9	 Custom tags are powerful: using JSTL	 439

10	 When even JSTL is not enough: custom tag development	 499

11	 Deploying your web app: web app deployment	 601

12	 Keep it secret, keep it safe: web app security	 649

13	 The Power of Filters: wrappers and filters	 701

14	 Enterprise design patterns: patterns and struts	 737

A	 Appendix A: Final Mock Exam	 791

i	 Index	 865

Your brain on Servlets. � Here you are trying to learn something, while here

your brain is doing you a favor by making sure the learning doesn’t stick. Your brain’s

thinking, “Better leave room for more important things, like which wild animals to avoid

and whether naked snowboarding is a bad idea.” So how do you trick your brain into

thinking that your life depends on knowing Servlets?

i

table of contents

x

Why use Servlets & JSPs1
Exam objectives 2

What web servers and clients do, and how they talk? 4

Two-minute guide to HTML 7

What is the HTTP protocol? 10

Anatomy of HTTP GET and POST requests and HTTP responses 16

Locating web pages using URLs 20

Web servers, static web pages, and CGI 24

Servlets Demystified: write, deploy, and run a servlet 30

JSP is what happened when somebody introduced Java to HTML 34

Web applications are hot. How many GUI apps do you know that are used by

millions of users worldwide? As a web app developer, you can free yourself from the grip

of deployment problems all standalone apps have, and deliver your app to anyone with a

browser. But you need servlets and JSPs. Because plain old static HTML pages are so,

well, 1999. Learn to move from web site to web app.

Web app architecture2
Exam Objectives 38

What is a Container and what does it give you? 39

How it looks in code (and what makes a servlet) 44

Naming servlets and mapping them to URLs using the DD 46

Story: Bob Builds a Matchmaking Site (and MVC intro) 50

A Model-View-Controller (MVC) overview and example 54

A “working” Deployment Descriptor (DD) 64

How J2EE fits into all this 65

Servlets need help. When a request comes in, somebody has to instantiate

the servlet or at least allocate a thread to handle the request. Somebody has to call the

servlet’s doPost() or doGet() method. Somebody has to get the request and the response

to the servlet. Somebody has to manage the life, death, and resources of the servlet. In

this chapter, we’ll look at the Container, and we’ll take a fi rst look at the MVC pattern.

table of contents

xi

Mini MVC tutorial3
Exam Objectives 68

Let’s build an MVC application; the first design 69

Create the development and deployment environments 72

Create and test the HTML for the initial form page 75

Create the Deployment Descriptor (DD) 77

Create, compile, deploy, and test the controller servlet 80

Design, build, and test the model component 82

Enhance the controller to call the model 83

Create and deploy the view component (it’s a JSP) 87

Enhance the controller servlet to call the JSP 88

Create and deploy an MVC web app. It’s time to get your hands dirty

writing an HTML form, a servlet controller, a model (plain old Java class), an XML

deployment descriptor, and a JSP view. Time to build it, deploy it, and test it. But fi rst, you

need to set up your development environment. Next, you need to set up your deployment

environment following the servlet and JSP specs and Tomcat requirements. True, this is a

small app... but there’s almost NO app that’s too small to use MVC.

Being a Servlet4
Exam Objectives 94

A servlet’s life in the Container 95

Servlet initialization and threads 101

A Servlet’s REAL job is to handle GET and POST requests. 105

The story of the non-idempotent request 112

What determines whether you get a GET or POST request? 117

Sending and using parameter(s) 119

So that’s the Request... now let’s see the Response 126

You can set response headers, you can add response headers 133

Servlet redirect vs. request dispatcher 136

Review: HttpServletResponse 140

Servlets need help. When a request A servlet’s job is to take a client’s request

and send back a response. The request might be simple: “get me the Welcome page.” Or

it might be complex: “Complete my shopping cart check-out.” The request carries crucial

data, and your servlet code has to know how to fi nd it and how to use it. And your servlet

code has to know how to send a response. Or not...

table of contents

xii

Being a web app5
Exam Objectives 148

Init Parameters and ServletConfig to the rescue 149

How can a JSP get servlet init parameters? 155

Context init parameters to the rescue 157

Comparing ServletConfig with ServletContext 159

She wants a ServletContextListener 166

Tutorial: a simple ServletContextListener 168

Compile, deploy, and test your listener 176

The full story, a ServletContextListener review 178

Eight Listeners: they’re not just for context events... 180

What, exactly, is an attribute? 185

The Attribute API and the dark side of attributes 189

Context scope isn’t thread-safe! 192

The problem in slow motion... 193

Trying out Synchronization 195

Are Session attributes thread-safe? 198

The SingleThreadModel 201

Only Request attributes and local variables are thread-safe! 204

Request attributes and Request dispatching 205

No servlet stands alone. In today’s modern web app, many components

work together to accomplish a goal. You have models, controllers, and views. You have

parameters and attributes. You have helper classes. But how do you tie the pieces

together? How do you let components share information? How do you hide information?

How do you make information thread-safe? Your job may depend on the answers.

table of contents

xiii

Conversational state6 Web servers have no short-term memory. As soon as they send you

a response, they forget who you are. The next time you make a request, they don’t

recognize you. They don’t remember what you’ve requested in the past, and they don’t

remember what they’ve sent you in response. Nothing. But sometimes you need to keep

conversational state with the client across multiple requests. A shopping cart wouldn’t

work if the client had to make all his choices and then checkout in a single request.

Being a JSP7 A JSP becomes a servlet. A servlet that you don’t create. The Container looks

at your JSP, translates it into Java source code, and compiles it into a full-fl edged Java

servlet class. But you’ve got to know what happens when the code you write in the JSP

is turned into Java code. You can write Java code in your JSP, but should you? And if

not Java code, what do you write? How does it translate into Java code? We’ll look at

six different kinds of JSP elements—each with its own purpose and, yes, unique syntax.

You’ll learn how, why, and what to write in your JSP. And you’ll learn what not to write.

Exam Objectives 224

It’s supposed to be a conversation, (how sessions work) 226

Session IDs, cookies, and other session basics 231

URL rewriting: something to fall back on 237

When sessions get stale; getting rid of bad sessions 241

Can I use cookies for other things, or are they only for sessions? 250

Key milestones for an HttpSession 254

Don’t forget about HttpSessionBindingListener 256

Session migration 257

Listener examples 261

Exam Objectives 282

Create a simple JSP using “out” and a page directive 283

JSP expressions, variables, and declarations 288

Time to see a JSP-generated servlet 296

The out variable isn’t the only implicit object... 298

The Lifecycle and initialization of a JSP 306

While we’re on the subject... let’s talk more about the three directives 314

Scriptlets considered harmful? Here’s EL 317

But wait... we haven’t seen: actions 323

table of contents

xiv

Script-free pages8

Exam Objectives 344

When attributes are beans 345

Standard actions: useBean, getProperty, setProperty 349

Can you make polymorphic bean references? 354

The param attribute to the rescue 360

Converting properties 363

Expression Language (EL) saves the day! 368

Using the dot (.) operator to access properties and map values 370

The [] gives you more options (Lists, arrays...) 372

More dot and [] operator details 376

The EL implicit objects 385

EL functions, and handling “null” 392

Reusable template pieces—two kinds of “include” 402

The <jsp:forward /> standard action 416

She doesn’t know about JSTL tags (a preview) 417

Reviewing standard actions and include 417

Lose the scripting. Do your web page designers really have to know Java?

Do they expect server-side Java programmers to be, say, graphic designers? And even

if it’s just you on the team, do you really want a pile of bits and pieces of Java code in

your JSPs? Can you say, “maintenance nightmare”? Writing scriptless pages is not just

possible, it’s become much easier and more fl exible with the new JSP 2.0 spec, thanks

to the new Expression Language (EL). Patterned after JavaScript and XPATH, web

designers feel right at home with EL, and you’ll like it too (once you get used to it). But

there are some traps... EL looks like Java, but isn’t. Sometimes EL behaves differently

than if you used the same syntax in Java, so pay attention!

table of contents

xv

Custom tags are powerful9 Sometimes you need more than EL or standard actions. What if

you want to loop through the data in an array, and display one item per row in an HTML

table? You know you could write that in two seconds using a for loop in a scriptlet. But

you’re trying to get away from scripting. No problem. When EL and standard actions

aren’t enough, you can use custom tags. They’re as easy to use in a JSP as standard

actions. Even better, someone’s already written a pile of the ones you’re most likely to

need, and bundled them into the JSP Standard Tag Library (JSTL). In this chapter we’ll

learn to use custom tags, and in the next chapter we’ll learn to create our own.

Exam Objectives 440

Looping without scripting <c:forEach> 446

Conditional control with <c:if> and <c:choose> 451

Using the <c:set> and <c:remove> tags 455

With <c:import>, there are now three ways to include content 460

Customizing the thing you include 462

Doing the same thing with <c:param> 463

<c:url> for all your hyperlink needs 465

Make your own error pages 468

The <c:catch> tag. Like try/catch...sort of 472

What if you need a tag that’s NOT in JSTL? 475

Pay attention to <rtexprvalue> 480

What can be in a tag body 482

The tag handler, the TLD, and the JSP 483

The taglib <uri> is just a name, not a location 484

When a JSP uses more than one tag library 487

http://localhost:8080/testJSP1/Tester.do

table of contents

xvi

When even JSTL isn’t enough...10 Sometimes JSTL and standard actions aren’t enough. When you

need something custom, and you don’t want to go back to scripting, you can write your

own tag handlers. That way, your page designers can use your tag in their pages, while

all the hard work is done behind the scenes in your tag handler class. But there are three

different ways to build your own tag handlers, so there’s a lot to learn. Of the three, two

were introduced with JSP 2.0 to make your life easier (Simple Tags and Tag Files).

Deploying your web app11 Finally, your web app is ready for prime time. Your pages are

polished, your code is tested and tuned, and your deadline was two weeks ago. But

where does everything go? So many directories, so many rules. What do you name your

directories? What does the client think they’re named? What does the client actually

request, and how does the Container know where to look?

Exam Objectives 500

Tag Files: like include, only better 502

Where the Container looks for Tag Files 509

Simple tag handlers 513

A Simple tag with a body 514

What if the tag body uses an expression? 519

You still have to know about Classic tag handlers 529

A very small Classic tag handler 531

The Classic lifecycle depends on return values 536

IterationTag lets you repeat the body 537

Default return values from TagSupport 539

The DynamicAttributes interface 556

With BodyTag, you get two new methods 563

What if you have tags that work together? 567

Using the PageContext API for tag handlers 577

Exam Objectives 602

Key deployment task, what goes where? 603

WAR files 612

How servlet mapping REALLY works 616

Configuring welcome files in the DD 622

Configuring error pages in the DD 626

Configuring servlet initialization in the DD 628

Making an XML-compliant JSP: a JSP Document 629

table of contents

xvii

Keep it secret, keep it safe12 Your web app is in danger. Trouble lurks in every corner of the network. You

don’t want the Bad Guys listening in to your online store transactions, picking off credit

card numbers. You don’t want the Bad Guys convincing your server that they’re actually

the Special Customers Who Get Big Discounts. And you don’t want anyone (good OR

bad) looking at sensitive employee data. Does Jim in marketing really need to know that

Lisa in engineering makes three times as much as he does?

The power of filters13 Filters let you intercept the request. And if you can intercept the request,

you can also control the response. And best of all, the servlet remains clueless. It never

knows that someone stepped in between the client request and the Container’s invocation

of the servlet’s service() method. What does that mean to you? More vacations. Because

the time you would have spent rewriting just one of your servlets can be spent instead

writing and confi guring a fi lter that has the ability to affect all of your servlets. Want to add

user request tracking to every servlet in your app? No problem. Manipulate the output

from every servlet in your app? No problem. And you don’t even have to touch the servlet.

Exam Objectives 650

The Big 4 in servlet security 653

How to Authenticate in HTTP World 656

Top Ten Reasons to do your security declaratively 659

Who implements security in a web app? 660

Authorization roles and constraints 662

Authentication: four flavors 677

The FOUR authentication types 677

Securing data in transit: HTTPS to the rescue 682

Data confidentiality and integrity sparingly and declaratively 684

Exam Objectives 702

Building the request tracking filter 707

A filter’s life cycle 708

Declaring and ordering filters 710

Compressing output with a response-side filter 713

Wrappers rock 719

The real compression filter code 722

Compression wrapper code 724

Lisa in engineering makes three times as much as he does?

table of contents

xviii

Enterprise design patterns14 Someone has done this already. If you’re just starting to develop web

applications in Java, you’re lucky. You get to exploit the collective wisdom of the tens

of thousands of developers who’ve been down that road and got the t-shirt. Using both

J2EE-specifi c and other design patterns, you can can simplify your code and your life.

And the most signifi cant design pattern for web apps, MVC, even has a wildly popular

framework, Struts, that’ll help you craft a fl exible, maintainable servlet Front Controller.

You owe it to yourself to take advantage of everyone else’s work so that you can spend

more time on the more important things in life...

A
The final Coffee Cram Mock Exam. This is it. 69 questions. The tone,

topics, and diffi culty level are all virtually identical to the real exam. We know.

Exam Objectives 738

Hardware and software forces behind patterns 739

Review of softweare design principles... 744

Patterns to support remote model components 745

Overview of JNDI and RMI 747

The Business Delegate is a “go-between” 753

Time for a Transfer Object? 759

Business tier patterns: quick review 761

Our very first pattern revisited... MVC 762

Yes! It’s Struts (and FrontController) in a nutshell 767

Refactoring the Beer app for Struts 770

Review of patterns 778

Final mock exam 791

Answers 828

Indexi 865

this is a new chapter 439

Make it Stick

Sometimes you need more than EL or standard actions.
What if you want to loop through the data in an array, and display one item per

row in an HTML table? You know you could write that in two seconds using a for

loop in a scriptlet. But you’re trying to get away from scripting. No problem. When

EL and standard actions aren’t enough, you can use custom tags. They’re as

easy to use in a JSP as standard actions. Even better, someone’s already written

a pile of the ones you’re most likely to need, and bundled them into the JSP

Standard Tag Library (JSTL). In this chapter we’ll learn to use custom tags, and

in the next chapter we’ll learn to create our own.

Custom tags are powerful

9 using JSTL

You mean, I spent all
this time writing scriptlets

for the things I can’t do with EL
and standard actions, when I
could have used JSTL?

440 chapter 9

Describe the syntax and semantics of the ‘taglib’
directive: for a standard tag library, for a library of
Tag Files.

9.1

Building JSP pages using tag libraries

official Sun exam objectives

Given a design goal, create the custom tag
structure to support that goal.

9.2

Identify the tag syntax and describe the action
semantics of the following JSP Standard Tag Library
(JSTL v1.1) tags: (a) core tags: out, set, remove,
and catch, (b) conditional tags: if, choose, when,
and otherwise, (c) iteration tags: forEach, and (d)
URL-related: url.

9.3

All of the objectives in this section are covered
in this chapter, although some of the content is
covered again in the next chapter (Developing
Custom Tags).

Coverage Notes:

Installing the JSTL 1.1
The JSTL 1.1 is NOT part of the JSP
2.0 specification! Having access to
the Servlet and JSP APIs doesn’t
mean you have access to JSTL.

Before you can use JSTL, you need
to put two files, “jstl.jar” and “standard.
jar” into the WEB-INF/lib directory of
your web app. That means each web
app needs a copy.

In Tomcat 5, the two files are already
in the example applications that ship
out-of-the-box with Tomcat, so all you
need to do is copy them from one
directory and put them into your own
app’s WEB-INF/lib directory.

Copy the files from the Tomcat
examples at:

webapps/jsp-examples/WEB-INF/
lib/jstl.jar
webapps/jsp-examples/WEB-INF/
lib/standard.jar

And place it in your own web app’s
WEB-INF/lib directory.

using JSTL

you are here � 441

EL and standard actions
are limited
What happens when you bump into a brick wall?
You can go back to scripting, of course—but you
know that’s not the path.

Developers usually want way more standard actions
or—even better—the ability to create their own
actions.

That’s what custom tags are for. Instead of saying
<jsp:setProperty>, you want to do something like
<my:doCustomThing>. And you can.

But it’s not that easy to create the support code
that goes behind the tag. For the JSP page creator,
custom tags are much easier to use than scripting.
For the Java programmer, however, building the
custom tag handler (the Java code invoked when a
JSP uses the tag) is tougher.

Fortunately, there’s a standard library of custom
tags known as the JSP Standard Tag Library
(JSTL 1.1). Given that your JSP shouldn’t be doing
a bunch of business logic anyway, you might find
that the JSTL (combined with EL) is all you’ll ever
need. Still, there could be times when you need
something from, say, a custom tag library developed
specifically for your company.

In this chapter, you’ll learn how to use the core
JSTL tags, as well as custom tags from other
libraries. In the next chapter, we’ll learn how to
actually build the classes that handle calls to the
custom tags, so that you can develop your own.

There’s got to be a
way to iterate through a

collection in a JSP...without
scripting. I want to show
one element per row in

a table...

442 chapter 9

The case of the disappearing HTML (reprised)
On page 384, you saw how EL sends the raw string of content directly
to the response stream:

<div class='tipBox'>
 Tip of the Day:

 ${pageContent.currentTip}
</div>

http://localhost:8080/testJSP1/Tester.do

Tip of the Day:
 tags make things bold!

What we got What we want

<div class='tipBox'>
 Tip of the Day:

 tags make things bold!
</div>

<div class='tipBox'>
 Tip of the Day:

 tags make things bold!
</div>

http://localhost:8080/testJSP1/Tester.do

Tip of the Day:
tags make things bold!

Rendered asRendered as

What we need is a way to convert those angle brackets into
something the browser will render as angle brackets, and there
are two ways to do this. Both use a static Java method that
converts HTML special characters into their entity format:

<div class='tipBox'>
 Tip of the Day:

 ${fn:convEntity(pageContent.currentTip)}
</div>

<div class='tipBox'>
 Tip of the Day:

 ${pageContent.convertedCurrentTip}
</div>

Use a Java helper methodUse an EL function

public String getConvertedCurrentTip() {
 return HTML.convEntity(getCurrentTip());
}

Remember this? The
tags didn’t show up as text, but
got rendered as an empty space
that was bolded.

This comes out
as an “invisible”
bolded empty space.

< is rendered as “<”, and > is rendered as “>”.

Here’s the
helper method
to make this
one work.

where’s my html?

using JSTL

you are here � 443

There’s a better way: use the <c:out> tag
Whichever approach you use, it’s a bit unclear exactly what’s
going on... and you may have to write that helper method for
all your servlets. Luckily, there’s a better way. The <c:out>
tag is perfect for the job. Here’s how conversion works:

<div class='tipBox'>
 Tip of the Day:

 <c:out value='${pageContent.currentTip}' escapeXml='true' />
</div>

<div class='tipBox'>
 Tip of the Day:

 <c:out value='${pageContent.rawHTML}' escapeXml='false' />
</div>

<div class='tipBox'>
 Tip of the Day:

 <c:out value='${pageContent.currentTip}' />
</div>

You can explicitly declare the conversion of XML entities
If you know or think you might run into some XML entities
that need to be displayed, and not just rendered, you can use the
escapeXml attribute on c:out. Setting this to true means that any
XML will be converted to something the web browser will render,
angle brackets and all:

You can explicitly declare NO conversion of XML entities
Sometimes, you want just the opposite behavior. Maybe you’re
building a page that takes content, and you want to display that
content with HTML formatting. In that case, you can turn off
XML conversion:

This is equivalent to what we had before... any HTML tags are evaluated, not displayed as text.

Your HTML is treated
as XHTML, which in turn
is XML... so this affects
HTML characters, too.

Conversion happens by default
The escapeXml attribute defaults to true, so you can leave it out if
you want. A c:out tag without an escapeXML attribute is just the
same as a c:out tag with escapeXML set to “true.”

This is actually identical in
functionality to this.

444 chapter 9

there are noDumb Questions

Q: Which HTML special characters are converted?

A: It turns out this conversion is rather simple. There are only five
characters that require escaping: <, >, &, and the two quote symbols,
single and double ". All of these are converted into the equivalent HTML
entities. For example, < becomes <, & becomes &, and so on.

Q: Last month my company hired a web consultant to audit our
web application. She noticed that we were using EL everywhere to
output strings entered by users. She said this was a security risk and
recommended we output all user strings using the c:out tag. What gives?

A: Your consultant was right. The security risk she is referring to is called
cross-site hacking or cross-site scripting. The attack is sent from one user
to another user’s web browser using your webapp as the delivery mechanism.

Character Character Entity Code

< <
> >
& &
' '
" "

Q: What happens if value of the EL expression is null?

A: Good question. You know an EL expression ${evalsToNull}
generates an empty string in the response output, and so will
<c:out value=”${evalsToNull}”/>.

But that’s not the end of the story with c:out. The c:out tag is smart, and
it recognizes when the value is null and can perform a special action. That
action is to provide a default value...

User1
“cracker”

User2
“innocent”

The cracker enters a comment field in your webapp,
which is stored in the database. The cracker includes
viral JavaScript code in the comment.

The innocent user views the cracker’s comment,
but the text the cracker entered also includes
JavaScript code that compromises user2’s system!

Your webapp

Using the c:out tag to rende
r

the text of users prevents
 	

cross-site hacking of this form

by displaying the <script>
tags

and the JS code in user2’s web

browser. This prevents the JS

code from being interpreted by

the browser, foils the attack

from user1.

escaping html

using JSTL

you are here � 445

Null values are rendered as blank text
Suppose you have a page that welcomes the user by saying
“Hello <user>.” But lately, users haven’t been logging in, and
the output looks pretty odd:

EL prints nothing if user is null
Hello ${user}.

A JSP expression tag prints nothing if user is null
Hello <%= user %>.

<c:out> provides a default attribute
Hello <c:out value=’${user}’ default=’guest’ />.

Renders as

Hello .

Renders as

Hello .

Renders as

Hello guest.

Suppose you want to show these anonymous users a message
that says, “Hello guest.” This is a perfect place to use a
default value with the c:out tag. Just add a default
attribute, and provide the value you want to print if your
expression evaluates to null:

Since ${user} and <%= user %> evaluate to null, you get an empty space between “Hello” and the “.” Pretty strange looking...

This value is output if the value
attribute evaluates to null.

Set a default value with the default attribute

Now the default value is inserted... perfect.

Or you can do it this way:
Hello <c:out value=’${user}’>guest</c:out>

446 chapter 9

Looping without scripting
Imagine you want something that loops over a collection (say, an array of
catalog items), pulls out one element at a time, and prints that element in a
dynamically-generated table row. You can’t possibly hard-code the complete
table—you have no idea how many rows there will be at runtime, and of
course you don’t know the values in the collection. The <c:forEach> tag is
the answer. This does require a very slight knowledge of HTML tables, but
we’ve included notes here for those who aren’t familiar with the topic.

By the way, on the exam you are expected to know how to use <c:forEach>
with tables.

the <c:forEach> tag

...
String[] movieList = {“Amelie”, “Return of the King”, “Mean Girls”};
request.setAttribute(“movieList”, movieList);
...

Servlet code

Make a String[] of movie names, and
set the array as a request attribute.

http://localhost:8080/testJSP1/Tester.do

Movie list:

Amelie
Return of the King
Mean Girls

What you want

<table>
<% String[] items = (String[]) request.getAttribute(“movieList”);
 String var=null;
 for (int i = 0; i < items.length; i++) {
 var = items[i];
 %>
 <tr><td><%= var %></td></tr>
 <% } %>
</table>

In a JSP, with scripting

using JSTL

you are here � 447

<c:forEach>
The <c:forEach> tag from the JSTL is perfect for this—it gives you
a simple way to iterate over arrays and collections.

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html><body>
 Movie list:

<table>

 <c:forEach var=”movie” items=”${movieList}” >

 <tr>

 <td>${movie}</td>

 </tr>

 </c:forEach>

</table>

</body></html>

JSP code

Loops through the entir
e array (the

“movieList” attribute) and pri
nts each

element in a new row. (This table has

just one column per row.)

(We’ll talk about this tag
lib

directive later in the c
hapter.)

Crash refresher on HTML tables

<table>

</table>

<td>data for this cell</td> <td>data for this cell</td> <td>data for this cell</td>

<td>data for this cell</td> <td>data for this cell</td> <td>data for this cell</td>

<td>data for this cell</td> <td>data for this cell</td> <td>data for this cell</td>

<tr>

<tr>

<tr>

</tr>

</tr>

</tr>

<tr> stands for Table
Row.

<td> stands for Table
 Data.

Tables are pretty straightforward. They’ve got cells, arranged into rows
and columns, and the data goes inside the cells. The trick is telling the
table how many rows and columns you want.

Rows are defined with the <tr> (Table Row) tag, and columns are
defined with the <td> (Table Data) tag. The number of rows comes
from the number of <tr> tags, and the number of columns comes from
the number of <td> tags you put inside the <tr></tr> tags.

Data to print/display goes only inside the <td> </td> tags!

448 chapter 9

 <c:forEach var=”movie” items=”${movieList}” >

 ${movie}

 </c:forEach>

The variable that holds
each ELEMENT in the

collection. Its value cha
nges with each iteration.

The actual thing to loop over (array, Collection, Map, or a comma-delimited String).

The <c:forEach> tag

String[] items = (String[]) request.getAttribute(“movieList”);

for (int i = 0; i < items.length; i++) {

 String movie = items[i];

 out.println(movie);

}

String[] items = (String[]) request.getAttribute(“movieList”);

for (int i = 0; i < items.length; i++) {

String[] items = (String[]) request.getAttribute(“movieList”);

Deconstructing <c:forEach>
The <c:forEach> tag maps nicely into a for loop—the tag repeats the body of
the tag for each element in the collection (and we use “collection” here to mean
either an array or Collection or Map or comma-delimited String).

The key feature is that the tag assigns each element in the collection to the
variable you declare with the var attribute.

<table>

 <c:forEach var=”movie” items=”${movieList}” varStatus=”movieLoopCount” >
 <tr>

 <td>Count: ${movieLoopCount.count}</td>
 </tr>

 <tr>

 <td>${movie}

</td>

 </tr>

 </c:forEach>

</table>

Getting a loop counter with the optional varStatus attribute

varStatus makes a new variable that holds an instance of javax.servlet.jsp.jstl.core.LoopTagStatus.

http://localhost:8080/testJSP1/Tester.do

Count: 1
Amelie

Count: 2
Return of the King

Count: 3
Mean Girls

Helpfully, the
LoopTagStatus class has a count property that gives you the current value of the iteration counter. (Like the “i” in a for loop.)

the <c:forEach> tag

 </c:forEach>

for (int i = 0; i < items.length; i++) {

 String movie = items[i];

 out.println(movie);

using JSTL

you are here � 449

You can even nest <c:forEach> tags
What if you have something like a collection of collections? An array of
arrays? You can nest <c:forEach> tags for more complex table structures.
In this example, we put String arrays into an ArrayList, then make the
ArrayList a request attribute. The JSP has to loop through the ArrayList
to get each String array, then loop through each String array to print the
actual elements of the array.

String[] movies1 = {“Matrix Revolutions”, “Kill Bill”, “Boondock Saints”};
String[] movies2 = {“Amelie”, “Return of the King”, “Mean Girls”};
java.util.List movieList = new java.util.ArrayList();
movieList.add(movies1);
movieList.add(movies2);
request.setAttribute(“movies”, movieList);

Servlet code

<table>

 <c:forEach var=”listElement” items=”${movies}” >

 <c:forEach var=”movie” items=”${listElement}” >
 <tr>
 <td>${movie}</td>
 </tr>
 </c:forEach>

 </c:forEach>

</table>

JSP code

outer
loop

inner
loop

The ArrayList request attribute

One of the String arrays that was assigned to the outer loop’s “var” attribute.

http://localhost:8080/testJSP1/Tester.do

Matrix Revolutions
Kill Bill
Boondock Saints
Amelie
Return of the King
Mean Girls

From the first String[]

From the second String[]

450 chapter 9

there are noDumb Questions

Q: How did you know that the “varStatus” attri-
bute was an instance of whatever that was, and how
did you know that it has a “count” property?

A: Ahhhh... we looked it up.

It’s all there in the JSTL 1.1 spec. If you don’t have the
spec already, go download it NOW (the intro of this
book tells you where to get the specs covered on the
exam). It is THE reference for all the tags in the JSTL,
and tells you all the possible attributes, whether they’re
optional or required, the attribute type, and any other
details on how you use the tag.

Everything you need to know about these tags (for the
exam) is in this chapter. But some of the tags have a few
more options than we cover here, so you might want to
have a look in the spec.

Q: Since you know more than you’re telling
about this tag... does it give you a way to change the
iteration steps? In a real Java for loop, I don’t have to
do i++, I can do i +=3, for example, to get every third
element instead of every element...

A: Not a problem. The <c:forEach> tag has optional
attributes for begin, end (in case you want to iterate
over a subset of the collection), and step if you want to
skip over some elements.

Q: Is the “c” in <c:forEach> a required prefi x?

A: Well, some prefix is required, of course; all tags
and EL functions must have a prefix to give the Contain-
er the namespace for that tag or function name. But you
don’t HAVE to name the prefix “c”. It’s just the standard
convention for the set of tags in JSTL known as “core”.
We recommend using something other than “c” as a
prefix, whenever you want to totally confuse the people
you work with.

er the namespace for that tag or function name. But you

Watch it!

That’s right, tag scope. No this isn’t a full-fl edged scope

to which you can bind attributes like the other four—

page, request, session, and application. Tag scope

simply means that the variable was declared INSIDE a

loop.

And you already know what that means in Java terms.

You’ll see that for most other tags, a variable set with

a “var” attribute will be visible to whatever scope you

specifi cally set (using an optional “scope” attribute), OR,

the variable will default to page scope.

So don’t be fooled by code that tries to use the variable

somewhere BELOW the end of the

<c:forEach> body tag!

<c:forEach var=”foo”
items=”${fooList}” >

 ${foo}

</c:forEach>

${foo}

It might help to think of tag scope as being just like

block scope in plain old Java code. An example is the

for loop you all know and love:

for (int i = 0; i < i
tems.length; i++) {

 x + i;

}

doSomething(i);

The “var” variable is
scoped to ONLY the tag!

OK

NO!! The “foo” variable
 is

out of scope!

doSomething(i);doSomething(i);

${foo} ${foo}

NO!! The “ i” variable

is out of scope!

the <c:forEach> tag

using JSTL

you are here � 451

Doing a conditional include with <c:if>
Imagine you have a page where users can view comments from other users. And
imagine that members can also post comments, but non-member guests cannot.
You want everyone to get the same page, but you want members to “see” more
things on the page. You want a conditional <jsp:include > and of course, you don’t
want to do it with scripting!

What members see:

http://localhost:8080/testJSP1/Tester.do http://localhost:8080/testJSP1/Tester.do

We don’t want the “Add...” parts

to appear if th
e client is NOT a

member.

What NON-members see:

<%@ taglib prefi x=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html><body>
Member Comments

<hr>${commentList}<hr>

<c:if test=”${userType eq ‘member’ }” >

 <jsp:include page=”inputComments.jsp”/>

</c:if>
</body></html>

JSP code

Assume a servlet somewhere set

the userType attribute, based o
n

the user’s login inform
ation.

Yes, those are SINGLE quotes around ‘member’. Don’t forget that you can use EITHER double or single quotes in your tags and EL.
Included page (“inputComments.jsp”)

<form action=”commentsProcess.jsp” method=”post”>
Add your comment:

<textarea name=”input” cols=”40” rows=”10”></textarea>

<input name=”commentSubmit” type=”button” value=”Add Comment”>
</form>

452 chapter 9

But what if you need an else?
What if you want to do one thing if the condition is true, and
a different thing if the condition is false? In other words, what
if we want to show either one thing or the other, but nobody will
see both? The <c:if> on the previous page worked fine because
the logic was: everybody sees the first part, and then if the test
condition is true, show a little extra.

But now imagine this scenario: you have a car sales web site, and
you want to customize the headline that shows up on each
page, based on a user attribute set up earlier in the session.
Most of the page is the same regardless of the user, but each user
sees a customized headline —one that best fits the user’s personal
motivation for buying. (We are, after all, trying to sell him a car
and become obscenely wealthy.) At the beginning of the session, a
form asks the user to choose what’s most important...

http://localhost:8080/testJSP1/Tester.do

Now you can stop even if you do
drive insanely fast.

The Brakes
 Our advanced anti-lock brake system (ABS)
is engineered to give you the ability to steer
even as you’re stopping. We have the best
speed sensors of any car this size.

http://localhost:8080/testJSP1/Tester.do

When buying a car, what is most
important to you?

The user
’s page

is

customized a
little,

to fit
his inte

rests...

At the beginning of the session:

Somewhere later in the session:

Imagine a web site for a
car company. The first
page asks the user what he
feels is most important.
Just like a good salesman,
the pages that talk about
features of the car will
customize the presentation
based on the user’s
preference, so that each
feature of the car looks
like it was made with HIS
personal needs in mind...

the <c:if> tag

using JSTL

you are here � 453

<html><body><h2>
<% String pref = (String) session.getAttribute(“userPref”);
 if (pref.equals(“performance”)) {
 out.println(“Now you can stop even if you do drive insanely fast.”);
 } else if (pref.equals(“safety”)) {
 out.println(“Our brakes won’t lock up, no matter how bad a driver you are. “);
 } else if (pref.equals(“maintenance”)) {
 out.println(“ Lost your tech job? No problem--you won’t have to service these
brakes for at least three years.”);
 } else {
 // userPref doesn’t match those, so print the default headline
 out.println(“Our brakes are the best.”);
 } %>
</h2>The Brakes

Our advanced anti-lock brake system (ABS) is engineered to give you the ability to
steer even as you’re stopping. We have the
best speed sensors of any car this size.

</body></html>

JSP with scripting, and it does what we want

The <c:if> tag won’t work for this
There’s no way to do exactly what we want using the <c:if> tag, because it
doesn’t have an “else”. We can almost do it, using something like:

<c:if test=”${userPref==’performance’}” >
 Now you can stop even if you do drive insanely fast..
</c:if>
<c:if test=”${userPref==’safety’}” >
 Our brakes won’t lock up no matter how bad a driver you are.
</c:if>
<c:if test=”${userPref==’maintenance’}” >
 Lost your tech job? No problem--you won’t have to service these brakes
 for at least three years.
</c:if>

<!-- continue with the rest of the page that EVERYONE should see -->

JSP using <c:if>, but it doesn’t work right...

But what happens if userPref doesn’t match any of these?

There’s no way to specify the default headline?

The <c:if> won’t work unless we’re CERTAIN that we’ll never need a default
value. What we really need is kind of an if/else construct:*

*Yes, we agree with you—there’s nearly always
a better approach than chained if tests. But
you’re just gonna have to suspend disbelief long
enough to learn how this all works....

Assume “userPref” was set
somewhere earlier in the session.

454 chapter 9

The <c:choose> tag and its partners
 <c:when> and <c:otherwise>
<c:choose>

 <c:when test=”${userPref == ‘performance’}”>

 Now you can stop even if you do drive insanely fast.

 </c:when>

 <c:when test=”${userPref == ‘safety’}”>

 Our brakes will never lock up, no matter how bad a driver you are.

 </c:when>

 <c:when test=”${userPref == ‘maintenance’}”>

 Lost your tech job? No problem--you won’t have to service these brakes
for at least three years.

 </c:when>

 <c:otherwise>

 Our brakes are the best.

 </c:otherwise>

</c:choose>

<!-- the rest of the page goes here... -->

I will CHOOSE you
WHEN you are ready to give

up your obsession with Pilates.
OTHERWISE, I’ll have to go
with Kenny for the synchronized

swim team.

No more than ONE of these four bo
dies

(including the <c:
otherwise>) will run.

(It’s not like a sw
itch statement--

there’s no fall-through .)

If none of the <c:when> tests are true, the <c:otherwise> runs as a default.

the <c:choose> tag

Note: the <c:choose> tag is NOT
required to have a <c:otherwise> tag.

using JSTL

you are here � 455

The <c:set> tag... so much cooler than <jsp:setProperty>
The <jsp:setProperty> tag can do only one thing—set the property of a bean.

But what if you want to set a value in a Map? What if you want to make a new entry in a Map?
Or what if you simply want to create a new request-scoped attribute?

You get all that with <c:set>, but you have to learn a few simple rules. Set comes in two
flavors: var and target. The var version is for setting attribute variables, the target version is for
setting bean properties or Map values. Each of the two flavors comes in two variations: with
or without a body. The <c:set> body is just another way to put in the value.

Setting an attribute variable var with <c:set>

With NO body

<c:set var=”userLevel” scope=”session” value=”Cowboy” />

If there’s NOT a session-scoped attribute named “userLevel”,

this tag creates one (assuming the value attribute is no
t null).

The scope is optional; var is required. You MUST specify a value, but you have a choice between putting in a value attribute or putting the value in the tag body (see #2 below).

value doesn’t
have to be a

String...

WITH a body

<c:set var=”userLevel” scope=”session” >
 Sheriff, Bartender, Cowgirl
</c:set> The body is evaluated and use

d
as the value of the variable.

1

2

<c:set var=”Fido” value=”${person.dog}” />

Remember, no slash here
when the tag has a body.

If ${person.dog} evaluates to a Dog object, then “Fido” is of type Dog.

Imagine that for the value (either in the body of the tag or using the value at-

tribute), you use ${person.dog}. If ${person.dog} evaluates to null (meaning

there is no person, or person’s dog property is null, then if there IS a variable

attribute with a name “Fido”, that attribute will be removed! (If you don’t specify

a scope, it will start looking at page, then request, etc.). This happens even if

the “Fido” attribute was originally set as a String, or a Duck, or a Broccoli.

If the value evaluates to null, the variable will be

REMOVED! That’s right, removed.

456 chapter 9

Using <c:set> with beans and Maps
This flavor of <c:set> (with its two variations—with and without a body)
works for only two things: bean properties and Map values. That’s it.
You can’t use it to add things to lists or arrays. It’s simple—you give it
the object (a bean or Map), the property/key name, and the value.

Setting a target property or value with <c:set>

With NO body

<c:set target=”${PetMap}” property=”dogName” value=”Clover” />

target must NOT be null !! If target is a Map, set the value of a key named “dogName”.

1
If target is a bean,

 set the value

of the property “do
gName”.

WITH a body2

<c:set target=”${person}” property=”name” >
 ${foo.name}
</c:set>

Don’t put the “id” n
ame

of the attribute h
ere!

No slash... watch for
this on the exam.

The body can be a String or expression.

This is a huge gotcha. In the <c:set> tag, the “target” attribute in the tag seems like it

should work just like “id” in the <jsp:useBean>. Even the “var” attribute in the other

version of <c:set> takes a String literal that represents the name of the scoped attribute.

BUT... it doesn’t work this way with “target”!

With the “target” attribute, you do NOT type in the String literal that represents the name

under which the attribute was bound to the page, scope, etc. No, the “target” attribute

needs a value that resolves to the REAL THING. That means an EL expression or a

scripting expression (<%= %>), or something we haven’t seen yet: <jsp:attribute>.

The “target” must evaluate to the OBJECT! You don’t

type in the String “id” name of the bean or Map attribute!

the <c:set> tag

using JSTL

you are here � 457

there are noDumb Questions

Q: Why would I use the body version
instead of the no-body version? It looks
like they both do exactly the same thing.

A: That’s because they DO... do the
same thing. The body version is just for
convenience when you want more room for
the value. It might be a long and complex
expression, for example, and putting it in
the body makes it easier to read.

Q: If I don’t specify a scope, does that
mean it will find attributes that are ONLY
within page scope, or does it do a search
beginning with page scope?

A: If you don’t use the optional “scope”
attribute in the tag, then the tag will only
look in the page scope space. Sorry, you
will just have to know exactly which scope
you are dealing with.

Q: Why is the word “attribute” so
overloaded? It means both “the things
that go inside tags” and “the things that
are bound to objects in one of the four
scopes.” So you end up with an attribute
of a tag whose value is an attribute of the
page and...

A: We hear you. But that’s what they’re
called. Once again, nobody asked US.
We would have called the bound objects
something like, oh, “bound objects”.

Key points and gotchas with <c:set>
Yes, <c:set> is easy to use, but there are a few deal-breakers
you have to remember...

é	 You can never have BOTH the “var” and “target”
attributes in a <c:set>.

é	 “Scope” is optional, but if you don’t use it the default
is page scope.

é	 If the “value” is null, the attribute named by “var”
will be removed!

é	 If the attribute named by “var” does not exist, it’ll be
created, but only if “value” is not null.

é	 If the “target” expression is null, the Container
throws an exception.

é	 The “target” is for putting in an expression that
resolves to the Real Object. If you put in a String
literal that represents the “id” name of the bean or
Map, it won’t work. In other words, “target” is not for
the attribute name of the bean or Map—it’s for the
actual attribute object.

é	 If the “target” expression is not a Map or a bean, the
Container throws an exception.

é	 If the “target” expression is a bean, but the bean
does not have a property that matches “property”,
the Container throws an exception. Remember that
the EL expression ${bean.notAProperty} will also
throw an exception.

458 chapter 9

 <c:remove> just makes sense
We agree with Dick—using a set to remove
something feels wrong. (But remember, set does a
remove only when you pass in a null value.)

The <c:remove> tag is intuitive and simple:

I can’t believe you have
to use <c:set> to remove an
attribute. That feels wrong.

<%@ taglib prefi x=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html><body>

 <c:set var=”userStatus” scope=”request” value=”Brilliant” />

 userStatus: ${userStatus}

 <c:remove var=”userStatus” scope=”request” />

 userStatus is now: ${userStatus}

</body></html>

The scope is optional, but if you leave it out then the attribute is removed from ALL scopes.
http://localhost:8080/testJSP1/Tester.do

userStatus: Brilliant
userStatus is now:

The value of userStatus was removed, so nothing prints when the EL expression is used AFTER the remove.

The var attribute MUST be a String literal! It can’t be an expression!!

the <c:remove> tag

using JSTL

you are here � 459

<c:forEach var=”movie” items=”${movieList}” =”foo” >
 ${movie}
</c:forEach>

<c:if =”${userPref==’safety’}” >
 Maybe you should just walk...
</c:if>

<c:choose>

 <c: =”${userPref == ‘performance’}”>

 Now you can stop even if you do drive insanely fast.

 </c: >

 <c: >

 Our brakes are the best.

 </c: >

</c:choose>

<c:set var=”userLevel” scope=”session” =”foo” />

Sharpen your pencil
Test your Tag memory

If you’re studying for the exam, don’t skip this one.
The answers are at the end of the chapter.

1 Fill in the name of the optional attribute.

2

Fill in the missing attribute name.

3 Fill in the missing attribute name.

4 Fill in the missing tag names (two different tag types), and the missing attribute name.

<c:remove> just makes sense

460 chapter 9

With <c:import>, there are now THREE
ways to include content
So far, we’ve used two different ways to add content from another
resource into a JSP. But there’s yet another way, using JSTL.

The include directive

<%@ include fi le=”Header.html” %>

1

The <jsp:include> standard action

<jsp:include page=”Header.jsp” />

2

The <c:import> JSTL tag

<c:import url=”http://www.wickedlysmart.com/skyler/horse.html” />

3

Static: adds the content from the value of the file
attribute to the current page at translation time.

Dynamic: adds the content from the value of the
page attribute to the current page at request time.

Dynamic: adds the content from the value of the
URL attribute to the current page, at request time.
It works a lot like <jsp:include>, but it’s more
powerful and flexible.

Unlike the other
 two includes,

the <c:import> url can b
e from

outside the web Container!

Each of the three mechanisms for including content from another resource into your JSP uses a

different word for the attribute. The include directive uses fi le, the <jsp:include> uses page, and

the JSTL <c:import> tag uses url. This makes sense, when you think about it... but you do have

to memorize all three. The directive was originally intended for static layout templates, like HTML

headers. In other words, a “fi le”. The <jsp:include> was intended more for dynamic content

coming from JSPs, so they named the attribute “page” to refl ect that. The attribute for <c:import>

is named for exactly what you give it—a URL! Remember, the fi rst two “includes” can’t go outside

the current Container, but <c:import> can.

They all have different attribute names!

(And watch out for “include” vs. “import”)

Do NOT confuse <c:import> (a type of
include) with the “import” attribute of
the page directive (a way to put a Java
import statement in the generated servlet).

the <c:import> tag

using JSTL

you are here � 461

<c:import> can reach OUTSIDE the web app
With <jsp:include> or the include directive, you can include only pages that are part of the
current web app. But now with <c:import>, you have the option to pull in content from
outside the Container. This simple example shows a JSP on Server A importing the contents
of a URL on Server B. At request time, the HTML chunk in the imported file is added to
the JSP. The imported chunk uses a reference to an image that is also on Server B.

<%@ taglib prefi x=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html><body>

 <c:import url=”http://www.wickedlysmart.com/skyler/horse.html” />

 This is my horse.

</body></html>

The JSP

The imported fi le B

A
Server A, the JSP doing the import

Server B, the imported content

http://localhost:8080/testJSP1/Tester.do

This is my horse.

The response

The horse is coming
from a completely
different web server
than the page that
contains the text.

“horse.html” and “horse.gif” are both on Server B, a completely different web server from the one with the JSP.

(Don’t forget: as with other include mechanisms, the thing
you import should be an HTML fragment and NOT a
complete page with opening and closing <html><body> tags.)

462 chapter 9

Customizing the thing you include
Remember in the previous chapter when we did a <jsp:include> to
put in the layout header (a graphic with some text), but we wanted to
customize the subtitle used in the header? We used <jsp:param> to
make that happen...

The JSP with the <jsp:include>

<html><body>

<jsp:include page=”Header.jsp”>

 <jsp:param name=”subTitle” value=”We take the sting out of SOAP.” />

</jsp:include>

Welcome to our Web Services Support Group.

Contact us at: ${initParam.mainEmail}
</body></html>

We take the sting out of SOAP.

http://localhost:8080/tests/Contact.jsp

Welcome to our Web Services Support Group.

Contact us at: likewecare@wickedlysmart.com

2

1

${param.subTitle}

1

The included fi le (“Header.jsp”)2

Welcome to our Web Services Support Group.

Contact us at: ${initParam.mainEmail}

We made the subtitle “We take

the sting...” available to the

header JSP by setting it as a
new request parameter.

the <c:import> tag

using JSTL

you are here � 463

Doing the same thing with <c:param>
Here we accomplish the same thing we did on the previous page, but
using a combination of <c:import> and <c:param>. You’ll see that the
structure is virtually identical to the one we used with standard actions.

The JSP with the <jsp:import>

<%@ taglib prefi x=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html><body>

<c:import url=”Header.jsp” >

 <c:param name=”subTitle” value=”We take the sting out of SOAP.” />

</c:import>

Welcome to our Web Services Support Group.

Contact us at: ${initParam.mainEmail}

</body></html>

${param.subTitle}

1

The included fi le (“Header.jsp”)2

Welcome to our Web Services Support Group.

Contact us at: ${initParam.mainEmail}

This page doesn’t change a

t all. It

doesn’t care HOW the parameter got

there, as long as it’s ther
e.

No slash, because NOW the
tag has a body...

464 chapter 9

Sorry to change the
subject here... but I just

noticed a HUGE problem with
JSPs! How can you guarantee
session tracking from a JSP...
without using scripting?

Session tracking
happens automatically with

JSPs, unless you explicitly disable
it with a page directive that has

a session attribute that says
session=”false”.

He missed the point... I said
“guarantee”. My real question is--if

the client doesn’t support cookies, how
can I get URL rewriting to happen? How

can I get the session ID added to
the URLs in my JSP?

Ahhh... he obviously
doesn’t know about the

<c:url> tag. It does URL
rewriting automatically.

URL rewriting in a JSP

using JSTL

you are here � 465

<c:url> for all your hyperlink needs
Remember way back in our old servlet days when we wanted to use a session? First
we had to get the session (either the existing one or a new one). At that point, the
Container knows that it’s supposed to associate the client from this request with a
particular session ID. The Container wants to use a cookie—it wants to include a
unique cookie with the response, and then the client will send that cookie back with
each subsequent request. Except one problem... the client might have a browser with
cookies disabled. Then what?

The Container will, automatically, fall back to URL rewriting if it doesn’t get a cookie
from the client. But with servlets, you STILL have to encode your URLs. In other
words, you still have to tell the Container to “append the jsessionid to the end of this
particular URL...” for each URL where it matters. Well, you can do the same thing
from a JSP, using the <c:url> tag.

URL rewriting from a servlet

public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {
 response.setContentType(“text/html”);
 PrintWriter out = response.getWriter();
 HttpSession session = request.getSession();

 out.println(“<html><body>”);
 out.println(“click”);
 out.println(“</body></html>”);
}

Add the extra session ID info to this URL.

URL rewriting from a JSP

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html><body>

This is a hyperlink with URL rewriting enabled.

<a href=”<c:url value=’/inputComments.jsp’ />”>Click here

</body></html>
This adds the jsessionid to the end of

 the

“value” relative URL (if cookies are disabled).

466 chapter 9

What if the URL needs encoding?
Remember that in an HTTP GET request, the parameters are appended to the URL as a query string.
For example, if a form on an HTML page has two text fields—first name and last name—the request
URL will stick the parameter names and values on to the end of the request URL. But...an HTTP
request won’t work correctly if it contains unsafe characters (although most modern browsers will try to
compensate for this).

If you’re a web developer, this is old news, but if you’re new to web development, you need to know
that URLs often need to be encoded. URL encoding means replacing the unsafe/reserved characters
with other characters, and then the whole thing is decoded again on the server side. For example,
spaces aren’t allowed in a URL, but you can substitute a plus sign “+” for the space. The problem is,
<c:url> does NOT automatically encode your URLs!

Using <c:url> with a query string

<c:set var=”last” value=”Hidden Cursor” />
<c:set var=”fi rst” value=”Crouching Pixels”/>

<c:url value=”/inputComments.jsp?fi rst=${fi rst}&last=${last}” var=”inputURL” />

The URL using params is: ${inputURL}

Remember, the <c:url> tag does URL rewriting, but not URL encoding!

http://localhost:8080/tests/risky.jsp

The URL using params is: /myApp/inputComments.
jsp?fi rst=Crouching Pixels&last=Hidden Cursor

Uh-oh... you’re not supposed to
have

spaces in a URL!
Yikes! Query string parameters have

to be encoded... spaces, for e
xample,

must be replaced with a plus “+” sign.

Use the optional “var”
attribute when you want

access to this value lat
er...

Using <c:param> in the body of <c:url>

This solves our problem! Now we get both URL rewriting and URL encoding.

<c:url value=”/inputComments.jsp” var=”inputURL” >
 <c:param name=”fi rstName” value=”${fi rst}” />
 <c:param name=”lastName” value=”${last}” />
</c:url>

no slash

Now the URL looks like this:

/myApp/inputComments.jsp?fi rstName=Crouching+Pixels&lastName=Hidden+Cursor

Now we’re safe, because <c:param>

takes care of the encoding!

the <c:URL> tag

using JSTL

you are here � 467

You do NOT want your clients to see this:

I’m interrupting this JSTL
talk for a few moments to

talk about your error-handling.
We’re about to do something that
might cause an exception...

468 chapter 9

Make your own error pages
The guy surfing your site doesn’t want to see your stack trace. And he’s not too thrilled
to get a standard “404 Not Found”, either.

You can’t prevent all errors, of course, but you can at least give the user a friendlier
(and more attractive) error response page. You can design a custom page to handle
errors, then use the page directive to configure it.

The designated ERROR page (“errorPage.jsp”)

<%@ page isErrorPage=”true” %>

<html><body>
Bummer.

</body></html>

The BAD page that throws an exception (“badPage.jsp”)

<%@ page errorPage=”errorPage.jsp” %>

<html><body>
About to be bad...
<% int x = 10/0; %>
</body></html>

What happens when you request “badPage.jsp”

Bummer.

http://localhost:8080/tests/badPage.jsp

Confirms for the Container, “Yes, this IS

an officially-designated error page.”

Tells the Container, “If something goes wrong here, forward the request to errorPage.jsp”.

The REQUEST was for
“badPage.jsp”, but that page
threw an exception, so the
RESPONSE came from
“errorPage.jsp”.

error pages

using JSTL

you are here � 469

She doesn’t know about the <error-page> DD tag.
You can declare error pages in the DD for the entire web app, and you
can even configure different error pages for different exception types, or
HTTP error code types (404, 500, etc.).

The Container uses <error-page> configuration in the DD as the
default, but if a JSP has an explicit errorPage page directive, the
Container uses the directive.

It will take me FOREVER to put
page directives in all my JSPs, to
specify the error page to use. And
what if I want a different error page
depending on the error? If only there
were a way to confi gure error

pages for the whole web app...

470 chapter 9

Configuring error pages in the DD
You can declare error pages in the DD based on either the <exception-type> or
the HTTP status <error-code> number. That way you can show the client different
error pages specific to the type of the problem that generated the error.

<error-page>
 <exception-type>java.lang.Throwable</exception-type>
 <location>/errorPage.jsp</location>
</error-page>

Declaring a catch-all error page

This applies to everything in your web app—not just JSPs.
You can override it in individual JSPs by adding a page
directive with an errorPage attribute.

<error-page>
 <exception-type>java.lang.ArithmeticException</exception-type>
 <location>/arithmeticError.jsp</location>
</error-page>

Declaring an error page for a more explicit exception

This configures an error page that’s called only when there’s an
ArithmeticException. If you have both this declaration and the
catch-all above, any exception other than ArithmeticException
will still end up at the “errorPage.jsp”.

<error-page>
 <error-code>404</error-code>
 <location>/notFoundError.jsp</location>

</error-page>

Declaring an error page based on an HTTP status code

This configures an error page that’s called only when the status
code for the response is “404” (file not found).

The <location> MUST be relative to the web-app root/context, which

means it MUST start with a slash. (This is true regardless of whether

the error page is based on <error-code> or <exception-type>.)

error pages in the DD

using JSTL

you are here � 471

Error pages get an extra object: exception
An error page is essentially the JSP that handles the exception, so the
Container gives the page an extra object for the exception. You probably
won’t want to show the exception to the user, but you’ve got it. In a
scriptlet, you can use the implicit object exception, and from a JSP, you
can use the EL implicit object ${pageContext.exception}. The object is
type java.lang.Throwable, so in a script you can call methods, and with
EL you can access the stackTrace and message properties.

A more explicit ERROR page (“errorPage.jsp”)

<%@ page isErrorPage=”true” %>

<html><body>
Bummer.

You caused a ${pageContext.exception} on the server.

</body></html>

What happens when you request “badPage.jsp”

Bummer.
 You caused a java.lang.ArithmeticException: / by zero on the server.

http://localhost:8080/tests/badPage.jsp

This time, you get more
details. You probably
won’t show this to the
user...we just did this so
you could see it.

Note: the exception implicit object is
available ONLY to error pages with an
explicitly-defined page directive:

 <%@ page isErrorPage=”true” %>

In other words, configuring an error page in
the DD is not enough to make the Container
give that page the implicit exception object!

472 chapter 9

What if I think there’s
an exception I might be able

to recover from in a JSP? What
if there are some errors I
want to catch myself?

The <c:catch> tag. Like try/catch...sort of
If you have a page that invokes a risky tag, but you think you can
recover, there’s a solution. You can do a kind of try/catch using the
<c:catch> tag, to wrap the risky tag or expression. Because if you
don’t, and an exception is thrown, your default error handling will
kick in and the user will get the error page declared in the DD. The
part that might feel a little strange is that the <c:catch> serves as
both the try and the catch—there’s no separate try tag. You wrap the
risky EL or tag calls or whatever in the body of a <c:catch>, and the
exception is caught right there. But you can’t assume it’s exactly like a
catch block, either, because once the exception occurs, control jumps
to the end of the <c:catch> tag body (more on that in a minute).

<%@ taglib prefi x=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ page errorPage=”errorPage.jsp” %>
<html><body>

About to do a risky thing:

<c:catch>

 <% int x = 10/0; %>

</c:catch>

If you see this, we survived.

</body></html>

This scriptlet will DEFINITELY
cause an exception... but we caught it
instead of triggering the error page.

If this prints out, then we KNOW
we made it past the exception
(which in this example, means we
successfully caught the exception).successfully caught the exception).

http://localhost:8080/tests/risky.jsp

About to do a risky thing:
If you see this, we survived.

the catch must have worked...

the <c:catch> tag

using JSTL

you are here � 473

You can make the exception an attribute
In a real Java try/catch, the catch argument is the exception object.
But with web app error handling, remember, only officially-designated error
pages get the exception object. To any other page, the exception just isn’t
there. So this does not work:

But how do I get access to
the Exception object? The

one that was actually thrown?
Since this isn’t an actual error
page, the implicit exception
object doesn’t work here.

<c:catch>
 Inside the catch...
 <% int x = 10/0; %>
</c:catch>

Exception was: ${pageContext.exception}Exception was: ${pageContext.exception}Exception was: ${pageContext.exception}

Won’t work because this
isn’t an official error
page, so it doesn’t get
the exception object.

Using the “var” attribute in <c:catch>

<%@ taglib prefi x=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ page errorPage=”errorPage.jsp” %>
<html><body>

About to do a risky thing:

<c:catch var=”myException”>

 Inside the catch...
 <% int x = 10/0; %>
</c:catch>

<c:if test=”${myException != null}”>
 There was an exception: ${myException.message}

</c:if>

We survived.
</body></html>

Use the optional var attribute if you want to access the exception after
the end of the <c:catch> tag. It puts the exception object into the page
scope, under the name you declare as the value of var.

This creates a new page-scoped

attribute named “myException”, and

assigns the exception obje
ct to it.

Now there’s an attribute myException, and since it’s a Throwable, it has a “message” property (because Throwable has a getMessage() method).

474 chapter 9

In a regular Java try/catch, once the exception occurs, the code BELOW that

point in the try block never executes—control jumps directly to the catch block.

With the <c:catch> tag, once the exception occurs, two things happen:

1) If you used the optional “var” attribute, the exception object is assigned to it.

2) Flow jumps to below the body of the <c:catch> tag.

Flow control works in a <c:catch> the way it does

in a try block—NOTHING runs inside the <c:catch>

body after the exception.

<c:catch>

 Inside the ca
tch...

 <% int x = 10
/0; %>

 After the catc
h...

</c:catch>

We survived.

You’ll NEVER see this!
contr

ol

Be careful about this. If you want to use the “var” exception object, you must

wait until AFTER you get to the end of the <c:catch> body. In other words, there

is simply no way to use any information about the exception WITHIN the

<c:catch> tag body.
It’s tempting to think of a <c:catch> tag as being just like a normal Java code

catch block, but it isn’t. A <c:catch> acts more like a try block, because it’s

where you put the risky code. Except it’s like a try that never needs (or has) a

catch or fi nally block. Confused? The point is—learn this tag for exactly what it

is, rather than mapping it into your existing knowledge of how a normal try/catch

works. And on the exam, if you see code within the <c:catch> tag that is below

the point at which the exception is thrown, don’t be fooled.

the <c:catch> tag

using JSTL

you are here � 475

What if you need a tag that’s NOT in JSTL?
The JSTL is huge. Version 1.1 has five libraries—four with custom tags, and one
with a bunch of functions for String manipulation. The tags we cover in this book
(which happen to be the ones you’re expected to know for the exam) are for the
generic things you’re most likely to need, but it’s possible that between all five
libraries, you’ll find everything you might ever need. On the next page, we’ll start
looking at what happens when the tags below aren’t enough.

The “Core” library
General-purpose

<c:out>

<c:set>

<c:remove>

<c:catch>

Conditional

<c:if>

<c:choose>

<c:when>

<c:otherwise>

Iteration

<c:forEach>

<c:forTokens>

We didn’t cover this one... it lets
you iterate over tokens where YOU
give it the delimiter. Works a lot
like StringTokenizer. We also didn’t
cover <c:redirect> and <c:out>, but
that gives you a wonderful excuse
to get the JSTL docs.

URL related

<c:import>

<c:url>

<c:redirect>

<c:param>

Internationalization

<fmt:message>

<fmt:setLocale>

<fmt:bundle>

<fmt:setBundle>

<fmt:param>

<fmt:requestEncoding>

The “Formatting” library

Formatting

<fmt:timeZone>

<fmt:setTimeZone>

<fmt:formatNumber>

<fmt:parseNumber>

<fmt:parseDate>

Database access

<sql:query>

<sql:update>

<sql:setDataSource>

<sql:param>

<sql:dateParam>

The “SQL” library

Core XML actions

<x:parse>

<x:out>

<x:set>

The “XML” library

XML flow control

<x:if>

<x:choose>

<x:when>

<x:otherwise>

<x:forEach>

Transform actions

<x:transform>

<x:param>

Only the “core” library is

covered on the exam.

The “core” library (which by

convention we always prefix with “c”) is

the only JSTL library covered on the exam.

The rest are specialized, so we don’t go

into them. But you should at least know that

they’re available. The XML transformation

tags, for example, could save your life if you

have to process RSS feeds. Writing your

own custom tags can be a pain, so make

sure before you write one that you’re not

reinventing the wheel.

476 chapter 9

Using a tag library that’s NOT from the JSTL
Creating the code that goes behind a tag (in other words, the Java code
that’s invoked when you put the tag in your JSP) isn’t trivial. We have a
whole chapter (the next one) devoted to developing your own custom
tag handlers. But the last part of this chapter is about how to use custom
tags. What happens, for example, if someone hands you a custom tag
library they created for your company or project? How do you know what
the tags are and how to use them? With JSTL,
it’s easy—the JSTL 1.1 specification documents
each tag, including how to use each of the
required and optional attributes.

But not every custom tag will come so nicely
packaged and well-documented. You have
to know how to figure out a tag even if the
documentation is weak or nonexistent, and,
one more thing—you have to know how to
deploy a custom tag library.

Main things you have to know:

1 The tag name and syntax

2 The library URI

To use a custom library,

you MUST read the TLD.

Everything you need to

know is in there.

The tag has a name, obviously. In <c:set>, the tag name is set, and
the prefix is c. You can use any prefix you want, but the name
comes from the TLD. The syntax includes things like required
and optional attributes, whether the tag can have a body (and
if so, what you can put there), the type of each attribute, and
whether the attribute can be an expression (vs. a literal String).

The URI is a unique identifier in the Tag Library Descriptor
(TLD). In other words, it’s a unique name for the tag library the
TLD describes. The URI is what you put in your taglib directive.
It’s what tells the Container how to identify the TLD file within
the web app, which the Container needs in order to map the tag
name used in the JSP to the Java code that runs when you use
the tag.

reading the TLD

using JSTL

you are here � 477

Making sense of the TLD
The TLD describes two main things: custom tags, and EL functions. We
used one when we made the dice rolling function in the previous chapter,
but we had only a <function> element in the TLD. Now we have to look
at the <tag> element, which can be more complex. Besides the function we
declared earlier, the TLD below describes one tag, advice.

<?xml version=”1.0” encoding=”ISO-8859-1” ?>
<taglib xmlns=”http://java.sun.com/xml/ns/j2ee”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd”
version=”2.0”>

 <tlib-version>1.2</tlib-version>

 <short-name>RandomTags</short-name>
 <function>
 <name>rollIt</name>
 <function-class>foo.DiceRoller</function-class>
 <function-signature>int rollDice()</function-signature>
 </function>

 <uri>randomThings</uri>

 <tag>

	 <description>random advice</description>

 <name>advice</name>

	 <tag-class>foo.AdvisorTagHandler</tag-class>

	 <body-content>empty</body-content>

 <attribute>

 <name>user</name>

 <required>true</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

 </tag>
</taglib>

The EL function we used in the last chapter.

This is the vers
ion of the XML schema that

you use for JSP 2.0. Don’t memorize it...

just copy it in
to your <tagli

b> element.

MANDATORY (the tag, not the val
ue)— the developer

puts it in to declare t
he version of the tag

library.

REQUIRED! This is what you use inside

the tag (example: <my:advice>).
REQUIRED! This is how the

Container know
s what to call when

someone uses the
 tag in a JSP.

If your tag has attributes, then one <attribute> element per tag attribute is required.

The unique name we use in the taglib directive !

REQUIRED! This says that the tag must NOT have anything in the body.

This says you MUST put a “user” attribute in the tag.

This says the “user” at
tribute can be a

runtime expression value (i.e.

doesn’t have to be a S
tring literal).

Optional, but a
really good ide

a...

MANDATORY; mainly for tools to use..

478 chapter 9

Using the custom “advice” tag
The “advice” tag is a simple tag that takes one attribute—the user
name—and prints out a piece of random advice. It’s simple enough
that it could have been just a plain old EL function (with a static
method getAdvice(String name)), but we made it a simple tag to
show you how it all works...

 <taglib ...>
 ...
 <uri>randomThings</uri>
 <tag>
 <description>random advice</description>
 <name>advice</name>
 <tag-class>foo.AdvisorTagHandler</tag-class>
 <body-content>empty</body-content>

 <attribute>
 <name>user</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>

 </tag>
</taglib ...>

JSP that uses the tag

<html><body>

<%@ taglib prefi x=”mine” uri=”randomThings”%>

Advisor Page

<mine:advice user=”${userName}” />

</body></html>

The uri matches the <u
ri>

element in the TLD.

<%@ taglib prefi x=”mine” uri=”randomThings”%>

Advisor Page

<mine:advice user=”${userName}” />

It’s OK to use EL here, because the <rtexprevalue>
in the TLD is set to “true” for the user attribute.
(Assume the “userName” attribute already exists.)

The TLD says the tag can’t have a body, so we made it
an empty tag (which means the tag ends with a slash).

The TLD elements for the advice tag

This is the same tag you saw
on the previous page, but
without the annotations.

randomThings

 <description>random advice</description>
</name>

 <tag-class>foo.AdvisorTagHandler</tag-class>
empty</body-content>

 <required>true</required>
</rtexprvalue>

<%@ taglib prefi x=”mine” uri=”randomThings”%><%@ taglib prefi x=”mine” uri=”randomThings”%>

 <required>true</required>
 <rtexprvalue>
 </attribute>

JSP that uses the tag

<%@ taglib prefi x=”mine” uri=”randomThings”%>

Advisor Page

</name>
 <required>true</required>

</rtexprvalue>

<%@ taglib prefi x=”mine” uri=”randomThings”%>

 <tag-class>foo.AdvisorTagHandler</tag-class>
 <body-content>

 <attribute>
 <name>
 <required>true</required>
 <rtexprvalue>
 </attribute>

 </tag>
</taglib ...>

JSP that uses the tag

<html><body>

<%@ taglib prefi x=”mine” uri=”randomThings”%>

Advisor Page

Each library you use in a page needs its own taglib directive with a unique prefix.

reading the TLD

using JSTL

you are here � 479

The custom tag handler
This simple tag handler extends SimpleTagSupport (a class you’ll
see in the next chapter), and implements two key methods: doTag(),
the method that does the actual work, and setUser(), the method
that accepts the attribute value.

package foo;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.tagext.SimpleTagSupport;
import java.io.IOException;

public class AdvisorTagHandler extends SimpleTagSupport {

 private String user;

 public void doTag() throws JspException, IOException {
 getJspContext().getOut().write(“Hello “ + user + “
”);
 getJspContext().getOut().write(“Your advice is: “ + getAdvice());
 }

 public void setUser(String user) {
 this.user=user;
 }

 String getAdvice() {
 String[] adviceStrings = {“That color’s not working for you.”,
 “You should call in sick.”, “You might want to rethink that haircut.”};
 int random = (int) (Math.random() * adviceStrings.length);
 return adviceStrings[random];
 }
}

SimpleTagSupport implements
things we need in custom tags.

Java class that does the tag work

The Container calls doTag() when the JSP invokes

the tag using the name declared in the TLD.

The Container calls this method to set the value from the tag attribute. It uses JavaBean property naming conventions to figure out that a “user” attribute should be sent to the setUser() method.

Our own internal method.

With EL functions, you created a Java class with a static method,

named the method whatever you wanted, then used the TLD

to map the actual method <function-signature> to the function

<name>. But with custom tags, the method name is ALWAYS

doTag(), so you never declare the method name for a custom tag.

Only functions use a method signature declaration in the TLD!

Custom tag handlers don’t use

custom method names!

480 chapter 9

Pay attention to < rtexprvalue>
The <rtexprvalue> is especially important because it tells you
whether the value of the attribute is evaluated at translation or
runtime. If the <rtexprvalue> is false, or the <rtexprvalue> isn’t
defined, you can use only a String literal as that attribute’s value!

<attribute>
 <name>rate</name>
 <required>true</required>
 <rtexprvalue>false</rtexprvalue>
</attribute>

If you see this:

<attribute>
 <name>rate</name>
 <required>true</required>

</attribute>

OR this:

Then you know THIS WON’T WORK!

<html><body>
 <%@ taglib prefi x=”my” uri=”myTags”%>

 <my:handleIt rate=”${currentRate}” />
</body></html>
 <my:handleIt rate=”${currentRate}” /> <my:handleIt rate=”${currentRate}” /> NO! This must NOT be an

expression... it must be a
String literal.

If there’s no <rtexprvalue>
,

the default value is false.

Q: You still didn’t answer the question about how you know what type
the attribute is...

A: We’ll start with the easy one. If the <rtexprvalue> is false (or not there
at all), then the attribute type can be ONLY a String literal. But if you can
use an expression, then you have to hope that it’s either dead obvious from
the tag description and attribute name, OR that the developer included the
optional <type> subelement of the <attribute> element. The <type> takes a
fully-qualified class name for the type. Whether the TLD declares the type or
not, the Container expects the type of the expression to match the type of
argument in the tag handler’s setter method for that attribute. In other words,
if the tag handler has a setDog(Dog) method for the “dog” attribute, then the
value of your expression for that attribute better evaluate to a Dog object! (Or
something that can be implicitly assigned to a Dog reference type.)

understanding <rtexprvalue>

using JSTL

you are here � 481

<rtexprvalue> is NOT just for EL expressions
You can use three kinds of expressions for the value of an attribute (or tag
body) that allows runtime expressions.

1 EL expressions

<mine:advice user=”${userName}” />

2 Scripting expressions

<mine:advice user=’<%= request.getAttribute(“username”) %>’ />

It has to be an expression, not just a scriplet.
So it must have the “=” sign in there and no
semicolon on the end.

3 <jsp:attribute> standard actions

<mine:advice>
 <jsp:attribute name=”user”>${userName}</jsp:attribute>
</mine:advice>

What is this?? I thought this tag didn’t have a body...

The <jsp:attribute> is simply an alternate way to defi ne attributes to a tag. The key point

is, there must be only ONE <jsp:attribute> for EACH attribute in the enclosing tag. So

if you have a tag that normally takes three attributes IN the tag (as opposed to in the

body), then inside the body you’ll now have three <jsp:attribute> tags, one for each at-

tribute. Also notice that the <jsp:attribute> has an attribute of its own, name, where you

specify the name of the outer tag’s attribute for which you’re setting a value.

There’s a little more about this on the next page...

<jsp:attribute> lets you put attributes in the BODY of

a tag, even when the tag body is explicitly declared

“empty” in the TLD!!

482 chapter 9

What can be in a tag body
A tag can have a body only if the <body-content> element for this tag is
not configured with a value of empty. The <body-content> element can
be one of either three or four values, depending on the type of tag.

<body-content>empty</body-content>
	

<body-content>scriptless</body-content>

<body-content>tagdependent</body-content>

<body-content>JSP</body-content>

1 An empty tag

<mine:advice user=”${userName}” />

2 A tag with nothing between the opening and closing tags

<mine:advice user=”${userName}”> </mine:advice>

THREE ways to invoke a tag that can’t have a body

When you put
 a slash

in the open
ing tag, yo

u

don’t use a
 closing ta

g.

We have an opening and closing tag, but NOTHING in between.

Each of these are acceptable ways to invoke a tag configured in
the TLD with <body-content>empty</body-content>.

3 A tag with only <jsp:attribute> tags between the opening and closing tags

<mine:advice>
 <jsp:attribute name=”user”>${userName}</jsp:attribute>
</mine:advice>

The <jsp:attribute> tag is the ONLY thing you can put between the opening and closing tags of a tag with a <body-content> of empty! It’s just an alternate way to put the attributes in, but <jsp:attribute> tags don’t count as “body content”.

The tag must NOT have a body.

The tag must NOT have scripting elem
ents (scriptlets,

scripting expression
s, and declarations)

, but it CAN have

template text and EL and custom and standard acti
ons.

The tag body is treated as plain text, so the EL is
NOT evaluated and tags/actions are not triggered.

The tag body can have anything that can go inside a JSP.

tag bodies

using JSTL

you are here � 483

void doTag() {
 // tag logic
}

void setUser(String user) {
 this.user=user;
}

AdvisorTagHandler class
void
 // tag logic
}

void

 this.user=user;
}

<html><body>

<%@ taglib p
refi x=”mine”

uri=”randomT
hings”%>

Advisor Page

<mine:advice
 user=”${use

rName}” />

</body></htm
l>

JSP that uses the tag

<taglib ...>
...
<uri>randomThings</uri>

<tag>

 <description>random advice</description>

 <name>advice</name>
 <tag-class>foo.AdvisorTagHandler</tag-class>
 <body-content>empty</body-content>

 <attribute>

 <name>user</name>
 <required>true</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

</tag>

TLD fi le

<uri>randomThings</uri>

<taglib ...>

<uri>randomThings</uri>

 <description>random advice</description>

advice
 <tag-class>foo.AdvisorTagHandler
 <body-content>empty</body-content>

 this.user=user;

 <description>random advice</description>

foo.AdvisorTagHandler
 <body-content>empty</body-content>

<%@ taglib p
refi x=”mine”

uri=”randomT
hings”%>

Advisor Page

</body></htm
l>

<tag>

 <description>random advice</description>

 <name>advice

setUser(String user)

 <description>random advice</description>

foo.AdvisorTagHandler

The tag handler, the TLD, and the JSP
The tag handler developer creates the TLD to tell both the
Container and the JSP developer how to use the tag. A JSP
developer doesn’t care about the <tag-class> element in
the TLD; that’s for the Container to worry about. The JSP
developer cares most about the uri, the tag name, and the tag
syntax. Can the tag have a body? Does this attribute have to
be a String literal, or can it be an expression? Is this attribute
optional? What type does the expression need to evaluate to?

Think of the TLD as the API for custom tags. You have to
know how to call it and what arguments it needs.

These three pieces—the tag handler class, the TLD, and the JSP are all you need to deploy and run a web app that uses the tag.

484 chapter 9

The taglib <uri> is just a name, not a location
The <uri> element in the TLD is a unique name for the tag library. That’s it. It
does NOT need to represent any actual location (path or URL, for example). It
simply has to be a name—the same name you use in the taglib directive.

“But,” you’re asking, “how come with the JSTL it gives the full URL to the library?”
The taglib directive for the JSTL is:

The web Container doesn’t normally try to request something from the uri in the
taglib directive. It doesn’t need to use the uri as a location! If you type that as a
URL into your browser, you’ll be redirected to a different URL, one that has
information about JSTL. The Container could care less that this particular uri
happens to also be a valid URL (the whole “http://...” thing). It’s just the
convention Sun uses for the uri, to help ensure that it’s a unique name. Su
 could have named the JSTL uri “java_foo_tags” and it would have worked in
exactly the same way. All that matters is that the <uri> in the TLD and the uri in
the taglib directive match!

As a developer, though, you do want to work out a scheme to give your libraries
unique <uri> values, because <uri> names need to be unique for any given web
app. You can’t, for example, have two TLD files in the same web app, with the
same <uri>. So, the domain name convention is a good one, but you don’t
necessarily need to use that for all of your in-house development.

Having said all that, there is one way in which the uri could be used as a location,
but it’s considered a really bad practice—if you don’t specify a <uri> inside the
TLD, the Container will attempt to use the uri attribute in the taglib directive as a
path to the actual TLD. But to hard-code the location of your TLD is obviously a
bad idea, so just pretend you don’t know it’s possible.

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>

This LOOKS like a URL to
a web resource, but it’s not.
It’s just a name that happens

to be formatted as a URL.

The Container looks for a match

between the <uri> in the TLD and

the uri value in the taglib directive.

The uri does NOT have to be the

location of the actual tag handler!

the taglib <uri>

using JSTL

you are here � 485

The Container builds a map
Before JSP 2.0, the developer had to specify a mapping between the <uri> in the TLD and
the actual location of the TLD file. So when a JSP page had a taglib directive like this:

The Deployment Descriptor (web.xml) had to tell the Container where the TLD file with a
matching <uri> was located. You did that with a <taglib> element in the DD.

<%@ taglib prefix=”mine” uri=”randomThings”%>

The OLD (before JSP 2.0) way to map a taglib uri to a TLD file

<web-app>
...
 <jsp-config>
 <taglib>
 <taglib-uri>randomThings</taglib-uri>
 <taglib-location>/WEB-INF/myFunctions.tld</taglib-location>
 </taglib>
 </jsp-config>
</web-app>

The NEW (JSP 2.0) way to map a taglib uri to a TLD file

The Container automatically builds a map between TLD files and <uri>
names, so that when a JSP invokes a tag, the Container knows exactly where to find the
TLD that describes the tag.

How? By looking through a specific set of locations where TLDs are allowed to live.
When you deploy a web app, as long as you put the TLD in a place the Container will
search, the Container will find the TLD and build a map for that tag library.

If you do specify an explicit <taglib-location> in the DD (web.xml), a JSP 2.0 Container
will use it! In fact, when the Container begins to build the <uri>-to-TLD map, the
Container will look first in your DD to see if you’ve made any <taglib> entries, and if
you have, it’ll use those to help construct the map. For the exam, you’re expected to
know about <taglib-location>, even though it’s no longer required for JSP 2.0.

So the next step is for us to see where the Container looks for TLDs, and also where it
looks for the tag handler classes declared in the TLDs.

No <taglib> entry in the DD!

In the DD, map the <uri>

in the TLD to an actual

path to a TLD file.

486 chapter 9

Four places the Container looks for TLDs
The Container searches in several places to find TLD files—you
don’t need to do anything except make sure your TLDs are in one
of the right locations.

webapps

SampleApp

WEB-INF

classes

<?xml ver-
sion=”1.0”
encoding
=”UTF-8”?>

<!DOCTYPE

<?xml ver-
sion=”1.0”
encoding

<?xml ver-
sion=”1.0”

web.xml

<function>
<name>
rollIt
</name>
<function-
class>
foo.DiceRoller

</function-

<function><function><function><function>
<name>
rollIt

myFunctions.tld

foo

0010 0001
1100 1001
0001 0011
0101 0110

AdvisorTagHandler.class

0010 0001
A Java class that
handles a tag from the
myFunctions.tld library

<%@ taglib
prefi x=”mine”
 uri=”/WEB-INF/

myFunctions.tld”%>

<html><body>
${mine:rollIt()}

</body></
html>

<%@ taglib
prefi x=”mine”
 uri=”/WEB-INF/

useTag.jsp

The JSP that invokes the tag

tlds lib

JAR

META-INF

<function>
<name>
rollIt
</name>
<function-
class>
foo.DiceRoller

</function-

<function><function><function><function>
<name>
rollIt

shoppingTags.tld

<function>
<name>
rollIt
</name>
<function-
class>
foo.DiceRoller

</function-

<function><function><function><function>
<name>
rollIt

otherTags.tld

1 Directly inside WEB-INF

2 Directly inside a sub-
directory of WEB-INF

3 Inside the META-INF
directory inside a JAR fi le
that’s inside WEB-INF/lib

moreTLDs

<function>
<name>
rollIt
</name>
<function-
class>
foo.DiceRoller

</function-

<function><function><function><function>
<name>
rollIt

catalogTags.tld

4 Inside a sub-directory of
META-INF inside a JAR fi le
that’s inside WEB-INF/lib

1

2

3

4

TLD locations

using JSTL

you are here � 487

When a JSP uses more than one tag library
If you want to use more than one tag library in a JSP, do a separate taglib
directive for each TLD. There a few issues to keep in mind...

é	 Make sure the taglib uri names are unique. In other words, don’t put
in more than one directive with the same uri value.

é	 Do NOT use a prefix that’s on the reserved list.
The reserved prefixes are:
		 jsp:

			 jspx:
			 java:
			 javax:
			 servlet:
			 sun:
			 sunw:

Sharpen your pencil

1

2

3

Empty tags
Write in examples of the THREE different ways to
invoke a tag that must have an empty body.
(Check your answers by looking back through the chapter. No,
we’re not going to tell you the page number.)

488 chapter 9

void doTag() {
 // tag logic
}

void set (String x) {
 // code here
}

AdvisorTagHandler class
void
 // tag logic
}

void

 // code here
}

<html><body>

<%@ taglib p
refi x=”mine”

uri=”
 ”%>

Advisor Page

< :

 =”${foo}
” />

</body></htm
l>

JSP that uses the tag

<taglib ...>
...
<uri>randomThings</uri>

<tag>

 <description>random advice</description>

 <name>advice</name>
 <tag-class>foo.AdvisorTagHandler</tag-class>
 <body-content>empty</body-content>

 <attribute>

 <name>user</name>
 <required>true</required>

 <rtexprvalue> </rtexprvalue>

 </attribute>

</tag>

TLD fi le

Sharpen your pencil
How the JSP, the TLD, and the
bean attribute class relate
Fill in the spaces based on the information that you
can see in the TLD. Draw arrows to indicate where the
different pieces of information are tied together. In other
words, for each blank, show exactly where you found the
information needed to fi ll in the blank.

TLD exercise

using JSTL

you are here � 489

<c:forEach var=”movie” items=”${movieList}” =”foo” >
 ${movie}
</c:forEach>

The attribute that names the
loop counter variable.

<c:if =”${userPref==’safety’}” >
 Maybe you should just walk...
</c:if>

<c:choose>

 <c: =”${userPref == ‘performance’}”>

 Now you can stop even if you do drive insanely fast.

 </c: >

 <c: >

 Our brakes are the best.

 </c: >

</c:choose>

<c:set var=”userLevel” scope=”session” =”foo” />

Sharpen your pencil
Test your Tag memory
ANSWERS

1 Fill in the name of the optional attribute.

2

 test

varStatus

Fill in the missing attribute name.

3 Fill in the missing attribute name.
 value

when test

otherwise
when

otherwise

4 Fill in the missing tag names (two different tag types), and the missing attribute name.

The <c:set> tag must have a value, but you
could choose to put the value in the bo

dy
of the tag instead of as an attribute.

The <c:otherwise> tag is optional.

void doTag() {
 // tag logic
}

void set (String x) {
 // code here
}

AdvisorTagHandler class

490 chapter 9

void doTag() {
 // tag logic
}

void setUser(String user) {
 this.user=user;
}

AdvisorTagHandler class
void
 // tag logic
}

void

 this.user=user;
}

<html><body>

<%@ taglib p
refi x=”mine”

uri=”randomThings”%>

Advisor Page

<mine:advice user=”${foo}”
 />

</body></htm
l>

JSP that uses the tag

<taglib ...>
...
<uri>randomThings</uri>

<tag>

 <description>random advice</description>

 <name>advice</name>
 <tag-class>foo.AdvisorTagHandler</tag-class>
 <body-content>empty</body-content>

 <attribute>

 <name>user</name>
 <required>true</required>

 <rtexprvalue>true</rtexprvalue>
 </attribute>

</tag>

TLD fi le

<%@ taglib p
refi x=”mine”

uri=

Advisor Page

mine:advice user

<taglib ...>
...
<uri>randomThings</uri>

 <description>random advice</description>

<taglib ...>

<uri>randomThings</uri>

 <description>random advice</description>

advice</name>
foo.AdvisorTagHandler

 <body-content>empty</body-content>

TLD fi le

 this.user=user;

<uri>randomThings</uri>

 <description>random advice</description>

</name>

foo.AdvisorTagHandlerfoo.AdvisorTagHandler
 <body-content>empty</body-content>

</name>

<taglib ...>

<uri>randomThings</uri>

 <description>random advice</description>

</name>

foo.AdvisorTagHandler

TLD fi le

foo.AdvisorTagHandler
 <body-content>empty</body-content>

</name>

 <required>true</required>

true

foo.AdvisorTagHandler

Sharpen your pencil
How the JSP, the TLD, and the
bean attribute class relate
ANSWERS

randomThings

TLD exercise answers

using JSTL

you are here � 491

Mock Exam Chapter 9
Which is true about TLD files?

 A.	� TLD files may be placed in any subdirectory of WEB-INF.

B.	� TLD files are used to configure JSP environment attributes,
such as scripting-invalid.

C.	� TLD files may be placed in the META-INF directory of the
WAR file.

D.	� TLD files can declare both Simple and Classic tags, but TLD
files are NOT used to declare Tag Files.









1

Assuming the standard JSTL prefix conventions are used,
which JSTL tags would you use to iterate over a collection of objects?
(Choose all that apply.)

 A.	� <x:forEach>

B.	� <c:iterate>

C.	� <c:forEach>

D.	� <c:forTokens>

E.	� <logic:iterate>

F.	� <logic:forEach>













2

void doTag() {
 // tag logic
}

void setUser(String user) {
 this.user=user;
}

AdvisorTagHandler class

492 chapter 9

A JSP page contains a taglib directive whose uri attribute has the
value myTags. Which deployment descriptor element defines the
associated TLD?

 A.	� <taglib>
 <uri>myTags</uri>
 <location>/WEB-INF/myTags.tld</location>
</taglib>

B.	� <taglib>
 <uri>myTags</uri>
 <tld-location>/WEB-INF/myTags.tld</tld-location>
</taglib>

C.	� <taglib>
 <tld-uri>myTags</tld-uri>
 <tld-location>/WEB-INF/myTags.tld</tld-location>
</taglib>

D.	� <taglib>
 <taglib-uri>myTags</taglib-uri>
 <taglib-location>/WEB-INF/myTags.tld</taglib-location>
</taglib>









3

A JavaBean Person has a property called address. The value of this
property is another JavaBean Address with the following string properties:
street1, street2, city, stateCode and zipCode. A controller servlet
creates a session-scoped attribute called customer that is an instance of the
Person bean.

Which JSP code structures will set the city property of the customer
attribute to the city request parameter? (Choose all that apply.)

 A.	� ${sessionScope.customer.address.city = param.city}

B.	� <c:set target=”${sessionScope.customer.address}”
 property=”city” value=”${param.city}” />

C.	� <c:set scope=”session” var=”${customer.address}”
 property=”city” value=”${param.city}” />

D.	� <c:set target=”${sessionScope.customer.address}”
 property=”city”>
 ${param.city}
</c:set>








4

mock exam

using JSTL

you are here � 493

Which <body-content> element combinations in the TLD
are valid for the following JSP snippet? (Choose all that apply.)

11. <my:tag1>
12. <my:tag2 a=”47” />
13. <% a = 420; %>
14. <my:tag3>
15. value = ${a}
16. </my:tag3>
17. </my:tag1>

 A.	� tag1 body-content is empty
tag2 body-content is JSP
tag3 body-content is scriptless

B.	� �tag1 body-content is JSP
tag2 body-content is empty
tag3 body-content is scriptless

C.	�� tag1 body-content is JSP
tag2 body-content is JSP
tag3 body-content is JSP

D.	�� tag1 body-content is scriptless
tag2 body-content is JSP
tag3 body-content is JSP

E.	� tag1 body-content is JSP
tag2 body-content is scriptless
tag3 body-content is scriptless











5

Assuming the appropriate taglib directives, which are valid
examples of custom tag usage? (Choose all that apply.)

 A.	� <foo:bar />

B.	� <my:tag></my:tag>

C.	� <mytag value=”x” />

D.	� <c:out value=”x” />

E.	� <jsp:setProperty name=”a” property=”b” value=”c” />







6

494 chapter 9

 Given the following scriptlet code:

11. <select name=’styleId’>
12. <% BeerStyle[] styles = beerService.getStyles();
13. for (int i=0; i < styles.length; i++) {
14. BeerStyle style = styles[i]; %>
15. <option value=’<%= style.getObjectID() %>’>
16. <%= style.getTitle() %>
17. </option>
18. <% } %>
19. </select>

Which JSTL code snippet produces the same result?

 A.	� <select name=’styleId’>
 <c:for array=’${beerService.styles}’>
 <option value=’${item.objectID}’>${item.title}</option>
 </c:for>
 </select>

B.	� <select name=’styleId’>
 <c:forEach var=’style’ items=’${beerService.styles}’>
 <option value=’${style.objectID}’>${style.title}</option>
 </c:forEach>
</select>

C.	� <select name=’styleId’>
 <c:for var=’style’ array=’${beerService.styles}’>
 <option value=’${style.objectID}’>${style.title}</option>
 </c:for>
</select>

D.	� <select name=’styleId’>
 <c:forEach var=’style’ array=’${beerService.styles}’>
 <option value=’${style.objectID}’>${style.title}</option>
 </c:for>
</select>









7

mock exam

using JSTL

you are here � 495

Chapter 9 Answers
Which is true about TLD files?

 A.	� TLD files may be placed in any subdirectory of WEB-INF.

B.	� TLD files are used to configure JSP environment attributes,
such as scripting-invalid.

C.	� TLD files may be placed in the META-INF directory of the
WAR file.

D.	� TLD files can declare both Simple and Classic tags, but TLD
files are NOT used to declare Tag Files.









1
(JSP v2.0
pgs 3-16, 1-160)

-Option B is invalid because TLD
files configure tag handlers not
the JSP environment.

-Option C is invalid because TLD
files are not recognized in the
META-INF of the WAR file.

-Option D is invalid because Tag Files may be declared in a TLD (but it is rare).

Assuming the standard JSTL prefix conventions are used,
which JSTL tags would you use to iterate over a collection of objects?
(Choose all that apply.)

 A.	� <x:forEach>

B.	� <c:iterate>

C.	� <c:forEach>

D.	� <c:forTokens>

E.	� <logic:iterate>

F.	� <logic:forEach>













2 (JSTL v1.1 pg. 42)

-Option B is incorrect because no such tag exists.

-Option D is incorrect because
this tag is used for iterating over
tokens within a single string.

-Options E and F are incorrect because the prefix ‘logic’ is not a standard JSTL prefix (this prefix is typically used by tags in the Jakarta Struts package).

-Option A is incorrect as this is the tag
used for iterating over XPath expressions.

496 chapter 9

A JSP page contains a taglib directive whose uri attribute has the
value myTags. Which deployment descriptor element defines the
associated TLD?

 A.	� <taglib>
 <uri>myTags</uri>
 <location>/WEB-INF/myTags.tld</location>
</taglib>

B.	� <taglib>
 <uri>myTags</uri>
 <tld-location>/WEB-INF/myTags.tld</tld-location>
</taglib>

C.	� <taglib>
 <tld-uri>myTags</tld-uri>
 <tld-location>/WEB-INF/myTags.tld</tld-location>
</taglib>

D.	� <taglib>
 <taglib-uri>myTags</taglib-uri>
 <taglib-location>/WEB-INF/myTags.tld</taglib-location>
</taglib>









3 (JSP v2.0 pgs 3-12,13)

- Option D specifies
valid tag elements.

A JavaBean Person has a property called address. The value of this
property is another JavaBean Address with the following string properties:
street1, street2, city, stateCode and zipCode. A controller servlet
creates a session-scoped attribute called customer that is an instance of the
Person bean.

Which JSP code structures will set the city property of the customer
attribute to the city request parameter? (Choose all that apply.)

 A.	� ${sessionScope.customer.address.city = param.city}

B.	� <c:set target=”${sessionScope.customer.address}”
 property=”city” value=”${param.city}” />

C.	� <c:set scope=”session” var=”${customer.address}”
 property=”city” value=”${param.city}” />

D.	� <c:set target=”${sessionScope.customer.address}”
 property=”city”>
 ${param.city}
</c:set>








4

-Option A is invalid
because EL does not
permit assignment.

(JSTL v1.1 pg 4-28)

-Option C is invalid
because the var attribute
does not accept a
runtime value, nor does it
work with the property
attribute.

mock answers

using JSTL

you are here � 497

Which <body-content> element combinations in the TLD
are valid for the following JSP snippet? (Choose all that apply.)

11. <my:tag1>
12. <my:tag2 a=”47” />
13. <% a = 420; %>
14. <my:tag3>
15. value = ${a}
16. </my:tag3>
17. </my:tag1>

 A.	� tag1 body-content is empty
tag2 body-content is JSP
tag3 body-content is scriptless

B.	� �tag1 body-content is JSP
tag2 body-content is empty
tag3 body-content is scriptless

C.	�� tag1 body-content is JSP
tag2 body-content is JSP
tag3 body-content is JSP

D.	�� tag1 body-content is scriptless
tag2 body-content is JSP
tag3 body-content is JSP

E.	� tag1 body-content is JSP
tag2 body-content is scriptless
tag3 body-content is scriptless











5

-Tag1 includes scripting code so it must have at
least ‘JSP’ body-content. Tag2 is only shown
as an empty tag, but it could also contain ‘JSP’
or ‘scriptless’ body-content. Tag3 contains no
scripting code so it may have either ‘JSP’ or
‘scriptless’ body-content.

(JSP v2.0 Appendix JSP.C
specifically pgs 3-21 and 3-30)

-Option A is invalid
because tag1 cannot
be ‘empty’.

-Option D is invalid
because tag1 cannot
be ‘scriptless’.

Assuming the appropriate taglib directives, which are valid
examples of custom tag usage? (Choose all that apply.)

 A.	� <foo:bar />

B.	� <my:tag></my:tag>

C.	� <mytag value=”x” />

D.	� <c:out value=”x” />

E.	� <jsp:setProperty name=”a” property=”b” value=”c” />







6
(JSP v2.0 section 7)

-Option C is invalid because
there is no prefix.

-Option E is invalid because this is an example of a JSP standard action, not a custom tag.

498 chapter 9

 Given the following scriptlet code:

11. <select name=’styleId’>
12. <% BeerStyle[] styles = beerService.getStyles();
13. for (int i=0; i < styles.length; i++) {
14. BeerStyle style = styles[i]; %>
15. <option value=’<%= style.getObjectID() %>’>
16. <%= style.getTitle() %>
17. </option>
18. <% } %>
19. </select>

Which JSTL code snippet produces the same result?

 A.	� <select name=’styleId’>
 <c:for array=’${beerService.styles}’>
 <option value=’${item.objectID}’>${item.title}</option>
 </c:for>
 </select>

B.	� <select name=’styleId’>
 <c:forEach var=’style’ items=’${beerService.styles}’>
 <option value=’${style.objectID}’>${style.title}</option>
 </c:forEach>
</select>

C.	� <select name=’styleId’>
 <c:for var=’style’ array=’${beerService.styles}’>
 <option value=’${style.objectID}’>${style.title}</option>
 </c:for>
</select>

D.	� <select name=’styleId’>
 <c:forEach var=’style’ array=’${beerService.styles}’>
 <option value=’${style.objectID}’>${style.title}</option>
 </c:for>
</select>









7

-Option B is correct because it uses the
proper JSTL tag/attribute names.

(JSTL v1.1 pg 6-48)

mock answers

	Head First Servlets and JSP, 2nd Edition
	Table of Contents (Summary)
	Table of Contents (the real thing)
	Intro
	Chapter 1. Why use Servlets & JSPs: an introduction
	Chapter 2. Web App Architecture: high-level overview
	Chapter 3. Mini MVC Tutorial: hands-on MVC
	Chapter 4. Being a Servlet: request AND response
	Chapter 5. Being a Web App: attributes and listeners
	Chapter 6. Conversational state: session management
	Chapter 7. Being a JSP: using JSP
	Chapter 8. Script-free pages: scriptless JSP
	Chapter 9. Custom tags are powerful: using JSTL
	Chapter 10. When even JSTL is not enough: custom tag development
	Chapter 11. Deploying your web app: web app deployment
	Chapter 12. Keep it secret, keep it safe: web app security
	Chapter 13. The Power of Filters: wrappers and filters
	Chapter 14. Enterprise design patterns: patterns and struts
	Appendix A: Final Mock Exam

