Full Coverage of Multicore Programming _

CLR
via C#

Jeffrey Richter
rﬂteﬂect'

Know how.

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2010 by Jeffrey Richter

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2009943026

Printed and bound in the United States of America.

123456789 WCT 543210

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly at
fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to msinput@microsoft.com.

Microsoft, Microsoft Press, Active Accessibility, Active Directory, ActiveX, Authenticode, DirectX, Excel, IntelliSense,
Internet Explorer, MSDN, Outlook, SideShow, Silverlight, SQL Server, Visual Basic, Visual Studio, Win32, Windows,
Windows Live, Windows Media, Windows NT, Windows Server and Windows Vista are either registered trademarks
or trademarks of the Microsoft group of companies. Other product and company names mentioned herein may be the
trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ben Ryan

Developmental Editor: Devon Musgrave

Project Editor: Valerie Woolley

Editorial Production: Custom Editorial Productions, Inc.

Technical Reviewer: Christophe Nasarre; Technical Review services provided by Content Master, a member of CM
Group, Ltd.

Cover: Tom Draper Design

Body Part No. X16-61995

Table of Contents

ForewWard e Xiii
Introduction i e XV

Part]| CLR Basics

1 TheCLR'sExecutionModel 1
Compiling Source Code into Managed Modulesooi .. 1
Combining Managed Modules into Assemblies. i 5
Loading the Common Language Runtime. 6
Executing Your Assembly’s Code. ... i 9

ILand Verification......... ... 15
Unsafe Code. 16

The Native Code Generator Tool: NGen.exe, 18
The Framework Class Library 20
The Common Type Systemo 22
The Common Language Specification i i 25
Interoperability with Unmanaged Code. i 29

2 Building, Packaging, Deploying, and Administering Applications

AN TYPES. ¢ ittt e e e 31
.NET Framework Deployment Goals..........o, 32
Building TypesintoaModule. 33
Response Fileso 34

A Brief Look at Metadatao 36
Combining Modules to Form an Assembly L. 43
Adding Assemblies to a Project by Using the Visual Studio IDE............... 49

Using the Assembly Linker. 50
Adding Resource Filestoan Assembly 52
Assembly Version Resource Information 53
Version Numbers. 57
CURUIE 58
Simple Application Deployment (Privately Deployed Assemblies).................. 59
Simple Administrative Control (Configuration)............ 6l

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

iv Table of Contents

3 Shared Assemblies and Strongly Named Assemblies 65
Two Kinds of Assemblies, Two Kinds of Deployment.............................. 66
Giving an Assembly a Strong Name 67
The Global Assembly Cache 73
Building an Assembly That References a Strongly Named Assembly................ 75
Strongly Named Assemblies Are Tamper-Resistant............................... 76
Delayed Signing 77
Privately Deploying Strongly Named Assemblies. 80
How the Runtime Resolves Type References............. i .. 81
Advanced Administrative Control (Configuration) 84

Publisher Policy Control. i 87

Part Il Designing Types

4 TypeFundamentals............ i, 91
All Types Are Derived from System.Object, 91
Casting Between Typeso 93
Casting with the C# isandas Operators ..., 95
Namespaces and Assemblies 97
How Things Relate at Runtime. 102
5 Primitive, Reference, and Value Types, 113
Programming Language Primitive Typest 113
Checked and Unchecked Primitive Type Operations 117
Reference Types and Value Typesot 121
Boxing and Unboxing Value Types et 127
Changing Fields in a Boxed Value Type by Using Interfaces (and Why You
Shouldnt Do This)o 140
Object Equality and Identity.......... oo 143
Object Hash Codes. 146
The dynamic Primitive Type. 148
6 Typeand MemberBasics..........c.uiiiiiiiiiinnneennnnnn. 155
The Different Kinds of Type Members i i 155
Type Visibility. 158
Friend Assemblies 159
Member Accessibility. 160
Static Classes 162
Partial Classes, Structures, and Interfaces i, 164
Components, Polymorphism, and Versioning., 165
How the CLR Calls Virtual Methods, Properties, and Events. 167
Using Type Visibility and Member Accessibility Intelligently 172
Dealing with Virtual Methods When Versioning Types 175
7 Constantsand Fields........... .. . i, 181
CoNStaNts . ..o 181

Flelds . . 183

Table of Contents

8 Methods ... e 187
Instance Constructors and Classes (Reference Types) 187
Instance Constructors and Structures (Value Types) 191
Type CoNSTIUCTONS. . .o 194

Type Constructor Performance. i 198
Operator Overload Methods e 200
Operators and Programming Language Interoperability 203
Conversion Operator Methods. 204
Extension Methods. 207
Rules and Guidelines. 210
Extending Various Types with Extension Methods...................... ... 211
The Extension Attribute. 213
Partial Methods. 213
Rules and Guidelines. 216

O ParamMeters . . oottt e 219

Optional and Named Parameters i 219
Rules and Guidelines. 220
The Defaul tParameterValue and Optional Attributes.................. 222
Implicitly Typed Local Variables. 223
Passing Parameters by Referencetoa Method. 225
Passing a Variable Number of Argumentstoa Method 231
Parameter and Return Type Guidelines 233
CONST-NESS. . ..o 235
10 Properties.oouiiiiiii i e 237
Parameterless Properties. 237
Automatically Implemented Properties 241
Defining Properties Intelligently. i 242
Object and Collection Initializers............. i i 245
ANONYMOUS TYPES. . oo ettt 247
The System.Tuple Type.t 250
Parameterful Properties 252
The Performance of Calling Property Accessor Methods......................... 257
Property Accessor Accessibility 258
Generic Property Accessor Methods. 258
11 EVents ..o e 259
Designing a Type That ExposesanEvent.............. i .. 260

Step #1: Define a type that will hold any additional information
that should be sent to receivers of the event notification................. 261
Step #2: Define the event member 262

Step #3: Define a method responsible for raising the event to

notify registered objects that the event hasoccurred 263

Step #4: Define a method that translates the input into the desired event. ...266
How the Compiler Implementsan Event......... i iiii... 266

vi Table of Contents

12

13

Designing a Type That Listens foran Event............. 269
Explicitly Implementingan Event. 271
| CT=T 31T =P 275
Generics in the Framework Class Library o o 280
Wintellect's Power Collections Library 281
Generics Infrastructure 282
Open and Closed TYPES e e 283
Generic Types and Inheritance 285
Generic Type Identity 287
Code EXPloSION 288
Generic Interfaces. 289
Generic Delegates.t 290
Delegate and Interface Contravariant and Covariant Generic Type Arguments. 291
Generic Methodso 293
Generic Methods and Type Inference............... i 294
Generics and Other Members 296
Verifiability and Constraints 296
Primary Constraints.t e 299
Secondary CONStraintst 300
Constructor CoNstraints.uott 301
Other Verifiability Issues 302
Interfacesot e 307
Class and Interface Inheritance i 308
Defining an Interface 308
Inheriting an Interface. 310
More About Calling Interface Methods 312
Implicit and Explicit Interface Method Implementations (What's Happening
Behind the Scenes) 314
Generic INterfaces. 315
Generics and Interface Constraintsttt 318
Implementing Multiple Interfaces That Have the Same Method Name
and Signature.o 319
Improving Compile-Time Type Safety with Explicit Interface Method
Implementations 320
Be Careful with Explicit Interface Method Implementations 322
Design: Base Class or Interface?. ... 325

Part Il Essential Types

14

Chars, Strings, and Working with Text............... 327
CNaraCters ..o 327

The System.String TYPeo 330
Constructing StriNgS . . . oo 330

Strings Are Immutable 333

Comparing StrHiNGS 334

Table of Contents vii

String INtErNiNg 340
String Pooling 343
Examining a String’s Characters and Text Elements........................ 343
Other String Operations. 346
Constructing a String Efficiently. ... 346
Constructing a StringBuilder Object.............. 347
StringBuilder Members. 348
Obtaining a String Representation of an Object: ToString........................ 350
Specific Formats and Cultures. 351
Formatting Multiple Objects into a Single String 355
Providing Your Own Custom Formatter o ... 356
Parsing a String to Obtain an Object: Parse 359
Encodings: Converting Between Charactersand Bytes........................... 361
Encoding and Decoding Streams of Charactersand Bytes.................. 367
Base-64 String Encoding and Decoding. ... 368
SECUIE SEIINGS & .ttt e 369
15 Enumerated Typesand BitFlags................. ..., 373
Enumerated Types . ..o 373
Bit Flags ... 379
Adding Methods to Enumerated Typest 383
16 AITaYS. . oot 385
Initializing Array Elements. 388
CaStiNG AITAYS . . .o 390
All Arrays Are Implicitly Derived from System.Array 392
All Arrays Implicitly Implement IEnumerable, ICollection, and IList.......... 393
Passing and Returning Arrays. 394
Creating Non-Zero—Lower Bound Arrays.o 395
Array Access Performance. 396
Unsafe Array Access and Fixed-Size Array 401
17 Delegates ...ttt i e e 405
A First Look at Delegates. 405
Using Delegates to Call Back Static Methods 408
Using Delegates to Call Back Instance Methods. 409
Demystifying Delegates. 410
Using Delegates to Call Back Many Methods (Chaining) 415
C#'s Support for Delegate Chains i 419
Having More Control over Delegate Chain Invocation 419
Enough with the Delegate Definitions Already (Generic Delegates). 422
C#'s Syntactical Sugar for Delegates. 423
Syntactical Shortcut #1: No Need to Construct a Delegate Object........... 424
Syntactical Shortcut #2: No Need to Define a Callback Method 424
Syntactical Shortcut #3: No Need to Wrap Local Variables in a Class
Manually to Pass Them to a Callback Method 428

Delegates and Reflection 431

viii

Table of Contents

18 Custom Attributes....... ittt 435
Using Custom Attributes. 435
Defining Your Own Attribute Class 439
Attribute Constructor and Field/Property Data Types.coiiiiiiinn. 443
Detecting the Use of a Custom Attribute.............. 444
Matching Two Attribute Instances Against Each Other........................... 448
Detecting the Use of a Custom Attribute Without Creating Attribute-Derived
(@] o) =Tt {3 PP 451
Conditional Attribute Classes. 454
19 Nullable Value Types.t 457
C#'s Support for Nullable Value Types 459
C#'s Null-Coalescing Operator.t e 462
The CLR Has Special Support for Nullable Value Types........................... 463
Boxing Nullable Value Types. 463
Unboxing Nullable Value Types 463
Calling GetType via a Nullable Value Type 464
Calling Interface Methods via a Nullable Value Type....................... 464

Part IV Core Facilities

20 Exceptions and State Management, 465
Defining “EXCEption” o 466
Exception-Handling Mechanics 467

The try Block o 468
Thecatch Block 469
The finally Block. 470
The System.Exception Class. it 474
FCL-Defined Exception Classes.ttt 478
Throwing an EXCeptiono 480
Defining Your Own Exception Class 481
Trading Reliability for Productivity 484
Guidelines and Best Practices. ...ttt 492
Use finally Blocks Liberally.......... .. . 492
Don't Catch Everything. 494
Recovering Gracefully from an Exception. 495
Backing Out of a Partially Completed Operation When an Unrecoverable
Exception Occurs—Maintaining State............ oo i i 496
Hiding an Implementation Detail to Maintain a “Contract” 497
Unhandled EXCEPtioNS. o 500
Debugging EXCEpPLioNs.ot 504
Exception-Handling Performance Considerations............................... 506
Constrained Execution Regions (CERS) it 509

Code CoNTratts . ..ottt e 512

Table of Contents

21 Automatic Memory Management (Garbage Collection)........... 519
Understanding the Basics of Working in a Garbage-Collected Platform............ 520
Allocating Resources from the Managed Heap............................ 521

The Garbage Collection Algorithm 523
Garbage Collections and Debugging 527
Using Finalization to Release Native Resources, 530
Guaranteed Finalization Using CriticalFinalizerObject Types 532
Interoperating with Unmanaged Code by Using SafeHandle Types......... 535

Using Finalization with Managed Resources. ..., 537
What Causes Finalize MethodstoBe Called?............... 540
Finalization Internals 541
The Dispose Pattern: Forcing an Objectto Clean Up.................c.ooiiat. 544
Using a Type That Implements the Dispose Pattern 548
CH#'susing Statement 551
An Interesting Dependency ISsue 554
Monitoring and Controlling the Lifetime of Objects Manually 555
Resurrection. 566
GeNerations 568
Other Garbage Collection Features for Use with Native Resources 574
Predicting the Success of an Operation that Requires a Lot of Memory............ 578
Programmatic Control of the Garbage Collector.............. 580
Thread Hijacking.o 583
Garbage Collection Modes. 585
Large ObJectso 588
Monitoring Garbage Collections i 589
22 CLR Hostingand AppDomainsc.ccoviiiineennnnennn. 591
CLR HOSEING . . 592
APPDOMaINS . 594
Accessing Objects Across AppDomain Boundaries. 597
AppDomain Unloading 609
AppDomain Monitoring 610
AppDomain First-Chance Exception Notifications.................. 612
How Hosts Use AppDOMaiNsottt e 612
Executable Applications. 612
Microsoft Silverlight Rich Internet Applications 613
Microsoft ASP.NET Web Forms and XML Web Services Applications......... 613
Microsoft SQL Server 614

Your Own Imagination. 614
Advanced Host Control 615
Managing the CLR by Using Managed Code., 615
Writing a Robust Host Application i i 616

How a Host Gets Its Thread Back 617

Table of Contents

23 Assembly Loading and Reflection. 621
Assembly Loading. 621
Using Reflection to Build a Dynamically Extensible Application................... 626
Reflection Performance. i 627

Discovering Types Defined inan Assembly 628
What Exactly Isa Type Object?. 628
Building a Hierarchy of Exception-Derived Types. 631
Constructing an Instanceof aType 632
Designing an Application That Supports Add-Ins, 634
Using Reflection to Discover a Type's Members..............., 637
Discovering a Type's Members. i 638
BindingFlags: Filtering the Kinds of Members That Are Returned 643
Discovering a Type's Interfaces. o i i 644
Invoking a Type's Members. 646
Bind Once, Invoke Multiple Times o 650
Using Binding Handles to Reduce Your Process's Memory Consumption 658

24 Runtime Serialization i i 661
Serialization/Deserialization Quick Start 662
Making a Type Serializable 667
Controlling Serialization and Deserialization.............. o it 668
How Formatters Serialize Type Instances. o i 672
Controlling the Serialized/Deserialized Data.o ... 673

How to Define a Type That Implements ISerializable when the Base
Type Doesn’'t Implement This Interface............ 678
Streaming ContextSottt 680

Serializing a Type as a Different Type and Deserializing an Object as a

Different Object. 682
Serialization SUMrOgates. 684
Surrogate Selector Chains 688
Overriding the Assembly and/or Type When Deserializing an Object.............. 689

PartV Threading

25 Thread Basicsttt 691
Why Does Windows Support Threads?. 691
Thread Overhead 692
Stopthe Madness. 696
CPU Trends. . oo 699
NUMA Architecture Machines e 700
CLR Threads and Windows Threads i, 703
Using a Dedicated Thread to Perform an Asynchronous Compute-Bound

OPEratioON . o e 704
Reasonsto Use Threads. e 706
Thread Scheduling and Priorities. 708
Foreground Threads versus Background Threads 713

Table of Contents

26 Compute-Bound Asynchronous Operations. 717
Introducing the CLR's Thread Pool i, 718
Performing a Simple Compute-Bound Operation.............., 719
Execution Contexts. 721
Cooperative Cancellation 722
TaSKS et 726

Waiting for a Task to Complete and Getting ItsResult 727
Cancelling a Task.o 729
Starting a New Task Automatically When Another Task Completes 731
A Task May Start Child Tasks. ... 733
Inside @ Task. 733
Task Factories. 735
Task Schedulers 737
Parallel’s Static For, ForEach, and Invoke Methods.......................... 739
Parallel Language Integrated QUery.t 743
Performing a Periodic Compute-Bound Operation.............................. 747
So Many Timers, So Little Time. 749
How the Thread Pool Manages Its Threads. 750
Setting Thread Pool Limits. 750
How Worker Threads Are Managed 751
Cache Lines and False Sharing e 752

27 1/0-Bound Asynchronous Operations 755
How Windows Performs I/O Operationsccoiiiiiiiiiiii... 755
The CLR's Asynchronous Programming Model (APM)......... 761
The AsyncEnumerator Class. i 765
The APM and EXCEPLIONS.ottt e e 769
Applications and Their Threading Models. 770
Implementing a Server Asynchronously. o i i i 773
The APM and Compute-Bound Operations. 774
APM Considerations. 776

Using the APM Without the Thread Pool................................. 776
Always Call the EndXxx Method, and Call It OnlyOnce 777
Always Use the Same Object When Calling the EndXxx Method 778

Using ref, out, and params Arguments with BeginXxx and
EndXxx Methods 778
You Can’t Cancel an Asynchronous I/0O-Bound Operation.................. 778
Memory CoNSUMPLIONo ottt 778
Some I/O Operations Must Be Done Synchronously 779
FileStream-Specific Issues i 780
[/O Request Priorities. 780
Converting the TAsyncResult APM toaTask.................o i i, 783
The Event-Based Asynchronous Pattern.............. 784
Convertingthe EAPtoaTask ... 786
Comparingthe APM and the EAP i 788

Programming Model SoUpo 788

xii Table of Contents

28 Primitive Thread Synchronization Constructs.................... 791
Class Libraries and Thread Safety i 793
Primitive User-Mode and Kernel-Mode Constructs. 794
User-Mode CONSTIUCES. oottt e 796

Volatile CONSTIUCESt 797
Interlocked CONSErUCES.ottt 803
Implementing a Simple Spin Lock 807
The Interlocked Anything Pattern 811
Kernel-Mode Constructs. 813
Event CoNStructso o 817
Semaphore ConstruCts.ot 819
Mutex CONSIUCES 820
Calling a Method When a Single Kernel Construct Becomes Available 822

29 Hybrid Thread Synchronization Constructs. 825
A Simple Hybrid Lock. 826
Spinning, Thread Ownership, and Recursion. i i i, 827
A Potpourri of Hybrid Constructs 829

The ManualResetEventS1im and SemaphoreSTim Classes................ 830

The Monitor Class and SyncBlocks oo i, 830

The ReaderWriterLockSTimClass o i, 836

The OneManyLock Class.ot 838

The CountdownEvent Class 841

The Barrier Classc.o.oii i 841
Thread Synchronization Construct Summary. oo, 842

The Famous Double-Check Locking Technique i, 844
The Condition Variable Pattern 848
Using Collections to Avoid Holding a Lock fora Long Time 851
The Concurrent Collection Classes 856
INdeX .o e e 861

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Foreword

At first, when Jeff asked me to write the foreword for his book, | was so flattered! He must
really respect me, | thought. Ladies, this is a common thought process error—trust me, he
doesn't respect you. It turns out that | was about #14 on his list of potential foreword writ-
ers and he had to settle for me. Apparently, none of the other candidates (Bill Gates, Steve
Ballmer, Catherine Zeta-Jones, . . .) were that into him. At least he bought me dinner.

But no one can tell you more about this book than I can. | mean, Catherine could give you a
mobile makeover, but | know all kinds of stuff about reflection and exceptions and C# lan-
guage updates because he has been talking on and on about it for years. This is standard
dinner conversation in our house! Other people talk about the weather or stuff they heard at
the water cooler, but we talk about .NET. Even Aidan, our six-year-old, asks questions about
Jeff's book. Mostly about when he will be done writing it so they can play something “cool.”
Grant (age 2) doesn't talk yet, but his first word will probably be “Sequential.”

In fact, if you want to know how this all started, it goes something like this. About 10 years
ago, Jeff went to a “Secret Summit” at Microsoft. They pulled in a bunch of industry experts
(Really, how do you get this title? Believe me, this isn't Jeff's college degree), and unveiled
the new COM. Late that night in bed (in our house, this is what we discuss in bed), he talked
about how COM is dead. And he was enchanted. Lovestruck, actually. In a matter of days
he was hanging around the halls of Building 42 on Microsoft's Redmond campus, hoping to
learn more about this wonderful .NET. The affair hasn't ended, and this book is what he has
to show for it.

For years, Jeff has told me about threading. He really likes this topic. One time, in New
Orleans, we went on a two-hour walk, alone, holding hands, and he spoke the whole time
about how he had enough content for a threading book: The art of threading. How misun-
derstood threading in Windows is. It breaks his heart, all those threads out there. Where do
they all go? Why were they created if no one had a plan for them? These are the questions of
the universe to Jeff, the deeper meanings in life. Finally, in this book, he has written it down.
It is all here. Believe me folks, if you want to know about threading, no one has thought
about it more or worked with it more than Jeff has. And all those wasted hours of his life (he
can't get them back) are here at your disposal. Please read it. Then send him an e-mail about
how that information changed your life. Otherwise, he is just another tragic literary figure
whose life ended without meaning or fulfillment. He will drink himself to death on diet soda.

This edition of the book even includes a new chapter about the runtime serializer. Turns out,
this is not a new breakfast food for kids. When | figured out it was more computer talk and
not something to put on my grocery list, | tuned it out. So | don't know what it says, but it is
in here and you should read it (with a glass of milk).

xiii

xiv Foreword

My hope is that now he is finished talking about garbage collection in theory and can get on
with actually collecting our garbage and putting it on the curb. Seriously people, how hard is
that?

Folks, here is the clincher—this is Jeffrey Richter's magnum opus. This is it. There will be no
more books. Of course, we say this every time he finishes one, but this time we really mean
it. So, 13 books (give or take) later, this is the best and the last. Get it fast, because there are
only a limited number and once they are gone—poof. No more. Just like QVC or something.
Back to real life for us, where we can discuss the important things, like what the kids broke
today and whose turn is it to change the diapers.

Kristin Trace (Jeffrey’s wife)

November 24, 2009

A typical family breakfast at the Richter household

Introduction

It was October 1999 when some people at Microsoft first demonstrated the Microsoft .NET
Framework, the common language runtime (CLR), and the C# programming language to me.
The moment | saw all of this, | was impressed and | knew that it was going to change the way
| wrote software in a very significant way. | was asked to do some consulting for the team and
immediately agreed. At first, | thought that the .NET Framework was an abstraction layer over
the Win32 APl and COM. As | invested more and more of my time into it, however, | realized
that it was much bigger. In a way, it is its own operating system. It has its own memory man-
ager, its own security system, its own file loader, its own error handling mechanism, its own
application isolation boundaries (AppDomains), its own threading models, and more. This
book explains all these topics so that you can effectively design and implement software
applications and components for this platform.

| have spent a good part of my life focusing on threading, concurrent execution, parallelism,
synchronization, and so on. Today, with multicore computers becoming so prevalent, these
subjects are becoming increasingly important. A few years ago, | decided to create a book
dedicated to threading topics. However, one thing led to another and | never produced the
book. When it came time to revise this book, | decided to incorporate all the threading
information in here. So this book covers the .NET Framework’s CLR and the C# programming
language, and it also has my threading book embedded inside it (see Part V, “Threading”).

It is October 2009 as | write this text, making it 10 years now that I've worked with the .NET
Framework and C#. Over the 10 years, | have built all kinds of applications and, as a consul-
tant to Microsoft, have contributed quite a bit to the .NET Framework itself. As a partner in
my own company, Wintellect (http.//Wintellect.com), | have worked with numerous customers
to help them design software, debug software, performance-tune software, and solve issues
they have with the .NET Framework. All these experiences have really helped me learn the
spots that people have trouble with when trying to be productive with the .NET Framework.

| have tried to sprinkle knowledge from these experiences through all the topics presented in
this book.

Who This Book Is For

The purpose of this book is to explain how to develop applications and reusable classes for
the .NET Framework. Specifically, this means that | intend to explain how the CLR works and
the facilities that it offers. I'll also discuss various parts of the Framework Class Library (FCL).
No book could fully explain the FCL—it contains literally thousands of types now, and this
number continues to grow at an alarming rate. Therefore, here I'm concentrating on the core
types that every developer needs to be aware of. And while this book isn't specifically about
Windows Forms, Windows Presentation Foundation (WPF), Silverlight, XML Web services,

Xvi

Introduction

Web Forms, and so on, the technologies presented in the book are applicable to all these
application types.

The book addresses Microsoft Visual Studio 2010, .NET Framework version 4.0, and version 4.0
of the C# programming language. Since Microsoft tries to maintain a large degree of back-
ward compatibility when releasing a new version of these technologies, many of the things

| discuss in this book apply to earlier versions as well. All the code samples use the C#
programming language as a way to demonstrate the behavior of the various facilities. But,
since the CLR is usable by many programming languages, the book’s content is still quite
applicable for the non-C# programmer.

Note You can download the code shown in the book from Wintellect's Web site
(http://Wintellect.com). In some parts of the book, | describe classes in my own Power
Threading Library. This library is available free of charge and can also be downloaded from
Wintellect's Web site.

Today, Microsoft offers several versions of the CLR. There is the desktop/server version, which
runs on 32-bit x86 versions of Microsoft Windows as well as 64-bit x64 and 1A64 versions

of Windows. There is the Silverlight version, which is produced from the same source code
base as the desktop/server version of the .NET Framework'’s CLR. Therefore, everything in this
book applies to building Silverlight applications, with the exception of some differences in
how Silverlight loads assemblies. There is also a “lite” version of the .NET Framework called
the .NET Compact Framework, which is available for Windows Mobile phones and other
devices running the Windows CE operating system. Much of the information presented in
this book is applicable to developing applications for the .NET Compact Framework, but this
platform is not the primary focus of this book.

On December 13, 2001, ECMA International (http.//www.ecma-international.org/) accepted
the C# programming language, portions of the CLR, and portions of the FCL as standards.
The standards documents that resulted from this have allowed other organizations to build
ECMA-compliant versions of these technologies for other CPU architectures, as well as other
operating systems. In fact, Novell produces Moonlight (http.//www.mono-project.com
/Moonlight), an open-source implementation of Silverlight (http://Silverlight.net) that is
primarily for Linux and other UNIX/X11-based operating systems. Moonlight is based on the
ECMA specifications. Much of the content in this book is about these standards; therefore,
many will find this book useful for working with any runtime/library implementation that ad-
heres to the ECMA standard.

Introduction xvii

Note My editors and | have worked hard to bring you the most accurate, up-to-date, in-depth,
easy-to-read, painless-to-understand, bug-free information. Even with this fantastic team
assembled, however, things inevitably slip through the cracks. If you find any mistakes in this
book (especially bugs) or have some constructive feedback, | would greatly appreciate it if you
would contact me at JeffreyR@Wintellect.com.

Dedication

To Kristin Words cannot express how | feel about our life together. | cherish our family and
all our adventures. I'm filled each day with love for you.

To Aidan (age 6) and Grant (age 2) You both have been an inspiration to me and have
taught me to play and have fun. Watching the two of you grow up has been so rewarding
and enjoyable for me. | am lucky to be able to partake in your lives. | love and appreciate you
more than you could ever know.

Acknowledgments

| couldn’t have written this book without the help and technical assistance of many people.

In particular, I'd like to thank my family. The amount of time and effort that goes into writing
a book is hard to measure. All | know is that | could not have produced this book without the
support of my wife, Kristin, and my two sons, Aidan and Grant. There were many times when
we wanted to spend time together but were unable to due to book obligations. Now that the
book project is completed, | really look forward to adventures we will all share together.

For this book revision, | truly had some fantastic people helping me. Christophe Nasarre,
who I've worked with on several book projects, has done just a phenomenal job of verifying
my work and making sure that I'd said everything the best way it could possibly be said. He
has truly had a significant impact on the quality of this book. As always, the Microsoft Press
editorial team is a pleasure to work with. I'd like to extend a special thank you to Ben Ryan,
Valerie Woolley, and Devon Musgrave. Also, thanks to Jean Findley and Sue McClung for
their editing and production support.

Support for This Book

Every effort has been made to ensure the accuracy of this book. As corrections or changes
are collected, they will be added to a Microsoft Knowledge Base article accessible via the
Microsoft Help and Support site. Microsoft Press provides support for books, including
instructions for finding Knowledge Base articles, at the following Web site:

http://www.microsoft.com/learning/support/books/

xviii

Introduction

If you have questions regarding the book that are not answered by visiting the site above
or viewing a Knowledge Base article, send them to Microsoft Press via e-mail to
mspinput@microsoft.com,.

Please note that Microsoft software product support is not offered through these addresses.

We Want to Hear from You

We welcome your feedback about this book. Please share your comments and ideas via the
following short survey:

http.//www.microsoft.com/learning/booksurvey

Your participation will help Microsoft Press create books that better meet your needs and
standards.

Note We hope that you will give us detailed feedback via our survey. If you have questions
about our publishing program, upcoming titles, or Microsoft Press in general, we encourage you
to interact with us via Twitter at http.//twitter.com/MicrosoftPress. For support issues, use only the
e-mail address shown above.

mailto:mspinput@microsoft.com

Chapter 1

The CLR’s Execution Model

Compiling Source Code into Managed Modules. 1
Combining Managed Modules into Assemblies 5
Loading the Common Language Runtime, 6
Executing Your Assembly’'sCodeottt 9
The Native Code Generator Tool: NGen.exe. ..., 18
The Framework Class Library. i i i 20
The Common Type Systemottt i i 22
The Common Language Specification........... i i, 25
Interoperability with Unmanaged Code 29

The Microsoft .NET Framework introduces many new concepts, technologies, and terms. My
goal in this chapter is to give you an overview of how the .NET Framework is designed, intro-
duce you to some of the new technologies the framework includes, and define many of the
terms you'll be seeing when you start using it. I'll also take you through the process of build-
ing your source code into an application or a set of redistributable components (files) that
contain types (classes, structures, etc.) and then explain how your application will execute.

Compiling Source Code into Managed Modules

OK, so you've decided to use the .NET Framework as your development platform. Great! Your
first step is to determine what type of application or component you intend to build. Let’s
just assume that you've completed this minor detail; everything is designed, the specifica-
tions are written, and you're ready to start development.

Now you must decide which programming language to use. This task is usually difficult
because different languages offer different capabilities. For example, in unmanaged C/C++,
you have pretty low-level control of the system. You can manage memory exactly the way
you want to, create threads easily if you need to, and so on. Microsoft Visual Basic 6, on the
other hand, allows you to build Ul applications very rapidly and makes it easy for you to
control COM objects and databases.

The common language runtime (CLR) is just what its name says it is: a runtime that is usable by
different and varied programming languages. The core features of the CLR (such as memory

Part| CLR Basics

management, assembly loading, security, exception handling, and thread synchronization)
are available to any and all programming languages that target it—period. For example, the
runtime uses exceptions to report errors, so all languages that target the runtime also get
errors reported via exceptions. Another example is that the runtime also allows you to create
a thread, so any language that targets the runtime can create a thread.

In fact, at runtime, the CLR has no idea which programming language the developer used for
the source code. This means that you should choose whatever programming language allows
you to express your intentions most easily. You can develop your code in any programming
language you desire as long as the compiler you use to compile your code targets the CLR.

So, if what | say is true, what is the advantage of using one programming language over
another? Well, | think of compilers as syntax checkers and “correct code” analyzers. They
examine your source code, ensure that whatever you've written makes some sense, and then
output code that describes your intention. Different programming languages allow you to
develop using different syntax. Don't underestimate the value of this choice. For mathemati-
cal or financial applications, expressing your intentions by using APL syntax can save many
days of development time when compared to expressing the same intention by using Perl
syntax, for example.

Microsoft has created several language compilers that target the runtime: C++/CLI, C# (pro-
nounced “C sharp”), Visual Basic, F# (pronounced “F sharp”), Iron Python, Iron Ruby, and an
Intermediate Language (IL) Assembler. In addition to Microsoft, several other companies, col-
leges, and universities have created compilers that produce code to target the CLR. I'm aware
of compilers for Ada, APL, Caml, COBOL, Eiffel, Forth, Fortran, Haskell, Lexico, LISP, LOGO,
Lua, Mercury, ML, Mondrian, Oberon, Pascal, Perl, Php, Prolog, RPG, Scheme, Smalltalk, and
Tcl/Tk.

Figure 1-1 shows the process of compiling source code files. As the figure shows, you can cre-
ate source code files written in any programming language that supports the CLR. Then you
use the corresponding compiler to check the syntax and analyze the source code. Regardless
of which compiler you use, the result is a managed module. A managed module is a standard
32-bit Microsoft Windows portable executable (PE32) file or a standard 64-bit Windows
portable executable (PE32+) file that requires the CLR to execute. By the way, managed
assemblies always take advantage of Data Execution Prevention (DEP) and Address Space
Layout Randomization (ASLR) in Windows; these two features improve the security of your
whole system.

Chapter 1 The CLR's Execution Model

C# Basic IL
source code source code source code
file(s) file(s) file(s)
C# Basic IL
compiler compiler Assembler

Managed module
(IL and metadata)

Managed module
(IL and metadata)

Managed module
(IL and metadata)

FIGURE 1-1 Compiling source code into managed modules

Table 1-1 describes the parts of a managed module.

TABLE 1-1 Parts of a Managed Module

Part
PE32 or PE32+ header

CLR header

Metadata

IL code

Description

The standard Windows PE file header, which is similar to the Common
Object File Format (COFF) header. If the header uses the PE32 format,
the file can run on a 32-bit or 64-bit version of Windows. If the header
uses the PE32+ format, the file requires a 64-bit version of Windows
to run. This header also indicates the type of file: GUI, CUI, or DLL, and
contains a timestamp indicating when the file was built. For modules
that contain only IL code, the bulk of the information in the PE32(+)
header is ignored. For modules that contain native CPU code, this
header contains information about the native CPU code.

Contains the information (interpreted by the CLR and utilities) that
makes this a managed module. The header includes the version of the
CLR required, some flags, the MethodDef metadata token of the
managed module’s entry point method (Main method), and the
location/size of the module’s metadata, resources, strong name, some
flags, and other less interesting stuff.

Every managed module contains metadata tables. There are two main
types of tables: tables that describe the types and members defined
in your source code and tables that describe the types and members
referenced by your source code.

Code the compiler produced as it compiled the source code. At
runtime, the CLR compiles the IL into native CPU instructions.

Native code compilers produce code targeted to a specific CPU architecture, such as x86,
x64, or IA64. All CLR-compliant compilers produce IL code instead. (I'll go into more detail
about IL code later in this chapter.) IL code is sometimes referred to as managed code
because the CLR manages its execution.

3

Part| CLR Basics

In addition to emitting IL, every compiler targeting the CLR is required to emit full metadata
into every managed module. In brief, metadata is a set of data tables that describe what

is defined in the module, such as types and their members. In addition, metadata also has
tables indicating what the managed module references, such as imported types and their
members. Metadata is a superset of older technologies such as COM'’s Type Libraries and
Interface Definition Language (IDL) files. The important thing to note is that CLR metadata is
far more complete. And, unlike Type Libraries and IDL, metadata is always associated with the
file that contains the IL code. In fact, the metadata is always embedded in the same EXE/DLL
as the code, making it impossible to separate the two. Because the compiler produces the
metadata and the code at the same time and binds them into the resulting managed module,
the metadata and the IL code it describes are never out of sync with one another.

Metadata has many uses. Here are some of them:

B Metadata removes the need for native C/C++ header and library files when compiling
because all the information about the referenced types/members is contained in the
file that has the IL that implements the type/members. Compilers can read metadata
directly from managed modules.

B Microsoft Visual Studio uses metadata to help you write code. Its IntelliSense feature
parses metadata to tell you what methods, properties, events, and fields a type offers,
and in the case of a method, what parameters the method expects.

B The CLR's code verification process uses metadata to ensure that your code performs
only “type-safe” operations. (I'll discuss verification shortly.)

B Metadata allows an object’s fields to be serialized into a memory block, sent to another
machine, and then deserialized, re-creating the object’s state on the remote machine.

B Metadata allows the garbage collector to track the lifetime of objects. For any object,
the garbage collector can determine the type of the object and, from the metadata,
know which fields within that object refer to other objects.

In Chapter 2, “Building, Packaging, Deploying, and Administering Applications and Types,” I'll
describe metadata in much more detail.

Microsoft's C#, Visual Basic, F#, and the IL Assembler always produce modules that contain
managed code (IL) and managed data (garbage-collected data types). End users must have
the CLR (presently shipping as part of the .NET Framework) installed on their machine in
order to execute any modules that contain managed code and/or managed data in the same
way that they must have the Microsoft Foundation Class (MFC) library or Visual Basic DLLs
installed to run MFC or Visual Basic 6 applications.

By default, Microsoft's C++ compiler builds EXE/DLL modules that contain unmanaged
(native) code and manipulate unmanaged data (native memory) at runtime. These modules
don't require the CLR to execute. However, by specifying the /CLR command-line switch, the
C++ compiler produces modules that contain managed code, and of course, the CLR must

Chapter 1 The CLR’s Execution Model 5

then be installed to execute this code. Of all of the Microsoft compilers mentioned, C++ is
unique in that it is the only compiler that allows the developer to write both managed and
unmanaged code and have it emitted into a single module. It is also the only Microsoft
compiler that allows developers to define both managed and unmanaged data types in their
source code. The flexibility provided by Microsoft's C++ compiler is unparalleled by other
compilers because it allows developers to use their existing native C/C++ code from man-
aged code and to start integrating the use of managed types as they see fit.

Combining Managed Modules into Assembilies

The CLR doesn't actually work with modules, it works with assemblies. An assembly is an
abstract concept that can be difficult to grasp initially. First, an assembly is a logical grouping
of one or more modules or resource files. Second, an assembly is the smallest unit of reuse,
security, and versioning. Depending on the choices you make with your compilers or tools,
you can produce a single-file or a multifile assembly. In the CLR world, an assembly is what
we would call a component.

In Chapter 2, I'll go over assemblies in great detail, so | don’t want to spend a lot of time on
them here. All | want to do now is make you aware that there is this extra conceptual notion
that offers a way to treat a group of files as a single entity.

Figure 1-2 should help explain what assemblies are about. In this figure, some managed
modules and resource (or data) files are being processed by a tool. This tool produces a single
PE32(+) file that represents the logical grouping of files. What happens is that this PE32(+) file
contains a block of data called the manifest. The manifest is simply another set of metadata
tables. These tables describe the files that make up the assembly, the publicly exported types
implemented by the files in the assembly, and the resource or data files that are associated
with the assembly.

Managed module Assembly
(IL and metadata) n) I .
Tool combining multiple (Manifest: describes the
managed modules and set of files in the assembly)
Managed module resource files into
(IL and metadata) an assembly Managed module
(IL and metadata)
C# compiler Mana
I ged module
(CSCeexe), (IL and metadata)
- Visual Basic compiler Feseunae ke
~ Resource file (VBC.exe), (st i S e
(Jpeg, .gif, .html, etc.) A bl Link JP€g. .git, - A
SEElelgy ISy Resource file
(AL.exe) (jpeg, .gif, .html, etc.)

Resource file
(jpeg, .gif, .html, etc.)

FIGURE 1-2 Combining managed modules into assemblies

6 Part | CLR Basics

By default, compilers actually do the work of turning the emitted managed module into an
assembly; that is, the C# compiler emits a managed module that contains a manifest. The
manifest indicates that the assembly consists of just the one file. So, for projects that have
just one managed module and no resource (or data) files, the assembly will be the managed
module, and you don't have any additional steps to perform during your build process. If you
want to group a set of files into an assembly, you'll have to be aware of more tools (such as
the assembly linker, AL.exe) and their command-line options. I'll explain these tools and
options in Chapter 2.

An assembly allows you to decouple the logical and physical notions of a reusable, securable,
versionable component. How you partition your code and resources into different files is
completely up to you. For example, you could put rarely used types or resources in separate
files that are part of an assembly. The separate files could be downloaded on demand from
the Web as they are needed at runtime. If the files are never needed, they're never down-
loaded, saving disk space and reducing installation time. Assemblies allow you to break up
the deployment of the files while still treating all of the files as a single collection.

An assembly’s modules also include information about referenced assemblies (including their
version numbers). This information makes an assembly self-describing. In other words, the CLR
can determine the assembly’s immediate dependencies in order for code in the assembly to
execute. No additional information is required in the registry or in Active Directory Domain
Services (AD DS). Because no additional information is needed, deploying assemblies is much
easier than deploying unmanaged components.

Loading the Common Language Runtime

Each assembly you build can be either an executable application or a DLL containing a set
of types for use by an executable application. Of course, the CLR is responsible for man-
aging the execution of code contained within these assemblies. This means that the .NET
Framework must be installed on the host machine. Microsoft has created a redistribution
package that you can freely ship to install the .NET Framework on your customers’ machines.
Some versions of Windows ship with the .NET Framework already installed.

You can tell if the .NET Framework has been installed by looking for the MSCorEE.dII file

in the %SystemRoot%\System32 directory. The existence of this file tells you that the .NET
Framework is installed. However, several versions of the .NET Framework can be installed on
a single machine simultaneously. If you want to determine exactly which versions of the .NET
Framework are installed, examine the subkeys under the following registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\NET Framework Setup\NDP

The .NET Framework SDK includes a command-line utility called CLRVer.exe that shows all of
the CLR versions installed on a machine. This utility can also show which version of the CLR is

Chapter 1 The CLR’s Execution Model 7

being used by processes currently running on the machine by using the —all switch or passing
the ID of the process you are interested in.

Before we start looking at how the CLR loads, we need to spend a moment discussing 32-bit
and 64-bit versions of Windows. If your assembly files contain only type-safe managed code,
you are writing code that should work on both 32-bit and 64-bit versions of Windows. No
source code changes are required for your code to run on either version of Windows. In fact,
the resulting EXE/DLL file produced by the compiler will run on 32-bit Windows as well as the
x64 and |A64 versions of 64-bit Windows! In other words, the one file will run on any machine
that has a version of the .NET Framework installed on it.

On extremely rare occasions, developers want to write code that works only on a specific ver-
sion of Windows. Developers might do this when using unsafe code or when interoperating
with unmanaged code that is targeted to a specific CPU architecture. To aid these developers,
the C# compiler offers a /platform command-line switch. This switch allows you to specify
whether the resulting assembly can run on x86 machines running 32-bit Windows versions
only, x64 machines running 64-bit Windows only, or Intel Itanium machines running 64-bit
Windows only. If you don't specify a platform, the default is anycpu, which indicates that

the resulting assembly can run on any version of Windows. Users of Visual Studio can set a
project’s target platform by displaying the project’s property pages, clicking the Build tab,
and then selecting an option in the Platform Target list (see Figure 1-3).

58 CLR via C# - Microsoft Visual Studio =]
File Ecit View Project Build Debug Team Data Tools Architecture Test Analyze Window Help
TORERE LR T |
Chol-1-SomeLibrary® X - &
pr
2
g
Application g
Canfiguration: |Active (Debug) v| Platfarm: [Active (Any CPU) - =
Build* =
g
3
Build Events Genera =
Debug Conditional compilation symbals:

Define DEBUG canstant
Resources
Define TRACE constant

Services
Platform target: Any CPU -
Setti
% [Allow unsafe code ﬂ e
Reference Paths [E] Optimie cade 64
Ttanium

Signing Errars and warnings

n

Code Analysis Warning level;

Code Contracts Suppress warnings:

Treat warnings as ertors

I
]

@ Mlans

<

Ready

FIGURE 1-3 Setting the platform target by using Visual Studio

Depending on the platform switch, the C# compiler will emit an assembly that contains either
a PE32 or PE32+ header, and the compiler will also emit the desired CPU architecture (or

Part| CLR Basics

agnostic) into the header as well. Microsoft ships two SDK command-line utilities, DumpBin.
exe and CorFlags.exe, that you can use to examine the header information emitted in a
managed module by the compiler.

When running an executable file, Windows examines this EXE file's header to determine
whether the application requires a 32-bit or 64-bit address space. A file with a PE32 header
can run with a 32-bit or 64-bit address space, and a file with a PE32+ header requires a 64-bit
address space. Windows also checks the CPU architecture information embedded inside the
header to ensure that it matches the CPU type in the computer. Lastly, 64-bit versions of
Windows offer a technology that allows 32-bit Windows applications to run. This technology
is called WoW64 (for Windows on Windows64). This technology even allows 32-bit applica-
tions with x86 native code in them to run on an Itanium machine, because the WoW64 tech-
nology can emulate the x86 instruction set; albeit with a significant performance cost.

Table 1-2 shows two things. First, it shows what kind of managed module you get when you
specify various /platform command-line switches to the C# compiler. Second, it shows how
that application will run on various versions of Windows.

TABLE 1-2 Effects of /platform on Resulting Module and at Runtime

/platform Resulting

Switch Managed Module x86 Windows x64 Windows 1A64 Windows

anycpu PE32/agnostic Runs as a 32-bit Runs as a 64-bit Runs as a 64-bit

(the default) application application application

x86 PE32/x86 Runs as a 32-bit Runs as a WoW64 Runs as a WoW64
application application application

x64 PE32+/x64 Doesn't run Runs as a 64-bit Doesn't run

application
Itanium PE32+/Itanium Doesn't run Doesn't run Runs as a 64-bit
application

After Windows has examined the EXE file's header to determine whether to create a 32-bit
process, a 64-bit process, or a WoW64 process, Windows loads the x86, x64, or |A64 version of
MSCorEE.dll into the process's address space. On an x86 version of Windows, the x86 version
of MSCorEE.dll can be found in the C:\Windows\System32 directory. On an x64 or 1A64 ver-
sion of Windows, the x86 version of MSCorEE.dIl can be found in the C:\Windows\SysWow64
directory, whereas the 64-bit version (x64 or 1A64) can be found in the C:\Windows\System32
directory (for backward compatibility reasons). Then, the process's primary thread calls a
method defined inside MSCorEE.dll. This method initializes the CLR, loads the EXE assembly,
and then calls its entry point method (Main). At this point, the managed application is up and
running.l

1 Your code can query Environment's Is64BitOperatingSystem property to determine if it is running on a
64-bit version of Windows. Your code can also query Environment’'s Is64B1itProcess property to determine if
it is running in a 64-bit address space.

Chapter 1 The CLR’s Execution Model 9

Note Assemblies built by using version 1.0 or 1.1 of Microsoft’s C# compiler contain a PE32
header and are CPU-architecture agnostic. However, at load time, the CLR considers these
assemblies to be x86 only. For executable files, this improves the likelihood of the application
actually working on a 64-bit system because the executable file will load in WoW64, giving the
process an environment very similar to what it would have on a 32-bit x86 version of Windows.

If an unmanaged application calls LoadLibrary to load a managed assembly, Windows
knows to load and initialize the CLR (if not already loaded) in order to process the code con-
tained within the assembly. Of course, in this scenario, the process is already up and running,
and this may limit the usability of the assembly. For example, a managed assembly compiled
with the /platform:x86 switch will not be able to load into a 64-bit process at all, whereas
an executable file compiled with this same switch would have loaded in WoW64 on a com-
puter running a 64-bit version of Windows.

Executing Your Assembly’s Code

As mentioned earlier, managed assemblies contain both metadata and IL. IL is a CPU-
independent machine language created by Microsoft after consultation with several external
commercial and academic language/compiler writers. IL is a much higher-level language than
most CPU machine languages. IL can access and manipulate object types and has instructions
to create and initialize objects, call virtual methods on objects, and manipulate array elements
directly. It even has instructions to throw and catch exceptions for error handling. You can
think of IL as an object-oriented machine language.

Usually, developers will program in a high-level language, such as C#, C++/CLI, or Visual
Basic. The compilers for these high-level languages produce IL. However, as any other
machine language, IL can be written in assembly language, and Microsoft does provide an IL
Assembler, ILAsm.exe. Microsoft also provides an IL Disassembler, ILDasm.exe.

Keep in mind that any high-level language will most likely expose only a subset of the facili-
ties offered by the CLR. However, the IL assembly language allows a developer to access all
of the CLR’s facilities. So, should your programming language of choice hide a facility the CLR
offers that you really want to take advantage of, you can choose to write that portion of your
code in IL assembly or perhaps another programming language that exposes the CLR feature
you seek.

The only way for you to know what facilities the CLR offers is to read documentation specific to
the CLR itself. In this book, | try to concentrate on CLR features and how they are exposed or
not exposed by the C# language. | suspect that most other books and articles will present the
CLR via a language perspective, and that most developers will come to believe that the CLR
offers only what the developer’s chosen language exposes. As long as your language allows
you to accomplish what you're trying to get done, this blurred perspective isn't a bad thing.

10

WV

Part| CLR Basics

Important | think this ability to switch programming languages easily with rich integration
between languages is an awesome feature of the CLR. Unfortunately, | also believe that develop-
ers will often overlook this feature. Programming languages such as C# and Visual Basic are
excellent languages for performing 1/0 operations. APL is a great language for performing
advanced engineering or financial calculations. Through the CLR, you can write the 1/0 portions
of your application in C# and then write the engineering calculations part in APL. The CLR offers
a level of integration between these languages that is unprecedented and really makes mixed-
language programming worthy of consideration for many development projects.

To execute a method, its IL must first be converted to native CPU instructions. This is the job
of the CLR's JIT (just-in-time) compiler.

Figure 1-4 shows what happens the first time a method is called.

Console

static void writeLine()

Managed EXE

| JITCompiler |

static void Main() {
s . " ” -
console.writeLine(“Hell0”) ;@ N

console.writeLi ne(“Goodbye“)‘;
static void writeLine(string)
>| JITCompiler |
Native CPU
J instructions
(remaining members) A

MSCorEE.dlI

JITCompiler function {

1. In the assembly that implements the type
(console), look up the method (writeLine)
being called in the metadata.

2. From the metadata, get the IL for this method.

3. Allocate a block of memory.

4. Compile the IL into native CPU instructions;
the native code is saved in the memory
allocated in step 3.

5. Modify the method's entry in the Type's table so
that it now points to the memory block allocated
in step 3.

6. Jump to the native code contained inside the
memory block.

FIGURE 1-4 Calling a method for the first time

Chapter 1 The CLR’s Execution Model 11

Just before the Main method executes, the CLR detects all of the types that are referenced
by Main’s code. This causes the CLR to allocate an internal data structure that is used to man-
age access to the referenced types. In Figure 1-4, the Main method refers to a single type,
Console, causing the CLR to allocate a single internal structure. This internal data structure
contains an entry for each method defined by the Console type. Each entry holds the ad-
dress where the method'’s implementation can be found. When initializing this structure, the
CLR sets each entry to an internal, undocumented function contained inside the CLR itself. |
call this function JITCompiler.

When Main makes its first call to WriteLine, the JITCompiler function is called. The
JITCompiler function is responsible for compiling a method’s IL code into native CPU
instructions. Because the IL is being compiled “just in time,” this component of the CLR is
frequently referred to as a JITter or a JIT compiler.

Note If the application is running on an x86 version of Windows or in WoW64, the JIT compiler
produces x86 instructions. If your application is running as a 64-bit application on an x64 or
[tanium version of Windows, the JIT compiler produces x64 or IA64 instructions, respectively.

When called, the JITCompiler function knows what method is being called and what type
defines this method. The JITCompiler function then searches the defining assembly’s
metadata for the called method’s IL. JITCompiler next verifies and compiles the IL code
into native CPU instructions. The native CPU instructions are saved in a dynamically allocated
block of memory. Then, JITCompiler goes back to the entry for the called method in the
type’s internal data structure created by the CLR and replaces the reference that called it in
the first place with the address of the block of memory containing the native CPU instructions
it just compiled. Finally, the JITCompiler function jumps to the code in the memory block.
This code is the implementation of the WriteLine method (the version that takes a String
parameter). When this code returns, it returns to the code in Main, which continues execution
as normal.

Main now calls WriteLine a second time. This time, the code for WriteLine has already
been verified and compiled. So the call goes directly to the block of memory, skipping the
JITCompiler function entirely. After the WriteLine method executes, it returns to Main.
Figure 1-5 shows what the process looks like when WriteLine is called the second time.

12

Part| CLR Basics

Console

Managed EXE static void writeLine()

. . . | JITCompiler |
static void Main(Q) {

console.writeLine(“Hel10”);
console.writeLine(“Goodbye”) ;s

static void writeLine(string) |
>| Native |

=

Native CPU
instructions

(remaining members) \T

MSCorEE.dlI

JiTCompiler function {

1. In the assemb

. Jump to th

memory block™

FIGURE 1-5 Calling a method for the second time

A performance hit is incurred only the first time a method is called. All subsequent calls to
the method execute at the full speed of the native code because verification and compilation
to native code don't need to be performed again.

The JIT compiler stores the native CPU instructions in dynamic memory. This means that the
compiled code is discarded when the application terminates. So if you run the application
again in the future or if you run two instances of the application simultaneously (in two
different operating system processes), the JIT compiler will have to compile the IL to native
instructions again.

For most applications, the performance hit incurred by JIT compiling isn't significant. Most
applications tend to call the same methods over and over again. These methods will take the
performance hit only once while the application executes. It's also likely that more time is
spent inside the method than calling the method.

Chapter 1 The CLR’s Execution Model 13

You should also be aware that the CLR's JIT compiler optimizes the native code just as the
back end of an unmanaged C++ compiler does. Again, it may take more time to produce the
optimized code, but the code will execute with much better performance than if it hadn't
been optimized.

There are two C# compiler switches that impact code optimization: /optimize and /debug.
The following table shows the impact these switches have on the quality of the IL code gen-
erated by the C# compiler and the quality of the native code generated by the JIT compiler:

Compiler Switch Settings C# IL Code Quality JIT Native Code Quality
/optimize- /debug- Unoptimized Optimized

(this is the default)

/optimize- /debug(+/full/pdbonly) Unoptimized Unoptimized
/optimize+ /debug(-/+/full/pdbonly) Optimized Optimized

With /optimize-, the unoptimized IL code produced by the C# compiler contains many
no-operation (NOP) instructions and also branches that jump to the next line of code. These
instructions are emitted to enable the edit-and-continue feature of Visual Studio while de-
bugging and the extra instructions also make code easier to debug by allowing breakpoints
to be set on control flow instructions such as for, while, do, if, else, try, catch, and finally
statement blocks. When producing optimized IL code, the C# compiler will remove these
extraneous NOP and branch instructions, making the code harder to single-step through in
a debugger as control flow will be optimized. Also, some function evaluations may not work
when performed inside the debugger. However, the IL code is smaller, making the resulting
EXE/DLL file smaller, and the IL tends to be easier to read for those of you (like me) who
enjoy examining the IL to understand what the compiler is producing.

Furthermore, the compiler produces a Program Database (PDB) file only if you specify the
/debug(+/full/pdbonly) switch. The PDB file helps the debugger find local variables and
map the IL instructions to source code. The /debug: full switch tells the JIT compiler that
you intend to debug the assembly, and the JIT compiler will track what native code came
from each IL instruction. This allows you to use the just-in-time debugger feature of Visual
Studio to connect a debugger to an already-running process and debug the code easily.
Without the /debug: full switch, the JIT compiler does not, by default, track the IL to
native code information which makes the JIT compiler run a little faster and also uses a little
less memory. If you start a process with the Visual Studio debugger, it forces the JIT compiler
to track the IL to native code information (regardless of the /debug switch) unless you turn
off the Suppress JIT Optimization On Module Load (Managed Only) option in Visual Studio.

When you create a new C# project in Visual Studio, the Debug configuration of the project
has /optimize- and /debug: full switches, and the Release configuration has /optimize+
and /debug:pdbonly switches specified.

14

Part| CLR Basics

For those developers coming from an unmanaged C or C++ background, you're probably
thinking about the performance ramifications of all this. After all, unmanaged code is com-
piled for a specific CPU platform, and, when invoked, the code can simply execute. In this
managed environment, compiling the code is accomplished in two phases. First, the compiler
passes over the source code, doing as much work as possible in producing IL. But to execute
the code, the IL itself must be compiled into native CPU instructions at runtime, requiring
more memory to be allocated and requiring additional CPU time to do the work.

Believe me, since | approached the CLR from a C/C++ background myself, | was quite skepti-
cal and concerned about this additional overhead. The truth is that this second compilation
stage that occurs at runtime does hurt performance, and it does allocate dynamic memory.
However, Microsoft has done a lot of performance work to keep this additional overhead to a
minimum.

If you too are skeptical, you should certainly build some applications and test the performance
for yourself. In addition, you should run some nontrivial managed applications Microsoft

or others have produced, and measure their performance. | think you'll be surprised at how
good the performance actually is.

You'll probably find this hard to believe, but many people (including me) think that managed
applications could actually outperform unmanaged applications. There are many reasons

to believe this. For example, when the JIT compiler compiles the IL code into native code at
runtime, the compiler knows more about the execution environment than an unmanaged
compiler would know. Here are some ways that managed code can outperform unmanaged
code:

B AJIT compiler can determine if the application is running on an Intel Pentium 4 CPU
and produce native code that takes advantage of any special instructions offered by
the Pentium 4. Usually, unmanaged applications are compiled for the lowest-common-
denominator CPU and avoid using special instructions that would give the application a
performance boost.

B AJIT compiler can determine when a certain test is always false on the machine that it
is running on. For example, consider a method that contains the following code:

if (numberOfCPUs > 1) {

}

This code could cause the JIT compiler to not generate any CPU instructions if the host
machine has only one CPU. In this case, the native code would be fine-tuned for the
host machine; the resulting code is smaller and executes faster.

B The CLR could profile the code’s execution and recompile the IL into native code while
the application runs. The recompiled code could be reorganized to reduce incorrect
branch predictions depending on the observed execution patterns. Current versions of
the CLR do not do this, but future versions might.

Chapter 1 The CLR’s Execution Model 15

These are only a few of the reasons why you should expect future managed code to execute
better than today’s unmanaged code. As | said, the performance is currently quite good for
most applications, and it promises to improve as time goes on.

If your experiments show that the CLR’s JIT compiler doesn't offer your application the kind
of performance it requires, you may want to take advantage of the NGen.exe tool that ships
with the .NET Framework SDK. This tool compiles all of an assembly’s IL code into native code
and saves the resulting native code to a file on disk. At runtime, when an assembly is loaded,
the CLR automatically checks to see whether a precompiled version of the assembly also ex-
ists, and if it does, the CLR loads the precompiled code so that no compilation is required at
runtime. Note that NGen.exe must be conservative about the assumptions it makes regard-
ing the actual execution environment, and for this reason, the code produced by NGen.exe
will not be as highly optimized as the JIT compiler-produced code. I'll discuss NGen.exe in
more detail later in this chapter.

IL and Verification

IL is stack-based, which means that all of its instructions push operands onto an execution
stack and pop results off the stack. Because IL offers no instructions to manipulate registers,
it is easy for people to create new languages and compilers that produce code targeting the
CLR.

IL instructions are also typeless. For example, IL offers an add instruction that adds the last
two operands pushed on the stack. There are no separate 32-bit and 64-bit versions of the
add instruction. When the add instruction executes, it determines the types of the operands
on the stack and performs the appropriate operation.

In my opinion, the biggest benefit of IL isn’t that it abstracts away the underlying CPU. The
biggest benefit IL provides is application robustness and security. While compiling IL into
native CPU instructions, the CLR performs a process called verification. Verification examines
the high-level IL code and ensures that everything the code does is safe. For example, verifi-
cation checks that every method is called with the correct number of parameters, that each
parameter passed to every method is of the correct type, that every method's return value is
used properly, that every method has a return statement, and so on. The managed module's
metadata includes all of the method and type information used by the verification process.

In Windows, each process has its own virtual address space. Separate address spaces are nec-
essary because you can't trust an application’s code. It is entirely possible (and unfortunately,
all too common) that an application will read from or write to an invalid memory address. By
placing each Windows process in a separate address space, you gain robustness and stability;
one process can't adversely affect another process.

By verifying the managed code, however, you know that the code doesn't improperly access
memory and can't adversely affect another application’s code. This means that you can run
multiple managed applications in a single Windows virtual address space.

16

Part| CLR Basics

Because Windows processes require a lot of operating system resources, having many of
them can hurt performance and limit available resources. Reducing the number of processes
by running multiple applications in a single OS process can improve performance, require
fewer resources, and be just as robust as if each application had its own process. This is
another benefit of managed code as compared to unmanaged code.

The CLR does, in fact, offer the ability to execute multiple managed applications in a single
OS process. Each managed application executes in an AppDomain. By default, every managed
EXE file will run in its own separate address space that has just the one AppDomain. However,
a process hosting the CLR (such as Internet Information Services [lIS] or Microsoft SQL Server)
can decide to run AppDomains in a single OS process. I'll devote part of Chapter 22, “CLR
Hosting and AppDomains,” to a discussion of AppDomains.

Unsafe Code

By default, Microsoft's C# compiler produces safe code. Safe code is code that is verifiably
safe. However, Microsoft's C# compiler allows developers to write unsafe code. Unsafe code
is allowed to work directly with memory addresses and can manipulate bytes at these
addresses. This is a very powerful feature and is typically useful when interoperating with
unmanaged code or when you want to improve the performance of a time-critical algorithm.

However, using unsafe code introduces a significant risk: unsafe code can corrupt data struc-
tures and exploit or even open up security vulnerabilities. For this reason, the C# compiler
requires that all methods that contain unsafe code be marked with the unsafe keyword. In
addition, the C# compiler requires you to compile the source code by using the /unsafe
compiler switch.

When the JIT compiler attempts to compile an unsafe method, it checks to see if the assem-
bly containing the method has been granted the System.Security.Permissions.Security
Permission with the System.Security.Permissions.SecurityPermissionFlag's
SkipVerification flag set. If this flag is set, the JIT compiler will compile the unsafe code
and allow it to execute. The CLR is trusting this code and is hoping the direct address and
byte manipulations do not cause any harm. If the flag is not set, the JIT compiler throws
either a System.InvalidProgramException or a System.Security.VerificationException,
preventing the method from executing. In fact, the whole application will probably terminate
at this point, but at least no harm can be done.

Note By default, assemblies that load from the local machine or via network shares are granted
full trust, meaning that they can do anything, which includes executing unsafe code. However, by
default, assemblies executed via the Internet are not granted the permission to execute unsafe
code. If they contain unsafe code, one of the aforementioned exceptions is thrown. An adminis-
trator/end user can change these defaults; however, the administrator is taking full responsibility
for the code’s behavior.

Chapter 1 The CLR’s Execution Model 17

Microsoft supplies a utility called PEVerify.exe, which examines all of an assembly’s methods
and notifies you of any methods that contain unsafe code. You may want to consider running
PEVerify.exe on assemblies that you are referencing; this will let you know if there may be
problems running your application via the intranet or Internet.

You should be aware that verification requires access to the metadata contained in any
dependent assemblies. So when you use PEVerify to check an assembly, it must be able
to locate and load all referenced assemblies. Because PEVerify uses the CLR to locate the
dependent assemblies, the assemblies are located using the same binding and probing
rules that would normally be used when executing the assembly. I'll discuss these binding
and probing rules in Chapter 2 and Chapter 3, “Shared Assemblies and Strongly Named
Assemblies.”

IL and Protecting Your Intellectual Property

Some people are concerned that IL doesn't offer enough intellectual property protec-
tion for their algorithms. In other words, they think that you could build a managed
module and that someone else could use a tool, such as an IL Disassembler, to easily
reverse engineer exactly what your application’s code does.

Yes, it's true that IL code is higher-level than most other assembly languages, and, in
general, reverse engineering IL code is relatively simple. However, when implementing
server-side code (such as a Web service, Web form, or stored procedure), your assem-
bly resides on your server. Because no one outside of your company can access the
assembly, no one outside of your company can use any tool to see the IL—your
intellectual property is completely safe.

If you're concerned about any of the assemblies you do distribute, you can obtain an
obfuscator utility from a third-party vendor. These utilities scramble the names of all of
the private symbols in your assembly’s metadata. It will be difficult for someone to un-
scramble the names and understand the purpose of each method. Note that these
obfuscators can provide only a little protection because the IL must be available at
some point for the CLR to JIT compile it.

If you don't feel that an obfuscator offers the kind of intellectual property protection
you desire, you can consider implementing your more sensitive algorithms in some un-
managed module that will contain native CPU instructions instead of IL and metadata.
Then you can use the CLR's interoperability features (assuming that you have ample
permissions) to communicate between the managed and unmanaged portions of your
application. Of course, this assumes that you're not worried about people reverse
engineering the native CPU instructions in your unmanaged code.

18 Part | CLR Basics

The Native Code Generator Tool: NGen.exe

The NGen.exe tool that ships with the .NET Framework can be used to compile IL code to
native code when an application is installed on a user's machine. Since the code is compiled
at install time, the CLR's JIT compiler does not have to compile the IL code at runtime, and
this can improve the application’s performance. The NGen.exe tool is interesting in two
scenarios:

B Improving an application’s startup time Running NGen.exe can improve startup time
because the code will already be compiled into native code so that compilation doesn’t
have to occur at runtime.

B Reducing an application’s working set If you believe that an assembly will be loaded
into multiple processes simultaneously, running NGen.exe on that assembly can reduce
the applications’ working set. The reason is because the NGen.exe tool compiles the IL
to native code and saves the output in a separate file. This file can be memory-mapped
into multiple-process address spaces simultaneously, allowing the code to be shared;
not every process needs its own copy of the code.

When a setup program invokes NGen.exe on an application or a single assembly, all of the
assemblies for that application or the one specified assembly have their IL code compiled
into native code. A new assembly file containing only this native code instead of IL code is
created by NGen.exe. This new file is placed in a folder under the directory with a name like
C:\Windows\Assembly\Nativelmages_v4.0 ##### _64. The directory name includes the
version of the CLR and information denoting whether the native code is compiled for x86
(32-bit version of Windows), x64, or Itanium (the latter two for 64-bit versions of Windows).

Now, whenever the CLR loads an assembly file, the CLR looks to see if a corresponding
NGen'd native file exists. If a native file cannot be found, the CLR JIT compiles the IL code as
usual. However, if a corresponding native file does exist, the CLR will use the compiled code
contained in the native file, and the file's methods will not have to be compiled at runtime.

On the surface, this sounds great! It sounds as if you get all of the benefits of managed code
(garbage collection, verification, type safety, and so on) without all of the performance prob-
lems of managed code (JIT compilation). However, the reality of the situation is not as rosy as
it would first seem. There are several potential problems with respect to NGen'd files:

B No intellectual property protection Many people believe that it might be possible
to ship NGen'd files without shipping the files containing the original IL code, thereby
keeping their intellectual property a secret. Unfortunately, this is not possible. At
runtime, the CLR requires access to the assembly’s metadata (for functions such as
reflection and serialization); this requires that the assemblies that contain IL and
metadata be shipped. In addition, if the CLR can't use the NGen'd file for some reason
(described below), the CLR gracefully goes back to JIT compiling the assembly’s IL code,
which must be available.

Chapter 1 The CLR’s Execution Model 19

B NGen'd files can get out of sync When the CLR loads an NGen'd file, it compares a
number of characteristics about the previously compiled code and the current execu-
tion environment. If any of the characteristics don't match, the NGen'd file cannot be
used, and the normal JIT compiler process is used instead. Here is a partial list of char-
acteristics that must match:

0 CLR version: this changes with patches or service packs

o CPU type: this changes if you upgrade your processor hardware

0 Windows OS version: this changes with a new service pack update

0 Assembly’s identity module version ID (MVID): this changes when recompiling

0 Referenced assembly’s version IDs: this changes when you recompile a referenced
assembly

Q Security: this changes when you revoke permissions (such as declarative inheri-
tance, declarative link-time, SkipVerification, or UnmanagedCode permissions),
that were once granted

Note that it is possible to run NGen.exe in update mode. This tells the tool to run
NGen.exe on all of the assemblies that had previously been NGen'd. Whenever an end
user installs a new service pack of the .NET Framework, the service pack’s installation
program will run NGen.exe in update mode automatically so that NGen'd files are kept
in sync with the version of the CLR installed.

B Inferior execution-time performance When compiling code, NGen can't make as
many assumptions about the execution environment as the JIT compiler can. This
causes NGen.exe to produce inferior code. For example, NGen won't optimize the
use of certain CPU instructions; it adds indirections for static field access because the
actual address of the static fields isn't known until runtime. NGen inserts code to call
class constructors everywhere because it doesn’t know the order in which the code will
execute and if a class constructor has already been called. (See Chapter 8, “Methods,”
for more about class constructors.) Some NGen'd applications actually perform about
5 percent slower when compared to their JIT-compiled counterpart. So, if you're con-
sidering using NGen.exe to improve the performance of your application, you should
compare NGen'd and non-NGen'd versions to be sure that the NGen'd version doesn’t
actually run slower! For some applications, the reduction in working set size improves
performance, so using NGen can be a net win.

Due to all of the issues just listed, you should be very cautious when considering the use of
NGen.exe. For server-side applications, NGen.exe makes little or no sense because only the
first client request experiences a performance hit; future client requests run at high speed. In
addition, for most server applications, only one instance of the code is required, so there is
no working set benefit. Also, note that NGen'd images cannot be shared across AppDomains,
so there is no benefit to NGen'ing an assembly that will be used in a cross-AppDomain sce-
nario (such as ASP.NET).

20 Part | CLR Basics

For client applications, NGen.exe might make sense to improve startup time or to reduce
working set if an assembly is used by multiple applications simultaneously. Even in a case in
which an assembly is not used by multiple applications, NGen'ing an assembly could improve
working set. Moreover, if NGen.exe is used for all of a client application’s assemblies, the CLR
will not need to load the JIT compiler at all, reducing working set even further. Of course, if
just one assembly isn't NGen'd or if an assembly’s NGen'd file can't be used, the JIT compiler
will load, and the application’s working set increases.

The Framework Class Library

The .NET Framework includes the Framework Class Library (FCL). The FCL is a set of DLL as-
semblies that contain several thousand type definitions in which each type exposes some
functionality. Microsoft is producing additional libraries such as the Windows SideShow
Managed API SDK? and the DirectX SDK. These additional libraries provide even more types,
exposing even more functionality for your use. In fact, Microsoft is producing many libraries
at a phenomenal rate, making it easier than ever for developers to use various Microsoft
technologies.

Here are just some of the kinds of applications developers can create by using these
assemblies:

B Web services Methods that can process messages sent over the Internet very eas-
ily using Microsoft's ASP.NET XML Web Service technology or Microsoft's Windows
Communication Foundation (WCF) technology.

B Web Forms HTML-based applications (Web sites) Typically, ASP.NET Web Forms
applications will make database queries and Web service calls, combine and filter the
returned information, and then present that information in a browser by using a rich
HTML-based user interface.

B Rich Windows GUI applications Instead of using a Web Forms page to create your
application’s Ul, you can use the more powerful, higher-performance functionality of-
fered by the Windows desktop via Microsoft's Windows Forms technology or Windows
Presentation Foundation (WPF) technology. GUI applications can take advantage of
controls, menus, and mouse and keyboard events, and they can exchange information
directly with the underlying operating system. Windows Forms applications can also
make database queries and consume Web services.

B Rich Internet Applications (RIAs) Using Microsoft’s Silverlight technology, you can
build rich GUI applications that are deployed via the Internet. These applications can
run inside or outside of a Web browser. They also run on non-Windows operating sys-
tems, and on mobile devices.

2 |ncidentally, | personally was contracted by Microsoft to develop this SDK.

Chapter 1 The CLR’s Execution Model 21

B Windows console applications For applications with very simple Ul demands, a
console application provides a quick and easy way to build an application. Compilers,
utilities, and tools are typically implemented as console applications.

B Windows services Yes, it is possible to build service applications that are controllable
via the Windows Service Control Manager (SCM) by using the .NET Framework.

B Database stored procedures Microsoft’s SQL Server, IBM's DB2, and Oracle's
database servers allow developers to write their stored procedures using the .NET
Framework.

B Component library The .NET Framework allows you to build stand-alone assemblies
(components) containing types that can be easily incorporated into any of the previ-
ously mentioned application types.

Because the FCL contains literally thousands of types, a set of related types is presented to
the developer within a single namespace. For example, the System namespace (which you
should become most familiar with) contains the Object base type, from which all other types
ultimately derive. In addition, the System namespace contains types for integers, characters,
strings, exception handling, and console I/0 as well as a bunch of utility types that convert
safely between data types, format data types, generate random numbers, and perform vari-
ous math functions. All applications will use types from the System namespace.

To access any of the framework’s features, you need to know which namespace contains the
types that expose the facilities you're after. A lot of types allow you to customize their
behavior; you do so by simply deriving your own type from the desired FCL type. The
object-oriented nature of the platform is how the .NET Framework presents a consistent
programming paradigm to software developers. Also, developers can easily create their own
namespaces containing their own types. These namespaces and types merge seamlessly into
the programming paradigm. Compared to Win32 programming paradigms, this new
approach greatly simplifies software development.

Most of the namespaces in the FCL present types that can be used for any kind of applica-
tion. Table 1-3 lists some of the more general namespaces and briefly describes what the
types in that namespace are used for. This is a very small sampling of the namespaces avail-
able. Please see the documentation that accompanies the various Microsoft SDKs to gain
familiarity with the ever-growing set of namespaces that Microsoft is producing.

TABLE 1-3 Some General FCL Namespaces

Namespace Description of Contents

System All of the basic types used by every application

System.Data Types for communicating with a database and process-
ing data

System.IO Types for doing stream I/O and walking directories and

files

22

The Common Type System

Part| CLR Basics

Namespace
System.Net

System.Runtime.InteropServices

System.Security

System.Text

System.Threading

System.Xml

Description of Contents

Types that allow for low-level network communications
and working with some common Internet protocols.

Types that allow managed code to access unmanaged
OS platform facilities such as COM components and
functions in Win32 or custom DLLs

Types used for protecting data and resources

Types to work with text in different encodings, such as
ASCIl and Unicode

Types used for asynchronous operations and synchroniz-
ing access to resources

Types used for processing Extensible Markup Language
(XML) schemas and data

This book is about the CLR and about the general types that interact closely with the CLR. So
the content of this book is applicable to all programmers writing applications or components
that target the CLR. Many other good books exist that cover specific application types such
as Web Services, Web Forms, Windows Forms, etc. These other books will give you an excel-
lent start at helping you build your application. | tend to think of these application-specific
books as helping you learn from the top down because they concentrate on the application
type and not on the development platform. In this book, I'll offer information that will help
you learn from the bottom up. After reading this book and an application-specific book, you
should be able to easily and proficiently build any kind of application you desire.

By now, it should be obvious to you that the CLR is all about types. Types expose functional-
ity to your applications and other types. Types are the mechanism by which code written in
one programming language can talk to code written in a different programming language.
Because types are at the root of the CLR, Microsoft created a formal specification—the
Common Type System (CTS)—that describes how types are defined and how they behave.

Note In fact, Microsoft has been submitting the CTS as well as other parts of the .NET
Framework, including file formats, metadata, IL, and access to the underlying platform (P/Invoke)
to ECMA for the purpose of standardization. The standard is called the Common Language
Infrastructure (CLI) and is the ECMA-335 specification. In addition, Microsoft has also submitted
portions of the FCL, the C# programming language (ECMA-334), and the C++/CLI program-

ming language. For information about these industry standards, please go to the ECMA Web

site that pertains to Technical Committee 39: www.ecma-international.org/. You can also refer to
Microsoft's own Web site: http://msdn.microsoft.com/en-us/netframework/aa569283.aspx. In
addition, Microsoft has applied their Community Promise to the ECMA-334 and ECMA-335 speci-
fications. For more information about this, see http://www.microsoft.com/interop/cp/default. mspx.

Chapter 1 The CLR’s Execution Model 23

The CTS specification states that a type can contain zero or more members. In Part Il
“Designing Types,” I'll cover all of these members in great detail. For now, | want just to give
you a brief introduction to them:

B Field A data variable that is part of the object’s state. Fields are identified by their
name and type.

B Method A function that performs an operation on the object, often changing the
object’s state. Methods have a name, a signature, and modifiers. The signature specifies
the number of parameters (and their sequence), the types of the parameters, whether
a value is returned by the method, and if so, the type of the value returned by the
method.

B Property To the caller, this member looks like a field. But to the type implementer, it
looks like a method (or two). Properties allow an implementer to validate input param-
eters and object state before accessing the value and/or calculating a value only when
necessary. They also allow a user of the type to have simplified syntax. Finally, proper-
ties allow you to create read-only or write-only “fields."

B Event An eventallows a notification mechanism between an object and other inter-
ested objects. For example, a button could offer an event that notifies other objects
when the button is clicked.

The CTS also specifies the rules for type visibility and access to the members of a type. For
example, marking a type as public (called pub11ic) exports the type, making it visible and
accessible to any assembly. On the other hand, marking a type as assembly (called internal
in C#) makes the type visible and accessible to code within the same assembly only. Thus, the
CTS establishes the rules by which assemblies form a boundary of visibility for a type, and the
CLR enforces the visibility rules.

A type that is visible to a caller can further restrict the ability of the caller to access the type's
members. The following list shows the valid options for controlling access to a member:

B Private The member is accessible only by other members in the same class type.

B Family The member is accessible by derived types, regardless of whether they are
within the same assembly. Note that many languages (such as C++ and C#) refer to
family as protected.

B Family and assembly The member is accessible by derived types, but only if the
derived type is defined in the same assembly. Many languages (such as C# and
Visual Basic) don't offer this access control. Of course, IL Assembly language makes it
available.

B Assembly The member is accessible by any code in the same assembly. Many
languages refer to assembly as internal.

24

Part| CLR Basics

B Family or assembly The member is accessible by derived types in any assembly. The
member is also accessible by any types in the same assembly. C# refers to family or
assembly as protected internal.

B Public The member is accessible by any code in any assembly.

In addition, the CTS defines the rules governing type inheritance, virtual methods, object life-
time, and so on. These rules have been designed to accommodate the semantics expressible
in modern-day programming languages. In fact, you won't even need to learn the CTS rules
per se because the language you choose will expose its own language syntax and type rules
in the same way that you're familiar with today. And it will map the language-specific syntax
into IL, the “language” of the CLR, when it emits the assembly during compilation.

When [first started working with the CLR, | soon realized that it is best to think of the lan-
guage and the behavior of your code as two separate and distinct things. Using C++, you can
define your own types with their own members. Of course, you could have used C# or Visual
Basic to define the same type with the same members. Sure, the syntax you use for defining
the type is different depending on the language you choose, but the behavior of the type
will be identical regardless of the language because the CLR's CTS defines the behavior of the

type.

To help clarify this idea, let me give you an example. The CTS allows a type to derive from
only one base class. So, while the C++ language supports types that can inherit from mul-
tiple base types, the CTS can't accept and operate on any such type. To help the developer,
Microsoft's C++/CLI compiler reports an error if it detects that you're attempting to create
managed code that includes a type deriving from multiple base types.

Here's another CTS rule. All types must (ultimately) inherit from a predefined type:
System.Object. As you can see, Object is the name of a type defined in the System
namespace. This Object is the root of all other types and therefore guarantees that every
type instance has a minimum set of behaviors. Specifically, the System.0Object type allows
you to do the following:

B Compare two instances for equality.

B Obtain a hash code for the instance.

B Query the true type of an instance.

B Perform a shallow (bitwise) copy of the instance.

B Obtain a string representation of the instance object’s current state.

Chapter 1 The CLR’s Execution Model 25

The Common Language Specification

COM allows objects created in different languages to communicate with one another. On the
other hand, the CLR now integrates all languages and allows objects created in one language
to be treated as equal citizens by code written in a completely different language. This inte-
gration is possible because of the CLR’s standard set of types, metadata (self-describing type
information), and common execution environment.

While this language integration is a fantastic goal, the truth of the matter is that program-
ming languages are very different from one another. For example, some languages don't
treat symbols with case-sensitivity, and some don't offer unsigned integers, operator over-
loading, or methods to support a variable number of arguments.

If you intend to create types that are easily accessible from other programming languages,
you need to use only features of your programming language that are guaranteed to be
available in all other languages. To help you with this, Microsoft has defined a Common
Language Specification (CLS) that details for compiler vendors the minimum set of features
their compilers must support if these compilers are to generate types compatible with other
components written by other CLS-compliant languages on top of the CLR.

The CLR/CTS supports a lot more features than the subset defined by the CLS, so if you don't
care about interlanguage operability, you can develop very rich types limited only by the
language’s feature set. Specifically, the CLS defines rules that externally visible types and
methods must adhere to if they are to be accessible from any CLS-compliant programming
language. Note that the CLS rules don't apply to code that is accessible only within the
defining assembly. Figure 1-6 summarizes the ideas expressed in this paragraph.

CLR/CTS

Visual
Basic

FIGURE 1-6 Languages offer a subset of the CLR/CTS
and a superset of the CLS (but not necessarily the same superset)

Part| CLR Basics

As Figure 1-6 shows, the CLR/CTS offers a set of features. Some languages expose a large
subset of the CLR/CTS. A programmer willing to write in IL assembly language, for example,
is able to use all of the features the CLR/CTS offers. Most other languages, such as C#, Visual
Basic, and Fortran, expose a subset of the CLR/CTS features to the programmer. The CLS
defines the minimum set of features that all languages must support.

If you're designing a type in one language, and you expect that type to be used by another
language, you shouldn’t take advantage of any features that are outside of the CLS in its
public and protected members. Doing so would mean that your type’s members might not
be accessible by programmers writing code in other programming languages.

In the following code, a CLS-compliant type is being defined in C#. However, the type has a
few non—CLS-compliant constructs causing the C# compiler to complain about the code.

using System;

// Tell compiler to check for CLS compliance
[assembTly: CLSCompliant(true)]

namespace SomelLibrary {
// Warnings appear because the class is public
public sealed class SomeLibraryType {

// Warning: Return type of 'SomelLibrary.SomeLibraryType.Abc(Q)"'
// is not CLS-compliant
public UInt32 Abc() { return 0; }

// Warning: Identifier 'SomelLibrary.SomeLibraryType.abc()"'
// differing only in case is not CLS-compliant
public void abc() { }

// No warning: this method is private
private UInt32 ABC() { return 0; }

}

In this code, the [assemb1y:CLSComp1iant(true)] attribute is applied to the assembly.

This attribute tells the compiler to ensure that any publicly exposed type doesn't have any
construct that would prevent the type from being accessed from any other programming
language. When this code is compiled, the C# compiler emits two warnings. The first warning
is reported because the method Abc returns an unsigned integer; some other programming
languages can't manipulate unsigned integer values. The second warning is because this type
exposes two public methods that differ only by case and return type: Abc and abc. Visual
Basic and some other languages can't call both of these methods.

Interestingly, if you were to delete public from in front of 'sealed class
SomeLibraryType' and recompile, both warnings would go away. The reason is that the
SomeLibraryType type would default to internal and would therefore no longer be
exposed outside of the assembly. For a complete list of CLS rules, refer to the “Cross-

Chapter 1 The CLR’s Execution Model 27

Language Interoperability” section in the .NET Framework SDK documentation
(http://msdn.microsoft.com/en-us/library/730f1wy3.aspx).

Let me distill the CLS rules to something very simple. In the CLR, every member of a type is
either a field (data) or a method (behavior). This means that every programming language
must be able to access fields and call methods. Certain fields and certain methods are used in
special and common ways. To ease programming, languages typically offer additional abstrac-
tions to make coding these common programming patterns easier. For example, languages
expose concepts such as enums, arrays, properties, indexers, delegates, events, constructors,
finalizers, operator overloads, conversion operators, and so on. When a compiler comes across
any of these things in your source code, it must translate these constructs into fields and
methods so that the CLR and any other programming language can access the construct.

Consider the following type definition, which contains a constructor, a finalizer, some over-
loaded operators, a property, an indexer, and an event. Note that the code shown is there
just to make the code compile; it doesn’t show the correct way to implement a type.

using System;

internal sealed class Test {
// Constructor
public Test() {}

// Finalizer
~Test() {}

// Operator overload
public static Boolean operator == (Test tl, Test t2) {
return true;

}

public static Boolean operator != (Test tl, Test t2) {
return false;

}

// An operator overload
public static Test operator + (Test tl, Test t2) { return null; }

// A property

public String AProperty {
get { return null; }
set { }

}

// An indexer

public String this[Int32 x] {
get { return null; }
set { }

}

// An event
public event EventHandler AnEvent;

Part| CLR Basics

When the compiler compiles this code, the result is a type that has a number of fields and
methods defined in it. You can easily see this by using the IL Disassembler tool (ILDasm.exe)
provided with the .NET Framework SDK to examine the resulting managed module, which is
shown in Figure 1-7.

/7 Ch01-2-TypeMembersTolL.dll - IL DASM == ECR =)
File View Help
5+ Chol-2-TypebembersTolL.dl
i b MANIFEST
B T
b .class private auto ansi sealed beforefieldinit
b .custom instance void [mscorlib]System.Reflection . DeFaultlemberAttribute:: ctor(string) = { 01 0D 04 43 74 65 6D 00 00)
- AnEvent : private class [mscorllb]System EventHandier
B ctor : void()
B Finalize : void()
B sdd_AnEvent : void{class [mscorlib]5ystem EventHandier)
B qet_AProperty : string()
B get_ltem : string(int3z)
B op_Addition : class Test{class Test, class Test)
B op_Equalty : bool(class Test,class Test)
B op_Inequality : bool{class Test, class Test)

B remove_AnEvent : void(class [mscorlb]System, EventHandler)
B set_AProperty : void{string)

B set_Ttem : void(int32,string)

W AnEvent : [mscorlib]System.EventHandier

A AProperty @ instance string()

A Ttem : instance string(int32)

< I »

.assembly 'Chi1-2-TypeMembersTolL'
{

4 G

FIGURE 1-7 ILDasm showing Test type’s fields and methods (obtained from metadata)

Table 1-4 shows how the programming language constructs got mapped to the equivalent
CLR fields and methods.

TABLE 1-4 Test Type's Fields and Methods (Obtained from Metadata)

Type Member Member Type Equivalent Programming Language Construct

AnEvent Field Event; the name of the field is AnEvent and its type
is System.EventHandler.

.ctor Method Constructor.

Finalize Method Finalizer.

add_AnEvent Method Event add accessor method.

get_AProperty Method Property get accessor method.

get_Item Method Indexer get accessor method.

op_Addition Method + operator.

op_Equality Method == operator.

op_Inequality Method = operator.

remove_AnEvent Method Event remove accessor method.

set_AProperty Method Property set accessor method.

set_Item Method Indexer set accessor method.

The additional nodes under the Test type that aren't mentioned in Table 1-4—.class,
.custom, AnEvent, AProperty, and Item—identify additional metadata about the type.
These nodes don't map to fields or methods; they just offer some additional information

Chapter 1 The CLR’s Execution Model 29

about the type that the CLR, programming languages, or tools can get access to. For example,
a tool can see that the Test type offers an event, called AnEvent, which is exposed via the
two methods (add_AnEvent and remove_AnEvent).

Interoperability with Unmanaged Code

The .NET Framework offers a ton of advantages over other development platforms. However,
very few companies can afford to redesign and re-implement all of their existing code.
Microsoft realizes this and has constructed the CLR so that it offers mechanisms that allow an
application to consist of both managed and unmanaged parts. Specifically, the CLR supports
three interoperability scenarios:

B Managed code can call an unmanaged function in a DLL Managed code can easily
call functions contained in DLLs by using a mechanism called P/Invoke (for Platform
Invoke). After all, many of the types defined in the FCL internally call functions exported
from Kernel32.dll, User32.dll, and so on. Many programming languages will expose a
mechanism that makes it easy for managed code to call out to unmanaged functions
contained in DLLs. For example, a C# application can call the CreateSemaphore func-
tion exported from Kernel32.dll.

B Managed code can use an existing COM component (server) Many companies have
already implemented a number of unmanaged COM components. Using the type library
from these components, a managed assembly can be created that describes the COM
component. Managed code can access the type in the managed assembly just as any
other managed type. See the TIbimp.exe tool that ships with the .NET Framework SDK
for more information. At times, you might not have a type library or you might want
to have more control over what TIbImp.exe produces. In these cases, you can manually
build a type in source code that the CLR can use to achieve the proper interoperability.
For example, you could use DirectX COM components from a C# application.

B Unmanaged code can use a managed type (server) A lot of existing unmanaged
code requires that you supply a COM component for the code to work correctly. It's
much easier to implement these components by using managed code so that you can
avoid all of the code having to do with reference counting and interfaces. For example,
you could create an ActiveX control or a shell extension in C#. See the TIbExp.exe and
RegAsm.exe tools that ship with the .NET Framework SDK for more information.

Note Microsoft now makes available the source code for the Type Library Importer tool and a
P/Invoke Interop Assistant tool to help developers needing to interact with native code. These
tools and their source code can be downloaded from http://CLRInterop.CodePlex.com/.

Chapter 2
Building, Packaging, Deploying, and
Administering Applications and Types

.NET Framework DeploymentGoals i, 32
Building TypesintoaModule........ i, 33
A Brief Lookat Metadata. 36
Combining Modules to Form an Assembly. 43
Assembly Version Resource Information. 53
CUIUIE. - o e 58
Simple Application Deployment (Privately Deployed Assemblies)............ 59
Simple Administrative Control (Configuration) 61

Before we get into the chapters that explain how to develop programs for the Microsoft
.NET Framework, let’s discuss the steps required to build, package, and deploy your applica-
tions and their types. In this chapter, I'll focus on the basics of how to build assemblies that
are for your application’s sole use. In Chapter 3, “Shared Assemblies and Strongly Named
Assemblies,” I'll cover the more advanced concepts you'll need to understand, including how
to build and use assemblies containing types that will be shared by multiple applications. In
both chapters, I'll also talk about the ways an administrator can affect the execution of an
application and its types.

Today, applications consist of several types, which are typically created by you and Microsoft.
In addition, there are many component vendors creating and selling types that other compa-
nies can use to reduce a software project’s development time. If these types are developed
using any language that targets the common language runtime (CLR), they can all work
together seamlessly; a type written in one language can use another type as its base class
without concern for the language the base type was developed in.

In this chapter, I'll also explain how these types are built and packaged into files for deploy-
ment. In the process, I'll take you on a brief historical tour of some of the problems that the
.NET Framework is solving.

31

32 Part | CLR Basics

.NET Framework Deployment Goals

Over the years, Microsoft Windows has gotten a reputation for being unstable and compli-
cated. This reputation, whether deserved or not, is the result of many different factors. First,
all applications use dynamic-link libraries (DLLs) from Microsoft or other vendors. Because

an application executes code from various vendors, the developer of any one piece of code
can't be 100 percent sure how someone else is going to use it. Although this kind of interac-
tion can potentially cause all kinds of trouble, in practice, these problems don't typically arise
because applications are tested and debugged before they are deployed.

Users, however, frequently run into problems when one company decides to update its code
and ships new files to them. These new files are supposed to be backward-compatible with
the previous files, but who knows for sure? In fact, when one vendor updates its code, it
usually finds it impossible to retest and debug all of the already-shipped applications to
ensure that the changes will have no undesirable effect.

I'm sure that everyone reading this book has experienced some variation of this problem:
when installing a new application, you discover that it has somehow corrupted an already-
installed application. This predicament is known as “DLL hell.” This type of instability puts fear
into the hearts and minds of the typical computer user. The end result is that users have to
carefully consider whether to install new software on their machines. Personally, I've decided
not to try out certain applications out of fear that it might adversely affect some application |
really rely on.

The second reason that contributed to the aforementioned reputation of Windows is instal-
lation complexities. Today, when most applications are installed, they affect all parts of the
system. For example, installing an application causes files to be copied to various directories,
updates registry settings, and installs shortcuts on your desktop and Start menu. The prob-
lem with this is that the application isn't isolated as a single entity. You can't easily back up
the application since you must copy the application’s files and also the relevant parts of the
registry. In addition, you can't easily move the application from one machine to another; you
must run the installation program again so that all files and registry settings are set properly.
Finally, you can't easily uninstall or remove the application without having this nasty feeling
that some part of the application is still lurking on your machine.

The third reason has to do with security. When applications are installed, they come with all
kinds of files, many of them written by different companies. In addition, Web applications
frequently have code (like ActiveX controls) that is downloaded in such a way that users
don't even realize that code is being installed on their machine. Today, this code can perform
any operation, including deleting files or sending e-mail. Users are right to be terrified of
installing new applications because of the potential damage they can cause. To make users
comfortable, security must be built into the system so that the users can explicitly allow or
disallow code developed by various companies to access their system'’s resources.

Chapter 2 Building, Packaging, Deploying, and Administering Applications and Types 33

The .NET Framework addresses the DLL hell issue in a big way, as you'll see while reading this
chapter and Chapter 3. It also goes a long way toward fixing the problem of having an appli-
cation’s state scattered all over a user’s hard disk. For example, unlike COM, types no longer
require settings in the registry. Unfortunately, applications still require shortcut links. As for
security, the .NET Framework includes a security model called code access security. Whereas
Windows security is based on a user’s identity, code access security is based on permissions
that host applications that loading components can control. A host application like Microsoft
Silverlight can grant just a few permissions to downloaded code, while a locally installed
(self-hosting) application could run with full trust (all permissions). As you'll see, the .NET
Framework enables users to control what gets installed and what runs, and in general, to
control their machines, more than Windows ever did.

Building Types into a Module

In this section, I'll show you how to turn your source file, containing various types, into a file
that can be deployed. Let's start by examining the following simple application:

public sealed class Program {
public static void Main() {
System.Console.WriteLine("Hi");
}
}

This application defines a type, called Program. This type has a single public, static

method called Main. Inside Main is a reference to another type called

System.Console. System.Console is a type implemented by Microsoft, and the
Intermediate Language (IL) code that implements this type’s methods is in the MSCorLib.dll
file. So our application defines a type and also uses another company'’s type.

To build this sample application, put the preceding code into a source code file, say,
Program.cs, and then execute the following command line:

csc.exe /out:Program.exe /t:exe /r:MSCorLib.d11 Program.cs

This command line tells the C# compiler to emit an executable file called Program.exe
(/out:Program.exe). The type of file produced is a Win32 console application
(/t[arget] :exe).

When the C# compiler processes the source file, it sees that the code references the
System.Console type's WriteLine method. At this point, the compiler wants to ensure that
this type exists somewhere, that it has a WriteLine method, and that the argument being
passed to this method matches the parameter the method expects. Since this type is not
defined in the C# source code, to make the C# compiler happy, you must give it a set of as-
semblies that it can use to resolve references to external types. In the command line above,

34

Part| CLR Basics

I've included the /r[eference] :MSCorLib.d11 switch, which tells the compiler to look for
external types in the assembly identified by the MSCorLib.dll file.

MSCorLib.dll is a special file in that it contains all the core types: Byte, Char, String, Int32,
and many more. In fact, these types are so frequently used that the C# compiler automati-
cally references the MSCorLib.dll assembly. In other words, the following command line (with
the /r switch omitted) gives the same results as the line shown earlier:

csc.exe /out:Program.exe /t:exe Program.cs

Furthermore, because the /out:Program.exe and the /t:exe command-line switches also
match what the C# compiler would choose as defaults, the following command line gives the
same results too:

csc.exe Program.cs

If, for some reason, you really don't want the C# compiler to reference the MSCorLib.dll
assembly, you can use the /nostd1ib switch. Microsoft uses this switch when building the
MSCorLib.dll assembly itself. For example, the following command line will generate an error
when CSC.exe attempts to compile the Program.cs file because the System.Console type is
defined in MSCorLib.dll:

csc.exe /out:Program.exe /t:exe /nostdlib Program.cs

Now, let’s take a closer look at the Program.exe file produced by the C# compiler. What
exactly is this file? Well, for starters, it is a standard portable executable (PE) file. This means
that a machine running 32-bit or 64-bit versions of Windows should be able to load this file
and do something with it. Windows supports two types of applications, those with a console
user interface (CUI) and those with a graphical user interface (GUI). Because | specified the
/t:exe switch, the C# compiler produced a CUI application. You'd use the /t:winexe switch
to cause the C# compiler to produce a GUI application.

Response Files

Before leaving the discussion about compiler switches, I'd like to spend a moment talking
about response files. A response file is a text file that contains a set of compiler command-
line switches. When you execute CSC.exe, the compiler opens response files and uses any
switches that are specified in them as though the switches were passed to CSC.exe on the
command line. You instruct the compiler to use a response file by specifying its name on the
command line prepended by an @ sign. For example, you could have a response file called
MyProject.rsp that contains the following text:

/out:MyProject.exe
/target:winexe

Chapter 2 Building, Packaging, Deploying, and Administering Applications and Types 35

To cause CSC.exe to use these settings, you'd invoke it as follows:

csc.exe @MyProject.rsp CodeFilel.cs CodeFile2.cs

This tells the C# compiler what to name the output file and what kind of target to create. As
you can see, response files are very convenient because you don't have to manually express
the desired command-line arguments each time you want to compile your project.

The C# compiler supports multiple response files. In addition to the files you explicitly specify
on the command line, the compiler automatically looks for files called CSC.rsp. When you

run CSC.exe, it looks in the current directory for a local CSC.rsp file—you should place any
project-specific settings in this file. The compiler also looks in the directory containing the
CSC.exe file for a global CSC.rsp file. Settings that you want applied to all of your projects
should go in this file. The compiler aggregates and uses the settings in all of these response
files. If you have conflicting settings in the local and global response files, the settings in the
local file override the settings in the global file. Likewise, any settings explicitly passed on the
command line override the settings taken from a local response file.

When you install the .NET Framework, it installs a default global CSC.rsp file in the
%SystemRoot%\Microsoft.NET\Framework\vX.X. Xdirectory (where X.X.X is the version of
the .NET Framework you have installed). The 4.0 version of this file contains the following
switches:

This file contains command-Tine options that the C#
command Tine compiler (CSC) will process as part

of every compilation, unless the "/noconfig" option
is specified.

*H H B H®

Reference the common Framework libraries
/r:Accessibility.d11
/r:Microsoft.CSharp.dl11
/r:System.Configuration.dll
/r:System.Configuration.Install.d11
/r:System.Core.d11
/r:System.Data.d11
/r:System.Data.DataSetExtensions.d11
/r:System.Data.Ling.d11
/r:System.Deployment.dl11
/r:System.Device.d11
/r:System.DirectoryServices.dl11
/r:System.d11

/r:System.Drawing.d11
/r:System.EnterpriseServices.d11
/r:System.Management.dl11
/r:System.Messaging.d11
/r:System.Numerics.dl11
/r:System.Runtime.Remoting.d11
/r:System.Runtime.Serialization.d11
/r:System.Runtime.Serialization.Formatters.Soap.dl11
/r:System.Security.dl11

36 Part | CLR Basics

/r:System.ServiceModel.d11
/r:System.ServiceProcess.dl1
/r:System.Transactions.d11
/r:System.Web.Services.d11
/r:System.Windows.Forms.D11
/r:System.Xml.d11
/r:System.Xml.Ling.d11

Because the global CSC.rsp file references all of the assembilies listed, you do not need to
explicitly reference these assemblies by using the C# compiler’s /reference switch. This
response file is a big convenience for developers because it allows them to use types and
namespaces defined in various Microsoft-published assemblies without having to specify a
/reference compiler switch for each when compiling.

Referencing all of these assemblies could slow the compiler down a bit. But if your source
code doesn't refer to a type or member defined by any of these assemblies, there is no
impact to the resulting assembly file, nor to run-time execution performance.

Note When you use the /reference compiler switch to reference an assembly, you can
specify a complete path to a particular file. However, if you do not specify a path, the compiler
will search for the file in the following places (in the order listed):

B Working directory.

B The directory that contains the CSC.exe file itself. MSCorLib.dll is always obtained from this
directory. The path looks something like this: %SystemRoot%\Microsoft.NET\Framework
\VA4.0 ####4#.

Any directories specified using the /11ib compiler switch.

Any directories specified using the LIB environment variable.

Of course, you're welcome to add your own switches to the global CSC.rsp file if you want to
make your life even easier, but this makes it more difficult to replicate the build environment
on different machines: you have to remember to update the CSC.rsp the same way on each
build machine. Also, you can tell the compiler to ignore both local and global CSC.rsp files by
specifying the /noconfig command-line switch.

A Brief Look at Metadata

Now we know what kind of PE file we've created. But what exactly is in the Program.exe file?
A managed PE file has four main parts: the PE32(+) header, the CLR header, the metadata,
and the IL. The PE32(+) header is the standard information that Windows expects. The CLR
header is a small block of information that is specific to modules that require the CLR (man-
aged modules). The header includes the major and minor version number of the CLR that the
module was built for: some flags, a MethodDef token (described later) indicating the module’s
entry point method if this module is a CUI or GUI executable, and an optional strong-name

Chapter 2 Building, Packaging, Deploying, and Administering Applications and Types 37

digital signature (discussed in Chapter 3). Finally, the header contains the size and offsets of
certain metadata tables contained within the module. You can see the exact format of the
CLR header by examining the IMAGE_COR20_HEADER defined in the CorHdr.h header file.

The metadata is a block of binary data that consists of several tables. There are three cat-
egories of tables: definition tables, reference tables, and manifest tables. Table 2-1 describes
some of the more common definition tables that exist in a module’s metadata block.

TABLE 2-1 Common Definition Metadata Tables

Metadata Definition
Table Name Description

ModuleDef Always contains one entry that identifies the module. The entry includes
the module’s file name and extension (without path) and a module version
ID (in the form of a GUID created by the compiler). This allows the file to be
renamed while keeping a record of its original name. However, renaming a
file is strongly discouraged and can prevent the CLR from locating an
assembly at runtime, so don't do this.

TypeDef Contains one entry for each type defined in the module. Each entry
includes the type’s name, base type, and flags (public, private, etc.) and
contains indexes to the methods it owns in the MethodDef table, the fields
it owns in the FieldDef table, the properties it owns in the PropertyDef
table, and the events it owns in the EventDef table.

MethodDef Contains one entry for each method defined in the module. Each entry
includes the method's name, flags (private, public, virtual, abstract,
static, final, etc.), signature, and offset within the module where its IL
code can be found. Each entry can also refer to a ParamDef table entry in
which more information about the method's parameters can be found.

FieldDef Contains one entry for every field defined in the module. Each entry
includes flags (private, public, etc), type, and name.

ParamDef Contains one entry for each parameter defined in the module. Each entry
includes flags (in, out, retval, etc.), type, and name.

PropertyDef Contains one entry for each property defined in the module. Each entry
includes flags, type, and name.

EventDef Contains one entry for each event defined in the module. Each entry
includes flags and name.

As the compiler compiles your source code, everything your code defines causes an entry to
be created in one of the tables described in Table 2-1. Metadata table entries are also created
as the compiler detects the types, fields, methods, properties, and events that the source
code references. The metadata created includes a set of reference tables that keep a record
of the referenced items. Table 2-2 shows some of the more common reference metadata
tables.

38 Part | CLR Basics

TABLE 2-2 Common Reference Metadata Tables

Metadata Reference
Table Name

AssemblyRef

ModuleRef

TypeRef

MemberRef

Description

Contains one entry for each assembly referenced by the module. Each
entry includes the information necessary to bind to the assembly: the
assembly’s name (without path and extension), version number, culture,
and public key token (normally a small hash value generated from the
publisher’s public key, identifying the referenced assembly’s publisher).
Each entry also contains some flags and a hash value. This hash value was
intended to be a checksum of the referenced assembly’s bits. The CLR
completely ignores this hash value and will probably continue to do so in
the future.

Contains one entry for each PE module that implements types refer-
enced by this module. Each entry includes the module’s file name and
extension (without path). This table is used to bind to types that are
implemented in different modules of the calling assembly’s module.

Contains one entry for each type referenced by the module. Each entry
includes the type's name and a reference to where the type can be
found. If the type is implemented within another type, the reference will
indicate a TypeRef entry. If the type is implemented in the same module,
the reference will indicate a ModuleDef entry. If the type is implemented
in another module within the calling assembly, the reference will indicate
a ModuleRef entry. If the type is implemented in a different assembly,
the reference will indicate an AssemblyRef entry.

Contains one entry for each member (fields and methods, as well as
property and event methods) referenced by the module. Each entry
includes the member’s name and signature and points to the TypeRef
entry for the type that defines the member.

There are many more tables than what | listed in Tables 2-1 and 2-2, but | just wanted to give
you a sense of the kind of information that the compiler emits to produce the metadata in-
formation. Earlier | mentioned that there is also a set of manifest metadata tables; I'll discuss
these a little later in the chapter.

Various tools allow you to examine the metadata within a managed PE file. My personal
favorite is ILDasm.exe, the IL Disassembler. To see the metadata tables, execute the following

command line:

ILDasm Program.exe

This causes ILDasm.exe to run, loading the Program.exe assembly. To see the metadata in a
nice, human-readable form, select the View/Metalnfo/Show! menu item (or press CTRL+M).
This causes the following information to appear:

Chapter 2 Building, Packaging, Deploying, and Administering Applications and Types

ScopeName : Program.exe
MVID : {CA73FFE8-0D42-4610-A8D3-9276195C35AA}

Global functions

TypDefName: Program (02000002)

Flags : [Public] [AutoLayout] [Class] [Sealed] [AnsiClass]
[BeforeFieldInit] (00100101)
Extends : 01000001 [TypeRef] System.Object

Method #1 (06000001) [ENTRYPOINT]
MethodName: Main (06000001)
Flags : [Public] [Static] [HideBySig] [ReuseSTot] (00000096)
RVA : 0x00002050
ImplFlags : [IL] [Managed] (00000000)
CallCnvntn: [DEFAULT]
ReturnType: Void
No arguments.

Method #2 (06000002)

MethodName: .ctor (06000002)

Flags : [PubTlic] [HideBySig] [ReuseSlot] [SpecialName]
[RTSpecialName] [.ctor] (00001886)
RVA : 0x0000205c¢

ImplFlags : [IL] [Managed] (00000000)
CallCnvntn: [DEFAULT]

hasThis

ReturnType: Void

No arguments.

TypeRef #1 (01000001)

Token: 0x01000001
ResoTlutionScope: 0x23000001
TypeRefName: System.Object

MemberRef #1 (0a000004)
Member: (0a000004) .ctor:
CallCnvntn: [DEFAULT]
hasThis
ReturnType: Void
No arguments.

TypeRef #2 (01000002)

39

40

Part| CLR Basics

Token: 0x01000002
ResolutionScope: 0x23000001
TypeRefName: System.Runtime.CompilerServices.CompilationRelaxationsAttribute

MemberRef #1 (0a000001)
Member: (0a000001) .ctor:
CallCnvntn: [DEFAULT]
hasThis
ReturnType: Void
1 Arguments

Argument #1: I4

TypeRef #3 (01000003)

Token: 0x01000003
ResolutionScope: 0x23000001
TypeRefName: System.Runtime.CompilerServices.RuntimeCompatibilityAttribute

MemberRef #1 (0a000002)
Member: (0a000002) .ctor:
CallCnvntn: [DEFAULT]
hasThis
ReturnType: Void
No arguments.

TypeRef #4 (01000004)

Token: 0x01000004
ResolutionScope: 0x23000001
TypeRefName: System.Console

MemberRef #1 (0a000003)
Member: (0a000003) WritelLine:
CallCnvntn: [DEFAULT]
ReturnType: Void
1 Arguments
Argument #1: String

Assembly

Token: 0x20000001

Name : Program

Public Key

Hash Algorithm : 0x00008004

Version: 0.0.0.0

Major Version: 0x00000000

Minor Version: 0x00000000

Build Number: 0x00000000

Revision Number: 0x00000000

Locale: <null>

Flags : [none] (00000000)

CustomAttribute #1 (0c000001)
CustomAttribute Type: 0a000001
CustomAttributeName:

Chapter 2 Building, Packaging, Deploying, and Administering Applications and Types 41

System.Runtime.CompilerServices.CompilationRelaxationsAttribute ::
instance void .ctor(int32)
Length: 8
Value : 01 00 08 00 00 00 00 00 > <
ctor args: (8)

CustomAttribute #2 (0c000002)
CustomAttribute Type: 0a000002
CustomAttributeName: System.Runtime.CompilerServices.RuntimeCompatibilityAttribute ::
instance void .ctor()

Length: 30
Value : 01 00 01 00 54 02 16 57 72 61 70 4e 6f 6e 45 78 > T WrapNonEx<
: 63 65 70 74 69 6f 6e 54 68 72 6f 77 73 01 >ceptionThrows <

ctor args: Q

AssemblyRef #1 (23000001)
Token: 0x23000001
Public Key or Token: b7 7a 5c 56 19 34 e0 89
Name: mscorlib
Version: 4.0.0.0
Major Version: 0x00000004
Minor Version: 0x00000000
Build Number: 0x00000000
Revision Number: 0x00000000
Locale: <null>
HashValue Blob:
Flags: [none] (00000000)

User Strings

70000001 : (2) L"Hi"

Coff symbol name overhead: 0

Fortunately, ILDasm processes the metadata tables and combines information where
appropriate so that you don't have to parse the raw table information. For example, in the
dump above, you see that when ILDasm shows a TypeDef entry, the corresponding member
definition information is shown with it before the first TypeRef entry is displayed.

You don't need to fully understand everything you see here. The important thing to remem-
ber is that Program.exe contains a TypeDef whose name is Program. This type identifies a
public sealed class that is derived from System.Object (a type referenced from another
assembly). The Program type also defines two methods: Main and .ctor (a constructor).

Main is a public, static method whose code is IL (as opposed to native CPU code, such as x86).
Main has a void return type and takes no arguments. The constructor method (always shown

42

Part| CLR Basics

with a name of .ctor) is public, and its code is also IL. The constructor has a void return
type, has no arguments, and has a this pointer, which refers to the object’s memory that is
to be constructed when the method is called.

| strongly encourage you to experiment with using ILDasm. It can show you a wealth of infor-
mation, and the more you understand what you're seeing, the better you'll understand the
CLR and its capabilities. As you'll see, I'll use ILDasm quite a bit more in this book.

Just for fun, let's look at some statistics about the Program.exe assembly. When you select
ILDasm’s View/Statistics menu item, the following information is displayed:

File size

PE header size

PE additional info
Num.of PE sections
CLR header size
CLR meta-data size

CLR method headers
Managed code

Data

Unaccounted

Num.of PE sections

.text - 1024
.rsrc - 1536
.reloc - 512

CLR meta-data size
Module -
TypeDef -
TypeRef -
MethodDef -
MemberRef -
ParamDef -
CustomAttribute-
Assembly -
AssemblyRef -
Strings -
BTlobs -
UserStrings -
Guids -
Uncategorized -

CLR method headers :

1 3584

: 512 (496 used)

: 141
3
1 72
1 612
CLR additional info :

: 18
: 204
: -10

1 612

1
2
4
2
4
2

(10
(28
(24
(28
(24
(12
2 (1

5

8
95

bytes)
bytes)
bytes)
bytes)
bytes)
bytes)
2 bytes)

1 (22 bytes)
1 (20 bytes)
184 bytes
68 bytes

8 by

tes

16 bytes
168 bytes

2

Num.of method bodies

Num.of fat headers

Num.of tiny headers

Managed code : 18
Ave method size -

9

2
0
2

(14.29%)
(39.48%)

2.01%)
7.08%)
.00%)
.06%)
.50%)
.14%)
30.55%)

N O © o

(
(1
(
(
(
(
(_

0 interfaces, 0 explicit Tayout

0 abstract, 0 native, 2 bodies

Chapter 2 Building, Packaging, Deploying, and Administering Applications and Types 43

Here you can see the size (in bytes) of the file and the size (in bytes and percentages) of the
various parts that make up the file. For this very small Program.cs application, the PE header
and the metadata occupy the bulk of the file's size. In fact, the IL code occupies just 18 bytes.
Of course, as an application grows, it will reuse most of its types and references to other
types and assemblies, causing the metadata and header information to shrink considerably
as compared to the overall size of the file.

Note By the way, ILDasm.exe does have a bug in it that affects the file size information shown.
In particular, you cannot trust the Unaccounted information.

Combining Modules to Form an Assembly

The Program.exe file discussed in the previous section is more than just a PE file with meta-
data; it is also an assembly. An assembly is a collection of one or more files containing type
definitions and resource files. One of the assembly’s files is chosen to hold a manifest. The
manifest is another set of metadata tables that basically contain the names of the files that
are part of the assembly. They also describe the assembly’s version, culture, publisher,
publicly exported types, and all of the files that comprise the assembly.

The CLR operates on assemblies; that is, the CLR always loads the file that contains the mani-
fest metadata tables first and then uses the manifest to get the names of the other files that
are in the assembly. Here are some characteristics of assemblies that you should remember:

B An assembly defines the reusable types.
B An assembly is marked with a version number.

B An assembly can have security information associated with it.

An assembly’s individual files don't have these attributes—except for the file that contains
the manifest metadata tables.

To package, version, secure, and use types, you must place them in modules that are part of
an assembly. In most cases, an assembly consists of a single file, as the preceding Program.
exe example does. However, an assembly can also consist of multiple files: some PE files with
metadata and some resource files such as .gif or .jpg files. It might help you to think of an
assembly as a logical EXE or a DLL.

I'm sure that many of you reading this are wondering why Microsoft has introduced this new
assembly concept. The reason is that an assembly allows you to decouple the logical and
physical notions of reusable types. For example, an assembly can consist of several types.
You could put the frequently used types in one file and the less frequently used types in
another file. If your assembly is deployed by downloading it via the Internet, the file with

44

Part| CLR Basics

the infrequently used types might not ever have to be downloaded to the client if the client
never accesses the types. For example, an independent software vendor (ISV) specializing in
Ul controls might choose to implement Active Accessibility types in a separate module (to
satisfy Microsoft's Logo requirements). Only users who require the additional accessibility
features would require this module to be downloaded.

You configure an application to download assembly files by specifying a codeBase element
(discussed in Chapter 3) in the application’s configuration file. The codeBase element identifies
a URL pointing to where all of an assembly'’s files can be found. When attempting to load an
assembly’s file, the CLR obtains the codeBase element’s URL and checks the machine’s down-
load cache to see if the file is present. If it is, the file is loaded. If the file isn't in the cache, the
CLR downloads the file into the cache from the location the URL points to. If the file can't be
found, the CLR throws a FileNotFoundException exception at runtime.

|'ve identified three reasons to use multifile assemblies:

B You can partition your types among separate files, allowing for files to be incrementally
downloaded as described in the Internet download scenario. Partitioning the types into
separate files also allows for partial or piecemeal packaging and deployment for appli-
cations you purchase and install.

B You can add resource or data files to your assembly. For example, you could have a
type that calculates some insurance information. This type might require access to
some actuarial tables to make its computations. Instead of embedding the actuarial
tables in your source code, you could use a tool (such as the Assembly Linker, AL.exe,
discussed later) so that the data file is considered to be part of the assembly. By the
way, this data file can be in any format—a text file, a Microsoft Office Excel spreadsheet,
a Microsoft Office Word table, or whatever you like—as long as your application knows
how to parse the file's contents.

B You can create assemblies consisting of types implemented in different programming
languages. For example, you can implement some types in C#, some types in Microsoft
Visual Basic, and other types in other languages. When you compile the types written
with C# source code, the compiler produces a module. When you compile other types
written with Visual Basic source code, the compiler produces a separate module. You can
then use a tool to combine all of these modules into a single assembly. To developers
using the assembly, the assembly appears to contain just a bunch of types; developers
won't even know that different programming languages were used. By the way, if you
prefer, you can run ILDasm.exe on each of the modules to obtain an IL source code file.
Then you can run ILAsm.exe and pass it all of the IL source code files. ILAsm.exe will
produce a single file containing all of the types. This technique requires your source
code compiler to produce IL-only code.

Chapter 2 Building, Packaging, Deploying, and Administering Applications and Types 45

Important To summarize, an assembly is a unit of reuse, versioning, and security. It allows you
to partition your types and resources into separate files so that you, and consumers of your as-
sembly, get to determine which files to package together and deploy. Once the CLR loads the file
containing the manifest, it can determine which of the assembly’s other files contain the types and
resources the application is referencing. Anyone consuming the assembly is required to know only
the name of the file containing the manifest; the file partitioning is then abstracted away from the
consumer and can change in the future without breaking the application’s behavior.

If you have multiple types that can share a single version number and security settings, it is
recommended that you place all of the types in a single file rather than spread the types out
over separate files, let alone separate assemblies. The reason is performance. Loading a
file/assembly takes the CLR and Windows time to find the assembly, load it, and initialize it.
The fewer files/assemblies loaded the better, because loading fewer assemblies helps reduce
working set and also reduces fragmentation of a process’s address space. Finally, nGen.exe
can perform better optimizations when processing larger files.

To build an assembly, you must select one of your PE files to be the keeper of the manifest.
Or you can create a separate PE file that contains nothing but the manifest. Table 2-3 shows
the manifest metadata tables that turn a managed module into an assembly.

TABLE 2-3 Manifest Metadata Tables

Manifest Metadata
Table Name Description

AssemblyDef Contains a single entry if this module identifies an assembly. The entry
includes the assembly’s name (without path and extension), version
(major, minor, build, and revision), culture, flags, hash algorithm, and the
publisher’s public key (which can be nulT).

FileDef Contains one entry for each PE and resource file that is part of the assem-
bly (except the file containing the manifest since it appears as the single
entry in the AssemblyDef table). The entry includes the file’'s name and
extension (without path), hash value, and flags. If this assembly consists
only of its own file, the FileDef table has no entries.

ManifestResourceDef Contains one entry for each resource that is part of the assembly. The
entry includes the resource’s name, flags (pub1liic if visible outside the as-
sembly and private otherwise), and an index into the FileDef table indi-
cating the file that contains the resource file or stream. If the resource isn't
a stand-alone file (such as .jpg or a .gif), the resource is a stream contained
within a PE file. For an embedded resource, the entry also includes an off-
set indicating the start of the resource stream within the PE file.

ExportedTypesDef Contains one entry for each public type exported from all of the
assembly’s PE modules. The entry includes the type’s name, an index into
the FileDef table (indicating which of this assembly’s files implements
the type), and an index into the TypeDef table. Note: To save file space,
types exported from the file containing the manifest are not repeated in
this table because the type information is available using the metadata'’s
TypeDef table.

46

Part| CLR Basics

The existence of a manifest provides a level of indirection between consumers of the assembly
and the partitioning details of the assembly and makes assemblies self-describing. Also, note
that the file containing the manifest has metadata information that indicates which files are
part of the assembly, but the individual files themselves do not have metadata information
that specifies that they are part of the assembly.

Note The assembly file that contains the manifest also has an AssemblyRef table in it. This table
contains an entry for all of the assemblies referenced by all of the assembly’s files. This allows
tools to open an assembly’s manifest and see its set of referenced assemblies without having to
open the assembly’s other files. Again, the entries in the AssemblyRef table exist to make an
assembly self-describing.

The C# compiler produces an assembly when you specify any of the following command-line
switches: /t[arget] :exe, /t[arget]:winexe, or /t[arget]:T1ibrary. All of these switches
cause the compiler to generate a single PE file that contains the manifest metadata tables.
The resulting file is either a CUI executable, a GUI executable, or a DLL, respectively.

In addition to these switches, the C# compiler supports the /t[arget] :module switch. This
switch tells the compiler to produce a PE file that doesnt contain the manifest metadata
tables. The PE file produced is always a DLL PE file, and this file must be added to an assem-
bly before the CLR can access any types within it. When you use the /t:module switch, the
C# compiler, by default, names the output file with an extension of .netmodule.

Important Unfortunately, the Microsoft Visual Studio integrated development environment
(IDE) doesn't natively support the ability for you to create multifile assemblies. If you want to
create multifile assemblies, you must resort to using command-line tools.

There are many ways to add a module to an assembly. If you're using the C# compiler to
build a PE file with a manifest, you can use the /addmodule switch. To understand how to
build a multifile assembly, let's assume that we have two source code files:

B RUT.cs, which contains rarely used types
B FUT.cs, which contains frequently used types

Let's compile the rarely used types into their own module so that users of the assembly won't
need to deploy this module if they never access the rarely used types:

csc /t:module RUT.cs

This line causes the C# compiler to create a RUT.netmodule file. This file is a standard DLL PE
file, but, by itself, the CLR can't load it.

Chapter 2 Building, Packaging, Deploying, and Administering Applications and Types 47

Next let's compile the frequently used types into their own module. We'll make this module
the keeper of the assembly’s manifest because the types are used so often. In fact, because
this module will now represent the entire assembly, I'll change the name of the output file to
JeffTypes.dll instead of calling it FUT.II:

csc /out:JeffTypes.dl1 /t:1library /addmodule:RUT.netmodule FUT.cs

This line tells the C# compiler to compile the FUT.cs file to produce the JeffTypes.dll file.
Because /t:11ibrary is specified, a DLL PE file containing the manifest metadata tables is
emitted into the JeffTypes.dll file. The /addmodule:RUT.netmodule switch tells the compiler
that RUT.netmodule is a file that should be considered part of the assembly. Specifically, the
/addmodule switch tells the compiler to add the file to the FileDef manifest metadata table
and to add RUT.netmodule’s publicly exported types to the ExportedTypesDef manifest
metadata table.

Once the compiler has finished all of its processing, the two files shown in Figure 2-1 are
created. The module on the right contains the manifest.

RUT.netmodule JeffTypes.dll
| IL compiled from RUT.cs | | IL compiled from FUT.cs |
Metadata Metadata
Types, methods, and so on Types, methods, and so on
defined by RUT.cs defined by FUT.cs
Types, methods, and so on Types, methods, and so on
referenced by RUT.cs referenced by FUT.cs
Manifest
Assembly files
(self and RUT.netmodule)
Public assembly types
(self and RUT.netmodule)

FIGURE 2-1 A multifile assembly consisting of two managed modules, one with a manifest

The RUT.netmodule file contains the IL code generated by compiling RUT.cs. This file also
contains metadata tables that describe the types, methods, fields, properties, events, and so
on that are defined by RUT.cs. The metadata tables also describe the types, methods, and
so on that are referenced by RUT.cs. The JeffTypes.dll is a separate file. Like RUT.netmodule,
this file includes the IL code generated by compiling FUT.cs and also includes similar defini-
tion and reference metadata tables. However, JeffTypes.dll contains the additional manifest
metadata tables, making JeffTypes.dll an assembly. The additional manifest metadata tables
describe all of the files that make up the assembly (the JeffTypes.dll file itself and the
RUT.netmodule file). The manifest metadata tables also include all of the public types
exported from JeffTypes.dll and RUT.netmodule.

48 Part | CLR Basics

Note In reality, the manifest metadata tables don't actually include the types that are exported
from the PE file that contains the manifest. The purpose of this optimization is to reduce the
number of bytes required by the manifest information in the PE file. So statements like “The
manifest metadata tables also include all the public types exported from JeffTypes.dll and
RUT.netmodule” aren’t 100 percent accurate. However, this statement does accurately reflect
what the manifest is logically exposing.

Once the JeffTypes.dll assembly is built, you can use ILDasm.exe to examine the metadata’s
manifest tables to verify that the assembly file does in fact have references to the
RUT.netmodule file's types. Here is what the FileDef and ExportedTypesDef metadata
tables look like:

File #1 (26000001)

Token: 0x26000001

Name : RUT.netmodule

HashValue Blob : e6 e6 df 62 2c al 2c 59 97 65 Of 21 44 10 15 96 f2 7e db c2
Flags : [ContainsMetaData] (00000000)

ExportedType #1 (27000001)

Token: 0x27000001

Name: ARarelyUsedType

Implementation token: 0x26000001

TypeDef token: 0x02000002

Flags : [Public] [AutoLayout] [Class] [Sealed] [AnsiClass]
[BeforeFieldInit] (00100101)

From this, you can see that RUT.netmodule is a file considered to be part of the assembly
with the token 0x26000001. From the ExportedTypesDef table, you can see that there is

a publicly exported type, ARarelyUsedType. The implementation token for this type is
0x26000001, which indicates that the type’s IL code is contained in the RUT.netmodule file.

Note For the curious, metadata tokens are 4-byte values. The high byte indicates the type of
token (0x01=TypeRef, 0x02=TypeDef, 0x23=AssemblyRef, 0x26=FileRef, 0x27=ExportedType). For
the complete list, see the CorTokenType enumerated type in the CorHdr.h file included with the
.NET Framework SDK. The three lower bytes of the token simply identify the row in the
corresponding metadata table. For example, the implementation token 0x26000001 refers to
the first row of the FileRef table. For most tables, rows are numbered starting with 1, not 0. For
the TypeDef table, rows actually start with 2.

Any client code that consumes the JeffTypes.dll assembly’s types must be built using the
/rleference] :JeffTypes.d11 compiler switch. This switch tells the compiler to load the
JeffTypes.dll assembly and all of the files listed in its FileDef table when searching for an
external type. The compiler requires all of the assembly’s files to be installed and accessible. If

Chapter 2 Building, Packaging, Deploying, and Administering Applications and Types 49

you were to delete the RUT.netmodule file, the C# compiler would produce the following error:
“fatal error CS0009: Metadata file 'C:\JeffTypes.dl1' could not be opened-
'Error importing module 'RUT.netmodule' of assembly 'C:\JeffTypes.d11'-The
system cannot find the file specified'". This means that to build a new assembly, all
of the files from a referenced assembly must be present.

As the client code executes, it calls methods. When a method is called for the first time, the
CLR detects the types that the method references as a parameter, a return value, or as a

local variable. The CLR then attempts to load the referenced assembly’s file that contains the
manifest. If the type being accessed is in this file, the CLR performs its internal bookkeeping,
allowing the type to be used. If the manifest indicates that the referenced type is in a differ-
ent file, the CLR attempts to load the necessary file, performs its internal bookkeeping, and
allows the type to be accessed. The CLR loads assembly files only when a method referencing
a type in an unloaded assembly is called. This means that to run an application, all of the files
from a referenced assembly do not need to be present.

Adding Assemblies to a Project by Using the Visual Studio IDE

If you're using the Visual Studio IDE to build your project, you'll have to add any assemblies
that you want to reference to your project. To do so, open Solution Explorer, right-click the
project you want to add a reference to, and then select the Add Reference menu item. This
causes the Add Reference dialog box, shown in Figure 2-2, to appear.

29 Add Reference @
NET | Com | Projects | Browse | Recent|

Compaonent Name Version Runtime Path -

| System 4.0.0.0 v4.0.20028 Ci\Program Files (x86)'Re..
System.Activities 4.0.0.0 v4.0.20928 C\Program Files (x86)"Re..
System.Activities.Core.Pres... 4.0.0.0 v4.0.20928 C\Program Files (x86)"Re..
System.Activities.Durableln... 4.0.0.0 v4.0.20928 C\Program Files (x86)"Re..
System.Activities.Presentati.. 4.0.0.0 v4.0.20928 C\Program Files (x86)"Re..
System.AddIn 4.0.0.0 v4.0.20928 C\Program Files (x86)"Re..
System.AddIn.Contract 4.0.0.0 v4.0.20928 C\Program Files (x86)"Re..
System.ComponentModel.... 4.0.0.0 v4.0.20928 C\Program Files (x86)"Re..
System. Configuration 4.0.0.0 v4.0.20928 C:\Program Files (x86)\Re..[|
System.ConfigurationInstall ~ 4.0.0.0 v4.0.20928 C\Program Files (x86)"Re..
System.Core 4.0.0.0 v4.0.20928 C\Program Files (x86)"Re..
System.Data 4.0.0.0 v4.0.20928 C\Program Files (x86)"Re..
System.Data.DataSetExtensi... 4.0.0.0 v4.0.20028 C\Program Files (x86)'\Re.. ~
€ I | »

OK] ’ Cancel]

FIGURE 2-2 The Add Reference dialog box in Visual Studio

50

Part| CLR Basics

To have your project reference an assembly, select the desired assembly from the list. If
the assembly you want isn't in the list, click the Browse tab to navigate to the desired
assembly (file containing a manifest) to add the assembly reference. The COM tab on the
Add Reference dialog box allows an unmanaged COM server to be accessed from within
managed source code via a managed proxy class automatically generated by Visual Studio.
The Projects tab allows the current project to reference an assembly that is created by
another project in the same solution. The Recent tab allows you to select an assembly that
you recently added to another project.

To make your own assemblies appear in the .NET tab’s list, add the following subkey to the
registry:

HKEY LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework\AssemblyFolders\MyLibName

MyLibName is a unique name that you create—Visual Studio doesn't display this name.
After creating the subkey, change its default string value so that it refers to a directory path
(such as C:\Program Files\MyLibPath) containing your assembly's files. Using HKEY_LOCAL _
MACHINE adds the assemblies for all users on a machine; use HKEY_CURRENT_USER instead
to add the assemblies for a specific user.

Using the Assembly Linker

Instead of using the C# compiler, you might want to create assemblies by using the Assembly
Linker utility, AL.exe. The Assembly Linker is useful if you want to create an assembly consist-
ing of modules built from different compilers (if your compiler doesn’t support the equivalent
of C#'s /addmodule switch) or perhaps if you just don't know your assembly packaging
requirements at build time. You can also use AL.exe to build resource-only assemblies, called
satellite assemblies, which are typically used for localization purposes. I'll talk about satellite
assemblies later in the chapter.

The AL.exe utility can produce an EXE or a DLL PE file that contains only a manifest describ-
ing the types in other modules. To understand how AL.exe works, let's change the way the
JeffTypes.dll assembly is built:

csc /t:module RUT.cs
csc /t:module FUT.cs
al /out:JeffTypes.d11 /t:1library FUT.netmodule RUT.netmodule

Figure 2-3 shows the files that result from executing these statements.

Chapter 2 Building, Packaging, Deploying, and Administering Applications and Types 51

RUT.netmodule FUT.netmodule
IL compiled from RUT.cs IL compiled from FUT.cs
Metadata Metadata
Types, methods, and so on Types, methods, and so on
defined by RUT.cs defined by FUT.cs
Types, methods, and so on Types, methods, and so on
referenced by RUT.cs referenced by FUT.cs
JeffTypes.dll
| (no IL) |
Metadata

(No definition or reference tables)

Manifest
Assembly files
(self, RUT.netmodule, and FUT.netmodule)

Public assembly types
(RUT.netmodule and FUT.netmodule)

FIGURE 2-3 A multifile assembly consisting of three managed modules, one with a manifest

In this example, two separate modules, RUT.netmodule and FUT.netmodule, are created.
Neither module is an assembly because they don’t contain manifest metadata tables.
Then a third file is produced: JeffTypes.dll, which is a small DLL PE file (because of the
/t[arget]:1ibrary switch) that contains no IL code but has manifest metadata tables
indicating that RUT.netmodule and FUT.netmodule are part of the assembly. The resulting
assembly consists of three files: JeffTypes.dll, RUT.netmodule, and FUT.netmodule. The
Assembly Linker has no way to combine multiple files into a single file.

The AL.exe utility can also produce CUl and GUI PE files by using the /t[arget] :exe or
/t[arget] :winexe command-line switches. But this is very unusual since it would mean that
you'd have an EXE PE file with just enough IL code in it to call a method in another module.
You can specify which method in a module should be used as an entry point by adding the
/main command-line switch when invoking AL.exe. The following is an example of how to
call the Assembly Linker, AL.exe, by using the /main command-line switch:

csc /t:module /r:JeffTypes.d11 Program.cs
al /out:Program.exe /t:exe /main:Program.Main Program.netmodule

52

Part| CLR Basics

Here the first line builds the Program.cs file into a Program.netmodaule file. The second line
produces a small Program.exe PE file that contains the manifest metadata tables. In addition,
there is a small global function named __EntryPoint that is emitted by AL.exe because of
the /main:Program.Main command-line switch. This function, _ EntryPoint, contains the
following IL code:

.method privatescope static void _ _EntryPoint$PST06000001() cil managed
{

.entrypoint

// Code size 8 (0x8)

.maxstack 8

IL_0000: tail.

IL_0002: «call void [.module 'Program.netmodule']Program::Main()
IL_0007: ret
} // end of method 'Global Functions'::__EntryPoint

As you can see, this code simply calls the Main method contained in the Program type
defined in the Program.netmodule file. The /main switch in AL.exe isn't that useful because
it's unlikely that you'd ever create an assembly for an application that didn't have its entry
point in the PE file that contains the manifest metadata tables. | mention the switch here only
to make you aware of its existence.

With the code that accompanies this book, | have created a Ch02-3-BuildMultiFileLibrary.bat
file that encapsulates all the steps required to build a multifile assembly. The
Ch02-4-AppUsingMultiFileLibrary project in Visual Studio invokes this batch file as a
prebuild command-line step. You can examine this project to see how to integrate building
and referencing a multifile assembly from within Visual Studio.

Adding Resource Files to an Assembly

When using AL.exe to create an assembly, you can add a file as a resource to the assembly by
using the /embed[resource] switch. This switch takes a file (any file) and embeds the file’s
contents into the resulting PE file. The manifest’s ManifestResourceDef table is updated to
reflect the existence of the resources.

Al.exe also supports a /Tink[resource] switch, which also takes a file containing resources.
However, the /Tink[resource] switch updates the manifest's ManifestResourceDef and
FileDef tables, indicating that the resource exists and identifying which of the assembly’s files
contains it. The resource file is not embedded into the assembly PE file; it remains separate
and must be packaged and deployed with the other assembly files.

Like AL.exe, CSC.exe also allows you to combine resources into an assembly produced by
the C# compiler. The C# compiler's /resource switch embeds the specified resource file
into the resulting assembly PE file, updating the ManifestResourceDef table. The compiler's
/1inkresource switch adds an entry to the ManifestResourceDef and the FileDef manifest
tables to refer to a stand-alone resource file.

Chapter 2 Building, Packaging, Deploying, and Administering Applications and Types 53

One last note about resources: it's possible to embed standard Win32 resources into an as-
sembly. You can do this easily by specifying the pathname of a .res file with the /win32res
switch when using either AL.exe or CSC.exe. In addition, you can quickly and easily embed

a standard Win32 icon resource into an assembly file by specifying the pathname of the .ico
file with the /win321icon switch when using either AL.exe or CSC.exe. Within Visual Studio,
you can add resource files to your assembly by displaying your project’s properties and then
clicking the Application tab. The typical reason an icon is embedded is so that Windows
Explorer can show an icon for a managed executable file.

Note Managed assembly files also contain Win32 manifest resource information in them. By
default, the C# compiler automatically produces this manifest information but you can tell it not
to by using the /nowin32maniifest switch. The default manifest produced by the C# compiler
looks like this:

<?xm1 version="1.0" encoding="UTF-8" standalone="yes"?>
<assembly xmIns="urn:schemas-microsoft-com:asm.v1l" manifestVersion="1.0">
<assemblyIdentity version="1.0.0.0" name="MyApplication.app" />
<trustInfo xmlns="urn:schemas-microsoft-com:asm.v2">
<security>
<requestedPrivileges xmlns="urn:schemas-microsoft-com:asm.v3">
<requestedExecutionLevel Tevel="asInvoker" uiAccess="false"/>
</requestedPrivileges>
</security>
</trustInfo>
</assembly>

Assembly Version Resource Information

When AL.exe or CSC.exe produces a PE file assembly, it also embeds into the PE file a
standard Win32 version resource. Users can examine this resource by viewing the file's
properties. Application code can also acquire and examine this information at runtime by
calling System.Diagnostics.FileVersionInfo's static GetVersionInfo method.
Figure 2-4 shows the Details tab of the JeffTypes.dll Properties dialog box.

54

Part| CLR Basics

=] JeffTypes.dil Properties E

| General I Security| Dietails | Previous Yersions

Froperty Walue
Description
File dezcription JeffTypes.dl
Type Application extenzion
File: wersion 1.000

Product name Wwintellect (R] Jeff's Type Library
Product version 2.0.0.0

Size 480KB
D ate modified 10/18/2003 1:26 PM
Language Language Meutral

Legal trademarks JeffTypes is a registered trademark of ...
Original filename JeffTypes.dl

Eemove Properties and Personal Information

[QK][Cancel]l Apply |

FIGURE 2-4 The Details tab of the JeffTypes.dll Properties dialog box

When building an assembly, you should set the version resource fields by using custom
attributes that you apply at the assembly level in your source code. Here's what the code
that produced the version information in Figure 2-4 looks like:

using System.Reflection;

// FileDescription version information:
[assembly: AssemblyTitle("JeffTypes.d11")]

// Comments version information:
[assembly: AssemblyDescription("This assembly contains Jeff's types")]

// CompanyName version information:
[assembTly: AssemblyCompany("Wintellect")]

// ProductName version information:
[assembly: AssemblyProduct("Wintellect (R) Jeff's Type Library")]

// LegalCopyright version information:
[assembTly: AssemblyCopyright("Copyright (c) Wintellect 2010")]

// LegalTrademarks version information:
[assembly:AssemblyTrademark("JeffTypes is a registered trademark of Wintellect")]

// AssemblyVersion version information:
[assembTly: AssemblyVersion("3.0.0.0™)]

Chapter 2 Building, Packaging, Deploying, and Administering Applications and Types 55

// FILEVERSION/FileVersion version information:
[assembTly: AssemblyFileVersion("1.0.0.0")]

// PRODUCTVERSION/ProductVersion version information:
[assembTly: AssemblyInformationalVersion("2.0.0.0")]

// Set the Language field (discussed later in the "Culture" section)

[assembTy:AssemblyCulture("")]

Important Unfortunately, the Windows Explorer Properties dialog box is missing entries for
some of the attributes. In particular, it would be great if the value of the AssemblyVersion
attribute were shown because the CLR uses this value when loading assemblies, as we'll discuss
in Chapter 3.

Table 2-4 shows the version resource fields and the custom attributes that correspond to
them. If you're using AL.exe to build your assembly, you can use command-line switches to
set this information instead of using the custom attributes. The second column in Table 2-4
shows the AL.exe command-line switch that corresponds to each version resource field. Note
that the C# compiler doesn't offer these command-line switches and that, in general, using
custom attributes is the preferred way to set this information.

TABLE 2-4 Version Resource Fields and Their Corresponding AL.exe Switches and
Custom Attributes

Version Resource AL.exe Switch Custom Attribute/Comment
FILEVERSION /fileversion System.Reflection.
AssemblyFileVersionAttribute.

PRODUCTVERSION /productversion System.Reflection.
AssemblyInformationalVersionAttribute.

FILEFLAGSMASK (none) Always set to VS_FFI_FILEFLAGSMASK (defined in
WinVer.h as 0x0000003F).

FILEFLAGS (none) Always 0.

FILEOS (none) Currently always VOS__WINDOWS32.

FILETYPE /target Set to VFT_APP if /target:exe or /target:winexe
is specified; set to VFT_DLL if /target:1ibrary is
specified.

FILESUBTYPE (none) Always set to VFT2_UNKNOWN. (This field has no meaning
for VFT_APP and VFT_DLL)

AssemblyVersion /version System.Reflection.AssemblyVersionAttribute.

Comments /description System.Reflection.

AssemblyDescriptionAttribute.
CompanyName /company System.Reflection.AssemblyCompanyAttribute.
FileDescription /title System.Reflection.AssemblyTitleAttribute.

56 Part | CLR Basics

Version Resource

FileVersion
InternalName

LegalCopyright
LegalTrademarks
OriginalFilename
PrivateBuild
ProductName

ProductVersion

SpecialBuild

AL.exe Switch

/version

/out

/copyright
/trademark
/out

(none)
/product

/productversion

(none)

Custom Attribute/Comment

System.Reflection.
AssemblyFileVersionAttribute

Set to the name of the output file specified (without the
extension).

System.Reflection.AssemblyCopyrightAttribute.
System.Reflection.AssemblyTrademarkAttribute.
Set to the name of the output file (without a path).
Always blank.
System.Reflection.AssemblyProductAttribute.

System.Reflection.
AssemblyInformationalVersionAttribute

Always blank.

Important When you create a new C# project in Visual Studio, an AssemblyInfo.cs file is cre-

ated automatically for you. This file contains all of the assembly version attributes described in
this section, plus a few additional attributes that I'll cover in Chapter 3. You can simply open the
Assemblylnfo.cs file and modify your assembly-specific information. Visual Studio also provides a
dialog box that you can use to edit the assembly version information in this file. To see this dialog
box, in Solution Explorer, double-click your project’s Properties entry, and on the Application tab,
click Assembly Information; you'll see a dialog box like the one shown in Figure 2-5.

Assembly version: 3
File version: 1

GUID:

Assembly Information @
Title: JeffTypes.dil
Description: This assembly contains Jeff's types
Company: Wintellect
Product: Wintellect (R) Jeff's Type Library
Copyright: Copyright (¢) Wintellect 2010
Trademark: JeffTypes is a registered trademark of Wintellect

0 0 0

0 0 0

del88541-Tebb-41f9-bdad-3313f6e 1c249
Meutral language: (Mone)

] Make assembly COM-Visible

FIGURE 2-5 Visual Studio’s Assembly Information dialog box

Chapter 2 Building, Packaging, Deploying, and Administering Applications and Types 57
Version Numbers

In the previous section, you saw that several version numbers can be applied to an assembly.
All of these version numbers have the same format: each consists of four period-separated
parts, as shown in Table 2-5.

TABLE 2-5 Format of Version Numbers

Major Number Minor Number Build Number Revision Number
Example: 2 5 719 2

Table 2-5 shows an example of a version number: 2.5.719.2. The first two numbers make up
the public perception of the version. The public will think of this example as version 2.5 of the
assembly. The third number, 719, indicates the build of the assembly. If your company builds
its assembly every day, you should increment the build number each day as well. The last
number, 2, indicates the revision of the build. If for some reason your company has to build
an assembly twice in one day, maybe to resolve a hot bug that is halting other work, the
revision number should be incremented.

Microsoft uses this version-numbering scheme, and it's highly recommended that you use
this scheme as well. Future versions of the CLR will offer better support for loading new
versions of an assembly and for rolling back to a previous version of an assembly if a new
version actually breaks an existing application. To accomplish this versioning support, the
CLR will expect that a version of an assembly that fixes one or more bugs will have the same
major/minor version, and the build/revision numbers will indicate a servicing version contain-
ing the update(s). When loading an assembly, the CLR will automatically find the latest
installed servicing version that matches the major/minor version of the assembly being
requested.

You'll notice that an assembly has three version numbers associated with it. This is very
unfortunate and leads to a lot of confusion. Let me explain each version number’s purpose
and how it is expected to be used:

B AssemblyFileVersion This version number is stored in the Win32 version resource.
This number is for information purposes only; the CLR doesn’t examine this version
number in any way. Typically, you set the major and minor parts to represent the
version you want the public to see. Then you increment the build and revision parts
each time a build is performed. Ideally, Microsoft’s tool (such as CSC.exe or AL.exe)
would automatically update the build and revision numbers for you (based on the date
and time when the build was performed), but unfortunately, they don't. This version
number can be seen when using Windows Explorer and is typically used to identify a
specific version of an assembly when troubleshooting a customer’s system.

B AssemblylnformationalVersion This version number is also stored in the Win32
version resource, and again, this number is for information purposes only; the CLR

58

Part| CLR Basics

doesn't examine or care about it in any way. This version number exists to indicate

the version of the product that includes this assembly. For example, version 2.0 of a
product might contain several assemblies; one of these assemblies is marked as
version 1.0 since it's a new assembly that didn’t ship in version 1.0 of the same product.
Typically, you set the major and minor parts of this version number to represent the
public version of your product. Then you increment the build and revision parts each
time you package a complete product with all its assemblies.

B AssemblyVersion This version number is stored in the AssemblyDef manifest metadata
table. The CLR uses this version number when binding to strongly named assemblies
(discussed in Chapter 3). This number is extremely important and is used to uniquely
identify an assembly. When starting to develop an assembly, you should set the major,
minor, build, and revision numbers and shouldn’t change them until you're ready to
begin work on the next deployable version of your assembly. When you build an
assembly, this version number of the referenced assembly is embedded in the
AssemblyRef table’s entry. This means that an assembly is tightly bound to a specific
version of a referenced assembly.

Culture

Like version numbers, assemblies also have a culture as part of their identity. For example, |
could have an assembly that is strictly for German, another assembly for Swiss German,
another assembly for U.S. English, and so on. Cultures are identified via a string that contains
a primary and a secondary tag (as described in RFC 1766). Table 2-6 shows some examples.

TABLE 2-6 Examples of Assembly Culture Tags

Primary Tag Secondary Tag Culture

de (none) German

de AT Austrian German
de CH Swiss German

en (none) English

en GB British English
en us U.S. English

In general, if you create an assembly that contains code, you don't assign a culture to it. This is
because code doesn't usually have any culture-specific assumptions built into it. An assembly
that isn't assigned a culture is referred to as being culture neutral.

If you're designing an application that has some culture-specific resources to it, Microsoft
highly recommends that you create one assembly that contains your code and your applica-
tion’s default (or fallback) resources. When building this assembly, don't specify a culture. This
is the assembly that other assemblies will reference when they create and manipulate types it
publicly exposes.

Chapter 2 Building, Packaging, Deploying, and Administering Applications and Types 59

Now you can create one or more separate assemblies that contain only culture-specific
resources—no code at all. Assemblies that are marked with a culture are called satellite
assemblies. For these satellite assemblies, assign a culture that accurately reflects the culture
of the resources placed in the assembly. You should create one satellite assembly for each
culture you intend to support.

You'll usually use the AL.exe tool to build a satellite assembly. You won't use a compiler
because the satellite assembly should have no code contained within it. When using AL.exe,
you specify the desired culture by using the /c[ulture] : text switch, where text is a string
such as "en-US,” representing U.S. English. When you deploy a satellite assembly, you should
place it in a subdirectory whose name matches the culture text. For example, if the applica-
tion’s base directory is CAMyApp, the U.S. English satellite assembly should be placed in the
C:\MyApp\en-US subdirectory. At runtime, you access a satellite assembly’s resources by
using the System.Resources.ResourceManager class.

Note Itis possible to create a satellite assembly that contains code, though this practice is
discouraged. If you prefer, you can specify the culture by using the System.Reflection.
AssemblyCultureAttribute custom attribute instead of using AL.exe’s /culture switch, for
example, as shown here:

// Set assembly's culture to Swiss German
[assembTy:AssemblyCulture("de-CH")]

Normally, you shouldn’t build an assembly that references a satellite assembly. In other
words, an assembly’s AssemblyRef entries should all refer to culture-neutral assembilies. If you
want to access types or members contained in a satellite assembly, you should use reflection
techniques as discussed in Chapter 23, “Assembly Loading and Reflection.”

Simple Application Deployment (Privately Deployed
Assemblies)

Throughout this chapter, I've explained how you build modules and how you combine those
modules into an assembly. At this point, I'm ready to explain how to package and deploy all
of the assemblies so that users can run the application.

Assemblies don't dictate or require any special means of packaging. The easiest way to
package a set of assemblies is simply to copy all of the files directly. For example, you could
put all of the assembly files on a CD-ROM and ship it to the user with a batch file setup
program that just copies the files from the CD to a directory on the user’s hard drive. Because
the assembilies include all of the dependent assembly references and types, the user can just
run the application and the runtime will look for referenced assemblies in the application’s
directory. No modifications to the registry are necessary for the application to run. To
uninstall the application, just delete all the files—that's it!

60

Part| CLR Basics

Of course, you can package and install the assembly files by using other mechanisms, such as
.cab files (typically used for Internet download scenarios to compress files and reduce down-
load times). You can also package the assembly files into an MSI file for use by the Windows
Installer service (MSIExec.exe). Using MSI files allows assemblies to be installed on demand
the first time the CLR attempts to load the assembly. This feature isn't new to MSI; it can
perform the same demand-load functionality for unmanaged EXE and DLL files as well.

Note Using a batch file or some other simple “installation software” will get an application
onto the user’s machine; however, you'll need more sophisticated installation software to create
shortcut links on the user’s desktop and Start menu. Also, you can easily back up and restore the
application or move it from one machine to another, but the various shortcut links will require
special handling.

Of course, Visual Studio has a built-in mechanism that you can use to publish an application
by displaying a project’s Properties pages and clicking the Publish tab. You can use the
options available on the Publish tab to cause Visual Studio to produce an MSiI file and copy
the resulting MSI file to a Web site, FTP server, or file path. The MSI file can also install any
prerequisite components such as the .NET Framework or Microsoft SQL Server 2008 Express
Edition. Finally, the application can automatically check for updates and install them on the
user’s machine by taking advantage of ClickOnce technology.

Assemblies deployed to the same directory as the application are called privately deployed
assemblies because the assembly files aren’t shared with any other application (unless the
other application is also deployed to the same directory). Privately deployed assemblies are a
big win for developers, end users, and administrators because they can simply be copied to
an application’s base directory, and the CLR will load them and execute the code in them. In
addition, an application can be uninstalled by simply deleting the assemblies in its directory.
This allows simple backup and restore as well.

This simple install/move/uninstall scenario is possible because each assembly has metadata
indicating which referenced assembly should be loaded; no registry settings are required. In
addition, the referencing assembly scopes every type. This means that an application always
binds to the same type it was built and tested with; the CLR can't load a different assembly
that just happens to provide a type with the same name. This is different from COM, in which
types are recorded in the registry, making them available to any application running on the
machine.

In Chapter 3, I'll discuss how to deploy shared assemblies that are accessible by multiple
applications.

Chapter 2 Building, Packaging, Deploying, and Administering Applications and Types 61

Simple Administrative Control (Configuration)

The user or the administrator can best determine some aspects of an application’s execution.
For example, an administrator might decide to move an assembly’s files on the user’s hard
disk or to override information contained in the assembly’s manifest. Other scenarios also
exist related to versioning; I'll talk about some of these in Chapter 3.

To allow administrative control over an application, a configuration file can be placed in the
application’s directory. An application’s publisher can create and package this file. The setup
program would then install this configuration file in the application’s base directory. In ad-
dition, the machine's administrator or an end user could create or modify this file. The CLR
interprets the content of this file to alter its policies for locating and loading assembly files.

These configuration files contain Extensible Markup Language (XML) and can be associated
with an application or with the machine. Using a separate file (vs. registry settings) allows the
file to be easily backed up and also allows the administrator to copy the application to another
machine—just copy the necessary files and the administrative policy is copied too.

In Chapter 3, we'll explore this configuration file in more detail. But | want to give you a taste
of it now. Let's say that the publisher of an application wants its application deployed with
the JeffTypes assembly files in a different directory than the application’s assembly file. The
desired directory structure looks like this:

AppDir directory (contains the application’s assembly files)
Program.exe
Program.exe.config (discussed below)

AuxFiles subdirectory (contains JeffTypes’ assembly files)
JeffTypes.dl11
FUT.netmodule
RUT.netmoduTe

Since the JeffTypes files are no longer in the application’s base directory, the CLR

won't be able to locate and load these files; running the application will cause a
System.IO.FileNotFoundException exception to be thrown. To fix this, the publisher
creates an XML configuration file and deploys it to the application’s base directory. The name
of this file must be the name of the application’s main assembly file with a .config extension:
Program.exe.config, for this example. The configuration file should look like this:

<configuration>
<runtime>
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1l">
<probing privatePath="AuxFiles" />
</assemblyBinding>
</runtime>
</configuration>

62

Part| CLR Basics

Whenever the CLR attempts to locate an assembly file, it always looks in the application’s
directory first, and if it can't find the file there, it looks in the AuxFiles subdirectory. You can
specify multiple semicolon-delimited paths for the probing element’s privatePath attribute.
Each path is considered relative to the application’s base directory. You can't specify an
absolute or a relative path identifying a directory that is outside of the application’s base
directory. The idea is that an application can control its directory and its subdirectories but
has no control over other directories.

Probing for Assembly Files

When the CLR needs to locate an assembly, it scans several subdirectories. Here is
the order in which directories are probed for a culture-neutral assembly (where
firstPrivatePath and secondPrivatePath are specified via the config file's
privatePath attribute):

AppDir\AsmName.d11
AppDir\AsmName\AsmName.d11
AppDir\firstPrivatePath\AsmName.d11
AppDir\firstPrivatePath\AsmName\AsmName.d11
AppDir\secondPrivatePath\AsmName.d11
AppDir\secondPrivatePath\AsmName\AsmName.d11

In this example, no configuration file would be needed if the JeffTypes assembly files
were deployed to a subdirectory called JeffTypes, since the CLR would automatically
scan for a subdirectory whose name matches the name of the assembly being searched
for.

If the assembly can’t be found in any of the preceding subdirectories, the CLR starts
all over, using an .exe extension instead of a .dll extension. If the assembly still can't be
found, a FileNotFoundException is thrown.

For satellite assemblies, similar rules are followed except that the assembly is expected
to be in a subdirectory, whose name matches the culture, of the application’s base
directory. For example, if AsmName.dll has a culture of “en-US" applied to it, the
following directories are probed:

C:\AppDir\en-US\AsmName.d11
C:\AppDir\en-US\AsmName\AsmName.d11
C:\AppDir\firstPrivatePath\en-US\AsmName.d11
C:\AppDir\firstPrivatePath\en-US\AsmName\AsmName.d11
C:\AppDir\secondPrivatePath\en-US\AsmName.d11
C:\AppDir\secondPrivatePath\en-US\AsmName\AsmName.d11

C:\AppDir\en-US\AsmName. exe
C:\AppDir\en-US\AsmName\AsmName . exe
C:\AppDir\firstPrivatePath\en-US\AsmName.exe
C:\AppDir\firstPrivatePath\en-US\AsmName\AsmName.exe
C:\AppDir\secondPrivatePath\en-US\AsmName.exe
C:\AppDir\secondPrivatePath\en-US\AsmName\AsmName . exe

Chapter 2 Building, Packaging, Deploying, and Administering Applications and Types 63

C:\AppDir\en\AsmName.d11
C:\AppDir\en\AsmName\AsmName.d11
C:\AppDir\firstPrivatePath\en\AsmName.d11
C:\AppDir\firstPrivatePath\en\AsmName\AsmName.d11
C:\AppDir\secondPrivatePath\en\AsmName.d11
C:\AppDir\secondPrivatePath\en\AsmName\AsmName.d11

C:\AppDir\en\AsmName.exe
C:\AppDir\en\AsmName\AsmName . exe
C:\AppDir\firstPrivatePath\en\AsmName.exe
C:\AppDir\firstPrivatePath\en\AsmName\AsmName.exe
C:\AppDir\secondPrivatePath\en\AsmName.exe
C:\AppDir\secondPrivatePath\en\AsmName\AsmName.exe

As you can see, the CLR probes for files with either an .exe or .dll file extension. Since
probing can be very time-consuming (especially when the CLR is looking for files over a
network), in the XML configuration file, you can specify one or more culture elements
to limit the probing that the CLR performs when looking for satellite assemblies.

The name and location of this XML configuration file is different depending on the applica-
tion type:

B For executable applications (EXEs), the configuration file must be in the application’s
base directory, and it must be the name of the EXE file with “.config” appended to it.

B For Microsoft ASP.NET Web Form applications, the file must be in the Web application’s
virtual root directory and is always named Web.config. In addition, subdirectories can
also contain their own Web.config file, and the configuration settings are inherited.

For example, a Web application located at http.//Wintellect.com/Training would use
the settings in the Web.config files contained in the virtual root directory and in its
Training subdirectory.

As mentioned at the beginning of this section, configuration settings apply to a particular
application and to the machine. When you install the .NET Framework, it creates a Machine.
config file. There is one Machine.config file per version of the CLR you have installed on the
machine.

The Machine.config file is located in the following directory:
%SystemRoot%\Microsoft. NET\Framework\version\CONFIG

Of course, %SystemRoot% identifies your Windows directory (usually CAWINDOWS), and
version is a version number identifying a specific version of the .NET Framework (something
like V4.0 #####).

64

Part| CLR Basics

Settings in the Machine.config file represent default settings that affect all applications run-
ning on the machine. An administrator can create a machine-wide policy by modifying the
single Machine.config file. However, administrators and users should avoid modifying this file
because it contains many settings related to various things, making it much more difficult to
navigate. Plus, you want the application’s settings to be backed up and restored, and keeping
an application’s settings in the application-specific configuration file enables this.

Chapter 3
Shared Assemblies and Strongly
Named Assemblies

Two Kinds of Assemblies, Two Kinds of Deployment....................... 66
Giving an Assembly aStrong Name. i, 67
The Global Assembly Cache 73
Building an Assembly That References a Strongly Named Assembly 75
Strongly Named Assemblies Are Tamper-Resistant 76
Delayed Signing.ttt e e 77
Privately Deploying Strongly Named Assemblies.......................... 80
How the Runtime Resolves Type References 81
Advanced Administrative Control (Configuration) 84

In Chapter 2, "Building, Packaging, Deploying, and Administering Applications and Types,”

| talked about the steps required to build, package, and deploy an assembly. | focused on
what's called private deployment, in which assemblies are placed in the application’s base
directory (or a subdirectory thereof) for the application’s sole use. Deploying assemblies pri-
vately gives a company a large degree of control over the naming, versioning, and behavior
of the assembly.

In this chapter, I'll concentrate on creating assemblies that can be accessed by multiple
applications. The assemblies that ship with the Microsoft .NET Framework are an excellent
example of globally deployed assemblies, because all managed applications use types
defined by Microsoft in the .NET Framework Class Library (FCL).

As | mentioned in Chapter 2, Microsoft Windows has a reputation for being unstable. The
main reason for this reputation is the fact that applications are built and tested using code
implemented by someone else. After all, when you write an application for Windows, your
application is calling into code written by Microsoft developers. Also, a large number of com-
panies make controls that application developers can incorporate into their own applications.
In fact, the .NET Framework encourages this, and many control vendors have appeared over
time.

As time marches on, Microsoft developers and control developers modify their code: they fix
bugs, patch security flaws, add features, and so on. Eventually, the new code makes its way

65

66

Part| CLR Basics

onto the user’s machine. The user’s applications that were previously installed and working
fine are no longer using the same code that the applications were built and tested with. As a
result, the applications’ behavior is no longer predictable, which contributes to the instability
of Windows.

File versioning is a very difficult problem to solve. In fact, | assert that if you take a file that

is used by other code files and change just one bit in the file—changeaOtoaloraltoa
0—there's absolutely no way to guarantee that code that used the file before it was changed
will now work just as well if it uses the new version of the file. One of the reasons why this
statement is true is that a lot of applications exploit bugs, either knowingly or unknowingly. If
a later version of a file fixes a bug, the application no longer runs as expected.

So here’s the problem: How do you fix bugs and add features to a file and also guarantee
that you don't break some application? I've given this question a lot of thought and have
come to one conclusion: It’s just not possible. But, obviously, this answer isn't good enough.
Files will ship with bugs, and companies will always want to provide new features. There must
be a way to distribute new files with the hope that the applications will work just fine. And if
the application doesn't work fine, there has to be an easy way to restore the application to its
last-known good state.

In this chapter, I'll explain the infrastructure that the .NET Framework has in place to deal with
versioning problems. Let me warn you: What I'm about to describe is complicated. I'm going
to talk about a lot of algorithms, rules, and policies that are built into the common language
runtime (CLR). I'm also going to mention a lot of tools and utilities that the application devel-
oper must use. This stuff is complicated because, as I've mentioned, the versioning problem
is difficult to address and to solve.

Two Kinds of Assemblies, Two Kinds of Deployment

WV

The CLR supports two kinds of assemblies: weakly named assemblies and strongly named
assemblies.

Important By the way, you won't find the term weakly named assembly in any of the NET
Framework documentation. Why? Because | made it up. In fact, the documentation has no term
to identify a weakly named assembly. | decided to coin the term so that | can talk about assem-
blies without any ambiguity as to what kind of assembly I'm referring to.

Weakly named assemblies and strongly named assemblies are structurally identical—that is,
they use the same portable executable (PE) file format, PE32(+) header, CLR header, metadata,
manifest tables, and Intermediate Language (IL) that we examined in Chapter 1, “The CLR'’s
Execution Model,” and Chapter 2. And you use the same tools, such as the C# compiler and
AL.exe, to build both kinds of assemblies. The real difference between weakly named and

Chapter 3 Shared Assemblies and Strongly Named Assemblies 67

strongly named assembilies is that a strongly named assembly is signed with a publisher’s
public/private key pair that uniquely identifies the assembly’s publisher. This key pair allows
the assembly to be uniquely identified, secured, and versioned, and it allows the assembly to
be deployed anywhere on the user’s machine or even on the Internet. This ability to uniquely
identify an assembly allows the CLR to enforce certain known-to-be-safe policies when an
application tries to bind to a strongly named assembly. This chapter is dedicated to explain-
ing what strongly named assemblies are and what policies the CLR applies to them.

An assembly can be deployed in two ways: privately or globally. A privately deployed assembly
is an assembly that is deployed in the application’s base directory or one of its subdirectories.
A weakly named assembly can be deployed only privately. | talked about privately deployed
assemblies in Chapter 2. A globally deployed assembly is an assembly that is deployed into
some well-known location that the CLR looks in when it's searching for the assembly. A
strongly named assembly can be deployed privately or globally. I'll explain how to create and
deploy strongly named assemblies in this chapter. Table 3-1 summarizes the kinds of assem-
blies and the ways that they can be deployed.

TABLE 3-1 How Weakly and Strongly Named Assemblies Can Be Deployed

Kind of Assembly Can Be Privately Deployed Can Be Globally Deployed
Weakly named Yes No
Strongly named Yes Yes

Note Itis highly recommended that you strongly name all of your assemblies. In fact, it is likely
that future versions of the CLR will require all assemblies to be strongly named, and the ability
to create weakly named assemblies will be deprecated. Weakly named assemblies are a problem
because it is possible to have several different assemblies all with the same weak name. On the
other hand, giving an assembly a strong name uniquely identifies that assembly. If the CLR can
uniquely identify an assembly, it can apply more policies to it related to versioning or backward
compatibility. It is Microsoft's plan to endow future versions of the CLR with these policies to
make versioning simpler. In fact, just eliminating the ability to make weakly named assemblies
makes understanding the CLR’s versioning policies simpler.

Giving an Assembly a Strong Name

If multiple applications are going to access an assembly, the assembly must be placed in a
well-known directory, and the CLR must know to look in this directory automatically when
a reference to the assembly is detected. However, we have a problem: Two (or more)
companies could produce assemblies that have the same file name. Then, if both of these
assemblies get copied into the same well-known directory, the last one installed wins, and
all of the applications that were using the old assembly no longer function as desired. (This
is exactly why DLL hell exists today in Windows, in which shared DLLs are all just copied into
the System32 directory.)

68

Part| CLR Basics

Obviously, differentiating assemblies simply by using a file name isn't good enough. The CLR
needs to support some mechanism that allows assemblies to be uniquely identified. This is
what the term strongly named assembly refers to. A strongly named assembly consists of four
attributes that uniquely identify the assembly: a file name (without an extension), a version
number, a culture identity, and a public key. Since public keys are very large numbers, we fre-
quently use a small hash value derived from a public key. This hash value is called a public key
token. The following assembly identity strings (sometimes called an assembly display name)
identify four completely different assembly files:

"MyTypes, Version=1.0.8123.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
"MyTypes, Version=1.0.8123.0, Culture="en-US", PublicKeyToken=b77a5c561934e089"
"MyTypes, Version=2.0.1234.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
"MyTypes, Version=1.0.8123.0, Culture=neutral, PublicKeyToken=b03f5f7f11ld50a3a"

The first string identifies an assembly file called MyTypes.exe or MyTypes.dll (you can't actual-
ly determine the file extension from an assembly identity string). The company producing the
assembly is creating version 1.0.8123.0 of this assembly, and nothing in the assembly is sensi-
tive to any one culture because Culture is set to neutral. Of course, any company could
produce a MyTypes.dll (or MyTypes.exe) assembly file that is marked with a version number
of 1.0.8123.0 and a neutral culture.

There must be a way to distinguish this company’s assembly from another company's
assembly that happens to have the same attributes. For several reasons, Microsoft chose

to use standard public/private key cryptographic technologies instead of any other unique
identification technique such as GUIDs, URLs, or URNs. Specifically, cryptographic techniques
provide a way to check the integrity of the assembly’s bits as they are installed on a machine,
and they also allow permissions to be granted on a per-publisher basis. I'll discuss these tech-
niques later in this chapter. So a company that wants to uniquely mark its assemblies must
create a public/private key pair. Then the public key can be associated with the assembly.

No two companies should have the same public/private key pair, and this distinction is what
allows two companies to create assemblies that have the same name, version, and culture
without causing any conflict.

Note The System.Reflection.AssemblyName class is a helper class that makes it easy for
you to build an assembly name and to obtain the various parts of an assembly’s name. The class
offers several public instance properties, such as CultureInfo, Ful1Name, KeyPair, Name,

and Version. The class also offers a few public instance methods, such as GetPub11icKey,
GetPublicKeyToken, SetPublicKey, and SetPublicKeyToken.

In Chapter 2, | showed you how to name an assembly file and how to apply an assembly ver-
sion number and a culture. A weakly named assembly can have assembly version and culture

Chapter 3 Shared Assemblies and Strongly Named Assemblies 69

attributes embedded in the manifest metadata; however, the CLR always ignores the version
number and uses only the culture information when it's probing subdirectories looking for
the satellite assembly. Because weakly named assemblies are always privately deployed,
the CLR simply uses the name of the assembly (tacking on a .dll or an .exe extension) when
searching for the assembly’s file in the application’s base directory or in any of the applica-
tion’s subdirectories specified in the Extensible Markup Language (XML) configuration file's
probing element’s privatePath XML attribute.

A strongly named assembly has a file name, an assembly version, and a culture. In addition,
a strongly named assembly is signed with the publisher’s private key.

The first step in creating a strongly named assembly is to obtain a key by using the Strong
Name utility, SN.exe, that ships with the .NET Framework SDK and Microsoft Visual Studio.
This utility offers a whole slew of features depending on the command-line switch you
specify. Note that all SN.exe’s command-line switches are case-sensitive. To generate a
public/private key pair, you run SN.exe as follows:

SN -k MyCompany.snk

This line tells SN.exe to create a file called MyCompany.snk. This file will contain the public
and private key numbers persisted in a binary format.

Public key numbers are very big. If you want to, after creating the file that contains the public
and private key, you can use the SN.exe utility again to see the actual public key. To do this,
you must execute the SN.exe utility twice. First, you invoke SN.exe with the -p switch to
create a file that contains only the public key (MyCompany.PublicKey):

SN —p MyCompany.snk MyCompany.PublicKey

Then, you invoke SN.exe, passing it the —tp switch and the file that contains just the public
key:

SN -tp MyCompany.PublicKey
When | execute this line, | get the following output:

Microsoft (R) .NET Framework Strong Name Utility Version 4.0.20928.1
Copyright (c) Microsoft Corporation. A1l rights reserved.

PubTlic key is
00240000048000009400000006020000002400005253413100040000010001003f9d621b702111
850be453b92bd6a58c020eb7b804175d67ab302047fc786ffa3797b669215afb4d814a6f294010
b233bacOb8c8098ba809855da256d964c0d07f16463d918d651a4846a62317328cac893626a550
69f21a125bc03193261176dd629eace6c90d36858de3fch781bfc8b817936a567cad608ae672b6
1fb80eb0

Public key token is 3db32f38c8b42c9a

The SN.exe utility doesn’t offer any way for you to display the private key.

70

Part| CLR Basics

The size of public keys makes them difficult to work with. To make things easier for the de-
veloper (and for end users too), public key tokens were created. A public key token is a 64-bit
hash of the public key. SN.exe’s —tp switch shows the public key token that corresponds to
the complete public key at the end of its output.

Now that you know how to create a public/private key pair, creating a strongly named
assembly is simple. When you compile your assembly, you use the /keyfile:<file>
compiler switch:

csc /keyfile:MyCompany.snk Program.cs

When the C# compiler sees this switch, the compiler opens the specified file (MyCompany.snk),
signs the assembly with the private key, and embeds the public key in the manifest. Note that
you sign only the assembly file that contains the manifest; the assembly’s other files can't be
signed explicitly.

If you are using Visual Studio, you can create a new public/private key file by displaying the

properties for your project, clicking the Signing tab, selecting the Sign The Assembly check

box, and then choosing the <New...> option from the Choose A Strong Name Key File com-
bo box.

Here's what it means to sign a file: When you build a strongly named assembly, the assembly’s
FileDef manifest metadata table includes the list of all the files that make up the assembly.
As each file's name is added to the manifest, the file's contents are hashed, and this hash
value is stored along with the file's name in the FileDef table. You can override the default
hash algorithm used with AL.exe’s /algid switch or apply the assembly-level
System.Reflection.AssemblyAlgorithmIdAttribute custom attribute in one of the
assembly’s source code files. By default, a SHA-1 algorithm is used, and this should be
sufficient for almost all applications.

After the PE file containing the manifest is built, the PE file's entire contents (except for any
Authenticode Signature, the assembly’s strong name data, and the PE header checksum) are
hashed, as shown in Figure 3-1. The hash algorithm used here is always SHA-1 and can't be
overridden. This hash value is signed with the publisher’s private key, and the resulting RSA
digital signature is stored in a reserved section (not included in the hash) within the PE file.
The CLR header of the PE file is updated to reflect where the digital signature is embedded
within the file.

Chapter 3 Shared Assemblies and Strongly Named Assemblies 71

Calculus.dll
IL | —
Hash RSA digital
N N
Metadata Hash [value | signed with | signature
PE file private key
Manifest
Assembly files (self and RUT.netmodule)
Exported types (self and RUT.netmodule)
| Public key |
CLR header Embedded
| RSA digital signature in PE file

Embedded
in PE file

| Public key |

FIGURE 3-1 Signing an assembly

The publisher's public key is also embedded into the AssemblyDef manifest metadata table
in this PE file. The combination of the file name, the assembly version, the culture, and the
public key gives this assembly a strong name, which is guaranteed to be unique. There is no
way that two companies could each produce an assembly named OurLibrary with the same
public/private keys unless the companies share this key pair with each other.

At this point, the assembly and all of its files are ready to be packaged and distributed.

As described in Chapter 2, when you compile your source code, the compiler detects the
types and members that your code references. You must specify the referenced assemblies
to the compiler. For the C# compiler, you use the /reference compiler switch. Part of the
compiler’s job is to emit an AssemblyRef metadata table inside the resulting managed mod-
ule. Each entry in the AssemblyRef metadata table indicates the referenced assembly’s name
(without path and extension), version number, culture, and public key information.

W Important Because public keys are such large numbers, and a single assembly might reference
many assemblies, a large percentage of the resulting file's total size would be occupied with pub-
lic key information. To conserve storage space, Microsoft hashes the public key and takes the last
8 bytes of the hashed value. These reduced public key values—known as public key tokens—are
what are actually stored in an AssemblyRef table. In general, developers and end users will see
public key token values much more frequently than full public key values.

Note, however, that the CLR never uses public key tokens when making security or trust decisions
because it is possible that several public keys could hash to a single public key token.

The AssemblyRef metadata information (obtained by using ILDasm.exe) for the JeffTypes.dl|
file that | discussed in Chapter 2 is shown here:

72

Part| CLR Basics

AssemblyRef #1 (23000001)

Token: 0x23000001

Public Key or Token: b7 7a 5c 56 19 34 e0 89
Name: mscorlib

Version: 4.0.0.0

Major Version: 0x00000004
Minor Version: 0x00000000
Build Number: 0x00000000
Revision Number: 0x00000000
Locale: <null>

HashValue Blob:

Flags: [none] (00000000)

From this, you can see that JeffTypes.dll references a type that is contained in an assembly
matching the following attributes:

"MSCorLib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
Unfortunately, ILDasm.exe uses the term Locale when it really should be using Culture.
If you look at JeffTypes.dil's AssemblyDef metadata table, you see the following:

Assembly

Token: 0x20000001

Name : JeffTypes

Public Key

Hash Algorithm : 0x00008004
Version: 3.0.0.0

Major Version: 0x00000003
Minor Version: 0x00000000
Build Number: 0x00000000
Revision Number: 0x00000000
Locale: <null>

Flags : [none] (00000000)

This is equivalent to the following:

"JeffTypes, Version=3.0.0.0, Culture=neutral, PublicKeyToken=null"

In this line, no public key token is specified because in Chapter 2, the JeffTypes.dll assembly
wasn't signed with a public/private key pair, making it a weakly named assembly. If | had
used SN.exe to create a key file compiled with the /keyfile compiler switch, the resulting
assembly would have been signed. If | had then used ILDasm.exe to explore the new assem-
bly’s metadata, the AssemblyDef entry would have bytes appearing after the Public Key field,
and the assembly would be strongly named. By the way, the AssemblyDef entry always stores
the full public key, not the public key token. The full public key is necessary to ensure that the
file hasn't been tampered with. I'll explain the tamper resistance of strongly named assem-
blies later in this chapter.

Chapter 3 Shared Assemblies and Strongly Named Assemblies 73

The Global Assembly Cache

Now that you know how to create a strongly named assembly, it's time to learn how to de-
ploy this assembly and how the CLR uses the information to locate and load the assembly.

If an assembly is to be accessed by multiple applications, the assembly must be placed into a
well-known directory, and the CLR must know to look in this directory automatically when a

reference to the assembly is detected. This well-known location is called the global assembly
cache (GAC), which can usually be found in the following directory (assuming that Windows

is installed in the C:\Windows directory):

C:\Windows\Assembly

The GAC directory is structured: It contains many subdirectories, and an algorithm is used to
generate the names of these subdirectories. You should never manually copy assembly files
into the GAC; instead, you should use tools to accomplish this task. These tools know the
GAC's internal structure and how to generate the proper subdirectory names.

While developing and testing, the most common tool for installing a strongly named assembly
into the GAC is GACUtil.exe. Running this tool without any command-line arguments yields
the following usage:

Microsoft (R) .NET Global Assembly Cache Utility. Version 4.0.20928.1
Copyright (c) Microsoft Corporation. A1l rights reserved.

Usage: Gacutil <command> [<options>]
Commands:
/i <assembly_path> [/r <...> 1 [/f]
Installs an assembly to the global assembly cache.

/i1 <assembly_path_Tlist_file> [/r <...> 1 [/f]
Installs one or more assemblies to the global assembly cache.

/u <assembly_display_name> [/r <...>]
Uninstalls an assembly from the global assembly cache.

/ul <assembly_display_name_list_file> [/r <...>]
Uninstalls one or more assemblies from the global assembly cache.

/1 [<assembly_name>]
List the global assembly cache filtered by <assembly_name>

/1r [<assembly_name>]
List the global assembly cache with all traced references.

/cdl
Deletes the contents of the download cache

/1d1
Lists the contents of the download cache

74

Part| CLR Basics
/?

Displays a detailed help screen

Options:
/r <reference_scheme> <reference_id> <description>
Specifies a traced reference to install (/i, /i1) or uninstall (/u, /ul).

/f
Forces reinstall of an assembly.

/nologo
Suppresses display of the logo banner

/silent
Suppresses display of all output

As you can see, you can invoke GACUtil.exe, specifying the /1 switch to install an assembly
into the GAC, and you can use GACUtil.exe's /u switch to uninstall an assembly from the GAC.
Note that you can't ever place a weakly named assembly into the GAC. If you pass the file
name of a weakly named assembly to GACUtil.exe, it displays the following error message:
“Failure adding assembly to the cache: Attempt to install an assembly with-
out a strong name.”

Note By default, the GAC can be manipulated only by a user belonging to the Windows
Administrators group. GACUtil.exe will fail to install or uninstall an assembly if the user invoking
the execution of the utility isn't a member of this group.

Using GACUtil.exe's /1 switch is very convenient for developer testing. However, if you use
GACUtil.exe to deploy an assembly in a production environment, it's recommended that you
use GACUtil.exe's /r switch in addition to specifying the /1 or /u switch to install or uninstall
the assembly. The /r switch integrates the assembly with the Windows install and uninstall
engine. Basically, it tells the system which application requires the assembly and then ties
the application and the assembly together.

Note If a strongly named assembly is packaged in a cabinet (.cab) file or is compressed in
some way, the assembly’s file must first be decompressed to temporary file(s) before you use
GACUtil.exe to install the assembly’s files into the GAC. Once the assembly’s files have been
installed, the temporary file(s) can be deleted.

The GACUtil.exe tool doesn’t ship with the end-user .NET Framework redistributable pack-
age. If your application includes some assemblies that you want deployed into the GAC, you
should use the Windows Installer (MSI), because MSI is the only tool that is guaranteed to be
on end-user machines and capable of installing assemblies into the GAC.

Chapter 3 Shared Assemblies and Strongly Named Assemblies 75

W Important Globally deploying assembly files into the GAC is a form of registering the assembly,
although the actual Windows registry isn't affected in any way. Installing assemblies into the GAC
breaks the goal of simple application installation, backup, restore, moving, and uninstall. So it is
recommended that you avoid global deployment and use private deployment whenever possible.

What is the purpose of “registering” an assembly in the GAC? Well, say two companies each
produce an OurLibrary assembly consisting of one file: OurLibrary.dll. Obviously, both of
these files can't go in the same directory because the last one installed would overwrite the
first one, surely breaking some application. When you install an assembly into the GAC, dedi-
cated subdirectories are created under the C:\Windows\Assembly directory, and the assem-
bly files are copied into one of these subdirectories.

Normally, no one examines the GAC's subdirectories, so the structure of the GAC shouldn't
really matter to you. As long as the tools and the CLR know the structure, all is good.

Building an Assembly That References a Strongly Named
Assembly

Whenever you build an assembly, the assembly will have references to other strongly named
assembilies. This is true because System.0Object is defined in MSCorLib.dll, which is strongly
named. However, it's likely that an assembly will reference types in other strongly named as-
semblies published either by Microsoft, a third party, or your own organization. In Chapter 2,
| showed you how to use CSC.exe's /reference compiler switch to specify the assembly file
names you want to reference. If the file name is a full path, CSC.exe loads the specified file
and uses its metadata information to build the assembly. As mentioned in Chapter 2, if you
specify a file name without a path, CSC.exe attempts to find the assembly by looking in the
following directories (in order of their presentation here):

1. Working directory.

2. The directory that contains the CSC.exe file itself. This directory also contains the CLR
DLLs.

3. Any directories specified using the /11ib compiler switch.

4. Any directories specified using the LIB environment variable.

So if you're building an assembly that references Microsoft’'s System.Drawing.dll, you can
specify the /reference:System.Drawing.d11 switch when invoking CSC.exe. The compiler
will examine the directories shown earlier and will find the System.Drawing.dll file in the
directory that contains the CSC.exe file itself, which is the same directory that contains the
DLLs for the version of the CLR the compiler is tied to. Even though this is the directory
where the assembly is found at compile time, this isn't the directory where the assembly will
be loaded from at runtime.

76

Part| CLR Basics

You see, when you install the .NET Framework, two copies of Microsoft's assembly files are
actually installed. One set is installed into the compiler/CLR directory, and another set is in-
stalled into a GAC subdirectory. The files in the compiler/CLR directory exist so that you can
easily build your assembly, whereas the copies in the GAC exist so that they can be loaded at
runtime.

The reason that CSC.exe doesn't look in the GAC for referenced assemblies is that you'd
have to know the path to the assembly file and the structure of the GAC is undocumented.
Alternatively, CSC.exe could allow you to specify a still long but slightly nicer-looking
string, such as "System.Drawing, Version=v4.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a.” Both of these solutions were deemed worse than
having the assembly files installed twice on the user’s hard drive.

Note When building an assembly, you may want to refer to another assembly that has an x86
as well as an x64 version of itself available. Fortunately, the GAC subdirectories can actually hold
an x86 and an x64 version of the same assembly. However, since the assemblies have the same
file name, you cannot have different versions of these assemblies in the compiler/CLR directory.
However, it shouldn’t matter. When you install the .NET Framework on a machine, the x86, x64,
or I1A64 version of the assemblies are installed in the compiler/CLR directory. When you build an
assembly, you can reference whatever version of the files were installed because all of the versions
contain identical metadata and differ only by their code. At runtime, the proper version of the
assembly will be loaded from the GAC. I'll discuss how the CLR determines where to load the
assembly from at runtime later in this chapter.

Strongly Named Assemblies Are Tamper-Resistant

Signing an assembly with a private key ensures that the holder of the corresponding public
key produced the assembly. When the assembly is installed into the GAC, the system hashes
the contents of the file containing the manifest and compares the hash value with the RSA
digital signature value embedded within the PE file (after unsigning it with the public key). If
the values are identical, the file’s contents haven't been tampered with, and you know that
you have the public key that corresponds to the publisher’s private key. In addition, the system
hashes the contents of the assembly’s other files and compares the hash values with the hash
values stored in the manifest file's FileDef table. If any of the hash values don’t match, at least
one of the assembly’s files has been tampered with, and the assembly will fail to install into
the GAC.

Important This mechanism ensures only that a file’s content hasn't been tampered with. The
mechanism doesn’t allow you to tell who the publisher is unless you're absolutely positive that
the publisher produced the public key you have and you're sure that the publisher’s private key
was never compromised. Another way to know the identity of the publisher is if the publisher
associated its identity with the assembly by using Microsoft's Authenticode technology.

Chapter 3 Shared Assemblies and Strongly Named Assemblies 77

When an application needs to bind to an assembly, the CLR uses the referenced assembly's
properties (name, version, culture, and public key) to locate the assembly in the GAC. If the
referenced assembly can be found, its containing subdirectory is returned, and the file hold-
ing the manifest is loaded. Finding the assembly this way assures the caller that the assembly
loaded at runtime came from the same publisher that built the assembly the code was
compiled against. This assurance is possible because the public key token in the referencing
assembly’s AssemblyRef table corresponds to the public key in the referenced assembly’s
AssemblyDef table. If the referenced assembly isn't in the GAC, the CLR looks in the appli-
cation’s base directory and then in any of the private paths identified in the application’s
configuration file; then, if the application was installed using MSI, the CLR asks MSI to locate
the assembly. If the assembly can’t be found in any of these locations, the bind fails, and a
System.IO.FileNotFoundException is thrown.

When strongly named assembly files are loaded from a location other than the GAC (via
the application’s base directory or via a codeBase element in a configuration file), the CLR
compares hash values when the assembly is loaded. In other words, a hash of the file is
performed every time an application executes and loads the assembly. This performance hit
is a tradeoff for being certain that the assembly file's content hasn't been tampered with.
When the CLR detects mismatched hash values at runtime, it throws a
System.I0.FileLoadException.

Note When a strongly named assembly is installed in the GAC, the system ensures that the file
containing the manifest hasn't been tampered with. This check occurs only once, at installation
time. In addition, to improve performance, the CLR does not check if a strongly named assembly
has been tampered with if the assembly is fully trusted and is being loaded into a fully trusted
AppDomain. On the other hand, when a strongly named assembly is loaded from a directory
other than the GAC, the CLR verifies the assembly’s manifest file to ensure that the file's con-
tents have not been tampered with, causing an additional performance hit every time this file is
loaded.

Delayed Signing

Earlier in this chapter, | discussed how the SN.exe tool can produce public/private key pairs.
This tool generates the keys by making calls into the Crypto API provided by Windows. These
keys can be stored in files or other storage devices. For example, large organizations (such as
Microsoft) will maintain the returned private key in a hardware device that stays locked in a
vault; only a few people in the company have access to the private key. This precaution pre-
vents the private key from being compromised and ensures the key's integrity. The public key
is, well, public and freely distributed.

When you're ready to package your strongly named assembly, you'll have to use the secure
private key to sign it. However, while developing and testing your assembly, gaining access to

78

Part| CLR Basics

the secure private key can be a hassle. For this reason, the .NET Framework supports delayed
signing, sometimes referred to as partial signing. Delayed signing allows you to build an as-
sembly by using only your company’s public key; the private key isn't necessary. Using the
public key allows assemblies that reference your assembly to embed the correct public key
value in their AssemblyRef metadata entries. It also allows the assembly to be placed in the
GAC appropriately. If you don't sign the file with your company'’s private key, you lose all of
the tampering protection afforded to you because the assembly’s files won't be hashed, and
a digital signature won't be embedded in the file. This loss of protection shouldn’t be a prob-
lem, however, because you use delayed signing only while developing your own assembly,
not when you're ready to package and deploy the assembly.

Basically, you get your company’s public key value in a file and pass the file name to whatever
utility you use to build the assembly. (As | have shown earlier in this chapter, you can use
SN.exe's —p switch to extract a public key from a file that contains a public/private key pair.)
You must also tell the tool that you want the assembly to be delay signed, meaning

that you're not supplying a private key. For the C# compiler, you do this by specifying the
/delaysign compiler switch. In Visual Studio, you display the properties for your project,
click the Signing tab, and then select the Delay Sign Only check box. If you're using AL.exe,
you can specify the /delay[sign] command-line switch.

When the compiler or AL.exe detects that you're delay signing an assembly, it will emit the
assembly’s AssemblyDef manifest entry, which will contain the assembly’s public key. Again,
the presence of the public key allows the assembly to be placed in the GAC. It also allows you
to build other assemblies that reference this assembly; the referencing assemblies will have
the correct public key in their AssemblyRef metadata table entries. When creating the result-
ing assembly, space is left in the resulting PE file for the RSA digital signature. (The utility can
determine how much space is necessary from the size of the public key.) Note that the file's
contents won't be hashed at this time either.

At this point, the resulting assembly doesn’t have a valid signature. Attempting to install the
assembly into the GAC will fail because a hash of the file's contents hasn't been done—the
file appears to have been tampered with. On every machine on which the assembly needs to
be installed into the GAC, you must prevent the system from verifying the integrity of the
assembly’s files. To do this, you use the SN.exe utility, specifying the -Vr command-line
switch. Executing SN.exe with this switch also tells the CLR to skip checking hash values for
any of the assembly’s files when loaded at runtime. Internally, SN's -Vr switch adds the
assembly’s identity under the following registry subkey: HKEY_LOCAL_MACHINE\SOFTWARE
\Microsoft\StrongName\Verification.

Important When using any utility that manipulates the registry, make sure that you run

the 64-bit version of the utility on a 64-bit machine. By default, the 32-bit x86 utilities are
installed in C:\Program Files (x86)\Microsoft SDKs\Windows\v7.0A\bin\NETFX 4.0 Tools, and

the 64-bit x64 utilities are installed in C:\Program Files (x86)\Microsoft SDKs\Windows\v7.0A\bin
\NETFX 4.0 Tools\x64.

Chapter 3 Shared Assemblies and Strongly Named Assemblies 79

When you're finished developing and testing the assembly, you need to officially sign it so
that you can package and deploy it. To sign the assembly, use the SN.exe utility again, this
time with the -R switch and the name of the file that contains the actual private key. The -R
switch causes SN.exe to hash the file's contents, sign it with the private key, and embed the
RSA digital signature in the file where the space for it had previously been reserved. After
this step, you can deploy the fully signed assembly. On the developing and testing machines,
don't forget to turn verification of this assembly back on by using SN.exe’s -Vu or -Vx
command-line switch. The following list summarizes the steps discussed in this section to
develop your assembly by using the delayed signing technique:

1. While developing an assembly, obtain a file that contains only your company’s public
key, and compile your assembly by using the /keyfile and /delaysign compiler
switches:

csc /keyfile:MyCompany.PublicKey /delaysign MyAssembly.cs

2. After building the assembly, execute the following line so that the CLR will trust the
assembly’s bytes without performing the hash and comparison. This allows you to in-
stall the assembly in the GAC (if you desire). Now, you can build other assemblies that
reference the assembly, and you can test the assembly. Note that you have to execute
the following command line only once per machine; it's not necessary to perform this
step each time you build your assembly.

SN.exe -Vr MyAssembly.dT1

3. When ready to package and deploy the assembly, obtain your company’s private key,
and then execute the line below. You can install this new version in the GAC if you
desire, but don't attempt to install it in the GAC until executing step 4.

SN.exe -R MyAssembly.d11 MyCompany.PrivateKey

4. To test in real conditions, turn verification back on by executing the following com-
mand line:

SN -Vu MyAssembly.d11

At the beginning of this section, | mentioned how organizations keep their key pairs in a
hardware device such as a smart card. To keep these keys secure, you must make sure that
the key values are never persisted in a disk file. Cryptographic service providers (CSPs) offer
containers that abstract the location of these keys. Microsoft, for example, uses a CSP that
has a container that, when accessed, obtains the private key from a hardware device.

If your public/private key pair is in a CSP container, you'll have to specify different switches

to the CSC.exe, AL.exe, and SN.exe programs: When compiling (CSC.exe), specify the
/keycontainer switch instead of the /keyfile switch; when linking (AL.exe), specify its
/keyname switch instead of its /keyfile switch; and when using the Strong Name program
(SN.exe) to add a private key to a delay-signed assembly, specify the -Rc switch instead of the
-R switch. SN.exe offers additional switches that allow you to perform operations with a CSP.

80

WV

Part| CLR Basics

Important Delayed signing is also useful whenever you want to perform some other operation
to an assembly before you package it. For example, you may want to run an obfuscator over your
assembly. You can't obfuscate an assembly after it's been fully signed because the hash value

will be incorrect. So, if you want to obfuscate an assembly file or perform any other type of post-
build operation, you should use delayed signing, perform the post-build operation, and then run
SN.exe with the -R or —-Rc switch to complete the signing process of the assembly with all of its
hashing.

Privately Deploying Strongly Named Assemblies

Installing assemblies into the GAC offers several benefits. The GAC enables many applications
to share assemblies, reducing physical memory usage on the whole. In addition, it's easy to
deploy a new version of the assembly into the GAC and have all applications use the new
version via a publisher policy (described later in this chapter). The GAC also provides side-by-
side management for an assembly’s different versions. However, the GAC is usually secured
so that only an administrator can install an assembly into it. Also, installing into the GAC
breaks the simple copy deployment story.

Although strongly named assemblies can be installed into the GAC, they certainly don’t have
to be. In fact, it's recommended that you deploy assemblies into the GAC only if the assembly
is intended to be shared by many applications. If an assembly isn't intended to be shared, it
should be deployed privately. Deploying privately preserves the simple copy install deploy-
ment story and better isolates the application and its assemblies. Also, the GAC isn't intended
to be the new C:\Windows\System32 dumping ground for common files. The reason is be-
cause new versions of assemblies don't overwrite each other; they are installed side by side,
eating up disk space.

In addition to deploying a strongly named assembly in the GAC or privately, a strongly
named assembly can be deployed to some arbitrary directory that a small set of applications
know about. For example, you might be producing three applications, all of which want to
share a strongly named assembly. Upon installation, you can create three directories: one
for each application and an additional directory for the assembly you want shared. When
you install each application into its directory, also install an XML configuration file, and have
the shared assembly’s codeBase element indicate the path of the shared assembly. Now at
runtime, the CLR will know to look in the strongly named assembly’s directory for the shared
assembly. For the record, this technique is rarely used and is somewhat discouraged because
no single application controls when the assembly’s files should be uninstalled.

Chapter 3 Shared Assemblies and Strongly Named Assemblies 81

Note The configuration file's codeBase element actually identifies a URL. This URL can refer to
any directory on the user’s machine or to a Web address. In the case of a Web address, the CLR
will automatically download the file and store it in the user’'s download cache (a subdirectory
under C:\Users\UserName\Local Settings\Application Data\Assembly, where UserName is the
name of the Windows user account currently signed on). When referenced in the future, the CLR
will compare the timestamp of the downloaded file with the timestamp of the file at the specified
URL. If the timestamp of the file at the URL is newer, the CLR will download the new version of
the file and load it. If the previously downloaded file is newer, the CLR will load this file and will
not download the file again (improving performance). An example of a configuration file con-
taining a codeBase element is shown later in this chapter.

How the Runtime Resolves Type References

At the beginning of Chapter 2, we saw the following source code:

public sealed class Program {
public static void Main() {
System.Console.WriteLine("Hi");
}
}

This code is compiled and built into an assembly, say Program.exe. When you run this appli-
cation, the CLR loads and initializes. Then the CLR reads the assembly’s CLR header, looking
for the MethodDefToken that identifies the application’s entry point method (Main). From
the MethodDef metadata table, the offset within the file for the method’s IL code is located
and JIT-compiled into native code, which includes having the code verified for type safety.
The native code then starts executing. Following is the IL code for the Main method. To ob-
tain this output, | ran ILDasm.exe, chose the View menu’s Show Bytes menu item, and then
double-clicked the Main method in the tree view.

.method public hidebysig static void Main() cil managed
// SIG: 00 00 01
{

.entrypoint

// Method begins at RVA 0x2050

// Code size 11 (0xb)
.maxstack 8
IL_0000: /* 72 | (70000001 */
Tdstr "Hi"
IL_0005: /* 28 | (0A)000003 */
call void [mscorlib]System.Console::WriteLine(string)
IL_000a: /* 2A | */
ret

} // end of method Program::Main

When JIT-compiling this code, the CLR detects all references to types and members and
loads their defining assembilies (if not already loaded). As you can see, the IL code above has
a reference to System.Console.WriteLine. Specifically, the IL call instruction references

82

Part| CLR Basics

metadata token 0A000003. This token identifies entry 3 in the MemberRef metadata table
(table 0A). The CLR looks up this MemberRef entry and sees that one of its fields refers to an
entry in a TypeRef table (the System.Console type). From the TypeRef entry, the CLR

is directed to an AssemblyRef entry: “mscorlib, Version=4.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089". At this point, the CLR knows which assembly it

needs. Now the CLR must locate the assembly in order to load it.

When resolving a referenced type, the CLR can find the type in one of three places:

B Same file Access to a type that is in the same file is determined at compile time
(sometimes referred to as early bound). The type is loaded out of the file directly, and
execution continues.

m Different file, same assembly The runtime ensures that the file being referenced is,
in fact, in the assembly’s FileRef table of the current assembly’s manifest. The runtime
then looks in the directory where the assembly’s manifest file was loaded. The file is
loaded, its hash value is checked to ensure the file's integrity, the type’s member is
found, and execution continues.

m Different file, different assembly When a referenced type is in a different assembly’s
file, the runtime loads the file that contains the referenced assembly’s manifest. If this
file doesn't contain the type, the appropriate file is loaded. The type’s member is found,
and execution continues.

Note The ModuleDef, ModuleRef, and FileDef metadata tables refer to files using the file's
name and its extension. However, the AssemblyRef metadata table refers to assemblies by file
name without an extension. When binding to an assembly, the system automatically appends
.dll and .exe file extensions while attempting to locate the file by probing the directories as men-
tioned in the “Simple Administrative Control (Configuration)” section in Chapter 2.

If any errors occur while resolving a type reference—file cant be found, file can't be loaded,
hash mismatch, and so on—an appropriate exception is thrown.

Note If you want, your code can register callback methods with System.AppDomain’s
AssemblyResolve, ReflectionOnlyAssemblyResolve, and TypeResolve events. In your call-
back methods, you can execute code that resolves the binding problem and allows the applica-
tion to continue running without throwing an exception.

In the previous example, the CLR determines that System.Console is implemented in a dif-
ferent assembly than the caller. The CLR must search for the assembly and load the PE file
that contains the assembly’s manifest. The manifest is then scanned to determine the PE file
that implements the type. If the manifest file contains the referenced type, all is well. If the
type is in another of the assembly’s files, the CLR loads the other file and scans its metadata

Chapter 3 Shared Assemblies and Strongly Named Assemblies

83

to locate the type. The CLR then creates its internal data structures to represent the type, and
the JIT compiler completes the compilation for the Main method. Finally, the Main method

can start executing.

Figure 3-2 illustrates how type binding occurs.

IL refers to IL refers to
a type a member

AssemblyRef:
Type isin
different file,
different

What does _assembly " \What does assembly Segieh Tt
TypeRef AssemblyRef assembly
ModuleRef: entry entry indicate? in GAC and
Type is in indicate? then AppBase

different file,

Strongly named

some Weakly named
assembly assembly
Search for Load file
Examine _assembly) I
ModuleRef ModuleDef: in AppBase with manifest
table and load Type ig in l
appropriate file same file,
same
assembly Type in
manifest file e
entry indicate?,
Type not in
manifest file

Load file

Create internal
—
type structure

Note: If any operation fails, an appropriate exception is thrown.

FIGURE 3-2 Flowchart showing how, given IL code that refers to a method or type, the CLR uses metadata to
locate the proper assembly file that defines a type

Important Strictly speaking, the example just described isn't 100 percent correct. For refer-
ences to methods and types defined in an assembly that does not ship with the .NET Framework,
the discussion is correct. However, the .NET Framework assemblies (including MSCorLib.dll)

are closely tied to the version of the CLR that’s running. Any assembly that references .NET
Framework assemblies always binds to the version that matches the CLR's version. This is called
unification, and Microsoft does this because they test all of the .NET Framework assemblies with
a particular version of the CLR; therefore, unifying the code stack helps ensure that applications
will work correctly.

WV

So in the previous example, the reference to System.Console’s WriteLine method binds to
whatever version of MSCorLib.dIl matches the version of the CLR, regardless of what version of
MSCorlLib.dll is referenced in the assembly’s AssemblyRef metadata table.

84 Part | CLR Basics

There is one more twist to this story: To the CLR, all assemblies are identified by name,
version, culture, and public key. However, the GAC identifies assemblies using name, version,
culture, public key, and CPU architecture. When searching the GAC for an assembly, the CLR
figures out what type of process the application is currently running in: 32-bit x86 (possibly
using the WoW64 technology), 64-bit x64, or 64-bit IA64. Then, when searching the GAC for
an assembly, the CLR first searches for a CPU architecture—specific version of the assembly.

If it does not find a matching assembly, it then searches for a CPU-agnostic version of the
assembly.

In this section, you saw how the CLR locates an assembly when using a default policy.
However, an administrator or the publisher of an assembly can override the default policy. In
the next two sections, I'll describe how to alter the CLR’s default binding policy.

Note The CLR supports the ability to move a type (class, structure, enum, interface, or del-
egate) from one assembly to another. For example, in .NET 3.5, the System.TimeZoneInfo
class is defined in the System.Core.dll assembly. But in .NET 4.0, Microsoft moved this class
to the MSCorLib.dll assembly. Normally, moving a type from one assembly to another would
break applications. However, the CLR offers a System.Runtime.CompilerServices.
TypeForwardedToAttribute attribute, which can be applied to the original assembly (such as
System.Core.dll). The parameter that you pass to this attribute’s constructor is of type
System.Type and it indicates the new type (that is now defined in MSCorLib.dll)
that applications should now use. The CLR’s binder uses this information. Since the
TypeForwardedToAttribute’s constructor takes a Type, the assembly containing this
attribute will be dependent on the new assembly defining the type.

If you take advantage of this feature, then you should also apply the System.Runtime.
CompilerServices.TypeForwardedFromAttribute attribute to the type in the new assem-
bly and pass to this attribute’s constructor a string with the full name of the assembly that used
to define the type. This attribute typically is used for tools, utilities, and serialization. Since the
TypeForwardedFromAttribute’s constructor takes a String, the assembly containing this
attribute is not dependent on the assembly that used to define the type.

Advanced Administrative Control (Configuration)

In the section “Simple Administrative Control (Configuration)” in Chapter 2, | gave a brief
introduction to how an administrator can affect the way the CLR searches and binds to as-
semblies. In that section, | demonstrated how a referenced assembly’s files can be moved to
a subdirectory of the application’s base directory and how the CLR uses the application’s XML
configuration file to locate the moved files.

Having discussed only the probing element’s privatePath attribute in Chapter 2, I'm going
to discuss the other XML configuration file elements in this section. Following is an XML
configuration file:

Chapter 3 Shared Assemblies and Strongly Named Assemblies

<?xml version="1.0"7>
<configuration>
<runtime>

85

<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
<probing privatePath="AuxFiles;bin\subdir" />

<dependentAssembly>

<assemblyIdentity name="JeffTypes"
publ1icKeyToken="32ab4ba45e0a69al" culture="neutral"/>

<bindingRedirect
oldVersion="1.0.0.0" newVersion="2.0.0.0" />

<codeBase version="2.0.0.0"
href="http://www.Wintellect.com/JeffTypes.d11" />

</dependentAssembly>
<dependentAssembly>

<assemblyIdentity name="TypelLib"
publicKeyToken="1f2e74e897abbcfe" culture="neutral"/>

<bindingRedirect
oldVersion="3.0.0.0-3.5.0.0" newVersion="4.0.0.0" />

<publisherPolicy apply="no" />
</dependentAssembly>

</assemblyBinding>

</runtime>
</configuration>

This XML file gives a wealth of information to the CLR. Here's what it says:

B probing element Look in the application base directory’s AuxFiles and bin\subdir

subdirectories when trying to find a weakly named assembly. For strongly named as-
semblies, the CLR looks in the GAC or in the URL specified by the codeBase element.
The CLR looks in the application’s private paths for a strongly named assembly only if
no codeBase element is specified.

First dependentAssembly, assemblyIdentity, and bindingRedirect elements
When attempting to locate version 1.0.0.0 of the culture-neutral JeffTypes assembly
published by the organization that controls the 32ab4ba45e0a69al public key token,
locate version 2.0.0.0 of the same assembly instead.

codeBase element When attempting to locate version 2.0.0.0 of the culture-neutral
JeffTypes assembly published by the organization that controls the 32ab4ba45e0a69al
public key token, try to find it at the following URL: www.Wintellect.com/JeffTypes.dl.
Although | didn’t mention it in Chapter 2, a codeBase element can also be used with

86

Part| CLR Basics

weakly named assemblies. In this case, the assembly’s version number is ignored and
should be omitted from the XML's codeBase element. Also, the codeBase URL must
refer to a directory under the application’s base directory.

B Second dependentAssembly, assemblyIdentity, and bindingRedirect elements
When attempting to locate version 3.0.0.0 through version 3.5.0.0 inclusive of the
culture-neutral TypeLib assembly published by the organization that controls the
1f2e74e897abbcfe public key token, locate version 4.0.0.0 of the same assembly instead.

B publisherPolicy element If the organization that produces the TypelLib assembly
has deployed a publisher policy file (described in the next section), the CLR should
ignore this file.

When compiling a method, the CLR determines the types and members being referenced.
Using this information, the runtime determines, by looking in the referencing assembly’s
AssemblyRef table, the assembly that was originally referenced when the calling assembly
was built. The CLR then looks up the assembly/version in the application’s configuration
file and applies any version number redirections; the CLR is now looking for this assembly/
version.

If the pubTisherPolicy element’s apply attribute is set to yes—or if the element is omitted
—the CLR examines the GAC for the new assembly/version and applies any version number
redirections that the publisher of the assembly feels is necessary; the CLR is now looking for
this assembly/version. I'll talk more about publisher policy in the next section. Finally, the CLR
looks up the new assembly/version in the machine's Machine.config file and applies any
version number redirections there.

At this point, the CLR knows the version of the assembly that it should load, and it attempts
to load the assembly from the GAC. If the assembly isn't in the GAC, and if there is no
codeBase element, the CLR probes for the assembly as | described in Chapter 2. If the con-
figuration file that performs the last redirection also contains a codeBase element, the CLR
attempts to load the assembly from the codeBase element's specified URL.

Using these configuration files, an administrator can really control what assembly the CLR
decides to load. If an application is experiencing a bug, the administrator can contact the
publisher of the errant assembly. The publisher can send the administrator a new assembly
that the administrator can install. By default, the CLR won't load this new assembly because
the already-built assemblies don't reference the new version. However, the administrator can
modify the application’s XML configuration file to instruct the CLR to load the new assembly.

If the administrator wants all applications on the machine to pick up the new assembly, the
administrator can modify the machine’s Machine.config file instead, and the CLR will load
the new assembly whenever an application refers to the old assembly.

Chapter 3 Shared Assemblies and Strongly Named Assemblies 87

If the new assembly doesn't fix the original bug, the administrator can delete the binding
redirection lines from the configuration file, and the application will behave as it did before.
It's important to note that the system allows the use of an assembly that doesn’'t exactly
match the assembly version recorded in the metadata. This extra flexibility is very handy.

Publisher Policy Control

In the scenario described in the previous section, the publisher of an assembly simply sent a
new version of the assembly to the administrator, who installed the assembly and manually
edited the application’s or machine’s XML configuration files. In general, when a publisher
fixes a bug in an assembly, the publisher would like an easy way to package and distribute
the new assembly to all of the users. But the publisher also needs a way to tell each user’s
CLR to use the new assembly version instead of the old assembly version. Sure, each user
could modify his or her application’s or machine’s XML configuration file, but this is terribly
inconvenient and error prone. What the publisher needs is a way to create policy information
that is installed on the user’s computer when the new assembly is installed. In this section, I'll
show how an assembly’s publisher can create this policy information.

Let's say that you're a publisher of an assembly and that you've just created a new version
of your assembly that fixes some bugs. When you package your new assembly to send out
to all of your users, you should also create an XML configuration file. This configuration file
looks just like the configuration files we've been talking about. Here's an example file (called
JeffTypes.config) for the JeffTypes.dil assembly:

<configuration>
<runtime>
<assemblyBinding xmIns="urn:schemas-microsoft-com:asm.v1l">
<dependentAssembly>

<assemblyIdentity name="JeffTypes"
publicKeyToken="32ab4ba45e0a69al" culture="neutral"/>

<bindingRedirect
oldVersion="1.0.0.0" newVersion="2.0.0.0" />

<codeBase version="2.0.0.0"
href="http://www.Wintellect.com/JeffTypes.d11"/>

</dependentAssembly>
</assemblyBinding>
</runtime>
</configuration>

Of course, publishers can set policies only for the assemblies that they themselves create. In
addition, the elements shown here are the only elements that can be specified in a publisher
policy configuration file; you can't specify the probing or pub1isherPolicy elements, for
example.

88

Part| CLR Basics

This configuration file tells the CLR to load version 2.0.0.0 of the JeffTypes assembly when-
ever version 1.0.0.0 of the assembly is referenced. Now you, the publisher, can create an as-
sembly that contains this publisher policy configuration file. You create the publisher policy
assembly by running AL.exe as follows:

AL.exe /out:Policy.1.0.JeffTypes.dl1
/version:1.0.0.0
/keyfile:MyCompany.snk
/Tinkresource:JeffTypes.config

Let me explain the meaning of AL.exe’s command-line switches:

B /out This switch tells AL.exe to create a new PE file, called Policy.1.0.JeffTypes.dll,
which contains nothing but a manifest. The name of this assembly is very important.
The first part of the name, Policy, tells the CLR that this assembly contains publisher
policy information. The second and third parts of the name, 1.0, tell the CLR that this
publisher policy assembly is for any version of the JeffTypes assembly that has a major
and minor version of 1.0. Publisher policies apply to the major and minor version num-
bers of an assembly only; you can't create a publisher policy that is specific to individual
builds or revisions of an assembly. The fourth part of the name, JeffTypes, indicates the
name of the assembly that this publisher policy corresponds to. The fifth and last part
of the name, dll, is simply the extension given to the resulting assembly file.

B /version This switch identifies the version of the publisher policy assembly; this
version number has nothing to do with the JeffTypes assembly itself. You see, publisher
policy assemblies can also be versioned. Today, the publisher might create a publisher
policy redirecting version 1.0.0.0 of JeffTypes to version 2.0.0.0. In the future, the pub-
lisher might want to direct version 1.0.0.0 of JeffTypes to version 2.5.0.0. The CLR uses
this version number so that it knows to pick up the latest version of the publisher policy
assembly.

B /keyfile This switch causes AL.exe to sign the publisher policy assembly by using
the publisher’s public/private key pair. This key pair must also match the key pair used
for all versions of the JeffTypes assembly. After all, this is how the CLR knows that the
same publisher created both the JeffTypes assembly and this publisher policy file.

B /Tinkresource This switch tells AL.exe that the XML configuration file is to be
considered a separate file of the assembly. The resulting assembly consists of two files,
both of which must be packaged and deployed to the users along with the new version
of the JeffTypes assembly. By the way, you can't use AL.exe's /embedresource switch to
embed the XML configuration file into the assembly file, making a single file assembly,
because the CLR requires the XML file to be contained in its own separate file.

Once this publisher policy assembly is built, it can be packaged together with the new
JeffTypes.dll assembly file and deployed to users. The publisher policy assembly must be in-
stalled into the GAC. Although the JeffTypes assembly can also be installed into the GAC, it

Chapter 3 Shared Assemblies and Strongly Named Assemblies 89

doesn't have to be. It could be deployed into an application’s base directory or some other
directory identified by a codeBase URL.

Important A publisher should create a publisher policy assembly only when deploying an
update or a service pack version of an assembly. When doing a fresh install of an application,
no publisher policy assemblies should be installed.

| want to make one last point about publisher policy. Say that a publisher distributes a pub-
lisher policy assembly, and for some reason, the new assembly introduces more bugs than
it fixes. If this happens, the administrator would like to tell the CLR to ignore the publisher
policy assembly. To have the runtime do this, the administrator can edit the application’s
configuration file and add the following pub1isherPol1icy element:

<pubTlisherPolicy apply="no"/>

This element can be placed as a child element of the <assemb1yBinding> element in the
application’s configuration file so that it applies to all assemblies, or as a child element of the
<dependantAssembly> element in the application’s configuration file to have it apply to a
specific assembly. When the CLR processes the application’s configuration file, it will see that
the GAC shouldn’t be examined for the publisher policy assembly. So the CLR will continue to
operate using the older version of the assembly. Note, however, that the CLR will still examine
and apply any policy specified in the Machine.config file.

Important A publisher policy assembly is a way for a publisher to make a statement about the
compatibility of different versions of an assembly. If a new version of an assembly isn't intended
to be compatible with an earlier version, the publisher shouldn't create a publisher policy assem-
bly. In general, use a publisher policy assembly when you build a new version of your assembly
that fixes a bug. You should test the new version of the assembly for backward compatibility.

On the other hand, if you're adding new features to your assembly, you should consider the
assembly to have no relationship to a previous version, and you shouldn't ship a publisher policy
assembly. In addition, there’s no need to do any backward compatibility testing with such an
assembly.

Chapter 4
Type Fundamentals

All Types Are Derived from System.Objectcccoiiiiiieeennn... 91
Casting Between Typesottt e e e 93
Namespaces and Assemblies. i 97
How Things Relateat Runtime i, 102

In this chapter, | will introduce information that is fundamental to working with types and
the common language runtime (CLR). In particular, I'll discuss the minimum set of behaviors
that you can expect every type to have. I'll also describe type safety, namespaces, assemblies,
and the various ways you can cast objects from one type to another. Finally, I'll conclude this
chapter with an explanation of how types, objects, thread stacks, and the managed heap all
relate to one another at runtime.

All Types Are Derived from System.0Object

The runtime requires every type to ultimately be derived from the System.0Object type. This
means that the following two type definitions are identical:

// Implicitly derived from Object // Explicitly derived from Object
class Employee { class Employee : System.Object {
} }

Because all types are ultimately derived from System.Object, you are guaranteed that every
object of every type has a minimum set of methods. Specifically, the System.0Object class
offers the public instance methods listed in Table 4-1.

91

92 Part Il Designing Types
TABLE 4-1 Public Methods of System.Object

Public Method Description

Equals Returns true if two objects have the same value. For more information about
this method, see the "Object Equality and Identity” section in Chapter 5,
"Primitive, Reference, and Value Types.”

GetHashCode Returns a hash code for this object’s value. A type should override this method if
its objects are to be used as a key in a hash table collection. The method should
provide a good distribution for its objects. It is unfortunate that this method is
defined in Object because most types are never used as keys in a hash table;
this method should have been defined in an interface. For more information
about this method, see the “Object Hash Codes” section in Chapter 5.

ToString By default, returns the full name of the type (this.GetType() . Ful1Name).
However, it is common to override this method so that it returns a String object
containing a representation of the object’s state. For example, the core types,
such as Boolean and Int32, override this method to return a string representa-
tion of their values. It is also common to override this method for debugging
purposes; you can call it and get a string showing the values of the object’s fields.
In fact, Microsoft Visual Studio’s debugger calls this function automatically to
show you a string representation of an object. Note that ToString is expected
to be aware of the CultureInfo associated with the calling thread. Chapter 14,
“Chars, Strings, and Working with Text,” discusses ToString in greater detail.

GetType Returns an instance of a Type-derived object that identifies the type of the
object used to call GetType. The returned Type object can be used with the
reflection classes to obtain metadata information about the object’s type.
Reflection is discussed in Chapter 23, "Assembly Loading and Reflection.” The
GetType method is nonvirtual, which prevents a class from overriding this
method and lying about its type, violating type safety.

In addition, types that derive from System.0Object have access to the protected methods
listed in Table 4-2.

TABLE 4-2 Protected Methods of System.Object

Protected Method Description

MemberwiseClone This nonvirtual method creates a new instance of the type and sets the new
object’s instance fields to be identical to the th1is object’s instance fields. A
reference to the new instance is returned.

Finalize This virtual method is called when the garbage collector determines that
the object is garbage before the memory for the object is reclaimed. Types
that require cleanup when collected should override this method. I'll talk
about this important method in much more detail in Chapter 21, "Automatic
Memory Management (Garbage Collection).”

The CLR requires all objects to be created using the new operator. The following line shows
how to create an Employee object:

Employee e = new Employee("ConstructorParaml");

Chapter 4 Type Fundamentals 93

Here's what the new operator does:

1. It calculates the number of bytes required by all instance fields defined in the type and
all of its base types up to and including System.Object (which defines no instance
fields of its own). Every object on the heap requires some additional members—called
the type object pointer and the sync block index—used by the CLR to manage the
object. The bytes for these additional members are added to the size of the object.

2. It allocates memory for the object by allocating the number of bytes required for the
specified type from the managed heap; all of these bytes are then set to zero (0).

3. ltinitializes the object’s type object pointer and sync block index members.

4. The type's instance constructor is called, passing it any arguments (the string
"ConstructorParaml" in the preceding example) specified in the call to new. Most
compilers automatically emit code in a constructor to call a base class’s constructor.
Each constructor is responsible for initializing the instance fields defined by the type
whose constructor is being called. Eventually, System.0Object’s constructor is called,
and this constructor method does nothing but return. You can verify this by using
ILDasm.exe to load MSCorLib.dIl and examine System.0Object’s constructor method.

After new has performed all of these operations, it returns a reference (or pointer) to the
newly created object. In the preceding code example, this reference is saved in the variable e,
which is of type Employee.

By the way, the new operator has no complementary delete operator; that is, there is no
way to explicitly free the memory allocated for an object. The CLR uses a garbage-collected
environment (described in Chapter 21) that automatically detects when objects are no longer
being used or accessed and frees the object’'s memory automatically.

Casting Between Types

One of the most important features of the CLR is type safety. At runtime, the CLR always
knows what type an object is. You can always discover an object’s exact type by calling the
GetType method. Because this method is nonvirtual, it is impossible for a type to spoof an-
other type. For example, the EmpTloyee type can't override the GetType method and have
it return a type of SuperHero.

Developers frequently find it necessary to cast an object to various types. The CLR allows
you to cast an object to its type or to any of its base types. Your choice of programming lan-
guage dictates how to expose casting operations to the developer. For example, C# doesn't
require any special syntax to cast an object to any of its base types, because casts to base
types are considered safe implicit conversions. However, C# does require the developer to
explicitly cast an object to any of its derived types since such a cast could fail at runtime. The
following code demonstrates casting to base and derived types:

94

Part Il Designing Types

// This type is implicitly derived from System.Object.
internal class Employee {

public sealed class Program {
public static void Main() {
// No cast needed since new returns an Employee object
// and Object is a base type of Employee.
Object o = new Employee(Q);

// Cast required since Employee is derived from Object.

// Other Tanguages (such as Visual Basic) might not require
// this cast to compile.

Employee e = (Employee) o;

}

This example shows what is necessary for your compiler to compile your code. Now I'll
explain what happens at runtime. At runtime, the CLR checks casting operations to ensure
that casts are always to the object’s actual type or any of its base types. For example, the
following code will compile, but at runtime, an InvalidCastException will be thrown:

internal class Employee {

}

internal class Manager : Employee {

public sealed class Program {
public static void Main() {
// Construct a Manager object and pass it to PromoteEmpTloyee.
// A Manager IS-A Object: PromoteEmployee runs OK.
Manager m = new Manager();
PromoteEmployee(m);

// Construct a DateTime object and pass it to PromoteEmployee.
// A DateTime is NOT derived from Employee. PromoteEmployee
// throws a System.InvalidCastException exception.

DateTime newYears = new DateTime(2010, 1, 1);
PromoteEmployee(newYears);

public static void PromoteEmpTloyee(Object o) {
// At this point, the compiler doesn't know exactly what
// type of object o refers to. So the compiler allows the
// code to compile. However, at runtime, the CLR does know
// what type o refers to (each time the cast is performed) and
// it checks whether the object's type is Employee or any type
// that 1is derived from Employee.

Chapter 4 Type Fundamentals 95

Employee e = (Employee) o;

3

In the Main method, a Manager object is constructed and passed to PromoteEmployee. This
code compiles and executes because Manager is ultimately derived from Object, which is
what PromoteEmpTloyee expects. Once inside PromoteEmployee, the CLR confirms that o
refers to an object that is either an Employee or a type that is derived from Employee.
Because Manager is derived from Employee, the CLR performs the cast and allows
PromoteEmpTloyee to continue executing.

After PromoteEmployee returns, Main constructs a DateTime object and passes it to
PromoteEmployee. Again, DateT+ime is derived from Object, and the compiler compiles the
code that calls PromoteEmpTloyee with no problem. However, inside PromoteEmployee, the
CLR checks the cast and detects that o refers to a DateTime object and is therefore not an
EmpTloyee or any type derived from EmpTloyee. At this point, the CLR can't allow the cast and
throws a System.InvalidCastException.

If the CLR allowed the cast, there would be no type safety, and the results would be unpre-
dictable, including the possibility of application crashes and security breaches caused by
the ability of types to easily spoof other types. Type spoofing is the cause of many security
breaches and compromises an application’s stability and robustness. Type safety is therefore
an extremely important part of the CLR.

By the way, the proper way to declare the PromoteEmployee method would be to specify
an Employee type instead of an Object type as its parameter so that the compiler produces
a compile-time error, saving the developer from waiting until a runtime exception occurs to
discover a problem. | used Object so that | could demonstrate how the C# compiler and the
CLR deal with casting and type-safety.

Casting with the C# 1is and as Operators

Another way to cast in the C# language is to use the is operator. The is operator checks
whether an object is compatible with a given type, and the result of the evaluation is a
Boolean: true or false. The is operator will never throw an exception. The following code
demonstrates:

Object o = new Object();
Boolean bl = (o is Object); // bl is true.
Boolean b2 = (o is Employee); // b2 is false.

If the object reference is nu11, the is operator always returns false because there is no
object available to check its type.

96

Part Il Designing Types

The is operator is typically used as follows:

if (o is Employee) {
Employee e = (Employee) o;
// Use e within the remainder of the 'if' statement.

}

In this code, the CLR is actually checking the object’s type twice: The 1is operator first checks
to see if o is compatible with the Employee type. If it is, inside the i f statement, the CLR
again verifies that o refers to an Employee when performing the cast. The CLR’s type checking
improves security, but it certainly comes at a performance cost, because the CLR must deter-
mine the actual type of the object referred to by the variable (o), and then the CLR must walk
the inheritance hierarchy, checking each base type against the specified type (Employee).
Because this programming paradigm is quite common, C# offers a way to simplify this code
and improve its performance by providing an as operator:

Employee e = o as Employee;
if (e !'= null) {

// Use e within the 'if' statement.
}

In this code, the CLR checks if 0 is compatible with the Employee type, and if it is, as returns a
non-null reference to the same object. If o is not compatible with the Employee type, the as
operator returns nul1. Notice that the as operator causes the CLR to verify an object's type
just once. The 1 f statement simply checks whether e is nu11; this check can be performed
faster than verifying an object’s type.

The as operator works just as casting does except that the as operator will never throw

an exception. Instead, if the object can't be cast, the result is nu11. You'll want to check to
see whether the resulting reference is nul1, or attempting to use the resulting reference will
cause a System.Nul1ReferenceException to be thrown. The following code demonstrates:

Object o = new Object(); // Creates a new Object object
Employee e = o as Employee; // Casts o to an Employee
// The cast above fails: no exception is thrown, but e is set to null.

e.ToString(); // Accessing e throws a NullReferenceException.

To make sure you understand everything just presented, take the following quiz. Assume that
these two class definitions exist:

internal class B { // Base class

}

internal class D : B { // Derived class

}

Now examine the lines of C# code in Table 4-3. For each line, decide whether the line would
compile and execute successfully (marked OK below), cause a compile-time error (CTE), or
cause a run-time error (RTE).

Chapter 4 Type Fundamentals 97

TABLE 4-3 Type-Safety Quiz

Statement OK CTE RTE
Object ol = new Object(Q); v

Object 02 = new BQ); v/

Object 03 = new DQ; v

Object 04 = 03; v

B bl = new BQ); v

B b2 = new DQ; v

D dl = new DQ; v

B b3 = new Object(Q); v

D d2 = new Object(Q); v/

B b4 = di; 4

D d3 = b2; v

D d4 = (D) di; v

D d5 = (D) b2; v

D d6 = (D) bl; v
B b5 = (B) ol; 4
B b6 = (D) b2; v

Note C# allows a type to define conversion operator methods as discussed in the “Conversion
Operator Methods” section of Chapter 9, “Parameters.” These methods are invoked only when
using a cast expression; they are never invoked when using C#'s as or 1is operator.

Namespaces and Assemblies

Namespaces allow for the logical grouping of related types, and developers typically use
them to make it easier to locate a particular type. For example, the System.Text namespace
defines a bunch of types for performing string manipulations, and the System.I0 namespace
defines a bunch of types for performing I/O operations. Here's some code that constructs a
System.IO.FileStream object and a System.Text.StringBuilder object:

public sealed class Program {
public static void Main() {
System.IO.FileStream fs = new System.IO.FileStream(...);
System.Text.StringBuilder sb = new System.Text.StringBuilder();

98

Part Il Designing Types

As you can see, the code is pretty verbose; it would be nice if there were some shorthand
way to refer to the FileStream and StringBuilder types to reduce typing. Fortunately,
many compilers do offer mechanisms to reduce programmer typing. The C# compiler
provides this mechanism via the using directive. The following code is identical to the
previous example:

using System.IO; // Try prepending "System.IO0."
using System.Text; // Try prepending "System.Text."

public sealed class Program {
public static void Main() {
FileStream fs = new FileStream(...);
StringBuilder sb = new StringBuilder();

}

To the compiler, a namespace is simply an easy way of making a type’s name longer and
more likely to be unique by preceding the name with some symbols separated by dots.

So the compiler interprets the reference to FileStream in this example to mean
System.I0.FileStream. Similarly, the compiler interprets the reference to StringBuilder
to mean System.Text.StringBuilder.

Using the C# using directive is entirely optional; you're always welcome to type out the fully
qualified name of a type if you prefer. The C# using directive instructs the compiler to try
prepending different prefixes to a type name until a match is found.

Important The CLR doesn't know anything about namespaces. When you access a type, the
CLR needs to know the full name of the type (which can be a really long name containing
periods) and which assembly contains the definition of the type so that the runtime can load
the proper assembly, find the type, and manipulate it.

In the previous code example, the compiler needs to ensure that every type referenced
exists and that my code is using that type in the correct way: calling methods that exist,
passing the right number of arguments to these methods, ensuring that the arguments are
the right type, using the method'’s return value correctly, and so on. If the compiler cant find
a type with the specified name in the source files or in any referenced assemblies, it prepends
System.IO0. to the type name and checks if the generated name matches an existing type. If
the compiler still can't find a match, it prepends System.Text. to the type's name. The two
using directives shown earlier allow me to simply type FileStream and StringBuilder in
my code—the compiler automatically expands the references to System.I0.FileStream
and System.Text.StringBuilder. |'m sure you can easily imagine how much typing this
saves, as well as how much cleaner your code is to read.

When checking for a type’s definition, the compiler must be told which assemblies to exam-
ine by using the /reference compiler switch as discussed in Chapter 2, “Building, Packaging,
Deploying, and Administering Applications and Types,” and Chapter 3, “Shared Assemblies

Chapter 4 Type Fundamentals 929

and Strongly Named Assemblies.” The compiler will scan all of the referenced assemblies
looking for the type’s definition. Once the compiler finds the proper assembly, the assem-
bly information and the type information is emitted into the resulting managed module’s
metadata. To get the assembly information, you must pass the assembly that defines any
referenced types to the compiler. The C# compiler, by default, automatically looks in the
MSCorlLib.dll assembly even if you don’t explicitly tell it to. The MSCorLib.dIl assembly con-
tains the definitions of all of the core Framework Class Library (FCL) types, such as Object,
Int32, String, and so on.

As you might imagine, there are some potential problems with the way that compilers treat
namespaces: it's possible to have two (or more) types with the same name in different
namespaces. Microsoft strongly recommends that you define unique names for types.
However, in some cases, it's simply not possible. The runtime encourages the reuse of com-
ponents. Your application might take advantage of a component that Microsoft created and
another component that Wintellect created. These two companies might both offer a type
called Widget—Microsoft's Widget does one thing, and Wintellect's Widget does something
entirely different. In this scenario, you had no control over the naming of the types, so you
can differentiate between the two widgets by using their fully qualified names when refer-
encing them. To reference Microsoft’s Widget, you would use Microsoft.Widget, and to
reference Wintellect's Widget, you would use Wintellect.Widget. In the following code,
the reference to Widget is ambiguous, so the C# compiler generates the following message:
"error CS0104: 'Widget' is an ambiguous reference':

using Microsoft; // Try prepending "Microsoft."
using Wintellect; // Try prepending "Wintellect."

public sealed class Program {
public static void Main() {
Widget w = new Widget();// An ambiguous reference
}
}

To remove the ambiguity, you must explicitly tell the compiler which Widget you want to
create:

using Microsoft; // Try prepending "Microsoft."
using Wintellect; // Try prepending "Wintellect."

public sealed class Program {
public static void Main() {
Wintellect.Widget w = new Wintellect.Widget(); // Not ambiguous
}
}

There's another form of the C# using directive that allows you to create an alias for a single
type or namespace. This is handy if you have just a few types that you use from a namespace
and don't want to pollute the global namespace with all of a namespace’s types. The following
code demonstrates another way to solve the ambiguity problem shown in the preceding code:

100

Part Il Designing Types

using Microsoft; // Try prepending "Microsoft."
using Wintellect; // Try prepending "Wintellect."

// Define WintellectWidget symbol as an alias to Wintellect.Widget
using WintellectWidget = Wintellect.Widget;

public sealed class Program {
public static void Main() {
WintellectWidget w = new WintellectWidget(); // No error now
}
}

These methods of disambiguating a type are useful, but in some scenarios, you need to

go further. Imagine that the Australian Boomerang Company (ABC) and the Alaskan Boat
Corporation (ABC) are each creating a type, called BuyProduct, which they intend to ship in
their respective assemblies. It's likely that both companies would create a namespace called
ABC that contains a type called BuyProduct. Anyone who tries to develop an application that
needs to buy both boomerangs and boats would be in for some trouble unless the program-
ming language provides a way to programmatically distinguish between the assemblies, not
just between the namespaces. Fortunately, the C# compiler offers a feature called extern
aliases that gives you a way to work around this rarely occurring problem. Extern aliases also
give you a way to access a single type from two (or more) different versions of the same
assembly. For more information about extern aliases, see the C# Language Specification.

In your library, when you're designing types that you expect third parties to use, you should
define these types in a namespace so that compilers can easily disambiguate them. In fact,
to reduce the likelihood of conflict, you should use your full company name (not an acro-
nym or abbreviation) to be your top-level namespace name. Referring to the Microsoft .NET
Framework SDK documentation, you can see that Microsoft uses a namespace of “Microsoft”
for Microsoft-specific types. (See the Microsoft.CSharp, Microsoft.VisualBasic, and
Microsoft.Win32 namespaces as examples.)

Creating a namespace is simply a matter of writing a namespace declaration into your code
as follows (in C#):

namespace CompanyName {
public sealed class A { // TypeDef: CompanyName.A
}

namespace X {
public sealed class B { ... } // TypeDef: CompanyName.X.B
}
}

The comment on the right of the class definitions above indicates the real name of the type
the compiler will emit into the type definition metadata table; this is the real name of the
type from the CLR's perspective.

Some compilers don't support namespaces at all, and other compilers are free to define what
“namespace” means to a particular language. In C#, the namespace directive simply tells the

Chapter 4 Type Fundamentals 101

compiler to prefix each type name that appears in source code with the namespace name
so that programmers can do less typing.

How Namespaces and Assemblies Relate

Be aware that a namespace and an assembly (the file that implements a type)

aren't necessarily related. In particular, the various types belonging to a single
namespace might be implemented in multiple assemblies. For example, the
System.IO.FileStream type is implemented in the MSCorLib.dIl assembly, and

the System.I0.FileSystemWatcher type is implemented in the System.dll assembly.
In fact, the .NET Framework doesn't even ship a System.lO.dll assembly.

A single assembly can contain types in different namespaces. For example, the
System.Int32 and System.Text.StringBuilder types are both in the MSCorlLib.dll
assembly.

When you look up a type in the .NET Framework SDK documentation, the
documentation will clearly indicate the namespace that the type belongs to and also
the assembly that the type is implemented in. In Figure 4-1, you can clearly see (right
above the Syntax section) that the ResXFileRef type is part of the System.Resources
namespace and that the type is implemented in the System.Windows.Forms.dll
assembly. To compile code that references the ResXFileRef type, you'd add a

using System.Resources; directive to your source code, and you'd use the
/r:System.Windows.Forms.d11 compiler switch.

United States - Englh = | Micrasoftcom | Welcome | Signin

el o]

.NET Framework Developer Center

Home Learn Downloads Community Forums

% Printer Frisndly Version =F Add To Favarites (-0 Send (@) Add Content.., Click to Rate and Give Feedback r+'ri'vi'ri'e
System.Retlection B
VEIOM.RETSCONE o | yson » MSDW Library * NET Development * NET Framework 3.5+ NET Framework Glass Library » =
System.Resources |
Systerm.Resources Namespace b ResdFilsRef Class b

Resourceset Ch=| « Microsoft visual Studio

IResourceRead
IResourcewrite |] Collapse all | v|Language Filter : Al 3
MissingManifestl | NET Framework Class Library
missingsatelits:. | ResXFileRef Class This page is specific to
e Microsoft Yisual Studio
Reprasents a link ta an extsrnal resaurcs, 2008/.NET Framework 3.5
ResourceManag
Namespace: System.Resources Other wersions are also available
ResourceReads | 40 camhbly: System.windows Forms (in System Windows Farms.dl) for the fallowings
Resourcelriter B Syt 2003/ NET Framewark 1.1
ResxDatatiode £ + Micrasoft Visual Studio

o CEEERRER 2005/ NET Framewark 2.0

[ResxFileRef + NET Framework 3.0

ResxFileRef « Microsoft Visual Studio

2010/ NET Fi ke .0
ReskFileRef i/ ramewar]

ReskFileRef

ResxFileRef Cor Wisual Basic (Declaration)
RosfeemmiesR ¢Serializablehttributes _
ResXResources ¢TypeComverterdttribute(Get Tyne(ResEFi 1sRaf Comvertsr)ls _
B T <PermissionSetittribute!Sccuritviction. InheritanceDenand. Name .= "FullTrust
4 m 13
& Internet | Protected Mode: On ar B -

FIGURE 4-1 SDK documentation showing namespace and assembly information for a type

102

Part Il Designing Types

How Things Relate at Runtime

In this section, I'm going to explain the relationship at runtime between types, objects, a
thread's stack, and the managed heap. Furthermore, | will also explain the difference between
calling static methods, instance methods, and virtual methods. Let’s start off with some
fundamentals of computers. What I'm about to describe is not specific to the CLR at all, but
I'm going to describe it so that we have a working foundation, and then I'll modify the
discussion to incorporate CLR-specific information.

Figure 4-2 shows a single Microsoft Windows process that has the CLR loaded into it. In this
process there may be many threads. When a thread is created, it is allocated a 1-MB stack.
This stack space is used for passing arguments to a method and for local variables defined
within a method. In Figure 4-2, the memory for one thread’s stack is shown (on the right).
Stacks build from high-memory addresses to low-memory addresses. In the figure, this
thread has been executing some code, and its stack has some data on it already (shown as the
shaded area at the top of the stack). Now, imagine that the thread has executed some code
that calls the M1 method.

Thread Stack

void M1 { .
String name = "Joe"; ®
M2 (name) ;
return;

}

FIGURE 4-2 A thread’s stack with the M1 method about to be called

All but the simplest of methods contain some prologue code, which initializes a method
before it can start doing its work. These methods also contain epilogue code, which cleans
up a method after it has performed its work so that it can return to its caller. When the M1
method starts to execute, its prologue code allocates memory for the local name variable
from the thread's stack (see Figure 4-3).

Chapter 4 Type Fundamentals 103

Thread Stack

void M1(Q) { .
String name = "Joe"; ®
M2 (name) ; name (String) |} M1 Locals
return;

}

FIGURE 4-3 Allocating M1's local variable on the thread's stack

Then, M1 calls the M2 method, passing in the name local variable as an argument. This causes
the address in the name local variable to be pushed on the stack (see Figure 4-4). Inside

the M2 method, the stack location will be identified using the parameter variable named s.
(Note that some architectures pass arguments via registers to improve performance, but this
distinction is not important for this discussion.) Also, when a method is called, the address
indicating where the called method should return to in the calling method is pushed on the
stack (also shown in Figure 4-4).

Thread Stack

N\ .

void M1() { 0
String name = "Joe"; ®
M2 (name) ; name (String) |} M1 Locals
;;;urn; s (String) } M2 Params
\} / [return address]

void M2(String s) { \
Int32 length = s.Length;
Int32 tally;

return;
}
_ /

FIGURE 4-4 M1 pushes arguments and the return address on the thread'’s stack when calling M2.

When the M2 method starts to execute, its prologue code allocates memory for the local
Tength and tally variables from the thread's stack (see Figure 4-5). Then the code inside
method M2 executes. Eventually, M2 gets to its return statement, which causes the CPU's
instruction pointer to be set to the return address in the stack, and M2's stack frame is un-
wound so that it looks the way it did in Figure 4-3. At this point, M1 is continuing to execute
its code that immediately follows the call to M2, and its stack frame accurately reflects the
state needed by M1.

104

Part Il Designing Types

Eventually, M1 will return back to its caller by setting the CPU’s instruction pointer to be set to
the return address (not shown on the figures, but it would be just above the name argument
on the stack), and M1's stack frame is unwound so that it looks the way it did in Figure 4-2. At
this point, the method that called M1 continues to execute its code that immediately follows
the call to M1, and its stack frame accurately reflects the state needed by that method.

Thread Stack

/void Mi0) {) :
Sstring name = "Joe"; .
M2 (name) ; name (String) |} M1 Locals
return; s (String) } M2 Params
\} / [return address]
length (Int32)

] M2 Locals

\ tally (Int32)
void M2(String s) {

Int32 length = s.Length;
Int32 tally;

return;
}
\ /

FIGURE 4-5 Allocating M2's local variables on the thread's stack

Now, let’s start gearing the discussion toward the CLR. Let's say that we have these two class
definitions:

internal class Employee {

public Int32 GetYearsEmployed() { ...}
public virtual String GetProgressReport() { ... }
public static Employee Lookup(String name) { ... }

}

internal sealed class Manager : Employee {
public override String GetProgressReport() { ... }
}

Our Windows process has started, the CLR is loaded into it, the managed heap is initialized,
and a thread has been created (along with its 1 MB of stack space). This thread has already
executed some code, and this code has decided to call the M3 method. All of this is shown in
Figure 4-6. The M3 method contains code that demonstrates how the CLR works; this is not
code that you would normally write, because it doesn't actually do anything useful.

Chapter 4 Type Fundamentals 105

Thread Stack

Heap

\

\

void M30) {
Employee e;
Int32 year;
e = new Manager();
e = Employee.Lookup("Joe");
year = e.GetYearsEmployed();
e.GenProgressReport();

} - J

FIGURE 4-6 The CLR loaded in a process, its heap initialized, and a thread's stack with the M3 method about
to be called

As the just-in-time (JIT) compiler converts M3's Intermediate Language (IL) code into native
CPU instructions, it notices all of the types that are referred to inside M3: EmpTloyee, Int32,
Manager, and String (because of "Joe"). At this time, the CLR ensures that the assemblies
that define these types are loaded. Then, using the assembly’s metadata, the CLR extracts
information about these types and creates some data structures to represent the types
themselves. The data structures for the Employee and Manager type objects are shown in
Figure 4-7. Since this thread already executed some code prior to calling M3, let’s assume that
the Int32 and String type objects have already been created (which is likely because these
are commonly used types), and so | won’t show them in the figure.

106

Part Il Designing Types

Thread Stack

Heap
o 4 Manager Type Object\
Type object ptr
Sync block index
Static fields
GenProgressReport
Employee Type Object
Type object ptr
Sync block index
void I;/B() { Static fields

Employee e; | | N AN T

Int32 year: GetYearsEmployed

e = new Manager(); GenProgressReport

e = Employee.Lookup("Joe™); Lookup

year = e.GetYearsEmployed();

e.GenProgressReport();

} - J

FIGURE 4-7 The Employee and Manager type objects are created just as M3 is being called.

Let's take a moment to discuss these type objects. As discussed earlier in this chapter, all
objects on the heap contain two overhead members: the type object pointer and the sync
block index. As you can see, the Employee and Manager type objects have both of these
members. When you define a type, you can define static data fields within it. The bytes that
back these static data fields are allocated within the type objects themselves. Finally, inside
each type object is a method table with one entry per method defined within the type. This
is the method table that was discussed in Chapter 1, “The CLR's Execution Model.” Since
the Employee type defines three methods (GetYearsEmployed, GetProgressReport, and
Lookup), there are three entries in Employee’s method table. Since the Manager type defines
one method (an override of GetProgressReport), there is just one entry in Manager's
method table.

Now, after the CLR has ensured that all of the type objects required by the method are cre-
ated and the code for M3 has been compiled, the CLR allows the thread to execute M3's native
code. When M3's prologue code executes, memory for the local variables must be allocated
from the thread's stack, as shown in Figure 4-8. By the way, the CLR automatically initializes
all local variables to nu11 or 0 (zero) as part of the method’s prologue code. However, the C#
compiler issues a “Use of unassigned local variable” error message if you write code that
attempts to read from a local variable that you have not explicitly initialized in your source
code.

Chapter 4 Type Fundamentals 107

Thread Stack

Heap
o 4 Manager Type Object\
e (Employee) [null Type object ptr
year (int32) =0 Sync block index
Static fields
GenProgressReport
Employee Type Object
Type object ptr
Sync block index
void :43() { Static fields
Employee e; | | AN T
Int32 year: GetYearsEmployed
e = new Manager(); GenProgressReport
e = Employee.Lookup("Joe"); Lookup
year = e.GetYearseEmployed();
e.GeProgressReport();
} o J

FIGURE 4-8 Allocating M3's local variables on the thread’s stack

Then, M3 executes its code to construct a Manager object. This causes an instance of the
Manager type, a Manager object, to be created in the managed heap, as shown in Figure 4-9.
As you can see, the Manager object—as do all objects—has a type object pointer and sync
block index. This object also contains the bytes necessary to hold all of the instance data
fields defined by the Manager type, as well as any instance fields defined by any base classes
of the Manager type (in this case, Employee and Object). Whenever a new object is created
on the heap, the CLR automatically initializes the internal type object pointer member to
refer to the object’s corresponding type object (in this case, the Manager type object).
Furthermore, the CLR initializes the sync block index and sets all of the object’s instance
fields to nu11 or 0 (zero) prior to calling the type’s constructor, a method that will likely
modify some of the instance data fields. The new operator returns the memory address of the
Manager object, which is saved in the variable e (on the thread’s stack).

108

Part Il Designing Types

Thread Stack

Heap
o 4 Manager Object Manager Type Object\
e (Employee) 1L, Mype object ptr Type object ptr
year (int32) =0 Sync block index Sync block index
Instance fields | Static fields
GenProgressReport
Employee Type Object
Type object ptr
Sync block index
void :43() { Static fields
Employee e; | | T ARAVeareEma o T
Int32 year: GetYearsEmployed
e = new Manager(); GenProgressReport
e = Employee.Lookup("Joe"); Lookup
year = e.GetYearseEmployed();
e.GenProgressReport();
} o J

FIGURE 4-9 Allocating and initializing a Manager object

The next line of code in M3 calls EmpTloyee's static Lookup method. When calling a static
method, the JIT compiler locates the type object that corresponds to the type that defines
the static method. Then, the JIT compiler locates the entry in the type object’s method table
that refers to the method being called, JITs the method (if necessary), and calls the JITted
code. For our discussion, let’s say that EmpTloyee's Lookup method queries a database to find
Joe. Let's also say that the database indicates that Joe is a manager at the company, and
therefore, internally, the Lookup method constructs a new Manager object on the heap,
initializes it for Joe, and returns the address of this object. The address is saved in the local
variable e. The result of this operation is shown in Figure 4-10.

Note that e no longer refers to the first Manager object that was created. In fact, since no
variable refers to this object, it is a prime candidate for being garbage collected in the future,
which will reclaim (free) the memory used by this object.

The next line of code in M3 calls Employee’s nonvirtual instance GetYearsEmployed method.
When calling a nonvirtual instance method, the JIT compiler locates the type object that cor-
responds to the type of the variable being used to make the call. In this case, the variable e

is defined as an Employee. (If the EmpTloyee type didn't define the method being called, the
JIT compiler walks down the class hierarchy toward Object looking for this method. It can do
this because each type object has a field in it that refers to its base type; this information

is not shown in the figures.) Then, the JIT compiler locates the entry in the type object'’s
method table that refers to the method being called, JITs the method (if necessary), and then
calls the JITted code. For our discussion, let's say that Employee’s GetYearsEmployed method
returns 5 because Joe has been employed at the company for five years. The integer is saved
in the local variable year. The result of this operation is shown in Figure 4-11.

Thread Stack

e (Employee)
year (int32) =0

void M3() {
Employee e;
Int32 year;
e = new Manager();
e = Employee.Lookup("Joe");
year = e.GetYearseEmployed();
e.GenProgressReport();

}

Chapter 4 Type Fundamentals

Heap
:)
Manager Object Manager Type Object
Type object ptr Type object ptr
Sync block index Sync block index
Instance fields | Static fields
GenProgressReport

Manager Object

Type object ptr
Sync block index
Instance fields

-

Employee Type Object

Type object ptr
Sync block index
Staticfields ______

GetYearsEmployed
GenProgressReport

ook
cokup | [ited

code

J

FIGURE 4-10 EmpTloyee’s static Lookup method allocates and initializes a Manager object for Joe

Thread Stack

e (Employee)
year (int32) = 5

void M3() {
Employee e;
Int32 year;
e = new Manager();
e = Employee.Lookup("Joe");
year = e.GetYearsEmployed();
e.GenProgressReport();

S}

Heap

Manager Object

Type object ptr
Sync block index
Instance fields

Manager Object

Type object ptr
Sync block index
Instance fields

Manager Type Object\

Type object ptr
Sync block index
Static fields

GenProgressReport

Employee Type Object

Type object ptr
Sync block index
Static field
R JITted
GetYearsEmployed code
GenProgressReport
Look
ookup JITted
code

FIGURE 4-11 Employee’s nonvirtual instance GetYearsEmployed method is called, returning 5

109

110

Part Il Designing Types

The next line of code in M3 calls Employee's virtual instance GetProgressReport method.
When calling a virtual instance method, the JIT compiler produces some additional code in
the method, which will be executed each time the method is invoked. This code will first look
in the variable being used to make the call and then follow the address to the calling object.
In this case, the variable e points to the Manager object representing “Joe.” Then, the code
will examine the object’s internal type object pointer member; this member refers to the
actual type of the object. The code then locates the entry in the type object’s method table
that refers to the method being called, JITs the method (if necessary), and calls the JITted
code. For our discussion, Manager's GetProgressReport implementation is called because e
refers to a Manager object. The result of this operation is shown in Figure 4-12.

Note that if Employee’s Lookup method had discovered that Joe was just an EmpTloyee and
not a Manager, Lookup would have internally constructed an Employee object whose type
object pointer member would have referred to the Employee type object, causing
Employee’'s implementation of GetProgressReport to execute instead of Manager’s
implementation.

Thread Stack

. Heap
o 4 Manager Object Manager Type Object\
e (Employee) (Type object ptr Type object ptr
year (int32) =5 Sync block index Sync block index
\ Instance fields) | Static fields T
GenProgressReport. t::
Manager Object coce
> (Type object ptr) Employee Type Object
Sync block index -
Instance fields Type ObJeCt, it
_/ Sync block index
vate B0 Staticfields TTied
EiplloyEs o GetYearsEmployed y
Int32 year; code
e = new Manager(); GenProgressReport
e = Employee.Lookup("Joe"); Lookup
year = e.GetYearsEmployed(); JITted
e.GenProgressReport(); code
} - J

FIGURE 4-12 Employee’s virtual instance GetProgressReport method is called, causing Manager's over-
ride of this method to execute

At this point, we have discussed the relationship between source code, IL, and JITted code.
We have also discussed the thread's stack, arguments, local variables, and how these argu-
ments and variables refer to objects on the managed heap. You also see how objects contain
a pointer to their type object (containing the static fields and method table). We have also
discussed how the JIT compiler determines how to call static methods, nonvirtual instance
methods, and virtual instance methods. All of this should give you great insight into how the

Chapter 4 Type Fundamentals 111

CLR works, and this insight should help you when architecting and implementing your types,
components, and applications. Before ending this chapter, I'd like to give you just a little
more insight as to what is going on inside the CLR.

You'll notice that the Employee and Manager type objects both contain type object pointer
members. This is because type objects are actually objects themselves. When the CLR creates
type objects, the CLR must initialize these members. “To what?” you might ask. Well, when
the CLR starts running in a process, it immediately creates a special type object for the
System.Type type (defined in MSCorlLib.dll). The Employee and Manager type objects are
“instances” of this type, and therefore, their type object pointer members are initialized to
refer to the System. Type type object, as shown in Figure 4-13.

Of course, the System. Type type object is an object itself and therefore also has a type
object pointer member in it, and it is logical to ask what this member refers to. It refers

to itself because the System.Type type object is itself an “instance” of a type object. And
now you should understand the CLR's complete type system and how it works. By the way,
System.Object's GetType method simply returns the address stored in the specified object'’s
type object pointer member. In other words, the GetType method returns a pointer to an
object’s type object, and this is how you can determine the true type of any object in the
system (including type objects).

Thread Stack

" Heap
o 4 Manager Object Manager Type Object\
e (Employee) (Type object ptr 21 Type object ptr
year (int32) =5 Sync block index Sync block index
\ Instance fields) | Static fields T o
GenProgressReport t::
Manager Object ot
> (Type object ptr) Employee Type Object
Sync block index -
Instance fields T Type ObJeCt. it
;} Sync block index
oid M3 : ic fi
v 1Emp1o>(/2e é_ Type Type Object Static fields JITted
’ - GetYearsEmployed
Int32 year; <= Type object ptr GenP R code
e = new Manager(); Sync block index enProgresskeport
e = Employee.Lookup("Joe™); Y e Lookup
year = e.GetYearsEmployed(); __S:‘?E'_C_f'_filfjf _____ JITted
e.GenProgressReport(); cee code
3 = J

FIGURE 4-13 The Employee and Manager type objects are instances of the System.Type type.

Chapter 5
Primitive, Reference, and Value
Types

Programming Language Primitive Types, 113
Reference Types and Value Types.ciiiiini i, 121
Boxing and Unboxing Value Types.o 127
Object Hash Codesottt e et et e 146
The dynamic Primitive Type. . ..ottt e i 148

In this chapter, I'll discuss the different kinds of types you'll run into as a Microsoft .NET
Framework developer. It is crucial for all developers to be familiar with the different behaviors
that these types exhibit. When | was first learning the .NET Framework, | didn't fully under-
stand the difference between primitive, reference, and value types. This lack of clarity led me
to unwittingly introduce subtle bugs and performance issues into my code. By explaining the
differences between the types here, I'm hoping to save you some of the headaches that |
experienced while getting up to speed.

Programming Language Primitive Types

Certain data types are so commonly used that many compilers allow code to manipulate
them using simplified syntax. For example, you could allocate an integer by using the follow-
ing syntax:

System.Int32 a = new System.Int32(Q);

But I'm sure you'd agree that declaring and initializing an integer by using this syntax is rather
cumbersome. Fortunately, many compilers (including C#) allow you to use syntax similar to
the following instead:

int a = 0;

This syntax certainly makes the code more readable and generates identical Intermediate
Language (IL) to that which is generated when System.Int32 is used. Any data types the
compiler directly supports are called primitive types. Primitive types map directly to types
existing in the Framework Class Library (FCL). For example, in C#, an int maps directly to the

113

114 Part Il Designing Types

System.Int32 type. Because of this, the following four lines of code all compile correctly and
produce the exact same IL:

int a = 0; // Most convenient syntax
System.Int32 a = 0; // Convenient syntax

int a = new int(Q); // Inconvenient syntax
System.Int32 a = new System.Int32(); // Most inconvenient syntax

Table 5-1 shows the FCL types that have corresponding primitives in C#. For the types that
are compliant with the Common Language Specification (CLS), other languages will offer
similar primitive types. However, languages aren't required to offer any support for the
non—CLS-compliant types.

TABLE 5-1 C# Primitives with Corresponding FCL Types

Primitive Type FCL Type CLS-Compliant Description

sbyte System.SByte No Signed 8-bit value

byte System.Byte Yes Unsigned 8-bit value

short System.Intl6 Yes Signed 16-bit value

ushort System.Uint16 No Unsigned 16-bit value

int System.Int32 Yes Signed 32-bit value

uint System.Uint32 No Unsigned 32-bit value

Tong System.Int64 Yes Signed 64-bit value

ulong System.UInt64 No Unsigned 64-bit value

char System.Char Yes 16-bit Unicode character (char never

represents an 8-bit value as it would in
unmanaged C++)

float System.Single Yes IEEE 32-bit floating point value
double System.Double Yes IEEE 64-bit floating point value

bool System.Boolean Yes A true/false value

decimal System.Decimal Yes A 128-bit high-precision floating-point

value commonly used for financial
calculations in which rounding errors
can't be tolerated. Of the 128 bits, 1
bit represents the sign of the value,

96 bits represent the value itself, and

8 bits represent the power of 10 to
divide the 96-bit value by (can be
anywhere from 0 to 28). The remaining
bits are unused.

string System.String Yes An array of characters

object System.Object Yes Base type of all types

Chapter 5 Primitive, Reference, and Value Types 115

Primitive Type FCL Type CLS-Compliant Description

dynamic System.Object Yes To the common language runtime

(CLR), dynamic is identical to object.
However, the C# compiler allows
dynamiic variables to participate in
dynamic dispatch using a simplified
syntax. For more information, see “The
dynamiic Primitive Type” section at the
end of this chapter.

Another way to think of this is that the C# compiler automatically assumes that you have the
following using directives (as discussed in Chapter 4, “Type Fundamentals”) in all of your
source code files:

using
using
using
using
using
using

sbyte = System.SByte;
byte = System.Byte;

short = System.Intl6;
ushort = System.UIntl6;
int = System.Int32;
uint = System.UInt32;

The C# language specification states, “As a matter of style, use of the keyword is favored over
use of the complete system type name.” | disagree with the language specification; | prefer
to use the FCL type names and completely avoid the primitive type names. In fact, | wish that
compilers didn't even offer the primitive type names and forced developers to use the FCL
type names instead. Here are my reasons:

I've seen a number of developers confused, not knowing whether to use string

or String in their code. Because in C# string (a keyword) maps exactly to
System.String (an FCL type), there is no difference and either can be used. Similarly,
I've heard some developers say that int represents a 32-bit integer when the application
is running on a 32-bit OS and that it represents a 64-bit integer when the application

is running on a 64-bit OS. This statement is absolutely false: in C#, an int always maps
to System.Int32, and therefore it represents a 32-bit integer regardless of the OS the
code is running on. If programmers would use Int32 in their code, then this potential
confusion is also eliminated.

In C#, Tong maps to System.Int64, but in a different programming language, Tong
could map to an Intl6 or Int32. In fact, C++/CLI does treat Tong as an Int32.
Someone reading source code in one language could easily misinterpret the code’s
intention if he or she were used to programming in a different programming language.
In fact, most languages won't even treat Tong as a keyword and won't compile code
that uses it.

116

Part Il Designing Types

B The FCL has many methods that have type names as part of their method names. For
example, the BinaryReader type offers methods such as ReadBoolean, ReadInt32,
ReadSingle, and so on, and the System.Convert type offers methods such as
ToBoolean, ToInt32, ToSingle, and so on. Although it's legal to write the following
code, the line with float feels very unnatural to me, and it's not obvious that the line is
correct:

BinaryReader br = new BinaryReader(...);
float val = br.ReadSingle(); // OK, but feels unnatural
Single val = br.ReadSingle(); // OK and feels good

B Many programmers that use C# exclusively tend to forget that other programming
languages can be used against the CLR, and because of this, C#-isms creep into the
class library code. For example, Microsoft's FCL is almost exclusively written in C# and
developers on the FCL team have now introduced methods into the library such as
Array's GetLongLength, which returns an Int64 value that is a Tong in C# but not
in other languages (like C++/CLI). Another example is System.Ling.Enumerable’s
LongCount method.

For all of these reasons, I'll use the FCL type names throughout this book.

In many programming languages, you would expect the following code to compile and
execute correctly:

Int32 i = 5; // A 32-bit value
Int64 1 = 1; // Implicit cast to a 64-bit value

However, based on the casting discussion presented in Chapter 4, you wouldn’t expect this
code to compile. After all, System.Int32 and System.Int64 are different types, and neither
one is derived from the other. Well, you'll be happy to know that the C# compiler does
compile this code correctly, and it runs as expected. Why? The reason is that the C# compiler
has intimate knowledge of primitive types and applies its own special rules when compiling
the code. In other words, the compiler recognizes common programming patterns and
produces the necessary IL to make the written code work as expected. Specifically, the C#
compiler supports patterns related to casting, literals, and operators, as shown in the follow-
ing examples.

First, the compiler is able to perform implicit or explicit casts between primitive types such as
these:

Int32 i = 5; // Implicit cast from Int32 to Int32
Int64 1 = 1; // Implicit cast from Int32 to Int64
Single s = 1i; // Implicit cast from Int32 to Single
Byte b = (Byte) i; // Explicit cast from Int32 to Byte

Intl6 v = (Intl6) s; // Explicit cast from Single to Intl6

C# allows implicit casts if the conversion is “safe,” that is, no loss of data is possible, such as
converting an Int32 to an Int64. But C# requires explicit casts if the conversion is potentially

Chapter 5 Primitive, Reference, and Value Types 117

unsafe. For numeric types, “unsafe” means that you could lose precision or magnitude as a
result of the conversion. For example, converting from Int32 to Byte requires an explicit
cast because precision might be lost from large Int32 numbers; converting from Single to
Intl6 requires a cast because Single can represent numbers of a larger magnitude than
Intl6 can.

Be aware that different compilers can generate different code to handle these cast operations.
For example, when casting a Single with a value of 6.8 to an Int32, some compilers could
generate code to put a 6 in the Int32, and others could perform the cast by rounding the
result up to 7. By the way, C# always truncates the result. For the exact rules that C# follows
for casting primitive types, see the “Conversions” section in the C# language specification.

In addition to casting, primitive types can be written as literals. A literal is considered to be an
instance of the type itself, and therefore, you can call instance methods by using the instance
as shown here:

Console.WriteLine(123.ToString() + 456.ToString()); // "123456"

Also, if you have an expression consisting of literals, the compiler is able to evaluate the
expression at compile time, improving the application’s performance.

Boolean found = false; // Generated code sets found to 0
Int32 x = 100 + 20 + 3; // Generated code sets x to 123
String s = "a " + "bc"; // Generated code sets s to "a bc"

Finally, the compiler automatically knows how and in what order to interpret operators (such

as+ -, %/, % & A, |, == 1=, > <, >= <= <<, >>, ~, !, ++, --, and so on) when used in code:
Int32 x = 100; // Assignment operator
Int32 y = x + 23; // Addition and assignment operators

Boolean lessThanFifty = (y < 50); // Less-than and assignment operators

Checked and Unchecked Primitive Type Operations

Programmers are well aware that many arithmetic operations on primitives could result in an
overflow:

Byte b = 100;
b = (Byte) (b + 200); // b now contains 44 (or 2C in Hex).

Important When performing the arithmetic operation above, the first step requires that all
operand values be expanded to 32-bit values (or 64-bit values if any operand requires more than
32 bits). So b and 200 (values requiring less than 32 bits) are first converted to 32-bit values and
then added together. The result is a 32-bit value (300 in decimal, or 12C in hexadecimal) that
must be cast to a Byte before the result can be stored back in the variable b. C# doesn't perform
this cast for you implicitly, which is why the Byte cast on the second line of the preceding code is
required.

118 Part Il Designing Types

In most programming scenarios, this silent overflow is undesirable and if not detected causes
the application to behave in strange and unusual ways. In some rare programming scenarios
(such as calculating a hash value or a checksum), however, this overflow is not only acceptable
but is also desired.

Different languages handle overflows in different ways. C and C++ don't consider overflows
to be an error and allow the value to wrap; the application continues running. Microsoft
Visual Basic, on the other hand, always considers overflows to be errors and throws an
exception when it detects one.

The CLR offers IL instructions that allow the compiler to choose the desired behavior. The CLR
has an instruction called add that adds two values together. The add instruction performs no
overflow checking. The CLR also has an instruction called add.ovf that also adds two values
together. However, add.ovf throws a System.0OverflowException if an overflow occurs. In
addition to these two IL instructions for the add operation, the CLR also has similar IL instruc-
tions for subtraction (sub/sub.ovf), multiplication (mu1/mul.ovf), and data conversions
(conv/conv.ovf).

C# allows the programmer to decide how overflows should be handled. By default, overflow
checking is turned off. This means that the compiler generates IL code by using the versions
of the add, subtract, multiply, and conversion instructions that don't include overflow check-
ing. As a result, the code runs faster—but developers must be assured that overflows won't
occur or that their code is designed to anticipate these overflows.

One way to get the C# compiler to control overflows is to use the /checked+ compiler
switch. This switch tells the compiler to generate code that has the overflow-checking versions
of the add, subtract, multiply, and conversion IL instructions. The code executes a little slower
because the CLR is checking these operations to determine whether an overflow occurred.

If an overflow occurs, the CLR throws an OverflowException.

In addition to having overflow checking turned on or off globally, programmers can control
overflow checking in specific regions of their code. C# allows this flexibility by offering
checked and unchecked operators. Here's an example that uses the unchecked operator:

UInt32 invalid = unchecked((UInt32) (-1)); // OK

And here is an example that uses the checked operator:

Byte b = 100;
b = checked((Byte) (b + 200)); // OverflowException is thrown

In this example, b and 200 are first converted to 32-bit values and are then added together;
the result is 300. Then 300 is converted to a Byte due to the explicit cast; this generates the
OverflowException. If the Byte were cast outside the checked operator, the exception
wouldn't occur:

Chapter 5 Primitive, Reference, and Value Types 119

b = (Byte) checked(b + 200); // b contains 44; no OverflowException

In addition to the checked and unchecked operators, C# also offers checked and unchecked
statements. The statements cause all expressions within a block to be checked or unchecked:

checked { // Start of checked block

Byte b = 100;

b = (Byte) (b + 200); // This expression is checked for overflow.
} // End of checked block

In fact, if you use a checked statement block, you can now use the += operator with the
Byte, which simplifies the code a bit:

checked { // Start of checked block

Byte b = 100;

b += 200; // This expression is checked for overflow.
} // End of checked block

Important Because the only effect that the checked operator and statement have is to
determine which versions of the add, subtract, multiply, and data conversion IL instructions are
produced, calling a method within a checked operator or statement has no impact on that
method, as the following code demonstrates:

checked {
// Assume SomeMethod tries to load 400 into a Byte.
SomeMethod (400) ;
// SomeMethod might or might not throw an OverflowException.
// It would if SomeMethod were compiled with checked instructions.

In my experience, I've seen a lot of calculations produce surprising results. Typically, this is
due to invalid user input, but it can also be due to values returned from parts of the system
that a programmer just doesn't expect. And so, | now recommend that programmers do the
following:

B Use signed data types (such as Int32 and Int64) instead of unsigned numeric types
(such as UInt32 and UInt64) wherever possible. This allows the compiler to detect
more overflow/underflow errors. In addition, various parts of the class library (such
as Array's and String's Length properties) are hard-coded to return signed values,
and less casting is required as you move these values around in your code. Fewer casts
make source code cleaner and easier to maintain. In addition, unsigned numeric types
are not CLS-compliant.

B Asyou write your code, explicitly use checked around blocks where an unwanted
overflow might occur due to invalid input data, such as processing a request with
data supplied from an end user or a client machine. You might want to catch
OverflowException as well, so that your application can gracefully recover from these
failures.

120

Part Il Designing Types

B Asyou write your code, explicitly use unchecked around blocks where an overflow is
OK, such as calculating a checksum.

B For any code that doesn’t use checked or unchecked, the assumption is that you do
want an exception to occur on overflow, for example, calculating something (such as
prime numbers) where the inputs are known, and overflows are bugs.

Now, as you develop your application, turn on the compiler’s /checked+ switch for debug
builds. Your application will run more slowly because the system will be checking for over-
flows on any code that you didn't explicitly mark as checked or unchecked. If an exception
occurs, you'll easily detect it and be able to fix the bug in your code. For the release build

of your application, use the compiler’s /checked-switch so that the code runs faster and
overflow exceptions won't be generated. To change the Checked setting in Microsoft Visual
Studio, display the properties for your project, select the Build tab, click Advanced, and then
select the Check For Arithmetic Overflow/underflow" option, as shown in Figure 5-1.

If your application can tolerate the slight performance hit of always doing checked opera-
tions, then | recommend that you compile with the /checked command-line option even
for a release build because this can prevent your application from continuing to run with
corrupted data and possible security holes. For example, you might perform a multiplication
to calculate an index into an array; it is much better to get an OverflowException as
opposed to accessing an incorrect array element due to the math wrapping around.

Advanced Build Settings [~ % |23
General
Language Version: ’defauh ']
Internal Compiler Error Reporting: ’plompt ']

Check for arithmetic overflow/underflow

7] Do not reference mscarlib.dll

Output
Debug Info: ’fuii ']
File Alignment: [s12 -

DLL Base Address: (00400000

[ok][cancel]

FIGURE 5-1 Changing the compiler’s default setting for performing checked arithmetic using Visual Studio’s
Advanced Build Settings dialog box

Chapter 5 Primitive, Reference, and Value Types 121

W Important The System.Decimal type is a very special type. Although many programming
languages (C# and Visual Basic included) consider Decimal a primitive type, the CLR does not.
This means that the CLR doesn't have IL instructions that know how to manipulate a Decimal
value. If you look up the Decimal type in the .NET Framework SDK documentation, you'll
see that it has public static methods called Add, Subtract, Multiply, Divide, and so on. In
addition, the Decimal type provides operator overload methods for +, -, *, /, and so on.

When you compile code that uses Decimal values, the compiler generates code to call
Decimal’s members to perform the actual operation. This means that manipulating Decimal
values is slower than manipulating CLR primitive values. Also, because there are no IL
instructions for manipulating Decimal values, the checked and unchecked operators,
statements, and compiler switches have no effect. Operations on Decimal values always throw
an OverflowException if the operation can't be performed safely.

Similarly, the System.Numerics.BigInteger type is also special in that it internally uses an
array of UInt32s to represent an arbitrarily large integer whose value has no upper or lower
bound. Therefore, operations on a BigInteger never result in an OverflowException.
However, a BigInteger operation may throw an OutOfMemoryException if the value gets too
large and there is insufficient available memory to resize the array.

Reference Types and Value Types

The CLR supports two kinds of types: reference types and value types. While most types in
the FCL are reference types, the types that programmers use most often are value types.
Reference types are always allocated from the managed heap, and the C# new operator
returns the memory address of the object—the memory address refers to the object’s bits.
You need to bear in mind some performance considerations when you're working with
reference types. First, consider these facts:

B The memory must be allocated from the managed heap.

B Each object allocated on the heap has some additional overhead members associated
with it that must be initialized.

B The other bytes in the object (for the fields) are always set to zero.

B Allocating an object from the managed heap could force a garbage collection to occur.

If every type were a reference type, an application’s performance would suffer greatly.
Imagine how poor performance would be if every time you used an Int32 value, a memory
allocation occurred! To improve performance for simple, frequently used types, the CLR
offers lightweight types called value types. Value type instances are usually allocated on a
thread'’s stack (although they can also be embedded as a field in a reference type object).
The variable representing the instance doesn’t contain a pointer to an instance; the variable
contains the fields of the instance itself. Because the variable contains the instance’s fields, a
pointer doesn’'t have to be dereferenced to manipulate the instance’s fields. Value type

122

Part Il Designing Types

instances don't come under the control of the garbage collector, so their use reduces pres-
sure in the managed heap and reduces the number of collections an application requires
over its lifetime.

The .NET Framework SDK documentation clearly indicates which types are reference types and
which are value types. When looking up a type in the documentation, any type called a class
is a reference type. For example, the System.Exception class, the System.I0.FileStream
class, and the System.Random class are all reference types. On the other hand, the
documentation refers to each value type as a structure or an enumeration. For example,

the System.Int32 structure, the System.Boolean structure, the System.Decimal

structure, the System.TimeSpan structure, the System.DayOfWeek enumeration, the
System.IO0.FileAttributes enumeration, and the System.Drawing.FontStyle enumera-
tion are all value types.

If you look more closely at the documentation, you'll notice that all of the structures are
immediately derived from the System.ValueType abstract type. System.ValueType is itself
immediately derived from the System.Object type. By definition, all value types must be
derived from System.ValueType. All enumerations are derived from the System.Enum
abstract type, which is itself derived from System.ValueType. The CLR and all programming
languages give enumerations special treatment. For more information about enumerated
types, refer to Chapter 15, “"Enumerated Types and Bit Flags.”

Even though you can't choose a base type when defining your own value type, a value type
can implement one or more interfaces if you choose. In addition, all value types are sealed,
which prevents a value type from being used as a base type for any other reference type or
value type. So, for example, it's not possible to define any new types using Boolean, Char,
Int32, Uint64, Single, Double, Decimal, and so on as base types.

Important For many developers (such as unmanaged C/C++ developers), reference types
and value types will seem strange at first. In unmanaged C/C++, you declare a type, and then
the code that uses the type gets to decide if an instance of the type should be allocated on the
thread'’s stack or in the application’s heap. In managed code, the developer defining the type
indicates where instances of the type are allocated; the developer using the type has no control
over this.

The following code and Figure 5-2 demonstrate how reference types and value types differ:

// Reference type (because of 'class')
class SomeRef { public Int32 x; }

// Value type (because of 'struct')
struct SomeVal { public Int32 x; }

static void ValueTypeDemo() {
SomeRef rl = new SomeRef(); // Allocated in heap
SomeVal vl = new SomeVal(Q); // Allocated on stack

rl.x =
vl.x =

5;
5;

Console.WriteLine(rl.x);
Console.WriteLine(vl.x);
// The left side of Figure 5-2 reflects the situation
// after the 1lines above have executed.

SomeRef r2
SomeVal v2

rl.x =
vl.x =

8;
9;

ril;
vl;

Console.WriteLine(rl.x);
Console.WriteLine(r2.x);
Console.WriteLine(vl.x);
Console.WriteLine(v2.x);

// The right side of

Chapter 5 Primitive, Reference, and Value Types

// Pointer dereference

// Changed on stack

// Displays "5"

// Also displays "5"

// Copies reference (pointer) only

// Allocate on stack & copies members

// Changes rl.x and r2.x
// Changes v1.x, not v2.x

// Displays "8"
// Displays "8"
// Displays "9"
// Displays "5"

// after ALL of the Tines above have executed.

}

Figure 5-2 reflects the situation

123

In this code, the SomeVal type is declared using struct instead of the more common class.
In C#, types declared using struct are value types, and types declared using class are ref-
erence types. As you can see, the behavior of reference types and value types differs quite a
bit. As you use types in your code, you must be aware of whether the type is a reference type

or a value type because it can greatly affect how you express your intentions in the code.

Situation after the first half of the
valueTypeDemo method executes

Thread Stack

Managed Heap

Situation after the valueTypebemo
method completely executes

Thread Stack

Managed Heap

Type object ptr
Sync block index

| rl II
vl
r2
v2
x=5

Type object ptr
Sync block index

FIGURE 5-2 Visualizing the memory as the code executes

In the preceding code, you saw this line:

SomeVal vl = new SomeVal(Q);

The way this line is written makes it look as if a SomeVal instance will be allocated on the

// Allocated on stack

managed heap. However, the C# compiler knows that SomeVal is a value type and produces
code that allocates the SomeVal instance on the thread's stack. C# also ensures that all of the
fields in the value type instance are zeroed.

124

Part Il Designing Types

The preceding line could have been written like this instead:

SomeVal v1; // Allocated on stack

This line also produces IL that allocates the instance on the thread's stack and zeroes the
fields. The only difference is that C# “thinks” that the instance is initialized if you use the new
operator. The following code will make this point clear:

// These two lines compile because C# thinks that
// vl's fields have been initialized to O.
SomeVal vl = new SomeVal();

Int32 a = vl.x;

// These two lines don't compile because C# doesn't think that
// vl's fields have been initialized to 0.

SomeVal v1;

Int32 a = vl.x; // error CS0170: Use of possibly unassigned field 'x'

When designing your own types, consider carefully whether to define your types as value
types instead of reference types. In some situations, value types can give better performance.
In particular, you should declare a type as a value type if all the following statements are
true:

B The type acts as a primitive type. Specifically, this means that it is a fairly simple
type that has no members that modify any of its instance fields. When a type offers
no members that alter its fields, we say that the type is immutable. In fact, it is
recommended that many value types mark all their fields as readonly (discussed in
Chapter 7, "Constants and Fields").

B The type doesn't need to inherit from any other type.

B The type won't have any other types derived from it.

The size of instances of your type is also a condition to take into account because by default,
arguments are passed by value, which causes the fields in value type instances to be copied,
hurting performance. Again, a method that returns a value type causes the fields in the
instance to be copied into the memory allocated by the caller when the method returns,
hurting performance. So, in addition to the previous conditions, you should declare a type as
a value type if one of the following statements is true:

B Instances of the type are small (approximately 16 bytes or less).

B [nstances of the type are large (greater than 16 bytes) and are not passed as method
parameters or returned from methods.

The main advantage of value types is that they're not allocated as objects in the managed
heap. Of course, value types have several limitations of their own when compared to refer-
ence types. Here are some of the ways in which value types and reference types differ:

Chapter 5 Primitive, Reference, and Value Types 125

Value type objects have two representations: an unboxed form and a boxed form
(discussed in the next section). Reference types are always in a boxed form.

Value types are derived from System.ValueType. This type offers the same methods
as defined by System.Object. However, System.ValueType overrides the Equals
method so that it returns true if the values of the two objects’ fields match. In addition,
System.ValueType overrides the GetHashCode method to produce a hash code value
by using an algorithm that takes into account the values in the object’s instance fields.
Due to performance issues with this default implementation, when defining your own
value types, you should override and provide explicit implementations for the Equals
and GetHashCode methods. I'll cover the Equals and GetHashCode methods at the end
of this chapter.

Because you can't define a new value type or a new reference type by using a value
type as a base class, you shouldn't introduce any new virtual methods into a value
type. No methods can be abstract, and all methods are implicitly sealed (can’t be
overridden).

Reference type variables contain the memory address of objects in the heap. By de-
fault, when a reference type variable is created, it is initialized to nu11, indicating that
the reference type variable doesn't currently point to a valid object. Attempting to use
a nul1 reference type variable causes a Nul1ReferenceException to be thrown. By
contrast, value type variables always contain a value of the underlying type, and all
members of the value type are initialized to 0. Since a value type variable isn't a pointer,
it's not possible to generate a Nul1ReferenceException when accessing a value type.
The CLR does offer a special feature that adds the notion of nullability to a value type.
This feature, called nullable types, is discussed in Chapter 19, “Nullable Value Types.”

When you assign a value type variable to another value type variable, a field-by-field
copy is made. When you assign a reference type variable to another reference type
variable, only the memory address is copied.

Because of the previous point, two or more reference type variables can refer to a

single object in the heap, allowing operations on one variable to affect the object ref-
erenced by the other variable. On the other hand, value type variables are distinct ob-
jects, and it's not possible for operations on one value type variable to affect another.

Because unboxed value types aren't allocated on the heap, the storage allocated for
them is freed as soon as the method that defines an instance of the type is no longer
active. This means that a value type instance doesn't receive a notification (via a
Finalize method) when its memory is reclaimed.

Note In fact, it would be quite odd to define a value type with a Finalize method since the
method would be called only on boxed instances. For this reason, many compilers (including C#,
C++/CLI, and Visual Basic) don't allow you to define Final1ize methods on value types. Although
the CLR allows a value type to define a Finalize method, the CLR won't call this method when a
boxed instance of the value type is garbage collected.

126

Part Il Designing Types

How the CLR Controls the Layout of a Type's Fields

To improve performance, the CLR is capable of arranging the fields of a type any way it
chooses. For example, the CLR might reorder fields in memory so that object references
are grouped together and data fields are properly aligned and packed. However, when
you define a type, you can tell the CLR whether it must keep the type's fields in the
same order as the developer specified them or whether it can reorder them as it sees
fit.

You tell the CLR what to do by applying the System.Runtime.InteropServices.
StructLayoutAttribute attribute on the class or structure you're defining. To this
attribute’s constructor, you can pass LayoutKind.Auto to have the CLR arrange

the fields, LayoutKind.Sequential to have the CLR preserve your field layout, or
LayoutKind.Explicit to explicitly arrange the fields in memory by using offsets. If
you don't explicitly specify the StructLayoutAttribute on a type that you're defining,
your compiler selects whatever layout it determines is best.

You should be aware that Microsoft's C# compiler selects LayoutKind.Auto for ref-
erence types (classes) and LayoutKind.Sequential for value types (structures). It is
obvious that the C# compiler team believes that structures are commonly used when
interoperating with unmanaged code, and for this to work, the fields must stay in the
order defined by the programmer. However, if you're creating a value type that has
nothing to do with interoperability with unmanaged code, you probably want to over-
ride the C# compiler's default. Here's an example:

using System;
using System.Runtime.InteropServices;

// Let the CLR arrange the fields to improve
// performance for this value type.
[StructLayout(LayoutKind.Auto)]
internal struct SomeValType {

private readonly Byte m_b;

private readonly Intl6 m_x;

3

The StructLayoutAttribute also allows you to explicitly indicate the offset of each
field by passing LayoutKind.Explicit to its constructor. Then you apply an instance
of the System.Runtime.InteropServices.FieldOffsetAttribute attribute to each
field passing to this attribute’s constructor an Int32 indicating the offset (in bytes) of
the field's first byte from the beginning of the instance. Explicit layout is typically used
to simulate what would be a union in unmanaged C/C++ because you can have multiple
fields starting at the same offset in memory. Here is an example:

Chapter 5 Primitive, Reference, and Value Types 127

using System;
using System.Runtime.InteropServices;

// The developer explicitly arranges the fields of this value type.
[StructLayout(LayoutKind.ExpTlicit)]
internal struct SomeValType {

[FieldOffset(0)]

private readonly Byte m_b; // The m_b and m_x fields overlap each

[FieldOffset(0)]

private readonly Intl6 m_x; // other in instances of this type
}
It should be noted that it is illegal to define a type in which a reference type and a
value type overlap. It is possible to define a type in which multiple reference types
overlap at the same starting offset; however, this is unverifiable. It is legal to define a
type in which multiple value types overlap; however, all of the overlapping bytes must
be accessible via public fields for the type to be verifiable.

Boxing and Unboxing Value Types

Value types are lighter weight than reference types because they are not allocated as objects
in the managed heap, not garbage collected, and not referred to by pointers. However, in
many cases, you must get a reference to an instance of a value type. For example, let's say
that you wanted to create an ArrayList object (a type defined in the System.Collections
namespace) to hold a set of Point structures. The code might look like this:

// Declare a value type.
struct Point {

public Int32 x, y;
}

public sealed class Program {
public static void Main() {
ArrayList a = new ArrayList(Q);

Point p; // Allocate a Point (not in the heap).

for (Int32 i = 0; i < 10; i++) {
p.X =p.y = 1; // Initialize the members in the value type.
a.Add(p); // Box the value type and add the

// reference to the Arraylist.

3

With each iteration of the loop, a Point's value type fields are initialized. Then the Point is
stored in the ArrayList. But let’s think about this for a moment. What is actually being
stored in the ArrayList? Is it the Point structure, the address of the Point structure, or

128

Part Il Designing Types

something else entirely? To get the answer, you must look up ArrayList’'s Add method
and see what type its parameter is defined as. In this case, the Add method is prototyped as
follows:

public virtual Int32 Add(Object value);

From this, you can plainly see that Add takes an Object as a parameter, indicating that Add
requires a reference (or pointer) to an object on the managed heap as a parameter. But in
the preceding code, I'm passing p, a Point, which is a value type. For this code to work, the
Point value type must be converted into a true heap-managed object, and a reference to
this object must be obtained.

It's possible to convert a value type to a reference type by using a mechanism called boxing.
Internally, here's what happens when an instance of a value type is boxed:

1. Memory is allocated from the managed heap. The amount of memory allocated is the
size required by the value type’s fields plus the two additional overhead members (the
type object pointer and the sync block index) required by all objects on the managed
heap.

2. The value type’s fields are copied to the newly allocated heap memory.

3. The address of the object is returned. This address is now a reference to an object; the
value type is now a reference type.

The C# compiler automatically produces the IL code necessary to box a value type instance,
but you still need to understand what's going on internally so that you're aware of code size
and performance issues.

In the preceding code, the C# compiler detected that | was passing a value type to a method
that requires a reference type, and it automatically emitted code to box the object. So at
runtime, the fields currently residing in the Point value type instance p are copied into the
newly allocated Point object. The address of the boxed Point object (now a reference type)
is returned and is then passed to the Add method. The Point object will remain in the heap
until it is garbage collected. The Point value type variable (p) can be reused because the
ArrayList never knows anything about it. Note that the lifetime of the boxed value type
extends beyond the lifetime of the unboxed value type.

Chapter 5 Primitive, Reference, and Value Types 129

Note It should be noted that the FCL now includes a new set of generic collection classes

that make the non-generic collection classes obsolete. For example, you should use the
System.Collections.Generic.List<T> class instead of the System.Collections.ArrayList
class. The generic collection classes offer many improvements over the non-generic equivalents.
For example, the API has been cleaned up and improved, and the performance of the collection
classes has been greatly improved as well. But one of the biggest improvements is that the gener-
ic collection classes allow you to work with collections of value types without requiring that items
in the collection be boxed/unboxed. This in itself greatly improves performance because far fewer
objects will be created on the managed heap thereby reducing the number of garbage collections
required by your application. Furthermore, you will get compile-time type safety, and your source
code will be cleaner due to fewer casts. This will all be explained in further detail in Chapter 12,
"Generics.”

Now that you know how boxing works, let’s talk about unboxing. Let’s say that you want to
grab the first element out of the ArrayList by using the following code:

Point p = (Point) a[0];

Here you're taking the reference (or pointer) contained in element 0 of the ArrayList and
trying to put it into a Point value type instance, p. For this to work, all of the fields contained
in the boxed Point object must be copied into the value type variable, p, which is on the
thread'’s stack. The CLR accomplishes this copying in two steps. First, the address of the Point
fields in the boxed Point object is obtained. This process is called unboxing. Then, the values
of these fields are copied from the heap to the stack-based value type instance.

Unboxing is not the exact opposite of boxing. The unboxing operation is much less costly
than boxing. Unboxing is really just the operation of obtaining a pointer to the raw value
type (data fields) contained within an object. In effect, the pointer refers to the unboxed
portion in the boxed instance. So, unlike boxing, unboxing doesn't involve the copying of any
bytes in memory. Having made this important clarification, it is important to note that an
unboxing operation is typically followed by copying the fields.

Obviously, boxing and unboxing/copy operations hurt your application’s performance in
terms of both speed and memory, so you should be aware of when the compiler generates
code to perform these operations automatically and try to write code that minimizes this
code generation.

130

Part Il Designing Types

Internally, here's exactly what happens when a boxed value type instance is unboxed:

1. If the variable containing the reference to the boxed value type instance is nul1, a
Nul1ReferenceException is thrown.

2. If the reference doesn't refer to an object that is a boxed instance of the desired value
type, an InvalidCastException is thrown.!

The second item above means that the following code will not work as you might expect:

public static void Main() {
Int32 x = 5;
Object o = x; // Box x; o refers to the boxed object
Intl6e y = (Intl6) o; // Throws an InvalidCastException

}

Logically, it makes sense to take the boxed Int32 that o refers to and cast it to an Intl6.
However, when unboxing an object, the cast must be to the exact unboxed value type—
Int32 in this case. Here's the correct way to write this code:

public static void Main() {
Int32 x = 5;
Object o = x; // Box x; o refers to the boxed object
Intle y = (Intl6)(Int32) o; // Unbox to the correct type and cast

}

I mentioned earlier that an unboxing operation is frequently followed immediately by a field
copy. Let's take a look at some C# code demonstrating that unbox and copy operations work
together:

public static void Main() {
Point p;
p.x = p.y = 1;
Object o = p; // Boxes p; o refers to the boxed instance

p = (Point) o; // Unboxes o AND copies fields from boxed
// instance to stack variable

}

On the last line, the C# compiler emits an IL instruction to unbox o (get the address of the
fields in the boxed instance) and another IL instruction to copy the fields from the heap to
the stack-based variable p.

Now look at this code:
public static void Main() {

Point p;
p.x =p.y =1;

1 The CLR also allows you to unbox a value type into a nullable version of the same value type. This is discussed in
Chapter 19.

Chapter 5 Primitive, Reference, and Value Types 131

Object o = p; // Boxes p; o refers to the boxed instance

// Change Point's x field to 2

p = (Point) o; // Unboxes o AND copies fields from boxed

// instance to stack variable
p.x = 2; // Changes the state of the stack variable
o =p; // Boxes p; o refers to a new boxed instance

3

The code at the bottom of this fragment is intended only to change Point's x field from 1 to
2. To do this, an unbox operation must be performed, followed by a field copy, followed by
changing the field (on the stack), followed by a boxing operation (which creates a whole new
boxed instance in the managed heap). Hopefully, you see the impact that boxing and unbox-
ing/copying operations have on your application’s performance.

Some languages, such as C++/CLI, allow you to unbox a boxed value type without copying
the fields. Unboxing returns the address of the unboxed portion of a boxed object (ignoring
the object’s type object pointer and sync block index overhead). You can now use this point-
er to manipulate the unboxed instance’s fields (which happen to be in a boxed object on

the heap). For example, the previous code would be much more efficient if written in C++/
CLI, because you could change the value of Point's x field within the already boxed Point
instance. This would avoid both allocating a new object on the heap and copying all of the
fields twice!

Important If you're the least bit concerned about your application’s performance, you must be
aware of when the compiler produces the code that performs these operations. Unfortunately,
many compilers implicitly emit code to box objects, and so it is not obvious when you write code
that boxing is occurring. If | am concerned about the performance of a particular algorithm, |
always use a tool such as ILDasm.exe to view the IL code for my methods and see where the box
IL instructions are.

Let's look at a few more examples that demonstrate boxing and unboxing:

public static void Main() {

Int32 v = 5; // Create an unboxed value type variable.
Object o = v; // o refers to a boxed Int32 containing 5.
v = 123; // Changes the unboxed value to 123
Console.WriteLine(v + ", " + (Int32) o); // Displays "123, 5"

3

In this code, can you guess how many boxing operations occur? You might be surprised to
discover that the answer is three! Let's analyze the code carefully to really understand what's
going on. To help you understand, I've included the IL code generated for the Main method
shown in the preceding code. I've commented the code so that you can easily see the indi-
vidual operations.

132

Part Il Designing Types

.method public hidebysig static void Main() cil managed
{

.entrypoint

// Code size 45 (0x2d)

.maxstack 3

.Tocals init (int32 V_O,

object V_1)

// Load 5 1into v.

IL_0000: 1dc.i4.5

IL_0001: stloc.0O

// Box v and store the reference pointer in o.
IL_0002: 1dloc.0

IL_0003: box [mscorTib]System.Int32
IL_0008: stloc.1

// Load 123 1into v.
IL_0009: 1dc.i4.s 123
IL_000b: stloc.0

// Box v and leave the pointer on the stack for Concat.
IL_000c: 1dloc.0
IL_000d: box [mscorTib]System.Int32

// Load the string on the stack for Concat.
IL_0012: Tldstr "o

// Unbox o: Get the pointer to the In32’s field on the stack.
IL_0017: 1dloc.1
IL_0018: wunbox.any [mscorlib]System.Int32

// Box the Int32 and leave the pointer on the stack for Concat.
IL_001d: box [mscorTib]System.Int32

// Call Concat.

IL_0022: call string [mscorlib]System.String: :Concat(object,
object,
object)

// The string returned from Concat is passed to WritelLine.
IL_0027: «call void [mscorlib]System.Console: :WriteLine(string)

// Return from Main terminating this application.
IL_002c: ret
} // end of method App::Main

First, an Int32 unboxed value type instance (v) is created on the stack and initialized to 5.
Then a variable (o) typed as Object is created, and is initialized to point to v. But because
reference type variables must always point to objects in the heap, C# generated the proper
IL code to box and store the address of the boxed copy of v in 0. Now the value 123 is placed
into the unboxed value type instance v; this has no effect on the boxed Int32 value, which
keeps its value of 5.

Chapter 5 Primitive, Reference, and Value Types 133

Next is the call to the WriteLine method. WriteLine wants a String object passed to it,
but there is no string object. Instead, these three items are available: an unboxed Int32 value
type instance (v), a String (which is a reference type), and a reference to a boxed Int32
value type instance (o) that is being cast to an unboxed Int32. These must somehow be
combined to create a String.

To create a String, the C# compiler generates code that calls the String object’s static
Concat method. There are several overloaded versions of the Concat method, all of which
perform identically—the only difference is in the number of parameters. Because a string is
being created from the concatenation of three items, the compiler chooses the following
version of the Concat method:

public static String Concat(Object arg0, Object argl, Object arg2);

For the first parameter, arg0, v is passed. But v is an unboxed value parameter and arg0 is an
Object, so v must be boxed and the address to the boxed v is passed for arg0. For the argl
parameter, the ", " string is passed as a reference to a String object. Finally, for the arg2
parameter, o (a reference to an Object) is cast to an Int32. This requires an unboxing opera-
tion (but no copy operation), which retrieves the address of the unboxed Int32 contained
inside the boxed Int32. This unboxed Int32 instance must be boxed again and the new
boxed instance’s memory address passed for Concat’s arg2 parameter.

The Concat method calls each of the specified objects’ ToString method and concatenates
each object's string representation. The String object returned from Concat is then passed
to WriteLine to show the final result.

| should point out that the generated IL code is more efficient if the call to WriteLine is writ-
ten as follows:

Console.WriteLine(v + ", " + 0);// Displays "123, 5"

This line is identical to the earlier version except that I've removed the (Int32) cast that
preceded the variable o. This code is more efficient because o is already a reference type to
an Object and its address can simply be passed to the Concat method. So, removing the
cast saved two operations: an unbox and a box. You can easily see this savings by rebuilding
the application and examining the generated IL code:

.method public hidebysig static void Main() cil managed
{
.entrypoint
// Code size 35 (0x23)
.maxstack 3
.Tocals init (int32 V_O,
object V_1)

// Load 5 1into v.
IL_0000: 1dc.i4.5

134

Part Il Designing Types

IL_0001: stloc.0O

// Box v and store the reference pointer in o.
IL_0002: 1dloc.0

IL_0003: box [mscorTib]System.Int32
IL_0008: stloc.1

// Load 123 1into v.
IL_0009: 1dc.i4.s 123
IL_000b: stloc.0

// Box v and leave the pointer on the stack for Concat.
IL_000c: 1dloc.0
IL_000d: box [mscorTib]System.Int32

// Load the string on the stack for Concat.
IL_0012: Tldstr "o

// Load the address of the boxed Int32 on the stack for Concat.
IL_0017: 1dloc.1

// Call Concat.

IL_0018: «call string [mscorlib]System.String::Concat(object,
object,
object)

// The string returned from Concat is passed to WritelLine.
IL_001d: «call void [mscorlib]System.Console::WriteLine(string)

// Return from Main terminating this application.
IL_0022: ret
} // end of method App::Main

A quick comparison of the IL for these two versions of the Main method shows that the
version without the (Int32) cast is 10 bytes smaller than the version with the cast. The

extra unbox/box steps in the first version are obviously generating more code. An even
bigger concern, however, is that the extra boxing step allocates an additional object from the
managed heap that must be garbage collected in the future. Certainly, both versions give
identical results, and the difference in speed isn't noticeable, but extra, unnecessary boxing
operations occurring in a loop cause the performance and memory usage of your application
to be seriously degraded.

You can improve the previous code even more by calling WriteLine like this:

Console.WriteLine(v.ToString() + ", " + 0); // Displays "123, 5"

Now ToString is called on the unboxed value type instance v, and a String is returned.
String objects are already reference types and can simply be passed to the Concat method
without requiring any boxing.

Let's look at yet another example that demonstrates boxing and unboxing:

Chapter 5 Primitive, Reference, and Value Types 135

public static void Main() {

Int32 v = 5; // Create an unboxed value type variable.
Object o = v; // o refers to the boxed version of v.

v = 123; // Changes the unboxed value type to 123
Console.WriteLine(v); // Displays "123"

v = (Int32) o; // Unboxes and copies o into v
Console.WriteLine(v); // Displays "5"

}

How many boxing operations do you count in this code? The answer is one. The reason that
there is only one boxing operation is that the System.Console class defines a WriteLine
method that accepts an Int32 as a parameter:

public static void WriteLine(Int32 value);

In the two calls to WriteLine above, the variable v, an Int32 unboxed value type instance, is
passed by value. Now it may be that WriteLine will box this Int32 internally, but you have
no control over that. The important thing is that you've done the best you could and have
eliminated the boxing from your own code.

If you take a close look at the FCL, you'll notice many overloaded methods that differ based
on their value type parameters. For example, the System.Console type offers several over-
loaded versions of the WriteLine method:

public static void WriteLine(Boolean);
public static void WriteLine(Char);
public static void WriteLine(Char[]);
public static void WriteLine(Int32);
public static void WriteLine(UInt32);
public static void WriteLine(Int64);
public static void WriteLine(UInt64);
public static void WriteLine(Single);
public static void WriteLine(Double);
public static void WriteLine(Decimal);
public static void WriteLine(Object);
public static void WriteLine(String);

You'll also find a similar set of overloaded methods for System.Console's Write method,
System.IO.BinaryWriter's Write method, System.I0.TextWriter's Write and WriteLine
methods, System.Runtime.Serialization.SerializationInfo's Addvalue method,
System.Text.StringBuilder’'s Append and Insert methods, and so on. Most of these
methods offer overloaded versions for the sole purpose of reducing the number of boxing
operations for the common value types.

If you define your own value type, these FCL classes will not have overloads of these methods
that accept your value type. Furthermore, there are a bunch of value types already defined

in the FCL for which overloads of these methods do not exist. If you call a method that does
not have an overload for the specific value type that you are passing to it, you will always end

136

Part Il Designing Types

up calling the overload that takes an Object. Passing a value type instance as an Object will
cause boxing to occur, which will adversely affect performance. If you are defining your own
class, you can define the methods in the class to be generic (possibly constraining the type
parameters to be value types). Generics give you a way to define a method that can take any
kind of value type without having to box it. Generics are discussed in Chapter 12.

One last point about boxing: if you know that the code that you're writing is going to cause
the compiler to box a single value type repeatedly, your code will be smaller and faster if you
manually box the value type. Here's an example:

using System;

public sealed class Program {
public static void Main() {
Int32 v = 5; // Create an unboxed value type variable.

#if INEFFICIENT
// When compiling the following 1ine, v is boxed
// three times, wasting time and memory.
Console.WriteLine("{0}, {1}, {23}", v, v, V);
#else
// The Tines below have the same result, execute
// much faster, and use less memory.
Object o = v; // Manually box v (just once).

// No boxing occurs to compile the following Tine.
Console.WriteLine("{0}, {1}, {2}", o, o, 0);
#endif
}
}

If this code is compiled with the INEFFICIENT symbol defined, the compiler will generate
code to box v three times, causing three objects to be allocated from the heap! This is
extremely wasteful since each object will have exactly the same contents: 5. If the code is
compiled without the INEFFICIENT symbol defined, v is boxed just once, so only one object
is allocated from the heap. Then, in the call to Console.WriteLine, the reference to the
single boxed object is passed three times. This second version executes much faster and
allocates less memory from the heap.

In these examples, it's fairly easy to recognize when an instance of a value type requires
boxing. Basically, if you want a reference to an instance of a value type, the instance must be
boxed. Usually this happens because you have a value type instance and you want to pass it
to a method that requires a reference type. However, this situation isn't the only one in which
you'll need to box an instance of a value type.

Recall that unboxed value types are lighter-weight types than reference types for two
reasons:

B They are not allocated on the managed heap.

Chapter 5 Primitive, Reference, and Value Types 137

B They don't have the additional overhead members that every object on the heap has: a
type object pointer and a sync block index.

Because unboxed value types don't have a sync block index, you can’t have multiple
threads synchronize their access to the instance by using the methods of the
System.Threading.Monitor type (or by using C#'s Tock statement).

Even though unboxed value types don't have a type object pointer, you can still call virtual
methods (such as Equals, GetHashCode, or ToString) inherited or overridden by the type. If
your value type overrides one of these virtual methods, then the CLR can invoke the method
nonvirtually because value types are implicitly sealed and cannot have any types derived
from them. In addition, the value type instance being used to invoke the virtual method is
not boxed. However, if your override of the virtual method calls into the base type's imple-
mentation of the method, then the value type instance does get boxed when calling the base
type's implementation so that a reference to a heap object get passed to the this pointer
into the base method.

However, calling a nonvirtual inherited method (such as GetType or MemberwiseClone)
always requires the value type to be boxed because these methods are defined by
System.Object, so the methods expect the this argument to be a pointer that refers to
an object on the heap.

In addition, casting an unboxed instance of a value type to one of the type's interfaces
requires the instance to be boxed, because interface variables must always contain a refer-
ence to an object on the heap. (I'll talk about interfaces in Chapter 13, “Interfaces.”) The
following code demonstrates:

using System;

internal struct Point : IComparable {
private readonly Int32 m_x, m_y;

// Constructor to easily initialize the fields
public Point(Int32 x, Int32 y) {

m_xX = X;

m.y =Yy;
}

// Override ToString method inherited from System.ValueType
public override String ToString() {

// Return the point as a string

return String.Format("({0}, {1})", m_x, m_y);
}

// Implementation of type-safe CompareTo method
public Int32 CompareTo(Point other) {

// Use the Pythagorean Theorem to calculate

// which point is farther from the origin (0, 0)

s

return Math.Sign(Math.Sqrt(m_x * m_x + m_y * m_y)

138 Part Il Designing Types

- Math.Sqrt(other.m_x * other.m_x + other.m_y * other.m_y));
}

// Implementation of IComparable's CompareTo method
public Int32 CompareTo(Object o) {
if (GetType() !'= o.GetType()) {
throw new ArgumentException("o is not a Point");
}
// Call type-safe CompareTo method
return CompareTo((Point) o0);

public static class Program {
public static void Main() {
// Create two Point instances on the stack.
Point pl = new Point(10, 10);
Point p2 = new Point(20, 20);

// pl does NOT get boxed to call ToString (a virtual method).
Console.WriteLine(pl.ToString());// "(10, 10)"

// p DOES get boxed to call GetType (a non-virtual method).
Console.WriteLine(pl.CetType());// "Point"

// pl does NOT get boxed to call CompareTo.
// p2 does NOT get boxed because CompareTo(Point) is called.
Console.WriteLine(pl.CompareTo(p2));// "-1"

// pl DOES get boxed, and the reference is placed in c.
IComparable c = pl;
Console.WriteLine(c.GetType());// "Point"

// pl does NOT get boxed to call CompareTo.

// Since CompareTo is not being passed a Point variable,

// CompareTo(Object) is called which requires a reference to

// a boxed Point.

// c does NOT get boxed because it already refers to a boxed Point.
Console.WriteLine(pl.CompareTo(c));// "0"

// c does NOT get boxed because it already refers to a boxed Point.
// p2 does get boxed because CompareTo(Object) is called.
Console.WriteLine(c.CompareTo(p2));// "-1"

// c is unboxed, and fields are copied into p2.
p2 = (Point) c;

// Proves that the fields got copied into p2.
Console.WriteLine(p2.ToString());// "(10, 10)"

}

This code demonstrates several scenarios related to boxing and unboxing:

Chapter 5 Primitive, Reference, and Value Types 139

B Calling ToString In the call to ToString, pl doesn't have to be boxed. At first, you'd
think that p1 would have to be boxed because ToString is a virtual method that is
inherited from the base type, System.ValueType. Normally, to call a virtual method,
the CLR needs to determine the object’s type in order to locate the type’'s method
table. Since p1 is an unboxed value type, there's no type object pointer. However, the
just-in-time (JIT) compiler sees that Point overrides the ToString method, and it emits
code that calls ToString directly (nonvirtually) without having to do any boxing. The
compiler knows that polymorphism can’t come into play here since Point is a value
type, and no type can derive from it to provide another implementation of this virtual
method. Note that if Point's ToString method internally calls base.ToString(), then
the value type instance would be boxed when calling System.ValueType's ToString
method.

B Calling GetType In the call to the nonvirtual GetType method, p1 does have to be
boxed. The reason is that the Point type inherits GetType from System.0Object. So to
call GetType, the CLR must use a pointer to a type object, which can be obtained only
by boxing p1.

B Calling CompareTo (first time) In the first call to CompareTo, p1 doesn't have to be
boxed because Point implements the CompareTo method, and the compiler can just
call it directly. Note that a Point variable (p2) is being passed to CompareTo, and there-
fore the compiler calls the overload of CompareTo that accepts a Point parameter. This
means that p2 will be passed by value to CompareTo and no boxing is necessary.

B Casting to IComparable When casting pl to a variable (c) that is of an interface type,
pl must be boxed because interfaces are reference types by definition. So p1 is boxed,
and the pointer to this boxed object is stored in the variable c. The following call to
GetType proves that c does refer to a boxed Point on the heap.

B CallingCompareTo (second time) In the second call to CompareTo, p1 doesn’t have to
be boxed because Point implements the CompareTo method, and the compiler can
just call it directly. Note that an IComparable variable (c) is being passed to CompareTo,
and therefore, the compiler calls the overload of CompareTo that accepts an Object
parameter. This means that the argument passed must be a pointer that refers to
an object on the heap. Fortunately, c does refer to a boxed Point, and therefore,
that memory address in c can be passed to CompareTo, and no additional boxing is
necessary.

B Calling CompareTo (third time) In the third call to CompareTo, c already refers to a
boxed Point object on the heap. Since c is of the IComparable interface type, you
can call only the interface’s CompareTo method that requires an Object parameter.
This means that the argument passed must be a pointer that refers to an object on the
heap. So p2 is boxed, and the pointer to this boxed object is passed to CompareTo.

140

Part Il Designing Types

B Casting to Point When casting c to a Point, the object on the heap referred to by ¢
is unboxed, and its fields are copied from the heap to p2, an instance of the Point type
residing on the stack.

| realize that all of this information about reference types, value types, and boxing might
be overwhelming at first. However, a solid understanding of these concepts is critical to any
.NET Framework developer’s long-term success. Trust me: having a solid grasp of these
concepts will allow you to build efficient applications faster and easier.

Changing Fields in a Boxed Value Type by Using Interfaces
(and Why You Shouldn’t Do This)

Let's have some fun and see how well you understand value types, boxing, and unboxing.
Examine the following code, and see whether you can figure out what it displays on the
console:

using System;

// Point is a value type.
internal struct Point {
private Int32 m_x, m_y;

public Point(Int32 x, Int32 y) {
m_x = X;
m.y =y;

}

public void Change(Int32 x, Int32 y) {
mX =X; my =Yy;

}

public override String ToString() {
return String.Format(" ({0}, {1})", m_x, m_y);
}
}

public sealed class Program {
public static void Main() {
Point p = new Point(1, 1);

Console.WriteLine(p);

p.Change(2, 2);
Console.WriteLine(p);

Object o = p;
Console.WriteLine(o);

((Point) o).Change(3, 3);
Console.WriteLine(o);

Chapter 5 Primitive, Reference, and Value Types 141

Very simply, Main creates an instance (p) of a Point value type on the stack and sets its m_x
and m_y fields to 1. Then, p is boxed before the first call to WriteLine, which calls ToString
on the boxed Point, and (1, 1) is displayed as expected. Then, p is used to call the Change
method, which changes the values of p's m_x and m_y fields on the stack to 2. The second call
to WriteLine requires p to be boxed again and displays (2, 2), as expected.

Now, p is boxed a third time, and o refers to the boxed Point object. The third call to
WriteLine again shows (2, 2), which is also expected. Finally, | want to call the Change
method to update the fields in the boxed Point object. However, Object (the type of the
variable o) doesn’t know anything about the Change method, so | must first cast o to a Point.
Casting o to a Point unboxes o and copies the fields in the boxed Point to a temporary
Point on the thread’s stack! The m_x and m_y fields of this temporary point are changed to

3 and 3, but the boxed Point isn't affected by this call to Change. When WriteLine is called
the fourth time, (2, 2) is displayed again. Many developers do not expect this.

Some languages, such as C++/CLI, let you change the fields in a boxed value type, but C#
does not. However, you can fool C# into allowing this by using an interface. The following
code is a modified version of the previous code:

using System;

// Interface defining a Change method

internal interface IChangeBoxedPoint {
void Change(Int32 x, Int32 y);

}

// Point is a value type.
internal struct Point : IChangeBoxedPoint {
private Int32 m_x, m_y;

public Point(Int32 x, Int32 y) {
m_X = X;
m.y =Yy;

}

public void Change(Int32 x, Int32 y) {
mXx=X; my=y;

}

public override String ToString() {
return String.Format(" ({0}, {1})", m_x, m_y);

}
3

public sealed class Program {
public static void Main() {

Point p = new Point(1, 1);

Console.WriteLine(p);

142

Part Il Designing Types

p.Change(2, 2);
Console.WriteLine(p);

Object o = p;
Console.WriteLine(o);

((Point) o).Change(3, 3);
Console.WriteLine(o);

// Boxes p, changes the boxed object and discards it
((IChangeBoxedPoint) p).Change(4, 4);
Console.WriteLine(p);

// Changes the boxed object and shows it
((IChangeBoxedPoint) o).Change(5, 5);
Console.WriteLine(o);

}

This code is almost identical to the previous version. The main difference is that the Change
method is defined by the IChangeBoxedPoint interface, and the Point type now implements
this interface. Inside Maiin, the first four calls to WriteL1ine are the same and produce the
same results | had before (as expected). However, I've added two more examples at the end
of Main.

In the first example, the unboxed Point, p, is cast to an IChangeBoxedPoint. This cast causes
the value in p to be boxed. Change is called on the boxed value, which does change its m_x
and m_y fields to 4 and 4, but after Change returns, the boxed object is immediately ready to
be garbage collected. So the fifth call to WriteLine displays (2, 2). Many developers won't
expect this result.

In the last example, the boxed Point referred to by o is cast to an IChangeBoxedPoint. No
boxing is necessary here because o is already a boxed Point. Then Change is called, which
does change the boxed Point's m_x and m_y fields. The interface method Change has allowed
me to change the fields in a boxed Point object! Now, when WriteLine is called, it displays
(5, 5) as expected. The purpose of this whole example is to demonstrate how an interface
method is able to modify the fields of a boxed value type. In C#, this isn't possible without
using an interface method.

Important Earlier in this chapter, | mentioned that value types should be immutable: that is,
they should not define any members that modify any of the type’s instance fields. In fact, |
recommended that value types have their fields marked as readonly so that the compiler will
issue errors should you accidentally write a method that attempts to modify a field. The previous
example should make it very clear to you why value types should be immutable. The unexpected
behaviors shown in the previous example all occur when attempting to call a method that
modifies the value type’s instance fields. If after constructing a value type, you do not call any
methods that modify its state, you will not get confused when all of the boxing and unboxing/
field copying occurs. If the value type is immutable, you will end up just copying the same state
around, and you will not be surprised by any of the behaviors you see.

Chapter 5 Primitive, Reference, and Value Types 143

A number of developers reviewed the chapters of this book. After reading through some of my
code samples (such as the preceding one), these reviewers would tell me that they've sworn

off value types. | must say that these little value type nuances have cost me days of debugging
time, which is why | spend time pointing them out in this book. | hope you'll remember some of
these nuances and that you'll be prepared for them if and when they strike you and your code.
Certainly, you shouldn’t be scared of value types. They are useful, and they have their place. After
all, a program needs a little Int32 love now and then. Just keep in mind that value types and
reference types have very different behaviors depending on how they're used. In fact, you should
take the preceding code and declare the Point as a class instead of a struct to appreciate the
different behavior that results. Finally, you'll be very happy to know that the core value types that
ship in the FCL—Byte, Int32, UInt32, Int64, UInt64, Single, Double, Decimal, BigInteger,
Complex, all enums, and so on—are all immutable, so you should experience no surprising
behavior when using any of these types.

Object Equality and Identity

Frequently, developers write code to compare objects with one another. This is particularly
true when placing objects in a collection and you're writing code to sort, search, or compare
items in a collection. In this section, I'll discuss object equality and identity, and I'll also discuss
how to define a type that properly implements object equality.

The System.0Object type offers a virtual method named Equals, whose purpose is to return
true if two objects contain the same value. The implementation of Object's Equals method
looks like this:

public class Object {
public virtual Boolean Equals(Object obj) {

// If both references point to the same object,
// they must have the same value.
if (this == obj) return true;

// Assume that the objects do not have the same value.
return false;

}

At first, this seems like a reasonable default implementation of Equals: it returns true if
the this and obj arguments refer to the same exact object. This seems reasonable because
Equals knows that an object must have the same value as itself. However, if the arguments
refer to different objects, Equals can't be certain if the objects contain the same values, and
therefore, false is returned. In other words, the default implementation of Object’s Equals
method really implements identity, not value equality.

Unfortunately, as it turns out, Object's Equals method is not a reasonable default, and it
should have never been implemented this way. You immediately see the problem when you

144

Part Il Designing Types

start thinking about class inheritance hierarchies and how to properly override Equals. Here
is how to properly implement an Equals method internally:

1. If the obj argument is nul1, return false because the current object identified by this
is obviously not nu11 when the nonstatic Equals method is called.

2. If the this and obj arguments refer to the same object, return true. This step can
improve performance when comparing objects with many fields.

3. If the this and obj arguments refer to objects of different types, return false.
Obviously, checking if a String object is equal to a FileStream object should result in
a false result.

4. For each instance field defined by the type, compare the value in the this object with
the value in the obj object. If any fields are not equal, return false.

5. Call the base class’s Equals method so it can compare any fields defined by it. If the
base class's Equals method returns false, return false; otherwise, return true.

So Microsoft should have implemented Object’s Equals like this:

public class Object {
public virtual Boolean Equals(Object obj) {
// The given object to compare to can't be null
if (obj == null) return false;

// If objects are different types, they can't be equal.
if (this.GetType() != obj.GetType()) return false;

// If objects are same type, return true if all of their fields match
// Since System.Object defines no fields, the fields match
return true;

3

But, since Microsoft didn't implement Equals this way, the rules for how to implement
Equals are significantly more complicated than you would think. When a type overrides
Equals, the override should call its base class’s implementation of Equals unless it would
be calling Object's implementation. This also means that since a type can override Object’s
Equals method, this Equals method can no longer be called to test for identity. To fix this,
Object offers a static ReferenceEquals method, which is implemented like this:

public class Object {
public static Boolean ReferenceEquals(Object objA, Object objB) {
return (objA == objB);
}
}

You should always call ReferenceEquals if you want to check for identity (if two references
point to the same object). You shouldn’'t use the C# == operator (unless you cast both

Chapter 5 Primitive, Reference, and Value Types 145

operands to Object first) because one of the operands’ types could overload the
== operator, giving it semantics other than identity.

As you can see, the .NET Framework has a very confusing story when it comes to object
equality and identity. By the way, System.ValueType (the base class of all value types) does
override Object's Equals method and is correctly implemented to perform a value equality
check (not an identity check). Internally, ValueType's Equals is implemented this way:

1. If the obj argument is nul1, return false.
2. If the this and obj arguments refer to objects of different types, return false.

3. For each instance field defined by the type, compare the value in the this object with
the value in the obj object by calling the field’s Equals method. If any fields are not
equal, return false.

4. Return true. Object's Equals method is not called by ValueType's Equals method.

Internally, ValueType's Equals method uses reflection (covered in Chapter 23, “"Assembly
Loading and Reflection”) to accomplish step #3 above. Since the CLR’s reflection mechanism
is slow, when defining your own value type, you should override Equals and provide your
own implementation to improve the performance of value equality comparisons that use
instances of your type. Of course, in your own implementation, do not call base.Equals.

When defining your own type, if you decide to override Equals, you must ensure that it
adheres to the four properties of equality:

B Equals must be reflexive; that is, x.Equals (x) must return true.

B Equals must be symmetric; that is, x.Equals(y) must return the same value as
y.Equals(x).

B Equals must be transitive; that is, if x.Equals(y) returns true and y.Equals(z)
returns true, then x.Equals(z) must also return true.

B Equals must be consistent. Provided that there are no changes in the two values being
compared, Equals should consistently return true or false.

If your implementation of Equals fails to adhere to all of these rules, your application will
behave in strange and unpredictable ways.

When overriding the Equals method, there are a few more things that you'll probably want
to do:

B Have the type implement the System.IEquatable<T> interface’s Equals method
This generic interface allows you to define a type-safe Equals method. Usually, you'll
implement the Equals method that takes an Object parameter to internally call the
type-safe Equals method.

146

Part Il Designing Types

B Overload the == and !=operator methods Usually, you'll implement these operator
methods to internally call the type-safe Equals method.

Furthermore, if you think that instances of your type will be compared for the purposes of
sorting, you'll want your type to also implement System.IComparable's CompareTo method
and System.IComparable<T>'s type-safe CompareTo method. If you implement these meth-
ods, you'll also want to overload the various comparison operator methods (<, <=, >, >=) and
implement these methods internally to call the type-safe CompareTo method.

Object Hash Codes

The designers of the FCL decided that it would be incredibly useful if any instance of any
object could be placed into a hash table collection. To this end, System.0Object provides a
virtual GetHashCode method so that an Int32 hash code can be obtained for any and all
objects.

If you define a type and override the Equals method, you should also override the
GetHashCode method. In fact, Microsoft's C# compiler emits a warning if you define a type
that overrides Equals without also overriding GetHashCode. For example, compiling the
following type yields this warning: “warning CS0659: 'Program' overrides
Object.Equals(object o) but does not override Object.GetHashCode()”.

public sealed class Program {
public override Boolean Equals(Object obj) { ... }
}

The reason why a type that defines Equals must also define GetHashCode is that the
implementation of the System.Collections.Hashtable type, the System.Collections.
Generic.Dictionary type, and some other collections require that any two objects that are
equal must have the same hash code value. So if you override Equals, you should override
GetHashCode to ensure that the algorithm you use for calculating equality corresponds to
the algorithm you use for calculating the object’s hash code.

Basically, when you add a key/value pair to a collection, a hash code for the key object is
obtained first. This hash code indicates which "bucket” the key/value pair should be stored in.
When the collection needs to look up a key, it gets the hash code for the specified key
object. This code identifies the “bucket” that is now searched sequentially, looking for a
stored key object that is equal to the specified key object. Using this algorithm of storing and
looking up keys means that if you change a key object that is in a collection, the collection
will no longer be able to find the object. If you intend to change a key object in a hash table,
you should remove the original object/value pair, modify the key object, and then add the
new key object/value pair back into the hash table.

Chapter 5 Primitive, Reference, and Value Types 147

Defining a GetHashCode method can be easy and straightforward. But depending on your
data types and the distribution of data, it can be tricky to come up with a hashing algorithm
that returns a well-distributed range of values. Here's a simple example that will probably
work just fine for Point objects:

internal sealed class Point {
private readonly Int32 m_x, m_y;
public override Int32 GetHashCode() {
return m_x A m_y; // m_x XOR'd with m_y
}

3

When selecting an algorithm for calculating hash codes for instances of your type, try to
follow these guidelines:

B Use an algorithm that gives a good random distribution for the best performance of
the hash table.

B Your algorithm can also call the base type’s GetHashCode method, including its return
value. However, you don't generally want to call Object’s or ValueType's GetHashCode
method, because the implementation in either method doesn't lend itself to high-
performance hashing algorithms.

B Your algorithm should use at least one instance field.

B |deally, the fields you use in your algorithm should be immutable; that is, the fields
should be initialized when the object is constructed, and they should never again
change during the object’s lifetime.

B Your algorithm should execute as quickly as possible.

B Objects with the same value should return the same code. For example, two String
objects with the same text should return the same hash code value.

System.Object's implementation of the GetHashCode method doesn’'t know anything about
its derived type and any fields that are in the type. For this reason, Object's GetHashCode
method returns a number that is guaranteed to uniquely identify the object within the
AppDomain; this number is guaranteed not to change for the lifetime of the object. After the
object is garbage collected, however, its unique number can be reused as the hash code for a
new object.

Note If a type overrides Object's GetHashCode method, you can no longer call it to get a
unique ID for the object. If you want to get a unique ID (within an AppDomain) for an object,
the FCL provides a method that you can call. In the System.Runtime.CompilerServices
namespace, see the RuntimeHelpers class's public, static GetHashCode method that takes a
reference to an Object as an argument. RuntimeHelpers’ GetHashCode method returns a
unique ID for an object even if the object’s type overrides Object’'s GetHashCode method. This
method got its name because of its heritage, but it would have been better if Microsoft had
named it something like GetUniqueObjectID.

148 Part Il Designing Types

System.ValueType's implementation of GetHashCode uses reflection (which is slow) and
XORs some of the type's instance fields together. This is a naive implementation that might
be good for some value types, but I still recommend that you implement GetHashCode your-
self because you'll know exactly what it does, and your implementation will be faster than
ValueType's implementation.

W Important If you're implementing your own hash table collection for some reason, or you're
implementing any piece of code in which you'll be calling GetHashCode, you should never, ever
persist hash code values. The reason is that hash code values are subject to change. For example,
a future version of a type might use a different algorithm for calculating the object’s hash code.

There is a company that was not heeding this important warning. On their Web site, users
could create new accounts by selecting a user name and a password. The Web site then took
the password String, called GetHashCode, and persisted the hash code value in a database.
When users logged back on to the Web site, they entered their password. The Web site
would call GetHashCode again and compare the hash code value with the stored value in the
database. If the hash codes matched, the user would be granted access. Unfortunately, when
the company upgraded to a new version of the CLR, String's GetHashCode method had
changed, and it now returned a different hash code value. The end result was that no user
was able to log on to the Web site anymore!

The dynamic Primitive Type

C# is a type-safe programming language. This means that all expressions resolve into an in-
stance of a type and the compiler will generate only code that is attempting to perform an
operation that is valid for this type. The benefit of a type-safe programming language over
a non-type-safe programming language is that many programmer errors are detected at
compile time, helping to ensure that the code is correct before you attempt to execute it. In
addition, compile-time languages can typically produce smaller and faster code since they
make more assumptions at compile time and bake those assumptions into the resulting IL
and metadata.

However, there are also many occasions when a program has to act on information that it
doesn't know about until it is running. While you can use type-safe programming languages
(like C#) to interact with this information, the syntax tends to be clumsy, especially since you
tend to work a lot with strings, and performance is hampered as well. If you are writing a
pure C# application, then the only occasion you have for working with runtime-determined
information is when you are using reflection (discussed in Chapter 23). However, many devel-
opers also use C# to communicate with components that are not implemented in C#. Some
of these components could be .NET-dynamic languages such as Python or Ruby, or COM
objects that support the IDispatch interface (possibly implemented in native C or C++), or

Chapter 5 Primitive, Reference, and Value Types 149

HTML Document Object Model (DOM) objects (implemented using various languages and
technologies). Communicating with HTML DOM objects is particularly useful when building a
Microsoft Silverlight application.

To make it easier for developers using reflection or communicating with other components,
the C# compiler offers you a way to mark an expression’s type as dynamic. You can also put
the result of an expression into a variable and you can mark a variable’s type as dynamic.
This dynam1ic expression/variable can then be used to invoke a member such as a field, a
property/indexer, a method, delegate, and unary/binary/conversion operators. When your
code invokes a member using a dynamic expression/variable, the compiler generates special
IL code that describes the desired operation. This special code is referred to as the payload.
At runtime, the payload code determines the exact operation to execute based on the actual
type of the object now referenced by the dynamic expression/variable.

Here is some code to demonstrate what I'm talking about:

Private static class DynamicDemo {
public static void Main() {
for (Int32 demo = 0; demo < 2; demo++) {
dynamic arg = (demo == 0) ? (dynamic) 5 : (dynamic) "A";
dynamic result = Plus(arg);
M(result);

}
private static dynamic Plus(dynamic arg) { return arg + arg; }

private static void M(Int32 n) { Console.WriteLine("M(Int32): " + n); }
private static void M(String s) { Console.WriteLine("M(String): " + s); }

}

When | execute Main, | get the following output:

M(Int32): 10
M(String): AA

To understand what's happening, let's start by looking at the Plus method. This method has
declared its parameter’s type as dynamic, and inside the method, the argument is used as
the two operands to the binary + operator. Since arg is dynamic, the C# compiler emits
payload code that will examine the actual type of arg at runtime and determine what the

+ operator should actually do.

The first time Plus is called, 5 (an Int32), is passed, so P1us will return the value 10 (also an
Int32) back to its caller. This puts this result in the result variable (declared as a dynamic
type). Then, the M method is called, passing it result. For the call to M, the compiler will emit
payload code that will, at runtime, examine the actual type of the value being passed to M
and determine which overload of the M method to call. When result contains an Int32, the
overload of M that takes an Int32 parameter is called.

150

Part Il Designing Types

The second time Plus is called, "A”" (a String) is passed, so PTus will return "AA” (the result of
concatenating "A” with itself) back to its caller, which puts this result in the result variable.
Then, the M method is called again, passing it result. This time, the payload code determines
that the actual type being passed to Mis a String and calls the overload of M that takes a
String parameter.

When the type of a field, method parameter, method return type, or local variable, is speci-
fied as dynamic, the compiler converts this type to the System.Object type and applies an
instance of System.Runtime.CompilerServices.DynamicAttribute to the field, param-
eter, or return type in metadata. If a local variable is specified as dynamic, then the variable’s
type will also be of type Object, but the DynamicAttribute is not applied to the local vari-
able since its usage is self-contained within the method. Since dynamic is really the same as
Object, you cannot write methods whose signature differs only by dynamic and Object.

It is also possible to use dynamic when specifying generic type arguments to a generic class
(reference type), a structure (value type), an interface, a delegate, or a method. When you do
this, the compiler converts dynamic to Object and applies DynamicAttribute to the various
pieces of metadata where it makes sense. Note that the generic code that you are using has
already been compiled and will consider the type to be Object; no dynamic dispatch will be
performed because the compiler did not produce any payload code in the generic code.

Any expression can implicitly be cast to dynamic since all expressions result in a type that is
derived from Object.2 Normally, the compiler does not allow you to write code that implicitly
casts an expression from Object to another type; you must use explicit cast syntax. However,
the compiler does allow you to cast an expression from dynamic to another type using
implicit cast syntax:

Object ol = 123; // OK: Implicit cast from Int32 to Object (boxing)
Int32 nl = o; // Error: No implicit cast from Object to Int32
Int32 n2 = (Int32) o; // OK: Explicit cast from Object to Int32 (unboxing)

dynamic d1 = 123; // OK: Implicit cast from Int32 to dynamic (boxing)
Int32 n3 = d; // OK: Implicit cast from dynamic to Int32 (unboxing)

While the compiler allows you to omit the explicit cast when casting from dynamic to
some other type, the CLR will validate the cast at runtime to ensure that type safety is
maintained. If the object’s type is not compatible with the cast, the CLR will throw an
InvalidCastException exception.

Note that the result of evaluating a dynamic expression is a dynamic expression. Examine this
code:

dynamic d = 123;
var result = M(d); // Note: 'var result' is the same as 'dynamic result'

2 And, as always, value types will be boxed.

Chapter 5 Primitive, Reference, and Value Types 151

Here, the compiler allows the code to compile because it doesn't know at compile time which
M method it will call. Therefore, it also does not know what type of result M will return. And so,
the compiler assumes that the result variable is of type dynamic itself. You can verify this by
placing your mouse over var in the Visual Studio editor; the IntelliSense window will indicate
'dynamic: Represents an object whose operations will be resolved at runtime.' If
the M method invoked at runtime has a return type of void, no exception is thrown; instead,
result will be assigned a value of nul1.

Important Do not confuse dynamic and var. Declaring a local variable using var is just a
syntactical shortcut that has the compiler infer the specific data type from an expression. The
var keyword can be used only for declaring local variables inside a method while the dynamic
keyword can be used for local variables, fields, and arguments. You cannot cast an expression
to var but you can cast an expression to dynamic. You must explicitly initialize a variable de-
clared using var while you do not have to initialize a variable declared with dynamic. For more
information about C#'s var, see the “Implicitly Typed Local Variables” section in Chapter 9,
“Parameters.”

However, when converting from dynamic to another static type, the result’s type is, of
course, the static type. Similarly, when constructing a type by passing one or more dynamic
arguments to its constructor, the result is the type of object you are constructing:

dynamic d = 123;
var x = (Int32) d; // Conversion: 'var x' is the same as 'Int32 x'
var dt = new DateTime(d); // Construction: 'var dt' is the same as 'DateTime dt'

If a dynamic expression is specified as the collection in a foreach statement or as a resource

in a using statement, the compiler will generate code that attempts to cast the expression

to the non-generic System.IEnumerable interface or to the System.IDisposable interface,
respectively. If the cast succeeds, the expression is used and the code runs just fine. If the cast
fails, a Microsoft.CSharp.RuntimeBinder.RuntimeBinderException exception is thrown.

Important A dynamic expression is really the same type as System.Object. The compiler
assumes that whatever operation you attempt on the expression is legal, so the compiler will not
generate any warnings or errors. However, exceptions will be thrown at runtime if you attempt
to execute an invalid operation. In addition, Visual Studio cannot offer any IntelliSense support to
help you write code against a dynamic expression. You cannot define an extension method
(discussed in Chapter 8, “Methods”) that extends dynamic, although you can define one that
extends Object. And, you cannot pass a lambda expression or anonymous method (both
discussed in Chapter 17, “Delegates”) as an argument to a dynamic method call since the
compiler cannot infer the types being used.

Here is an example of some C# code that uses COM ID1ispatch to create a Microsoft Office
Excel workbook and places a string in cell AL:

152

Part Il Designing Types

using Microsoft.0ffice.Interop.Excel;

public static void Main() {

Application excel = new Application();

excel.Visible = true;

excel.Workbooks.Add(Type.Missing);

((Range)excel.Cells[1, 1]).Value = "Text in cell Al"; // Put this string in cell Al
}

Without the dynamic type, the value returned from excel.Cel1s[1, 1] is of type Object,
which must be cast to the Range type before its Value property can be accessed. However,
when producing a runtime callable wrapper assembly for a COM object, any use of VARIANT
in the COM method is really converted to dynamic; this is called dynamification. Therefore,
since excel.Cells[1, 1] is of type dynamic, you do not have to explicitly cast it to the
Range type before its Value property can be accessed. Dynamification can greatly simplify
code that interoperates with COM objects. Here is the simpler code:

using Microsoft.0ffice.Interop.Excel;

public static void Main() {

Application excel = new Application();

excel.Visible = true;

excel.Workbooks.Add(Type.Missing);

excel.Cells[1, 1].Value = "Text in cell Al"; // Put this string in cell Al
}

The code below shows how to use reflection to call a method (“Contains”) on a String target
("Jeffrey Richter”) passing it a String argument (“ff") and storing the Int32 result in a local
variable (result):

Object target = "Jeffrey Richter";
Object arg = "ff";

// Find a method on the target that matches the desired argument types
Type[] argTypes = newType[] { arg.GetType() };
MethodInfo method = target.GetType().GetMethod("Contains", argTypes);

// Invoke the method on the target passing the desired arguments
Object[] arguments = newObject[] { arg };
Boolean result = Convert.ToBoolean(method.Invoke(target, arguments));

Using C#'s dynamic type, this code can be rewritten with greatly improved syntax:

dynamic target = "Jeffrey Richter";
dynamic arg = "ff";
Boolean result = target.Contains(arg);

Earlier, | mentioned that the C# compiler emits payload code that, at runtime, figures out
what operation to perform based on the actual type of an object. This payload code uses a
class known as a runtime binder. Different programming languages define their own runtime
binders that encapsulate the rules of that language. The code for the C# runtime binder is

Chapter 5 Primitive, Reference, and Value Types 153

in the Microsoft.CSharp.dll assembly, and you must reference this assembly when you build
projects that use the dynamic keyword. This assembly is referenced in the compiler’s default
response file, CSC.rsp. It is the code in this assembly that knows to produce code (at runtime)
that performs addition when the + operator is applied to two Int32 objects and concatena-
tion when applied to two String objects.

At runtime, the Microsoft.CSharp.dll assembly will have to load into the AppDomain, which
hurts your application’s performance and increases memory consumption. Microsoft.CSharp.dll
also loads System.dll and System.Core.dll. If you are using dynamic to help you interoperate
with COM components, then System.Dynamic.dll will also load. And when the payload code
executes, it generates dynamic code at runtime; this code will be in an in-memory assembly
called "Anonymously Hosted DynamicMethods Assembly.” The purpose of this code is to
improve the performance of dynamic dispatch in scenarios where a particular call site is
making many invocations using dynamic arguments that have the same runtime type.

Due to all the overhead associated with C#'s built-in dynamic evaluation feature, you should
consciously decide that you are getting sufficient syntax simplification from the dynamic
feature to make it worth the extra performance hit of loading all these assemblies and the
extra memory that they consume. If you have only a couple places in your program where
you need dynamic behavior, it might be more efficient to just do it the old-fashioned way, by
calling reflection methods (for managed objects) or with manual casting (for COM objects).

At runtime, the C# runtime binder resolves a dynamic operation according to the runtime
type of the object. The binder first checks to see if the type implements the
IDynamicMetaObjectProvider interface. If the object does implement this interface, then
the interface's GetMetaObject method is called, which returns a DynamicMetaObject-
derived type. This type can process all of the member, method, and operator bindings for
the object. Both the IDynamicMetaObjectProvider interface and the DynamicMetaObject
base class are defined in the System.Dynamic namespace, and both are in the System.Core.
dll assembly.

Dynamic languages, such as Python and Ruby, endow their types with DynamicMetaObject-
derived types so that they can be accessed in a way appropriate for them when manipulated
from other programming languages (like C#). Similarly, when accessing a COM component,
the C# runtime binder will use a DynamicMetaObject-derived type that knows how to
communicate with a COM component. The COM DynamicMetaObject-derived type is
defined in the System.Dynamic.dll assembly.

If the type of the object being used in the dynamic expression does not implement the
IDynamicMetaObjectProvider interface, then the C# compiler treats the object like an
instance of an ordinary C#-defined type and performs operations on the object using
reflection.

Chapter 6

Type and Member Basics

The Different Kinds of Type Members.o i .. 155
Type Visibility.o e e e e 158
Member Accessibility 160
Static Classesttt e 162
Partial Classes, Structures, and Interfaces.............o oo, 164
Components, Polymorphism, and Versioning 165

In Chapters 4 and 5, | focused on types and what operations are guaranteed to exist on all
instances of any type. | also explained how all types fall into one of two categories: reference
types and value types. In this and the subsequent chapters in this part, I'll show how to
design types by using the different kinds of members that can be defined within a type. In
Chapters 7 through 11, I'll discuss the various members in detail.

The Different Kinds of Type Members

A type can define zero or more of the following kinds of members:

B Constants A constantis a symbol that identifies a never-changing data value. These
symbols are typically used to make code more readable and maintainable. Constants
are always associated with a type, not an instance of a type. Logically, constants are
always static members. Discussed in Chapter 7, "Constants and Fields.”

B Fields A field represents a read-only or read/write data value. A field can be static, in
which case the field is considered part of the type's state. A field can also be instance
(nonstatic), in which case it's considered part of an object's state. | strongly encourage
you to make fields private so that the state of the type or object can’t be corrupted by
code outside of the defining type. Discussed in Chapter 7.

B Instance constructors An instance constructor is a special method used to initialize a
new object’s instance fields to a good initial state. Discussed in Chapter 8, “Methods.”

B Type constructors A type constructor is a special method used to initialize a type’s
static fields to a good initial state. Discussed in Chapter 8.

155

156

Part Il Designing Types

B Methods A method is a function that performs operations that change or query the
state of a type (static method) or an object (instance method). Methods typically read
and write to the fields of the type or object. Discussed in Chapter 8.

B Operator overloads An operator overload is a method that defines how an object
should be manipulated when certain operators are applied to the object. Because not
all programming languages support operator overloading, operator overload methods
are not part of the Common Language Specification (CLS). Discussed in Chapter 8.

B Conversion operators A conversion operator is a method that defines how to implic-
itly or explicitly cast or convert an object from one type to another type. As with opera-
tor overload methods, not all programming languages support conversion operators,
so they're not part of the CLS. Discussed in Chapter 8.

B Properties A property is a mechanism that allows a simple, field-like syntax for set-
ting or querying part of the logical state of a type (static property) or object (instance
property) while ensuring that the state doesn’t become corrupt. Properties can be
parameterless (very common) or parameterful (fairly uncommon but used frequently
with collection classes). Discussed in Chapter 10, "Properties.”

B Events A static event is a mechanism that allows a type to send a notification to one
or more static or instance methods. An instance (nonstatic) event is a mechanism that
allows an object to send a notification to one or more static or instance methods.
Events are usually raised in response to a state change occurring in the type or object
offering the event. An event consists of two methods that allow static or instance
methods to register and unregister interest in the event. In addition to the two meth-
ods, events typically use a delegate field to maintain the set of registered methods.
Discussed in Chapter 11, “Events.”

B Types A type can define other types nested within it. This approach is typically
used to break a large, complex type down into smaller building blocks to simplify the
implementation.

Again, the purpose of this chapter isn't to describe these various members in detail but to set
the stage and explain what these various members all have in common.

Regardless of the programming language you're using, the corresponding compiler must
process your source code and produce metadata and Intermediate Language (IL) code for
each kind of member in the preceding list. The format of the metadata is identical regardless
of the source programming language you use, and this feature is what makes the CLR a
common language runtime. The metadata is the common information that all languages
produce and consume, enabling code in one programming language to seamlessly access
code written in a completely different programming language.

This common metadata format is also used by the CLR, which determines how constants,
fields, constructors, methods, properties, and events all behave at runtime. Simply stated,

Chapter 6 Type and Member Basics 157

metadata is the key to the whole Microsoft .NET Framework development platform; it enables

the seamless integration of languages, types, and objects.

The following C# code shows a type definition that contains an example of all the possible
members. The code shown here will compile (with warnings), but it isn't representative of
a type that you'd normally create; most of the methods do nothing of any real value. Right
now, | just want to show you how the compiler translates this type and its members into
metadata. Once again, I'll discuss the individual members in the next few chapters.

using System;
public sealed class SomeType {

// Nested class
private class SomeNestedType { }

// Constant, read-only, and static read/write field
private const Int32 c_SomeConstant = 1;

private readonly String m_SomeReadOnlyField = "2";
private static Int32 s_SomeReadWriteField = 3;

// Type constructor
static SomeType() { }

// Instance constructors
public SomeType(Int32 x) { }
public SomeType() { }

// Instance and static methods
private String InstanceMethod() { return null; }
public static void Main() {}

// Instance property
public Int32 SomeProp {
get { return 0; }

set { }
}

// Instance parameterful property (indexer)
public Int32 this[String s] {

get { return 0; }

set { }
}

// Instance event
public event EventHandler SomeEvent;

}

If you were to compile the type just defined and examine the

see the output shown in Figure 6-1.

/7

/7

//

//
//

/7

//

/7

//

/7

//

10

11
12
13

14
15
16

17

metadata in ILDasm.exe, you'd

158 Part Il Designing Types

/7 ChO6-L-TypeMembers.dil - 1L DASM fela]E=s)

Eile View Help

P class public auto ansi sealed

----- P .custom instance void [mscorlib)System.Reflection.Def aultMemberAttribute:: . ctor(string) = (01 00 04 49 74 65 6D 00 00) I .oTtem.. ..
B someNestedType

----- & SomeEvent : private class [mscorlib]System, EventHandler 17
& c_SomeConstant : private static literal int32
& m_someReadOnlyField ; private inftonly string ————— £}

----- & s_someReadwriteField : private static int32 5
B cctor : void()

----- B ctor : voidfint32) 7
B ctor : void)

----- B InstanceMethod : string()
B Main : void(y
B add_SomeEvent : void(class [mscorlib]System, EventHandler)

----- W get_Item : ink32(string)
B get_SomeProp : ink32()

----- B remove_SomeEvent : void(class [mscorlib]System, EvertHandier)
B set_Tem : void{string,int32)

----- B set_Somefrop : vod(int3z) ————7 3
W SomeEvert : [mscorlib]system.EvertHandier 17
A& Trem : instance int32(string)

----- A someprop : instance int3z) €—— 1 1 -

.assembly 'Chos-1-TypeMembers” ~
1

[l

< »

FIGURE 6-1 ILDasm.exe output showing metadata from preceding code

Notice that all the members defined in the source code cause the compiler to emit some
metadata. In fact, some of the members cause the compiler to generate additional members
as well as additional metadata. For example, the event member (17) causes the compiler to
emit a field, two methods, and some additional metadata. | don't expect you to fully under-
stand what you're seeing here now. But as you read the next few chapters, | encourage you
to look back to this example to see how the member is defined and what effect that has on
the metadata produced by the compiler.

Type Visibility

When defining a type at file scope (versus defining a type nested within another type), you
can specify the type’s visibility as being either public or internal. A public type is visible
to all code within the defining assembly as well as all code written in other assemblies. An
internal type is visible to all code within the defining assembly, and the type is not visible
to code written in other assemblies. If you do not explicitly specify either of these when you
define a type, the C# compiler sets the type's visibility to internal (the more restrictive of
the two). Here are some examples:

using System;

// The type below has public visibility and can be accessed by code
// in this assembly as well as code written in other assemblies.
public class ThisIsAPublicType { ... }

// The type below has internal visibility and can be accessed by code
// in this assembly only.
internal class ThisIsAnInternalType { ... }

// The type below is internal because public/internal
// was not explicitly stated
class ThisIsAlsoAnInternalType { ... }

Chapter 6 Type and Member Basics 159

Friend Assemblies

Imagine the following scenario: A company has one team, TeamA, that is defining a bunch of
utility types in one assembly, and they expect these types to be used by members in another
team, TeamB. For various reasons such as time schedules or geographical location, or perhaps
different cost centers or reporting structures, these two teams cannot build all of their types
into a single assembly; instead, each team produces its own assembly file.

In order for TeamB's assembly to use TeamA's types, TeamA must define all of their utility
types as public. However, this means that their types are publicly visible to any and all
assemblies; developers in another company could write code that uses the public utility
types, and this is not desirable. Maybe the utility types make certain assumptions that TeamB
ensures when they write code that uses TeamA's types. What we'd like to have is a way for
TeamA to define their types as internal while still allowing TeamB to access the types. The
CLR and C# support this via friend assemblies. This friend assembly feature is also useful when
you want to have one assembly containing code that performs unit tests against the internal
types within another assembly.

When an assembly is built, it can indicate other assemblies it considers “friends” by using
the InternalsVisibleTo attribute defined in the System.Runtime.CompilerServices
namespace. The attribute has a string parameter that identifies the friend assembly’'s name
and public key (the string you pass to the attribute must not include a version, culture, or
processor architecture). Note that friend assemblies can access all of an assembly’s internal
types as well as these type's internal members. Here is an example of how an assembly
can specify two other strongly named assemblies named “Wintellect” and “"Microsoft” as its
friend assemblies:

using System;
using System.Runtime.CompilerServices; // For InternalsVisibleTo attribute

// This assembly's internal types can be accessed by any code written
// in the following two assemblies (regardless of version or culture):
[assembly:InternalsVisibleTo("Wintellect, PublicKey=12345678...90abcdef")]
[assembTly:InternalsVisibleTo("Microsoft, PublicKey=b77a5c56...1934e089")]

internal sealed class SomeInternalType { ... }
internal sealed class AnotherInternalType { ... }

Accessing the above assembly’s internal types from a friend assembly is trivial. For exam-
ple, here’s how a friend assembly called “Wintellect” with a public key of “12345678...90ab-
cdef” can access the internal type SomeInternalType in the assembly above:

using System;
internal sealed class Foo {

private static Object SomeMethod() {
// This "Wintellect" assembly accesses the other assembly's

160

Part Il Designing Types

// internal type as if it were a public type
SomeInternalType sit = new SomeInternalType();
return sit;

3

Since the internal members of the types in an assembly become accessible to friend as-
semblies, you should think carefully about what accessibility you specify for your type's
members and which assemblies you declare as your friends. Note that the C# compiler re-
quires you to use the /out:<file> compiler switch when compiling the friend assembly (the
assembly that does not contain the InternalsVisibleTo attribute). The switch is required
because the compiler needs to know the name of the assembly being compiled in order to
determine if the resulting assembly should be considered a friend assembly. You would think
that the C# compiler could determine this on its own since it normally determines the output
file name on its own; however, the compiler doesn’t decide on an output file name until it

is finished compiling the code. So requiring the /out:<file> compiler switch improves the
performance of compiling significantly.

Also, if you are compiling a module (as opposed to an assembly) using C#'s /t:module
switch, and this module is going to become part of a friend assembly, you need to compile
the module by using the C# compiler’s /moduleassemblyname: <string> switch as well. This
tells the compiler what assembly the module will be a part of so the compiler can allow code
in the module to access the other assembly’s internal types.

Important The friend assembly feature should be used only by assemblies that ship on the
same schedule and probably even ship together. The reason is because the interdependency
between friend assemblies is so high that shipping the friend assemblies on different schedules
will most likely cause compatibility problems. If you expect the assemblies to ship on different
schedules, you should try to design publ-ic classes that can be consumed by any assembly and
limit accessibility via a LinkDemand requesting the StrongNameIdentityPermission.

Member Accessibility

When defining a type's member (which includes nested types), you can specify the member’s
accessibility. A member’s accessibility indicates which members can be legally accessed from
referent code. The CLR defines the set of possible accessibility modifiers, but each program-
ming language chooses the syntax and term it wants developers to use when applying the
accessibility to a member. For example, the CLR uses the term Assembly to indicate that a
member is accessible to any code within the same assembly, whereas the C# term for this is
internal.

Table 6-1 shows the six accessibility modifiers that can be applied to a member. The rows of
the table are in order from most restrictive (Private) to least restrictive (Public).

Chapter 6 Type and Member Basics 161

TABLE 6-1 Member Accessibility

CLR Term C# Term Description
Private private The member is accessible only by methods in
the defining type or any nested type.

Family protected The member is accessible only by methods in
the defining type, any nested type, or one of its
derived types without regard to assembly.

Family and (not supported) The member is accessible only by methods in
Assembly the defining type, any nested type, or by any
derived types defined in the same assembly.

Assembly internal The member is accessible only by methods in
the defining assembly.

Family or Assembly protected internal The member is accessible by any nested type,
any derived type (regardless of assembly), or any
methods in the defining assembly.

Public public The member is accessible to all methods in any
assembly.

Of course, for any member to be accessible, it must be defined in a type that is visible. For
example, if AssemblyA defines an internal type with a publ1ic method, code in AssemblyB
cannot call the public method because the internal type is not visible to AssemblyB.

When compiling code, the language compiler is responsible for checking that the code is
referencing types and members correctly. If the code references some type or member
incorrectly, the compiler has the responsibility of emitting the appropriate error message.
In addition, the just-in-time (JIT) compiler also ensures that references to fields and meth-
ods are legal when compiling IL code into native CPU instructions at runtime. For example,
if the JIT compiler detects code that is improperly attempting to access a private field or
method, the JIT compiler throws a FieldAccessException or a MethodAccessException,
respectively.

Verifying the IL code ensures that a referenced member’s accessibility is properly honored at
runtime, even if a language compiler ignored checking the accessibility. Another, more likely,
possibility is that the language compiler compiled code that accessed a pub1ic member in
another type (in another assembly); but at runtime, a different version of the assembly is
loaded, and in this new version, the pub1ic member has changed and is now protected or
private.

In C#, if you do not explicitly declare a member’s accessibility, the compiler usually (but not
always) defaults to selecting private (the most restrictive of them all). The CLR requires
that all members of an interface type be public. The C# compiler knows this and forbids the
programmer from explicitly specifying accessibility on interface members; the compiler just
makes all the members pub1ic for you.

162

Part Il Designing Types

More Info See the "Declared Accessibility” section in the C# Language Specification for
the complete set of C# rules about what accessibilities can be applied to types and members and
what default accessibilities C# selects based on the context in which the declaration takes place.

Furthermore, you'll notice the CLR offers an accessibility called Family and Assembly.
However, C# doesn't expose this in the language. The C# team felt that this accessibility was
for the most part useless and decided not to incorporate it into the C# language.

When a derived type is overriding a member defined in its base type, the C# compiler requires
that the original member and the overriding member have the same accessibility. That is, if
the member in the base class is protected, the overriding member in the derived class must
also be protected. However, this is a C# restriction, not a CLR restriction. When deriving
from a base class, the CLR allows a member’s accessibility to become less restrictive but not
more restrictive. For example, a class can override a protected method defined in its base
class and make the overridden method pub1ic (more accessible). However, a class cannot
override a protected method defined in its base class and make the overridden method
private (less accessible). The reason a class cannot make a base class method more restricted
is because a user of the derived class could always cast to the base type and gain access to
the base class’'s method. If the CLR allowed the derived type’s method to be less accessible, it
would be making a claim that was not enforceable.

Static Classes

There are certain classes that are never intended to be instantiated, such as Console, Math,
Environment, and ThreadPool. These classes have only static members and, in fact, the
classes exist simply as a way to group a set of related members together. For example, the
Math class defines a bunch of methods that do math-related operations. C# allows you to
define non-instantiable classes by using the C# static keyword. This keyword can be
applied only to classes, not structures (value types) because the CLR always allows value
types to be instantiated and there is no way to stop or prevent this.

The compiler enforces many restrictions on a static class:

B The class must be derived directly from System.Object because deriving from any
other base class makes no sense since inheritance applies only to objects, and you
cannot create an instance of a static class.

B The class must not implement any interfaces since interface methods are callable only
when using an instance of a class.

B The class must define only static members (fields, methods, properties, and events).
Any instance members cause the compiler to generate an error.

Chapter 6 Type and Member Basics 163

B The class cannot be used as a field, method parameter, or local variable because all of
these would indicate a variable that refers to an instance, and this is not allowed. If the
compiler detects any of these uses, the compiler issues an error.

Here is an example of a static class that defines some static members; this code compiles
(with a warning) but the class doesn’t do anything interesting:

using System;

public static class AStaticClass {
public static void AStaticMethod() { }

public static String AStaticProperty {
get { return s_AStaticField; }
set { s_AStaticField = value; }

private static String s_AStaticField;

public static event EventHandler AStaticEvent;

}

If you compile the code above into a library (DLL) assembly and look at the result by using
ILDasm.exe, you'll see what is shown in Figure 6-2. As you can see in Figure 6-2, defining a
class by using the static keyword causes the C# compiler to make the class both abstract
and sealed. Furthermore, the compiler will not emit an instance constructor method into the
type. Notice that there is no instance constructor (. ctor) method shown in Figure 6-2.

F7 sedll-1L DASM =5 ECR 5

File View Help

----- 8 s_AStaticField : private static string

AStatichethod : void()

add_aAstaticEvent : void{class [mscorlib]System, EventHandler)
get_AStaticProperty : string()

remove_AStaticEvent : void{class [mscorlib]3ystem, EventHandler)
sek_AStaticProperty : void{string)

----- W AstaticEvent : [mscorlib]System.EventHandler

----- A astaticProperty : string()

.assembly sc

4 3

FIGURE 6-2 ILDasm.exe showing the class as abstract sealed in metadata

164 Part Il Designing Types

Partial Classes, Structures, and Interfaces

In this section, | discuss partial classes, structures, and interfaces. It should be noted that this
feature is offered entirely by the C# compiler (some other compilers also offer this feature);
the CLR knows nothing about partial classes, structures, and interfaces.

The partial keyword tells the C# compiler that the source code for a single class, structure,
or interface definition may span one or more source code files. There are three main reasons
why you might want to split the source code for a type across multiple files:

B Source control Suppose a type's definition consists of a lot of source code, and a
programmer checks it out of source control to make changes. No other programmer
will be able to modify the type at the same time without doing a merge later. Using the
partial keyword allows you to split the code for the type across multiple source code
files, each of which can be checked out individually so that multiple programmers can
edit the type at the same time.

B Splitting a class or structure into distinct logical units within a single file |some-

times create a single type that provides multiple features so that the type can provide
a complete solution. To simplify my implementation, | will sometimes declare the same
partial type repeatedly within a single source code file. Then, in each part of the partial
type, | implement one feature with all its fields, methods, properties, events, and so on.
This allows me to easily see all the members that provide a single feature grouped to-
gether, which simplifies my coding. Also, | can easily comment out a part of the partial
type to remove a whole feature from the class and replace it with another implementa-
tion (via a new part of the partial type).

B Code spitters In Microsoft Visual Studio, when you create a new Windows Forms or
Web Forms project, some source code files are created automatically as part of the
project. These source code files contain templates that give you a head start at building
these kinds of projects. When you use the Visual Studio designers and drag and drop
controls onto the Windows form or Web form, Visual Studio writes source code for you
automatically and spits this code into the source code files. This really improves your
productivity. Historically, the generated code was emitted into the same source code
file that you were working on. The problem with this is that you might edit the gener-
ated code accidentally and cause the designers to stop functioning correctly. Starting
with Visual Studio 2005, when you create a new Windows form, Web form, user control,
and so on, Visual Studio creates two source code files: one for your code and the other
for the code generated by the designer. Since the designer code is in a separate file,
you'll be far less likely to accidentally edit it.

The partial keyword is applied to the types in all files. When the files are compiled together,
the compiler combines the code to produce one type that is in the resulting .exe or .dll
assembly file (or .netmodule module file). As | stated in the beginning of this section, the
partial types feature is completely implemented by the C# compiler; the CLR knows nothing

Chapter 6 Type and Member Basics 165

about partial types at all. This is why all of the source code files for the type must use the
same programming language, and they must all be compiled together as a single compilation
unit.

Components, Polymorphism, and Versioning

Object-oriented programming (OOP) has been around for many, many years. When it

was first used in the late 1970s/early 1980s, applications were much smaller in size and all
the code to make the application run was written by one company. Sure, there were
operating systems back then and applications did make use of what they could out of those
operating systems, but the operating systems offered very few features compared with the
operating systems of today.

Today, software is much more complex and users demand that applications offer rich features
such as GUIs, menu items, mouse input, tablet input, printer output, networking, and so on.
For this reason, our operating systems and development platforms have grown substantially
over recent years. Furthermore, it is no longer feasible or even cost effective for application
developers to write all of the code necessary for their application to work the way users
expect. Today, applications consist of code produced by many different companies. This code
is stitched together using an object-oriented paradigm.

Component Software Programming (CSP) is OOP brought to this level. Here are some attri-
butes of a component:

B A component (an assembly in .NET) has the feeling of being “published.”
B A component has an identity (a name, version, culture, and public key).

B A component forever maintains its identity (the code in an assembly is never statically
linked into another assembly; .NET always uses dynamic linking).

B A component clearly indicates the components it depends upon (reference metadata
tables).

B A component should document its classes and members. C# offers this by allowing
in-source Extensible Markup Language (XML) documentation along with the compiler’s
/doc command-line switch.

B A component must specify the security permissions it requires. The CLR's code access
security (CAS) facilities enable this.

B A component publishes an interface (object model) that won't change for any servicings.
A servicing is a new version of a component whose intention is to be backward compat-
ible with the original version of the component. Typically, a servicing version includes
bug fixes, security patches, and possibly some small feature enhancements. But a
servicing cannot require any new dependencies or any additional security permissions.

166

Part Il Designing Types

As indicated by the last bullet, a big part of CSP has to do with versioning. Components will
change over time and components will ship on different time schedules. Versioning introduces
a whole new level of complexity for CSP that didn’'t exist with OOP, with which all code was
written, tested, and shipped as a single unit by a single company. In this section, I'm going to
focus on component versioning.

In .NET, a version number consists of four parts: a major part, a minor part, a build part, and
a revision part. For example, an assembly whose version number is 1.2.3.4 has a major part
of 1, a minor part of 2, a build part of 3, and a revision part of 4. The major/minor parts are
typically used to represent a consistent and stable feature set for an assembly and the build/
revision parts are typically used to represent a servicing of this assembly’s feature set.

Let's say that a company ships an assembly with version 2.7.0.0. If the company later wants
to fix a bug in this component, they would produce a new assembly in which only the build/
revision parts of the version are changed, something like version 2.7.1.34. This indicates that
the assembly is a servicing whose intention is to be backward compatible with the original
component (version 2.7.0.0).

On the other hand, if the company wants to make a new version of the assembly that has
significant changes to it and is therefore not intended to be backward compatible with the
original assembly, the company is really creating a new component and the new assembly
should be given a version number in which the major/minor parts are different from the ex-
isting component (version 3.0.0.0, for example).

Note [have just described how you should think of version numbers. Unfortunately, the CLR
doesn’t treat version numbers this way. Today, the CLR treats a version number as an opaque
value, and if an assembly depends on version 1.2.3.4 of another assembly, the CLR tries to load
version 1.2.3.4 only (unless a binding redirection is in place).

Now that we've looked at how we use version numbers to update a component's identity
to reflect a new version, let's take a look at some of the features offered by the CLR and
programming languages (such as C#) that allow developers to write code that is resilient to
changes that may be occurring in components that they are using.

Versioning issues come into play when a type defined in a component (assembly) is used

as the base class for a type in another component (assembly). Obviously, if the base class
versions (changes) underneath the derived class, the behavior of the derived class changes as
well, probably in a way that causes the class to behave improperly. This is particularly true in
polymorphism scenarios in which a derived type overrides virtual methods defined by a base

type.

C# offers five keywords that you can apply to types and/or type members that impact com-
ponent versioning. These keywords map directly to features supported in the CLR to support

Chapter 6 Type and Member Basics 167

component versioning. Table 6-2 contains the C# keywords related to component versioning
and indicates how each keyword affects a type or type member definition.

TABLE 6-2 C# Keywords and How They Affect Component Versioning

C# Keyword Type Method/Property/Event Constant/Field
abstract Indicates that no in- Indicates that the derived type (not allowed)
stances of the type can must override and implement this
be constructed member before instances of the
derived type can be constructed
virtual (not allowed) Indicates that this member can be (not allowed)
overridden by a derived type
override (not allowed) Indicates that the derived type is (not allowed)
overriding the base type's member
sealed Indicates that the type Indicates that the member cannot (not allowed)
cannot be used as a be overridden by a derived type.
base type This keyword can be applied only to
a method that is overriding a virtual
method.
new When applied to a nested type, method, property, event, constant, or field, indicates
that the member has no relationship to a similar member that may exist in the base
class

| will demonstrate the value and use of all these keywords in the upcoming section titled
“Dealing with Virtual Methods When Versioning Types.” But before we get to a versioning
scenario, let's focus on how the CLR actually calls virtual methods.

How the CLR Calls Virtual Methods, Properties, and Events

In this section, | will be focusing on methods, but this discussion is relevant to virtual proper-
ties and virtual events as well. Properties and events are actually implemented as methods;
this will be shown in their corresponding chapters.

Methods represent code that performs some operation on the type (static methods) or an
instance of the type (nonstatic methods). All methods have a name, a signature, and a return
value (that may be void). The CLR allows a type to define multiple methods with the same
name as long as each method has a different set of parameters or a different return value.
So it's possible to define two methods with the same name and same parameters as long as
the methods have a different return type. However, except for IL assembly language, I'm not
aware of any language that takes advantage of this “feature”; most languages (including C#)
require that methods differ by parameters and ignore a method's return type when deter-
mining uniqueness. (C# actually relaxes this restriction when defining conversion operator
methods; see Chapter 8 for details.)

168

Part Il Designing Types

The Employee class shown below defines three different kinds of methods:

internal class Employee {
// A nonvirtual instance method
public Int32 GetYearsEmployed() { ... }

// A virtual method (virtual implies instance)
public virtual String GetProgressReport() { ... }

// A static method
public static Employee Lookup(String name) { ... }
}

When the compiler compiles this code, the compiler emits three entries in the resulting
assembly’s method definition table. Each entry has flags set indicating if the method is
instance, virtual, or static.

When code is written to call any of these methods, the compiler emitting the calling code
examines the method definition’s flags to determine how to emit the proper IL code so that
the call is made correctly. The CLR offers two IL instructions for calling a method:

B The call IL instruction can be used to call static, instance, and virtual methods.

When the call instruction is used to call a static method, you must specify the type
that defines the method that the CLR should call. When the cal1 instruction is used to
call an instance or virtual method, you must specify a variable that refers to an object.
The call instruction assumes that this variable is not nul1. In other words, the type of
the variable itself indicates which type defines the method that the CLR should call. If
the variable’s type doesn’t define the method, base types are checked for a matching
method. The cal1 instruction is frequently used to call a virtual method nonvirtually.

B The callvirt IL instruction can be used to call instance and virtual methods, not static
methods. When the callvirt instruction is used to call an instance or virtual method,
you must specify a variable that refers to an object. When the callvirt IL instruction
is used to call a nonvirtual instance method, the type of the variable indicates which
type defines the method that the CLR should call. When the callvirt IL instruction is
used to call a virtual instance method, the CLR discovers the actual type of the object
being used to make the call and then calls the method polymorphically. In order to
determine the type, the variable being used to make the call must not be nul1. In
other words, when compiling this call, the JIT compiler generates code that verifies that
the variable’s value is not nul1. If it is nu11, the callvirt instruction causes the CLR to
throw a Nul1ReferenceException. This additional check means that the callvirt IL
instruction executes slightly more slowly than the cal1 instruction. Note that this nul1
check is performed even when the callvirt instruction is used to call a nonvirtual
instance method.

Chapter 6 Type and Member Basics 169

So now, let's put this together to see how C# uses these different IL instructions:
using System;

public sealed class Program {
public static void Main() {
Console.WriteLine(); // Call a static method

Object o = new Object();
o0.GetHashCode(); // Call a virtual instance method
0.GetType(Q); // Call a nonvirtual instance method

3

If you were to compile the code above and look at the resulting IL, you'd see the following:

.method public hidebysig static void Main() cil managed {
.entrypoint

// Code size 26 (0xla)

.maxstack 1

.locals init (object V_0)

IL_0000: call void System.Console::WriteLine()

IL_0005: newobj instance void System.Object::.ctor()

IL_000a: stloc.0

IL_000b: 1dloc.0

IL_000c: callvirt instance int32 System.Object::GetHashCode()
IL_0011: pop

IL_0012: 1dloc.0

IL_0013: callvirt instance class System.Type System.Object::GetType()
IL_0018: pop

IL_0019: ret
} // end of method Program::Main

Notice that the C# compiler uses the call IL instruction to call Console’s WriteLine method.
This is expected because WriteLine is a static method. Next, notice that the callvirt IL
instruction is used to call GetHashCode. This is also expected, since GetHashCode is a virtual
method. Finally, notice that the C# compiler also uses the callvirt IL instruction to call

the GetType method. This is surprising since GetType is not a virtual method. However, this
works because while JIT-compiling this code, the CLR will know that GetType is not a virtual
method, and so the JIT-compiled code will simply call GetType nonvirtually.

Of course, the question is, why didn't the C# compiler simply emit the call instruction
instead? The answer is because the C# team decided that the JIT compiler should generate
code to verify that the object being used to make the call is not nu11. This means that calls
to nonvirtual instance methods are a little slower than they could be. It also means that the
C# code shown below will cause a Nul1ReferenceException to be thrown. In some other
programming languages, the intention of the code shown below would run just fine:

170

Part Il Designing Types

using System;

public sealed class Program {
public Int32 GetFive() { return 5; }
public static void Main() {
Program p = null;
Int32 x = p.GetFive(Q); // In C#, NullReferenceException is thrown

}

Theoretically, the code above is fine. Sure, the variable p is nu11, but when calling a nonvir-
tual method (GetFive), the CLR needs to know just the data type of p, which is Program. If
GetFive did get called, the value of the this argument would be nu11. Since the argument
is not used inside the GetFive method, no Nul1ReferenceException would be thrown.
However, because the C# compiler emits a callvirt instruction instead of a cal1 instruction,
the code above will end up throwing the Nul1ReferenceException.

Important If you define a method as nonvirtual, you should never change the method to
virtual in the future. The reason is because some compilers will call the nonvirtual method by
using the call instruction instead of the callvirt instruction. If the method changes from
nonvirtual to virtual and the referencing code is not recompiled, the virtual method will be called
nonvirtually, causing the application to produce unpredictable behavior. If the referencing code
is written in C#, this is not a problem, since C# calls all instance methods by using callvirt. But
this could be a problem if the referencing code was written using a different programming
language.

Sometimes, the compiler will use a call instruction to call a virtual method instead of using
a callvirt instruction. At first, this may seem surprising, but the code below demonstrates
why it is sometimes required:

internal class SomeClass {
// ToString is a virtual method defined in the base class: Object.
public override String ToString() {

// Compiler uses the ‘call’ IL instruction to call
// Object’s ToString method nonvirtually.

// If the compiler were to use ‘callvirt’ instead of ‘call’, this
// method would call itself recursively until the stack overflowed.
return base.ToString(Q);

}

When calling base.ToStr1ing (a virtual method), the C# compiler emits a cal1 instruction

to ensure that the ToString method in the base type is called nonvirtually. This is required
because if ToString were called virtually, the call would execute recursively until the thread's
stack overflowed, which obviously is not desired.

Chapter 6 Type and Member Basics 171

Compilers tend to use the call instruction when calling methods defined by a value type
since value types are sealed. This implies that there can be no polymorphism even for their
virtual methods, which causes the performance of the call to be faster. In addition, the nature
of a value type instance guarantees it can never be nul1, so a Nul1ReferenceException

will never be thrown. Finally, if you were to call a value type's virtual method virtually, the
CLR would need to have a reference to the value type’s type object in order to refer to the
method table within it. This requires boxing the value type. Boxing puts more pressure on
the heap, forcing more frequent garbage collections and hurting performance.

Regardless of whether call or callvirt is used to call an instance or virtual method, these
methods always receive a hidden this argument as the method'’s first parameter. The this
argument refers to the object being operated on.

When designing a type, you should try to minimize the number of virtual methods you
define. First, calling a virtual method is slower than calling a nonvirtual method. Second,
virtual methods cannot be inlined by the JIT compiler, which further hurts performance.
Third, virtual methods make versioning of components more brittle, as described in the next
section. Fourth, when defining a base type, it is common to offer a set of convenience over-
loaded methods. If you want these methods to be polymorphic, the best thing to do is to
make the most complex method virtual and leave all of the convenience overloaded methods
nonvirtual. By the way, following this guideline will also improve the ability to version a
component without adversely affecting the derived types. Here is an example:

public class Set {
private Int32 m_length = 0;

// This convenience overload is not virtual
public Int32 Find(Object value) {
return Find(value, 0, m_length);

}

// This convenience overload is not virtual
public Int32 Find(Object value, Int32 startIndex) {
return Find(value, startIndex, m_length - startIndex);

}

// The most feature-rich method is virtual and can be overridden
public virtual Int32 Find(Object value, Int32 startIndex, Int32 endIndex) {
// Actual implementation that can be overridden goes here...

}

// Other methods go here

172

Part Il Designing Types

Using Type Visibility and Member Accessibility Intelligently

With the .NET Framework, applications are composed of types defined in multiple assemblies
produced by various companies. This means that the developer has little control over the
components he or she is using and the types defined within those components. The developer
typically doesn't have access to the source code (and probably doesn’t even know what pro-
gramming language was used to create the component), and components tend to version
with different schedules. Furthermore, due to polymorphism and protected members, a base
class developer must trust the code written by the derived class developer. And, of course,
the developer of a derived class must trust the code that he is inheriting from a base class.
These are just some of the issues that you need to really think about when designing compo-
nents and types.

In this section, I'd like to say just a few words about how to design a type with these issues in
mind. Specifically, I'm going to focus on the proper way to set type visibility and member
accessibility so that you'll be most successful.

First, when defining a new type, compilers should make the class sealed by default so that
the class cannot be used as a base class. Instead, many compilers, including C#, default to
unsealed classes and allow the programmer to explicitly mark a class as sealed by using the
sealed keyword. Obviously, it is too late now, but | think that today’s compilers have chosen
the wrong default and it would be nice if this could change with future compilers. There are
three reasons why a sealed class is better than an unsealed class:

B Versioning When a class is originally sealed, it can change to unsealed in the future
without breaking compatibility. However, once a class is unsealed, you can never
change it to sealed in the future as this would break all derived classes. In addition, if
the unsealed class defines any unsealed virtual methods, ordering of the virtual method
calls must be maintained with new versions or there is the potential of breaking derived
types in the future.

B Performance As discussed in the previous section, calling a virtual method doesn’t
perform as well as calling a nonvirtual method because the CLR must look up the type
of the object at runtime in order to determine which type defines the method to call.
However, if the JIT compiler sees a call to a virtual method using a sealed type, the JIT
compiler can produce more efficient code by calling the method nonvirtually. It can
do this because it knows there can't possibly be a derived class if the class is sealed.
For example, in the code below, the JIT compiler can call the virtual ToString method
nonvirtually:
using System;
public sealed class Point {

private Int32 m_x, m_y;

public Point(Int32 x, Int32 y) { m_x = x; m_y =vy; }

Chapter 6 Type and Member Basics 173

public override String ToString() {
return String.Format("({0}, {1})", m_x, m_y);
}

public static void Main() {
Point p = new Point(3, 4);

// The C# compiler emits the callvirt instruction here but the
// JIT compiler will optimize this call and produce code that
// calls ToString nonvirtually because p's type is Point,

// which is a sealed class

Console.WriteLine(p.ToString());

3

B Security and predictability A class must protect its own state and not allow itself
to ever become corrupted. When a class is unsealed, a derived class can access and
manipulate the base class’s state if any data fields or methods that internally manipulate
fields are accessible and not private. In addition, a virtual method can be overridden by
a derived class, and the derived class can decide whether to call the base class’s imple-
mentation. By making a method, property, or event virtual, the base class is giving up
some control over its behavior and its state. Unless carefully thought out, this can cause
the object to behave unpredictably, and it opens up potential security holes.

The problem with a sealed class is that it can be a big inconvenience to users of the type.
Occasionally, developers want to create a class derived from an existing type in order to
attach some additional fields or state information for their application’s own use. In fact, they
may even want to define some helper or convenience methods on the derived type to
manipulate these additional fields. Since sealed classes restrict this ability, | made a proposal
to the CLR team that they introduce a new class modifier called closed.

A closed class can be used as a base class, but its behavior is closed and not subject to inter-
ference by a derived class. Basically, a closed base class would prohibit a derived class from
accessing any of the base class’s non-public members. This would allow the base class to
change with the knowledge that it will not impact a derived class. Ideally, compilers would
change the default access modifier for types to closed because this would be the safest
choice without being too restrictive. It is too early to know if this idea will make its way into
the CLR and programming languages. However, | am very hopeful it will someday.

By the way, you could almost accomplish today what closed is designed to do; it's just that
it is very inconvenient. Basically, when you implement your class, make sure you seal all the
virtual methods you inherit (including the methods defined by System.0Object). Also, don't
define any methods that may become a versioning burden in the future such as protected or
virtual methods. Here is an example:

174

Part Il

Designing Types

public class SimulatedClosedClass : Object {
public sealed override Boolean Equals(Object obj) {

}

return base.Equals(obj);

public sealed override Int32 GetHashCode() {

}

return base.GetHashCode();

public sealed override String ToString() {

3
//

//
//
}

return base.ToString(Q);
Unfortunately, C# won't Tet you seal the Finalize method

Define additional public or private members here...
Do not define any protected or virtual members

Unfortunately, the compilers and the CLR do not support closed types today. Here are the
guidelines | follow when | define my own classes:

When defining a class, | always explicitly make it sealed unless | truly intend for the
class to be a base class that allows specialization by derived classes. As stated earlier,
this is the opposite of what C# and many other compilers default to today. | also default
to making the class internal unless | want the class to be publicly exposed outside

of my assembly. Fortunately, if you do not explicitly indicate a type's visibility, the C#
compiler defaults to internal. If | really feel that it is important to define a class that oth-
ers can derive but | do not want to allow specialization, | will simulate creating a closed
class by using the above technique of sealing the virtual methods that my class inherits.

Inside the class, | always define my data fields as private and | never waver on this.
Fortunately, C# does default to making fields private. I'd actually prefer it if C#
mandated that all fields be private and that you could not make fields protected,
internal, public, and so on. Exposing state is the easiest way to get into problems,
have your object behave unpredictably, and open potential security holes. This is true
even if you just declare some fields as internal. Even within a single assembly, it is too
hard to track all code that references a field, especially if several developers are writing
code that gets compiled into the same assembly.

Inside the class, | always define my methods, properties, and events as private and
nonvirtual. Fortunately, C# defaults to this as well. Certainly, I'll make a method, prop-
erty, or event public to expose some functionality from the type. | try to avoid making
any of these members protected or internal, as this would be exposing my type to
some potential vulnerability. However, | would sooner make a member protected or
internal than | would make a member virtual because a virtual member gives up a
lot of control and really relies on the proper behavior of the derived class.

There is an old OOP adage that goes like this: when things get too complicated, make
more types. When an implementation of some algorithm starts to get complicated,
| define helper types that encapsulate discrete pieces of functionality. If I'm defining

Chapter 6 Type and Member Basics 175

these helper types for use by a single Uber-type, I'll define the helper types nested
within the Gber-type. This allows for scoping and also allows the code in the nested,
helper type to reference the private members defined in the Uber-type. However, there
is a design guideline rule, enforced by the Code Analysis tool (FxCopCmd.exe) in Visual
Studio, which indicates that publicly exposed nested types should be defined at file or
assembly scope and not be defined within another type. This rule exists because some
developers find the syntax for referencing nested types cumbersome. | appreciate this
rule, and | never define public nested types.

Dealing with Virtual Methods When Versioning Types

As was stated earlier, in a Component Software Programming environment, versioning is a
very important issue. | talked about some of these versioning issues in Chapter 3, “Shared
Assemblies and Strongly Named Assemblies,” when | explained strongly named assemblies
and discussed how an administrator can ensure that an application binds to the assemblies
that it was built and tested with. However, other versioning issues cause source code compat-
ibility problems. For example, you must be very careful when adding or modifying members
of a type if that type is used as a base type. Let's look at some examples.

CompanyA has designed the following type, Phone:

namespace CompanyA {
public class Phone {
pubTlic void Dial(Q) {
Console.WriteLine("Phone.Dial");
// Do work to dial the phone here.

}

Now imagine that CompanyB defines another type, BetterPhone, which uses CompanyA's
Phone type as its base:

namespace CompanyB {
public class BetterPhone : CompanyA.Phone {
pubTlic void Dial(Q) {
Console.WriteLine("BetterPhone.Dial");
Estab1ishConnection();
base.Dial();
}

protected virtual void EstablishConnection() {
Console.WriteLine("BetterPhone.EstablishConnection™);
// Do work to establish the connection.

176

Part Il Designing Types

When CompanyB attempts to compile its code, the C# compiler issues the following
message: “warning CS0108: ‘CompanyB.BetterPhone.Dial()’ hides inherited
member ‘CompanyA.Phone.Dial()’. Use the new keyword if hiding was intended.”
This warning is notifying the developer that BetterPhone is defining a Dial method, which
will hide the Dial method defined in Phone. This new method could change the semantic
meaning of Dial (as defined by CompanyA when it originally created the Dial method).

It's a very nice feature of the compiler to warn you of this potential semantic mismatch. The
compiler also tells you how to remove the warning by adding the new keyword before the
definition of Dial in the BetterPhone class. Here's the fixed BetterPhone class:

namespace CompanyB {
public class BetterPhone : CompanyA.Phone {

// This Dial method has nothing to do with Phone's Dial method.
pubTlic new void Dial(Q) {
Console.WriteLine("BetterPhone.Dial");
Estab1ishConnection();
base.Dial();
}

protected virtual void EstablishConnection() {
Console.WriteLine("BetterPhone.EstablishConnection");
// Do work to establish the connection.

}

At this point, CompanyB can use BetterPhone.D1ial in its application. Here’s some sample
code that CompanyB might write:

public sealed class Program {
public static void Main() {
CompanyB.BetterPhone phone = new CompanyB.BetterPhone();
phone.Dial();

3

When this code runs, the following output is displayed:

BetterPhone.Dial
BetterPhone.EstablishConnection
Phone.Dial

This output shows that CompanyB is getting the behavior it desires. The call to Dial
is calling the new Dial method defined by BetterPhone, which calls the virtual
EstablishConnection method and then calls the Phone base type’s Dial method.

Now let’s imagine that several companies have decided to use CompanyA’s Phone type. Let's
further imagine that these other companies have decided that the ability to establish a
connection in the Dial method is a really useful feature. This feedback is given to
CompanyA, which now revises its Phone class:

Chapter 6 Type and Member Basics 177

namespace CompanyA {
public class Phone {
pubTlic void Dial(Q) {
Console.WriteLine("Phone.Dial");
EstablishConnection();
// Do work to dial the phone here.
}

protected virtual void EstablishConnection() {
Console.WriteLine("Phone.EstablishConnection");
// Do work to establish the connection.

3

Now when CompanyB compiles its BetterPhone type (derived from this new version of
CompanyA’s Phone), the compiler issues this message: “warning CS0114:
‘CompanyB.BetterPhone.EstablishConnection()’ hides inherited member
‘CompanyA.Phone.EstablishConnection()’. To make the current member
override that implementation, add the override keyword. Otherwise, add
the new keyword.”

The compiler is alerting you to the fact that both Phone and BetterPhone offer an
EstablishConnection method and that the semantics of both might not be identical;
simply recompiling BetterPhone can no longer give the same behavior as it did when using
the first version of the Phone type.

If CompanyB decides that the Estab1ishConnection methods are not semantically identical
in both types, CompanyB can tell the compiler that the Dial and Estab11ishConnection
method defined in BetterPhone is the correct method to use and that it has no relationship
with the Establ1ishConnection method defined in the Phone base type. CompanyB informs
the compiler of this by adding the new keyword to the Estab1ishConnection method:

namespace CompanyB {
public class BetterPhone : CompanyA.Phone {

// Keep 'new' to mark this method as having no
// relationship to the base type's Dial method.
pubTlic new void Dial(Q) {
Console.WriteLine("BetterPhone.Dial");
EstablishConnection();
base.Dial();
}

// Add 'new' to mark this method as having no
// relationship to the base type's EstablishConnection method.
protected new virtual void EstablishConnection() {
Console.WriteLine("BetterPhone.EstablishConnection™);
// Do work to establish the connection.

178

Part Il Designing Types

In this code, the new keyword tells the compiler to emit metadata, making it clear to the
CLR that BetterPhone's EstablishConnection method is intended to be treated as a new
function that is introduced by the BetterPhone type. The CLR will know that there is no
relationship between Phone's and BetterPhone's methods.

When the same application code (in the Main method) executes, the output is as follows:

BetterPhone.Dial
BetterPhone.EstablishConnection
Phone.Dial
Phone.EstablishConnection

This output shows that Main's call to Dial calls the new Dial method defined by
BetterPhone.Dial, which in turn calls the virtual EstablishConnection method that is also
defined by BetterPhone. When BetterPhone's Establ1ishConnection method returns,
Phone’s Dial method is called. Phone's Dial method calls Estab11ishConnection, but
because BetterPhone's Establ1ishConnection is marked with new, BetterPhone's
EstablishConnection method isn't considered an override of Phone's virtual
EstablishConnection method. As a result, Phone's Dial method calls Phone's
EstablishConnection method—this is the expected behavior.

Note If the compiler treated methods as overrides by default (as a native C++ compiler does),
the developer of BetterPhone couldn’t use the method names Dial and
Establ1ishConnection. This would most likely cause a ripple effect of changes throughout

the entire source code base, breaking source and binary compatibility. This type of pervasive
change is undesirable, especially in any moderate-to-large project. However, if changing the
method name causes only moderate updates in the source code, you should change the name of
the methods so the two different meanings of Dial and Estab1ishConnection don't confuse
other developers.

Alternatively, CompanyB could have gotten the new version of CompanyA's Phone type and
decided that Phone's semantics of Dial and Estab1ishConnection are exactly what it's
been looking for. In this case, CompanyB would modify its BetterPhone type by removing
its Dial method entirely. In addition, because CompanyB now wants to tell the compiler that
BetterPhone's EstablishConnection method is related to Phone's Estab11ishConnection
method, the new keyword must be removed. Simply removing the new keyword isn't enough,
though, because now the compiler can't tell exactly what the intention is of BetterPhone's
EstablishConnection method. To express his intent exactly, the CompanyB developer must
also change BetterPhone's EstablishConnection method from virtual to override. The
following code shows the new version of BetterPhone:

Chapter 6 Type and Member Basics 179

namespace CompanyB {
public class BetterPhone : CompanyA.Phone {

// Delete the Dial method (inherit Dial from base).

// Remove 'new' and change 'virtual' to 'override' to
// mark this method as having a relationship to the base
// type's EstablishConnection method.
protected override void EstablishConnection() {
Console.WriteLine("BetterPhone.EstablishConnection™);
// Do work to establish the connection.
}
}
}

Now when the same application code (in the Main method) executes, the output is as
follows:

Phone.Dial
BetterPhone.EstablishConnection

This output shows that Main’s call to Dial calls the Dial method defined by Phone and
inherited by BetterPhone. Then when Phone’s Dial method calls the virtual
EstablishConnection method, BetterPhone's EstablishConnection method is called
because it overrides the virtual Estab1ishConnection method defined by Phone.

Chapter 7
Constants and Fields

CONS ANt . ..ot e e e e 181
Fields . ..o e 183

In this chapter, I'll show you how to add data members to a type. Specifically, we'll look at
constants and fields.

Constants

A constant is a symbol that has a never-changing value. When defining a constant symbol,
its value must be determinable at compile time. The compiler then saves the constant’s value
in the assembly’s metadata. This means that you can define a constant only for types that
your compiler considers primitive types. In C#, the following types are primitives and can be
used to define constants: Boolean, Char, Byte, SByte, Int16, UInt16, Int32, UInt32, Int64,
UInt64, Single, Double, Decimal, and String. However, C# also allows you to define a
constant variable of a non-primitive type if you set the value to nul1:

using System;

public sealed class SomeType {
// SomeType is not a primitive type but C# does allow
// a constant variable of this type to be set to 'null'.
public const SomeType Empty = null;

}

Because a constant value never changes, constants are always considered to be part of the
defining type. In other words, constants are always considered to be static members, not
instance members. Defining a constant causes the creation of metadata.

When code refers to a constant symbol, compilers look up the symbol in the metadata of the
assembly that defines the constant, extract the constant’s value, and embed the value in the
emitted Intermediate Language (IL) code. Because a constant’s value is embedded directly in
code, constants don't require any memory to be allocated for them at runtime. In addition,
you can't get the address of a constant and you can't pass a constant by reference. These
constraints also mean that constants don't have a good cross-assembly versioning story,

so you should use them only when you know that the value of a symbol will never change.

181

182

Part Il Designing Types

(Defining MaxIntl6 as 32767 is a good example.) Let me demonstrate exactly what | mean.
First, take the following code and compile it into a DLL assembly:

using System;

public sealed class SomeLibraryType {
// NOTE: C# doesn't allow you to specify static for constants
// because constants are always implicitly static.
public const Int32 MaxEntriesInList = 50;

}

Then use the following code to build an application assembly:
using System;
public sealed class Program {

public static void Main() {

Console.WriteLine("Max entries supported in Tist:
+ SomeLibraryType.MaxEntriesInList);

}

You'll notice that this application code references the MaxEntriesInList constant defined
in the SomeLibraryType class. When the compiler builds the application code, it sees that
MaxEntriesInList is a constant literal with a value of 50 and embeds the Int32 value of 50
right inside the application’s IL code, as you can see in the IL code shown below. In fact, after
building the application assembly, the DLL assembly isn't even loaded at runtime and can be
deleted from the disk.

.method public hidebysig static void Main() cil managed
{

.entrypoint

// Code size 25 (0x19)

.maxstack 8

IL_0000: nop

IL_0001: 1ldstr "Max entries supported in Tist: "
| IL_0006: T1dc.i4.s 50 |
IL_0008: box [mscorTib]System.Int32
IL_000d: «call string [mscorlib]System.String::Concat(object, object)
IL_0012: «call void [mscorlib]System.Console: :WriteLine(string)

IL_0017: nop
IL_0018: ret
} // end of method Program::Main

This example should make the versioning problem obvious to you. If the developer changes
the MaxEntriesInList constant to 1000 and only rebuilds the DLL assembly, the application
assembly is not affected. For the application to pick up the new value, it will have to be re-
compiled as well. You can't use constants if you need to have a value in one assembly picked
up by another assembly at runtime (instead of compile time). Instead, you can use readonly
fields, which I'll discuss next.

Chapter 7 Constants and Fields 183

Fields

A field is a data member that holds an instance of a value type or a reference to a reference
type. Table 7-1 shows the modifiers that can be applied to a field.

TABLE 7-1 Field Modifiers

CLR Term C# Term Description

Static static The field is part of the type's state, as opposed to being
part of an object’s state.

Instance (default) The field is associated with an instance of the type, not
the type itself.

InitOnly readonly The field can be written to only by code contained in a
constructor method.

Volatile volatile Code that accessed the field is not subject to some
thread-unsafe optimizations that may be performed by
the compiler, the CLR, or by hardware. Only the follow-
ing types can be marked volatile: all reference types,
Single, Boolean, Byte, SByte, Intl6, UIntl6, Int32,
UInt32, Char, and all enumerated types with an un-
derlying type of Byte, SByte, Intl6, UIntl6, Int32,
or UInt32. Volatile fields are discussed in Chapter 28,
"Primitive Thread Synchronization Constructs.”

As Table 7-1 shows, the common language runtime (CLR) supports both type (static) and
instance (nonstatic) fields. For type fields, the dynamic memory required to hold the field's
data is allocated inside the type object, which is created when the type is loaded into an
AppDomain (see Chapter 22, "CLR Hosting and AppDomains”), which typically happens the
first time any method that references the type is just-in-time (JIT)-compiled. For instance
fields, the dynamic memory to hold the field is allocated when an instance of the type is
constructed.

Because fields are stored in dynamic memory, their value can be obtained at runtime only.
Fields also solve the versioning problem that exists with constants. In addition, a field can be
of any data type, so you don't have to restrict yourself to your compiler’s built-in primitive
types (as you do for constants).

The CLR supports readonly fields and read/write fields. Most fields are read/write fields,
meaning the field's value might change multiple times as the code executes. However,
readonly fields can be written to only within a constructor method (which is called only
once, when an object is first created). Compilers and verification ensure that readonly fields
are not written to by any method other than a constructor. Note that reflection can be used
to modify a readonly field.

Let's take the example from the “Constants” section and fix the versioning problem by using
a static readonly field. Here's the new version of the DLL assembly’s code:

184

Part Il Designing Types

using System;

public sealed class SomeLibraryType {
// The static is required to associate the field with the type.
public static readonly Int32 MaxEntriesInList = 50;

}

This is the only change you have to make; the application code doesn’'t have to change at
all, although you must rebuild it to see the new behavior. Now when the application’s Main
method runs, the CLR will load the DLL assembly (so this assembly is now required at run
time) and grab the value of the MaxEntriesInList field out of the dynamic memory
allocated for it. Of course, the value will be 50.

Let's say that the developer of the DLL assembly changes the 50 to 1000 and rebuilds the as-
sembly. When the application code is re-executed, it will automatically pick up the new value:
1000. In this case, the application code doesn't have to be rebuilt—it just works (although its
performance is adversely affected). A caveat: this scenario assumes that the new version of
the DLL assembly is not strongly named and the versioning policy of the application is such
that the CLR loads this new version.

The following example shows how to define a readonly static field that is associated with the
type itself, as well as read/write static fields and readonly and read/write instance fields,
as shown here:

public sealed class SomeType {
// This 1is a static read-only field; its value is calculated and
// stored in memory when this class is initialized at run time.
public static readonly Random s_random = new Random();

// This 1is a static read/write field.
private static Int32 s_numberOfWrites = 0;

// This is an instance read-only field.
public readonly String Pathname = "Untitled";

// This 1is an instance read/write field.
private System.IO.FileStream m_fs;

public SomeType(String pathname) {
// This Tine changes a read-only field.
// This 1is OK because the code is in a constructor.
this.Pathname = pathname;

}

public String DoSomething() {
// This Tine reads and writes to the static read/write field.
s_numberOfWrites = s_numberOfWrites + 1;

// This 1line reads the read-only instance field.
return Pathname;

Chapter 7 Constants and Fields 185

In this code, many of the fields are initialized inline. C# allows you to use this convenient inline
initialization syntax to initialize a class's constants and read/write and readonly fields. As
you'll see in Chapter 8, “Methods,” C# treats initializing a field inline as shorthand syntax for
initializing the field in a constructor. Also, in C#, there are some performance issues to con-
sider when initializing fields by using inline syntax versus assignment syntax in a constructor.
These performance issues are discussed in Chapter 8 as well.

Important When a field is of a reference type and the field is marked as readonly, it is
the reference that is immutable, not the object that the field refers to. The following code
demonstrates:

public sealed class AType {
// InvalidChars must always refer to the same array object
public static readonly Char[] InvalidChars = new Char[] { 'A', 'B', 'C' };

3

public sealed class AnotherType {
public static void M) {
// The lines below are legal, compile, and successfully
// change the characters in the InvalidChars array
AType.InvalidChars[0] = 'X';
AType.InvalidChars[1] = 'Y';
AType.InvalidChars[2] 'z

// The Tline below is illegal and will not compile because
// what InvalidChars refers to cannot be changed
AType.InvalidChars = new Char[] { 'X', 'Y', 'Z' };

Chapter 8

Methods

Instance Constructors and Classes (Reference Types)...................... 187
Instance Constructors and Structures (Value Types)....................... 191
Type CoNStrUCtOrS. . . oottt et et e e e et 194
Operator Overload Methods. i, 200
Conversion Operator Methods. i, 204
Extension Methods.o i i i e i i e 207
Partial Methods. o i e 213

This chapter focuses on the various kinds of methods that you'll run into, including instance
constructors and type constructors, as well as how to define methods to overload operators
and type conversions (for implicit and explicit casting). We'll also talk about extension meth-
ods, which allow you to logically add your own instance methods to already existing types,

and partial methods, which allow you to spread a type's implementation into multiple parts.

Instance Constructors and Classes (Reference Types)

Constructors are special methods that allow an instance of a type to be initialized to a good
state. Constructor methods are always called . ctor (for constructor) in a method definition
metadata table. When creating an instance of a reference type, memory is allocated for the
instance’s data fields, the object’s overhead fields (type object pointer and sync block index)
are initialized, and then the type’s instance constructor is called to set the initial state of the
object.

When constructing a reference type object, the memory allocated for the object is always
zeroed out before the type’s instance constructor is called. Any fields that the constructor
doesn't explicitly overwrite are guaranteed to have a value of 0 or nu11.

Unlike other methods, instance constructors are never inherited. That is, a class has only

the instance constructors that the class itself defines. Since instance constructors are never
inherited, you cannot apply the following modifiers to an instance constructor: virtual, new,
override, sealed, or abstract. If you define a class that does not explicitly define any
constructors, the C# compiler defines a default (parameterless) constructor for you whose
implementation simply calls the base class's parameterless constructor.

187

188 Part Il Designing Types

For example, if you define the following class:

public class SomeType {
}

it is as though you wrote the code like this:

public class SomeType {
public SomeType() : base() { }
}

If the class is abstract, the compiler-produced default constructor has protected acces-
sibility; otherwise, the constructor is given pub1ic accessibility. If the base class doesn’t offer
a parameterless constructor, the derived class must explicitly call a base class constructor or
the compiler will issue an error. If the class is static (sealed and abstract), the compiler
will not emit a default constructor at all into the class definition.

A type can define several instance constructors. Each constructor must have a different
signature, and each can have different accessibility. For verifiable code, a class’s instance
constructor must call its base class's constructor before accessing any of the inherited fields
of the base class. The C# compiler will generate a call to the default base class’s constructor
automatically if the derived class’s constructor does not explicitly invoke one of the base
class’s constructors. Ultimately, System.0Object’s public, parameterless constructor gets
called. This constructor does nothing—it simply returns. This is because System.Object
defines no instance data fields, and therefore its constructor has nothing to do.

In a few situations, an instance of a type can be created without an instance constructor
being called. In particular, calling Object's MemberwiseClone method allocates memory,
initializes the object’s overhead fields, and then copies the source object’s bytes to the
new object. Also, a constructor is usually not called when deserializing an object with the
runtime serializer. The deserialization code allocates memory for the object without call-
ing a constructor using the System.Runtime.Serialization.FormatterServices type's
GetUninitializedObject or GetSafeUninitializedObject methods (as discussed in
Chapter 24, "Runtime Serialization”).

W Important You should not call any virtual methods within a constructor that can affect the
object being constructed. The reason is if the virtual method is overridden in the type being
instantiated, the derived type's implementation of the overridden method will execute, but all of
the fields in the hierarchy have not been fully initialized. Calling a virtual method would therefore
result in unpredictable behavior.

C# offers a simple syntax that allows the initialization of fields defined within a reference type
when an instance of the type is constructed:

Chapter 8 Methods 189

internal sealed class SomeType {
private Int32 m_x = 5;

}

When a SomeType object is constructed, its m_x field will be initialized to 5. How does this
happen? Well, if you examine the Intermediate Language (IL) for SomeType's constructor
method (also called .ctor), you'll see the code shown here:

.method public hidebysig specialname rtspecialname
instance void .ctor() cil managed
{
// Code size 14 (Oxe)
.maxstack 8
IL_0000: 1darg.0
IL_0001: 1dc.i4.5

IL_0002: stfld int32 SomeType: :m_x
IL_0007: 1darg.0
IL_0008: «call instance void [mscorlib]System.Object::.ctor()

IL_000d: ret
} // end of method SomeType::.ctor

In this code, you see that SomeType's constructor contains code to store a 5 into m_x and
then calls the base class’s constructor. In other words, the C# compiler allows the convenient
syntax that lets you initialize the instance fields inline and translates this to code in the con-
structor method to perform the initialization. This means that you should be aware of code
explosion, as illustrated by the following class definition:

internal sealed class SomeType {
private Int32 m_x 5;
private String m_s = "Hi there";
private Double m_d = 3.14159;
private Byte m_b;

// Here are some constructors.

public SomeType() { ...}
public SomeType(Int32 x) { ... }
public SomeType(String s) { ...; m_d = 10; }

3

When the compiler generates code for the three constructor methods, the beginning of each
method includes the code to initialize m_x, m_s, and m_d. After this initialization code, the
compiler inserts a call to the base class’s constructor, and then the compiler appends to the
method the code that appears in the constructor methods. For example, the code generated
for the constructor that takes a String parameter includes the code to initialize m_x, m_s,
and m_d, call the base class’'s (Object's) constructor, and then overwrite m_d with the value
10. Note that m_b is guaranteed to be initialized to 0 even though no code exists to explicitly
initialize it.

190

Part Il Designing Types

Note The compiler initializes any fields using the convenient syntax before calling a base class’s
constructor to maintain the impression that these fields always have a value as the source code
appearance dictates. The potential problem occurs when a base class’s constructor invokes a vir-
tual method that calls back into a method defined by the derived class. If this happens, the fields
initialized using the convenient syntax have been initialized before the virtual method is called.

Because there are three constructors in the preceding class, the compiler generates the
code to initialize m_x, m_s, and m_d three times—once per constructor. If you have several
initialized instance fields and a lot of overloaded constructor methods, you should consider
defining the fields without the initialization, creating a single constructor that performs the
common initialization, and having each constructor explicitly call the common initialization
constructor. This approach will reduce the size of the generated code. Here is an example
using C#'s ability to explicitly have a constructor call another constructor by using the this
keyword:

internal sealed class SomeType {
// Do not explicitly initialize the fields here
private Int32 m_x;
private String m_s;
private Double m_d;
private Byte m_b;

// This constructor sets all fields to their default.
// A1l of the other constructors explicitly invoke this constructor.
public SomeType() {

m_x = 5;

m_s = "Hi there";
m_d = 3.14159;
m_b = Oxff;

// This constructor sets all fields to their default, then changes m_x.
public SomeType(Int32 x) : this(Q {
mXx = X;

}

// This constructor sets all fields to their default, then changes m_s.
public SomeType(String s) : this(Q {
m.s = s;

}

// This constructor sets all fields to their default, then changes m_x & m_s.
public SomeType(Int32 x, String s) : this(Q {

mXx = X;

ms = s;

Chapter 8 Methods 191

Instance Constructors and Structures (Value Types)

Value type (struct) constructors work quite differently from reference type (class)
constructors. The common language runtime (CLR) always allows the creation of value type
instances, and there is no way to prevent a value type from being instantiated. For this
reason, value types don't actually even need to have a constructor defined within them, and
the C# compiler doesn't emit default parameterless constructors for value types. Examine the
following code:

internal struct Point {
public Int32 m_x, m_y;
}
internal sealed class Rectangle {
public Point m_topLeft, m_bottomRight;
}

To construct a Rectangle, the new operator must be used, and a constructor must be speci-
fied. In this case, the default constructor automatically generated by the C# compiler is called.
When memory is allocated for the Rectangle, the memory includes the two instances of the
Point value type. For performance reasons, the CLR doesn’t attempt to call a constructor
for each value type field contained within the reference type. But as | mentioned earlier, the
fields of the value types are initialized to 0/nul1.

The CLR does allow you to define constructors on value types. The only way that these
constructors will execute is if you write code to explicitly call one of them, as in Rectangle’s
constructor, shown here:

internal struct Point {
public Int32 m_x, m_y;

public Point(Int32 x, Int32 y) {
m_x = X;
m.y =Y;

}

internal sealed class Rectangle {
public Point m_topLeft, m_bottomRight;

public Rectangle() {
// In C#, new on a value type calls the constructor to
// initialize the value type's fields.
m_topLeft = new Point(1l, 2);
m_bottomRight = new Point(100, 200);

}

A value type's instance constructor is executed only when explicitly called. So if Rectangle’s
constructor didn't initialize its m_topLeft and m_bottomRight fields by using the new opera-
tor to call Point's constructor, the m_x and m_y fields in both Point fields would be 0.

192

Part Il Designing Types

In the Point value type defined earlier, no default parameterless constructor is defined.
However, let's rewrite that code as follows:

internal struct Point {
public Int32 m_x, m_y;

public Point() {
mx=my = 5;
}
}

internal sealed class Rectangle {
public Point m_topLeft, m_bottomRight;

public Rectangle() {
}
}

Now when a new Rectangle is constructed, what do you think the m_x and m_y fields in the
two Point fields, m_topLeft and m_bottomRight, would be initialized to: 0 or 5? (Hint: This
is a trick question.)

Many developers (especially those with a C++ background) would expect the C# compiler to
emit code in Rectangle’s constructor that automatically calls Point’s default parameterless
constructor for the Rectangle’s two fields. However, to improve the runtime performance of
the application, the C# compiler doesn’t automatically emit this code. In fact, many compilers
will never emit code to call a value type's default constructor automatically, even if the value
type offers a parameterless constructor. To have a value type's parameterless constructor
execute, the developer must add explicit code to call a value type’s constructor.

Based on the information in the preceding paragraph, you should expect the m_x and m_y
fields in Rectangle’s two Point fields to be initialized to 0 in the code shown earlier because
there are no explicit calls to Point’s constructor anywhere in the code.

However, | did say that my original question was a trick question. The trick part is that C#
doesn't allow a value type to define a parameterless constructor. So the previous code won't
actually compile. The C# compiler produces the following message when attempting to
compile that code: "error CS0568: Structs cannot contain explicit parameterless
constructors."”

C# purposely disallows value types from defining parameterless constructors to remove any
confusion a developer might have about when that constructor gets called. If the constructor
can't be defined, the compiler can never generate code to call it automatically. Without a
parameterless constructor, a value type's fields are always initialized to 0/nul1.

Chapter 8 Methods 193

Note Strictly speaking, value type fields are guaranteed to be 0/nul1 when the value type is a
field nested within a reference type. However, stack-based value type fields are not guaranteed
to be 0/nul1. For verifiability, any stack-based value type field must be written to prior to be-
ing read. If code could read a value type's field prior to writing to the field, a security breach is
possible. C# and other compilers that produce verifiable code ensure that all stack-based value
types have their fields zeroed out or at least written to before being read so that a verification
exception won't be thrown at run time. For the most part, this means that you can assume that
your value types have their fields initialized to 0, and you can completely ignore everything in
this note.

Keep in mind that although C# doesn't allow value types with parameterless constructors,
the CLR does. So if the unobvious behavior described earlier doesn’t bother you, you can use
another programming language (such as IL assembly language) to define your value type
with a parameterless constructor.

Because C# doesn't allow value types with parameterless constructors, compiling the follow-
ing type produces the following message: "error CS0573: 'SomeValType.m_x': cannot
have instance field initializers in structs."

internal struct SomeValType {
// You cannot do inTline instance field initialization in a value type
private Int32 m_x = 5;

}

In addition, because verifiable code requires that every field of a value type be written to
prior to any field being read, any constructors that you do have for a value type must initialize
all of the type’s fields. The following type defines a constructor for the value type but fails to
initialize all of the fields:

internal struct SomeValType {
private Int32 m_x, m_y;

// C# allows value types to have constructors that take parameters.
public SomeValType(Int32 x) {

m_x = X;

// Notice that m_y is not initialized here.

}

When compiling this type, the C# compiler produces the following message: "error
CS0171: Field 'SomeValType.m_y' must be fully assigned before control Tleaves
the constructor." To fix the problem, assign a value (usually 0) to y in the constructor.

194 Part Il Designing Types

As an alternative way to initialize all the fields of a value type, you can actually do this:

// C# allows value types to have constructors that take parameters.

pubTlic SomeValType(Int32 x) {
// Looks strange but compiles fine and initializes all fields to 0/null
this = new SomeValType(Q);

m_x = x; // Overwrite m_x’s 0 with x
// Notice that m_y was initialized to 0.
}

In a value type's constructor, this represents an instance of the value type itself and you can
actually assign to it the result of newing up an instance of the value type, which really just
zeroes out all the fields. In a reference type’'s constructor, this is considered read-only and
so you cannot assign to it at all.

Type Constructors

In addition to instance constructors, the CLR also supports type constructors (also known as
static constructors, class constructors, or type initializers). A type constructor can be applied to
interfaces (although C# doesn't allow this), reference types, and value types. Just as instance
constructors are used to set the initial state of an instance of a type, type constructors are
used to set the initial state of a type. By default, types don't have a type constructor defined
within them. If a type has a type constructor, it can have no more than one. In addition, type
constructors never have parameters. In C#, here’s how to define a reference type and a value
type that have type constructors:

internal sealed class SomeRefType {
static SomeRefType() {
// This executes the first time a SomeRefType is accessed.
}
}

internal struct SomeValType {
// C# does allow value types to define parameterless type constructors.
static SomeValType() {
// This executes the first time a SomeValType is accessed.

3
3

You'll notice that you define type constructors just as you would parameterless instance con-
structors, except that you must mark them as static. Also, type constructors should always
be private; C# makes them private for you automatically. In fact, if you explicitly mark a
type constructor as private (or anything else) in your source code, the C# compiler issues the
following error: "error CS0515: 'SomeValType.SomeValType()': access modifiers are
not allowed on static constructors." Type constructors should be private to prevent

WV

Chapter 8 Methods 195

any developer-written code from calling them; the CLR is always capable of calling a type
constructor.

Important While you can define a type constructor within a value type, you should never actu-
ally do this because there are times when the CLR will not call a value type's static type construc-
tor. Here is an example:

internal struct SomeValType {
static SomeValType() {
Console.WriteLine("This never gets displayed");

}
public Int32 m_x;

}

public sealed class Program {
public static void Main() {
SomeValType[] a = new SomeValType[10];
al[0].m_x = 123;
Console.WriteLine(a[0].m_x); // Displays 123

The calling of a type constructor is a tricky thing. When the just-in-time (JIT) compiler is
compiling a method, it sees what types are referenced in the code. If any of the types define
a type constructor, the JIT compiler checks if the type’s type constructor has already been
executed for this AppDomain. If the constructor has never executed, the JIT compiler emits a
call to the type constructor into the native code that the JIT compiler is emitting. If the type
constructor for the type has already executed, the JIT compiler does not emit the call since it
knows that the type is already initialized. (For an example of this, see the “Type Constructor
Performance” section later in this chapter.)

Now, after the method has been JIT-compiled, the thread starts to execute it and will eventu-
ally get to the code that calls the type constructor. In fact, it is possible that multiple threads
will be executing the same method concurrently. The CLR wants to ensure that a type’s con-
structor executes only once per AppDomain. To guarantee this, when a type constructor is
called, the calling thread acquires a mutually exclusive thread synchronization lock. So if
multiple threads attempt to simultaneously call a type’s static constructor, only one thread
will acquire the lock and the other threads will block. The first thread will execute the code
in the static constructor. After the first thread leaves the constructor, the waiting threads will
wake up and will see that the constructor’s code has already been executed. These threads
will not execute the code again; they will simply return from the constructor method. In
addition, if any of these methods ever get called again, the CLR knows that the type
constructor has already executed and will ensure that the constructor is not called again.

196

Part Il Designing Types

Note Since the CLR guarantees that a type constructor executes only once per AppDomain and
is thread-safe, a type constructor is a great place to initialize any singleton objects required by
the type.

Within a single thread, there is a potential problem that can occur if two type constructors
contain code that reference each other. For example, ClassA has a type constructor contain-
ing code that references ClassB, and ClassB has a type constructor containing code that
references ClassA. In this situation, the CLR still guarantees that each type constructor’s code
executes only once; however, it cannot guarantee that ClassA's type constructor code has run
to completion before executing ClassB’s type constructor. You should certainly try to avoid
writing code that sets up this scenario. In fact, since the CLR is responsible for calling type
constructors, you should always avoid writing any code that requires type constructors to be
called in a specific order.

Finally, if a type constructor throws an unhandled exception, the CLR considers the type
to be unusable. Attempting to access any fields or methods of the type will cause a
System.TypeInitializationException to be thrown.

The code in a type constructor has access only to a type's static fields, and its usual purpose
is to initialize those fields. As it does with instance fields, C# offers a simple syntax that allows
you to initialize a type's static fields:

internal sealed class SomeType {
private static Int32 s_x = 5;

}

Note While C# doesn't allow a value type to use inline field initialization syntax for instance
fields, it does allow you to use it for static fields. In other words, if you change the SomeType
type above from a class to a struct, the code will compile and work as expected.

When this code is built, the compiler automatically generates a type constructor for
SomeType. It's as if the source code had originally been written as follows:

internal sealed class SomeType {
private static Int32 s_x;
static SomeType() { s_.x =5; }
}

Using ILDasm.exe, it's easy to verify what the compiler actually produced by examining the
IL for the type constructor. Type constructor methods are always called .cctor (for class
constructor) in a method definition metadata table.

In the code below, you see that the .cctor method is private and static. In addition,
notice that the code in the method does in fact load a 5 into the static field s_x.

Chapter 8 Methods 197

.method private hidebysig specialname rtspecialname static
void .cctor() cil managed
{
// Code size 7 (0x7)
.maxstack 8
IL_0000: 1dc.i4.5
IL_0001: stsfld int32 SomeType::s_x
IL_0006: ret
} // end of method SomeType::.cctor

Type constructors shouldn't call a base type's type constructor. Such a call isn't necessary
because none of a type’s static fields is shared or inherited from its base type.

Note Some languages, such as Java, expect that accessing a type causes its type
constructor and all of its base type’s type constructors to be called. In addition, interfaces
implemented by the types must also have their type constructors called. The CLR doesn’t
offer this behavior. However, the CLR does offer compilers and developers the ability to
provide this behavior via the RunClassConstructor method offered by the
System.Runtime.CompilerServices.RuntimeHelpers type. Any language that requires
this behavior would have its compiler emit code into a type's type constructor that calls this
method for all base types. When using the RunClassConstructor method to call a type
constructor, the CLR knows if the type constructor has executed previously and, if it has, the
CLR won't call it again.

Finally, assume that you have this code:

internal sealed class SomeType {
private static Int32 s_x = 5;

static SomeType() {
s_x = 10;
}
}

In this case, the C# compiler generates a single type constructor method. This constructor
first initializes s_x to 5 and then initializes s_x to 10. In other words, when the C# compiler
generates IL code for the type constructor, it first emits the code required to initialize the
static fields followed by the explicit code contained in your type constructor method.

Important Developers occasionally ask me if there's a way to get some code to execute when

a type is unloaded. You should first know that types are unloaded only when the AppDomain
unloads. When the AppDomain unloads, the object that identifies the type becomes unreachable,
and the garbage collector reclaims the type object's memory. This behavior leads many developers
to believe that they could add a static Finalize method to the type, which will automatically
get called when the type is unloaded. Unfortunately, the CLR doesn't support static Finalize
methods. All is not lost, however. If you want some code to execute when an AppDomain
unloads, you can register a callback method with the System.AppDomain type’s DomainUnload
event.

198

Part Il Designing Types

Type Constructor Performance

In the previous section, | mentioned that calling a type constructor is a tricky thing. And |
explained some of the trickiness about it: the JIT compiler has to decide whether to emit the
code to call it, and the CLR ensures that calls to it are thread-safe. As it turns out, this is the
just the beginning of the tricky stuff. There is more about this that is performance-related.

As discussed already, when compiling a method, the JIT compiler determines whether it must
emit a call to execute a type constructor into the method. If the JIT compiler decides to emit
the call, it must decide where it should emit the call. There are two possibilities here:

B The JIT compiler can emit the call immediately before code that would create the first
instance of the type or immediately before code that accesses a noninherited field
or member of the class. This is called precise semantics because the CLR will call the
type constructor at precisely the right time.

B The JIT compiler can emit the call sometime before code first accesses a static field or a
static or instance method, or invokes an instance constructor. This is called before-field-
init semantics because the CLR guarantees only that the static constructor will run some
time before the member is accessed; it could run much earlier.

The before-field-init semantics is preferred since it gives the CLR a lot of freedom as to when
it can call the type constructor, and the CLR takes advantage of this whenever possible to
produce code that executes faster. For example, the CLR might pick different times to call the
type constructor based on whether the type is loaded in an AppDomain or loaded domain-
neutral or whether the code is being JIT-compiled or NGen'd.

By default, language compilers choose which of these semantics makes the most sense for
the type you're defining and informs the CLR of this choice by setting the beforefieldinit
flag in the row of the type definition metadata table. In this section, I'll focus on what the
C# compiler does and how this impacts performance. Let's start by examining the following
code:

using System;
using System.Diagnostics;

III1717777777777177777177177777

// Since this class doesn't explicitly define a type constructor,
// C# marks the type definition with BeforeFieldInit in the metadata.
internal sealed class BeforeFieldInit {
public static Int32 s_x = 123;
}

// Since this class does explicitly define a type constructor,
// C# doesn't mark the type definition with BeforeFieldInit in the metadata.
internal sealed class Precise {

public static Int32 s_x;

Chapter 8 Methods

static Precise() { s_x = 123; }

3

111777777 177777777777177777777777777777777777777777777777771777777777777177777

public sealed class Program {
public static void Main() {

const Int32 iterations = 1000 * 1000 * 1000;
PerfTestl(iterations);
PerfTest2(iterations);

// When this method is JIT compiled, the type constructors for
// the BeforeFieldInit and Precise classes HAVE NOT executed yet
// and therefore, calls to these constructors are embedded in

// this method's code, making it run sTower

private static void PerfTestl(Int32 iterations) {

}

Stopwatch sw = Stopwatch.StartNew();

for (Int32 x = 0; x < iterations; x++) {
// The JIT compiler hoists the code to call BeforeFieldInit's
// type constructor so that it executes before the Tloop starts
BeforeFieldInit.s_x = 1;

}

Console.WriteLine("PerfTestl: {0} BeforeFieldInit", sw.Elapsed);

sw = Stopwatch.StartNew();

for (Int32 x = 0; x < iterations; x++) {
// The JIT compiler emits the code to call Precise's
// type constructor here so that it checks whether it
// has to call the constructor with each Toop iteration
Precise.s_x = 1;

}

Console.WriteLine("PerfTestl: {0} Precise", sw.Elapsed);

// When this method is JIT compiled, the type constructors for
// the BeforeFieldInit and Precise classes HAVE executed

// and therefore, calls to these constructors are NOT embedded
// in this method's code, making it run faster

private static void PerfTest2(Int32 iterations) {

Stopwatch sw = Stopwatch.StartNew();
for (Int32 x = 0; x < iterations; x++) {
BeforeFieldInit.s_x = 1;
}
Console.WriteLine("PerfTest2: {0} BeforeFieldInit", sw.Elapsed);

sw = Stopwatch.StartNew();
for (Int32 x = 0; x < iterations; x++) {
Precise.s_x = 1;
}
Console.WriteLine("PerfTest2: {0} Precise", sw.Elapsed);

/1111717777777777777777/7777/// End of File //////////////////1////11//1/1//////

199

200

Part Il Designing Types

When | build and run the code above, | get the following output:

PerfTestl: 00:00:01.9619358 BeforeFieldInit
PerfTestl: 00:00:06.2374912 Precise
PerfTest2: 00:00:03.1576608 BeforeFieldInit
PerfTest2: 00:00:03.1557822 Precise

When the C# compiler sees a class with static fields that use inline initialization (the
BeforeFieldInit class), the compiler emits the class’s type definition table entry with

the BeforeFieldInit metadata flag. When the C# compiler sees a class with an explicit type
constructor (the Precise class), the compiler emits the class’s type definition table entry
without the BeforeFieldInit metadata flag. The rationale behind this is as follows: initial-
ization of static fields needs to be done before the fields are accessed, whereas an explicit
type constructor can contain arbitrary code that can have observable side effects; this code
may need to run at a precise time.

As you can see from the output, this decision comes with a huge performance impact. When
PerfTestl runs, the top loop executes in about 1.96 seconds versus the bottom loop, which
took about 6.24 seconds to run—the bottom loop took about 3 times longer to execute.
When PerfTest2 runs, the times are much closer in value because the JIT compiler knew
that the types' constructors were already called, and therefore the native code doesn’t
contain any calls to the type constructor methods.

It would be nice if C# gave programmers the ability to set the BeforeFieldInit flag
explicitly in their source code instead of the compiler making this decision based on whether
a type constructor is created implicitly or explicitly. This way, developers would have more
direct control over the performance and semantics of their code.

Operator Overload Methods

Some programming languages allow a type to define how operators should manipulate
instances of the type. For example, a lot of types (such as System.String, System.Decimal,
and System.DateTime) overload the equality (==) and inequality (!=) operators. The CLR
doesn't know anything about operator overloading because it doesn't even know what an
operator is. Your programming language defines what each operator symbol means and
what code should be generated when these special symbols appear.

For example, in C#, applying the + symbol to primitive numbers causes the compiler to
generate code that adds the two numbers together. When the + symbol is applied to String
objects, the C# compiler generates code that concatenates the two strings together. For
inequality, C# uses the != symbol, while Microsoft Visual Basic uses the <> symbol. Finally,
the A symbol means exclusive OR (XOR) in C#, but it means exponent in Visual Basic.

Chapter 8 Methods 201

Although the CLR doesn't know anything about operators, it does specify how languages
should expose operator overloads so that they can be readily consumed by code written in

a different programming language. Each programming language gets to decide for itself
whether it will support operator overloads, and if it does, the syntax for expressing and using
them. As far as the CLR is concerned, operator overloads are simply methods.

Your choice of programming language determines whether or not you get the support of
operator overloading and what the syntax looks like. When you compile your source code,
the compiler produces a method that identifies the behavior of the operator. The CLR
specification mandates that operator overload methods be public and static methods. In
addition, C# (and many other languages) requires that at least one of the operator method's
parameters must be the same as the type that the operator method is defined within. The
reason for this restriction is that it enables the C# compiler to search for a possible operator
method to bind to in a reasonable amount of time.

Here is an example of an operator overload method defined in a C# class definition:

public sealed class Complex {
public static Complex operator+(Complex cl, Complex c2) { ... }
}

The compiler emits a metadata method definition entry for a method called op_Addiition;
the method definition entry also has the specialname flag set, indicating that this is a
“special” method. When language compilers (including the C# compiler) see a + operator
specified in source code, they look to see if one of the operand'’s types defines a
specialname method called op_Addition whose parameters are compatible with the
operand’s types. If this method exists, the compiler emits code to call this method. If no
such method exists, a compilation error occurs.

Tables 8-1 and 8-2 show the set of unary and binary operators that C# supports being over-
loaded, their symbols, and the corresponding Common Language Specification (CLS) method
name that the compiler emits. I'll explain the tables’ third columns in the next section.

TABLE 8-1 C# Unary Operators and Their CLS-Compliant Method Names

C# Operator Suggested CLS-Compliant
Symbol Special Method Name Method Name
+ op_UnaryPlus Plus
- op_UnaryNegation Negate
! op_LogicalNot Not
~ op_OnesComplement OnesComplement
++ op_Increment Increment
- op_Decrement Decrement
(none) op_True IsTrue {get;}

(none) op_False IsFalse {get;}

202

Part Il Designing Types

TABLE 8-2 C# Binary Operators and Their CLS-Compliant Method Names

C# Operator

Symbol Special Method Name

+ op_Addition

- op_Subtraction
op_Multiply

/ op_Division

% op_Modulus

& op_BitwiseAnd

| op_BitwiseOr

A op_ExclusiveOr

<< op_LeftShift

>> op_RightShift

== op_Equality

1= op_Inequality

< op_LessThan

> op_GreaterThan

<= op_LessThanOrEqual

op_GreaterThanOrEqual

Suggested CLS-Compliant
Method Name

Add
Subtract
Multiply
Divide

Mod
BitwiseAnd
BitwiseOr
Xor
LeftShift
RightShift
Equals
Compare
Compare
Compare
Compare

Compare

The CLR specification defines many additional operators that can be overloaded, but C# does
not support these additional operators. Therefore, they are not in mainstream use, so | will
not list them here. If you are interested in the complete list, please see the ECMA specifica-
tions (www.ecma-international.org/publications/standards/Ecma-335.htm) for the Common
Language Infrastructure (CLI), Partition |, Concepts and Architecture, Sections 10.3.1 (unary
operators) and 10.3.2 (binary operators).

Note If you examine the core numeric types (Int32, Int64, UInt32, and so on) in the
Framework Class Library (FCL), you'll see that they don't define any operator overload methods.
The reason they don't is that compilers look specifically for operations on these primitive types
and emit IL instructions that directly manipulate instances of these types. If the types were to
offer methods and if compilers were to emit code to call these methods, a run-time performance
cost would be associated with the method call. Plus, the method would ultimately have to execute
some IL instructions to perform the expected operation anyway. This is the reason why the core
FCL types don't define any operator overload methods. Here's what this means to you: If the
programming language you're using doesn't support one of the core FCL types, you won't be
able to perform any operations on instances of that type.

Chapter 8 Methods 203

Operators and Programming Language Interoperability

Operator overloading can be a very useful tool, allowing developers to express their
thoughts with succinct code. However, not all programming languages support operator
overloading. When using a language that doesn't support operator overloading, the
language will not know how to interpret the + operator (unless the type is a primitive in that
language), and the compiler will emit an error. When using languages that do not support
operator overloading, the language should allow you to call the desired op_* method
directly (such as op_Add1ition).

If you are using a language that doesn't support + operator overloading to be defined in a
type, obviously, this type could still offer an op_Add1ition method. From C#, you might
expect that you could call this op_Add1ition method by using the + operator, but you cannot.
When the C# compiler detects the + operator, it looks for an op_Addition method that has
the specialname metadata flag associated with it so that the compiler knows for sure that
the op_Addition method is intended to be an operator overload method. Because the
op_Addition method is produced by a language that doesn't support operator overloads,
the method won't have the specialname flag associated with it, and the C# compiler will
produce a compilation error. Of course, code in any language can explicitly call a method
that just happens to be named op_Addition, but the compilers won't translate a usage of
the + symbol to call this method.

Jeff’s Opinion About Microsoft's Operator Method Name Rules

I'm sure that all of these rules about when you can and can't call an operator overload
method seem very confusing and overly complicated. If compilers that supported
operator overloading just didn't emit the specialname metadata flag, the rules would
be a lot simpler, and programmers would have an easier time working with types that
offer operator overload methods. Languages that support operator overloading would
support the operator symbol syntax, and all languages would support calling the various
op_ methods explicitly. | can't come up with any reason why Microsoft made this so
difficult, and | hope that they'll loosen these rules in future versions of their compilers.

For a type that defines operator overload methods, Microsoft recommends that the
type also define friendlier public static methods that call the operator overload
methods internally. For example, a public-friendly named method called Add should be
defined by a type that overloads the op_Addition method. The third column in Tables
8-1 and 8-2 lists the recommended friendly name for each operator. So the Complex
type shown earlier should be defined this way:

public sealed class Complex {

public static Complex operator+(Complex cl, Complex c2) { ... }
public static Complex Add(Complex cl, Complex c2) { return(cl + c2); }

204

Part Il Designing Types

Certainly, code written in any programming language can call any of the friendly oper-
ator methods, such as Add. Microsoft’s guideline that types offer these friendly method
names complicates the story even more. | feel that this additional complication is
unnecessary, and that calling these friendly named methods would cause an additional
performance hit unless the JIT compiler is able to inline the code in the friendly named
method. Inlining the code would cause the JIT compiler to optimize the code, removing
the additional method call and boosting runtime performance.

Note For an example of a type that overloads operators and uses the friendly method names as
per Microsoft's design guidelines, see the System.Decimal class in the FCL.

Conversion Operator Methods

Occasionally, you need to convert an object from one type to an object of a different type.
For example, I'm sure you've had to convert a Byte to an Int32 at some point in your life.
When the source type and the target type are a compiler’s primitive types, the compiler
knows how to emit the necessary code to convert the object.

If the source type or target type is not a primitive, the compiler emits code that has the CLR
perform the conversion (cast). In this case, the CLR just checks if the source object’s type is
the same type as the target type (or derived from the target type). However, it is sometimes
natural to want to convert an object of one type to a completely different type. For example,
the System.Xm1.Linq.XElement class allows you to convert an Extensible Markup Language
(XML) element to a Boolean, (U)Int32, (U)Int64, Single, Double, Decimal, String,
DateTime, DateTimeOffset, TimeSpan, Guid, or the nullable equivalent of any of these types
(except String). You could also imagine that the FCL included a Rational data type and that
it might be convenient to convert an Int32 object or a Single object to a Rational object.
Moreover, it also might be nice to convert a Rational object to an Int32 or a Single object.

To make these conversions, the Rational type should define public constructors that take a
single parameter: an instance of the type that you're converting from. You should also define
public instance ToXxx methods that take no parameters (just like the very popular ToString
method). Each method will convert an instance of the defining type to the Xxx type. Here’s
how to correctly define conversion constructors and methods for a Rational type:

public sealed class Rational {
// Constructs a Rational from an Int32
public Rational(Int32 num) { ... }

// Constructs a Rational from a Single
public Rational(Single num) { ... }

Chapter 8 Methods 205

// Convert a Rational to an Int32
public Int32 ToInt32() { ... }

// Convert a Rational to a Single
public Single ToSingle() { ... }
}

By invoking these constructors and methods, a developer using any programming language
can convert an Int32 or a Single object to a Rational object and convert a Rational
object to an Int32 or a Single object. The ability to do these conversions can be quite
handy, and when designing a type, you should seriously consider what conversion construc-
tors and methods make sense for your type.

In the previous section, | discussed how some programming languages offer operator over-
loading. Well, some programming languages (such as C#) also offer conversion operator
overloading. Conversion operators are methods that convert an object from one type to
another type. You define a conversion operator method by using special syntax. The CLR
specification mandates that conversion overload methods be public and static methods.
In addition, C# (and many other languages) requires that either the parameter or the return
type must be the same as the type that the conversion method is defined within. The reason
for this restriction is that it enables the C# compiler to search for a possible operator method
to bind to in a reasonable amount of time. The following code adds four conversion operator
methods to the Rational type:

public sealed class Rational {
// Constructs a Rational from an Int32
public Rational(Int32 num) { ... }

// Constructs a Rational from a Single
public Rational(Single num) { ... }

// Convert a Rational to an Int32
public Int32 ToInt32() { ... }

// Convert a Rational to a Single
public Single ToSingle() { ... }

// Implicitly constructs and returns a Rational from an Int32
public static implicit operator Rational(Int32 num) {
return new Rational(num);

}

// Implicitly constructs and returns a Rational from a Single
public static implicit operator Rational(Single num) {
return new Rational(num);

}

// Explicitly returns an Int32 from a Rational

public static explicit operator Int32(Rational r) {
return r.ToInt32Q);

}

206

Part Il Designing Types

// Explicitly returns a Single from a Rational
public static explicit operator Single(Rational r) {
return r.ToSingle();
}
}

For conversion operator methods, you must indicate whether a compiler can emit code to
call a conversion operator method implicitly or whether the source code must explicitly
indicate when the compiler is to emit code to call a conversion operator method. In C#, you
use the impT1icit keyword to indicate to the compiler that an explicit cast doesn’t have to
appear in the source code in order to emit code that calls the method. The explicit keyword
allows the compiler to call the method only when an explicit cast exists in the source code.

After the impTlicit or explicit keyword, you tell the compiler that the method is a conver-
sion operator by specifying the operator keyword. After the operator keyword, you specify
the type that an object is being cast to; in the parentheses, you specify the type that an
object is being cast from.

Defining the conversion operators in the preceding Rational type allows you to write code
like this (in C#):

public sealed class Program {

public static void Main() {
Rational rl = 5; // Implicit cast from Int32 to Rational
Rational r2 = 2.5F; // Implicit cast from Single to Rational

Int32 x = (Int32) rl; // Explicit cast from Rational to Int32
Single s = (Single) r2; // Explicit cast from Rational to Single

}

Under the covers, the C# compiler detects the casts (type conversions) in the code and inter-
nally generates IL code that calls the conversion operator methods defined by the Rational
type. But what are the names of these methods? Well, compiling the Rational type and
examining its metadata shows that the compiler produces one method for each conversion
operator defined. For the Rational type, the metadata for the four conversion operator
methods looks like this:

public static Rational op_Implicit(Int32 num)
public static Rational op_Implicit(Single num)
public static Int32 op_Explicit(Rational r)
public static Single op_Explicit(Rational r)

As you can see, methods that convert an object from one type to another are always named
op_Implicit orop_Explicit. You should define an implicit conversion operator only when
precision or magnitude isn't lost during a conversion, such as when converting an Int32 to a
Rational. However, you should define an explicit conversion operator if precision or magni-
tude is lost during the conversion, as when converting a Rational object to an Int32. If an

Chapter 8 Methods 207

explicit conversion fails, you should indicate this by having your explicit conversion operator
method throw an OverflowException or an InvalidOperationException.

Note The two op_Explicit methods take the same parameter, a Rational. However, the
methods differ by their return value, an Int32 and a Single. This is an example of two methods
that differ only by their return type. The CLR fully supports the ability for a type to define mul-
tiple methods that differ only by return type. However, very few languages expose this ability. As
you're probably aware, C++, C#, Visual Basic, and Java are all examples of languages that don’t
support the definition of multiple methods that differ only by their return type. A few languages
(such as IL assembly language) allow the developer to explicitly select which of these methods
to call. Of course, IL assembly language programmers shouldn’t take advantage of this ability
because the methods they define can't be callable from other programming languages. Even
though C# doesn't expose this ability to the C# programmer, the compiler does take advantage
of this ability internally when a type defines conversion operator methods.

C# has full support for conversion operators. When it detects code where you're using an
object of one type and an object of a different type is expected, the compiler searches for an
implicit conversion operator method capable of performing the conversion and generates
code to call that method. If an implicit conversion operator method exists, the compiler emits
a call to it in the resulting IL code. If the compiler sees source code that is explicitly casting

an object from one type to another type, the compiler searches for an implicit or explicit
conversion operator method. If one exists, the compiler emits the call to the method. If the
compiler can't find an appropriate conversion operator method, it issues an error and doesn’t
compile the code.

Note C# generates code to invoke explicit conversion operators when using a cast expression;
they are never invoked when using C#'s as or is operators.

To really understand operator overload methods and conversion operator methods, | strongly
encourage you to examine the System.Decimal type as a role model. Decimal defines
several constructors that allow you to convert objects from various types to a Decimal. It also
offers several ToXxx methods that let you convert a Decimal object to another type. Finally,
the type defines several conversion operators and operator overload methods as well.

Extension Methods

The best way to understand C#'s extension methods feature is by way of an example. In the
“StringBuilder Members” section in Chapter 14, “Chars, Strings, and Working with Text,” |
mention how the StringBuilder class offers fewer methods than the String class for
manipulating a string and how strange this is, considering that the StringBuilder class is
the preferred way of manipulating a string because it is mutable. So, let’s say that you would

208

Part Il Designing Types

like to define some of these missing methods yourself to operate on a StringBuilder. For
example, you might want to define your own IndexOf method as follows:

public static class StringBuilderExtensions {
public static Int32 IndexOf(StringBuilder sb, Char value) {
for (Int32 index = 0; index < sb.Length; index++)
if (sb[index] == value) return index;
return -1;

}

Now that you have defined this method, you can use it as the following code demonstrates:

StringBuilder sb = new StringBuilder("Hello. My name 1is Jeff."); // The initial string

// Change period to exclamation and get # characters in 1st sentence (5).
Int32 index = StringBuilderExtensions.IndexOf(sb.Replace('.", "!"'), "!'');

This code works just fine, but is it not ideal from a programmer’s perspective. The first prob-
lem is that a programmer who wants to get the index of a character within a StringBuilder
must know that the StringBuilderExtensions class even exists. The second problem is
that the code does not reflect the order of operations that are being performed on the
StringBuilder object, making the code difficult to write, read, and maintain. The program-
mer wants to call Replace first and then call IndexOf; but when you read the last line of
code from left to right, IndexOf appears first on the line and Replace appears second. Of
course, you could alleviate this problem and make the code’s behavior more understandable
by rewriting it like this:

// First, change period to exclamation mark
sbh.Replace(‘.’, “17);

// Now, get # characters in 1lst sentence (5)
Int32 index = StringBuilderExtensions.IndexOf(sb, ‘!’);

However, a third problem exists with both versions of this code that affects understanding
the code’s behavior. The use of StringBuilderExtensions is overpowering and detracts

a programmer’s mind from the operation that is being performed: IndexOf. If the
StringBuilder class had defined its own IndexOf method, then we could rewrite the code
above as follows:

// Change period to exclamation and get # characters in 1st sentence (5).
Int32 index = sb.Replace('.', '"!"').IndexOf('!");

Wow, look how great this is in terms of code maintainability! In the StringBuilder object,
we're going to replace a period with an exclamation mark and then find the index of the
exclamation mark.

Chapter 8 Methods 209

Now, | can explain what C#'s extension methods feature does. It allows you to define a static
method that you can invoke using instance method syntax. Or, in other words, we can now
define our own Index0f method and the three problems mentioned above go away. To turn
the IndexOf method into an extension method, we simply add the this keyword before the
first argument:

public static class StringBuilderExtensions {
public static Int32 IndexOf(this StringBuilder sb, Char value) {
for (Int32 index = 0; index < sb.Length; index++)
if (sb[index] == value) return index;
return -1;

}

Now, when the compiler sees code like this:

Int32 index = sb.IndexOf('X"');

the compiler first checks if the StringBuilder class or any of its base classes offers an
instance method called IndexOf that takes a single Char parameter. If an existing instance
method exists, then the compiler produces IL code to call it. If no matching instance method
exists, then the compiler will look at any static classes that define static methods called
IndexOf that take as their first parameter a type matching the type of the expression being
used to invoke the method. This type must also be marked with the this keyword. In this
example, the expression is sb, which is of the StringBuilder type. In this case, the compiler
is looking specifically for an Index0f method that takes two parameters: a StringBuilder
(marked with the this keyword) and a Char. The compiler will find our Index0f method and
produce IL code that calls our static method.

OK—so this now explains how the compiler improves the last two problems related to code
understandability that | mentioned earlier. However, | haven't yet addressed the first problem:
how does a programmer know that an IndexOf method even exists that can operate on a
StringBuilder object? The answer to this question is found in Microsoft Visual Studio’s
Intellisense feature. In the editor, when you type a period, Visual Studio’s IntelliSense window
opens to show you the list of instance methods that are available. Well, that IntelliSense win-
dow also shows you any extension methods that exist for the type of expression you have to
the left of the period. Figure 8-1 shows Visual Studio’s IntelliSense window; the icon for an
extension method has a down arrow next to it, and the tooltip next to the method indicates
that the method is really an extension method. This is truly awesome because it is now easy
to define your own methods to operate on various types of objects and have other program-
mers discover your methods naturally when using objects of these types.

210

Part Il Designing Types
9 CLR via C# - Microsoft Visual Studio e]
File Edit View Refactor Project Build Debug Team Data Tools Architecture Test Analyze Window Help

P S @] % 9o - @5 b [Debug ~| | Mixed Platforms -] 2

Ch08-1-Methods.cs™ 3 [f@rd BRI Eaa]] e T, Ha S -

HgExtensionMethods v| @Go()

¥oqo0

100% <]«

/7 Change period to exclamation mark and get # characters in lst sentence (5).
Int32 index = String8uilderExtensions.Index0f(sb.Replace(’'.", "I"), "!");

S I

sb.Replace('.", '!"); // Change period to exclamation mark
index = StringBuilderExtensions.Index0f(sb, "!'); // Get # characters in 1st semt

class StringBuilderExtensions
// Change d get # characters in 1st sentence (5).

index = sb.Replacd('.', '!').Indexof('!');
} & AppendFormat -
@ AppendLine

{ = ca
. pacity
/7 sb is nu & Clear

StringBuild
€ @ CopyTo

// Calling | *% EnsureCapacity 5l enceException will NOT be thrown when calling
// NullRefe % Equals wn inside Index0f’s for loop

sb.IndexOf(| “® GetHashCode
@ GetType

/1 calling |4, [T | (extension) int StringBuilderndexOf(char value) Jing Repl

sb.Replace(¢ jneert

Length
SomeMethod() s g:"gr . =

} =

Ttem(s) Saved Ln252 Col 24 Ch24 INS

FIGURE 8-1 Visual Studio’s IntelliSense window, showing extension methods

Rules and Guidelines

There are some additional rules and guidelines that you should know about extension
methods:

C# supports extension methods only; it does not offer extension properties, extension
events, extension operators, and so on.

Extension methods (methods with this before their first argument) must be declared

in non-generic, static classes. However, there is no restriction on the name of the class;
you can call it whatever you want. Of course, an extension method must have at least

one parameter, and only the first parameter can be marked with the this keyword.

The C# compiler looks only for extension methods defined in static classes that are
themselves defined at the file scope. In other words, if you define the static class
nested within another class, the C# compiler will emit the following message: "error
CS1109: Extension method must be defined in a top-level static class;
StringBuilderExtensions is a nested class."

Since the static classes can have any name you want, it takes the C# compiler time to
find extension methods as it must look at all the file-scope static classes and scan their
static methods for a match. To improve performance and also to avoid considering an
extension method that you may not want, the C# compiler requires that you “import”
extension methods. For example, if someone has defined a StringBuilderExtensions
class in a Wintellect namespace, then a programmer who wants to have access to this
class’s extension methods must put a using Wintellect; directive at the top of his or
her source code file.

Chapter 8 Methods 211

B |tis possible that multiple static classes could define the same extension method.
If the compiler detects that two or more extension methods exist, then the
compiler issues the following message: "error CS0121: The call is ambiguous
between the following methods or properties: 'StringBuilderExtensions.
IndexOf(string, char)' and 'AnotherStringBuilderExtensions.
IndexOf(string, char)'." To fix this error, you must modify your source code.
Specifically, you cannot use the instance method syntax to call this static method any-
more; instead you must now use the static method syntax where you explicitly indicate
the name of the static class to explicitly tell the compiler which method you want to
invoke.

B You should use this feature sparingly, as not all programmers are familiar with it. For ex-
ample, when you extend a type with an extension method, you are actually extending
derived types with this method as well. Therefore, you should not define an extension
method whose first parameter is System.0Object, as this method will be callable for all
expression types and this will really pollute Visual Studio’s IntelliSense window.

B There is a potential versioning problem that exists with extension methods. If, in the
future, Microsoft adds an IndexOf instance method to their StringBuilder class with
the same prototype as my code is attempting to call, then when | recompile my code,
the compiler will bind to Microsoft’'s Index0f instance method instead of my static
IndexOf method. Because of this, my program will experience different behavior. This
versioning problem is another reason why this feature should be used sparingly.

Extending Various Types with Extension Methods

In this chapter, | demonstrated how to define an extension method for a class,
StringBuilder. I'd like to point out that since an extension method is really the invocation
of a static method, the CLR does not emit code ensuring that the value of the expression
used to invoke the method is not nu11:

// sb is null
StringBuilder sb = null;

// Calling extension method: NullReferenceException will NOT be thrown when calling IndexOf
// NullReferenceException will be thrown inside IndexOf’s for loop
sb.IndexOf('X");

// Calling instance method: NullReferenceException WILL be thrown when calling Replace
sb.Replace('.', "!'");

I'd also like to point out that you can define extension methods for interface types as the
following code shows:

pubTlic static void ShowItems<T>(this IEnumerable<T> collection) {
foreach (var item in collection)
Console.WriteLine(item);

212

Part Il Designing Types

The extension method above can now be invoked using any expression that results in a type
that implements the IEnumerable<T> interface:

public static void Main() {
// Shows each Char on a separate Tine in the console
"Grant".ShowItems();

// Shows each String on a separate Tine in the console
new[] { "Jeff", "Kristin" }.ShowItems();

// Shows each Int32 value on a separate Tine in the console
new List<Int32>() { 1, 2, 3 }.ShowItems(Q);

Important Extension methods are the cornerstone of Microsoft's Language Integrated Query
(LINQ) technology. For a great example of a class that offers many extension methods, see the
static System.Ling.Enumerable class and all its static extension methods in the Microsoft
.NET Framework SDK documentation. Every extension method in this class extends either the
IEnumerable or IEnumerable<T> interface.

You can define extension methods for delegate types, too. For an example of this, turn to
page 278 in Chapter 11, "Events.” You can also add extension methods to enumerated types.
| show an example of this in the “Adding Methods to Enumerated Types” section in Chapter 15,
“Enumerated Types and Bit Flags.”

And last but not least, | want to point out that the C# compiler allows you to create a delegate
(see Chapter 17, “Delegates,” for more information) that refers to an extension method over
an object:

public static void Main O {
// Create an Action delegate that refers to the static ShowItems extension method
// and has the first argument initialized to reference the “Jeff” string.
Action a = "Jeff".ShowItems;

// Invoke the delegate which calls ShowItems passing it a reference to the “Jeff” string.
a0;
}

In the code above, the C# compiler generates IL code to construct an Action delegate. When
creating a delegate, the constructor is passed the method that should be called and is also
passed a reference to an object that should be passed to the method’s hidden this
parameter. Normally, when you create a delegate that refers to a static method, the object
reference is nu11 since static methods don't have a this parameter. However, in this example,
the C# compiler generated some special code that creates a delegate that refers to a static
method (ShowItems) and the target object of the static method is the reference to the “Jeff"
string. Later, when the delegate is invoked, the CLR will call the static method and will pass to

Chapter 8 Methods 213

it the reference to the "Jeff” string. This is a little hacky, but it works great and it feels natural
so long as you don't think about what is happening internally.

The Extension Attribute

It would be best if this concept of extension methods was not C#-specific. Specifically, we
want programmers to define a set of extension methods in some programming language
and for people in other programming languages to take advantage of them. For this to
work, the compiler of choice must support searching static types and methods for potentially
matching extension methods. And compilers need to do this quickly so that compilation time
is kept to a minimum.

In C#, when you mark a static method's first parameter with the this keyword, the compiler
internally applies a custom attribute to the method and this attribute is persisted in the
resulting file's metadata. The attribute is defined in the System.Core.dll assembly, and it looks
like this:

// Defined in the System.Runtime.CompilerServices namespace
[AttributeUsage(AttributeTargets.Method | AttributeTargets.Class | AttributeTargets.
Assembly)]

public sealed class ExtensionAttribute : Attribute {

}

In addition, this attribute is applied to the metadata for any static class that contains at least
one extension method. And this attribute is also applied to the metadata for any assembly
that contains at least one static class that contains an extension method. So now, when com-
piling code that invokes an instance method that doesn't exist, the compiler can quickly scan
all the referenced assemblies to know which ones contain extension methods. Then it can
scan only these assemblies for static classes that contain extension methods, and it can scan
just the extension methods for potential matches to compile the code as quickly as possible.

Note The ExtensionAttribute class is defined in the System.Core.dll assembly. This means
that the resulting assembly produced by the compiler will have a reference to System.Core.dll
embedded in it even if | do not use any types from System.Core.dll and do not even reference
System.Core.dll when compiling my code. However, this is not too bad a problem because the
ExtensionAttribute is used only at compile time; at runtime, System.Core.dll will not have to
be loaded unless the application consumes something else in this assembly.

Partial Methods

Imagine that you use a tool that produces a C# source code file containing a type definition.
The tool knows that there are potential places within the code it produces where you might
want to customize the type’s behavior. Normally, customization would be done by having

214

Part Il Designing Types

the tool-produced code invoke virtual methods. The tool-produced code would also have to
contain definitions for these virtual methods, and the way these methods would be imple-
mented is to do nothing and simply return. Now, if you want to customize the behavior of
the class, you'd define your own class, derive it from the base class, and then override any
virtual methods implementing it so that it has the behavior you desire. Here is an example:

// Tool-produced code in some source code file:
internal class Base {
private String m_name;

// Called before changing the m_name field
protected virtual void OnNameChanging(String value) {

}

public String Name {
get { return m_name; }
set {
OnNameChanging(value.ToUpper()); // Inform class of potential change
m_name = value; // Change the field

// Developer-produced code in some other source code file:
internal class Derived : Base {
protected override void OnNameChanging(string value) {
if (String.IsNullOrEmpty(value))
throw new ArgumentNullException("value™);

}

Unfortunately, there are two problems with the code above:

B The type must be a class that is not sealed. You cannot use this technique for sealed
classes or for value types (because value types are implicitly sealed). In addition, you
cannot use this technique for static methods since they cannot be overridden.

B There are efficiency problems here. A type is being defined just to override a method;
this wastes a small amount of system resources. And, even if you do not want to
override the behavior of OnNameChanging, the base class code still invokes a virtual
method which simply does nothing but return. Also, ToUpper is called whether
OnNameChanging accesses the argument passed to it or not.

C#'s partial methods feature allows you the option of overriding the behavior or a type while
fixing the aforementioned problems. The code below uses partial methods to accomplish the
same semantic as the previous code:

Chapter 8 Methods 215

// Tool-produced code in some source code file:
internal sealed partial class Base {
private String m_name;

// This defining-partial-method-declaration is called before changing the m_name field
partial void OnNameChanging(String value);

public String Name {
get { return m_name; }
set {
OnNameChanging(value.ToUpper()); // Inform class of potential change
m_name = value; // Change the field

}

// Developer-produced code in some other source code file:
internal sealed partial class Base {

// This implementing-partial-method-declaration is called before m_name is changed
partial void OnNameChanging(String value) {
if (String.IsNullOrEmpty(value))
throw new ArgumentNullException("value™);

}

There are several things to notice about this new version of the code:

B The class is now sealed (although it doesn't have to be). In fact, the class could be a
static class or even a value type.

B The tool-produced code and the developer-produced code are really two partial defi-
nitions that ultimately make up one type definition. For more information about partial
types, see the “Partial Classes, Structures, and Interfaces” section in Chapter 6, “Type
and Member Basics.”

B The tool-produced code defined a partial method declaration. This method is marked
with the partial token and it has no body.

B The developer-produced code implemented the partial method declaration. This meth-
od is also marked with the partial token and it has a body.

Now, when you compile this code, you see the same effect as the original code | showed you.
Again, the big benefit here is that you can rerun the tool and produce new code in a new
source code file, but your code remains in a separate file and is unaffected. And, this tech-
nique works for sealed classes, static classes, and value types.

216

Part Il Designing Types

Note In Visual Studio’s editor, if you type in partial and press the spacebar, the IntelliSense
window shows you all the enclosing type's defined partial method declarations that do not yet
have matching implementing partial method declarations. You can then easily select a partial
method from the IntelliSense window and Visual Studio will produce the method prototype for
you automatically. This is a very nice feature that enhances productivity.

But, there is another big improvement we get with partial methods. Let's say that you do not
need to modify the behavior of the tool-produced type. In this case, you do not supply your
source code file at all. If you just compile the tool-produced code by itself, the compiler
produces IL code and metadata as if the tool-produced code looked like this:

// Logical equivalent of tool-produced code if there is no
// implementing partial method declaration:
internal sealed class Base {

private String m_name;

public String Name {
get { return m_name; }
set {
m_name = value; // Change the field

}

3

That is, if there is no implementing partial method declaration, the compiler will not emit

any metadata representing the partial method. In addition, the compiler will not emit any IL
instructions to call the partial method. And the compiler will not emit code that evaluates any
arguments that would have been passed to the partial method. In this example, the compiler
will not emit code to call the ToUpper method. The result is that there is less metadata/IL,
and the runtime performance is awesome!

Note Partial methods work similarly to the System.Diagnostics.ConditionalAttribute
attribute. However, partial methods work within a single type only while the
ConditionalAttribute can be used to optionally invoke methods defined in another type.

Rules and Guidelines
There are some additional rules and guidelines that you should know about partial methods:

B They can only be declared within a partial class or struct.

B Partial methods must always have a return type of void, and they cannot have any
parameters marked with the out modifier. These restrictions are in place because at
runtime, the method may not exist and so you can't initialize a variable to what the
method might return because the method might not exist. Similarly, you can't have an

Chapter 8 Methods 217

out parameter because the method would have to initialize it and the method might
not exist. A partial method may have ref parameters, may be generic, may be instance
or static, and may be marked as unsafe.

Of course, the defining partial method declaration and the implementing partial
method declaration must have identical signatures. If both have custom attributes
applied to them, then the compiler combines both methods’ attributes together. Any
attributes applied to a parameter are also combined.

If there is no implementing partial method declaration, then you cannot have any
code that attempts to create a delegate that refers to the partial method. Again, the
reason is that the method doesn’t exist at runtime. The compiler produces this
message: "error CS0762: Cannot create delegate from method
'Base.OnNameChanging(string)' because it is a partial method without
an implementing declaration".

Partial methods are always considered to be private methods. However, the C#
compiler forbids you from putting the private keyword before the partial method
declaration.

Chapter 9
Parameters

Optional and Named Parameters.ot iiiiiiiiiinnn...

Implicitly Typed Local Variables

Const-ness

Passing Parameters by Reference to a Method
Passing a Variable Number of Arguments to a Method....................
Parameter and Return Type Guidelines.

This chapter focuses on the various ways of passing parameters to a method, including how
to optionally specify parameters, specify parameters by name, and pass parameters by
reference, as well as how to define methods that accept a variable number of arguments.

Optional and Named Parameters

When designing a method's parameters, you can assign default values to some of or all the
parameters. Then, code that calls these methods can optionally not specify some of the
arguments, thereby accepting the default values. In addition, when you call a method, you
can specify arguments by using the name of their parameters. Here is some code that
demonstrates using both optional and named parameters:

public static class Program {
private static Int32 s_n = 0;

private static void M(Int32 x = 9, String s
DateTimedt = default(DateTime), Guidguid

Console.WriteLine(“x={0}, s={1}, dt={2},
}

public static void Main() {

“ps
new Guid(Q)) {

guid={3}", x, s, dt, guid);

// 1. Same as: M(9, "A", default(DateTime), new Guid());
MO

// 2. Same as: M(8, "X", default(DateTime), new Guid());
M(8, "X");

// 3. Same as: M(5, "A", DateTime.Now, Guid.NewGuid());
M(5, guid: Guid.NewGuid(), dt: DateTime.Now);

219

220

Part Il Designing Types

// 4. Same as: M(0, "1", default(DateTime), new Guid());
M(s_n++, s_n++.ToString());

// 5. Same as: String tl = "2"; Int32 t2 = 3;
// M(t2, tl, default(DateTime), new Guid(Q));
M(s: (s_n++).ToString(), X: s_n++);

3

When [run this program, | get the following output:

9, s=A, dt=1/1/0001 12:00:00 AM, guid=00000000-0000-0000-0000-000000000000
8, s=X, dt=1/1/0001 12:00:00 AM, guid=00000000-0000-0000-0000-000000000000
5, s=A, dt=7/2/2009 10:14:25 PM, guid=d24a59da-6009-4aae-9295-839155811309
0, s=1
3, s=2

, dt=1/1/0001 12:00:00 AM, guid=00000000-0000-0000-0000-000000000000
, dt=1/1/0001 12:00:00 AM, guid=00000000-0000-0000-0000-000000000000

><><>”<><><

As you can see, whenever arguments are left out at the call site, the C# compiler embeds the
parameter’s default value. The third and fifth calls to M use C#'s named parameter feature. In
the two calls, I'm explicitly passing a value for x and I'm indicating that | want to pass an
argument for the parameters named guid and dt.

When you pass arguments to a method, the compiler evaluates the arguments from left to
right. In the fourth call to M, the value in s_n (0) is passed for x, then s_n is incremented,
and s_n (1) is passed as a string for s and then s_n is incremented again to 2. When you
pass arguments by using named parameters, the compiler still evaluates the arguments from
left to right. In the fifth call to M, the value in s_n (2) is converted to a string and saved in

a temporary variable (t1) that the compiler creates. Next, s_n is incremented to 3 and this
value is saved in another temporary variable (t2) created by the compiler, and then s_n is
incremented again to 4. Ultimately, M is invoked, passing it t2, t1, a default DateTime, and a
new Guid.

Rules and Guidelines

There are some additional rules and guidelines that you should know about when defining a
method that specifies default values for some of its parameters:

B You can specify default values for the parameters of methods, constructor methods,
and parameterful properties (C# indexers). You can also specify default values for
parameters that are part of a delegate definition. Then, when invoking a variable of
this delegate type, you can omit the arguments and accept the default values.

B Parameters with default values must come after any parameters that do not have
default values. That is, once you define a parameter as having a default value, then all
parameters to the right of it must also have default values. For example, in the definition
of my M method, | would get a compiler error if | removed the default value ("A") for
s. There is one exception to this rule: a params array parameter (discussed later in this

Chapter 9 Parameters 221

chapter) must come after all parameters (including those that have default values), and
the array cannot have a default value itself.

B Default values must be constant values known at compile time. This means that you
can set default values for parameters of types that C# considers to be primitive types,
as shown in Table 5-1 in Chapter 5, “Primitive, Reference, and Value Types.” This also
includes enumerated types, and any reference type can be set to nul1. For a parameter
of an arbitrary value type, you can set the default value to be an instance of the value
type, with all its fields containing zeroes. You can use the default keyword or the new
keyword to express this; both syntaxes produce identical Intermediate Language (IL)
code. Examples of both syntaxes are used by my M method for setting the default value
for the dt parameter and guid parameter, respectively.

B Be careful not to rename parameter variables because any callers who are passing
arguments by parameter name will have to modify their code. For example, in the
declaration of my M method, if | rename the dt variable to dateTime, then my third
call to Min the earlier code will cause the compiler to produce the following message:
"error CS1739: The best overload for 'M' does not have a parameter
named 'dt'."

B Be aware that changing a parameter’s default value is potentially dangerous if the
method is called from outside the module. A call site embeds the default value into its
call. If you later change the parameter’s default value and do not recompile the code
containing the call site, then it will call your method passing the old default value. You
might want to consider using a default value of 0/nul11 as a sentinel to indicate default
behavior; this allows you to change your default without having to recompile all the
code with call sites. Here is an example:

// Don’t do this:

private static String MakePath(String filename = "Untitled") {
return String.Format(@"C:\{0}.txt", filename);

}

// Do this instead:

private static String MakePath(String filename = null) {
// I am using the null-coalescing operator (??) here; see Chapter 19
return String.Format(@"C:\{0}.txt", filename ?? "Untitled");

}

B You cannot set default values for parameters marked with either the ref or out key-
words because there is no way to pass a meaningful default value for these parameters.

There are some additional rules and guidelines that you should know about when calling a
method using optional or named parameters:

B Arguments can be passed in any order; however, named arguments must always
appear at the end of the argument list.

222

Part Il Designing Types

B You can pass arguments by name to parameters that do not have default values, but
all required arguments must be passed (by position or by name) for the compiler to
compile the code.

B C# doesn't allow you to omit arguments between commas, as in M(1, ,DateTime.Now),
because this could lead to unreadable comma-counting code. Pass arguments by way
of their parameter name if you want to omit some arguments for parameters with
default values.

B To pass an argument by parameter name that requires ref/out, use syntax like this:

// Method declaration:
private static void M(ref Int32 x) { ... }

// Method invocation:
Int32 a = 5;
M(x: ref a);

Note C#'s optional and named parameter features are really convenient when writing C# code
that interoperates with the COM object model in Microsoft Office. And, when calling a COM
component, C# also allows you to omit ref/out when passing an argument by reference to
simplify the coding even more. When not calling a COM component, C# requires that the
out/ref keyword be applied to the argument.

The Defaul tParameterValue and Optional Attributes

It would be best if this concept of default and optional arguments was not C#-specific.
Specifically, we want programmers to define a method indicating which parameters are
optional and what their default value should be in some programming language and then
give programmers working in other programming languages the ability to call them. For this
to work, the compiler of choice must allow the caller to omit some arguments and have a
way of determining what those arguments’ default values should be.

In C#, when you give a parameter a default value, the compiler internally applies the
System.Runtime.InteropServices.OptionalAttribute custom attribute to the param-
eter, and this attribute is persisted in the resulting file's metadata. In addition, the compiler
applies System.Runtime.InteropServices.DefaultParameterValueAttribute

to the parameter and persists this attribute in the resulting file's metadata. Then,
DefaultParameterValueAttribute’s constructor is passed the constant value that you
specified in your source code.

Now, when a compiler sees that you have code calling a method that is missing some argu-
ments, the compiler can ensure that you've omitted optional arguments, grab their default
values out of metadata, and embed the values in the call for you automatically.

Chapter 9 Parameters 223

Implicitly Typed Local Variables

C# supports the ability to infer the type of a method'’s local variable from the type of
expression that is used to initialize it. Here is some sample code demonstrating the use of
this feature:

private static void ImplicitlyTypedLocalVariables() {

var name = "Jeff";

ShowVariableType(name); // Displays: System.String
// var n = null; // Error

var x = (Exception)null; // OK, but not much value
ShowVariableType(x); // Displays: System.Exception

var numbers = new Int32[] { 1, 2, 3, 4 };
ShowVariableType(numbers); // Displays: System.Int32[]

// Less typing for complex types
var collection = new Dictionary<String, Single>() { { ".NET", 4.0f } };

// Displays: System.Collections.Generic.Dictionary 2[System.String,System.Single]
ShowVariableType(collection);

foreach (var item in collection) {
// Displays: System.Collections.Generic.KeyValuePair 2[System.String,System.Single]
ShowvariableType (item) ;

}

private static void ShowVariableType<T>(T t) {
Console.WriteLine(typeof(T));
}

The first line of code inside the Impl1icitlyTypedLocalVariables method is introducing a
new local variable using the C# var token. To determine the type of the name variable, the
compiler looks at the type of the expression on the right side of the assignment operator
(=). Since "Jeff" is a string, the compiler infers that name’s type must be String. To prove
that the compiler is inferring the type correctly, | wrote the ShowvariableType method.
This generic method infers the type of its argument, and then it shows the type that it in-
ferred on the console. | added what ShowVariableType displayed as comments inside the
ImplicitlyTypedLocalVariables method for easy reading.

The second assignment (commented out) inside the ImplicitlyTypedLocalVariables
method would produce a compiler error ("error CS0815: Cannot assign <null> to

an implicitly-typed Tocal variable") because null is implicitly castable to any refer-
ence type or nullable value type; therefore, the compiler cannot infer a distinct type for it.
However, on the third assignment, | show that it is possible to initialize an implicitly typed
local variable with nu11 if you explicitly specify a type (Exception, in my example). While this
is possible, it is not that useful because you could also write Exception x = null; to get
the same result.

224

Part Il Designing Types

In the fourth assignment, you see some real value of using C#'s implicitly typed local variable
feature. Without this feature, you'd have to specify Dictionary<String, Single> on both
sides of the assignment operator. Not only is this a lot of typing, but if you ever decide to
change the collection type or any of the generic parameter types, then you would have to
modify your code on both sides of the assignment operator, too.

In the foreach loop, | also use var to have the compiler automatically infer the type of the
elements inside the collection. This demonstrates that it is possible and quite useful to use
var with foreach, using, and for statements. It can also be useful when experimenting with
code. For example, you initialize an implicitly typed local variable from the return type of

a method, and as you develop your method, you might decide to change its return type. If
you do this, the compiler will automatically figure out that the return type has changed and
automatically change the type of the variable! This is great, but of course, other code in the
method that uses that variable may no longer compile if the code accesses members using
the variable assuming that it was the old type.

In Microsoft Visual Studio, you can hold the mouse cursor over var in your source code
and the editor will display a tooltip showing you the type that the compiler infers from the
expression. C#'s implicitly typed local variable feature must be used when working with
anonymous types within a method; see Chapter 10, “"Properties,” for more details.

You cannot declare a method’s parameter type using var. The reason for this should be obvi-
ous to you since the compiler would have to infer the parameter’s type from the argument
being passed at a callsite and there could be no call sites or many call sites. In addition, you
cannot declare a type’s field using var. There are many reasons why C# has this restriction.
One reason is that fields can be accessed by several methods and the C# team feels that this
contract (the type of the variable) should be stated explicitly. Another reason is that allowing
this would permit an anonymous type (discussed in Chapter 10) to leak outside of a single
method.

Important Do not confuse dynamic and var. Declaring a local variable using var is just a
syntactical shortcut that has the compiler infer the specific data type from an expression. The
var keyword can be used only for declaring local variables inside a method while the dynamic
keyword can be used for local variables, fields, and arguments. You cannot cast an expression to
var, but you can cast an expression to dynamic. You must explicitly initialize a variable declared
using var while you do not have to initialize a variable declared with dynamic. For more infor-
mation about C#'s dynamic type, see the "The dynamic Primitive Type” section in Chapter 5.

Chapter 9 Parameters 225

Passing Parameters by Reference to a Method

By default, the common language runtime (CLR) assumes that all method parameters are
passed by value. When reference type objects are passed, the reference (or pointer) to the
object is passed (by value) to the method. This means that the method can modify the object
and the caller will see the change. For value type instances, a copy of the instance is passed
to the method. This means that the method gets its own private copy of the value type and
the instance in the caller isn't affected.

W Important In a method, you must know whether each parameter passed is a reference type or a
value type because the code you write to manipulate the parameter could be markedly different.

The CLR allows you to pass parameters by reference instead of by value. In C#, you do this
by using the out and ref keywords. Both keywords tell the C# compiler to emit metadata
indicating that this designated parameter is passed by reference, and the compiler uses this
to generate code to pass the address of the parameter rather than the parameter itself.

From the CLR’s perspective, out and ref are identical—that is, the same IL is produced
regardless of which keyword you use, and the metadata is also identical except for 1 bit,
which is used to record whether you specified out or ref when declaring the method.
However, the C# compiler treats the two keywords differently, and the difference has to do
with which method is responsible for initializing the object being referred to. If a method's
parameter is marked with out, the caller isn't expected to have initialized the object prior
to calling the method. The called method can’t read from the value, and the called method
must write to the value before returning. If a method's parameter is marked with ref, the
caller must initialize the parameter’s value prior to calling the method. The called method
can read from the value and/or write to the value.

Reference and value types behave very differently with out and ref. Let's look at using out
and ref with value types first:

public sealed class Program {
public static void Main() {

Int32 x; // x is uninitialized
GetVal(out x); // x doesn’t have to be initialized.
Console.WriteLine(x); // Displays "10"

}

private static void GetVal(out Int32 v) {
v = 10; // This method must initialize v.
}
}

In this code, x is declared in Main's stack frame. The address of x is then passed to
GetVal. GetVal’s v is a pointer to the Int32 value in Main's stack frame. Inside GetVal,

226

Part Il Designing Types

the Int32 that v points to is changed to 10. When GetVal returns, Main's x has a value of
10, and 10 is displayed on the console. Using out with large value types is efficient because it
prevents instances of the value type's fields from being copied when making method calls.

Now let’s look at an example that uses ref instead of out:

public sealed class Program {
public static void Main() {

Int32 x = 5; // x is initialized
Addval(ref x); // X must be initialized.
Console.WriteLine(x); // Displays "15"

}

private static void Addval(ref Int32 v) {
v += 10; // This method can use the initialized value in v.

3
3

In this code, x is also declared in Main's stack frame and is initialized to 5. The address of x

is then passed to Addval. Addval’s v is a pointer to the Int32 value in Main's stack frame.
Inside AddVval, the Int32 that v points to is required to have a value already. So, AddVval can
use the initial value in any expression it desires. Addval can also change the value, and the
new value will be “returned” to the caller. In this example, Addval adds 10 to the initial value.
When AddVval returns, Main's x will contain 15, which is what gets displayed in the console.

To summarize, from an IL or a CLR perspective, out and ref do exactly the same thing: they
both cause a pointer to the instance to be passed. The difference is that the compiler helps
ensure that your code is correct. The following code that attempts to pass an uninitialized
value to a method expecting a ref parameter produces the following message: "error

CS0165: Use of unassigned local variable 'x'.

public sealed class Program {
public static void Main() {
Int32 x; // x is not initialized.

// The following 1line fails to compile, producing

// error CS0165: Use of unassigned Tocal variable 'x'.
Addval(ref x);

Console.WriteLine(x);

}

private static void Addval(ref Int32 v) {
v += 10; // This method can use the initialized value in v.

}

Chapter 9 Parameters 227

Important I'm frequently asked why C# requires that a call to a method must specify out or
ref. After all, the compiler knows whether the method being called requires out or ref and
should be able to compile the code correctly. It turns out that the compiler can indeed do the
right thing automatically. However, the designers of the C# language felt that the caller should
explicitly state its intention. This way at the call site, it's obvious that the method being called is
expected to change the value of the variable being passed.

In addition, the CLR allows you to overload methods based on their use of out and ref param-
eters. For example, in C#, the following code is legal and compiles just fine:

public sealed class Point {
static void Add(Point p) { ... }
static void Add(ref Point p) { ... }
}

It's not legal to overload methods that differ only by out and ref because the metadata repre-
sentation of the method's signature for the methods would be identical. So | couldn't also define
the following method in the preceding Point type:

static void Add(out Point p) { ... }

If you attempt to include the last Add method in the Point type, the C# compiler issues this
message: "error CS0663: 'Add' cannot define overloaded methods that differ
only on ref and out."

Using out and ref with value types gives you the same behavior that you already get when

passing reference types by value. With value types, out and ref allow a method to manipu-

late a single value type instance. The caller must allocate the memory for the instance, and
the callee manipulates that memory. With reference types, the caller allocates memory for a

pointer to a reference object, and the callee manipulates this pointer. Because of this behavior,

using out and ref with reference types is useful only when the method is going to “return” a

reference to an object that it knows about. The following code demonstrates:

using System;
using System.IO;

public sealed class Program {

public static void Main() {
FileStream fs; // fs is uninitialized

// Open the first file to be processed.
StartProcessingFiles(out fs);

// Continue while there are more files to process.
for (; fs != null; ContinueProcessingFiles(ref fs)) {

// Process a file.
fs.Read(...);

228 Part Il Designing Types

private static void StartProcessingFiles(out FileStream fs) {
fs = new FileStream(...); // fs must be initialized in this method

}

private static void ContinueProcessingFiles(ref FileStream fs) {
fs.Close(); // Close the last file worked on.

// Open the next file, or if no more files, "return" null.
if (noMoreFilesToProcess) fs = null;
else fs = new FileStream (...);

}

As you can seeg, the big difference with this code is that the methods that have out or ref
reference type parameters are constructing an object, and the pointer to the new object is
returned to the caller. You'll also notice that the ContinueProcessingFiles method can
manipulate the object being passed into it before returning a new object. This is possible
because the parameter is marked with the ref keyword. You can simplify the preceding code
a bit, as shown here:

using System;
using System.IO;

public sealed class Program {
public static void Main() {
FileStream fs = null; // Initialized to null (required)

// Open the first file to be processed.
ProcessFiles(ref fs);

// Continue while there are more files to process.
for (; fs != null; ProcessFiles(ref fs)) {

// Process a file.
fs.Read(...);

}

private static void ProcessFiles(ref FileStream fs) {
// Close the previous file if one was open.
if (fs != null) fs.Close(); // Close the last file worked on.

// Open the next file, or if no more files, "return" null.

if (noMoreFilesToProcess) fs = null;
else fs = new FileStream (...);

}

Here's another example that demonstrates how to use the ref keyword to implement a
method that swaps two reference types:

Chapter 9 Parameters 229

public static void Swap(ref Object a, ref Object b) {

Object t = b;
b = a;
a=t;

3

To swap references to two String objects, you'd probably think that you could write code
like this:

public static void SomeMethod() {
String sl = "Jeffrey";
String s2 = "Richter";

Swap(ref sl, ref s2);

Console.WriteLine(sl); // Displays "Richter"

Console.WriteLine(s2); // Displays "Jeffrey"
}

However, this code won't compile. The problem is that variables passed by reference to a
method must be of the same type as declared in the method signature. In other words,
Swap expects two Object references, not two String references. To swap the two String
references, you must do this:

public static void SomeMethod() {
String sl = "Jeffrey";
String s2 = "Richter";

// Variables that are passed by reference
// must match what the method expects.
Object ol = sl, 02 = s2;

Swap(ref ol, ref 02);

// Now cast the objects back to strings.
sl (String) ol;
s2 (String) o02;

Console.WriteLine(sl); // Displays "Richter"
Console.WriteLine(s2); // Displays "Jeffrey"
}

This version of SomeMethod does compile and execute as expected. The reason why the
parameters passed must match the parameters expected by the method is to ensure that
type safety is preserved. The following code, which thankfully won't compile, shows how
type safety could be compromised.

internal sealed class SomeType {
public Int32 m_val;
}

public sealed class Program {
public static void Main() {
SomeType st;

230

Part Il Designing Types

// The following 1line generates error CS1503: Argument '1':
// cannot convert from 'ref SomeType' to 'ref object'.
GetAnObject(out st);

Console.WriteLine(st.m_val);

private static void GetAnObject(out Object o) {
o = new String('X', 100);
}
}

In this code, Main clearly expects GetAnObject to return a SomeType object. However,
because GetAnObject's signature indicates a reference to an Object, GetAnObject is free

to initialize o to an object of any type. In this example, when GetAnObject returned to

Main, st would refer to a String, which is clearly not a SomeType object, and the call to
Console.WriteLine would certainly fail. Fortunately, the C# compiler won't compile the
preceding code because st is a reference to SomeType, but GetAnObject requires a reference
to an Object.

You can use generics to fix these methods so that they work as you'd expect. Here is how to
fix the Swap method shown earlier:

public static void Swap<T>(ref T a, ref T b) {
Tt b;
b =
a =

+ ool

}

And now, with Swap rewritten as above, the following code (identical to that shown before)
will compile and run perfectly:

public static void SomeMethod() {
String sl = "Jeffrey";
String s2 = "Richter";

Swap(ref sl1, ref s2);

Console.WriteLine(sl); // Displays "Richter"

Console.WriteLine(s2); // Displays "Jeffrey"
}

For some other examples that use generics to solve this problem, see System.Threading’s
Interlocked class with its CompareExchange and Exchange methods.

Chapter 9 Parameters 231

Passing a Variable Number of Arguments to a Method

It's sometimes convenient for the developer to define a method that can accept a variable
number of arguments. For example, the System.String type offers methods allowing an
arbitrary number of strings to be concatenated together and methods allowing the caller to
specify a set of strings that are to be formatted together.

To declare a method that accepts a variable number of arguments, you declare the method
as follows:

static Int32 Add(params Int32[] values) {
// NOTE: it 1is possible to pass the 'values'
// array to other methods if you want to.

Int32 sum = 0;
if (values != null) {
for (Int32 x = 0; x < values.Length; x++)
sum += values[x];

}

return sum;

}

Everything in this method should look very familiar to you except for the params keyword
that is applied to the last parameter of the method signature. Ignoring the params keyword
for the moment, it's obvious that this method accepts an array of Int32 values and iterates
over the array, adding up all of the values. The resulting sum is returned to the caller.

Obviously, code can call this method as follows:

public static void Main() {

// Displays "15"

Console.WriteLine(Add(new Int32[] { 1, 2, 3, 4, 5}));
}

It's clear that the array can easily be initialized with an arbitrary number of elements and
then passed off to Add for processing. Although the preceding code would compile and work
correctly, it is a little ugly. As developers, we would certainly prefer to have written the call to
Add as follows:

public static void Main() {
// Displays "15"
Console.WriteLine(Add(1, 2, 3, 4, 5));
}

You'll be happy to know that we can do this because of the params keyword. The params
keyword tells the compiler to apply an instance of the System.ParamArrayAttribute
custom attribute to the parameter.

232

Part Il Designing Types

When the C# compiler detects a call to a method, the compiler checks all of the methods
with the specified name, where no parameter has the ParamArray attribute applied. If a
method exists that can accept the call, the compiler generates the code necessary to call

the method. However, if the compiler can't find a match, it looks for methods that have a
ParamArray attribute to see whether the call can be satisfied. If the compiler finds a match, it
emits code that constructs an array and populates its elements before emitting the code that
calls the selected method.

In the previous example, no Add method is defined that takes five Int32-compatible argu-
ments; however, the compiler sees that the source code has a call to Add that is being passed
a list of Int32 values and that there is an Add method whose array-of-Int32 parameter is
marked with the ParamArray attribute. So the compiler considers this a match and generates
code that coerces the parameters into an Int32 array and then calls the Add method. The
end result is that you can write the code, easily passing a bunch of parameters to Add, but the
compiler generates code as though you'd written the first version that explicitly constructs and
initializes the array.

Only the last parameter to a method can be marked with the params keyword
(ParamArrayAttribute). This parameter must also identify a single-dimension array of any
type. It's legal to pass nu11 or a reference to an array of 0 entries as the last parameter to the
method. The following call to Add compiles fine, runs fine, and produces a resulting sum of 0
(as expected):

public static void Main() {
// Both of these 1ines display "0"
Console.WriteLine(Add(Q)); // passes new Int32[0] to Add
Console.WriteLine(Add(nul1)); // passes null to Add: more efficient (no array allocated)
}

So far, all of the examples have shown how to write a method that takes an arbitrary number
of Int32 parameters. How would you write a method that takes an arbitrary number of
parameters where the parameters could be any type? The answer is very simple: just modify
the method's prototype so that it takes an Object[] instead of an Int32[]. Here's a method
that displays the Type of every object passed to it:

public sealed class Program {
public static void Main() {
DisplayTypes(new Object(), new Random(), "Jeff", 5);
}

private static void DisplayTypes(params Object[] objects) {
if (objects != null) {
foreach (Object o in objects)
Console.WriteLine(o.GetType());

Chapter 9 Parameters 233

Running this code yields the following output:

System.Object
System.Random
System.String
System.Int32

W Important Be aware that calling a method that takes a variable number of arguments incurs
an additional performance hit unless you explicitly pass nul1. After all, an array object must be
allocated on the heap, the array’s elements must be initialized, and the array’s memory must
ultimately be garbage collected. To help reduce the performance hit associated with this, you
may want to consider defining a few overloaded methods that do not use the params keyword.
For some examples, look at the System.String class's Concat method, which has the following
overloads:

public sealed class String : Object, ... {
public static string Concat(object arg0);
public static string Concat(object arg0, object argl);
public static string Concat(object arg0, object argl, object arg2);
public static string Concat(params object[] args);

public static string Concat(string strO, string strl);

public static string Concat(string strO, string strl, string str2);

public static string Concat(string strO, string strl, string str2, string str3);
public static string Concat(params string[] values);

As you can see, the Concat method defines several overloads that do not use the params key-
word. These versions of the Concat method are the most frequently called overloads, and these
overloads exist in order to improve performance for the most common scenarios. The overloads
that use the params keyword are there for the less common scenarios; these scenarios will suffer
a performance hit, but fortunately, they are rare.

Parameter and Return Type Guidelines

When declaring a method’s parameter types, you should specify the weakest type possible,
preferring interfaces over base classes. For example, if you are writing a method that
manipulates a collection of items, it would be best to declare the method’s parameter by
using an interface such as IEnumerable<T> rather than using a strong data type such as
List<T> or even a stronger interface type such as ICollection<T> or IList<T>:

// Desired: This method uses a weak parameter type
public void ManipulateItems<T>(IEnumerable<T> collection) { ... }

// Undesired: This method uses a strong parameter type
public void ManipulateItems<T>(List<T> collection) { ... }

234

Part Il Designing Types

The reason, of course, is that someone can call the first method passing in an array object,
a List<T> object, a String object, and so on—any object whose type implements
IEnumerable<T>. The second method allows only List<T> objects to be passed in; it will
not accept an array or a String object. Obviously, the first method is better because it is
much more flexible and can be used in a much wider range of scenarios.

Naturally, if you are writing a method that requires a list (not just any enumerable object),
then you should declare the parameter type as an IList<T>. You should still avoid declar-
ing the parameter type as List<T>. Using IList<T> allows the caller to pass arrays and any
other objects whose type implements IList<T>.

Note that my examples talked about collections, which are designed using an interface archi-
tecture. If we were talking about classes designed using a base class architecture, the concept
still applies. So, for example, if | were implementing a method that processed bytes from a
stream, we'd have this:

// Desired: This method uses a weak parameter type
public void ProcessBytes(Stream someStream) { ... }

// Undesired: This method uses a strong parameter type
public void ProcessBytes(FileStream fileStream) { ... }

The first method can process bytes from any kind of stream: a FileStream, a
NetworkStream, a MemoryStream, and so on. The second method can operate only on a
FileStream, making it far more limited.

On the flip side, it is usually best to declare a method’s return type by using the strongest
type possible (trying not to commit yourself to a specific type). For example, it is better to
declare a method that returns a FileStream object as opposed to returning a Stream object:

// Desired: This method uses a strong return type
public FileStream OpenFile() { ... }

// Undesired: This method uses a weak return type
public Stream OpenFile() { ... }

Here, the first method is preferred because it allows the method’s caller the option of treating
the returned object as either a FileStream object or as a Stream object. Meanwhile, the
second method requires that the caller treat the returned object as a Stream object. Basically,
it is best to let the caller have as much flexibility as possible when calling a method, allowing
the method to be used in the widest range of scenarios.

Sometimes you want to retain the ability to change the internal implementation of a method
without affecting the callers. In the example just shown, the OpenFile method is unlikely to
ever change its internal implementation to return anything other than a FileStream object
(or an object whose type is derived from FileStream). However, if you have a method that
returns a List<String> object, you might very well want to change the internal implemen-
tation of this method in the future so that it would instead return a String[]. In the cases

Chapter 9 Parameters 235

in which you want to leave yourself some flexibility to change what your method returns,
choose a weaker return type. For example:

// Flexible: This method uses a weaker return type
public IList<String> GetStringCollection() { ... }

// Inflexible: This method uses a stronger return type
public List<String> GetStringCollection() { ... }

In this example, even though the GetStringCollection method uses a List<String>
object internally and returns it, it is better to prototype the method as returning an
IList<String> instead. In the future, the GetStringCollection method could change its
internal collection to use a String[], and callers of the method won't be required to change
any of their source code. In fact, they won't even have to recompile their code. Notice in this
example that I'm using the strongest of the weakest types. For instance, I'm not using an
IEnumerable<String> or even ICollection<String>.

Const-ness

In some languages, such as unmanaged C++, it is possible to declare methods or parameters
as a constant that forbids the code in an instance method from changing any of the object’s
fields or prevents the code from modifying any of the objects passed into the method. The
CLR does not provide for this, and many programmers have been lamenting this missing fea-
ture. Since the CLR doesn't offer this feature, no language (including C#) can offer this feature.

First, you should note that in unmanaged C++, marking an instance method or parameter as
const ensured only that the programmer could not write normal code that would modify
the object or parameter. Inside the method, it was always possible to write code that could
mutate the object/parameter by either casting away the const-ness or by getting the address
of the object/argument and then writing to the address. In a sense, unmanaged C++ lied to
programmers, making them believe that their constant objects/arguments couldn’t be written
to even though they could.

When designing a type’s implementation, the developer can just avoid writing code that
manipulates the object/arguments. For example, strings are immutable because the String
class doesn't offer any methods that can change a string object.

Also, it would be very difficult for Microsoft to endow the CLR with the ability to verify that

a constant object/argument isn't being mutated. The CLR would have to verify at each write
that the write was not occurring to a constant object, and this would hurt performance
significantly. Of course, a detected violation would result in the CLR throwing an exception.
Furthermore, constant support adds a lot of complexity for developers. For example, if a type
is immutable, all derived types would have to respect this. In addition, an immutable type
would probably have to consist of fields that are also of immutable types.

These are just some of the reasons why the CLR does not support constant objects/arguments.

Chapter 10
Properties

Parameterless Properties.ttt i 237
Parameterful Properties.ttt it it 252
The Performance of Calling Property Accessor Methods 257
Property Accessor Accessibility i 258
Generic Property Accessor Methods, 258

In this chapter, I'll talk about properties. Properties allow source code to call a method by using
a simplified syntax. The common language runtime (CLR) offers two kinds of properties: pa-
rameterless properties, which are simply called properties, and parameterful properties, which
are called different names by different programming languages. For example, C# calls param-
eterful properties indexers, and Microsoft Visual Basic calls them default properties. I'll also talk
about initializing properties using object and collection initializers as well as ways to package a
bunch of properties together using C#'s anonymous types and the System.Tuple type.

Parameterless Properties

Many types define state information that can be retrieved or altered. Frequently, this state
information is implemented as field members of the type. For example, here's a type defini-
tion that contains two fields:

public sealed class Employee {
public String Name; // The employee's name
public Int32 Age; // The employee's age
}

If you were to create an instance of this type, you could easily get or set any of this state
information with code similar to the following:

Employee e = new Employee();

e.Name = "Jeffrey Richter"; // Set the employee's Name.

e.Age = 45; // Set the employee's Age.

Console.WriteLine(e.Name); // Displays "Jeffrey Richter"

Querying and setting an object’s state information in the way | just demonstrated is very
common. However, | would argue that the preceding code should never be implemented as

237

238

Part Il Designing Types

shown. One of the hallmarks of object-oriented design and programming is data encapsulation.
Data encapsulation means that your type’s fields should never be publicly exposed because
it's too easy to write code that improperly uses the fields, corrupting the object’s state. For
example, a developer could easily corrupt an Employee object with code like this:

e.Age = -5; // How could someone be -5 years old?

There are additional reasons for encapsulating access to a type's data field. For example, you
might want access to a field to execute some side effect, cache some value, or lazily create
some internal object. You might also want access to the field to be thread-safe. Or perhaps
the field is a logical field whose value isn't represented by bytes in memory but whose value
is instead calculated using some algorithm.

For any of these reasons, when designing a type, | strongly suggest that all of your fields be
private. Then, to allow a user of your type to get or set state information, you expose meth-
ods for that specific purpose. Methods that wrap access to a field are typically called accessor
methods. These accessor methods can optionally perform sanity checking and ensure that
the object's state is never corrupted. For example, I'd rewrite the previous class as follows:

public sealed class Employee {
private String m_Name; // Field is now private
private Int32 m_Age; // Field is now private

public String GetName() {
return(m_Name) ;

}

public void SetName(String value) {
m_Name = value;

}

public Int32 GetAge() {
return(m_Age) ;

}

public void SetAge(Int32 value) {
if (value < 0)
throw new ArgumentOutOfRangeException("value", value.ToString(Q),
"The value must be greater than or equal to 0");
m_Age = value;

3

Although this is a simple example, you should still be able to see the enormous benefit

you get from encapsulating the data fields. You should also be able to see how easy it is to
make read-only or write-only properties: just don't implement one of the accessor methods.
Alternatively, you could allow only derived types to modify the value by marking the SetXxx
method as protected.

Chapter 10 Properties 239

Encapsulating the data as shown earlier has two disadvantages. First, you have to write more
code because you now have to implement additional methods. Second, users of the type
must now call methods rather than simply refer to a single field name.

e.SetName("Jeffrey Richter"); // updates the employee's name

String EmployeeName = e.GetName(); // retrieves the employee's name
e.SetAge(41); // Updates the employee's age
e.SetAge(-5); // Throws ArgumentOutOfRangeException
Int32 EmployeeAge = e.GetAge(); // retrieves the employee's age

Personally, | think these disadvantages are quite minor. Nevertheless, programming languages
and the CLR offer a mechanism called properties that alleviates the first disadvantage a little
and removes the second disadvantage entirely.

The class shown here uses properties and is functionally identical to the class shown earlier:

public sealed class Employee {
private String m_Name;
private Int32 m_Age;

public String Name {
get { return(m_Name); }
set { m_Name = value; } // The 'value' keyword always identifies the new value.

}

public Int32 Age {
get { return(m_Age); }
set {
if (value < 0) // The 'value' keyword always identifies the new value.
throw new ArgumentOutOfRangeException("value", value.ToString(Q),
"The value must be greater than or equal to 0");
m_Age = value;

}

As you can see, properties complicate the definition of the type slightly, but the fact that
they allow you to write your code as follows more than compensates for the extra work:

e.Name = "Jeffrey Richter"; // "sets" the employee name

String EmployeeName = e.Name; // "gets" the employee's name

e.Age = 41; // "sets" the employee's age

e.Age = -5; // Throws ArgumentOutOfRangeException
Int32 EmployeeAge = e.Age; // "gets" the employee's age

You can think of properties as smart fields: fields with additional logic behind them. The
CLR supports static, instance, abstract, and virtual properties. In addition, properties can be
marked with any accessibility modifier (discussed in Chapter 6, “Type and Member Basics")
and defined within an interface (discussed in Chapter 13, “Interfaces”).

Each property has a name and a type (which can't be void). It isn't possible to overload
properties (that is, have two properties with the same name if their types are different).

240

Part Il Designing Types

When you define a property, you typically specify both a get and a set method. However,
you can leave out the set method to define a read-only property or leave out the get
method to define a write-only property.

It's also quite common for the property’s get/set methods to manipulate a private field
defined within the type. This field is commonly referred to as the backing field. The get

and set methods don't have to access a backing field, however. For example, the
System.Threading.Thread type offers a Priority property that communicates directly
with the operating system; the Thread object doesn’t maintain a field for a thread's priority.
Another example of properties without backing fields are those read-only properties calculat-
ed at runtime—for example, the length of a zero-terminated array or the area of a rectangle
when you have its height and width.

When you define a property, depending on its definition, the compiler will emit either two or
three of the following items into the resulting managed assembly:

B A method representing the property’s get accessor method. This is emitted only if you
define a get accessor method for the property.

B A method representing the property’s set accessor method. This is emitted only if you
define a set accessor method for the property.

B A property definition in the managed assembly’s metadata. This is always emitted.

Refer back to the Employee type shown earlier. As the compiler compiles this type, it comes
across the Name and Age properties. Because both properties have get and set accessor
methods, the compiler emits four method definitions into the Employee type. It's as though
the original source were written as follows:

public sealed class Employee {
private String m_Name;
private Int32 m_Age;

public String get_Name(){
return m_Name;
}
public void set_Name(String value) {
m_Name = value; // The argument 'value' always identifies the new value.

3

public Int32 get_Age() {
return m_Age;

}

public void set_Age(Int32 value) {
if (value < 0) // The 'value' always identifies the new value.
throw new ArgumentOutOfRangeException("value", value.ToStringQ),
"The value must be greater than or equal to 0");
m_Age = value;

Chapter 10 Properties 241

The compiler automatically generates names for these methods by prepending get_ or set_
to the property name specified by the developer.

C# has built-in support for properties. When the C# compiler sees code that's trying to get
or set a property, the compiler actually emits a call to one of these methods. If you're using a
programming language that doesn't directly support properties, you can still access properties
by calling the desired accessor method. The effect is exactly the same; it's just that the source
code doesn't look as pretty.

In addition to emitting the accessor methods, compilers also emit a property definition entry
into the managed assembly’s metadata for each property defined in the source code. This
entry contains some flags and the type of the property, and it refers to the get and set
accessor methods. This information exists simply to draw an association between the abstract
concept of a “property” and its accessor methods. Compilers and other tools can use this
metadata, which can be obtained by using the System.Reflection.PropertyInfo class.
The CLR doesn't use this metadata information and requires only the accessor methods at
runtime.

Automatically Implemented Properties

If you are creating a property to simply encapsulate a backing field, then C# offers a simpli-
fied syntax known as automatically implemented properties (AlPs), as shown here for the Name

property:

public sealed class Employee {
// This property is an automatically implemented property
public String Name { get; set; }

private Int32 m_Age;

public Int32 Age {
get { return(m_Age); }
set {
if (value < 0) // The 'value' keyword always identifies the new value.
throw new ArgumentOutOfRangeException("value", value.ToString(Q),
"The value must be greater than or equal to 0");
m_Age = value;

}
3

When you declare a property and do not provide an implementation for the get/set meth-
ods, then the C# compiler will automatically declare for you a private field. In this example,
the field will be of type String, the type of the property. And, the compiler will automatically
implement the get_Name and set_Name methods for you to return the value in the field and
to set the field's value, respectively.

242

Part Il Designing Types

You might wonder what the value of doing this is, as opposed to just declaring a public
String field called Name. Well, there is a big difference. Using the AIP syntax means that you
have created a property. Any code that accesses this property is actually calling get and set
methods. If you decide later to implement the get and/or set method yourself instead of
accepting the compiler’s default implementation, then any code that accesses the property
will not have to be recompiled. However, if you declared Name as a field and then you later
change it to a property, then all code that accessed the field will have to be recompiled so
that it now accesses the property methods.

B Personally, | do not like the compiler’s AIP feature, so | usually avoid it for the follow-
ing reason: The syntax for a field declaration can include initialization so that you are
declaring and initializing the field in one line of code. However, there is no convenient
syntax to set an AIP to an initial value. Therefore, you must explicitly initialize each AIP
in each constructor method.

B The runtime serialization engines persist the name of the field in a serialized stream.
The name of the backing field for an AIP is determined by the compiler, and it could
actually change the name of this backing field every time you recompile your code,
negating the ability to deserialize instances of any types that contain an AIP. Do not use
the AIP feature with any type you intend to serialize or deserialize.

B When debugging, you cannot put a breakpoint on an AIP get or set method, so you
cannot easily detect when an application is getting or setting this property. You can
set breakpoints on manually implemented properties, which can be quite handy when
tracking down bugs.

You should also know that when you use AlPs, the property must be readable and writable;
that is, the compiler must produce both get and set methods. This makes sense because a
write-only field is not useful without the ability to read its value; likewise, a read-only field
would always have its default value. In addition, since you do not know the name of the
compiler-generated backing field, your code must always access the property by using the
property name. And, if you decide you want to explicitly implement one of the accessor
methods, then you must explicitly implement both accessor methods and you are not using
the AIP feature anymore. For a single property, the AIP feature is an all-or-nothing deal.

Defining Properties Intelligently

Personally, | don't like properties and | wish that they were not supported in the Microsoft
.NET Framework and its programming languages. The reason is that properties look like
fields, but they are methods. This has been known to cause a phenomenal amount of confu-
sion. When a programmer sees code that appears to be accessing a field, there are many
assumptions that the programmer makes that may not be true for a property. For example,

B A property may be read-only or write-only; field access is always readable and writable.
If you define a property, it is best to offer both get and set accessor methods.

Chapter 10 Properties 243

B A property method may throw an exception; field access never throws an exception.

B A property cannot be passed as an out or ref parameter to a method; a field can. For
example, the following code will not compile:

using System;

public sealed class SomeType {
private static String Name {
get { return null; }
set {}
}

static void MethodWithOutParam(out String n) { n = null; }

public static void Main() {
// For the 1ine of code below, the C# compiler emits the following:
// error CS0206: A property or indexer may not
// be passed as an out or ref parameter
MethodwithOutParam(out Name);

}

B A property method can take a long time to execute; field access always completes
immediately. A common reason to use properties is to perform thread synchroni-
zation, which can stop the thread forever, and therefore, a property should not be
used if thread synchronization is required. In that situation, a method is preferred.
Also, if your class can be accessed remotely (for example, your class is derived from
System.MarshalByRefObject), calling the property method will be very slow, and
therefore, a method is preferred to a property. In my opinion, classes derived from
MarshalByRefObject should never use properties.

m |f called multiple times in a row, a property method may return a different value each
time; a field returns the same value each time. The System.DateTime class has a read-
only Now property that returns the current date and time. Each time you query this
property, it will return a different value. This is a mistake, and Microsoft wishes that
they could fix the class by making Now a method instead of a property. Environment's
TickCount property is another example of this mistake.

B A property method may cause observable side effects; field access never does. In other
words, a user of a type should be able to set various properties defined by a type in
any order he or she chooses without noticing any different behavior in the type.

B A property method may require additional memory or return a reference to something
that is not actually part of the object'’s state, so modifying the returned object has no
effect on the original object; querying a field always returns a reference to an object
that is guaranteed to be part of the original object’s state. Working with a property
that returns a copy can be very confusing to developers, and this characteristic is fre-
quently not documented.

244

Part Il Designing Types

It has come to my attention that people use properties far more often than they should. If
you examine this list of differences between properties and fields, you'll see that there are
very few circumstances in which defining a property is actually useful and will not cause con-
fusion for developers. The only thing that properties buy you is some simplified syntax; there
is no performance benefit compared to calling a non-property method, and understandability
of the code is reduced. If | had been involved in the design of the .NET Framework and com-
pilers, | would have not offered properties at all; instead, | would have programmers actually
implement GetXxx and SetXxx methods as desired. Then, if compilers wanted to offer some
special, simplified syntax for calling these methods, so be it. But I'd want the compiler to use
syntax that is different from field access syntax so that programmers really understand what
they are doing—a method call.

Properties and the Visual Studio Debugger

Microsoft Visual Studio allows you to enter an object's property in the debugger’s
watch window. When you do this, every time you hit a breakpoint, the debugger calls
into the property’s get accessor method and displays the returned value. This can be
quite helpful in tracking down bugs, but it can also cause bugs to occur and hurt your
debugging performance. For example, let's say that you have created a FileStream
for a file on a network share and then you add FileStream's Length property to the
debugger’s watch window. Now, every time you hit a breakpoint, the debugger will call
Length's get accessor method, which internally makes a network request to the server
to get the current length of the file!

Similarly, if your property’s get accessor method has a side effect, then this side effect
will execute every time you hit a breakpoint. For example, let’s say that your property’s
get accessor method increments a counter every time it is called; this counter will now
be incremented every time you hit a breakpoint, too. Because of these potential prob-
lems, Visual Studio allows you to turn off property evaluation for properties shown in
watch windows. To turn property evaluation off in Visual Studio, select Tools, Options,
Debugging, and General and in the list box in Figure 10-1, and clear the Enable
Property Evaluation And Other Implicit Function Calls option. Note that even with this
item cleared, you can add the property to the watch window and manually force Visual
Studio to evaluate it by clicking the force evaluation circle in the watch window's Value
column.

Chapter 10 Properties 245

Options (=]
» Environment | General
b Projects and Salutions Ask before deleting all breakpoints R
> i Break all processes when ane pracess breaks 1
b TSl [] Break when exceptions crass AppDamain or managed/native baundaries (1
‘ DEbé:J:;::I Enable address-level debugging
e G [] Show disassembly if source is not available E
Just-In-Time Enable breakpoint filters
Native = Enable the exception assistant
Output Window Unwind the call stack on unhandled exceptions
Symbols Enable Just My Code (Managed only)
b IntelliTrace [T] Show all members for non-user abjects in variables windows {Visual Ba
i Performance Tools Wam if no user code on launch
& Database Tools [Z] Enable NET Framework source stepping
[F#Tools Step over properties and operatars (Managed only)
b Office Taols Call string-conversion function on objects in variables windows -
b Test Tools <] i v

©»_Text Temolating

FIGURE 10-1 Visual Studio’s General Debugger settings

Object and Collection Initializers

It is very common to construct an object and then set some of the object’s public properties
(or fields). To simplify this common programming pattern, the C# language supports a special
object initialization syntax. Here is an example:

Employee e = new Employee() { Name = "Jeff", Age = 45 };

With this one statement, | am constructing an Employee object, calling its parameterless
constructor, and then setting its public Name property to "Jeff" and its public Age property
to 45. In fact, the code above is identical to this, which you could verify by examining the
Intermediate Language (IL) for both of these code fragments:

Employee e = new Employee();
e.Name = "Jeff";
e.Age = 45;

The real benefit of the object initializer syntax is that it allows you to code in an expression
context (as opposed to a statement context), permitting composability of functions, which in
turn increases code readability. For example, | can now write this:

String s = new Employee() { Name = "Jeff", Age = 45 }.ToString().ToUpperQ);

So now, in one statement, | have constructed an Employee object, called its constructor, ini-
tialized two public properties, and then, using the resulting expression, called ToString on it
followed by calling ToUpper. For more about composability of functions, see the “Extension
Methods"” section in Chapter 8, “Methods.”

246

Part Il Designing Types

As a small side note, C# also lets you omit the parentheses before the open brace if you want
to call a parameterless constructor. The line below produces the same IL as the line above:

String s = new Employee { Name = “Jeff”, Age = 45 }.ToString().ToUpper(Q);

If a property’s type implements the IEnumerable or IEnumerable<T> interface, then the
property is considered to be a collection, and initializing a collection is an additive operation
as opposed to a replacement operation. For example, suppose | have the following class
definition:

public sealed class Classroom {
private List<String> m_students = new List<String>Q);
public List<String> Students { get { return m_students; } }

public Classroom() {}
}

| can now have code that constructs a Classroom object and initializes the Students collec-
tion as follows:

public static void M) {
Classroom classroom = new Classroom {
Students = { "Jeff", "Kristin", "Aidan", "Grant" }
};

// Show the 4 students in the classroom
foreach (var student in classroom.Students)
Console.WriteLine(student);

}

When compiling this code, the compiler sees that the Students property is of type
List<String> and that this type implements the IEnumerable<String> interface. Now, the
compiler assumes that the List<String> type offers a method called Add (because most
collection classes actually offer an Add method that adds items to the collection). The compiler
then generates code to call the collection’s Add method. So, the code shown above is
converted by the compiler into this:

public static void MO {
Classroom classroom = new Classroom();
classroom.Students.Add("Jeff");
classroom.Students.Add("Kristin");
classroom.Students.Add("Aidan");
classroom.Students.Add("Grant");

// Show the 4 students in the classroom
foreach (var student in classroom.Students)
Console.WritelLine(student);

3

If the property’s type implements IEnumerable or IEnumerable<T> but the type doesn't
offer an Add method, then the compiler does not let you use the collection initialize syntax to
add items to the collection; instead, the compiler issues something like the following

Chapter 10 Properties 247

message: "error CS0117: 'System.Collections.Generic.IEnumerable<string>' does
not contain a definition for 'Add'."

Some collection’s Add methods take multiple arguments. For example, Dictionary's Add
method:

public void Add(TKey key, TValue value);

You can pass multiple arguments to an Add method by using nested braces in a collection
initializer, as follows:

var table = new Dictionary<String, Int32> {
{ "Jeffrey", 1}, { "Kristin", 2 }, { "Aidan", 3 }, { "Grant", 4 }
};

The line above is identical to:

var table = new Dictionary<String, Int32>(Q);
table.Add("Jeffrey", 1);
table.Add("Kristin", 2);

tabTle.Add("Aidan", 3);

table.Add("Grant", 4);

Anonymous Types

C#'s anonymous type feature allows you to automatically declare an immutable tuple type
using a very simple and succinct syntax. A tuple type' is a type that contains a collection of
properties that are usually related to each other in some way. In the top line of the code
below, | am defining a class with two properties (Name of type String, and Year of type
Int32), constructing an instance of this type, and setting its Name property to "Jeff" and its
Year property to 1964.

// Define a type, construct an instance of it, & initialize its properties
var ol = new { Name = "Jeff", Year = 1964 };

// Display the properties on the console:
Console.WriteLine("Name={0}, Year={1}", ol.Name, ol.Year);// Displays: Name=Jeff, Year=1964

This top line of code creates an anonymous type because | did not specify a type name after
the new keyword, so the compiler will create a type name for me automatically and not tell
me what it is (which is why it is called an anonymous type). The line of code uses the object
initializer syntax discussed in the previous section to declare the properties and also to
initialize these properties. Also, since | (the developer) do not know the name of the type at
compile time, | do not know what type to declare the variable ol as. However, this is not a
problem, as | can use C#'s implicitly typed local variable feature (var), as discussed in

1 The term originated as an abstraction of the sequence: single, double, triple, quadruple, quintuple, n-tuple.

248

Part Il Designing Types

Chapter 9, "Parameters,” to have the compiler infer the type from the expression on the right
of the assignment operator (=).

Now, let’s focus on what the compiler is actually doing. When you write a line of code like
this:

var o = new { propertyl = expressionl, ..., propertyN = expressionN };

the compiler infers the type of each expression, creates private fields of these inferred types,
creates public read-only properties for each of the fields, and creates a constructor that
accepts all these expressions. The constructor’s code initializes the private read-only fields
from the expression results passed in to it. In addition, the compiler overrides Object’s
Equals, GetHashCode, and ToString methods and generates code inside all these methods.
In effect, the class that the compiler generates looks like this:

[CompiTlerGenerated]

internal sealed class <>f__AnonymousTypeO<...>: Object {
private readonly tl f1;
public t1 pl { get { return f1; } }

private readonly tn fn;
public tn pn { get { return fn; } }

public <>f__AnonymousTypeO<...>(tl al, ..., tn an) {
fl =al; ...; fn = an; // Set all fields
}

public override Boolean Equals(Object value) {
// Return false if any fields don't match; else true
}

public override Int32 GetHashCode() {
// Returns a hash code generated from each fields' hash code

3

public override String ToString() {
// Return comma-separated set of property name = value pairs
}
}

The compiler generates Equals and GetHashCode methods so that instances of the anony-
mous type can be placed in a hash table collection. The properties are readonly as opposed
to read/write to help prevent the object’s hashcode from changing. Changing the hashcode
for an object used as a key in a hashtable can prevent the object from being found. The com-
piler generates the ToString method to help with debugging. In the Visual Studio debugger,
you can place the mouse cursor over a variable that refers to an instance of an anonymous
type, and Visual Studio will invoke the ToString method and show the resulting string in a
datatip window. By the way, Visual Studio’s IntelliSense will suggest the property names as
you write code in the editor—a very nice feature.

Chapter 10 Properties 249

The compiler supports two additional syntaxes for declaring a property inside an anonymous
type where it can infer the property names and types from variables:

String Name = "Grant";
DateTime dt = DateTime.Now;

// Anonymous type with two properties

// 1. String Name property set to Grant

// 2. Int32 Year property set to the year inside the dt
var o2 = new { Name, dt.Year };

In this example, the compiler determines that the first property should be called Name. Since
Name is the name of a local variable, the compiler sets the type of the property to be the
same type as the local variable: String. For the second property, the compiler uses the name
of the field/property: Year. Year is an Int32 property of the DateTime class and therefore
the Year property in the anonymous type will also be an Int32. Now, when the compiler
constructs an instance of this anonymous type, it will set the instance’s Name property to

the same value that is in the Name local variable so the Name property will refer to the same
"Grant" string. The compiler will set the instance’s Year property to the same value that is
returned from dt's Year property.

The compiler is very intelligent about defining anonymous types. If the compiler sees that
you are defining multiple anonymous types in your source code that have the identical
structure, the compiler will create just one definition for the anonymous type and create
multiple instances of that type. By “same structure,” | mean that the anonymous types have
the same type and name for each property and that these properties are specified in the
same order. In the code examples above, the type of variable ol and the type of variable 02
will be the same type because the two lines of code are defining an anonymous type with a
Name/String property and a Year/Int32 property, and Name comes before Year.

Since the two variables are of the same type, we get to do some cool things, such as check-
ing if the two objects contain equal values and assigning a reference to one object into the
other’s variable, as follows:

// One type allows equality and assignment operations.
Console.WriteLine("Objects are equal: " + ol.Equals(02));
ol = 02; // Assignment

Also, because of this type identity, we can create an implicitly typed array (discussed in the
“Initializing Array Elements” section in Chapter 16, “Arrays”) of anonymous types:

// This works because all of the objects are of the same anonymous type
var people = new[] {

ol, // From earlier 1in this section

new { Name = "Kristin", Year = 1970 },

new { Name = "Aidan", Year = 2003 },

new { Name = "Grant", Year = 2008 }

250

Part Il Designing Types

// This shows how to walk through the array of anonymous types (var is required)
foreach (var person in people)
Console.WriteLine("Person={0}, Year={1}", person.Name, person.Year);

Anonymous types are most commonly used with the Language Integrated Query (LINQ)
technology, where you perform a query that results in a collection of objects that are all of
the same anonymous type. Then, you process the objects in the resulting collection. All this
takes place in the same method. Here is an example that returns all the files in my document
directory that have been modified within the past seven days:

String myDocuments = Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments);
var query =

from pathname in Directory.GetFiles(myDocuments)

et LastWriteTime = File.GetLastWriteTime(pathname)

where LastWriteTime > (DateTime.Now - TimeSpan.FromDays(7))

orderby LastWriteTime

select new { Path = pathname, LastWriteTime };// Set of anonymous type objects

foreach (var file in query)
Console.WriteLine("LastWriteTime={0}, Path={1}", file.LastWriteTime, file.Path);

Instances of anonymous types are not supposed to leak outside of a method. A method
cannot be prototyped as accepting a parameter of an anonymous type because there is no
way to specify the anonymous type. Similarly, a method cannot indicate that it returns a
reference to an anonymous type. While it is possible to treat an instance of an anonymous
type as an Object (since all anonymous types are derived from Object), there is no way to
cast a variable of type Object back into an anonymous type because you don’t know the
name of the anonymous type at compile time. If you want to pass a tuple around, then you
should consider using the System.Tuple type discussed in the next section.

The System.Tuple Type

In the System namespace, Microsoft has defined several generic Tuple types (all derived
from Object) that differ by arity (the number of generic parameters). Here is what the
simplest and most complex ones essentially look like:

// This is the simplest:

[Serializable]

public class Tuple<T1l> {
private T1 m_Iteml;
public Tuple(Tl iteml) { m_Iteml = iteml; }
public T1 Iteml { get { return m_Iteml; } }

// This is the most complex:

[Serializable]

public class Tuple<Tl, T2, T3, T4, T5, T6, T7, TRest> {
private Tl m_Iteml; private T2 m_Item2; private T3 m_Item3; private T4 m_Item4;
private T5 m_Item5; private T6 m_Item6; private T7 m_Item7; private TRestm_Rest;

Chapter 10 Properties 251

public Tuple(Tl iteml, T2 item2, T3 item3, T4 item4, TS5 item5, T6 item6, T7 item7,
TRest t) {
m_Iteml = iteml; m_Item2 = item2; m_Item3 = item3; m_Item4 = item4;
m_Item5 = item5; m_Item6 = item6; m_Item7 item7; m_Rest = rest;

}

public T1 Iteml
public T2 Item2 { get
public T3 Item3 get

{ return m_Iteml;
{
{
public T4 Item4 { get
{
{
{

get }
return m_Item2; }
return m_Item3; }
return m_Item4; }
public T5 Item5 get }
public T6 Item6 { get return m_Item6; }
public T7 Item7 get return m_Item7; }
public TRest Rest { get { return m_Rest; } }

return m_Item5;

e e e e
e e

}

Like anonymous types, once a Tuple is created, it is immutable (all properties are read-only).
| don't show it here, but the Tuple classes also offer CompareTo, Equals, GetHashCode, and
ToString methods, as well as a Size property. In addition, all the Tuple types implement
the IStructuralEquatable, IStructuralComparable, and IComparable interfaces so

that you can compare two Tuple objects with each other to see how their fields compare
with each other. Refer to the SDK documentation to learn more about these methods and
interfaces.

Here is an example of a method that uses a Tuple type to return two pieces of information
back to a caller:

// Returns minimum in Iteml & maximum in Item2

private static Tuple<Int32, Int32>MinMax(Int32 a, Int32 b) {
return new Tuple<Int32, Int32>(Math.Min(a, b), Math.Max(a, b));

}

// This shows how to call the method and how to use the returned Tuple
private static void TupleTypes() {

varminmax = MinMax(6, 2);

Console.WriteLine("Min={0}, Max={1}", minmax.Iteml, minmax.Item2); // Min=2, Max=6
}

Of course, it is very important that the producer and consumer of the Tuple have a clear
understanding of what is being returned in the Item# properties. With anonymous types,
the properties are given actual names based on the source code that defines the anonymous
type. With Tuple types, the properties are assigned their Item# names by Microsoft and you
cannot change this at all. Unfortunately, these names have no real meaning or significance,
so it is up to the producer and consumer to assign meanings to them. This also reduces code
readability and maintainability so you should add comments to your code explaining what
the producer/consumer understanding is.

The compiler can only infer generic types when calling a generic method, not when you are
calling a constructor. For this reason, the System namespace also includes a non-generic, static
Tuple class containing a bunch of static Create methods which can infer generic types from

252

Part Il Designing Types

arguments. This class acts as a factory for creating Tuple objects, and it exists simply to simplify
your code. Here is a rewrite of the MinMax method shown earlier using the static Tuple class:

// Returns minimum in Iteml & maximum in Item2
private static Tuple<Int32, Int32>MinMax(Int32 a, Int32 b) {

return Tuple.Create(Math.Min(a, b), Math.Max(a, b)); // Simpler syntax
}

If you want to create a Tuple with more than eight elements in it, then you would pass
another Tuple for the Rest parameter as follows:

var t = Tuple.Create(0, 1, 2, 3, 4, 5, 6, Tuple.Create(7, 8));

Console.WriteLine("{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}",
t.Iteml, t.Item2, t.Item3, t.Item4, t.Item5, t.Item6, t.Item7,
t.Rest.Iteml.Iteml, t.Rest.Iteml.Item2);

Note In addition to anonymous types and the Tuple types, you might want to take a look

at the System.Dynamic.ExpandoObject class (defined in the System.Core.dll assembly).
When you use this class with C#'s dynamic type (discussed in Chapter 5, “Primitive, Reference,
and Value Types”), you have another way of grouping a set of properties (key/value pairs)
together. The result is not compile-time type-safe, but the syntax looks nice (although you get
no IntelliSense support), and you can pass ExpandoObject objects between C# and dynamic
languages like Python. Here's some sample code that uses an ExpandoObject:

dynamic e = new System.Dynamic.ExpandoObject();
e.x = 6; // Add an Int32 'x' property whose value is 6
e.y = "Jeff"; // Add a String 'y' property whose value is "Jeff"

e.z null; // Add an Object 'z' property whose value is null

// See all the properties and their values:
foreach (var v in (IDictionary<String, Object>)e)
Console.WriteLine("Key={0}, V={1}", v.Key, v.Value);

// Remove the 'x' property and its value
var d = (IDictionary<String, Object>)e;
d.Remove("x");

Parameterful Properties

In the previous section, the get accessor methods for the properties accepted no parameters.
For this reason, | called these properties parameterless properties. These properties are easy
to understand because they have the feel of accessing a field. In addition to these field-like
properties, programming languages also support what | call parameterful properties, whose
get accessor methods accept one or more parameters and whose set accessor methods
accept two or more parameters. Different programming languages expose parameterful
properties in different ways. Also, languages use different terms to refer to parameterful
properties: C# calls them indexers and Visual Basic calls them default properties. In this section,
I'll focus on how C# exposes its indexers by using parameterful properties.

Chapter 10 Properties 253

In C#, parameterful properties (indexers) are exposed using an array-like syntax. In other
words, you can think of an indexer as a way for the C# developer to overload the [] operator.
Here's an example of a BitArray class that allows array-like syntax to index into the set of
bits maintained by an instance of the class:

using System;

public sealed class BitArray {
// Private array of bytes that hold the bits
private Byte[] m_byteArray;
private Int32 m_numBits;

// Constructor that allocates the byte array and sets all bits to 0
public BitArray(Int32 numBits) {
// Validate arguments first.
if (numBits <= 0)
throw new ArgumentOutOfRangeException("numBits must be > 0");

// Save the number of bits.
m_numBits = numBits;

// Allocate the bytes for the bit array.
m_byteArray = new Byte[(numBits + 7) / 8];
}

// This is the indexer (parameterful property).
public Boolean this[Int32 bitPos] {

// This 1is the indexer's get accessor method.
get {
// Validate arguments first
if ((bitPos < 0) || (bitPos >= m_numBits))
throw new ArgumentOutOfRangeException("bitPos");

// Return the state of the indexed bit.
return (m_byteArray[bitPos / 8] & (1 << (bitPos % 8))) != 0;

// This 1is the indexer's set accessor method.
set {
if ((bitPos < 0) || (bitPos >= m_numBits))
throw new ArgumentOutOfRangeException("bitPos", bitPos.ToString();
if (value) {
// Turn the indexed bit on.
m_byteArray[bitPos / 8] = (Byte)
(m_byteArray[bitPos / 8] | (1 << (bitPos % 8)));
} else {
// Turn the indexed bit off.
m_byteArray[bitPos / 8] = (Byte)
(m_byteArray[bitPos / 8] & ~(1 << (bitPos % 8)));

254

Part Il Designing Types

Using the BitArray class's indexer is incredibly simple:

// Allocate a BitArray that can hold 14 bits.
BitArray ba = new BitArray(14);

// Turn all the even-numbered bits on by calling the set accessor.
for (Int32 x = 0; x < 14; x++) {

ba[x] = (x % 2 == 0);
3

// Show the state of all the bits by calling the get accessor.
for (Int32 x = 0; x < 14; x++) {

Console.WriteLine("Bit " + x + " is " + (ba[x] ? "On" : "Off"));
}

In the BitArray example, the indexer takes one Int32 parameter, bitPos. All indexers must
have at least one parameter, but they can have more. These parameters (as well as the return
type) can be of any data type (except void). An example of an indexer that has more than
one parameter can be found in the System.Drawing.Imaging.ColorMatrix class, which
ships in the System.Drawing.dll assembly.

It's quite common to create an indexer to look up values in an associative array. In fact, the
System.Collections.Generic.Dictionary type offers an indexer that takes a key and
returns the value associated with the key. Unlike parameterless properties, a type can offer
multiple, overloaded indexers as long as their signatures differ.

Like a parameterless property’s set accessor method, an indexer’s set accessor method also
contains a hidden parameter, called value in C#. This parameter indicates the new value
desired for the “indexed element.”

The CLR doesn't differentiate parameterless properties and parameterful properties; to the
CLR, each is simply a pair of methods and a piece of metadata defined within a type. As
mentioned earlier, different programming languages require different syntax to create and
use parameterful properties. The fact that C# requires this[...] as the syntax for express-
ing an indexer was purely a choice made by the C# team. What this choice means is that C#
allows indexers to be defined only on instances of objects. C# doesn't offer syntax allowing
a developer to define a static indexer property, although the CLR does support static param-
eterful properties.

Because the CLR treats parameterful properties just as it does parameterless properties, the
compiler will emit either two or three of the following items into the resulting managed
assembly:

B A method representing the parameterful property’s get accessor method. This is emit-
ted only if you define a get accessor method for the property.

B A method representing the parameterful property’s set accessor method. This is emit-
ted only if you define a set accessor method for the property.

Chapter 10 Properties 255

B A property definition in the managed assembly’s metadata, which is always emitted.
There’s no special parameterful property metadata definition table because, to the CLR,
parameterful properties are just properties.

For the BitArray class shown earlier, the compiler compiles the indexer as though the original
source code were written as follows:

public sealed class BitArray {

// This is the indexer's get accessor method.
public Boolean get_Item(Int32 bitPos) { /* ... */ }

// This is the indexer's set accessor method.
public void set_Item(Int32 bitPos, Boolean value) { /* ... */ }
}

The compiler automatically generates names for these methods by prepending get_ and
set_ to the indexer name. Because the C# syntax for an indexer doesn't allow the developer
to specify an indexer name, the C# compiler team had to choose a default name to use for
the accessor methods; they chose Item. Therefore, the method names emitted by the
compiler are get_Item and set_Item.

When examining the .NET Framework Reference documentation, you can tell if a type
offers an indexer by looking for a property named Item. For example, the
System.Collections.Generic.List type offers a public instance property named Item;
this property is List's indexer.

When you program in C#, you never see the name of Item, so you don't normally care
that the compiler has chosen this name for you. However, if you're designing an indexer
for a type that code written in other programming languages will be accessing, you might
want to change the default name, Item, given to your indexer's get and set accessor
methods. C# allows you to rename these methods by applying the
System.Runtime.CompilerServices.IndexerNameAttribute custom attribute to the
indexer. The following code demonstrates how to do this:

using System;
using System.Runtime.CompilerServices;

public sealed class BitArray {

[IndexerName("Bit")]
public Boolean this[Int32 bitPos] {
// At Tleast one accessor method is defined here
}
}

Now the compiler will emit methods called get_Bit and set_Bit instead of get_Item and
set_Item. When compiling, the C# compiler sees the IndexerName attribute, and this tells

256

Part Il Designing Types

the compiler how to name the methods and the property metadata; the attribute itself is not
emitted into the assembly’s metadata.?

Here's some Visual Basic code that demonstrates how to access this C# indexer:

' Construct an instance of the BitArray type.
Dim ba as New BitArray(10)

' Visual Basic uses () instead of [] to specify array elements.
Console.WriteLine(ba(2)) ' Displays True or False

' Visual Basic also allows you to access the indexer by its name.
Console.WriteLine(ba.Bit(2)) ' Displays same as previous line

In C#, a single type can define multiple indexers as long as the indexers all take different
parameter sets. In other programming languages, the IndexerName attribute allows you to
define multiple indexers with the same signature because each can have a different name.
The reason C# won't allow you to do this is because its syntax doesn't refer to the indexer by
name; the compiler wouldn't know which indexer you were referring to. Attempting to com-
pile the following C# source code causes the compiler to generate the following message:
"error C0111l: Type 'SomeType' already defines a member called 'this' with
the same parameter types."

using System;
using System.Runtime.CompilerServices;

public sealed class SomeType {

// Define a get_Item accessor method.
public Int32 this[Boolean b] {

get { return 0; }
}

// Define a get_Jeff accessor method.
[IndexerName("Jeff")]
public String this[Boolean b] {
get { return null; }
}
}

You can clearly see that C# thinks of indexers as a way to overload the [] operator, and
this operator can’t be used to disambiguate parameterful properties with different method
names and identical parameter sets.

By the way, the System.String type is an example of a type that changed the name of its in-
dexer. The name of String's indexer is Chars instead of Item. This read-only property allows
you to get an individual character within a string. For programming languages that don't use
[1 operator syntax to access this property, Chars was decided to be a more meaningful name.

2 For this reason, the IndexerNameAttribute class is not part of the ECMA standardization of the CLI and the C#
language

Chapter 10 Properties 257

Selecting the Primary Parameterful Property

C#'s limitations with respect to indexers brings up the following two questions:

B What if a type is defined in a programming language that does allow the
developer to define several parameterful properties?

B How can this type be consumed from C#?

The answer to both questions is that a type must select one of the parameterful
property names to be the default property by applying an instance of
System.Reflection.DefaultMemberAttribute to the class itself. For the record,
DefaultMemberAttribute can be applied to a class, a structure, or an interface. In C#,
when you compile a type that defines a parameterful property, the compiler automati-
cally applies an instance of DefaultMember attribute to the defining type and takes

it into account when you use the IndexerName attribute. This attribute’s constructor
specifies the name that is to be used for the type's default parameterful property.

So, in C#, if you define a type that has a parameterful property and you don't specify
the IndexerName attribute, the defining type will have a Defaul tMember attribute
indicating Item. If you apply the IndexerName attribute to a parameterful property, the
defining type will have a DefaultMember attribute indicating the string name specified
in the IndexerName attribute. Remember, C# won't compile the code if it contains
parameterful properties with different names.

For a language that supports several parameterful properties, one of the property
method names must be selected and identified by the type’s DefaultMember attribute.
This is the only parameterful property that C# will be able to access.

When the C# compiler sees code that is trying to get or set an indexer, the compiler
actually emits a call to one of these methods. Some programming languages might not
support parameterful properties. To access a parameterful property from one of these
languages, you must call the desired accessor method explicitly. To the CLR, there's no
difference between parameterless properties and parameterful properties, so you use the
same System.Reflection.PropertyInfo class to find the association between a param-
eterful property and its accessor methods.

The Performance of Calling Property Accessor Methods

For simple get and set accessor methods, the just-in-time (JIT) compiler inlines the code

so that there’s no runtime performance hit as a result of using properties rather than fields.
Inlining is when the code for a method (or accessor method, in this case) is compiled directly
in the method that is making the call. This removes the overhead associated with making a

258

Part Il Designing Types

call at runtime at the expense of making the compiled method’s code bigger. Because prop-
erty accessor methods typically contain very little code, inlining them can make the native
code smaller and can make it execute faster.

Note that the JIT compiler does not inline property methods when debugging code because
inlined code is harder to debug. This means that the performance of accessing a property
can be fast in a release build and slow in a debug build. Field access is fast in both debug and
release builds.

Property Accessor Accessibility

Occasionally, when designing a type, it is desired to have one accessibility for a get accessor
method and a different accessibility for a set accessor method. The most common scenario
is to have a public get accessor and a protected set accessor:

public class SomeType {
private String m_name;
public String Name {
get { return m_name; }
protected set {m_name = value; }

}

As you can see from the code above, the Name property is itself declared as a pub1ic prop-
erty, and this means that the get accessor method will be public and therefore callable by all
code. However, notice that the set accessor is declared as protected and will be callable only
from code defined within SomeType or from code in a class that is derived from SomeType.

When defining a property with accessor methods that have different accessibilities, C#
syntax requires that the property itself must be declared with the least-restrictive accessibility
and that more restrictive accessibility be applied to just one of the accessor methods. In the
example above, the property is public, and the set accessor is protected (more restrictive
than public).

Generic Property Accessor Methods

Since properties are really just methods, and because C# and the CLR allow methods to be
generic, sometimes people want to define properties that introduce their own generic type
parameters (as opposed to using the enclosing type's generic type parameter). However,

C# does not allow this. The main reason why properties cannot introduce their own generic
type parameters is because they don’t make sense conceptually. A property is supposed to
represent a characteristic of an object that can be queried or set. Introducing a generic type
parameter would mean that the behavior of the querying/setting could be changed, but
conceptually, a property is not supposed to have behavior. If you want your object to expose
some behavior—generic or not—define a method, not a property.

Chapter 11
Events

Designing a Type That Exposesan Event 260
How the Compiler ImplementsanEvent 266
Designing a Type That ListensforanEvent 269
Explicitly Implementingan Event......... i i 271

In this chapter, I'll talk about the last kind of member a type can define: events. A type that
defines an event member allows the type (or instances of the type) to notify other objects
that something special has happened. For example, the Button class offers an event called
Click. When a Button object is clicked, one or more objects in an application may want to
receive notification about this event in order to perform some action. Events are type mem-
bers that allow this interaction. Specifically, defining an event member means that a type is
offering the following capabilities:

B A method can register its interest in the event.
B A method can unregister its interest in the event.

B Registered methods will be notified when the event occurs.

Types can offer this functionality when defining an event because they maintain a list of the
registered methods. When the event occurs, the type notifies all of the registered methods in
the collection.

The common language runtime’s (CLR's) event model is based on delegates. A delegate is a
type-safe way to invoke a callback method. Callback methods are the means by which objects
receive the notifications they subscribed to. In this chapter, I'll be using delegates, but | won't
fully explain all their details until Chapter 17, “Delegates.”

To help you fully understand the way events work within the CLR, I'll start with a scenario in
which events are useful. Suppose you want to design an e-mail application. When an e-mail
message arrives, the user might like the message to be forwarded to a fax machine or a pager.
In architecting this application, let’s say that you'll first design a type, called MailManager,
that receives the incoming e-mail messages. MailManager will expose an event called
NewMail. Other types (such as Fax and Pager) may register interest in this event. When
MailManager receives a new e-mail message, it will raise the event, causing the message to
be distributed to each of the registered objects. Each object can process the message in any
way it desires.

259

260 Part Il Designing Types

When the application initializes, let’s instantiate just one MailManager instance—the applica-
tion can then instantiate any number of Fax and Pager types. Figure 11-1 shows how the
application initializes and what happens when a new e-mail message arrives.

Pager #1
O
@ MailManager @

A method in the Fax object registers interest with the MailManager’s event.

A method in the Pager object registers interest with the MailManager’s event.
A new mail message arrives at MailManager.

The MailManager object fires the notification off to all the registered
methods, which process the mail message as desired

3 U9 N (=

FIGURE 11-1 Architecting an application to use events

Here's how the application illustrated in Figure 11-1 works: The application initializes by
constructing an instance of MailManager. MailManager offers a NewMail event. When the
Fax and Pager objects are constructed, they register an instance method with MailManager's
NewMail event so that MailManager knows to notify the Fax and Pager objects when new
e-mail messages arrive. Now, when MailManager receives a new e-mail message (sometime
in the future), it will raise the NewMai1 event, giving all of the registered methods an oppor-
tunity to process the new message in any way they want.

Designing a Type That Exposes an Event

There are many steps a developer must take in order to define a type that exposes one

or more event members. In this section, I'll walk through each of the necessary steps. The
MailManager sample application (which can be downloaded from http.//wintellect.com)
shows all of the source code for the MailManager type, the Fax type, and the Pager type.
You'll notice that the Pager type is practically identical to the Fax type.

Chapter 11 Events 261

Step #1: Define a type that will hold any additional
information that should be sent to receivers of the event
notification

When an event is raised, the object raising the event may want to pass some additional
information to the objects receiving the event notification. This additional information

needs to be encapsulated into its own class, which typically contains a bunch of private fields
along with some read-only public properties to expose these fields. By convention, classes
that hold event information to be passed to the event handler should be derived from
System.EventArgs, and the name of the class should be suffixed with EventArgs. In this
example, the NewMailEventArgs class has fields identifying who sent the message (m_from),
who is receiving the message (m_to), and the subject of the message (m_subject).

// Step #1: Define a type that will hold any additional information that
// should be sent to receivers of the event notification
internal class NewMailEventArgs : EventArgs {

private readonly String m_from, m_to, m_subject;

public NewMailEventArgs(String from, String to, String subject) {
m_from = from; m_to = to; m_subject = subject;

3

public String From { get { return m_from; 11
public String To { get { return m_to; bl
public String Subject { get { return m_subject; } }

Note The EventArgs class is defined in the Microsoft .NET Framework Class Library (FCL) and is
implemented like this:

[ComVisible(true), Serializable]

public class EventArgs {
public static readonly EventArgs Empty = new EventArgs(Q);
public EventArgs() { 1}

}

As you can see, this type is nothing to write home about. It simply serves as a base type from
which other types can derive. Many events don't have any additional information to pass on.
For example, when a Button notifies its registered receivers that it has been clicked, just invok-
ing the callback method is enough information. When you're defining an event that doesn't
have any additional data to pass on, just use EventArgs.Empty rather than constructing a new
EventArgs object.

262

Part Il Designing Types

Step #2: Define the event member

An event member is defined using the C# keyword event. Each event member is given ac-
cessibility (which is almost always pub1ic so that other code can access the event member),
a type of delegate indicating the prototype of the method(s) that will be called, and a name
(which can be any valid identifier). Here is what the event member in our MailManager class
looks like:

internal class MailManager {

// Step #2: Define the event member
public event EventHandler<NewMailEventArgs> NewMail;

}

NewMail is the name of this event. The type of the event member is
EventHandler<NewMailEventArgs>, which means that all receivers of the event

notification must supply a callback method whose prototype matches that of the
EventHandler<NewMailEventArgs> delegate type. Since the generic System.EventHandler
delegate is defined as follows:

public delegate void EventHandler<TEventArgs>(Object sender, TEventArgs e)
where TEventArgs: EventArgs;

the method prototypes must look like this:

void MethodName(Object sender, NewMailEventArgs e);

Note A lot of people wonder why the event pattern requires the sender parameter to always
be of type Object. After all, since the MailManager will be the only type raising an event with a
NewMailEventArgs object, it makes more sense for the callback method to be prototyped like
this:

void MethodName(MailManager sender, NewMailEventArgs e);

The pattern requires the sender parameter to be of type Object mostly because of inheritance.
What if Mai1Manager were used as a base class for SmtpMailManager? In this case, the callback
method should have the sender parameter prototyped as SmtpMailManager instead of
MaiTManager, but this can’'t happen because SmtpMailManager just inherited the NewMa1i1l
event. So the code that was expecting SmtpMailManager to raise the event must still have to
cast the sender argument to SmtpMailManager. In other words, the cast is still required, so the
sender parameter might as well be typed as Object.

The next reason for typing the sender parameter as Object is just flexibility. It allows the del-
egate to be used by multiple types that offer an event that passes a NewMai1EventArgs object.
For example, a PopMailManager class could use the delegate even if this class were not derived
from MailManager.

Chapter 11 Events 263

The event pattern also requires that the delegate definition and the callback method name the
EventArgs-derived parameter e. The only reason for this is to add additional consistency to the
pattern, making it easier for developers to learn and implement the pattern. Tools that spit out
source code (such as Microsoft Visual Studio) also know to call the parameter e.

Finally, the event pattern requires all event handlers to have a return type of void. This is
necessary because raising an event might call several callback methods, and there is no way
to get the return values from all of them. Having a return type of void doesn't allow the
callbacks to return a value. Unfortunately, there are some event handlers in the FCL, such as
ResolveEventHandler, that did not follow Microsoft's own prescribed pattern because it
returns an object of type Assembly.

Step #3: Define a method responsible for raising the event to
notify registered objects that the event has occurred

By convention, the class should define a protected, virtual method that is called by code
internally within the class and its derived classes when the event is to be raised. This method
takes one parameter, a NewMailEventArgs object, which includes the information passed
to the objects receiving the notification. The default implementation of this method simply
checks if any objects have registered interest in the event and, if so, the event will be raised,
thereby notifying the registered methods that the event has occurred. Here is what the
method in our MailManager class looks like:

internal class MailManager {

// Step #3: Define a method responsible for raising the event

// to notify registered objects that the event has occurred

// If this class is sealed, make this method private and nonvirtual
protected virtual void OnNewMail(NewMailEventArgs e) {

// Copy a reference to the delegate field now into a temporary field for thread safety
EventHandler<EventArgs> temp =
Interlocked.CompareExchange(ref NewMail, null, null);

// If any methods registered interest with our event, notify them
if (temp != null) temp(this, e);

264

Part Il Designing Types

Raising an Event in a Thread-Safe Way

When the .NET Framework first shipped, the recommended way for developers to raise
an event was by using code similar to this:

// Version 1
protected virtual void OnNewMail(NewMailEventArgs e) {

if (NewMail != null) NewMail(this, e);
}
The problem with the OnNewMai1 method is that the thread could see that NewMa1i1 is
not nul1, and then, just before invoking NewMail, another thread could remove a del-
egate from the chain making NewMai1 nul1, resulting in a Nul1ReferenceException
being thrown. To fix this race condition, many developers write the OnNewMai1 method
as follows:

// Version 2
protected void OnNewMail(NewMailEventArgs e) {

EventHandler<NewMailEventArgs> temp = NewMail;

if (temp != null) temp(this, e);
3
The thinking here is that a reference to NewMa1i1 is copied into a temporary variable,
temp, which refers to the chain of delegates at the moment the assignment is per-
formed. Now, this method compares temp and nul1 and invokes temp, so it doesn’t
matter if another thread changes NewMa1i1 after the assignment to temp. Remember
that delegates are immutable and this is why this technique works in theory. However,
what a lot of developers don't realize is that this code could be optimized by the com-
piler to remove the local temp variable entirely. If this happens, this version of the code
is identical to the first version, so a Nul1ReferenceException is still possible.

To really fix this code, you should rewrite OnNewMai1 like this:

// Version 3

protected void OnNewMail(NewMailEventArgs e) {
EventHandler<NewMailEventArgs> temp = Thread.VolatileRead(ref NewMail);
if (temp !'= null) temp(this, e);

}

The call to VolatileRead forces NewMail to be read at the point of the call and the
reference really has to be copied to the temp variable now. Then, temp will be invoked
only if it is not nu11. Unfortunately, it is impossible to write the code as shown because
there isn't a generic overload of the VolatileRead method. However, there is a generic
overload of Interlocked.CompareExchange, which you can use:
// Version 4
protected void OnNewMail(NewMailEventArgs e) {

EventHandler<NewMailEventArgs> temp =

Interlocked.CompareExchange(ref NewMail, null, null);
if (temp != null) temp(this, e);

Chapter 11 Events 265

Here, CompareExchange changes the NewMail reference to nul11 if it is nu11 and

does not alter NewMail if it is not nul1. In other words, CompareExchange doesn't
change the value in NewMai1 at all, but it does return the value inside NewMa1i1l

in an atomic, thread-safe way. See Chapter 28, “Primitive Thread Synchronization
Constructs,” for more information about the Thread.VolatileRead and Interlocked.
CompareExchange methods.

While the fourth version of this code is the best, technically correct version, you can
actually use the second version because the just-in-time (JIT) compiler is aware of this
pattern and it knows not to optimize away the local temp variable. Specifically, all of
Microsoft's JIT compilers respect the invariant of not introducing new reads to heap
memory and therefore, caching a reference in a local variable ensures that the heap
reference is accessed only once. This is not documented and, in theory, it could change,
which is why you should use the fourth version. But in reality, Microsoft's JIT compiler
would never embrace a change that would break this pattern because too many appli-
cations would break.! In addition, events are mostly used in single-threaded scenarios
(Windows Forms, Windows Presentation Foundation, and Microsoft Silverlight) and so
thread safety is not an issue anyway.

It is very important to note that due to this thread race condition, it is also possible that
a method will be invoked after it has been removed from the event’s delegate chain.

As a convenience, you could define an extension method (as discussed in Chapter 8,
“Methods") that encapsulates this thread-safety logic. Define the extension method like this:

public static class EventArgExtensions {

3

public static void Raise<TEventArgs>(this TEventArgs e,
Object sender, ref EventHandler<TEventArgs> eventDelegate)
where TEventArgs : EventArgs {

// Copy a reference to the delegate field now into a temporary field for thread safety
EventHandler<TEventArgs> temp =
Interlocked.CompareExchange(ref eventDelegate, null, null);

// If any methods registered interest with our event, notify them
if (temp !'= null) temp(sender, e);

And now, we can rewrite the OnNewMail method as follows:

protected virtual void OnNewMail(NewMailEventArgs e) {

3

e.Raise(this, ref m_NewMail);

1 This was actually told to me by a member of Microsoft's JIT compiler team.

266

Part Il Designing Types

A class that uses MailManager as a base type is free to override the OnNewMai1 method. This
capability gives the derived class control over the raising of the event. The derived class can
handle the new e-mail message in any way it sees fit. Usually, a derived type calls the base
type's OnNewMail method so that the registered method(s) receive the notification. However,
the derived class might decide to disallow the event from being forwarded.

Step #4: Define a method that translates the input into the
desired event

Your class must have some method that takes some input and translates it into the raising of
the event. In my MailManager example, the SimulateNewMail method is called to indicate
that a new e-mail message has arrived into MailManager:

internal class MailManager {

// Step #4: Define a method that translates the
// input into the desired event
public void SimulateNewMail(String from, String to, String subject) {

// Construct an object to hold the information we wish
// to pass to the receivers of our notification
NewMailEventArgs e = new NewMailEventArgs(from, to, subject);

// Call our virtual method notifying our object that the event

// occurred. If no type overrides this method, our object will

// notify all the objects that registered interest in the event
OnNewMail(e);

}

SimulateNewMail accepts information about the message and constructs a
NewMailEventArgs object, passing the message information to its constructor.
MaiTManager’s own virtual OnNewMail method is then called to formally notify the
MailManager object of the new e-mail message. Usually, this causes the event to be raised,
notifying all of the registered methods. (As mentioned before, a class using MailManager as
a base class can override this behavior.)

How the Compiler Implements an Event

Now that you know how to define a class that offers an event member, let's take a closer look
at what an event really is and how it works. In the MailManager class, we have a line of code
that defines the event member itself:

public event EventHandler<NewMailEventArgs> NewMail;

Chapter 11 Events 267

When the C# compiler compiles the line above, it translates this single line of source code
into the following three constructs:

// 1. A PRIVATE delegate field that is initialized to null
private EventHandler<NewMailEventArgs> NewMail = null;

// 2. A PUBLIC add_Xxx method (where Xxx is the Event name)
// Allows methods to register interest in the event.
public void add_NewMail(EventHandler<NewMailEventArgs> value) {
// The Toop and the call to CompareExchange is all just a fancy way
// of adding a delegate to the event in a thread-safe way
EventHandler<NewMailEventArgs>prevHandler;
EventHandler<NewMailEventArgs> newMail = this.NewMail;
do {
prevHandler = newMail;
EventHandler<NewMailEventArgs>newHandler =
(EventHandler<NewMailEventArgs>) Delegate.Combine(prevHandler, value);
newMail = Interlocked.CompareExchange<EventHandTer<NewMailEventArgs>>(
ref this.NewMail, newHandler, prevHandler);
} while (newMail != prevHandler);

// 3. A PUBLIC remove_Xxx method (where Xxx is the Event name)
// Allows methods to unregister interest in the event.
public void remove_NewMail(EventHandler<NewMailEventArgs> value) {
// The loop and the call to CompareExchange is all just a fancy way
// of removing a delegate from the event in a thread-safe way
EventHandler<NewMailEventArgs> prevHandler;
EventHandler<NewMailEventArgs> newMail = this.NewMail;
do {
prevHandler = newMail;
EventHandler<NewMailEventArgs> newHandler =
(EventHandler<NewMailEventArgs>) Delegate.Remove(prevHandler, value);
newMail = Interlocked.CompareExchange<EventHandTer<NewMailEventArgs>>(
ref this.NewMail, newHandler, prevHandler);
} while (newMail != prevHandler);

}

The first construct is simply a field of the appropriate delegate type. This field is a reference
to the head of a list of delegates that will be notified when this event occurs. This field is
initialized to nu11, meaning that no listeners have registered interest in the event. When a
method registers interest in the event, this field refers to an instance of the
EventHandler<NewMailEventArgs> delegate, which may refer to additional
EventHandler<NewMailEventArgs> delegates. When a listener registers interest in an event,
the listener is simply adding an instance of the delegate type to the list. Obviously, unregis-
tering means removing the delegate from the list.

You'll notice that the delegate field, NewMa1i1 in this example, is always private even though
the original line of source code defines the event as public. The reason for making the
delegate field private is to prevent code outside the defining class from manipulating it

268

Part Il Designing Types

improperly. If the field were publiic, any code could alter the value in the field and poten-
tially wipe out all of the delegates that have registered interest in the event.

The second construct the C# compiler generates is a method that allows other objects to
register their interest in the event. The C# compiler automatically names this function by
prepending add_ to the event’'s name (NewMail). The C# compiler automatically generates
the code that is inside this method. The code always calls System.Delegate’s static Combine
method, which adds the instance of a delegate to the list of delegates and returns the new
head of the list, which gets saved back in the field.

The third construct the C# compiler generates is a method that allows an object to unreg-
ister its interest in the event. Again, the C# compiler automatically names this function by
prepending remove_ to the event’s name (NewMail). The code inside this method always calls
Delegate’s static Remove method, which removes the instance of a delegate from the list of
delegates and returns the new head of the list, which gets saved back in the field.

Warning If you attempt to remove a method that was never added, then Delegate’s Remove
method internally does nothing. That is, you get no exception or warning of any type; the event'’s
collection of methods remains unchanged.

Note The add and remove methods use a well-known pattern to update a value in a thread-safe
way. This pattern is discussed in the “The Interlocked Anything Pattern” section of Chapter 28."

In this example, the add and remove methods are public. The reason they are public is
that the original line of source code declared the event to be pubTlic. If the event had been
declared protected, the add and remove methods generated by the compiler would also
have been declared protected. So, when you define an event in a type, the accessibility of
the event determines what code can register and unregister interest in the event, but only
the type itself can ever access the delegate field directly. Event members can also be declared
as static or virtual, in which case the add and remove methods generated by the compiler
would be either static or virtual, respectively.

In addition to emitting the aforementioned three constructs, compilers also emit an event
definition entry into the managed assembly’s metadata. This entry contains some flags and
the underlying delegate type, and refers to the add and remove accessor methods. This
information exists simply to draw an association between the abstract concept of an “event”
and its accessor methods. Compilers and other tools can use this metadata, and this informa-
tion can also be obtained by using the System.Reflection.EventInfo class. However, the
CLR itself doesn't use this metadata information and requires only the accessor methods at
runtime.

Chapter 11 Events 269

Designing a Type That Listens for an Event

The hard work is definitely behind you at this point. In this section, I'll show you how to define
a type that uses an event provided by another type. Let’s start off by examining the code for
the Fax type:

internal sealed class Fax {
// Pass the MailManager object to the constructor
public Fax(MailManager mm) {

}

// Construct an instance of the EventHandler<NewMailEventArgs>
// delegate that refers to our FaxMsg callback method.

// Register our callback with MailManager's NewMail event
mm.NewMail += FaxMsg;

// This is the method the MailManager will call
// when a new e-mail message arrives
private void FaxMsg(Object sender, NewMailEventArgs e) {

// 'sender' identifies the MailManager object in case
// we want to communicate back to it.

// 'e' identifies the additional event information
// the MailManager wants to give us.

// Normally, the code here would fax the e-mail message.

// This test implementation displays the info in the console

Console.WriteLine("Faxing mail message:");

Console.WriteLine(" From={0}, To={1}, Subject={2}",
e.From, e.To, e.Subject);

// This method could be executed to have the Fax object unregister
// itself with the NewMail event so that it no longer receives

// notifications

public void Unregister(MailManager mm) {

3

// Unregister with MailManager's NewMail event
mm.NewMail -= FaxMsg;

When the e-mail application initializes, it would first construct a Mai1Manager object and
save the reference to this object in a variable. Then the application would construct a Fax ob-
ject, passing the reference to the MailManager object as a parameter. In the Fax constructor,
the Fax object registers its interest in MailManager’'s NewMail event using C#'s += operator:

mm.NewMail += FaxMsg;

270

Part Il Designing Types

Because the C# compiler has built-in support for events, the compiler translates the use of
the += operator into the following line of code to add the object’s interest in the event:

mm.add_NewMail(new EventHandler<NewMailEventArgs>(this.FaxMsg));

As you can see, the C# compiler is generating code that will construct an
EventHandler<NewMailEventArgs> delegate object that wraps the Fax class's FaxMsg
method. Then, the C# compiler calls the MailManager’s add_NewMail method, passing it the
new delegate. Of course, you can verify all of this by compiling the code and looking at the IL
with a tool such as ILDasm.exe.

Even if you're using a programming language that doesn't directly support events, you can
still register a delegate with the event by calling the add accessor method explicitly. The ef-
fect is identical; the source code will just not look as pretty. It's the add method that registers
the delegate with the event by adding it to the event’s list of delegates.

When the MailManager object raises the event, the Fax object’s FaxMsg method gets called.
The method is passed a reference to the MailManager object as the first parameter, sender-.
Most of the time, this parameter is ignored, but it can be used if the Fax object wants to
access members of the MailManager object in response to the event notification. The second
parameter is a reference to a NewMailEventArgs object. This object contains any additional
information the designer of MailManager and NewMailEventArgs thought would be useful
to the event receivers.

From the NewMai1EventArgs object, the FaxMsg method has easy access to the message'’s
sender, the message’s recipient, and the message’s subject. In a real Fax object, this informa-
tion would be faxed somewhere. In this example, the information is simply displayed in the
console window.

When an object is no longer interested in receiving event notifications, it should unregister
its interest. For example, the Fax object would unregister its interest in the NewMai1 event

if the user no longer wanted his or her e-mail forwarded to a fax. As long as an object has
registered one of its methods with an event, the object can’t be garbage collected. If your
type implements IDisposable’s Dispose method, the implementation should cause it to
unregister interest in all events. (See Chapter 21, "Automatic Memory Management (Garbage
Collection),” for more information about IDisposable.)

Code that demonstrates how to unregister for an event is shown in Fax’s Unregister method.
This method is practically identical to the code shown in the Fax constructor. The only dif-
ference is that this code uses -= instead of +=. When the C# compiler sees code using the -=
operator to unregister a delegate with an event, the compiler emits a call to the event’s re-
move method:

mm. remove_NewMail(new EventHandler<NewMailEventArgs>(FaxMsg));

Chapter 11 Events 271

As with the += operator, even if you're using a programming language that doesn't directly
support events, you can still unregister a delegate with the event by calling the remove
accessor method explicitly. The remove method unregisters the delegate from the event by
scanning the list for a delegate that wraps the same method as the one passed in. If a match
is found, the existing delegate is removed from the event's list of delegates. If a match isn't
found, no error occurs, and the list is unaltered.

By the way, C# requires your code to use the += and -= operators to add and remove del-
egates from the list. If you try to call the add or remove method explicitly, the C# compiler
produces the CS0571 "cannot explicitly call operator or accessor" error message.

Explicitly Implementing an Event

The System.Windows.Forms.Control type defines about 70 events. If the Control type
implemented the events by allowing the compiler to implicitly generate the add and remove
accessor methods and delegate fields, every Control object would have 70 delegate fields
in it just for the events! Since most programmers care about just a few events, an enor-
mous amount of memory would be wasted for each object created from a Control-derived
type. By the way, the ASP.NET System.Web.UI.Control and the Windows Presentation
Foundation (WPF) System.Windows .UIETement type also offer many events that most
programmers do not use.

In this section, | discuss how the C# compiler allows a class developer to explicitly implement
an event, allowing the developer to control how the add and remove methods manipulate
the callback delegates. I'm going to demonstrate how explicitly implementing an event can
be used to efficiently implement a class that offers many events. However, there are certainly
other scenarios where you might want to explicitly implement a type's event.

To efficiently store event delegates, each object that exposes events will maintain a collection
(usually a dictionary) with some sort of event identifier as the key and a delegate list as the
value. When a new object is constructed, this collection is empty. When interest in an event is
registered, the event’s identifier is looked up in the collection. If the event identifier is there,
the new delegate is combined with the list of delegates for this event. If the event identifier
isn't in the collection, the event identifier is added with the delegate.

When the object needs to raise an event, the event identifier is looked up in the collection. If
the collection doesn't have an entry for the event identifier, nothing has registered interest in
the event and no delegates need to be called back. If the event identifier is in the collection,
the delegate list associated with the event identifier is invoked. Implementing this design
pattern is the responsibility of the developer who is designing the type that defines the
events; the developer using the type has no idea how the events are implemented internally.

272

Part Il Designing Types

Here is an example of how you could accomplish this pattern. First, | implemented an
EventSet class that represents a collection of events and each event’s delegate list as follows:

using System;
using System.Collections.Generic;

// This class exists to provide a bit more type safety and
// code maintainability when using EventSet
public sealed class EventKey : Object { }

public sealed class EventSet {
// The private dictionary used to maintain EventKey -> Delegate mappings
private readonly Dictionary<EventKey, Delegate> m_events =
newDictionary<EventKey, Delegate>();

// Adds an EventKey -> Delegate mapping if it doesn't exist or
// combines a delegate to an existing EventKey
public void Add(EventKey eventKey, Delegate handler) {
Monitor.Enter(m_events);
Delegate d;
m_events.TryGetValue(eventKey, out d);
m_events[eventKey] = Delegate.Combine(d, handler);
Monitor.Exit(m_events);

// Removes a delegate from an EventKey (if it exists) and
// removes the EventKey -> Delegate mapping the last delegate is removed
public void Remove(EventKey eventKey, Delegate handler) {
Monitor.Enter(m_events);
// Call TryGetValue to ensure that an exception is not thrown if
// attempting to remove a delegate from an EventKey not in the set
Delegate d;
if (m_events.TryGetValue(eventKey, out d)) {
d = Delegate.Remove(d, handler);

// If a delegate remains, set the new head else remove the EventKey
if (d != null) m_events[eventKey] = d;
else m_events.Remove(eventKey);

}

Monitor.Exit(m_events);

// Raises the event for the indicated EventKey

public void Raise(EventKey eventKey, Object sender, EventArgs e) {
// Don't throw an exception if the EventKey 1is not in the set
Delegate d;
Monitor.Enter(m_events);
m_events.TryGetValue(eventKey, out d);
Monitor.Exit(m_events);

if (d = null) {
// Because the dictionary can contain several different delegate types,
// it is impossible to construct a type-safe call to the delegate at
// compile time. So, I call the System.Delegate type's DynamicInvoke
// method, passing it the callback method's parameters as an array of

Chapter 11 Events 273

// objects. Internally, DynamicInvoke will check the type safety of the

// parameters with the callback method being called and call the method.

// If there is a type mismatch, then DynamicInvoke will throw an exception.
d.DynamicInvoke(newObject[] { sender, e });

}

Note The FCL defines a type, System.ComponentModel . EventHandlerList, which does
essentially the same thing as my EventSet class. The System.Windows . Forms.Control and
System.Web.UI.Control types use the EventHandlerList type internally to maintain their
sparse set of events. You're certainly welcome to use the FCL's EventHandlerList type if

you'd like. The difference between the EventHandlerList type and my EventSet type is that
EventHandlerList uses a linked list instead of a hash table. This means that accessing elements
managed by the EventHandlerList is slower than using my EventSet. In addition, the
EventHandlerList doesn't offer any thread-safe way to access the events; you would have to
implement your own thread-safe wrapper around the EventHandlerList collection if you need
to do this.

Now, | show a class that uses my EventSet class. This class has a field that refers to an
EventSet object, and each of this class’s events is explicitly implemented so that each event's
add method stores the specified callback delegate in the EventSet object and each event's
remove method eliminates the specified callback delegate (if found):

using System;

// Define the EventArgs-derived type for this event.
public class FooEventArgs : EventArgs { }

public class TypeWithLotsOfEvents {

// Define a private instance field that references a collection.

// The collection manages a set of Event/Delegate pairs.

// NOTE: The EventSet type is not part of the FCL, it is my own type.
private readonly EventSet m_eventSet = newEventSet();

// The protected property allows derived types access to the collection.
protected EventSet EventSet { get { return m_eventSet; } }

#region Code to support the Foo event (repeat this pattern for additional events)
// Define the members necessary for the Foo event.

// 2a. Construct a static, read-only object to identify this event.

// Each object has its own hash code for Tooking up this

// event's delegate linked Tist in the object's collection.

protected static readonly EventKey s_fooEventKey = newEventKey();

// 2d. Define the event's accessor methods that add/remove the
// delegate from the collection.
public event EventHandler<FooEventArgs> Foo {

add { m_eventSet.Add(s_fooEventKey, value); }

remove { m_eventSet.Remove(s_fooEventKey, value); }

274 Part Il Designing Types

// 2e. Define the protected, virtual On method for this event.
protected virtual void OnFoo(FooEventArgs e) {
m_eventSet.Raise(s_fooEventKey, this, e);

}

// 2f. Define the method that translates input to this event.
public void SimulateFoo() {OnFoo(newFooEventArgs());}
#endregion

}

Code that uses the TypeWithLotsOfEvents type can't tell whether the events have been
implemented implicitly by the compiler or explicitly by the developer. They just register the
events using normal syntax. Here is some code demonstrating this:

public sealed class Program {
public static void Main() {
TypeWithLotsOfEvents twle = newTypeWithLotsOfEvents();

// Add a callback here
twle.Foo += HandleFooEvent;

// Prove that it worked
twle.SimulateFoo();

}

private static void HandleFooEvent(object sender, FooEventArgs e) {
Console.WriteLine("Handling Foo Event here...™);

}

Chapter 12
Generics

Generics in the Framework Class Library.o oot 280
Wintellect's Power Collections Libraryo i, 281
Generics Infrastructure. e 282
Generic Interfaces.t 289
Generic Delegates.ot e 290
Delegate and Interface Contravariant and Covariant

Generic Type Argumentsouutttn et ittt 291
Generic Methods. e 293
Generics and OtherMembers. i i 296
Verifiability and Constraints i, 296

Developers who are familiar with object-oriented programming know the benefits it offers.
One of the big benefits that make developers extremely productive is code reuse, which is
the ability to derive a class that inherits all of the capabilities of a base class. The derived class
can simply override virtual methods or add some new methods to customize the behavior of
the base class to meet the developer’s needs. Generics is another mechanism offered by the
common language runtime (CLR) and programming languages that provides one more form
of code reuse: algorithm reuse.

Basically, one developer defines an algorithm such as sorting, searching, swapping, compar-
ing, or converting. However, the developer defining the algorithm doesn't specify what data
type(s) the algorithm operates on; the algorithm can be generically applied to objects of
different types. Another developer can then use this existing algorithm as long as he or she
indicates the specific data type(s) the algorithm should operate on, for example, a sorting
algorithm that operates on Int32s, Strings, etc.,, or a comparing algorithm that operates on
DateT1imes, Versions, etc.

Most algorithms are encapsulated in a type, and the CLR allows the creation of generic
reference types as well as generic value types, but it does not allow the creation of generic
enumerated types. In addition, the CLR allows the creation of generic interfaces and generic
delegates. Occasionally, a single method can encapsulate a useful algorithm, and therefore,
the CLR allows the creation of generic methods that are defined in a reference type, value
type, or interface.

275

276

Part Il Designing Types

Let's look at a quick example. The Framework Class Library (FCL) defines a generic list algorithm
that knows how to manage a set of objects; the data type of these objects is not specified

by the generic algorithm. Someone wanting to use the generic list algorithm can specify the
exact data type to use with it later.

The FCL class that encapsulates the generic list algorithm is called List<T> (pronounced List
of Tee), and this class is defined in the System.ColTlections.Generic namespace. Here is
what this class definition looks like (the code is severely abbreviated):

[Serializable]
public class List<T> : IList<T>, ICollection<T>, IEnumerable<T>,
IList, ICollection, IEnumerable {

public ListQ);

public void Add(T item);

public Int32 BinarySearch(T item);
public void Clear(Q);

public Boolean Contains(T item);

public Int32 IndexOf(T item);

public Boolean Remove(T item);

public void Sort();

public void Sort(IComparer<T> comparer);
public void Sort(Comparison<T> comparison);
public T[] ToArray(Q);

public Int32 Count { get; }
public T this[Int32 index] { get; set; }
}

The programmer who defined the generic List class indicates that it works with an unspeci-
fied data type by placing the <T> immediately after the class name. When defining a generic
type or method, any variables it specifies for types (such as T) are called type parameters. T
is a variable name that can be used in source code anywhere a data type can be used. For
example, in the List class definition, you see T being used for method parameters (the Add
method accepts a parameter of type T) and return values (the ToArray method returns a
single-dimension array of type T). Another example is the indexer method (called this in
C#). The indexer has a get accessor method that returns a value of type T and a set accessor
method that accepts a parameter of type T. Since the T variable can be used anywhere that
a data type can be specified, it is also possible to use T when defining local variables inside a
method or when defining fields inside a type.

Note Microsoft's design guidelines state that generic parameter variables should either be
called T or at least start with an uppercase T (as in TKey and TValue). The uppercase T stands for
type, just as an uppercase I stands for interface (as in IComparable).

Chapter 12 Generics 277

Now that the generic List<T> type has been defined, other developers can use this generic
algorithm by specifying the exact data type they would like the algorithm to operate on.
When using a generic type or method, the specified data types are referred to as type
arguments. For example, a developer might want to work with the List algorithm by
specifying a DateTime type argument. Here is some code that shows this:

private static void SomeMethod() {

}

// Construct a List that operates on DateTime objects
List<DateTime> dtList = new List<DateTime>();

// Add a DateTime object to the Tist
dtList.Add(DateTime.Now); // No boxing

// Add another DateTime object to the Tist
dtList.Add(DateTime.MinValue); // No boxing

// Attempt to add a String object to the 1ist
dtList.Add("1/1/2004"); // Compile-time error

// Extract a DateTime object out of the Tist
DateTime dt = dtList[0]; // No cast required

Generics provide the following big benefits to developers as exhibited by the code just
shown:

B Source code protection The developer using a generic algorithm doesn’t need to
have access to the algorithm's source code. With C++ templates or Java's generics,
however, the algorithm’s source code must be available to the developer who is using
the algorithm.

B Type safety When a generic algorithm is used with a specific type, the compiler and
the CLR understand this and ensure that only objects compatible with the specified
data type are used with the algorithm. Attempting to use an object of an incompatible
type will result in either a compiler error or a runtime exception being thrown. In the
example, attempting to pass a String object to the Add method results in the compiler
issuing an error.

B Cleaner code Since the compiler enforces type safety, fewer casts are required in your
source code, meaning that your code is easier to write and maintain. In the last line of
SomeMethod, a developer doesn't need to use a (DateT1ime) cast to put the result of the
indexer (querying element at index 0) into the dt variable.

B Better performance Before generics, the way to define a generalized algorithm was
to define all of its members to work with the Object data type. If you wanted to use
the algorithm with value type instances, the CLR had to box the value type instance
prior to calling the members of the algorithm. As discussed in Chapter 5, “Primitive,
Reference, and Value Types,” boxing causes memory allocations on the managed heap,
which causes more frequent garbage collections, which, in turn, hurt an application’s

278 Part Il Designing Types

performance. Since a generic algorithm can now be created to work with a specific val-
ue type, the instances of the value type can be passed by value, and the CLR no longer
has to do any boxing. In addition, since casts are not necessary (see the previous bullet),
the CLR doesn't have to check the type safety of the attempted cast, and this results in
faster code too.

To drive home the performance benefits of generics, | wrote a program that tests the perfor-
mance of the generic List algorithm against the FCL's non-generic ArrayList algorithm. In
fact, | tested the performance of these two algorithms by using both value type objects and

reference type objects. Here is the program itself:

using System;

using System.Collections;

using System.Collections.Generic;
using System.Diagnostics;

public static class Program {
public static void Main() {
ValueTypePerfTest();
ReferenceTypePerfTest();
}

private static void ValueTypePerfTest() {
const Int32 count = 10000000;

using (new OperationTimer("List<Int32>")) {
List<Int32> 1 = new List<Int32>(count);
for (Int32 n = 0; n < count; n++) {
1.Add(n);
Int32 x = 1[n];
}
1 = null; // Make sure this gets GC'd
}

using (new OperationTimer("ArrayList of Int32")) {
ArrayList a = new ArrayListQ);
for (Int32 n = 0; n < count; n++) {
a.Add(n);
Int32 x = (Int32) a[n];
}
a = null; // Make sure this gets GC'd

}

private static void ReferenceTypePerfTest() {
const Int32 count = 10000000;

using (new OperationTimer("List<String>")) {
List<String> 1 = new List<String>Q);
for (Int32 n = 0; n < count; n++) {
T.Add("X™);
String x = 1[n];

Chapter 12 Generics 279

1 = null; // Make sure this gets GC'd
}

using (new OperationTimer("ArrayList of String")) {
ArraylList a = new ArrayList(Q);
for (Int32 n = 0; n < count; n++) {
a.Add("X");
String x = (String) a[n];
}
a = null; // Make sure this gets GC'd

}

// This class 1is useful for doing operation performance timing
internal sealed class OperationTimer : IDisposable {

private Int64 m_startTime;

private String m_text;

private Int32 m_collectionCount;

public OperationTimer(String text) {
PrepareForOperation();

m_text = text;
m_colTlectionCount = GC.CollectionCount(0);

// This should be the Tast statement in this
// method to keep timing as accurate as possible
m_startTime = Stopwatch.GetTimestamp();

public void Dispose() {
Console.WriteLine("{0,6:###.00} seconds (GCs={1,3}) {2}",
(Stopwatch.GetTimestamp() - m_startTime) /
(Double) Stopwatch.Frequency,
GC.ColTlectionCount(0) - m_collectionCount, m_text);

private static void PrepareForOperation() {
GC.Collect();
GC.WaitForPendingFinalizers(Q);
GC.Collect();

3

When | compile and run a release build (with optimizations turned on) of this program on my
computer, | get the following output:

.10 seconds (GCs= 0) List<Int32>

3.02 seconds (GCs= 45) ArraylList of Int32
.47 seconds (GCs= 6) List<String>
.51 seconds (GCs= 6) ArrayList of String

280

Part Il Designing Types

The output here shows that using the generic List algorithm with the Int32 type is much
faster than using the non-generic ArrayList algorithm with Int32. In fact, the difference
is phenomenal: .1 second versus 3 seconds. That's 30 times faster! In addition, using a value
type (Int32) with ArrayList causes a lot of boxing operations to occur, which results in 45
garbage collections. Meanwhile, the List algorithm required 0 garbage collections.

The result of the test using reference types is not as momentous. Here we see that the times
and number of garbage collections are about the same. So it doesn't appear that the generic
List algorithm is of any benefit here. However, keep in mind that when using a generic al-
gorithm, you also get cleaner code and compile-time type safety. So while the performance
improvement is not huge, the other benefits you get when using a generic algorithm are
usually an improvement.

Note You do need to realize that the CLR generates native code for each method the first time
the method is called for a particular data type. This will increase an application’s working set size,
which will hurt performance. | will talk about this more in the “Generics Infrastructure” section of
this chapter.

Generics in the Framework Class Library

Certainly, the most obvious use of generics is with collection classes, and the FCL defines
several generic collection classes available for your use. Most of these classes can be found in
the System.Collections.Generic namespace and the System.Collections.ObjectModel
namespace. There are also thread-safe generic collection classes available in the
System.Collections.Concurrent namespace. Microsoft recommends that programmers
use the generic collection classes and now discourages use of the non-generic collection
classes for several reasons. First, the non-generic collection classes are not generic, and so
you don't get the type safety, cleaner code, and better performance that you get when you
use generic collection classes. Second, the generic classes have a better object model than
the non-generic classes. For example, fewer methods are virtual, resulting in better per-
formance, and new members have been added to the generic collections to provide new
functionality.

The collection classes implement many interfaces, and the objects that you place into the
collections can implement interfaces that the collection classes use for operations such as
sorting and searching. The FCL ships with many generic interface definitions so that the
benefits of generics can be realized when working with interfaces as well. The commonly
used interfaces are contained in the System.Collections.Generic namespace.

Chapter 12 Generics 281

The new generic interfaces are not a replacement for the old non-generic interfaces; in many
scenarios, you will have to use both. The reason is backward compatibility. For example,

if the List<T> class implemented only the IList<T> interface, no code could consider a
List<DateTime> object an IList.

| should also point out that the System.Array class, the base class of all array types, offers
many static generic methods, such as AsReadOn1ly, BinarySearch, ConvertAll, Exists,
Find, FindA11, FindIndex, FindLast, FindLastIndex, ForEach, Index0f, LastIndexOf,
Resize, Sort, and TrueForA11. Here are examples showing what some of these methods
look like:

public abstract class Array : ICloneable, IList, ICollection, IEnumerable,
IStructuralComparable, IStructuralEquatable {

public static void Sort<T>(T[] array);
public static void Sort<T>(T[] array, IComparer<T> comparer);

public static Int32 BinarySearch<T>(T[] array, T value);
public static Int32 BinarySearch<T>(T[] array, T value,
IComparer<T> comparer);

3

Here is code that demonstrates how to use some of these methods:

public static void Main() {
// Create & initialize a byte array
Byte[] byteArray = new Byte[] { 5, 1, 4, 2, 3 };

// Call Byte[] sort algorithm
Array.Sort<Byte>(byteArray) ;

// Call Byte[] binary search algorithm
Int32 i = Array.BinarySearch<Byte>(byteArray, 1);
Console.WriteLine(i); // Displays "0"

Wintellect's Power Collections Library

At Microsoft’s request, Wintellect has produced the Power Collections library to bring some
of the C++ Standard Template Library’s collection classes to the CLR programmer. This library
is a set of collection classes that anyone can download and use free of charge. See
http.//Wintellect.com for details. These collection classes are generic themselves and make
extensive use of generics. Table 12-1 shows a list of some of the collection classes you'll find
in the Power Collections library.

282 Part Il Designing Types

TABLE 12-1 Generic Collection Classes from Wintellect’'s Power Collections Library

Collection Class

BigList<T>
Bag<T>
OrderedBag<T>
Set<T>
OrderedSet<T>

Deque<T>

OrderedDictionary<TKey,TValue>

MultiDictionary<TKey, TValue>

OrderedMultiDictionary<TKey,TValue>

Generics Infrastructure

Description

Collection of ordered T objects. Very efficient
when working with more than 100 items.

Collection of unordered T objects. The collection
is hashed, and duplicates are allowed.

Collection of ordered T objects. Duplicates are
allowed.

Collection of unordered T items. Duplicates are
not allowed.

Collection of ordered T items. Duplicates are not
allowed.

Double-ended queue. Similar to a list but more
efficient for adding/removing items at the begin-
ning than a list.

Dictionary in which keys are ordered, and each
can have one value.

Dictionary in which a key can have multiple val-
ues. Keys are hashed, duplicates are allowed, and
items are unordered.

Dictionary in which keys are ordered, and each
can have multiple values (also maintained in
sorted order). Duplicate keys are allowed.

Generics were added to version 2.0 of the CLR, and it was a major task that required many
people working for quite some time. Specifically, to make generics work, Microsoft had to do

the following:

B Create new Intermediate Language (IL) instructions that are aware of type arguments.

B Modify the format of existing metadata tables so that type names and methods with

generic parameters could be expressed.

B Modify the various programming languages (C#, Microsoft Visual Basic .NET, etc.) to
support the new syntax, allowing developers to define and reference generic types and

methods.

B Modify the compilers to emit the new IL instructions and the modified metadata

format.

B Modify the just-in-time (JIT) compiler to process the new type-argument-aware IL
instructions that produce the correct native code.

Chapter 12 Generics 283

B Create new reflection members so that developers can query types and members to
determine if they have generic parameters. Also, new reflection emit members had to
be defined so that developers could create generic type and method definitions at
runtime.

B Modify the debugger to show and manipulate generic types, members, fields, and local
variables.

B Modify the Microsoft Visual Studio IntelliSense feature to show specific member proto-
types when using a generic type or a method with a specific data type.

Now let's spend some time discussing how the CLR handles generics internally. This informa-
tion could impact how you architect and design a generic algorithm. It could also impact
your decision to use an existing generic algorithm or not.

Open and Closed Types

In various chapters throughout this book, | have discussed how the CLR creates an internal
data structure for each and every type in use by an application. These data structures are
called type objects. Well, a type with generic type parameters is still considered a type, and
the CLR will create an internal type object for each of these. This applies to reference types
(classes), value types (structs), interface types, and delegate types. However, a type with
generic type parameters is called an open type, and the CLR does not allow any instance of
an open type to be constructed (similar to how the CLR prevents an instance of an interface
type from being constructed).

When code references a generic type, it can specify a set of generic type arguments. If actual
data types are passed in for all of the type arguments, the type is called a closed type, and
the CLR does allow instances of a closed type to be constructed. However, it is possible for
code referencing a generic type to leave some generic type arguments unspecified. This
creates a new open type object in the CLR, and instances of this type cannot be created. The
following code should make this clear:

using System;
using System.Collections.Generic;

// A partially specified open type
internal sealed class DictionaryStringKey<TValue> :
Dictionary<String, TValue> {

}

public static class Program {
public static void Main() {
Object o = null;

// Dictionary<,> is an open type having 2 type parameters
Type t = typeof(Dictionary<,>);

284

Part Il Designing Types

// Try to create an instance of this type (fails)
o = CreatelInstance(t);
Console.WriteLine();

// DictionaryStringKey<> is an open type having 1 type parameter
t = typeof(DictionaryStringKey<>);

// Try to create an instance of this type (fails)
o = CreatelInstance(t);
Console.WriteLine();

// DictionaryStringKey<Guid> is a closed type
t = typeof(DictionaryStringKey<Guid>);

// Try to create an instance of this type (succeeds)
o0 = CreateInstance(t);

// Prove it actually worked
Console.WriteLine("Object type=" + 0.GetType());
}

private static Object CreateInstance(Type t) {

Object o = null;

try {
0 = Activator.CreateInstance(t);
Console.Write("Created instance of {0}", t.ToString());

}

catch (ArgumentException e) {
Console.WriteLine(e.Message);

}

return o;

}

When | compile the code above and run it, | get the following output:

Cannot create an instance of System.Collections.Generic.
Dictionary 2[TKey,TValue] because Type.ContainsGenericParameters is true.

Cannot create an instance of DictionaryStringKey 1[TValue] because
Type.ContainsGenericParameters is true.

Created instance of DictionaryStringKey 1[System.Guid]
Object type=DictionaryStringKey 1[System.Guid]

As you can see, Activator's CreateInstance method throws an ArgumentException when
you ask it to construct an instance of an open type. In fact, the exception’s string message
indicates that the type still contains some generic parameters.

In the output, you'll notice that the type names end with a backtick () followed by a number.
The number indicates the type’s arity, which indicates the number of type parameters
required by the type. For example, the Dictionary class has an arity of 2 since it requires
that types be specified for TKey and Tvalue. The DictionaryStringKey class has an arity of
1 since it requires just one type to be specified for Tvalue.

Chapter 12 Generics 285

I should also point out that the CLR allocates a type's static fields inside the type object (as
discussed in Chapter 4, “Type Fundamentals”). So each closed type has its own static fields.

In other words, if List<T> defined any static fields, these fields are not shared between a
List<DateTime> and a List<String>; each closed type object has its own static fields.

Also, if a generic type defines a static constructor (discussed in Chapter 8, "Methods"), this
constructor will execute once per closed type. Sometimes people define a static constructor
on a generic type to ensure that the type arguments will meet certain criteria. For example, if
you wanted to define a generic type that can be used only with enumerated types, you could
do the following:

internal sealed class GenericTypeThatRequiresAnEnum<T> {
static GenericTypeThatRequiresAnEnum() {
if (ltypeof(T).IsEnum) {
throw new ArgumentException("T must be an enumerated type");

3

3

The CLR has a feature, called constraints, that offers a better way for you to define a generic
type indicating what type arguments are valid for it. I'll discuss constraints later in this chapter.
Unfortunately, constraints do not support the ability to limit a type argument to enumerated
types only, which is why the previous example requires a static constructor to ensure that the
type is an enumerated type.

Generic Types and Inheritance

A generic type is a type, and as such, it can be derived from any other type. When you use
a generic type and specify type arguments, you are defining a new type object in the CLR,
and the new type object is derived from whatever type the generic type was derived from.
In other words, since List<T> is derived from Object, List<String> and List<Guid>

are also derived from Object. Similarly, since DictionaryStringKey<TValue> is derived
from Dictionary<String, TValue>, DictionaryStringKey<Guid> is also derived from
Dictionary<String, Guid>. Understanding that specifying type arguments doesn’t have
anything to do with inheritance hierarchies will help you to recognize what kind of casting
you can and can't do.

For example, if a linked-list node class is defined like this:

internal sealed class Node<T> {
public T m_data;
public Node<T> m_next;

public Node(T data) : this(data, null) {
}

public Node(T data, Node<T> next) {
m_data = data; m_next = next;

286

Part Il Designing Types
}

public override String ToString() {
return m_data.ToString() +
((m_next != null) ? m_next.ToString() : String.Empty);

3

then | can write some code to build up a linked list that would look something like this:

private static void SameDatalLinkedList() {
Node<Char> head = new Node<Char>('C");
head = new Node<Char>('B', head);
head = new Node<Char>('A', head);
Console.WriteLine(head.ToString());

}

In the Node class just shown, the m_next field must refer to another node that has the same
kind of data type in its m_data field. This means that the linked list must contain nodes in
which all data items are of the same type (or derived type). For example, | can’t use the Node
class to create a linked list in which one element contains a Char, another element contains
a DateTime, and another element contains a String. Well, | could if | use Node<Object>
everywhere, but then | would lose compile-time type safety, and value types would get
boxed.

So a better way to go would be to define a non-generic Node base class and then define a
generic TypedNode class (using the Node class as a base class). Now, | can have a linked list in
which each node can be of a specific data type (not Object), get compile-time type safety
and avoid the boxing of value types. Here are the new class definitions:

internal class Node {
protected Node m_next;

public Node(Node next) {
m_next = next;
}
}

internal sealed class TypedNode<T> : Node {
public T m_data;

public TypedNode(T data) : this(data, null) {
}

public TypedNode(T data, Node next) : base(next) {
m_data = data;

}

public override String ToString() {
return m_data.ToString() +
((m_next != null) ? m_next.ToString() : String.Empty);

Chapter 12 Generics 287

| can now write code to create a linked list in which each node is a different data type. The
code could look something like this:

private static void DifferentDatalLinkedList() {
Node head = new TypedNode<Char>('.");
head = new TypedNode<DateTime>(DateTime.Now, head);
head = new TypedNode<String>("Today is ", head);
Console.WriteLine(head.ToString());

Generic Type Identity

Sometimes generic syntax confuses developers. After all, there can be a lot of less-than (<)
and greater-than (>) signs sprinkled throughout your source code, and this hurts readability.
To improve syntax, some developers define a new non-generic class type that is derived from
a generic type and that specifies all of the type arguments. For example, to simplify code

like this:

List<DateTime> dtl= new List<DateTime>();

Some developers might first define a class like this:

internal sealed class DateTimelList : List<DateTime> {
// No need to put any code in here!

3

Now, the code that creates a list can be rewritten more simply (without less-than and
greater-than signs) like this:

DateTimeList dt1 = new DateTimeList();

While this seems like a convenience, especially if you use the new type for parameters, local
variables, and fields, you should never define a new class explicitly for the purpose of making
your source code easier to read. The reason is because you lose type identity and equivalence,
as you can see in the following code:

Boolean sameType = (typeof(List<DateTime>) == typeof(DateTimelList));

When the code above runs, sameType will be initialized to false because you are comparing
two different type objects. This also means that a method prototyped as accepting a
DateTimeList will not be able to have a List<DateTime> passed to it. However, a method
prototyped as accepting a List<DateTime> can have a DateTimeList passed to it since
DateTimeList is derived from List<DateTime>. Programmers may become easily confused
by all of this.

288

Part Il Designing Types

Fortunately, C# does offer a way to use simplified syntax to refer to a generic closed type
while not affecting type equivalence at all; you can use the good old using directive at the
top of your source code file. Here is an example:

using DateTimelList = System.Collections.Generic.List<System.DateTime>;

Here, the using directive is really just defining a symbol called DateTimeList. As the
code compiles, the compiler substitutes all occurrences of DateTimeList with
System.Collections.Generic.List<System.DateTime>. This just allows developers to
use a simplified syntax without affecting the actual meaning of the code, and therefore,
type identity and equivalence are maintained. So now, when the following line executes,
sameType will be initialized to true.

Boolean sameType = (typeof(List<DateTime>) == typeof(DateTimelList));

As another convenience, you can use C#'s implicitly typed local variable feature, where the
compiler infers the type of a method’s local variable from the type of the expression you are
assigning to it:

using System;
using System.Collections.Generic;

internal sealed class SomeType {
private static void SomeMethod () {

// Compiler infers that DateTimelList is of type
// System.Collections.Generic.List<System.DateTime>
var dtl = List<DateTime>();

Code Explosion

When a method that uses generic type parameters is JIT-compiled, the CLR takes the meth-
od’s IL, substitutes the specified type arguments, and then creates native code that is specific
to that method operating on the specified data types. This is exactly what you want and is
one of the main features of generics. However, there is a downside to this: the CLR keeps
generating native code for every method/type combination. This is referred to as code
explosion. This can end up increasing the application’s working set substantially, thereby
hurting performance.

Fortunately, the CLR has some optimizations built into it to reduce code explosion. First, if a
method is called for a particular type argument, and later, the method is called again using
the same type argument, the CLR will compile the code for this method/type combination
just once. So if one assembly uses List<DateTime>, and a completely different assembly

Chapter 12 Generics 289

(loaded in the same AppDomain) also uses List<DateTime>, the CLR will compile the
methods for List<DateTime> just once. This reduces code explosion substantially.

The CLR has another optimization: the CLR considers all reference type arguments to be
identical, and so again, the code can be shared. For example, the code compiled by the CLR
for List<String>'s methods can be used for List<Stream>'s methods, since String and
Stream are both reference types. In fact, for any reference type, the same code will be used.
The CLR can perform this optimization because all reference type arguments or variables are
really just pointers (all 32 bits on a 32-bit Windows system and 64 bits on a 64-bit Windows
system) to objects on the heap, and object pointers are all manipulated in the same way.

But if any type argument is a value type, the CLR must produce native code specifically for
that value type. The reason is because value types can vary in size. And even if two value
types are the same size (such as Int32 and UInt32, which are both 32 bits), the CLR still can't
share the code because different native CPU instructions can be used to manipulate these
values.

Generic Interfaces

Obviously, the ability to define generic reference and value types was the main feature of
generics. However, it was critical for the CLR to also allow generic interfaces. Without generic
interfaces, any time you tried to manipulate a value type by using a non-generic interface
(such as IComparable), boxing and a loss of compile-time type safety would happen again.
This would severely limit the usefulness of generic types. And so the CLR does support generic
interfaces. A reference or value type can implement a generic interface by specifying type
arguments, or a type can implement a generic interface by leaving the type arguments
unspecified. Let's look at some examples.

Here is the definition of a generic interface that ships as part of the FCL (in the
System.Collections.Generic namespace):

public interface IEnumerator<T> : IDisposable, IEnumerator {
T Current { get; }
}

Here is an example of a type that implements this generic interface and that specifies type
arguments. Notice that a Triangle object can enumerate a set of Point objects. Also note
that the Current property is of the Point data type:

internal sealed class Triangle : IEnumerator<Point> {
private Point[] m_vertices;

// IEnumerator<Point>'s Current property is of type Point
public Point Current { get { ... } }

290 Part Il Designing Types

Now let's look at an example of a type that implements the same generic interface but with
the type arguments left unspecified:

internal sealed class ArrayEnumerator<T> : IEnumerator<T> {
private T[] m_array;

// IEnumerator<T>'s Current property is of type T
public T Current { get { ... } }

}

Notice that an ArrayEnumerator object can enumerate a set of T objects (where T is
unspecified allowing code using the generic ArrayEnumerator type to specify a type for T
later). Also note that the Current property is now of the unspecified data type T. Much more
information about generic interfaces is presented in Chapter 13, “Interfaces.”

Generic Delegates

The CLR supports generic delegates to ensure that any type of object can be passed to a
callback method in a type-safe way. Furthermore, generic delegates allow a value type
instance to be passed to a callback method without any boxing. As discussed in Chapter 17,
“Delegates,” a delegate is really just a class definition with four methods: a constructor, an
Invoke method, a BeginInvoke method, and an EndInvoke method. When you define a
delegate type that specifies type parameters, the compiler defines the delegate class's meth-
ods, and the type parameters are applied to any methods having parameters/return values of
the specified type parameter.

For example, if you define a generic delegate like this:

public delegate TReturn CallMe<TReturn, TKey, TValue>(TKey key, TValue value);

The compiler turns that into a class that logically looks like this:

public sealed class CallMe<TReturn, TKey, TValue> : MulticastDelegate {
public CallMe(Object object, IntPtr method);
public virtual TReturn Invoke(TKey key, TValue value);
public virtual IAsyncResult BeginInvoke(TKey key, TValue value,
AsyncCallback callback, Object object);
public virtual TReturn EndInvoke(IAsyncResult result);

Note It is recommended that you use the generic Action and Func delegates that come
predefined in the Framework Class Library (FCL) wherever possible. | describe these delegate
types in the "Enough with the Delegate Definitions Already (Generic Delegates)” section of
Chapter 17, "Delegates.”

Chapter 12 Generics 291

Delegate and Interface Contravariant and Covariant
Generic Type Arguments

Each of a delegate’s generic type parameters can be marked as covariant or contravariant.
This feature allows you to cast a variable of a generic delegate type to the same delegate
type where the generic parameter types differ. A generic type parameter can be any one of
the following:

B |[nvariant Meaning that that generic type parameter cannot be changed. | have
shown only invariant generic type parameters so far in this chapter.

B Contravariant Meaning that the generic type parameter can change from a class to a
class derived from it. In C#, you indicate contravariant generic type parameters with the
in keyword. Contravariant generic type parameters can appear only in input positions
such as a method’s argument.

B Covariant Meaning that the generic type argument can change from a class to one of
its base classes. In C#, you indicate covariant generic type parameters with the out key-
word. Covariant generic type parameters can appear only in output positions such as a
method’s return type.

For example, let's say that the following delegate type definition exists (which, by the way, it
does):

public delegate TResult Func<in T, out TResult>(T arg);

Here, the generic type parameter T is marked with the in keyword, making it contravariant;
and the generic type parameter TResult is marked with the out keyword, making it covariant.

So now, if | have a variable declared as follows:

Func<Object, ArgumentException> fnl = null;

| can cast it to another Func type, where the generic type parameters are different:

Func<String, Exception>fn2 = fnl;// No explicit cast is required here
Exception e = fn2("");

What this is saying is that fnl refers to a function that accepts an Object and returns an
ArgumentException. The fn2 variable wants to refer to a method that takes a String and
returns an Exception. Since you can pass a String to a method that wants an Object
(because String is derived from Object), and since you can take the result of a method that
returns an ArgumentException and treat it as an Exception (because Exception is a base
class of ArgumentException), the code above compiles and is known at compile time to
preserve type safety.

292

Part Il Designing Types

Note Variance applies only if the compiler can verify that a reference conversion exists between
types. In other words, variance is not possible for value types because boxing would be required.
In my opinion, this restriction is what makes these variance features not that useful. For example,
if | have the following method:

voidProcessCollection(IEnumerable<Object> collection) { ... }

| can't call it passing in a reference to a List<DateTime> object since a reference conversion
doesn’t exist between the DateT1ime value type and Object even though DateTime is derived
from Object. You solve this problem by declaring ProcessCollection as follows:

void ProcessCollection<T>(IEnumerable<T> collection) { ... }

Plus, the big benefit of ProcessCol1ection(IEnumerable<Object> collection) is that there
is only one version of the JITted code. However, with ProcessCollection<T>(IEnumerable<T>
collection), there is also only one version of the JITted code shared by all Ts that are reference
types. You do get other versions of JITted code for Ts that are value types, but now you can at
least call the method passing it a collection of value types.

Also, variance is not allowed on a generic type parameter if an argument of that type is passed
to a method using the out or ref keyword. For example, the line of code below causes the com-
piler to generate the following error message: "Invalid variance: The type parameter
'T' must be invariantly valid on 'SomeDelegate<T>.Invoke(ref T)'. 'T' is
contravariant."

delegate void SomeDelegate<in T>(ref T t);

When using delegates that take generic arguments and return values, it is recommended to
always specify the in and out keywords for contravariance and covariance whenever possible,
as doing this has no ill effects and enables your delegate to be used in more scenarios.

Like delegates, an interface with generic type parameters can have its type parameters be
contravariant or covariant. Here is an example of an interface with a contravariant generic
type parameter:

public interface IEnumerator<out T> : IEnumerator {
Boolean MoveNext();
T Current { get; }

}

Since T is contravariant, it is possible to have the following code compile and run successfully:

// This method accepts an IEnumerable of any reference type
Int32 Count(IEnumerable<Object> collection) { ... }

// The call below passes an IEnumerable<String> to Count
Int32 ¢ = Count(new[] { "Grant" });

Chapter 12 Generics 293

W Important Sometimes developers ask why they must explicitly put in or out on generic type
parameters. They think the compiler should be able to examine the delegate or interface declara-
tion and automatically detect what generic type parameters can be contravariant and covariant.
While it is true that the compiler could detect this automatically, the C# team believes that you
are declaring a contract and that you should be explicit about what you want to allow. For example,
it would be bad if the compiler determined that a generic type parameter could be contravariant
and then, in the future, you added a member to an interface that had the type parameter used
in an output position. The next time you compile, the compiler would determine that the type
parameter should be invariant, but all code sites that reference the other members might now
produce errors if they had used the fact that the type parameter had been contravariant.

For this reason, the compiler team forces you to be explicit when declaring a generic type
parameter. Then, if you attempt to use this type parameter in a context that doesn’'t match how
you declared it, the compiler issues an error letting you know that you are attempting to break
the contract. If you then decide to break the contract by adding 1in or out on generic type
parameters, you should expect to have to modify some of the code sites that were using the
old contract.

Generic Methods

When you define a generic class, struct, or interface, any methods defined in these types can
refer to a type parameter specified by the type. A type parameter can be used as a method's
parameter, a method’s return value, or as a local variable defined inside the method. However,
the CLR also supports the ability for a method to specify its very own type parameters. And
these type parameters can also be used for parameters, return values, or local variables. Here
is a somewhat contrived example of a type that defines a type parameter and a method that
has its very own type parameter:

internal sealed class GenericType<T> {
private T m_value;

public GenericType(T value) { m_value = value; }

public TOutput Converter<TOutput>() {
TOutput result = (TOutput) Convert.ChangeType(m_value, typeof(TOutput));
return result;

}

In this example, you can see that the GenericType class defines its own type parameter

(T), and the Converter method defines its own type parameter (TOutput). This allows a
GenericType to be constructed to work with any type. The Converter method can convert
the object referred to by the m_value field to various types depending on what type argument
is passed to it when called. The ability to have type parameters and method parameters
allows for phenomenal flexibility.

294

Part Il Designing Types

A reasonably good example of a generic method is the Swap method:

private static void Swap<T>(ref T ol, ref T 02) {

T temp = o0l;
0l = 02;
02 = temp;

}
Code can now call Swap like this:

private static void CallingSwap() {
Int32 n1 =1, n2 = 2;
Console.WriteLine("n1={0}, n2={1}", nl, n2);
Swap<Int32>(ref nl, ref n2);
Console.WriteLine("n1={0}, n2={1}", nl, n2);

String sl = "Aidan", s2 = "Grant";

Console.WriteLine("s1={0}, s2={1}", sl1, s2);

Swap<String>(ref sl, ref s2);

Console.WriteLine("s1={0}, s2={1}", sl1, s2);
}

Using generic types with methods that take out and ref parameters can be particularly
interesting because the variable you pass as an out/ref argument must be the same type
as the method’s parameter to avoid a potential type safety exploit. This issue related to
out/ref parameters is discussed toward the end of the “Passing Parameters by Reference to
a Method" section in Chapter 9, “Parameters.” In fact, the Interlocked class's Exchange and
CompareExchange methods offer generic overloads for precisely this reasont:

public static class Interlocked {
public static T Exchange<T>(ref T locationl, T value) where T: class;
public static T CompareExchange<T>(
ref T Tlocationl, T value, T comparand) where T: class;

Generic Methods and Type Inference

For many developers, the C# generic syntax can be confusing with all of its less-than and
greater-than signs. To help improve code creation, readability, and maintainability, the C#
compiler offers type inference when calling a generic method. Type inference means that the
compiler attempts to determine (or infer) the type to use automatically when calling a generic
method. Here is some code that demonstrates type inference:

private static void CallingSwapUsingInference() {
Int32 n1 =1, n2 = 2;
Swap(ref nl, ref n2);// Calls Swap<Int32>

String sl = "Aidan";
Object s2 = "Grant";
Swap(ref sl1, ref s2);// Error, type can't be inferred

1 The where clause will be explained in the “Verifiability and Constraints” section later in this chapter.

Chapter 12 Generics 295

In this code, notice that the calls to Swap do not specify type arguments in less-than/greater-
than signs. In the first call to Swap, the C# compiler was able to infer that n1 and n2 are
Int32s, and therefore, it should call Swap by using an Int32 type argument.

When performing type inference, C# uses the variable’s data type, not the actual type of the
object referred to by the variable. So in the second call to Swap, C# sees that s1 is a String
and s2 is an Object (even though it happens to refer to a String). Since s1 and s2 are
variables of different data types, the compiler can't accurately infer the type to use for Swap's
type argument, and it issues the following message: "error CS0411: The type arguments
for method 'Program.Swap<T>(ref T, ref T)' cannot be inferred from the
usage. Try specifying the type arguments explicitly."

A type can define multiple methods with one of its methods taking a specific data type and
another taking a generic type parameter, as in the following example:

private static void Display(String s) {
Console.WritelLine(s);

}

private static void Display<T>(T o) {
Display(o.ToString()); // Calls Display(String)
}

Here are some ways to call the Display method:

Display("Jeff"); // Calls Display(String)
Display(123); // Calls Display<T>(T)
Display<String>("Aidan"); // Calls Display<T>(T)

In the first call, the compiler could actually call either the Display method that takes a
String or the generic Display method (replacing T with String). However, the C# compiler
always prefers a more explicit match over a generic match, and therefore, it generates a call
to the non-generic Display method that takes a String. For the second call, the compiler
can't call the non-generic Display method that takes a String, so it must call the generic
Display method. By the way, it is fortunate that the compiler always prefers the more
explicit match; if the compiler had preferred the generic method, because the generic
Display method calls Display again (but with a String returned by ToString), there
would have been infinite recursion.

The third call to Display specifies a generic type argument, String. This tells the compiler
not to try to infer type arguments but instead to use the type arguments that | explicitly
specified. In this case, the compiler also assumes that | must really want to call the generic
Display method, so the generic Display will be called. Internally, the generic Display
method will call ToString on the passed-in string, which results in a string that is then
passed to the non-generic Display method.

296 Part Il Designing Types

Generics and Other Members

In C#, properties, indexers, events, operator methods, constructors, and finalizers cannot
themselves have type parameters. However, they can be defined within a generic type, and
the code in these members can use the type's type parameters.

C# doesn't allow these members to specify their own generic type parameters because
Microsoft's C# team believes that developers would rarely have a need to use these members
as generic. Furthermore, the cost of adding generic support to these members would be
quite high in terms of designing adequate syntax into the language. For example, when you
use a + operator in code, the compiler could call an operator overload method. There is no
way to indicate any type arguments in your code along with the + operator.

Verifiability and Constraints

When compiling generic code, the C# compiler analyzes it and ensures that the code will
work for any type that exists today or that may be defined in the future. Let's look at the
following method:

private static Boolean MethodTakingAnyType<T>(T o) {
T temp = o;
Console.WriteLine(o.ToString());
Boolean b = temp.Equals(o);
return b;

}

This method declares a temporary variable (temp) of type T, and then the method performs
a couple of variable assignments and a few method calls. This method works for any type. If
T is a reference type, it works. If T is a value or enumeration type, it works. If T is an interface
or delegate type, it works. This method works for all types that exist today or that will be
defined tomorrow because every type supports assignment and calls to methods defined by
Object (such as ToString and Equals).

Now look at the following method:

private static T Min<T>(T ol, T 02) {
if (ol.CompareTo(o2) < 0) return ol;
return o2;

3

The Min method attempts to use the ol variable to call the CompareTo method. But there are
lots of types that do not offer a CompareTo method, and therefore, the C# compiler can't
compile this code and guarantee that this method would work for all types. If you attempt

to compile the above code, the compiler issues the following message: "error CS0117: 'T'

does not contain a definition for 'CompareTo'.

Chapter 12 Generics 297

So it would seem that when using generics, you can declare variables of a generic type, per-
form some variable assignments, call methods defined by Object, and that's about it! This
makes generics practically useless. Fortunately, compilers and the CLR support a mechanism
called constraints that you can take advantage of to make generics useful again.

A constraint is a way to limit the number of types that can be specified for a generic argu-
ment. Limiting the number of types allows you to do more with those types. Here is a new
version of the Min method that specifies a constraint (in bold):

pubTlic static T Min<T>(T ol, T 02) where T : IComparable<T> {
if (ol.CompareTo(o2) < 0) return ol;
return o2;

3

The C# where token tells the compiler that any type specified for T must implement the
generic IComparable interface of the same type (T). Because of this constraint, the compiler
now allows the method to call the CompareTo method since this method is defined by the
IComparable<T> interface.

Now, when code references a generic type or method, the compiler is responsible for ensur-
ing that a type argument that meets the constraints is specified. For example, the following
code causes the compiler to issue the following message: "error CS0311: The type
'object' cannot be used as type parameter 'T' 1in the generic type or method
'SomeType.Min<T>(T, T)'. There is no implicit reference conversion from

'object' to 'System.IComparable<object>"'.

private static void CalIMin() {

Object ol = "Jeff", 02 = "Richter";

Object oMin = Min<Object>(ol, 02); // Error CS0311l
}

The compiler issues the error because System.0Object doesn’t implement the
IComparable<Object> interface. In fact, System.Object doesn't implement any interfaces
at all.

Now that you have a sense of what constraints are and how they work, we'll start to look

a little deeper into them. Constraints can be applied to a generic type’s type parameters

as well as to a generic method's type parameters (as shown in the Min method). The CLR
doesn't allow overloading based on type parameter names or constraints; you can overload
types or methods based only on arity. The following examples show what | mean:

// It is OK to define the following types:
internal sealed class AType {}

internal sealed class AType<T> {}

internal sealed class AType<Tl, T2> {}

// Error: conflicts with AType<T> that has no constraints
internal sealed class AType<T> where T : IComparable<T> {}

298

Part Il Designing Types

// Error: conflicts with AType<T1l, T2>
internal sealed class AType<T3, T4> {}

internal sealed class AnotherType {
// It is OK to define the following methods:
private static void MO {}
private static void M<T>() {}
private static void M<T1l, T2>(Q {}

// Error: conflicts with M<T> that has no constraints
private static void M<T>() where T : IComparable<T> {}

// Error: conflicts with M<T1, T2>
private static void M<T3, T4>(Q {}
}

When overriding a virtual generic method, the overriding method must specify the same
number of type parameters, and these type parameters will inherit the constraints specified
on them by the base class’'s method. In fact, the overriding method is not allowed to specify
any constraints on its type parameters at all. However, it can change the names of the type
parameters. Similarly, when implementing an interface method, the method must specify the
same number of type parameters as the interface method, and these type parameters will
inherit the constraints specified on them by the interface’s method. Here is an example that
demonstrates this rule by using virtual methods:

internal class Base {
public virtual void M<T1l, T2>Q
where T1 : struct
where T2 : class {

}

internal sealed class Derived : Base {
public override void M<T3, T4>(Q)
where T3 : EventArgs // Error
where T4 : class // Error
{1
}

Attempting to compile the code above causes the compiler to issue the following message:
"error CS0460: Constraints for override and explicit interface implementa-
tion methods are inherited from the base method so cannot be specified
directly." If we remove the two where lines from the Derived class's M<T3, T4> method,
the code will compile just fine. Notice that you can change the names of the type parameters
(as in the example: from T1 to T3 and T2 to T4); however, you cannot change (or even specify)
constraints.

Now let’s talk about the different kinds of constraints the compiler/CLR allows you to apply
to a type parameter. A type parameter can be constrained using a primary constraint, a
secondary constraint, and/or a constructor constraint. I'll talk about these three kinds of
constraints in the next three sections.

Chapter 12 Generics 299

Primary Constraints

A type parameter can specify zero primary constraints or one primary constraint. A primary
constraint can be a reference type that identifies a class that is not sealed. You cannot
specify one of the following special reference types: System.Object, System.Array,
System.Delegate, System.MulticastDelegate, System.ValueType, System.Enum, or
System.Void.

When specifying a reference type constraint, you are promising the compiler that a specified
type argument will either be of the same type or of a type derived from the constraint type.
For example, see the following generic class:

internal sealed class PrimaryConstraintOfStream<T> where T : Stream {
public void M(T stream) {
stream.Close();// OK
}
}

In this class definition, the type parameter T has a primary constraint of Stream (defined

in the System.I0 namespace). This tells the compiler that code using
PrimaryConstraintOfStream must specify a type argument of Stream or a type derived
from Stream (such as FileStream). If a type parameter doesn't specify a primary constraint,
System.Object is assumed. However, the C# compiler issues an error message ("error
CS0702: Constraint cannot be special class 'object'") if you explicitly specify
System.Object in your source code.

There are two special primary constraints: class and struct. The class constraint promises
the compiler that a specified type argument will be a reference type. Any class type, interface
type, delegate type, or array type satisfies this constraint. For example, see the following
generic class:

internal sealed class PrimaryConstraintOfClass<T> where T : class {
public void MO {
T temp = null;// Allowed because T must be a reference type
}
}

In this example, setting temp to nul1 is legal because T is known to be a reference type,
and all reference type variables can be set to nul11. If T were unconstrained, the code above
would not compile because T could be a value type, and value type variables cannot be set
to null.

The struct constraint promises the compiler that a specified type argument will be a value
type. Any value type, including enumerations, satisfies this constraint. However, the
compiler and the CLR treat any System.Nullable<T> value type as a special type, and
nullable types do not satisfy this constraint. The reason is because the Nullable<T> type
constrains its type parameter to struct, and the CLR wants to prohibit a recursive type such

300 Part Il Designing Types

as Nullable<Nullable<T>>. Nullable types are discussed in Chapter 19, "Nullable Value
Types.”

Here is an example class that constrains its type parameter by using the struct constraint:

internal sealed class PrimaryConstraintOfStruct<T> where T : struct {
public static T Factory() {
// Allowed because all value types implicitly
// have a public, parameterless constructor
return new TQ);

3

In this example, newing up a T is legal because T is known to be a value type, and all value
types implicitly have a public, parameterless constructor. If T were unconstrained, constrained
to a reference type, or constrained to class, the above code would not compile because
some reference types do not have public, parameterless constructors.

Secondary Constraints

A type parameter can specify zero or more secondary constraints where a secondary
constraint represents an interface type. When specifying an interface type constraint, you

are promising the compiler that a specified type argument will be a type that implements the
interface. And since you can specify multiple interface constraints, the type argument must
specify a type that implements all of the interface constraints (and all of the primary con-
straints too, if specified). Chapter 13 discusses interface constraints in detail.

There is another kind of secondary constraint called a type parameter constraint (sometimes
referred to as a naked type constraint). This kind of constraint is used much less often than
an interface constraint. It allows a generic type or method to indicate that there must be a
relationship between specified type arguments. A type parameter can have zero or more
type constraints applied to it. Here is a generic method that demonstrates the use of a type
parameter constraint:

private static List<TBase> ConvertIList<T, TBase>(IList<T> 1ist)
where T : TBase {
List<TBase> baselList = new List<TBase>(list.Count);
for (Int32 index = 0; index < Tist.Count; index++) {
baseList.Add(list[index]);
}

return baselist;

}

The ConvertIList method specifies two type parameters in which the T parameter is con-
strained by the TBase type parameter. This means that whatever type argument is specified
for T, the type argument must be compatible with whatever type argument is specified for
TBase. Here is a method showing some legal and illegal calls to ConvertIList:

Chapter 12 Generics 301

private static void CallingConvertIList() {
// Construct and initialize a List<String> (which implements IList<String>)
IList<String> 1s = new List<String>Q);
Ts.Add("A String");

// Convert the IList<String> to an IList<Object>
IList<Object> 1o = ConvertIList<String, Object>(1s);

// Convert the IList<String> to an IList<IComparable>
IList<IComparable> 1c = ConvertIList<String, IComparable>(l1s);

// Convert the IList<String> to an IList<IComparable<String>>
IList<IComparable<String>> lcs =
ConvertIList<String, IComparable<String>>(1s);

// Convert the IList<String> to an IList<String>
IList<String> 1s2 = ConvertIList<String, String>(1s);

// Convert the IList<String> to an IList<Exception>
IList<Exception> Te = ConvertIList<String, Exception>(ls);// Error

}

In the first call to ConvertIList, the compiler ensures that String is compatible with
Object. Since String is derived from Object, the first call adheres to the type parameter
constraint. In the second call to ConvertIList, the compiler ensures that String is compat-
ible with IComparable. Since String implements the IComparable interface, the second call
adheres to the type parameter constraint. In the third call to ConvertIList, the compiler
ensures that String is compatible with IComparable<String>. Since String implements
the IComparable<String> interface, the third call adheres to the type parameter constraint.
In the fourth call to ConvertIList, the compiler knows that String is compatible with itself.
In the fifth call to ConvertIList, the compiler ensures that String is compatible with
Exception. Since String is not compatible with Exception, the fifth call doesn't adhere

to the type parameter constraint, and the compiler issues the following message: "error
CS0311: The type 'string' cannot be used as type parameter 'T' 1in the
generic type or method 'Program.ConvertIList<T,TBase>(System.Collections.
Generic.IList<T>)'. There is no implicit reference conversion from 'string'
to 'System.Exception'."

Constructor Constraints

A type parameter can specify zero constructor constraints or one constructor constraint.
When specifying a constructor constraint, you are promising the compiler that a specified
type argument will be a non-abstract type that implements a public, parameterless construc-
tor. Note that the C# compiler considers it an error to specify a constructor constraint with
the struct constraint because it is redundant; all value types implicitly offer a public, param-
eterless constructor. Here is an example class that constrains its type parameter by using the
constructor constraint:

302

Part Il Designing Types

internal sealed class ConstructorConstraint<T> where T : new() {
public static T Factory() {
// Allowed because all value types implicitly
// have a public, parameterless constructor and because
// the constraint requires that any specified reference
// type also have a public, parameterless constructor
return new TQ);

}

In this example, newing up a T is legal because T is known to be a type that has a public,
parameterless constructor. This is certainly true of all value types, and the constructor
constraint requires that it be true of any reference type specified as a type argument.

Sometimes, developers would like to declare a type parameter by using a constructor
constraint whereby the constructor takes various parameters itself. As of now, the CLR (and
therefore the C# compiler) supports only parameterless constructors. Microsoft feels that this
will be good enough for almost all scenarios, and | agree.

Other Verifiability Issues

In the remainder of this section, I'd like to point out a few other code constructs that have
unexpected behavior when used with generics due to verifiability issues and how constraints
can be used to make the code verifiable again.

Casting a Generic Type Variable

Casting a generic type variable to another type is illegal unless you are casting to a type
compatible with a constraint:

private static void CastingAGenericTypeVariablel<T>(T obj) {
Int32 x = (Int32) obj; // Error
String s = (String) obj; // Error

}

The compiler issues an error on both lines above because T could be any type, and there is
no guarantee that the casts will succeed. You can modify this code to get it to compile by
casting to Object first:

private static void CastingAGenericTypeVariable2<T>(T obj) {
Int32 x = (Int32) (Object) obj; // No error
String s = (String) (Object) obj; // No error

}

While this code will now compile, it is still possible for the CLR to throw an
InvalidCastException at runtime.

Chapter 12 Generics 303

If you are trying to cast to a reference type, you can also use the C# as operator. Here is
code modified to use the as operator with String (since Int32 is a value type):

private static void CastingAGenericTypeVariable3<T>(T obj) {
String s = obj as String; // No error
}

Setting a Generic Type Variable to a Default Value

Setting a generic type variable to nul11 is illegal unless the generic type is constrained to a
reference type.

private static void SettingAGenericTypeVariableToNull<T>() {
T temp = null; // CS0403 - Cannot convert null to type parameter 'T' because it could
// be a non-nullable value type. Consider using 'default(T)' instead

3

Since T is unconstrained, it could be a value type, and setting a variable of a value type to
null is not possible. If T were constrained to a reference type, setting temp to nul1 would
compile and run just fine.

Microsoft's C# team felt that it would be useful to give developers the ability to set a variable
to a default value. So the C# compiler allows you to use the default keyword to accomplish
this:

private static void SettingAGenericTypeVariableToDefaultValue<T>() {
T temp = default(T); // OK
}

The use of the default keyword above tells the C# compiler and the CLR’s JIT compiler to
produce code to set temp to null if T is a reference type and to set temp to all-bits-zero if T
is a value type.

Comparing a Generic Type Variable with nul1

Comparing a generic type variable to nul1 by using the == or != operator is legal regardless
of whether the generic type is constrained:

private static void ComparingAGenericTypeVariableWithNull<T>(T obj) {
if (obj == null) { /* Never executes for a value type */ }

3

Since T is unconstrained, it could be a reference type or a value type. If T is a value type, obj
can never be nul1. Normally, you'd expect the C# compiler to issue an error because of this.
However, the C# compiler does not issue an error; instead, it compiles the code just fine.
When this method is called using a type argument that is a value type, the JIT compiler sees
that the if statement can never be true, and the JIT compiler will not emit the native code
for the if test or the code in the braces. If | had used the != operator, the JIT compiler would

304

Part Il Designing Types

not emit the code for the if test (since it is always true), and it will emit the code inside the
if's braces.

By the way, if T had been constrained to a struct, the C# compiler would issue an error
because you shouldn't be writing code that compares a value type variable with nu11 since
the result is always the same.

Comparing Two Generic Type Variables with Each Other

Comparing two variables of the same generic type is illegal if the generic type parameter is
not known to be a reference type:

private static void ComparingTwoGenericTypeVariables<T>(T ol, T 02) {
if (01l == 02) {} // Error
}

In this example, T is unconstrained, and whereas it is legal to compare two reference type
variables with one another, it is not legal to compare two value type variables with one
another unless the value type overloads the == operator. If T were constrained to class, this
code would compile, and the == operator would return true if the variables referred to the
same object, checking for exact identity. Note that if T were constrained to a reference type
that overloaded the operator == method, the compiler would emit calls to this method
when it sees the == operator. Obviously, this whole discussion applies to uses of the != op-
erator too.

When you write code to compare the primitive value types—Byte, Int32, Single, Decimal,
etc.—the C# compiler knows how to emit the right code. However, for non-primitive

value types, the C# compiler doesn't know how to emit the code to do comparisons. So if
ComparingTwoGenericTypeVariables method’s T were constrained to struct, the compiler
would issue an error. And you're not allowed to constrain a type parameter to a specific value
type because it is implicitly sealed, and therefore no types exist that are derived from the
value type. Allowing this would make the generic method constrained to a specific type, and
the C# compiler doesn't allow this because it is more efficient to just make a non-generic
method.

Using Generic Type Variables as Operands

Finally, it should be noted that there are a lot of issues about using operators with generic
type operands. In Chapter 5, | talked about C# and how it handles its primitive types: Byte,
Intl6, Int32, Int64, Decimal, and so on. In particular, | mentioned that C# knows how to
interpret operators (such as +, -, *, and /) when applied to the primitive types. Well, these
operators can't be applied to variables of a generic type because the compiler doesn't know
the type at compile time. This means that you can't use any of these operators with variables
of a generic type. So it is impossible to write a mathematical algorithm that works on an
arbitrary numeric data type. Here is an example of a generic method that I'd like to write:

Chapter 12 Generics 305

private static T Sum<T>(T num) where T : struct {
T sum = default(T) ;
for (T n = default(T) ; n < num ; n++)
sum += n;
return sum;

}

I've done everything possible to try to get this method to compile. I've constrained T to
struct, and I'm using default(T) to initialize sum and n to 0. But when | compile this code, |
get the following three errors:

H error CS0019: Operator '<' cannot be applied to operands of type 'T'
and 'T'

B error CS0023: Operator '++' cannot be applied to operand of type 'T'

B error CS0019: Operator '+=' cannot be applied to operands of type 'T'
and 'T'

This is a severe limitation on the CLR’s generic support, and many developers (especially in
the scientific, financial, and mathematical world) are very disappointed by this limitation.
Many people have tried to come up with techniques to work around this limitation by using
reflection (see Chapter 23, “Assembly Loading and Reflection”), operator overloading, and so
on. But all of these cause a severe performance penalty or hurt readability of the code sub-
stantially. Hopefully, this is an area that Microsoft will address in a future version of the CLR
and the compilers.

Chapter 13
Interfaces

Class and Interface Inheritance. i, 308
DefininganInterfaceoo it i it it 308
Inheriting anInterface 310
More About Calling Interface Methods 312
Implicit and Explicit Interface Method Implementations (What’s Happening
Behind the Scenes).t e e e 314
Generic Interfaces. 315
Generics and Interface Constraints it 318
Implementing Multiple Interfaces That Have the Same Method Name and
SigNatUre . . . 319
Improving Compile-Time Type Safety with Explicit Interface Method
Implementations i e e e 320
Be Careful with Explicit Interface Method Implementations................ 322
Design: Base Class or Interface? ..ottt iiinniiinnennnn. 325

Many programmers are familiar with the concept of multiple inheritance: the ability to define
a class that is derived from two or more base classes. For example, imagine a class named
TransmitData, whose function is to transmit data, and another class named ReceiveData,
whose function is to receive data. Now imagine that you want to create a class named
SocketPort, whose function is to transmit and receive data. In order to accomplish this, you
would want to derive SocketPort from both TransmitData and ReceiveData.

Some programming languages allow multiple inheritance, making it possible for the
SocketPort class to be derived from the two base classes, TransmitData and ReceiveData.
However, the common language runtime (CLR)—and therefore all managed programming
languages—does not support multiple inheritance. Rather than not offer any kind of multiple
inheritance at all, the CLR does offer scaled-down multiple inheritance via interfaces. This
chapter will discuss how to define and use interfaces as well as provide some guidelines to
help you determine when to use an interface rather than a base class.

307

308

Part Il Designing Types

Class and Interface Inheritance

In the Microsoft .NET Framework, there is a class called System.0Object that defines four
public instance methods: ToString, Equals, GetHashCode, and GetType. This class is the
root or ultimate base class of all other classes—all classes will inherit Object's four instance
methods. This also means that code written to operate on an instance of the Object class
can actually perform operations on an instance of any class.

Since someone at Microsoft has implemented Object’'s methods, any class derived from
Object is actually inheriting the following:

B The method signatures This allows code to think that it is operating on an instance of
the Object class, when in fact, it could be operating on an instance of some other class.

B The implementation of these methods This allows the developer defining a class
derived from Object not to be required to implement Object’'s methods manually.

In the CLR, a class is always derived from one and only one class (that must ultimately be
derived from Object). This base class provides a set of method signatures and implementa-
tions for these methods. And a cool thing about defining a new class is that it can become
the base class for another class defined in the future by some other developer—all of the
method signatures and their implementations will be inherited by the new derived class.

The CLR also allows developers to define an interface, which is really just a way to give a
name to a set of method signatures. These methods do not come with any implementation
at all. A class inherits an interface by specifying the interface’s name, and the class must
explicitly provide implementations of the interface’s methods before the CLR will consider the
type definition to be valid. Of course, implementing interface methods can be tedious, which
is why | referred to interface inheritance as a scaled-down mechanism to achieve multiple
inheritance. The C# compiler and the CLR actually allow a class to inherit several interfaces,
and of course, the class must provide implementations for all of the inherited interface
methods.

One of the great features of class inheritance is that it allows instances of a derived type to
be substituted in all contexts that expect instances of a base type. Similarly, interface inheri-
tance allows instances of a type that implements the interface to be substituted in all con-
texts that expect instances of the named interface type. We will now look at how to define
interfaces to make our discussion more concrete.

Defining an Interface

As mentioned in the previous section, an interface is a named set of method signatures. Note
that interfaces can also define events, parameterless properties, and parameterful properties
(indexers in C#) because all of these are just syntax shorthands that map to methods anyway,

Chapter 13 Interfaces 309

as shown in previous chapters. However, an interface cannot define any constructor methods.
In addition, an interface is not allowed to define any instance fields.

Although the CLR does allow an interface to define static methods, static fields, constants,
and static constructors, a Common Language Infrastructure (CLI)-compliant interface must
not have any of these static members because some programming languages aren't able
to define or access them. In fact, C# prevents an interface from defining any of these static
members.

In C#, you use the interface keyword to define an interface, giving it a name and its set
of instance method signatures. Here are the definitions of a few interfaces defined in the
Framework Class Library (FCL):

public interface IDisposable {
void Dispose();

}

public interface IEnumerable {
IEnumerator GetEnumerator();

3

public interface IEnumerable<out T> : IEnumerable {
new IEnumerator<T> GetEnumerator();

}

public interface ICollection<T> : IEnumerable<T>, IEnumerable {
void Add(T item);
void Clear(Q);
Boolean Contains(T item);
void CopyTo(T[] array, Int32 arrayIndex);
Boolean Remove(T item);
Int32 Count { get; } // Read-only property
Boolean IsReadOnly { get; } // Read-only property
}

To the CLR, an interface definition is just like a type definition. That is, the CLR will define

an internal data structure for the interface type object, and reflection can be used to query

features of the interface type. Like types, an interface can be defined at file scope or defined
nested within another type. When defining the interface type, you can specify whatever vis-
ibility/accessibility (pub1ic, protected, internal, etc.) you desire.

By convention, interface type names are prefixed with an uppercase I, making it easy to
spot an interface type in source code. The CLR does support generic interfaces (as you can
see from some of the previous examples) as well as generic methods in an interface. | will
discuss some of the many features offered by generic interfaces later in this chapter and in
Chapter 12, “Generics,” in which | cover generics more broadly.

An interface definition can “inherit” other interfaces. However, | use the word inherit here
rather loosely because interface inheritance doesn't work exactly as does class inheritance.
| prefer to think of interface inheritance as including the contract of other interfaces.

310

Part Il Designing Types

For example, the ICo11ection<T> interface definition includes the contracts of the
IEnumerable<T> and IEnumerable interfaces. This means that:

B Any class that inherits the ICo11ection<T> interface must implement all of the methods
defined by the ICo11ection<T>, IEnumerable<T>, and IEnumerable interfaces.

B Any code that expects an object whose type implements the ICol1ection<T> interface
can assume that the object’s type also implements the methods of the IEnumerable<T>
and IEnumerable interfaces.

Inheriting an Interface

In this section, Ill show how to define a type that implements an interface, and then I'll show
how to create an instance of this type and use the object to call the interface’s methods. C#

actually makes this pretty simple, but what happens behind the scenes is a bit more compli-
cated. I'll explain what is happening behind the scenes later in this chapter.

The System.IComparable<T> interface is defined (in MSCorLib.dll) as follows:

public interface IComparable<in T> {
Int32 CompareTo(T other);
}

The following code shows how to define a type that implements this interface and also shows
code that compares two Point objects:

using System;

// Point is derived from System.Object and implements IComparable<T> for Point.
public sealed class Point : IComparable<Point> {
private Int32 m_x, m_y;

public Point(Int32 x, Int32 y) {
m_Xx = X;
m.y =Yy;

}

// This method implements IComparable<T>.CompareTo() for Point
public Int32 CompareTo(Point other) {
return Math.Sign(Math.Sqrt(m_x * m_x + m_y * m_y)
- Math.Sqrt(other.m_x * other.m_x + other.m_y * other.m_y));
}

public override String ToString() {
return String.Format(" ({0}, {1})", m_x, m_y);
}

Chapter 13 Interfaces 311

public static class Program {
public static void Main() {
Point[] points = new Point[] {
new Point(3, 3),
new Point(1, 2),
};

// Here is a call to Point's IComparable<T> CompareTo method
if (points[0].CompareTo(points[1]) > 0) {

Point tempPoint = points[0];

points[0] = points[1];

points[1] tempPoint;

}
Console.WriteLine("Points from closest to (0, 0) to farthest:™);
foreach (Point p in points)

Console.WriteLine(p);

}

The C# compiler requires that a method that implements an interface be marked as public.
The CLR requires that interface methods be marked as virtual. If you do not explicitly mark
the method as virtual in your source code, the compiler marks the method as virtual and
sealed; this prevents a derived class from overriding the interface method. If you explicitly
mark the method as virtual, the compiler marks the method as virtual (and leaves it unsealed);
this allows a derived class to override the interface method.

If an interface method is sealed, a derived class cannot override the method. However, a
derived class can re-inherit the same interface and can provide its own implementation for
the interface’s methods. When calling an interface’s method on an object, the implementation
associated with the object’s type is called. Here is an example that demonstrates this:

using System;

public static class Program {
public static void Main() {
/}'c*5':5‘:7':*5':**k}'cs‘ta’:s‘t‘k*t’:**s’t****** F-l rst Examp1e ﬁ'c*t‘c}'cs‘ta’:s‘cz’:*t’:s’c**5‘:5’:5‘:7’:*5‘:******/

Base b = new Base();

// Calls Dispose by using b's type: "Base's Dispose"
b.Dispose();

// Calls Dispose by using b's object's type: "Base's Dispose”
((IDisposable)b) .Dispose();

/'.’:7‘:'«’: dededededdeded Second Examp1e Fededededehdedededehfdedddn
Derived d = new Derived();

// Calls Dispose by using d's type: "Derived's Dispose”
d.Dispose();

// Calls Dispose by using d's object's type: "Derived's Dispose"

312

Part Il Designing Types

((IDisposable)d) .Dispose();

%% Third Example

Vaiiias it
b =

new Derived();

// Calls Dispose by using b's type: "Base's Dispose"
b.Dispose();

// Calls Dispose by using b's object's type: "Derived's Dispose"
((IDisposable)b) .Dispose();

}

// This class is derived from Object and it implements IDisposable
internal class Base : IDisposable {
// This method is implicitly sealed and cannot be overridden
public void Dispose() {
Console.WriteLine("Base's Dispose");
}
}

// This class is derived from Base and it re-implements IDisposable
internal class Derived : Base, IDisposable {
// This method cannot override Base's Dispose. 'new' is used to indicate
// that this method re-implements IDisposable's Dispose method
new public void Dispose() {
Console.WriteLine("Derived's Dispose");

// NOTE: The next Tine shows how to call a base class's implementation (if desired)
// base.Dispose();

More About Calling Interface Methods

The FCL's System.String type inherits System.0Object's method signatures and their imple-
mentations. In addition, the String type also implements several interfaces: IComparable,
ICloneable, IConvertible, IEnumerable, IComparable<String>, IEnumerable<Char>,
and IEquatable<String>. This means that the String type isn't required to implement (or
override) the methods its Object base type offers. However, the String type must implement
the methods declared in all of the interfaces.

The CLR allows you to define field, parameter, or local variables that are of an interface type.
Using a variable of an interface type allows you to call methods defined by that interface. In
addition, the CLR will allow you to call methods defined by Object because all classes inherit
Object’'s methods. The following code demonstrates this:

Chapter 13 Interfaces 313

// The s variable refers to a String object.

String s = "Jeffrey";

// Using s, I can call any method defined in

// String, Object, IComparable, ICloneable, IConvertible, IEnumerable, etc.

// The cloneable variable refers to the same String object
ICloneable cloneable = s;

// Using cloneable, I can call any method declared by the

// ICloneable interface (or any method defined by Object) only.

// The comparable variable refers to the same String object
IComparable comparable = s;

// Using comparable, I can call any method declared by the

// IComparable interface (or any method defined by Object) only.

// The enumerable variable refers to the same String object

// At run time, you can cast a variable from one interface to another as
// long as the object's type implements both interfaces.

IEnumerable enumerable = (IEnumerable) comparable;

// Using enumerable, I can call any method declared by the

// IEnumerable interface (or any method defined by Object) only.

In this code, all of the variables refer to the same “Jeffrey” String object that is in the man-
aged heap, and therefore, any method that | call while using any of these variables affects
the one "Jeffrey” String object. However, the type of the variable indicates the action that |
can perform on the object. The s variable is of type String, and therefore, | can use s to call
any members defined by the String type (such as the Length property). | can also use the
variable s to call any methods inherited from Object (such as GetType).

The cloneable variable is of the ICloneable interface type, and therefore, using the
cloneable variable, | can call the Clone method defined by this interface. In addition, | can
call any method defined by Object (such as GetType) because the CLR knows that all types
derive from Object. However, using the cloneable variable, | cannot call public methods
defined by String itself or any methods defined by any other interface that String imple-
ments. Similarly, using the comparable variable, | can call CompareTo or any method defined
by Object, but no other methods are callable using this variable.

Important Like a reference type, a value type can implement zero or more interfaces. However,
when you cast an instance of a value type to an interface type, the value type instance must be
boxed. This is because an interface variable is a reference that must point to an object on the
heap so that the CLR can examine the object’s type object pointer to determine the exact type of
the object. Then, when calling an interface method with a boxed value type, the CLR will follow
the object’s type object pointer to find the type object’'s method table in order to call the proper
method.

314 Part Il Designing Types

Implicit and Explicit Interface Method Implementations
(What's Happening Behind the Scenes)

When a type is loaded into the CLR, a method table is created and initialized for the type (as
discussed in Chapter 1, “The CLR's Execution Model"). This method table contains one entry
for every new method introduced by the type as well as entries for any virtual methods in-
herited by the type. Inherited virtual methods include methods defined by the base types

in the inheritance hierarchy as well as any methods defined by the interface types. So if you
have a simple type defined like this:

internal sealed class SimpleType : IDisposable {
public void Dispose() { Console.WriteLine("Dispose™); }

}

the type’s method table contains entries for the following:

B All the virtual instance methods defined by Object, the implicitly inherited base class.

B All the interface methods defined by IDisposable, the inherited interface. In this
example, there is only one method, Dispose, since the IDisposable interface defines
just one method.

B The new method, Dispose, introduced by Simp1eType.

To make things simple for the programmer, the C# compiler assumes that the Dispose
method introduced by Simp1eType is the implementation for IDisposable’s Dispose
method. The C# compiler makes this assumption because the method is pub1ic, and the sig-
natures of the interface method and the newly introduced method are identical. That is, the
methods have the same parameter and return types. By the way, if the new Dispose method
were marked as virtual, the C# compiler would still consider this method to be a match for
the interface method.

When the C# compiler matches a new method to an interface method, it emits metadata
indicating that both entries in SimpleType's method table should refer to the same
implementation. To help make this clearer, here is some code that demonstrates how to
call the class's public Dispose method as well as how to call the class’'s implementation of
IDisposable’s Dispose method:

public sealed class Program {
public static void Main() {
SimpleType st = new SimpleType();

// This calls the public Dispose method implementation
st.Dispose();

// This calls IDisposable's Dispose method implementation
IDisposable d = st;
d.Dispose();

Chapter 13 Interfaces 315

In the first call to Dispose, the Dispose method defined by SimpleType is called. Then |
define a variable, d, which is of the IDisposable interface type. | initialize the d variable to
refer to the Simp1eType object. Now when | call d.Dispose(), | am calling the IDisposable
interface’s Dispose method. Since C# requires the public Dispose method to also be the
implementation for IDisposable's Dispose method, the same code will execute, and, in this
example, you can't see any observable difference. The output is as follows:

Dispose
Dispose

Now, let me rewrite the SimpleType from above so that you can see an observable
difference:

internal sealed class SimpleType : IDisposable {
public void Dispose() { Console.WriteLine("public Dispose™); }
void IDisposable.Dispose() { Console.WriteLine("IDisposable Dispose™); }

}

Without changing the Main method shown earlier, if we just recompile and rerun the pro-
gram, the output will be this:

public Dispose
IDisposable Dispose

In C#, when you prefix the name of a method with the name of the interface that defines

the method (IDisposable.Dispose as in this example), you are creating an explicit interface
method implementation (EIMI). Note that when you define an explicit interface method in C#,
you are not allowed to specify any accessibility (such as public or private). However, when
the compiler generates the metadata for the method, its accessibility is set to private, pre-
venting any code using an instance of the class from simply calling the interface method. The
only way to call the interface method is through a variable of the interface’s type.

Also note that an EIMI method cannot be marked as virtual and therefore cannot be over-
ridden. This is because the EIMI method is not really part of the type’s object model; it's a
way of attaching an interface (set of behaviors or methods) onto a type without making the
behaviors/methods obvious. If all of this seems a bit kludgy to you, you are understanding it
correctly—this is all a bit kludgy. Later in this chapter, I'll show some valid reasons for using
EIMIs.

Generic Interfaces

C#'s and the CLR’s support of generic interfaces offers many great features for developers. In
this section, I'd like to discuss the benefits offered when using generic interfaces.

First, generic interfaces offer great compile-time type safety. Some interfaces (such as the
non-generic IComparable interface) define methods that have Object parameters or return

316

Part Il Designing Types

types. When code calls these interface methods, a reference to an instance of any type can
be passed. But this is usually not desired. The following code demonstrates:

private void SomeMethodl() {
Int32 x =1, y = 2;
IComparable c = x;

// CompareTo expects an Object; passing y (an Int32) is OK
c.CompareTo(y); // y is boxed here

// CompareTo expects an Object; passing "2" (a String) compiles
// but an ArgumentException is thrown at runtime
c.CompareTo("2");

}

Obviously, it is preferable to have the interface method strongly typed, and this is why the
FCL includes a generic IComparable<in T> interface. Here is the new version of the code
revised by using the generic interface:

private void SomeMethod2() {
Int32 x =1, y = 2;
IComparable<Int32> c = Xx;

// CompareTo expects an Int32; passing y (an Int32) is OK
c.CompareTo(y); // y is not boxed here

// CompareTo expects an Int32; passing "2" (a String) results
// in a compiler error indicating that String cannot be cast to an Int32
c.CompareTo("2"); // Error

}

The second benefit of generic interfaces is that much less boxing will occur when working
with value types. Notice in SomeMethodl that the non-generic IComparable interface’s
CompareTo method expects an Object; passing y (an Int32 value type) causes the value
in y to be boxed. However, in SomeMethod2, the generic IComparable<in T> interface’s
CompareTo method expects an Int32; passing y causes it to be passed by value, and no
boxing is necessary.

Note The FCL defines non-generic and generic versions of the IComparable, ICollection,
IList, and IDictionary interfaces, as well as some others. If you are defining a type, and

you want to implement any of these interfaces, you should typically implement the generic
versions of these interfaces. The non-generic versions are in the FCL for backward compatibility
to work with code written before the .NET Framework supported generics. The non-generic ver-
sions also provide users a way of manipulating the data in a more general, less type-safe fashion.

Some of the generic interfaces inherit the non-generic versions, so your class will have to imple-
ment both the generic and non-generic versions of the interfaces. For example, the generic
IEnumerable<out T> interface inherits the non-generic IEnumerable interface. So if your class
implements IEnumerable<out T>, your class must also implement IEnumerable.

Chapter 13 Interfaces 317

Sometimes when integrating with other code, you may have to implement a non-generic
interface because a generic version of the interface simply doesn't exist. In this case, if any of
the interface’'s methods take or return Object, you will lose compile-time type safety, and you
will get boxing with value types. You can alleviate this situation to some extent by using a
technique | describe in the “Improving Compile-Time Type Safety with Explicit Interface Method
Implementations” section near the end of this chapter.

The third benefit of generic interfaces is that a class can implement the same interface
multiple times as long as different type parameters are used. The following code shows an
example of how useful this could be:

using System;

// This class implements the generic IComparable<T> interface twice
public sealed class Number: IComparable<Int32>, IComparable<String> {
private Int32 m_val = 5;

// This method impTlements IComparable<Int32>'s CompareTo
public Int32 CompareTo(Int32 n) {
return m_val.CompareTo(n);

}

// This method implements IComparable<String>'s CompareTo
public Int32 CompareTo(String s) {
return m_val.CompareTo(Int32.Parse(s));
}
}

public static class Program {
public static void Main() {
Number n = new Number();

// Here, I compare the value in n with an Int32 (5)
IComparable<Int32> cInt32 = n;
Int32 result = cInt32.CompareTo(5);

// Here, I compare the value in n with a String ("5")
IComparable<String> cString = n;
result = cString.CompareTo("5");

}

An interface’s generic type parameters can also be marked as contravariant and covariant,
which allows even more flexibility for using generic interfaces. For more about contravariance
and covariance, see the “"Delegate and Interface Contravariant and Covariant Generic Type
Arguments” section in Chapter 12.

318 Part Il Designing Types

Generics and Interface Constraints

In the previous section, | discussed the benefits of using generic interfaces. In this section, I'll
discuss the benefits of constraining generic type parameters to interfaces.

The first benefit is that you can constrain a single generic type parameter to multiple inter-
faces. When you do this, the type of parameter you are passing in must implement all of the
interface constraints. Here is an example:

public static class SomeType {
private static void Test() {
Int32 x = 5;
Guid g = new Guid(Q);

// This call to M compiles fine because
// Int32 implements IComparable AND IConvertible
MOO 5

// This call to M causes a compiler error because
// Guid implements IComparable but it does not implement IConvertible
M(9);

}

// M's type parameter, T, is constrained to work only with types that
// implement both the IComparable AND IConvertible interfaces
private static Int32 M<T>(T t) where T : IComparable, IConvertible {

}
3

This is actually quite cool! When you define a method's parameters, each parameter’s type
indicates that the argument passed must be of the parameter’s type or be derived from it. If
the parameter type is an interface, this indicates that the argument can be of any class type
as long as the class implements the interface. Using multiple interface constraints actually lets
the method indicate that the passed argument must implement multiple interfaces.

In fact, if we constrained T to a class and two interfaces, we are saying that the type of
argument passed must be of the specified base class (or derived from it), and it must also
implement the two interfaces. This flexibility allows the method to really dictate what callers
can pass, and compiler errors will be generated if callers do not meet these constraints.

The second benefit of interface constraints is reduced boxing when passing instances of
value types. In the previous code fragment, the M method was passed x (an instance of an
Int32, which is a value type). No boxing will occur when x is passed to M. If code inside M
does call t.CompareTo(. . .), still no boxing occurs to make the call (boxing may still happen
for arguments passed to CompareTo).

On the other hand, if M had been declared like this:

Chapter 13 Interfaces 319

private static Int32 M(IComparable t) {
}

then in order to pass x to M, x would have to be boxed.

For interface constraints, the C# compiler emits certain Intermediate Language (IL) instruc-
tions that result in calling the interface method on the value type directly without boxing

it. Aside from using interface constraints, there is no other way to get the C# compiler to
emit these IL instructions, and therefore, calling an interface method on a value type always
causes boxing.

Implementing Multiple Interfaces That Have the Same
Method Name and Signature

Occasionally, you might find yourself defining a type that implements multiple interfaces that
define methods with the same name and signature. For example, imagine that there are two
interfaces defined as follows:

public interface IWindow {
Object GetMenu(Q);
}

public interface IRestaurant {
Object GetMenu(Q);
}

Let's say that you want to define a type that implements both of these interfaces. You'd have
to implement the type’s members by using explicit interface method implementations as
follows:

// This type is derived from System.Object and
// implements the IWindow and IRestaurant interfaces.
public sealed class MarioPizzeria : IWindow, IRestaurant {

// This is the implementation for IWindow's GetMenu method.
Object IWindow.GetMenu() { ... }

// This is the implementation for IRestaurant's GetMenu method.
Object IRestaurant.GetMenu() { ... }

// This (optional method) is a GetMenu method that has nothing
// to do with an interface.
public Object GetMenu() { ... }

}

Because this type must implement multiple and separate GetMenu methods, you need to
tell the C# compiler which GetMenu method contains the implementation for a particular
interface.

320

Part Il Designing Types

Code that uses a MarioPizzeria object must cast to the specific interface to call the desired
method. The following code demonstrates:

MarioPizzeria mp = new MarioPizzeria();

// This 1line calls MarioPizzeria's public GetMenu method
mp.GetMenu(Q) ;

// These lines call MarioPizzeria's IWindow.GetMenu method
IWindow window = mp;
window.GetMenu();

// These Tines call MarioPizzeria's IRestaurant.GetMenu method
IRestaurant restaurant = mp;
restaurant.GetMenu();

Improving Compile-Time Type Safety with Explicit
Interface Method Implementations

Interfaces are great because they define a standard way for types to communicate with each
other. Earlier, | talked about generic interfaces and how they improve compile-time type
safety and reduce boxing. Unfortunately, there may be times when you need to implement a
non-generic interface because a generic version doesn't exist. If any of the interface’s
method(s) accept parameters of type System.Object or return a value whose type is
System.Object, you will lose compile-time type safety, and you will get boxing. In this
section, I'll show you how you can use EIMI to improve this situation somewhat.

Look at the very common IComparable interface:

public interface IComparable {
Int32 CompareTo(Object other);
}

This interface defines one method that accepts a parameter of type System.Object. If |
define my own type that implements this interface, the type definition might look like this:

internal struct SomeValueType : IComparable {
private Int32 m_x;
public SomeValueType(Int32 x) { m_x = x; }
public Int32 CompareTo(Object other) {
return(m_x - ((SomeValueType) other).m_x);
}
}

Using SomeValueType, | can now write the following code:

Chapter 13 Interfaces 321

public static void Main() {
SomeValueType v = new SomeValueType(0);
Object o = new Object();
Int32 n = v.CompareTo(v); // Undesired boxing
n = v.CompareTo(o); // InvalidCastException

}

There are two characteristics of this code that are not ideal:

B Undesired boxing When v is passed as an argument to the CompareTo method, it
must be boxed because CompareTo expects an Object.

B The lack of type safety This code compiles, but an InvalidCastException is thrown
inside the CompareTo method when it attempts to cast o to SomeValueType.

Both of these issues can be fixed by using EIMIs. Here's a modified version of SomeValueType
that has an EIMI added to it:

internal struct SomeValueType : IComparable {
private Int32 m_x;
public SomeValueType(Int32 x) { m_x = x; }

public Int32 CompareTo(SomeValueType other) {
return(m_x - other.m_x);

}

// NOTE: No public/private used on the next Tine
Int32 IComparable.CompareTo(Object other) {
return CompareTo((SomeValueType) other);
}
}

Notice several changes in this new version. First, it now has two CompareTo methods.

The first CompareTo method no longer takes an Object as a parameter; it now takes a
SomeValueType instead. Because this parameter has changed, the code that casts other to
SomeValueType is no longer necessary and has been removed. Second, changing the first
CompareTo method to make it type-safe means that SomevalueType no longer adheres to
the contract placed on it by implementing the IComparabTle interface. So SomeValueType
must implement a CompareTo method that satisfies the IComparable contract. This is the job
of the second IComparable.CompareTo method, which is an EIMI.

Having made these two changes means that we now get compile-time type safety and no
boxing:

public static void Main() {
SomeValueType v = new SomeValueType(0);
Object o = new Object();
Int32 n = v.CompareTo(v); // No boxing
n = v.CompareTo(o); // compile-time error

322

Part Il Designing Types

If, however, we define a variable of the interface type, we will lose compile-time type safety
and experience undesired boxing again:

public static void Main() {
SomeValueType v = new SomeValueType(0);
IComparable c = v; // Boxing!

Object o = new Object();
Int32 n = c.CompareTo(v); // Undesired boxing
n = c.CompareTo(o); // InvalidCastException

}

In fact, as mentioned earlier in this chapter, when casting a value type instance to an inter-
face type, the CLR must box the value type instance. Because of this fact, two boxings will
occur in the previous Main method.

EIMIs are frequently used when implementing interfaces such as IConvertible,
ICollection, IList, and IDictionary. They let you create type-safe versions of these
interfaces’ methods, and they enable you to reduce boxing operations for value types.

Be Careful with Explicit Interface Method
Implementations

It is critically important for you to understand some ramifications that exist when using
EIMIs. And because of these ramifications, you should try to avoid EIMIs as much as possible.
Fortunately, generic interfaces help you avoid EIMIs quite a bit. But there may still be times
when you will need to use them (such as implementing two interface methods with the same
name and signature). Here are the big problems with EIMIs:

B There is no documentation explaining how a type specifically implements an EIMI
method, and there is no Microsoft Visual Studio IntelliSense support.

B Value type instances are boxed when cast to an interface.

B An EIMI cannot be called by a derived type.
Let's take a closer look at these problems.

When examining the methods for a type in the .NET Framework reference documentation,
explicit interface method implementations are listed, but no type-specific help exists; you
can just read the general help about the interface methods. For example, the documentation
for the Int32 type shows that it implements all of IConvertible interface’s methods. This is
good because developers know that these methods exist; however, this has been very con-
fusing to developers because you can't call an IConvertible method on an Int32 directly.
For example, the following method won't compile:

Chapter 13 Interfaces 323

public static void Main() {

Int32 x = 5;

Single s = x.ToSingle(nul1l); // Trying to call an IConvertible method
}

When compiling this method, the C# compiler produces the following message:
"messagepill?: 'int' does not contain a definition for 'ToSingle'." This error
message confuses the developer because it's clearly stating that the Int32 type doesn't
define a ToSingle method when, in fact, it does.

To call ToSingle on an Int32, you must first cast the Int32 to an IConvertible, as shown
in the following method:

public static void Main() {

Int32 x = 5;

Single s = ((IConvertible) x).ToSingle(null);
}

Requiring this cast isn‘t obvious at all, and many developers won't figure this out on their
own. But an even more troublesome problem exists: casting the Int32 value type to an
IConvertible also boxes the value type, wasting memory and hurting performance. This is
the second of the big problems | mentioned at the beginning of this section.

The third and perhaps the biggest problem with EIMIs is that they cannot be called by a
derived class. Here is an example:

internal class Base : IComparable {

// Explicit Interface Method Implementation

Int32 IComparable.CompareTo(Object o) {
Console.WriteLine("Base's CompareTo");
return 0;

}
internal sealed class Derived : Base, IComparable {

// A public method that is also the interface implementation
public Int32 CompareTo(Object o) {
Console.WriteLine("Derived's CompareTo");

// This attempt to call the base class's EIMI causes a compiler error:
// error CS0117: 'Base' does not contain a definition for 'CompareTo'
base.CompareTo(o);

return 0;

}

In Derived's CompareTo method, | try to call base.CompareTo, but this causes the C# com-
piler to issue an error. The problem is that the Base class doesn't offer a public or protected
CompareTo method that can be called; it offers a CompareTo method that can be called only

324

Part Il Designing Types

by using a variable that is of the IComparable type. | could modify Derived's CompareTo
method so that it looks like this:

// A public method that is also the interface implementation
public Int32 CompareTo(Object o) {
Console.WriteLine("Derived's CompareTo");

// This attempt to call the base class's EIMI causes infinite recursion
IComparable c = this;
c.CompareTo(o);

return 0;

}

In this version, | am casting this to an IComparable variable, c. And then, | use c to call
CompareTo. However, the Derived's public CompareTo method serves as the implementation
for Derived's IComparableCompareTo method, and therefore, infinite recursion occurs. This
could be fixed by declaring the Derived class without the IComparable interface, like this:

internal sealed class Derived : Base /*, IComparable */ { ... }

Now the previous CompareTo method will call the CompareTo method in Base. But sometimes
you cannot simply remove the interface from the type because you want the derived type

to implement an interface method. The best way to fix this is for the base class to provide a
virtual method in addition to the interface method that it has chosen to implement explicitly.
Then the Derived class can override the virtual method. Here is the correct way to define the
Base and Derived classes:

internal class Base : IComparable {

// Explicit Interface Method Implementation

Int32 IComparable.CompareTo(Object o) {
Console.WriteLine("Base's IComparable CompareTo™);
return CompareTo(o); // This now calls the virtual method

}

// Virtual method for derived classes (this method could have any name)
public virtual Int32 CompareTo(Object o) {

Console.WriteLine("Base's virtual CompareTo");

return 0;

3

internal sealed class Derived : Base, IComparable {

// A public method that is also the interface implementation
public override Int32 CompareTo(Object o) {
Console.WriteLine("Derived's CompareTo");

// Now, we can call Base's virtual method
return base.CompareTo(o);

Chapter 13 Interfaces 325

Note that | have defined the virtual method above as a public method, but in some cases, you
will prefer to make the method protected instead. It is fine to make this method protected
instead of public, but that will necessitate other minor changes. This discussion clearly shows
you that EIMIs should be used with great care. When many developers first learn about EIMIs,
they think that they're cool and they start using them whenever possible. Don't do this! EIMIs
are useful in some circumstances, but you should avoid them whenever possible because
they make using a type much more difficult.

Design: Base Class or Interface?

| often hear the question, “Should | design a base type or an interface?” The answer isn't
always clear-cut. Here are some guidelines that might help you:

B |S-Avs. CAN-DO relationship A type can inherit only one implementation. If the
derived type can't claim an IS-A relationship with the base type, don't use a base type;
use an interface. Interfaces imply a CAN-DO relationship. If the CAN-DO functionality
appears to belong with various object types, use an interface. For example, a type
can convert instances of itself to another type (IConvertible), a type can serialize an
instance of itself (ISerializable), etc. Note that value types must be derived from
System.ValueType, and therefore, they cannot be derived from an arbitrary base class.
In this case, you must use a CAN-DO relationship and define an interface.

B Ease of use It's generally easier for you as a developer to define a new type derived
from a base type than to implement all of the methods of an interface. The base type
can provide a lot of functionality, so the derived type probably needs only relatively
small modifications to its behavior. If you supply an interface, the new type must
implement all of the members.

B Consistent implementation No matter how well an interface contract is documented,
it's very unlikely that everyone will implement the contract 100 percent correctly. In
fact, COM suffers from this very problem, which is why some COM objects work cor-
rectly only with Microsoft Office Word or with Windows Internet Explorer. By providing
a base type with a good default implementation, you start off using a type that works
and is well tested; you can then modify parts that need modification.

B Versioning If you add a method to the base type, the derived type inherits the new
method, you start off using a type that works, and the user’s source code doesn't even
have to be recompiled. Adding a new member to an interface forces the inheritor of
the interface to change its source code and recompile.

In the FCL, the classes related to streaming data use an implementation inheritance design.
The System.I0.Stream class is the abstract base class. It provides a bunch of methods, such
as Read and Write. Other classes—System.I0.FileStream, System.I0.MemoryStream,
and System.Net.Sockets.NetworkStream—are derived from Stream. Microsoft chose an

326

Part Il Designing Types

IS-A relationship between each of these three classes and the Stream class because it made
implementing the concrete classes easier. For example, the derived classes need to implement
only synchronous 1/O operations; they inherit the ability to perform asynchronous I/O opera-
tions from the Stream base class.

Admittedly, choosing to use inheritance for the stream classes isn't entirely clear-cut; the
Stream base class actually provides very little implementation. However, if you consider the
Microsoft Windows Forms control classes, in which Button, CheckBox, ListBox, and all of
the other controls are derived from System.Windows .Forms.Control, it's easy to imagine
all of the code that Control implements, which the various control classes simply inherit to
function correctly.

By contrast, Microsoft designed the FCL collections to be interface based. The
System.Collections.Generic namespace defines several collection-related interfaces:
IEnumerable<out T>, ICollection<T>, IList<T>, and IDictionary<TKey, TValue>.
Then Microsoft provided a number of classes, such as List<T>, Dictionary<TKey, TValue>,
Queue<T>, Stack<T>, and so on, that implement combinations of these interfaces. Here the
designers chose a CAN-DO relationship between the classes and the interfaces because the
implementations of these various collection classes are radically different from one another.
In other words, there isn't a lot of sharable code between a List<T>, a Dictionary<TKey,
TValue>, and a Queue<T>.

The operations these collection classes offer are, nevertheless, pretty consistent. For example,
they all maintain a set of elements that can be enumerated, and they all allow adding and
removing of elements. If you have a reference to an object whose type implements the
IList<T> interface, you can write code to insert elements, remove elements, and search for
an element without having to know exactly what type of collection you're working with. This
is a very powerful mechanism.

Finally, it should be pointed out that you can actually do both: define an interface and
provide a base class that implements the interface. For example, the FCL defines the
IComparer<in T> interface, and any type can choose to implement this interface. In
addition, the FCL provides an abstract base class, Comparer<T>, which implements this
interface and provides a default implementation for the non-generic IComparable’s Compare
method. Having both an interface definition and a base class offers great flexibility because
developers can now choose whichever they prefer.

Chapter 14

Chars, Strings, and Working with Text

Characters. e 327
The System.String TYPe. . .. oottt e e e eaeeens 330
Constructing a String Efficiently.o 346
Obtaining a String Representation of an Object: ToString 350
Parsing a String to Obtain an Object: Parse 359
Encodings: Converting Between Charactersand Bytes 361
SECUIE StIINGS . .ottt et ettt e 369

In this chapter, I'll explain the mechanics of working with individual characters and strings in
the Microsoft .NET Framework. I'll start by talking about the System.Char structure and the
various ways that you can manipulate a character. Then I'll go over the more useful
System.String class, which allows you to work with immutable strings. (Once created,
strings can’t be modified in any way.) After examining strings, I'll show you how to perform
various operations efficiently to build a string dynamically via the System.Text.StringBuilder
class. With the string basics out of the way, I'll then describe how to format objects into
strings and how to efficiently persist or transmit strings by using various encodings. Finally,

I'll discuss the System.Security.SecureString class, which can be used to protect sensitive
string data such as passwords and credit card information.

Characters

In the .NET Framework, characters are always represented in 16-bit Unicode code values,
easing the development of global applications. A character is represented with an instance
of the System.Char structure (a value type). The System.Char type is pretty simple. It offers
two public read-only constant fields: Minvalue, defined as '\0', and MaxValue, defined as
"\uffff'.

Given an instance of a Char, you can call the static GetUnicodeCategory method, which re-
turns a value of the System.Global+ization.UnicodeCategory enumerated type. This value
indicates whether the character is a control character, a currency symbol, a lowercase letter,
an uppercase letter, a punctuation character, a math symbol, or another character (as defined
by the Unicode standard).

327

328

Part Ill Essential Types

To ease developing, the Char type also offers several static methods, such as IsDigit,
IslLetter, IsWhiteSpace, IsUpper, IsLower, IsPunctuation, IsLetterOrDigit,
IsControl, IsNumber, IsSeparator, IsSurrogate, IsLowSurrogate, IsHighSurrogate,
and IsSymbol. Most of these methods call GetUnicodeCategory internally and simply return
true or false accordingly. Note that all of these methods take either a single character for a
parameter or a String and the index of a character within the String as parameters.

In addition, you can convert a single character to its lowercase or uppercase equivalent in a
culture-agnostic way by calling the static ToLowerInvariant or ToUpperInvariant method.
Alternatively, the ToLower and ToUpper methods convert the character by using the culture
information associated with the calling thread (which the methods obtain internally by
querying the static CurrentCulture property of the System.Threading.Thread class).

You can also specify a particular culture by passing an instance of the CultureInfo class to
these methods. ToLower and ToUpper require culture information because letter casing is

a culture-dependent operation. For example, Turkish considers the uppercase of U+0069
(LATIN LOWERCASE LETTER I) to be U+0130 (LATIN UPPERCASE LETTER | WITH DOT ABOVE),
whereas other cultures consider the result to be U+0049 (LATIN CAPITAL LETTER I).

Besides these static methods, the Char type also offers a few instance methods of its own.
The Equals method returns true if two Char instances represent the same 16-bit Unicode
code point. The CompareTo methods (defined by the IComparable/IComparable<Char> in-
terfaces) return a comparison of two Char instances; this comparison is not culture-sensitive.
The ConvertFromUtf32 method produces a string consisting of two UTF-16 characters from
a single UTF-32 character. The ConvertToUtf32 produces a UTF-16 character from a low/
high surrogate pair or from a string. The ToString method returns a String consisting of a
single character. The opposite of ToString is Parse/TryParse, which takes a single-character
String and returns its UTF-16 code point.

The last method, GetNumericValue, returns the numeric equivalent of a character. | demon-
strate this method in the following code:

using System;

public static class Program {
public static void Main() {

Double d; // '\u0033' 1is the "digit 3"
d = Char.GetNumericValue('\u0033"); // '3' would work too
Console.WriteLine(d.ToString()); // Displays "3"

// '\u00bc' is the "vulgar fraction one quarter ('%')"
d = Char.GetNumericValue('\u00bc');
Console.WriteLine(d.ToString()); // Displays "0.25"

// 'A' is the "Latin capital letter A"
d = Char.GetNumericvValue('A');
Console.WriteLine(d.ToString(Q)); // Displays "-1"

Chapter 14 Chars, Strings, and Working with Text 329

Finally, three techniques allow you to convert between various numeric types to Char
instances and vice versa. The techniques are listed here in order of preference:

B Casting The easiest way to convert a Char to a numeric value such as an Int32 is
simply by casting. Of the three techniques, this is the most efficient because the
compiler emits Intermediate Language (IL) instructions to perform the conversion, and
no methods have to be called. In addition, some languages (such as C#) allow you to
indicate whether the conversion should be performed using checked or unchecked
code (discussed in Chapter 5, “Primitive, Reference, and Value Types").

B Use the Convert type The System.Convert type offers several static methods that
are capable of converting a Char to a numeric type and vice versa. All of these methods
perform the conversion as a checked operation, causing an OverflowException to
be thrown if the conversion results in the loss of data.

B Use the IConvertible interface The Char type and all of the numeric types in the
.NET Framework Class Library (FCL) implement the IConvertible interface. This inter-
face defines methods such as ToUInt16 and ToChar. This technique is the least efficient
of the three because calling an interface method on a value type requires that the
instance be boxed—Char and all of the numeric types are value types. The methods
of IConvertible throw a System.InvalidCastException if the type can't be con-
verted (such as converting a Char to a Boolean) or if the conversion results in a loss of
data. Note that many types (including the FCL's Char and numeric types) implement
IConvertible's methods as explicit interface member implementations (described in
Chapter 13, “Interfaces”). This means that you must explicitly cast the instance to an
IConvertible before you can call any of the interface’s methods. All of the methods
of IConvertible except GetTypeCode accept a reference to an object that implements
the IFormatProvider interface. This parameter is useful if for some reason the conver-
sion needs to take culture information into account. For most conversions, you can pass
null for this parameter because it would be ignored anyway.

The following code demonstrates how to use these three techniques:
using System;

public static class Program {
public static void Main() {
Char «c;
Int32 n;

// Convert number <-> character using C# casting
c = (Char) 65;
Console.WriteLine(c); // Displays "A"

n = (Int32) c;
Console.WriteLine(n); // Displays "65"

330 Part lll Essential Types

c = unchecked((Char) (65536 + 65));
Console.WriteLine(c); // Displays "A"

// Convert number <-> character using Convert
c = Convert.ToChar(65);
Console.WriteLine(c); // Displays "A"

n = Convert.ToInt32(c);
Console.WriteLine(n); // Displays "65"

// This demonstrates Convert's range checking

try {
c = Convert.ToChar(70000); // Too big for 16 bits
Console.WriteLine(c); // Doesn't execute

}

catch (OverflowException) {
Console.WriteLine("Can't convert 70000 to a Char.");

}

// Convert number <-> character using IConvertible
c = ((IConvertible) 65).ToChar(null);
Console.WriteLine(c); // Displays "A"

n = ((IConvertible) c).ToInt32(null);
Console.WriteLine(n); // Displays "65"

The System.String Type

One of the most used types in any application is System.String. A String represents an
immutable ordered set of characters. The String type is derived immediately from Object,
making it a reference type, and therefore, String objects (its array of characters) always
live in the heap, never on a thread'’s stack. The String type also implements several inter-
faces (IComparable/IComparable<String>, ICloneable, IConvertible, IEnumerable/
IEnumerable<Char>, and IEquatable<String>).

Constructing Strings

Many programming languages (including C#) consider String to be a primitive type—that is,
the compiler lets you express literal strings directly in your source code. The compiler places
these literal strings in the module’s metadata, and they are then loaded and referenced at
runtime.

Chapter 14 Chars, Strings, and Working with Text 331

In C#, you can't use the new operator to construct a String object from a literal string:
using System;

public static class Program {
public static void Main() {
String s = new String("Hi there."); // <-- Error
Console.WriteLine(s);

3

Instead, you must use the following simplified syntax:

using System;

public static class Program {
public static void Main() {
String s = "Hi there.";
Console.WriteLine(s);

3

If you compile this code and examine its IL (using ILDasm.exe), you'd see the following:

.method public hidebysig static void Main() cil managed
{
.entrypoint
// Code size 13 (Oxd)
.maxstack 1
.locals init (string V_0)
IL_0000: 1dstr "Hi there."
IL_0005: stloc.0
IL_0006: 1dloc.0
IL_0007: «call void [mscorlib]System.Console::WriteLine(string)
IL_000c: ret
} // end of method Program::Main

The newobj IL instruction constructs a new instance of an object. However, no newobj
instruction appears in the IL code example. Instead, you see the special 1dstr (load string) IL
instruction, which constructs a String object by using a literal string obtained from metadata.
This shows you that the common language runtime (CLR) does, in fact, have a special way of
constructing literal String objects.

If you are using unsafe code, you can construct a String object from a Char* or SByte*. To
accomplish this, you would use C#'s new operator and call one of the constructors provided by
the String type that takes Char* or SByte* parameters. These constructors create a String
object, initializing the string from an array of Char instances or signed bytes. The other con-
structors don't have any pointer parameters and can be called using safe (verifiable) code
written in any managed programming language.

332

Part Ill Essential Types

C# offers some special syntax to help you enter literal strings into the source code. For special
characters such as new lines, carriage returns, and backspaces, C# uses the escape mechanism
familiar to C/C++ developers:

// String containing carriage-return and newline characters
String s = "Hi\r\nthere.";

Important Although the preceding example hard-codes carriage-return and newline characters
into the string, | don't recommend this practice. Instead, the System.Environment type defines
a read-only NewL1ine property that returns a string consisting of these characters when your
application is running on Microsoft Windows. However, the NewL1ine property is platform
sensitive, and it returns the appropriate string required to obtain a newline by the underlying
platform. So, for example, if the Common Language Infrastructure (CLI) is ported to a UNIX
system, the NewL1ine property would return a string consisting of just a single character \n.
Here's the proper way to define the previous string so that it works correctly on any platform:

String s = "Hi" + Environment.NewLine + "there.";

You can concatenate several strings to form a single string by using C#'s + operator as
follows:

// Three Tliteral strings concatenated to form a single literal string
String s = "Hi" + " " + "there.";

In this code, because all of the strings are literal strings, the C# compiler concatenates them
at compile time and ends up placing just one string—"Hi there."—in the module’'s meta-
data. Using the + operator on nonliteral strings causes the concatenation to be performed
at runtime. To concatenate several strings together at runtime, avoid using the + operator
because it creates multiple string objects on the garbage-collected heap. Instead, use the
System.Text.StringBuilder type (which I'll explain later in this chapter).

Finally, C# also offers a special way to declare a string in which all characters between quotes
are considered part of the string. These special declarations are called verbatim strings and are
typically used when specifying the path of a file or directory or when working with regular
expressions. Here is some code showing how to declare the same string with and without
using the verbatim string character (@).

// Specifying the pathname of an application
String file = "C:\\Windows\\System32\\Notepad.exe";

// Specifying the pathname of an application by using a verbatim string
String file = @"C:\Windows\System32\Notepad.exe";

Chapter 14 Chars, Strings, and Working with Text 333

You could use either one of the preceding code lines in a program because they produce
identical strings in the assembly’s metadata. However, the @ symbol before the string on the
second line tells the compiler that the string is a verbatim string. In effect, this tells the
compiler to treat backslash characters as backslash characters instead of escape characters,
making the path much more readable in your source code.

Now that you've seen how to construct a string, let's talk about some of the operations you
can perform on String objects.

Strings Are Immutable

The most important thing to know about a String object is that it is immutable. That

is, once created, a string can never get longer, get shorter, or have any of its characters
changed. Having immutable strings offers several benefits. First, it allows you to perform
operations on a string without actually changing the string:

if (s.ToUpperInvariant().Substring(10, 21).EndsWith("EXE")) {

}

Here, ToUpperInvariant returns a new string; it doesn’t modify the characters of the string
s. Substring operates on the string returned by ToUpperInvariant and also returns a

new string, which is then examined by EndsWith. The two temporary strings created by
ToUpperInvariant and Substring are not referenced for long by the application code, and
the garbage collector will reclaim their memory at the next collection. If you perform a lot of
string manipulations, you end up creating a lot of String objects on the heap, which causes
more frequent garbage collections, thus hurting your application’s performance. To perform
a lot of string manipulations efficiently, use the StringBuilder class.

Having immutable strings also means that there are no thread synchronization issues when
manipulating or accessing a string. In addition, it's possible for the CLR to share multiple
identical String contents through a single String object. This can reduce the number of
strings in the system—thereby conserving memory usage—and it is what string interning
(discussed later in the chapter) is all about.

For performance reasons, the String type is tightly integrated with the CLR. Specifically, the
CLR knows the exact layout of the fields defined within the String type, and the CLR accesses
these fields directly. This performance and direct access come at a small development cost:
the String class is sealed, which means that you cannot use it as a base class for your own
type. If you were able to define your own type, using String as a base type, you could add
your own fields, which would break the CLR's assumptions. In addition, you could break some
assumptions that the CLR team has made about String objects being immutable.

334

Part Ill Essential Types
Comparing Strings

Comparing is probably the most common operation performed on strings. There are two
reasons to compare two strings with each other. We compare two strings to determine
equality or to sort them (usually for presentation to a user).

In determining string equality or when comparing strings for sorting, it is highly recommend-
ed that you call one of these methods (defined by the String class):

Boolean Equals(String value, StringComparison comparisonType)
static Boolean Equals(String a, String b, StringComparison comparisonType)

static Int32 Compare(String strA, String strB, StringComparison comparisonType)

static Int32 Compare(string strA, string strB, Boolean ignoreCase, CultureInfo culture)

static Int32 Compare(String strA, String strB, CultureInfo culture, CompareOptions options)

static Int32 Compare(String strA, Int32 indexA, String strB, Int32 indexB, Int32 length,
StringComparison comparisonType)

static Int32 Compare(String strA, Int32 indexA, String strB, Int32 indexB, Int32 length,
CultureInfo culture, CompareOptions options)

static Int32 Compare(String strA, Int32 indexA, String strB, Int32 indexB, Int32 length,
Boolean ignoreCase, CultureInfo culture)

Boolean StartsWith(String value, StringComparison comparisonType)
Boolean StartsWith(String value,
Boolean ignoreCase, CultureInfo culture)

Boolean EndsWith(String value, StringComparison comparisonType)
Boolean EndsWith(String value, Boolean ignoreCase, CultureInfo culture)

When sorting, you should always perform case-sensitive comparisons. The reason is that if
two strings differing only by case are considered to be equal, they could be ordered differ-
ently each time you sort them; this would confuse the user.

The comparisonType argument (in most of the methods shown above) is one of the values
defined by the StringComparison enumerated type, which is defined as follows:

public enum StringComparison {
CurrentCulture = 0,
CurrentCultureIgnoreCase = 1,
InvariantCulture = 2,
InvariantCultureIgnoreCase = 3,
Ordinal = 4,
OrdinalIgnoreCase = 5

}

The CompareOptions argument (in two of the methods above) is one of the values defined
by the CompareOptions enumerator type:

Chapter 14 Chars, Strings, and Working with Text 335

[Flags]
pubTlic enum CompareOptions {
None = 0,

IgnoreCase = 1,
IgnoreNonSpace = 2,
IgnoreSymbols
IgnoreKanaType = 8,

IgnoreWidth = 0x00000010,
Ordinal = 0x40000000,
OrdinalIgnoreCase = 0x10000000,
StringSort = 0x20000000

1]
N

}

Methods that accept a CompareOptions argument also force you to explicitly pass in a
culture. When passing in the Ordinal or OrdinalIgnoreCase flag, these Compare methods
ignore the specified culture.

Many programs use strings for internal programmatic purposes such as path names, file
names, URLs, registry keys and values, environment variables, reflection, Extensible Markup
Language (XML) tags, XML attributes, and so on. Often, these strings are not shown to a user
and are used only within the program. When comparing programmatic strings, you should
always use StringComparison.Ordinal or StringComparison.OrdinalIgnoreCase. This is
the fastest way to perform a comparison that is not to be affected in any linguistic way
because culture information is not taken into account when performing the comparison.

On the other hand, when you want to compare strings in a linguistically correct manner
(usually for display to an end user), you should use StringComparison.CurrentCulture or
StringComparison.CurrentCultureIgnoreCase.

Important For the most part, StringComparison.InvariantCulture and
StringComparison.InvariantCultureIgnoreCase should not be used. Although these
values cause the comparison to be linguistically correct, using them to compare programmatic
strings takes longer than performing an ordinal comparison. Furthermore, the invariant culture is
culture agnostic, which makes it an incorrect choice when working with strings that you want to
show to an end user.

Important If you want to change the case of a string's characters before performing an ordi-
nal comparison, you should use String's ToUpperInvariant or ToLowerInvariant method.
When normalizing strings, it is highly recommended that you use ToUpperInvariant instead of
ToLowerInvariant because Microsoft has optimized the code for performing uppercase com-
parisons. In fact, the FCL internally normalizes strings to uppercase prior to performing case-
insensitive comparisons. We use ToUpperInvariant and ToLowerInvariant methods because
the String class does not offer ToUpperOrdinal and ToLowerOrdinal methods. We do not
use the ToUpper and ToLower methods because these are culture sensitive.

336

Part Ill Essential Types

Sometimes, when you compare strings in a linguistically correct manner, you want to specify
a specific culture rather than use a culture that is associated with the calling thread. In this
case, you can use the overloads of the StartsWith, EndsWith, and Compare methods shown
earlier, all of which take Boolean and CultureInfo arguments.

Important The String type defines several overloads of the Equals, StartsWith, EndsWith,
and Compare methods in addition to the versions shown earlier. Microsoft recommends that
these other versions (not shown in this book) be avoided. Furthermore, String's other compari-
son methods—CompareTo (required by the IComparable interface), CompareOrdinal, and

the == and != operators—should also be avoided. The reason for avoiding these methods and
operators is because the caller does not explicitly indicate how the string comparison should

be performed, and you cannot determine from the name of the method what the default com-
parison will be. For example, by default, CompareTo performs a culture-sensitive comparison,
whereas Equals performs an ordinal comparison. Your code will be easier to read and maintain
if you always indicate explicitly how you want to perform your string comparisons.

Now, let's talk about how to perform linguistically correct comparisons. The .NET Framework
uses the System.Globalization.CultureInfo type to represent a language/country pair
(as described by the RFC 1766 standard). For example, “en-US" identifies English as written

in the United States, “en-AU" identifies English as written in Australia, and “de-DE" identifies
German as written in Germany. In the CLR, every thread has two properties associated with it.
Each of these properties refers to a CultureInfo object. The two properties are:

B CurrentUICulture This property is used to obtain resources that are shown to an
end user. It is most useful for GUI or Web Forms applications because it indicates the
language that should be used when displaying Ul elements such as labels and buttons.
By default, when you create a thread, this thread property is set to a CultureInfo
object, which identifies the language of the Windows version the application is running
on using the Win32 GetUserDefaultUILanguage function. If you're running a
Multilingual User Interface (MUI) version of Windows, you can set this via the “Regional
and Language Options” Control Panel Settings dialog box. On a non-MUI version of
Windows, the language is determined by the localized version of the OS installed (or
the installed language pack) and the language is not changeable.

B CurrentCulture This property is used for everything that CurrentUICulture isn't
used for, including number and date formatting, string casing, and string comparing.
When formatting, both the language and country parts of the CultureInfo
object are used. By default, when you create a thread, this thread property is
set to a CultureInfo object, whose value is determined by calling the Win32
GetUserDefaul tLCID method, whose value is set in the “Regional and Language”
Control Panel applet.

Chapter 14 Chars, Strings, and Working with Text 337

On many computers, a thread’s CurrentUICulture and CurrentCulture properties will

be set to the same CultureInfo object, which means that they both use the same language/
country information. However, they can be set differently. For example: an application running
in the United States could use Spanish for all of its menu items and other GUI elements while
properly displaying all of the currency and date formatting for the United States. To do this,
the thread's CurrentUICulture property should be set to a CultureInfo object initialized
with a language of “es” (for Spanish), while the thread’s CurrentCulture property should be
set to a CultureInfo object initialized with a language/country pair of “en-US."

Internally, a CultureInfo object has a field that refers to a System.Globalization.
CompareInfo object, which encapsulates the culture’s character-sorting table information as
defined by the Unicode standard. The following code demonstrates the difference between
performing an ordinal comparison and a culturally aware string comparison:

using System;
using System.Globalization;

public static class Program {
public static void Main() {
String sl = "Strasse";
String s2 = "StraRe";
Boolean eq;

// CompareOrdinal returns nonzero.

eq = String.Compare(sl, s2, StringComparison.Ordinal) == 0;

Console.WriteLine("Ordinal comparison: '{0}' {2} '{1}'", sl1, s2,
eq ? "==" : "1=");

// Compare Strings appropriately for people
// who speak German (de) in Germany (DE)
CultureInfo ci = new CultureInfo("de-DE");

// Compare returns zero.

eq = String.Compare(sl, s2, true, ci) == 0;

Console.WriteLine("Cultural comparison: '{0}' {2} '{1}'", sl1, s2,
eq ? "==" : "1=");

}

Building and running this code produces the following output:

Ordinal comparison: 'Strasse' != 'StraRe'
Cultural comparison: 'Strasse' == 'StraRe'

Note When the Compare method is not performing an ordinal comparison, it performs character
expansions. A character expansion is when a character is expanded to multiple characters
regardless of culture. In the above case, the German Eszet character ‘B’ is always expanded to
‘ss.’ Similarly, the &' ligature character is always expanded to ‘AE." So in the code example, the
second call to Compare will always return 0 regardless of which culture | actually pass in to it.

338

Part Ill Essential Types

In some rare circumstances, you may need to have even more control when comparing
strings for equality or for sorting. This could be necessary when comparing strings consisting
of Japanese characters. This additional control can be accessed via the CultureInfo object's
CompareInfo property. As mentioned earlier, a CompareInfo object encapsulates a culture’s
character comparison tables, and there is just one CompareInfo object per culture.

When you call String's Compare method, if the caller specifies a culture, the specified culture
is used, or if no culture is specified, the value in the calling thread’s CurrentCulture property
is used. Internally, the Compare method obtains the reference to the CompareInfo object for
the appropriate culture and calls the Compare method of the CompareInfo object, passing
along the appropriate options (such as case insensitivity). Naturally, you could call the Compare
method of a specific CompareInfo object yourself if you need the additional control.

The Compare method of the CompareInfo type takes as a parameter a value from the
CompareOptions enumerated type (as shown earlier). You can OR these bit flags together to
gain significantly greater control when performing string comparisons. For a complete
description of these symbols, consult the .NET Framework documentation.

The following code demonstrates how important culture is to sorting strings and shows
various ways of performing string comparisons:

using System;

using System.Text;

using System.Windows.Forms;
using System.Globalization;
using System.Threading;

public sealed class Program {
public static void Main() {
String output = String.Empty;
String[] symbol = new String[] { "<", "=", ">" };
Int32 x;
CuTltureInfo ci;

// The code below demonstrates how strings compare
// differently for different cultures.

String sl = "coté";

String s2 = "cote";

// Sorting strings for French in France.

ci = new CultureInfo("fr-FR");

X = Math.Sign(ci.CompareInfo.Compare(sl, s2));

output += String.Format("{0} Compare: {1} {3} {2}",
ci.Name, sl, s2, symbol[x + 1]);

output += Environment.NewlLine;

// Sorting strings for Japanese in Japan.

ci = new CultureInfo("ja-JP");

x = Math.Sign(ci.CompareInfo.Compare(sl, s2));

output += String.Format("{0} Compare: {1} {3} {2}",
ci.Name, sl, s2, symbol[x + 1]);

output += Environment.NewlLine;

Chapter 14 Chars, Strings, and Working with Text 339

// Sorting strings for the thread's culture

ci = Thread.CurrentThread.CurrentCulture;

X = Math.Sign(ci.CompareInfo.Compare(sl, s2));

output += String.Format("{0} Compare: {1} {3} {2}",
ci.Name, sl, s2, symbol[x + 1]);

output += Environment.NewlLine + Environment.NewlLine;

// The code below demonstrates how to use CompareInfo.Compare's

// advanced options with 2 Japanese strings. One string represents
// the word "shinkansen" (the name for the Japanese high-speed

// train) in hiragana (one subtype of Japanese writing), and the
// other represents the same word in katakana (another subtype of
// Japanese writing).

sl = "Lanaea"; // ("M\u3057\u3093\u304B\u3093\u305b\u3093")

s2 = "venrwr"; // ("\u30b7\u30f3\u30ab\u30f3\u30bb\u30f3™)

// Here is the result of a default comparison

ci = new CultureInfo("ja-JP");

X = Math.Sign(String.Compare(sl, s2, true, ci));

output += String.Format("Simple {0} Compare: {1} {3} {2}",
ci.Name, s1, s2, symbol[x + 1]);

output += Environment.NewlLine;

// Here 1is the result of a comparison that ignores
// kana type (a type of Japanese writing)
CompareInfo compareInfo = CompareInfo.GetCompareInfo("ja-JP");
X = Math.Sign(compareInfo.Compare(sl, s2, CompareOptions.IgnoreKanaType));
output += String.Format("Advanced {0} Compare: {1} {3} {2}",
ci.Name, sl, s2, symbol[x + 1]);

MessageBox.Show(output, "Comparing Strings For Sorting");

Note This source code file can't be saved in ANSI or the Japanese characters will be lost. To save
this file in Microsoft Visual Studio, go to the Save File As dialog box, click the down arrow that is
part of the Save button and select Save With Encoding. | selected “Unicode (UTF-8 with signature)
— Codepage 65001". Microsoft's C# compiler can successfully parse source code files using this
code page.

Building and running this code produces the output shown in Figure 14-1.

| Comparing Strings For Sorting

fr-FR. Compare; coté = cite
ja-JP Compare: coté < cite
en-US Compare: coté < cite

Simple ja-P Compare: LAdhAtt b = 247
advanced ja-IP Compare: LAdh At f = oAz,

FIGURE 14-1 String sorting results

340

Part Ill Essential Types

In addition to Compare, the CompareInfo class offers the IndexOf, LastIndexOf, IsPrefix,
and IsSuffix methods. Because all of these methods offer overloads that take a
CompareOptions enumeration value as a parameter, they give you more control than the
Compare, Index0f, LastIndexOf, StartsWith, and EndsWith methods defined by the
String class. Also, you should be aware that the FCL includes a System.StringComparer
class that you can also use for performing string comparisons. This class is useful when you
want to perform the same kind of comparison repeatedly for many different strings.

String Interning

As | said in the preceding section, checking strings for equality is a common operation for
many applications—this task can hurt performance significantly. When performing an

ordinal equality check, the CLR quickly tests to see if both strings have the same number of
characters. If they don't, the strings are definitely not equal; if they do, the strings might be
equal, and the CLR must then compare each individual character to determine for sure. When
performing a culturally aware comparison, the CLR must always compare all of the individual
characters because strings of different lengths might be considered equal.

In addition, if you have several instances of the same string duplicated in memory, you're
wasting memory because strings are immutable. You'll use memory much more efficiently
if there is just one instance of the string in memory and all variables needing to refer to the
string can just point to the single string object.

If your application frequently compares strings for equality using case-sensitive, ordinal com-
parisons, or if you expect to have many string objects with the same value, you can enhance
performance substantially if you take advantage of the string interning mechanism in the
CLR. When the CLR initializes, it creates an internal hash table in which the keys are strings
and the values are references to String objects in the managed heap. Initially, the table is
empty (of course). The String class offers two methods that allow you to access this internal
hash table:

public static String Intern(String str);
public static String IsInterned(String str);

The first method, Intern, takes a String, obtains a hash code for it, and checks the internal
hash table for a match. If an identical string already exists, a reference to the already existing
String object is returned. If an identical string doesn’t exist, a copy of the string is made, the
copy is added to the internal hash table, and a reference to this copy is returned. If the ap-
plication no longer holds a reference to the original String object, the garbage collector is
able to free the memory of that string. Note that the garbage collector can't free the strings
that the internal hash table refers to because the hash table holds the reference to those
String objects. String objects referred to by the internal hash table can't be freed until the
AppDomain is unloaded or the process terminates.

Chapter 14 Chars, Strings, and Working with Text 341

As does the Intern method, the IsInterned method takes a String and looks it up in
the internal hash table. If a matching string is in the hash table, IsInterned returns a ref-
erence to the interned string object. If a matching string isn't in the hash table, however,
IsInterned returns null; it doesn't add the string to the hash table.

By default, when an assembly is loaded, the CLR interns all of the literal strings

described in the assembly’s metadata. Microsoft learned that this hurts performance
significantly due to the additional hash table lookups, so it is now possible to turn

this “feature” off. If an assembly is marked with a
System.Runtime.CompilerServices.CompilationRelaxationsAttribute specifying the
System.Runtime.CompilerServices.CompilationRelaxations.NoStringInterning
flag value, the CLR may, according to the ECMA specification, choose not to intern all of the
strings defined in that assembly’s metadata. Note that, in an attempt to improve your
application’s performance, the C# compiler always specifies this attribute/flag whenever
you compile an assembly.

Even if an assembly has this attribute/flag specified, the CLR may choose to intern the strings,
but you should not count on this. In fact, you really should never write code that relies on
strings being interned unless you have written code that explicitly calls the String’s Intern
method yourself. The following code demonstrates string interning:

String s1 = "Hello";
String s2 = "Hello";
Console.WriteLine(Object.ReferenceEquals(sl, s2)); // Should be 'False'

sl = String.Intern(sl);
s2 = String.Intern(s2);
Console.WriteLine(Object.ReferenceEquals(sl, s2)); // 'True'

In the first call to the ReferenceEquals method, s1 refers to a "Hello" string object in the
heap, and s2 refers to a different "Hel1o" string object in the heap. Since the references are
different, False should be displayed. However, if you run this on version 4.0 of the CLR, you'll
see that True is displayed. The reason is because this version of the CLR chooses to ignore
the attribute/flag emitted by the C# compiler, and the CLR interns the literal "He11o" string
when the assembly is loaded into the AppDomain. This means that s1 and s2 refer to the
single "Hel110" string in the heap. However, as mentioned previously, you should never write
code that relies on this behavior because a future version of the CLR might honor the
attribute/flag and not intern the "Hel11o" string. In fact, version 4.0 of the CLR does honor
the attribute/flag when this assembly’s code has been compiled using the NGen.exe utility.

Before the second call to the ReferenceEquals method, the "Hel1e" string has been
explicitly interned, and s1 now refers to an interned "Hel1o". Then by calling Intern again,
s2 is set to refer to the same "Hello" string as s1. Now, when ReferenceEquals is called
the second time, we are guaranteed to get a result of True regardless of whether the assem-
bly was compiled with the attribute/flag.

342

Part Ill Essential Types

So now, let's look at an example to see how you can use string interning to improve per-
formance and reduce memory usage. The NumTimesWordAppearsEquals method below
takes two arguments: a word and an array of strings in which each array element refers to a
single word. This method then determines how many times the specified word appears in the
wordlist and returns this count:

private static Int32 NumTimesWordAppearsEquals(String word, String[] wordlist) {
Int32 count = 0;
for (Int32 wordnum = 0; wordnum < wordlist.Length; wordnum++) {
if (word.Equals(wordlist[wordnum], StringComparison.Ordinal))
count++;

}

return count;

3

As you can see, this method calls String’s Equals method, which internally compares the
strings’ individual characters and checks to ensure that all characters match. This comparison
can be slow. In addition, the wordlist array might have multiple entries that refer to multiple
String objects containing the same set of characters. This means that multiple identical
strings might exist in the heap and are surviving ongoing garbage collections.

Now, let's look at a version of this method that was written to take advantage of string
interning:

private static Int32 NumTimesWordAppearsIntern(String word, String[] wordlist) {
// This method assumes that all entries in wordlist refer to interned strings.
word = String.Intern(word);
Int32 count = 0;
for (Int32 wordnum = 0; wordnum < wordlist.Length; wordnum++) {
if (Object.ReferenceEquals(word, wordlist[wordnum]))
count++;

}

return count;

}

This method interns the word and assumes that the wordlist contains references to interned
strings. First, this version might be saving memory if a word appears in the wordlist multiple
times because, in this version, word1ist would now contain multiple references to the same
single String object in the heap. Second, this version will be faster because determining if
the specified word is in the array is simply a matter of comparing pointers.

Although the NumTimesWordAppearsIntern method is faster than the
NumTimesWordAppearsEquals method, the overall performance of the application might be
slower when using the NumTimesWordAppearsIntern method because of the time it takes
to intern all of the strings when they were added to the word1ist array (code not shown).
The NumTimesWordAppearsIntern method will really show its performance and memory
improvement if the application needs to call the method multiple times using the same
wordlist. The point of this discussion is to make it clear that string interning is useful, but it

Chapter 14 Chars, Strings, and Working with Text 343

should be used with care and caution. In fact, this is why the C# compiler indicates that it
doesn't want string interning to be enabled.

String Pooling

When compiling source code, your compiler must process each literal string and emit the
string into the managed module’s metadata. If the same literal string appears several times
in your source code, emitting all of these strings into the metadata will bloat the size of the
resulting file.

To remove this bloat, many compilers (include the C# compiler) write the literal string into
the module’s metadata only once. All code that references the string will be modified to refer
to the one string in the metadata. This ability of a compiler to merge multiple occurrences of
a single string into a single instance can reduce the size of a module substantially. This
process is nothing new—C/C++ compilers have been doing it for years. (Microsoft's

C/C++ compiler calls this string pooling.) Even so, string pooling is another way to improve
the performance of strings and just one more piece of knowledge that you should have in
your repertoire.

Examining a String’s Characters and Text Elements

Although comparing strings is useful for sorting them or for detecting equality, sometimes
you need just to examine the characters within a string. The String type offers several
properties and methods to help you do this, including Length, Chars (an indexer in C#),
GetEnumerator, ToCharArray, Contains, IndexOf, LastIndex0f, IndexOfAny, and
LastIndexOfAny.

In reality, a System.Char represents a single 16-bit Unicode code value that doesn't
necessarily equate to an abstract Unicode character. For example, some abstract Unicode
characters are a combination of two code values. When combined, the U+0625 (the Arabic
letter Alef with Hamza below) and U+0650 (the Arabic Kasra) characters form a single
abstract character or text element.

In addition, some Unicode text elements require more than a 16-bit value to represent them.
These text elements are represented using two 16-bit code values. The first code value is
called the high surrogate, and the second code value is called the low surrogate. High surro-
gates have a value between U+D800 and U+DBFF, and low surrogates have a value between
U+DCO00 and U+DFFF. The use of surrogates allows Unicode to express more than a million
different characters.

Surrogates are rarely used in the United States and Europe but are more commonly
used in East Asia. To properly work with text elements, you should use the
System.Globalization.StringInfo type. The easiest way to use this type is to construct

344

Part Ill Essential Types

an instance of it, passing its constructor a string. Then you can see how many text elements
are in the string by querying the StringInfo's LengthInTextElements property. You can
then call StringInfo’s SubstringByTextElements method to extract the text element or
the number of consecutive text elements that you desire.

In addition, the StringInfo class offers a static GetTextElementEnumerator method, which
acquires a System.Globalization.TextElementEnumerator object that allows you to
enumerate through all of the abstract Unicode characters contained in the string. Finally, you
could call StringInfo's static ParseCombiningCharacters method to obtain an array of
Int32 values. The length of the array indicates how many text elements are contained in the
string. Each element of the array identifies an index into the string where the first code value
for a new text element can be found.

The following code demonstrates the various ways of using the StringInfo class to manipu-
late a string’s text elements:

using System;

using System.Text;

using System.Globalization;
using System.Windows.Forms;

public sealed class Program {
public static void Main() {
// The string below contains combining characters
String s = "a\u0304\u0308bc\u0327";
SubstringByTextElements(s);
EnumTextElements(s);
EnumTextElementIndexes(s);

}

private static void SubstringByTextElements(String s) {
String output = String.Empty;

StringInfo si = new StringInfo(s);
for (Int32 element = 0; element < si.LengthInTextElements; element++) {
output += String.Format(

"Text element {0} is '{1}'{2}",
element, si.SubstringByTextElements(element, 1),
Environment.NewLine);

}

MessageBox.Show(output, "Result of SubstringByTextElements");

}

private static void EnumTextElements(String s) {
String output = String.Empty;

TextElementEnumerator charEnum =
StringInfo.GetTextElementEnumerator(s);
while (charEnum.MoveNext()) {
output += String.Format(
"Character at index {0} is '{1}'{2}",

Chapter 14 Chars, Strings, and Working with Text 345

charEnum.ETementIndex, charEnum.GetTextElement(),
Environment.NewLine);

3

MessageBox.Show(output, "Result of GetTextElementEnumerator™);

private static void EnumTextElementIndexes(String s) {
String output = String.Empty;

Int32[] textElemIndex = StringInfo.ParseCombiningCharacters(s);
for (Int32 i = 0; i < textElemIndex.Length; i++) {
output += String.Format(
"Character {0} starts at index {1}{2}",
i, textElemIndex[i], Environment.NewlLine);

3

MessageBox.Show(output, "Result of ParseCombiningCharacters");

}

Building and running this code produces the message boxes shown in Figures 14-2, 14-3, and
14-4.

Result of SubstringBy TextElements X

Text element 0 is '3
Text element 1 is ‘b’
Text element 2 is ¢’

FIGURE 14-2 Result of SubstringByTextElements

Result of GetTextElementEnumerator XI

Character at index 0 is '8'
Character at index 3 is 'b"
Character at index 4 is '¢"

FIGURE 14-3 Result of GetTextElementEnumerator

| Result of ParseCombiningCharacters :

Character 0 starts at index 0
Character 1 starts at index 3
Character 2 starts at index 4

FIGURE 14-4 Result of ParseCombiningCharacters

346 Part lll Essential Types

Other String Operations

The String type also offers methods that allow you to copy a string or parts of it. Table 14-1
summarizes these methods.

TABLE 14-1 Methods for Copying Strings

Member Method Type Description

Clone Instance Returns a reference to the same object (th1is). This is OK because
String objects are immutable. This method implements String’s
ICloneable interface.

Copy Static Returns a new duplicate string of the specified string. This method
is rarely used and exists to help applications that treat strings as
tokens. Normally, strings with the same set of characters are
interned to a single string. This method creates a new string object
so that the references (pointers) are different even though the
strings contain the same characters.

CopyTo Instance Copies a portion of the string’s characters to an array of characters.

Substring Instance Returns a new string that represents a portion of the original
string.

ToString Instance Returns a reference to the same object (this).

In addition to these methods, String offers many static and instance methods that manipu-
late a string, such as Insert, Remove, PadLeft, Replace, Sp1it, Join, ToLower, ToUpper,
Trim, Concat, Format, and so on. Again, the important thing to remember about all of these
methods is that they return new string objects; because strings are immutable, once they're
created, they can't be modified (using safe code).

Constructing a String Efficiently

Because the String type represents an immutable string, the FCL provides another type,
System.Text.StringBuilder, which allows you to perform dynamic operations efficiently
with strings and characters to create a String. Think of StringBuilder as a fancy constructor
to create a String that can be used with the rest of the framework. In general, you should
design methods that take String parameters, not StringBuilder parameters.

Logically, a StringBuilder object contains a field that refers to an array of Char structures.
StringBuilder's members allow you to manipulate this character array, effectively shrinking
the string or changing the characters in the string. If you grow the string past the allocated
array of characters, the StringBuilder automatically allocates a new, larger array, copies the
characters, and starts using the new array. The previous array is garbage collected.

When finished using the StringBuilder object to construct your string, “convert” the
StringBuilder’'s character array into a String simply by calling the StringBuilder’s

Chapter 14 Chars, Strings, and Working with Text 347

ToString method. This creates a new String object in the heap that contains the string that
was in the StringBuilder at the time you called ToString. At this point, you can continue
to manipulate the string inside the StringBuilder, and later you can call ToString again to
convert it into another String object.

Constructing a StringBuilder Object

Unlike with the String class, the CLR has no special information about the StringBuilder
class. In addition, most languages (including C#) don't consider the StringBuilder class
to be a primitive type. You construct a StringBuilder object as you would any other non-
primitive type:

StringBuilder sb = new StringBuilder();

The StringBuilder type offers many constructors. The job of each constructor is to allocate
and initialize the state maintained by each StringBuilder object:

B Maximum capacity An Int32 value that specifies the maximum number of characters
that can be placed in the string. The default is Int32.MaxValue (approximately 2 billion).
It's unusual to change this value. However, you might specify a smaller maximum
capacity to ensure that you never create a string over a certain length. Once
constructed, a StringBuilder’s maximum capacity value can't be changed.

B Capacity An Int32 value indicating the size of the character array being maintained
by the StringBuilder. The default is 16. If you have some idea of how many charac-
ters you'll place in the StringBuilder, you should use this number to set the capacity
when constructing the StringBuilder object.

When appending characters to the character array, the StringBuilder detects if the
array is trying to grow beyond the array’s capacity. If it is, the StringBuilder automati-
cally doubles the capacity field, allocates a new array (the size of the new capacity), and
copies the characters from the original array into the new array. The original array will
be garbage collected in the future. Dynamically growing the array hurts performance;
avoid this by setting a good initial capacity.

B Character array An array of Char structures that maintains the set of characters in the
“string.” The number of characters is always less than or equal to the capacity and maxi-
mum capacity values. You can use the StringBuilder’s Length property to obtain the
number of characters used in the array. The Length is always less than or equal to the
StringBuilder’s capacity value. When constructing a StringBuilder, you can pass
a String to initialize the character array. If you don't specify a string, the array initially
contains no characters—that is, the Length property returns 0.

348

Part Ill Essential Types

StringBuilder Members

Unlike a String, a StringBuilder represents a mutable string. This means that most of
StringBuilder’'s members change the contents in the array of characters and don't cause
new objects to be allocated on the managed heap. A StringBuilder allocates a new object
on only two occasions:

B You dynamically build a string whose length is longer than the capacity you've set.

B You call StringBuilder’s ToString method.

Table 14-2 summarizes StringBuilder's members.

TABLE 14-2 StringBuilder Members

Member

MaxCapacity

Capacity

EnsureCapacity

Length

ToString

Chars

Clear

Append

Insert

Member Type
Read-only property

Read/write property

Method

Read/write property

Method

Read/write indexer
property

Method

Method

Method

Description

Returns the largest number of characters that can be
placed in the string.

Gets or sets the size of the character array. Trying
to set the capacity smaller than the string’s
length or bigger than MaxCapacity throws an
ArgumentOutOfRangeException.

Guarantees that the character array is at least the

size specified. If the value passed is larger than the
StringBuilder’s current capacity, the current capacity
increases. If the current capacity is already larger than
the value passed to this property, no change occurs.

Gets or sets the number of characters in the “string.”
This will likely be smaller than the character array’s
current capacity. Setting this property to 0 resets the
StringBuilder’s contents to an empty string.

The parameterless version of this method returns a
String representing the StringBuilder’s character
array.

Gets or sets the character at the specified index into
the character array. In C#, this is an indexer (parame-
terful property) that you access using array syntax ([J).

Clears the contents of the StringBuilder object, the
same as setting its Length property to 0.

Appends a single object to the end of the character
array, growing the array if necessary. The object is
converted to a string by using the general format and
the culture associated with the calling thread.

Inserts a single object into the character array, growing
the array if necessary. The object is converted to a
string by using the general format and the culture
associated with the calling thread.

Chapter 14 Chars, Strings, and Working with Text 349

Member Member Type Description

AppendFormat Method Appends the specified objects to the end of the
character array, growing the array if necessary. The
objects are converted to strings by using the format-
ting and culture information provided by the caller.
AppendFormat is one of the most common methods
used with StringBuilder objects.

AppendLine Method Appends a blank line or a string with a blank line to the
end of the character array, increasing the capacity of
the array if necessary.

Replace Method Replaces one character with another or one string with
another from within the character array.

Remove Method Removes a range of characters from the character array.

Equals Method Returns true only if both StringBuilder objects

have the same maximum capacity, capacity, and
characters in the array.

CopyTo Method Copies a subset of the StringBuilder’s characters to
a Char array.

One important thing to note about StringBuilder’'s methods is that most of them return a
reference to the same StringBuilder object. This allows a convenient syntax to chain several
operations together:

StringBuilder sb = new StringBuilder();

String s = sb.AppendFormat("{0} {1}", "Jeffrey", "Richter™).
Replace(' ', '-').Remove(4, 3).ToString(Q);

Console.WriteLine(s); // "Jeff-Richter"

You'll notice that the String and StringBuilder classes don't have full method parity;

that is, String has ToLower, ToUpper, EndsWith, PadLeft, PadRight, Trim, and so on.

The StringBuilder class doesn't offer any of these methods. On the other hand, the
StringBuilder class offers a richer Replace method that allows you to replace characters
or strings in a portion of the string (not the whole string). It's unfortunate that there isn't
complete parity between these two classes because now you must convert between String
and StringBuilder to accomplish certain tasks. For example, to build up a string, convert all
characters to uppercase, and then insert a string requires code like this:

// Construct a StringBuilder to perform string manipulations.
StringBuilder sb = new StringBuilder();

// Perform some string manipulations by using the StringBuilder.
sb.AppendFormat("{0} {1}", "Jeffrey", "Richter").Replace(" ", "-");

// Convert the StringBuilder to a String in
// order to uppercase all the characters.
String s = sb.ToString().ToUpper();

350 Part lll Essential Types

// Clear the StringBuilder (allocates a new Char array).
sb.Length = 0;

// Load the uppercase String into the StringBuilder,
// and perform more manipulations.
sb.Append(s) .Insert(8, "Marc-");

// Convert the StringBuilder back to a String.
s = sb.ToString(Q;

// Display the String to the user.
Console.WriteLine(s); // "JEFFREY-Marc-RICHTER"

It's inconvenient and inefficient to have to write this code just because StringBuilder
doesn't offer all of the operations that String does. In the future, | hope that Microsoft will
add more string operation methods to StringBuilder to make it a more complete class.

Obtaining a String Representation of an Object: ToString

You frequently need to obtain a string representation of an object. Usually, this is necessary
when you want to display a numeric type (such as Byte, Int32, and Single) or a DateTime
object to the user. Because the .NET Framework is an object-oriented platform, every type is
responsible for providing code that converts an instance’s value to a string equivalent. When
designing how types should accomplish this, the designers of the FCL devised a pattern that
would be used consistently throughout. In this section, I'll describe this pattern.

You can obtain a string representation for any object by calling the ToString method. A
public, virtual, parameterless ToString method is defined by System.0Object and is therefore
callable using an instance of any type. Semantically, ToString returns a string representing
the object’s current value, and this string should be formatted for the calling thread’s current
culture; that is, the string representation of a number should use the proper decimal separator,
digit-grouping symbol, and other elements associated with the culture assigned to the calling
thread.

System.Object's implementation of ToString simply returns the full name of the object’s
type. This value isn't particularly useful, but it is a reasonable default for the many types
that can't offer a sensible string. For example, what should a string representation of a
FileStream or a Hashtable object look like?

All types that want to offer a reasonable way to obtain a string representing the current value
of the object should override the ToString method. All base types built into the FCL (Byte,
Int32, UInt64, Double, and so on) override their ToString method and return a culturally
aware string. In the Visual Studio debugger, a datatip is displayed when the mouse is placed
over a particular variable. The text shown in the datatip is obtained by calling the object’s
ToString method. So, when you define a class, you should always override the ToString
method so that you get good debugging support.

Chapter 14 Chars, Strings, and Working with Text 351

Specific Formats and Cultures

The parameterless ToString method has two problems. First, the caller has no control over
the formatting of the string. For example, an application might want to format a number
into a currency string, decimal string, percent string, or hexadecimal string. Second, the caller
can't easily choose to format a string by using a specific culture. This second problem is more
troublesome for server-side application code than for client-side code. On rare occasions, an
application needs to format a string by using a culture other than the culture associated with
the calling thread. To have more control over string formatting, you need a version of the
ToString method that allows you to specify precise formatting and culture information.

Types that offer the caller a choice in formatting and culture implement the System.
IFormattable interface:

public interface IFormattable {
String ToString(String format, IFormatProvider formatProvider);

}

In the FCL, all of the base types (Byte, SByte, Int16/UIntl6, Int32/UInt32, Int64/UInt64,
Single, Double, Decimal, and DateT1ime) implement this interface. In addition, some other
types, such as Guid, implement it. Finally, every enumerated type definition will automatically
implement the IFormattable interface so that a meaningful string symbol from an instance
of the enumerated type can be obtained.

IFormattable’'s ToString method takes two parameters. The first, format, is a string that
tells the method how the object should be formatted. ToString's second parameter,
formatProvider, is an instance of a type that implements the System.IFormatProvider
interface. This type supplies specific culture information to the ToString method. I'll discuss
how shortly.

The type implementing the IFormattable interface’s ToString method determines which
format strings it's going to recognize. If you pass a format string that the type doesn't recog-
nize, the type is supposed to throw a System.FormatException.

Many of the types Microsoft has defined in the FCL recognize several formats. For example,
the DateT1ime type supports “d” for short date, “D" for long date, “g” for general, "M" for
month/day, “s” for sortable, “T" for long time, “u” for universal time in ISO 8601 format, “U"
for universal time in full date format, “Y” for year/month, and others. All enumerated types
support “G" for general, “F" for flags, “D" decimal, and “X" for hexadecimal. I'll cover format-

ting enumerated types in more detail in Chapter 15, “"Enumerated Types and Bit Flags.”

Also, all of the built-in numeric types support “C" for currency, “D" for decimal, “E" for
exponential (scientific) notation, "F" for fixed-point, "G" for general, “N" for number, “P" for
percent, “R" for round-trip, and “X" for hexadecimal. In fact, the numeric types also support
picture format strings just in case the simple format strings don’t offer you exactly what

352

Part Ill Essential Types

you're looking for. Picture format strings contain special characters that tell the type’s
ToString method exactly how many digits to show, exactly where to place a decimal separa-
tor, exactly how many digits to place after the decimal separator, and so on. For complete
information about format strings, see “Formatting Types” in the .NET Framework SDK.

For most types, calling ToString and passing nu11 for the format string is identical to calling
ToString and passing “G" for the format string. In other words, objects format themselves
using the “General format” by default. When implementing a type, choose a format that you
think will be the most commonly used format; this format is the “General format.” By the way,
the ToString method that takes no parameters assumes that the caller wants the “General
format.”

So now that format strings are out of the way, let's turn to culture information. By default,
strings are formatted using the culture information associated with the calling thread. The
parameterless ToString method certainly does this, and so does IFormattable’s ToString
if you pass nul11 for the formatProvider parameter.

Culture-sensitive information applies when you're formatting numbers (including currency,
integers, floating point, percentages, dates, and times). The Guid type has a ToString
method that returns only a string representing its value. There’'s no need to consider a culture
when generating the Guid’s string because GUIDs are used for programmatic purposes only.

When formatting a number, the ToString method sees what you've passed for the
formatProvider parameter. If nul1 is passed, ToString determines the culture
associated with the calling thread by reading the
System.Threading.Thread.CurrentThread.CurrentCulture property. This property
returns an instance of the System.Global+ization.CultureInfo type.

Using this object, ToString reads its NumberFormat or DateTimeFormat property,
depending on whether a number or date/time is being formatted. These properties return
an instance of System.Globalization.NumberFormatInfo or System.Globalization.
DateTimeFormatInfo, respectively. The NumberFormatInfo type defines a bunch of
properties, such as CurrencyDecimalSeparator, CurrencySymbol, NegativeSign,
NumberGroupSeparator, and PercentSymbol. Likewise, the DateTimeFormatInfo type
defines an assortment of properties, such as Calendar, DateSeparator, DayNames,
LongDatePattern, ShortTimePattern, and TimeSeparator. ToString reads these proper-
ties when constructing and formatting a string.

When calling IFormattable's ToString method, instead of passing nu11, you can pass a
reference to an object whose type implements the IFormatProvider interface:

public interface IFormatProvider {
Object GetFormat(Type formatType);
}

Chapter 14 Chars, Strings, and Working with Text 353

Here's the basic idea behind the IFormatProvider interface: when a type implements this
interface, it is saying that an instance of the type is able to provide culture-specific format-
ting information and that the culture information associated with the calling thread should
be ignored.

The System.Globalization.CultureInfo type is one of the very few types defined in the
FCL that implements the IFormatProvider interface. If you want to format a string for, say,
Vietnam, you'd construct a CultureInfo object and pass that object in as ToString's
formatProvider parameter. The following code obtains a string representation of a Decimal
numeric value formatted as currency appropriate for Vietnam:

Decimal price = 123.54M;
String s = price.ToString("C", new CultureInfo("vi-VN"));
MessageBox.Show(s);

If you build and run this code, the message box shown in Figure 14-5 appears.

e "

==

123,54 d

FIGURE 14-5 Numeric value formatted correctly to represent Vietnamese currency

Internally, Decimal’s ToString method sees that the formatProvider argument is not nul1l
and calls the object’s GetFormat method as follows:

NumberFormatInfo nfi = (NumberFormatInfo)
formatProvider.GetFormat(typeof (NumberFormatInfo));

This is how ToString requests the appropriate number-formatting information from the
(CultureInfo) object. Number types (such as Decimal) request only number-formatting
information. But other types (such as DateTime) could call GetFormat like this:

DateTimeFormatInfo dtfi = (DateTimeFormatInfo)
formatProvider.GetFormat(typeof(DateTimeFormatInfo));

Actually, because GetFormat's parameter can identify any type, the method is flexible
enough to allow any type of format information to be requested. The types in the .NET
Framework call GetFormat, requesting only number or date/time information; in the future,
other kinds of formatting information could be requested.

354

Part Ill Essential Types

By the way, if you want to obtain a string for an object that isn't formatted for any particular
culture, you should call System.Globalization.CultureInfo’s static InvariantCulture
property and pass the object returned as ToString's formatProvider parameter:

Decimal price = 123.54M;
String s = price.ToString("C", CultureInfo.InvariantCulture);
MessageBox.Show(s);

If you build and run this code, the message box shown in Figure 14-6 appears. Notice the
first character in the resulting string: . This is the international sign for currency (U+00A4).

P 1

=]

H123.54

FIGURE 14-6 Numeric value formatted to represent a culture-neutral currency

Normally, you wouldn't display a string formatted by using the invariant culture to a user.
Typically, you'd just save this string in a data file so that it could be parsed later.

In the FCL, just three types implement the IFormatProvider interface. The first is
Culturelnfo, which I've already explained. The other two are NumberFormatInfo and
DateTimeFormatInfo. When GetFormat is called on a NumberFormatInfo object, the
method checks if the type being requested is a NumberFormatInfo. If it is, this is returned;
if it's not, nu11 is returned. Similarly, calling GetFormat on a DateTimeFormatInfo object
returns this if a DateTimeFormatInfo is requested and null if it's not. These two types im-
plement this interface simply as a programming convenience. When trying to obtain a string
representation of an object, the caller commonly specifies a format and uses the

culture associated with the calling thread. For this reason, you often call ToString, passing

a string for the format parameter and nul11 for the formatProvider parameter. To make
calling ToString easier for you, many types offer several overloads of the ToString method.
For example, the Decimal type offers four different ToString methods:

// This version calls ToString(null, null).
// Meaning: General numeric format, thread's culture information
public override String ToString(Q;

// This version is where the actual implementation of ToString goes.
// This version implements IFormattable's ToString method.

// Meaning: Caller-specified format and culture information

public String ToString(String format, IFormatProvider formatProvider);

Chapter 14 Chars, Strings, and Working with Text 355

// This version simply calls ToString(format, null).
// Meaning: Caller-specified format, thread's culture information
public String ToString(String format);

// This version simply calls ToString(null, formatProvider).

// This version implements IConvertible's ToString method.

// Meaning: General format, caller-specified culture information
public String ToString(IFormatProvider formatProvider);

Formatting Multiple Objects into a Single String

So far, I've explained how an individual type formats its own objects. At times, however, you
want to construct strings consisting of many formatted objects. For example, the following
string has a date, a person’s name, and an age:

String s = String.Format("On {0}, {1} is {2} years old.",
new DateTime(2010, 4, 22, 14, 35, 5), "Aidan", 7);
Console.WriteLine(s);

If you build and run this code where “en-US" is the thread's current culture, you'll see the
following line of output:

On 4/22/2010 2:35:05 PM, Aidan is 7 years old.

String's static Format method takes a format string that identifies replaceable parameters
using numbers in braces. The format string used in this example tells the Format method to
replace {0} with the first parameter after the format string (the date/time), replace {1} with
the second parameter after the format string ("Aidan”), and replace {2} with the third
parameter after the format string (7).

Internally, the Format method calls each object’s ToString method to obtain a string repre-
sentation for the object. Then the returned strings are all appended and the complete, final

string is returned. This is all fine and good, but it means that all of the objects are formatted
by using their general format and the calling thread’s culture information.

You can have more control when formatting an object if you specify format information
within braces. For example, the following code is identical to the previous example except
that I've added formatting information to replaceable parameters 0 and 2:

String s = String.Format("On {0:D}, {1} is {2:E} years old.",
new DateTime(2010, 4, 22, 14, 35, 5), "Aidan", 7);
Console.WriteLine(s);

If you build and run this code where “en-US" is the thread’s current culture, you'll see the
following line of output:

On Thursday, April 22, 2010, Aidan is 7.000000E+000 years old.

356

Part Ill Essential Types

When the Format method parses the format string, it sees that replaceable parameter 0
should have its IFormattable interface’s ToString method called passing "D" and nul1
for its two parameters. Likewise, Format calls replaceable parameter 2's IFormattable
ToString method, passing "E" and nul1. If the type doesn't implement the IFormattable
interface, Format calls its parameterless ToString method inherited from Object (and pos-
sibly overridden), and the default format is appended into the resulting string.

The String class offers several overloads of the static Format method. One version takes

an object that implements the IFormatProvider interface so that you can format all of the
replaceable parameters by using caller-specified culture information. Obviously, Format calls
each object's IFormattableToString method, passing it whatever IFormatProvider object
was passed to Format.

If you're using StringBuilder instead of String to construct a string, you can call
StringBuilder's AppendFormat method. This method works exactly as String's Format
method except that it formats a string and appends to the StringBuilder’s character array.
As does String's Format, AppendFormat takes a format string, and there’s a version that
takes an IFormatProvider.

System.Console offers Write and WriteLine methods that also take format strings

and replaceable parameters. However, there are no overloads of Console's Write and
WriteLine methods that allow you to pass an IFormatProvider. If you want to format a
string for a specific culture, you have to call String's Format method, first passing the de-
sired IFormatProvider object and then passing the resulting string to Console’s Write or
WriteLine method. This shouldn't be a big deal because, as | said earlier, it's rare for client-
side code to format a string by using a culture other than the one associated with the calling
thread.

Providing Your Own Custom Formatter

By now it should be clear that the formatting capabilities in the .NET Framework were de-
signed to offer you a great deal of flexibility and control. However, we're not quite finished.
It's possible for you to define a method that StringBuilder's AppendFormat method will
call whenever any object is being formatted into a string. In other words, instead of calling
ToString for each object, AppendFormat can call a function you define, allowing you to
format any or all of the objects in any way you want. What I'm about to describe also works
with String's Format method.

Let me explain this mechanism by way of an example. Let's say that you're formatting HTML
text that a user will view in an Internet browser. You want all Int32 values to appear in bold.
To accomplish this, every time an Int32 value is formatted into a String, you want to
surround the string with HTML bold tags: and . The following code demonstrates
how easy it is to do this:

Chapter 14 Chars, Strings, and Working with Text 357

using System;
using System.Text;
using System.Threading;

public static class Program {
public static void Main() {
StringBuilder sb = new StringBuilder();
sb.AppendFormat(new BoldInt32s(), "{0} {1} {2:M}", "Jeff", 123, DateTime.Now);
Console.WriteLine(sh);

3

internal sealed class BoldInt32s : IFormatProvider, ICustomFormatter {
public Object GetFormat(Type formatType) {
if (formatType == typeof(ICustomFormatter)) return this;
return Thread.CurrentThread.CurrentCulture.GetFormat(formatType);
}

public String Format(String format, Object arg, IFormatProvider formatProvider) {
String s;

IFormattable formattable = arg as IFormattable;

if (formattable == null) s = arg.ToStringQ);
else s = formattable.ToString(format, formatProvider);

if (arg.GetType() == typeof(Int32))
return "" + s + "";
return s;

}

When you compile and run this code where "en-US" is the thread's current culture, it displays
the following output (your date may be different, of course):

Jeff 123 January 23

In Main, I'm constructing an empty StringBuilder and then appending a formatted string
into it. When | call AppendFormat, the first parameter is an instance of the BoldInt32s class.
This class implements the IFormatProvider interface that | discussed earlier. In addition, this
class implements the ICustomFormatter interface:

public interface ICustomFormatter {
String Format(String format, Object arg,
IFormatProvider formatProvider);

}

This interface’s Format method is called whenever StringBuilder’s AppendFormat needs to
obtain a string for an object. You can do some pretty clever things inside this method that
give you a great deal of control over string formatting. Let's look inside the AppendFormat
method to see exactly how it works. The following pseudocode shows how AppendFormat
works:

Part Ill Essential Types

public StringBuilder AppendFormat(IFormatProvider formatProvider,
String format, params Object[] args) {

// If an IFormatProvider was passed, find out
// whether it offers an ICustomFormatter object.
ICustomFormatter cf = null;

if (formatProvider != null)
cf = (ICustomFormatter)
formatProvider.GetFormat(typeof(ICustomFormatter));

// Keep appending Titeral characters (not shown in this pseudocode)
// and replaceable parameters to the StringBuilder's character array.

Boolean MoreReplaceableArgumentsToAppend = true;

while (MoreReplaceableArgumentsToAppend) {
// argFormat refers to the replaceable format string obtained
// from the format parameter
String argFormat = /* ... */;

// argObj refers to the corresponding element
// from the args array parameter
Object argObj = /* ... */;

// argStr will refer to the formatted string to be appended
// to the final, resulting string
String argStr = null;

// If a custom formatter is available, let it format the argument.

if (cf != null)
argStr = cf.Format(argFormat, argObj, formatProvider);

// If there is no custom formatter or if it didn't format
// the argument, try something else.
if (argStr == null) {
// Does the argument's type support rich formatting?
IFormattable formattable = argObj as IFormattable;
if (formattable != null) {
// Yes; pass the format string and provider to
// the type's IFormattable ToString method.
argStr = formattable.ToString(argFormat, formatProvider);
} else {
// No; get the default format by using
// the thread's culture information.
if (argObj != null) argStr = argObj.ToString(Q);
else argStr = String.Empty;

}

// Append argStr's characters to the character array field member.

VER Y

// Check if any remaining parameters to format
MoreReplaceableArgumentsToAppend = /* ... */;
}

return this;

Chapter 14 Chars, Strings, and Working with Text 359

When Main calls AppendFormat, AppendFormat calls my format provider's GetFormat
method, passing it the ICustomFormatter type. The GetFormat method defined in my
BoldInt32s type sees that the ICustomFormatter is being requested and returns a reference
to itself because it implements this interface. If my GetFormat method is called and is passed
any other type, | call the GetFormat method of the CultureInfo object associated with the
calling thread.

Whenever AppendFormat needs to format a replaceable parameter, it calls
ICustomFormatter's Format method. In my example, AppendFormat calls the Format
method defined by my BoldInt32s type. In my Format method, | check whether the object
being formatted supports rich formatting via the IFormattable interface. If the object
doesn't, | then call the simple, parameterless ToString method (inherited from Object) to
format the object. If the object does support IFormattable, | then call the rich ToString
method, passing it the format string and the format provider.

Now that | have the formatted string, | check whether the corresponding object is an Int32
type, and if it is, | wrap the formatted string in and HTML tags and return the new
string. If the object is not an Int32, | simply return the formatted string without any further
processing.

Parsing a String to Obtain an Object: Parse

In the preceding section, | explained how to take an object and obtain a string representation
of that object. In this section, I'll talk about the opposite: how to take a string and obtain an

object representation of it. Obtaining an object from a string isn't a very common operation,
but it does occasionally come in handy. Microsoft felt it necessary to formalize a mechanism
by which strings can be parsed into objects.

Any type that can parse a string offers a public, static method called Parse. This method
takes a String and returns an instance of the type; in a way, Parse acts as a factory. In the
FCL, a Parse method exists on all of the numeric types as well as for DateTime, TimeSpan,
and a few other types (such as the SQL data types).

Let's look at how to parse a string into a number type. Almost all of the numeric types

(Byte, SByte, Int1l6/UIntl6, Int32/UInt32, Int64/UInt64, Single, Double, Decimal, and
BigInteger) offer at least one Parse method. Here I'll show you just the Parse method
defined by the Int32 type. (The Parse methods for the other numeric types work similarly to
Int32's Parse method.)

public static Int32 Parse(String s, NumberStyles style,
IFormatProvider provider);

Just from looking at the prototype, you should be able to guess exactly how this method
works. The String parameter, s, identifies a string representation of a number you want

360 Part lll Essential Types

parsed into an Int32 object. The System.Globalization.NumberStyles parameter, style,
is a set of bit flags that identify characters that Parse should expect to find in the string. And
the IFormatProvider parameter, provider, identifies an object that the Parse method can
use to obtain culture-specific information, as discussed earlier in this chapter.

For example, the following code causes Parse to throw a System.FormatException because
the string being parsed contains a leading space:

Int32 x = Int32.Parse(" 123", NumberStyles.None, null);

To allow Parse to skip over the leading space, change the style parameter as follows:

Int32 x = Int32.Parse(" 123", NumberStyles.AllowLeadingWhite, null);

See the .NET Framework SDK documentation for a complete description of the bit symbols
and common combinations that the NumberStyles enumerated type defines.

Here's a code fragment showing how to parse a hexadecimal number:

Int32 x = Int32.Parse("1A", NumberStyles.HexNumber, null);
Console.WriteLine(x); // Displays "26"

This Parse method accepts three parameters. For convenience, many types offer additional
overloads of Parse so you don't have to pass as many arguments. For example, Int32 offers
four overloads of the Parse method:

// Passes NumberStyles.Integer for style
// and thread's culture's provider information.
public static Int32 Parse(String s);

// Passes thread's culture's provider information.
public static Int32 Parse(String s, NumberStyles style);

// Passes NumberStyles.Integer for the style parameter.
public static Int32 Parse(String s, IFormatProvider provider);

// This 1is the method I've been talking about in this section.
public static Int32 Parse(String s, NumberStyles style,
IFormatProvider provider);

The DateT1ime type also offers a Parse method:

public static DateTime Parse(String s,
IFormatProvider provider, DateTimeStyles styles);

This method works just as the Parse method defined on the number types except

that DateTime's Parse method takes a set of bit flags defined by the
System.Globalization.DateTimeStyles enumerated type instead of the NumberStyles
enumerated type. See the .NET Framework SDK documentation for a complete description
of the bit symbols and common combinations the DateTimeStyles type defines.

Chapter 14 Chars, Strings, and Working with Text 361

For convenience, the DateTime type offers three overloads of the Parse method:

// Passes thread's culture's provider information
// and DateTimeStyles.None for the style
public static DateTime Parse(String s);

// Passes DateTimeStyles.None for the style
public static DateTime Parse(String s, IFormatProvider provider);

// This 1is the method I've been talking about in this section.
public static DateTime Parse(String s,
IFormatProvider provider, DateTimeStyles styles);

Parsing dates and times is complex. Many developers have found the Parse method of the
DateTime type too forgiving in that it sometimes parses strings that don’t contain dates or
times. For this reason, the DateTime type also offers a ParseExact method that accepts a
picture format string that indicates exactly how the date/time string should be formatted
and how it should be parsed. For more information about picture format strings, see the
DateTimeFormatInfo class in the .NET Framework SDK.

Note Some developers have reported the following back to Microsoft: when their application
calls Parse frequently, and Parse throws exceptions repeatedly (due to invalid user input),
performance of the application suffers. For these performance-sensitive uses of Parse, Microsoft
added TryParse methods to all of the numeric data types, DateTime, DateTimeOffset,
TimeSpan, and even IPAddress. This is what one of the two Int32's two TryParse method
overloads looks like:

public static Boolean TryParse(String s, NumberStyles style,
IFormatProvider provider, out Int32 result);

As you can see, this method returns true or false indicating whether the specified string can
be parsed into an Int32. If the method returns true, the variable passed by reference to the
result parameter will contain the parsed numeric value. The TryXxx pattern is discussed in
Chapter 20, "Exceptions and State Management."

Encodings: Converting Between Characters and Bytes

In Win32, programmers all too frequently have to write code to convert Unicode characters
and strings to Multi-Byte Character Set (MBCS) characters and strings. I've certainly written
my share of this code, and it's very tedious to write and error-prone to use. In the CLR, all
characters are represented as 16-bit Unicode code values and all strings are composed of
16-bit Unicode code values. This makes working with characters and strings easy at runtime.

At times, however, you want to save strings to a file or transmit them over a network. If the
strings consist mostly of characters readable by English-speaking people, saving or transmit-
ting a set of 16-bit values isn't very efficient because half of the bytes written would contain
zeros. Instead, it would be more efficient to encode the 16-bit values into a compressed array
of bytes and then decode the array of bytes back into an array of 16-bit values.

362

Part Ill Essential Types

Encodings also allow a managed application to interact with strings created by non-Unicode
systems. For example, if you want to produce a file readable by an application running on a
Japanese version of Microsoft Windows 95, you have to save the Unicode text by using the
Shift-JIS (code page 932) encoding. Likewise, you'd use Shift-JIS encoding to read a text file
produced on a Japanese Windows 95 system into the CLR.

Encoding is typically done when you want to send a string to a file or network stream by
using the System.IO0.BinaryWriter or System.I0.StreamWriter type. Decoding is
typically done when you want to read a string from a file or network stream by using the
System.I0.BinaryReader or System.IO.StreamReader type. If you don't explicitly

select an encoding, all of these types default to using UTF-8. (UTF stands for Unicode
Transformation Format.) However, at times, you might want to explicitly encode or decode a
string. Even if you don't want to explicitly do this, this section will give you more insight into
the reading and writing of strings from and to streams.

Fortunately, the FCL offers some types to make character encoding and decoding easy. The
two most frequently used encodings are UTF-16 and UTF-8.

B UTF-16 encodes each 16-bit character as 2 bytes. It doesn’t affect the characters at
all, and no compression occurs—its performance is excellent. UTF-16 encoding is also
referred to as Unicode encoding. Also note that UTF-16 can be used to convert from
little-endian to big-endian and vice versa.

B UTF-8 encodes some characters as 1 byte, some characters as 2 bytes, some characters
as 3 bytes, and some characters as 4 bytes. Characters with a value below 0x0080 are
compressed to 1 byte, which works very well for characters used in the United States.
Characters between 0x0080 and 0x07FF are converted to 2 bytes, which works well
for European and Middle Eastern languages. Characters of 0x0800 and above are
converted to 3 bytes, which works well for East Asian languages. Finally, surrogate pairs
are written out as 4 bytes. UTF-8 is an extremely popular encoding, but it's less efficient
than UTF-16 if you encode many characters with values of 0x0800 or above.

Although the UTF-16 and UTF-8 encodings are by far the most common, the FCL also sup-
ports some encodings that are used less frequently:

B UTF-32 encodes all characters as 4 bytes. This encoding is useful when you want to
write a simple algorithm to traverse characters and you don’t want to have to deal with
characters taking a variable number of bytes. For example, with UTF-32, you do not
need to think about surrogates because every character is 4 bytes. Obviously, UTF-32
is not an efficient encoding in terms of memory usage and is therefore rarely used for
saving or transmitting strings to a file or network. This encoding is typically used inside
the program itself. Also note that UTF-32 can be used to convert from little-endian to
big-endian and vice versa.

Chapter 14 Chars, Strings, and Working with Text 363

B UTF-7 encoding is typically used with older systems that work with characters that can
be expressed using 7-bit values. You should avoid this encoding because it usually ends
up expanding the data rather than compressing it. The Unicode Consortium has depre-
cated this encoding.

B ASCIl encodes the 16-bit characters into ASCII characters; that is, any 16-bit character
with a value of less than 0x0080 is converted to a single byte. Any character with a val-
ue greater than 0x007F can't be converted, so that character’s value is lost. For strings
consisting of characters in the ASCII range (0x00 to 0x7F), this encoding compresses the
data in half and is very fast (because the high byte is just cut off). This encoding isn't
appropriate if you have characters outside of the ASCIl range because the character’s
values will be lost.

Finally, the FCL also allows you to encode 16-bit characters to an arbitrary code page. As with
the ASCII encoding, encoding to a code page is dangerous because any character whose
value can't be expressed in the specified code page is lost. You should always use UTF-16 or
UTF-8 encoding unless you must work with some legacy files or applications that already use
one of the other encodings.

When you need to encode or decode a set of characters, you should obtain an instance of

a class derived from System.Text.Encoding. Encoding is an abstract base class that offers
several static readonly properties, each of which returns an instance of an Encoding-derived
class.

Here's an example that encodes and decodes characters by using UTF-8:

using System;
using System.Text;

public static class Program {
public static void Main() {
// This 1is the string we're going to encode.
String s = "Hi there.";

// Obtain an Encoding-derived object that knows how
// to encode/decode using UTF8
Encoding encodingUTF8 = Encoding.UTF8;

// Encode a string into an array of bytes.
Byte[] encodedBytes = encodingUTF8.GetBytes(s);

// Show the encoded byte values.
Console.WriteLine("Encoded bytes: " +
BitConverter.ToString(encodedBytes));

// Decode the byte array back to a string.
String decodedString = encodingUTF8.GetString(encodedBytes);

// Show the decoded string.
Console.WriteLine("Decoded string:

+ decodedString);

364

Part Ill Essential Types

This code yields the following output:

Encoded bytes: 48-69-20-74-68-65-72-65-2E
Decoded string: Hi there.

In addition to the UTF8 static property, the Encoding class also offers the following static
properties: Unicode, BigEndianUnicode, UTF32, UTF7, ASCII, and Default. The Default
property returns an object that is able to encode/decode using the user’s code page as
specified by the Language for Non-Unicode Programs option of the Regional And Language
dialog box in Control Panel. (See the GetACP Win32 function for more information.) However,
using the Default property is discouraged because your application’s behavior would be
machine-setting dependent, so if you change the system’s default code page or if your
application runs on another machine, your application will behave differently.

In addition to these properties, Encoding also offers a static GetEncoding method that allows
you to specify a code page (by integer or by string) and returns an object that can encode/
decode using the specified code page. You can call GetEncoding, passing "Shift-JIS" or
932, for example.

When you first request an encoding object, the Encoding class’s property or GetEncoding
method constructs a single object for the requested encoding and returns this object. If an
already-requested encoding object is requested in the future, the encoding class simply
returns the object it previously constructed; it doesn’t construct a new object for each
request. This efficiency reduces the number of objects in the system and reduces pressure in
the garbage-collected heap.

Instead of calling one of Encoding's static properties or its GetEncoding method, you could
also construct an instance of one of the following classes: System.Text.UnicodeEncoding,
System.Text.UTF8Encoding, System.Text.UTF32Encoding, System.Text.UTF7Encoding,
or System.Text.ASCIIEncoding. However, keep in mind that constructing any of these
classes creates new objects in the managed heap, which hurts performance.

Four of these classes, UnicodeEncoding, UTF8Encoding, UTF32Encoding, and UTF7Encoding,
offer multiple constructors, providing you with more control over the

encoding and preamble. (Preamble is sometimes referred to as a byte order mark or BOM.)
The first three aforementioned classes also offer constructors that let you tell the class to
throw exceptions when decoding an invalid byte sequence; you should use these construc-
tors when you want your application to be secure and resistant to invalid incoming data.

You might want to explicitly construct instances of these encoding types when working

with a BinaryWriter or a StreamWriter. The ASCIIEncoding class has only a single
constructor and therefore doesn't offer any more control over the encoding. If you need an
ASCIIEncoding object, always obtain it by querying Encoding's ASCII property; this returns
a reference to a single ASCIIEncoding object. If you construct ASCIIEncoding objects your-
self, you are creating more objects on the heap, which hurts your application’s performance.

Chapter 14 Chars, Strings, and Working with Text 365

Once you have an Encoding-derived object, you can convert a string or an array of characters
to an array of bytes by calling the GetBytes method. (Several overloads of this method exist.)
To convert an array of bytes to an array of characters, call the GetChars method or the more
useful GetString method. (Several overloads exist for both of these methods.) The preceding
code demonstrated calls to the GetBytes and GetString methods.

All Encoding-derived types offer a GetByteCount method that obtains the number of bytes
necessary to encode a set of characters without actually encoding. Although GetByteCount
isn't especially useful, you can use this method to allocate an array of bytes. There's also a
GetCharCount method that returns the number of characters that would be decoded with-
out actually decoding them. These methods are useful if you're trying to save memory and
reuse an array.

The GetByteCount/GetCharCount methods aren't that fast because they must analyze the
array of characters/bytes in order to return an accurate result. If you prefer speed to an exact
result, you can call the GetMaxByteCount or GetMaxCharCount method instead. Both meth-
ods take an integer specifying the number of characters or number of bytes and return a
worst-case value.

Each Encoding-derived object offers a set of public read-only properties that you can query
to obtain detailed information about the encoding. See the .NET Framework SDK documen-
tation for a description of these properties.

To illustrate most of the properties and their meanings, | wrote the following program that
displays the property values for several different encodings:

using System;
using System.Text;

public static class Program {
public static void Main() {
foreach (EncodingInfo ei in Encoding.GetEncodings()) {
Encoding e = ei.GetEncoding(Q);
Console.WriteLine("{1}{0}" +
"\tCodePage={2}, WindowsCodePage={3}{0}" +
"\tWebName={4}, HeaderName={5}, BodyName={6}{0}" +
"\tIsBrowserDisplay={7}, IsBrowserSave={8}{0}" +
"\tIsMailNewsDisplay={9}, IsMailNewsSave={103}{0}",

Environment.NewLine,

e.EncodingName, e.CodePage, e.WindowsCodePage,
e.WebName, e.HeaderName, e.BodyName,
e.IsBrowserDisplay, e.IsBrowserSave,
e.IsMailNewsDisplay, e.IsMailNewsSave);

366

Part Ill Essential Types

Running this program yields the following output (abridged to conserve paper):

IBM EBCDIC (US-Canada)
CodePage=37, WindowsCodePage=1252
WebName=IBM037, HeaderName=IBM037, BodyName=IBM037
IsBrowserDisplay=False, IsBrowserSave=False
IsMailNewsDisplay=False, IsMailNewsSave=False

OEM United States
CodePage=437, WindowsCodePage=1252
WebName=IBM437, HeaderName=IBM437, BodyName=IBM437
IsBrowserDisplay=False, IsBrowserSave=False
IsMailNewsDisplay=False, IsMailNewsSave=False

IBM EBCDIC (International)
CodePage=500, WindowsCodePage=1252
WebName=IBM500, HeaderName=IBM500, BodyName=IBM500
IsBrowserDisplay=False, IsBrowserSave=False
IsMailNewsDisplay=False, IsMailNewsSave=False

Arabic (ASMO 708)
CodePage=708, WindowsCodePage=1256
WebName=ASMO-708, HeaderName=ASMO-708, BodyName=ASMO-708
IsBrowserDisplay=True, IsBrowserSave=True
IsMailNewsDisplay=False, IsMailNewsSave=False

Unicode
CodePage=1200, WindowsCodePage=1200
WebName=utf-16, HeaderName=utf-16, BodyName=utf-16
IsBrowserDisplay=False, IsBrowserSave=True
IsMailNewsDisplay=False, IsMailNewsSave=False

Unicode (Big-Endian)
CodePage=1201, WindowsCodePage=1200
WebName=unicodeFFFE, HeaderName=unicodeFFFE, BodyName=unicodeFFFE
IsBrowserDisplay=False, IsBrowserSave=False
IsMailNewsDisplay=False, IsMailNewsSave=False

Western European (DOS)
CodePage=850, WindowsCodePage=1252
WebName=ibm850, HeaderName=1ibm850, BodyName=ibm850
IsBrowserDisplay=False, IsBrowserSave=False
IsMailNewsDisplay=False, IsMailNewsSave=False

Unicode (UTF-8)
CodePage=65001, WindowsCodePage=1200
WebName=utf-8, HeaderName=utf-8, BodyName=utf-8
IsBrowserDisplay=True, IsBrowserSave=True
IsMailNewsDisplay=True, IsMailNewsSave=True

Table 14-3 covers the most commonly used methods offered by all Encoding-derived
classes.

Chapter 14 Chars, Strings, and Working with Text 367

TABLE 14-3 Methods of the Encoding-Derived Classes

Method Description

GetPreamble Returns an array of bytes indicating what should be written to a stream
before writing any encoded bytes. Frequently, these bytes are referred to
as BOM bytes. When you start reading from a stream, the BOM bytes
automatically help detect the encoding that was used when the stream
was written so that the correct decoder can be used. For some Encoding-
derived classes, this method returns an array of 0 bytes—that is, no preamble
bytes. A UTF8Encoding object can be explicitly constructed so that this
method returns a 3-byte array of OxEF, 0xBB, OxBF. A UnicodeEncoding
object can be explicitly constructed so that this method returns a 2-byte
array of OxFE, OxFF for big-endian encoding or a 2-byte array of OxFF, OxFE
for little-endian encoding. The default is little-endian.

Convert Converts an array of bytes specified in a source encoding to an array of
bytes specified by a destination encoding. Internally, this static method calls
the source encoding object’s GetChars method and passes the result to the
destination encoding object’s GetBytes method. The resulting byte array is
returned to the caller.

Equals Returns true if two Encoding-derived objects represent the same code
page and preamble setting.

GetHashCode Returns the encoding object’s code page.

Encoding and Decoding Streams of Characters and Bytes

Imagine that you're reading a UTF-16 encoded string via a System.Net.Sockets.
NetworkStream object. The bytes will very likely stream in as chunks of data. In other words,
you might first read 5 bytes from the stream, followed by 7 bytes. In UTF-16, each character
consists of 2 bytes. So calling Encoding’s GetString method passing the first array of 5 bytes
will return a string consisting of just two characters. If you later call GetString, passing in the
next 7 bytes that come in from the stream, GetString will return a string consisting of three
characters, and all of the code points will have the wrong values!

This data corruption problem occurs because none of the Encoding-derived classes maintains
any state in between calls to their methods. If you'll be encoding or decoding characters/bytes
in chunks, you must do some additional work to maintain state between calls, preventing any
loss of data.

To decode chunks of bytes, you should obtain a reference to an Encoding-derived

object (as described in the previous section) and call its GetDecoder method. This

method returns a reference to a newly constructed object whose type is derived from the
System.Text.Decoder class. Like the Encoding class, the Decoder class is an abstract base
class. If you look in the .NET Framework SDK documentation, you won't find any classes
that represent concrete implementations of the Decoder class. However, the FCL does
define a bunch of Decoder-derived classes. These classes are all internal to the FCL, but

368

Part Ill Essential Types

the GetDecoder method can construct instances of these classes and return them to your
application code.

All Decoder-derived classes offer two important methods: GetChars and GetCharCount.
Obviously, these methods are used for decoding an array of bytes and work similarly to
Encoding’s GetChars and GetCharCount methods, discussed earlier. When you call one of
these methods, it decodes the byte array as much as possible. If the byte array doesn't
contain enough bytes to complete a character, the leftover bytes are saved inside the
decoder object. The next time you call one of these methods, the decoder object uses the
leftover bytes plus the new byte array passed to it—this ensures that the chunks of data are
decoded properly. Decoder objects are very useful when reading bytes from a stream.

An Encoding-derived type can be used for stateless encoding and decoding. However,

a Decoder-derived type can be used only for decoding. If you want to encode strings in
chunks, call GetEncoder instead of calling the Encoding object’'s GetDecoder method.
GetEncoder returns a newly constructed object whose type is derived from the abstract base
class System.Text.Encoder. Again, the .NET Framework SDK documentation doesn’'t contain
any classes representing concrete implementations of the Encoder class. However, the FCL