F undaliirzy;}t;ls of
Digital Logic
IO S

with

Fundamentals of Digital Logic With VHDL Design teaches the basic design techniques for logic circuits. It
emphasizes the synthesis of circuits and explains how circuits are implemented in real chips. Fundamental
concepts are illustrated by using small examples, which are easy to understand. Then, a modular approach is
used to show how larger circuits are designed. VHDL is used to demonstrate how the basic building blocks
and larger systems are defined in a hardware description language, producing designs that can be implemented
with modern CAD tools.

Use of VHDL is well integrated into the book to enable the student to quickly become involved in real
designs. The book can be used with any CAD system for design and implementation of logic circuits. To
make it easy for the user to obtain modern CAD tools, the book includes a CD-ROM that contains Altera’s
Quartus IT CAD software. This software provides automatic mapping of designs written in VHDL into Field
Programmable Gate Arrays (FPGAs) and Complex Programmable Logic Devices (CPLDs). The user will be
able to:

* Enter a design into the CAD system
* Compile the design into a selected device
» Simulate the functionality and timing of the resulting circuit

+ Implement the designs in actual devices (using the school’s laboratory facilities).

VHDL is a complex language, so it is introduced gradually in the book. Each VHDL feature is presented
as it becomes pertinent for the circuits being discussed. To teach the student to use the Quartus II software,
the book includes three tutorials. A discussion of the complete CAD flow is also given.

FUNDAMENTALS
OF
DiGITAL LoGic wiTH VHDL DESIGN

SECOND EDITION

Stephen Brown and Zvonko Vranesic
Department of Electrical and Computer Engineering
University of Toronto

% Higher Education

Boston Burr Ridge, IL Dubuque, IA Madison, W!' New York San Francisco St. Louis
Bangkok Bogota Caracas Kuala Lumpur Lisbon London Madrid Mexico City
Milan Montreal New Delhi Santiage Seoul Singapore Sydney Taipei Toronto

% Higher Education

FUNDAMENTALS OF DIGITAL LOGIC WITH VHDL DESIGN, SECOND EDITION

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the
Americas, New York, NY 10020. Copyright © 2005, 2000 by The McGraw-Hill Companies, Inc. All rights
reserved. No part of this publication may be reproduced or distributed in any form or by any means, or stored
in a database or retrieval system, without the prior written consent of The McGraw-Hill Companies, Inc.,
including, but not limited to, in any network or other electronic storage or transmission, or broadcast for

distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the
United States,

This book is printed on acid-free paper.
1234567890DOC/DOCO987654
ISBN 0-07-246085-7

Publisher: Elizabeth A. Jones

Senior Sponsoring Editor: Carlise Paulson
Developmental Editor: Melinda D. Bilecki
Marketing Manager: Dawn R. Bercier

Senior Project Manager: Kay J. Brimeyer
Production Supervisor: Kara Kudronowicz

Media Technology Producer: Eric A. Weber
Senior Coordinator of Freelance Design: Michelle D. Whitaker
Cover Designer: Rokusek Design

(USE) Cover Image: Rokusek Design

Senior Photo Research Coordinator: Lori Hancock
Supplement Producer: Brenda A. Ernzen
Compositor: Techsetters, Inc.

Typeface: 10/12 Times Roman

Printer: R. R. Donnelley Crawfordsville, IN

Library of Congress Control Number: 2004107780

www.mhhe.com

To Susan and Anne

ABOUT THE AUTHORS

Stephen Brown received his B.A.Sc. degree in Electrical Engineering from the University
of New Brunswick, Canada, and the M.A.Sc. and Ph.D. degrees in Electrical Engineering
from the University of Toronto. He joined the University of Toronto faculty in 1992, where
he is now an Associate Professor in the Department of Electrical & Computer Engineering.
He is also a Senior Director of Software Development at the Altera Toronto Technology
Center.

His research interests include field-programmable VLSI technology and computer ar-
chitecture. He won the Canadian Natural Sciences and Engineering Research Council’s
1992 Doctoral Prize for the best Ph.D. thesis in Canada.

He has won four awards for excellence in teaching electrical engineering, computer
engineering, and computer science courses. He is a coauthor of two other books: Funda-
mentals of Digital Logic with Verilog Design and Field-Programmable Gate Arrays.

Zvonko Vranesic received his B.A.Sc., M.A.Sc., and Ph.D. degrees, all in Electrical Engi-
neering, from the University of Toronto. From 1963-1965 he worked as a design engineer
with the Northern Electric Co. Ltd. in Bramalea, Ontario. In 1968 he joined the University
of Toronto, where he is now a Professor in the Departments of Electrical & Computer Engi-
neering and Computer Science. During the 1978-79 academic year, he was a Senior Visitor
at the University of Cambridge, England, and during 198485 he was at the University of
Paris, 6. From 1995 to 2000 he served as Chair of the Division of Engineering Science at
the University of Toronto. He is also involved in research and development at the Altera
Toronto Technology Center.

His current research interests include computer architecture, field-programmable VLSI
technology, and multiple-valued logic systems.

He is a coauthor of four other books: Computer Organization, 5th ed.; Fundamentals
of Digital Logic with Verilog Design; Microcomputer Structures; and Field-Programmable
Gate Arrays. In 1990, he received the Wighton Fellowship for “innovative and distinctive
contributions to undergraduate laboratory instruction.” In 2004, he received the Faculty
Teaching Award from the Faculty of Applied Science and Engineering at the University of
Toronto.

He has represented Canada in numerous chess competitions. He holds the title of
International Master.

McGraw-Hill Series in Electrical and Computer Engineering

Senior Consulting Editor
Stephen W. Director, University of Michigan, Ann Arbor

Circuits and Systems

Communications and Signal Processing
Computer Engineering

Control Theory and Robotics
Electromagnetics

Electronics and VLSI Circuits
Introductory

Power

Antennas, Microwaves, and Radar

Previous Consulting Editors

Ronald N. Bracewell, Colin Cherry, James F. Gibbons, Willis W. Harman, Hubert Heffner,
Edward W. Herold, John G. Linvill, Simon Ramo, Ronald A. Rohrer, Anthony E. Siegman,
Charles Susskind, Frederick E. Terman, John G. Truxal, Ernst Weber, and John R. Whinnery

PREFACE

This book is intended for an introductory course in digital logic design, which is a basic
course in most electrical and computer engineering programs. A successful designer of
digital logic circuits needs a good understanding of basic concepts and a firm grasp of
computer-aided design (CAD) tools. The purpose of our book is to provide the desirable
balance between teaching the basic concepts and practical application through CAD tools.
To facilitate the learning process, the necessary CAD software is included as an integral
part of the book package.

The main goals of the book are (1) to teach students the fundamental concepts in
classical manual digital design and (2) illustrate clearly the way in which digital circuits
are designed today, using CAD tools. Even though modern designers no longer use manual
techniques, except in rare circumstances, our motivation for teaching such techniques is
to give students an intuitive feeling for how digital circuits operate. Also, the manual
techniques provide an illustration of the types of manipulations performed by CAD tools,
giving students an appreciation of the benefits provided by design automation. Throughout
the book, basic concepts are introduced by way of examples that involve simple circuit
designs, which we perform using both manual techniques and modern CAD-tool-based
methods. Having established the basic concepts, more complex examples are then provided,
using the CAD tools. Thus our emphasis is on modern design methodology to illustrate
how digital design is carried out in practice today.

TECHNOLOGY AND CAD SUPPORT

The book discusses modern digital circuit implementation technologies. The emphasis is on
programmable logic devices (PLDs), which is the most appropriate technology for use in a
textbook for two reasons. First, PLDs are widely used in practice and are suitable for almost
all types of digital circuit designs. In fact, students are more likely to be involved in PLD-
based designs at some point in their careers than in any other technology. Second, circuits
are implemented in PLDs by end-user programming. Therefore, students can be provided
with an opportunity, in a laboratory setting, to implement the book’s design examples in
actual chips. Students can also simulate the behavior of their designed circuits on their own
computers. We use the two most popular types of PLDs for targeting of designs: complex
programmable logic devices (CPLDs) and field-programmable gate arrays (FPGAs).

Our CAD support is based on Altera Quartus Il software. Quartus II provides automatic
mapping of a design into Altera CPLDs and FPGAs, which are among the most widely
used PLDs in the industry. The features of Quartus 1 that are particularly attractive for our
purposes are:

It is a commercial product. The version included with the book supports all major
features of the product. Students will be able to easily enter a design into the CAD

viii

PREFACE

system, compile the design into a selected device (the choice of device can be changed
at any time and the design retargeted to a different device), simulate the functionality
and detailed timing of the resulting circuit, and if laboratory facilities are provided at
the student’s school, implement the designs in actual devices.

o It provides for design entry using both hardware description languages (HDLs) and
schematic capture. In the book, we emphasize the HDI.-based design because it is the
most efficient design method to use in practice. We describe in detail the [EEE Standard
VHDL language and usc it extensively in examples. The CAD system included with the
book has a VHDL compiler, which allows the student to automatically create circuits
from the VHDL code and implement these circuits in real chips.

o It can automatically target a design to various types of devices. This feature allows us
to illustrate the ways in which the architecture of the target device affects a designer’s
circuit.

o It can be used on most types of popular computers. The version of Quartus II provided
with the book runs on computers using Microsoft windows NT, 2000, or XP. However,
through Altera’s university program the software is also available for other machines,
such as SUN or HP workstations.

A Quartus IT CD-ROM is included with each copy of the book. Use of the software
is fully integrated into the book so that students can try, firsthand, ali design examples. To
teach the students how to use this software, the book includes three, progressively advanced,
hands-on tutorials.

SCOPE OF THE BOOK

Chapter 1 provides a general introduction to the process of designing digital systems. It
discusses the key steps in the design process and explains how CAD tools can be used to
automate many of the required tasks.

Chapter 2 introduces the basic aspects of logic circuits. It shows how Boolean algebra
is used to represent such circuits. It also gives the reader a first glimpse at VHDL, as an
example of a hardware description language that may be used to specify the logic circuits.

The electronic aspects of digital circuits are presented in Chapter 3. This chapter shows
how the basic gates are built using transistors and presents various factors that affect circuit
performance. The emphasis is on the latest technologies, with particular focus on CMOS
technology and programmable logic devices.

Chapter 4 deals with the synthesis of combinational circuits. It covers all aspects of
the synthesis process, starting with an initial design and performing the optimization steps
needed to generate a desired final circuit. It shows how CAD tools are used for this purpose.

Chapter 5 concentrates on circuits that perform arithmetic operations. It begins with
a discussion of how numbers are represented in digital systems and then shows how such
numbers can be manipulated using logic circuits. This chapter illustrates how VHDL can
be used to specify the desired functionality and how CAD tools provide a mechanism for
developing the required circuits. We chose to introduce the number representations at this
point, rather than in the very beginning of the book, to make the discussion more mean-

PREFACE

ingful and interesting, because we can immediately provide examples of how numerical
information may be processed by actual circuits.

Chapter 6 presents combinational circuits that are used as building blocks. It includes
the encoder, decoder, and multiplexer circuits. Thesé circuits are very convenient for
illustrating the application of many VHDL constructs, giving the reader an opportunity to
discover more advanced features of VHDL.

Storage elements are introduced in Chapter 7. The use of flip-flops to realize regular
structures, such as shift registers and counters, 18 discussed. VHDL-specified designs of
these structures are included. The chapter also shows how larger systems, such as a simple
processor, may be designed.

Chapter 8 gives a detailed presentation of synchronous sequential circuits (finite state
machines). It explains the behavior of these circuits and develops practical design tech-
niques for both manual and automated design.

Asynchronous sequential circuits are discussed in Chapter 9. While this treatment is
not exhaustive, it provides a good indication of the main characteristics of such circuits.
Even though the asynchronous circuits are not used extensively in practice, they should be
studied because they provide an excellent vehicle for gaining a deeper understanding of
the operation of digital circuits in general. They illustrate the consequences of propagation
delays and race conditions that may be inherent in the structure of a circuit.

Chapter 101s a discussion of a number of practical issues that arise in the design of real
systems. It highlights problems often encountered in practice and indicates how they can
be overcome. Examples of larger circuits illustrate a hierarchical approach in designing
digital systems. Complete VHDL code for these circuits is presented.

Chapter 11 introduces the topic of testing. A designer of logic circuits has to be aware
of the need to test circuits and should be conversant with at least the most basic aspects of
testing.

Chapter 12 presents a complete CAD flow that the designer experiences when design-
ing, implementing, and testing a digital circuit.

Appendix A provides a complete summary of VHDL features. Although use of VHDL
is integrated throughout the book, this appendix provides a convenient reference that the
reader can consult from time to time when writing VHDL code.

Appendices B, C, and D contain a sequence of tutorials on the Quartus I1 CAD tools.
This material is suitable for self-study; it shows the student in a step-by-step manner how
to use the CAD software provided with the book.

Appendix E gives detailed information about the devices used in illustrative examples.

WHAT CAN BE COVERED IN A COURSE

All the material in the book can be covered in 2 one-quarter courses. A good coverage
of the most important material can be achieved in a single one-semester, or even a one-
quarter, course. This is possible only if the instructor does not spend too much time teaching
the intricacies of VHDL and CAD tools. To make this approach possible, we organized
the VHDL material in a modular style that is conducive to self-study. Our experience in
teaching different classes of students at the University of Toronto shows that the instructor

PREFACE

may spend only 2 to 3 lecture hours on VHDL, concentrating mostly on the specification
of sequential circuits. The VHDL examples given in the book are largely self-explanatory,
and students can understand them easily. Moreover, the instructor need not teach how to
use the CAD tools, because the Quartus II tutorials in Appendices B, C, and D are suitable

for self-study.

The book is also suitable for a course in logic design that does not include exposure to
VHDL. However, some knowledge of VHDL, even at a rudimentary level, is beneficial to
the students, and it is a great preparation for a job as a design engineer.

One-Semester Course

A natural starting point for formal lectures is Chapter 2. The material in Chapter 1 is
a general introduction that serves as a motivation for why logic circuits are important and
interesting; students can read and understand this material easily.

The following material should be covered in lectures:

¢ Chapter 2—all sections.

o Chapter 3—sections 3.1 to 3.7. Also, it is useful to cover sections 3.8 and 3.9 if the
students have some basic knowledge of electrical circuits.

o Chapter 4—sections 4.1 to 4.7 and section 4.12.
o Chapter 5—sections 5.1 t0 5.5.

o Chapter 6—all sections.

o Chapter 7—all sections.

» Chapter 8—sections 8.1 to 8.9.

If time permits, it would also be very useful to cover sections 9.1 to 9.3 and section 9.6 in
Chapter 9, as well as one or two examples in Chapter 10.

One-Quarter Course

In a one-quarter course the following material can be covered:

* Chapter 2—all sections.

* Chapter 3—sections 3.1 to 3.3.

» Chapter 4—sections 4.1 to 4.5 and section 4.12.
* Chapter 5—sections 5.1 to 5.3 and section 5.5.

» Chapter 6—all sections.

* Chapter 7—sections 7.1 to 7.10 and section 7.13.
* Chapter 8—Sections 8.1 to 8.5.

A MORE TRADITIONAL APPROACH

The material in Chapters 2 and 4 introduces Boolean algebra, combinational logic circuits,
and basic minimization techniques. Chapter 2 provides initial exposure to these topics using

PREFACE

only AND, OR,NOT, NAND, and NOR gates. Then Chapter 3 discusses the implementation
technology details, before proceeding with the synthesis techniques and other types of gates
in Chapter 4. The material in Chapter 4 is appreciated better if students understand the
technological reasons for the existence of NAND, NOR, and XOR gates, and the various
programmable logic devices.

An instructor who favors a more traditional approach may cover Chapters 2 and 4 in
succession. To understand the use of NAND, NOR, and XOR gates, it is necessary only
that the instructor provide a functional definition of these gates.

VHDL

VHDL s acomplex language, which some instructors feel is too hard for beginning students
to grasp. We fully appreciate this issue and have attempted to solve it. It is not necessary to
introduce the entire VHDL language. In the book we present the important VHDL constructs
that are useful for the design and synthesis of logic circuits. Many other language constructs,
such as those that have meaning only when using the language for simulation purposes,
are omitted. The VHDL material is introduced gradually, with more advanced features
being presented only at points where their use can be demonstrated in the design of relevant
circuits.

The book includes more than 150 examples of VHDL code. These examples illustrate
how VHDL is used to describe a wide range of logic circuits, from those that contain only
a few gates to those that represent digital systems such as a simple processor.

SOLVED PROBLEMS

The chapters include examples of solved problems. They show how typical homework
problems may be solved.

HOMEWORK PROBLEMS

More than 400 homework problems are provided in the book. Answers to selected problems
are given at the back of the book. Solutions to all problems are available to instructors in
the Solutions Manual that accompanies the book.

LABORATORY

The book can be used for a course that does not include laboratory exercises, in which case
students can get useful practical experience by simulating the operation of their designed
circuits by using the CAD tools provided with the book. If there is an accompanying labora-
tory, then a number of design examples in the book are suitable for laboratory experiments.
Additional experiments are available on the authors’ website,

PREFACE

ACKNOWLEDGMENTS

We wish to express our thanks to the people who have helped during the preparation of the
book. Kelly Chan helped with the technical preparation of the manuscript. Dan Vranesic
produced a substantial amount of artwork. He and Deshanand Singh also helped with
the preparation of the solutions manual. Tom Czajkowski helped in checking the an-
swers to some problems. The reviewers, William Barnes, New Jersey Institute of Technol-
ogy; Thomas Bradicich, North Carolina State University; James Clark, McGill University;
Stephen DeWeerth, Georgia Institute of Technology; Clay Gloster, Jr., North Carolina State
University (Raleigh); Carl Hamacher, Queen’s University; Vincent Heuring, University
of Colorado; Yu Hen Hu, University of Wisconsin; Wei-Ming Lin, University of Texas
(Austin); Wayne Loucks, University of Waterloo; Chris Myers, University of Utah; Vojin
Oklobdzija, University of California (Davis); James Palmer, Rochester Institute of Tech-
nology; Gandhi Puvvada, University of Southern California; Teodoro Robles, Milwaukee
Schoot of Engineering; Tatyana Roziner, Boston University; Rob Rutenbar, Carnegie Mel-
Ton University; Eric Schwartz, University of Florida, Wen-Tsong Shiue, Oregon State
University; Charles Silio, Jr., University of Maryland; Scott Smith, University of Missouri
(Rolla); Arun Somani, Jowa State University; Bernard Svihel, University of Texas (Ar-
lington); and Zeljko Zilic, McGill University provided constructive criticism and made
numerous suggestions for improvements.

We are grateful to the Altera Corporation for providing the Quartus II system, espe-
cially to Chris Balough, Misha Burich, Joe Hanson, Mike Phipps, and Tim Southgate.
The support of McGraw-Hill people has been exemplary. We truly appreciate the help
of Dawn Bercier, Melinda Bilecki, Kay Brimeyer, Michaela Graham, Betsy Jones, Kara
Kudronowicz, Carlise Paulson, Eric Weber, and Michelle Whitaker.

Stephen Brown and Zvonko Vranesic

Chapter 1
DESIGN ConCEPTS 1

1.1 Digital Hardware 2

1.1.1 Standard Chips 4
1.12 Programmable Logic Devices 4
1.1.3 Custom-Designed Chips 5

1.2 The Design Process 6
1.3 Design of Digital Hardware 8

1.3.1 Basic Design Loop 8
1.3.2 Structure of a Computer 9
133 Design of a Digital Hardware Unit 12

1.4 Logic Circuit Design in This Book 16
1.5 Theory and Practice 16
References 17

Chapter 2

INTRODUCTION TO LOGIC
Circuits 19

2.1 Variables and Functions 20
2.2 Inversion 23
2.3 Truth Tables 24

2.4 Logic Gates and Networks 25
24.1 Analysis of a Logic Network 27

2.5 Boolean Algebra 29

25.1 The Venn Diagram 33
252 Notation and Terminology 35
253 Precedence of Operations 37
2.6 Synthesis Using AND, OR, and NOT
Gates 37
2.6.1 Sum-of-Products and Product-of-Sums

Forms 39
2.7 NAND and NOR Logic Networks 45
2.8 Design Examples 50
2.8.1 Three-Way Light Control 50
2.8.2 Multiplexer Circuit 51
2.9 Introduction to CAD Tools 54

29.1 Design Entry 54
292 Synthesis 56
293 Functional Simulation 57

Xiv

2.10

2.11
2.12

CONTENTS

294 Physical Design 57

295 Timing Simulation 57

29.6 Chip Configuration 58

Introduction to VHDL 58

2.10.1 Representation of Digital Signals in
VHDL 60

2.10.2 Writing Simple VHDL Code 60

2.10.3 How Not to Write VHDL Code 62

Concluding Remarks 63

Examples of Solved Problems 64

Problems 67

References 72

Chapter 3
IMPLEMENTATION TECHNOLOGY 73

31
32
33

34
3.5

3.6

3.7

3.8

Transistor Switches 75

NMOS Logic Gates 78

CMOS Logic Gates 81

3.3.1 Speed of Logic Gate Circuits 87
Negative Logic System 87

Standard Chips 91

3.5.1 7400-Series Standard Chips 91
Programmable Logic Devices 94

361 Programmable Logic Array (PLA) 94
3.6.2 Programmable Array Logic (PAL) 97
363 Programming of PLAs and PALs 99
364 Complex Programmable Logic Devices
(CPLDs) 101

Field-Programmable Gate Arrays 105
Using CAD Tools to Implement
Circuits in CPLDs and FPGAs 110
3.6.7 Application of CPLDs and FPGAs 110
Custom Chips, Standard Cells, and Gate
Arrays 110

Practical Aspects 114

3.6.5
366

38.1 MOSFET Fabrication and Behavior 114
3.8.2 MOSFET On-Resistance 117

3.8.3 Voltage Levels in Logic Gates 118

384 Noise Margin 119

3.8.5 Dynamic Operation of Logic Gates 121

39

3.10

311
3.12

3.8.6
38.7

Power Dissipation in Logic Gates 124
Passing 1s and Os Through Transistor
Switches 126

38.8 Fan-in and Fan-out in Logic Gates 128

Transmission Gates 134

30.1 Exclusive-OR Gates 135

392 Multiplexer Circuit 136
Implementation Details for SPLDs, CPLDs,

and FPGAs 136
3.10.1 Implementation in FPGAs

Concluding Remarks 145
Examples of Solved Problems
Problems 153

References 162

142

145

Chapter 4

OpPTIMIZED IMPLEMENTATION OF
Locic FUNCTIONS 163

4.1
4.2

43
4.4
4.5
4.6

4.7
4.8

4.9

4.10

4.11
4.12

Karnaugh Map 164

Strategy for Minimization
421 Terminology 173
422 Minimization Procedure 175

Minimization of Product-of-Sums Forms
Incompletely Specified Functions 180
Multiple-Output Circuits 182
Multileve! Synthesis 185

172

4.6.1 Factoring 186
4.6.2 Functional Decomposition 190
463 Multilevel NAND and NOR

Circuits 195
Analysis of Multilevel Circuits
Cubical Representation 203
48.1 Cubes and Hypercubes 203
A Tabular Method for Minimization 207

196

49.1 Generation of Prime Implicants 208

492 Determination of a Minimum Cover 209

493 Summary of the Tabular Method 215

A Cubical Technique for Minimization 216

4.10.1 Determination of Essentiat Prime
Implicants 218

4102 Complete Procedure for Finding a
Minimal Cover 220

Practical Considerations 223

Examples of Circuits Synthesized from
VHDL Code 224

178

4.13 Concluding Remarks
4.14 Examples of Solved Problems

CONTENTS

228
229
237

242

Problems
References

Chapter 5

NUMBER REPRESENTATION AND
ARITHMETIC CIRCUITS 245

5.1

52

5.3

54

5.5

5.6

5.7

Positiona] Number Representation 246

5.1.1 Unsigned Integers 246

5.1.2 Conversion between Decimal and
Binary Systems 247

5.1.3 Octal and Hexadecimal

Representations 248

Addition of Unsigned Numbers 250

52.1 Decomposed Full-Adder 254
522 Ripple-Carry Adder 255

523 Design Example 256

Signed Numbers 256

53.1 Negative Numbers 256

532 Addition and Subtraction 260
533 Adder and Subtractor Unit 264
534 Radix-Complement Schemes 265
3.3.5 Arithmetic Overflow 269

5.3.6 Performance Issues 270

Fast Adders 271

54.1 Carry-Lookahead Adder 271

Design of Arithmetic Circuits Using CAD

Tools 278

5.5.1 Design of Arithmetic Circuits Using
Schematic Capture 278

3.5.2 Design of Arithmetic Circuits Using
VHDL 281

5.53 Representation of Numbers in VHDIL
Code 284

5.54 Arithmetic Assignment Statements

Multiplication 289

5.6.1 Array Multiplier for Unsigned
Numbers 291

5.6.2 Multiplication of Signed Numbers

Other Number Representations 293

571 Fixed-Point Numbers 293

572 Floating-Point Numbers 295

5.7.3 - Binary-Coded Decimal

Representation 297

xvi CONTENTS

5.8 ASCII Character Code 301

5.9 Examples of Solved Problems 304
Problems 310
References 314

Chapter 6

COMBINATIONAL-CIRCUIT-
BuiLpING BLocKSs 315

6.1 Multiplexers 316

6.1.1 Synthesis of Logic Functions Using
Multiplexers 321
6.1.2 Multiplexer Synthesis Using Shannon’s

Expansion 324

6.2 Decoders 329

6.2.1 Demultiplexers
6.3 Encoders 335

6.3.1 Binary Encoders 335

6.3.2 Priority Encoders 336
6.4 Code Converters 337
6.5 Arithmetic Comparison Circuits 338
6.6 VHDL for Combinational Circuits 339

333

6.6.1 Assignment Statements 339
6.6.2 Selected Signal Assignment 340
6.6.2 Selected Signal Assignment 340
6.6.3 Conditional Signal Assignment 344
6.6.4 Generate Statements 348
6.6.5 Concurrent and Sequential Assignment
Statements 350

6.6.6 Process Statement 350
6.6.7 Case Statement 356
6.6.8 VHDL Operators 359

6.7 Concluding Remarks 363

6.8 Examples of Solved Problems 364
Problems 372
References 377

Chapter 7

FL1IP-FLOPS, REGISTERS,
COUNTERS, AND A SIMPLE
PROCESSOR 379

7.1 Basic Latch 381

7.2 Gated SR Latch 383
1.2.1 Gated SR Latch with NAND Gates 385

13 Gated D Latch 386
7.3.1 Effects of Propagation Delays 388

7.4

1.3

1.6
1.7
7.8

79

7.10
7.11

7.12

1.13

7.14

1.15
7.16

Master-Slave and Edge-Triggered D
Flip-Flops 389

74.1 Master-Slave D Flip-Flop 389

74.2 Edge-Triggered D Flip-Flop 389

743 D Flip-Flops with Clear and Preset 393
T Flip-Flop 394

75.1 Configurable Flip-Flops 397

JK Flip-Flop 397

Summary of Terminology 398

Registers 399

7.8.1 Shift Register 399

7.8.2 Parallcl-Access Shift Register 400
Counters 400

79.1 Asynchronous Counters 401
7.9.2 Synchronous Counters 404
7.9.3 Counters with Paralle] Load 408

Reset Synchronization 408
Other Types of Counters 412

7.11.1 BCD Counter 412

7.11.2 Ring Counter 413

7.11.3 Johnson Counter 415

7.11.4 Remarks on Counter Design 415

Using Storage Elements with CAD Tools 416
7.12.1 Including Storage Elements in
Schematics 416

Using VHDL Constructs for Storage
Elements 417

Using Registers and Counters with CAD

Tools 423

7.12.2

7.13.1 Including Registers and Counters in
Schematics 423

7.13.2 Registers and Counters in VHDL
Code 426

7.13.3 Using VHDL Sequential Statements for

Registers and Counters 427

Design Examples 435

7.14.1 Bus Structure 435

7.14.2 Simple Processor 449

7.14.3 Reaction Timer 460

7.14.4 Register Transfer Level (RTL) Code 466

Concluding Remarks 466
Examples of Solved Problems 467
Problems 471

References 477

Chapter 8
SYNCHRONOUS SEQUENTIAL
Circurts 479

8.1 Basic Design Steps 481
8.1.1 State Diagram 481
8.1.2 State Table 483
8.1.3 State Assignment 483
8.14 Choice of Flip-Flops and Derivation of
Next-State and Output Expressions 485
8.1.5 Timing Diagram 486
8.1.6 Summary of Design Steps 488
8.2 State-Assignment Problem 491
8.2.1 One-Hot Encoding 494
8.3 Mealy State Model 496
8.4 Design of Finite State Machines Using CAD
Tools 501
8.4.1 VHDL Code for Moore-Type FSMs 502
842 Synthesis of VHDL Code 504
8.4.3 Simulating and Testing the Circuit 506
8.4.4 AnAlternative Style of VHDL Code 507
8.4.5 Summary of Design Steps When Using
CAD Tools 507
8.4.6 Specifying the State Assignment in
VHDL Code 509
84.7 Specification of Mealy FSMs Using
VHDL 511
8.5 Serial Adder Example 513
85.1 Mealy-Type FSM for Serial Adder 514
85.2 Moore-Type FSM for Serial Adder 516
853 VHDL Code for the Serial Adder 518
8.6 State Minimization 522
8.6.1 Partitioning Minimization
Procedure 524
8.6.2 Incompletely Specified FSMs 531
8.7 Design of a Counter Using the Sequential
Circuit Approach 533
8.7.1 State Diagram and State Table for a
Modulo-8 Counter 533
872 State Assignment 534
8.7.3 Implementation Using D-Type
Flip-Flops 535
874 Implementation Using JK-Type
Flip-Flops 536
875 Example—A Different Counter 541
8.8 FSM as an Arbiter Circuit 543
88.1 Implementation of the Arbiter
Circuit 547

8.9
8.10
8.11

8.12
8.13

CONTENTS x\

8.8.2 Minimizing the OQutput Delays for an
FSM 550
8.8.3 Summary 551

Analysis of Synchronous Sequential
Circuits 551

Algorithmic State Machine (ASM)
Charts 555

Formal Model for Sequential Circuits 559
Concluding Remarks 560

Examples of Solved Problems 561
Problems 570

References 3574

Chapter 9

ASYNCHRONOUS SEQUENTIAL
Circurrs 577

9.1
9.2
9.3
94
9.5

9.6

9.7

9.8
9.9

Asynchronous Behavior 578

Analysis of Asynchronous Circuits 582

Synthesis of Asynchronous Circuits 590

State Reduction 603

State Assignment 618

9.5.1 Transition Diagram 621

9.52 Exploiting Unspecified Next-State
Entries 624

9.5.3 State Assignment Using Additional
State Variables 628

9.54 One-Hot State Assignment 633

Hazards 634

9.6.1 Static Hazards 635

9.6.2 Dynamic Hazards 639

9.6.3 Significance of Hazards 640

A Complete Design Example 642

971 The Vending-Machine Controller 64:

Concluding Remarks 647

Examples of Solved Problems 649

Problems 657

References 661

Chapter 10
DIGITAL SYSTEM DESIGN 663

10.1

Building Block Circuits 664
10.1.1 Flip-Flops and Registers with Enable
Inputs 664

xviii CONTENTS

10.1.2 Shift Registers with Enable Inputs 666 Chapter 12

10.1.3 Static Random Access Memory COMPUTER AIDED DESIGN
(SRAM) 668

10.1.4 SRAM Blocks in PLDs 673 TooLs 757

10.2 Design Examples 673 12.1 Synthesis 758

10.2.1 ABit-Counting Circuit 673 12.1.1 Netlist Generation 758

10.2.2 ASM Chart Implied Timing 12.1.2 Gate Optimization 758
Information 675 12.1.3 Technology Mapping 760

10.2.3 Shift-and-Add Multiplier 677 12.2 Physical Design 764

10.2.4 Divider 686 12.2.1 Placement 767

10.2.5 Arithmetic Mean 696 1222 Routing 768

12.2.3 Static Timing Analysis 769

10.2.6 Sort Operation 702
10.3 Clock Synchronization 713
103.1 Clock Skew 713
10.3.2 Flip-Flop Timing Parameters 714
10.3.3 Asynchronous Inputs to Flip-Flops 717
10.3.4 Switch Debouncing 718
104 Concluding Remarks 718
Problems 720
References 724

Chapter 11
TESTING OF Locic CIrRcUITS 725

11.1 Fault Model 726
11.1.1 Stuck-at Model 726
11.1.2 Single and Multiple Faults 727
11.1.3 CMOS Circuits 727
11.2 Complexity of a Test Set 727
11.3 Path Sensitizing 729
11.3.1 Detection of a Specific Fault 731
11.4 Circuits with Tree Structure 733
11.5 Random Tests 734
11.6 Testing of Sequential Circuits 737
11.6.1 Design for Testability 737
11.7 Built-in Self-Test 741
11.7.1 Built-in Logic Block Observer 745
11.7.2 Signature Analysis 747
1173 Boundary Scan 7438
11.8 Printed Circuit Boards 748
11.8.1 Testing of PCBs 750
11.8.2 TInstrumentation 751
11.9 Concluding Remarks 752
Problems 752
References 755

12.3 Concluding Remarks 771
References 771

Appendix A
VHDL REFERENCE 773

A.1 Documentation in VHDL Code 774
A.2 DataObjects 774

A2l
A22
A23
A24
AlS5

A26
A27
A28
A29
A210
A2.1l
A2.12
A2.13
A2l14

Data Object Names 774

Data Object Values and Numbers 774
SIGNAL Data Objects 775

BIT and BIT_VECTOR Types 775
STD_LOGIC and
STD_LOGIC_VECTOR Types 776
STD_ULOGIC Type 776

SIGNED and UNSIGNED Types 777
INTEGER Type 778

BOOLEAN Type 778
ENUMERATION Type 778
CONSTANT Data Objects 779
VARIABLE Data Objects 779

Type Conversion 779

Arrays 780

A3 Operators 781
A4 VHDL Design Entity 781

A4l
A42

ENTITY Declaration 782
Architecture 782

A5 Package 784
A.6 Using Subcircuits 785

A6l

Declaring a COMPONENT in a
Package 787

A7 Concurrent Assignment Statements 788

Al
A2

Simple Signal Assignment 789
Assigning Signal Values Using
OTHERS 790

A7.3 Selected Signal Assignment 791
A7.4 Conditional Signal Assignment 792
A.7.5 GENERATE Statement 793

A.8 Defining an Entity with GENERICs 793
A9 Sequential Assignment Statements 794

A9.1 PROCESS Statement 794

A.92 IF Statement 796

A93 CASE Statement 796

A94 Loop Statements 797

A9.5 UsingaProcess for a Combinational
Circuit 797

A9.6 Statement Ordering 799

A9.7 Using a VARIABLE in a PROCESS 800

A.10 Sequential Circuits 805
A.10.1 A Gated D Latch 805
A.10.2 D Flip-Flop 806
A.10.3 Using a WAIT UNTIL Statement 807
A.10.4 AFlip-Flop with Asynchronous
Reset 808
Synchronous Reset 808
Registers 808
Shift Registers 811
Counters 813
Using Subcircuits with GENERIC
Parameters 813
A.10.10 A Moore-Type Finite State Machine 816
A.10.11 A Mealy-Type Finite State Machine 818
A.11 Common Errors in VHDL Code 821
A.12 Concluding Remarks 824

References 825

A.10.5
A10.6
A.10.7
A.108
A.109

Appendix B

TuToRIAL 1-USING QuaRrTUS 11
CAD SOFTWARE 827

B.1 Introduction 827
B.1.I Getting Started 828
B.2 Starting a New Project 830
B.3 Design Entry Using Schematic Capture 832

B.3.1 Using the Block Editor 832

B.32 Synthesizing a Circuit from the
Schematic 840

B.33 Simulating the Designed Circuit 842

B.4 " Design Entry Using VHDL 846

B4l Create Another Project 848

B.42 Using the Text Editor 848

B43 Synthesizing a Circuit from the VHDL
Code 850

B44 Performing Functional Simulation 850

CONTENTS Xix

B.4.5 Using Quartus II to Debug VHDL
Code 850
B.5 Mixing Design-Entry Methods 851
B.5.1 Using Schematic Entry at the Top
Level &51
B.5.2 Using VHDL at the Top Level 854

B.6 Quartus Il Windows 856
B.7 Concluding Remarks 858

Appendix C

TUTORIAL 2—IMPLEMENTING
CIrcurTs IN ALTERA DEVICES 859

C.1 Implementing a Circuit in a MAX 7000

CPLD 859

C.1.1 Selecting a Chip 860

C.1.2 Compiling the Project 861

C.1.3 Performing Timing Simulation 862
C.14 Using the Floorplan Editor 863

C.2 Implementing a Circuit in a Cyclone
FPGA 864

C.3 Implementing an Adder using Quartus IT 866

C3.1 The Ripple-Carry Adder Code 867
C32 Simulating the Circuit 868

C3.3 Timing Simulation 871

C.34 Implementation ina CPLD Chip 874

C4 Using an LPM Module 876

C.5 Design of a Finite State Machine 881
C.5.1 Implementation ina CPLD 882
€52 Implementation in an FPGA 886

C.6 Concluding Remarks 887

Appendix D

TUTORIAL 3—PHYSICAL
IMPLEMENTATION IN A PLLD 889

D.l1 Making Pin Assignments 889

D.1.1 Examining Pin Assignments with the
Floorplan Editor 892

D.1.2 Recompiling the Project with Pin
Assignments 892

D.1.3 Changing Pin Assignments by using the

Floorplan Editor 894
D.2 Downloading a Circuit into a Device 895
D.3 Concluding Remarks 897

XX CONTENTS

Appendix E
CoMMERCIAL DEVICES 899

E.1 Simple PLDs 899
E.l.1 The 22V 10 PAL Device 899
E.2 Complex PLDs 901
E2.1 Altera MAX 7000 902
E.3 Field-Programmable Gate Arrays 904
E3.1 Altera FLEX 10K 904
E3.2 Xilinx XC4000 907
E33 AleraAPEX 20K 909
E3.4 Altera Stratix 909

E35 AlteraCyclone 911
E3.6 AlteraStratx il 911
E.3.7 Xilinx Virtex 912
E3.8 Xilinx Virtex-11 and Virtex-1I Pro 912
E.39 Xilinx Spartan-3 913
E.4 Transistor-Transistor Logic 914
E.4.1 TTL Circuit Families 914
References 916

ANSWERS 917
INDEX 933

chapter

DESIGN CONCEPTS

CHAPTER OBJECTIVES

In this chapter you will be introduced to:

e Digital hardware components
e Anoverview of integrated circuit technology

o The design process for digital hardware

2 CHAPTER 1 ¢ DESIGN CONCEPTS

This book is about logic circuits—the circuits from which computers are built. Proper understanding of
logic circuits is vital for today’s electrical and computer engineers. These circuits are the key ingredient of
computers and are also used in many other applications. They are found in commonly used products, such as
digital watches, various household appliances, CD players, and electronic games, as well as in large systems,
such as the equipment for telephone and television networks.

The material in this book will introduce the reader to the many issues involved in the design of logic
circuits. It explains the key ideas with simple examples and shows how complex circuits can be derived from
elementary ones. We cover the classical theory used in the design of logic circuits in great depth because it
provides the reader with an intuitive understanding of the nature of such circuits. But throughout the book we
also illustrate the modern way of designing logic circuits, using sophisticated computer aided design (CAD)
software tools. The CAD methodology adopted in the book is based on the industry-standard design language
called VHDL. Design with VHDL is first introduced in Chapter 2, and usage of VHDL and CAD tools is an
integral part of each chapter in the book.

Logic circuits are implemented electronically, using transistors on an integrated circuit chip. With modern
technology it is possible to fabricate chips that contain tens of millions of transistors, as in the case of computer
processors. The basic building blocks for such circuits are easy to understand, but there is nothing simple
about a circuit that contains tens of millions of transistors. The complexity that comes with the large size of
logic circuits can be handled successfully only by using highly organized design techniques. We introduce
these techniques in this chapter, but first we briefly describe the hardware technology used to build logic
circuits.

(1.1 DiGITAL HARDWARE

Logic circuits are used to build computer hardware, as well as many other types of products.
All such products are broadly classified as digital hardware. The reason that the name digital
is used will become clear later in the book—it derives from the way in which information
is represented in computers, as electronic signals that correspond to digits of information.

The technology used to build digital hardware has evolved dramatically over the past
four decades. Until the 1960s logic circuits were constructed with bulky components, such
as transistors and resistors that came as individual parts. The advent of integrated circuits
made it possible to place a number of transistors, and thus an entire circuit, on a single
chip. In the beginning these circuits had only a few transistors, but as the technology
improved they became larger. Integrated circuit chips are manufactured on a silicon wafer,
such as the one shown in Figure 1.1. The wafer is cut to produce the individual chips,
which are then placed inside a special type of chip package. By 1970 it was possible to
implement all circuitry needed to realize a microprocessor on a single chip. Although early
microprocessors had modest computing capability by today’s standards, they opened the
door for the information processing revolution by providing the means for implementation
of affordable personal computers. About 30 years ago Gordon Moore, chairman of Intel
Corporation, observed that integrated circuit technology was progressing at an astounding
rate, doubling the number of transistors that could be placed on a chip every 1.5 to 2 years.
This phenomenon, informally known as Moore's law, continues to the present day. Thus in
the early 1990s microprocessors could be manufactured with a few million transistors, and

-

1.1 DigiTal. HARDWARE

Figure 1.1 Asilicon wafer {courtesy of Altera Corp.}

by the late 1990s it became possibie w [ubricate chips that contain more than 10 million
rransistors, Presently chips can have a few hundreds of millions of transistors.

Moire™s law is expected (o continue to hoid true for at ieast the next decade. A con-
sortium of integrated circuit manufacturers called the Sericonductor [ndustry Association
(SL1A) produces an estimate of how he technology is expecied o evolve. Known as the S1A
Reuadinap | 1], this estimate predicts the minimum size of a transistor that can be fabricated
on an integrated circuit chip. The size of a transistor is measured by a parameter called is
gate length, which we will discuss in Chapter 2. A sample of the SIA Roadmap is given
in Table 1.1. Tn 2004 the minimum possible gate length that can be reliably manufactured
1§ 90 nm. The first row of the table indicares that the minimum gate length is cxpected to

Table 1,1 A sample of the SIA Roadmap.

Year

1998 2001 2004 2006 2009 2012

Transistor 014 geny 0.12 um 9 nim 65 nm 5 nm 35 nm
gate lengih

Trangistors ' 14 million 16 millign I 24 million 40 million B eillion L million
]
Per emt

w:ip size 200 mm g50mm° . Ofhmm®]I;IIJ mm’ HOOmm? © 1300 mo’

3

q HAPTER 1 . DESIGN CONCEPTS

reduce steadily to about 35 nm by the year 2012. The size of a transistor determines how
many transistors can be placed in a given amount of chip area, with the current maximum
being about 30 million transistors per cm?. This number is expected to grow to 100 million
transistors by the year 2012. The largest chip size is expected to be about 1300 mm- at that
time; thus chips with up to 1.3 billion transistors will be possible! There is no doubt that
this technology will have a huge impact on all aspects of people’s lives.

The designer of digital hardware may be faced with designing logic circuits that can be
implemented on a single chip or, more likely, designing circuits that involve a number of
chips placed on a printed circuit board (PCB). Frequently, some of the logic circuits can be
realized in existing chips that are readily available. This situation simplifies the design task
and shortens the time needed to develop the final product. Before we discuss the design
process in more detail, we should introduce the different types of integrated circuit chips
that may be used.

There exists a large variety of chips that implement various functions that are useful
in the design of digital hardware. The chips range from very simple ones with low func-
tionality to extremely complex chips. For example, a digital hardware product may require
a microprocessor to perform some arithmetic operations, memory chips to provide storage
capability, and interface chips that allow easy connection to input and output devices. Such
chips are available from various vendors.

For most digital hardware products, it is also necessary to design and build some logic
circuits from scratch. For implementing these circuits, three main types of chips may be
used: standard chips, programmable logic devices, and custom chips. These are discussed
next.

1.1.1 STANDARD CHIPS

Numerous chips are available that realize some commonly used logic circuits. We will
refer to these as standard chips, because they usually conform to an agreed-upon standard
in terms of functionality and physical configuration. Each standard chip contains a small
amount of circuitry (usually involving fewer than 100 transistors) and performs a simple
function. To build a logic circuit, the designer chooses the chips that perform whatever
functions are needed and then defines how these chips should be interconnected to realize
a larger logic circuit.

Standard chips were popular for building logic circuits until the early 1980s. However,
as integrated circuit technology improved, it became inefficient to use valuable space on
PCBs for chips with low functionality. Another drawback of standard chips is that the
functionality of each chip is fixed and cannot be changed.

1.1.2 PRrROGRAMMABLE L.oGICc DEVICES

In contrast to standard chips that have fixed functionality, it is possible to construct chips
that contain circuitry that can be configured by the user to implement a wide range of
different logic circuits. These chips have a very general structure and include a collection
of programmable switches that allow the internal circuitry in the chip to be configured

-

1.1 DiGITAL HARDWARE

Figure 1.2 A field-programmable gate array chip (courtesy of
Altera Corp.).

in many different ways. The designer can implement whatever functions are needed for
a particular application by choosing an appropriate configuration of the switches. The
switches are programmed by the end user, rather than when the chip is manufactured. Such
chips are known as programmable logic devices (PLDs). We will introduce them in Chap-
ter 3.

Most types of PLDs can be programmed multiple times. This capability is advantageous
because a designer who 1s developing a prototype of a product can program a PL.D to perform
some function, but later, when the prototype hardware is being tested, can make corrections
by reprogramming the PLLD. Reprogramming might be necessary, for instance, if a designed
function is not quite as intended or if new functions are nceded that were not contemplated
in the original design.

PLDs are available in a wide range of sizes. They can be used to realize much larger
logic circuits than a typical standard chip can realize. Because of their size and the fact that
they can be tailored to meet the requirements of a specific application, PLDs are widely used
today. One of the most sophisticated types of PLD is known as a field-programmable gate
array (FPGA). FPGAs that contain more than 500 million transistors are now available
[2, 3]. A photograph of an FPGA chip is shown in Figure 1.2. The chip consists of
a large number of small logic circuit elements, which can be connected together using
the programmable switches. The logic circuit elements are arranged in a regular two-
dimensional structure.

1.1.3 CustoM-DESIGNED CHIPS

PLDs are available as off-the-shelf components that can be purchased from different sup-
pliers. Because they are programmable, they can be used to implement most logic circuits
found in digital hardware. However, PLDs also have a drawback in that the programmable
Switches consume valuable chip area and limit the speed of operation of implemented cir-
Cuits. Thus in some cases PLLDs may not meet the desired performance or cost objectives.

5

CHAPTER 1 . DESIGN CONCEPTS

In such situations it is possibie to design a chip from scratch; namely, the logic circuitry
that must be included on the chip is designed first and then an appropriate technology is
chosen to implement the chip. Finally, the chip is manufactured by a company that has the
fabrication facilities. This approach is known as custom or semi-custom design, and such
chips are called custom or semi-custom chips. Such chips are intended for use in specific
applications and are sometimes called application-specific integrated circuits (ASICs).

The main advantage of a custom chip is that its design can be optimized for a specific
task; hence it usually leads to better performance. It is possible to include a larger amount
of logic circuitry in a custom chip than would be possible in other types of chips. The
cost of producing such chips is high, but if they are used in a product that is sold in large
quantities, then the cost per chip, amortized over the total number of chips fabricated, may
be lower than the total cost of off-the-shelf chips that would be needed to implement the
same function(s). Moreover, if a single chip can be used instead of multiple chips to achieve
the same goal, then a smaller area is needed on a PCB that houses the chips in the final
product. This results in a further reduction in cost.

A disadvantage of the custom-design approach is that manufacturing a custom chip
often takes a considerable amount of time, on the order of months. In contrast, if a PLD
can be used instead, then the chips are programmed by the end user and no manufacturing
delays are involved.

1.2 THE DESIGN PROCESS

The availability of computer-based tools has greatly influenced the design process in a wide
variety of design environments, For example, designing an automobile is similar in the
general approach to designing a furnace or a computer. Certain steps in the development
cycle must be performed if the final product is to meet the specified objectives. We will
start by introducing a typical development cycle in the most general terms. Then we will
focus on the particular aspects that pertain to the design of logic circuits.

The flowchart in Figure 1.3 depicts a typical development process. We assume that
the process is to develop a product that meets certain expectations. The most obvious
requirements are that the product must function properly, that it must meet an expected
level of performance, and that its cost should not exceed a given target.

The process begins with the definition of product specifications. The essential features
of the product are identified, and an acceptable method of evaluating the implemented
features in the final product is established. The specifications must be tight enough to
ensure that the developed product will meet the general expectations, but should not be
unnecessarily constraining (that is, the specifications should not prevent design choices
that may lead to unforeseen advantages).

From a complete set of specifications, it is necessary to define the general structure of
an initial design of the product. This step is difficult to automate. It is usually performed by
a human designer because there is no clear-cut strategy for developing a product’s overall
structure—it requires considerable design experience and intuition.

1.2 THE DESIGN PROCESS

C{equired produD

Define specifications

'

Initial design

¥

Simulation Redesign

l

Design correct? - —

Yes

+ -}
Prototype implementation Make corrections

l

Testing

Minor errors?

No !

l

Meets specifications?

Qinished producD

Figure 1.3 The development process.

CHAPTER 1 +« DEgsiGN CONCEPTS

After the general structure is established, CAD tools are used to work out the details.
Many types of CAD tools are available, ranging from those that help with the design
of individual parts of the system to those that allow the entire system’s structure to be
represented in a computer. When the initial design is finished, the results must be verified
against the original specifications. Traditionally, before the advent of CAD tools, this step
involved constructing a physical model of the designed product, usually including just the
key parts. Today it is seldom necessary to build a physical model. CAD tools enable
designers to simulate the behavior of incredibly complex products, and such simulations
arc used to determine whether the obtained design meets the required specifications. If
errors are found, then appropriate changes are made and the verification of the new design
is repeated through simulation. Although some design flaws may escape detection via
simulation, usually all but the most subtle problems are discovered in this way.

When the simulation indicates that the design 1s correct, a complete physical prototype
of the product is constructed. The prototype is thoroughly tested for conformance with the
specifications. Any errors revealed in the testing must be fixed. The errors may be minor,
and often they can be eliminated by making small corrections directly on the prototype of
the product. In case of large errors, it is necessary to redesign the product and repeat the
steps explained above. When the prototype passes all the tests, then the product is deemed
to be successfully designed and it can go into production.

1.3 DESIGN OF DiGITAL HARDWARE

Our previous discussion of the development process is relevant in a most general way. The
steps outlined in Figure 1.3 are fully applicable in the development of digital hardware.
Before we discuss the complete sequence of steps in this development environment, we
should emphasize the iterative nature of the design process.

1.3.1 Basic DesigN Loor

Any design process comprises a basic sequence of tasks that are performed in various
situations. This sequence is presented in Figure 1.4. Assuming that we have an initial
concept about what should be achieved in the design process, the first step is to generate
an initial design. This step often requires a lot of manual effort because most designs have
some specific goals that can be reached only through the designer’s knowledge, skill, and
intuition. The next step is the simulation of the design at hand. There exist excellent CAD
tools to assist in this step. To carry out the simulation successfully, it is necessary to have
adequate input conditions that can be applied to the design that is being simulated and later
to the final product that has to be tested. Applying these input conditions, the simulator
tries to verify that the designed product will perform as required under the original product
specifications. If the simulation reveals some errors, then the design must be changed to
overcome the problems. The redesigned version is again simulated to determine whether
the errors have disappeared. This loop is repeated until the simulation indicates a successful
design. A prudent designer expends considerable effort to remedy errors during simulation

1.3 DESIGN OF DIGITAL HARDWARE

C Design concept)

Initial design I

Y

Simulation Redesign

Design correct?

CSuccessful desigD

Figure 1.4 The basic design loop.

because errors are typically much harder to fix if they are discovered late in the design
process. Even so, some errors may not be detected during simulation, in which case they
have to be dealt with in later stages of the development cycle.

1.3.2 STRUCTURE OF A COMPUTER

To understand the role that logic circuits play in digital systems, consider the structure of
a typical computer, as illustrated in Figure 1.5¢. The computer case houses a number of
printed circuit boards (PCBs), a power supply, and (not shown in the figure) storage units,
like a hard disk and DVD or CD-ROM drives. Each unit is plugged into a main PCB,
called the motherboard. As indicated on the bottom of Figure 1.5a, the motherboard holds
several integrated circuit chips, and it provides slots for connecting other PCBs, such as
audio, video, and network boards.

Figure 1.55 illustrates the structure of an integrated circuit chip. The chip comprises
a number of subcircuits, which are interconnected to build the complete circuit. Examples
of subcircuits are those that perform arithmetic operations, store data, or control the flow
of data. Each of these subcircuits is a logic circuit. As shown in the middle of the figure, a

CHAPTER 1 . DESIGN CONCEPTS

- - -

Computer LT
/) u
1
1
' Motherboard
P LY .
S —————— “ 1
\\ "
LY . :
L
: .

Integrated circuits, -
connectors, and -’
components .’

Motherboard

Figure 1.5 A digital hardware system (Part a).

10

% 1.3 DESIGN OF DIGITAL HARDWARE

SO 0000,

- .
Subcircuits [} a
in a chip — | -
I | | |
.) 1
= g
. *+ Logic gates
rl \\
I 3
I — A
1] 1
']]
P .)O— '
1 [}
' — |
[] [3
1 i 1]
1 —]
v —_— T
A3 "I 4
\\ " > ’I
Transistor circuit g .’
-t T T ’ : N - F ‘ :
: -dl " Transistor
) ,
: "I , .--._ Onachip
. b - - i . - - N
L3 "-. S .. - . r S
\‘ ___—l ” r o

Figure 1.5 A digital hardware system (Part b).

11

CHAPTER 1 . DESIGN CONCEPTS

12

logic circuit comprises a network of connected logic gates. Each logic gate performs a very
simple function, and more complex operations are realized by connecting gates together.
Logic gates are built with transistors, which in turn are implemented by fabricating various
layers of material on a silicon chip.

This book is primarily concerned with the center portion of Figure 1.55—the design
of logic circuits. We explain how to design circuits that perform important functions, such
as adding, subtracting, or multiplying numbers, counting, storing data, and controlling the
processing of information. We show how the behavior of such circuits is specified, how
the circuits are designed for minimum cost or maximum speed of operation, and how the
circuits can be tested to ensure correct operation. We also briefly explain how transistors
operate, and how they are built on silicon chips.

1.3.3 DESIGN OF A DiIGITAL HARDWARE UNIT

As shown in Figure 1.5, digital hardware products usually involve one or more PCBs that
contain many chips and other components. Development of such products starts with the
definition of the overall structure. Then the required integrated circuit chips are selected,
and the PCBs that house and connect the chips together are designed. If the selected chips
include PLDs or custom chips, then these chips must be designed before the PCB-level
design is undertaken. Since the complexity of circutts implemented on individual chips
and on the circuit boards is usually very high, it is essential to make use of good CAD tools.

A photograph of a PCB is given in Figure 1.6. The PCB is a part of a large computer
system designed at the University of Toronto. This computer, called NUMAchine [4,5], is
a multiprocessor, which means that it contains many processors that can be used together
to work on a particular task. The PCB in the figure contains one processor chip and various
memory and support chips. Complex logic circuits are needed to form the interface between
the processor and the rest of the system. A number of PLDs are used to implement these
logic circuits.

To illustrate the complete development cycle in more detail, we will consider the steps
needed to produce a digital hardware unit that can be implemented on a PCB. This hardware
could be viewed as a very complex logic circuit that performs the functions defined by the
product specifications. Figure 1.7 shows the design flow, assuming that we have a design
concept that defines the expected behavior and characteristics of this large circuit.

An orderly way of dealing with the complexity involved is to partition the circuit into
smaller blocks and then to design each block separately. Breaking down a large task into
more manageable smaller parts is known as the divide-and-conquer approach. The design
of each block follows the procedure outlined in Figure 1.4. The circuitry in each block is
defined, and the chips needed to implement it are chosen. The operation of this circuitry is
simulated, and any necessary corrections are made.

Having successfully designed all blocks, the interconnection between the blocks must
be defined, which effectively combines these blocks into a single large circuit. Now it
is necessary to simulate this complete circuit and correct any errors. Depending on the
errors encountered, it may be necessary to go back to the previous steps as indicated by the
paths A, B, and C in the flowchart. Some errors may be caused by incorrect connections
between the blocks, in which case these connections have to be redefined, following path C.

=

¥

1.3 DesicN or Diciral. Hagrpwane

‘.[:
1 =
[o
—
=
| -
F -

Figure 1.6 A printed circuit board.

Saune blocks may not have been designed correctly, in which case path B is followed and the
crroneous blocks are redasigned. Another possibility is that the very first step of partitioning
the nverall Jarge circuit into blocks was not done well, in which case path A is followed.
This may happen, for exam ple, if none of the blocks implement some fonctionality needed
il the complete cireuil,

Successful completion of functional simulation suggests that the designed circuit will
correcily perform all of its functions. The next step 15 Lo decide how to realize this clrcuit
on a PCB. The physical location of each chip on the board has to be determined, and the
wiring patiern needed 1o muke connections between the chips has to be defined. We refer
L& This step as the physical dexign of the PCB. CAD tools are relied on heavily to perform
this task autematicall Y.

Once the placement of chips and ihe actual wire conncctions on the 'CB have been
established, it is desirable to see how tLhis physical layout wiil affect the performance of
the ciccuit on the finished board. Tt is reasonable (o assume that if the previous [unclonul

13

14

CHAPTER 1 .

DESIGN CONCEPTS

(Design concept)

—
'
Partition
' -
1 '
Design one block LI Design one block

Define interconnection between blocks

'

Functional simulation of complete system

Physical mapping

l

Timing simulation

(Implementation)

Figure 1.7 Design flow for logic circuits.

iy

1.3 DESIGN OF DiGITAL HARDWARE

simulation indicated that all functions will be performed correctly, then the CAD tools
used in the physical design step will ensure that the required functional behavior will not
be corrupted by placing the chips on the board and wiring them together to realize the
final circuit. However, even though the functional behavior may be correct, the realized
circuit may operate more slowly than desired and thus lead to inadequate performance. This
condition occurs because the physical wiring on the PCB involves metal traces that present
resistance and capacitance to electrical signals and thus may have a significant impact on the
speed of operation. To distinguish between simulation that considers only the functionality
of the circuit and simulation that also considers timing behavior, it is customary to use
the terms functional simulation and timing simulation. A timing simulation may reveal
potential performance problems, which can then be corrected by using the CAD tools to
make changes in the physical design of the PCB.

Having completed the design process, the designed circuit is ready for physical im-
plementation. The steps needed to implement a prototype board are indicated in Figure
1.8. A first version of the board is built and tested. Most minor errors that are detected can
usually be corrected by making changes directly on the prototype board. This may involve
changes in wiring or perhaps reprogramming some PLDs. Larger problems require a more
substantial redesign. Depending on the nature of the problem, the designer may have to
return to any of the points A, B, C, or D in the design process of Figure 1.7.

(ImplemematioD

Build prototype

Testing Modify prototype

l

No .
Minor errors?

Yes

(Finished PCB) Goto A, B, C, or D in Figure 1.6

Figure 1.8 Completion of PCB development.

15

‘ CHAPTER 1 . DeSIGN CONCEPTS

We have described the development process where the final circuit is implemented
using many chips on a PCB. The material presented in this book is directly applicable to
this type of design problem. However, for practical reasons the design examples that appear
in the book are relatively small and can be realized in a single integrated circuit, either a
custom-designed chip or a PLD. All the steps in Figure 1.7 are relevant in this case as well,
with the understanding that the circuit blocks to be designed are on a smaller scale.

1.4 Logcic Circult DESIGN IN THIS BOOK

In this book we use PLDs extensively to illustrate many aspects of logic circuit design.
We selected this technology because it is widely used in real digital hardware products
and because the chips are user programmable. PLD technology is particularly well suited
for educational purposes because many readers have access to facilities for programming
PLDs, which enables the reader to actually implement the sample circuits. To illustrate
practical design issues, in this book we use two types of PLDs—they are the two types
of devices that are widely used in digital hardware products today. One type is known as
complex programmable logic devices (CPLDs) and the other as field-programmable gate
arrays (FPGAs). These chips are introduced in Chapter 3.

To gain practical experience and a deeper understanding of logic circuits, we advise the
reader to implement the examples in this book using CAD tools. Most of the major vendors
of CAD systems provide their tools through university programs for educational use. Some
examples are Altera, Cadence, Mentor Graphics, Synopsys, Synplicity, and Xilinx. The
CAD systems offered by any of these companies can be used equally well with this book.
For those who do not already have access to CAD tools, we include Altera’s Quartus I CAD
system on a CD-ROM. This state-of-the-art software supports all phases of the design cycle
and 1s powerful and easy to use. The software is easily installed on a personal computer,
and we provide a sequence of complete step-by-step tutorials in Appendices B, C, and D to
illustrate the use of CAD tools in concert with the book.

For educational purposes, some PLD manufacturers provide laboratory development
printed circuit boards that include one or more PLD chips and an interface to a personal
computer. Once a logic circuit has been designed using the CAD tools, the circuit can be
downloaded into a PLD on the board. Inputs can then be applied to the PLD by way of
simple switches, and the generated outputs can be examined. These laboratory boards are
described on the World Wide Web pages of the PLD suppliers.

16

1.5 THEORY AND PRACTICE

Modem design of logic circuits depends heavily on CAD tools, but the discipline of logic
design evolved long before CAD tools were invented. This chronology is quite obvious
because the very first computers were built with logic circuits, and there certainly were no
computers available on which to design them!

REFERENCES

Numerous manual design techniques have been developed to deal with logic circuits,
Boolean algebra, which we will introduce in Chapter 2, was adopted as a mathematical
means for representing such circuits. An enormous amount of “theory” was developed,
showing how certain design issues may be treated. To be successful, a designer had to
apply this knowledge in practice.

CAD tools not only made it possible to design incredibly complex circuits but also
made the design work much simpler in general. They perform many tasks automatically,
which may suggest that today’s designer need not understand the theoretical concepts used
in the tasks performed by CAD tools. An obvious question would then be, Why should one
study the theory that is no longer needed for manual design? Why not simply learn how to
use the CAD tools?

There are three big reasons for learning the relevant theory. First, although the CAD
tools perform the automatic tasks of optimizing a logic circuit to meet particular design
objectives, the designer has to give the original description of the logic circuit. If the
designer specifies a circuit that has inherently bad properties, then the final circuit will also
be of poor quality. Second, the algebraic rules and theorems for design and manipulation
of logic circuits are directly implemented in today’s CAD tools. It 1s not possible for a user
of the tools to understand what the tools do without grasping the underlying theory. Third,
CAD tools offer many optional processing steps that a user can invoke when working on
a design. The designer chooses which options to use by examining the resulting circuit
produced by the CAD tools and deciding whether it meets the required objectives. The
only way that the designer can know whether or not to apply a particular option in a given
situation is to know what the CAD tools will do if that option is invoked—again, this implies
that the designer must be familiar with the underlying theory. We discuss the classical logic
circuit theory extensively in this book, because it is not possible to become an effective
logic circuit designer without understanding the fundamental concepts.

On a final note, there is another good reason to learn some logic circuit theory even if it
were not required for CAD tools. Simply put, it is interesting and intellectually challenging.
In the modern world filled with sophisticated automatic machinery, it is tempting to rely on
tools as a substitute for thinking. However, in logic circuit design, as in any type of design
process, computer-based tools are not a substitute for human intuition and innovation.
Computer-based tools can produce good digital hardware designs only when employed by
a designer who thoroughly understands the nature of logic circuits.

REFERENCES

1. Semiconductor Industry Association, “National Technology Roadmap for Semi-
conductors,” http://www.semichips.org/

2. Altera Corporation, “Stratix II Field Programmable Gate Arrays,”
http://www.altera.com

3. Xilinx Corporation, “Virtex-II Pro Field Programmable Gate Arrays,”
http://www.xilinx.com

17

CHAPTER 1 . DESIGN CONCEPTS

4.

5.

18

S. Brown, N. Manjikian, Z. Vranesic, S. Caranci, A. Grbic, R. Grindley, M. Gusat,

K. Loveless, Z. Zilic, and S. Srbljic, “Experience in Designing a Large-Scale
Multiprocessor Using Field-Programmable Devices and Advanced CAD Tools,” 33rd
IEEE Design Automation Conference, Las Vegas, June 1996.

A. Grbic, S. Brown, S. Caranci, R. Grindley, M. Gusat, G. Lemieux, K. Loveless,

N. Manjikian, S. Srbljic, M. Stumm, Z. Vranesic, and Z. Zilic, “ The Design and
Implementation of the NUMAchine Multiprocessor,” IEEE Design Automation
Conference, San Francisco, June 1998.

chapter

2

INTRODUCTION TO LoGIic CIRCUITS

CHAPTER OBJECTIVES

In this chapter you will be introduced to:

e Logic functions and circuits
e Boolean algebra for dealing with logic functions
e Logic gates and synthesis of simple circuits

e CAD tools and the VHDL hardware description language

19
19

20 CHAPTER 2 ¢+ INTRODUCTION TO LOGIC CIRCUITS

The study of Jogic circuits is motivated mostly by their use in digital computers. But such circuits also form
the foundation of many other digital systems where performing arithmetic operations on numbers is not of
primary interest. For example, in a myriad of control applications actions are determined by some simple
logical operations on input information, without having to do extensive numerical computations.

Logic circuits perform operations on digital signals and are usually implemented as electronic circuits
where the signal values are restricted to a few discrete values. In binary logic circuits there are only two
values, 0 and 1. In decimal logic circuits there are 10 values, from 0 to 9. Since each signal value is naturally
represented by a digit, such logic circuits are referred to as digital circuits. In contrast, there exist analog
circuits where the signals may take on a continuous range of values between some minimum and maximum
levels.

In this book we deal with binary circuits, which have the dominant role in digital technology. We hope to
provide the reader with an understanding of how these circuits work, how are they represented in mathematical
notation, and how are they designed using modern design automation techniques. We begin by introducing
some basic concepts pertinent to the binary logic circuits.

(2.1 VARIABLES AND FUNCTIONS

The dominance of binary circuits in digital systems is a consequence of their simplicity,
which results from constraining the signals to assume only two possible values. The simplest
binary element is a switch that has two states. If a given switch is controlled by an input
variable x, then we will say that the switch is open if x = 0 and closed if x = 1, as illustrated
in Figure 2.1a. We will use the graphical symbol in Figure 2.15 to represent such switches
in the diagrams that follow. Note that the control input x is shown explicitly in the symbol.
In Chapter 3 we will explain how such switches are implemented with transistors.
Consider a simple application of a switch, where the switch turns a smail lightbulb
on or off. This action is accomplished with the circuit in Figure 2.2a. A battery provides
the power source. The lightbulb glows when sufficient current passes through its filament,
which is an electrical resistance. The current flows when the switch is closed, that is, when

(a) Two states of a switch

S
|

X

(b) Symbol for a switch

Figure 2.1 Abinary switch.

20

2.1 VARIABLES AND FUNCTIONS

ol E—
— Light

L) l

(a) Simple connection to a battery

Battery

S
Power _| _)
supply l X Light
L €1

(b) Using a ground connection as the return path

Figure 2.2 A light controlled by a switch. -

x = 1. In this example the input that causes changes in the behavior of the circuit is the
switch control x. The output is defined as the state (or condition) of the light, which we
will denote by the letter L. If the light is on, we will say that L = 1. If the the light is off,
we will say that L = 0. Using this convention, we can describe the state of the light as a
function of the input variable x. Since L= 1if x = 1 and L = 0 if x = 0, we can say that

Lix) =x

This simple logic expression describes the output as a function of the input. We say that
L(x) = x 1s a logic function and that x is an input variable.

The circuit in Figure 2.2a can be found in an ordinary flashlight, where the switch is a
simple mechanical device. In an electronic circuit the switch is implemented as a transistor
and the light may be a light-emitting diode (LED). An electronic circuit is powered by
a power supply of a certain voltage, perhaps 5 volts. One side of the power supply is
connected to ground, as shown in Figure 2.26. The ground connection may also be used as
the return path for the current, to close the loop, which is achieved by connecting one side
of the light to ground as indicated in the figure. Of course, the light can also be connected
by a wire directly to the grounded side of the power supply, as in Figure 2.2a.

Consider now the possibility of using two switches to control the state of the light. Let
X1 and x; be the control inputs for these switches. The switches can be connected either
In series or in parallel as shown in Figure 2.3. Using a scries connection, the light will be
tufped on only if both switches are closed. If either switch is open, the light will be off.
This behavior can be described by the expression

Lixy,x2) = x1 - x2
where L=1ifx; = 1landx; =1,

L = 0 otherwise.

21

CHAPTER 2 InTRODUCTION TO LOoGIic CIRCUITS

S S 1

T
Power _| xll % Light

supply I _L

(a) The logical AND function (series connection)

S
*1
Power _1{ -
supply T S Light
L l 1
— x2 —

(b) The logical OR function (parallel connection)

Figure 2.3 Two basic functions.

The “-” symbol is called the AND operator, and the circuit in Figure 2.3a is said to implement
a logical AND function.

The paraliel connection of two switches is given in Figure 2.3b. In this case the light
will be on if either x| or x, switch is closed. The light will also be on if both switches are
closed. The light will be off only if both switches are open. This behavior can be stated as

L(xy, %) =x1 + x>
where L=1ifx;=1lorxx=1lorifx; =x =1,
L=0ifxy =x, =0.

The + symbol is called the OR operator, and the circuit in Figure 2.3b is said to implement
a logical OR function.
In the above expressions for AND and OR, the output L(x;, x7) is a logic function with

- input variables x; and x;. The AND and OR functions are two of the most important logic

22

functions. Together with some other simple functions, they can be used as building blocks
for the implementation of all logic circuits. Figure 2.4 illustrates how three switches can be
used to control the light in a more complex way. This series-parallel connection of switches
realizes the logic function

L{x1, x2, x3) = (x1 + x2) - x3

The light is on if x3 = 1 and, at the same time, at least one of the x; or x; inputs is equal
to 1.

2.2 INVERSION

S
I
*1 S
]
Power __| _ |)
supply T S *3 Light
L | I
X, =

Figure 2.4 A series-parallel connection.

2.2 INVERSION

So far we have assumed that some positive action takes place when a switch is closed, such
as turning the light on. It is equally interesting and useful to consider the possibility that a
positive action takes place when a switch is opened. Suppose that we connect the light as
shown in Figure 2.5. In this case the switch is connected in parallel with the light, rather
than in series. Consequently, a closed switch will short-circuit the light and prevent the
current from -flowing through it. Note that we have included an extra resistor in this circuit
to ensure that the closed switch does not short-circuit the power supply. The light will be
turned on when the switch is opened. Formally, we express this functional behavior as

Lx)=X
where L=1ifx=0,
L=0ifx=1

The value of this function is the inverse of the value of the input variable. Instead of
using the word inverse, it is more common to use the term complement. Thus we say that
L(x) is a complement of x in this example. Another frequently used term for the same
operation is the NOT operation. There are several commonly used notations for indicating
the complementation. In the preceding expression we placed an overbar on top of x. This
notation is probably the best from the visual point of view. However, when complements

M——r
Power _|

supply l x-S Light

Figure 2.5 An inverting circuit.

23

CHAPTER 2 & INTRODUCTION TO LOGIC CIRCUITS

are needed in expressions that are typed using a computer keyboard, which is often done
when using CAD tools, it is impractical to use overbars. Instead, either an apostrophe is
placed after the variable, or the exclamation mark (!) or the tilde character (~) or the word
NOT is placed in front of the variable to denote the complementation. Thus the following
are equivalent:

Xx=x =Ix = ~x = NOTx

The complement operation can be applied to a single variable or to more complex
operations. For example, if

fx,x2) = X1+ x2

then the complement of f is

flxy, x) = x1 +x

This expression yields the logic value 1 only when neither x; nor x; is equal to 1, that is,
when x; = x; = (. Again, the following notations are equivalent:

X1+x = @ +x) =g +x2) =~ +x)= NOT (x; + x3)

24

2.3 TRUTH TABLES

—— ket =

We have introduced the three most basic logic operations—AND, OR, and complement—by
relating them to simple circuits built with switches. This approach gives these operations a
certain “physical meaning.” The same operations can also be defined in the form of a table,
called a rruth table, as shown in Figure 2.6. The first two columns (to the left of the heavy
vertical line) give all four possible combinations of logic values that the variables x; and x;
can have. The next column defines the AND operation for each combination of values of x;
and x;, and the last column defines the OR operation. Because we will frequently need to
refer to “combinations of logic values” applied to some variables, we will adopt a shorter
term, valuation, to denote such a combination of logic values.

X1 X2 || X1-x2 | xy+x2

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1
AND OR

Figure 2.6 A truth table for the AND and OR operations.

2.4 LoGIic GATES AND NETWORKS

X X2 X3 X1 X2-X3 | X1 + X2+ X3
0o 0 O 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 0 1
1 0 O 0 1
1 0 1 0 1
1 1 0 0 1
| 1 1 1 1

Figure 2.7 Three-input AND and OR operations.

The truth table is a useful aid for depicting information involving logic functions. We
will use it in this book to define specific functions and to show the validity of certain func-
tional relations. Small truth tables are easy to deal with. However, they grow exponentially
in size with the number of variables. A truth table for three input variables has eight rows
because there are eight possible valuations of these variables. Such a table is given in Figure
2.7, which defines three-input AND and OR functions. For four input variables the truth
table has 16 rows, and so on. In general, for » input variables the truth table has 2" rows.

The AND and OR operations can be extended to » variables. An AND function
of variables xj, x3, ..., x, has the value 1 only if all n variables are equal to 1. An OR
function of variables x1, x,, . .., x,, has the value 1 if at least one, or more, of the variables
is equal to 1.

2.4 1.0GICc GATES AND NETWORKS

The three basic logic operations introduced in the previous sections can be used to implement
logic functions of any complexity. A complex function may require many of these basic
operations for its implementation. Each logic operation can be implemented electronically
with transistors, resulting in a circuit element called a logic gate. A logic gate has one or
more inputs and one output that is a function of its inputs. It is often convenient to describe
a logic circuit by drawing a circuit diagram, or schematic, consisting of graphical symbols
representing the logic gates. The graphical symbols for the AND, OR, and NOT gates are
shown in Figure 2.8. The figure indicates on the left side how the AND and OR gates are
drawn when there are only a few inputs. On the right side it shows how the symbols are
augmented to accommodate a greater number of inputs. We -will show how logic gates are
built using transistors in Chapter 3.

Alarger circuit is implemented by a network of gates. For example, the logic function
fme Figure 2.4 can be implemented by the network in Figure 2.9. The complexity of a
Even network has a direct impact on its cost. Because it is always desirable to reduce

25

26

CHAPTER 2 INTRODUCTION TO LOGIC CIRCUITS

xl__

xz____

x1+x2+...+x

(c) NOT gate

Figure 2.8 The basic gates.

) >
. }fz("l”z)'xs

Figure 2.9 The function from Figure 2.4.

the cost of any manufactured product, it is important to find ways for implementing logic
circuits as inexpensively as possible. We will see shortly that a given logic function can
be implemented with a number of different networks. Some of these networks are simpler
than others, hence searching for the solutions that entail minimum cost is prudent.

In technical jargon a network of gates is often called a logic network or simply a logic
circuit. We will use these terms interchangeably.

2.4 LocGic GATES AND NETWORKS

2.4.1 ANALYSIS OF A L.OGIC NETWORK

A designer of digital systems is faced with two basic issues. For an existing logic network, it
must be possible to determine the function performed by the network. This task is referred
to as the analysis process. The reverse task of designing a new network that implements a
desired functional behavior is referred to as the synthesis process. The analysis process is
rather straightforward and much simpler than the synthesis process.

Figure 2.10a shows a simple network consisting of three gates. To determine its
functional behavior, we can consider what happens if we apply all possible input signals to
it. Suppose that we start by making x; = x = 0. This forces the output of the NOT gate
to be equal to 1 and the output of the AND gate to be 0. Because one of the inputs to the
OR gate is 1, the output of this gate will be 1. Therefore, f = 1 if x; = x, = 0. If we let
x; = 0and x; = 1, then no change in the value of f will take place, because the outputs of
the NOT and AND gates will still be 1 and 0, respectively. Next, if we apply x; = 1 and
x, = 0, then the output of the NOT gate changes to 0 while the output of the AND gate
remains at 0. Both inputs to the OR gate are then equal to 0; hence the value of f will be 0.
Finally, let x; = x> = 1. Then the output of the AND gate goes to I, which in turn causes
f to be equal to 1. Our verbal explanation can be summarized in the form of the truth table
shown in Figure 2.105.

Timing Diagram

We have determined the behavior of the network in Figure 2. 10a by considering the four
possible valuations of the inputs x; and x;. Suppose that the signals that correspond to these
valuations are applied to the network in the order of our discussion; thatis, (x|, x;) = (0, 0)
followed by (0, 1), (1,0), and (1, 1). Then changes in the signals at various points in the
network would be as indicated in blue in the figure. The same information can be presented
in graphical form, known as a timing diagram, as shown in Figure 2.10¢. The time runs
from left to right, and each input valuation is held for some fixed period. The figure shows
the waveforms for the inputs and output of the network, as well as for the internal signals
at the points labeled A and B.

The timing diagram in Figure 2.10c¢ shows that changes in the waveforms at points A
and B and the output f take place instantaneously when the inputs x; and x, change their
values. These idealized waveforms are based on the assumption that logic gates respond
to changes on their inputs in zero time. Such timing diagrams are useful for indicating
the functional behavior of logic circuits. However, practical logic gates are implemented
using electronic circuits which need some time to change their states. Thus, there is a delay
between a change in input values and a corresponding change in the output value of a gate.
In chapters that follow we will use timing diagrams that incorporate such delays.

' Timing diagrams are used for many purposes. They depict the behavior of a logic
circuit in a form that can be observed when the circuit is tested using instruments such as
logic analyzers and oscilloscopes. Also, they are often generated by CAD tools to show
the designer how a given circuit is expected to behave before it is actually implemented
electronically. We will introduce the CAD tools later in this chapter and will make use of
them throughout the book.

27

CHAPTER 2 ¢ INTRODUCTION TO LoOGIC CIRCUITS

x 0205151 ><\ﬁ1—>1—->0—>0
1
A

‘ \ 0505051 1|8B
0515001
*2 J

(a) Network that implements f = x | Fx] %y

1=>1—-0->51

X1 %2 f(xlyxz) AlB
0O 0 1 110
0 1 1 110
1 0 0 0|0
1 1 1 011
(b) Truth table
X 1
o
x 1
2 9
A 1
0
1
B 0
1
d 0 — Time
(c) Timing diagram
. 050511 >Cﬁl——>l—>0—>0
1
1-1-50-1
0->1—-0—=1 8

*2
(d) Network that implements g = x, +x,

Figure 2.10 An example of logic networks.

Functionally Equivalent Networks

Now consider the network in Figure 2.10d. Going through the same analysis procedure,
we find that the output g changes in exactly the same way as f does in part (a) of the figure.
Therefore, g(x1,x2) = f(x1, x2), which indicates that the two networks are functionally

2gjuivalent; the output behavior of both networks is represented by the truth table in Figure

2.5 BOOLEAN ALGEBRA

2.10b. Since both networks realize the same function, it makes sense to use the simpler
one, which is less costly to implement.

In general, a logic function can be implemented with a variety of different networks,
probably having different costs. This raises an important question: How does one find the
best implementation for a given function? Many techniques exist for synthesizing logic
functions. We will discuss the main approaches in Chapter 4. For now, we should note that
some manipulation is needed to transform the more complex network in Figure 2.10a into
the network in Figure 2.10d. Since f (x1, x2) = X + x1 - x2 and g(x1, x2) = X| + xp, there
must exist some rules that can be used to show the equivalence

Xy +x1 -0 =X +x

We have already established this equivalence through detailed analysis of the two circuits
and construction of the truth table. But the same outcome can be achieved through algebraic
manipulation of logic expressions. In the next section we will discuss a mathematical
approach for dealing with logic functions, which provides the basis for modern design
techniques. '

2.5 BOOLEAN ALGEBRA

In 1849 George Boole published a scheme for the algebraic description of processes involved
in logical thought and reasoning [1]. Subsequently, this scheme and its further refinements
became known as Boolean algebra. 1t was almost 100 years later that this algebra found
application in the engineering sense. In the late 1930s Claude Shannon showed that Boolean
algebra provides an effective means of describing circuits built with switches [2]. The
algebra can, therefore, be used to describe logic circuits. We will show that this algebra
is a powerful tool that can be used for designing and analyzing logic circuits. The reader
will come to appreciate that it provides the foundation for much of our modern digital
technology.

Axioms of Boolean Algebra

Like any algebra, Boolean algebra is based on a set of rules that are derived from a
small number of basic assumptions. These assumptions are called axioms. Let us assume
that Boolean algebra B involves elements that take on one of two values, 0 and 1. Assume
that the following axioms are true:

la. 0-0=0
b 14+1=1
2a. 1.-1=1
26, 040=0

3a. 0-1=1-0=0

3b. 140=041=1

4a. Tfx=0,then¥ =1

4b. Ifx=1,thenx=0 29

CHAPTER 2 . INTRODUCTION TO LoGIic CIRCUITS

Single-Variable Theorems

From the axioms we can define some rules for dealing with single variables. These
rules are often called theorems. If x is a variable in B, then the following theorems hold:

5. x-0=0
5b. x+1=1
6a. x-1=x
6b. x+0=x
Ja. x-x=ux
7b. x+x=x
8a. x-x=0
8. x+x=1

9. X=x ﬁ

It is easy to prove the validity of these theorems by perfect induction, that is, by substituting
the values x = 0 and x = 1 into the expressions and using the axioms given above. For
example, in theorem 5a, if x = 0, then the theorem states that 0 - 0 = 0, which is true
according to axiom la. Similarly, if x = 1, then theorem 5a states that 1 - 0 = 0, which
is also true according to axiom 3a. The reader should verify that theorems 5a to 9 can be
proven in this way.

Duality

Notice that we have listed the axioms and the single-variable theorems in pairs. This
is done to reflect the important principle of duality. Given a logic expression, its dual is
obtained by replacing all + operators with - operators, and vice versa, and by replacing
all Os with 1s, and vice versa. The dual of any true statement (axiom or theorem) in
Boolean algebra is also a true statement. At this point in the discussion, the reader will
not appreciate why duality is a useful concept. However, this concept will become clear
later in the chapter, when we will show that duality implies that at least two different ways
exist to express every logic function with Boolean algebra. Often, one expression leads to
a simpler physical implementation than the other and is thus preferable.

Two- and Three-Variable Properties

To enable us to deal with a number of variables, it is useful to define some two- and
three-variable algebraic identities. For each identity, its dual version is also given. These
identities are often referred to as properties. They are known by the names indicated below.
If x, y, and z are the variables in B, then the following properties hold:

10a. x-y=y-x Commutative
106, x+y=y+x

lla. x-(y-2)=(x-y)-z Associative
b, x+(y+2)=(x+y) +2

12¢. x-(y+2)=x-y+x-z Distributive
12, x+y-z=x+y)-(x+2)

13a. x4+x-y=x Absorption

30

2.5 BOOLEAN ALGEBRA

x yl|lx-y|x Y| x|Y|x+Yy

0 0 0 1 111 1

0 1 0 1 110 1

1 0 0 1 011 1

1 1 1 0 oo 0
LHS RHS

Figure 2.11 Proof of DeMorgan’s theorem in 15a.

13b. x-(x+y)=x

14a. x-y+x-y=x Combining

14b. (x+y) - x+V) =x

15. x-y=X+Yy DeMorgan'’s theorem
15b. x+y=Xx-y

16a. x+Xx-y=x+Yy

16b. x-(f+y)=x-y

17a. x-y+y-z24+X-z=x-y+x-2Z Consensus

176, (x4+y) - 0+ -G+0)=Cx+y) - &+2)

Again, we can prove the validity of these properties either by perfect induction or by
performing algebraic manipulation. Figure 2.11 illustrates how perfect induction can be
used to prove DeMorgan’s theorem, using the format of a truth table. The evaluation of
left-hand and right-hand sides of the identity in 154 gives the same result.

We have listed a number of axioms, theorems, and properties. Not all of these are
necessary to define Boolean algebra. For example, assuming that the + and - operations
are defined, it is sufficient to include theorems 5 and 8 and properties 10 and 12. These
are sometimes referred to as Huntington’s basic postulates [3]. The other identities can be
derived from these postulates.

The preceding axioms, theorems, and properties provide the information necessary for
performing algebraic manipulation of more complex expressions.

Let us Let us prove the validity of the logic equation Exan
(1 +x3) - (X1 +X3) =x1 - X3+ X x3

The left-hand side can be manipulated as follows. Using the distributive property, 12a,
gives

LHS = (x; +x3) - X1 + (x1 + x3) - X3

31

CHAPTER 2 =« INTRODUCTION TO LOGIC CIRCUITS

Applying the distributive property again yields
LHS =x; - X1 + X3 - X1 + X1 - X3 + X3 - X3

Note that the distributive property allows ANDing the terms in parenthesis in a way analo-
gous to multiplication in ordinary algebra. Next, according to theorem 8a, the terms x; - X3
and x3 - X3 are both equal to 0. Therefore,

LHS=0+4+x3-X1 +x,-x34+0
From 65 it follows that
LHS =x3-X; +x1 - X3
Finally, using the commutative property, 10a and 10b, this becomes
LHS =x; - X3+ X1 - X3

which is the same as the right-hand side of the initial equation.

e 2.2

consider the logic equation
X1 X3+ X X3 +x-x3+X 3 =X -X2+x-X+x X
The left-hand side can be manipulated as follows

LHS =x; X3+ x; - x3 + X2 - X3 + X2 - X3 using 10b

=x1 - (X3 +x3) + X2 - (X3 + x3) using 12a
=x;-14%x-1 using 8b
=X + X3 using 6a

The right-hand side can be manipulated as

RHS = X; - X2 + x; - (x +X2) using 12a
=X -X2+xi-1 using 8b
=X X +Xx1 using 6a
=x; 4+ X X2 using 10b
=x; +X2 using 16a

Being able to manipulate both sides of the initial equation into identical expressions estab-

. lishes the validity of the equation. Note that the same logic function is represented by either

the left- or the right-hand side of the above equation; namely
fx1,x,x3) =x1 X3 +X2- X3+ X1 - X3 +X2- X3
=X X2+ X1 X2+ X1 X2
As a result of manipulation, we have found a much simpler expression
fx, x2, x3) =x + X2

which also represents the same function. This simpler expression would result in a lower-
cost logic circuit that could be used to implement the function.

32

2.5 BoOOLEAN ALGEBRA

Examples 2.1 and 2.2 illustrate the purpose of the axioms, theorems, and properties
as a mechanism for algebraic manipulation. Even these simple examples suggest that it is
impractical to deal with highly complex expressions in this way. However, these theorems
and properties provide the basis for automating the synthesis of logic functions in CAD
tools. To understand what can be achieved using these tools, the designer needs to be aware
of the fundamental concepts.

2.5.1 THE VENN DIAGRAM

We have suggested that perfect induction can be used to verify the theorems and properties.
This procedure is quite tedious and not very informative from the conceptual point of view.
A simple visual aid that can be used for this purpose also exists. It is called the Venn
diagram, and the reader is likely to find that it provides for a more intuitive understanding
of how two expressions may be equivalent.

The Venn diagram has traditionally been used in mathematics to provide a graphical
illustration of various operations and relations in the algebra of sets. A set s is a collection
of elements that are said to be the members of 5. In the Venn diagram the elements of
a set are represented by the area enclosed by a contour such as a square, a circle, or an
ellipse. For example, in a universe N of integers from 1 to 10, the set of even numbers is
E =1{2,4,6, 8, 10}. Acontourrepresenting F encloses the even numbers. The odd numbers
form the complement of E; hence the area outside the contour represents E = {1, 3, 5, 7, 9}.

Since in Boolean algebra there are only two values (elements) in the universe, B =
{0, 1}, we will say that the area within a contour corresponding to a set s denotes that s = 1,
while the area outside the contour denotes s = 0. In the diagram we will shade the area
where s = 1. The concept of the Venn diagram is illustrated in Figure 2.12. The universe B
1s represented by a square. Then the constants | and 0 are represented as shown in parts (a)
and (b) of the figure. A variable, say, x, is represented by a circle, such that the area inside
the circle corresponds to x = 1, while the area outside the circle corresponds to x = 0.
This is illustrated in part (¢). An expression involving one or more variables is depicted by
shading the area where the value of the expression is equal to 1. Part (d) indicates how the
complement of x is represented.

To represent two variables, x and y, we draw two overlapping circles. Then the area
where the circles overlap represents the case where x = y = |, namely, the AND of x and
¥y, as shown in part (e). Since this common area consists of the intersecting portions of x
and y, the AND operation is often referred to formally as the infersection of x and y. Part
(f) illustrates the OR operation, where x + y represents the total area within both circles,
namely, where at least one of x or vy is equal to 1. Since this combines the areas in the
circles, the OR operation is formally often called the union of x and y.

Part (g) depicts the product term x - y, which is represented by the intersection of the
area for x with that for y. Part (k) gives a three-variable example; the expression x - y + z
is the union of the area for z with that of the intersection of x and y.

To see how we can use Venn diagrams to verify the equivalence of two expressions,
let us demonstrate the validity of the distributive property, 124, in section 2.5. Figure 2.13
gives the construction of the left and right sides of the identity that defines the property

x-(y+z)=x-y+x-z
33

CHAPTER 2) INTRODUCTION TO LOGIC CIRCUITS

(a) Constant 1 (b) Constant 0

|
=

(c) Variable x d) x
€ x-y) x+y
@ x-y M) x-y+z

Figure 2.12 The Venn diagram representation.

Part (a) shows the area where x = 1. Part (b) indicates the area for y + z. Part (¢) gives the
diagram for x - (v + 7), the intersection of shaded areas in parts (a) and (»). The right-hand
side is constructed in parts (d), (e), and (f). Parts (d) and (e) describe the terms x - y and
x - z, respectively. The union of the shaded areas in these two diagrams then corresponds
to the expression x - y + x - z, as seen in part (f). Since the shaded areas in parts (¢) and (f)
are identical, it follows that the distributive property is valid.

As another example, consider the identity

X-y+x-z+y-z=x-y+Xx-z

34

2.5 BOOLEAN ALGEBRA

(a) x d) x-y

0) y+z () x-z

€) x - (y+2)) x-y+x-z

Figure 2.13 Verification of the distributive property x - (y +2) = x-y +x - z.

which is illustrated in Figure 2.14. Notice that this identity states that the term y - z is fully
covered by the terms x - y and X - z; therefore, this term can be omitted.

The reader should use the Venn diagram to prove some other identities. Itis particularly
instructive to prove the validity of DeMorgan’s theorem in this way.

2.5.2 NOTATION AND TERMINOLOGY

Boolean algebra is based on the AND and OR operations. We have adopted the symbols
- and + to denote these operations. These are also the standard symbols for the familiar
arithmetic multiplication and addition operations. Considerable similarity exists between
the Boolean operations and the arithmetic operations, which is the main reason why the
same symbols are used. In fact, when single digits are involved there is only one significant
difference; the result of 1 + 1 is equal to 2 in ordinary arithmetic, whereas it is equal to 1
in Boolean algebra as defined by theorem 7b in section 2.5.

When dealing with digital circuits, most of the time the + symbol obviously represents
the OR operation. However, when the task involves the design of logic circuits that perform

35

CHAPTER 2 . INTRODUCTION TO LoGIC CIRCUITS

X-y X-y

X-z Xz
y-z X-y+x-z

&

X-y+x-z+y-z

Figure 2.14 Verificationof x -y +X-z+y - z=x-y+X -z

arithmetic operations, some confusion may develop about the use of the 4+ symbol. To avoid
such confusion, an alternative set of symbols exists for the AND and OR operations. It is
quite common to use the A symbol to denote the AND operation, and the Vv symbol for the
OR operation. Thus, instead of x; - xo, we can write x; A x,, and instead of x; + x;, we can
write x; V xs.

Because of the similarity with the arithmetic addition and multiplication operations,
the OR and AND operations are often called the logical sum and product operations. Thus
x1 + x is the logical sum of x| and x,, and x; - x is the logical product of x; and x,. Instead

36f saying “logical product” and “logical sum,” it is customary to say simply “product” and

2.6 SyYNTHESIS UsING AND, OR, AND NOT GATES

«gum.” Thus we say that the expression
X1 X2 X3 +X X4 +X2-X3-%X4
is a sum of three product terms, whereas the expression
(X1 +x3) - (01 +%3) - 2 +x3 +x4)

is a product of three sum terms.

2.5.3 PRECEDENCE OF OPERATIONS

Using the three basic operations—AND, OR, and NOT—it is possible to construct an infinite
number of logic expressions. Parentheses can be used to indicate the order in which the
operations should be performed. However, to avoid an excessive use of parentheses, another
convention defines the precedence of the basic operations. It states that in the absence of
parentheses, operations in a logic expression must be performed in the order: NOT, AND,
and then OR. Thus in the expression

X)Xy +X1 X

it is first necessary to generate the complements of x; and x;. Then the product terms x, - x;
and X| - x, are formed, followed by the sum of the two product terms. Observe that in the
absence of this convention, we would have to use parentheses to achieve the same effect as
follows:

(x1 - x2) + ((x7) - (2))

Finally, to simplify the appearance of logic expressions, it is customary to omit the -
operator when there is no ambiguity. Therefore, the preceding expression can be written as

X1X9 + J_Clxg

We will use this style throughout the book.

2.6 SynTHESIS USING AND, OR, AND NOT GATES

Armed with some basic ideas, we can now try to implement arbitrary functions using the
AND, OR, and NOT gates. Suppose that we wish to design a logic circuit with two inputs,
x1 and x,. Assume that x; and x; represent the states of two switches, either of which may
be open (0) or closed (1). The function of the circuit is to continuously monitor the state
of the switches and to produce an output logic value 1 whenever the switches (x, x;) are
in states (0, 0), (0, 1), or (1, 1). If the state of the switches is (1, 0), the output should be
0. Another way of stating the required functional behavior of this circuit is that the output
must be equal to 0 if the switch x; is closed and x> is open; otherwise, the output must be
1. We can express the required behavior using a truth table, as shown in Figure 2.15.

A possible procedure for designing a logic circuit that implements the truth table is to
Create a product term that has a value of 1 for each valuation for which the output function
f has to be 1. Then we can take a logical sum of these product terms to realize f . 127 us

CHAPTER 2 +« INTRODUCTION TO LoGic CIRCUITS

x1 x2 || f(x1,x2)

e = I S

b D
—_— O D

Figure 2.15 A function fo be synthesized.

begin with the fourth row of the truth table, which corresponds to x; = x, = 1. The product
term that is equal to 1 for this valuation is x| - x2, which is just the AND of x; and x,. Next
consider the first row of the table, for which x; = x» = 0. For this valuation the value 1 is
produced by the product term X - x;. Similarly, the second row leads to the term X - x;.

Thus f may be realized as
fx1,x2) = x1x2 + X1%2 + X1x2

The logic network that corresponds to this expression is shown in Figure 2.16a.

Although this network implements f correctly, it is not the simplest such network. To
find a simpler network, we can manipulate the obtained expression using the theorems and
properties from section 2.5. According to theorem 7b, we can replicate any term in a logical

*1

%)

Y

sl

(a) Canonical sum-of-products

(b) Minimal-cost realization

Figure 2.16 Two implementations of the function in Figure 2.15.

38

2.6 SyYNTHESIS USING AND, OR, aND NOT GATES

sum expression. Replicating the third product term, the above expression becomes
fx1, %) = x1x0 + X1 % + X1x2 + X1x0

Using the commutative property 106 to interchange the second and third product terms
gives

fx,x) =x1x +Xix2 + X% + X0
Now the distributive property 12a allows us to write
Flx,) =G +x)x + X102 +x2)
Applying theorem 8b we get
frx)=1-x+3-1
Finally, theorem 6a leads to
Fonx)=xn+x

The network described by this expression is given in Figure 2.16b. Obviously, the cost of
this network is much less than the cost of the network in part (a) of the figure.

This simple example illustrates two things. First, a straightforward implementation of
a function can be obtained by using a product term (AND gate) for each row of the truth
table for which the function is equal to 1. Each product term contains all input variables,
and it is formed such that if the input variable x; is equal to 1 in the given row, then x; is
entered in the term; if x; = 0, then X; is entered. The sum of these product terms realizes
the desired function. Second, there are many different networks that can realize a given
function. Some of these networks may be simpler than others. Algebraic manipulation can
be used to derive simplified logic expressions and thus lower-cost networks.

The process whereby we begin with a description of the desired functional behavior
and then generate a circuit that realizes this behavior is called synthesis. Thus we can
say that we “synthesized” the networks in Figure 2.16 from the truth table in Figure 2.15.
Generation of AND-OR expressions from a truth table is just one of many types of synthesis
techniques that we will encounter in this book.

2.6.1 SumM-0OF-PrODUCTS AND PRODUCT-OF-SUMS FORMS

Having introduced the synthesis process by means of a very simple example, we will now
present it in more formal terms using the terminology that is encountered in the technical
literature. We will also show how the principle of duality, which was introduced in section
2.5, applies broadly in the synthesis process.

If a function f is specified in the form of a truth table, then an expression that realizes
f can be obtained by considering either the rows in the table for which f = 1, as we have
already done, or by considering the rows for which f = 0, as we will explain shortly.

39

CHAPTER 2 + INTRODUCTION TO LoGIC CIRCUITS

Minterms

For a function of n variables, a product term in which each of the n variables appears
once is called a minterm. The variables may appear in a minterm either in uncomplemented
or complemented form. For a given row of the truth table, the minterm is formed by
including x; if x; = 1 and by including X; if x; = 0.

To illustrate this concept, consider the truth table in Figure 2.17. We have numbered the
rows of the table from (} to 7, so that we can refer to them easily. (The reader who is already
familiar with the binary number representation will realize that the row numbers chosen are
just the numbers represented by the bit patterns of variables x;, x1, and x3; we will discuss
number representation in Chapter 5.) The figure shows all minterms for the three-variable
table. For example, in the first row th-2 variables have the values x; = x, = x3 = 0, which
leads to the minterm X;x,x3. In the second row x; = x; = 0 and x3 = 1, which gives
the minterm X,X,x3, and so on. To be able to refer to the individual minterms easily, it
is convenient to identify each minterm by an index that corresponds to the row numbers
shown in the figure. We will use the notation m; to denote the minterm for row number i,
Thus my = f]fgfg,, M| = X1 X2X3, and so on.

Sum-of-Products Form

Afunction f can be represented by an expression that is a sum of minterms, where each
minterm 1s ANDed with the value of f for the corresponding valuation of input variables.
For example, the two-variable minterms are my = XX, M| = XiX2, #» = x1X, and
m3 = x1x2. The function in Figure 2.15 can be represented as

f:m0-1—|—m1-1+m2'0+m3-1
= my + my + m3
= XX +X1X2 + X1X2
which is the form that we derived in the previous section using an intuitive approach. Only
the minterms that correspond to the rows for whichf = 1 appear in the resulting expression.

Any function f can be represented by a sum of minterms that correspond to the rows
in the truth table for which f = 1. The resulting implementation is functionally correct and

Row
number | x; x2 X3 Minterm Maxterm
0 0 0 O (| my=x1x2x3 | Mo=x;+x2+x3
1 0 0 | my=x1x2x3 | My =x1+x2+x3
2 0 | 0 || ma=Xxix2x3 | Ma=x1 +%2 +x3
3 0 1 1 m3=Xx1x2x3 | M3 =x1+%x3 +7x3
4 1 0 O My = X1X2X3 | My =X +x2+ x3
5 1 0 1 ms =x1x2x3 | Ms =X1 +x2 + X3
6 1 1 0| me=ux1x2%3 | Mg = x| + X2+ x3
7 1 1 1 mip=x1x2x3 | M1=x1+%+x3

40 . Figure 2.17 Three-variable minterms and maxterms,

2.6 SYNTHESIS USING AND, OR, aAND NOT GATES

unique, but it is not necessarily the lowest-cost implementation of f. A logic expression
consisting of product (AND) terms that are summed (ORed) is said to be of the sum-of-
products (SOP) form. If each product term is a minterm, then the expression is called a can-
onical sum-of-products for the function /. As we have seen in the example of Figure 2.16,
the first step in the synthesis process is to derive a canonical sum-of-products expression
for the given function. Then we can manipulate this expression, using the theorems and
properties of section 2.5, with the goal of finding a functionally equivalent sum-of-products
expression that has a lower cost.

As another example, consider the three-vanable function f (x|, x», x3), specified by the
truth table in Figure 2.18. To synthesize this function, we have to include the minterms m,
my, ms, and mg. Copying these minterms from Figure 2.17 leads to the following canonical
sum-of-products expression for f

S (x1, X2, X3) = X1X2Xk3 + X1X2X3 + X1X2X3 + X1X2X3
This expression can be manipulated as follows

[= & +x))xxs + x1 (2 + x2)x3
=1-Xx34+x1-1-X3

= XpX3 + X1 X3

This is the minimum-cost sum-of-products expression for f. It describes the circuit shown
in Figure 2.19a. A good indication of the cost of a logic circuit is the total number of gates
plus the total number of inputs to all gates in the circuit. Using this measure, the cost of
the network in Figure 2.194 is 13, because there are five gates and eight inputs to the gates.
By comparison, the network implemented on the basis of the canonical sum-of-products
would have a cost of 27; from the preceding expression, the OR gate has four inputs, each
of the four AND gates has three inputs, and each of the three NOT gates has one input.
Minterms, with their row-number subscripts, can also be used to specify a given func-
tion in a more concise form. For example, the function in Figure 2.18 can be specified

Row

number f(x1, x2, x3)

oy
>
b
e
(FL]

~I N e N — O
i ek i e (TN OO
ki (O DD ik e (D
—_—O = O = O == O
O st o = OO = O

Figure 2.18 A three-variable function. 41

CHAPTER 2 . INTRODUCTION TO LOGIC CIRCUITS

xz_.Do__

Dy

{a) A minimal sum-of-products realization

p

(b) A minimal product-of-sums realization

Figure 2.19 Two realizations of the function in Figure 2.18.

as
fx, x,x3) = Z(ml, my, ms, Mme)

or even more simply as

f(xlsts-x3) = Zm(1’4a 55 6)

The Y sign denotes the logical sum operation. This shorthand notation is often used in
practice.

Maxterms

The principle of duality suggests that if it is possible to synthesize a function f by
considering the rows in the truth table for which f = 1, then it should also be possible to
synthesize f* by considering the rows for which f = 0. This alternative approach uses the
complements of minterms, which are called maxterms. All possible maxterms for three-
variable functions are listed in Figure 2.17. We will refer to a maxterm M; by the same row
number as its corresponding minterm m; as shown in the figure.

Product-of-Sums Form

If a given function f is specified by a truth table, then its complement f can be rep-
resented by a sum of minterms for which f = 1, which are the rows where f = 0. For

42 : -

2.6 SYNTHESIS USING AND, OR, aAND NOT GATES

example, for the function in Figure 2.15
f(x1,x2) = my
= xlfz

If we complement this expression using DeMorgan’s theorem, the result is

? =f =x1x

=X+ x2

Note that we obtained this expression previously by algebraic manipulation of the canonical
sum-of-products form for the function f. The key point here is that

f=my=M;

where M; is the maxterm for row 2 in the truth table.
As another example, consider again the function in Figure 2.18. The complement of
this function can be represented as

£ (x1, %2, X3) = mg + my + m3 + mq

= X X2X3 + X1 X2X3 + X1 X2X3 + X1 X2X3

Then f can be expressed as

f=my+my+m +m
=my - Wy - M3 - My
=My-M, - M; - M,
= (x; +x2 +x3)(x) + X2 +x3)(x1 + X2 + X3)(X1 + X2 + X3)

This expression represents f as a product of maxterms.

Alogic expression consisting of sum (OR) terms that are the factors of a logical product
(AND) is said to be of the product-of-sums (POS) form. If each sum term is a maxterm, then
the expression is called a canonical product-of-sums for the given function. Any function
/ can be synthesized by finding its canonical product-of-sums. This involves taking the
maxterm for each row in the truth table for which f = 0 and forming a product of these
maxterms.

Returning to the preceding example, we can attempt to reduce the complexity of the
derived expression that comprises a product of maxterms. Using the commutative property
105 and the associative property 115 from section 2.5, this expression can be written as

= ((x1 +x3) +x2) () + x3) +) (x1 + (G2 + X3) (0 + (2 +X3))
Then, using the combining property 145, the expression reduces to
f =01 +x3)(x2 +X3)

The corresponding network is given in Figure 2.195. The cost of this network is 13. While
this cost happens to be the same as the cost of the sum-of-products version in Figure 2.19a,
the reader should not assume that the cost of a network derived in the sum-of-products form

43

CHAPTER 2 o« InTRODUCTION TO LOGIC CIRCUITS

will in general be equal to the cost of a corresponding circuit derived in the product-of-sums
form.
Using the shorthand notation, an alternative way of specifying our sample function is

f(x1, x, x3) = TT(Mgy, M, M3, M7)
or more simply
fx1,x,x3) =1IMO0,2,3,7)

The IT sign denotes the logical product operation.

The preceding discussion has shown how logic functions can be realized in the form
of logic circuits, consisting of networks of gates that implement basic functions. A given
function may be realized with circuits of a different structure, which usually implies a
difference in cost. An important objective for a designer is to minimize the cost of the
designed circuit. We will discuss the most important techniques for finding minimum-cost
implementations in Chapter 4.

e 2.3

Consider the function
fln,x,x) =) m2,3,4,6,7)

The canonical SOP expression for the function is derived using minterms
f=m+m+m+mg+m
= X1X2X3 + X1 X2x3 + X1X2X3 + X1X0X3 + X1 X2X3
This expression can be simplified using the identities in section 2.5 as follows
f =X + x3) +x102 +x2)%3 + x1x20x3 + x3)
= X1x2 + X1X3 + X1X2

= (X1 +x1)x2 +x1X3

= X2 + xlf3

e 2.4 Consider again the function in Example 2.3. Instead of using the minterms, we can specify

this function as a product of maxterms for which f = 0, namely
@, x2,x3) =TIM (0, 1, 5)
Then, the canonical POS expression is derived as

f=My M -Ms
= (x1 +x2 +x3) (01 + X2 +X3) (X1 +x2 + %3)

2.7 NAND anp NOR Locic NETWORKS

A simplified POS expression can be derived as
f = (01 +x2) + x3) (1 +x2) + X3) (21 + (2 +X3))E + (02 +X3))
= ((x1 +x2) + x3%3) (1 %1 + (2 + X3))
= (x; +x2)(x2 + X3)
Note that by using the distributive property 12b, this expression leads to
f=x2+x%;

which is the same as the expression derived in Example 2.3.

suppose that a four-variable function is defined by Exal
fax,x3,x) =Y m(3,7,9,12,13, 14, 15)
The canonical SOP expression for this function is
[= X1X2X3X4 + X1X2X3X4 + X1 X2X3X4 + X[X2X3X4 + X X2X3X4 + X1 X2X3X4 + X[X2X3X4
A simpler SOP expression can be obtained as follows

f =X100 + x2)x3x4 4+ X1 (X2 + X2)X3%4 + X1%2X3 (X5 + Xx4) + X1x2%3 (%4 + X4)
= X1X3X4 + X1X3X4 + X1X2X3 + X1 X243
= X1X3X4 + X1X3%4 + X1x2(X3 + x3)

= X1X3X3 + X1X3X3 + X1 X2

2.7 NAND AND NOR LocGic NETWORKS

We have discussed the use of AND, OR, and NOT gates in the synthesis of logic circuits.
There are other basic logic functions that are also used for this purpose. Particularly use-
ful are the NAND and NOR functions which are obtained by complementing the output
generated by AND and OR operations, respectively. These functions are attractive because
they are implemented with simpler electronic circuits than the AND and OR functions, as
we will see in Chapter 3. Figure 2.20 gives the graphical symbols for the NAND and NOR
gates. A bubble is placed on the output side of the AND and OR gate symbols to represent
the complemented output signal.

If NAND and NOR gates are realized with simpler circuits than AND and OR gates,
then we should ask whether these gates can be used directly in the synthesis of logic circuits.
In section 2.5 we introduced DeMorgan’s theorem. Its logic gate interpretation is shown
in Figure 2.21. Identity 15¢ is interpreted in part (a) of the figure. It specifies that a
NAND of variables x; and x; is equivalent to first complementing each of the variables
and then ORing them. Notice on the far-right side that we have indicated the NOT gates

45

CHAPTER 2 +« INTRODUCTION TO LOGIC CIRCUITS

(a) NAND gates

x; —)

%2
*1
x, :DO_ Xy + X, : ¥ txyt .+ X,
xn
(b} NOR gates

Figure 2.20 NAND and NOR gates.

) =

Figure 2.21 DeMorgan's theorem in terms of logic gates.

46

T o D) o

(b) xl +x2 = iliz

: D}— xl-xz-...~xn

2.7 NAND anDp NOR LogGic NETWORKS

simply as bubbles, which denote inversion of the logic value at that point. The other half of
DeMorgan’s theorem, identity 15b, appears in part (b) of the figure. It states that the NOR
function is equivalent to first inverting the input variables and then ANDing them.

In section 2.6 we explained how any logic function can be implemented either in sum-
of-products or product-of-sums form, which leads to logic networks that have either an
AND-OR or an OR-AND structure, respectively. We will now show that such networks
can be implemented using only NAND gates or only NOR gates.

Consider the network in Figure 2.22 as a representative of general AND-OR networks.
This network can be transformed into a network of NAND gates as shown in the figure.
First, each connection between the AND gate and an OR gate is replaced by a connection
that includes two inversions of the signal: one inversion at the output of the AND gate and
the other at the input of the OR gate. Such double inversion has no effect on the behavior of
the network, as stated formally in theorem 9 in section 2.5. According to Figure 2.214, the
OR gate with inversions at its inputs is equivalent to a NAND gate. Thus we can redraw
the network using only NAND gates, as shown in Figure 2.22. This example shows that
any AND-OR network can be implemented as a NAND-NAND network having the same
topology.

Figure 2.23 gives a similar construction for a product-of-sums network, which can be
transformed into a circuit with only NOR gates. The procedure is exactly the same as the
one described for Figure 2.22 except that now the identity in Figure 2.215 is applied. The
conclusion s that any OR-AND network can be implemented as a NOR-NOR network
having the same topology.

xl —_— xl
%) ——} X3
B & i
Xy — X4
Xy _I_D xg 11

s I

Xy

xg

J
-
)D_

Figure 2.22 Using NAND gates to implement a sum-of-products.

47

CHAPTER 2 + INTRODUCTION TO LOGIC CIRCUITS

DER=

Figure 2,23 Using NOR gates to implement a product-of-sums.

|Ie 2-6

Let us implement the function

Flx,x) =Y m2,3.4,6,7)

using NOR gates only. In Example 2.4 we showed that the function can be represented by
the POS expression

f =0 +x)x +Xx3)

An OR-AND circuit that corresponds to this expression is shown in Figure 2.24a. Using
the same structure of the circuit, a NOR-gate version is given in Figure 2.24b. Note that x3
is inverted by a NOR gate that has its inputs tied together.

le 2.7

48

Let us now implement the function

Flu, 0, x3) =Y m(2,3,4,6,7)
using NAND gates only. In Example 2.3 we derived the SOP expression
f=x+xx

which is realized using the circuit in Figure 2.25a. We can again use the same structure
to obtain a circuit with NAND gates, but with one difference. The signal x, passes only
through an OR gate, instead of passing through an AND gate and an OR gate. If we simply
replace the OR gate with a NAND gate, this signal would be inverted which would result
in a wrong output value. Since x, must either not be inverted, or it can be inverted twice,

2.7 NAND anDp NOR LocGic NETWORKS

) DY
">

(a) POS implementation

(b) NOR implementation

Figure 2.24 NOR-gate realization of the function in Example 2.4.

xl —I_)-
S SO

(a) SOP implementation

7

*1 |

(b) NAND implementation

: -
-

Figure 2.25 NAND-gate redlization of the function in Example 2.3.

49

CHAPTER 2 . InTRODUCTION TO LoGICc CIRCUITS

we can pass it through two NAND gates as depicted in Figure 2.255. Observe that for this
circuit the output f'is

[=%x2-x1%3
Applying DeMorgan’s theorem, this expression becomes

[=x+x1%3

2.8 DESIGN EXAMPLES

Logic circuits provide a solution to a problem. They implement functions that are needed to
carry out specific tasks. Within the framework of acomputer, logic circuits provide complete
capability for execution of programs and processing of data. Such circuits are complex and
difficult to design. But regardless of the complexity of a given circuit, a designer of logic
circuits is always confronted with the same basic issues. First, it is necessary to specify the
desired behavior of the circuit. Second, the circuit has to be synthesized and implemented.
Finally, the implemented circuit has to be tested to verify that it meets the specifications.
The desired behavior is often initially described in words, which then must be turned into
a formal specification. In this section we give two simple examples of design.

2.8.1 THREE-WAY LicHT CONTROL

Assume that a large room has three doors and that a switch near each door controls a light
in the room. It has to be possible to turn the light on or off by changing the state of any one
of the switches.

As a first step, let us turn this word statement into a formal specification using a truth
table. Let x, x», and x3 be the input variables that denote the state of each switch. Assume
that the light is off if all switches are open. Closing any one of the switches will turn the
light on. Then turning on a second switch will have to turn off the light. Thus the light
will be on if exactly one switch is closed, and it will be off if two (or no) switches are
closed. If the light is off when two switches are closed, then it must be possible to turn
it on by closing the third switch. If f(x;, x2, x3) represents the state of the light, then the
required functional behavior can be specified as shown in the truth table in Figure 2.26.
The canonical sum-of-products expression for the specified function is

f=m +m+my+m

= X1X2X3 + X1X2X3 + X1X2X3 + X1X2X3

This expression cannot be simplified into a lower-cost sum-of-products expression. The
resulting circuit is shown in Figure 2.27a.

50

2.8 DEesiGN EXAMPLES

A
o
2
-
W

— = O D OO
—_—, OO R = OO
— om0 =0 =0
— OO = OO |~

Figure 2.26 Truth table for the three-way light

control,

An alternative realization for this function is in the product-of-sums form. The canon-
ical expression of this type is

f=My-M;y-Ms Mg
= (x; + x2 +x3)(x1 + X2 +X3)(x1 + x2 +X3)(x1 + X2 + x3)

The resulting circuit is depicted in Figure 2.27b. It has the same cost as the circuit in part
(a) of the figure.

When the designed circuit is implemented, it can be tested by applying the various
input valuations to the circuit and checking whether the output corresponds to the values
specified in the truth table. A straightforward approach is to check that the correct output
is produced for all eight possible input valuations.

2.8.2 MuLTIPLEXER CIRCUIT

In computer systems it is often necessary to choose data from exactly one of a number
of possible sources. Suppose that there are two sources of data, provided as input signals
x; and x;. The values of these signals change in time, perhaps at regular intervals. Thus
sequences of Os and 1s are applied on each of the inputs x; and x,. We want to design a
circuit that produces an output that has the same value as either x| or x,, dependent on the
value of a selection control signal s. Therefore, the circuit should have three inputs: xj,
X2, and s. Assume that the output of the circuit will be the same as the value of input x; if
§ =0, and it will be the same as x; if s = 1.

Based on these requirements, we can specify the desired circuit in the form of a truth
table given in Figure 2.28a. From the truth table, we derive the canonical sum of products

F (8, x1, x2) = Sx1X2 + Sx1X2 + sX1X2 + Sx1X2

51

CHAPTER 2 =« INTRODUCTION TO LoGIC CIRCUITS

Yy

A

(a) Sum-of-products realization

(b) Product-of-sums realization

Figure 2.27 Implementation of the function in Figure 2.26.

Using the distributive property, this expression can be written as
f=5sx1(% +x2) +sG1 +x1)x
Applying theorem 8b yields
f=3x1-14+5-1-x
Finally, theorem 6a gives

f =135x1 + 502

52

2.8 DESIGN EXAMPLES

s X1 X2 fis,.x1.x2)
000 0
001 0
010 |
011 1
100 0
101 1
110 0
111 1

(a) Truth table

)
e D=

(b) Circuit (c) Graphical symbol

s fis, x1.x2)

0 X1

1 X3

(d) More compact truth-table representation

Figure 2.28 Implementation of a multiplexer.

A circuit that implements this function is shown in Figure 2.28b. Circuits of this type are
used so extensively that they are given a special name. A circuit that generates an output
that exactly reflects the state of one of a number of data inputs, based on the value of one
Or more selection control inputs, is called a multiplexer. We say that a multiplexer circuit
“multiplexes” input signals onto a single output.

53

CHAPTER 2 . INTRODUCTION TO LOGIC CIRCUITS

In this example we derived a multiplexer with two data inputs, which is referred to
as a “2-to-1 multiplexer.” A commonly used graphical symbol for the 2-to-1 multiplexer
is shown in Figure 2.28¢. The same idea can be extended to larger circuits. A 4-to-1
multiplexer has four data inputs and one output. In this case two selection control inputs
are needed to choose one of the four data inputs that is transmitted as the output signal. An
8-to-1 multiplexer needs eight data inputs and three selection control inputs, and so on.

Note that the statement “‘f = x; if s = 0, and f = x; if s = 1” can be presented in a
more compact form of a truth table, as indicated in Figure 2.284. In later chapters we will
have occasion to use such representation.

We showed how a multiplexer can be built using AND, OR, and NOT gates. The same
circuit structure can be used to implement the multiplexer using NAND gates, as explained
in section 2.7. In Chapter 3 we will show other possibilities for constructing multiplexers.
In Chapter 6 we will discuss the use of multiplexers in considerable detail.

Designers of logic circuits rely heavily on CAD tools. We want to encourage the reader
to become familiar with the CAD tool support provided with this book as soon as possible.
We have reached a point where an introduction to these tools is useful. The next section
presents some basic concepts that are needed to use these tools. We will also introduce, in
section 2.10, a special language for describing logic circuits, called VHDL. This language
is used to describe the circuits as an input to the CAD tools, which then proceed to derive
a suitable implementation.

2.9 InTrRODUCTION TO CAD TOOLS

The preceding sections introduced a basic approach for synthesis of logic circuits. A de-
signer could use this approach manually for small circuits. However, logic circuits found
in complex systems, such as today’s computers, cannot be designed manually—they are
designed using sophisticated CAD tools that automatically implement the synthesis tech-
niques.

To design a logic circuit, a number of CAD tools are needed. They are usually packaged
together into a CAD systern, which typically includes tools for the following tasks: design
entry, synthesis and optimization, simulation, and physical design. We will introduce some
of these tools in this section and will provide additional discussion in later chapters.

2.9.1 DEsIGN ENTRY

The starting point in the process of designing a logic circuit is the conception of what the
circuit is supposed to do and the formulation of its general structure. This step is done
manually by the designer because it requires design experience and intuition. The rest
of the design process is done with the aid of CAD tools. The first stage of this process
involves entering into the CAD system a description of the circuit being designed. This
stage is called design entry. We will describe two design entry methods: using schematic
capture and writing source code in a hardware description language.

54

2.9 INTRODUCTION TO CAD TooLs

Schematic Capture

A logic circuit can be defined by drawing logic gates and interconnecting them with
wires. A CAD tool for entering a designed circuit in this way is called a schematic capture
tool. The word schematic refers to a diagram of a circuit in which circuit elements, such
as logic gates, are depicted as graphical symbols and connecttons between circuit elements
are drawn as lines.

A schematic capture tool uses the graphics capabilities of a computer and a computer
mouse to allow the user to draw a schematic diagram. To facilitate inclusion of gates
in the schematic, the tool provides a collection of graphical symbols that represent gates
of various types with different numbers of inputs. This collection of symbols is called a
Jibrary. The gates in the library can be imported into the user’s schematic, and the tool
provides a graphical way of interconnecting the gates to create a logic network.

Any subcircuits that have been previously created can be represented as graphical
symbols and included in the schematic. In practice it is common for a CAD system user to
create a circuit that includes within it other smaller circuits. This methodology is known
as hierarchical design and provides a good way of dealing with the complexities of large
circuits.

The schematic-capture facility is described in detail in Appendix B. It is simple to use,
but becomes awkward when large circuits are involved. A better method for dealing with
large circuits is to write source code using a hardware description language to represent the
circuit.

Hardware Description LLanguages

A hardware description language (HDL) is similar to a typical computer programming
language except that an HDL is used to describe hardware rather than a program to be
executed on a computer. Many commercial HDLs are available. Some are proprietary,
meaning that they are provided by a particular company and can be used to implement cir-
cuits only in the technology provided by that company. We will not discuss the proprietary
HDLs in this book. Instead, we will focus on a language that is supported by virtually
all vendors that provide digital hardware technology and is officially endorsed as an /nsti-
tute of Electrical and Electronics Engineers (IEEFE) standard. The IEEE is a worldwide
organization that promotes technical activities to the benefit of society in general. One of
its activities involves the development of standards that define how certain technological
concepts can be used in a way that is suitable for a large body of users.

Two HDLs are IEEE standards: VHDL (Very High Speed Integrated Circuit Hardware
Description Language) and Verilog HDL. Both languages are in widespread use in the
industry. We use VHDL in this book, but a Verilog version of the book is also available
from the same publisher [4]. Although the two languages differ in many ways, the choice
of using one or the other when studying logic circuits is not particularly important, because
both offer similar features. Concepts illustrated in this book using VHDL can be directly
applied when using Verilog.

Incomparison to performing schematic capture, using VHDL offers a number of advan-
tages. Because it is supported by most organizations that offer digital hardware technology,
VHDL provides design portability. A circuit specified in VHDL can be implemented in dif-
ferent types of chips and with CAD tools provided by different companies, without having

55

CHAPTER 2 . INTRODUCTION TO LoGIC CIRCUITS

to change the VHDL specification. Design portability is an important advantage because
digital circuit technology changes rapidly. By using a standard language, the designer can
focus on the functionality of the desired circuit without being overly concerned about the
details of the technology that will eventually be used for implementation.

Design entry of a logic circuit is done by writing VHDL code. Signals in the circuit
can be represented as variables in the source code, and logic functions are expressed by
assigning values to these variables. VHDL source code is plain text, which makes it easy
for the designer to include within the code documentation that explains how the circuit
works. This feature, coupled with the fact that VHDL is widely used, encourages sharing
and reuse of VHDL-described circuits. This allows faster development of new products in
cases where existing VHDL code can be adapted for use in the design of new circuits.

Similar to the way in which large circuits are handled in schematic capture, VHDL,
code can be written in a modular way that facilitates hierarchical design. Both small and
large logic circuit designs can be efficiently represented in VHDL code. VHDL has been
used to define circuits such as microprocessors with millions of transistors.

VHDL design entry can be combined with other methods. For example, a schematic-
capture tool can be used in which a subcircuit in the schematic is described using VHDL.
We will introduce VHDL in section 2.10.

2.9.2 SYNTHESIS

Synthesis is the process of generating a logic circuit from an initial specification that may
be given in the form of a schematic diagram or code written in a hardware description
language. Synthesis CAD tools generate efficient implementations of circuits from such
specifications.

The process of translating, or compiling, VHDL code into a network of logic gates is
part of synthesis. The output is a set of logic expressions that describe the logic functions
needed to realize the circuit.

Regardless of what type of design entry is used, the initial logic expressions produced by
the synthesis tools are not likely to be in an optimal form because they reflect the designer’s
input to the CAD tools. It is impossible for a designer to manually produce optimal results
for large circuits. So, one of the important tasks of the synthesis tools is to manipulate the
user’s design to automatically generate an equivalent, but better circuit.

The measure of what makes one circuit better than another depends on the particular
needs of a design project and the technology chosen for implementation. In section 2.6
we suggested that a good circuit might be one that has the lowest cost. There are other
possible optimization goals, which are motivated by the type of hardware technology used
for implementation of the circuit. We will discuss implementation technologies in Chapter
3 and return to the issue of optimization goals in Chapter 4.

The perfomance of a synthesized circuit can be assessed by physically constructing the
circuit and testing it. But, its behavior can also be evaluated by means of simulation.

56

2.9 INTRODUCTION TO CAD TOOLS

2.9.3 FUNCTIONAL SIMULATION

A circuit represented in the form of logic expressions can be simulated to verify that it
will function as expected. The tool that performs this task is called a functional simulator.
1t uses the logic expressions (often referred to as equations) generated during synthesis,
and assumes that these expressions will be implemented with perfect gates through which
signals propagate instantancously. The simulator requires the user to specify valuations
of the circuit’s inputs that should be applied during simulation. For each valuation, the
simulator evaluates the outputs produced by the expressions. The results of simulation are
usually provided in the form of a timing diagram which the user can examine to verify
that the circuit operates as required. The functional simulation is discussed in detail in
Appendix B.

2.9.4 PHYSICAL DESIGN

After logic synthesis the next step in the design flow is to determine exactly how to imple-
ment the circuit on a given chip. This step is often called physical design. As we will see
in Chapter 3, there are several different technologies that may be used to implement logic
circuits. The physical design tools map a circuit specified in the form of logic expressions
into a realization that makes use of the resources available on the target chip. They deter-
mine the placement of specific logic elements, which are not necessarily simple gates of
the type we have encountered so far. They also determine the wiring connections that have
to be made between these elements to implement the desired circuit.

2.9.5 TIMING SIMULATION

Logic gates and other logic elements are implemented with electronic circuits, as we will
discuss in Chapter 3. An electronic circuit cannot perform its function instantaneously.
When the values of inputs to the circuit change, it takes a certain amount of time before a
corresponding change occurs at the output. This is called a propagation delay of the circuit.
The propagation delay consists of two kinds of delays. Each logic element needs some time
to generate a valid output signal whenever there are changes in the values of its inputs. In
addition to this delay, there is a delay caused by signals that must propagate through wires
that connect various logic elements. The combined effect is that real circuits exhibit delays,
which has a significant impact on their speed of operation.

A timing simulator evaluates the expected delays of a designed logic circuit. Its results
¢an be used to determine if the generated circuit meets the timing requirements of the
Specification for the design. If the requirements are not met, the designer can ask the
Physical design tools to try again by indicating specific timing constraints that have to be
met. If this does not succeed, then the designer has to try different optimizations in the
Synthesis step, or else improve the initial design that is presented to the synthesis tools.

57

CHAPTER 2 . INTRODUCTION TO LoGIC CIRCUITS

2.9.6 CHir CONFIGURATION

Having ascertained that the designed circuit meets all requirements of the specification,
the circuit is implemented on an actual chip. This step is called chip configuration or
programming.

The CAD tools discussed in this section are the essential parts of a CAD system. The
complete design flow that we discussed is illustrated in Figure 2.29. This has been just a
brief introductory discussion. A full presentation of the CAD tools is given in Chapter 12,

At this point the reader should have some appreciation for what is involved when using
CAD tools. However, the tools can be fully appreciated only when they are used firsthand.
In Appendices B to D, we provide step-by-step tutorials that illustrate how to use the Quartus
II CAD system, which is included with this book. We strongly encourage the reader to work
through the hands-on material in these appendices. Because the tutorials use VHDL for
design entry, we provide an introduction to VHDL in the following section.

58

2.10 InTRODUCTION TO VHDL

In the 1980s rapid advances in integrated circuit technology lead to efforts to develop
standard design practices for digital circuits. VHDL was developed as a part of that effort.
VHDL has become the industry standard language for describing digital circuits, largely
because it is an official [EEE standard. The original standard for VHDL was adopted in
1987 and called IEEE 1076. A revised standard was adopted in 1993 and called IEEE 1164.

VHDL was originally intended to serve two main purposes. First, it was used as a
documentation language for describing the structure of complex digital circuits. As an
official IEEE standard, VHDL provided a common way of documenting circuits designed
by numerous designers. Second, VHDL provided features for modeling the behavior of a
digital circuit, which allowed its use as input to software programs that were then used to
simulate the circuit’s operation.

In recent years, in addition to its use for documentation and simulation, VHDL has
also become popular for use in design entry in CAD systems. The CAD tools are used to
synthesize the VHDL code into a hardware implementation of the described circuit. In this
book our main use of VHDL will be for synthesis.

VHDL is a complex, sophisticated language. Learning all of its features is a daunting
task. However, for use in synthesis only a subset of these features is important. To simplify
the presentation, we will focus the discussion on the features of VHDL that are actually
used in the examples in the book. The material presented should be sufficient to allow the
reader to design a wide range of circuits. The reader who wishes to learn the complete
VHDL language can refer to one of the specialized texts [5—-10].

VHDL is introduced in several stages throughout the book. Our general approach will
be to introduce particular features only when they are relevant to the design topics covered
in that part of the text. In Appendix A we provide a concise summary of the VHDL features
covered in the book. The reader will find it convenient to refer to that material from time to

-

2.10 INTRODUCTION TO VHDL

Gesign conceptioD

Y
DESIGN ENTRY
@maﬁc ca@ VHDL
)
—— Synthesis -—

l

Functional simulation

No

Design correct?

Yes

v

Physical design

‘. |]

Timing simulation

l

No

Timing requirements met?

Chip configuration

Figure 2.29 A typical CAD system.

59

60

CHAPTER 2 . INTRODUCTION TO LOGIC CIRCUITS

time. In the remainder of this chapter, we discuss the most basic concepts needed to write
simple VHDL code.

2.10.1 REPRESENTATION OF DIGITAL SIGNALS IN VHDL

When using CAD tools to synthesize a logic circuit, the designer can provide the initial
description of the circuit in several different ways, as we explained in section 2.9.1. One
efficient way is to write this description in the form of VHDL source code. The VHDL
compiler translates this code into a logic circuit. Eachlogic signal in the circuit is represented
in VHDL code as a data object. Just as the variables declared in any high-level programming
language have associated types, such as integers or characters, data objects in VHDL can be
of various types. The original VHDL standard, IEEE 1076, includes a data type called BIT.
An object of this type is well suited for representing digital signals because BIT objects can
have only two values, 0 and 1. In this chapter all signals in our examples will be of type]
BIT. Other data types are introduced in section 4.12 and are listed in Appendix A. '

2.10.2 WRITING SIMPLE VHDL CODE

We will use an example to illustrate how to write simple VHDL source code. Consider the
logic circuit in Figure 2.30. If we wish to write VHDL code to represent this circuit, the
first step is to declare the input and output signals. This is done using a construct called
an entity. An appropriate entity for this example appears in Figure 2.31. An entity must

Y

Figure 2.30 A simple logic function.

S
D,

X3

ENTITY examplel IS
PORT (x1,x2,x3 :IN BIT;
f : OUT BIT);
END examplel ;

Figure 2.31 VHDL entity declaration for the circuit in Figure 2.30-

2.10 INTRODUCTION TO VHDL

be assigned a name; we have chosen the name examplel for this first example. The input
and output signals for the entity are called its ports, and they are identified by the keyword
PORT. This name derives from the electrical jargon in which the word port refers to an
input or output connection to an electronic circuit. Each port has an associated mode that
specifies whether it is an input (IN) to the entity or an output (OUT) from the entity. Each
port represents a signal, hence it has an associated type. The entity examplel has four ports
in total. The first three, x;, x2, and x3, are input signals of type BIT. The port named f'is an
output of type BIT.

In Figure 2.31 we have used simple signal names x/, x2, x3, and ffor the entity’s ports.
Similar to most computer programming languages, VHDL has rules that specify which
characters are allowed in signal names. A simple guideline is that signal names can include
any letter or number, as well as the underscore character °_’. There are two caveats: a
signal name must begin with a letter, and a signal name cannot be a VHDL keyword.

An entity specifies the input and output signals for a circuit, but it does not give any
details as to what the circuit represents. The circuit’s functionality must be specified with
a VHDL construct called an architecture. An architecture for our example appears in
Figure 2.32. It must be given a name, and we have chosen the name LogicFunc. Although
the name can be any text string, it is sensible to assign a name that is meaningful to the
designer. In this case we have chosen the name LogicFunc because the architecture specifies
the functionality of the design using a logic expression. VHDL has built-in support for the
following Boolean operators: AND, OR, NOT, NAND, NOR, XOR. and XNOR. (So far we
have introduced AND, OR, NOT, NAND, and NOR operators; the others will be presented
in Chapter 3.) Following the BEGIN keyword, our architecture specifies, using the VHDL
signal assignment operator <=, that output f should be assigned the result of the logic
expression on the right-hand side of the operator. Because VHDL does not assume any
precedence of logic operators, parentheses are used in the expression. One might expect
that an assignment statement such as

f <=x1 AND x2 OR NOT x2 AND x3
would have implied parentheses
f <= (x1 AND x2) OR ((NOT x2) AND x3)

But for VHDL code this assumption is not true. In fact, without the parentheses the VHDL
compiler would produce a compile-time error for this expression.

Complete VHDL code for our example is given in Figure 2.33. This example has
illustrated that a VHDL source code file has two main sections: an entity and an architecture.

ARCHITECTURE LogicFunc OF examplel IS
BEGIN

f g= (x1 AND x2) OR (NOT x2 AND x3);
END lLogicFunc ;

Figure 2.32 VHDL architecture for the entity in Figure 2.31.

61

CHAPTER 2 . INTRODUCTION TO LoGic CIRCUITS

ENTITY examplel IS
PORT (x1,x2,x3 :IN BIT;
f : OUT BIT);

END examplel ;

ARCHITECTURE LogicFunc OF examplel IS

BEGIN
f <= (x1 AND x2) OR (NOT x2 AND x3) ;
END LogicFunc ;

Figure 2.33 Complete VHDL code for the circuit in Figure 2.30.

ENTITY example2 IS
PORT (x1,x2,x3,x4 :IN BIT;
f.g : OUT BIT);

END example?2 ;

ARCHITECTURE LogicFunc OF example2 IS
BEGIN

f <= (x1 AND x3) OR (NOT x3 AND x2) ;

g <= (NOT x3 OR x1) AND (NOT x3 OR x4) ;
END LogicFunc ;

Figure 2.34 VHDL code for a four-input function.

A simple analogy for what each section represents 1s that the entity is equivalent to a symbol
in a schematic diagram and the architecture specifies the logic circuitry inside the symbol.

A second example of VHDL code is given in Figure 2.34. This circuit has four input
signals, called x1, x2, x3, and x4, and two output signals, named fand g. A logic expression
is assigned to each output. A logic circuit produced by the VHDL compiler for this example
is shown in Figure 2.35.

The preceding two examples indicate that one way to assign a value to a signal in
VHDL code is by means of a logic expression. In VHDL terminology a logic expression
is called a simple assignment statement. We will see later that VHDL also supports several
other types of assignment statements and many other features that are useful for describing
circuits that are much more complex.

2.10.3 How ~vor To WRITE VHDL CobE

When learning how to use VHDL or other hardware description languages, the tendency for
the novice is to write code that resembles a computer program, containing many variables
and loops. It is difficult to determine what logic circuit the CAD tools will produce when
synthesizing such code. This book contains more than 100 examples of complete VHDL

62

2.11 CONCLUDING REMARKS

B
suSm

D

X4

Figure 2.35 Logic circuit for the code in Figure 2.34.

code that represent a wide range of logic circuits. In these examples the code is easily
related to the described logic circuit. The reader is advised to adopt the same style of code.
A good general guideline is to assume that if the designer cannot readily determine what
logic circuit is described by the VHDL code, then the CAD tools are not likely to synthesize
the circuit that the designer is trying to model.

Once complete VHDL code is written for a particular design, the reader is encouraged
to analyze the resulting circuit synthesized by the CAD tools. Much can be learned about
VHDL, logic circuits, and logic synthesis through this process.

2.11 CoNCLUDING REMARKS

In this chapter we introduced the concept of logic circuits. We showed that such circuits can
be implemented using logic gates and that they can be described using a mathematical model
called Boolean algebra. Because practical logic circuits are often large, it is important to
have good CAD tools to help the designer. This book is accompanied by the Quartus I
software, which is a CAD tool provided by Altera Corporation. We introduced a few basic
features of this tool and urge the reader to start using this software as soon as possible.

Our discussion so far has been quite elementarr We will deal with both the logic
circuits and the CAD tools in much more depth in t ¢ chapters that follow. But first, in
Chapter 3 we will examine the most important elect onic technologies used to construct
logic circuits, This material will give the reader an apreciation of practical constraints that
a designer of logic circuits must face.

63

CHAPTER 2 + INTRODUCTION TO LOGIC CIRCUITS

2.12 EXAMPLES OF SOLVED PROBLEMS

This section presents some typical problems that the reader may encounter, and shows how
such problems can be solved.

ple 2.8

Problem: Determine if the following equation is valid
X1%3 + Xox3 + X1X2 = X1x2 + X1X3 + X2X3

Solution: The equation is valid if the expressions on the left- and right-hand sides represent
the same function. To perform the comparison, we could construct a truth table for each
side and see if the truth tables are the same. An algebraic approach is to derive a canonical

sum-of-product form for each expression.
Using the fact that x + X = | (Theorem 8b), we can manipulate the left-hand side as
follows:

LHS = X1X3 + x2x3 + X1%2
=X1(x; + X)Xz + (x1 + X1)x2x3 + x1%2(x3 + X3)
= X1XpX3 + X1 X2X3 + X1 X2X3 + X1X2X3 + X1X2X3 + X1 X2X3

These product terms represent the minterms 2, 0, 7, 3, 5, and 4, respectively.
For the right-hand side we have

RHS =Xx1x; + xyx3 + X2X3
=X1x2(x3 + X3) +x1(x2 +X2)x3 4+ (01 + X1)x0%

= X1X2X3 + X1X0X3 + X1 X2X3 + X XpX3 + X1 X0X3 + X1 X2X3

These product terms represent the minterms 3, 2, 7, 5, 4, and 0, respectively. Since both

expressions specify the same minterms, they represent the same function; therefore, the
equation is valid. Another way of representing this function is by > " m(0, 2, 3, 4,5, 7).

nple 2,9

Problem: Design the minimum-cost product-of-sums expression for the function
fx1, %, x3,x4) = Y m(0,2,4,5,6,7,8, 10,12, 14, 15).

Solution: The function is defined in terms of its minterms. To find a POS expression we
should start with the definition in terms of maxterms, whichis f = 1M (1, 3,9, 11, 13).
Thus,

f=M M3 My M Mp

=+t +i)Ex+n+a+)E e +ta+x)E 0+ +3)E F 0+ 53+ x)

64

i

2.12 EXAMPLES OF SOLVED PROBLEMS

We can rewrite the product of the first two maxterms as

M - M; = (x1 + X2 + X3 + x3)(x) + x2 + X4+ X3) using commutative property 105

=x; +xp + X4 + X3X3 using distributive property 12b
=x1+x+x3+0 using theorem 8a
=X +x2+x4 using theorem 64

Similarly, Mg - M1 = X + x2 + X4. Now, we can use M, again, according to property 7a,
to derive My - M13 = X1 + x3 + X4. Hence

[=0 +x+X)E +x + X)X +x3 +34)
Applying 12b again, we get the final answer
f=02+X)0 +x3+%4)

Problem: A circuit that controls a given digital system has three inputs: x|, x5, and x3. It Exa
has to recognize three different conditions:

¢ Condition A is true if x3 is true and either x; is true or x; is false

e Condition B is true if x; is true and either x» or x3 is false

° Condition C is true if x; is true and either x; is true or x; is false

The control circuit must produce an output of 1 if at least two of the conditions A, B, and C
are true. Design the simplest circuit that can be used for this purpose.

Solution: Using 1 for true and 0 for false, we can express the three conditions as follows:
A =x3(x +X2) = x3x1 + X3x2
B=x1(xx+Xx3) = x1X2 +x1%3
C=x(x; +X3) = xx +x2X3
Then, the desired output of the circuit can be expressed as f = AB + AC + BC. These
product terms can be determined as:
AB = (x3x1 4 x3%3) (XX + X1 X3)
= X3X1X1X2 + X3X1 X1 X3 + X3X2X1X2 + X3X2X1X3
=x301%2 + 0+ x3xx1 + 0

= X1X2X3

AC = (x3x1 + x3X2) (21 + X2%3)
= X3X1X2X| + X3X1X2X3 + X3X2X2X] + X3X2X2X3
=x3xx+04+04+0

= X1X2X3

65

CHAPTER 2 ¢ INTRODUCTION TO LoGIC CIRCUITS

BC = (xixy + x1X3) (x2x1 + X2X3)
= X1 XoX2X] + X1 X2X2X3 + X1 X3x2X] + X1 X3X0X3
=04+ 0+ x1x302 + x1X3%2

= X1 X2X3
Therefore, f can be written as
[= x1X2x3 4 X1X2X3 + X1X2X3
= x1 (X2 + x2)x3 + x1X2(x3 + X3)

= X1X3 + X1X2

= x1(x3 +x2)

sle 2.11 Problem: Solve the problem in Example 2.10 by using Venn diagrams.

Solution: The Venn diagrams for functions A, B, and C in Example 2.10 are shown in parts
a to ¢ of Figure 2.36. Since the function f has to be true when two or more of A, B, and C
are true, then the Venn diagram for f is formed by identifying the common shaded areas in
the Venn diagrams for A, B, and C. Any area that is shaded in two or more of these diagrams
is also shaded in f, as shown in Figure 2.36d. This diagram corresponds to the function

f =x1x2 +x1x3 = x1(x2 + x3)

A
X

o

(a) Function A {(b) Function B
‘w
(c) Function C (d) Function f

Figure 2.36 The Venn diagrams for Example 2.11.

-

66

PROBLEMS

Problem: Derive the simplest sum-of-products expression for the function Exan
[= XXaxs + x1X3%4 + X1X2%4
Solution: Applying the consensus property 17a to the first two terms yields

[= x0X3x4 + X1X3X4 + XpX4X1X4 + X1X0X4

= X2X3X4 + X1X3X4 + X1 X2X4 + X1X2X4
Now, using the combining property 14a for the last two terms gives
f = x2X3x5 + X1X3%4 + X1 x4
Finally, using the absorption property 13a produces

J = x2X3x4 + X1x4

Problem: Derive the simplest product-of-sums expression for the function Examr
f =@ +x+x3)& +x2 + X)X + X3 + X4)
Solution: Applying the consensus property 175 to the first two terms yields

f=GE +x4+x3)FE +X +X)E +x3 +X1 + X)X +x3 +x4)
=@ +x+x3)x + X +X)E + 3 + X)X +x3 +x4)

Now, using the combining property 14b for the last two terms gives
f=& +x+x)E +x2+3)00 +x3)
Finally, using the absorption property 135 on the first and last terms produces

=0+ +x)0) +x3)

PROBLEMS

Answers to problems marked by an asterisk are given at the back of the book.

2.1 Use algebraic manipulation to prove that x + yz = (x +y) - (x + z). Note that
distributive rule, as stated in identity 12b in section 2.5.

2.2 Use algebraic manipulation to prove that (x +y) - (x +¥) = x.

2.3 Use algebraic manipulation to prove that xy + yz + xz = xy + xz. Note that
consensus property 17a in section 2.5,

2.4 Use the Venn diagram to prove the identity in problem 1.

67

2.5

*2.7

2.8

2.9
2.10

2,11

2.12

2.13

2.14

2.15

2.16

2,17

2.18

2.19

68

CHAPTER 2 - INTRODUCTION TO LOGIC CIRCUITS

Use the Venn diagram to prove DeMorgan’s theorem, as given in expressions 15a and 156
in section 2.5.

Use the Venn diagram to prove that

E+xtx) - t+n+xn)=x1+x

Determine whether or not the following expressions are valid, i.e., whether the left- and
right-hand sides represent same function.

(a) X1x3 + X1X2X3 + X1X2 + X1 X2 = Xpx3 + X1 X3 + X2X3 + X1 X203

(b) x1%3 + xox3 + X2%3 = (X1 + X2 + x3) (01 + X2 +33) (X1 + 22 +X3)

(€) (x1 +x3) (%1 + X2 +X3)(X1 +x2) = (0 + x2)(x2 + x3) (X1 + X3)

Draw a timing diagram for the circuit in Figure 2.194. Show the waveforms that can be
observed on all wires in the circuit.

Repeat problem 2.8 for the circuit in Figure 2.195.

Use algebraic manipulation to show that for three input variables x;, x2, and x3
> om(1,2,3,4,5,.6,7) =xi +x +x
Use algebraic manipulation to show that for three input variables xy, x», and x3
MM ©0,1,2,3,4,5,6) = x1x2x3

Use algebraic manipulation to find the minimum sum-of-products expression for the func-
tion f = x1x3 + X1 X2 + X1X2x3 + X1 X2X3. %
Use algebraic manipulation to find the minimum sum-of-products expression for the func-
tion f = X1 X2X3 + X1X0X4 + XjX2X3X4. '
Use algebraic manipulation to find the minimum product-of-sums expression for the func-

tion /' = (x1 + x3 +x1) - (X1 + X +x3) - (x) +X2 + X3+ Xq).
Use algebraic manipulation to find the minimum product-of-sums expression for the func- §
tion f = (x; +x2 +x3) - (x; + X2 +x3) - (01 + X2 + x3) - (X +x3 +X3).

(a) Show the location of all minterms in a three-variable Venn diagram.
(b) Show a separate Venn diagram for each product term in the function f = x1Xx3 -+
x1x + X1 x3. Use the Venn diagram to find the minimal sum-of-products form of f.

R s et

Represent the function in Figure 2.18 in the form of a Venn diagram and find its minimal
sum-of-products form.

Figure P2.1 shows two attempts to draw a Venn diagram for four variables. For parts (a)
and () of the figure, explain why the Venn diagram is not correct. (Hint: the Venn diagram
must be able to represent all 16 minterms of the four variables.)

Figure P2.2 gives a representation of a four-variable Venn diagram and shows the location
of minterms myg, m;, and m;. Show the location of the other minterms in the diagram.
Represent the function f = X;X2x3%4 + x1X2X3x4 + X1 x> on this diagram.

PROBLEMS

() (b)

Figure P2.1 Two attempts to draw a four-variable Venn diagram.

*2.20

2.21

2.22

*2.23

2.24

2.25

2,26

A
A'A _
7

Figure P2,2 A four-variable Venn diagram.

Design the simplest sum-of-products circuit that implements the function f (x;, x2, x3) =

> m(3,4,6,7).

Design the simplest sum-of-products circuit that implements the function f (x{, x2, x3) =

> m(1,3,4,6,7).

Design the simplest product-of-sums circuit that implements the function f (x, x, x3)

[M (0, 2, 5).

Design the simplest product-of-sums expression for the function f (x;, x2, x3) = TIM (0,

5,7).

Derive the simplest sum-of-products expression for the function f(x, xa, x3, x4)

X1X3X4 + X2X3x4 + X1X2X3.

Derive the simplest sum-of-products expression for the function f(xy, x2, X3, X4, X5)

X1X3X5 + X1X3X4 + X1x4X5 + X1X2%3x5. (Hint: Use the consensus property 17a.)

Derive the simplest product-of-sums expression for the function f(x;.xz, X3, x4)
(X1 + X3 + X4) (X2 + X3 + x4)(x1 + X2 + X3). (Hint: Use the consensus property 17b.)

69

1

2.27

*2.28

2,29

2.30

2.31

*2.32

*2.33

2.34

2.35

70

CHAPTER 2 + INTRODUCTION TO LoOGIC CIRCUITS

Derive the simplest product-of-sums expression for the function f(x), x2, X3, x4, Xs5) =
(2 + x3 + x5)(x1 + X3 + x5)(x1 + x2 + x5)(x; + X4 + X5). (Hint: Use the consensus
property 17b.)

Design the simplest circuit that has three inputs, x, x2, and x3, which produces an output
value of 1 whenever two or more of the input variables have the value 1; otherwise, the
output has to be 0.

Design the simplest circuit that has three inputs, x;, x2, and x3, which produces an output
value of 1 whenever exactly one or two of the input variables have the value 1; otherwise,
the output has to be 0.

Design the stmplest circuit that has four inputs, x1, x2, x3, and x4, which produces an output
value of 1 whenever three or more of the input variables have the value 1; otherwise, the
output has to be 0.

For the timing diagram in Figure P2.3, synthesize the function f (x, x, x3) in the simplest
sum-of-products form.

xl
Lo
1
2 9
1
X
30_
1
S
0

—» Time

Figure P2.3 A timing diagram representing a logic function.

For the timing diagram in Figure P2.3, synthesize the function f (x;, x;, x3) in the simplest
product-of-sums form.

For the timing diagram in Figure P2.4, synthesize the function f (x,, xi', x3) in the simplest
sum-of-products form.

For the timing diagram in Figure P2.4, synthesize the function f (x|, x2, x3) in the simplest |
product-of-sums form.

Design a circuit with output f and inputs x;, xo, y1, and vg. Let X = x;x9 be a number,
where the four possible values of X, namely, 00, 01, 10, and 11, represent the four numbers
0, 1, 2, and 3, respectively. (We discuss representation of numbers in Chapter 5.) Similarly,
let Y = y;yo represent another number with the same four possible values. The output f
should be 1 if the numbers represented by X and Y are equal. Otherwise, f should be 0.

(a) Show the truth table for f.

(b) Synthesize the simplest possible product-of-sums expression for f.

PROBLEMS

O = O =

O

S

=

—» Time

Figure P2.4 A timing diagram representing a logic function.

2,36 Repcat problem 2.35 for the case where fshould be 1 only if X > Y.
(a) Show the truth table for f.
(b) Show the canonical sum-of-products expression for f.
(c) Show the simplest possible sum-of-products expression for f.

2.37 Implement the function in Figure 2.26 using only NAND gates.
2.38 Implement the function in Figure 2.26 using only NOR gates.
2.39 Implement the circuit in Figure 2.35 using NAND and NOR gates.

*2.40 Design the simplest circuit that implements the function f(x;, x2, x3) = Y_m(3, 4, 6,
using NAND gates.

2.41 Design the simplest circuit that implements the function f (x;, x2, x3) = ¥ m(1, 3, 4, 6,
using NAND gates.

*2.42 Repeat problem 2.40 using NOR gates.
2.43 Repeat problem 2.41 using NOR gates.
2,44 (a) Use a schematic capture tool to draw schematics for the following functions
f1 = x2X3X4 + X1xx4 + X1x2x3 + X1X223
J2 = x2Xs + X1x2 + Xox3
(b) Use functional simulation to prove that f; = f.

2.45 (a) Use a schematic capture tool to draw schematics for the following functions
Hi=@+x+3X) 2+x3+X) - X1 +x3+X3) - (X1 + X3 +X4)
fr=(+x1) - (03 +X4) - (X +X4)

(b) Use functional simulation to prove that fj = f.

2.46 Write VHDL code to implement the function f (x1, x2, x3) = 3. m(0, 1, 3,4, 5, 6).
71

CHAPTER 2 i INTRODUCTION TO LogGIic CIRCUITS

2.47 (a) Write VHDL code to describe the following functions

fi = x1%3 4+ x%3 + X3xy + x1x2 + x1%4
L= +X) (1 +x2+X1) - (3 +X3+X4)

(b) Use functional simulation to prove that f; = f;.

2.48 Consider the following VHDL assignment statements

fl1 <= ((x1 AND x3) OR (NOT x1 AND NOT x3)) OR ((x2 AND x4) OR
(NOT x2 AND NOT x4)) ;

f2 <= (x1 AND x2 AND NOT x3 AND NOT x4) OR (NOT x1 AND NOT x2 AND x3 AND x4)
OR (x1 AND NOT x2 AND NOT x3 AND x4) OR
(NOT x1 AND x2 AND x3 AND NOT x4) ;

(a) Write complete VHDL code to implement f1 and 2.
(b) Use functional simulation to prove that f1 = f2.

72

l REFERENCES

1. G Boole, An Invesrigation of the Laws of Thought, 1854, reprinted by Dover
Publications, New York, 1954.

2. C.E. Shannon, “A Symbolic Analysis of Relay and Switching Circuits,” Transactions
of AIEE 57 (1938), pp. 713-723.

3. E. V. Huntington, “Sets of Independent Postulates for the Algebra of Logic,”
Transactions of the American Mathematical Society 5 (1904), pp. 288-3009.

4. S.Brown and Z. Vranesic, Fundamentals of Digital Logic with Verilog Design,
(McGraw-Hill: New York, 2003).

5. Z.Navabi, VHDL—Analysis and Modeling of Digital Systems, 2nd ed.
(McGraw-Hill: New York, 1998).

6. D.L.Perry, VHDL, 3rd ed. (McGraw-Hill: New York, 1998).

7. J. Bhasker, A VHDL Primer, 3rd ed. (Prentice-Hall: Englewood Cliffs, NJ, 1998).

8. K. Skahill, VHDL for Programmable Logic (Addison-Wesley: Menlo Park, CA,
1996).

9. A.Dewey, Analysis and Design of Digital Systems with VHDL (PWS Publishing Co..
Boston, 1997).

10. D.J. Smith, HDL Chip Design, (Doone Publications: Madison, AL, 1996).

chapter

3

IMPLEMENTATION TECHNOLOGY

CHAPTER OBJECTIVES

In this chapter you will be introduced to:

¢ How transistors operate and form simple switches

e Integrated circuit technology

e CMOS logic gates

e Feld-programmable gate arrays and other programmable logic devices
e Basic characteristics of electronic circuits

73

73

74 CHAPTER 3 « IMPLEMENTATION TECHNOLOGY

I section 1.2 we said that logic circuits are implemented using transistors and that a number of different
technologies exist. We now explore technology issues in more detail.

Let us first consider how logic variables can be physically represented as signals in electronic circuits,
Our discussion will be restricted to binary variables, which can take on only the values 0 and 1. In a circuit
these values can be represented either as levels of voltage or current. Both alternatives are used in different
technologies. We will focus on the simplest and most popular representation, using voltage levels.

The most obvious way of representing two logic values as voltage levels is to define a threshold voltage,
any voltage below the threshold represents one logic value, and voltages above the threshold correspond to
the other logic value. It is an arixtrary choice as to which logic value is associated with the low and high
voltage levels. Usually, logic G is represented by the low voltage levels and logic 1 by the high voltages.
This is known as a positive losic system. The opposite choice, in which the low voltage levels are used to
represent logic 1 and the highor voltages are used for logic 0 is known as a negative logic system. In this
book we use only the positive iogic system, but negative logic 1s discussed briefly in section 3.4.

Using the positive logic systzm, the logic values 0 and 1 are referred to simply as “low™ and “high.”
To implement the threshold-voit ¢ concept, a range of low and high voltage levels is defined, as shown in
Figure 3.1. The figure gives the unimum voltage, called Vs, and the maximum voltage, called Vpp, that
can exist in the circuit. We will assume that Vg is 0 volts, corresponding to electrical ground, denoted Gnd.
The voltage Vpyp represents the power supply voltage. The most common levels for Vpp are between 5 volts
and 1 volt. In this chapter we will mostly use the value Vpp = § V. Figure 3.1 indicates that voltages in the
range Gnd to Vj max TEpresent logic value 0. The name Vp ., means the maximum voltage level that a logic
circuit must recognize as low. Similarly, the range from V ,,,;, to Vpp corresponds to logic value 1, and Vy
is the minimum voltage level that a logic circuit must interpret as high. The exact levels of Vg yqr and Vi pin

Voltage &

Vop T
Logic value 1

Vimin T

Undeﬁné&

Vomar T
LJgic value 0

Vgg (Gnd) ——

Figure 3.1 Representation of logic values by voltage levels.

74

.

3.1 TRANSISTOR SWITCHES 75

depend on the particular technology used; a typical example might set Vj uay to 40 percent of Vpp and Vi i
to 60 percent of Vpp. The range of voltages between Vp . and V), 18 undefined. Logic signals do not
pormally assume voltages in this range except in transition from one logic value to the other. We will discuss
the voltage levels used in logic circuits in more depth in section 3.8.3.

3.1 TRANSISTOR SWITCHES

Logic circuits are built with transistors. A full treatment of transistor behavior is beyond
the scope of this text; it can be found in electronics textbooks, such as [1] and [2]. For
the purpose of understanding how logic circuits are built, we can assume that a transistor
operates as a simple switch. Figure 3.2a shows a switch controlled by alogic signal, x. When
x is low, the switch is open, and when x is high, the switch is closed. The most popular type
of transistor for implementing a simple switch is the metal oxide semiconductor field-effect
transistor (MOSFET). There are two different types of MOSFETSs, known as n-channel,
abbreviated NMOS, and p-channel, denoted PMOS.

x=“low” x = “high”
a/ o —0 o

{a) A simple switch controlied by the input x

Gate

Source ——J- L— Drain

Substrate (Body)

(b) NMQOS transistor

Ve
i 1
1

Vs

Vp

(c) Simplified symbol for an NMOS transistor

Figure 3.2 NMOS transistor as a switch.

75

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

Figure 3.2/ gives a graphical symbol for an NMOS transistor. It has four electrical
terminals, called the source, drain, gate, and substrate. In logic circuits the substrate (also
called body) terminal is connected to Gnd. We will use the simplified graphical symbol in
Figure 3.2¢, which omits the substrate node. There is no physical difference between the
source and drain terminals. They are distinguished in practice by the voltage levels applied
to the transistor; by convention, the terminal with the lower voltage level is deemed to be
the source.

A detailed explanation of how the transistor operates will be presented in section 3.8.1.
For now it is sufficient to know that it is controlled by the voltage V; at the gate terminal.
If Vi is low, then there is no connection between the source and drain, and we say that
the transistor is rurned off. If Vg is high, then the transistor is turned on and acts as a
closed switch that connects the source and drain terminals. In section 3.8.2 we show how
to calculate the resistance between the source and drain terminals when the transistor is
turned on, but for now assume that the resistance is 0 £2.

PMOS transistors have the opposite behavior of NMOS transistors. The former are
used to realize the type of switch illustrated in Figure 3.3a, where the switch is open when
the control input x is high and closed when x is low. A symbol is shown in Figure 3.35.
In logic circuits the substrate of the PMOS transistor is always connected to Vpp, leading

x —_ G‘high9! x = i‘low,,
7 o —o

(a) A switch with the opposite behavior of Figure 3.2a

Gate

Drain ——j— L Source

Vop
Substrate (Body) \

(b) PMQOS transistor

Ve

5

ve —I 1— v,
(c) Simplified symbol for an PMOS transistor

Figure 3.3 PMOS fransistor as a switch.

76

3.1 TRANSISTOR SWITCHES

to the simplified symbol in Figure 3.3c. If Vi is high, then the PMOS transistor is turned
off and acts like an open switch. When V; is low, the transistor is turned on and acts as a
closed switch that connects the source and drain. In the PMOS transistor the source is the
node with the higher voltage.

Figure 3.4 summarizes the typical use of NMOS and PMOS transistors in logic circuits.
An NMOS transistor is turned on when its gate terminal is high, while a PMOS (ransistor
is turned on when its gate is low. When the NMOS transistor is turned on, its drain is
pulled down to Gnd, and when the PMOS transistor is turned on, its drain is pulled up 1o
Vpp. Because of the way the transistors operate, an NMOS transistor cannot be used to
pull its drain terminal completely up to Vpp. Similarly, a PMOS transistor cannot be used
to pull its drain terminal completely down to Gnd. We discuss the operation of MOSFETs
in considerable detail in section 3.8.

Vp Vp=0V Vb
V=0V — —— ——
Closed switch Open switch
when Vi; = Vpp when V=0V

(a) NMOS transistor

Ve=Vpp Vbp Vop

T

Vb Vb Vp=Vpp
Open switch Closed switch
when Vi; = Vpp when V; =0V

(b) PMOS transistor

Figure 3.4 NMOS and PMOS transistors in logic circuits.

77

CHAPTER 3 . IMPLEMENTATION 1ECHNOLOGY

78

3.2 NMOS Locic GATES

The first schemes for building logic gates with MOSFETs became popular in the 1970s '
and relied on either PMOS or NMOS transistors, but not both. Since the early 1980s, a
combination of both NMOS and PMOS transistors has been used. We will first describe
how logic circuits can be built using NMOS transistors because these circuits are easier
to understand. Such circuits are known as NMOS circuits. Then we will show how
NMOS and PMOS transistors are combined in the presently popular technology known as
complementary MOS, or CMOS.

In the circuit in Figure 3.54, when V, = 0V, the NMOS transistor is turned off. No
current flows through the resistor R, and Vy = 5 V. On the other hand, when V, = 5V, the
transistor is turned on and pulls V; to a low voltage level. The exact voltage level of V;
in this case depends on the amount of current that flows through the resistor and transistor.
Typically, V; is about 0.2 V (see section 3.8.3). If V; is viewed as a function of V., then the
circuit is an NMOS implementation of a NOT gate. In logic terms this circuit implements
the function f = x. Figure 3.5b gives a simplified circuit diagram in which the connection
to the positive terminal on the power supply is indicated by an arrow labeled Vpp and the

R
+
5V -_J.—
- Ve
v
(a) Circuit diagram (b) Simplified circuit diagram

: P SO

(c) Graphical symbols

Figure 3.5 A NOT gate built using NMOS technology.

e

3.2 NMOS LogGic GATES

connection to the negative power-supply terminal is indicated by the Gnd symbol. We will
use this simplified style of circuit diagram throughout this chapter.

The purpose of the resistor in the NOT gate circuit is to limit the amount of current that
flows when V; = 5 V. Rather than using a resistor for this purpose, a transistor is normally
used. We will discuss this issue in more detail in section 3.8.3. In subsequent diagrams
a dashed box is drawn around the resistor R as a reminder that it is implemented using a
transistor.

Figure 3.5¢ presents the graphical symbols for a NOT gate. The left symbol shows the
input, output, power, and ground terminals, and the right symbol is simplified to show only
the input and output terminals. In practice only the simplified symbol is used. Another
name often used for the NOT gate is inverter. We use both names interchangeably in this
book.

In section 2.1 we saw that a series connection of switches corresponds to the logic AND
function, while a parallel connection represents the OR function. Using NMOS transistors,
we can implement the series connection as depicted in Figure 3.6a. If V,, = V,, =5V,

Vop

v, —
X X% | f
- 0 0 1
V"Z T 0 1 1
1 0 1
| 11 {0
(a) Circuit (b) Truth table

x, —] x; —
wd D W D

{(c) Graphical symbols

Figure 3.6 NMOS realization of a NAND gate.

79

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

both transistors will be on and V; will be close to 0 V. But if either V,, or V,, is 0, then no
current will flow through the series-connected transistors and Vy will be pulled up to 5 V.
The resulting truth table for f, provided in terms of logic values, is given in Figure 3.6b.
The realized function is the complement of the AND function, called the NAND function,
for NOT-AND. The circuit realizes a NAND gate. Its graphical symbols are shown in Fig-
ure 3.6¢.

The parallel connection of NMOS transistors is given in Figure 3.7a. Here, if either
Vi, =5VorV, =5V, then V; will be close to 0 V. Only if both V,, and V,, are 0 will V;
be pulled up to 5 V. A corresponding truth table is given in Figure 3.7b. It shows that the
circuit realizes the complement of the OR function, called the NOR function, for NOT-OR.
The graphical symbols for the NOR gate appear in Figure 3.7c¢.

In addition to the NAND and NOR gates just described, the reader would naturally
be interested in the AND and OR gates that were used extensively in the previous chapter.
Figure 3.8 indicates how an AND gate is built in NMOS technology by following a NAND
gate with an inverter. Node A realizes the NAND of inputs x; and x,, and f represents the
AND function. In a similar fashion an OR gate is realized as a NOR gate followed by an
inverter, as depicted in Figure 3.9.

| ol |
L — — 4

X %24 f
0 01t 1
Vx,—l sz—I ' 0 1| 0
1 00
1 1] o0

(a) Circuit (b) Truth table

(c) Graphical symbols

Figure 3.7 NMOS redlization of a NOR gate.

80

3.3 CMOS Logic GATES

Xy X2

S

0 0 0

AL o
: 0

1

0 1
1 O
1 1

(a) Circuit (b) Truth table

Xy — xl_
S DA D

(c) Graphical symbols

Figure 3.8 NMOS realization of an AND gate.

3.3 CMOS LocGIic GATES

So far we have considered how to implement logic gates using NMOS transistors. For
each of the circuits that has been presented, it is possible to derive an equivalent circuit
that uses PMOS transistors. However, it is more interesting to consider how both NMOS
and PMOS transistors can be used together. The most popular such approach is known as
CMOS technology. We will see in section 3.8 that CMOS technology offers some attractive
Practical advantages in comparison to NMOS technology.

In NMOS circuits the logic functions are realized by arrangements of NMOS transistors,
combined with a pull-up device that acts as a resistor. We will refer to the part of the circuit
that involves NMOS transistors as the pull-down network (PDN). Then the structure of the

81

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

Vbp

r—==n1
[SR |

Xy % | f
0 0 0
s, ——l I: Vs, -| 0 1 | 1
1 0 1
1 1 1
—_'_L- ——
(a) Circuit (b) Truth table

(c) Graphical symbols

Figure 3.9 NMOS redlization of an OR gate.

circuits in Figures 3.5 through 3.9 can be characterized by the block diagram in Figure
3.10. The concept of CMOS circuits is based on replacing the pull-up device with a pull-up
network (PUN) that is built using PMOS transistors, such that the functions realized by the
PDN and PUN networks are complements of each other. Then a logic circuit, such as a
typical logic gate, is implemented as indicated in Figure 3.11. For any given valuation of
the input signals, either the PDN pulls V; down to Gad or the PUN pulls Vy up to Vpp. The
PDN and the PUN have equal numbers of transistors, which are arranged so that the two
networks are duals of one another. Wherever the PDN has NMOS transistors in series, the
PUN has PMOS transistors in parallel, and vice versa.

The simplest example of a CMOS circuit, a NOT gate. is shown in Figure 3.12. When
V. = 0V, transistor 7> is off and transistor 7 is on. This makes Vy = 5V, and since T3 is
off, no current flows through the transistors. When V, = 5V, T; is on and 73 is off. Thus
V¢ = 0V, and no current flows because 77 is off.

A key point is that no current flows in a CMOS inverter when the input is either low or
high. This is true for all CMOS circuits; no current flows, and hence no power is dissipated

82

3.3 CMOS LoGIc GATES

Pull-down network
(PDN)

Figure 3.10 Structure of an NMOS circuit.

Vbob

|

Pull-up network

(PUN)
Vs
Vx1
: Pull-down network
. PDN
v, ()

Figure 3.11 Structure of a CMOS circuit.

under steady state conditions. This property has led to CMOS becoming the most popular
technology in use today for building logic circuits. We will discuss current flow and power
dissipation in detail in section 3.8.

Figure 3.13 provides a circuit diagram of a CMOS NAND gate. It is similar to the
NMOS circuit presented in Figure 3.6 except that the pull-up device has been replaced by
the PUN with two PMOS transistors connected in parallel. The truth table in the figure

83

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

x ITszlf

0 on off 1
1 off on 0
(a) Circuit (b) Truth table and transistor states

Figure 3.12 CMOS realization of a NOT gate.

-

l:I
T "
]
J__:”_-4

Ve —e XX | TZh T T3 T, | f
0 O on on off off 1
0 1 on off off on 1
sz 1 0 off on on off 1
1 1 off off on on 0

(a) Circuit (b) Truth table and transistor states

Figure 3.13 CMOS realization of a NAND gate.

specifies the state of each of the four transistors for each logic valuation of inputs x; and
x. The reader can verify that the circuit properly implements the NAND function. Under

static conditions no path exists for current flow from Vpp to Gnd.
The circuit in Figure 3.13 can be derived from the logic expression that defines the

NAND operation, f = Xx;x;. This expression specifies the conditions for which f = 1;

84

3.3 CMOS LogGic GATES

hence it defines the PUN. Since the PUN consists of PMOS transistors, which are turned
on when their control (gate) inputs are set to 0, an input variable x; turns on a transistor if
x; = 0. From DeMorgan’s law, we have

=X =x14+%

Thus f = 1 when either input x| or x, has the value 0, which means that the PUN must have
two PMOS transistors connected in parallel. The PDN must implement the complement of
f, which is

f = X1X2

Sincef = 1 when both x|, and x, are 1, it follows that the PDN must have two NMOS
transistors connected in series.

The circuit for a CMOS NOR gate is derived from the logic expression that defines the
NOR operation

f=x1+x=xx

Since f = 1 only if both x; and x, have the value 0, then the PUN consists of two PMOS
transistors connected in series. The PDN, which reaIizesf = X; + x2, has two NMOS
transistors in parallel, leading to the circuit shown in Figure 3.14.

A CMOS AND gate is built by connecting a NAND gate to an inverter, as illustrated
in Figure 3.15. Similarly, an OR gate is constructed with a NOR gate followed by a NOT
gate.

-l v X1 % | T T, T3 T, | f
0 0 on on off off i
-I T, T, 0 1 on off off on 0
1 0 off on on off 0
1 1 off off on on 0
(a) Circuit (b) Truth table and transistor states

Figure 3.14 CMOS realization of a NOR gate.

85

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

7
]
|
Il

L

Figure 3.15 CMOS realization of an AND gate.

The above procedure for deriving a CMOS circuit can be applied to more general logic
functions to create complex gates. This process is illustrated in the following two examples.

<

Consider the function
f =X +Xx3

Since all variables appear in their complemented form, we can directly derive the PUN.
It consists of a PMOS transistor controlled by x; in parallel with a series combination of
PMOS transistors controlled by x, and x3. For the PDN we have

f =% + %% = x1(02 + x3)

This expression gives the PDN that has an NMOS transistor controlled by xy in series with
a parallel combination of NMOS transistors controlled by x; and x3. The circuit is shown
in Figure 3.16.

.2

Consider the function
f =X + (X2 +X3)x4
Then
f = x1 (0273 + x4)

These expressions lead directly to the circuit in Figare 3.17.

3.4 NEGATIVE LOGIC SYSTEM

Vy
_
V.,
-
| |
e, |
Ve,

Figure 3.16 The circuit for Example 3.1,

The circuits in Figures 3.16 and 3.17 show that it is possible to implement fairly complex
logic functions using combinations of series and parallel connections of transistors (acting
as switches), without implementing each series or parallel connection as a complete AND
(using the structure introduced in Figure 3.15) or OR gate.

3.3.1 SPEED OF LocGIic GATE CIRCUITS

In the preceding sections we have assumed that transistors operate as ideal switches that
present no resistance to current flow. Hence, while we have derived circuits that realize
the functionality needed in logic gates, we have ignored the important issue of the speed of
operation of the circuits. In reality transistor switches have a significant resistance when
turned on. Also, transistor circuits include capacitors, which are created as a side effect
of the manufacturing process. These factors affect the amount of time required for signal
values to propagate through logic gates. We provide a detailed discussion of the speed of
logic circuits, as well as a number of other practical issues, in section 3.8.

—_————

3.4 NEGATIVE LOGIC SYSTEM

At the beginning of this chapter, we said that logic values are represented as two distinct
Tanges of voltage levels. We are using the convention that the higher voltage levels represent
87

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

Figure 3.17 The circuit for Example 3.2.

logic value 1 and the lower voltages represent logic value 0. This convention is known
as the positive logic system, and it is the one used in most practical applications. In this
section we briefly consider the negative logic system in which the association between
voltage levels and logic values is reversed.

Let us reconsider the CMQOS circuit in Figure 3.13, which is reproduced in Figure
3.18a. Part (b) of the figure gives a truth table for the circuit, but the table shows voltage
levels instead of logic values. In this table, L refers to the low voltage level in the circuit,
which is 0 V, and H represents the high voltage level, which is Vpp. This is the style of
truth table that manufacturers of integrated circuits often use in data sheets to describe the
functionality of the chips. It is entirely up to the user of the chip as to whether L and H are
interpreted in terms of logic values suchthat L=0and H = 1l,orL =1and H = 0.

Figure 3.19a illustrates the positive logic interpretation in which L = O and H = 1.
As we already know from the discussions of Figure 3.13, the circuit represents a NAND -
gate under this interpretation. The opposite interpretation is shown in Figure 3.19bh. Here
negative logic is used so that L = 1 and H# = 0. The truth table specifies that the circuit

88

3.4 NEGATIVE LOGIC SYSTEM

Vop
J Vs Vxl sz Vf
Ve, —e L L | H
L. H | H
7 il
HH| L

.,

(a) Circuit (b) Voltage levels

Figure 3.18 Voltage levels in the circuit in Figure 3.13.

Xy X | f
0o 0 |1 Xy —
g 1 1
o | v
1 0O 1
1 1 0

(a) Positive logic truth table and gate symbol

Xy Xy | f

1 1|0 %,
x5

0 1 0

0 0 1

(b) Negative logic truth table and gate symbol

Figure 3.19 Interpretation of the circuit in Figure 3.18.

89

90

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

represents a NOR gate in this case. Note that the truth table rows are listed in the opposite
order from what we normally use, to be consistent with the L and H values in Figure 3.185.
Figure 3.19b also gives the logic gate symbol for the NOR gate, which includes small
triangles on the gate’s terminals to indicate that the negative logic system is used.

As another example, consider again the circuit in Figure 3.15. Its truth table, in terms
of voltage levels, is given in Figure 3.20a. Using the positive logic system, this circuit
represents an AND gate, as indicated in Figure 3.20b. But using the negative logic system,
the circuit represents an OR gate, as depicted in Figure 3.20c.

It is possible to use a mixture of positive and negative logic in a single circuit, which
is known as a mixed logic system. In practice, the positive logic system is used in most
applications. We will not consider the negative logic system further in this book. i

2
=
X

esfite ol ol o
= ol eli=e B o
i alele

(a) Voltage levels

Xy X f
0 0 0 Xy —
0 1|0 5 _} f
1 0 0 '
1 1 1
(b) Positive logic
X1 X\ f

OO =
o = =
O = e
" =
[o B
%..,1

(c) Negative logic

Figure 3.20 Inferpretation of the circuit in Figure 3.15.

-

3.5 STANDARD CHIPS

———

3.5 STANDARD CHIPS

In Chapter 1 we mentioned that several different types of integrated circuit chips are avail-
able for implementation of logic circuits. We now discuss the available choices in some

detail.

3.5.1 7400-SERIES STANDARD CHIPS

An approach used widely until the mid-1980s was to connect together multiple chips, each
containing only a few logic gates. A wide assortment of chips, with different types of logic
gates, is available for this purpose. They are known as 7400-series parts because the chip
part numbers always begin with the digits 74. An example of a 7400-series part is given
in Figure 3.21. Part (a) of the figure shows a type of package that the chip is provided in,
called a dual-inline package (DIP). Part (b) illustrates the 7404 chip, which comprises six
NOT gates. The chip’s external connections are called pins or leads. Two pins are used
to connect to Vpp and Gnd, and other pins provide connections to the NOT gates. Many
7400-series chips exist, and they are described in the data books produced by manufacturers
of these chips [3—7]. Diagrams of some of the chips are also included in several textbooks,
such as [8—12].

(b) Structure of 7404 chip

Figure 3.21 A 7400-series chip.

91

CHAPTER 3 e IMPLEMENTATION TECHNOLOGY

The 7400-series chips are produced in standard forms by a number of integrated circuit
manufacturers, using agreed-upon specifications. Competition among various manufac-
turers works to the designer’s advantage because it tends to lower the price of chips and
ensures that parts are always readily available. For each specific 7400-series chip, several
variants are built with different technologies. For instance, the part called 74LS00 is built
with a technology called transistor-transistor logic (TTL), which is described in Appendix
E, whereas the 74HCOQ is fabricated using CMOS technology. In general, the most popular

chips used today are the CMOS variants.
As an example of how a logic circuit can be implemented using 7400-series chips,

consider the function f = x1x, + X2x3, which is shown in the form of a logic diagram
in Figure 2.30. A NOT gate is required to produce X, as well as 2 two-input AND gates
and a two-input OR gate. Figure 3.22 shows three 7400-series chips that can be used to
implement the function. We assume that the three input signals x|, x;, and x3 are produced
as outputs by some other circuitry that can be connected by wires to the three chips. Notice
that power and ground connections are included for all three chips. This example makes
use of only a portion of the gates available on the three chips, hence the remaining gates

can be used to realize other functions.

V}i)D

000
> 7404
JFDE T O L!J_DL? T

[1 [1 1]

B

[
[]
[]
o
1
]
[]

Figure 3.22 An implementation of f = xix; + X2xs.

92

3.5 STANDARD CHIPS

Because of their low logic capacity, the standard chips are seldom used in practice
today, with one exception. Many modern products include standard chips that contain
puffers. Buffers are logic gates that are usually used to improve the speed of circuits. An
example of a buffer chip is depicted in Figure 3.23. It is the 74244 chip, which comprises
eight tri-state buffers. We describe how tri-state buffers work in section 3.8.8. Rather than
showing how the buffers are arranged inside the chip package, as we did for the NOT gates
in Figure 3.21, we show only the pin numbers of the package pins that are connected to the
puffers. The package has 20 pins, and they are numbered in the same manner as shown for
Figure 3.21; Gnd and Vpp connections are provided on pins 10 and 20, respectively. Many
other buffer chips also exist. For example, the 162244 chip has 16 tri-state buffers. It is
part of a family of devices that are similar to the 7400-series chips but with twice as many
gates in each chip. These chips are available in multiple types of packages, with the most
popular being a small-outline integrated circuit (SOIC) package. An SOIC package has a
similar shape to a DIP, but the SOIC is considerably smaller in physical size.

As integrated circuit technology has improved over time, a system of classifying chips
according to their size has evolved. The earliest chips produced, such as the 7400-series
chips. comprise only a few logic gates. The technology used to produce these chips is
referred to as small-scale integration (§SI). Chips that include slightly more logic circuitry,
typically about 10 to 100 gates, represent medium-scale integration (MSI). Until the mid-
1980s chips that were too large to qualify as MSI were classified as large-scale integration
(LSI). In recent years the concept of classifying circuits according to their size has become
of little practical use. Most integrated circuits today contain many thousands or millions
of transistors. Regardless of their exact size, these large chips are said to be made with
very large scale integration (VLSI) technology. The trend in digital hardware products is
to integrate as much circuitry as possible onto a single chip. Thus most of the chips used
today are built with VLSI technology, and the older types of chips are used rarely.

Pin 12
Pin 14
Pin 16
Pin 18
Pin 19
Pin 11
Pin 13
Pin 15
Pin 17

Pin 1
Pin 2
Pin 4
Pin 6
Pin 8
Pin 3
Pin 5
Pin7
Pin 9

Figure 3.23 The 74244 buffer chip.

93

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

3.6 PROGRAMMABLE LoGIic DEVICES

The function provided by each of the 7400-series parts is fixed and cannot be tailored to suit
a particular design situation. This fact, coupled with the limitation that each chip contains
only a few logic gates, makes these chips inefficient for building large logic circuits. It is
possible to manufacture chips that contain relatively large amounts of logic circuitry with
a structure that is not fixed. Such chips were first introduced in the 1970s and are called
programmable logic devices (PLDs).

A PLD is a general-purpose chip for implementing logic circuitry. It contains a col-
lection of logic circuit elements that can be customized in different ways. A PLD can be
viewed as a “black box” that contains logic gates and programmable switches, as illustrated
in Figure 3.24. The programmable switches allow the logic gates inside the PLD to be
connected together to implement whatever logic circuit is needed.

3.6.1 PROGRAMMABLE LOGIC ARRAY (PLA)

Several types of PLDs are commercially available. The first developed was the pro-
grammable logic array (PLA). The general structure of a PLA is depicted in Figure 3.25.
Based on the idea that logic functions can be realized in sum-of-products form, a PLA
comprises a collection of AND gates that feeds a set of OR gates. As shown in the figure,

the PLAs inputs x,, . .., x, pass through a set of buffers (which provide both the true value
and complement of each input) into a circuit block called an AND plane, or AND array.
The AND plane produces a set of product terms Py, ..., P,. Each of these terms can be
configured to implement any AND function of x|, ..., x,. The product terms serve as the
inputs to an OR plane, which produces the outputs fy, . . ., f,,. Each output can be config-
—————— -
—_—l —
Inputs Logic gates | Outputs
(logic variables) and (logic functions)
—_— programnmable |
: switches :
. .
—_— F—

Figure 3.24 Programmable logic device as ablack box.

94

3.6 PrROGRAMMABLE LogGic DEVICES

X X2 Xy
Input buffers
and
inverters
x| X x,| X,
Py
—i
AND plane : OR plane
Py
EE—]
f 1 fm

Figure 3.25 General structure of a PLA.

ured to realize any sum of Py, ..., P; and hence any sum-of-products function of the PLA
inputs.

A more detailed diagram of a small PLA is given in Figure 3.26, which shows a PLA
with three inputs, four product terms, and two outputs. Each AND gate in the AND plane
has six inputs, corresponding to the true and complemented versions of the three input
signals. Each connection to an AND gate is programmable; a signal that is connected to
an AND gate is indicated with a wavy line, and a signal that is not connected to the gate is
shown with a broken line. The circuitry is designed such that any unconnected AND-gate
inputs do not affect the output of the AND gate. In commercially available PLAs, several
methods of realizing the programmable connections exist. Detailed explanation of how a
PLA can be built using transistors is given in section 3.10.

In Figure 3.26 the AND gate that produces P, is shown connected to the inputs x; and
*2. Hence Py = xyx. Similarly, P» = x1X3, P3 = XX2x3, and P4 = x;x3. Programmable
connections also exist for the OR plane. Output fi is connected to product terms Py,
P3, and P5. It therefore realizes the function fi = x1x3 + x1X3 + X1X2x3. Similarly, output
J2 = xixp X %o x3 431 X3 Although Figure 3.26 depicts the PLA programmed to implement
the functions described above, by programming the AND and OR planes differently, each
of the outputs f; and f; could implement various functions of x;, x;, and x3. The only
constraint on the functions that can be implemented is the size of the AND plane because it
produces only four product terms. Commercially available PLAs come in larger sizes than
We have shown here. Typical parameters are 16 inputs, 32 product terms, and eight outputs.

95

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

X1 X9 X3
Programmable
/ connections
? N OR plane
. N\ P -
| G
— \ P,
'L_/\/:
]
t A =ttt
/\/—'J
—
. Ao
: l P4 &- & e
— } T ;
;‘rﬁ
AND plane -
i §2)

Figure 3.26 Gate-level diagram of a PLA.

Although Figure 3.26 illustrates clearly the functional structure of a PLA, this style of
drawing is awkward for larger chips. Instead, it has become customary in technical literature =
to use the style shown in Figure 3.27. Each AND gate is depicted as a single horizontal
line attached to an AND-gate symbol. The possible inputs to the AND gate are drawn as
vertical lines that cross the horizontal line. At any crossing of a vertical and horizontal
line, a programmable connection, indicated by an X, can be made. Figure 3.27 shows the
programmable connections needed to implement the product terms in Figure 3.26. Each
OR gate is drawn in a similar manner, with a vertical line attached to an OR-gate symbol.
The AND-gate outputs cross these lines, and corresponding programmable connections can
be formed. The figure illustrates the programmable connections that produce the functions g
fi and f> from Figure 3.26.

The PLA is efficient in terms of the area needed for its implementation on an integrated
circuit chip. For this reason, PLAs are often included as part of larger chips, such as
microprocessors. In this case a PLA is created so that the connections to the AND and OR

-

" i

TR

3.6 PRrRoGrRAMMABLE LogGic DEVICES

OR plane
—X——X D T % %
—% % D 2
% *—X D B %
—% - D x %
AND plane
f 5

Figure 3.27 Customary schematic for the PLA in Figure 3.26.

gates are fixed, rather than programmable. In section 3.10 we will show that both fixed and
programmable PLAs can be created with similar structures.

3.6.2 PROGRAMMABLE ARRAY LocIic (PAL)

In a PLA both the AND and OR planes are programmable. Historically, the programmable
switches presented two difficulties for manufacturers of these devices: they were hard to
fabricate correctly, and they reduced the speed-performance of circuits implemented in the
PLAs. These drawbacks led to the development of a similar device in which the AND plane
is programmable, but the OR plane is fixed. Such a chip is known as a programmable array
logic (PAL) device. Because they are simpler to manufacture, and thus less expensive than
PLAs, and offer better performance, PALs have become popular in practical applications.
~An example of a PAL with three inputs, four product terms, and two outputs is given
n Figure 3.28. The product terms P and P> are hardwired to one OR gate, and P; and P4
are hardwired to the other OR gate. The PAL is shown programmed to realize the two logic
quCtiOnsﬁ = X1X2X3 + x)x2x3 and f, = XX, + x1x2x3. In comparison to the PLA in Figure
3.27, the PAL offers less flexibility; the PLA allows up to four product terms per OR gate,

97

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

X1 X2 X3

%% —x }
XK } ’
X % j—“’

—% % % } ’

AND plane

Figure 3.28 An example of a PAL

whereas the OR gates in the PAL have only two inputs. To compensate for the reduced
flexibility, PALs are manufactured in a range of sizes, with various numbers of inputs and
outputs, and different numbers of inputs to the OR gates. An example of a commercial PAL
is given in Appendix E. g

So far we have assumed that the OR gates in a PAL, as in a PLA, connect directly to °
the output pins of the chip. In many PALs extra circuitry is added at the output of each OR
gate to provide additional flexibility. It is customary to use the term macrocell to refer to
the OR gate combined with the extra circuitry. An example of the flexibility that may be
provided in a macrocell is given in Figure 3.29. The symbol labeled flip-flop represents a
memory element. It stores the value produced by the OR gate output at a particular point
in time and can hold that value indefinitely. The flip-flop is controlled by the signal called
clock. When clock makes a transition from logic value O to 1, the flip-flop stores the value
at its D input at that time and this value appears at the flip-flop’s Q output. Flip-flops are
used for implementing many types of logic circuits, as we will show in Chapter 7.

In section 2.8.2 we discussed a 2-to-1 multiplexer circuit. It has two data inputs, a
select input, and one output. The select input is used to choose one of the data inputs as |
the multiplexer’s output. In Figure 3.29 a 2-to-1 multiplexer selects as an output from the &
PAL either the OR-gate output or the flip-flop output. The multiplexer’s select line can be
programmed to be either 0 or 1. Figure 3.29 shows another logic gate, called a tri-state
buffer, connected between the multiplexer and the PAL output. We discuss tri-state buffers

98 K1

3.6 PROGRAMMABLE LoGIC DEVICES

Select
Enable
—[ﬁ— s
_ Flip-flop
D Q
Clock >
‘»7
To AND plane

— <]

Figure 3.29 Exira circuitry added to OR-gate outputs from Figure 3.28.

in section 3.8.8. Finally, the multiplexer’s output is “fed back” to the AND plane in the
PAL. This feedback connection allows the logic function produced by the multiplexer to be
used internally in the PAL, which allows the implementation of circuits that have multiple
stages, or levels, of logic gates.

A number of companies manufacture PLLAs or PALs, or other, similar types of simple
PLDs (SPLDs). Apartial list of companies, and the types of SPLDs that they manufacture, is
givenin Appendix E. Aninterested reader can examine the information that these companies
provide on their products, which is available on the World Wide Web (WWW). The WWW
locator for each company is given in Table E.1 in Appendix E.

3.6.3 PROGRAMMING OF PLLAs AND PALS

In Figures 3.27 and 3.28, each connection between a logic signal in a PLA or PAL and the
AND/OR gates is shown as an X. We describe how these switches are implemented using
transistors in section 3.10. Users’ circuits are implemented in the devices by configuring,
Or programming, these switches. Commercial chips contain a few thousand programmable
switches; hence it is not feasible for a user of these chips to specify manually the desired
Programming state of each switch. Instead, CAD systems are employed for this purpose. We
introduced CAD tools in Chapter 2 and described methods for design entry and simulation
of circuits. For CAD systems that support targeting of circuits to PLDs, the tools have the
Capability to automatically produce the necessary information for programming each of the
Switches in the device. A computer system that runs the CAD tools is connected by a cable
o a dedicated programming unit. Once the user has completed the design of a circuit, the
CAD tools generate a file, often called a programming file or fuse map, that specifies the
State that each switch in the PLD should have, to realize correctly the designed circuit. The

99

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

PLD is placed into the programming unit, and the programming file is transferred from the :'f'
computer system. The programming unit then places the chip into a special programming *
mode and configures each switch individually. A photograph of a programming unit is
shown in Figure 3.30. Several adaptors are shown beside the main unit; each adaptor is
used for a specific type of chip package.

The programming procedure may take a few minutes to complete. Usually, the pro-
gramming unit can automatically *‘read back” the state of each switch after programming,
to verify that the chip has been programmed correctly. A detailed discussion of the process
involved in using CAD tools to target designed circuits to programmable chips is given in
Appendices B, C, and D.

PLAs or PALs used as part of a logic circuit usually reside with other chips on a printed
circuit board (PCB). The procedure described above assumes that the chip can be removed
from the circuit board for programming in the programming unit. Removal is made possible
by using a socket on the PCB, as illustrated in Figure 3.31. Although PLAs and PALs are
available in the DIP packages shown in Figure 3.21a, they are also available in another
popular type of package, called a plastic-leaded chip carrier (PLCC), which is depicted in
Figure 3.31. On all four of its sides, the PLLCC package has pins that “wrap around” the
edges of the chip, rather than extending straight down as in the case of a DIP. The socket
that houses the PLCC is attached by solder to the circuit board, and the PLCC is held in the ..
socket by friction. f‘

Instead of relying on a programming unit to configure a chip, it would be advantageous
to be able to perform the programming while the chip is still attached to its circuit board. This
method of programming is called in-system programming (ISP). It is not usually provided

for PLAs or PALs, but is available for the more sophisticated chips that are described below. 4

Figure 3.30 A PLD programming unit {courtesy of Data IO Corp.).

100

3.6 PROGRAMMABLE LoGIC DEVICES

Figure 3.31 A PLCC package with socket.

3.6.4 ComprPLEX PROGRAMMABLE LoGIc DEVICES (CPLDs)

PLAs and PALs are useful for implementing a wide variety of small digital circuits. Each
device can be used to implement circuits that do not require more than the number of inputs,
product terms, and outputs that are provided in the particular chip. These chips are limited
to fairly modest sizes, typically supporting a combined number of inputs plus outputs of not
more than 32. For implementation of circuits that require more inputs and outputs, either
multiple PLAs or PALSs can be employed or else a more sophisticated type of chip, called
a complex programmable logic device (CPLD), can be used.

A CPLD comprises multiple circuit blocks on a single chip, with internal wiring re-
Sources to connect the circuit blocks. Each circuit block is similar to a PLA or a PAL; we
will refer to the circuit blocks as PAL-/ike blocks. An example of a CPLD is given in Figure
3.32. It includes four PAL-like blocks that are connected to a set of interconnection wires.
Each PAL-like block is also connected to a subcircuit labeled /0 block, which is attached
10 a number of the chip’s input and output pins.

Figure 3.33 shows an example of the wiring structure and the connections to a PAL-like
block in a CPLD. The PAL-like block includes 3 macrocells (real CPLDs typically have
about 16 macrocells in a PAL-like block), each consisting of a four-input OR gate (real
CPLDS usually provide between 5 and 20 inputs to each OR gate). The OR-gate output
1S connected to another type of logic gate that we have not yet introduced. It is called an
Exclusive-OR (XOR) gate. We discuss XOR gates in section 3.9.1. The behavior of an
XOR gate is the same as for an OR gate except that if both of the inputs are 1, the XOR gate

101

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

PAL-like PAL.-like
block block

Interconnection wires

j j
1 10

PAL-like PAL-like
block block

: T Ilfo.bfoikl

IR i

IO block

H

Figure 3.32 Structure of a complex programmable logic device {CPLD).

produces a 0. One input to the XOR gate in Figure 3.33 can be programmably connected
to 1 or 0; if 1, then the XOR gate complements the OR-gate output, and if 0, then the XOR
gate has no effect. The macrocell also includes a flip-flop, a multiplexer, and a tri-state -
buffer. As we mentioned in the discussion for Figure 3.29, the flip-flop is used to store the
output value produced by the OR gate. Each tri-state buffer (see section 3.8.8) is connected -
to a pin on the CPLD package. The tri-state buffer acts as a switch that allows each pin to
be used either as an output from the CPLD or as an input. To use a pin as an output, the
corresponding tri-state buffer is enabled, acting as a switch that is turned on. If the pinis ~
to be used as an input, then the tri-state buffer is disabled, acting as a switch that is turned
off. In this case an external source can drive a signal onto the pin, which can be connected |
to other macrocells using the interconnection wiring.

The interconnection wiring contains programmable switches that are used to connect
the PAL-like blocks. Each of the horizontal wires can be connected to some of the vertical
wires that it crosses, but not to all of them. Extensive research has been done to decide
how many switches should be provided for connections between the wires. The number
of switches is chosen to provide sufficient flexibility for typical circuits without wasting
many switches in practice. One detail to note is that when a pin is used as an input, the
macrocell associated with that pin cannot be used and is therefore wasted. Some CPLDs
include additional connections between the macrocells and the interconnection wiring that
avoids wasting macrocells in such situations,

Commercial CPLDs range in size from only 2 PAL-like blocks to more than 100 PAL- %
like blocks. They are available in a variety of packages, including the PLCC package that
is shown in Figure 3.31. Figure 3.34a shows another type of package used to house CPLD
chips, called a quad flat pack (QFP). Like a PLCC package, the QFP package has pins on all

102

3.6 PRrROGRAMMABLE LoGIic DEVICES

PAL-like block (details not shown)

VARY, Y PAL.-like block
D
oI IR
NOOEBNE=E= = etk
RO -
B
IO o
IR D
O T D -t
TS
OEOK

EE--M-. D Q
il

Figure 3.33 A section of the CPLD in Figure 3.32.

four sides, but whereas the PLLCC’s pins wrap around the edges of the package, the QFP’s
pins extend outward from the package, with a downward-curving shape. The QFP’s pins
are much thinner than those on a PLCC, which means that the package can support a larger
number of pins; QFPs are available with more than 200 pins, whereas PLCCs are limited
to fewer than 100 pins.

Most CPLDs contain the same type of programmable switches that are used in SPLDs,
Wl}iCh are described in section 3.10. Programming of the switches may be accomplished
using the same technique described in section 3.6.3, in which the chip is placed into a special-
PUrpose programming unit. However, this programming method is rather inconvenient for
large CPLDs for two reasons. First, large CPLDs may have more than 200 pins on the chip

103

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

(a) CPLD in a Quad Flat Pack (QFP) package

To computer

Printed
circuit board

(b) JTAG programming

Figure 3.34 CPLD packaging and programming.

package, and these pins are often fragile and easily bent. Second, to be programmed in a
programming unit, a socket is required to hold the chip. Sockets for large QFP packages
are very expensive; they sometimes cost more than the CPLD device itself. For these
reasons, CPLD devices usually support the ISP technique. A small connector is included
on the PCB that houses the CPLD, and a cable i1s connected between that connector and a
computer system. The CPLD is programmed by transferring the programming information
generated by a CAD system through the cable, from the computer into the CPLD. The
circuitry on the CPLD that allows this type of programming has been standardized by the
IEEE and is usually called a JTAG port. It uses four wires to transfer information between
the computer and the device being programmed. The term J7AG stands for Joint Test Action
Group. Figure 3.34b illustrates the use of a JTAG port for programming two CPLLDs on a
circuit board. The CPLDs are connected together so that both can be programmed using
the same connection to the computer system. Once a CPLD is programmed, it retains the
programmed state permanently, even when the power supply for the chip is turned off. This
property is called nonvolatile programming.

CPLDs are used for the implementation of many types of digital circuits. In industrial
designs that employ some type of PLD device, CPLDs are used often, while SPLDs are
becoming less common. A number of companies offer competing CPLDs. Appendix E lists.

-

104

3.6 PROGRAMMABLE LoGIiC DEVICES

in Table E.2, the names of the major companies involved and shows the companies” WWW
Jocators. The reader is encouraged to examine the product information that each company

rovides on its Web pages. An example of a popular commercial CPLD is described in
detail in Appendix E.

3.6.5 FIELD-PROGRAMMABLE GATE ARRAYS

The types of chips described above, 7400 series, SPLDs, and CPLDs, are useful for im-
p]ementation of a wide range of logic circuits. Except for CPLDs, these devices are rather
small and are suitable only for relatively simple applications. Even for CPLDs, only mod-
erately large logic circuits can be accommodated in a single chip. For cost and performance
reasons, it is prudent to implement a desired logic circuit using as few chips as possible, so
the amount of circuitry on a given chip and its functional capability are important. One way
to quantify a circuit’s size is to assume that the circuit is to be built using only simple logic
gates and then estimate how many of these gates are needed. A commonly used measure is
the total number of two-input NAND gates that would be needed to build the circuit; this
measure is often called the number of equivalent gates.

Using the equivalent-gates metric, the size of a 7400-series chip is simple to measure
because each chip contains only simple gates. For SPLDs and CPLDs the typical measure
used is that each macrocell represents about 20 equivalent gates. Thus a typical PAL that
has eight macrocells can accommodate a circuit that needs up to about 160 gates, and a
large CPLD that has 500 macrocells can implement circuits of up to about 10,000 equivalent
gates.

By modem standards, a logic circuit with 10,000 gates 1s not large. To implement
larger circuits, it is convenient (o use a different type of chip that has a larger logic capacity.
A field-programmable gate array (FPGA}) is a programmable logic device that supports
implementation of relatively large logic circuits. FPGAs are quite different from SPLDs
and CPLDs because FPGAs do not contain AND or OR planes. Instead, FPGAs provide
logic blocks for implementation of the required functions. The general structure of an FPGA
is illustrated in Figure 3.354. It contains three main types of resources: logic blocks, I/O
blocks for connecting to the pins of the package, and interconnection wires and switches.
The logic blocks are arranged in a two-dimensional array, and the interconnection wires
are organized as horizontal and vertical routing channels between rows and columns of
logic blocks. The routing channels contain wires and programmable switches that allow
the logic blocks to be interconnected in many ways. Figure 3.35a shows two locations for
programmable switches; the blue boxes adjacent to logic blocks hold switches that connect
the logic block input and output terminals to the interconnection wires, and the blue boxes
that are diagonally between logic