

Verilog HDL
A guide to Digital Design
and Synthesis

Samir Palnitkar

SunSoft Press
1996

PART 1 BASIC VERILOG TOPICS 1
1 Overview of Digital Design with Verilog HDL 3
2 Hierarchical Modeling Concepts 11
3 Basic Concepts 27
4 Modules and Ports 47
5 Gate-Level Modeling 61
6 Dataflow Modeling 85
7 Behavioral Modeling 115
8 Tasks and Functions 157
9 Useful Modeling Techniques 169
PART 2 Advance Verilog Topics 191
10 Timing and Delays 193
11 Switch-Level Modeling 213
12 User-Defined Primitives 229
13 Programming Language Interface 249
14 Logic Synthesis with Verilog HDL 275
PART3 APPENDICES 319
A Strength Modeling and Advanced Net Definitions 321
B List of PLI Rountines 327
C List of Keywords, System Tasks, and Compiler Directives 343
D Formal Syntax Definition 345
E Verilog Tidbits 363
F Verilog Examples 367

Part 1 Basic Verilog Topics

[j
LJ
LJ
[j
[j
[j
[j
[J
[J

Overview of Digital Design with Verilog HDL
Evolution of CAD, emergence of HDLs, typical HDL-based design flow, why
Verilog HDL?, trends in HDLs.

Hierarchical Modeling Concepts
Top-down and bottom-up design methodology, differences between
modules and module instances, parts of a simulation, design block, stimulus
block.

Basic Concepts
Lexical conventions, data types, system tasks, compiler directives.

Modules and Ports
Module definition, port declaration, connecting ports, hierarchical name
referencing.

Gate-Level Modeling
Modeling using basic Verilog gate primitives, description of and/or and
buf/not type gates, rise, fall and tum-off delays, min, max, and typical
delays.

Dataflow Modeling
Continuous assignments, delay specification, expressions, operators,
operands, operator types.

Behavioral Modeling
Structured procedures, initial and always, blocking and nonblocking
statements, delay control, event control, conditional statements, multiway
branching, loops, sequential and parallel blocks.

Tasks and Functions
Differences between tasks and functions, declaration, invocation.

Useful Modeling Techniques
Procedural continuous assignments, overriding parameters, conditional
compilation and execution, useful system tasks.

Verilog HDL: A Guide to Digital Design and Synthesis

Overview of Digital Design
with Verilog® HDL

1.1 Evolution of Computer Aided Digital Design
Digital circuit design has evolved rapidly over the last 25 years. The earliest
digital circuits were designed with vacuum tubes and transistors. Integrated
circuits were then invented where logic gates were placed on a single chip. The
first integrated circuit (IC) chips were 55I (Small Scale Integration) chips where the
gate count was very small. As technologies became sophisticated, designers were
able to place circuits with hundreds of gates on a chip. These chips were called
M5I (Medium Scale Integration) chips. With the advent of LSI (Large Scale
Integration), designers could put thousands of gates on a single chip. At this point,
design processes started getting very complicated, and designers felt the need to
automate these processes. Computer Aided Design (CAD)1 techniques began to
evolve. Chip designers began to use circuit and logic simulation techniques to
verify the functionality of building blocks of the order of about 100 transistors.
The circuits were still tested on the breadboard, and the layout was done on
paper or by hand on a graphic computer terminal.

With the advent of VLSI (Very Large Scale Integration) technology, designers could
design single chips with more than 100,000 transistors. Because of the complexity
of these circuits, it was not possible to verify these circuits on a breadboard.
Computer-aided techniques became critical for verification and design of VL5I
digital circuits. Computer programs to do automatic placement and routing of
circuit layouts also became popular. The designers were now building gate-level
digital circuits manually on graphic terminals. They would build small building
blocks and then derive higher-level blocks from them. This process would

1. Technically, the term Computer-Aided Design (CAD) tools refers to back-end tools that perform functions related
to place and route, and layout of the chip. The term Computer-Aided Engineering (CAE) tools refers to tools that
are used for front-end processes such HDL simulation, logic synthesis and timing analysis. However, designers
use the term CAD and CAE interchangeably. For the sake of simplicity, in this book, we will refer to all design
tools as CAD tools.

3

continue until they had built the top-level block. Logic simulators came into
existence to verify the functionality of these circuits before they were fabricated
on chip.

As designs got larger and more complex, logic simulation assumed an important
role in the design process. Designers could iron out functional bugs in the
architecture before the chip was designed further.

1.2 Emergence of HOLs
For a long time, programming languages such as FORTRAN, Pascal, and C were
being used to describe computer programs that were sequential in nature.
Similarly, in the digital design field, designers felt the need for a standard
language to describe digital circuits. Thus, Hardware Description Languages (HDLs)
came into existence. HDLs allowed the designers to model the concurrency of
processes found in hardware elements. Hardware description languages such as
Verilog HDL and VHDL became popular. Verilog HDL originated in 1983 at
Gateway Design Automation. Later, VHDL was developed under contract from
DARPA. Both Verilog® and VHDL simulators to simulate large digital circuits
quickly gained acceptance from designers.

Even though HDLs were popular for logic verification, designers had to manually
translate the HDL-based design into a schematic circuit with interconnections
between gates. The advent of logic synthesis in the late 1980s changed the design
methodology radically. Digital circuits could be described at a register transfer level
(RTL) by use of an HDL. Thus, the designer had to specify how the data flows
between registers and how the design processes the data. The details of gates and
their interconnections to implement the circuit were automatically extracted by
logic synthesis tools from the RTL description.

Thus, logic synthesis pushed the HDLs into the forefront of digital design.
Designers no longer had to manually place gates to build digital circuits. They
could describe complex circuits at an abstract level in terms of functionality and
data flow by designing those circuits in HDLs. Logic synthesis tools would
implement the specified functionality in terms of gates and gate interconnections.

HDLs also began to be used for system-level design. HDLs were used for
simulation of system boards, interconnect buses, FPGAs (Field Programmable
Gate Arrays), and PALs (Programmable Array Logic). A common approach is to
design each IC chip, using an HDL, and then verify system functionality via
simulation.

4 Verilog HDL: A Guide to Digital Design and Synthesis

1.3 Typical Design Flow
A typical design flow for designing VLSI Ie circuits is shown in Figure I-I.
Unshaded blocks show the level of design representation; shaded blocks show
processes in the design flow.

Design Specification

Behavioral Description

c: RTL Description (HDL) 1-4--,
'------,----

Gate-Level Netlist

Figure 1-1 Typical Design Flow

Overview of Digital Design with Verilog® HDL 5

The design flow shown in Figure 1-1 is typically used by designers who use
HDLs. In any design, specifications are written first. Specifications describe
abstractly the functionality, interface, and overall architecture of the digital circuit
to be designed. At this point, the architects do not need to think about how they
will implement this circuit. A behavioral description is then created to analyze the
design in terms of functionality, performance, compliance to standards, and other
high-level issues. Behavioral descriptions can be written with HDLs.

The behavioral description is manually converted to an RTL description in an
HDL. The designer has to describe the data flow that will implement the desired
digital circuit. From this point onward, the design process is done with the
assistance of Computer-Aided Design (CAD) tools.

Logic synthesis tools convert the RTL description to a gate-level netlist. A gate­
level netlist is a description of the circuit in terms of gates and connections
between them. The gate-level netlist is input to an Automatic Place and Route
tool, which creates a layout. The layout is verified and then fabricated on chip.

Thus, most digital design activity is concentrated on manually optimizing the
RTL description of the circuit. After the RTL description is frozen, CAD tools are
available to assist the designer in further processes. Designing at RTL level has
shrunk design cycle times from years to a few months. It is also possible to do
many design iterations in a short period of time.

Behavioral synthesis tools have begun to emerge recently. These tools can create
RTL descriptions from a behavioral or algorithmic description of the circuit. As
these tools mature, digital circuit design will become similar to high-level
computer programming. Designers will simply implement the algorithm in an
HDL at a very abstract level. CAD tools will help the designer convert the
behavioral description to a final IC chip.

It is important to note that although CAD tools are available to automate the
processes and cut design cycle times, the designer is still the person who controls
how the tool will perform. CAD tools are also susceptible to the "GIGO: Garbage
In Garbage Out" phenomenon. If used improperly, CAD tools will lead to
inefficient designs. Thus, the designer still needs to understand the nuances of
design methodologies, using CAD tools to obtain an optimized design.

1.4 Importance of HDLs
HDLs have many advantages compared to traditional schematic-based design.

6

• Designs can be described at a very abstract level by use of HDLs. Designers
can write their RTL description without choosing a specific fabrication
technology. Logic synthesis tools can automatically convert the design to

Verilog HDL: A Guide to Digital Design and Synthesis

any fabrication technology. If a new technology emerges, designers do not
need to redesign their circuit. They simply input the RTL description to the
logic synthesis tool and create a new gate-level netlist, using the new
fabrication technology. The logic synthesis tool will optimize the circuit in
area and timing for the new technology.

By describing designs in HDLs, functional verification of the design can be
done early in the design cycle. Since designers work at the RTL level, they
can optimize and modify the RTL description until it meets the desired
functionality. Most design bugs are eliminated at this point. This cuts down
design cycle time significantly because the probability of hitting a functional
bug at a later time in the gate-level netlist or physical layout is minimized.

Designing with HDLs is analogous to computer programming. A textual
description with comments is an easier way to develop and debug circuits.
This also provides a concise representation of the design, compared to gate-
level schematics. Gate-level schematics are almost incomprehensible for very
complex designs.

HDLs are most certainly a trend of the future. With rapidly increasing
complexities of digital circuits and increasingly sophisticated CAD tools, HDLs
will probably be the only method for large digital designs. No digital circuit
designer can afford to ignore HDL-based design.

Popularity of Verilog HDL
Verilog HDL has evolved as a standard hardware description language. Verilog
HDL offers many useful features for hardware design.

Verilog HDL is a general-purpose hardware description language that is
easy to learn and easy to use. It is similar in syntax to the C programming
language. Designers with C programming experience will find it easy to
learn Verilog HDL.

Verilog HDL allows different levels of abstraction to be mixed in the same
model. Thus, a designer can define a hardware model in terms of switches,
gates, RTL, or behavioral code. Also, a designer needs to learn only one
language for stimulus and hierarchical design.

Most popular logic synthesis tools support Verilog HDL. This makes it the
language of choice for designers.

Overview of Digital Design with VerilogB HDL

All fabrication vendors provide Verilog HDL libraries for postlogic synthesis
simulation. Thus, designing a chip in Verilog HDL allows the widest choice
of vendors.

The Programming Language Interface (PLI) is a powerful feature that allows
the user to write custom C code to interact with the internal data structures
of Verilog. Designers can customize a Verilog HDL simulator to their needs
with the PLI.

1.6 Trends in HDLs
The speed and complexity of digital circuits has increased rapidly. Designers have
responded by designing at higher levels of abstraction. Designers have to think
only in terms of functionality. CAD tools take care of the implementation details.
With designer assistance, CAD tools have become sophisticated enough to do a
close-to-optimum implementation.

The most popular trend currently is to design in HDL at an RTL level, because
logic synthesis tools can create gate-level netlists from RTL level design.
Behavioral synthesis has recently emerged. As these tools improve, designers will
be able to design directly in terms of algorithms and the behavior of the circuit,
and then use CAD tools to do the translation and optimization in each phase of
the design. Behavioral modeling will be used more and more as behavioral
synthesis matures. Until then, RTL design will remain very popular.

Formal verification techniques are also appearing on the horizon. Formal
verification applies formal mathematical techniques to verify the correctness of
Verilog HDL descriptions and to establish equivalency between RTL and gate-
level netlists. However, the need to describe a design in Verilog HDL will not go
away.

For very high speed and timing-critical circuits like microprocessors, the gate-
level netlist provided by logic synthesis tools is not optimal. In such cases,
designers often mix gate-level description directly into the RTL description to
achieve optimum results. This practice is opposite to the high-level design
paradigm, yet it is frequently used for high-speed designs because designers need
to squeeze the last bit of timing out of circuits and CAD tools sometimes prove to
be insufficient to achieve the desired results.

A trend that is emerging for system-level design is a mixed bottom-up
methodology where the designers use either existing Verilog HDL modules, basic
building blocks, or vendor-supplied core blocks to quickly bring up their system
simulation. This is done to reduce development costs and compress design
schedules. For example, consider a system that has a CPU, graphics chip, I/O

8 Verilog HDL: A Guide to Digital Design and Synthesis

chip, and a system bus. The CPU designers would build the next-generation CPU
themselves at an RTL level, but they would use behavioral models for the
graphics chip and the I/O chip and would buy a vendor-supplied model for the
system bus. Thus, the system-level simulation for the CPU could be up and
running very quickly and long before the RTL descriptions for the graphics chip
and the I/O chip are completed.

Overview afDigital Design with Verilog® HDL 9

10 Verilog HDL: A Guide to Digital Design and Synthesis

Hierarchical Modeling
Concepts

Before we discuss the details of the Verilog language, we must first
understand basic hierarchical modeling concepts in digital design. The
designer must use a "good" design methodology to do efficient Verilog HDL-
based design. In this chapter, we discuss typical design methodologies and
illustrate how these concepts are translated to Verilog. A digital simulation is
made up of various components. We talk about the components and their
interconnections.

Learning Objectives

Understand top-down and bottom-up design methodologies for digital
design.

Explain differences between modules and module instances i*n Verilog.

Describe four levels of abstraction-behavioral, data flow, gate level, and
switch level-to represent the same module.

Describe components required for the simulation of a digital design. Define
a stimulus block and a design block. Explain two methods of applying
stimulus.

2.1 Design Methodologies
There are two basic types of digital design methodologies: a top-down design
methodology and a bottom-up design methodology. In a top-down design
methodology, we define the top-level block and identify the sub-blocks necessary
to build the top-level block. We further subdivide the sub-blocks until we come to
leaf cells, which are the cells that cannot further be divided. Figure 2-1 shows the
top-down design process.

=2 -

Figure 2-1 Top-down Design Methodology

In a bottom-up design methodology, we first identify the building blocks that are
available to us. We build bigger cells, using these building blocks. These cells are
then used for higher-level blocks until we build the top-level block in the design.
Figure 2-2 shows the bottom-up design process.

Figure 2-2 Bottom-up Design Methodology

Typically, a combination of top-down and bottom-up flows is used. Design
architects define the specifications of the top-level block. Logic designers decide
how the design should be structured by breaking up the functionality into blocks
and sub-blocks. At the same time, circuit designers are designing optimized
circuits for leaf-level cells. They build higher-level cells by using these leaf cells.

12 Verilog HDL: A Guide to Digital Design and Synthesis

The flow meets at an intermediate point where the switch-level circuit designers
have created a library of leaf cells by using switches, and the logic level designers
have designed from top-down until all modules are defined in terms of leaf cells.

To illustrate these hierarchical modeling concepts, let us consider the design of a
negative edge-triggered 4-bit ripple carry counter described in Section 2.2, 4-bit
Ripple Carry Counter.

2.2 4-bit Ripple Carry Counter

Ripple
Carry
C t oun er

qO ql q2 q3

r--- 1------ - - -- - - - -- r- ..,

clock

I
d

I q f-L-c q r--l...c q ~~
q -

I ~ T_FF ~ T_FF ~ T_FF ~ T_FF

I tffO tffl tff2 tff3

I
I

reset I
L ____ _ __ ..J

Figure 2-3 Ripple Carry Counter

The ripple carry counter shown in Figure 2-3 is made up of negative edge­
triggered toggle flip-flops (T JF). Each of the T JFs can be made up from
negative edge-triggered D-flipflops CD_FF) and inverters (assuming q_bar output
is not available on the D_FF), as shown in Figure 2-4.

Hierarchical Modeling Concepts 13

reset 'In 'In+l r--- -,

1 1 0

1 0 0

0 0 1 cloG:l«-....---a

0 1 0

0 0 0

reset

Figure 2-4 T-flipflop

Thus, the ripple carry counter is built in a hierarchical fashion by using building
blocks. The diagram for the design hierarchy is shown in Figure 2-5.

TFF
(tIro)

Inverter

gate

Figure 2-5 Design Hierarchy

TFF
(tIm

Inverter

gate

T FF
(tff2)

Inverter

gate

TFF
(tff3)

Inverter

gate

In a top-down design methodology, we first have to specify the functionality of
the ripple carry counter, which is the top-level block. Then, we implement the
counter with T _FFs. We build the T _FFs from the D _FF and an additional inverter
gate. Thus, we break bigger blocks into smaller building sub-blocks until we
decide that we cannot break up the blocks any further. A bottom-up methodology
flows in the opposite direction. We combine small building blocks and build

14 Verilog HDL: A Guide to Digital Design and Synthesis

bigger blocks; e.g., we could build DJF from and and or gates, or we could
build a custom D _FF from transistors. Thus, the bottom-up flow meets the top­
down flow at the level of the D _FF.

2.3 Modules
We now relate these hierarchical modeling concepts to Verilog. Verilog provides
the concept of a module. A module is the basic building block in Verilog. A
module can be an element or a collection of lower-level design blocks. Typically,
elements are grouped into modules to provide common functionality that is used
at many places in the design. A module provides the necessary functionality to
the higher-level block through its port interface (inputs and outputs), but hides
the internal implementation. This allows the designer to modify module internals
without affecting the rest of the design.

In Figure 2-5, ripple carry counter, T_FF, D_FF are examples of modules. In Verilog,
a module is declared by the keyword module. A corresponding keyword
endmodule must appear at the end of the module definition. Each module must
have a module_name, which is the identifier for the module, and a
module_terminaClist, which describes the input and output terminals of the
module.

module <module_name> «module_terminal_list»;

<module internals>

endmodule

Specifically, the T-flipflop could be defined as a module as follows:

module T_FF (q, clock, reset);

<functionality of T-flipflop>

endmodule

Hierarchical Modeling Concepts 15

Verilog is both a behavioral and a structural language. Internals of each module
can be defined at four levels of abstraction, depending on the needs of the design.
The module behaves identically with the external environment irrespective of the
level of abstraction at which the module is described. The internals of the module
are hidden from the environment. Thus, the level of abstraction to describe a
module can be changed without any change in the environment. These levels will
be studied in detail in separate chapters later in the book. The levels are defined
below.

Behavioral or algorithmic level
This is the highest level of abstraction provided by Verilog HDL. A module
can be implemented in terms of the desired design algorithm without
concern for the hardware implementation details. Designing at this level is
very similar to C programming.

Dataflow level
At this level the module is designed by specifying the data flow. The
designer is aware of how data flows between hardware registers and how
the data is processed in the design.

Gate level
The module is implemented in terms of logic gates and interconnections
between these gates. Design at this level is similar to describing a design in
terms of a gate-level logic diagram.

Switch level
This is the lowest level of abstraction provided by Verilog. A module can be
implemented in terms of switches, storage nodes, and the interconnections
between them. Design at this level requires knowledge of switch-level
implementation details.

Verilog allows the designer to mix and match all four levels of abstractions in a
design. In the digital design community, the term register transfer level (RTL) is
frequently used for a Verilog description that uses a combination of behavioral
and dataflow constructs and is acceptable to logic synthesis tools.

If a design contains four modules, Verilog allows each of the modules to be
written at a different level of abstraction. As the design matures, most modules
are replaced with gate-level implementations.

Normally, the higher the level of abstraction, the more flexible and technology
independent the design. As one goes lower toward switch-level design, the
design becomes technology dependent and inflexible. A small modification can
cause a significant number of changes in the design. Consider the analogy with C
programming and assembly language programming. It is easier to program in a

16 Verilog HDL: A Guide to Digital Design and Synthesis

higher-level language such as C. The program can be easily ported to any
machine. However, if you design at the assembly level, the program is specific for
that machine and cannot be easily ported to another machine.

2.4 Instances
A module provides a template from which you can create actual objects. When a
module is invoked, Verilog creates a unique object from the template. Each object
has its own name, variables, parameters and I/O interface. The process of
creating objects from a module template is called instantiation, and the objects are
called instances. In Example 2-1, the top-level block creates four instances from the
T-flipflop (T JF) template. Each T JF instantiates a D JF and an inverter gate.
Each instance must be given a unique name. Note that II is used to denote
single-line comments.

Example 2-1 Module Instantiation

II Define the top-level module called ripple carry
II counter. It instantiates 4 T-flipflops. Interconnections are
II shown in Section 2.2, 4-bit Ripple Carry Counter.
module ripple_carry_counter(q, clk, reset);

output [3:0] q; 111/0 signals and vector declarations
Ilwill be explained later.

input clk, reset; 111/0 signals will be explained later.

IIFour instances of the module T_FF are created. Each has a unique
Ilname.Each instance is passed a set of signals. Notice, that
Ileach instance is a copy of the module T_FF.
T_FF tffO(q[O] ,clk, reset);
T_FF tffl(q[l],q[O], reset);
T_FF tff2(q[2] ,q[l], reset);
T_FF tff3(q[3] ,q[2], reset);

endmodule

II Define the module T_FF. It instantiates a D-flipflop. We assumed
II that module D-flipflop is defined elsewhere in the design. Refer
II to Figure 2-4 for interconnections.
module T_FF(q, clk, reset);

IIDeclarations to be explained later
output q;

Hierarchical Modeling Concepts 17

Example 2-1 Module Instantiation (Continued)

input clk, reset;
wire d;

D_FF dffO(q, d, clk, reset); II Instantiate D_FF. Call it dffO.
not nl(d, q); II not gate is a Verilog primitive. Explained later.

endmodule

In Verilog, it is illegal to nest modules. One module definition cannot contain
another module definition within the module and endmodule statements. Instead,
a module definition can incorporate copies of other modules by instantiating
them. It is important not to confuse module definitions and instances of a
module. Module definitions simply specify how the module will work, its
internals, and its interface. Modules must be instantiated for use in the design.

Example 2-2 shows an illegal module nesting where the module T _FF is defined
inside the module definition of the ripple carry counter.

Example 2-2 Illegal Module Nesting

II Define the top-level module called ripple carry counter.
II It is illegal to define the module T_FF inside this module.
module ripple_carry_counter(q, clk, reset);
output [3:0] q;
input clk, reset;

module T_FF(q, clock, reset);11 ILLEGAL MODULE NESTING

<module T_FF internals>

endmodule II END OF ILLEGAL MODULE NESTING

endmodule

2.5 Components of a Simulation
Once a design block is completed, it must be tested. The functionality of the
design block can be tested by applying stimulus and checking results. We call
such a block the stimulus block. It is good practice to keep the stimulus and
design blocks separate. The stimulus block can be written in Verilog. A separate

18 Verilog HDL: A Guide to Digital Design and Synthesis

language is not required to describe stimulus. The stimulus block is also
commonly called a test bench. Different test benches can be used to thoroughly test
the design block.

Two styles of stimulus application are possible. In the first style, the stimulus
block instantiates the design block and directly drives the signals in the design
block. In Figure 2-6, the stimulus block becomes the top-level block. It
manipulates signals elk and reset, and it checks and displays output signal q.

(Stimulus block)
elk reset

(Design Block)
Ripple Carry
Counter

q

Figure 2-6 Stimulus Block Instantiates Design Block

The second style of applying stimulus is to instantiate both the stimulus and
design blocks in a top-level dummy module. The stimulus block interacts with
the design block only through the interface. This style of applying stimulus is
shown in Figure 2-7. The stimulus module drives the signals d_elk and dJeset,
which are connected to the signals elk and reset in the design block. It also checks
and displays signal c_q, which is connected to the signal q in the design block.
The function of top-level block is simply to instantiate the design and stimulus
blocks.

Hierarchical Modeling Concepts 19

Top-Level Block

d_elk .. elk
Stimulus -
Block d_reset .. reset Design Blod< - Ripple Carry

Counter

c_q - q --

Figure 2-7 Stimulus and Design Blocks Instantiated in a Dummy Top-Level Module

Either stimulus style can be used effectively.

2.6 Example
To illustrate the concepts discussed in the previous sections, let us build the
complete simulation of a ripple carry counter. We will define the design block and
the stimulus block. We will apply stimulus to the design block and monitor the
outputs. As we develop the Verilog models, you do not need to understand the
exact syntax of each construct at this stage. At this point, you should simply try to
understand the design process. We discuss the syntax in much greater detail in
the later chapters.

2.6.1 Design Block

We use a top-down design methodology. First, we write the Verilog description of
the top-level design block (Example 2-3), which is the ripple carry counter (see
Section 2.2, 4-bit Ripple Carry Counter).

Example 2-3 Ripple Carry Counter Top Block

module ripple_carry_counter(q, clk, reset);

output [3:0] q;
input clk, reset;

20 Verilog HDL: A Guide to Digital Design and Synthesis

Example 2-3 Ripple Carry Counter Top Block (Continued)

T_FF tffO(q[O],clk, reset);
T_FF tffl(q[l],q[O], reset);
T_FF tff2(q[2] ,q[l], reset);
T_FF tff3(q[3],q[2], reset);

endmodu.le

2= -

In the above module, four instances of the module TJF (T-flipflop) are used.
Therefore, we must now define (Example 2-4) the internals of the module T _FF,
which was shown in Figure 2-4.

Example 2-4 Flip-flop T JF

modu.le T_FF(q, clk, reset);

output q;
input clk, reset;
wire d;

D_FF dffO(q, d, clk, reset);
not nl(d, q); II not is a Veri log-provided primitive. case sensitive
endmodule

Since T_FF instantiates D_FF, we must now define (Example 2-5) the internals of
module D_FF. We assume asynchronous reset for the D_FF.F

Example 2-5 Flip-flop D J

/1 module D FF with synchronous reset
module D_FF(q, d, clk, reset);

output q;
input d, clk, reset;
reg q;

// Lots of new constructs. Ignore the functionality of the constructs.
/ I Concentrate on how the design block is built in a top-down fashion.
always @(posedge reset or negedge clk)
if (reset)

q = l'bO;

Hierarchical Modeling Concepts 21

Example 2-5 Flip-flop D J (Continued)

II module D_FF with synchronous reset
else

q = d;

endmodule

All modules have been defined down to the lowest-level leaf cells in the design
methodology. The design block is now complete.

2.6.2 Stimulus Block

We must now write the stimulus block to check if the ripple carry counter design
is functioning correctly. In this case, we must control the signals elk and reset so
that the regular function of the ripple carry counter and the asynchronous reset
mechanism are both tested. We use the waveforms shown in Figure 2-8 to test the
design. Waveforms for elk, reset, and 4-bit output q are shown. The cycle time for
elk is 10 units; the reset signal stays up from time 0 to 15 and then goes up again
from time 195 to 205. Output q counts from 0 to 15.

clk

reset L------~HI----

Figure 2-8 Stimulus and Output Waveforms

22 Verilog HDL: A Guide to Digital Design and Synthesis

We are now ready to write the stimulus block (see Example 2-4) that will create
the above waveforms. We will use the stimulus style shown in Figure 2-6. Do not
worry about the Verilog syntax at this point. Simply concentrate on how the
design block is instantiated in the stimulus block.

Example 2-4 Stimulus Block

module stimulus;

reg elk;
reg reset;
wire[3:0] q;

II instantiate the design block
ripple_carry_counter rl(q, clk, reset);

I I Control the clk signal that drives the design block. Cycle time = 10
initial

clk = l'bO; Iiset elk to 0
always

#5 elk = -clk; Iitoggle clk every 5 time units

II Control the reset signal that drives the design block
II reset is asserted from 0 to 20 and from 200 to 220.
initial
begin

reset = l'bl;
#15 reset = l'bO;
#180 reset = l'bl;
#10 reset = l'bO;
#20 $finish; Iiterminate the simulation

end

II Monitor the outputs
initial

$monitor($time, " Output q

endmodule

%d", q);

Hierarchical Modeling Concepts 23

Once the stimulus block is completed, we are ready to run the simulation and
verify the functional correctness of the design block. The output obtained when
stimulus and design blocks are simulated is shown in Example 2-6.

Example 2-6 Output of the Simulation

0 Output q = 0
20 Output q = 1
30 Output q = 2
40 Output q = 3
50 Output q = 4
60 Output q = 5
70 Output q = 6
80 Output q = 7
90 Output q = 8
100 output q = 9
110 output q = 10
120 Output q = 11
130 Output q = 12
140 Output q = 13
150 Output q = 14
160 Output q = 15
170 Output q = 0
180 Output q = 1
190 Output q = 2
195 Output q = 0
210 Output q = 1
220 Output q = 2

2.7 Summary
In this chapter we discussed the following concepts.

Two kinds of design methodologies are used for digital design: top-down
and bottom-up. A combination of these two methodologies is used in
today's digital designs. As designs become very complex, it is important to
follow these structured approaches to manage the design process.

Verilog HDL: A Guide to Digital Design and Synthesis

Modules are the basic building blocks in Verilog. Modules are used in a
design by instantiation. An instance of a module has a unique identity and
is different from other instances of the same module. Each instance has an
independent copy of the internals of the module. It is important to
understand the difference between modules and instances.

There are two distinct components in a simulation: a design block and a
stimulus block. A stimulus block is used to test the design block. The
stimulus block is usually the top-level block. There are two different styles
of applying stimulus to a design block.

The example of the ripple carry counter explains the step-by-step process of
building all the blocks required in a simulation.

This chapter is intended to give an understanding of the design process and how
Verilog fits into the design process. The details of Verilog syntax are not important
at this stage and will be dealt with in later chapters.

2.8 Exercises
1. An interconnect switch (IS) contains the following components, a shared

memory (MEM), a system controller (SC) and a data crossbar (Xbar).

a. Define the modules MEM, SC, and Xbar, using the module/endmodule
keywords. You do not need to define the internals. Assume that the
modules have no terminal lists.

b. Define the module IS, using the module/endmodule keywords.
Instantiate the modules MEM, SC, Xbar and call the instances rnernl, scl,
and xbarl, respectively. You do not need to define the internals. Assume
that the module IS has no terminals.

c. Define a stimulus block (Top), using the module/endmodule keywords.
Instantiate the design block IS and call the instance isl. This is the final
step in building the simulation environment.

2. A Cbit ripple carry adder (Ripple-Add) contains four l-bit full adders (FA).

a. Define the module FA. Do not define the internals or the terminal list.

b. Define the module Ripple-Add. Do not define the internals or the
terminal list. Instantiate four full adders of the type FA in the module
Ripple-Add and call them faO, fal, fa2, and fa3.

Hierarchical Modeling Concepts

=2 -

26 Verilog HDL: A Guide to Digital Design and Synthesis

Basic Concepts

In this chapter, we discuss the basic constructs and conventions in Verilog. These
conventions and constructs are used throughout the later chapters. These
conventions provide the necessary framework for Verilog HDL. Data types in
Verilog model actual data storage and switch elements in hardware very closely.
This chapter may seem dry, but understanding these concepts is a necessary
foundation for the successive chapters.

Learning Objectives

Understand lexical conventions for operators, comments, whitespace,
numbers, strings, and identifiers.

Define the logic value set and data types such as nets, registers, vectors,
numbers, simulation time, arrays, parameters, memories, and strings.

Identify useful system tasks for displaying and monitoring information, and
for stopping and finishing the simulation.

Learn basic compiler directives to define macros and include files.

3.1 Lexical Conventions
The basic lexical conventions used by Verilog HDL are similar to those in the C
programming language. Verilog contains a stream of tokens. Tokens can be
comments, delimiters, numbers, strings, identifiers, and keywords. Verilog HDL
is a case-sensitive language. All keywords are in lowercase.

3.1.1 Whitespace

Blank spaces (\b) , tabs (\t) and newlines (\n) comprise the whitespace.
Whitespace is ignored by Verilog except when it separates tokens. Whitespace is
not ignored in strings.

3.1.2 Comments

Comments can be inserted in the code for readability and documentation. There
are two ways to write comments. A one-line comment starts with" //". Verilog
skips from that point to the end of line. A multiple-line comment starts with "/*"
and ends with "*/". Multiple-line comments cannot be nested.

a = b && c; II This is a one-line comment

1* This is a multiple line
comment *1

1* This is 1* an illegal *1 comment *1

3.1.3 Operators

Operators are of three types, unary, binary, and ternary. Unary operators precede
the operand. Binary operators appear between two operands. Ternary operators
have two separate operators that separate three operands.

a - b; II - is a unary operator. b is the operand
a b && c; II && is a binary operator. band c are operands
a b? c : d; II ?: is a ternary operator. b , c and d are operands

3.1.4 Number Specification

There are two types of number specification in Verilog: sized and unsized.

Sized numbers

Sized numbers are represented as <size> I <base format> <number>.

<size> is written only in decimal and specifies the number of bits in the number.
Legal base formats are decimal ('d or 'D), hexadecimal ('h or 'H), binary ('b or 'B)
and octal ('0 or '0). The number is specified as consecutive digits from 0, 1, 2, 3,
4,5, 6, 7, 8, 9, a, b, c, d, e, f. Only a subset of these digits is legal for a particular
base. Uppercase letters are legal for number specification.

28 Veri/og HDL: A Guide to Digital Design and Synthesis

4'b1111 II This is a 4-bit
12'habc II This is a 12-bit
16'd255 II This is a 16-bit

Unsized numbers

binary number
hexadecimal number
decimal number.

Numbers that are specified without a <base format> specification are decimal
numbers by default. Numbers that are written without a <size> specification have
a default number of bits that is simulator- and machine-specific (must be at least
32).

23456 II This is a 32-bit decimal number by default
'hc3 II This is a 32-bit hexadecimal number
'021 II This is a 32-bit octal number

XorZvalues

Verilog has two symbols for unknown and high impedance values. These values
are very important for modeling real circuits. An unknown value is denoted by
an x. A high impedance value is denoted by z.

12' h13x II This is a 12-bi t hex number; 4 least significant bits unknown
6'hx II This is a 6-bit hex number
32'bz II This is a 32-bit high impedance number

An x or z sets four bits for a number in the hexadecimal base, three bits for a
number in the octal base, and one bit for a number in the binary base. If the most
significant bit of a number is 0, x, or z, the number is automatically extended to
fill the most significant bits, respectively, with 0, x, or z. This makes it easy to
assign x or z to whole vector. If the most significant digit is 1, then it is also zero
extended.

Basic Concepts 29

Negative numbers

Negative numbers can be specified by putting a minus sign before the size for a
constant number. Size constants are always positive. It is illegal to have a minus
sign between <base format> and <number>.

-6'd3 II 8-bit negative number stored as 2's complement of 3
4'd-2 II Illegal specification

Underscore characters and question marks

An underscore character /1_/1 is allowed anywhere in a number except the first
character. Underscore characters are allowed only to improve readability of
numbers and are ignored by Verilog.

A question mark /I?/I is the Verilog HDL alternative for z in the context of
numbers. The? is used to enhance readability in the casex and casez statements
discussed in Chapter 7, Behavioral Modeling, where the high impedance value is a
don't care condition. (Note that? has a different meaning in the context of user­
defined primitives, which are discussed in Chapter 12, User-Defined Primitives.)

12'bllll_OOOO_1010 II Use of underline characters for readability
4'blO?? II Equivalent of a 4'blOzz

3.1.5 Strings

A string is a sequence of characters that are enclosed by double quotes. The
restriction on a string is that it must be contained on a single line, that is, without
a carriage return. It cannot be on multiple lines. Strings are treated as a sequence
of one-byte ASCII values.

"Hello Verilog World" II is a string
"a I b" II is a string

3.1.6 Identifiers and Keywords

Keywords are special identifiers reserved to define the language constructs.
Keywords are in lowercase. A list of all keywords in Verilog is contained in
Appendix C, List of Keywords, System Tasks, and Compiler Directives.

30 Verilog HDL: A Guide to Digital Design and Synthesis

Identifiers are names given to objects so that they can be referenced in the design.
Identifiers are made up of alphanumeric characters, the underscore (_) and the
dollar sign ($) and are case sensitive. Identifiers start with an alphabetic
character or an underscore. They cannot start with a number or a $ sign (The $
sign as the first character is reserved for system tasks, which are explained later in
the book).

reg value; II reg is a keyword; value is an identifier
input elk; II input is a keyword, elk is an identifier

3.1.7 Escaped Identifiers

Escaped identifiers begin with the backslash (\) character and end with
whitespace (space, tab, or newline). All characters between backslash and
whitespace are processed literally. Any printable ASCII character can be included
in escaped identifiers. The backslash or whitespace is not considered a part of the
identifier.

I \ .. b-c
my_name

3.2 Data Types
This section discusses the data types used in Verilog.

3.2.1 Value Set

Verilog supports four values and eight strengths to model the functionality of real
hardware. The four value levels are listed in Table 3-1.

Table 3-1 Value Levels

Value Level

o
1

x

z

Condition in Hardware Circuits

Logic zero, false condition

Logic one, true condition

Unknown value

High impedance, floating state

Basic Concepts 31

In addition to logic values, strength levels are often used to resolve conflicts
between drivers of different strengths in digital circuits. Value levels 0 and 1 can
have the strength levels listed in Table 3-2.

Table 3-2 Strength Levels

Strength Level

supply

strong

pull

large

weak

medium

small

highz

Type

Driving

Driving

Driving

Storage

Driving

Storage

Storage

High Impedance

Degree

strongest

weakest

If two signals of unequal strengths are driven on a wire, the stronger signal
prevails. For example, if two signals of strength strongl and weakO contend, the
result is resolved as a strongl. If two signals of equal strengths are driven on a
wire, the result is unknown. If two signals of strength strongl and strongO
conflict, the result is an x. Strength levels are particularly useful for accurate
modeling of signal contention, MOS devices, dynamic MOS, and other low-level
devices. Only trireg nets can have storage strengths large, medium, and small.
Detailed information about strength modeling is provided in Appendix A,
Strength Modeling and Advanced Net Definitions.

3.2.2 Nets

Nets represent connections between hardware elements. Just as in real circuits, nets
have values continuously driven on them by the outputs of devices that they are
connected to. In Figure 3-1 net a is connected to the output of and gate gi. Net a
will continuously assume the value computed at the output of gate gi, which is b &
c.

Figure 3-1 Example of Nets

32 Verilog HDL: A Guide to Digital Design and Synthesis

Nets are declared primarily with the keyword wire. Nets are one-bit values by
default unless they are declared explicitly as vectors. The terms wire and net are
often used interchangeably. The default value of a net is z (except the trireg net,
which defaults to x). Nets get the output value of their drivers. If a net has no
driver, it gets the value z.

wire a; II Declare net a for the above circuit
wire b,c; II Declare two wires b,c for the above circuit
wire d = l'bO; II Net d is fixed to logic value 0 at declaration.

Note that net is not a keyword but represents a class of data types such as wire,
wand, wor, tri, triand, trior, trireg, etc. The wire declaration is used most
frequently. Other net declarations are discussed in Appendix A, Strength Modeling
and Advanced Net Definitions.

3.2.3 Registers

Registers represent data storage elements. Registers retain value until another
value is placed onto them. Do not confuse the term registers in Verilog with
hardware registers built from edge-triggered flip-flops in real circuits. In Verilog,
the term register merely means a variable that can hold a value. Unlike a net, a
register does not need a driver. Verilog registers do not need a clock as hardware
registers do. Values of registers can be changed anytime in a simulation by
assigning a new value to the register.

Register data types are commonly declared by the keyword reg. The default
value for a reg data type is x. An example of how registers are used is shown
Example 3-1.

Example 3-1 Example of Register

reg reset; II declare a variable reset that can hold its value
initial II this construct will be discussed later
begin

reset = l'b1; Ilinitialize reset to 1 to reset the digital circuit.
#100 reset = l'bO; II after 100 time units reset is deasserted.

end

Basic Concepts 33

3.2.4 Vectors

Nets or reg data types can be declared as vectors (multiple bit widths). If bit
width is not specified, the default is scalar (I-bit).

wire a; II scalar net variable, default
wire [7:0] bus; II 8-bit bus
wire [31:0] busA,busB,busC; II 3 buses of 32-bit width.
reg clock; II scalar register, default
reg [0:40] virtual_addr; //Vector register,virtual address 4lbitswide

Vectors can be declared at [high# : low#] or [low# : high#], but the left number in
the squared brackets is always the most significant bit of the vector. In the
example shown above, bit 0 is the most significant bit of vector virtuaCaddr.

For the vector declarations shown above, it is possible to address bits or parts of
vectors.

busA[7] II bit # 7 of vector busA
bus[2:0] II Three least significant bits of vector bus,

II using bus[0:2] is illegal because the significant bit should
II always be on the left of a range specification

virtual_addr[O:l] //Two most significant bits of vector virtual_addr

3.2.5 Integer, Real, and Time Register Data Types

Integer, real, and time register data types are supported in Verilog.

Integer

An integer is a general purpose register data type used for manipulating
quantities. Integers are declared by the keyword integer. Although it is possible
to use reg as a general-purpose variable, it is more convenient to declare an
integer variable for purposes such as counting. The default width for an integer
is the host-machine word size, which is implementation specific but is at least 32
bits. Registers declared as data type reg store values as unsigned quantities,
whereas integers store values as signed quantities.

34 Verilog HDL: A Guide to Digital Design and Synthesis

integer counter; II general purpose variable used as a counter.
initial

counter = -1; II A negative one is stored in the counter

Real

Real number constants and real register data types are declared with the keyword
real. They can be specified in decimal notation (e.g., 3.14) or in scientific notation
(e.g., 3e6, which is 3 x 106). Real numbers cannot have a range declaration, and
their default value is o. When a real value is assigned to an integer, the real
number is rounded off to the nearest integer.

real delta; II Define a real variable called delta
initial
begin

delta
delta

end

4elO; II delta is assigned in scientific notation
2.13; II delta is assigned a value 2.13

integer i; II Define an integer i
initial

i = delta; II i gets the value 2 (rounded value of 2.13)

Time

Verilog simulation is done with respect to simulation time. A special time register
data type is used in Verilog to store simulation time. A time variable is declared
with the keyword time. The width for time register data types is implementation
specific but is at least 64 bits.The system function $time is invoked to get the
current simulation time.

time save_sim_time; II Define a time variable save_sim_time
initial

save_sim_time = $time; II Save the current simulation time

Simulation time is measured in terms of simulation seconds. The unit is denoted by
s, the same as real time. However, the relationship between real time in the digital
circuit and simulation time is left to the user. This is discussed in detail in Section
9.4, Time Scales.

Basic Concepts 35

3.2.6 Arrays

Arrays are allowed in Verilog for reg, integer, time, and vector register data
types. Arrays are not allowed for real variables. Arrays are accessed by
<array_name> [<subscript>]. Multidimensional arrays are not permitted in Verilog.

integer count [0: 7] ; I I An array of 8 count variables
reg bool[31:0]; II Array of 32 one-bit boolean register variables
time chk-point[1:100]; II Array of 100 time checkpoint variables
reg [4: 0] port_id [0: 7 J ; j j Array of 8 port_ids; each port_id is 5 bi ts wide
integer matrix[4:0] [4:0J; Ilrllegaldeclaration.Multidimensional
array

count[5] II 5th element of array of count variables
chk-point[100J jj100th time check point value
port_id[3J 113rd element of port_id array. This is a 5-bit value.

It is important not to confuse arrays with net or register vectors. A vector is a
single element that is n-bits wide. On the other hand, arrays are multiple
elements that are I-bit or n-bits wide.

3.2.7 Memories

In digital simulation, one often needs to model register files, RAMs, and ROMs.
Memories are modeled in Verilog simply as an array of registers. Each element of
the array is known as a word. Each word can be one or more bits. It is important
to differentiate between n l-bit registers and one n-bit register. A particular word
in memory is obtained by using the address as a memory array subscript.

reg mem1bit [0: 1023] ; I I Memory mem1bit with 1K 1-bit words
reg [7:0J membyte[0:1023J;IIMemory membyte with 1K8-bitwords(bytes)
membyte [511J II Fetches 1 byte word whose address is 511.

36 Verilog HDL: A Guide to Digital Design and Synthesis

3= -
3.2.8 Parameters

Verilog allows constants to be defined in a module by the keyword parameter.
Parameters cannot be used as variables. Parameter values for each module
instance can be overridden individually at compile time. This allows the module
instances to be customized. This aspect is discussed later.

parameter port_id = 5; //Defines a constant port_id
parameter cache_Iine_width = 256; / / Constant defines width of cache line

Module definitions may be written in terms of parameters. Hardcoded numbers
should be avoided. Parameters can be changed at module instantiation or by
using the defparam statement, which is discussed in detail in Chapter 9, Useful
Modeling Techniques. Thus, use of parameters makes the module definition
flexible. Module behavior can be altered simply by changing the value of a
parameter.

3.2.9 Strings

Strings can be stored in reg. The width of the register variables must be large
enough to hold the string. Each character in the string takes up 8 bits (1 byte). If
the width of the register is greater than the size of the string, Verilog fills bits to
the left of the string with zeros. If the register width is smaller than the string
width, Verilog truncates the leftmost bits of the string. It is always safe to declare
a string that is slightly wider than necessary.

reg [8*18: 1] string_value; / / Declare a variable that is 18 bytes
wide
initial

string_value "Hello Verilog World"; II String can be stored
II in variable

Basic Concepts 37

Special characters serve a special purpose in displaying strings, such as newline,
tabs and displaying argument values. Special characters can be displayed in
strings only when they are preceded by escape characters, as shown in Table 3-3.

Table 3-3 Special Characters

Escaped Characters Character Displayed

\n newline

\t tab

%% %

\\ \

\"

\000 Character written in 1-3 octal digits

3.3 System Tasks and Compiler Directives
In this section we introduce two special concepts used in Verilog: system tasks
and compiler directives.

3.3.1 System Tasks

Verilog provides standard system tasks to do certain routine operations. All
system tasks appear in the form $ <keyword>. Operations such as displaying on
the screen, monitoring values of nets, stopping, and finishing are done by system
tasks. We will discuss only the most useful system tasks. Other tasks are listed in
Verilog manuals provided by your simulator vendor or in the Verilog HDL
Language Reference Manual.

Displaying information

$display is the main system task for displaying values of variables or strings or
expressions. This is one of the most useful tasks in Verilog.

Usage: $display(pl, p2, p3, , pn);

pl, p2, p3, ... , pn can be quoted strings or variables or expressions. The format of
$display is very similar to printf in C. A $display inserts a newline at the end
of the string by default. A $display without any arguments produces a newline.

38 Verilog HDL: A Guide to Digital Design and Synthesis

Strings can be formatted by using the format specifications listed in Table 3-4. For
more detailed format specifications, see Verilog HDL Language Reference Manual.

Table 3-4 String Format Specifications

Format

Display variable in decimal

Display variable in binary

Display string

Display variable in hex

Display ASCII character

Display

Display hierarchical name (no argument required)

Display strength

Display variable in octal

Display in current time format

Display real number in scientific format (e.g., 3e10)

Display real number in decimal format (e.g., 2.13)

%dor %D

%b or %B

%s or %5

%h or %H

%c or %C

%mor%M

%v or %V

%0 or %0

%t or %T

%e or %E

%f or %F

%g or %G Display real number in scientific or decimal, whichever is shorter

Example 3-2 shows some examples of the $display task. If variables contain x or
z values they are printed in the displayed string as x or z.

Example 3-2 $display Task

//Display the string in quotes
$display ("Hello Verilog World") ;
-- Hello Verilog World

I/Display value of current simulation time 230
$display ($ time) ;
-- 230

//Display value of 41-bit virtual address IfeOOOOOOlc and time 200
reg [0:40] virtual_addr;
$displaY("At time %d virtual address is %h", $time, virtual_addr);
-- At time 200 virtual address is IfeOOOOOOlc

//Display value of port_id 5 in binary
reg [4:0] port_id;

Basic Concepts 39

Example 3-2 $display Task (Continued)

$display (" ID of the port is %b", port_id);
-- ID of the port is 00101

IIDisplay x characters
IIDisplay value of 4-bit bus 10xx (signal contention) in binary
reg [3:0] bus;
$display ("Bus value is %b", bus);
-- Bus value is 10xx

//Display the hierarchical name of instance p1 instantiated under
lithe highest-level module called top. No argument is required. This
Ilis a useful feature)
$display("This string is displayed from %m level of hierarchy");
-- This string is displayed from top.p1 level of hierarchy

Special characters are discussed in Section 3.2.9, Strings. Examples of displaying
special characters in strings as discussed are shown in Example 3-3.

Example 3-3 Special Characters

IIDisplay special characters, newline and %
$display("This is a \n multiline string with a %% sign");

This is a
-- multiline string with a % sign

IIDisplay other special characters

Monitoring information

Verilog provides a mechanism to monitor a signal when its value changes. This
facility is provided by the $moni tor task.

Usage: $monitor(pl,p2,p3, ,pn);

The parameters pI, p2, ... ,pn can be variables, signal names, or quoted strings. A
format similar to the $display task is used in the $monitor task. $monitor
continuously monitors the values of the variables or signals specified in the
parameter list and displays all parameters in the list whenever the value of any
one variable or signal changes. Unlike $display, $monitor needs to be invoked
only once.

40 Verilog HDL: A Guide to Digital Design and Synthesis

Only one monitoring list can be active at a time. If there is more than one
$monitor statement in your simulation, the last $monitor statement will be the
active statement. The earlier $monitor statements will be overridden.

Two tasks are used to switch monitoring on and off.

Usage: $monitoron;

$monitoroff;

The $monitoron tasks enables monitoring, and the $monitoroff task disables
monitoring during a simulation. Monitoring is turned on by default at the
beginning of the simulation and can be controlled during the simulation with the
$monitoron and $monitoroff tasks. Examples of monitoring statements are
given in Example 3-4. Note the use of $time in the $monitor statement.

Example 3-4 Monitor Statement

//Monitor time and value of the signals clock and reset
;/Clock toggles every 5 time units and reset goes down at 10 time units
initial
begin

$monitor($time,
" Value of signals clock %b reset

end

Partial output of the monitor statement:
o Value of signals clock = 0 reset = 1
5 Value of signals clock = 1 reset = 1
10 Value of signals clock = 0 reset = 0

Stopping and finishing in a simulation

The task $stop is provided to stop during a simulation.

Usage: $stop;

%b", clock,reset);

The $stop task puts the simulation in an interactive mode. The designer can then
debug the design from the interactive mode. The $stop task is used whenever the
designer wants to suspend the simulation and examine the values of signals in
the design.

The $finish task terminates the simulation.

Usage: $finish;

Examples of $stop and $finish are shown in Example 3-5.

Basic Concepts 41

Example 3-5 Stop and Finish Tasks

II Stop at time 100 in the simulation and examine the results
II Finish the simulation at time.
initial II to be explained later. time = 0
begin
clock = 0;
reset = 1;
#100 $stop; II This will suspend the simulation at time = 100
#900 $finish; II This will terminate the simulation at time = 1000
end

3.3.2 Compiler Directives

Compiler directives are provided in Verilog. All compiler directives are defined
by using the '<keyword> construct. We deal with the two most useful compiler
directives.

'define

The 'define directive is used to define text macros in Verilog (see Example 3-6).
This is similar to the #define construct in C. The defined constants or text macros
are used in the Verilog code by preceding them with a ' (back tick). The Verilog
compiler substitutes the text of the macro wherever it encounters a
, <macro_name>.

Example 3-6 'define Directive

42

Iidefine a text macro that defines default word size
IIUsed as 'WORD_SIZE in the code
'define WORD_SIZE 32

Iidefine an alias. A $stop will be substituted wherever'S appears
'define S $stop;

1:
Iidefine a frequently used text string
'define WORD_REG reg [31:0]
II you can then define a 32-bit register as 'WORD_REG reg32;

Verilog HDL: A Guide to Digital Design and Synthesis

'include

The ' include directive allows you to include entire contents of a Verilog source
file in another Verilog file during compilation. This works similarly to the #include
in the C programming language. This directive is typically used to include header
files, which typically contain global or commonly used definitions (see Example

Example 3-7 'include Directive

/ / Include the file header.^, which contains declarations in the
/ / main verilog file design.^.
'include header.^
...
...
<Verilog code in file design.vz

Two other directives, ' ifdef and ' timescale, are used frequently. They are
discussed in Chapter 9, Useful Modeling Techniques.

3.4 Summary
We discussed the basic concepts of Verilog in this chapter. These concepts lay the
foundation for the material discussed in the further chapters.

Verilog is similar in syntax to the C programming language . Hardware
designers with previous C programming experience will find Verilog easy to
learn.

Lexical conventions for operators, comments, whitespace, numbers, strings,
and identifiers were discussed.

Various data types are available in Verilog. There are four logic vaIues, each
with different strength levels. Available data types include nets, registers,
vectors, numbers, simulation time, arrays, memories, parameters, and
strings. Data types represent actual hardware elements very closely.

Verilog provides useful system tasks to do functions like displaying,
monitoring, suspending, and finishing a simulation.

Basic Concepts

Compiler directive 'define is used to define text macros, and ' include is
used to include other Verilog files.

3.5 Exercises
1. Practice writing the following numbers

a. Decimal number 123 as a sized 8-bit number in binary. Use for
readability.

b. A 16-bit hexadecimal unknown number with all X'S.

c. A 4-bit negative 2 in decimal . Write the 2's complement form for this
number.

d. An unsized hex number 1234.

2. Are the following legal strings? If not, write the correct strings.

a. "This is a string displaying the % sign"

b. "out = in1 + in2"

c. "Please ring a bell \007"

d. "This is a backslash \ character\nU

3. Are these legal identifiers?

d. exec$

4. Declare the following variables in Verilog.

a. An &bit vector net called a-in.

b. A 32-bit storage register called address. Bit 31 must be the most
significant bit. Set the value of the register to a 32-bit decimal number
equal to 3.

c. An integer called count.

d. A time variable called snap-shot.

e. An array called delays. Array contains 20 elements of the type integer.

f. A memory MEM containing 256 words of 64 bits each.

g. A parameter cache-size equal to 512.

Verilog HDL: A Guide to Digital Design and Synthesis

5. What would be the output/ effect of the following statements?

a. latch = 4'd12;
$display("The current value of latch = %b\n", latch);

b. inJeg = 3'd2;
$monitor($time, " In register value = %b\n", inJeg[2:0});

c. 'define MEM_SIZE 1024
$display("The maximum memory size is %h", 'MEM_SIZE);

Basic Concepts 45

46 Verilog HDL: A Guide to Digital Design and Synthesis

Modules and Ports

In the previous chapters, we acquired an understanding of the fundamental
hierarchical modeling concepts, basic conventions, and Verilog constructs. In this
chapter, we take a closer look at modules and ports from the Verilog language
point of view.

Learning Objectives

Identify the components of a Verilog module definition, such as module
names, port lists, parameters, variable declarations, dataflow statements,
behavioral statements, instantiation of other modules, and tasks or
functions.

Understand how to define the port list for a module and declare it in
Verilog.

Describe the port connection rules in a module instantiation.

Understand how to connect ports to external signals, by ordered list, and by
name.

Explain hierarchical name referencing of Verilog identifiers.

4.1 Modules
We discussed how a module is a basic building block in Chapter 2, Hierarchical
Modeling Concepts. We ignored the internals of modules and concentrated on how
modules are defined and instantiated. In this section we analyze the internals of
the module in greater detail.

A module in Verilog consists of distinct parts, as shown in Figure 4-1.

Module Name,
Port List, Port Declarations (if ports present)
Parameters(optional),

Declarations of wires, Data flow statements
regs and other variables (assign)

Instantiation of lower always and initial blocks.
level modules All behavioral statements

go in these blocks.

I Tasks and functions I
endmodule statement

Figure 4-1 Components of a Verilog Module

A module definition always begins with the keyword module. The module name,
port list, port declarations, and optional parameters must come first in a module
definition. Port list and port declarations are present only if the module has any
ports to interact with the external environment.The five components within a
module are - variable declarations, dataflow statements, instantiation of lower modules,
behavioral blocks, and tasks or functions. These components can be in any order and
at an'{ ~lace in the module definition. The endm.odul.e statement must alwa~s
come last in a module definition. All components except module, module name,
and endmodule are optional and can be mixed and matched as per design needs.
Verilog allows multiple modules to be defined in a single file. The modules can be
defined in any order in the file.

To understand the components of a module shown above, let us consider a simple
example of an SR latch, as shown in Figure 4-2.

48 Verilog HDL: A Guide to Digital Design and Synthesis

Figure 4-2 SR Latch

Sbar

(set)

Rbar

(reset)

r------------,
I I

b---.,..-I;...- Q

P--~---LI- Qbar

I I
L. ___________ J

The SR latch has 5 and R as the input ports and Q and Qbar as the output ports.
The SR latch and its stimulus can be modeled as shown in Example 4-1.

Example 4-1 Components of SR Latch

II This example illustrates the different components of a module

II Module name and port list
II SR_latch module
module SR_latch(Q, Qbar, Sbar, Rbar);

IIPort declarations
output Q, Qbar;
input Sbar, Rbar;

II Instantiate lower-level modules
II In this case, instantiate Verilog primitive nand gates
II Note, how the wires are connected in a cross-coupled fashion.
nand nl(Q, Sbar, Qbar);
nand n2(Qbar, Rbar, Q);

II endmodule statement
endmodule

II Module name and port list
II Stimulus module
module Top;

II Declarations of wire, reg, and other variables

Modules and Ports 49

Example 4-1 Components of SR Latch (Continued)

wire q, qbar;
reg set, reset;

/ / Instantiate lower-level modules
/ / In this case, instantiate SR-latch
/ / Feed inverted set and reset signals to the SR latch
SR-latch ml(q, qbar, -set, -reset);

/ / Behavioral block, initial
initial
begin
$monitor($time, " set = %b, reset= %b, q= %b\nU,set,reset,q);
set = 0; reset = 0;
#5 reset = 1;
#5 reset = 0;
#5 set = 1;

end

/ / endmodule statement
endmodule

Notice the following characteristics about the modules defined above.

In the SR latch definition above , notice that all components described in

Figure 4-1 need not be present in a module. We do not find variable
declarations, dataflow (ass ign) statements, or bekavioral blocks (always or
i n i t i a l) .

However, the stimulus block for the SR latch contains module name, wire, reg,
and variable declarations, instantiation of lower level modules, bekavioral block
(i n i t i a l) , and endmodule statement but does not contain port list, port
declarations, and data flow (assign) statements.

Thus, all parts except module , module name, and endmodule are optional and
can be mixed and matched as per design needs.

Verilog HDL: A Guide to Digital Design and Synthesis

4.2 Ports
Ports provide the interface by which a module can communicate with its
environment. For example, the input/output pins of an Ie chip are its ports. The
environment can interact with the module only through its ports. The internals of
the module are not visible to the environment. This provides a very powerful
flexibility to the designer. The internals of the module can be changed without
affecting the environment as long as the interface is not modified. Ports are also
referred to as terminals.

4.2.1 List of Ports

A module definition contains an optional list of ports. If the module does not
exchange any signals with the environment, there are no ports in the list.
Consider a 4-bit full adder that is instantiated inside a top-level module Top. The
diagram for the input/ output ports is shown in Figure 4-3.

Top

full
adder
(4 bit)

fulladd4

Figure 4-3 I/O Ports for Top and Full Adder

--'sum

Notice that in the above figure, the module Top is a top-level module. The module
fulladd4 is instantiated below Top. The module fulladd4 takes input on ports a, b,
and c_in and produces an output on ports sum and c_out. Thus, module fulladd4
performs an addition for its environment. The module Top is a top-level module
in the simulation and does not need to pass signals to or receive signals from the
environment. Thus, it does not have a list of ports. The module names and port
lists for both module declarations in Verilog are as shown in Example 4-2.

Example 4-2 List of Ports

module fulladd4(sUID, c_out, a, b, c_in); //Module with a list of ports
module Top; II No list of ports, top-level module in simulation

Modules and Ports 51

4.2.2 Port Declaration

All ports in the list of ports must be declared in the module. Ports can be declared
as follows:

Verilog Keyword Type of Port

input

output

inout

Input port

Output port

Bidirectional port

Each port in the port list is defined as input, output, or inout, based on the
direction of the port signal. Thus, for the example of the fulladd4 in Example 4-2,
the port declarations will be as shown in Example 4-3.

Example 4-3 Port Declarations

module fulladd4(sum, c_out, a, b, c_in);

//Begin port declarations section
output[3:0] sum;
output c_cout;

input [3:0] a, b;
input c_in;
//End port declarations section

<module internals>

endmodule

Note that all port declarations are implicitly declared as wire in Verilog. Thus, if
a port is intended to be a wire, it is sufficient to declare it as output, input, or
inout. Input or inout ports are normally declared as wires. However, if output
ports hold their value, they must be declared as reg. For example, in the
definition of DFF, in Example 2-5, we wanted the output q to retain its value until
the next clock edge. The port declarations for DFF will look as shown in Example
4-4.

52 Verilog HDL: A Guide to Digital Design and Synthesis

Example 4-4 Port Declarations for DFF

module DFF(q, d, elk, reset);
output q;

4= -

reg q; II Output port q holds value; therefore it is declared as reg.
input d, elk, reset;

endmodule

Ports of the type input and inout cannot be declared as reg because reg
variables store values and input ports should not store values but simply reflect
the changes in the external signals they are connected to.

4.2.3 Port Connection Rules

One can visualize a port as consisting of two units, one unit that is internal to the
module another that is external to the module. The internal and external units are
connected. There are rules governing port connections when modules are
instantiated within other modules. The Verilog simulator complains if any port
connection rules are violated. These rules are summarized in Figure 4-4.

net ~~
r

net A inout
"

input output

reg or net reg or net

Figure 4-4 Port Connection Rules

Inputs

--.. net

Internally, input ports must always be of the type net. Externally, the inputs can
be connected to a variable which is a reg or a net.

Modules and Ports 53

Outputs

Internally, outputs ports can be of the type reg or net. Externally, outputs must
always be connected to a net. They cannot be connected to a reg.

Inouts

Internally, in out ports must always be of the type net. Externally, inout ports must
always be connected to a net.

Width matching

It is legal to connect internal and external items of different sizes when making
inter-module port connections. However, a warning is typically issued that the
widths do not match.

Unconnected ports

Verilog allows ports to remain unconnected. For example, certain output ports
might be simply for debugging, and you might not be interested in connecting
them to the external signals. You can let a port remain unconnected by
instantiating a module as shown below.

fulladd4 faO(SUM, , A, B, C_IN); II Output port c_out is unconnected

Example of illegal port connection

To illustrate port connection rules, assume that the module fulladd4 in Example 4-
3 is instantiated in the stimulus block Top. An example of an illegal port
connection is shown in Example 4-5.

Example 4-5 Illegal Port Connection

module Top;

IIDeclare connection variables
reg [3:0]A,B;
reg C_IN;
reg [3:0] SUM;
wire C_OUT;

54

IIInstantiate fulladd4, call it faO
fulladd4 faO(SUM, C_OUT, A, B, C_IN);
IIIllegal connection because output port sum in module fulladd4
Ilis connected to a register variable SUM in module Top.

Verilog HDL: A Guide to Digital Design and Synthesis

Example 4-5 Illegal Port Connection (Continued)

<stimulus>

endmodule

This problem is rectified if the variable SUM is declared as a net (wire). A similar
problem would occur if an input port were declared as a reg.

4.2.4 Connecting Ports to External Signals

There are two methods of making connections between signals specified in the
module instantiation and the ports in a module definition. The two methods
cannot be mixed.

Connecting by ordered list

Connecting by ordered list is the most intuitive method for most beginners. The
signals to be connected must appear in the module instantiation in the same order
as the ports in the port list in the module definition. Once again, consider the
module fulladd4 defined in Example 4-3. To connect signals in module Top by
ordered list, the Verilog code is shown in Example 4-6. Notice that the external
signals SUM, C_OUT, A, B, and CjN appear in exactly the same order as the
ports sum, c_out, a, b, and cin in module definition of fulladd4.

Example 4-6 Connection by Ordered List

module Top;

//Declare connection variables
reg [3:0]A,B;
reg C_IN;
wire [3:0] SUM;
wire C_OUT;

//Instantiate fulladd4, call it fa_ordered.
//Signals are connected to ports in order (by position)
fulladd4 fa_ordered (SUM, C_OUT, A, B, C_IN);

<stimulus>

Modules and Ports 55

Example 4-6 Connection by Ordered List (Continued)

endmodule

module fulladd4(sum, c_out, a, b, c_in);
output [3: 0] sum;
output c_cout;
input [3:0] a, b;
input c_in;

<module internals>

endmodule

Connecting ports by name

For large designs where modules have, say, 50 ports, remembering the order of
the ports in the module definition is impractical and error prone. Verilog provides
the capability to connect external signals to ports by the port names, rather than
by position. We could connect the ports by name in Example 4-6 above by
instantiating the module fulladd4, as follows. Note that you can specify the port
connections in any order as long as the port name in the module definition
correctly matches the external signal.

II Instantiate module fa_byname and connect signals to ports by name
fulladd4 fa_byname(.c_out(C_OUT), . sum (SUM) , .b(B), .c_in(C_IN),
.a(A),) ;

Note that only those ports that are to be connected to external signals must be
specified in port connection by name. Unconnected ports can be dropped. For
example, if the port c_out were to be kept unconnected, the instantiation of
fulladd4 would look as follows. The port c_out is simply dropped from the port
list.

II Instantiate module fa_byname and connect signals to ports by name
fulladd4 fa_byname(.sum(SUM), .b(B), .c_in(C_IN), .a(A) ,);

56 Verilog HDL: A Guide to Digital Design and Synthesis

4= -
Another advantage of connecting ports by name is that as long as the port name
is not changed, the order of ports in the port list of a module can be rearranged
without changing the port connections in module instantiations.

4.3 Hierarchical Names
We described earlier that Verilog supports a hierarchical design methodology.
Every module instance, signal, or variable is defined with an identifier. A
particular identifier has a unique place in the design hierarchy. Hierarchical name
referencing allows us to denote every identifier in the design hierarchy with a
unique name. A hierarchical name is a list of identifiers separated by dots (/I ./1) for
each level of hierarchy. Thus, any identifier can be addressed from any place in
the design by simply specifying the complete hierarchical name of that identifier.

The top-level module is called the root module because it is not instantiated
anywhere. It is the starting point. To assign a unique name to an identifier, start
from the top-level module and trace the path along the design hierarchy to the
desired identifier. To clarify this process, let us consider the simulation of SR latch
in Example 4-1. The design hierarchy is shown in Figure 4-5.

nl
(nand)
~
~

stimulus
(Root level)

Q, Qbar
S, R
(signals)

Figure 4-5 Design Hierarchy for SR Latch Simulation

q, qbar,
set, reset
(variables)

For this simulation, stimulus is the top-level module. Since the top-level module is
not instantiated anywhere, it is called the root module. The identifiers defined in
this module are q, qbar, set, and reset. The root module instantiates ml, which is a
module of type SR_Iatch. The module ml instantiates nand gates nl and n2. Q,
Qbar, S, and R are port signals in instance ml. Hierarchical name referencing

Modules and Ports 57

assigns a unique name to each identifier. To assign hierarchical names, use the
module name for root module and instance names for all module instances below
the root module. Example 4-7 shows hierarchical names for all identifiers in the
above simulation. Notice that there is a dot (.) for each level of hierarchy from the
root module to the desired identifier.

Example 4-7 Hierarchical Names

stimulus
stimulus.qbar
stimulus.reset
stimu1us.ml.Q
stimu1us.ml.S
stimulus.nl

Each identifier in the design is uniquely specified by its hierarchical path name.
To display the level of hierarchy, use the special character %m in the $display
task. See Table 3-4, String Format Specifications, for details.

4.4 Summary
In this chapter we discussed the following aspects of Verilog

Module definitions contain various components. Keywords module and
endmodule are mandatory. Other components-port list, port declarations,
variable and signal declarations, dataflow statements, behavioral blocks, lower-level
module instantiations, and tasks or functions-are optional and can be added
as needed.

Ports provide the module with a means to communicate with other modules
or its environment. A module can have a port list. Ports in the port list must
be declared as input, output, or inout. When instantiating a module, port
connection rules are enforced by the Verilog simulator.

Ports can be connected by name or by ordered list.

Each identifier in the design has a unique hierarchical name. Hierarchical
names allow us to address any identifier in the design from any other level
of hierarchy in the design.

Verilog HDL: A Guide to Digital Design and Synthesis

4.5 Exercises
1. What are the basic components of a module? Which components are

mandatory?

2. Does a module that does not interact with its environment have any I/O
ports? Does it have a port list in the module definition?

3. A 4-bit parallel shift register has I/O pins as shown in the figure below.
Write the module definition for this module shiftJeg. Include the list of
ports and port declarations. You do not need to show the internals.

---. reg_out
shiftJeg [3:0]

(4 bit)

4. Declare a top-level module stimulus. Define REGjN (4 bit) and CLK (1 bit)
as reg register variables and REG_OUT (4 bit) as wire. Instantiate the
module shiftJeg and call it sr1. Connect the ports by ordered list.

5. Connect the ports in Step 4 by name.

6. Write the hierarchical names for variables REGjN, CLK, and REG_OUT.

7. Write the hierarchical name for the instance sr1. Write the hierarchical names
for its ports clock and reg_in.

Modules and Ports 59

60 Verilog HDL: A Guide to Digital Design and Synthesis

Gate-Level Modeling

In the earlier chapters, we laid the foundations of Verilog design by discussing
design methodologies, basic conventions and constructs, modules and port
interfaces. In this chapter, we get into modeling actual hardware circuits in
Verilog.

We discussed the four levels of abstraction used to describe hardware. In this
chapter, we discuss a design at a low level of abstraction-gate level. Most digital
design is now done at gate level or higher levels of abstraction. At gate level, the
circuit is described in terms of gates (e.g., and, nand). Hardware design at this
level is intuitive for a user with a basic knowledge of digital logic design because
it is possible to see a one-to-one correspondence between the logic circuit diagram
and the Verilog description. Hence, in this book, we chose to start with gate-level
modeling and move to higher levels of abstraction in the succeeding chapters.

Actually, the lowest level of abstraction is switch- (transistor-) level modeling.
However, with designs getting very complex, very few hardware designers work
at switch level. Therefore, we will defer switch-level modeling to Chapter 11,
Switch-Level Modeling, in Part 2 of this book.

Learning Objectives

Identify logic gate primitives provided in Verilog.

Understand instantiation of gates, gate symbols and truth tables for andlor
and buflnot type gates.

Understand how to construct a Verilog description from the logic diagram of
the circuit.

Describe rise, fall, and turn-off delays in the gate-level design.

Explain min, max, and typ delays in the gate-level design.

=5 -
5.1 Gate Types
A logic circuit can be designed by use of logic gates. Verilog supports basic logic
gates as predefined primitives. These primitives are instantiated like modules
except that they are predefined in Verilog and do not need a module definition.
All logic circuits can be designed by using basic gates. There are two classes of
basic gates: and/or gates and but/not gates.

5.1.1 And/Or Gates

And/ or gates have one scalar output and multiple scalar inputs. The first terminal
in the list of gate terminals is an output and the other terminals are inputs. The
output of a gate is evaluated as soon as one of the inputs changes. The and/or
gates available in Verilog are shown below.

I =d nand
or
nor

xor
xnor

The corresponding logic symbols for these gates are shown in Figure 5-1. We
consider gates with two inputs. The output terminal is denoted by out. Input
terminals are denoted by il and i2.

and nand

or nor

~ out '1=L>-
12

xor xnor

Figure 5-1 Basic Gates

62 Verilog HDL: A Guide to Digital Design and Synthesis

5= -
These gates are instantiated to build logic circuits in Verilog. Examples of gate
instantiations are shown below. In Example 5-1, for all instances, OUT is
connected to the output out, and INl and IN2 are connected to the two inputs i1
and i2 of the gate primitives. Note that the instance name does not need to be
specified for primitives. This lets the designer instantiate hundreds of gates
without giving them a name.

More than two inputs can be specified in a gate instantiation. Gates with more
than two inputs are instantiated by simply adding more input ports in the gate
instantiation (see Example 5-1). Verilog automatically instantiates the appropriate
gate.

Example 5-1 Gate Instantiation of And/Or Gates

wire OUT, IN1, IN2;

II basic gate instantiations.
and al(OUT, IN1, IN2);
nand nal(OUT, IN1, IN2);
or orl(OUT, IN1, IN2);
nor norl(OUT, IN1, IN2);
xor xl (OUT, IN1, IN2);
xnor nxl(OUT, IN1, IN2);

II More than two inputs; 3 input nand gate
nand nal_3inp(OUT, IN1, IN2, IN3);

II gate instantiation without instance name
and (OUT, IN1, IN2); II legal gate instantiation

The truth tables for these gates define how outputs for the gates are computed
from the inputs. Truth tables are defined assuming two inputs. The truth tables
for these gates are shown in Table 5-1. Outputs of gates with more than two
inputs are computed by applying the truth table iteratively.

Gate-Level Modeling 63

- 5 --
Table 5-1 Truth Tables for And/Or Gates

i1 i1
and a 1 x z nand a 1 x z

a a a a a a 1 1 1 1

1 a 1 x x 1 1 a x x
i2 i2

x a x x x x 1 x x x

z a x x x z 1 x x x

il i1
or a 1 x z nor a 1 x z

a a 1 x x a 1 a x x

1 1 1 1 1 1 a a a a
i2 i2

x x 1 x x x x a x x

z x 1 x x z x a x x

i1 i1
xor a 1 x z xnor a 1 x z

a a 1 x x a 1 a x x

i2 1 1 a x x
i2 1 a 1 x x

x x x x x x x x x x

z x x x x z x x x x

5.1.2 Buf/Not Gates

Buf/not gates have one scalar input and one or more scalar outputs. The last
terminal in the port list is connected to the input. Other terminals are connected
to the outputs. We will discuss gates that have one input and one output.

64 Verilog HDL: A Guide to Digital Design and Synthesis

5= -
Two basic buf/not gate primitives are provided in Verilog.

not

The symbols for these logic gates are shown in Figure 5-2.

in __ .-,[>>--__ out in ---[>o_----::out

buf not

Figure 5-2 Buf and Not gates

These gates are instantiated in Verilog as shown Example 5-2. Notice that these
gates can have multiple outputs but exactly one input, which is the last terminal
in the port list.

Example 5-2 Gate Instantiations of Buf/Not Gates

II basic gate instantiations.
buf bl(OUT1, IN);
not nl(OUT1, IN);

II More than two outputs
buf bl_2out(OUT1, OUT2, IN);

II gate instantiation without instance name
not (OUT1, IN); II legal gate instantiation

The truth tables for these gates are very simple. Truth tables for gates with one
input and one output are shown in Table 5-2.

Table 5-2 Truth Tables for Buf/Not gates

buf in out not in out

0 0 0 1

1 1 1 0

x x x x

z x z x

Gate-Level Modeling 65

=5 -
Bufif/notif

Gates with an additional control signal on buf and not gates are also available.

I bufif1 bufifO
notifl
notifO

These gates propagate only if their control signal is asserted. They propagate z if
their control signal is deasserted. Symbols for bufif/notif are shown in Figure 5-3.

in

ctr1J?
out in y out

ctrl

bufifl notifl

in

ctr1}?
out in out

ctrl

bufifO notifO

Figure 5-3 Gates Bufif and Notif

The truth tables for these gates are shown in Table 5-3.

66 Verilog HDL: A Guide to Digital Design and Synthesis

5 ---
Table 5-3 Truth Tables for Bufif/Notif Gates

ctrl ctrl

bufifl 0 1 x z bufifO 0 1 x z

a z 0 L L 0 0 z L L

1 z 1 H H in 1 1 z H H
in

x z x x x x x z x x

z z x x x z x z x x

ctrl ctrl

notifl 0 1 x z notifO 0 1 x z

0 z 1 H H 0 1 z H H

1 z 0 L L in 1 0 z L L
in

x z x x x x x z x x

z z x x x z x z x x

These gates are used when a signal is to be driven only when the control signal is
asserted. Such a situation is applicable when multiple drivers drive the signal.
These drivers are designed to drive the signal on mutually exclusive control
signals. Example 5-3 shows examples of instantiation of bufif and notif gates.

Example 5-3 Gate Instantiations of Bufif/Notif Gates

//Instantiation of bufif gates.
bufifl bl (out, in, ctrl) ;
bufifO bO (out, in, ctrl) ;

/ !Instantiation of notif gates
notifl nl (out, in, ctrl) ;
notifO nO (out, in, ctrl) ;

Gate-Level Modeling 67

=5 -
5.1.3 Examples

Having understood the various types of gates available in Verilog, we will discuss
a real example that illustrates design of gate-level digital circuits.

Gate-level multiplexer

We will design a 4-to-1 multiplexer with 2 select signals. Multiplexers serve a
useful purpose in logic design. They can connect two or more sources to a single
destination. They can also be used to implement boolean functions. We will
assume for this example that signals 51 and sO do not get the value x or z. The
I/O diagram and the truth table for the multiplexer are shown in Figure 5-4. The
I/O diagram will be useful in setting up the port list for the multiplexer.

iO
sl sO out

i1
4-to-1 --..out 0 0 10

i2 Mux

i3
0 1 II

1 0 12

1 1 13

sl sO

Figure 5-4 4-to-l Multiplexer

We will implement the logic for the multiplexer using basic logic gates. The logic
diagram for the multiplexer is shown in Figure 5-5.

68 Verilog HDL: A Guide to Digital Design and Synthesis

Figure 5-5

r--------------------------~
iO ---1... _______ ---1 yO I

I I
I I
I I
I II

i1 -+-----+------~--~

s1n

s1 -;-...... -

sO~--------~--~

sOn

y3

I
I
I

L __________________________ ~
Logic Diagram for Multiplexer

5= -

out

The logic diagram has a one-to-one correspondence with the Verilog description.
The Verilog description for the multiplexer is shown in Example 5-4. Two
intermediate nets, sOn and sl n, are created; they are complements of input signals
51 and sO. Internal nets yO, yl, y2, y3 are also required. Note that instance names
are not specified for primitive gates, not, and, and or. Instance names are
optional for Verilog primitives but are mandatory for instances of user-defined
modules.

Example 5-4 Verilog Description of Multiplexer

II Module 4-to-1 multiplexer. Port list is taken exactly from
II the IIO diagram.
module mux4_to_1 (out, iO, i1, i2, i3, s1, sO);

II Port declarations from the IIO diagram
output out;
input iO, i1, i2, i3;
input s1, sO;

Gate-Level Modeling 69

=5 -
Example 5-4 Verilog Description of Multiplexer (Continued)

II Internal wire declarations
wire sin, sOn;
wire yO, yl, y2, y3;

II Gate instantiations

II Create sin and sOn signals.
not (sin, sl);
not (sOn, sO);

II 3-input and gates instantiated
and (yO, iO, sin, sOn);
and (yl, ii, sin, sO);
and (y2, i2, sl, sOn);
and (y3, i3, sl, sO);

II 4-input or gate instantiated
or (out, yO, yl, y2, y3);

endmodule

This multiplexer can be tested with the stimulus shown in Example 5-5. The
stimulus checks that each combination of select signals connects the appropriate
input to the output. The signal OUTPUT is displayed one time unit after it
changes. System task $monitor could also be used to display the signals when
they change values.

Example 5-5 Stimulus for Multiplexer

II Define the stimulus module (no ports)
module stimulus;

II Declare variables to be connected
II to inputs
reg INO, IN1, IN2, IN3;
reg Sl, SO;

II Declare output wire
wire OUTPUT;

II Instantiate the multiplexer
mux4 to_l mymux(OUTPUT, INO, IN1, IN2, IN3, Sl, SO);

70 Verilog HDL: A Guide to Digital Design and Synthesis

Example 5-5 Stimulus for Multiplexer (Continued)

II Define the stimulus module (no ports)

II Stimulate the inputs
initial
begin

II set input lines
INa = 1; IN1 = 0; IN2 = 1; IN3 = 0;
#1 $display("INO= %b, IN1= %b, IN2= %b, IN3=

%b\n",INO,IN1,IN2,IN3);

II choose INa
Sl = 0; so = 0;

5= -

#1 $display ("Sl %b, SO %b, OUTPUT %b \n", Sl, SO, OUTPUT);

II choose IN1
Sl = 0; SO = 1;
#1 $display ("Sl %b, SO %b, OUTPUT %b \n", Sl, SO, OUTPUT);

II choose IN2
Sl = 1; SO = 0;
#1 $display ("Sl %b, SO %b, OUTPUT %b \n", S1, SO, OUTPUT);

II choose IN3
Sl = 1; so = 1;
#1 $display (" Sl %b, SO %b, OUTPUT %b \n", S1, SO, OUTPUT);

end

endmodule

The output of the simulation is shown below. Each combination of the select
signals is tested.

INO- 1, IN1- 0, IN2- 1, IN3- a

Sl 0, so 0, OUTPUT 1

Sl 0, so 1, OUTPUT a

Sl 1, so 0, OUTPUT 1

Sl 1, so 1, OUTPUT a

Gate-Level Modeling 71

=5 -
4-bit full adder

In this example, we design a 4-bit full adder whose port list was defined in
Section 4.2.1, List of Ports. We use primitive logic gates, and we apply stimulus to
the 4-bit full adder to check functionality. For the sake of simplicity, we will
implement a ripple carry adder. The basic building block is a I-bit full adder. The
mathematical equations for a I-bit full adder are shown below.

sum= (a ffi b ffi cin)

cout = (a· b) + cin . (a ffi b)

The logic diagram for a I-bit full adder is shown in Figure 5-6.

r-----------------------------l
a s1 I
b sum

I
I

c_in I L _____________________________ ~

Figure 5-6 l-bit Full Adder

This logic diagram for the I-bit full adder is converted to a Verilog description,
shown in Example 5-6.

Example 5-6 Verilog Description for l-bit Full Adder

II Define a 1-bit full adder
module fulladd(sum, c_out, a, b, c_in);

II 1/0 port declarations
output sum, c_out;
input a, b, c_in;

II Internal nets
wire sl, c1, c2;

72 Verilog HDL: A Guide to Digital Design and Synthesis

Example 5-6 Verilog Description for l-bit Full Adder (Continued)

II Instantiate logic gate primitives
xor (51, a, b);
and (cl, a, b);

xor (sum, 51, c_in);
and (c2, 51, c_in);

or (c_out, c2, cl);

endmodule

5= -

A 4-bit ripple carry full adder can be constructed from four I-bit full adders, as
shown in Figure 5-7. Notice that faD, fal, fa2, and fa3 are instances of the module
fulladd (I-bit full adder).

a[O] b[O] a[1] b[1] a[2] b[2] a[3] b[3]

r -l-- i- -.- -.- I

full c1 full c2 full c3 full c_out
adder adder adder adder
faO fal fa2 fa3

L_ ...J

sum [0] sum[1] sum[2] sum[3]

Figure 5-7 4-bit Full Adder

This structure can be translated to Verilog as shown in Example 5-7. Note that the
port names used in a I-bit full adder and a 4-bit full adder are the same but they
represent different elements. The element sum in a I-bit adder is a scalar quantity
and the element sum in the 4-bit full adder is a 4-bit vector quantity. Verilog keeps
names local to a module. Names are not visible outside the module unless full­
path, hierarchical name referencing is used. Also note that instance names must
be specified when defined modules are instantiated, but when instantiating
Verilog primitives, the instance names are optional.

Gate-Level Modeling 73

=5 -
Example 5-7 Verilog Description for 4-bit Full Adder

II Define a 4-bit full adder
module fulladd4(sum, c_out, a, b, c_in);

II 110 port declarations
output [3:0] sum;
output c_out;
input[3:0] a, b;
input c_in;

II Internal nets
wire cl, c2, c3;

II Instantiate four I-bit full adders.
fulladd faO(sum[O], cl, a[O], b[O], c_in);
fulladd fal(sum[l], c2, a[l], b[l], cl);
fulladd fa2(sum[2], c3, a[2], b[2], c2);
fulladd fa3(sum[3], c_out, a[3], b[3], c3);

endmodule

Finally, the design must be checked by applying stimulus, as shown in Example
5-8. The module stimulus stimulates the 4-bit full adder by applying a few input
combinations and monitors the results.

Example 5-8 Stimulus for 4-bit Full Adder

II Define the stimulus (top level module)
module stimulus;

II Set up variables
reg [3:0] A, B;
reg C_IN;
wire [3:0] SUM;
wire C_OUT;

II Instantiate the 4-bit full adder. call it FAl_4
fulladd4 FAl_4(SUM, C_OUT, A, B, C_IN);

II Setup the monitoring for the signal values

74 Verilog HDL: A Guide to Digital Design and Synthesis

Example 5-8

initial
begin

5= -
Stimulus for 4-bit Full Adder (Continued)

$monitor($time," A= %b, B=%b, C_IN= %b, --- C_OUT= %b, SUM=: %b\n" ,
A, B, C_IN, C_OUT, SUM);

end

II Stimulate inputs
initial
begin

A = 4'dO; B = 4'dO; C_IN

#5 A 4' d3; B 4'd4;

#5 A 4'd2; B 4'd5;

#5 A 4 'd9; B 4 'd9;

#5 A 4'd10; B 4'd15;

#5 A 4'd10; B 4 'd5; C
end

endmodule

l'bO;

IN l'b1;

The output of the simulation is shown below.

0 A= 0000, B=OOOO, C - IN= 0, C - OUT=

5 A= 0011, B=0100, C - IN= 0, C - OUT=

10 A= 0010, B=0101, C - IN= 0, C - OUT=:

15 A= 1001, B=1001, C - IN= 0, C - OUT=:

20 A=: 1010, B=l1l1 , C - IN= 0, C - OUT=

25 A= 1010, B=0101, C - IN= 1, , C - OUT= 1,

0, SUM=: 0000

0, SUM= 0111

0, SUM=: 0111

1, SUM= 0010

1, SUM= 1001

SUM= 0000

Gate-Level Modeling 75

=5 -
5.2 Gate Delays
Until now, we described circuits without any delays (i.e., zero delay). In real
circuits, logic gates have delays associated with them. Gate delays allow the
Verilog user to specify delays through the logic circuits. Pin-to-pin delays can also
be specified in Verilog. They are discussed in Chapter 10, Timing and Delays.

5.2.1 Rise, Fall, and Turn-off Delays

There are three types of delays from the inputs to the output of a primitive gate.

Rise delay

The rise delay is associated with a gate output transition to a 1 from another
value.

1

0, x or z

Fall delay

The fall delay is associated with a gate output transition to a 0 from another
value.

1, x or z

Turn-off delay

The turn-off delay is associated with a gate output transition to the high
impedance value (z) from another value.

If the value changes to x, the minimum of the three delays is considered.

76 Verilog HDL: A Guide to Digital Design and Synthesis

o

5= -
Three types of delay specifications are allowed. If only one delay is specified, this
value is used for all transitions. If two delays are specified, they refer to the rise
and fall delay values. The turn-off delay is the minimum of the two delays. If all
three delays are specified, they refer to rise, fall, and turn-off delay values. If no
delays are specified, the default value is zero. Examples of delay specification are
shown in Example 5-9.

Example 5-9 Types of Delay Specification

II Delay of delay_time for all transitions
and # (delay_time) al(out, il, i2);

II Rise and Fall Delay Specification.
and # (rise_val, fall_val) a2(out, il, i2);

II Rise, Fall, and Turn-off Delay Specification
bufifO # (rise_val, fall_val, turnoff_vall bl (out, in, control);

Examples of delay specification are shown below.

and #(5) al(out, il, i2); IIDelay of 5 for all transitions
and #(4,6) a2(out, il, i2); II Rise = 4, Fall = 6
bufifO # (3,4,5) bl (out, in, control) ; / / Rise = 3, Fall = 4, Turn-off 5

5.2.2 Min/Typ/Max Values

Verilog provides an additional level of control for each type of delay mentioned
above. For each type of delay-rise, fall, and turn-off-three values, min, typ, and
max, can be specified. Anyone value can be chosen at the start of the simulation.
Mini typ I max values are used to model devices whose delays vary within a
minimum and maximum range because of the Ie fabrication process variations.

Min value

The min value is the minimum delay value that the designer expects the gate to
have.

Typval

The typ value is the typical delay value that the designer expects the gate to have.

Gate-Level Modeling 77

=5 -
Max value

The max value is the maximum delay value that the designer expects the gate to
have.

Min, typ, or max values can be chosen at Verilog run time. Method of choosing a
min/typ/max value may vary for different simulators or operating systems. (For
Verilog-XUM, the values are chosen by specifying options +maxdelays,
+typdelay, and +mindelays at run time. If no option is specified, the typical delay
value is the default). This allows the designers the flexibility of building three
delay values for each transition into their design. The designer can experiment
with delay values without modifying the design.

Examples of min, typ, and max value specification for Verilog-XL are shown in
Example 5-10.

Example 5-10 Min, Max and Typical Delay Values

II One delay
II if +mindelays, delay= 4
II if +typdelays, delay= 5
II if +maxdelays, delay= 6
and #(4:5:6) al(out, il, i2) ;

II Two delays
II if +mindelays, rise= 3, fall= 5, turn-off
II if +typdelays, rise= 4, fall= 6, turn-off
II if +maxdelays, rise= 5, fall= 7, turn-off
and #(3:4:5,5:6:7) a2(out, il, i2);

II Three delays
II if +mindelays, rise= 2 fall= 3 turn-off
II if +typdelays, rise= 3 fall= 4 turn-off
II if +maxdelays, rise= 4 fall= 5 turn-off
and #(2:3:4, 3:4:5, 4:5:6) a3(out, il,i2);

4
5
6

min(3,5)
min(4,6)
min(5,7)

Examples of invoking the Verilog-XL simulator with the command-line options
are shown below. Assume that the module with delays is declared in the file test.v.

78

Ilinvoke simulation with maximum delay
> verilog test.v +maxdelays

Ilinvoke simulation with minimum delay

Verilog HDL: A Guide to Digital Design and Synthesis

> verilog test.v +mindelays

Ilinvoke simulation with typical delay
> verilog test.v +typdelays

5.2.3 Delay Example

5= -

Let us consider a simple example to illustrate the use of gate delays to model
timing in the logic circuits. A simple module called D implements the following
logic equations:

out= (a· b) + c

The gate-level implementation is shown in Module D (Figure 5-8). The module
contains two gates with delays of 5 and 4 time units.

Figure 5-8 Module D

a
b

D ,------------,
I I

I
I
I

c I
I I
L ____________ J

out

The module D is defined in Verilog as shown in Example 5-11.

Example 5-11 Verilog Definition for Module D with Delay

II Define a simple combination module called D
module D (out, a, b, c);

II 1/0 port declarations
output out;
input a,b,c;

II Internal nets
wire e;

II Instantiate primitive gates to build the circuit
and #(5) al(e, a, b); IIDelay of 5 on gate al

Gate-Level Modeling 79

=5 -
Example 5-11 Verilog Definition for Module D with Delay (Continued)

or #(4) ol(out, e,c); IIDelay of 4 on gate 01

endmodule

This module is tested by the stimulus file shown in Example 5-12.

Example 5-12 Stimulus for Module D with Delay

II Stimulus (top-level module)
module stimulus;

II Declare variables
reg A, B, C;
wire OUT;

II Instantiate the module D
D d1(OUT, A, B, C);

II Stimulate the inputs. Finish the simulation at 40 time units.
initial
begin

A= l'bO; B= l'bO; C= l'bO;

#10 A= l'b1; B= l'b1; C= l'b1;

#10 A= l'b1; B= l'bO; C= l'bO;

#20 $finish;
end

endmodule

The waveforms from the simulation are shown in Figure 5-9 to illustrate the effect
of specifying delays on gates. The waveforms are not drawn to scale. However,
simulation time at each transition is specified below the transition.

80 Verilog HDL: A Guide to Digital Design and Synthesis

5= -
A

1 1

1 1

B 1 1

1 1

C 1 1

5 1 1 1

XXX~ I"" 1 ~I ~I E I"" 5
1 4 ~ 1 1 ~L OUT XXXXXXX I I"" 1 I"" 4

Time 0 5 9 10 14 15 20 25 29

Figure 5-9 Waveforms for Delay Simulation

1. The outputs E and OUT are initially unknown.

2. At time 10, after A, B, and C all transition to 1, OUT transitions to 1 after a
delay of 4 time units and E changes value to 1 after 5 time units.

3. At time 20, Band C transition to o. E changes value to 0 after 5 time units,
and OUT transitions to 0,4 time units after E changes.

It is a useful exercise to understand how the timing for each transition in the
above waveform corresponds to the gate delays shown in Module D.

5.3 Summary
In this chapter we discussed how to model gate-level logic in Verilog. We
discussed different aspects of gate-level design.

• Basic types of gates are and, or, xor, buf, and not. Each gate has a logic
symbol, truth table, and a corresponding Verilog primitive. Primitives are
instantiated like modules except that they are predefined in Verilog. Output
of a gate is evaluated as soon as one of its inputs changes.

Gate-Level Modeling 81

For gate-level design, start with the logic diagram, write the Verilog
description for the logic by using gate primitives, provide stimulus, and
look at the output. Two design examples, a 4-to-1 multiplexer and a 4-bit full
adder, were discussed. Each step of the design process was explained.

Three types of delays are associated with gates, rise, fall, and turn-off. Verilog
allows specification of one, two, or three delays for each gate. Values of rise,
fall, and turn-off delays are computed by Verilog, based on the one, two, or
three delays specified.

For each type of delay, a minimum, typical, and maximum value can be
specified. The user can choose which value to apply at simulation time. This
provides the flexibility to experiment with three delay values without
changing the Verilog code.

The effect of propagation delay on waveforms was explained by the simple,
two-gate logic example. For each gate with a delay of t, the output changes t
time units after any of the inputs change.

5.4 Exercises
1. Create your own 2-input Verilog gates called my-or, my-and and my-not from

2-input nand gates. Check the functionality of these gates with a stimulus
module.

2. A 2-input xo r gate can be built from my-and, my-or and my-not gates.
Construct an x o r module in Verilog that realizes the logic function, z = xy' +
x'y. Inputs are X and y, and z is the output. Write a stimulus module that
exercises all four combinations of X and y inputs.

3. The l-bit full adder described in the chapter can be expressed in a sum of
products form.

sum = a.b.c-in + a'.b.c-in' + a'.b'.c-in + a.b'.c-in'

c-out = a.b + b.c-in + a.c-in

Assuming a, b, c-in are the inputs and sum and c-out are the outputs, design
a logic circuit to implement the l-bit full adder, using only and, not, and or
gates. Write the Verilog description for the circuit. You may use up to 4-input
Verilog primitive and and o r gates. Write the stimulus for the full adder and
check the functionality for all input combinations.

Verilog HDL: A Guide to Digital Design and Synthesis

4. The logic diagram for an RS latch with delay is shown below.

reset

set

(reset)

r------------,
I I

p--r.....,Ir-- q

P----">---!-I- qbar

I I
L __________ --.J

5= -

Write the Verilog description for the RS latch. Include delays of 1 unit when
instantiating the nor gates. Write the stimulus module for the RS latch,
using the following table, and verify the outputs.

set reset qn+l

o
o
1

1

o
1

o

1

'In
o
1

?

Gate-Level Modeling 83

=5 -
5. Design a 2-to-I multiplexer using bufifO and bufifl gates as shown below.

84

r - - - -,

bufifI

inI -..,...--l

S out

inO bI

bufifO
L___ .J

The delay specification for gates bl and b2 are as follows.

Rise

Fall

Turnoff

Min

1

3

5

Typ

2

4

6

Apply stimulus and test the output values.

Max

3

5

7

Verilog HDL: A Guide to Digital Design and Synthesis

Dataflow Modeling

For small circuits, the gate-level modeling approach works very well because the
number of gates is limited and the designer can instantiate and connect every
gate individually. Also, gate-level modeling is very intuitive to a designer with a
basic knowledge of digital logic design. However, in complex designs the number
of gates is very large. Thus, designers can design more effectively if they
concentrate on implementing the function at a level of abstraction higher than
gate level. Dataflow modeling provides a powerful way to implement a design.
Verilog allows a circuit to be designed in terms of the data flow between registers
and how a design processes data rather than instantiation of individual gates.
Later in this chapter, the benefits of dataflow modeling will become more
apparent.

With gate densities on chips increasing rapidly, dataflow modeling has assumed
great importance. No longer can companies devote engineering resources to
handcrafting entire designs with gates. Currently, automated tools are used to
create a gate-level circuit from a dataflow design description. This process is
called logic synthesis. Dataflow modeling has become a popular design approach
as logic synthesis tools have become sophisticated. This approach allows the
designer to concentrate on optimizing the circuit in terms of data flow. For
maximum flexibility in the design process, designers typically use a Verilog
description style that combines the concepts of gate-level, data flow, and
behavioral design. In the digital design community , the term RTL (Register
Transfer Level) design is commonly used for a combination of dataflow modeling
and behavioral modeling.

Learning Objectives

Describe the continuous assignment (assign) statement, restrictions on the
assign statement, and the implicit continuous assignment statement.

Explain assignment delay, implicit assignment delay, and net declaration
delay for continuous assignment statements.

Define expressions, operators, and operands.

List operator types for all possible operations-arithmetic, logical, relational,
equality, bitwise, reduction, shift, concatenation, and conditional.

Use dataflow constructs to model practical digital circuits in Verilog.

6.1 Continuous Assignments
A continuous assignment is the most basic statement in dataflow modeling, used to
drive a value onto a net. A continuous assignment replaces gates in the
description of the circuit and describes the circuit at a higher level of abstraction.
A continuous assignment statement starts with the keyword assign. The syntax
of an assign statement is as follows.

//Syntax of assign statement in the simplest form
~continuous~assign~

. . . .= assign <drive-strength>?<delay>? <list-of-assignments>;

Notice that drive strength is optional and can be specified in terms of strength
levels discussed in Section 3.2.1, Value Set. We will not discuss drive strength
specification in this chapter. The default value for drive strength is strong1 and
strongo. The delay value is also optional and can be used to specify delay on the
assim statement. This is like specifying delays for gates. Delay specification is
discussed in this chapter. Continuous assignments have the following
characteristics.

1. The left hand side of an assignment must always be a scalar or vector net or
a concatenation of scalar and vector nets. It cannot be a scalar or vector
register. Concatenations are discussed in Section 6.4.8, Concatenation
Operator.

2. Continuous assignments are always active. The assignment expression is
evaluated as soon as one of the right-hand-side operands changes and the
value is assigned to the left-hand-side net.

3. The operands on the right-hand side can be registers or nets or function
calls. Registers or nets can be scalars or vectors.

4. Delay values can be specified for assignments in terms of time units. Delay
values are used to control the time when a net is assigned the evaluated
value. This feature is similar to specifying delays for gates. It is very useful
in modeling timing behavior in real circuits.

Verilog HDL: A Guide to Digital Design and Synthesis

Examples of continuous assignments are shown below. Operators such as &, /\, I,
{, } and + used in the examples are explained in Section 6.4, Operator Types. At this
point, concentrate on how the assign statements are specified.

Example 6-1 Examples of Continuous Assignment

II Continuous assign. out is a net. i1 and i2 are nets.
assign out = il & i2;

II Continuous assign for vector nets. addr is a 16-bit vector net
II addr1 and addr2 are 16-bit vector registers.
assign addr[15:01 = addrl_bits[15:01 A addr2_bits[15:01;

II Concatenation. Left-hand side is a concatenation of a scalar
II net and a vector net.
assign {c_out, sum[3:01} = a[3:01 + b[3:0] + c_in;

We now discuss a shorthand method of placing a continuous assignment on a net.

6.1.1 Implicit Continuous Assignment

Instead of declaring a net and then writing a continuous assignment on the net,
Verilog provides a shortcut by which a continuous assignment can be placed on a
net when it is declared. There can be only one implicit declaration assignment per
net because a net is declared only once.

In the example below, an implicit continuous assignment is contrasted with a
regular continuous assignment.

IIRegular continuous assignment
wire out;
assign out = inl & in2;

/ISame effect is achieved by an implicit continuous assignment
wire out = inl & in2;

Dataflow Modeling 87

=6 -
6.2 Delays
Delay values control the time between the change in a right-hand-side operand
and when the new value is assigned to the left-hand side. Three ways of
specifying delays in continuous assignment statements are regular assignment
delay, implicit continuous assignment delay, and net declaration delay.

6.2.1 Regular Assignment Delay

The first method is to assign a delay value in a continuous assignment statement.
The delay value is specified after the keyword assign. Any change in values of
inl or in2 will result in a delay of 10 time units before recomputation of the
expression inl & in2, and the result will be assigned to out. If inl or in2 changes
value again before 10 time units when the result propagates to out, the values of inl
and in2 at the time of recomputation are considered. This property is called inertial
delay. An input pulse that is shorter than the delay of the assignment statement
does not propagate to the output.

assign #10 out in1 & in2; II Delay in a continuous assign

The waveform in Figure 6-1 is generated by simulating the above assign
statement. It shows the delay on signal out. Note the following changes.

88

1. When signals inl and in2 go high at time 20, out goes to a high 10 time units
later (time = 30).

2. When inl goes low at 60, out changes to low at 70.

3. However, inl changes to high at 80, but it goes down to low before 10 time
units have elapsed.

4. Hence, at the time of recomputation, 10 units after time 80, inl is o. Thus, out
gets the value O. A pulse of width less than the specified assignment delay is
not propagated to the output.

Verilog HDL: A Guide tv Digital Design and Synthesis

I

in! ll-
I

in2 I
I I

out xxxxxi I I
I I I

time 10 20 30 60 70 8085
Figure 6-1 Delays

Inertial delays also apply to gate delays, discussed in Chapter 5, Gate-Level
Modeling.

6.2.2 Implicit Continuous Assignment Delay

An equivalent method is to use an implicit continuous assignment to specify both
a delay and an assignment on the net.

//implicit continuous assignment delay
wire #10 out = in1 & in2;

//same as
wire out;
assign #10 out in1 & in2;

The declaration above has the same effect as defining a wire out and declaring a
continuous assignment on out.

6.2.3 Net Declaration Delay

A delay can be specified on a net when it is declared without putting a
continuous assignment on the net. If a delay is specified on a net out, then any
value change applied to the net out is delayed accordingly. Net declaration delays
can also be used in gate-level modeling.

Dataflow Modeling 89

IINet Delays
wire # 10 out;
assign out = in1 & in2;

liThe above statement has the same effect as the following.
wire out;
assign #10 out = in1 & in2;

Having discussed continuous assignments and delays, let us take a closer look at
expressions, operators, and operands that are used inside continuous
assignments.

6.3 Expressions, Operators, and Operands
Dataflow modeling describes the design in terms of expressions instead of
primitive gates. Expressions, operators, and operands form the basis of dataflow
modeling.

6.3.1 Expressions

Expressions are constructs that combine operators and operands to produce a
result.

90

II Examples of expressions. Combines operands and operators
a A b
addr1[20:17] + addr2[20:17]
in1 I in2

Verilog HDL: A Guide to Digital Design and Synthesis

6.3.2 Operands

Operands can be anyone of the data types defined in Section 3.2, Data Types.
Some constructs will take only certain types of operands. Operands can be
constants, integers, real numbers, nets, registers, times, bit-select (one bit of vector net
or a vector register), part-select (selected bits of the vector net or register vector),
memories or function calls (functions are discussed later).

integer count, final_count;
final_count = count + 1;llcount is an integer operand

real a, b , C;
c = a - b; Iia and b are real operands

reg [15:0) reg1, reg2;
reg [3:0) reg_out;
reg_out = reg1[3:0) A reg2[3:0);llreg1[3:0) and reg2[3:0) are

Ilpart-select register operands

reg ret_value;
ret_value calculate-parity(A, B);llcalculate-parity is a

Ilfunction type operand

6.3.3 Operators

Operators act on the operands to produce desired results. Verilog provides
various types of operators. Operator types are discussed in detail in Section 6.4,
Operator Types.

d1 && d2 II && is an operator on operands d1 and d2
!a[O) II ! is an operator on operand a[O)
B » 1 II » is an operator on operands Band 1

Dataflow Modeling 91

=6 -
6.4 Operator Types
Verilog provides many different operator types. Operators can be arithmetic,
logical, relational, equality, bitwise, reduction, shift, concatenation, or conditional. Some
of these operators are similar to the operators used in the C programming
language. Each operator type is denoted by a symbol. Table 6-1 shows the
complete listing of operator symbols classified by category.

Table 6-1 Operator Types and Symbols

Operator Operator Operation Number of
Type Symbol Performed Operands

Arithmetic * multiply two
/ divide two
+ add two
- subtract two
% modulus two

Logical 1 logical negation one
&:&: logical and two

II logical or two

Relational > greater than two
< less than two

>= greater than or equal two
<= less than or equal two

Equality == equality two
!= inequality two

=== case equality two
!== case inequality two

Bitwise - bitwise negation one
&: bitwise and two

I bitwise or two
A bitwise xor two

A_ or _/\ bitwise xnor two

Reduction &: reduction and one
-&: reduction nand one

I reduction or one
-I red uction nor one

A red uction xor one
A_ or _A reduction xnor one

92 Veri/og HDL: A Guide to Digital Design and Synthesis

Table 6-1 Operator Types and Symbols (Continued)

Operator Operator Operation Number of
Type Symbol Performed Operands

Shift » Right shift two
« Left shift two

Concatenation { } Concatenation any number

Replication { { } } Replication any number

Conditional ?: Conditional three

Let us now discuss each operator type in detail.

6.4.1 Arithmetic Operators

There are two types of arithmetic operators: binary and unary.

Binary operators

Binary arithmetic operators are multiply (*), divide (t), add (+), subtract (-) and
modulus (%). Binary operators take two operands.

A 4'b0011; B = 4'b0100; II A and B are register vectors
D 6; E = 4; II D and E are integers

A * B II Multiply A and B. Evaluates to 4'b1100
DIE II Divide D by E.Evaluates to 1. Truncates any fractional part.
A + B II Add A and B. Evaluates to 4'b0111
B - A II Subtract A from B. Evaluates to 4'b0001

If any operand bit has a value x, then the result of the entire expression is x. This
seems intuitive because if an operand value is not known precisely, the result
should be an unknown.

in1 4'b101x;
in2 4'b1010;
sum inl + in2; II sum will be evaluated to the value 4'bx

Dataflow Modeling 93

=6 -
Modulus operators produce the remainder from the division of two numbers. They
operate similarly to the modulus operator in the C programming language.

13 % 3 1/ Evaluates to 1
16 % 4 1/ Evaluates to 0
-7 % 2 II Evaluates to -1, takes sign of the first operand
7 % -2 1/ Evaluates to +1, takes sign of the first operand

Unary operators

The operators + and - can also work as unary operators. They are used to specify
the positive or negative sign of the operand. Unary + or - operators have higher
precedence than the binary + or - operators.

I
~4 II Negative 4

_ +5 II Positive 5

Negative numbers are represented as 2's complement internally in Verilog. It is
advisable to use negative numbers only of the type integer or real in expressions.
Designers should avoid negative numbers of the type <sss> '<base> <nnn> in
expressions because they are converted to unsigned 2's complement numbers and
hence yield unexpected results.

IIAdvisable to use integer or real numbers
-10 I 511 Evaluates to -2

liDo not use numbers of type <sss> '<base> <nnn>
-'d10 I 511 Is equivalent (2's complement of 10)/5 = (2 32 - 10)/5
II where 32 is the default machine word width.
II This evaluates to an incorrect and unexpected result

6.4.2 Logical Operators

Logical operators are logical-and (&:&:), logical-or (II) and logical-not (I). Operators
&:&: and I I are binary operators. Operator I is a unary operator. Logical operators
follow these conditions:

94 Verilog HDL: A Guide to Digital Design and Synthesis

1. Logical operators always evaluate to a I-bit value, 0 (false), 1 (true), or x
(ambiguous).

2. If an operand is not equal to zero, it is equivalent to a logical 1 (true
condition). If it is equal to zero, it is equivalent to a logical 0 (false
condition). If any operand bit is x or z, it is equivalent to x (ambiguous
condition) and is normally treated by simulators as a false condition.

3. Logical operators take variables or expressions as operands.

Use of parentheses to group logical operations is highly recommended to improve
readability. Also, the user does not have to remember the precedence of operators.

II Logical operations
A = 3; B = 0;
A && B II Evaluates to O. Equivalent to (logical-1 && logical-OJ
A I I B II Evaluates to 1. Equivalent to (logical-1 I I logical-O)
!AII Evaluates to O. Equivalent to not(logical-1)
!BII Evaluates to 1. Equivalent to not(logical-O)

II Unknowns
A = 2'bOx; B = 2'b10;
A && B II Evaluates to x. Equivalent to (x && logical 1)

II Expressions
(a == 2) && (b == 3) II Evaluates to 1 if both a
are true.
II Evaluates to 0 if either is false.

6.4.3 Relational Operators

2 and b 3

Relational operators are greater-than (», less-than «), greater-than-or-equal-to (>=),
and less-than-or-equal-to «=). If relational operators are used in an expression, the
expression returns a logical value of 1 if the expression is true and 0 if the
expression is false. If there are any unknown or z bits in the operands, the
expression takes a value x. These operators function exactly as the corresponding
operators in the C programming language.

II A 4, B = 3
II X 4'b1010, Y = 4'b1101, Z = 4'b1xxx

A <= B II Evaluates to a logical 0
A > B II Evaluates to a logical 1

Dataflow Modeling 95

=6 -
y >= x II Evaluates to a logical 1
y < Z II Evaluates to an x

6.4.4 Equality Operators

Equality operators are logical equality (==), logical inequality (I"), case equality (===),
and case inequality (I ==). When used in an expression, equality operators return
logical value 1 if true, ° if false. These operators compare the two operands bit by
bit, with zero filling if the operands are of unequal length. Table 6-2 lists the
operators.

Table 6-2 Equality Operators

Expression Description

a == b a equal to b, result unknown if x or z in a or b

a != b a not equal to b, result unknown if x or z in a or b

a === b a equal to b, including x and z

a !== b a not equal to b, including x and z

Possible Logical
Value

0,1, x

O,l,x

0,1

0,1

It is important to note the difference between the logical equality operators (_ .. ,
1 =) and case equality operators (===, I."), The logical equality operators (... , 1 =)
will yield an x if either operand has x or z in its bits. However, the case equality
operators (.... =, 1 ==) compare both operands bit by bit and compare all bits,
including x and z. The result is 1 if the operands match exactly, including x and z
bits. The result is ° if the operands do not match exactly. Case equality operators
never result in an x.

II A

II x
II Z

4, B = 3
4'bl010, Y
4'blxxz, M

4'bllOl
4'blxxz, N

A B II Results in logical 0
X != Y II Results in logical 1
X Z II Results in x

4'blxxx

Z === M //Results in logical 1 (all bits match, including x and z)
Z === N / / Results in logical 0 (least significant bit does not match)
M !== N II Results in logical 1

96 Verilog HDL: A Guide to Digital Design and Synthesis

6.4.5 Bitwise Operators

Bitwise operators are negation (-), and(&), or (I), xor (A), xnor (1._, _A). Bitwise
operators perform a bit-by-bit operation on two operands. They take each bit in
one operand and perform the operation with the corresponding bit in the other
operand. If one operand is shorter than the other, it will be bit extended with
zeros to match the length of the longer operand. Logic tables for the bit-by-bit
computation are shown in Table 6-3. A z is treated as an x in a bitwise operation.
The exception is the unary negation operator (-), which takes only one operand
and operates on the bits of the single operand.

Table 6-3 Truth Tables for Bitwise Operators

bitwise and 0 1 x bitwise or

0 0 0 0 0

1 0 1 x 1

x 0 x x x

bitwise xor 0 1 x bitwise xnor

0 0 1 x

1 1 0 x

x x x x

bitwise
Result ne ation

0 1

1 0

x x

Examples of bitwise operators are shown below.

II x
II Z

4'bl010, Y
4'blOxl

4'bllOl

-x II Negation. Result is 4'b010l
X & Y II Bitwise and. Result is 4'blOOO
X I Y II Bitwise or. Result is 4'bllll
X A Y II Bitwise xor. Result is 4'bOlll

Dataflow Modeling

0

1

x

0 1 x

0 1 x

1 1 1

x 1 x

0 1 x

1 0 x

0 1 x

x x x

97

X A_ Y II Bitwise xnor. Result is 4'b1000
X & Z II Result is 4'b10xO

It is important to distinguish bitwise operators -, &:, and I from logical operators
I, &:&:, II. Logical operators always yield a logical value 0, 1, x, whereas bitwise
operators yield a bit-by-bit value. Logical operators perform a logical operation,
not a bit-by-bit operation.

II x = 4'b1010, Y = 4'bOOOO

x I Y II bitwise operation. Result is 4'b1010
X I I Y II logical operation. Equivalent to 1 I I O. Result is 1.

6.4.6 Reduction Operators

Reduction operators are and (&:), nand (-&:), or (I), nor (-I), xor (A), and xnor(_A,
A_). Reduction operators take only one operand. Reduction operators perform a
bitwise operation on a single vector operand and yield a I-bit result. The logic
tables for the operators are the same as shown in Section 6.4.5, Bitwise Operators.
The difference is that bitwise operations are on bits from two different operands,
whereas reduction operations are on the bits of the same operand. Reduction
operators work bit by bit from right to left. Reduction nand, reduction nor, and
reduction xnor are computed by inverting the result of the reduction and, reduction
or, and reduction xor, respectively.

II x = 4'b1010

&X IIEquivalent to 1 & 0 & 1 & O. Results in 1'bO
IXIIEquivalent to 1 I ° I 1 I O. Results in 1'b1
AXIIEquivalent to 1 A 0 A 1 A O. Results in 1'bO
IIA reduction xor or xnor can be used for even or odd parity
Ilgeneration of a vector.

The use of a similar set of symbols for logical (I, &:&:, I I), bitwise (-, &:, I, A), and
reduction operators (&:, I, A) is somewhat confusing initially. The difference lies in
the number of operands each operator takes and also the value of result
computed.

98 Verilog HDL: A Guide to Digital Design and Synthesis

6.4.7 Shift Operators

Shift operators are right shift (») and left shift (<<). These operators shift a vector
operand to the right or the left by a specified number of bits. The operands are
the vector and the number of bits to shift. When the bits are shifted, the vacant bit
positions are filled with zeros. Shift operations do not wrap around.

II x = 4'bllOO

y x» 1; I Iy is 4'bOllO. Shift right 1 bit.O filled inMSB position.
Y X« 1; IIYis 4'b1000.Shift left 1 bit. 0 filled inLSB position.
Y X« 2; Ily is 4'bOOOO.Shift left 2 bits.

Shift operators are useful because they allow the designer to model shift
operations, shift-and-add algorithms for rimltiplication, and other useful
operations.

6.4.8 Concatenation Operator

The concatenation operator ({, }) provides a mechanism to append multiple
operands. The operands must be sized. Unsized operands are not allowed
because the size of each operand must be known for computation of the size of
the result.

Concatenations are expressed as operands within braces, with commas separating
the operands. Operands can be scalar nets or registers, vector nets or registers,
bit-select, part-select, or sized constants.

II A = l'bl, B = 2'bOO, C = 2'blO, D 3'bllO

Y {B C} II Result Y is 4'bOOlO
Y {A B, C , D , 3'bOOl} II Result Y is ll'b100l011000l
Y {A B[G], C[l]} II Result Y is 3'blG1

Dataflow Modeling 99

6.4.9 Replication Operator

Repetitive concatenation of the same number can be expressed by using a
replication constant. A replication constant specifies how many times to replicate
the number inside the brackets ({ }).

reg A;
reg [1:0] B, C;
reg [2: 0] D;
A l'bl; B = 2'bOO; C 2'bl0; D = 3'bll0;

y

y

y

4{A}
4{A}
4{A}

II Result Y is 4'bllll
2{B} } II Result Y is 8'bllll0000
2{B} , C } II Result Y is 8'bllll000010

6.4.10 Conditional Operator

The conditional operator(?:) takes three operands.

Usage: condition_expr ? true_expr : false_expr ;

The condition expression (condition_expr) is first evaluated. If the result is true
(logical 1), then the true_expr is evaluated. If the result is false (logical 0), then the
false_expr is evaluated. If the result is x (ambiguous), then both true_expr and
false_expr are evaluated and their results are compared, bit by bit, to return for
each bit position an x if the bits are different and the value of the bits if they are
the same.

The action of a conditional operator is similar to a multiplexer. Alternately, it can
be compared to the if-else expression.

2-to-l
multiplexer -----. Out

true_expr -----. 1

t

100 Verilog HDL: A Guide to Digital Design and Synthesis

6= -
Conditional operators are frequently used in dataflow modeling to model
conditional assignments. The conditional expression acts as a switching control.

Ilrnodel functionality of a tristate buffer
assign addr_bus = drive_enable ? addr_out

Ilrnodel functionality of a 2-to-l rnux
assign out = control? inl : inO;

36 'bz;

Conditional operations can be nested. Each true_expr or false_expr can itself be a
conditional operation. In the example that follows, convince yourself that (A==3)
and control are the two select signals of 4-to-l multiplexer with n, m, y, x as the
inputs and out as the output signal.

assign out = (A == 3) ? (control? x y): (control? rn n)

6.4.11 Operator Precedence

Having discussed the operators, it is now important to discuss operator
precedence. If no parentheses are used to separate parts of expressions, Verilog
enforces the following precedence. Operators listed in Table 6-4 are in order from
highest precedence to lowest precedence. It is recommended that parentheses be
used to separate expressions except in case of unary operators or when there is no
ambiguity.

Table 6-4 Operator Precedence

Operators Operator Symbols Precedence

Unary + - ! - Highest precedence

Multiply, Divide, Modulus * I %

Add, Subtract + -
Shift « »

Relational < <= > >=

Equality -- != --- !==

Dataflow Modeling 101

Table 6-4 Operator Precedence

Operators Operator Symbols Precedence

Reduction &, -&
A A -
I, -I

Logical &&

II
Conditional ? : Lowest precedence

6.S Examples
A design can be represented in terms of gates, data flow, or a behavioral
description. In this section we consider the 4-to-l multiplexer and 4-bit full adder
described in Section 5.1.3, Examples. Previously, these designs were directly
translated from the logic diagram into a gate-level Verilog description. Here, we
describe the same designs in terms of data flow. We also discuss two additional
examples: a 4-bit full adder using carry lookahead and a 4-bit counter using negative
edge-triggered D-flipflops.

6.5.1 4-to-1 Multiplexer

Gate-level modeling of a 4-to-l multiplexer is discussed in Section 5.1.3, Examples.
The logic diagram for the multiplexer is given in Figure 5-5 on page 69 and the
gate-level Verilog description is shown in Example 5-4 on page 69. We describe
the multiplexer, using dataflow statements. Compare it with the gate-level
description. We show two methods to model the multiplexer by using dataflow
statements.

Method 1: logic equation

We can use assignment statements instead of gates to model the logic equations of
the multiplexer (see Example 6-2). Notice that everything is same as the gate-level
Verilog description except that computation of out is done by specifying one logic
equation by using operators instead of individual gate instantiations. I/O ports

102 Verilog HDL: A Guide to Digital Design and Synthesis

6= -
remain the same. This is important so that the interface with the environment does
not change. Only the internals of the module change. Notice how concise the
description is compared to the gate-level description.

Example 6-2 4-to-l Multiplexer, Using Logic Equations

II Module 4-to-l multiplexer using data flow. logic equation
II Compare to gate-level model
module mux4_to_l (out, iO, il, i2, i3, sl, sO);

II Port declarations from the 1/0 diagram
output out;
input iO, il, i2, i3;
input s1, sO;

IlLogic equation for out
assign out = (-sl & -sO & iO) I

(-sl & sO & il)
(sl & -sO & i2)
(sl & sO & i3) ;

endmodule

Method 2: conditional operator

There is a more concise way to specify the 4-to-1 multiplexers. In Section 6.4.10,
Conditional Operator, we described how a conditional statement corresponds to a
multiplexer operation. We will use this operator to write a 4-to-l multiplexer.
Convince yourself that this description (Example 6-3) correctly models a
multiplexer.

Example 6-3 4-to-l Multiplexer, Using Conditional Operators

II Module 4-to-l multiplexer using data flow. Conditional operator.
II Compare to gate-level model
module multiplexer4_to_1 (out, iO, i1, i2, i3, sl, sO);

II Port declarations from the 1/0 diagram
output out;
input iO, i1, i2, i3;
input s1, sO;

II Use nested conditional operator

Dataflow Modeling 103

Example 6-3 4-to-l Multiplexer, Using Conditional Operators

assign out s1 ? (sO ? i3 : i2) : (sO ? i1 : iO)

endmodule

In the simulation of the multiplexer, the gate-level module in Example 5-4 on
page 69 can be substituted with the dataflow multiplexer modules described
above. The stimulus module will not change. The simulation results will be
identical. By encapsulating functionality inside a module, we can replace the
gate-level module with a dataflow module without affecting the other modules in
the simulation. This is a very powerful feature of Verilog.

6.5.2 4-bit Full Adder

The 4-bit full adder in Section 5.1.3, Examples, was designed by using gates; the
logic diagram is shown in Figure 5-7 on page 73 and Figure 5-6 on page 72. In this
section, we write the dataflow description for the 4-bit adder. Compare it with the
gate-level description in Figure 5-7. In gates, we had to first describe a 1-bit full
adder. Then we built a 4-bit full ripple carry adder. We again illustrate two
methods to describe a 4-bit full adder by means of dataflow statements.

Method 1: dataflow operators

A concise description of the adder (Example 6-4) is defined with the + and { }
operators.

Example 6-4 4-bit Full Adder, Using Dataflow Operators

// Define a 4-bit full adder by using dataflow statements.
module fulladd4(sum, c_out, a, b, c_in);

// I/O port declarations
output [3:0] sum;
output c_out;
input[3:0] a, b;
input c_in;

// Specify the function of a full adder
assign {c_out, sum} = a + b + c_in;

endmodule

104 Verilog HDL: A Guide to Digital Design and Synthesis

If we substitute the gate-level 4-bit full adder with the dataflow 4-bit full adder,
the rest of the modules will not change. The simulation results will be identical.

Method 2: full adder with carry lookahead

In ripple carry adders, the carry must propagate through the gate levels before
the sum is available at the output terminals. An n-bit ripple carry adder will have
2n gate levels. The propagation time can be a limiting factor on the speed of the
circuit. One of the most popular methods to reduce delay is to use a carry
lookahead mechanism. Logic equations for implementing the carry lookahead
mechanism can be found in any logic design book. The propagation delay is
reduced to four gate levels, irrespective of the number of bits in the adder. The
Verilog description for a carry lookahead adder is shown in Example 6-5. This
module can be substituted in place of the full adder modules described before
without changing any other component of the simulation. The simulation results
will be unchanged.

Example 6-5 4-bit Full Adder With Carry Lookahead

module fulladd4(sum, c_out, a, b, c_in);
II Inputs and outputs
output [3:0] sum;
output c_out;
input [3:0] a,b;
input c_in;

II Internal wires
wire pO,gO, pl,gl, p2,g2, p3,g3;
wire c4, c3, c2, cl;

II compute the p for each stage
assign pO a[O] A b[O],

pI a[l] A b[l],
p2 a[2] A b[2],
p3 a[3] A b [3] ;

II compute the g for each stage
assign gO a[O] & b[O],

gl a[1] & b[l],
g2 a[2] & b[2],
g3 a[3] & b[3];

II compute the carry for each stage
II Note that c in is equivalent cO in the arithmetic equation for

Dataflow Modeling 105

Example 6-5 4-bit Full Adder With Carry Lookahead (Continued)

II carry lookahead computation
assign cl = gO I (pO & c_in) ,

c2 = gl I (pi & gO) I (pi & pO & c_in) ,
c3 = g2 I (p2 & gl) I (p2 & pi & gO) I (p2 & pi & pO & c_in) ,
c4 = g3 I (p3 & g2) I (p3 & p2 & gl) I (p3 & p2 & pi & gO) I

II Compute Sum
assign sum[O] pO A c _in,

sum[l] pi A cl,
sum[2] p2 A c2,
sum[3] p3 A c3;

II Assign carry output
assign c_out = c4;

endmodule

6.5.3 Ripple Counter

(p3 & p2 & pi & pO & c_in);

We now discuss an additional example that was not discussed in the gate-level
modeling chapter. We design a 4-bit ripple counter by using negative edge­
triggered flip-flops. This example was discussed at a very abstract level in
Chapter 2, Hierarchical Modeling Concepts. We design it using Verilog dataflow
statements and test it with a stimulus module. The diagrams for the 4-bit ripple
carry counter modules are shown below.

106 Verilog HDL: A Guide to Digital Design and Synthesis

6= -
Figure 6-2 shows the counter being built with four T-flipflops.

qO ql q2 q3

r---- - - - -- - - 1------

I

clock I ~ T]~ ~L.c q i---Lc q f-"L..c q ~

I I) T FF ~ T_FF) T_FF
, tffO tffl tff2 tff3

I
I

clea - I

_...J

Figure 6-2 4-bit Ripple Carry Counter

Figure 6-3 shows that the T-flipflop is built with one D-flipflop and an inverter gate.

TFF q
r - - - "1

clock --r--O

reset

Figure 6-3 T-flipflop

Dataflow Modeling 107

Finally, Figure 6-4 shows the D-flipflop constructed from basic logic gates.

r--------------------------.
I I
I I
I I
I I
I I

clear
I cbar I

elk
):>-""'"--ir-- q bar

I
I
I
I
I

d I
I

I I L __________________________ J

Figure 6-4 Negative Edge-Triggered D-flipflop with clear

Given the above diagrams, we write the corresponding Verilog, using dataflow
statements in a top-down fashion. First we design the module counter. The code is
shown in Figure 6-6. The code contains instantiation of four T _FF modules.

Example 6-6 Verilog Code for Ripple Counter

II Ripple counter
module counter(Q , clock, clear);

II I/O ports
output [3:0] Q;
input clock, clear;

II Instantiate the T flipflops
T_FF tffO(Q[O], clock, clear);
T_FF tffl(Q[l], Q[O], clear);
T_FF tff2(Q[2], Q[l], clear);
T_FF tff3(Q[3], Q[2], clear);

endmodule

108 Verilog HDL: A Guide to Digital Design and Synthesis

Next, we write the Verilog description for T_FF (Example 6-7). Notice that instead
of the not gate, a dataflow operator - negates the signal q, which is fed back.

Example 6-7 Verilog Code for T-flipflop

II Edge-triggered T-flipflop. Toggles every clock
I I cycle.
module T_FF(g, elk, clear};

II 1/0 ports
output g;
input elk, clear;

II Instantiate the edge-triggered DFF
II Complement of output g is fed back.
II Notice gbar not needed. Unconnected port.
edge_dff ffl(g, ,-g, elk, clear};

endmodule

Finally, we define the lowest level module D _FF (edge_dff), using dataflow
statements (Example 6-8). The dataflow statements correspond to the logic
diagram shown in Figure 6-4. The nets in the logic diagram correspond exactly to
the declared nets.

Example 6-8 Verilog Code for Edge-Triggered D-flipflop

II Edge-triggered D flipflop
module edge_dff(g, qbar, d, elk, clear};

II Inputs and outputs
output g,gbar;
input d, elk, clear;

II Internal variables
wire s, sbar, r, rbar,cbar;

II dataflow statements
IICreate a complement of signal clear
assign cbar = -clear;

II Input latches; A latch is level sensitive. An edge-sensitive
II flip-flop is implemented by using 3 SR latches.

Dataflow Modeling 109

=6 -
Example 6-8 Verilog Code for Edge-Triggered D-flipflop (Continued)

assign sbar = -(rbar & s) ,
s = -(sbar & cbar & -clk) ,
r = -(rbar & -clk & s) ,
rbar = -(r & cbar & d) ;

II Output latch
assign q = -(s & qbar) ,

qbar = -(q & r & cbar);

endrnodule

The design block is now ready. Now we must instantiate the design block inside
the stimulus block to test the design. The stimulus block is shown in
Example 6-9. The clock has a time period of 20 with a 50% duty cycle.

Example 6-9 Stimulus Module for Ripple Counter

II Top level stimulus module
module stimulus;

II Declare variables for stimulating input
reg CLOCK, CLEAR;
wire [3:0] Q;

initial
$monitor($time, "Count Q = %b Clear= %b", Q[3:0]'CLEAR);

II Instantiate the design block counter
counter c1(Q, CLOCK, CLEAR);

II Stimulate the Clear Signal
initial
begin

end

CLEAR = l'b1;
#34 CLEAR = l'bO;
#200 CLEAR = l'b1;
#50 CLEAR = l'bO;

II Set up the clock to toggle every 10 time units
initial
begin

110 Verilog HDL: A Guide to Digital Design and Synthesis

Example 6-9

end

Stimulus Module for Ripple Counter (Continued)

CLOCK = l'bO;
forever #10 CLOCK -CLOCK;

II Finish the simulation at time 400
initial
begin

#400 $finish;
end

endmodule

The output of the simulation is shown below. Note that the clear signal resets the
count to zero.

0 Count Q 0000 Clear= 1
34 Count Q 0000 C1ear= 0
40 Count Q 0001 Clear= 0
60 Count Q 0010 Clear= 0
80 Count Q 0011 Clear= 0

100 Count Q 0100 C1ear= 0
120 Count Q 0101 Clear= 0
140 Count Q 0110 Clear= 0
160 Count Q 0111 Clear= 0
180 Count Q 1000 Clear= a
200 Count Q 1001 Clear= 0
220 Count Q 1010 Clear= 0
234 Count Q 0000 Clear= 1
284 Count Q 0000 Clear= 0
300 Count Q 0001 C1ear= a
320 Count Q 0010 Clear= 0
340 Count Q 0011 Clear= 0
360 Count Q 0100 Clear= 0
380 Count Q 0101 C1ear= 0

Dataflow Modeling 111

6.6 Summary
Continuous assignment is one of the main constructs used in dataflow
modeling. A continuous assignment is always active and the assignment
expression is evaluated as soon as one, of the right-hand-side variables
changes. The left-hand side of a contiduous assignment must be a net. Any
logic function can be realized with continuous assignments.

Delay values control the time between the change in a right-hand-side
variable and when the new value is assigned to the left-hand side. Delays on
a net can be defined in the assign statement, implicit continuous
assignment, or net declaration.

Assignment statements contain expressions, operators, and operands.

The operator types are arithmetic, logical, relational, equality, bitwise, reduction,
shift, concatenation, replication, and conditional. Unary operators require one
operand, binary operators require two operands, and ternary require three
operands. The concatenation operator can take any number of operands.

The conditional operator behaves like a multiplexer in hardware or like the if-
then-else statement in programming languages.

Dataflow description of a circuit is more concise than a gate-level
description. The 4-to-1 multiplexer and the 4-bit full adder discussed in the
gate-level modeling chapter can also be designed by use of dataflow
statements. Two dataflow implementations for both circuits were discussed.
A 4-bit ripple counter using negative edge-triggered D-flipflops was
designed.

6.7 Exercises
1. A full subtractor has three l-bit inputs X , y, and z (previous borrow) and two

l-bit outputs D (difference) and B (borrow). The logic equations for D and B
are as follows:

Verilog HDL: A Guide to Digital Design and Synthesis

Write the full Verilog description for the full subtractor module, including
I/O ports (Remember that + in logic equations corresponds to a logical or
operator (II) in dataflow). Instantiate the subtractor inside a stimulus block
and test all eight possible combinations of x, y, and z given in the following
truth table.

x y z B 0

0 0 0 0 0

0 0 1 1

0 1 0 1 1

0 1 1 1 0

1 0 0 0 1

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

2. A magnitude comparator checks if one number is greater than or equal to or
less than another number. A 4-bit magnitude comparator takes two 4-bit
numbers, A and B, as input. We write the bits in A and B as follows.
Leftmost bit is the most significant bit.

A = A(3) A(2) A(l) A(O)

B = B(3) B(2) B(l) B(O)

The magnitude can be compared by comparing the numbers bit by bit,
starting with the most significant bit. If any bit mismatches, the number
with bit a is the lower number. To realize this functionality in logic
equations, let us define an intermediate variable. Notice that the function
below is an xnor function.

x(i) = A(i).B(i) + A(i)'.B(i)'

The three outputs of the magnitude comparator are A-$t_B, A_lt_B, A_eq_B.
They are defined with the following logic equations.

A-$t_B = A(3).B(3)' + x(3).A(2).B(2/ + x(3).x(2).A(l).B(1/ +
x(3).x(2).x(l).A(O).B(O)'

A_lt_B = A(3)'.B(3) + x(3).A(2)'.B(2) + x(3).x(2).A(l)'.B(l) +
x(3).x(2).x(1).A(O)'.B(O)

A_eq_B = x(3).x(2).x(1).x(O)

Dataflow Modeling 113

=6 -
Write the Verilog description of the module magnitude_comparator. Instantiate
the magnitude comparator inside the stimulus module and tryout a few
combinations of A and B.

3. A synchronous counter can be designed by using master-slave JK flip-flops.
Design a 4-bit synchronous counter. Circuit diagrams for the synchronous
counter and the JK flip-flop are given bellow. Clear signal is active low. Data
gets latched on the positive edge of clock, and the output of the flip-flop
appears on the negative edge of clock. Counting is disabled when
count_enable signal is low. Write the dataflow description for the
synchronous counter. Write a stimulus file that exercises clear and
count_enable. Display the output count Q[3:0}.

J----l

clear --+-+---~.--"*---+-----,

IO-" +-- qbar

K--t--l

clock --+-------1 » __ ...J

cbar

Figure 6-5 Master-Slave IK-flipflop

0[0] 0[1] 0[2]

clear-~~~r-t--r-i~~-t-~-i-+~~-r-+--+~~

clock -----1-t--+-+---+-+--+-+---I-+--+-+----1---1

count ----1~--+---l
enable

Figure 6-6 4-bit Synchronous Counter with clear and count_enable

114 Verilog HDL: A Guide to Digital Design and Synthesis

0[3]

o
K

Behavioral Modeling

With the increasing complexity of digital design, it has become vitally important
to make wise design decisions early in a project. Designers need to be able to
evaluate the trade-offs of various architectures and algorithms before they decide
on the optimum architecture and algorithm to implement in hardware. Thus,
architectural evaluation takes place at an algorithmic level where the designers do
not necessarily think in terms of logic gates or data flow but in terms of the
algorithm they wish to implement in hardware. They are more concerned about
the behavior of the algorithm and its performance. Only after the high-level
architecture and algorithm are finalized, do designers start focusing on building
the digital circuit to implement the algorithm.

Verilog provides designers the ability to describe design functionality in an
algorithmic manner. In other words, the designer describes the behavior of the
circuit. Thus, behavioral modeling represents the circuit at a very high level of
abstraction. Design at this level resembles C programming more than it resembles
digital circuit design. Behavioral Verilog constructs are similar to C language
constructs in many ways. Verilog is rich in behavioral constructs that provide the
designer with a great amount of flexibility.

Learning Objectives

Explain the significance of structured procedures always and initial in
behavioral modeling.

Define blocking and nonblocking procedural assignments.

Understand delay-based timing control mechanism in behavioral modeling.
Use regular delays, intra-assignment delays, and zero delays.

Describe event-based timing control mechanism in behavioral modeling.
Use regular event control, named event control, and event OR control

Use level-sensitive timing control mechanism in behavioral modeling.

Explain conditional statements using i f and else.

Describe multiway branching, using case, casex, and casez statements.

Understand looping statements such as while, for, repeat, and forever.

Define sequential and parallel blocks.

Understand naming of blocks and disablin of named blocks.

Use behavioral modeling statements in practical examples.

7.1 Structured Procedures
There are two structured procedure statements in Verilog: always and i n i t i a l .
These statements are the two most basic statements in behavioral modeling. All
other behavioral statements can appear only inside these structured procedure
statements.

Verilog is a concurrent programming language unlike the C programming
language, which is sequential in nature. Activity flows in Verilog run in parallel
rather than in sequence. Each always and i n i t i a l statement represents a ,

separate activity flow in Verilog. Each activity flow starts at simulation time 0.
The statements always and i n i t i a l cannot be nested. The fundamental
difference between the two statements is explained in the following sections.

7.1.1 initial Statement

All statements inside an i n i t i a l statement constitute an i n i t i a l block. An
i n i t i a l block starts at time 0, executes exactly once during a simulation, and
then does not execute again. If there are multiple i n i t i a l blocks, each block
starts to execute concurrently at time 0. Each block finishes execution
independently of other blocks. Multiple behavioral statements must be grouped,
typically using the keywords begin and end. If there is only one behavioral
statement, grouping is not necessary. This is similar to the begin-end blocks in
Pascal programming language or the I 1 grouping in the C programming
language. Example 7-1 illustrates the use of the i n i t i a l statement.

Example 7-1 initial Statement

module stimulus;

reg x,y, a,b, m;

initial

116 Verilog HDL: A Guide to Digital Design and Synthesis

Example 7-1 initial Statement

m = l'bO; //sing1e statement; does not need to be grouped

initial
begin

#5 a = l'b1; //mu1tip1e statements; need to be grouped
#25 b = l'bO;

end

initial
begin

#lOx
#25 y

end

initial

l'bO;
l'b1;

#50 $finish;

endmodule

7= -

In the above example, the three initial statements start to execute in parallel at time
O. If a delay #<delay> is seen before a statement, the statement is executed <delay>
time units after the current simulation time. Thus, the execution sequence of the
statements inside the initial blocks will be as follows.

time statement executed
0 m l'bO;
5 a = l'b1;
10 x = l'bO;
30 b l'bO;
35 Y l'bl;
50 $finish;

The initial blocks are typically used for initialization, monitoring, waveforms
and other processes that must be executed only once during the entire simulation
run.

Behavioral Modeling 117

=7 -
7.1.2 always Statement

All behavioral statements inside an always statement constitute an always block.
The always statement starts at time 0 and executes the statements in the always
block continuously in a looping fashion. This statement is used to model a block
of activity that is repeated continuously in a digital circuit. An example is a clock
generator module that toggles the clock signal every half cycle. In real circuits, the
clock generator is active from time 0 to as 'long as the circuit is powered on.
Example 7-2 illustrates one method to model a clock generator in Verilog.

Example 7-2 always Statement

module clock_gen;

reg clock;

//Initialize clock at time zero
initial

clock = l'bO;

//Toggle clock every half-cycle (time period 20)
always

#10 clock = -clock;

initial
#1000 $finish;

endmodule

In Example 7-2, the always statement starts at time 0 and executes the statement
clock = -clock every 10 time units. Notice that the initialization of clock has to be
done inside a separate initial statement. If we put the initialization of clock
inside the always block, clock will be initialized every time the always is entered.
Also, the simulation must be halted inside an initial statement. If there is no
$stop or $finish statement to halt the simulation, the clock generator will run
forever.

C programmers might draw an analogy between the always block and an infinite
loop. But hardware designers tend to view it as a continuously repeated activity
in a digital circuit starting from power on. The activity is stopped only by power
off ($finish) or by an interrupt ($stop).

118 Verilog HDL: A Guide to Digital Design and Synthesis

7.2 Procedural Assignments
Procedural assignments update values of reg, integer, real, or t i m e variables.
The value placed on a variable will remain unchanged until another procedural
assignment updates the variable with a different value. These are unlike
continuous assignments discussed in Chapter 6, Dataflow Modeling, where one
assignment statement can cause the value of the right-hand-side expression to be
continuously placed onto the left-hand-side net. The syntax for the simplest form
of procedural assignment is shown below.

The left-hand side of a procedural assignment <lvalue> can be one of the
following:

A reg, integer, real, or time register variable or a memory element

A bit select of these variables (e.g., addr[Ol)

A part select of these variables (e.g., addr[31:161)

A concatenation of any of the above

The right-hand side can be any expression that evaluates to a value. In behavioral
modeling all operators listed in Table 6-1 on page 92 can be used in behavioral
expressions.

There are two types of procedural assignment statements: blocking and
nonblocking.

7.2.1 Blocking assignments

Blocking assignment statements are executed in the order they are specified in a
sequential block. A blocking assignment will not block execution of statements
that follow in a parallel block. Both parallel and sequential blocks are discussed in
Section 7.7, Sequential and Parallel Blocks, The = operator is used to specify
blocking assignments.

Example 7-3 Blocking Statements

reg X, y, z ;
reg r15: 01 reg-a, reg-b;
integer count;

Behavioral Modeling 119

Example 7-3 Blocking Statements (Continued)

//All behavioral statements must be inside an initial or always bloc:
initial
begin

x = O ; y = l ; z = 1; //Scalar assignments
count = 0; //Assignment to integer variables
reg-a = 16'bO; reg-b = reg-a; //initialize vectors

#l5 reg-a[21 = lrbl; //Bit select assignment with delay
#l0 reg-b[15:131 = { X , y, z) //Assign result of concatenation tc

/ / part select of a vector
count = count + 1; //Assignment to an integer (increment)

end

In Example 7-3, the statement y = 1 is executed only after X = 0 is executed. The
behavior in a particular block is sequential in a begin-end block if blocking
statements are used, because the statements can execute only in sequence. The
statement count = count + 1 is executed last. The simulation times at which the
statements are executed are as follows:

All statements X = 0 through reg-b = reg-a are executed at time 0

Statement regal21 = 0 at time = 15

Statement reg-bl15:131 = {X, y, zl at time = 25

Statement count = count + 1 at time = 25

Since there is a delay of 15 and 10 in the preceding statements, count = count
+ 1 will be executed at time = 25 units

Note that for procedural assignments to registers, if the right-hand side has more
bits than the register variable, the right-hand side is truncated to match the width
of the register variable. The least significant bits are selected and the most
significant bits are discarded. If right-hand side has fewer bits, zeros are filled in
the most significant bits of the register variable.

7.2.2 Nonblocking Assignments

Nonblocking assignments allow scheduling of assignments without blocking
execution of the statements that follow in a sequential block. A <= operator is
used to specify nonblocking assignments. Note that this operator has the same

120 Verilog HDL: A Guide to Digital Design and Synthesis

7= -
symbol as a relational operator, less_than_equal_to. The operator <= is interpreted
as a relational operator in an expression and as an assignment operator in the
context of a nonblocking assignment. To illustrate the behavior of nonblocking
statements and its difference from blocking statements, let us consider
Example 7-4, convert some blocking assignments to nonblocking assignments,
and observe the behavior.

Example 7-4 Nonblocking Assignments

reg x, y, z;
reg [15:0] reg_a, reg_b;
integer count;

IIAII behavioral statements must be inside an initial or always block
initial
begin

end

x = 0; y = 1; z = 1; IIScalar assignments
count 0; IIAssignment to integer variables
reg_a = 16'bO; reg_b = reg_a; IIInitialize vectors

reg_a[2j <= #15 l'bl; IIBit select assignment with delay
reg_b[15:13] <= #10 {x, y, z}; IIAssign result of concatenation

lito part select of a vector
count <= count + 1; IIAssignment to an integer (increment)

In this example the statements x = 0 through reg_b = reg_a are executed
sequentially at time O. Then, the three nonblocking assignments are processed at
the same simulation time.

1. reg_a[2] = 0 is scheduled to execute after 15 units (i.e., time = 15)

2. reg_b[15:13] = {x, y, zj is scheduled to execute after 10 time units (i.e., time =
10)

3. count = count + 1 is scheduled to be executed without any delay (i.e., time =
0)

Thus, the simulator schedules a non blocking assignment statement to execute and
continues to the next statement in the block without waiting for the nonblocking
statement to complete execution. Typically, nonblocking assignment statements
are executed last in the time step in which they are scheduled, that is, after all the
blocking assignments in that time step are executed.

Behavioral Modeling 121

=7 -
Application of nonblocking assignments

Having described the behavior of nonblocking assignments, it is important to
understand why they are used in digital design. They are used as a method to
model several concurrent data transfers that take place after a common event.
Consider the following example where three concurrent data transfers take place
at the positive edge of clock.

always @(posedge clock)
begin

reg1 <= #1 in1;
reg2 <= @(negedge clock) in2 A in3;
reg3 <= #1 reg1; liThe old value of reg1

end

At each positive edge of clock, the following sequence takes place for the
nonblocking assignments.

1. A read operation is performed on each right-hand-side variable, inl, in2, in3,
and regl, at the positive edge of clock. The right-hand-side expressions are
evaluated, and the results are stored internally in the simulator.

2. The write operations to the left-hand-side variables are scheduled to be
executed at the time specified by the intra-assignment delay in each
assignment, that is, schedule "write" to regl after 1 time unit, to reg2 at the
next negative edge of clock, and to reg3 after 1 time unit.

3. The write operations are executed at the scheduled time steps. The order in
which the write operations are executed is not important because the
internally stored right-hand-side expression values are used to assign to the
left-hand-side values. For example, note that reg3 is assigned the old value
of regl that was stored after the read operation, even if the write operation
wrote a new value to regl before the write operation to reg3 was executed.

Thus, the final values of regl, reg2, and reg3 are not dependent on the order in
which the assignments are processed.

To understand the read and write operations further, consider Example 7-5, which
is intended to swap the values of registers a and b at each positive edge of clock,
using two concurrent always blocks.

122 Verilog HDL: A Guide to Digital Design and Synthesis

7=

Example 7-5 Nonblocking Statements to Eliminate Race Conditions

//I11ustration 1: Two concurrent always blocks with blocking
//statements
always @(posedge clock)

a = b;

always @(posedge clock)
b = a;

//I11ustration 2: Two concurrent always blocks with nonblocking
//statements
always @(posedge clock)

a <= b;

always @(posedge clock)
b <= a;

-

In Example 7-5, in illustration 1, there is a race condition when blocking
statements are used. Either a = b would be executed before b = a, or vice versa,
depending on the simulator implementation. Thus, values of registers a and b will
not be swapped. Instead, both registers will get the same value (previous value of
a or b), based on the Verilog simulator implementation.

However, nonblocking statements used in illustration 2 eliminate the race
condition. At the positive edge of clock, the values of all right-hand-side variables
are "read," and the right-hand-side expressions are evaluated and stored in
temporary variables. During the write operation, the values stored in the
temporary variables are assigned to the left-hand-side variables. Separating the
read and write operations ensures that the values of registers a and b are swapped
correctly, regardless of the order in which the write operations are performed.
Example 7-6 shows how nonblocking assignments in illustration 2 might be
processed by a simulator.

Example 7-6 Processing of Nonblocking Assignments

//Process nonblocking assignments by using temporary variables
always @(posedge clock)
begin

//Read operation
/ /storevalues of right-hand-side expressions in temporary variables
temp_a a;
temp_b = b;

Behavioral Modeling 123

=7 -
Example 7-6 Processing of Nonblocking Assignments (Continued)

end

IIWrite operation
IIAssign values of temporary variables to left-hand-side variables
a temp_b;
b = temp_a;

For digital design, use of nonblocking assignments in place of blocking
assignments is highly recommended in places where concurrent data transfers
take place after a common event. In such cases, blocking assignments can
potentially cause race conditions because the final result depends on the order in
which the assignments are evaluated. Nonblocking assignments can be used
effectively to model concurrent data transfers because the final result is not
dependent on the order in which the assignments are evaluated. Typical
applications of nonblocking assignments include pipeline modeling and
modeling of several mutually exclusive data transfers. On the downside,
nonblocking assignments can potentially cause a degradation in the simulator
performance and increase in memory usage.

7.3 Timing Controls
Various behavioral timing control constructs are available in Verilog. In Verilog, if
there are no timing control statements, the simulation time does not advance.
Timing controls provide a way to specify the simulation time at which procedural
statements will execute. There are three methods of timing control: delay-based
timing control, event-based timing control, and level-sensitive timing control.

7.3.1 Delay-Based Timing Control

Delay-based timing control in an expression specifies the time duration between
when the statement is encountered and when it is executed. We used delay-based
timing control statements when writing few modules in the preceding chapters
but did not explain them in detail. In this section we will discuss delay-based
timing control statements. Delays are specified by the symbol #. Syntax for the
delay-based timing control statement is shown below.

<delay>
: : = #<NUMBER>
11= #<identifier>
11= #«mintypmax_expression> <,<mintypmax_expression»*)

124 Verilog HDL: A Guide to Digital Design and Synthesis

7=

Delay-based timing control can be specified by a number, identifier, or a
mintypmax_expression. There are three types of delay control for procedural
assignments: regular delay control, intra-assignment delay control, and zero delay
control.

Regular delay control

-

Regular delay control is used when a non-zero delay is specified to the left of a
procedural assignment. Usage of regular delay control is shown in Example 7-7.

Example 7-7 Regular Delay Control

Iidefine parameters
parameter latency 20;
parameter delta = 2;
Iidefine register variables
reg x, y, z, p, q;

initial
begin

x = 0; II no delay control
#10 y = 1; II delay control with a number. Delay execution of

II y = 1 by 10 units

end

#latency z = 0; //Delay control with identifier. Delay of 20 units
(latency + delta) p = 1; II Delay control with expression

#y x = x + 1; II Delay control with identifier. Take value of y.

#(4:5:6) q = 0; II Minimum, typical and maximum delay values.
//Discussed in gate-level modeling chapter.

In Example 7-7, the execution of a procedural assignment is delayed by the
number specified by the delay control. For begin-end groups, delay is always
relative to time when the statement is encountered. Thus, y =1 is executed 10
units after it is encountered in the activity flow.

Behavioral Modeling 125

Intra-assignment delay control

Instead of specifying delay control to the left of the assignment, it is possible to
assign a delay to the right of the assignment operator. Such delay specification
alters the flow of activity in a different manner. Example 7-8 shows the contrast
between intra-assignment delays and regular delays.

Example 7-8 Intra-assignment Delays

Iidefine register variables
reg x, y, z;

Ilintra assignment delays
initial
begin

end

x = 0; z = 0;
y = #5 x + z; IITake value of x and z at the time=O, evaluate

Ilx + z and then wait 5 time units to assign value
lito y.

,

IIEquivalent method with temporary variables and regular delay control
initial
begin

end

x = 0; z = 0;
temp_xz = x + z;

#5 y = temp_xz; IITake value of x + z at the current time and
Iistore it in a temporary variable. Even though x and z

Ilmight change between 0 and 5,
lithe value assigned to y at time 5 is unaffected.

Note the difference between intra-assignment delays and regular delays. Regular
delays defer the execution of the entire assignment. Intra-assignment delays
compute the right-hand-side expression at the current time and defer the
assignment of the computed value to the left-hand-side variable. Intra-assignment
delays are like using regular delays with a temporary variable to store the current
value of a right-hand-side expression.

126 Verilog HDL: A Guide to Digital Design and Synthesis

7= -
Zero delay control

Procedural statements in different always-initial blocks may be evaluated at the
same simulation time. The order of execution of these statements in different
always-initial blocks is nondeterministic. Zero delay control is a method to ensure
that a statement is executed last, after all other statements in that simulation time
are executed. This is used to eliminate race conditions. However, if there are
multiple zero delay statements, the order between them is nondeterministic.
Example 7-9 illustrates zero delay control.

Example 7-9

initial
begin

end

x = 0;
Y 0;

initial
begin

end

#0 x
#0 y

Zero Delay Control

1; //zero delay control
1;

In Example 7-9, four statements-x = 0, y = 0, x = I, Y = I-are to be executed at
simulation time O. However, since x = 1 and y = 1 have #0, they will be executed
last. Thus, at the end of time 0, x will have value 1 and y will have value 1. The
order in which x = 1 and y = 1 are executed is not deterministic.

The above example was used as an illustration. The practice of assigning two
different values to a variable in a single time step is generally not recommended
and may cause race conditions in the design. However, #0 provides a useful
mechanism to control the order of execution of statements in a simulation.

7.3.2 Event-Based Timing Control

An event is the change in the value on a register or a net. Events can be utilized to
trigger execution of a statement or a block of statements. There are four types of
event-based timing control: regular event control, named event control, event OR
control, and level-sensitive timing control.

Behavioral Modeling 127

=7 -
Regular event control

The @ symbol is used to specify an event control. Statements can be executed on
changes in signal value or at a positive or negative transition of the signal value.
The keyword po.edge is used for a negative transition, as shown in
Example 7-10.

Example 7-10 Regular Event Control

@(clock) g = d; Ilg = d is executed whenever signal clock changes value
@(posedge clock) g = d; Ilg = d is executed whenever signal clock does

Iia positive transition (0 to 1,x or z,
II x to 1, z to 1)

@(negedge clock) g d; Ilg = d is executed whenever signal clock does
Iia negative transition (1 to O,X or z,
Ilx to 0, z to 0)

g @(posedge clock) d; lid is evaluated immediately and assigned
lito g at the positive edge of clock

Named event control

Verilog provides the capability to declare an event and then trigger and recognize
the occurrence of that event (see Example 7-11). The event does not hold any data.
A named event is declared by the keyword event. An event is triggered by the
symbol ->. The triggering of the event is recognized by the symbol @.

Example 7-11 Named Event Control

IIThis is an example of a data buffer storing data after the
Illast packet of data has arrived.

event received_data; IIDefine an event called received_data

always @(posedge clock) Ilcheck at each positive clock edge
begin

end

if (last_data-packet) IIIf this is the last data packet
->received_data; Iitrigger the event received_data

always @(received_data) IIAwait triggering of event received_data
IIWhen event is triggered, store all four

128 Verilog HDL: A Guide to Digital Design and Synthesis

7= -
Example 7-11 Named Event Control (Continued)

/Ipackets of received data in data buffer
/Iuse concatenation operator { }

data_buf={data-pkt[O] , data-pkt[l] , data-pkt[2] , data-pkt[3]};

Event OR control

Sometimes a transition on anyone of multiple signals or events can trigger the
execution of a statement or a block of statements. This is expressed as an OR of
events or signals. The list of events or signals expressed as an OR is also known
as a sensitivity list. The keyword or is used to specify multiple triggers, as shown
in Example 7-12.

Example 7-12 Event OR Control

//A level-sensitive latch with asynchronous reset
always @(reset or clock or d)

/IWait for reset or clock or d to change
begin

if (reset) Ilif reset signal is high, set q to O.
q = 1 'bO;

else if(clock) /Iif clock is high, latch input
q = d;

end

7.3.3 Level-Sensitive Timing Control

Event control discussed earlier waited for the change of a signal value or the
triggering of an event. The symbol @ provided edge-sensitive control. Verilog also
allows level-sensitive timing control, that is, the ability to wait for a certain
condition to be true before a statement or a block of statements is executed. The
keyword wait is used for level-sensitive constructs.

always
wait (count_enable) #20 count count + 1;

Behavioral Modeling 129

In the above example, the value of count_enable is monitored continuously. If
count_enable is 0, the statement is not entered. If it is logical 1, the statement count
= count + 1 is executed after 20 time units. If count_enable stays at I, count will be
incremented every 20 time units.

7.4 Conditional Statements
Conditional statements are used for making decisions based upon certain
conditions. These conditions are used to decide whether or not a statement
should be executed. Keywords if and else are used for conditional statements.
There are three types of conditional statements. Usage of conditional statements
is shown below. For formal syntax, see Appendix D, Formal Syntax Definition.

//Type 1 conditional statement. No else statement.
//Statement executes or does not execute.
if «expression» true_statement;

//Type 2 conditional statement. One else statement
//Either true_statement or false_statement is evaluated
if «expression» true_statement; else false_statement

//Type 3 conditional statement. Nested if-else-if.
//Choice of multiple statements. Only one is executed.
if «expressionl» true_statementl ;
else if «expression2» true_statement2
else if «expression3» true_statement3
else default_statement

The <expression> is evaluated. If it is true (1 or a non-zero value), the
true_statement is executed. However, if it is false (zero) or ambiguous (x or z), the
false_statement is executed. The <expression> can contain any operators mentioned
in Table 6-1 on page 92. Each true_statement or false_statement can be a single
statement or a block of multiple statements. A block must be grouped, typically
by using keywords begin and end. A single statement need not be grouped.

Example 7-13 Conditional Statement Examples

//Type 1 statements
if(!lock) buffer = data;
if (enable) out = in;

130 Verilog HDL: A Guide to Digital Design and Synthesis

Example 7-13 Conditional Statement Examples (Continued)

//Type 2 statements
if (number_queued < MAX_Q_DEPTH)
begin

end
else

data_queue = data;
number_queued = number_queued + 1;

$di splay ("Queue Full. Try again");

//Type 3 statements
//Execute statements based on ALU control signal.
if (alu_control == 0)

y = x + z;
else if(alu_control 1)

y = x - z;
else if(alu_control 2)

y = x * z;
else

$display("Invalid ALU control signal");

7.S Multiway Branching

7= -

In type 3 conditional statement in Section 7.4, Conditional Statements, there were
many alternatives, from which one was chosen. The nested if-else-if can become
unwieldy if there are too many alternatives. A shortcut to achieve the same result
is to use the case statement.

Behavioral Modeling 131

=7 -
7.5.1 case Statement

The keywords case, endcase, and defaul t are used in the case statement. .

case (expression)
alternativel: statementl;
alternative2: statement2;
alternative3: statement3;

default: default_statement;
endcase

Each of statementl, statement2 ... , default_statement can be a single statement or a
block of multiple statements. A block of multiple statements must be grouped by
keywords begin and end. The expression is compared to the alternatives in the
order they are written. For the first alternative that matches, the corresponding
statement or block is executed. If none of the alternatives match, the
default_statement is executed. The default_statement is optional. Placing of multiple
default statements in one case statement is not allowed. The case statements can
be nested. The following Verilog code implements the type 3 conditional
statement in Example 7-13.

//Execute statements based on the ALU control signal
reg [1:0] alu_control;

case (alu_control)
2'dO y x + z;
2'd1 : y = x - z;
2'd2 : y = X * z;
default: $display("Invalid ALU control signal");

endcase

132 Verilog HDL: A Guide to Digital Design and Synthesis

The case statement can also act like a many-to-one multiplexer. To understand
this, let us model the 4-to-1 multiplexer in Section 6.5, Examples, on page 102,
using case statements. The I/O ports are unchanged. Notice that an 8-to-1 or 16-
to-1 multiplexer can also be easily implemented by case statements.

Example 7-14 4-to-1 Multiplexer with case Statement

module mux4_to_1 (out, iO, i1, i2, i3, sl, sO);

II Port declarations from the I/O diagram
output out;
input iO, i1, i2, i3;
input s1. sO;
reg out;

always @(sl or sO or iO or i1 or i2 or i3)
case ({sl, sO}) //Switch based on concatenation of control signals

2'dO out iO;
2'd1 out i1;
2'd2 out i2;
2'd3 out i3;
default: $display("Invalid control signals");

endcase

endmodule

The case statement compares 0, 1, x, and z values in the expression and the
alternative bit for bit. If the expression and the alternative are of unequal bit
width, they are zero filled to match the bit width of the widest of the expression
and the alternative. In Example 7-15, we will define a 1-to-4 demultiplexer for
which outputs are completely specified, that is, definitive results are provided
even for x and z values on the select signal.

Example 7-15 Case Statement with x and z

module demultiplexerl_to_4 (outO, outl, out2, out3, in, sl, sO);

II Port declarations from the I/O diagram
output outO, out1, out2, out3;
reg outO, out1, out2, out3;
input in;
input sl, sO;

Behavioral Modeling 133

Example 7-15 Case Statement with X and z (Continued)

ilways @(sl or SO or in)
:ase ({sl, SO)) //Switch based on control signals

2 'b00 : begin outO = in; outl = l'bz; out2 = l'bz; out3 = l'bz; enc
2'bOl : begin outO = l'bz; outl = in; out2 = l'bz; out3 = l'bz; enc
2'blO : begin outO = l'bz; outl = l'bz; out2 = in; out3 = l'bz; enc
2'bll : begin outO = l'bz; outl = l'bz; out2 = l'bz; out3 = in; enc

//Account for unknown signals on select. If any select signal is >
//then outputs are X. If any select signal is z, outputs are z.
//If one is X and the other is z, X gets higher priority.
2'bx0, 2'bxl, 2'bxz, 2'bxx, 2'bOx, 2'blx, 2'bzx :

begin
out0 = l'bx; outl = l'bx; out2 = l'bx; out3 = l'bx;

end
2'bz0, 2'bzl, 2'bzz, 2'bOz, 2'blz :

begin
outO = l'bz; outl = l'bz; out2 = l'bz; out3 = l'bz;

end
default: $display("Unspecified control signals");

ndcase

In the demultiplexer shown above, multiple input signal combinations such as
2'bz0,2'bzl, 2,bzz, 2'bOz, and 2'bIz that cause the same block to be executed are
put together with a comma (,) symbol.

7.5.2 casex, casez Keywords

There are two variations of the case statement. They are denoted by keywords,
casex and casez.

casez treats all z values in the case alternatives or the case expression as
don't cares. All bit positions with z can also represented by ? in that
position.

casex treats all X and z values in the case item or the case expression as
don't cares.

Verilog HDL: A Guide to Digital Design and Synthesis

7= -
The use of casex and casez allows comparison of only non-x or -z positions in
the case expression and the case alternatives. Example 7-16 illustrates the
decoding of state bits in a finite state machine using a casex statement. The use of
casez is similar. Only one bit is considered to determine the next state and the
other bits are ignored.

Example 7-16 casex Use

reg [3:0) encoding;
integer state;

casex (encoding) Illogic value x represents a don't care bit.
4'blxxx next _state 3;
4'bx1xx next _state 2 ;
4'bxx1x next _state 1;
4'bxxxi next state 0;
default next _state 0;
endcase

Thus, an input encoding = 4'blOxz would cause next_state = 3 to be executed.

7.6 Loops
There are four types of looping statements in Verilog: while, for, repeat, and forever.
The syntax of these loops is very similar to the syntax of loops in the C
programming language. All looping statements can appear only inside an
initial or always block. Loops may contain delay expressions.

7.6.1 While Loop

The keyword while is used to specify this loop. The while loop executes until the
while-expression becomes false. If the loop is entered when the while-expression is
false, the loop is not executed at all. Each expression can contain the operators in
Table 6-1 on page 92. Any logical expression can be specified with these
operators. If multiple statements are to be executed in the loop, they must be
grouped typically using keywords begin and end. Example 7-17 illustrates the
use of the while loop.

Behavioral Modeling 135

=7 -
Example 7-17 While Loop

//Illustration 1: Increment count from 0 to 127. Exit at count 128.
//Display the count variable.
integer count;

initial
begin

count = 0;

while (count < 128) //Execute loop till count is 127.
//exit at count 128

begin

end

$display("Count = %d", count);
count = count + 1;

end

//Illustration 2: Find the first bit with a value 1 in flag (vector
variable)
'define TRUE l'b1';
'define FALSE l'bO;
reg [15:0] flag;
integer i; //integer to keep count
reg continue;

initial
begin

flag = 16'b 0010_0000_0000_0000;
i = 0;
continue 'TRUE;

while((i < 16) && continue) //Multiple conditions using
operators.

begin
if (flag[i])
begin

$display("Encountered a TRUE bit at element number %d", i);
continue = 'FALSE;

end
i = i + 1;

end
end

136 Verilog HDL: A Guide to Digital Design and Synthesis

7.6.2 For Loop

The keyword for is used to specify this loop. The for loop contains three parts:

An initial condition

A check to see if the terminating condition is true

A procedural assignment to change value of the control variable

The counter described in Example 7-17 can be coded as a for loop (Example 7-
18). The initialization condition and the incrementing procedural assignment are
included in the for loop and do not need to be specified separately. Thus, the for
loop provides a more compact loop structure than the while loop. Note, however,
that the while loop is more general purpose than the for loop. The for loop
cannot be used in place of the while loop in all situations. p

Example 7-18 For Loop

integer count;

initial
for (count=O; count < 128; count = count + 1)

$display("Count = %do, count);

for loops can also be used to initialize an array or memory, as shown below.

//Initialize array elements
'define MAX-STATES 32
integer state [O: 'MAX-STATES-l]; //~nteger array state with elements 0: 31
integer i;

initial
begin

for(i = 0; i < 32; i = i + 2) //initialize all even locations with C
state[il = 0;

for(i = 1; i < 32; i = i + 2) //initialize all odd locations with 1
state[il = 1;

end

for loops are generally used when there is a fixed beginning and end to the loop.
If the loop is simply looping on a certain condition, it is better to use the while
Ioop.

Behaz~ioral Modeling

7.6.3 Repeat Loop

The keyword repeat is used for this loop. The repeat construct executes the loop
a fixed number of times. A repeat construct cannot be used to loop on a general
logical expression. A while loop is used for that purpose. A repeat construct
must contain a number, which can be a constant, a variable or a signal value.
However, if the number is a variable or signal value, it is evaluated only when the
loop starts and not during the loop execution.

The counter in Example 7-17 can be expressed with the repeat loop, as shown in
Illustration 1 in Example 7-19. Illustration 2 shows how to model a data buffer that
latches data at the positive edge of clock for the next eight cycles after it receives
a data start signal.

Example 7-19 Repeat Loop

//Illustration 1 : increment and display count from a to 127
integer count;

initial
begin

count = 0;
repeat(128)
begin

$display("Count = %d", count);
count = count + 1;

end
end

//Illustration 2 : Data buffer module example
//After it receives a data_start signal.
//Reads data for next 8 cycles.

module data_buffer (data_start, data, clock);

parameter cycles = 8;
input data_start;
input [15:0] data;
input clock;

reg [15:0] buffer [0:7];
integer i;

always @(posedge clock)
begin

138 Verilog HDL: A Guide to Digital Design and Synthesis

7=

Example 7-19 Repeat Loop (Continued)

if (data_start) Iidata start signal is true
begin

i = 0;
repeat (cycles) IIStore data at the posedge of next 8 clock

Ilcycies
begin

@(posedge clock) buffer[i]

i = i + 1;
end

end
end

endmodule

7.6.4 Forever loop

data; Ilwaits till next
II posedge to latch data

-

The keyword forever is used to express this loop. The loop does not contain any
expression and executes forever until the $finish task is encountered. The loop is
equivalent to a while loop with an expression that always evaluates to true, e.g.,
while (1). A forever loop can be exited by use of the disable statement.

A forever loop is typically used in conjunction with timing control constructs. If
timing control constructs are not used, the Verilog simulator would execute this
statement infinitely without advancing simulation time and the rest of the design
would never be executed. Example 7-20 explains the use of the forever
statement.

Example 7-20 Forever Loop

IIExample 1: Clock generation
//Use forever loop instead of always block
reg clock;

initial
begin

clock = l'bO;
forever #10 clock -clock; //Clock with period of 20 units

end

Behavioral Modeling 139

Example 7-20 Forever Loop

//Example 2: Synchronize two register values at every positive edge of
//clock
reg clock;

reg X, Y;

initial
forever @(posedge clock) X = y;

7.7 Sequential and Parallel Blocks
Block statements are used to group multiple statements to act together as one. In
previous examples we used keywords begin and end to group multiple
statements. Thus, we used sequential blocks where the statements in the block
execute one after another. In this section we discuss the block types: sequential
blocks and parallel blocks. We also discuss three special features of blocks: named
blocks, disabling named blocks, and nested blocks.

7.7.1 Block Types

There are two types of blocks: sequential blocks and parallel blocks.

Sequential blocks
The keywords begin and end are used to group statements into sequential blocks.
Sequential blocks have the following characteristics:

The statements in a sequential block are processed in the order they are
specified. A statement is executed only after its preceding statement
completes execution (except for nonblocking assignments with intra-
assignment timing control).

If delay or event control is specified, it is relative to the simulation time
when the previous statement in the block completed execution.

We have used numerous examples of sequential blocks in this book. Two more
examples of sequential blocks are given in Example 7-21. Statements in the
sequential block execute in order. In illustration 1, the final values are X = 0, y= 1,
z = 1, W = 2 at simulation time 0. In illustration 2, the final values are the same
except that the simulation time is 35 at the end of the block.

Verilog HDL: A Guide to Digital Design and Synthesis

Example 7-21 Sequential Blocks

//Illustration 1: Sequential block without delay
reg X, Y;
reg [1:0] z, W;

initial
begin

X = l'bO;
y = l'bl;
z = {X, y};
W = I Y , x3;

end

//Illustration 2: Sequential blocks with delay.
re9 X, Y;
reg [1:0] z , W;

initial
begin

X = l'bO; //completes at simulation time 0
#5 y = l'bl; //completes at simulation time 5
#l0 z = {X, y}; //completes at simulation time 15
#20 W = {y, X); //completes at simulation time 35

end

Parallel blocks
Parallel blocks, specified by keywords fork and join, provide interesting
simulation features. Parallel blocks have the following characteristics.

Statements in a parallel block are executed concurrently.

Ordering of statements is controlled by the delay or event control assigned
to each statement.

If delay or event control is specified, it is relative to the time the block was
entered.

Notice the fundamental difference between sequential and parallel blocks. All
statements in a parallel block start at the time when the block was entered. Thus,
the order in which the statements are written in the block is not important.

Behavioral Modeling

=7 -
Let us consider the sequential block with delay in Example 7-21 and convert it to
a parallel block. The converted Verilog code is shown in Example 7-22. The result
of simulation remains the same except that all statements start in parallel at time O.
Hence, the block finishes at time 20 instead of time 35.

Example 7-22 Parallel Blocks

//Example 1: Parallel blocks with delay.
reg x, y;
reg [1 : 0] z, w;

initial
fork

join

x = l'bO; //completes at simulation time 0
#5 y = l'b1; //completes at simulation time 5
#10 z {x, y}; //completes at simulation time 10
#20 w = {y, x}; //completes at simulation time 20

Parallel blocks provide a mechanism to execute statements in parallel. However,
it is important to be careful with parallel blocks because of implicit race
conditions that might arise if two statements that affect the same variable
complete at the same time. Shown below is the parallel version of illustration 1
from Example 7-21. Race conditions have been deliberately introduced in this
example. All statements start at simulation time O. The order in which the
statements will execute is not known. Variables z and w will get values 1 and 2 if
x = l'bO and y = 1 'bl execute first. Variables z and w will get values 2'bxx and
2'bxx if x = l'bO and y = 1 'bl execute last. Thus, the result of z and w is
nondeterministic and dependent on the simulator implementation. In simulation
time, all statements in the fork-join block are executed at once. However, in
reality, CPUs running simulations can execute only one statement at a time.
Different simulators execute statements in different order. Thus, the race
condition is a limitation of today's simulators, not of the fork-join block.

//Parallel blocks with deliberate race condition
reg x, y;
reg [1:0] z, w;

initial
fork

x = l'bO;
y l'b1;

142 Verilog HDL: A Guide to Digital Design and Synthesis

I join

z = {x, y};

w {y, x};

7= -

The keyword fork can be viewed as splitting a single flow into independent
flows. The keyword join can be seen as joining the independent flows back into
a single flow. Independent flows operate concurrently.

7.7.2 Special Features of Blocks

We discuss three special features available with block statements: nested blocks,
named blocks, and disabling of named blocks.

Nested blocks

Blocks can be nested. Sequential and parallel blocks can be mixed, as shown in
Example 7-23.

Example 7-23 Nested Blocks

/ !Nested blocks
initial
begin

x = 1 'bO;
fork

end

join
#20 w

Named blocks

#5 Y = l'b1;
#10 z = {x, y};

{y, x};

Blocks can be given names.

• Local variables can be declared for the named block.

• Named blocks are a part of the design hierarchy. Variables in a named block
can be accessed by using hierarchical name referencing.

• Named blocks can be disabled, i.e., their execution can be stopped.

Behavioral Modeling 143

=7 -
Example 7-24 shows naming of blocks and hierarchical naming of blocks.

Example 7-24

IINamed blocks
module top;

initial

Named Blocks

begin: blockl Iisequential block named block1
integer i; Ilinteger i is static and local to block1

II can be accessed by hierarchical name, top.block1.i

end

initial
fork: block2 Ilparallel block named block2
reg i; II register i is static and local to block2

II can be accessed by hierarchical name, top.block2.i

join

Disabling named blocks

The keyword disable provides a way to terminate the execution of a block.
disable can be used to get out of loops, handle error conditions, or control
execution of pieces of code, based on a control signal. Disabling a block causes the
execution control to be passed to the statement immediately succeeding the block.
For C programmers, this is very similar to the break statement used to exit a
loop. The difference is that a break statement can break the current loop only,
whereas the keyword disable allows disabling of any named block in the design.

Consider the illustration in Example 7-17 on page 136, which looks for the first
true bit in the flag. The while loop can be recoded, using the disable statement as
shown in Example 7-25. The disable statement terminates the while loop as soon
as a true bit is seen.

Example 7-25 Disabling Named Blocks

//Illustration:Find the first bit with a value 1 in flag (vector
Ilvariable)
reg [15:0] flag;
integer i; Ilinteger to keep count

144 Verilog HDL: A Guide to Digital Design and Synthesis

7=

Example 7-25

initial
begin

Disabling Named Blocks

flag = 16'b 0010_0000_0000_0000;
i = 0;
begin: block1 liThe main block inside while is named block1
while (i < 16)

begin
if (flag[i])
begin

-

$display("Encountered a TRUE bit at element number %d", i);
disable block1; Iidisable block1 because you found true bit.

end
end

end

end
i = i + 1;

7.8 Examples
In order to illustrate the use of behavioral constructs discussed earlier in this
chapter, we consider three examples in this section. The first two, 4-to-l
multiplexer and 4-bit counter are taken from Section 6.5, Examples. Earlier, these
circuits were designed by using dataflow statements. We will model these circuits
with behavioral statements. The third example is a new example. We will design
a traffic signal controller, using behavioral constructs, and simulate it.

7.S.1 4-to-1 Multiplexer

We can define a 4-to-l multiplexer with the behavioral case statement. This
multiplexer was defined, in Section 6.5.1, 4-to-l Multiplexer, by dataflow
statements. It is described in Example 7-26 by behavioral constructs. The
behavioral multiplexer can be substituted for the dataflow multiplexer; the
simulation results will be identical.

Example 7-26 Behavioral 4-to-l Multiplexer

II 4-to-1 multiplexer. Port list is taken exactly from
II the 1/0 diagram.
module mux4_to_1 (out, iO, i1, i2, i3, sl, sO);

Behavioral Modeling 145

=7 -
Example 7-26 Behavioral 4-to-l Multiplexer (Continued)

II Port declarations from the 1/0 diagram
output out;
input iO, i1, i2, i3;
input sl, sO;
Iioutput declared as register
reg out;

Ilrecompute the signal out if any input signal changes.
IIAII input signals that cause a recomputation of out to
Iloccur must go into the always @(...) sensitivity list.
always @(sl or sO or iO or i1 or i2 or i3)
begin

case ({sl, sO})
2'bOO: out iO;
2'b01: out i1;
2'b10: out i2;
2'bll: out i3;
default: out = l'bx;
endcase

end

endmodule

7.8.2 4-bit Counter

In Section 6.5.3, Ripple Counter, we designed a 4-bit ripple carry counter. We will
now design the 4-bit counter by using behavioral statements. At dataflow or gate
level, the counter might be designed in hardware as ripple carry, synchronous
counter, etc. But, at a behavioral level, we work at a very high level of abstraction
and do not care about the underlying hardware implementation. We will only
design functionality. The counter can be designed by using behavioral constructs,
as shown in Example 7-27. Notice how concise the behavioral counter description
is compared to its dataflow counterpart. If we substitute the counter in place of
the dataflow counter, the simulation results will be exactly same, assuming that
there are no x and z values on the inputs.

146 Verilog HDL: A Guide to Digital Design and Synthesis

7=

Example 7-27 Behavioral 4-bit Counter Description

//4-bit Binary counter
module counter(Q , clock, clear);

/ / I/O ports
output [3:0] Q;
input clock, clear;
//output defined as register
reg [3: 0] Q;

always @(posedge clear or negedge clock)
begin

if (clear)
Q 4 'dO;

else
Q (Q + 1) % 16;

end

endmodule

7.8.3 Traffic Signal Controller

This example is fresh and has not been discussed before in the book. We will
design a traffic signal controller, using a finite state machine approach.

Specification

Consider a controller for traffic at the intersection of a main highway and a
country road.

________ ~I] ~I ______ __
Main Highway

I fl o
U

The following specifications must be considered.

Behavioral Modeling

-

147

The traffic signal for the main highway gets highest priority because cars are
continuously present on the main highway. Thus, the main highway signal
remains green by default.

Occasionally, cars from the country road arrive at the traffic signal. The
traffic signal for the country road must turn green only long enough to let
the cars on the country road go.

As soon as there are no cars on the country road, the country road traffic
signal turns yellow and then red and the traffic signal on the main highway
turns green again.

There is a sensor to detect cars waiting on the country road. The sensor
sends a signal X as input to the controller. X = 1 if there are cars on the
country road; otherwise, X= 0 .

There are delays on transitions from S1 to 52, from S2 to S3, and from S4 to
SO. The delays must be controllable.

The state machine diagram and the state definitions for the traffic signal
controller are shown in Figure 7-1.

State Signals
SO Hwy = G Cntry = R
S1 Hwy = Y Cntry = R
S2 Hwy = R Cntry = R
S3 H w y = R C n t r y = G
S4 H w y = R C n t r y = Y

Figure 7-1 FSM for Traffic Signal Controller

148 Verilog HDL: A Guide to Digital Design and Synthesis

7=

Verilog description

The traffic signal controller module can be designed with behavioral Verilog
constructs, as shown in Example 7-28.

Example 7-28 Traffic Signal Controller

'define TRUE l'b1
'define FALSE l'bO
'define RED 2'dO
'define YELLOW 2'd1
'define GREEN 2'd2

IIState definition HWY eNTRY
'define so 3' dO I I GREEN RED
'define Sl 3 'd1 I I YELLOW RED
'define S2 3 'd2 IIRED RED
'define S3 3' d3 IIRED GREEN
'define S4 3 'd4 IIRED YELLOW

IIDe1ays
'define Y2RDELAY
'define R2GDELAY

3 IIYe1low to red delay
2 IIRed to green delay

module sig_control
(hwy, cntry, X, clock, clear);

111/0 ports
output [1:0] hwy, cntry;

112-bit output for 3 states of signal
IIGREEN, YELLOW, RED;

reg [1:0] hwy, cntry;
Iideclared output signals are registers

input X;
Ilif TRUE, indicates that there is car on
lithe country road, otherwise FALSE

input clock, clear;

Illnternal state variables
reg [2:0] state;
reg [2:0] next_state;

IISignal controller starts in SO state

Behavioral Modeling

-

149

Example 7-28 Traffic Signal Controller (Continued)

initial
begin

state = 'SO;
next_state = 'SO;
hwy = 'GREEN;
cntry = 'RED;

end

//state changes only at positive edge of clock
always @(posedge clock)

state = next_state;

//Compute values of main signal and country signal
always @(state)
begin

case(state)
'SO: begin

hwy 'GREEN;
cntry = 'RED;

end
'Sl: begin

hwy 'YELLOW;
cntry = 'RED;

end
'S2: begin

hwy 'RED;
cntry = 'RED;

end
'S3: begin

hwy 'RED;
cntry = 'GREEN;

end
'S4: begin

hwy 'RED;
cntry = 'YELLOW;

end
endcase

end

//State machine using case statements
always @(state or clear or X)
begin

if (clear)

150 Verilog HDL: A Guide to Digital Design and Synthesis

Example 7-28 Traffic Signal Controller (Continued)

next_state = 'SO;
else

end

case (state)
'SO: if(X)

next_state 'Sl;
else

next_state 'SO;
'Sl: begin //delay some positive edges of clock

repeat('Y2RDELAY) @(posedge clock) ;
next_state = 'S2;

end
'S2: begin //delay some positive edges of clock

repeat ('R2GDELAY) @(posedge clock)
next_state = '83;

end
'S3: if(X)

next_state 'S3;
else

next_state 'S4;
'S4: begin //delay some positive edges of clock

repeat ('Y2RDELAY) @(posedge clock) ;
next_state = 'SO;

end
default: next_state = 'SO;

endcase

endmodule

Stimulus

7= -

Stimulus can be applied to check if the traffic signal transitions correctly when
cars arrive on the country road. The stimulus file in Example 7-29 instantiates the
traffic signal controller and checks all possible states of the controller.

Example 7-29 Stimulus for Traffic Signal Controller

//Stimulus Module
module stimulus;

wire [l:0J MAIN_SIG, CNTRY_8IG;
reg CAR_ON_CNTRY_RD;

Behavioral Modeling 151

=7 -
Example 7-29 Stimulus for Traffic Signal Controller (Continued)

Ilif TRUE, indicates that there is car on
lithe country road

reg CLOCK, CLEAR;

IIInstantiate signal controller
sig_control SC(MAIN_SIG, CNTRY_SIG, CAR_ON_CNTRY_RD, CLOCK, CLEAR);

IISet up monitor
initial

$monitor ($time, "Main Sig = %b Country Sig = %b Car_on_cntry = %b",
MAIN_SIG, CNTRY_SIG, CAR_ON_CNTRY_RD);

IISet up clock
initial
begin

CLOCK 'FALSE;
forever #5 CLOCK -CLOCK;

end

Ilcontrol clear signal
initial
begin

CLEAR = 'TRUE;
repeat (5) @(negedge CLOCK);
CLEAR = 'FALSE;

end

Ilapply stimulus
initial
begin

CAR_ON CNTRY RD = 'FALSE;

#200 CAR_ON_CNTRY_RD 'TRUE;
#100 CAR_ON_CNTRY_RD 'FALSE;

#200 CAR_ON_CNTRY_RD 'TRUE;
#100 CAR_ON_CNTRY_RD 'FALSE;

#200 CAR_ON_CNTRY_RD 'TRUE;
#100 CAR_ON_CNTRY_RD 'FALSE;

#100 $stop;

152 Verilog HDL: A Guide to Digital Design and Synthesis

Example 7-29 Stimulus fov Tufic 51gn.d C ~ n h l I e ~ (Continued)

1 end
endmodule

Note that we designed only the behavior of the controller without worrying
about how it will be implemented in hardware.

7.9 Summary
We discussed digital circuit design with behavioral Verilog constructs.

A behavioral description expresses a digital circuit in terms of the
algorithms it implements. A behavioral description does not necessarily
include the hardware implementation details. Behavioral modeling is used
in the initial stages of a design process to evaluate various design-related
trade-offs. Behavioral modeling is similar to C programming in many ways.

Structured procedures initial and always form the basis of behavioral
modeling. All other behavioral statements can appear only inside initial
or always blocks. An initial block executes once; an always block executes
continuously until simulation ends.

Procedural assignments are used in behavioral modeling to assign values to
register variables. Blocking assignments must complete before the succeeding
statement can execute. Nonblocking assignments schedule assignments to be
executed and continue processing to the succeeding statement.

Delay-based timing control, event-based timing control, and level-sensitive timing
control are three ways to control timing and execution order of statements in
Verilog. Regular delay, zero delay, and intra-assignment delay are three types of
delay-based timing control. Regular event, named event, and event OR are
three types of event-based timing control. The wait statement is used to
model level-sensitive timing control.

Conditional statements are modeled in behavioral Verilog with if and else
statements. If there are multiple branches, use of case statements is
recommended. casex and casez are special cases of the case statement.

Keywords while, for, repeat, and forever are used for four types of
looping statements in Verilog.

Behavioral Modeling

Sequential and parallel are two types of blocks. Sequential blocks are specified
by keywords begin and end . Parallel blocks are expressed by keywords
fork and join. Blocks can be nested and named. If a block is named, the
execution of the block can be disabled from anywhere in the design. Named
blocks can be referenced by hierarchical names.

7.10 Exercises
1. Declare a register called oscillate. Initialize it to 0 and make it toggle every 30

time units. Do not use always statement (Hint: Use the forever loop).

2. Design a clock with time period = 40 and a duty cycle of 25% by using the
always and initial statements. The value of clock at time = 0 should be
initialized to 0.

3. Given below is an initial block with blocking procedural assignments. At
what simulation time is each statement executed? What are the intermediate
and final values of a, b, c, d?

initial
begin

a = l'bO;
b = #l0 l'bl;
c = #5 l'b0;
d = #20 {a, b, cl;

end

4. Repeat exercise 3 if nonblocking procedural assignments were used.

5. What is the order of execution of statements in the following Verilog code?
Is there any ambiguity in the order of execution? What are the final values of
a, b, c, d?

initial
begin

a = l'bO;
#O c = b;

end
initial
begin

b = l'bl;
#O d = a;

end

154 Verilog HDL: A Guide to Digital Design and Synthesis

7=

6. What is the final value of d in the following example. (Hint: See intra­
assignment delays).

initial
begin

initial
begin

end

b = l'bl; c = l'bO;
#10 b = l'bO;

d #25 (b I c);

-

7. Design a negative edge-triggered D-flipflop (D JF) with synchronous clear,
active high (D JF clears only at a negative edge of clock when clear is high).
Use behavioral statements only. (Hint: Output q of D JF must be declared as
reg). Design a clock with a period of 10 units and test the DJF.

8. Design the D-flipflop in exercise 7 with asynchronous clear (D _FF clears
whenever clear goes high. It does not wait for next negative edge). Test the
DJF.

9. Using the wait statement, design a level-sensitive latch that takes clock and d
as inputs and q as output. q = d whenever clock = 1.

10. Design the 4-to-l multiplexer in Example 7-14 by using if and else
statements. The port interface must remain the same.

11. Design the traffic signal controller discussed in this chapter by using if and
else statements.

12. Using a case statement, design an 8-function ALU that takes 4-bit inputs a
and b and a 3-bit input signal select, and gives a 5-bit output out. The ALU
implements the following functions based on a 3-bit input signal select.
Ignore any overflow or underflow bits.

Select Signal
3'bOOO
3'bOOl
3'bOlO
3'bOll
3'blOO
3'b101
3'bllO
3'bll1

out = a
out = a + b
out = a - b
out = a / b

Function

out = a % b (remainder)
out = a « 1
out = a» 1
out = (a> b) (magnitude compare)

Behavioral Modeling 155

=7 -
13. Using a while loop, design a clock generator. Initial value of clock is O. Time

period for the clock is 10.

14. Using the for loop, initialize locations 0 to 1023 of a 4-bit register array
cache_var to O.

15. Using a forever statement, design a clock with time period = 10 and duty
cycle = 40%. Initial value of clock is O.

16. Using the repeat loop, delay the statement a = a + 1 by 20 positive edges of
clock.

17. Below is a block with nested sequential and parallel blocks. When does the
block finish and what is the order of execution of events? At what
simulation times does each statement finish execution?

initial
begin

x = 1 'bO;
#5 y l'b1;
fork

#20 a x;
#15 b y;

join
#40 x l'b1;
fork

#10 p x;
begin

#10 a y;
#30 b x;

end
#5 m y;

join
end

18. Design an 8-bit counter by using a forever loop, named block, and disabling of
named block. The counter starts counting at count = 5 and finishes at count =
67. The count is incremented at positive edge of clock. The clock has a time
period of 10. The counter counts through the loop only once and then is
disabled. (Hint: Use the disable statement).

156 Verilog HDL: A Guide to Digital Design and Synthesis

Tasks and Functions 8%

A designer is frequently required to implement the same functionality at many
places in a behavioral design. This means that the commonly used parts should
be abstracted into routines and the routines must be invoked instead of repeating
the code. Most programming languages provide procedures or subroutines to
accomplish this. Verilog provides tasks and functions to break up large behavioral
designs into smaller pieces. Tasks and functions allow the designer to abstract
Verilog code that is used at many places in the design.

Tasks have input, output, and inout arguments; functions have i w u t
arguments. Thus, values can be passed into and out from tasks and functions.
Considering the analogy of FORTRAN, tasks are similar to SUBROUTINE and
functions are similar to FUNCTION.

Tasks and functions are included in the design hierarchy. Like named blocks,
tasks or functions can be addressed by means of hierarchical names.

Learning Objectives

Describe the differences between tasks and functions.

Identify the conditions required for tasks to be defined. Understand task
declaration and invocation.

Explain the conditions necessary for functions to be defined. Understand
function declaration and invocation.

8.1 Differences Between Tasks and Functions
Tasks and functions serve different purposes in Verilog. We discuss tasks and
functions in greater detail in the following sections. However, first it is important
to understand differences between tasks and functions, as outlined in Table 8-1.

Table 8-1 Tasks and Functions

Functions
A function can enable another function
but not another task.

Functions always execute in 0 simulation
time.

Functions must not contain any delay,
event, or timing control statements.

Functions must have at least one input
argument. They can have more than one
input.

Functions always return a single value.
They cannot have output or inout
arguments.

Tasks
A task can enable other tasks and functions.

Tasks may execute in non-zero simulation
time.

Tasks may contain delay, event, or timing
control statements.

Tasks may have zero or more arguments of
type input, output or inout.

Tasks do not return with a value but can
pass multiple values through output and
inout arguments.

Both tasks and functions must be defined in a module and are local to the
module. Tasks are used for common Verilog code that contains delays, timing,
event constructs, or multiple output arguments. Functions are used when common
Verilog code is purely combinational, executes in zero simulation time and
provides exactly one output. Functions are typically used for conversions and
commonly used calculations.

Tasks can have input, output, and inout ports; functions can have input ports.
In addition, they can have local variables, registers, time variables, integers, real,
or events. Tasks or functions cannot have wires. Tasks and functions contain
behavioral statements only. Tasks and functions do not contain always or i n i t i a l
statements but are called from always blocks, i n i t i a l blocks, or other tasks and
functions.

8.2 Tasks
Tasks are declared with the keywords task and endtask. Tasks must be used if
any one of the following conditions is true for the procedure.

There are delay, timing, or event control constructs in the procedure.
The procedure has zero or more than one output arguments.
The procedure has no input arguments.

158 Verilog HDL: A Guide to Digital Design and Synthesis

8.2.1 Task Declaration and Invocation

Task declaration and task invocation syntax is as follows.

//Task Declaration Syntax
<task>

task <name_of_task>;
<tf_declaration>*
<statement_or_null>
endtask

<name of_task>
: : = <IDENTIFIER>

<tf_declaration>
::= <parameter_declaration>
11= <input_declaration>
11= <output_declaration>
11= <inout_declaration>
11= <reg_declaration>
11= <time_declaration>
11= <integer_declaration>
11= <real_declaration>
11= <event_declaration>

//Task Invocation Syntax
<task_enable>

::= <name_of_task>;
11= <name_of_task> «expression><,<expression»*);

8= -

I/O declarations use keywords input, output or inout, based on the type of
argument declared. Input and inout arguments are passed into the task. Input
arguments are processed in the task statements. Output and inout argument
values are passed back to the variables in the task invocation statement when the
task is completed. Tasks can invoke other tasks or functions.

Although the keywords input, inout, and output used for I/O arguments in a
task are the same as the keywords used to declare ports in modules, there is a
difference. Ports are used to connect external signals to the module. I/O
arguments in a task are used to pass values to and from the task.

Tasks and Functions 159

=8 -
8.2.2 Task Examples

We discuss two examples of tasks. The first example illustrates the use of input
and output arguments in tasks. The second example models an asymmetric
sequence generator that generates an asymmetric sequence on the clock signal.

Use of input and output arguments

Example 8-1 illustrates the use of input and output arguments in tasks. Consider
a task called bitwise_oper, which computes the bitwise and, bitwise or, and bitwise ex­
or of two 16-bit numbers. The two 16-bit numbers a and b are inputs and the three
outputs are 16-bit numbers ab_and, ab_or, ab_xor. A parameter delay is also used in
the task.

Example 8-1 Input and Output Arguments in Tasks

/ /Define a module called operation that contains the task bitwise_oper
module operation;

parameter delay = 10;
reg [15:0] A, B;
reg [15:0] AB_AND, AB_OR, AB_XOR;

always @(A or B) Ilwhenever A or B changes in value
begin

end

Ilinvoke the task bitwise_oper. provide 2 input arguments A, B
IIExpect 3 output arguments AB_AND, AB_OR, AB_XOR

liThe arguments must be specified in the same order as they
Ilappear in the task declaration.

bitwise_oper(AB_AND, AB_OR, AB_XOR, A, B);

Iidefine task bitwise_oper
task bitwise_oper;
output [15:0] ab_and, ab_or, ab_xor; Iioutputs from the task
input [15:0] a, b; Ilinputs to the task
begin

160

#delay ab_and = a & b;
ab_or = a I b;
ab_xor = a A b;

Verilog HDL: A Guide to Digital Design and Synthesis

Example 8-1

end
endtask

endmodule

8= -
Input and Output Arguments in Tasks (Continued)

In the above task, the input values passed to the task are A and B. Hence, when
the task is entered, a = A and b = B. The three output values are computed after a
delay. This delay is specified by the parameter delay, which is 10 units for this
example. When the task is completed, the output values are passed back to the
calling output arguments. Therefore, AB_AND = ab_and, AB_OR = ab_or, and
AB_XOR = ab_xor when the task is completed.

Asymmetric Sequence Generator

Tasks can directly operate on reg variables defined in the module. Example 8-2
directly operates on the reg variable variable clock to continuously produce an
asymmetric sequence. The clock is initialized with an initialization sequence.

Example 8-2 Direct Operation on reg Variables

//Define a module that contains the task asymmetric_sequence
module sequence;

reg clock;

initial

always
begin

init_sequence; //Invoke the task init_sequence

asymmetric_sequence; //Invoke the task asymmetric_sequence
end

//Initialization sequence
task init_sequence;
begin

end
endtask

clock = l'bO;

Tasks and Functions 161

Example 8-2 Direct Operation on reg Variables (Continued)

//define task to generate asymmetric sequence
//operate directly on the clock defined in the module.
task asymmetric-sequence;
begin

#l2 clock = l'bO;
#5 clock = l'bl;
3 clock = l'bO;
#l0 clock = l'bl;

end
endtask
...
...
endmodule

8.3 Functions
Functions are declared with the keywords function and endfunction. Functions
are used if all of the following conditions are true for the procedure.

There are no delay, timing, or event control constructs in the procedure.
The procedure returns a single value.
There is at least one input argument.

8.3.1 Function Declaration and Invocation

The syntax of functions is follows:

//Function Declaration Syntax
<function>

: : = function <range-or-type>? <name-of-function>;
< tf-declara tion>+
<statement>
endfunction

162 Verilog HDL: A Guide to Digital Design and Synthesis

<name_of_function>
: : = <IDENTIFIER>

<tf_declaration>

11=
II =
II =
II =
II =

<parameter_declaration>
<input_declaration>
<reg_declaration>
<time_declaration>
<integer_declaration>
<real declaration>

//Function Invocation Syntax
<function_call>

::= <name_of_function> «expression><,<expression»*)

8= -

There are some peculiarities of functions. When a function is declared, a register
with name <name_of-function> is declared implicitly inside Verilog. The output of
a function is passed back by setting the value of the register <name_of-function>
appropriately. The function is invoked by specifying function name and input
arguments. At the end of function execution, the return value is placed where the
function was invoked. The optional <range_or _type> specifies the width of the
internal register. If no range or type is specified, the default bit width is 1.
Functions are very similar to FUNCTION in FORTRAN.

Notice that at least one input argument must be defined for a function. There are
no output arguments for functions because the implicit register
<name_of-function> contains the output value. Also, functions cannot invoke other
tasks. They can only invoke other functions.

8.3.2 Function Examples

We discuss two examples. The first example models a parity calculator that
returns a l-bit value. The second example models a 32-bit left/right shift register
that returns a 32-bit shifted value.

Tasks and Functions 163

=8 -
Parity calculation

Let us discuss a function that calculates the parity of a 32-bit address and returns
the value. We assume even parity. Example 8-3 shows the definition and
invocation of the function calc_parity.

Example 8-3 Parity Calculation

//Define a module that contains the function calc-parity
module parity;

reg [31:0] addr;
reg parity;

//Compute new parity whenever address value changes
always @(addr)
begin

end

parity = calc-parity(addr); //First invocation of calc-parity
$display("Parity calculated = %b", calc-parity(addr));

//Second invocation of calc-parity

//define the parity calculation function
function calc-parity;
input [31:0] address;
begin

//set the output value appropriately. Use the implicit
//internal register calc-parity.

calc-parity = Aaddress; //Return the xor of all address bits.
end
endfunction

endmodule

Note that in the first invocation of calc_parity, the returned value was used to set
the reg parity. In the second invocation, the value returned was directly used
inside the $display task. Thus, the returned value is placed wherever the
function was invoked.

164 Verilog HDL: A Guide to Digital Design and Synthesis

8= -
Left/right shifter

To illustrate how a range for the output value of a function can be specified, let us
consider a function that shifts a 32-bit value to the left or right by one bit, based
on a control signal. Example 8-4 shows the implementation of the left/right
shifter.

Example 8-4 Left/Right Shifter

//Define a module that contains the function shift
module shifter;

//Left/right shifter
'define LEFT_SHIFT l'bO
'define RIGHT_SHIFT l'bl
reg [31:0] addr, left_addr, right_addr;
reg control;

//Compute the right- and left-shifted values whenever
//a new address value appears
always @(addr)
begin

//call the function defined below to do left and right shift.
left_addr = shift (addr, 'LEFT_SHIFT};
right_addr = shift (addr, 'RIGHT_SHIFT};

end

//define shift function. The output is a 32-bit value.
function [31:0] shift;
input [31:0] address;
input control;
begin

//set the output value appropriately based on a control signal.
shift = (control == 'LEFT_SHIFT) ?(address « I) : (address

» I);

end
endfunction

endmodule

Tasks and Functions 165

8.4 Summary
In this chapter we discussed tasks and functions used in behavior Verilog
modeling.

Tasks and functions are used to define common Verilog functionality that is
used at many places in the design. Tasks and functions help to make a
module definition more readable by breaking it up into manageable
subunits. Tasks and functions serve the same purpose in Verilog as
subroutines do in C.

Tasks can take any number of input, inout or output arguments. Delay,
event, or timing control constructs are permitted in tasks. Tasks can enable
other tasks or functions.

Functions are used when exactly one return value is required and at least
one input argument is specified. Delay, event, or timing control constructs
are not permitted in functions. Functions can invoke other functions but
cannot invoke other tasks.

A register with name as the function name is declared implicitly when a
function is declared. The return value of the function is passed back in this
register.

Tasks and functions are included in a design hierarchy and can be addressed
by hierarchical name referencing.

8.5 Exercises
1. Define a function to calculate the factorial of a 4-bit number. The output is a

32-bit value. Invoke the function by using stimulus and check results.

2. Define a function to multiply two 4-bit numbers a and b. The output is an
8-bit value. Invoke the function by using stimulus and check results.

3. Define a function to design an 8-function ALU that takes two 4-bit
numbers a and b and computes a 5-bit result out based on a 3-bit select
signal. Ignore overflow or underflow bits.

Select Signal Function Output
3'bOOO a

3'bOOl a + b

3'bOlO a - b

Verilog HDL: A Guide to Digital Design and Synthesis

Select Signal

3'bOll

3'blOO

3'b101

3'bllO

3'bll1

Function Output

alb

a % 1 (remainder)

a« 1

a» 1

(a> b) (magnitude compare)

8= -

4. Define a task to compute the factorial of a 4-bit number. The output is a 32-
bit value. The result is assigned to the output after a delay of 10 time units.

5. Define a task to compute even parity of a 16-bit number. The result is a I-bit
value that is assigned to the output after three positive edges of dock. (Hint:
Use a repeat loop in the task).

6. Using named events, tasks, and functions, design the traffic signal controller
in Traffic Signal Controller on page 147.

Tasks and Functions 167

=8 -

168 Verilog HDL: A Guide to Digital Design and Synthesis

Useful Modeling Techniques

We learned the basic features of Verilog in the preceding chapters. In this chapter
we discuss additional features that enhance the Verilog language and make it
powerful and flexible for modeling and analyzing a design.

Learning Objectives

Describe procedural continuous assignment statements assign, deassign,
force, and release. Explain their significance in modeling and debugging.

Understand how to override parameters by using the defparam statement at
the time of module instantiation.

Explain conditional compilation and execution of parts of the Verilog
description.

Identify system tasks for file output, displaying hierarchy, strobing, random
number generation, memo y initialization, and value change dump.

9.1 Procedural Continuous Assignments
We studied procedural assignments in Section 7.2, Procedural Assignments.
Procedural assignments assign a value to a register. The value stays in the register
until another procedural assignment puts another value in that register. Procedural
continuous assignments behave differently. They are procedural statements which
allow values of expressions to be driven continuously onto registers or nets for
limited periods of time. Procedural continuous assignments override existing
assignments to a register or net. They provide an useful extension to the regular
procedural assignment statement.

9.1.1 assign and deassign

The keywords assign and deassign are used to express the first type of
procedural continuous assignment. The left-hand side of procedural continuous
assignments can only be a register or a concatenation of registers. It cannot be a part

or bit select of a net or an array of registers. Procedural continuous assignments
override the effect of regular procedural assignments. Procedural continuous
assignments are normally used for controlled periods of time.

A simple example is the negative edge-triggered D-flipflop with asynchronous
reset that we modeled in Example 6-8. In Example 9-1 we now model the same
D _FF, using assign and deassign statements.

Example 9-1 D-flipflop with Procedural Continuous Assignments

II Negative edge-triggered D-flipflop with asynchronous reset
module edge_dff(q, qbar, d, clk, reset);

II Inputs and outputs
output q,qbar;
input d, clk, reset;
reg q, qbar; Iideclare q and qbar are registers

always @(negedge clk) Ilassign value ofq&qbar at active edge of clock.
begin

end

q = d;
qbar = -d;

always @(reset) IIOverride the regular assignments to q and qbar
Ilwhenever reset goes high. Use of procedural continuous

Ilassignments.
if(reset)

begin Ilif reset is high,override regular assignments to q with
lithe new values, using procedural continuous assignment.

assign q = l'bO;

end
else
begin

end

assign qbar = l'bl;

IIIf reset goes low, remove the overriding values by
Iideassigning the registers. After this the regular'

Ilassignments q = d and qbar = -d will be able to change
lithe registers on the next negative edge of clock.

deassign q;
deassign qbar;

endmodule

170 Verilog HDL: A Guide to Digital Design and Synthesis

9= -
In Example 9-1, we overrode the assignment on q and qbar and assigned new
values to them when reset signal went high. The register variables retain the
continuously assigned value after the deassign until they are changed by a future
procedural assignment.

9.1.2 force and release

Keywords force and release are used to express the second form of the
procedural continuous assignments. They can be used to override assignments on
both registers and nets. force and release statements are typically used in the
interactive debugging process, where certain registers or nets are forced to a value
and the effect on other registers and nets is noted. It is recommended that force
and release statements not be used inside design blocks. They should appear
only in stimulus or as debug statements.

force and release on registers

A force on a register overrides any procedural assignments or procedural
continuous assignments on the register until the register is released. The register
variables will continue to store the forced value after being released but can then
be changed by a future procedural assignment. To override the values of q and
qbar in Example 9-1 for a limited period of time, we could do the following.

module stimulus;

Ilinstantiate the d-flipflop
edge_dff dff(Q, Qbar, D, eLK, RESET);

init.ial­
begin

Iithese statements force value of 1 on dff.q between time 50 and
11100, regardless of the actual output of the edge_dff.

end

#50 force dff.q = l'bl; Ilforce value of q to 1 at time 50.
#50 release dff.q; Ilrelease the value of q at time 100.

endmodule

Useful Modeling Techniques 171

force and release on nets

force on nets overrides any continuous assignments until the net is released. The
net will immediately return to its normal driven value when it is released. A net
can be forced to an expression or a value.

module top;

assign out a & b & c; Ilcontinuous assignment on net out

initial
#50 force out = a I b & c;
#50 release out;

end

endmodule

In the example above, a new expression is forced on the net from time 50 to time
100. From time 50 to time 100, when the force statement is active, the expression
a I b & c will be reevaluated and assigned to out whenever values of signals a or
b or c change. Thus, the force statement behaves like a continuous assignment
except that it is active only for a limited period of time.

9.2 Overriding Parameters
Parameters can be defined in a module definition, as was discussed earlier in
Section 3.2.8, Parameters. However, during compilation of Verilog modules,
parameter values can be altered separately for each module instance. This allows
us to pass a distinct set of parameter values to each module during compilation
regardless of predefined parameter values.

There are two ways to override parameter values: through the defparam statement
or through module instance parameter value assignment.

9.2.1 defparam Statement

Parameter values can be changed in any module instance in the design with the
keyword defparam. The hierarchical name of the module instance can be used to
override parameter values. Consider Example 9-2, which uses defparam to
override the parameter values in module instances.

172 Verilog HDL: A Guide to Digital Design and Synthesis

Example 9-2 Defparam Statement

//Define a module hello_world
module hello_world;
parameter id_num = 0; //define a module identification number 0

initial //display the module identification number
$display ("Displaying hello_world id number

endmodule

//define top-level module
module top;
//change parameter values in the instantiated modules
//Use defparam statement
defparam wl.id_num = 1, w2.id_num = 2;

//instantiate two hello_world modules
hello_world wl();
hello_world w2{);

endmodule

In Example 9-2,the module hello_world was defined with a default id_num = o.
However, when the module instances wi and w2 of the type hello_world are
created, their id_num values are modified with the defparam statement. If we
simulate the above design, we would get the following output:

Displaying hello_world id number 1
Displaying hello_world id number 2

Multiple defparam statements can appear in a module. Any parameter can be
overridden with the defparam statement.

9.2.2 Module_Instance Parameter Values

Parameter values can be overridden when a module is instantiated. To illustrate
this, we will use Example 9-2 and modify it a bit. The new parameter values are
passed during module instantiation. The top-level module can pass parameters to

Useful Modeling T€chniques 173

the instances wl and w2 as shown below. Notice that defparam is not needed. The
simulation output will be identical to the output obtained with the defparam
statement.

//define top-level module
module top;

//instantiate two hello_world modules; pass new parameter values
hello_world #(1) w1; //pass value 1 to module w1
hello_world #(2) w2; //pass value 2 to module w2

endmodule

If multiple parameters are defined in the module, during module instantiation
they can be overridden by specifying the new values in the same order as the
parameter declarations in the module. If an overriding value is not specified, the
default parameter declaration values are taken. Consider Example 9-3.

Example 9-3 Module Instance Parameter Values

//define module with delays
module bus_master;
parameter delay1 2;
parameter delay2 3;
parameter delay3 7;

<module internals>

endmodule

//top-level module; instantiates two bus_master modules
module top;

//Instantiate the modules with new delay values
bus_master #(4,5,6) b1(); //b1: delay1=4, delay2=5, delay3 =6
bus_master #(9,4) b2(); //b2: delay1=9, delay2=4, delay3=7(default)

endmodule

Module-instance, parameter value assignment is a very useful method used to
override parameter values and to customize module instances.

174 Verilog HDL: A Guide to Digital Design and Synthesis

9.3 Conditional Compilation and Execution
A portion of Verilog might be suitable for one environment and not for the other.
The designer does not wish to create two versions of Verilog design for the two
environments. Instead, the designer can specify that the particular portion of the
code be compiled only if a certain flag is set. This is called conditional compilation.

A designer might also want to execute certain parts of the Verilog design only
when a flag is set at run time. This is called conditional execution.

9.3.1 Conditional Compilation

Conditional compilation can be accomplished by using compiler directives
'ifdef, 'else, and 'endif. Example 9-4 contains Verilog source code to be
compiled conditionally.

Example 9-4 Conditional Compilation

//Conditional Compilation

/ / Example 1
'ifdef TEST//compile module test only if text macro TEST is defined
module test;

endmodule
'else //compile the module stimulus as default
module stimulus;

endmodule
'endif //completion of 'ifdef statement

/ /Example 2
module top;

bus_master bI(); //instantiate module unconditionally
'ifdef ADD_B2

bus_master b2 (),. / /b2 is instantiated condi tionally if text macro
//ADD_B2 is defined

'endif

endmodule

Useful Modeling Techniques 175

The'ifdef statement can appear anywhere in the design. A designer can
conditionally compile statements, modules, blocks, declarations, and other
compiler directives. The' else statement is optional. A maximum of one' else
statement can accompany the' ifdef. An 'ifdef is always closed by a
corresponding' endif.

The conditional compile flag can be set by using the' define statement inside the
Verilog file. In the example above, we could define the flags by defining text
macros TEST and ADD_B2 at compile time by using the 'define statement. The
Verilog compiler simply skips the portion if the conditional compile flag is not
set. A boolean expression, such as TEST && ADD _B2, is not allowed with the
'ifdef statement.

9.3.2 Conditional Execution

Conditional execution flags allow the designer to control statement execution
flow at run time. All statements are compiled but executed conditionally.
Conditional execution flags can be used only for behavioral statements. The
system task keyword $test$plusargs is used for conditional execution. This
option is not provided as a part of the IEEE Language Reference Manual. This
facility is available in Verilog-XL but may not be supported in other simulators
because it is not a standard.

Consider Example 9-5, which illustrates conditional execution.

Example 9-5 Conditional Execution

IIConditional execution
module test;

initial
begin

if ($test$plusargs ("DISPLAY_VAR"))
$display("Display = %b ", {a,b,c}); //displayonlyif flagis set

else
$display("No Display"); Ilotherwise no display

end
endmodule

The variables are displayed only if the flag DISPLAY_VAR is set at run time. Flags
can be set at run time by specifying the option +DISPLAY _ VAR at run time.

176 Verilog HDL: A Guide to Digital Design and Synthesis

9.4 Time Scales
Often, in a single simulation, delay values in one module need to be defined by
using certain time unit, e.g., 1 Ils, and delay values in another module need to be
defined by using a different time unit, e.g., 100 ns. Verilog HDL allows the
reference time unit for modules to be specified with the' timescale compiler
directive.

Usage: 'timescale <reference_time_unit> / <time_precision>

The <reference_time_unit> specifies the unit of measurement for times and delays.
The <time_precision> specifies the precision to which the delays are rounded off
during simulation. Only 1, 10, and 100 are valid integers for specifying time unit
and time precision. Consider the two modules, dummyl and dummy2, in Example
9-6.

Example 9-6 Time Scales

IIDefine a time scale for the module dummy1
IIReference time unit is 100 nanoseconds and precision is 1 ns
'timescale 100 ns I 1 ns

module dummy1;

reg toggle;

Ilinitialize toggle
initial

toggle'" l'bO;

IIFlip the toggle register every 5 time units
IIIn this module 5 time units'" 500 ns = .5 IlS
always #5

begin
toggle = -toggle;
$display("%d , In %m toggle %b" $time, toggle};

end

endmodule

//Define a time scale for the module dummy2
//Reference time unit is 1 microsecond and precision is 10 ns
'timescale 1 us / 10 ns

module dummy2;

Useful Modeling Techniques 177

Example 9-6 Time Scales (Continued)

reg toggle;

//initialize toggle
initial

toggle = l'bO;

//Flip the toggle register every 5 time units
//In this module 5 time units = 5 ~s 5000 ns
always #5

begin
toggle = -toggle;
$display("%d , In %m toggle %b" $time, toggle);

end

endrnodule

The two modules dummyl and dummy2 are identical in all respects, except that
the time unit for dummyl is 100 ns and time unit for dummy2 is 1 IlS. Thus the
$display statement in dummyl will be executed 10 times for each $display
executed in dummy2. The $time task reports the simulation time in terms of the
reference time unit for the module in which it is invoked. The first few $display
statements are shown in the simulation output below to illustrate the effect of the
'timescale directive.

5 , In dummy1 toggle = 1
10 In dummy1 toggle 0
15 In dummy1 toggle 1
20 In dummy 1 toggle 0
25 In dummy 1 toggle 1
30 In dummy1 toggle 0
35 In dummy1 toggle 1
40 In dummy1 toggle 0
45 In dummy1 toggle 1

--> 5 , In dummy2 toggle = 1
50 In dummy1 toggle 0
55 , In dummy1 toggle = 1

Notice that the $display statement in dummy2 executes once for every ten
$display statements in dummyl.

178 Verilog HDL: A Guide to Digital Design and Synthesis

9.S Useful System Tasks
In this section we discuss the system tasks that are useful for a variety of
purposes in Verilog. We discuss system tasks for file output, displaying hierarchy,
strobing, random number generation, memory initialization, and value change dump.

9.5.1 File Output

Output from Verilog normally goes to the standard output and the file verilog.log.
It is possible to redirect the output of Verilog to a chosen file.

Opening a file

A file can be opened with the system task $fopen.

Usage: $fopen(" <name_at_file>");

Usage: <file_handle> = $fopen("<name_0f-file>");

The task $fopen returns a 32-bit value called a multichannel descriptor. Only one bit
is set in a multichannel descriptor. The standard output has a multichannel
descriptor with the least significant bit (bit 0) set. Standard output is also called
channel o. The standard output is always open. Each successive call to $fopen
opens a new channel and returns a 32-bit descriptor with bit 1 set, bit 2 set, and so
on, up to bit 31 set. The channel number corresponds to the individual bit set in
the multichannel descriptor. Example 9-7 illustrates the use of file descriptors.

Example 9-7 File Descriptors

//Multichannel descriptor
integer handlel, handle2, handle3; Ilintegers are 32-bit values

//standard output is open; descriptor = 32'hOOOO_OOOl (bit 0 set)
initial
begin

handle!
handle2
handle3

$fopen ("filel. out") ; / /handlel = 32 'hOOOO_0002 (bit 1 set)
$fopen ("file2 . out") ; / Ihandle2 = 32 'hOOOO_0004 (bi t 2 set)
$fopen("file3.out"); //handle3=32'hOOOO_0008 (bit 3 set)

end

The advantage of multichannel descriptors is that it is possible to selectively write
to multiple files at the same time. This is explained below in greater detail.

Useful Modeling Techniques 179

=9 -
Writing to files

The system tasks $fdisplay, $fmonitor, $fwrite, and $fstrobe are used to write
to files. Note that these tasks are the similar in syntax to regular system tasks
$display, $monitor, etc., but they provide the additional capability of writing to
files.

We will consider only $fdisplay and $fmonitor tasks.

Usage: $fdisplay«file_descriptor>, pl, p2 ... , pn);

$fmonitor«file_descriptor>, pl, p2, ... , pn);

pl, p2, ... , pn can be variables, signal names, or quoted strings.

A file_descriptor is a multichannel descriptor that can be a file handle or a bitwise
combination of file handles. Verilog will write the output to all files that have a 1
associated with them in the file descriptor. We will use the file descriptors defined
in Example 9-7 and illustrate the use of the $fdisplay and $fmonitor tasks.

//All handles defined in Example 9-7
//Writing to files
integer desc1, desc2, desc3; //three file descriptors
initial
begin

end

desc1 = handle1 I 1; //bitwise or; desc1 = 32'hOOOO_0003
$fdisplay(desc1, "Display l");//write to files filel.out & stdout

desc2 = handle2 I handle1; //desc2 = 32'hOOOO_0006
$fdisplay(desc2, "Display 2") ii/write to files filel.out& file2.out

desc3 = handle3 ; //desc3 = 32'hOOOO 0008
$fdisplay(desc3, "Display 3") ii/write to file file3.out only

Closing files

Files can be closed with the system task $fclose.

Usage: $fclose(<file_handle»;

//Closing Files
$fclose(handle1) ;

180 Verilog HDL: A Guide to Digital Design and Synthesis

A file cannot be written to once it is closed. The corresponding bit in the
multichannel descriptor is set to O. The next $fopen call can reuse the bit.

9.5.2 Displaying Hierarchy

Hierarchy at any level can be displayed by means of the %m option in any of the
display tasks, $display, $write task, $monitor, or $strobe task as discussed
briefly in Section 4.3, Hierarchical Names. This is a very useful option. For
example, when multiple instances of a module execute the same Verilog code, the
%m option will distinguish which model instance the output is coming from. No
argument is needed for the %m option in the display tasks.

Example 9-8 Displaying Hierarchy

IIDisplaying hierarchy information
module M;

initial
$display ("Displaying in %m");

endmodule

Ilinstantiate module M
module top;

M ml () ;
M m2();
M m3 () ;
endmodule

The output from the simulation will look like the following:

Displaying in top.ml
Displaying in top.m2
Displaying in top.m3

This feature can display full hierarchical names, including module instances,
tasks, functions, and named blocks.

Useful Modeling Techniques 181

=9 -
9.5.3 Strobing

Strobing is done with the system task keyword $strobe. This task is very similar
to the $display task except for a slight difference. If many other statements are
executed in the same time unit as the $display task, the order in which the
statements and the $display task are executed is nondeterministic. If $strobe is
used, it is always executed after all other assignment statements in the same time
unit have executed. Thus, $strobe provides a synchronization mechanism to
ensure that data is displayed only after all other assignment statements, which
change the data in that time step, have executed.

Example 9-9 Strobing

//Strobing
always @(posedge clock)
begin

end

a b;
c = d;

always @(posedge clock)
$strobe("Displaying a=%b, c=%b", a, c); //display values at posedge

In Example 9-9, the values at positive edge of clock will be displayed only after
statements a = band c = d execute. If $display was used, $display might execute
before statements a = band c = d, thus displaying different values.

9.5.4 Random Number Generation

Random number generation capabilities are required for generating a random set
of test vectors. Random testing is important because it often catches hidden bugs
in the design. Random vector generation is also used in performance analysis of
chip architectures. The system task $random is used for generating a random
number.

Usage: $random;

$random(<seed»;

The value of <seed> is optional and is used to ensure the same random number
sequence each time the test is run. The task $random returns a 32-bit random
number. All bits, bit-selects, or part-selects of the 32-bit random number can be
used (see Example 9-10).

182 Verilog HDL: A Guide to Digital Design and Synthesis

9=

Example 9-10 Random Number Generation

//Generate random numbers and apply them to a simple ROM
module test;
integer r_seed;
reg [31:0] addr;//input to ROM
wire [31:0] data;//output from ROM

ROM rom1{data, addr);

initial
r_seed = 2; //arbitrarily define the seed as 2.

always @(posedge clock)
addr = $ random (r_seed) ; //generates random numbers

<check output of ROM against expected results>

endmodule

Note that the algorithm used by $random is not standardized and may vary
among simulators.

9.5.5 Initializing Memory from File

-

We discussed how to declare memories in Section 3.2.7, Memories. Verilog
provides a very useful system task to initialize memories from a data file. Two
tasks are provided to read numbers in binary or hexadecimal format. Keywords
$readmemb and $readmemh are used to initialize memories.

Usage: $readmemb(lI<file_name>", <memory_name»;

$readmemb(" <file_name>", <memory_name>, <starCaddr»;

$readmemb(II <file_name>", <memory_name>, <starCaddr>, <finish_addr»;

Identical syntax for $readmemh.

The <file_name> and <memory_name> are mandatory; <starCaddr> and
<finish_addr> are optional. Defaults are start index of memory array for
<starCaddr> and end of the data file or memory for <finish_addr>. Example 9-11
illustrates how memory is initialized.

Useful Modeling Techniques 183

Example 9-11 Initializing Memory

module test;

reg [7:0] memory[0:7]; //declare an 8-byte memory
integer i;

initial
begin

//read memory file init.dat. address locations given in memory
$readrnernb ("ini t. dat", memory);
//display contents of initialized memory
for(i=O; i < 8; i = i + 1)

$display("Memory [%Od] = %b", i, memory[i]);
end

endrnodule

The file init.dat contains the initialization data. Addresses are specified in the data
file with @<address>. Addresses are specified as hexadecimal numbers. Data is
separated by whitespaces. Data can contain x or z. Uninitialized locations default
to x. A sample file, init.dat, is shown below.

@002
11111111 01010101
00000000 10101010

@006
1111zzzz 00001111

When the test module is simulated, we will get the following output.

Memory [0] xxxxxxxx
Memory [1] xxxxxxxx
Memory [2] 11111111
Memory [3] 01010101
Memory [4] 00000000
Memory [5] 10101010
Memory [6] 1111zzzz
Memory [7] 00001111

184 Verilog HDL: A Guide to Digital Design and Synthesis

9.5.6 Value Change Dump File

A value change dump (VCD) is an ASCII file that contains information about
simulation time, scope and signal definitions, and signal value changes in the
simulation run. All signals or a selected set of signals in a design can be written to
a VCD file during simulation. Postprocessing tools can take the VCD file as input
and visually display hierarchical information, signal values, and signal
waveforms. Many postprocessing tools, such as Magellan®, Signalscan™, and
VirSim™ are now commercially available. For simulation of large designs,
designers dump selected signals to a VCD file and use a postprocessing tool to
debug, analyze, and verify the simulation output. The use of VCD file in the
debug process is shown in Figure 9-1.

Post Process

Make Changes
In Design

Debug/ Analyze
Results

Figure 9-1 Debugging and Analysis of Simulation with VCD file

System tasks are provided for selecting module instances or module instance
signals to dump ($dwnpvars), name of VCD file ($dwnpfile), starting and
stopping the dump process ($dwnpon, $dwnpoff), and generating checkpoints
($dwnpall). Uses of each task are shown in Example 9-12.

Example 9-12 VCD File System Tasks

Iispecify name of VCD file. Otherwise,default name is
Ilassigned by the simulator.
initial

$dumpfile("myfile.drnp"); IISimulation info dumped to myfile.drnp

IIDump signals in a module
initial

$dumpvars; Iino arguments, dump all signals in the design
initial

$durnpvars(l, top); I/dump variables in module instance top.

Useful Modeling Techniques 185

Example 9-12 VCD File System Tasks (Continued)

IINumber 1 indicates levels of hierarchy. Dump one
Ilhierarchy level below top, i.e., dump variables in top,

Ilbut not signals in modules instantiated by top.
initial

$dumpvars (2, top .m1) ; / /dump up to 2 levels of hierarchy below top .m1
initial

$dumpvars(O, top.m1) ;IINumber 0 means dump the entire hierarchy
II below top.m1

IIStart and stop dump process
initial
begin

$dumpon;
#100000 $dumpoff;

end

Iistart the dump process.
Iistop the dump process after 100,000 time units

IICreate a checkpoint. Dump current value of all VCD variables
initial

$dumpall;

The $dwnpfile and $dumpvars tasks are normally specified at the beginning of
the simulation. The $dwnpon, $dwnpoff, and $dwnpall control the dump process
during the simulation.

Postprocessing tools with graphical displays have emerged as an important part
of the simulation and debug process. For large simulation runs, it is very difficult
for the designer to analyze the output from $display or $monitor statements. It
is more intuitive to analyze results from graphical waveforms. Formats other than
veo have also emerged, but veo still remains the popular dump format for
Verilog simulators.

However, it is important to note that veo files can become very large (hundreds
of megabytes for large designs). It is important to selectively dump only those
signals that need to be examined.

9.6 Summary
In this chapter we discussed the following aspects of Verilog.

186 Verilog HDL: A Guide to Digital Design and Synthesis

Procedural continuous assignments can be used to override the assignments on
registers and nets. assign and deassign can override assignments on
registers. force and release can override assignments on registers and
nets. assign and deassign are used in the actual design. force and release
are used for debugging.

Parameters defined in a module can be overridden with the defparam
statement or by passing a new value during module instantiation.

Compilation of parts of the design can be made conditional by using the
'ifdef statement. Compilation flags are defined at compile time by using
the 'define statement.

Execution is made conditional in Verilog-XL by means of the
$test$plusargs system task. The execution flags are defined at run time by
+<flag-name>. The $test$plusargs task is not a part of the Verilog HDL
standard defined in the IEEE Language Reference Manual.

Up to 32 files can be opened for writing in Verilog. Each file is assigned a bit
in the multichannel descriptor. The multichannel descriptor concept can be
used to write to multiple files.

Hierarchy can be displayed with the % m option in any display statement.

Strobing is a way to display values at a certain time or event after all other
statements in that time unit have executed.

Random numbers can be generated with the system task $random. They are
used for random test vector generation.

Memory can be initialized from a data file. The data file contains addresses
and data. Addresses can also be specified in memory initialization tasks.

Value Change Dump is a popular format used by many designers for
debugging with postprocessing tools. Verilog allows all or selected module
variables to be dumped to the VCD file. Various system tasks are available
for this purpose.

Useful Modeling Techniques

9.7 Exercises
1. Using assign and deassign statements, design a positive edge-triggered D­

flipflop with asynchronous clear (q=O) and preset (q=l).

2. Using primitive gates, design a I-bit full adder FA. Instantiate the full adder
inside a stimulus module. Force the sum output to a & b & c_in for the time
between 15 and 35 units.

3. A I-bit full adder FA is defined with gates and with delay parameters as
shown below.

II Define a I-bit full adder
module fulladd(sum, c_out, a, b, c_in);
parameter d_sum = 0, d_cout 0;

II 1/0 port declarations
output sum, c_out;
input a, b, c_in;

II Internal nets
wire sl, cl, c2;

II Instantiate logic gate primitives
xor (sl, a, b);
and (c1, a, b);

xor # (d_sum) (sum, sl, c_in); Iidelay on output sum is d_sum
and (c2, sl, c_in);

or # (d_cout) (c_out, c2, c1); Iidelay on output c_out is d_cout

endmodule

188

Define a 4-bit full adder fulladd4 as shown in Example 5-7 on page 74, but
pass the following parameter values to the instances using the two methods
discussed in the book.

Instance

faD
fal

fa2
fa3

Delay Values

d_sum=l, d_cout=l
d_sum=2, d_cout=2

d_sum=3, d_cout=3
d_sum=4, d_cout=4

Verilog HDL: A Guide to Digital Design and Synthesis

a. Build the fulladd4 module with defparam statements to change instance
parameter values. Simulate the 4-bit full adder using the stimulus
shown in Example 5-8 on page 74. Explain the effect of the full adder
delays on the times when outputs of the adder appear. (Use delays of 20
instead of 5 used in this stimulus).

b. Build the fulladd4 with delay values passed to instances faO, fal, fa2, and
fa3 during instantiation. Resimulate the 4-bit adder, using the stimulus
above. Check if the results are identical.

4. Create a design that uses the full adder example above. Use a conditional
compilation (' itdef). Compile the fulladd4 with defparam statements if the
text macro DPARAM is defined by the' define statement; otherwise, compile
the fulladd4 with module instance parameter values.

5. Identify the files to which the following display statements will write.

//File output with multi-channel descriptor

module test;

integer handlel,handle2,handle3; //file handles

//open files
initial
begin

handlel
handle2
handle3

end

$fopen(" fl. out") ;
$fopen("f2 .out");
$fopen("f3 .out");

//Display statements to files
initial
begin

#5;
$fdisplay(4, "Display Statement # I");
$fdisplay(15, "Display Statement # 2");
$fdisplay(6, "Display Statement # 3");
$fdisplay(10, "Display Statement # 4");
$fdisplay(O, "Display Statement # 5");

end

endrnodule

Useful Modeling Techniques 189

6. What will be the output of the $display statement shown below?

module top;
A al0;
endmodule

module A;
B bl0;
endmodule

module B;
initial

$display("I am inside instance %mM);
endmodule

7. Consider the 4-bit full adder in Example 6-4 on page 104. Write a stimulus
file to do random testing of the full adder. Use a random number generator
to generate a 32-bit random number. Pick bits 3:O and apply them to input a;
pick bits 7:4 and apply them to input b. Use bit 8 and apply it to c-in. Apply
20 random test vectors and observe the output.

8. Use the 8-byte memory initialization example in Example 9-11 on page 184.
Modify the file to read data in hexadecimal. Write a new data file with the
following addresses and data values. Unspecified locations are not
initialized.

Location Address Data

9. Write an initial block that controls the VCD file. The initial block must
do the following:

Set myfile.dmp as the output VCD file.
Dump all variables two levels deep in module instance top.al .bl .cl.
Stop dumping to VCD at time 200.
Start dumping to VCD at time 400.
Stop dumping to VCD at time 500.
Create a checkpoint. Dump current value of all VCD variables to the
dumpfile.

190 Verilog HDL: A Guide to Digital Design and Synthesis

Part2 Advanced Veri log Topics

Timing and Delays
Distributed, lumped and pin-to-pin delays, specify blocks, parallel and full
connection, timing checks, delay back-annotation.

Switch-Level Modeling
MOS and CMOS switches, bidirectional switches, modeling of power and
ground, resistive switches, delay specification on switches.

User-Defined Primitives
Parts of UDP, UDP rules, combinational UDPs, sequential UDPs, shorthand
symbols.

Programming Language Interface
Introduction to PLI, uses of PLI, linking and invocation of PLI tasks,
conceptual representation of design, PLI access and utility routines.

Logic Synthesis with Verilog HDL
Introduction to logic synthesis, impact of logic synthesis, Verilog HDL
constructs and operators for logic synthesis, synthesis design flow,
verification of synthesized circuits, modeling tips, design partitioning.

Verilog HDL: A Guide to Digital Design and Synthesis

Timing and Delays

Functional verification of hardware is used to verify functionality of the designed
circuit. However, blocks in real hardware have delays associated with the logic
elements and paths in them. Therefore, we must also check whether the circuit
meets the timing requirements, given delay specifications for the blocks.
Checking timing requirements has become increasingly important as circuits have
become smaller and faster. One of the ways to check timing is to do a timing
simulation that accounts for the delays associated with the block during the
simulation.

Techniques other than timing simulation to verify timing have also emerged in
design automation industry. The most popular technique is static timing
verification. Designers first do a pure functional verification and then verify timing
separately with a static timing verification tool. The main advantage of static
verification is that it can verify timing, orders of magnitude more quickly than
timing simulation. Static timing verification is a separate field of study and is not
discussed in this book.

In this chapter we discuss in detail how timing and delays are controlled and
specified in Verilog modules. Thus, by using timing simulation, the designer can
verify both functionality and timing of the circuit with Verilog.

Learning Objectives

Identify types of delay models, distributed, lumped, and pin-to-pin (path)
delays used in Verilog simulation.

Understand how to set path delays in a simulation by using specify blocks.

Explain parallel connection and full connection between input and output pins.

Understand how to define parameters inside specify blocks by using
specparam statements.

Describe state-dependent path delays.

Explain rise, fall, and turn-off delays. Understand how to set min, max, and
t yp values.

Define system tasks for timing checks $setup, $hold, and $width.

Understand delay back-annotation.

10.1 Types of Delay Models
There are three types of delay models used in Verilog: distributed, lumped, and pin-
to-pin (path) delays.

10.1.1 Distributed Delay

Distributed delays are specified on a per element basis. Delay values are assigned
to individual elements in the circuit. An example of distributed delays in module
M is shown in Figure 10-1.

b

I #4 aa out

Figure 10-1 Distributed Delay

Distributed delays can be modeled by assigning delay values to individual gates
or by using delay values in individual assign statements. When inputs of any
gate change, the output of the gate changes after the delay value specified.
Example 10-1 shows how distributed delays are specified in gates and dataflow
description. Distributed delays can be modeled by assigning delay values to
individual gates or by using delay values in individual assim statements. When
inputs of any gate change, the output of the gate changes after the delay value
specified. Example 10-1 shows how distributed delays are specified in gates and
dataflow description.

Verilog HDL: A Guide to Digital Design and Synthesis

Example 10-1 Distributed Delays

//Distributed delays in gate-level modules
module M (out, a, b, c, d);
output out;
input a, b, c, d;

wire e, f;

//Delay is distributed to each gate.
and #5 al(e, a, b);
and #7 a2(f, c, d);
and #4 a3(out, e, f);
endmodule

//Distributed delays in data flow definition of a module
module M (out, a, b, c, d);
output out;
input a, b, c, d;

wire e, f;

//Distributed delay in each expression
assign #5 e = a & b;
assign #7 f = C & d;
assign #4 out e & f;
endmodule

10 ---

Distributed delays provide detailed delay modeling. Delays in each element of
the circuit are specified.

10.1.2 Lumped Delay

Lumped delays are specified on a per module basis. They can be specified as a
single delay on the output gate of the module. The cumulative delay of all paths
is lumped at one location. The example of a lumped delay is shown in
Figure 10-2 and Example 10-2.

Timing and Delays 195

-- 10 -
a
b

c
d

M r-------------,
I I

I
I
I

I
I
I

I I L ___________ --'

Figure 10-2 Lumped Delay

out

The above example is a modification of Figure 10-1. In this example we computed
the maximum delay from any input to the output of Figure 10-1, which is 7 + 4 =
11 units. The entire delay is lumped into the output gate. After a delay, primary
output changes after any input to the module M changes.

Example 10-2 Lumped Delay

//Lumped Delay Model
module M (out, a, b, c, d);
output out;
input a, b, c, d;

wire e, f;

and a1 (e, a, b);
and a2 (f, c, d);
and #11 a3(out, e, f);//delay only on the output gate
endmodule

Lumped delays models are easy to model compared with distributed delays.

10.1.3 Pin-to-Pin Delays

Another method of delay specification for a module is pin-fa-pin timing. Delays
are assigned individually to paths from each input to each output. Thus, delays
can be separately specified for each input/ output path. In Figure 10-3 we take the
example in Figure 10-1 and compute the pin-to-pin delays for each input/output
path.

196 Verilog HDL: A Guide to Digital Design and Synthesis

a
b

c
d

M r------------,
I I

I
I
I

I
I
I

I I L ___________ --1

path a-e-out, delay = 9
path b-e-out, delay = 9
path c- f -out, de;ay = 11
path d-f-out, delay = 11

Figure 10-3 Pin-to-Pin Delay

10 ---
out

Pin-to-pin delays for standard parts can be directly obtained from data books.
Pin-to-pin delays for modules of a digital circuit are obtained by circuit
characterization, using a low-level simulator like SPICE.

Although pin-to-pin delays are very detailed, for large circuits they are easier to
model than distributed delays because the designer writing delay models needs
to know only the I/O pins of the module rather than the internals of the module.
The internals of the module may be designed by using gates, data flow,
behavioral statements, or mixed design, but the pin-to-pin delay specification
remains the same. Pin-to-pin delays are also known as path delays. We will use the
term "path delays" in the succeeding sections.

We covered distributed and lumped delays in Section 5.2, Gate Delays, and in
Section 6.2, Delays. In the following section, we study path delays in detail.

10.2 Path Delay Modeling
In this section we discuss various aspects of path delay modeling. In this section
the terms pin and port are used interchangeably.

Timing and Delays 197

10.2.1 Specify Blocks

A delay between a source (input or inout) pin and a destination (output or inout)
pin of a module is called a module path delay. Path delays are assigned in Verilog
within the keywords specify and endspecify. The statements within these
keywords constitute a specify block.

Specify blocks contain statements to do the following:

Assign pin-to-pin timing delays across module paths
Set up timing checks in the circuits
Define specparam constants

For the example in Figure 10-3, we can write the module M with pin-to-pin
delays, using specify blocks as follows.

Example 10-3 Pin-to-Pin Delay

//pin-to-pin delays
module M (out, a, b, c, d);
output out;
input a, b, c, d;

wire e, f;

//Specify block with path delay statements
specify

(a => out) = 9;
(b => out) = 9;
(c => out) = 11;
(d => out) = 11;

endspecify

//gate instantiations
and al(e, a, b) ;
and a2(f, C, d);
and a3(out, e, f);
endmodul e

The specify block is a separate block in the module and does not appear under
any other block, such as initial or always. The meaning of the statements
within specify blocks needs to be clarified. In the following subsection, we
analyze the statements that are used inside specify blocks.

198 Verilog HDL: A Guide to Digital Design and Synthesis

10 ---
10.2.2 Inside Specify Blocks

In this section, we describe the statements that can be used inside specify blocks.

Parallel connection

As discussed earlier, every path delay statement has a source field and a
destination field. In the path delay statements in Example 10-3, a, b, c, and d are in
the position of the source field and out is the destination field.

A parallel connection is specified by the symbol -> and is used as shown below.

Usage: «sourceJield> -> <destinationJield» • <delay_value>;

In a parallel connection, each bit in source field connects to its corresponding bit
in the destination field. If the source and the destination fields are vectors, they
must have the same number of bits; otherwise, there is a mismatch. Thus, a
parallel connection specifies delays from each bit in source to each bit in
destination.

Figure 10-4 shows how bits between the source field and destination field are
connected in a parallel connection. Example 10-4 shows the Verilog description
for a parallel connection.

Source
Field

Figure 10-4 Parallel Connection

Example 10-4 Parallel Connection

..0

... 1 Destination
Field

•• 2

Ilbit-to-bit connection. both a and out are single-bit
(a => out) = 9;

Ilvector connection. both a and out are 4-bit vectors a[3:0], out[3:0]
Iia is source field, out is destination field.
(a => out) = 9;
lithe above statement is shorthand notation
Ilfor four bit-to-bit connection statements
(a[O] => out[O]) 9;
(a[l] => out[l]) 9;
(a[2] => out[2]) 9;
(a[3] => out[3]) 9;

Timing and Delays 199

-- 10 -
Example 10-4 Parallel Connection (Continued)

//illegal connection. a[4:0] is a 5-bit vector, out[3:0] is 4-bit.
//Mismatch between bit width of source and destination fields
(a => out) = 9; //bit width does not match.

Full connection

A full connection is specified by the symbol *> and is used as shown below.

Usage: «sourceJield> *> <destination_field» = <delay_value>;

In a full connection, each bit in the source field connects to every bit in the
destination field. If the source and the destination are vectors, then they need not
have the same number of bits. A full connection describes the delay between each
bit of the source and every bit in the destination, as illustrated in Figure 10-5.

0 0

1 1
Source Destination
Field Field

2 2

Figure 10-5 Full Connection

Delays for module M were described in Example 10-3, using a parallel
connection. Example 10-5 shows how delays are specified by using a full
connection.

Example 10-5 Full Connection

//Full Connection
module M (out, a, b, c, d);
output out;
input a, b, c, d;

wire e, f;

//full connection
specify
(a,b *> out) 9;
(c,d *> out) 11;
endspecify

and al (e, a, b);

200 Verilog HDL: A Guide to Digital Design and Synthesis

Example 10-5 Full Connection (Continued)

IIFull Connection

and a2 (f, c, d);
and a3(out, e, f);
endmodule

10 ---

The full connection is particularly useful for specifying a delay between each bit
of an input vector and every bit in the output vector when bit width of the
vectors is large. The following example shows how the full connection sometimes
specifies delays very concisely.

Ila[31:0] is a 32-bit vector and out[15:0] is a 16-bit vector
IIDelay of 9 between each bit of a and every bit of out

specify
(a *> out) 9; II you would need 32 X 16 = 352 parallel connection

II statements to accomplish the same result! Why?
endspecify

specparam statements

Special parameters can be declared for use inside a specify block. They are
declared by the keyword specparam. Instead of using hard coded delay numbers
to specify pin-to-pin delays, it is common to define specify parameters by using
specparam and then to use those parameters inside the specify block. The
specparam values are often used to store values for nonsimulation tools, such as
delay calculators, synthesis tools, and layout estimators. A sample specify block
with specparam statements is shown in Example 10-6.

Example 10-6 Specparam

IISpecify parameters using specparam statement
specify

Iidefine parameters inside the specify block
specparam d_to_q = 9;
specparam clk_to_q = 11;

(d => q) = d_to_q;
(clk => q) = clk_to_q;

endspecify

Timing and Delays 201

-- 10 -
Note that specify parameters are used only inside their own specify block. They
are not general-purpose parameters that are declared by the keyword parameter.
Specify parameters are provided for convenience in assigning delays. It is
recommended that all pin-to-pin delay values be expressed in terms of specify
parameters instead of hardcoded numbers. Thus, if timing specifications of the
circuit change, the user has to change only the values of specify parameters.

Conditional path delays

Based on the states of input signals to a circuit, the pin-to-pin delays might
change. Verilog allows path delays to be assigned conditionally, based on the value
of the signals in the circuit. A conditional path delay is expressed with the if
conditional statement. The operands can be scalar or vector module input or
inout ports or their bit-selects or part-selects, locally defined registers or nets or
their bit-selects or part-selects, or compile time constants (constant numbers and
specify block parameters). The conditional expression can contain any logical,
bitwise, reduction, concatenation, or conditional operator shown in Table 6-1 on
page 92. The else construct cannot be used. Conditional path delays are also
known as state dependent path delays(SDPD).

Example 10-7 Conditional Path Delays

IIConditional Path Delays
module M (out, a, b, c, d);
output out;
input a, b, c, d;

wire e, f;

Iispecify block with conditional pin-to-pin timing
specify

Iidifferent pin-to-pin timing based on state of signal a.
if (a) (a => out) = 9;
if (-a) (a => out) = 10;

IIConditional expression contains two signals b , c.
Illf b & c is true, delay = 9,
Ilotherwise delay = 13.
if (b & c) (b => out) = 9;
if (-(b & c)) (b => out) = 13;

IIUse concatenation operator.
IIUse Full connection
if ({c,d} == 2'b01)

202 Verilog HDL: A Guide to Digital Design and Synthesis

Example 10-7 Conditional Path Delays (Continued)

//Conditional Path Delays
(c, d *> out) 11;

if ({c,d} != 2'bOl)
(c,d *> out) 13;

endspecify

and a1 (e, a, b);
and a2 (f, c , d);
and a3(out, e, f);
endrnodule

Rise, fall, and turn-off delays

10 ---

Pin-to-pin timing can also be expressed in more detail by specifying rise, fall, and
turn-off delay values (see Example 10-8). One, two, three, six, or twelve delay
values can be specified for any path. Four, five, seven, eight, nine, ten, or eleven
delay value specification is illegal. The order in which delays are specified must
be strictly followed. Rise, fall, and turn-off delay specification for gates was
discussed in Section 5.2.1, Rise, Fall, and Turn-off Delays. We discuss it in this
section in the context of pin-to-pin timing specification.

Example 10-8 Path Delays Specified by Rise, Fall and Turn-off Values

//Specify one delay only. Used for all transitions.
specparam t_delay = 11;
(clk => q) = t_delay;

//Specify two delays, rise and fall
//Rise used for transitions 0->1, O->z, z->l
/!Fall used for transitions 1->0, 1->z, z->O
specparam t_rise = 9, t_fall = 13;
(elk => q) = (t_rise, t_fall);

//Specify three delays, rise, fall, and turn-off
//Rise used for transitions 0->1, z->l
//Fall used for transitions 1->0, z->O
//Turn-off used for transitions O->z, l->z
specparam t_rise = 9, t_fall = 13, t_turnoff
(clk => q) = (t_rise, t_fall, t_turnoff);

Timing and Delays

11;

203

-- 10 -
Example 10-8 Path Delays Specified by Rise, Fall and Turn-off Values (Continued)

Iispecify six delays.
IIDelays are specified in order
Ilfor transitions 0->1, 1->0, O->z, z->l, l->z, z->O. Order
Ilmust be followed strictly.
specparam t_01 = 9, t_10 = 13, t_Oz 11;
specparam t_z1 = 9, t_1z = 11, t_zO 13;
(clk => q) = (t_01, t_10, t_Oz, t_z1, t_1z, t_zO);

Iispecify twelve delays.
IIDelays are specified in order
Ilfor transitions 0->1, 1->0, O->z, z->l, l->z, z->O
II O->x, x->l, l->x, x->O, x->z, z->x.
IIOrder must be followed strictly.
specparam t 01 9, t 10 13, t Oz 11;
specparam t_z1 13;
specpararn t_Ox 4, t_x1 13, t 1x 5;
specparam t_xO 9, t_xz 11, t_zx 7;
(clk => q) = (t_01, t_10, t_Oz, t_z1, t_1z, t_zO,

t_Ox, t_x1, t_1x, t_xO, t_xz, t zx);

Min, max, and typical delays

Min, max, and typical delay values were discussed earlier for gates in Section
5.2.2, Min/Typ/Max Values. Min, max, and typical values can also be specified for
pin-to-pin delays. Any delay value shown in Example 10-8 can be expressed in
min, max, typical delay form. Consider the case of the three-delay specification,
shown in Example 10-9. Each delay is expressed in min:typ:max form.

Example 10-9 Path Delays with Min, Max, and Typical Values

IISpecify three delays, rise, fall, and turn-off
IIEach delay has a min:typ:max value
specparam t_rise = 8:9:10, t_fall = 12:13:14, t turnoff
(clk => q) = (t_rise, t_fall, t_turnoff);

10:11:12;

As discussed earlier, min, typical and max values can be typically invoked with
the runtime option +mindelays, +typdelays, or +maxdelays on the Verilog
command line. Default is the typical delay value. Invocation may vary with
individual simulators.

204 Verilog HDL: A Guide to Digital Design and Synthesis

Handling X transitions

Verilog uses the pessimistic method to compute delays for transitions to the X

state. The pessimistic approach dictates that if X transition delays are not
explicitly specified,

Transitions from X to a known state should take maximum possible time
Transition from a known state to X should take the minimum possible time

A path delay specification with six delays borrowed from Example 10-8 is shown
below.

//Six delays specified .
//for transitions 0->l, 1->0, 0->z, z->l, 1->z, z->0.

specparam t-01 = 9, t-10 = 13, t-Oz = 11;
specparam t-zl = 9, t-lz = 11, t-zO = 13;
(c l k => q) = (t-01, t-10, t-Oz, t-zl, t-lz, t-zO);

The computation for transitions to X for the above delay specification is shown in
the table below.

-

Transition Delay Value

0->X min(t-01, t-Oz) = 9
l->X min(t-10, t-lz) = 11
z->X min(t-z0, t-zl) = 9

X->O max(t-10, t-zO) = 13
X->l max(t-01, t-zl) = 9
X->z max(t-lz, t-Oz) = 11

10.3 Timing Checks
In the earlier sections of this chapter, we discussed how to specify path delays.
The purpose of specifying path delays is to simulate the timing of the actual
digital circuit with greater accuracy than gate delays. In this section, we describe
how to set up timing checks to see if any timing constraints are violated during
simulation. Timing verification is particularly important for timing critical, high-
speed sequential circuits like microprocessors.

System tasks are provided to do timing checks in Verilog. There are many timing
check system tasks available in Verilog. We will discuss the three most common
timing checks tasks: $setup, $hold, and $width. All timing checks must be inside

Timing and Delays 205

-- 10 -
the specify blocks only. Optional notifier arguments used in these timing check
system tasks are omitted to simplify the discussion.

10.3.1 $setup and $hold checks

$setup and $hold tasks are used to check the setup and hold constraints for a
sequential element in the design. In a sequential element like an edge-triggered
flip-flop, the setup time is the minimum time the data must arrive before the active
clock edge. The hold time is the minimum time the data cannot change after the
active clock edge. Setup and hold times are shown in Figure 10-6.

clock
---r----'

data ---il----+--~I---------­
I setup I hold
I time I time I

Figure 10-6 Setup and Hold Times

$setup task

Setup checks can be specified with the system task $setup.

Usage: $aetup(data_event, reference3vent, limit);
data_event Signal that is monitored for violations
reference3vent Signal that establishes a reference for monitoring the

data_event signal
limit Minimum time required for setup of data event

Violation is reported if (Treference_event - Tdata_event) < limit.
An example of a setup check is shown below.

//Setup check is set.
//clock is the reference
//data is being checked for violations
/ /Violation reported if Tposedge_clk - Tdata < 3
specify

$setup(data, posedge clock, 3);
endspecify

206 Verilog HDL: A Guide to Digital Design and Synthesis

10

$hold task

Hold checks can be specified with the system task $hold.

Usage: $hold (reference_event, data_event, limit);
reference3vent Signal that establishes a reference for monitoring the

data_event signal
data_event Signal that is monitored for violation
limit Minimum time required for hold of data event

Violation is reported if (Tdata_event - Treferencejvent) < limit.
An example of a hold check is shown below.

//Hold check is set.
//clock is the reference
//data is being checked for violations
/ /Violation reported if Tdata - Tposedge_clk < 5
specify

$hold(posedge clear, data, 5);
endspecify

10.3.2 $width Check

Sometimes it is necessary to check the width of a pulse.

clear
-------j

I
I of the

pulse I
(min = 6) I

width

The system task $width is used to check that the width of a pulse meets the
minimum width requirement.

Usage: $width(reference3vent, limit);
reference_event Edge-triggered event (edge transition of a signal)
limit Minimum width of the pulse

Timing and Delays

207

-- 10 -
The data_event is not specified explicitly for $width but is derived as the next
opposite edge of the reference_event signal. Thus, the $width task checks the time
between the transition of a signal value to next opposite transition in the signal
value.

Violation is reported if (Tdata_event - Treterence_event) < limit.

Ilwidth check is set.
Ilposedge of clear is the reference_event
lithe next negedge of clear is the data_event
IIViolation reported if Tdata - Tclk < 6
specify

$width(posedge clock, 6);
endspecify

10.4 Delay Back-Annotation
Delay back- annotation is an important and vast topic in timing simulation. An
entire book could be devoted to that subject. However, in this section, we
introduce the designer to the concept of back-annotation of delays in a
simulation. Detailed coverage of this topic is outside the scope of this book. For
details, refer to the OVI Standard Delay File (SDF) Format Manual.

The various steps in the flow that use delay back-annotation are as follows.

1. The designer writes the RTL description and then performs functional
simulation.

2. The RTL description is converted to a gate-level netlist by a logic synthesis
tool.

3. The designer obtains prelayout estimates of delays in the chip by using a
delay calculator and information about the Ie fabrication process. Then, the
designer does timing simulation or static timing verification of the gate-level
netlist, using these preliminary values to check that the gate-level netlist
meets timing constraints.

4. The gate-level netlist is then converted to layout by a place and route tool.

208

The postlayout delay values are computed from the resistance (R) and
capacitance (e) information in the layout. The Rand e information is
extracted from factors such as geometry and Ie fabrication process.

Verilog HDL: A Guide to Digital Design and Synthesis

10

5. The post-layout delay values are back-annotated to modify the delay
estimates for the gate-level netlist. Timing simulation or static timing
verification is run again on the gate-level netlist to check if timing
constraints are still satisfied.

6. If design changes are required to meet the timing constraints, the designer

has to go back to the RTL level, optimize the design for timing, and then
repeat Step 2 through Step 5.

Figure 10-7 shows the flow of delay back annotation.

Initial pre-layout Delay
delay estimate Values

back-annotationi
of post-layout
deIays

Delay
Calculator

Figure 10-7 Delay Back-Annotation

RTL Level Description

post-layout ~----=-------'
information

I
r--------!.-----,

. Implementation

A standard format called the Standard Delay Format (SDF) is popularly used for
back-annotation. Details of delay back-annotation are outside the scope of this
book and can be obtained from the OVI Standard Delay File (SDF) Format Manual.

Timing and Delays 209

10.5 Summary
In this chapter we discussed the following aspects of Verilog.

There are three types of delay models: lumped, distributed, and path delays.
Distributed delays are more accurate than lumped delays but difficult to
model for large designs. Lumped delays are relatively simpler to model.

Path delays, also known as pin-to-pin delays, specify delays from input or
inout pins to output or inout pins. Path delays provide the most accuracy for
modeling delays within a module.

Specify blocks are the basic blocks for expressing path delay information. In
modules specify blocks appear separately from initial or always blocks.

Parallel connection and full connection are two methods to describe path
delays.

Parameters can be defined inside the specify blocks by specparam
statements. \
Path delays can be conditional or dependent on the values of signals in the
circuit. They are known as State Dependent Path Delays (SDPD) .

Rise, fall, and turn-off delays can be described in a path delay. M i n , max, and
typical values can also be specified. Transitions to X are handled by the
pessimistic method.

Setup, hold, and width are timing checks that check timing integrity of the
digital circuit. Other timing checks are also available but are not discussed
in the book.

Delay back-annotation is used to resimulate the digital design with path
delays extracted from layout information. This process is used repeatedly to
obtain a final circuit that meets all timing requirements.

Vevilog HDL: A Guide to Digital Design and Synthesis

10 ---
10.6 Exercises

1. What type of delay model is used in the following circuit? Write the Verilog
description for the module Y.

m
n

p
q

y
r-------------,
I I

I
I
I

>-t---out
I
I
I

I I L ___________ --.J

2. Use the largest delay in the module to convert the circuit to a lumped delay
model. Using a lumped delay model, write the Verilog description for the
module Y.

3. Compute the delays along each path from input to output for the circuit in
exercise 1. Write the Verilog description, using the path delay model. Use
specify blocks.

4. Consider the negative edge-triggered with the asynchronous reset D-flipflop
shown in the figure below. Write the Verilog description for the module
DJF. Show only the I/O ports and path delay specification. Describe path
delays, using parallel connection.

r-------.,
I I

d I
I

~D_FF I
I I

clock

I I I
I I
L ___ ___ J Path Delays

d->q = 5
d->qbar= 5
c/ock->q = 6 reset
c/ock-> qbar = 7
reset->q = 2
reset->qbar = 3

q

qbar

5. Modify the D-flipflop in exercise 4 if all path delays are 5 units. Describe the
path delays, using full connections to q and qbar.

Timing and Delays 211

- 10 --
6. Assume that a six-delay specification is to be specified for all path delays.

All path delays are equal. In the specify block, define parameters t_Ol = 4,
t_lO = 5, COz = 7, t_zl = 2, t_lz = 3, t_zO = 8. Use the D-flipflop in exercise 4
and write the six-delay specification for all paths, using full connections.

7. In exercise 4 modify the delay specification for the D-flipflop if the delays are
dependent on the value of d as follows:

clock -> q = 5 for d = l'bO, clock -> q= 6 otherwise

clock -> qbar = 4 for d = 1 'bO, clock ->qbar = 7 otherwise

All other delays are 5 units.

8. For the D-flipflop in exercise 7, add timing checks for the D-flipflop in the
specify block as follows.

The minimum setup time for d with respect to clock is 8.

The minimum hold time for d with respect to clock is 4.

The reset signal is active high. The minimum width of a reset pulse is 42.

9. Describe delay back-annotation. Draw the flow diagram for delay back­
annotation.

212 Verilog HDL: A Guide to Digital Design and Synthesis

Switch-Level Modeling 11 E

In Part 1 of this book we explained digital design and simulation at a higher level
of abstraction such as gates, data flow, and behavior. However, in rare cases
designers will choose to design the leaf-level modules, using transistors. Verilog
provides the ability to design at a MOS-transistor level. Design at this level is
becoming rare with the increasing complexity of circuits (millions of transistors)
and with the availability of sophisticated CAD tools. Verilog HDL currently
provides only digital design capability with logic values o, I, X, z, and the drive
strengths associated with them. There is no analog capability. Thus, in Verilog
HDL, transistors are also known switches that either conduct or are open. In this
chapter we discuss the basic principles of switch-level modeling. For most
designers, it is adequate to know only the basics. Detailed information on signal
strengths and advanced net definitions is provided in Appendix A, Strength
Modeling and Advanced Net Definitions. Refer to the Verilog HDL Language Reference
Manual for complete details on switch-level modeling.

Learning Objectives

Describe basic MOS switches nmoe, prmoe, and cmos.

Understand modeling of bidirectional pass switches, power, and ground.

Identify resistive MOS switches.

Explain the method to specify delays on basic MOS switches and bidirectional
pass switches.

Build basic switch-level circuits in Verilog, using available switches.

11.1 Switch-Modeling Elements
Verilog provides various constructs to model switch-level circuits. Digital circuits
at MOS-transistor level are described using these elements.

-- 11 -
11.1.1 MOS Switches

Two types of MOS switches can be defined with the keywords, :amos and pmos.

I liMOS switch keyword,
nmos pmos

Keyword ZUIIOS is used to model NMOS transistors; keyword pmos is used to
model PIIOS transistors. The symbols for :amos and pmos switches are shown in
Figure 11-1.

data
L-J out data

L-J out

T T
control control

NMOS PMOS

Figure 11-1 NMOS and PMOS Switches

In Verilog, ZUIIOS and pmos switches are instantiated as shown in Example 11-1.

Example 11-1 Instantiation of NMOS and PMOS Switches

nmos nl(out, data, control); //instantiate a nmos switch
pmos pl(out, data, control); //instantiate a pmos switch

Since switches are Verilog primitives, like logic gates, the name of the instance is
optional. Therefore, it is acceptable to instantiate a switch without assigning an
instance name.

nmos (out, data, control); / /instantiatean nmos switch; no instance name
pmos (out, data, control); //instantiate a pmos switch;no instance name

214 Verilog HDL: A Guide to Digital Design and Synthesis

11 ---
Value of the out signal is determined from the values of data and control signals.
Logic tables for out are shown in Table 11-1. Some combinations of data and
control signals cause the gates to output to either a 1 or 0, or to an z value
without a preference for either value. The symbol L stands for 0 or z; H stands for
lor z.

Table 11-1 Logic Tables for NMOS and PMOS

control control

nmos 0 1 x z pmos 0 1 x z

0 z 0 L L 0 0 z L L

data 1 z 1 H H data 1 1 z H H

x z x x x x x z x x

z z z z z z z z z z

Thus, the lImOS switch conducts when its control signal is 1. If control signal is 0,
the output assumes a high impedance value. Similarly, a pmos switch conducts if
the control signal is O.

11.1.2 CMOS Switches

CMOS switches are declared with the keyword cmos.

A cmos device can be modeled with a DlIIOS and a pmos device. The symbol for a
cmos switch is shown in Figure 11-2.

pcontrol

~
data ----I--'~"--""""1--- out

T
ncontrol

CMOS

Figure 11-2 CMOS Switch

Switch-Level Modeling 215

-- 11 -
A cmos switch is instantiated as shown in Example 11-2.

Example 11-2 Instant.ltion of CMOS Switch

cmos cl(out, data, ncontrol, pcontrol);llinstantiate cmos gate.
or

cmos (out, data, ncontrol, pcontrol); Iino instance name given.

The ncontrol and pcontrol are normally complements of each other. When the
ncontrol signal is 1 and pcontrol signal is 0, the switch conducts. If ncontrol signal
is ° and pcontrol is 1, the output of the switch is high impedance value. The cmos

gate is essentially a combination of two gates: one nmos and one pmos. Thus the
cmos instantiation shown above is equivalent to the following.

nmos (out, data, ncontrol); Ilinstantiate a nmos switch
pmos (out, data, pcontrol); Ilinstantiate a pmos switch

Since a cmos switch is derived from nmos and pmos switches, it is possible to
derive the output value from Table 11-1, given values of data, ncontrol, and
pcontrol signals.

11.1.3 Bidirectional Switches

NMOS, PMOS and CMOS gates conduct from drain to source. It is important to
have devices that conduct in both directions. In such cases, signals on either side
of the device can be the driver signal. Bidirectional switches are provided for this
purpose. Three keywords are used to define bidirectional switches: tran,
tranifO, and tranifl.

I tran tranifO tranifl

216 Verilog HDL: A Guide to Digital Design and Synthesis

11

Symbols for these switches are shown in Figure 11-3 below.

inoun--t><J-- inout2

control

inOUt1~ inout2

tranifO

Figure 11-3 Bidirectional Switches

tran

control

inoun---t>lJ.-- inout2

tranifl

The tran switch acts as a buffer between the two signals inoutl and inout2. Either
inoutl or inout2 can be the driver signal. The tranitO switch connects the two
signals inoutl and inout2 only if the control signal is logical o. If the control signal
is a logical 1, the nondriver signal gets a high impedance value z. The driver
signal retains value from its driver. The tranif1 switch conducts if the control
signal is a logical 1.

These switches are instantiated as shown in Example 11-3.

Example 11-3 Instantiation of Bidirectional Switches

tran tl(inoutl, inout2); //instance name tl is optional
tranifO (inoutl, inout2, control); //instance name is not specified
tranifl (inoutl, inout2, control); //instance name is not specified

Bidirectional switches are typically used to provide isolation between buses or
signals.

11.1.4 Power and Ground

The power (Vdd, logic 1) and Ground (Vss, logic 0) sources are needed when
transistor-level circuits are designed. Power and ground sources are defined with
keywords supply1 and supp1yO.

Sources of type supplyl are equivalent to V dd in circuits and place a logical 1 on
a net. Sources of the type supplyO are equivalent to ground or Vss and place a
logical 0 on a net. Both supply1 and supplyO place logical 1 and 0 continuously
on nets throughout the simulation.

Switch-Level Modeling 217

Sources supply1 and supply0 are shown below.

supply1 vdd;
supply0 gnd;

assign a = vdd; //Connect a to vdd
assign b = gnd; //Connect b to gnd

11.1.5 Resistive Switches

M O S , C M O S , and bidirectional switches discussed before can be modeled as
corresponding resistive devices. Resistive switches have higher source-to-drain
impedance than regular switches and reduce the strength of signals passing
through them. Resistive switches are declared with keywords that have an "r"

prefixed to the corresponding keyword for the regular switch. Resistive switches
have the same syntax as regular switches.

rnmos rpmos //resistive nrnos and pmos switches
r cm0 S //resistive cmos switch
rtran rtranif0 rtranifl //resistive bidirectional switches.

There are two main differences between regular switches and resistive switches:
their source-to-drain impedances and the way they pass signal strengths. Refer to
Appendix A, Strength Modeling and Advanced Net Definitions for strength levels in
Verilog.

Resistive devices have a high source-to-drain impedance. Regular switches
have a low source-to-drain impedance.

Resistive switches reduce signal strengths when signals pass through them.
The changes are shown below. Regular switches retain strength levels of
signals from input to output. The exception is that if the input is of strength

supply, the output is of strength strong. Table 11-2 shows the strength
reduction due to resistive switches

Verilog HDL: A Guide to Digital Design and Synthesis

11 ---
Table 11-2 Strength Reduction by Resistive Switches

Input Strength Output Strength

supply pull

strong pull

pull weak

weak medium

large medium

medium small

small small

high high

11.1.6 Delay Specification on Switches

MOS and CMOS switches

Delays can be specified for signals that pass through these switch-level elements.
Delays are optional and appear immediately after the keyword for the switch.
Delay specification is similar to that discussed in Section 5.2.1, Rise, Fall, and Turn­
off Delays. Zero, one, two or three delays can be specified for switches according to
Table 11-3.

Table 11-3 Delay Specification on MOS and CMOS Switches

Switch Element Delay Specification Examples

pmos, nmos, rpmos, Zero (no delay) pmos p1(out, data, control);
rnmos One (same delay on pmos #(1) pl(out, data, control);

all transitions)
Two (rise, fall) nmos #(1, 2) p2(out, data, control);
Three (rise, fall, turnoff) nmos #(1, 3, 2) p2(out, data, control);

cmos, rcmos Zero, one, two or three cmos #(5) c2(out, data, nctrl, petrI);
delays (same as above) cmos #(1,2) c1(out, data, nctrl, petrI);

Switch-Level Modeling 219

-- 11 -
Bidirectional pass switches

Delay specification is interpreted slightly differently for bidirectional pass
switches. These switches do not delay signals passing through them. Instead, they
have turn-on and turn-off delays while switching. Zero, one, or two delays can be
specified for bidirectional switches, as shown in Table 11-4.

Table 11-4 Delay Specification for Bidirectional Switches

Switch
Element Delay Specification Examples

tran, rtran No delay specification allowed

tranifl, rtranifl Zero (no delay) rtranifO rtl(inoutl, inout2, control);
tranifO, rtranifO One (both turn-on and turn-off) tranifO #(3) T(inoutl, inout2,

control);
Two (turn-on, turn-off) tranifl #(1,2) tl (inoutl, inout2,

control);

Specify blocks

Pin-to-pin delays and timing checks can also be specified for modules designed
using switches. Pin-to-pin timing is described, using specify blocks. Pin-to-pin
delay specification is discussed in detail in Chapter 10, Timing and Delays, and is
identical for switch-level modules.

11.2 Examples
In this section, we discuss how to build practical digital circuits, using switch­
level constructs.

11.2.1 CMOS Nor Gate

Though Verilog has a nor gate primitive, let us design our own nor gate ,using
CMOS switches. The gate and the switch-level circuit diagram for the nor gate is
shown in Figure 11-4.

220 Verilog HDL: A Guide to Digital Design and Synthesis

:=LJ--out
my_nor

a

Figure 11-4 Gate and Switch Diagram for Nor Gate

my_nor
r----Vdd----'

I
I
I
I
I
I
I
I
I

11

..... ---+-+- out
I
I
I

: gnd :
L __________ .J

b

Using the switch primitives discussed in Section 11.1, Switch-Modeling Elements,
the Verilog description of the circuit is shown in Example 11-4 below.

Example 11-4 Switch-Level Verilog for Nor Gate

//Define our own nor gate, my_nor
module my_nor (out, a, b);

output out;
input a, b;

//internal wires
wire c;

//set up power and ground lines
supplyl pwr; //pwr is connected to Vdd (power supply)
supplyO gnd; //gnd is connected to Vss(ground)

//instantiate pmos switches
pmos (c, pwr, b);
pmos (out, c, a);

//instantiate nrnos switches

Switch-Level Modeling 221

-- 11 -
Example 11-4 Switch-Level Verilog for Nor Gate (Continued)

nmos (out, gnd, a);
nmos (out, gnd, b);

endmodule

We can now test our nor gate, using the stimulus shown below.

//stimulus to test the gate
module stimulus;
reg A, B;
wire OUT;

//instantiate the my_nor module
my_nor n1(OUT, A, B);

//Apply stimulus
initial
begin

//test all possible combinations
A = l'bO; B = l'bO;
#5 A l'bO; B l'b1;

end

#5 A
#5 A

l'bl; B
l'b1; B

//check results
initial

1 'bO;
l'bl;

$monitor($time, " OUT

endmodule

%b, A

The output of the simulation is shown below.

° OUT = 1, A = 0, B = °
5 OUT = 0, A = 0, B = 1
10 OUT 0, A = 1, B = °
15 OUT = 0, A = 1, B = 1

%b, B %b", OUT, A, B);

222 Verilog HDL: A Guide to Digital Design and Synthesis

11

Thus we designed our own nor gate. If designers need to customize certain
library blocks, they use switch-level modeling.

11.2.2 2-to-l Multiplexer

A 2-to-1 multiplexer can be defined with CMOS switches. We will use the my_nor
gate declared in Section 11.2.1, CMOS Nor Gate to implement the not function. The
circuit diagram for the multiplexer is shown in Figure 11-5 below.

r-------..,

10

11
2-to-1
Mux

S

OUT

10 --1----<

11 ---,-I-.r--

L

S

Figure 11-5 2-to-l Multiplexer, Using Switches

i---~ OUT

..J

2-to-1 Mux

The 2-to-1 multiplexer passes the input 10 to output OUT if S = 0 and passes I1 to
OUT if S = 1. The switch-level description for the 2-to-1 multiplexer is shown in
Example 11-4.

Example 11-4 Switch-Level Verilog Description of 2-to-l Multiplexer

//Define a 2-to-l multiplexer using switches
module my_mux (out, s, iO, ill;

output out;
input s, iO, H;

Switch-Level Modeling 223

-- 11 -
Example 11-4 Switch-Level Verilog Description of 2-to-l Multiplexer (Continued)

//internal wire
wire sbar; //complement of s

//create the complement of s; use my_nor defined previously.
my_nor nt(sbar, s, s); //equivalent to a not gate

//instantiate cmos switches
cmos (out, iO, sbar, s);
cmos (out, il, s, sbar);

endrnodule

The 2-to-1 multiplexer can be tested with a small stimulus. The stimulus is left as
an exercise to the reader.

11.2.3 Simple CMOS Flip-Flop

We designed combinatorial elements in the previous examples. Let us now define
a memory element which can store a value. The diagram for a level-sensitive
CMOS flip-flop is shown in Figure 11-6.

r - - -- ..,
e

d qbar
d qbar

elock-- FF
q

elk

q

L --------- ..J

Figure 11-6 CMOS flip-flop

The switches C1 and C2 are CMOS switches, discussed in Section 11.1.2, CMOS
Switches. Switch C1 is open if elk = 1, and switch C2 is open if elk = O. Complement
of the elk is fed to the ncontrol input of C2. The CMOS inverters can be defined by
using MOS switches, as shown in Figure 11-7.

224 Verilog HDL: A Guide to Digital Design and Synthesis

11 ---
Vdd

t------''----- out

in

Figure 11-7 CMOS Inverter

We are now ready to write the Verilog description for the CMOS flip-flop. First,
we need to design our own inverter my_not by using switches. We can write the
Verilog module description for the CMOS inverter from the switch-level circuit
diagram in Figure 11-7. The Verilog description of the inverter is shown below.

Example 11-5 CMOS Inverter

//Define an inverter using MOS switches
module my_not (out, in);

output out;
input in;

//declare power and ground
supplyl pwr;
supplyO gnd;

//instantiate nmos and pmos switches
pmos (out, pwr, in);
nmos (out, gnd, in);

endmodule

Switch-Level Modeling 225

Now, the CMOS flip-flop can be defined using the CMOS switches and my-not
inverters. The Verilog description for the CMOS flip-flop is shown in
Example 11-6.

Example 11-6 CMOS Flip-flop

//Define a CMOS flip-flop
module cff (q, qbar, d, clk);

output q, qbar;
input d, clk;

//internal nets
wire e;
wire nclk; //complement of clock

//instantiate the inverter
my-not nt(nclk, clk);

//instantiate CMOS switches
cmos (e , d, clk, nclk) ; //switch C1 closed i.e. e = d, when clk = 1.
cmos (e, q, nclk, clk) ; //switch C2 closed i.e. e = q, when clk = 0.

//instantiate the inverters
my-not ntl(qbar, e) ;
my-not nt2(q, qbar) ;

endmodule

We will leave it as an exercise to the reader to write a small stimulus module and
simulate the design to verify the load and store properties of the flip-flop.

11.3 Summary
We discussed the following aspects of Verilog in this chapter.

Switch-level modeling is at a very low level of design abstraction. Designers
use switch modeling in rare cases when they need to customize a leaf cell.
Verilog design at this level is becoming less popular with increasing
complexity of circuits.

Verilog HDL: A Guide to Digital Design and Synthesis

MOS, CMOS, bidirectional switches, and supply1 and supplyo sources can be
used to design any switch-level circuit. CMOS switches are a combination of
MOS switches.

Delays can be optionally specified for switch elements. Delays are
interpreted differently for bidirectional devices.

11.4 Exercises
1. Draw the circuit diagram for an xor gate, using n w s and switches.

Write the Verilog description for the circuit. Apply stimulus and test the
design.

2. Draw the circuit diagram for and and or gates, using nmos and pmos
switches. Write the Verilog description for the circuits. Apply stimulus and
test the design.

3. Design the l-bit full-adder shown below using the xor, and, and or gates
built in exercise 1 and exercise 2 above. Apply stimulus and test the design.

a
b - sum

c-out

Switch-Level Modeling

- 11 --
4. Design a 4-bit bidirectional bus switch that has two buses, BusA and BusB,

on one side and a single bus, BUS, on the other side. A I-bit control signal is
used for switching. BusA and BUS are connected if control = 1. BusB and BUS
are connected if control = O. (Hint: Use the switches tranifO and tranifl).

Apply stimulus and test the design.

BusA

BusB
Bus
Switch

control

BUS

5. Instantiate switches with the following delay specifications. Use your own
input/ output port names.

a. A pmos switch with rise = 2 and fall = 3.

b. An nmos switch with rise = 4, fall = 6, turn-off = 5

c. A cmos switch with delay = 6

d. A tranifl switch with turn-on = 5, turn-off = 6

e. A tranifO with delay = 3.

228 Verilog HDL: A Guide to Digital Design and Synthesis

User-Defined Primitives 1 2 1

Verilog provides a standard set of primitives, such as and, nand, or, nor, and not,
as a part of the language. These are also commonly known as built-in primitives.
However, designers occasionally like to use their own custom-built primitives
when developing a design. Verilog provides the ability to define User-Defined
Primitives (UDP). These primitives are self-contained and do not instantiate other
modules or primitives. UDPs are instantiated exactly like gate-level primitives.

There are two types of UDPs: combinational and sequential.

Combinational UDPs are defined where the output is solely determined by a
logical combination of the inputs. A good example is a 4-to-1 multiplexer.

Sequential UDPs take the value of the current inputs and the current output
to determine the value of the next output. The value of the output is also the
internal state of the UDP. Good examples of sequential UDPs are latches and
flip-flops.

Learning Objectives

Understand UDP definition rules and parts of a UDP definition.

Define sequential and combinational UDPs.

Explain instantiation of UDPs.

Identify UDP shorthand symbols for more conciseness and better
readability.

Describe the guidelines for UDP design.

12.1 UDP basics
In this section we describe parts of a UDP definition and rules for UDPs.

-- 12 -
12.1.1 Parts of UDP Definition

Figure 12-1 shows the distinct parts of a UDP definition in pseudo syntax form.

IIUDP name and terminal list
primitive <udp_name> (
<output_terminaCname> (only one allowed)
<input_terminal_names»;

I ITerminal declarations
output <output_terminal_name> ;
input <input_terminal_names>;
reg <output_terminal_name>; (optional; only for sequential

UDP)

II UDP initialization (optional; only for sequential UDPs)
initial <output_terminal_name> = <value>;

IIUDP state table
table

<table entries>
end table

IIEnd of UDP definition
endprimitive

Figure 12-1 Parts of UDP Definition

A UDP definition starts with the keyword primitive. The primitive name, output
terminal, and input terminals are specified. Terminals are declared as output or
input in the terminal declarations section. For a sequential UDP, the output
terminal is declared as a reg. For sequential UDPs, there is an optional initial
statement that initializes the output terminal of the UDP. The UDP state table is
most important part of the UDP. It begins with the keyword table and ends with
the keyword endtable. The table defines how the output will be computed from
the inputs and current state. The table is modeled as a lookup table. and the table
entries resemble entries in a logic truth table. Primitive definition is completed
with the keyword endprimitive.

230 Verilog HDL: A Guide to Digital Design and Synthesis

12 ---
12.1.2 UDP Rules

UOP definitions follow certain rules.

1. UOPs can take only scalar input terminals (1 bit). Multiple input terminals
are permitted.

2. UOPs can have only one scalar output terminal (1 bit). The output terminal
must always appear first in the terminal list. Multiple output terminals are
not allowed.

3. In the declarations section, the output terminal is declared with the keyword
output. Since sequential UOPs store state, the output terminal must also be
declared as a reg.

4. The inputs are declared with the keyword input.

5. The state in a sequential UOP can be initialized with an initial statement.
This statement is optional. A 1-bit value is assigned to the output, which is
declared as reg.

6. The state table entries can contain values 0, 1, or x. UOPs do not handle z
values. z values passed to a UOP are treated as x values.

7. UOPs are defined at the same level as modules. UOPs cannot be defined
inside modules. They can only be instantiated inside modules. UOPs are
instantiated exactly like gate primitives.

8. UOPs do not support inout ports.

Both combinational and sequential UOPs must follow the above rules. In the
following sections, we will discuss the details of combinational and sequential
UOPs.

12.2 Combinational UDPs
Combinational UOPs take the inputs and produce the output value by looking up
the corresponding entry in the state table.

12.2.1 Combinational UDP Definition

The state table is the most important part of the UOP definition. The best way to
explain a state table is to take the example of an and gate modeled as a UOP.
Instead of using the and gate provided by Verilog, let us define our own and gate
primitive and call it udp_and.

User-Defined Primitives 231

-- 12 -
Example 12-1 Primitive udp_and

IIPrimitive name and terminal list
primitive udp_and(out, a, b);

IIDeclarations
output out; Ilmust not be declared as reg for combinational UDP
input a, b; Iideclarations for inputs.

IIState table definition; starts with keyword table
table

liThe following comment is for readability only
IIInput entries of the state table must be in the
Iisame order as the input terminal list.
/! a b out;

0 0 0;
0 1 0;
1 0 0;
1 1 1;

endtable Ilend state table definition

endprimitive Ilend of udp_and definition

Compare parts of udp_and defined above with the parts discussed in Figure 12-l.
The missing parts are that the output is not declared as reg and the initial
statement is absent. Note that these missing parts are used only for sequential
UDPs, which are discussed later in the chapter.

12.2.2 State Table Entries

In order to understand how state table entries are specified, let us take a closer
look at the state table for udp_and. Each entry in the state table in a combinational
UDP has the following pseudosyntax.

<inputl> <input2> <inputN> <output>;

Note the following points about state table entries.

232 Verilog HDL: A Guide to Digital Design and Synthesis

12 ---
1. The <input#> values in a state table entry must appear in the same order as

they appear in the input terminal list. It is important to keep this in mind
while designing UDPs, because designers frequently make mistakes in the
input order and get incorrect results.

2. Inputs and output are separated by a ": ".

3. A state table entry ends with a "; ".

4. All possible combinations of inputs, where the output produces a known
value, must be explicitly specified. Otherwise, if a certain combination
occurs and the corresponding entry is not in the table, the output is x. Use of
default x output is frequently used in commercial models. Note that the
table for udp_and does not handle the case when a or b is x.

In the Verilog and gate, if a = x and b = 0, the result should be 0, but udp_and will
give an x as output because the corresponding entry was not found in the state
table, that is, the state table was incompletely specified. To understand how to
completely specify all possible combinations in a UDP, let us define our own or
gate udp_or, which completely specifies all possible cases. The UDP definition for
udp_or is shown in Example 12-2.

Example 12-2 Primitive udp_or

primitive udp_or(out, a, b);

output out;
input a, b;

table
II a b out;

0 0 0;

0 1 1;
1 0 1;
1 1 1;
x 1 1;
1 x 1;

endtable

endprimitive

Notice that the above example covers all possible combinations of a and b where
the output is not x. The value z is not allowed in a UDP. The z values on inputs
are treated as x values.

User-Defined Primitives 233

-- 12 -
12.2.3 Shorthand Notation for Don't Cares

In the above example, whenever one input is 1, the result of the OR operation is
1, regardless of the value of the other input. The? symbol is used for a don't care
condition. A ? symbol is automatically expanded to 0, 1, or x. The or gate
described above can be rewritten with the? symbol.

primitive udp_or(out, a, b);

output out;
input a, b;

table
/I a b

0 0
1 7

7 1
0 x
x 0

endtable

endprimitive

out;
0;
1; //7 expanded to 0, 1, x
1; //7 expanded to 0, 1, x
x;
x;

12.2.4 Instantiating UDP Primitives

Having discussed how to define combinational UDPs, let us take a look at how
UDPs are instantiated. UDPs are instantiated exactly like Verilog gate primitives.
Let us design a 1-bit full adder with the udp_and and udp_or primitives defined
earlier. The 1-bit full adder code shown in Example 12-3 is identical to Example 5-
6 on page 72 except that the standard Verilog primitives and and or primitives are
replaced with udp_and and upd_or primitives.

Example 12-3 Instantiation of udp Primitives

/1 Define a 1-bit full adder
module fulladd(sum, c_out, a, b, c_in);

// I/O port declarations
output sum, c_out;
input a, b, c_in;

1/ Internal nets
wire sl, c1, c2;

234 Verilog HDL: A Guide to Digital Design and Synthesis

Example 12-3 Instantiation of udp Primitives (Continued)

II Instantiate logic gate primitives
xor (sl, a, b) ;lluse Verilog primitive
udp_and (c1, a, b); Iluse UDP

xor (sum, sl, c_in); Iluse Veri10g primitive
udp_and (c2, sl, c_in); Iluse UDP

udp_or (c_out, c2, c1) ;lluse UDP

endmodule

12.2.5 Example of a Combinational UDP

12 ---

We discussed two small examples of combinational UDPs: udp_and and udp_or.
Let us design a bigger combinational UDP, a 4-to-1 multiplexer. A 4-to-1
multiplexer was designed with gates in Section 5.1.3, Examples. In this section, we
describe the multiplexer as a UDP. Note that the multiplexer is ideal because it
has only one output terminal. The block diagram and truth table for the
multiplexer are shown in Figure 12-2.

10
S1 SO Out

I1
4-to-1 --..Out 0 0 10 12 Mux

13
0 1 11

1 0 12

1 1 13

SO

Figure 12-2 4-to-1 Multiplexer with UDP

The multiplexer has six inputs and one output. The Verilog UDP description for
the multiplexer is shown in Example 12-4.

User-Defined Primitives 235

-- 12 -
Example 12-4 Verilog Description of 4-to-1 Multiplexer with UDP

II 4-to-1 multiplexer. Define it as a primitive
primitive mux4_to_1 (out, iO, i1, i2, i3, sl, sO);

II Port declarations from the 1/0 diagram
output out;
input iO, il, i2, i3;
input sl, sO;

table
II iO i1 i2 i3, sl sO out

1 ? ? ? 0 0 1
0 ? ? ? 0 0 0
? 1 ? ? 0 1 1
? 0 ? ? 0 1 0
? ? 1 ? 1 0 1
? ? 0 ? 1 0 0
? ? ? 1 1 1 1
? ? ? 0 1 1 0
? ? ? ? x ? x
? ? ? ? ? x x

endtable

endprimitive

It is important to note that the state table becomes large very quickly as the
number of inputs increases. Memory requirements to simulate UDPs increase
exponentially with the number of inputs to the UDP. However, UDPs offer a
convenient feature to implement an arbitrary function whose truth table is
known, without extracting actual logic and by using logic gates to implement the
circuit.

The stimulus shown in Example 12-5 is applied to test the multiplexer.

Example 12-5 Stimulus for 4-to-1 Multiplexer with UDP

II Define the stimulus module (no ports)
module stimulus;

II Declare variables to be connected
II to inputs
reg INO, IN1, IN2, IN3;

236 Verilog HDL: A Guide to Digital Design and Synthesis

12 ---
Example 12-5 Stimulus for 4-to-1 Multiplexer with UDP (Continued)

reg S1, SO;

II Declare output wire
wire OUTPUT;

II Instantiate the multiplexer
mux4_to_1 mymux(OUTPUT, INa, IN1, IN2, IN3, 51, SO);

II Stimulate the inputs
initial
begin

II set input lines
INa = 1; IN1 = 0; IN2 = 1; IN3 = 0;
#1 $display("INO= %b, IN1= %b, IN2= %b, IN3= %b\n",INO,INl,IN2,IN3);

1/ choose INa
S1 = 0; so = 0;
#1 $display("S1

II choose IN1
S1 = 0; SO = 1;
#1 $display ("S1

II choose IN2
S1 = 1; SO = 0;
#1 $display ("S1

II choose IN3
S1 = 1; so = 1;
#1 $display ("S1

end

endmodule

%b, so %b, OUTPUT

%b, SO %b, OUTPUT

%b, so %b, OUTPUT

%b, SO %b, OUTPUT

The output of the simulation is shown below.

INO= 1, IN1= 0, IN2= 1, IN3= a

S1 0, so 0, OUTPUT 1

S1 0, so 1, OUTPUT a

%b \n", S1, so, OUTPUT);

%b \n", S1, SO, OUTPUT);

%b \n", S1, SO, OUTPUT);

%b \n", S1, SO, OUTPUT);

User-Defined Primitives 237

= 12
B

S1 = 1, SO = 0, OUTPUT = 1

S1 = 1, SO = 1, OUTPUT = 0

12.3 Sequential UDPs
Sequential UDPs differ from combinational UDPs in their definition and behavior.
Sequential UDPs have the following differences:

The output of a sequential UDP is always declared as a reg.

An initial statement can be used to initialize output of sequential UDPs.

The format of a state table entry is slightly different.

There are three sections in a state table entry: inputs, current state, and next
state. The three sections are separated by a colon (:) symbol.

The input specification of state table entries can be in terms of input levels or
edge transitions.

The current state is the current value of the output register.

The next state is computed based on inputs and the current state. The next
state becomes the new value of the output register.

All possible combinations of inputs must be specified to avoid unknown
output values.

If a sequential UDP is sensitive to input levels, it is called a level-sensitive
sequential UDR If a sequential UDP is sensitive to edge transitions on inputs, it is
called an edge-sensitive sequential UDP.

Verilog HDL: A Guide to Digital Design and Synthesis

12 ---
12.3.1 Level-Sensitive Sequential UDPs

Level~sensitive UDPs change state based on input levels. Latches are the most
common example of level~sensitive UDPs. A simple latch with clear is shown in
Figure 12~3.

r----..,

d I I
I I -,--

Latch I q clock

I I
I I
L - - - - ...J

clear

Figure 12-3 Level-Sensitive Latch with clear

In the level~sensitive latch shown above, if the clear input is 1, the output q is
always o. If clear is 0, q = d when clock = 1. If clock = 0, q retains its value. The latch
can be described as a UDP as shown in Example 12~6. Note that the dash "_"
symbol is used to denote no change in the state of the latch.

Example 12-6 Verilog Description of Level-Sensitive UDP

IIDefine level-sensitive latch by using UDP.
primitive latch(q, d, clock, clear);

Iideclarations
output g;
reg g; Ilg declared as reg to create internal storage
input d, clock, clear;

Iisequential UDP initialization
//only one initial statement allowed
initial

g = 0; Ilinitialize output to value 0

Iistate table
table

lid clock clear

? ? 1

g g+ ;

? o ; Ilclear condition;

User-Defined Primitives 239

-- 12 -
Example 12-6

1
o

?

endtable

1
1

o

endprimitive

o
o

o

Verilog Description of Level-Sensitive UDP (Continued)

?

?

?

1
o

Ilq+ is the new output value

Illatch q data
Illatch q data

1
o

Ilretain original state if clock 0

12.3.2 Edge-Sensitive Sequential UDPs

Edge-sensitive sequential UDPs change state based on edge transitions and/or
input levels. Edge-triggered flip-flops are the most common example of edge­
sensitive sequential UDPs. Consider the negative edge-triggered D-flipflop with
clear shown in Figure 12-4.

d f---q
clock __ ~rJ) D FF

clear

Figure 12-4 Edge-Sensitive D-flipflop with clear

In the edge-sensitive flip-flop shown above, if clear =1, the output q is always o. If
clear = 0, the D-flipflop functions normally. On the negative edge of clock, i.e.,
transition from 1 to 0, q gets the value of d. If clock transitions to an unknown
state or on a positive edge of clock, do not change the value of q. Also, if d changes
when clock is steady, hold value of q.

The Verilog UDP description for the D-flipflop is shown in Example 12-7.

240 Verilog HDL: A Guide to Digital Design and Synthesis

Example 12-7 Negative Edge-Triggered D-flipflop with clear

//Define an edge-sensitive sequential UDP;
primitive edge-dff (q, d, clock, clear);

//~eclarations
output q;
reg q ;
input d, clock, clear;

//sequential initialization
initial
q = 0;

table
/ / d clock clear : q : q+ ;

? ? 1 : ? : 0 ; //output = 0 if clear = 1
? ? (10): ? : - , . //ignore negative transition of clear

1 (10) 0 : ? : 1 ; //latch data on negative transition of
0 (10) 0 : ? : O ; / / c l o c k

? (lx) 0 : ? : - - , //hold q if clock transitions to unknown
//state

, //ignore positive transitions of clock ? (O ?) 0 : ? : - .

? (xl) 0 : ? : - ; //ignore positive transitions of clock

(? ?) ? 0 . ? : - . , //ignore any change in d when clock
//is steady

endtable

endprimitive

In Example 12-7, edge transitions are explained as follows:

(10) denotes a negative edge transition from logic 1 to logic 0.

(I x) denotes a transition from logic 1 to unknown X state.
(O?) denotes a transition from o to 0, I, or X. Potential positive-edge
transition.
(??) denotes any transition in signal value 0 , l, or X to o,l, or X.

User-Defined Primitives

-- 12 -
It is important to completely specify the UDP by covering all possible
combinations of transitions and levels in the state table for which the outputs
have a known value. Otherwise, some combinations may result in an unknown
value. Only one edge specification is allowed per table. More than one edge
specification in a single table entry, as shown below, is illegal in Verilog.

table

(01) (10) 0 ? : 1 ; //illegal;two edge transitions in an entry

endtable

12.3.3 Example of a Sequential UDP

We discussed small examples of sequential UDPs. Let now describe a slightly
bigger example, a 4-bit binary ripple counter. A 4-bit binary ripple counter was
designed with T-flipflops in Section 6.5.3, Ripple Counter. The T-flipflops were
built with negative edge-triggered D-flipflops. Instead, let us define the T-flipflop
directly as a UDP primitive. The UDP definition for the T-flipflop is shown in
Example 12-8.

Example 12-8 T-Flipflop with UDP

II Edge-triggered T-flipflop
primitive T_FF(q, clk, clear);

II Inputs and outputs
output q;
reg q;
input clk, clear;

Iino initialization; TFF will be initialized with clear signal

table
II

242

clk clear: q : q+ ;
Ilasynchronous clear condition
? 1 ?: 0 ;

Ilignore negative edge of clear
? (10) ? ,

Iitoggle flip-flop at negative edge of clk
(10) 0 1 0 ;

Verilog HDL: A Guide to Digital Design and Synthesis

12 ---
Example 12-8 T-Flipflop with UDP (Continued)

(IO) o o : 1 ;

Ilignore positive edge of clk
(O?) 0 ? ,

endtable
endprimitive

To build the ripple counter with T-flipflops, four T-flipflops are instantiated in the
ripple counter, as shown in Example 12-9.

Example 12-9 Instantiation of TJF UDP in Ripple Counter

II Ripple counter
module counter(Q , clock, clear};

II I/O ports
output [3:0) Q;
input clock, clear;

II Instantiate the T flipflops
II Instance names are optional
T_FF tffO(Q[O), clock, clear};
T_FF tffI(Q[l), Q[O), clear};
T_FF tff2(Q[2], Q[I), clear};
T_FF tff3(Q[3], Q[2], clear};

endmodule

If stimulus shown in Example 6-9 on page 110 is applied to the counter, identical
simulation output will be obtained.

User-Defined Primitives 243

-- 12 -
12.4 UDP Table Shorthand Symbols
Shorthand symbols for levels and edge transitions are provided so UDP tables
can be written in a concise manner. We already discussed the symbols? and -. A
summary of all shorthand symbols and their meaning is shown in Table 12-1.

Table 12-1 UDP Table Shorthand Symbols

Shorthand
Symbols Meaning Explanation

? 0,1, x Cannot be specified in an output field

b 0,1 Cannot be specified in an output field

- No change in state Can be specified only in output field
value of a sequential UDP

r (01) Rising edge of signal

f (10) Palling edge of signal

p (01), (Ox) or (xl) Potential rising edge of signal

n (10), (1x) or (xO) Potential falling edge of signal

* (??) Any value change in signal

Using the shorthand symbols, we can rewrite the table entries in Example 12-7 on
page 241 as follows.

table
II d clock clear: q : q+

? ?

? ?

1 f
0 f

? (Ix)

? P

* ?O

endtable

244

1
f

0
0

0

o

?

? : 0 ; Iioutput = 0 if clear = 1
: ? : - ; Ilignore negative transition of clear

? : 1 l/latch data on negative transition of
? 0 ; Ilclock

? - ; Ilhoid q if clock transitions to unknown
Iistate

: ? : - ; Ilignore positive transitions of clock

- ; Ilignore any change in d when
Ilclock is steady

Verilog HDL: A Guide to Digital Design and Synthesis

Note that the use of shorthand symbols makes the entries more readable and
more concise.

12.5 Guidelines for UDP Design
When designing a functional block, it is important to decide whether to model it
as a module or as a user-defined primitive. Here are some guidelines used to
make that decision.

UDPs model functionality only. They do not model timing or process
technology (such as CMOS, TTL, ECL). The primary purpose of a UDP is to
define in a simple and concise form the functional portion of a block. A
module is always used to model a complete block that has timing and
process technology.

A block can modeled as a UDP only if it has exactly one output terminal. If
the block to be designed has more than one output, it has to be modeled as
a module.

The limit on the maximum number of inputs of a UDP is specific to the
Verilog simulator being used. However, Verilog simulators are required to
allow a minimum of 9 inputs for sequential UDPs and 10 for combinational
UDPs.

A UDP is typically implemented as a lookup table in memory. As the
number of inputs increases, the number of table entries grows exponentially.
Thus, the memory requirement for a UDP grows exponentially in relation to
the number of inputs. It is not advisable to design a block with a large
number of inputs as a UDP.

UDPs are not always the appropriate method to design a block. Sometimes
it is easier to design blocks as a module. For example, it is not advisable to
design an 8-to-1 multiplexer as a UDP because of the large number of table
entries. Instead, the data flow or behavioral representation would be much
simpler. It is important to consider complexity trade-offs to decide whether
to use UDP to represent a block.

There are also some guidelines for writing the UDP state table.

The UDP state table should be specified as completely as possible. All
possible input combinations for which the output is known should be
covered. If a certain combination of inputs is not specified, the default
output value for that combination will be X. This feature is used frequently
in commercial libraries to reduce number of table entries.

User-Defined Primitives 245

Shorthand symbols should be used to combine table entries wherever
possible. Shorthand symbols make the UDP description more concise.
However, the Verilog simulator may internally expand the table entries.
Thus, there is no memory requirement reduction by using shorthand
symbols.

Level-sensitive entries take precedence over edge sensitive entries. If an
edge-sensitive and level-sensitive entry clash on the same inputs, the output
is determined by the level-sensitive entry because it has precedence over the
edge-sensitive entry.

12.6 Summary
We discussed the following aspects of Verilog in this chapter.

User-defined primitives (UDP) are used to define custom Verilog primitives by
the use of lookup tables. UDPs offer a convenient way to design certain
functional blocks.

UDPs can have only one output terminal. UDPs are defined at the same
level as modules. UDPs are instantiated exactly like gate primitives. A state
table is the most important component of UDP specification.

UDPs can be combinational or sequential. Sequential UDPs can be edge- or
level-sensitive.

Combinational UDPs are used to describe combinational circuits where the
output is purely a logical combination of the inputs.

Sequential UDPs are used to define blocks with timing controls. Blocks such
as latches or flip-flops can be described with sequential UDPs. Sequential
UDPs are modeled like state machines. There is a present state and next
state. The next state is also the output of the UDP. Edge- and level-sensitive
descriptions can be mixed.

Shorthand symbols are provided to make UDP state table entries more
concise. Shorthand notation should be used wherever possible.

It is important to decide whether a functional block should be described as a
UDP or as a module. Memory requirements and complexity trade-offs must
be considered.

Verilog HDL: A Guide to Digital Design and Synthesis

12 ---
12.7 Exercises

1. Design a 2-to-I multiplexer by using UDP. The select signal is s, inputs are
iO, il, and the output is out. If the select signal s = x, the output out is always
o. If s = 0, then out = iO. If s = I, then out = il.

2. Write the truth table for the boolean function Y = (A & B) I (C 1\ D). Define
a UDP that implements this boolean function. Assume that the inputs will
never take the value x.

3. Define a level-sensitive latch with a preset signal. Inputs are d, clock, and
preset. Output is q. If clock = 0, then q = d. If clock = 1 or x, then q is
unchanged. If preset = 1, then q = 1. If preset = 0, then q is decided by clock
and d signals. If preset = x, then q = x.

r----..,

d I I
I I

---r- Latch
clock I q

I I
I I
L __ __ ...J

preset

4. Define a positive edge-triggered D-flipflop with clear as a UDP. Signal clear is
active low. Use Example 12-7 on page 241 as a guideline. Use shorthand
notation wherever possible.

5. Define a negative edge-triggered JK flip-flop, jkJt with asynchronous preset
and clear as a UDP. q = 1 when preset = 1 and q = 0 when clear = 1.

clock
k

preset

I----q

DFF

clear

User-Defined Primitives 247

- 12 --
The table for a JK flipflop is shown below.

J K '1n+l

0 0 '1n
0 1 0

1 0 1

1 1 -
qn

6. Design the 4-bit synchronous counter shown below. Use the UDP jk-ff that
was defined above.

Q[O] Q[1] Q[2]

clear--~---+~--+_~-*--_+~--+_~4_--+_~_4_+~

clock -------+---1I_+_~----_+___4I.....-+_~----+_ _4_+----_4--1

count------~----4_~

enable

248 Verilog HDL: A Guide to Digital Design and Synthesis

Q[3]

Q

K

Programming Language
Interface

Verilog provides the set of standard system tasks and functions defined in
Appendix C, List of Keywords, System Tasks, and Compiler Directives. However,
designers frequently need to customize the capability of the Verilog language by
defining their own system tasks and functions. To do this, the designers need to
interact with the internal representation of the design and the simulation
environment in the Verilog simulator. The Programming Language Interface (PLO
provides a set of interface routines to read internal data representation, write to
internal data representation, and extract information about the simulation
environment. User-defined system tasks and functions can be created with this
predefined set of PLI interface routines.

Verilog Programming Language Interface is a very broad area of study. Thus, only
the basics of Verilog PLI are covered in this chapter. Designers should consult the
Programming Language Interface (PLI) Manual for complete details of PLI.

As a part of PLI, a new interface called the Verilog Procedural Interface (VPI) has
been defined to provide object-oriented access to Verilog HDL object. VPI
routines are a superset of the functionality of acc- and tr- routines. VPI routines
begin with vi-. For simplicity, we will discuss only acc- and tf- routines.

Learning Objectives

Explain how PLI routines are used in a Verilog simulation.

Describe the uses of PLI.

Define user-defined system tasks and functions and user-defined C routines.
Understand linking and invocation of user-defined system tasks.

Explain how PLI is represented conceptually inside a Verilog simulator.

Identify and describe how to use the two classes of PLI library routines:
access routines and utility routines.

Learn to create user-defined system tasks and functions and use them in
simulation.

-- 13 -
The first step is to understand how PLI tasks fit into the Verilog simulation. A
sample simulation flow using PLI routines is shown in Figure 13-1.

User Design
Representation +
Stimulus
(Verilog Constructs
+ user-defined

tasks)

Internal Design
Representation
(Data Structures)

Simulation Output

Figure 13-1 PLI Interface

Invokes User­
Defined System
Task

access
internal

c­
]8)
:l~

U ser-Defined
System Task # 1

U ser-Defined
System Task # 2

User-Defined
System Task # 3

PLILibrary
Routines

User-Defined
C routine # 1

U ser-Defined
C routine # 2

Invokes
user­
defined C
routine

_::I
~~ r--U--se-r--D--e-fi-n-e-d------~

C routine#3

PLI Library
Routines to do
miscellaneous
operations

A designer describes the design and stimulus by using standard Verilog
constructs and system tasks. In addition, user-defined system tasks can also be
invoked in the design and stimulus. The design and stimulus is compiled and
converted to an internal design representation. The internal design representation
is typically in the Veri log simulator proprietary format and is incomprehensible to
the designer. The internal representation is then used to run the actual simulation
and produce output.

250 Verilog HDL: A Guide to Digital Design and Synthesis

Each of the user-defined system tasks is linked to a user-defined C routine. The C
routines are described by means of a standard library of PLI interface routines,
which can access the internal design representation, and the standard C routines
available with the C compiler. The standard PLI library is provided with the
Verilog simulator. A list of PLI library routines defined by the is provided in
Appendix B, List of PLI Routines. The PLI interface allows the user to do the
following:

Read internal data structures
Modify internal data structures
Access simulation environment

Without the PLI interface, the designer would have to understand the format of
the internal design representation to access it. PLI provides a layer of abstraction
that allows access to internal data structures through an interface that is uniform
for all simulators. The user-defined system tasks will work even if the internal
design representation format of the Verilog simulator is changed or if a new
Verilog simulator is used.

13.1 Uses of PLI
PLI provides a powerful capability to extend the Verilog language by allowing
users to define their own utilities to access the internal design representation. PLI
has various applications.

PLI can be used to define additional system tasks and functions. Typical
examples are monitoring tasks, stimulus tasks, debugging tasks, and complex
operations that cannot be implemented with standard Verilog constructs.

Application software like translators and delay calculators can be written with
PLI.

PLI can be used to extract design information such as hierarchy, connectivity,
fanout, and number of logic elements of a certain type .

PLI can be used to write special-purpose or customized output display
routines. Waveform viewers can use this file to generate waveforms, logic
connectivity, source level browsers, and hierarchy information.

Routines that provide stimulus to the simulation can be written with PLI.
The stimulus could be automatically generated or translated from some
other form of stimulus.

General Verilog-based application software can be written with PLI routines.
This software will work with all Verilog simulators because of the uniform
access provided by the PLI interface.

Programming Language Interface 251

-- 13 -
13.2 Linking and Invocation of PLI Tasks
Designers can write their own user-defined system tasks by using PLI library
routines. However, the Verilog simulator must know about the existence of the
user-defined system task and its corresponding user-defined C function. This is
done by linking the user-defined system task into the Verilog simulator.

To understand the process, let us consider the example of a simple system task
$hello_verilog. When invoked, the task simply prints out a message "Hello Verilog
World". First, the C routine that implements the task must be defined with PLI
library routines. The C routine hello_verilog in the file hello_verilog.c is shown
below.

#include "veriuser.h" /*include the file provided in release dir */

int hello_verilog()
{

io-printf("Hello Verilog World\n");

The hello_verilog routine is fairly straightforward. The io_printf is a PLI library
routine that works exactly like printf.

Whenever the task $hello_verilog is invoked in the Verilog code, the C routine
hello_verilog must be executed. The simulator needs to be aware that a new system
task called $hello_verilog exists and is linked to the C routine hello_verilog. This
process is called linking the PLI routines into the Verilog simulator. Different
simulators provide different mechanisms to link PLI routines.

13.2.1 Linking PLI Tasks

Let us discuss the linking process in two sample simulators.The first simulator is
Verilog-XL from Cadence Design Systems. The second simulator is ves from
Chronologic Simulation. These simulators were chosen to illustrate the linking
process; they do not indicate a particular preference. Other simulators have
similar linking processes. Also, though the exact mechanics of the linking process
might change in the future, the fundamentals of the linking process are likely to
remain the same. For details, refer to the latest reference manuals available with
your simulator.

252 Verilog HDL: A Guide to Digital Design and Synthesis

13 ---
Linking PLI in Verilog-XL

To link the task $hello_verilog, perform the following steps.

1. Make a copy of the veriuser.c file in the working directory. A veriuser.c
template is provided with the Verilog-XL simulator in the release directory.
Edit the file.

2. Add the entry for the user-defined system task $hello_verilog in the veriusertfs
array declaration Declare the user-defined C routine hello_verilog as an extern
function.

extern int hello_verilog () ; j*Tell Verilog that a C routine
hello_veri log has been defined in another
file * /

s_tfcell veriusertfs[]
{

} ;

/*First field is user task ; choices are usertask or userfunction*/
/*Fifth field is hello_verilog; name of the C routine*/
/*Seventh field is "$hello_verilog"; Name of Verilog system task * /
{usertask, 0, 0, 0, hello_verilog, 0, "$hello_verilog", O},
{O }

The entry shown above tells Verilog-XL to call the C routine hello_verilog
whenever the user-defined system task $hello_verilog is invoked. If more
user-defined system tasks are defined, there should be a corresponding
entry for each user-defined system task.

3. Run the utility vconfig. It is normally located in the Verilog release directory.
Then, answer the questions asked. Provide the path to the new veriuser.c and
hello_verilog.c file. Name the output file hverilog. The utility vconfig will
produce a file cr _vlog in your working directory.

4. Run the cr _vlog file. It will produce a new executable hverilog that will
understand how to execute the user-defined system task $heilo_verilog.
Invoke hverilog instead of verilog to run the simulation. If the task is called in
the file hello.v, invoke the simulation as follows.

hverilog hello.v

Programming Language Interface 253

-- 13 -
Linking in ves
To link the task $hello_verilog, perform the following steps.

1. Edit the file called mypli.tab in the working directory (you can choose
another name if you wish).

2. Put the following entry in the file.

$hello_verilog eall=hello_verilog

The above entry tells VCS that $hello_verilog is a user-defined system task
and that the user-defined e routine hello_verilog is called whenever the
system task is invoked. If there are more system tasks, each will have a
corresponding entry.

3. If the Verilog code is in the file hello.v, invoke VCS as follows.

ves hello.v -P mypli.tab hello_verilog.e -0 hverilog

An executable binary hverilog is produced. To run the simulation, type
hverilog.

13.2.2 Invoking PLI Tasks

Once the user-defined task has been linked into the Verilog simulator, it can be
invoked like any Verilog system task by the keyword $hello_verilog. A Verilog
module hello_top, which calls the task $hello_verilog, is defined in file hello.v as
shown below.

module hello_top;

initial
$hello_verilog; IIInvoke the user-defined task $hello_verilog

endmodule

Output of the simulation is as follows.

Hello Verilog World

254 Verilog HDL: A Guide to Digital Design and Synthesis

13.2.3 General Flow of PLI Task Addition and Invocation

We discussed a simple example to illustrate how a user-defined system task is
named, implemented in terms of a user-defined C routine, linked into the
simulator, and invoked in the Verilog code. More complex PLI tasks discussed in
the following sections will follow the same process. Figure 13-2 summarizes the
general process of adding and invoking a user-defined system task.

I Name the tasks $<name> I

Implement the task with
a user-defined C routine.
Use PLI library calls.

I Link PLI into the Simulator I

Invoke the task $<name>
wherever desired in the
Verilog design

Figure 13-2 General Flow of PLI Task Addition and Invocation

13.3 Internal Data Representation
Before we understand how to use PLI library routines, it is first necessary to
describe how a design is viewed internally in the simulator. Each module is
viewed as a collection of object types. Object types are elements defined in Verilog,
such as:

Module instances, module ports, module pin-to-pin paths, intermodule
paths
Top-level modules
Primitive instances, primitive terminals
Nets, registers, parameters, specparams
Integer, time, and real variables

Programming Language Interface

-- 13 -
• Timing checks
• Named events

Each object type has a corresponding set that identifies all objects of that type in
the module. Sets of all object types are interconnected.

A conceptual internal representation of a module is shown in Figure 13-3.

module

Figure 13-3 Conceptual Internal Representation a Module

Each set contains all elements of that object type in the module. All sets are
interconnected. The connections between the sets are bidirectional. The entire
internal representation can be traversed by using PLI library routines to obtain
information about the module. PLI library routines are discussed later in the
chapter.

256 Verilog HDL: A Guide to Digital Design and Synthesis

13 ---
To illustrate the internal data representation, consider the example of a simple 2-
to-1 multiplexer whose gate level circuit is shown in Figure 13-4.

r------------------------l
I a1 y1 I iO

: sbar :

I
i1 -+I-----+----------~

n1

Figure 13-4 2-to-1 Multiplexer

The Verilog description of the circuit is shown in Example 13-1.

Example 13-1 Verilog Description of 2-to-1 Multiplexer

module mux2_to_l(out, iO, iI, s);

output out; Iioutput port
input iO, iI; Ilinput ports
input s;

wire sbar, yI, y2; Ilinternal nets

liGate Instantiations
not nI (sbar, s);
and aI(yI, iO, sbar);
and a2(y2, iI, s);
or ol(out, yI, y2);

endmodule

Programming Language Interface

out

257

-- 13 -
The internal data representation for the 2-to-1 multiplexer is shown in
Figure 13-5. Sets are shown for primitive instances, primitive instance terminals,
module ports, and nets. Other object types are not present in this module.

rJJ
III
u
,::::
r::l
rJJ
,::::
III
>
S
I-<

p...

and a1

anda2

primitive

or 01 _1--

Figure 13-5 Internal Data Representation of 2-to-1 Multiplexer

258 Verilog HDL: A Guide to Digital Design and Synthesis

rJJ
III
U
,::::
r::l
rJJ
,::::
III
>
S
I-<

p...

13 ---
The example shown above does not contain register, integers, module instances,
and other object types. If they are present in a module definition, they are also
represented in terms of sets. This description is a conceptual view of the internal
structures. The exact implementation of data structures is simulator dependent.

13.4 PLI Library Routines
PLI library routines provide a standard interface to the internal data
representation of the design. The user-defined C routines for user-defined system
tasks are written by using PLI library routines. In the example in Section 13.2,
Linking and Invocation of PLI Tasks, $hello_verilog is the user-defined system task,
hello_verilog is the user-defined C routine, and io_printf is a PLI library routine.

There are two broad classes of PLI library routines: access routines and utility
routines. (Note that vpi_ routines are not discussed).

Access routines provide access to information about the internal data
representation; they allow the user C routine to traverse the data structure and
extract information about the design. Utility routines are mainly used for passing
data across the VeriIog/Programming Language Boundary and for miscellaneous
housekeeping functions. Figure 13-6 shows the role of access and utility routines
in PLI.

!1·

I 1 D . ..=1. nterna eSlgn :;!~: .

Representation ~t--i~::!I!
(Data Structures)~:

f.i

~ It

User-Define
C routines
usingPLI
library

Figure 13-6 Role of Access and Utility Routines

User Design
Representation +
Stimulus
(Verilog Constructs
+ user-defined syste

tasks)

A complete list of PLI library routines is provided in Appendix B, List of PLI
Routines. The function and usage of each routine is also specified.

13.4.1 Access Routines

Access routines are also popularly called acc routines. Access routines can do the
following.

Programming Language Interface 259

Read information about a particular object from the internal data
representation

Write information about a particular object into the internal data
representation

We will discuss only reading of information from the design. Information about
modifying internal design representation can be found in the Programming
Language Interface (PLI) Manual. However, reading of information is adequate for
most practical purposes.

Access routines can read information about objects in the design. Objects can be
one of the following types.

Module instances, module ports, module pin-to-pin paths, intermodule
paths
Top-level modules
Primitive instances, primitive terminals
Nets, registers, parameters, specparams
Integer, time, and real variables
Timing checks
Named events

Mechanics of access routines

Some observations about access routines are listed below.

Access routines always start with the prefix acc-.

A user-defined C routine that uses access routines must first initialize the

environment by calling the routine acc-initialize (1 . When exiting, the
user-defined C routine must call acc-close () .

If access routines are being used in a file, the header file acc-user.h must also
be included. All access routine data types and constants are predefined in
the file acc-user.h.

Access routines use the concept of a handle to access an object. Handles are
predefined data types that point to specific objects in the design. Any
information about the object can be obtained once the object handle is

Verilog HDL: A Guide to Digital Design and Synthesis

obtained. This is similar to the concept of file handles for accessing files in C
programs. An object handle identifier is declared with the keyword handle.

handle top-handle;

Types of access routines

We discuss five types of access routines.

Handle routines. They return handles to objects in the design. The name of
handle routines always starts with the prefix acc-handle-.

Next routines. They return the handle to the next object in the set of a given
object type in a design. Next routines always start with the prefix acc-next-
and accept reference objects as arguments.

Value Change Link (VCL) routines. They allow the user system task to add and
delete objects from the list of objects that are monitored for value changes.
VCL routines always begin with the prefix acc-vcl- and do not return a
value.

Fetch routines. They can extract a variety of information about objects.
Information such as full hierarchical path name, relative name, and other
attributes can be obtained. Fetch routines always start with the prefix
acc-fetch-.

Utility access routines. They perform miscellaneous operations related to
access routines. For example, acc-initialize () and acc-close () are
utility routines.

Modify routines. They can modify internal data structures. We do not discuss
them in this book. Refer to the Programming Language Interface (PLI) Manual
for details about modify routines.

A complete list of access routines and their usage is provided in Appendix B, List
of PLI Routines.

Examples of access routines

We will discuss two examples that illustrate the use of access routines. The first
example is a user-defined system task to find names of all ports in a module and
count the number of ports. The second example is a user-defined system task that
monitors the changes in values of nets.

Programming Language Interface 261

- 13 --
Example 1 : Get Module Port List

Let us write a user-defined system task $get_ports to find complete hierarchical
names of input, output, and inout ports in a module and to count the number of
input, output, and inout ports. The user-defined system task will be invoked in
Verilog as $get_ports("<hierarchicaCmodule_name>");. The user-defined C routine
get_ports, which implements the task $get_ports, is described in file get_ports.c. The
file get-ports.c is shown in Example 13-3.

Example 13-2 PLI Routine to get Module Port List

#include "acc_user.h"

int get-ports()
{

handle mod, port;
int input_ctr = 0;
int output_ctr = 0;
int inout_ctr = 0;

acc_initialize();

mod = acc_handle_tfarg(l); /* get a handle to the module instance
first argument in the system task argument

list */

port = acc_handle-port(mod, 0); /* get the first port of the module */

262

while (port != null) /* loop for all ports */
{

if (acc_fetch_direction(port) == accInput) /* Input port */

io-printf("Input Port %s \n", acc_fetch_fullname(port));
/* full hierarchical name */

else if (acc_fetch_direction(port) == accOutput) /* Output port */
{

io-printf("Output Port %s \n", acc_fetch_fullname(port));
output_ctr++;

else if (acc_fetch_direction(port) == accInout) /* Inout port */

io-printf("Inout Port %s \n", acc_fetch_fullname(port));

Verilog HDL: A Guide to Digital Design and Synthesis

13 ---
Example 13-2 PLI Routine to get Module Port List (Continued)

port acc_next-port(mod, port); /* go to the next port */

io-printf(nlnput Ports == %d Output Ports == %d, Inout ports %d\n\nn,
input_ctr, output_ctr, inout_ctr);

Notice that handle, fetch, next, and utility access routines are used to write the user
C routine.

To link the user-defined system task $get-ports into the Verilog simulator, add the
following lines to the veriuser.c or mypli.tab file (assuming Verilog-XL or YeS).

/*Add the following line to the veriuser.c file for Verilog-XL*/
{ usertask, 0, ° , 0, get-ports,O , n$get-portsn,O },

/*Add the following line to the mypli.tab file for VCS*/
$get-ports call==get-ports

Link the new task into the Verilog simulator as described in Section 13.2.1, Linking
PLI Tasks. To check the newly defined task, we will use it to find out the port list
of the module mux2_to_l described in Example 13-1 on page 257. A top-level
module that instantiates the 2-to-1 multiplexer and invokes the $get_ports task is
shown below.

module top;
wire OUT;
reg 10, 11, S;

mux2_to_l my_mux(OUT, 10, 11, S); /*Instantiate the 2-to-l mux*/

initial
begin

$get-ports(ntop.my_muxn); /*invoke task$get-ports to get port list*/

Programming Language Interface 263

-- 13 -
lend
endmodule

Invocation of $get_parts causes the user C routine $get_parts to be executed. The
output of the simulation is shown below.

Output Port top.my_mux.out
Input Port top.my_mux.iO
Input Port top.my_mux.il
Input Port top.my_mux.s
Input Ports = 3 Output Ports 1, Inout ports

Example 2: Monitor Nets for Value Chan~es

o

This example highlights the use of Value Change Link (VCL) routines. Instead of
using the $manitar task provided with the Verilog simulator, let us define our own
task to monitor specific nets in the design for value changes. The task
$my_manitar(l/<net_name>"); is to be invoked to add a <net_name> to the
monitoring list.

The user-defined C routine my_monitor which implements the user-defined
system task is shown in Example 13-3.

Example 13-3 PLI Routine to Monitor Nets for Value Changes

#include "acc_user.h"

char convert_to_char{};
int display_net{};

int my_monitor {}

handle net;
char *netname /*pointer to store names of nets*/
char *malloc{};

acc_initialize{}; /*initialize environrnent*/

net = acc_handle_tfarg{l}; /*get a handle to the net to be monitored*/

/*Find hierarchical name of net and store it*/

264 Verilog HDL: A Guide to Digital Design and Synthesis

Example 13-3 PLI Routine to Monitor Nets for Value Changes (Continued)

netname malloc(strlen(acc_fetch_fullname(net)));
strcpy(netname, acc_fetch_fullname(net));

13 ---

/* Call the VCL routine to add a signal to the monitoring list*/
/* Pass four arguments to acc_vcl_add task*/
/* 1st : handle to the monitored object (net)

2nd : Consumer C routine to call when the object value changes
(display_net)

3rd : String to be passed to consumer C routine (netname)
4th: Predefined VCL flags: vcl_verilog_logic for logic monitoring

vcl_verilog_strength for strength monitoring*/
acc_vcl_add(net, display_net, netnarne, vcl_verilog_logic);

Notice that the net is added to the monitoring list with the routine acc_vcl_add. A
consumer routine display_net is an argument to acc_vcl_add. Whenever the value
of the net changes, the acc_vcl_add calls the consumer routine display_net and
passes a pointer to a data structure of the type p_vcJecord. A consumer routine is a
C routine that performs an action determined by the user whenever acc_vcCadd
calls it. The p_vcJecord is predefined in the accuser.h file, as shown below.

typedef struct t_vc_record{
int vc_reason; /*reason for value change*/
int vc_hightime; /*Higher 32 bits of 64-bit simulation time*/
int vc_Iowtime; /*Lower 32 bits of 64-bit simulation time*/
char *user_data; /*String passed in 3rd argument of acc_vcl_add*/
union { /*New value of the monitored signal*/

unsigned char logic_value;
double real_value;
handle vector_handle;
s_strengths

out_value;
*p_vc_record;

Programming Language Interface 265

- 13 --
The consumer routine display_net simply displays the time of change, name of net,
and new value of the net. The consumer routine is written as shown in Example 13-
4. Another routine, convert_to_char, is defined to convert the logic value constants
to an ASCII character.

Example 13-4 Consumer Routine for VCL Example

/*Consumer routine. Called whenever any monitored net changes*/
display_net (vc_record)
p_vc_record vc_record; /*Structure p_vc_recordpredefined in

acc_user.h* /

/*Print time, name, and new value of the changed net */
io-printf (n %d New value of net %s is %c \n n ,

vc_record->vc_lowtime,
vc_record->user_data,

convert_to_char(vc_record->out_value.logic_value));

/*Miscellaneous routine to convert predefined character constant to
ASCII character*/

char convert_to_char(logic_val)
char logic_val;
{

266

char temp;

switch (logic_val)
{

/*vcIO, vcll, vclX and vclz are predefined in acc_user.h*/
case vclO: temp='O';

break;
case vcll: temp=' l' ;

break;
case vclX: temp= 'X';

break;
case vclZ: temp=' Z' ;

break;

return (temp) ;

Verilog HDL: A Guide to Digital Design and Synthesis

13

To link the new system task $my_monitor into the Verilog simulation, add the
following lines to the veriuser.c or mypli.tab file (assuming Verilog-XL or VCS).

/*Add the following line to the veriuser.c file for Verilog-XL*/
{ usertask, 0, ° , 0, my_monitor,O , "$my_monitor",O },

/*Add the following line to the mypli.tab file for VCS*/
$my_monitor call=my_monitor

Link the new task into the Verilog simulator as described in Section 13.2.1, Linking
PLI Tasks. To check the newly defined task, we will use it to monitor nets sbar and
yl when stimulus is applied to module mux2_to_1 described in Example 13-1 on
page 257. A top-level module that instantiates the 2-to-1 multiplexer, applies
stimulus, and invokes the $my_monitor task is shown below.

module top;
wire OUT;
reg 10, 11, S;

mux2_to_l my_mux(OUT, 10, 11, S); //Instantiate the module mux2 to_l

initial ((Add nets to the monitoring list
begin

$my_monitor("top.my_mux.sbar");
$my _moni tor (" top. my _mux. yl ") ;

end

initial ((Apply Stimulus
begin

IO=l'bO; Il=l'bl; S = l'bO;
#5 IO=l'bl; Il=l'bl; S l'bl;
#5 IO=l'bO; Il=l'bl; S
#5 IO=l'bl; Il=l'bl; S

end

endmodule

l'bx;
1 'bl;

Programming Language Interface 267

The output of the simulation is shown below.

0 New value of net top.my-mux.yl is 0
0 New value of net top.my-mux.sbar is 1
5 New value of net top.my-mux.yl is 1
5 New value of net top.my-mux.sbar is 0
5 New value of net top.my-mux.yl is 0
10 New value of net top.my-mux.sbar is X
15 New value of net top.my-mux.yl is X
15 New value of net top.my-mux.sbar is 0
15 New value of net top.my-mux.yl is 0

13.4.2 Utility Routines

Utility routines are miscellaneous PLI routines that pass data in both directions
across the Verilog/user C routine boundary. Utility routines are also popularly
called "tf" routines.

Mechanics of utility routines

Some observations about utility routines are listed below.

Utility routines always start with the prefix tf-.

If utility routines are being used in a file, the header file veriuser.h must be
included. All utility routine data types and constants are predefined in

Types of utility routines

Utility routines are available for the following purposes.

Get information about the Verilog system task invocation
Get argument list information
Get values of arguments
Pass back new values of arguments to calling system task
Monitor changes in values of arguments
Get information about simulation time and scheduled events
Perform housekeeping tasks, such as saving work areas, storing pointers to
tasks

268 Verilog HDL: A Guide to Digital Design and Synthesis

Do long arithmetic
Display messages
Halt, terminate, save, restore simulation

A list of utility routines, their function and usage is provided in Appendix B, List
of PLI Routines.

Example of utility routines

Until now we encountered only one utility routine, iosrintf (1. Now we will
look at a few more utility routines that allow passing of data between the Verilog
design and the user-defined C routines.

Verilog provides the system tasks $stop and $finish that suspend and terminate
the simulation. Let us define our own system task, $my-stopfinish, which does
both stopping and finishing based on the arguments passed to it. The complete
specifications for the user-defined system task $my-stop-finish are shown in Table
13-1.

Table 13-1 Specifications for $my-stopfinish

1st Argument 2nd Argument Action

0 none Stop simulation. Display simulation time and
message.

1 none Finish simulation. Display simulation time and
message.

0 any value Stop simulation. Display simulation time, module
instance from which stop was called, and message.

1 any value Finish simulation. Display simulation time, module
instance from which stop was called, and message.

The source code for the user-defined C routine my-stop-finish is shown in
Example 13-5.

Example 13-5 User C Routine my-stopfinish, Using Utility Routines

int my-stop-•’ inish ()
(

if(tf-nump0 == 1) / * if 1 argument is passed to the my-stop-finish
task, display only simulation time and message*/

{

Programming Language Interface 269

-- 13 -
Example 13-5 User C Routine my_stopJinish, Using Utility Routines (Continued)

if(tf_getp(l) == 0) /* get value of argument. If the argument
is 0, then stop the simulation*/

io-printf("Mymessage: Simulation stopped at time %d\n",
tf_gettime());

tf_dostop(); /*stop the simulation*/

else if(tf_getp(l) == 1) /* if the argument is 0 then terminate
the simulation*/

io-printf ("Mymessage: Simulation finished at time %d\n",
tf_gettime());

tf_dofinish(); /*terminate the simulation*/

else
/* Pass warning message */
tf_warning("Bad arguments to \$my_stop_finish at time %d\n" ,

tf_gettime ()) ;

else if(tf_nump() == 2) /* if 1 argument is passed to the
my_stop_finish

270

task, then print module instance from which the
task was called, time and message */

if (tCgetp (1) 0) /* if the argument is 0 then stop
the simulation*/

io-printf
("Mymessage: Simulation stopped at time %d in instance %s \n",

tf_gettime(), tf_mipname());
tf_dostop(); /*stop the simulation*/

else if(tf_getp(l) == 1) /* if the argument is 0 then terminate
the simulation*/

io-printf
("Mymessage: Simulation finished at time %d in instance %s \n",

tf_gettime(), tf_mipname());
tf_dofinish(); /*terminate the simulation*/

else
/* Pass warning message */

Verilog HDL: A Guide to Digital Design and Synthesis

13 ---
Example 13-5 User C Routine my_stopJinish, Using Utility Routines (Continued)

tf_warning(nBad arguments to \$my_stop_finish at time %d\nn,
tf_gettime());

To link the new system task $my_monitor into the Verilog simulator, add the
following lines to the veriuser.c or mypli.tab file (assuming Verilog-XL or VCS).

/*Add the following line to the veriuser.c file for Verilog-XL*/
{ usertask, 0, a , 0, my_stop_finish, a , n$my_stop_finishn, a },

/*Add the following line to the mypli.tab file for VCS*/
$my_stop_finish call=my_stop_finish

Link the new task into the Verilog simulator as described in Section 13.2.1, Linking
PLI Tasks. To check the newly defined task $my_stopJinish, stimulus in which
$my_stop_finish is called with all possible combinations of arguments is applied to
the module mux2_to_l described in Example 13-1 on page 257. A top-level module
that instantiates the 2-to-1 multiplexer, applies stimulus, and invokes the
$my_stopJinish task is shown below.

module top;
wire OUT;
reg 10, II, S;

initial //Apply Stimulus
begin

IO=l'bO; Il=l'bl; S = l'bO;
$my_stop_finish (0) ; IIStop simulation. Don't print module instance name
#5 IO=l'bl; Il=l'bl; S = l'bl;
$my_stop_finish(O,I); //Stop simulation. Print module instance name
#5 IO=l'bO; Il=l'bl; S = l'bx;
$my_stop_finish(2,1); //Pass bad argument 2 to the task
#5 IO=l'bl; II=l'bl; S = l'bl;

Programming Language Interface 271

$my-stop-finish(1,l); //~erminatesimulation.Printmoduleinstance
/ /name

end

endmodule

The output of the simulation with Verilog-XL is shown below.

Mymessage: Simulation stopped at time 0
Type ? for help
C1 > .
Mymessage: Simulation stopped at time 5 in instance top
C1 > .
"my-stop-finish.vU, 14: warning! Bad arguments to $my-stop-finish at
time 10

Mymessage: Simulation finished at time 15 in instance top

13.5 Summary
In this chapter we described the Programming Language Interface (PLI) for
Verilog. The following aspects were discussed.

PLI Interface provides a set of C interface routines to read, write, and extract
information about the internal data structures of the design. Designers can
write their own system tasks to do various useful functions.

PLI Interface can be used for monitors, debuggers, translators, delay
calculators, automatic stimulus generators, dump file generators, and other
useful utilities.

A user-defined system task is implemented with a corresponding user-defined C
routine. The C routine uses PLI library calls.

The process of informing the simulator that a new user-defined system task
is attached to a corresponding user C routine is called linking. Different
simulators handle the linking process differently.

User-defined system tasks are invoked like standard Verilog system tasks,
e.g., $hello-verilogO; . The corresponding user C routine hello-verilog is
executed whenever the task is invoked.

2 72 Verilog HDL: A Guide to Digital Design and Synthesis

A design is represented internally in a Verilog simulator as a big data
structure with sets for objects. PLI library routines allow access to the
internal data structures.

Access (acc) routines and utility (t f) routines are two types of PLI library
routines.

Access routines can read and write information about a particular object
from/to the design. Access routines start with the prefix acc-. Access
routines are used primarily across the boundary of user C routine and
internal data representation. Access routines interact with object handles.

Value change link (V C L) is a special category of access routines that allow
monitoring of objects in a design. A consumer routine is executed whenever
the monitored object value changes.

Utility routines are used to pass data back and forth across the boundary of
user C routines and the original Verilog design. Utility routines start with
the prefix tf-. Utility routines do not interact with object handles.

Programming Language Interface is a very broad area of study. Thus, only the
basics of Verilog PLI are covered in this chapter. Designers should consult the
I E E E Language Reference Manual for details of PLI. Some areas that might be of
interest are listed below.

We specified only three of the eight entries in line in the ver iuser .~ file. The
other entries were 0. These entries are used for data passing, checktf, sizetf,
misctf, and forward reference flag. These entries are important when building
large-scale PLI applications.

We did not discuss appending or replacing delays in the internal data
structures by using access routines. This is used for delay calculation and
delay back-annotation, which are very important applications of PLI.

Cell instances are leaf-Ievel elements of a Verilog simulation. Cell instances
are used for delay calculators. The concept of cell instances was not
introduced.

A new extension to Verilog PLI, called the Verilog Procedural Interface
(VPI), has been developed to provide object-oriented access to Verilog HDL
objects. The VPI routines are a superset of the functionality of acc- and tf-
routines. These are the next generation of PLI and will soon become
important.

Programming Language l n terface

- 13 --
13.6 Exercises
Refer to Appendix B, List of PLI Routines and IEEE Language Reference Manual for
a list of PLI access and utility routines, their function, and usage. You will need to
use some PLI library calls that were not discussed in this chapter.

1. Write a user-defined system task, $get_in_ports, that gets full hierarchical
names of only the input ports of a module instance. Hierarchical module
instance name is the input to the task (Hint: Use the C routine in Example
13-2 on page 262 as a reference). Link the task into the Verilog simulator.
Find the input ports of the 1-bit full adder defined in Example 5-6 on
page 72.

2. Write a user-defined system task, $count_and-sates, which counts the
number of and gate primitives in a module instance. Hierarchical module
instance name is the input to the task. Use this task to count the number of
and gates in the 4-to-1 multiplexer in Example 5-4 on page 69.

3. Create a user-defined system task, $monitor _mod_output, that finds out all
the output signals of a module instance and adds them to a monitoring list.
The line "Output signal has changed" should appear whenever any output
signal of the module changes value. (Hint: Use VCL routines). Use the 2-to-1
multiplexer in Example 13-1 on page 257. Add output signals to the
monitoring list by using $monitor _mod_output. Check results by applying
stimulus.

274 Verilog HDL: A Guide to Digital Design and Synthesis

Logic Synthesis with Verilog
HDL 1 4 1

Advances in logic synthesis have pushed HDLs into the forefront of digital design
technology. Logic synthesis tools have cut design cycle times significantly.
Designers can design at a high level of abstraction and thus reduce design time.
In this chapter we discuss logic synthesis with Verilog HDL. Synopsys synthesis
products were used for the examples in this chapter, and results for individual
examples may vary with synthesis tools. However, the concepts discussed in this
chapter are general enough to be applied to any logic synthesis tool. This chapter
is intended to give the reader a basic understanding of the mechanics and issues
involved in logic synthesis. It is not intended to be comprehensive material on
logic synthesis. Detailed knowledge of logic synthesis can be obtained from
reference manuals, logic synthesis books, and by attending training classes.

Learning Objectives

Define logic synthesis and explain the benefits of logic synthesis.

Identify Verilog HDL constructs and operators accepted in logic synthesis.
Understand how the logic synthesis tool interprets these constructs.

Explain a typical design flow, using logic synthesis. Describe the
components in the logic synthesis-based design flow.

Describe verification of the gate-level netlist produced by logic synthesis.

Understand techniques for writing efficient RTL descriptions.

Describe partitioning techniques to help logic synthesis provide the optimal
gate-level netlist.

Design combinational and sequential circuits, using logic synthesis.

14.1 What Is Logic Synthesis?
Simply speaking, logic synthesis is the process of converting a high-level
description of the design into an optimized gate-level representation, given a
standard cell library and certain design constraints. A standard cell library can

-- 14 -
have simple cells, such as basic logic gates like and, or, and nor, or macro cells,
such as adders, muxes, and special flip-flops. A standard cell library is also
known as the technology library. It is discussed in detail later in this chapter.

Logic synthesis always existed even in the days of schematic gate-level design,
but it was always done inside the designer's mind. The designer would first
understand the architectural description. Then he would consider design
constraints such as timing, area, testability, and power. The designer would partition
the design into high-level blocks, draw them on a piece of paper or a computer
terminal, and describe the functionality of the circuit. This was the high-level
description. Finally, each block would be implemented on a hand-drawn
schematic, using the cells available in the standard cell library. The last step was
the most complex process in the design flow and required several time­
consuming design iterations before an optimized gate-level representation that
met all design constraints was obtained. Thus, the designer's mind was used as the
logic synthesis tool, as illustrated in Figure 14-1.

r

no

Optimized Gate­
Level Representation

Figure 14-1 Designer's Mind As the Logic Synthesis Tool

...J

Design Constraints

Standard Cell
Library

<technology
dependent)

276 Verilog HDL: A Guide to Digital Design and Synthesis

14 ---
The advent of computer-aided logic synthesis tools has automated the process of
converting the high-level description to logic gates. Instead of trying to do logic
synthesis in their minds, designers can now concentrate on the architectural
trade-offs, high-level description of the design, accurate design constraints, and
optimization of cells in the standard cell library. These are fed to the computer­
aided logic synthesis tool, which performs several iterations internally and
generates the optimized gate-level description. Also, instead of drawing the high­
level description on a screen or a piece of paper, designers describe the high-level
design in terms of HDLs. Verilog HDL has become one of the popular HDLs for
the writing of high-level descriptions. Figure 14-2 illustrates the process.

Architectural

High-Level
Description

r------'------,~ Design Constraints I

no

Optimized
Gate-Level Netlist

Place and Route

Figure 14-2 Basic Computer-Aided Logic Synthesis Process

Logic Synthesis with Verilog HDL

Standard Cell
Library

(technology
dependent)

277

Automated logic synthesis has significantly reduced time for conversion from
high-level design representation to gates. This has allowed designers to spend
more time on designing at a higher level of representation, because less time is
required for converting the design to gates.

14.2 Impact of Logic Synthesis
Logic synthesis has revolutionized the digital design industry by significantly
improving productivity and by reducing design cycle time. Before the days of
automated logic synthesis, when designs were converted to gates manually, the
design process had the following limitations.

For large designs, manual conversion was prone to human error. A small
gate missed somewhere could mean redesign of entire blocks.

The designer could never be sure that the design constraints were going to
be met until the gate-level implementation was completed and tested.

A significant portion of the design cycle was dominated by the time taken to
convert a high-level design into gates.

If the gate-level design did not meet requirements, the turnaround time for
redesign of blocks was very high.

What-if scenarios were hard to verify. For example, the designer designed a
block in gates that could run at a cycle time of 20 ns. If the designer wanted
to find out whether the circuit could be optimized to run faster at 15 ns, the
entire block had to be redesigned. Thus, redesign was needed to verify what-
if scenarios.

Each designer would implement design blocks differently. There was little
consistency in design styles. For large designs, this could mean that smaller
blocks were optimized but the overall design was not optimal.

If a bug was found in the final, gate-level design, this would sometimes
require redesign of thousands of gates.

Timing, area, and power dissipation in library cells are fabrication-
technology specific. Thus if the company changed the IC fabrication vendor
after the gate-level design was complete, this would mean redesign of entire
circuit and a possible change in design methodology.

Design reuse was not possible. Designs were technology specific, hard to
port, and very difficult to reuse.

278 Verilog HDL: A Guide to Digital Design and Synthesis

Automated logic synthesis tools addressed these problems as follows.

High-level design is less prone to human error because designs are
described at a higher level of abstraction.

High-level design is done without significant concern about design
constraints. Logic synthesis will convert a high-level design to a gate-level
netlist and ensure that all constraints have been met. If not, the designer
goes back, modifies the high-level design and repeats the process until a
gate-level netlist that satisfies timing, area, and power constraints is
obtained.

Conversion from high-level design to gates is fast. With this improvement,
design cycle times are shortened considerably. What took months before can
now be done in hours or days.

Turnaround time for redesign of blocks is shorter because changes are
required only at the register-transfer level; then, the design is simply
resynthesized to obtain the gate-level netlist.

What-if scenarios are easy to verify. The high-level description does not
change. The designer has merely to change the timing constraint from 20 ns
to 15 ns and resynthesize the design to get the new gate-level netlist that is
optimized to achieve a cycle time of 15 ns.

Logic synthesis tools optimize the design as a whole. This removes the
problem with varied designer styles for the different blocks in the design
and suboptimal designs.

If a bug is found in the gate-level design, the designer goes back and
changes the high-level description to eliminate the bug. Then, the high-level
description is again read into the logic synthesis tool to automatically
generate a new gate-level description.

Logic synthesis tools allow technology-independent design. A high-level
description may be written without the IC fabrication technology in mind.
Logic synthesis tools convert the design to gates, using cells in the standard
cell library provided by an IC fabrication vendor. If the technology changes
or IC fabrication vendor changes, designers simply use logic synthesis to
retarget the design to gates, using the standard cell library for the new
technology.

Logic Synthesis with Verilog HDL

-- 14 -
• Design reuse is possible for technology-independent descriptions. For

example, if the functionality of the I/O block in a microprocessor does not
change, the RTL description of the I/O block can be reused in the design of
derivative microprocessors. If the technology changes, the synthesis tool
simply maps to the desired technology.

14.3 Verilog HOL Synthesis
For the purpose of logic synthesis, designs are currently written in an HDL at a
register transfer level (RTL). The term RTL is used for an HDL description style that
utilizes a combination of data flow and behavioral constructs. Logic synthesis
tools take the register transfer-level HDL description and convert it to an
optimized gate-level netlist. Verilog and VHDL are the two most popular HDLs
used to describe the functionality at the RTL level. In this chapter, we discuss
RTL-based logic synthesis with Verilog HDL. Behavioral synthesis tools that
convert a behavioral description into an RTL description are slowly evolving, but
RTL-based synthesis is currently the most popular design method. Thus, we will
address only RTL-based synthesis in this chapter.

14.3.1 Verilog Constructs

Not all constructs can be used when writing a description for a logic synthesis
tool. In general, any construct that is used to define a cyde-by-cyde RTL
description is acceptable to the logic synthesis tool. A list of constructs that are
typically accepted by logic synthesis tools is given in Table 14-1. The capabilities
of individual logic synthesis tools may vary. The constructs that are typically
acceptable to logic synthesis tools are also shown.

Table 14-1 Verilog HDL Constructs for Logic Synthesis

Construct Type Keyword or Description Notes

ports input, inout, output

parameters parameter

module definition module

signals and variables wire, reg, tti Vectors are allowed

instantiation module instances, E.g., mymux ml(out, iO, il, s);
primitive gate instances E.g., nand (out, a, b);

functions and tasks function, task Timing constructs ignored

procedural always, if, then, else, case, initial is not supported
casex, casez

280 Verilog HDL: A Guide to Digital Design and Synthesis

14 ---
Table 14-1 Verilog HDL Constructs for Logic Synthesis (Continued)

Construct Type Keyword or Description Notes

procedural blocks begin, end, named blocks, Disabling of named blocks allowed
disable

data flow assign Delay information is ignored

loops for, while, forever, while and forever loops must
contain @(posedge elk) or
@(negedge elk)

Remember that we are providing a cycle-by-cycle RTL description of the circuit.
Hence, there are restrictions on the way these constructs are used for the logic
synthesis tool. For example, the while and forever loops must be broken by a
@ (posedge clock) or @ (negedge clock) statement to enforce cycle-by-cycle behavior
and to prevent combinational feedback. Another restriction is that logic synthesis
ignores all timing delays specified by #<delay> construct. Therefore, pre- and
postsynthesis Verilog simulation results may not match. The designer must use a
description style that eliminates these mismatches. Also, the initial construct is
not supported by logic synthesis tools. Instead, the designer must use a reset
mechanism to initialize the signals in the circuit.

It is recommended that all signal widths and variable widths be explicitly
specified. Defining unsized variables can result in large, gate-level netlists
because synthesis tools can infer unnecessary logic based on the variable
definition.

14.3.2 Verilog Operators

Almost all operators in Verilog are allowed for logic synthesis. Table 14-2 is a list
of the operators allowed. Only operators such as === and I =.. that are related to
x and z are not allowed, because equality with x and z does not have much
meaning in logic synthesis. While writing expressions, it is recommended that
you use parentheses to group logic the way you want it to appear. If you rely on
operator precedence, logic synthesis tools might produce undesirable logic
structure.

Logic Synthesis with Verilog HDL 281

-- 14 -
Table 14-2 Verilog HDL Operators for Logic Synthesis

Operator Type Operator Symbol Operation Performed

Arithmetic * multiply
/ divide
+ add
- subtract
% modulus
+ unary plus
- unary minus

Logical I logical negation
&:&: logical and

II logical or

Relational > greater than
< less than
>= greater than or equal
<= less than or equal

Equality == equality
1= inequality

Bit-wise - bitwise negation
&: bitwise and

I bitwise or
A bitwise ex-or
"- or _" bitwise ex-nor

Reduction &: reduction and
-&: reduction nand

I reduction or
-I reduction nor
A reduction ex-or
"- or _" reduction ex-nor

Shift » right shift
« left shift

Concatenation { } concatenation

Conditional ? : conditional

282 Verilog HDL: A Guide to Digital Design and Synthesis

14 ---
14.3.3 Interpretation of a Few Verilog Constructs

Having described the basic Verilog constructs, let us try to understand how logic
synthesis tools frequently interpret these constructs and translate them to logic
gates.

The assign statement
\

The assign construct is the most fundamental construct used to describe
combinational logic at an RTL level. Given below is a logic expression that uses
the assign statement.

I assign out ~ la & b) I c,

This will frequently translate to the following gate-level representation.

:~--out
If a, b, c, and out are 2-bit vectors [1:0}, then the above assign statement will
frequently translate to two identical circuits for each bit.

a[o]~
b[O] .

e[O] -- outre]

a[1]~
b[1] .

e[1] --out[1]

If arithmetic operators are used, each arithmetic operator is implemented in terms
of arithmetic hardware blocks available to the logic synthesis tool. A l-bit full
adder is implemented below.

assign {c_out, sum} = a + b + c_in;

Logic Synthesis with Veri/og HDL 283

-- 14 -
Assuming that the I-bit full adder is available internally in the logic synthesis
tool, the above assign statement is often interpreted by logic synthesis tools as
follows.

a---..... -'!-',
b -.....--+-+-1 r------------sum

c in---------~

If a multiple-bit adder is synthesized, the synthesis tool will perform optimization
and the designer might get a result that looks different from the above figure.

If a conditional operator? is used, a multiplexer circuit is inferred.

I a"ign out = ", ? i1 , iO,

It frequently translates to the gate-level representation shown in Figure 14-3.

i-----------------------l
iO -j--------/

out

i1 -+----1------.,

1 ______ ------------------

Figure 14-3 Multiplexer Description

The if-else statement

Single if-else statements translate to multiplexers where the control signal is the
signal or variable in the if clause.

if(s)
out = il;

else
out = iO;

284 Veri/og HDL: A Guide to Digital Design and Synthesis

14 ---
The above statement will frequently translate to the gate-level description shown
in Figure 14-3. In general, multiple if-else-if statements do not synthesize to large
multiplexers.

The case statement

The case statement also can used to infer multiplexers. The above multiplexer
would have been inferred from the following description that uses case
statements.

case (s)
l'bO out iO;
l'b1 out i1;

endcase

Large case statements may be used to infer large multiplexers.

for loops

The for loops can be used to build cascaded combinational logic. For example,
the following for loop builds an 8-bit full adder.

c = c_in;
for(i=O; i <=7; i = i + 1)

{e, sum[iJ} = ali] + b[iJ + c; II builds an 8-bit ripple adder
c_out = c;

The always statement

The always statement can be used to infer sequential and combinational logic. For
sequential logic, the always statement must be controlled by the change in the
value of a clock signal cZk.

always @(posedge clk)
q = d;

Logic Synthesis with Verilog HDL 285

-- 14 -
This is inferred as a positive edge-triggered D-flipflop with d as input, q as
output, and elk as the clocking signal.

Similarly, the following Verilog description creates a level-sensitive latch.

,

~lWayS @(clk or d)
if (clk)

q = d;

For combinational logic, the always statement must be triggered by a signal other
than the elk, reset, or preset. For example, the following block will be interpreted as
a 1-bit full adder.

always @(a or b or c_in)
{c_out, sum} = a + b + c_in;

The function statement

Functions synthesize to combinational blocks with one output variable. The
output might be scalar or vector. A 4-bit full adder is implemented as a function
in the Verilog description below. The most significant bit of the function is used
for the carry bit.

function [4:0] fulladd;
input [3:0] a, b;
input c_in;
begin

fulladd = a + b + c_in; / /bit 4 of fulladd for carry,bits[3: 0] for sum.
end
endfunction

286 Verilog HDL: A Guide to Digital Design and Synthesis

14 ---
14.4 Synthesis Design Flow
Having understood how basic Verilog constructs are interpreted by the logic
synthesis tool, let us now discuss the synthesis design flow from an RTL
description to an optimized gate-level description.

14.4.1 RTL to Gates

To fully utilize the benefits of logic synthesis, the designer must first understand
the flow from the high-level RTL description to a gate-level netlist. Figure 14-4
explains that flow.

RTL Description

Unoptimized
Intermediate
Representation

I
I
I
I
I
I
I
I
I
I
I

! Design constraints!1-'---•• ~I Technology Mapping I
. . and Optimization I

_________ ...l

Optimized Gate­
Level Representation

Figure 14-4 Logic Synthesis Flow from RTL to Gates

Let us discuss each component of the flow in detail.

Logic Synthesis with Verilog HDL

Library of available
gates, and leaf­
level cells.
(technology
library)

287

-- 14 -
RTL description

The designer describes the design at a high level by using RTL constructs. The
designer spends time in functional verification to ensure that the RTL description
functions correctly. After the functionality is verified, the RTL description is input
to the logic synthesis tool.

Translation

The RTL description is converted by the logic synthesis tool to an unoptimized,
intermediate, internal representation. This process is called translation. Translation
is relatively simple and uses techniques similar to those discussed in Section
14.3.3, Interpretation of a Few Verilog Constructs. The translator understands the
basic primitives and operators in the Verilog RTL description. Design constraints
such as area, timing, and power are not considered in the translation process. At
this point, the logic synthesis tool does a simple allocation of internal resources.

Unoptimized intermediate representation

The translation process yields an unoptimized intermediate representation of the
design. The design is represented internally by the logic synthesis tool in terms of
internal data structures. The unoptimized intermediate representation is
incomprehensible to the user.

Logic optimization

The logic is now optimized to remove redundant logic. Various technology
independent boolean logic optimization techniques are used. This process is
called logic optimization. It is a very important step in logic synthesis, and it yields
an optimized internal representation of the design.

Technology mapping and optimization

Until this step, the design description is independent of a specific target technology.
In this step, the synthesis tool takes the internal representation and implements
the representation in gates, using the cells provided in the technology library. In
other words, the design is mapped to the desired target technology.

Suppose you want to get your IC chip fabricated at ABC Inc. ABC Inc. has 0.65
micron CMOS technology, which they call abc_100 technology. Then, abc_lOO
becomes the target technology. You must therefore implement your internal
design representation in gates, using the cells provided in abc_lOO technology
library. This is called technology mapping. Also, the implementation should satisfy
design constraints such as timing, area, and power. Some local optimizations are
done to achieve the best results for the target technology. This is called technology
optimization or technology-dependent optimization.

288 Verilog HDL: A Guide to Digital Design and Synthesis

Technology library

The technology library contains library cells provided by ABC Inc. The term standard
cell libra y used earlier in the chapter and the term technology library are identical
and are used interchangeably.

To build a technology library, ABC Inc. decides the range of functionality to
provide in its library cells. As discussed earlier, library cells can be basic logic
gates or macro cells such as adders, ALUs, multiplexers, and special flip-flops.
The library cells are the basic building blocks that ABC Inc. will use for IC
fabrication. Physical layout of library cells is done first. Then, the area of each cell
is computed from the cell layout. Then, modeling techniques are used to estimate
the timing and power characteristics of each library cell. This process is called cell
characterization.

Finally, the each cell is described in a format that is understood by the synthesis
tool. The cell description contains information about the following:

Functionality of the cell
Area of the cell layout
Timing information about the cell
Power information about the cell

A collection of these cells is called the technology library. The synthesis tool uses
these cells to implement the design. The quality of results from synthesis tools
will typically be dominated by the cells available in the technology library. If the
choice of cells in the technology library is limited, the synthesis tool cannot do
much in terms of optimization for timing, area, and power.

Design constraints

Design constraints typically include the following:

Timing-The circuit must meet certain timing requirements. An internal
static timing analyzer checks timing.

Area-The area of the final layout must not exceed a limit.

Power-The power dissipation in the circuit must not exceed a threshold.

In general, there is an inverse relationship between area and timing constraints.
For a given technology library, to optimize timing (faster circuits), the design has
to be parallelized, which typically means that larger circuits have to be built. To
build smaller circuits, designers must generally compromise on circuit speed. The
inverse relationship is shown in Figure 14-5.

Logic Synthesis with Verilog HDL

-- 14 -

Timing

Figure 14-5 Area vs. Timing Trade-off

On top of design constraints, operating environment factors, such as input and
output delays, drive strengths, and loads, will affect the optimization for the
target technology. Operating environment factors must be input to the logic
synthesis tool to ensure that circuits are optimized for the required operating
environment.

Optimized gate-level description

After the technology mapping is complete, an optimized gate-level netlist
described in terms of target technology components is produced. If this netlist
meets the required constraints, it is handed to the ABC Inc. for final layout.
Otherwise, the designer modifies the RTL or reconstrains the design to achieve
the desired results. This process is iterated until the netlist meets the required
constraints. ABC Inc. will do the layout, do timing checks to ensure that the
circuit meets required timing after layout, and then fabricate the IC chip for you.

There are three points to note about the synthesis flow.

1. For very high speed circuits like microprocessors, vendor technology
libraries may yield nonoptimal results. Instead, design groups obtain
information about the fabrication process used by the vendor, for example,
0.65 micron CMOS process, and build their own technology library
components. Cell characterization is done by the designers. Discussion
about building technology libraries and cell characterization are beyond the
scope of this book.

2. Translation, logic optimization, and technology mapping are done internally
in the logic synthesis tool and are not visible to the designer. The technology
library is given to the designer. Once the technology is chosen, the designer
can control only the input RTL description and design constraint

290 Verilog HDL: A Guide to Digital Design and Synthesis

specification. Thus, writing efficient RTL descriptions, specifying design
constraints accurately, evaluating design trade-offs, and having a good
technology library are very important to produce optimal digital circuits
when using logic synthesis.

3. For submicron designs, interconnect delays are becoming a dominating
factor in the overall delay. Therefore, as geometries shrink, in order to
accurately model interconnect delays, synthesis tools will need to have a
tighter link to layout, right at the RTL level. Timing analyzers built into
synthesis tools will have to account for interconnect delays in the total delay
calculation.

14.4.2 An Example of RTL-to-Gates

Let us discuss synthesis of a 4-bit magnitude comparator to understand each step
in the synthesis flow. Steps of the synthesis flow such as translation, logic
optimization, and technology mapping are not visible to us as a designer.
Therefore, we will concentrate on the components that are visible to the designer,
such as the RTL description, technology library, design constraints, and the final,
optimized, gate-level description.

Design specification

A magnitude comparator checks if one number is greater than, equal to, or less
than another number. Design a 4-bit magnitude comparator IC chip that has the
following specifications:

Name of the design is magnitude-comparator
Inputs A and B are 4-bit inputs. No X or z values will appear on A and B
inputs
Output A$-B is true if A is greater than B
Output A-lt-B is true if A is less than B
Output A-eq-B is true if A is equal to B
Magnitude comparator circuit must be as fast as possible. Area can be
compromised for speed.

RTL description

The RTL description that describes the magnitude comparator is shown in
Example 14-1. This is a technology-independent description. The designer does
not have to worry about the target technology at this point.

Logic Synthesis with Verilog HDL

-- 14 -
Example 14-1 RTL for Magnitude Comparator

//Module magnitude comparator
module magnitude_comparator(A_gt_B, A_lt_B, A_e<L-B, A, B);

//Comparison output
output A_gt_B, A_lt_B, A_e<L-B;

//4-bits numbers input
input [3:0] A, B;

assign A_gt_B
assign A_lt_B
assign A_e<L-B

endmodule

(A > B); //A greater than B
= (A < B); //A less than B

(A == B); //A equal to B

Notice that the RTL description is very concise.

Technology library

We decide to use the 0.65 micron CMOS process called abc_lOO used by ABC Inc.
to make our IC chip. ABC Inc. supplies a technology library for synthesis. The
library contains the following library cells. The library cells are defined in a
format understood by the synthesis tool.

//Library cells for abc_IOO technology

VNAND//2-input nand gate
VAND//2-input and gate
VNOR//2-input nor gate
VOR//2-input or gate
VNOT//not gate
VBUF//buffer
NDFF//Negative edge triggered D flip-flop
PDFF//Positive edge triggered D flip-flop

Functionality, timing, area, and power dissipation information of each library cell
are specified in the technology library.

292 Verilog HDL: A Guide to Digital Design and Synthesis

Design constraints

According to the specification, the design should be as fast as possible for the
target technology, abc-100. There are no area constraints. Thus, there is only one
design constraint.

Optimize the final circuit for fastest timing

Logic synthesis

The RTL description of the magnitude comparator is read by the logic synthesis
tool. The design constraints and technology library for abc-100 are provided to
the logic synthesis tool. The logic synthesis tool performs the necessary
optimizations and produces a gate-level description optimized for abc-100
technology.

Final, Optimized, Gate-Level Description

The logic synthesis tool produces a final, gate-level description. The schematic for
the gate-level circuit is shown in Figure 14-6.

Logic Synthesis with Verilog HDL

=14 -

Q I q L~,
1 9 ~9,

J !cQ-QQ1
-'-cc - 6--' --: _._.,

Figure 14-6 Gate-Level Schematic for the Magnitude Comparator

294 Verilog HDL: A Guide to Digital Design and Synthesis

I

14= -
The gate-level Verilog description produced by the logic synthesis tool for the
circuit is shown below. Ports are connected by name.

Example 14-2 Gate-Level Description for the Magnitude Comparator

module magnitude_comparator (A_gt_B, A-lt_B, A_e~B, A, B);
input [3:0] A;
input [3:0] B;

wire n60, n61, n62, nSO, n63, n51, n64, nS2, n6S, n40, n53,
n41, nS4, n42, n55, n43, nS6, n44, n57, n45, n58, n46,
n59, n47, n4S, n49, n38, n39;

VANDU7 (.inO(n48), .inl(n49). .out(n38»;
VAND US (.inO(n5l), .inl(n52), .out{nSO));
VAND U9 (.inO(nS4), .inl(nS5), .out(nS3));
VNOT U30 (.in(A[2]), .out(n62));
VNOT U31 (.in(A[l]), .out(nS9));
VNOT U32 (.in(A[O]l. .out(n60));
VNAND U20 (.inO(B[2]), .inl(n62), .out(n4S));
VNAND U21 (. inO (n61), . inl (n45), . out (n63));
VNAND U22 (.inO(nG3), .inl(n42), .out(n41));
VAND UlO (.inO(n55), .inl(n52), .out(n47));
VOR U23 (.inO{n60), .inl(B[O]}, .out(nS7));
VANDUll (.inO(nS6), .inl(nS7), .out(n49)):
VNAND U24 (.inO(n57), .inl(n52), .out(n54));
VAND U12 (.inO(n40), .inl(n42), .out(n48));
VNAND U25 (.inO(n53), .inl(n44), .out(n64));
VOR Ul3 (.inO(n58), .inl(B[3), .out(n42));
VOR U26 (.inO(n62), .inl(B[2]), .out(n46));
VNAND Ul4 (.inO(B[3]), .inl(nS8), .out(n40));
VNAND U27 (.inO(n64), .inl(n46), .out(n6S));
VNAND UlS (.inO(B[l]), .inl(n59), .out(nS5));
VNAND U2S (.inO(n65), .inl(n40), .out(n43));
VOR U16 (.inO{n59), .inl(B[l]), .out(nS2));

VNOT U29 (.in(A[3]), .out(n58));
VNAND Ul7 (.inO(B[O]), .inl(n60}, .out(n56));
VNAND Ul8 (.inO(n56), .inl(n55), .out(n5l));
VNAND U19 (.inO(n50), .inl(n44), .out{n6l));
VAND U2 (.inO(n38), .inl(n39), .out(A_e~B));
VNAND U3 (.inO(n40), .inl(n41), . out (A_it_B));
VNAND U4 (.inO(n42), .inl(n43), .out(A_gt_B));
VAND U5 (.inO(n45), .inl(n46), .out(n44));
VAND U6 (.inO(n47), .inl(n44), .out(n39));

endmoduie

Logic Synthesis with Verilog HDL 295

-- 14 -
If the designer decides to use another technology, say, xyz_lOO from XYZ Inc.,
because it is a better technology, the RTL description and design constraints do
not change. Only the technology library changes. Thus, to map to a new
technology, a logic synthesis tool simply reads the unchanged RTL description,
unchanged design constraints, and new technology library and creates a new,
optimized, gate-level netlist.

Note that if automated logic synthesis were not available, choosing a new
technology would require the designer to redesign and reoptimize by hand the
gate-level netlist in Example 14-2.

IC Fabrication

The gate-level netlist is verified for functionality and timing and then submitted
to ABC Inc. ABC Inc. does the chip layout, checks that the postlayout circuit
meets timing requirements, and then fabricates the IC chip, using abc_IOO
technology.

14.5 Verification of Gate-Level Netlist
The optimized gate-level netlist produced by the logic synthesis tool must be
verified for functionality. Also, the synthesis tool may not always be able to meet
both timing and area requirements if they are too stringent. Thus, a separate
timing verification can be done on the gate-level netlist.

14.5.1 Functional Verification

Identical stimulus is run with the original RTL and synthesized gate-level
descriptions of the design. The output is compared to find any mismatches. For
the magnitude comparator, a sample stimulus file is shown below.

Example 14-3 Stimulus for Magnitude Comparator

module stimulus;

reg [3:0] A, B;
wire A_GT_B, A_LT_B, A_EQ_B;

//Instantiate the magnitude comparator
magnitude_comparator MC(A_GT_B, A_LT_B, A_EQ_B, A, B);

initial
$monitor($time," A=%b, B=%b, A_GT_B=%b, A_LT_B=%b, A_EQ_B=%b",

A, B, A_GT_B, A_LT_B, A_EQ_B);

296 Verilog HDL: A Guide to Digital Design and Synthesis

Example 14-3 Stimulus for Magnitude Comparator (Continued)

Iistimulate the magnitude comparator.
initial
begin

A = 4'b1010; B = 4'b1001;
10 A 4'blll0; B 4'bllll;
10 A 4'bOOOO; B 4'bOOOO;
10 A 4'bl000; B 4'bll00;
10 A 4'b0110; B 4'b1110;
10 A 4'blll0; B 4'blll0;

end

endmodule

14 ---

The same stimulus is applied to both the RTL description in Example 14-1 and the
synthesized gate-level description in Example 14-2, and the simulation output is
compared for mismatches. However, there is an additional consideration. The
gate-level description is in terms of library cells VAND, VNAND, etc. Verilog
simulators do not understand the meaning of these cells. Thus, to simulate the
gate-level description, a simulation library, abc_lOO.v, must be provided by ABC
Inc. The simulation library must describe cells VAND, VNAND, etc., in terms of
Verilog HDL primitives and, nand, etc. For example, the VAND cell will be defined
in the simulation library as shown in Example 14-4.

Example 14-4 Simulation Library

I/Simulation Library abc_100.v. Extremely simple. No timing checks.

module VAND (out, inO, in1);
input inO;
input in1;
output out;

//timing information,rise/fall and min:typ:max
specify
(inO => out) = (0.260604:0.513000:0.955206, 0.255524:0.503000:0.936586);
(in1 => out) = (0.260604:0.513000:0.955206, 0.255524:0.503000:0.936586);
endspecify

//instantiate a Verilog HDL primitive
and (out, inO, in1);

Logic Synthesis with Verilog HDL 297

-- 14 -
Example 14-4 Simulation Library (Continued)

endmodule

//AII library cells will have corresponding module definitions
//in terms of Verilog primitives.

The stimulus is applied to the RTL description and the gate-level description. A
typical invocation in Verilog-XL is shown below.

//Apply stimulus to RTL description
> verilog stimulus.v mag_compare.v

//Apply stimulus to gate-level description.
//Include simulation library "abc_100.v" using the -v option
> verilog stimulus.v mag_compare.gv -v abc 100.v

The simulation output must be identical for the two simulations. In our case, the
output is identical. For the example of the magnitude comparator, the output is
shown in Example 14-5.

Example 14-5 Output from Simulation of Magnitude Comparator

° A 1010, B 100l, A_GT_B 1, A_LT_B ° , A_EQ_B ° 10 A 1110, B 1111, A_GT_B 0, A_LT_B 1, A_EQ_B ° 20 A 0000, B 0000, A_GT_B ° , A_LT_B 0, A_EQ_B 1
30 A 1000, B 1100, A_GT_B ° , A_LT_B 1, A_EQ_B ° 40 A 0110, B 1110, A_GT_B 0, A_LT_B 1, A_EQ_B ° 50 A 1110, B 1110, A_GT_B 0, A_LT_B ° , A_EQ_B 1

If the output is not identical, the designer needs to check for any potential bugs
and rerun the whole flow until all bugs are eliminated.

Comparing simulation output of an RTL and a gate-level netlist is only a part of
the functional verification process. Various techniques are used to ensure that the
gate-level netlist produced by logic synthesis is functionally correct. One
technique is to write a high-level architectural description in C++. The output

298 Verilog HDL: A Guide to Digital Design and Synthesis

14 ---
obtained by executing the high-level architectural description is compared against
the simulation output of the RTL or the gate-level description. Detailed
discussion of such techniques is outside the scope of this book.

Timing verification

The gate-level netlist is typically checked for timing by use of timing simulation or
by a static timing verifier. If any timing constraints are violated, the designer must
either redesign part of the RTL or make trade-offs in design constraints for logic
synthesis. The entire flow is iterated until timing requirements are met. Details of
static timing verifiers are beyond the scope of this book. Timing simulation is
discussed in Chapter 10, Timing and Delays.

14.6 Modeling Tips for Logic Synthesis
The Verilog RTL design style used by the designer affects the final gate-level
netlist produced by logic synthesis. Logic synthesis can produce efficient or
inefficient gate-level netlists, based on the style of RTL descriptions. Hence, the
designer must be aware of techniques used to write efficient circuit descriptions.
In this section, we provide tips about modeling trade-offs, for the designer to
write efficient, synthesizable Verilog descriptions.

14.6.1 Verilog Coding Style

The style of the Verilog description greatly affects the final design. For logic
synthesis, it is important to consider actual hardware implementation issues. The
RTL specification should be as close to the desired structure as possible without
sacrificing the benefits of a high level of abstraction. There is a trade-off between
level of design abstraction and control over the structure of the logic synthesis
output. Designing at a very high level of abstraction can cause logic with
undesirable structure to be generated by the synthesis tool. Designing at a very
low level (e.g., hand instantiation of each cell) causes the designer to lose benefits
of high-level design and technology independence. Also, a "good" style will vary
among logic synthesis tools. However, many principles are common across logic
synthesis tools. Listed below are some guidelines that the designer should
consider while designing at the RTL level.

Use meaningful names for signals and variables

Names of signals and variables should be meaningful so that the code becomes
self-commented and readable.

Logic Synthesis with Verilog HDL 299

-- 14 -
Avoid mixing positive and negative edge-triggered flip-flops

Mixing positive and negative edge-triggered flip-flops may introduce inverters
and buffers into the clock tree. This is often undesirable because clock skews are
introduced in the circuit.

Use basic building blocks vs. Use continuous assign statements

Trade-offs exist between using basic building blocks versus using continuous
assign statements in the RTL description. Continuous assign statements are very
concise way of representing the functionality and generally do a good job of
generating random logic. However, the final logic structure is not necessarily
symmetrical. Instantiation of basic building blocks creates symmetric designs,
and the logic synthesis tool is able to optimize smaller modules more effectively.
However, instantiation of building blocks is not a concise way to describe the
design; it inhibits retargeting to alternate technologies, and generally there is a
degradation in simulator performance.

Assume that a 2-to-1, 8-bit multiplexer is defined as a module mux2_1L8 in the
design. If a 32-bit multiplexer is needed, it can be built by instantiating 8-bit
multiplexers rather than by using the assign statement.

IIStyle 1: 32-bit mux using assign statement
module mux2_1L32 (out, a, b, select);
output [31:0] out;
input [31:0] a, b;
wire select;

assign out
endmodule

select ? a b;

IIStyle 2: 32-bit multiplexer using basic building blocks
IIIf 8-bit muxes are defined earlier in the design, instantiating
I/these muxes is more efficient for
I/synthesis. Fewer gates, faster design.
//Less efficient for simulation
module mux2_1L32 (out, a, b, select);
output [31:0] out;
input [31:0] a, b;
wire select;

mux2_1L8 mO(out[7:0], a[7:0], b[7:0], select); /Ibits 7 through 0
mux2_1L8 m1(out[15:7], a[15:7], b[15:7], select); /Ibits 15 through 7
mux2_1L8 m2(out[23:16], a[23:16], b[23:16], select); //bits23 through 16

300 Verilog HDL: A Guide to Digital Design and Synthesis

14 ---
mux2_lL8 m3 (out [31: 24], a [31: 24], b [31: 24], select); / /bits 31 through
24

endmodule

Instantiate multiplexers vs. Use if-else or case statements

We discussed in Section 14.3.3, Interpretation of a Few Verilog Constructs, that it­
else and case statements are frequently synthesized to multiplexers in hardware.
If a structured implementation is needed, it is better to implement a block directly
by using multiplexers, because if-else or case statements can cause undesired
random logic to be generated by the synthesis tool. Instantiating a multiplexer
gives better control and faster synthesis, but it has the disadvantage of technology
dependence and a longer RTL description. On the other hand, if-else and case
statements can represent multiplexers very concisely and are used to create
technology-independent RTL descriptions.

Use parentheses to optimize logic structure

The designer can control the final structure of logic by using parentheses to group
logic. Using parentheses also improves readability of the Verilog description.

//translates to 3 adders in series
out = a + b + c + d;

/ /translates to 2 adders in parallel with one final adder to sum results
out = (a + b) + (c + d) ;

Use arithmetic operators *, I, and % vs. Design building blocks

Multiply, divide, and modulo operators are very expensive to implement in terms
of logic and area. However, these arithmetic operators can be used to implement
the desired functionality concisely and in a technology-independent manner. On
the other hand, designing custom blocks to do multiplication, division or modulo
operation can take a longer time to design, and the RTL description becomes
more technology dependent.

Logic Synthesis with Verilog HDL 301

-- 14 -
Be careful with multiple assignments to the same variable

Multiple assignments to the same variable can cause undesired logic to be
generated. The previous assignment might be ignored, and only the last
assignment would be used.

Iitwo assignments to the same variable
always @(posedge clk)

if(load1) q <= a1;

always @(posedge clk)
if(load2) q <= a2;

The synthesis tool infers two flip-flops with the outputs anded together to
produce the q output. The designer needs to be careful about such situations.

Define if-else or case statements explicitly

Branches for all possible conditions must be specified in the if-else or case
statements. Otherwise, level-sensitive latches may be inferred instead of
multiplexers. Refer to Section 14.3.3, Interpretation of a Few Verilog Constructs, for
the discussion on latch inference.

Illatch is inferred; incomplete specification.
Ilwhenever control = 1, out = a which implies a latch behavior.
Iino branch for control = 0
always @(control or a)

if (control)
out <= a;

Ilmultiplexer is inferred. complete specification for all values of
Ilcontrol
always @(control or a or b)

if (control)
out <= a;

else
out <= b;

Similarly, for case statements, all possible branches, including the default
statement, must be specified.

302 Verilog HDL: A Guide to Digital Design and Synthesis

14= -
14.6.2 Design Partitioning

Design partitioning is another important factor for efficient logic synthesis. The
way the designer partitions the design can greatly affect the output of the logic
synthesis tool. Various partitioning techniques can be used.

Horizontal partitioning

Use bit slices to give the logic synthesis tool a smaller block to optimize. This is
called horizontal partitioning. It reduces complexity of the problem and produces
more optimal results for each block. For example, instead of directly designing a
16-bit ALU, design a 4-bit ALU and build the 16-bit ALU with four 4-bit ALUs.
Thus, the logic synthesis tool has to optimize only the 4-bit ALU, which is a
smaller problem than optimizing the 16-bit ALU. The partitioning of the ALU is
shown in Figure 14-7.

16-bitALU

16-bit ALU with
Four Bit Slices

r

contro~
I
I

b[15:0]

,--, - flags

output

- - -..,

~ flags
I
I

L ______ _ ______ ..J

Figure 14-7 Horizontal Partitioning of 16-bit ALU

Logic Synthesis with Verilog HDL 303

-- 14 -
The downside of horizontal partitioning is that global minima can often be
different local minima. Thus, by use of bit slices, each block is optimized
individually, but there may be some global redundancies that the synthesis tool
may not be able to eliminate.

Vertical Partitioning

Vertical partitioning implies that the functionality of a block is divided into smaller
submodules. This is different from horizontal partitioning. In horizontal
partitioning, all blocks do the same function. In vertical partitioning, each block
does a different function. Assume that the 4-bit ALU described earlier is a four­
function ALU with functions add, subtract, shift right, and shift left. Each block is
distinct in function. This is vertical partitioning. Vertical partitioning of 4-bit ALU
is shown in Figure 14-8.

a[3:0]

f
EJ

control-7"'~~

I Subrract I

output

Figure 14-8 Vertical Partitioning of 4-bit ALU

b[3:0]

~ flags

Shft-right

Figure 14-8 shows vertical partitioning of the 4-bit ALU. For logic synthesis it is
important to create hierarchy by partitioning a large block into separate
functional sub-blocks. A design is best synthesized if levels of hierarchy are
created and smaller blocks are synthesized individually. Creating modules that
contain a lot of functionality can cause logic synthesis to produce suboptimal
designs. Instead, divide the functionality into smaller modules and instantiate
those modules.

304 Verilog HDL: A Guide to Digital Design and Synthesis

14 ---
Parallelizing design structure

In this technique we use more resources to produce faster designs. We convert
sequential operations into parallel operations by using more logic. A good example
is the carry lookahead full adder.

Contrast the carry lookahead adder with a ripple carry adder. A ripple carry
adder is serial in nature. A 4-bit ripple carry adder requires 9 gate delays to
generate all sum and carry bits. On the other hand, assuming that up to 5-input
and and or gates are available, a carry lookahead adder generates the sum and
carry bits in 4 gate delays. Thus, we use more logic gates to build a carry
lookahead unit, which is faster compared to an n-bit ripple carry adder.

a[O] b[O] a[1] b[1] a[2] b[2] a[3] b[3]

r -i- i- -.- -t I

full c_l full c_2 full c_3 full c_out
c_i adder adder adder adder

fa_O fa_l fa_2 fa_n-l

L_ .J

sum[O] sum[1] sum[2] sum[3]

(a) Ripple Carry Adder (n-bit) , Delay = 9 gate delays, less logic gates

a[3:0] --"'" Carry
Look- ... sum[3:0]

ahead • Adder b[3:0]
c _i~

(b) Carry Lookahead Adder, Delay = 4 gate delays, more logic gates

Figure 14-9 Parallelizing the Operation of an Adder

Logic Synthesis with Verilog HDL 305

14.6.3 Design Constraint Specification

Design constraints are as important as efficient HDL descriptions in producing
optimal designs. Accurate specification of timing, area, power, and environmental
parameters such as input drive strengths, output loads, input arrival times, etc.,
are crucial to produce a gate-level netlist that is optimal. A deviation from the
correct constraints or omission of a constraint can lead to nonoptimal designs.
Careful attention must be given to specifying design constraints.

14.7 Example of Sequential Circuit Synthesis
In Section 14.4.2, An Example of RTL-to-Gates, we synthesized a combinational
circuit. Let us now consider an example of sequential circuit synthesis.
Specifically, we will design finite state machines.

14.7.1 Design Specification

A simple digital circuit is to be designed for the coin acceptor of an electronic
newspaper vending machine.

Assume that the newspaper cost 15 cents. (Wow! Who gives that kind of a
price any more? Well, let us assume that it is a special student edition!!)

The coin acceptor takes only nickels and dimes.

Exact change must be provided. The acceptor does not return extra money.

Valid combinations including order of coins are one nickel and one dime,
three nickels, or one dime and one nickel. Two dimes are valid, but the
acceptor does not return money.

This digital circuit can be designed by using the finite state machine approach.

14.7.2 Circuit Requirements

We must set some requirements for the digital circuit.

When each coin is inserted, a 2-bit signal coinl1:OI is sent to the digital
circuit. The signal is asserted at the next negative edge of a global clock
signal and stays up for exactly 1 clock cycle.

The output of the digital circuit is a single bit. Each time the total amount
inserted is 15 cents or more, an output signal newspaper goes high for exactly
one clock cycle and the vending machine door is released.

306 Verilog HDL: A Guide to Digital Design and Synthesis

A reset signal can be used to reset the finite state machine. We assume
synchronous reset.

14.7.3 Finite State Machine (FSM)

We can represent the functionality of the digital circuit with a finite state machine.

input : 2-bit, coin[l:O]-no coin xO= 2'b00, nickel x5 = 2'b01, dime x10 = 2'blO.
output: l-bit, newspaper-release door when newspaper = l 'bl
states: 4 states-SO = 0 cents; s5 = 5 cents; s10 = 10 cents; s15 = 15 cents

The bubble diagram for the finite state machine is shown in Figure 14-10. Each arc
in the FSM is labeled with a label <input>/<output> where input is 2-bit and
output is l-bit. For example, x5/0 means transition to the state pointed to by the
arc, when input is x5 (2'b01), and set the output to O.

State
SO
S1
S2
S3

Figure 14-1 0

Money
0 cents
5 cents
10 cents
15 cents

coin11 .Q1
2'bOO
2'bOI
2'blO
don't care

xO/O

Finite State Machine for Newspaper Vending Machine

14.7.4 Verilog Description

The Verilog RTL description for the finite state machine is shown in Example 14-6.

Logic Synthesis with Verilog HDL

- 14 --
Example 14-6 RTL Description for Newspaper Vending Machine FSM

//oesign the newspaper vending machine coin acceptor
//using a FSM approach
module vend (coin, clock, reset, newspaper);

//Input output port declarations
input [1:0] coin;
input clock;
input reset;
output newspaper;
wire newspaper;

//internal FSM state declarations
wire [1:0] NEXT_STATE;
reg [1:0] PRES_STATE;

//state encodings
parameter sO = 2'bOO;
parameter s5 = 2'bOl;
parameter slO 2'blO;
parameter s15 = 2'bll;

//Cornbinational logic
function [2:0J fsm;

input [1:0] fsm_coin;
input [1:0] fsm_PRES_STATE;

reg fsm_newspaper;
reg [1:0] fsm_NEXT_STATE;

begin

308

case (fsm_PRES_STATE)
sO: //state = sO
begin

if (fsm_coin == 2'blO)
begin

fsm_newspaper = l'bO:
fsm_NEXT_STATE = slO:

end
else if (fsm_coin == 2'bOl)
begin

fsm_newspaper = l'bO;
fsm_NEXT_STATE = s5:

Verilog HDL: A Guide to Digital Design and Synthesis

14

Example 14-6 RTL Description for Newspaper Vending Machine FSM (Continued)

end
else
begin

fsm_newspaper = l'bO;
fsm_NEXT_STATE = sO;

end
end

s5: //state = s5
begin

if (fsm_coin == 2'b10)
begin

fsm_newspaper = l'bO;
fsm_NEXT_STATE = s15;

end
else if (fsm_coin == 2'bOl)
begin

fsm_newspaper = l'bO;
fsm_NEXT_STATE = s10;

end
else
begin

fsm_newspaper = l'bO;
fsm_NEXT_STATE = s5;

end

s10: //state = s10
begin

if (fsm_coin == 2'b10)
begin

fsm_newspaper = l'bO;
fsm_NEXT_STATE = s15;

end
else if (fsm_coin == 2'b01)
begin

fsm_newspaper = l'bO;
fsm_NEXT_STATE = s15;

end
else
begin

fsm_newspaper = l'bO;
fsm_NEXT_STATE = s10;

end

Logic Synthesis with Verilog HDL

309

-- 14 -
Example 14-6 RTL Description for Newspaper Vending Machine FSM (Continued)

end
s15: //state = s15
begin

fsm_newspaper = l'b1;
fsm_NEXT_STATE = sO;

end
endcase
fsm = {fsm_newspaper, fsm_NEXT_STATE};

end
endfunction

//Reevaluate combinational logic each time a coin
//is put or the present state changes
assign {newspaper, NEXT_STATE} = fsm(coin, PRES_STATE);

//clock the state flip-flops.
//use synchronous reset
always @(posedge clock)
begin

if (reset == l'b1)
PRES_STATE sO;

else
PRES_STATE

end

endrnodule

14.7.5 Technology Library

We defined abc_100 technology in Section 14.4.1, RTL to Gates. We will use
abc_IOO as the target technology library. abc_IOO contains the following library
cells.

//Library cells for abc 100 technology

VNAND//2-input nand gate
VAND//2-input and gate
VNOR//2-input nor gate
VOR//2-input or gate
VNOT//not gate

310 Verilog HDL: A Guide to Digital Design and Synthesis

VBUF / /buffer
NDFF//Negative edge triggered D flip-flop
PDFF//Positive edge triggered D flip-flop

14.7.6 Design Constraints

14

Timing critical is the only design constraint we used in this design. Typically,
design constraints are more elaborate.

14.7.7 Logic Synthesis

We synthesize the RTL description by using the specified design constraints and
technology library and obtain the optimized gate-level netlist.

14.7.8 Optimized Gate-Level Netlist

We use logic synthesis to map the RTL description to the abc_lOO technology. The
optimized gate-level netlist produced is shown in Example 14-7.

Example 14-7 Optimized Gate-Level Netlist for Newspaper Vending Machine FSM

module vend coin, clock, reset, newspaper);
input [1:0] coin;
input clock, reset;
output newspaper;

wire \PRES_STATE[l] , n289, n300, n301, n302, \ PRES_STATE 243 [1] ,
n303, n304, \ PRES_STATE [0] , n290, n291, n292, n293, n294,
n295, n296, n297, n298, n299, \ PRES_STATE 243 [0] ;

PDFF \PRES_STATE_reg[l] (.clk(clock), .d(\PRES_STATE243 [1]),
. clrbar (l'bl), .prebar(l'bl), .q(\PRES_STATE[l]));

PDFF \PRES_STATE_reg[O] (.clk(clock), .d(\PRES_STATE243 [0]),
.clrbar(l'bl), .prebar(l'bl), . q(\PRES_STATE [0]));

VOR Ul19 (.inO(n292), .inl(n295), .out(n302));
VAND Ul18 (.inO(\PRES_STATE[O]), .inl(\PRES_STATE[l]),

.out(newspaper));
VNAND Ul17 (.inO(n300), .inl(n301), .out(n291));
VNOR Ul16 (.inO(n298), .inl(coin[O]), .out(n299));
VNOR Ul15 (.inO(reset) , .inl(newspaper) , .out(n289));
VNOT U128 (. in (\PRES_STATE [1]), .out(n298));
VAND Ul14 (.inO(n297), .inl(n298), .out(n296));
VNOT U127 (. in(\PRES_STATE [0]), .out(n295));

Logic Synthesis with Verilog HDL 311

-- 14 -
Example 14-7 Optimized Gate-Level Netlist for Newspaper Vending Machine FSM

VAND Ul13 (.inO(n295), .in1(n292), .out(n294));
VNOT U126 (.in(coin[l]), .out(n293));
VNAND Ul12 (.inO(coin[O]), .in1(n293), .out(n292));
VNAND U125 (.inO(n294), .in1(n303), .out(n300));
VNOR U111 (.inO(n291), .in1(reset) , .out(\PRES_STATE243 [0]));
VNAND U124 (.inO(\PRES_STATE[O]), .in1(n304), .out(n301));
VAND U110 (.inO(n289), .in1(n290), .out(\PRES_STATE243 [1]));
VNAND U123 (.inO(n292), .in1(n298), .out(n304));
VNAND U122 (.inO(n299), .in1(coin[1]), .out(n303));
VNAND U121 (.inO(n296), .in1(n302), .out(n290));
VOR U120 (.inO(n293), .in1(coin[0]), .out(n297));

endmodule

The schematic diagram for the gate-level netlist is shown in Figure 14-11.

312 Verilog HDL: A Guide to Digital Design and Synthesis

14 ---

Figure 14-11 Gate-Level Schematic for the Vending Machine

Logic Synthesis with Verilog HDL 313

-- 14 -
14.7.9 Verification

Stimulus is applied to the original RTL description to test all possible
combinations of coins. The same stimulus is applied to test the optimized gate­
level netlist. Stimulus applied to both the RTL and gate-level netlist is shown in
Example 14-8.

Example 14-8 Stimulus for Newspaper Vending Machine FSM

module stimulus;
reg clock;
reg [1:0] coin;
reg reset;
wire newspaper;

//instantiate the vending state machine
vend vendY (coin, clock, reset, newspaper);

//Display the output
initial
begin

$display("\t\tTime Reset Newspaper\n");
$monitor("%d %d %d", $time, reset, newspaper);

end

//Apply stimulus to the vending machine
initial
begin

314

clock = 0;
coin = 0;
reset = 1;
#50 reset 0;
@(negedge clock); //wait until negative edge of clock

//Put 3 nickels to get newspaper
#80 coin 1; #40 coin 0;
#80 coin 1; #40 coin 0;
#80 coin 1; #40 coin 0;

//Put one nickel and then one dime to get newspaper
#180 coin = 1; #40 coin = 0;
#80 coin = 2; #40 coin = 0;

//Put two dimes; machine does not return a nickel to get newspaper
#180 coin = 2; #40 coin = 0;

Verilog HDL: A Guide to Digital Design and Synthesis

Example 14-8 Stimulus for Newspaper Vending Machine FSM (Continued)

#80 coin 2; #40 coin = 0;

//Put one dime and then one nickel to get newspaper
#180 coin = 2; #40 coin = 0;
#80 coin = 1; #40 coin = 0;

#80 $finish;
end

//setup clock; cycle time
always
begin

#20 clock -clock;
end

endmodule

40 units

14 ---

The output from the simulation of RTL and gate-level netlist is compared. In our
case, Example 14-9, the output is identical. Thus, the gate-level netlist is verified.

Example 14-9 Output of Newspaper Vending Machine FSM

Time Reset Newspaper

0 1 x

20 1 0
50 0 0

420 0 1
460 0 0
780 0 1
820 0 0

1100 0 1
1140 0 0
1460 0 1
1500 0 0

The gate-level netlist is sent to ABC Inc., which does the layout, checks that the
layout meets the timing requirements, and then fabricates the IC chip.

Logic Synthesis with Verilog HDL 315

14.8 Summary
In this chapter, we discussed the following aspects of logic synthesis with Verilog
HDL.

Logic synthesis is the process of converting a high-level description of the
design into an optimized, gate-level representation, using the cells in the
technology library.

Computer-aided logic synthesis tools have greatly reduced the design cycle time
and improved productivity. They allow designers to write technology-
independent, high-level descriptions and produce technology-dependent,
optimized, gate-level netlists. Both combinational and sequential RTL
descriptions can be synthesized.

Logic synthesis tools accept high-level descriptions at the register transfer
level (RTL). Thus, not all Verilog constructs are acceptable to a logic synthesis
tool. We discussed the acceptable Verilog constructs and operators and their
interpretation in terms of digital circuit elements.

A logic synthesis tool accepts an RTL description, design constraints, and
technology library and produces an optimized gate-level netlist. Translation, logic
optimization, and technology mapping are the internal processes in a logic
synthesis tool and are normally invisible to the user.

Functional verification of the optimized gate-level netlist is done by
applying the same stimulus to the RTL description and the gate-level netlist
and comparing the output. Timing is verified with timing simulation or static
timing verification.

Proper Verilog coding techniques must be used to write efficient RTL
descriptions, and various design trade-off must be evaluated. Guidelines for
writing efficient RTL descriptions were discussed.

Design partitioning is an important technique used to break the design into
smaller blocks. Smaller blocks reduce the complexity of optimization for the
logic synthesis tool.

Accurate specification of design constraints is an important part of logic
synthesis.

We did not discuss behavioral synthesis in this chapter. Behavioral synthesis tools
allow the designer to write designs at an algorithmic level. However, behavioral
synthesis is still an emerging design paradigm, and RTL remains the popular
high-level description method for logic synthesis tools.

316 Verilog HDL: A Guide to Digital Design and Synthesis

14 ---
14.9 Exercises

1. A 4-bit full adder with carry lookahead was defined in Example 6-5 on
page 105, using an RTL description. Synthesize the full adder, using a
technology library available to you. Optimize for fastest timing. Apply
identical stimulus to the RTL and the gate-level netlist and compare the
output.

2. A I-bit full subtractor has three inputs x, y, and z (previous borrow) and two
outputs D(difference) and B(borrow). The logic equations for D and B are as
follows:

D = x'y'z + x'yz' + xy'z' + xyz

B = x'y + x'z +yz

Write the Verilog RTL description for the full subtractor. Synthesize the full
subtractor, using any technology library available to you. Optimize for
fastest timing. Apply identical stimulus to the RTL and the gate-level netlist
and compare the output.

3. Design a 3-to-8 decoder, using a Verilog RTL description. A 3-bit input a[2:0]
is provided to the decoder. The output of the decoder is out[7:0]. The output
bit indexed by a[2:0] gets the value 1, the other bits are o. Synthesize the
decoder, using any technology library available to you. Optimize for
smallest area. Apply identical stimulus to the RTL and the gate-level netlist
and compare the output.

4. Write the Verilog RTL description for a 4-bit binary counter with
synchronous reset that is active high. (Hint: Use always loop with the
@(posedge clock) statement). Synthesize the counter, using any technology
library available to you. Optimize for smallest area. Apply identical
stimulus to the RTL and the gate-level netlist and compare the output.

5. Using a synchronous finite state machine approach, design a circuit that
takes a single bit stream as an input at the pin in. An output pin match is
asserted high each time a pattern 10101 is detected. A reset pin initializes the
circuit synchronously. Input pin clk is used to clock the circuit. Synthesize
the circuit, using any technology library available to you. Optimize for
fastest timing. Apply identical stimulus to the RTL and the gate-level netlist
and compare the output.

Logic Synthesis with Verilog HDL 317

-- 14 -

318 Verilog HDL: A Guide to Digital Design and Synthesis

Part 3 Appendices

Strength Modeling and Advanced Net Definitions
Strength levels, signal contention, advanced net definitions.

List of PLI Routines
A list of all access (ace) and utility (tf) PLI routines.

List of Keywords, System Tasks, and Complier Directives
A list of keywords, system tasks, and compiler directives in Verilog HDL.

Formal Syntax Definition
Formal syntax definition of the Verilog Hardware Description Language.

Verilog Tidbits
Origins of Verilog HDL, interpreted, compiled and native simulators, event­
driven and oblivious simulation, cycle simulaton, fault simulation, Verilog
newsgroup, Verilog simulators, Verilog-related WWW sites.

Verilog Examples
Synthesizable model of a FIFO, behavioral model of a 256K X 16 DRAM.

Veri/og HDL: A Guide to Digital Design and Synthesis

Strength Modeling and
Advanced Net Definitions

A.l Strength Levels
Verilog allows signals to have logic values and strength values. Logic values are
0, 1, x, and z. Logic strength values are used to resolve combinations of multiple
signals and to represent behavior of actual hardware elements as accurately as
possible. Several logic strengths are available. Table A-I shows the strength levels
for signals. Driving strengths are used for signal values that are driven on a net.
Storage strengths are used to model charge storage in trireg type nets, which are
discussed later in the appendix.

Table A-I Strength Levels

Strength Level

supplyl

strongl

pulll

largel

weak I

medium I

smalll

highzl

highz

smallO

mediumO

weakO

largeO

pUllO

strongO

supplyO

Abbreviation

SuI

Stl

Pul

Lal

WeI

Mel

Sml

HiZI

HiZO

SmO

MeO

WeO

LaO

PuO

StO

SuO

Degree

strongest I

weakest I

weakest 0

strongest 0

Strength Type

driving

driving

driving

storage

driving

storage

storage

high impedance

high impedance

storage

storage

driving

storage

driving

driving

driving

321

=A -
A.2 Signal Contention
Logic strength values can be used to resolve signal contention on nets that have
multiple drivers. There are many rules applicable to resolution of contention.
However, two cases of interest that are most commonly used are described below.

A.2.l Multiple Signals with Same Value and Different Strength

If two signals with same known value and different strength drive the same net,
the signal with the higher strength wins.

Sul

Sul

PuO

In the example shown, supply strength is greater than pull. Hence, Sul wins.

A.2.2 Multiple Signals with Opposite Value and Same Strength

When two signals with opposite value and same strength combine, the resulting
value is x.

Pul

PuX

PuO

A.3 Advanced Net Types
We discussed resolution of signal contention by using strength levels. There are
other methods to resolve contention without using strength levels. Verilog
provides advanced net declarations to model logic contention.

A.3.1 tri

The keywords wire and tri have identical syntax and function. However,
separate names are provided to indicate the purpose of the net. Keyword wire
denotes nets with single drivers, and tri is denotes nets that have multiple
drivers. A multiplexer, as defined below, uses the tri declaration.

322 Verilog HDL: A Guide to Digital Design and Synthesis

module mux(out, a, b, control) ;
output out;
input a, b, control;
tri out;
wire a, b, control;

bufifO bl (out, a, control) ; //drives a when control = 0; z otherwise
bufifl b2 (out, b, control) ; //drives b when control = 1; z otherwise

endmodule

The net is driven by b l and b2 in a complementary manner. When b l drives a, b2
is tristated; when b2 drives b, b l is tristated. Thus, there is no logic contention. If
there is contention on a tri net, it is resolved by using strength levels. If there are
two signals of opposite values and same strength, the resulting value of the tri
net is X.

A.3.2 trireg

Keyword trireg is used to model nets having capacitance that stores values. The
default strength for trireg nets is medium. Nets of type trireg are in one of the
two states:

Driven state-At least one driver drives a 0, 1, or X value on the net. The

value is continuously stored in the trireg net. It takes the strength of the
driver.

Capacitive state. All drivers on the net have high impedance (z) value. The
net holds the last driven value The strength is small, medium, or large
(default is medium).

trireg (large) out;
wire a, control;

bufifl (out, a, control); / / net out gets value of a when control = 1;
//when control = 0, out retains last value of a
//instead of going to z. strength is large.

Strength Modeling and Advanced Net Definitions

-- A -
A.3.3 triO and tril

Keywords triO and tril are used to model resistive pulldown and pullup
devices. A triO net has a value 0 if nothing is driving the net. Similarly, tril net
has a value 1 if nothing is driving the net. The default strength is pull.

triO out;
wire a, control;

bufif1 (out, a, control); Iinet out gets the value of a when control = 1;
Ilwhen control = 0, out gets the value 0 instead
Ilof z. If out were declared as tril, the
Iidefault value of out would be 1 instead of O.

A.3.4 supplyO and supplyl

Keyword supplyl is used to model a power supply. Keyword supplyO is used to
model ground. Nets declared as supplyl or supplyO have constant logic value
and a strength level supply <strongest strength level).

supply1 vcc; I I all nets connected to vcc are connected to power supply
supplyO gnd; Iiall nets connected to gnd are connected to ground

A.3.S wor, wand, trior, and triand

When there is logic contention, if we simply use a tri net, we will get an x. This
could be indicative of a design problem. However, sometimes the designer needs
to resolve the final logic value when there are multiple drivers on the net, without
using strength levels. Keywords wor, wand, trior, and triand are used to resolve
such conflicts. Nets wand perform the and operation on multiple driver logic
values. If any value is 0, the value of the net wand is o. Net wor performs the or
operation on multiple driver values. If any value is 1, the net wor is 1. Nets
triand and trior have the same syntax and function as the nets wor and wand.
The example below explains the function.

wand out1;
wor out2;

buf (out1, 1'bO);

324 Verilog HDL: A Guide to Digital Design and Synthesis

A ---
buf (outi, i'bi); //outi is a wand net; gets the final value l'bO

buf (out2, l'bO);
buf (out2, i'bi); //out2 is a wor net; gets the final value i'bi

Strength Modeling and Advanced Net Definitions 325

=A -

326 Verilog HDL: A Guide to Digital Design and Synthesis

List of PLI Routines B= -
A list of PLI &CC_ and tf_ routines is provided. VPI routines are not listed.
Names, argument list, and a brief description of the routine are shown for each
PLI routine. For details regarding the use of each PLI routine, refer to the IEEE
Language Reference Manual.

B.l Conventions
Conventions to be used for arguments are shown below.

Convention Meaning

char *format Pass formatted string

char * Pass name of object as a string

underlined arguments Arguments are optional

* Pointer to the data type

......... More arguments of the same type

B.2 Access Routines
Access routines are classified into five categories: handle, next, value change link,
fetch, and modify routines.

B.2.1 Handle Routines

Handle routines return handles to objects in the design. The name of handle
routines always starts with the prefix &cc_h&ndle_.

327

=B -
Table B-1 Handle Routines

Return
Type Name Argument List Description

handle acc_handle_by _name (char *name, handle scope) Object from name relative to
scope.

handle acc_handle_condition (handle object) Conditional expression for
module path or timing check
handle.

handle acc_handle_conn (handle terminal); Get net connected to a primitive,
module path, or timing check
terminal.

handle acc_handle_datapath (handle modpath); Get a handle to data path for an
edge-sensitive module path.

handle acc_handle_hiconn (handle port); Get hierarchically higher net
connection to a module port.

handle acc_handle (); Get the handle to the current
_interactive_scope simulation interactive scope.

handle acc_handle_loconn (handle port); Get hierarchically lower net
connection to a module port.

handle acc_handle_modpath (handle module, char *src, char Get handle to module path
*dest); or whose source and destination
(handle module, handle src, are specified. Module path can
handle dest); be specified by names or

handles.

handle acc_handle_notifier (handle tchk); Get notifier register associated
with a particular timing check.

handle acc_handle_object (char *name); Get handle for any object, given
its full or relative hierarchical
path name.

handle acc_handle_parent (handle object); Get handle for own primitive or
containing module or an object.

handle acc_handle_path (handle outport, handle inport); Get handle to path from output
port of a module to input port of
another module.

handle acc_handle_pathin (handle modpath); Get handle for first net
connected to the input of a
module path.

handle acc_handle_pathout (handle modpath); Get handle for first net
connected to the output of a
module path.

328 VeriIog HDL: A Guide to Digital Design and Synthesis

Table B-1 Handle Routines (Continued)

Return
Type Name Argument List Description

handle acc_handle_port (handle module, int port#); Get handle for module port.
Port# is the position from the
left in the module definition
(starting with 0).

handle acc_handle_scope (handle object); Get the handle to the scope
containing an object.

handle acc_handle (handle collapsed_net_handle); Get the handle to the net

- simulated_net associated with a collapsed net.

handle acc_handle_tchk (handle module, int tchk_type, Get handle for a specified
char *netnamel, int edgel,); timing check of a module or cell.

handle acc_handle_tchkargl (handle tchk); Get net connected to the first
argument of a timing check.

handle acc_ handle_ tchkarg2 (handle tchk); Get net connected to the second
argument of a timing check.

handle acc_handle_terminal (handle primitive, int terminal#); Get handle for a primitive
terminal. Terminal# is the
position in the argument list.

handle acc_handle_ tfarg (int arg#); Get handle to argument arg# of
calling system task or function
that invokes the PLI routine.

handle acc_handle_tfinst (); Get the handle to the current
user defined system task or
function.

B.2.2 Next Routines

Next routines return the handle to the next object in the linked list of a given
object type in a design. Next routines always start with the prefix acc_next_ and
accept reference objects as arguments. Reference objects are shown with a prefix
current_.

Table B-2 Next Routines

Return
Type Name Argument List Description

handle acc_next (int obLtype_arrayf], handle Get next object of a certain
module, handle current_object); type within a scope. Object

types such as accNet or
accRegister are defined in
obLtype_array.

List of PLI Routines 329

=B -
Table B-2 Next Routines (Continued)

Return
Type Name Argument List Description

handle acc_next_bit (handle vector, handle current_bit); Get next bit in a vector port or
array.

handle acc_next_cell (handle module, handle Gets next cell instance in a
current_cell) ; module. Cells are defined in a

library.

handle acc_next_cell_load (handle net, handle Get next cell load on a net.
current_cell_load);

handle acc_next_child (handle module, handle Get next module instance
current_child); appearing in this module

handle acc_next_driver (handle net, handle Get next primitive terminal
current_driver _terminal); driver that drives the net.

handle acc_next_hiconn (handle port, handle current_net); Get next higher net connection.

handle acc_next_input (handle path_or_tchk, handle Get next input terminal of a
current_terminal) ; specified module path or

timing check.

handle acc_next_load (handle net, handle current_load); Get next primitive terminal
driven by a net independent of
hierarchy.

handle acc_next_loconn (handle port, handle current_net); Get next lower net connection
to a module port.

handle acc_next_modpath (handle module, handle path); Get next path within a module.

handle acc_next_net (handle module, handle Get the next net in a module.
current_net);

handle acc_next output (handle path, handle Get next output terminal of a
current_terminal) ; module path or data path.

handle acc_next_parameter (handle module, handle Get next parameter in a
current_parameter) ; module.

handle acc_next_port (handle module, handle Get the next port in a module
current_port); port list.

handle acc_next_portout (handle module, handle Get next output or inout port
current_port); of a module.

handle acc_next_primitive (handle module, handle Get next primitive in a
current_primitive); module.

handle acc_next_scope (handle scope, handle Get next hierarchy scope
current_scope) ; within a certain scope.

handle acc_next_specparam (handle module, handle Get next specparam declared
current_specparam); in a module.

330 Verilog HDL: A Guide to Digital Design and Synthesis

B= -
Table B-2 Next Routines (Continued)

Return
Type Name Argument List Description

handle acc_next_tchk (handle module, handle Get next timing check in a
current_ tchk); module.

handle acc_next_terminal (handle primitive, handle Get next terminal of a
currenCterminal) ; primitive.

handle acc_next_topmod (handle current_topmod); Get next top level module in
the design.

B.2.3 Value Change Link (VCL) Routines

VCL routines allow the user system task to add and delete objects from the list of
objects that are monitored for value changes. VCL routines always begin with the
prefix acc_vcl_ and do not return a value.

Table B-3 Value Change Link Routines

Return
Type Name Argument List Description

void acc_ vel_add (handle object, int Tell the Verilog simulator to call the
(*consumer_routine) 0, char consumer routine with value change
*user_data, int VCLjlags); information whenever the value of an

object changes.

void acc_ vel_delete (handle object, int Tell the Verilog simulator to stop
(*consumer_routine) 0, char calling the consumer routine when
*user_data, int VCLjlags); the value of an object changes.

B.2.4 Fetch Routines

Fetch routines can extract a variety of information about objects. Information such
as full hierarchical path name, relative name, and other attributes can be
obtained. Fetch routines always start with the prefix acc_fetch_.

Table B-4 Fetch Routines

Return
Type Name Argument List Description

int acc_fetch_argc (); Get the number of invocation
command-line arguments.

char ** acc_fetch_argv (); Get the array of invocation
command-line arguments.

double acc _fetch_attribute (handle object, char *attribute, Get the attribute of a
double default); parameter or specparam.

List of PLI Routines 331

Table B-4 Fetch Routines (Continued)

Return
Type Name Argument List Description

char * acc_fetch_ defname (handle object); Get the defining name of a
module or a primitive instance.

int acc_fetch_delay _mode (handle module); Get delay mode of a module
instance.

bool acc_fetch_delays (handle object, double 'rise, Get typical delay values for
double 'fall, double *turnoff); primitives, module paths,
(handle object, double *dl, *d2, timing checks, or module input
*d3, *d4 *d5, *d6); ports.

int acc_fetch_direction (handle object); Get the direction of a port or
terminal, i.e., input, output, or
inout.

int acc_fetch_edge (handle path_or_tchk_term); Get the edge specifier type of a
path input or output terminal
or a timing check input
terminal.

char * acc_fetch_fullname (handle object); Get the full hierarchical name
of any name object or module
path.

int acc_fetch_fulltype (handle object); Get the type of the object.
Return a predefined integer
constant that tells type.

int acc_fetch_index (handle port_or_terminal); Get the index for a port or
terminal for gate, switch, UDP
instance, module, etc. Zero
returned for the first terminal.

void acc_fetch_Iocation (p_Iocation loc_p, handle object); Get the location of an object in
a Verilog source file. p_Iocation
is a predefined data structure
that has file name and line
number in the file.

char * acc_fetch_name (handle object); Get instance of object or
module path within a module.

int acc_fetch_paramtype (handle parameter); Get the data type of parameter,
integer, string, real, etc.

double acc_fetch_paramval (handle parameter); Get value of parameter or
specparam. Must cast return
values to integer, string, or
double.

int acc_fetch_polarity (handle path); Get polarity of a path.

332 Verilog HDL: A Guide to Digital Design and Synthesis

B= -
Table 8-4 Fetch Routines (Continued)

Return
Type Name Argument List Description

int acc_fetch_precision (); Get the simulation time
precision.

bool acc_fetch_pulsere (handle path, double *rl, double Get pulse control values for
*el,double *r2, double *e2l module paths based on reject

values and e_ values for
transitions.

int acc_fetchJange (handle vector, int *msb, int Get the most significant bit and
*lsb); least significant bit range

values of a vector.

int acc_fetch_size (handle object); Get number of bits in a net,
register, or port.

double acc_fetch_tfarg (int arg#); Get value of system task or
function argument indexed by
arg#.

int acc_fetch_tfarg_int (int arg#); Get integer value of system
task or function argument
indexed by arg#.

char * acc_fetch_tfarg_str (int arg#); Get string value of system task
or function argument indexed
byarg#.

void acc_fetch (handle object, p_timescale_info Get the time scale information

- timescale_info timescale_p); for an object. p_timescale_info
is a pointer to a predefined
time scale data structure.

int acc_fetch_type (handle object); Get the type of object. Return a
predefined integer constant
such as accIntegerVar,
accModule, etc.

char * acc_fetch_type_str (handle object); Get the type of object in string
format. Return a string of type
accIntegerVar, accParameter,
etc.

char * acc_fetch_ value (handle object, char *format); Get the logic or strength value
of a net, register, or variable in
the specified format.

List of PLI Routines 333

=B -
B.2.S Utility Access Routines

Utility access routines perform miscellaneous operations related to access
routines.

Table B-S Utility Access Routines

Return
Type Name Argument List Description

void acc_close (); Free internal memory used by
access routines and reset all
configuration parameters to
default values.

handle acc30llect (handle "next_routine, handle Collect all objects related to a

" reCobject, int "count); particular reference object by
successive calls to an acc_next
routine. Return an array of
handles.

bool acc_ compare_handles (handle objectl, handle object2); Return true if both handles refer
to the same object.

void acc30nfigure (int config_param, char Set parameters that control the
"config_ value); operation of various access

routines.

int acc_count (handle "next_routine, handle Count the number of objects in a
reCobject); reference object such as a

module. The objects are counted
by successive calls to the
acc_next routine

void acc_free (handle "object_handles); Free memory allocated by
acc_ collect for storing object
handles.

void acc_initialize (); Reset all access routine
configuration parameters. Call
when entering a user-defined
PLI routine.

bool acc_object_in_typelist (handle object, int Match the object type or
object_types[]); property against an array of

listed types or properties.

bool acc_object_oCtype (handle object, int object_type); Match the object type or
property against a specific type
or property.

int acc_product_type (); Get the type of software product
being used.

char" acc_product_ version (); Get the version of software
product being used.

334 Verilog HDL: A Guide to Digital Design and Synthesis

Table B-5 Utility Access Routines (Continued)

Return
Type Name Argument List

int acc_release_object (handle object);

void acc_reset_buffer ();

handle acc_set ();

_interactive_scope

void acc_set_scope (handle module, char
*module name);

char * acc_ version ();

B.2.6 Modify Routines

Modify routines can modify internal data structures.

Table B-6 Modify Routines

Return
Type Name Argument List

void acc_append_delays (handle object, double rise,
double fall, double z); or
(handle object, double dl, ... ,
double d6); or
(handle object, double limit); or
(handle object double delay[]);

bool acc_append_pulsere (handle path, double rl, ,
double r12, double el, ... , double
eI2);

void acc_replace_delays (handle object, double rise,
double fall, double z); or
(handle object, double dl, ... ,
double d6); or
(handle object, double limit); or
(handle object double delay[]);

bool acc_replace_pulsere (handle path, double rl, ,
double r12, double el, ... , double
eI2);

void acc_set_pulsere (handle path, double reject,
double e);

void acc_set_ value (handle object, p_setval_value
value], p_setval_delay delay]);

List of PLI Routines

B= -
Description

Deallocate memory associated
with an input or output terminal
path.

Reset the string buffer.

Set the interactive scope of a
software implementation.

Set the scope for searching for
objects in a design hierarchy.

Get the version of access
routines being used.

Description

Add delays to existing delay
values for primitives, module
paths, timing checks, or module
input ports. Can specify
rise/fall/turn-off or 6 delay or
timing check or min:typ:max
format.

Add to the existing pulse control
values of a module path.

Replace delay values for
primitives, module paths, timing
checks, or module input ports. Can
specify rise/fall/turn-off or 6
delay or timing check or
min:typ:max format.

Set pulse control values of a
module path as a percentage of
path delays.

Set pulse control percentages for a
module path.

Set value for a register or a
sequential UDP.

335

=B -
B.3 Utility (t£_) Routines
Utility (tC) routines are used to pass data in both directions across the
Verilog/user C routine boundary. All the tf_ routines assume that operations are
being performed on current instances. Each tf_ routine has a tf_i counterpart in
which the instance pointer where the operations take place has to be passed as an
additional argument at the end of the argument list.

B.3.1 Get Calling Task/Function Information

Table B-7 Get Calling Task/Function Information

Return
Type Name Argument List Description

char * tCgetinstance (); Get the pointer to the current instance of the
simulation task or function that called the user's
PLI application program.

char * tCmipname (); Get the Verilog hierarchical path name of the
simulation module containing the call to the user's
PI application program.

char * tCispname () Get the Verilog hierarchical path name of the scope
containing the call to the user's PLI application
program.

B.3.2 Get Argument List Information

Table B-8 Get Argument List Information

Return Type Name Argument List Description

int tCnump (); Get the number of parameters in the
argument list.

int tUypep (int param_index#); Get the type of a particular
parameter in the argument list.

int tCsizep (int param_index#); Get the length of a parameter in bits.

t_tfexprinfo * tCexpinfo (int param_index#, struct Get information about a parameter
t_tfexprinfo *exprinfo_p); expression.

t _ tfexprinfo * tCnodeinfo (int param_index#, struct Get information about a node value
t_tfexprinfo *exprinfo_p); parameter.

336 Verilog HDL: A Guide to Digital Design and Synthesis

B= -
B.3.3 Get Parameter Values

Table B-9 Get Parameter Values

Return
Type Name Argument List Description

int tCgetp (int param_index#); Get the value of parameter in integer form.

double tCgetrealp (int param_index#); Get the value of a parameter in double-precision
floating-point form.

int tCgetlongp (int *aoChighvalue, int Get parameter value in long 64-bit integer form.
para_index#);

char * tCstrgetp (int param_index#, char Get parameter value as a formatted character
format_character); string.

char * tCgetcstringp (int param_index#); Get parameter value as a C character string.

void tCevaluatep (int param_index#); Evaluate a parameter expression and get the
result.

B.3.4 Put Parameter Value

Table B-10 Put Parameter Values

Return
Type Name Argument List Description

void tCputp (int param_index#, int value); Pass back an integer value to the
calling task or function.

void tCputrealp (int param_index#, double value; Pass back a double-precision
floating-point value to the calling
task or function.

void tCputlongp (int param_index#, int lowvalue, Pass back a double-precision 64-bit
int highvalue); integer value to the calling task or

function.

void tCpropagatep (int param_index#); Propagate a node parameter value.

int tCstrdelputp (int param_index#, int bitlength, Pass back a value and schedule an
char format_char, int delay, int event on the parameter. The value is
delaytype, char *value_p); expressed as a formatted character

string, and the delay, as an integer
value.

int tCstrrealdelputp (int param_index#, int bitlength, Pass back a string value with an
char format_char, int delay, attached real delay.
double delaytype, char *value_p);

int tCstriongdelputp (int param_index#, int bitlength, Pass back a string value with an
char format_char, int lowdelay,int attached long delay.
highdelay, int delaytype, char
*value_p);

List of PLI Routines 337

B.3.S Monitor Parameter Value Changes

Table 8-11 Monitor Parameter Value Changes

Return
Type Name Argument List

void tCasynchon ();

void tCasynchoff ();

void tCsynchronize ();

void tCrosynchronize ();

int tCgetpchange (int param_index#);

int tCcopypvc_flag (int param_index#);

int tCmovepvc_flag (int param_index#);

int tCtestpvc_flag (int param_index#);

B.3.6 Synchronize Tasks

Table 8-12 Synchronize Tasks

Return
Type Name Argument List

int tCgettime ();

tCgetreaitime

int tCgetlongtime (int *aoChightime);

char * tCstrgettime ();

int tCgetnextiongtime (int *aoClowtime, int
*aoChightime);

int tCsetdelay (int delay);

int tCsetlongdelay (int lowdelay, int highdelay);

int tCsetrealdelay (double delay, char *instance);

Description

Enable a user PLI routine to be called
whenever a parameter changes value.

Disable asynchronous calling.

Synchronize parameter value changes
to the end of the current simulation
time slot.

Synchronize parameter value changes
and suppress new event generation
during current simulation time slot.

Get the number of the parameter that
changed value.

Copy a parameter value change flag.

Save a parameter value change flag.

Test a parameter value change flag.

Description

Get current simulation time in
integer form.

Get current simulation time in long
integer form.

Get current simulation time as a
character string.

Get time of the next scheduled
simulation event.

Cause user task to be reactivated at
a future simulation time expressed
as an integer value delay.

Cause user task to be reactivated
after a long integer value delay.

Activate the misctf application at a
particular simulation time.

338 Verilog HDL: A Guide to Digital Design and Synthesis

Table B-12 Synchronize Tasks (Continued)

Return
Type Name Argument List

void tCscale_longdelay (char *instance, int lowdelay,
int hidelay, int *aoClowtime,
int *aoChightime);

void tCscale_realdelay (char *instance, double delay,
double *aoCrealdelay);

void tCunscale_longdelay (char *instance, int lowdelay,
int hidelay, int *aoClowtime,
int *aoChightime);

void tCunscaleJealdelay (char *instance, double delay,
double *aoCrealdelay);

void tCclearalldelays ();

int tCstrdelputp (int param_index#, int
bitlength, char format_char, int
delay, int delaytype, char
*value_p);

int tCstrrealdelputp (int param_index#, int
bitlength, char format_char, int
delay, double delaytype, char
*value_p);

int tCstrlongdelputp (int param_index#, int
bitlength, char format_char, int
lowdelay,int highdelay, int
delaytype, char *value_p);

B.3.7 Long Arithmetic

Table B-13 Long Arithmetic

Return
Type Name Argument List

void tCadd_Iong (int *aoClowl, int *aoChighl, int
low2, int high2);

void tCsubtract_Iong (int *aoClowl, int *aoChighl, int
low2, int high2);

void tCmultiply _long tint *aoClowl, int *aoChighl, int
low2, int high2);

void tCdivide_Iong (int *aoClowl, int *aoChighl, int
low2, int high2);

List of PLI Routines

B= -
Description

Convert a 64-bit integer delay to
internal simulation time units.

Convert a double-precision
floating-point delay to internal
simulation time units.

Convert a delay from internal
simulation time units to the time
scale of a particular module.

Convert a delay from internal
simulation time units to the time
scale of a particular module.

Clear all reactivation delays.

Pass back a value and schedule an
event on the parameter. The value
is expressed as a formatted
character string and the delay as
an integer value.

Pass back a string value with an
attached real delay.

Pass back a string value with an
attached long delay.

Description

Add two 64-bit long values

Subtract one long value from
another.

Multiply two long values.

Divide one long value by another.

339

=B -
Table B-13 Long Arithmetic (Continued)

Return
Type Name Argument List Description

int tCcompare_long (int 10wI, int highI, int low2, int Compare two long values.
high2);

char * tClongtime_tostr (int lowtime, int hightime); Convert a long value to a
character string.

void tCreal_to_long (double real, int *aoClow, int Convert a real number to a 64-bit
*aoChigh); integer.

void tClong_toJeal (int low, int high, double *aoCreal); Convert a long integer to a real

B.3.8 Display Messages

Table B-14 Display Messages

Return
Type Name Argument List

void io_printf (char *format, argI,);

void io_mcdprintf (char *format, argI,);

void tCerror (char *format, argI,);

void tCwarning (char *format, argI,);

void tCmessage (int level, char facility, char code,
char *message, argI,);

void tCtext (char *format, argI,);

B.3.9 Miscellaneous Utility Routines

Table B-15 Miscellaneous Utility Routines

Return
Type Name Argument List

void tCdostop ();

void tCdofinish ();

char * mc_scanplus_args (char *startarg);

number

Description

Write messages to the standard output
and log file.

Write messages to multiple-channel
descriptor files.

Print error message.

Print warning message.

Print error and warning messages,
using the Verilog simulator's standard
error handling facility.

Store error message information in a
buffer. Displayed when tCmessage is
called.

Description

Halt the simulation and put the
system in interactive mode.

Terminate the simulation.

Get command line plus (+) options
entered by the user in interactive
mode.

340 Veri/og HDL: A Guide to Digital Design and Synthesis

Table B-15 Miscellaneous Utility Routines

Return
Type Name Argument List

void tCwrite_save (char *blockptr, int blocklength);

int tCread_restart (char *blockptr, int block_length);

void tCread_restore (char *blockptr, int blocklength);

void tCdumpflush ();

char * tCdumpfilename ();

B.3.10 Housekeeping Tasks

Table B-16 Housekeeping Tasks

Return
Type Name Argument List

void tCsetworkarea (char *workarea);

char" tCgetworkarea ();

void tCsetroutine (char ("routine) 0);

char" tCgetroutine ();

void tCsettflist (char *tflist);

char" tCgettflist ();

List of PLI Routines

B= -
Description

Write PLI application data to a save
file.

Get a block of data from a
previously written save file.

Retrieve data from a save file.

Dump parameter value changes to
a system dump file.

Get name of system dump file.

Description

Save a pointer to the work area of a
PLI application task/function
instance.

Retrieve pointer to a work area.

Store pointer to a PLI application
task/ function.

Retrieve pointer to a PLI application
task/ function.

Store pointer to a PLI application
task/function instance.

Retrieve pointer to a PLI application
task/function instance.

341

=B -

342 Verilog HDL: A Guide to Digital Design and Synthesis

List of Keywords, System
Tasks, and Compiler
Directives

C.l Keywords

C ---

Keywords are predefined, nonescaped identifiers that define the language
constructs. An escaped identifier is never treated as a keyword. All keywords are
defined in lowercase. The list is sorted in alphabetical order.

always and assign attribute
begin buf bufifO bufifl
case casex casez cmos
deassign default defparam disable
edge else end endattribute
endcase endfunction endmodule endprimitive
endspecify endtable endtask event
for force forever fork
function highzO highzl if
initial inout input integer
join large macromodule medium
module nand negedge nmos
nor not notifO notifl
or output parameter pmos
posedge primitive pull 0 pulll
pulldown pull up rcmos real
realtime reg release repeat
rnmos rpmos rtran rtranifO
rtranifl scalared signed small
specify specparam strength strongO
strongl supplyO supplyl table
task time tran tranifO
tranifl tri triO tril
triand trior trireg unsigned
vectored wait wand weakO
weakl while wire wor
xnor xor

343

=c -
C.2 System Tasks and Functions
The following is a list of keywords frequently used by Verilog simulators for
names of system tasks and functions. Not all system tasks and functions are
explained in this book. For details, refer to Verilog HDL Language Reference Manual.
This list is sorted in alphabetical order.

$bitstoreal $countdrivers $display $fclose
$fdisplay $fmonitor $fopen $fstrobe
$fwrite $finish $getpattern $history
$incsave $input $itor $key
$list Slog $monitor $monitoroff
$monitoron $nokey

C.3 Compiler Directives
The following is a list of keywords frequently used by Verilog simulators for
specifying compiler directives. Only the most frequently used directives are
discussed in the book. For details, refer to Verilog HDL Language Reference Manual.
This list is sorted in alphabetical order.

'accelerate
'default_net type
'else
'endprotect
'ifdef

'autoexpand_vectornets
'define
'endcelldefine
'endprotected
'include

'noexpand_vectornets 'noremove_gatenames
'protect 'protected
'remove_netnames
'unconnected_drive

'resetall

'celldefine
'define
'endif
'expand_vectornets
'noaccelerate
'nounconnected_drive
'remove_gatenames
'timescale

344 Verilog HDL: A Guide to Digital Design and Synthesis

Formal Syntax Definition D= -
The following items summarize the format of the formal syntax descriptions:

1. Whitespace may be used to separate lexical tokens.

2. Angle brackets surround each description item and are not literal symbols; that
is, they do not appear in a source example of a syntax item.

3. <name> in lowercase is a syntax construct item defined by other syntax construct
items or by lexical token items (see next item).

4. <NAME> in uppercase is a lexical token item. Its definition is a terminal node in
the description hierarchy; that is, its definition does not contain any syntax
construct items.

5. <name>? is an optional item.

6. <name>* is zero, one, or more items.

7. <name>+ is one or more items.

8. <name> <,<name»* is a comma-separated list of items with at least one item
in the list.

9. if [condition] is a condition placed on one of several definitions.

10. <name> ::= gives a syntax definition to an item.

11. 11= introduces an alternative syntax definition.

12. name is a literal (a keyword). For example, the definition <evenCdeciaration>
::= event <name_oCevent> stipulates that the keyword "event" precedes the
name of an event in an event declaration.

13. (.••) places parenthesis symbols in a definition. These parentheses are literals
required by the syntax being defined. Other literal symbols can also appear in a
definition (for example, . and :).

In Verilog syntax, a period (.) may not be preceded or followed by a space.

345

-- D -
D.I Source Text
<source_text>

::= <description>*
<description>

::= <module>
11= <primitive>

<module>
::= module <name_oCmodule> <liscoCports>? ;

<module_item>*
endmodule

11= macromodule <name_oCmodule> <liscoCports>? ;
<module_item>*
endmodule

<name_oCmodule>
::= <IDENTIFIER>

<lisCoCports>
::= (<port> <,<port»*)

<port>
::= <port3 xpression>?
11= . <name_oCport> (<port_expression>?)

<porCexpression>
::= <port_reference>
11= { <port_reference> <,<porcreference»* }

<portJeference>
::= <name_oCvariable>
11= <name_oC variable> [<constanCexpression>]
11= <name_oCvariable> [<constancexpression> : <constancexpression>]

<name_oCport>
::= <IDENTIFIER>

<name_oC variable>
::= <IDENTIFIER>

<module_item>

346

::= <parametecdeclaration>
11= <inpuCdeclaration>
11= <outpucdeclaration>
11= <inouCdeclaration>
11= <neCdeclaration>
11= <reg_declaration>

Veri/og HDL: A Guide to Digital Design and Synthesis

11= <time_declaration>

11= <integecdeclaration>
11= <reaLdeclaration>

11= <evenCdeclaration>
11= <gate_declaration>
11= <UDP _instantiation>
11= <module_instantiation>

11= <parametecoverride>
11= <continuous_assign>
11= <specify_block>
11= <initial_statement>

11= <always_statement>

11= <task>
11= <function>

<UDP>

D ---

::= primitive <name_oCUDP> «name_oCvariable> <,<name_oCvariable»*) ;
<UDP _declaration>+
<UDP _initiaLstatement>?
<table_definition>

endprimitive

<name_oCUDP>
::= <IDENTIFIER>

<UDP _declaration>
::= <outpuCdeclaration>
11= <reg_declaration>
11= <inpucdeclaration>

<UDP _initial_statement>
::= initial <outpuCterminaLname> = <inicval> ;

<iniCval>
::= l'bO

11= l'bl
11= l'bx

11= 1
11=0

<table_definition>
::= table <table_entries> endtable

<table_entries>
::= <combinational_entry>+
11= <sequential_entry>+

Formal Syntax Definition 347

-- D -
<combinational_entry>

::= <level_inpuClist> : <OUTPUT_SYMBOL> ;
<sequential_entry>

::= <inpuclist> : <state> : <nexCstate> ;

<inpuClist>
::= <leveLinpuClist>
11= <edge_inpuClist>

<level_inpuClist>
::= <LEVEL_SYMBOL>+

<edge_inpuClist>

<edge>

<state>

::= <LEVEL_SYMBOL>* <edge> <LEVEL_SYMBOL>*

::= (<LEVEL_SYMBOL> <LEVEL_SYMBOL>)

11= <EDGE_SYMBOL>

::= <LEVEL_SYMBOL>

<nexCstate>
::= <OUTPUT_SYMBOL>

11= - (This is a literal hyphen, see Chapter 12 for details).
<OUTPUT_SYMBOL> is one a/the/allowing characters:

o 1 x X
<LEVEL_SYMBOL> is one a/the/allowing characters:

01xX?bB
<EDGE_SYMBOL> is one a/the/allowing characters:

rRfFpPnN*

<task>
::= task <name_oCtask> ; <tCdeclaration>*<statemenCocnull> endtask

<name_oCtask>
::= <IDENTIFIER>

<function>
::= function <range_octype>? <name_oCfunction> ;

<tCdeclaration>+
<statement>
endfunction

<range_octype>
::= <range>
11= integer

11= real

348 Verilog HDL: A Guide to Digital Design and Synthesis

<name_oCfunction>
::= <IDENTIFIER>

<tCdeciaration>
::= <parametecdeclaration>
11= <inpucdeclaration>
11= <outpucdeclaration>
11= <inouCdeclaration>
11= <reg_declaration>
11= <time_declaration>
11= <integecdeclaration>
11= <real_declaration>
11= <evenCdeclaration>

D.2 Declarations
<parametecdeciaration>

::= parameter <lisCoCparam_assignments> ;
<lisCoCparam_assignments>

::=<param_assignment><,<param_assignment>*
<param_assignment>

::=«identifier> = <constanCexpression»
<inpuCdeciaration>

::= input <range>? <lisCoCvariables>;
<outpuCdeciaration>

::= output <range>? <liscoCvariables> ;
<inouCdeciaration>

::= inout <range>? <lisCoCvariables> ;
<neCdeciaration>

::= <NETTYPE> <expandrange>? <delay>? <lisCoC variables> ;

D

11= trireg <charge_strength>? <expandrange>? <delay>? <liscoC variables> ;
<NETTYPE> is one of the following keywords:

wire tri tril supplyO wand triand triO supplyl wor trior trireg
<expandrange>

<delay>

::= <range>
11= scalared <range>
11= vectored <range>

Formal Syntax Definition

349

-- D -
<re~declaration>

::= reg <range>? <lisCoCregistecvariables>;
<time_declaration>

::= time <lisCoCregistecvariables> ;
<integer_declaration>

::= integer <liscoCregistec variables> ;
<real_declaration>

::= real <lisCoCvariables>;
<evenCdeclaration>

::= event <name_oCevent> <,<name_oCevent»* ;
<continuous_assign>

::= assign <drive_strength>? <delay>? <liscoCassignments> ;
Ii= <NETTYPE> <drive_strength>? <expandrange>? <delay>?

<liscoCassignments> ;
<parameter_override>

::= defparam <liscoCparam_assignments>;
<lisCoC variables>

::= <name_oC variable> <,<name_oC variable»*
<name_oC variable>

::= <IDENTIFIER>
<lisCoCregister _variables>

::= <registec variable> <,<register_ variable»*
<register_variable>

::= <name_oCregister>
Ii= <name_oCmemory> [<constant_expression> : <constancexpression>]

<constanCexpression>

<name_oCregister>
::= <IDENTIFIER>

<name_oCmemory>
::= <IDENTIFIER>

<name_of_event>
::= <IDENTIFIER>

<charge_strength>
::= (small)
11= (medium)
Ii= (large)

<drive_strength>
::= (<STRENGTHO> , <STRENGTH1>)

350 Verilog HDL: A Guide to Digital Design and Synthesis

11= (<STRENGTH1> , <STRENGTHO>)
<STRENGTHO> is one of the following keywords:

supplyO strongO pullO weakO highzO
<STRENGTHl> is one of the following keywords:

supplyl strongl pulll weak! highzl
<range>

::= [<constancexpression> : <constancexpression>]
<lisCoCassignments>

::= <assignment> <,<assignment»*
<expression>

<assignment>

D.3 Primitive Instances
<gate_declaration>

::= <GATETYPE> <drive_strength>? <delay>? <gate_instance>
<,<gate_instance»* ;

<GATE TYPE> is one of the following keywords:

D ---

and nand or nor xor xnor buf bufifO bufifl not notifO notifl pulldown pullup
nmos mmos pmos rpmos cmos rcmos tran rtran tranifO rtranifO tranifl rtranifl

<drive_strength>

<delay>

: :=(<STRENGTHO>,<STRENGTH1»
11=(<STRENGTHI>,<STRENGTHO»

::= # <number>
11= # <identifier>
11= # «mintypmax3xpression> <,<mintypmax_expression»?

<,<mintypmax3 xpression» ?)
<gate_instance>

::= <name_oCgate_instance>? «terminal> <,<terminal»*)
<name_oCgate_instance>

::= <IDENTIFIER>
<UDP _instantiation>

::= <name_oCUDP> <drive_strength>? <delay>? <UDP _instance>
<,<UDP _instance»* ;

Formal Syntax Definition 351

-- D -
<name_oCUDP>

::= <IDENTIFIER>
<UDP _instance>

::= <name_oCUDP _instance>? «terminal> <,<terminal»*)
<name_oCUDP _instance>

::= <IDENTIFIER>
<terminal>

::= <expression>
11= <IDENTIFIER>

D.4 Module Instantiations
<module_instantiation>

::= <name_oCmodule> <parametecvalue_assignment>?
<module_instance> <,<module_instance»* ;

<name_oCmodule>
::= <IDENTIFIER>

<parameter_value_assignment>
::= # (<expression> <,<expression»*)

<module_instance>
::= <name_oCinstance> «liscoCmodule30nnections>?)

<name_oCinstance>
::= <IDENTIFIER>

<lisCoCmodule30nnections>
::= <module_port_connection> <,<module_port_connection»*
11= <named_port30nnection> <,<named_port_connection»*

<module_porCconnection>
::= <expression>
11= <NULL>

<NULL>
::= nothing-this form covers the case of an empty item in a list-for example,

(a, b" d)
<named_porCconnection>

::=.< IDENTIFIER> «expression»
<expression>

352 Verilog HDL: A Guide to Digital Design and Synthesis

D.S Behavioral Statements
<initial_statement>

::= initial <statement>
<always_statement>

::= always <statement>
<statemenCocnull>

::= <statement>
11=;

<statement>
: :=<blocking assignment> ;
11= <non-blocking assignment> ;
11= if (<expression>) <statemenCOf_null>
11= if (<expression>) <statemenCocnull>

else <statemenCocnull>
11= case (<expression>) <case_item>+ endcase
11= casez (<expression>) <case_item>+ endcase
11= casex (<expression>) <case_item>+ endcase
11= forever <statement>
11= repeat (<expression>) <statement>
11= while (<expression>) <statement>
11= for (<assignment> ; <expression> ; <assignment>)

<statement>
11= <delay_control> <statemenCocnull>
11= <evenCcontrol> <statemenCocnull>
11= wait (<expression>) <statemenCocnull>
11= -> <name_oCevent> ;
11= <seq_block>
11= <par_block>
11= <task_enable>
11= <system_task_enable>
11= disable <name_oCtask> ;
11= disable <name_oCblock> ;
11= force <assignment> ;
11= release <lvalue> ;

<assignment>
::= <lvalue> = <expression>

Formal Syntax Definition

D ---

353

-- D -
<blocking assignment>

::= <lvalue> = <expression>
11= <lvalue> = <delay 30ntrol> <expression> ;
11= <lvalue> = <evenccontrol> <expression> ;

<non-blocking assignment>
::= <lvalue> <= <expression>
11= <lvalue> <= <delay 30ntrol> <expression> ;
11= <lvalue> <= <evenCcontrol> <expression> ;

<lvalue>

<expression>

<case_item>
::= <expression> <,<expression»* : <statemencocnull>
11= default: <statemenCocnull>
11= default <statemenCocnull>

<seq_block>
::= begin <statement>* end
11= begin: <name_oCblock> <block~declaration>* <statement>* end

<par_block>
::= fork <statement>* join
11= fork: <name_oCblock> <block_declaration>* <statement>* join

<name_oCblock>
::= <IDENTIFIER>

<block_declaration>
::= <parametecdeclaration>
11= <reg_declaration>
11= <integecdeclaration>
11= <real_declaration>
11= <time_declaration>
11= <evenCdeclaration>

<task_enable>
::= <name_oCtask>;
11= <name_oCtask> (<expression> <:,<expression»*) ;

<system_task_enable>
::= <name_oCsystem_task>;
11= <:name_oCsystem_task> (<expression> <:,<expression»*) ;

354 Verilog HDL: A Guide to Digital Design and Synthesis

<name_oCsystem_task>
::= $<SYSTEM_IDENTIFIER>

Please note: The $ may not be followed by a space.

<SYSTEM_IDENTIFIER>
::= An <IDENTIFIER> assigned to an existing system task or function.

D.6 Specify Section
<specify_block>

::= specify <specify_item>* endspecify
<specify_item>

::= <specparam_declaration>
11= <path_declaration>
11= <leveLsensitive_path_declaration>
11= <edge_sensitive_path_declaration>
11= <system_timing_check>
11= <sdpd>

<specparam_declaration>
::= specparam <liscoCparam_assignments> ;

<iisCoCparam_assignments>
: :=<param_assignment><,<param_assignment»*

<param_assignment>
: : =< <identifier>=<constancexpressi on»

<path_declaration>
::= <path_description> = <path_delay_value> ;

<path_description>
::= (<specify_inpuCterminaLdescriptor> =>

<specify _outpucterminal_descriptor>)
11= (<liscoCpath_inputs> *> <liscoCpath_outputs>)

<lisCoCpath_inputs>

D ---

::= <specify _input_terminaLdescriptor> <,<specify _inpucterminal_descriptor»*
<lisCoCpath_outputs>

::= <specify-output_terminaLdescriptor>
<, <specify _ outpuCterminaL descriptor> >*

<specifLinpuCterminaCdescriptor>
::= <inpuCidentifier>
11= <inpuCidentifier> [<constancexpression>]
11= <inpuCidentifier> [<constancexpression> : <constancexpression>]

Formal Syntax Definition 355

-- D -
<specify-outpuCterminaCdescriptor>

::= <outpuCidentifier>
11= <outpucidentifier> [<constancexpression>]
11= <outpucidentifier> [<constancexpression> : <constancexpression>]

<inpuCidentifier>
::= the <IDENTIFIER> of a module input or inout terminal

<outpuCidentifier>
::= the <IDENTIFIER> of a module output or inout terminal.

<path_delay_value>
: := <path_delay_expression>
11= (<path_delay_expression>, <path_delay_expression>)
11= (<path_delay_expression>, <path_delay_expression>,

<path_delay_expression>)
11= (<path_delay 3xpression>, <path_delay _expression>,

<path_delay _expression>, <path_delay_expression>,
<path_delay _expression>, <path_delay_expression>)

<path_delay 3xpression>
::= <constancmintypmax_expression>

<system_timinlLcheck>
::= $setup(<timing_check_event>, <timing3heck_event>, <timing_check_limit>

<,<notify_register»?) ;
11= $hold(<timing_check_event>, <timin~check_event>, <timing_check_limit>

<,<notify_register»?) ;
11= $period(<controlled_timing_check_event>, <timing_check_Iimit>

<,<notify_register»?) ;
11= $width(<controlled_timing3heck_event:>, <timing3heck_Iimit>

<,<constancexpression>,<notify _register»?) ;
11= $skew(<timing_check_event>, <timing_check_event>, <timing_check_limit>

<,<notify_register»?) ;
11= $recovery(<controlled_timing3heck_event>, <timing3heck_event>,

<timing_check_limit> <,<notify_register»?) ;
11= $setuphold(<timing_check_event>, <timing_check3vent>,

<timing_check_Iimit>, <timing_check_Iimit> <,<notify_register»?) ;

<timinlLcheck3vent>
::= <timing_check3venccontrol>? <specify _terminaLdescriptor>
<&&& <timing3heck_condition»?

<specify _terminal_descriptor>
::= <specify _inpucterminal_descriptor>

356 Verilog HDL: A Guide to Digital Design and Synthesis

1I=<specify _outpuCterminal_descriptor>
<controlled_timinJLcheck_event>

::= <timing3heck_event_control> <specify _terminal_descriptor>
<&&& <timing_check30ndition»?

<timinJLcheck_evenCcontrol>
::= posedge
11= negedge

11= <edge30ntrol_specifier>
<edge_control_specifier>

::= edge [<edge_descriptor><,<edge_descriptor»*]
<edge_descriptor>

::= 01
1110
II Ox
II xl
II Ix
II xO

<timinJLcheck_condition>
::= <SCALAR_EXPRESSION>
11= -<SCALAR_EXPRESSION>
11= <SCALAR_EXPRESSION> == <scalar_constant>
11= <SCALAR_EXPRESSION> === <scalar_constant>
11= <SCALAR_EXPRESSION> != <scalar_constant>
11= <SCALAR_EXPRESSION> !== <scalacconstant>

<SCALAR_EXPRESSION> is a one bit net or a bit select of an expanded vector net.
::= <timinJLcheck_limit>

::= <expression>
<scalacconstant>

::= l'bO
11= l'bl
11= l'BO
11= l'Bl

<notify_register>
::= <identifier>

<Ievel_sensitive_path_declaration>
::= if «conditional_porCexpression»

(<specify_terminal_descriptor> <polarity_operator> ?=>

<specify_terminal_descriptor» = <path_delay_value>;

Formal Syntax Definition

D ---

357

-- D -
11= if «conditionaLporcexpression»

(<liscoCpath_inputs> <polarity_operator>? *>

<lisCoCpath_outputs» = <path_delay_value>;
Please note: The following two symbols are literal symbols,
not syntax description conventions:

<conditionaCporCexpression>
::= <port_reference>
11= <UNARY _OPERATOR><port_reference>
11= <port_reference><BINARY _OPERA TOR><port_reference>

<polarity_operator>
::=+
11=-

<edge_sensitive_path_declaration>
: :=<if «expression»>? «edge_identifier>?

<specify _terminal_descriptor>=>
«specify _terminaLdescriptor> <polarity_operator> ?:
<data_source3xpression») = <path_delay_value>;

1I=<if «expression»>? «edge_identifier>?
<specify _terminal_descriptor> *>
(<liscoCpath_outputs> <polarity_operator> ?:
<data_source_expression») =<path_delay _value>;

<data_source_expression>

=>

Any expression, including constants and lists. Its width must be one bit or equal to
the destination's width. If the destination is a list, the data source must be as wide
as the sum of the bits of the members.

<edge_identifier>

<sdpd>

::= posedge

lI=negedge

: :=if(<sdpd_conditional_expression>)<path_description>=
<path_delay_value>;

<sdpd_conditional_expresssion>

358

: :=<expression><BINARY _OPERA TOR><expression>
I I = <UNARY _OPERATOR><expression>

Verilog HDL: A Guide to Digital Design and Synthesis

D.7 Expressions
<lvalue>

::= <identifier>
11= <identifier> [<expression>]
11= <identifier> [<constanCexpression> : <constancexpression>]
11= <concatenation>

<constanCexpression>
: :=<expression>

<mintypmax_expression>
::= <expression>
11= <expression> : <expression> : <expression>

<expression>
::= <primary>
11= <UNARY_OPERATOR> <primary>
11= <expression> <BINARY_OPERATOR> <expression>
11= <expression> <QUESTION_MARK> <expression> : <expression>
11= <STRING>

<UNARY_OPERATOR> is one of the following tokens:
+ - ! - & _& I 1\1 1\ _1\

<BINARY_OPERATOR> is one of the following tokens:

+ - * / % == != === !== && II < <= > >= & I 1\ 1\- » «
<QUESTION_MARK> is ? (a literal question mark).

<STRING> is text enclosed in "" and contained on one line.

<primary>
::= <number>
11= <identifier>
11= <identifier> [<expression>]
11= <identifier> [<constant3xpression> : <constanCexpression>]
11= <concatenation>
11= <multiple30ncatenation>
11= <function_call>
11= (<mintypmax3xpression>)

<number>
::= <DECIMAL_NUMBER>
11= <UNSIGNED_NUMBER>? <BASE> <UNSIGNED_NUMBER>
11= <DECIMAL_NUMBER>.<UNSIGNED_NUMBER>
11= <DECIMAL_NUMBER><.<UNSIGNED_NUMBER»?

E<DECIMAL_NUMBER>

Formal Syntax Definition

D ---

359

-- D -
11= <DECIMAL_NUMBER><.<UNSIGNED_NUMBER»?

e<DECIMAL_NUMBER>
Please note: Embedded spaces are illegal in Verilog numbers,
but embedded underscore characters can be used for spacing in any
type of number.

<DECIMAL_NUMBER>
::= A number containing a set of any of the following characters, optionally

preceded by + or -
0123456789_

<UNSIGNED_NUMBER>
::= A number containing a set of any of the following characters:

0123456789_
<NUMBER>

Numbers can be specified in decimal, hexadecimal, octal or binary and may
optionally start with a + or -. The <BASE> token controls what number digits are
legal. <BASE> must be one of d, h, 0, or b, for the bases decimal, hexadecimal,
octal, and binary, respectively. A number can contain any set of the following
characters that is consistent with <BASE>:

0123456789abcdefABCDEFxXzZ?
<BASE> is one a/the/allowing tokens:

'b 'B '0 '0 'd 'D 'h 'H
<concatenation>

::= { <expression> <,<expression»* }
<multiple_concatenation>

::= { <expression> { <expression> <,<expression»* } }
<function_call>

::= <name_oCfunction> (<expression> <,<expression»*)
11= <name_oCsystem_function> (<expression> <,<expression»*)
11= <name_oCsystem_function>

<name_oCfunction>
::= <identifier>

<name_oCsystem_function>
::= $<SYSTEM_IDENTIFIER>

Please note: The $ may not be followed by a space.

<SYSTEM_IDENTIFIER>
::= An <IDENTIFIER> assigned to an existing system task or function

360 Verilog HDL: A Guide to Digital Design and Synthesis

D ---
D.S General
<identifier>

::= <IDENTIFIER><.<IDENTIFIER»*
Please note: The period may not be preceded or followed

by a space.

<IDENTIFIER>

<delay>

An identifier is any sequence of letters, digits, dollar signs ($), and underscore C)
symbols, except that the first must be a letter or the underscore; the first character
may not be a digit or $. Upper- and lowercase letters are considered to be
different. Identifiers may be up to 1024 characters long. Some Verilog-based
tools do not recognize identifier characters beyond the I024th as a significant part
of the identifier. Escaped identifiers start with the backslash character (\) and may
include any printable ASCII character. An escaped identifier ends with white
space. The leading backslash character is not considered to be part of the
identifier.

::= # <number>
11= # <identifier>
11= # (<mintypmax_expression> <,<mintypmax_expression»?

<,<mintypmax_expression» ?)

<mintypmax_expression>

<delay_control>
::= # <number>
11= # <identifier>
11= # (<rnintypmax3xpression>)

<evenCcontrol>
::= @ <identifier>
11= @ (<evenCexpression>)

<evenCexpression>
::= <expression>
11= po sedge <SCALAR_EVENT_EXPRESSION>

11= negedge <SCALAR_EVENLEXPRESSION>
11= <evencexpression> or <evenCexpression>*

<SCALAR_EVENT_EXPRESSION> is an expression that resolves to a one bit value.

Formal Syntax Definition 361

-- D -

362 Verilog HDL: A Guide to Digital Design and Synthesis

Veri log Tidbits E= -
Answers to common Verilog questions are provided in this appendix.

Origins of Verilog HDL

Verilog HDL originated around 1983 at Gateway Design Automation, which was
then located in Acton, Massachusetts. The company was privately held at that
time by Dr. Prabhu Goel, the inventor of the PODEM test generation algorithm.
Verilog HDL was introduced into the EDA market in 1985 as a simulator product.
Verilog HDL was designed by Phil Moorby, who was later to become the Chief
Designer for Verilog-XL and the first Corporate Fellow at Cadence Design
Systems. Gateway Design Automation grew rapidly with the success of Verilog­
XL and was finally acquired by Cadence Design Systems, San Jose, CA in 1989.

Open Verilog International (OVI)

Verilog HDL was opened to the public by Cadence Design Systems in 1990. OVI
was formed to standardize and promote Verilog HDL and related design
automation products. They can be reached by email atovi@netcom.com. by phone
at 408-353-8899, or by regular mail at 15466 Los Gatos Boulevard, Suite 109-071,
Los Gatos, CA 95032.

Interpreted, Compiled, Native Compiled Simulators

Verilog simulators come in three flavors, based on the way they perform the
simulation.

Interpreted simulators read in the Verilog HDL design, create data structures in
memory, and run the simulation interpretively. A compile is performed each time
the simulation is run, but the compile is usually very fast. An example of an
interpreted simulator is Verilog-XL.

Compiled code simulators read in the Verilog HDL design and convert it to
equivalent C code (or some other programming language). The C code is then
compiled by a standard C compiler to get the binary executable. The binary is

363

=E -
executed to run the simulation. Compile time is usually long for compiled code
simulators, but in general the execution speed is faster compared to interpreted
simulators. An example of compiled code simulator is Chronologic VCS.

Native compiled code simulators read in the Verilog HDL design and convert it
directly to binary code for a specific machine platform. The compilation is
optimized and tuned separately for each machine platform. Of course, that means
that a native compiled code simulator for a Sun workstation will not run on an
HP workstation, and vice versa. Because of fine tuning, native compiled code
simulators can yield significant performance benefits.

Event-Driven Simulation, Oblivious Simulation

Verilog simulators typically use an event-driven or an oblivious simulation
algorithm. An event-driven algorithm processes elements in the design only
when signals at the inputs of these elements change. Intelligent scheduling is
required to process elements. Oblivious algorithms process all elements in the
design, irrespective of changes in signals. Little or no scheduling is required to
process elements.

Cycle-Based Simulation

Cycle-based simulation is useful for synchronous designs where operations happen
only at active clock edges. Cycle simulators work on a cycle-by-cycle basis.
Timing information between two clock edges is lost. Significant performance
advantages can be obtained by using cycle simulation.

Fault Simulation

Fault simulation is used to deliberately insert stuck-at or bridging faults in the
reference circuit. Then, a test pattern is applied and the output of the faulty circuit
and the reference circuit are compared. The fault is said to be detected if the
outputs mismatch. A set of test patterns is developed for testing the circuit.

Verilog Newsgroup

comp.lang.verilog is a news group that provides discussion about Verilog HDL­
related activities.

364 Verilog HDL: A Guide to Digital Design and Synthesis

Verilog FTP Site

Do an anonymous ftp to ftp.cray.com:/pub/comp.lang.verilog. Various interesting
resources, such as news group archives, answers to frequently asked questions,
Verilog parsers, Verilog-to-VHDL translators, Verilog modes for GNU Emacs,
speedup notes, etc., are available. The README file in that directory gives
complete information about available resources.

Verilog Simulators

Veriwell simulator is available from Wellspring solutions for SPARC, Macintosh,
DOS, and Linux. The simulator is available via ftp at iii.net:/pub/pub­
site/wellspring/ . Use is not restricted for source files under 1000 lines.

Viper simulator is available from InterHDL for SPARC and DOS. The simulator is
available via ftp at ftp.netcom.com:/pub/el/eli . Use is not restricted for sources files
under 1000 lines.

Verilog Related Mosaic Sites

If you are using mosaic, you can find Verilog HDL-related information on a lot of
WWW sites. A few interesting sites are listed below.

Cadence - http://www.cadence.com/

Cadmazing - http://www.cadmazing .eom/cadmazing/pages/da.html

Chronologie Simulation - http://www.ehronologic.eom/index.html

EE Times - http://teehweb.emp.com/eet/

Synopsys - http://www.synopsys.eom/

IVC (International Verilog Conference) - http://www.e2w3.com/ivceonf.html

Verilog Tidbits 365

=E -

366 Verilog HDL: A Guide to Digital Design and Synthesis

Verilog Examples FE

This appendix contains the source code for two examples.

The first example is a synthesizable model of a FIFO implementation.

The second example is a behavioral model of a 256K X 16 DRAM.

These examples are provided to give the reader a flavor of real-life Verilog HDL
usage. The reader is encouraged to look through the source code to understand
coding style and the usage of Verilog HDL constructs.

F.1 Synthesizable FIFO Model
This example describes a synthesizable implementation of a FIFO. The FIFO
depth and FIFO width in bits can be modified by simply changing the value of
two parameters, 'FWIDTH and 'FDEPTH. For this example, the FIFO depth is 4 and
the FIFO width is 32 bits. The input/output ports of the FIFO are shown in
Figure F-l.

J FClrN F-SLastN

FOutN F-FirstN

Figure F-l FIFO Input/Output Ports

=F -
Input ports

All ports with a suffix "N" are low asserted.

elk Clock signal

RstN

Datajn

FInN

FCZrN

FOutN

Output ports

F_Data

FJullN

F_EmptyN

F_LastN

F_SLastN

FJirstN

Reset signal

32-bit data into the FIFO

Write into FIFO Signal

Clear Signal to FIFO

Read from FIFO Signal

32-bit output data from FIFO

Signal indicating that FIFO is full

Signal indicating that FIFO is empty

Signal indicating that FIFO has space for one data value

Signal indicating that FIFO has space for two data values

Signal indicating that there is only one data value in FIFO

The Verilog HDL code for the FIFO implementation is shown in Example F-l.

Example F-l Synthesizable FIFO Model

//
// FileName: "Fi fo. v"
// Author Venkata Ramana Kalapatapu
// Company: Sand Microelectronics Inc.,
// Profile: Sand develops Simulation Models, Synthesizable Cores and
// Performance Analysis Tools for Processors, buses and
// memory products. Sand's products include models for
//
//
//

industry-standard components and custom-developed models
for specific simulation environments.

// For more information on Sand, contact us at
// (408) -441-7138 by telephone, (408) -441-7538 by fax, or
// email yourspecificneedstosales@sandmicro.com
//

'define FWIDTH
'define FDEPTH

368

32
4

// Width of the FIFO.
// Depth of the FIFO.

Verilog HDL: A Guide to Digital Design and Synthesis

F= -
Example F-l Synthesizable FIFO Model (Continued)

'define FCWIDTH 2

module FIFO(Clk,
RstN,
Data_In,
FClrN,
FInN,
FOutN,

input
input

) ;

F_Data,
F_FullN,
F_LastN,
F_SLastN,
F_FirstN,
F_EmptyN

input [('FWIDTH-l) :0]
input
input
input

output [('FWIDTH-l) :0]
output

II Counter Width of the FIFO 2 to power
II FCWIDTH = FDEPTH.

Clk;
RstN;
Data _In;
FInN;
FClrN;
FOutN;

F_Data;
F_FullN;

II CLK signal.
II Low Asserted Reset signal.
/I Data into FIFO.
II Write into FIFO Signal.
II Clear signal to FIFO.
II Read from FIFO signal.

II FIFO data out.
II FIFO full indicating signal.

output F_EmptyN; II FIFO empty indicating signal.
output F_LastN; II FIFO Last but one signal.
output F_SLastN; II FIFO SLast but one signal.
output F_FirstN; II Signal indicating only one

II word in FIFO.

reg F_FullN;
reg F_EmptyN;
reg F_LastN;
reg F_SLastN;
reg F_FirstN;

reg [' FCWIDTH: 0] fcounter; / / counter indicates num of data in FIFO
reg [('FCWIDTH-l) :0] rd-ptr; II Current read pointer.

Verilog Examples 369

Example F-1 Synthesizable FIFO Model (Continued)

reg
wire
wire

[('FCWIDTH-1) :0]
[(, FWIDTH -1) : 0]
[(, FWIDTH -1) : 0]

wr-ptr ;
FIFODataOut;
FIFODataIn;

II Current write pointer.
II Data out from FIFO MemB1k
II Data into FIFO MemBlk

wire
wire

ReadN
WriteN

FOutN;
FInN;

assign F_Data
assign FIFODataIn

FIFODataOut;
Data_In;

370

FIFO_MEM_BLK memblk(.clk(Clk),
.writeN(WriteN) ,
. rd_addr(rd-ptr) ,
.wr_addr(wr-ptr) ,
. data_in (FIFODataIn) ,
. data_out (FIFODataOut)

) ;

II Control circuitry for FIFO. If reset or clr signal is asserted,
II all the counters are set to O. If write only the write counter
II is incremented else if read only read counter is incremented
II else if both, read and write counters are incremented.
II fcounter indicates the num of items in the FIFO. Write only
II increments the fcounter, read only decrements the counter, and
II read && write doesn't change the counter value.
always @(posedge Clk or negedge RstN)
begin

if (! RstN) begin

end

fcounter
rd-ptr
wr-ptr

else begin

<= 0;
<= 0;
<= 0;

if(-FClrN) begin
fcounter <=

rd-ptr <=

wr-ptr <=

end

0;
0;
0;

Verilog HDL: A Guide to Digital Design and Synthesis

Example F-l

end
end

Synthesizable FIFO Model (Continued)

else begin

end

if (-WriteN)
wr-ptr <= wr-ptr + 1;

if (-ReadN)
rd-ptr <= rd-ptr + 1;

if(-WriteN && ReadN && F_FuIIN)
fcounter <= fcounter + 1;

else if (WriteN && -ReadN && F_EmptyN)
fcounter <= fcounter - 1;

F= -

II All the FIFO status signals depends on the value of fcounter.
II If the fcounter is equal to afdepth, indicates FIFO is full.
II If the fcounter is equal to zero, indicates the FIFO is empty.

II F_EmptyN signal indicates FIFO Empty Status. By default it is
II asserted, indicating the FIFO is empty. After the First Data is
II put into the FIFO the signal is deasserted.
always @(posedge Clk or negedge RstN)
begin

if (! RstN)
F_EmptyN <= l'bO;

else begin
if(FClrN==I'bl) begin

if(F_EmptyN==I'bO && WriteN==I'bO)

F_EmptyN <= l'bl;

else if(F_FirstN==I'bO && ReadN==I'bO && WriteN==I'bl)

Verilog Examples 371

=F -
Example F-l Synthesizable FIFO Model (Continued)

372

end

end
else

F_EmptyN <= l'bO;

F_EmptyN <= l'bO;

end

II F_FirstN signal indicates that there is only one datum sitting
II in the FIFO. When the FIFO is empty and a write to FIFO occurs,
II this signal gets asserted.
always @(posedge Clk or negedge RstN)
begin

end

if(!RstN)

F_FirstN <= l'bl;

else begin
if(FClrN==l'bl) begin

end

if((F_EmptyN~=l'bO && WriteN==l'bO) I I
(fcounter~=2 && ReadN==l'bO && WriteN==l'bl))

F_FirstN <= l'bO;

else if (F_FirstN==l'bO && (WriteN A ReadN))
F_FirstN <= l'bl;

else begin

end
end

F_FirstN <= l'bl;

II F_SLastN indicates that there is space for only two data words
Ilin the FIFO.
always @(posedge Clk or negedge RstN)
begin

if (!RstN)

Verilog HDL: A Guide to Digital Design and Synthesis

Example F-l Synthesizable FIFO Model (Continued)

F_SLastN <= l'bl;

else begin

if (FClrN==l'bl) begin

if((F_LastN==l'bO && ReadN==l'bO && WriteN==l'bl) I I
(fcounter== ('FDEPTH-3) && WriteN==l'bO && ReadN==l'bl))

end
end

F_SLastN <= l'bO;

else if(F_SLastN==l'bO && (ReadN A WriteN))
F_SLastN <= l'bl;

end
else

F_SLastN <= l'bl;

II F_LastN indicates that there is one space for only one data
II word in the FIFO.
always @(posedge Clk or negedge RstN)
begin

if (!RstN)

F_LastN <= l'bl;

else begin
if(FClrN==l'bl) begin

if ((F_FullN==l'bO && ReadN==l'bO) I I
(fcounter== ('FDEPTH-2) && WriteN==l'bO && ReadN==l'bl))

F_LastN <= l'bO;

else if(F_LastN==l'bO && (ReadN A WriteN))
F_LastN <= l'bl;

end
else

Verilog Examples 373

=F -
Example F-1 Synthesizable FIFO Model (Continued)

F_LastN <= l'bI;
end

end

// F_FuIIN indicates that the FIFO is full.
always @(posedge Clk or negedge RstN)
begin

if (!RstN)

F_FuIIN <= l'bI;

else begin

end
end

endmodule

if(FClrN==l'bl) begin

end
else

if (F_LastN==l'bO && WriteN==l'bO && ReadN==l'bI)

else if(F_FuIIN==l'bO && ReadN==l'bO)

F_FuIIN <= l'bI;

F_FullN <= l'bI;

//////////////////////1/1///////////////////////////// III/III/Iliff
/I
//
// Configurable memory block for fifo. The width of the mem
// block is configured via FWIDTH. All the data into fifo is done
// synchronous to block.
//
// Author: Venkata Ramana Kalapatapu
//

374 Verilog HDL: A Guide to Digital Design and Synthesis

F= -
Example F-l Synthesizable FIFO Model (Continued)

///

module FIFO_MEM_BLK(elk,
writeN,
wr_addr,
rd_addr,
data_in,
data_out

) ;

input elk;
input writeN; / / Write Signal to
input [('FCWIDTH-1): 0] wr_addr;
input [(, FCWIDTH -1) : 0] rd_addr;
input [(, FWIDTH -1) : 0] data_in;

output [(, FWIDTH -1) : 0] data_out;

wire [('FWIDTH-1) :0] data_out;

// input elk.
put data into fifo.

// write Address.
// Read Address.
// DataIn in to Memory

/ / Data Out from the Memory
// Bloek(FIFO)

reg [('FWIDTH-1) :0] FIFO[O: ('FDEPTH-1)];

assign data_out = FIFO[rd_addr];

always @(posedge elk)
begin

if (writeN==l 'bO)
FIFO [wr_addr] <= data_in;

end

endmodule

Verilog Examples

Block

375

=F -
F.2 Behavioral DRAM Model
This example describes a behavioral implementation of a 256K x 16 DRAM. The
DRAM has 256K 16-bit memory locations. The input/ output ports of the DRAM
are shown in Figure F-2.

/
MA I ~

- OE_N

- RAS_N 256KX16
DRAM

DATA ... L~ 7 .. CAS_N
~

.. LWE_N ...

.. UWE_N -
Figure F-2 DRAM Input/Output Ports

Input ports

All ports with a suffix "N" are low asserted.

MA lO-bit memory address

OE_N

RAS_N

CAS_N

LWE_N

Inoutports

DATA

Output enable for reading data

Row address strobe for asserting row address

Column address strobe for asserting column address

Lower write enable to write lower 8 bits of DATA into
memory

Upper write enable to write upper 8 bits of DATA into
memory

16-bit data as input or output. Write input if LWE_N

or UWE_N is asserted. Read output if OE_N is asserted.

The Verilog HDL code for the DRAM implementation is shown in
Example F-2.

376 Verilog HDL: A Guide to Digital Design and Synthesis

F= -
Example F-2 Behavioral DRAM Model

//
// FileName: "dram.v" - functional model of a 256K x 16 DRAM
// Author Venkata Ramana Kalapatapu
// Company
/ / Profile

Sand Microelectronics Inc.,

//
//
//
//
//

Sand develops Simulation Models,Synthesizable Cores, and
Performance Analysis Tools for Processors, buses and
memory products. Sand's products include models for
industry-standard components and custom-developed
models for specific simulation environments.

// For more information on Sand, contact us at
/ / (408) -441-7138 by telephone, (408) -441-7538 by fax, or
// email yourspecificneedstosales@sandmicro.com
//

module DRAM (DATA,
MA,
RAS_N,
CAS_N,
LWE_N,
UWE_N,
OE_Nl ;

inout [15:0) DATA;
input [9: 0) MA;
input RAS _N;
input CAS N· - ,
input LWE N· - ,
input UWE N· - ,
input OE N· - ,

// Memory Block. 256K x 16. reg
reg
reg
reg
reg

[15:0)
[9: 0)

[7: 0)

[15:0)
[15:0)

memblk [0:262143);
rowadd;
coladd;
rd_data;

// RowAddress Upper 10 bits of MA.
// ColAddress Lower 8 bits of MA.
// Read Data.

temp_reg;

reg hidden_ref;
reg last_lwe;
reg last_uwe;
reg cas_bef_ras_ref;
reg end_cas_bef_ras_ref;

Verilog Examples 377

=F -
Example F-2 Behavioral DRAM Model (Continued)

reg
reg
reg
reg
integer

last_cas;
read;
rmw;
output_disable_check;
page_mode;

assign #5 DATA=(OE_N===l'bO && CAS_N===l'bO) ? rd_data : 16'bz;

parameter infile = "ini_file"; / / Input file for preloading the Dram.

378

initial
begin

$readmemh(infile, memblk);
end

always @(RAS_N)
begin

end

if(RAS_N == l'bO) begin
if(CAS_N == l'bl) begin

rowadd = MA;

end
else

end
else

hidden_ref l'bl;

l'bO;

always @(CAS_N)
#1 last_cas CAS_N;

always @(CAS_N or LWE_N or UWE_N)
begin

if(RAS_N===l'bO && CAS_N===l'bO) begin

if(last_cas==l'bl)
coladd = MA[7:0];

Verilog HDL: A Guide to Digital Design and Synthesis

Example F-2 Behavioral DRAM Model (Continued)

if(LWE_N!==l'bO && UWE_N!==l'bO) begin II Read Cycle.

rd_data = mernblk[{rowadd, coladd}];
$display("READ : address = %b, Data %b",

{rowadd,coladd}, rd_data);
end
else if(LWE_N===l'bO && UWE_N===I'bO) begin

II Write Cycle both bytes.
mernblk[{rowadd,coladd}] = DATA;
$display ("WRITE: address = %b, Data = %b",

{rowadd,coladd}, DATA);
end
else if(LWE_N===l'bO && UWE_N===l'bl) begin

II Lower Byte Write Cycle.

end

temp_reg = mernblk[{rowadd, coladd}];
temp_reg[7:0] = DATA[7:0];
mernblk[{rowadd,coladd}] = temp_reg;

else if(LWE_N===I'bl && UWE_N===l'bO) begin
II Upper Byte Write Cycle.

end
end

end

II Refresh.

temp_reg = mernblk[{rowadd, coladd}];
temp_reg[15:8] = DATA[15:8];
mernblk[{rowadd,coladd}] = temp_reg;

always @(CAS_N or RAS_N)
begin

if (CAS_N==l'bO && last_cas===l'bl && RAS_N===l'bl) begin
cas_bef_ras_ref = l'bl;

end

if(CAS_N===I'bl && RAS_N===I'bl && cas_bef_ras_ref==I'bl) begin
end_cas_bef_ras_ref = l'bl;
cas_bef_ras_ref = l'bO;

end

Verilog Examples 379

Example F-2 Behavioral DRAM Model (Continued)

end

endmodule

380 Verilog HDL: A Guide to Digital Design and Synthesis

Bibliography

Manuals
Open Verilog International, Verilog HDL Language Reference Manual(LRM).

Open Verilog International, The Programming Language Interface (PL!) Manual.

Open Verilog International, OVI Standard Delay File (SDF) Format Manual.

IEEE 1364 Standard, Verilog Hardware Description Language Reference Manual
(LRM).

Books

E. Sternheim, Rajvir Singh, Rajeev Madhavan, Yatin Trivedi, Digital Design and
Synthesis with Verilog HDL, Automata Publishing Company, CA, 1993.
ISBN 0-9627488-2-X

Donald Thomas, Phil Moorby, The Verilog Hardware Description Language, Kluwer
Academic Publishers, MA, 1994. ISBN 0-7923-9523-9

Quick Reference Guides
Rajeev Madhavan, Verilog HDL Reference Guide, Automata Publishing Company,
CA, 1993. ISBN 0-9627488-4-6

Stuart Sutherland, Verilog HDL 2.0 Language Reference Guide, Sutherland
Consulting, CO, 1993.

Magazines
Integrated System Design, Verecom Group, CA.

381

382 Verilog HDL: A Guide to Digital Design and Synthesis

Index

A
Abstraction levels, 15-16

behavioral (algorithmic) level, 15
data flow level, 16
gate level, 16
switch level, 16

Access routines, 259-68, 327-35
examples of, 261-68

get Module Port List, 262-64
Monitor Nets for Value Chang-

es,264-68
fetch routines, 261, 331-33
handle routines, 261, 327-29
mechanics of, 260-61
next routines, 261, 329-31
types of, 261
Value Change Link (VCL) routines,

261,331
Advanced net types, 322-25

supplyO and supply1, 324
triO and tril, 324
tri,322-23
triand,324
trior, 324
trireg, 323
wand, 324-25
wor, 324-25

Algorithmic level, 15
always statement, 118

and logic synthesis, 285-86
and operator, 97, 98
and/ or gates, 62-64
Arithmetic operators, 92, 93-94, 282

binary operators, 93-94
unary operators, 94

Arrays, 36

assign statements, 86-87, 169-71,300
and logic synthesis, 283-84

Asymmetric sequence generator, 161-62

B
begin, 135, 140
Behavioral (algorithmic) level, 15
Behavioral blocks, 48
Behavioral modeling, 115-56

blocks, 140-45
named blocks, 143-45
nested blocks, 143
parallel blocks, 141-43
sequential blocks, 140-41

conditional statements, 130-31
examples, 145-53

4-bit ripple counter, 146-47
4-to-1 multiplexer, 145-46
traffic-signal controller,

147-53
loops, 135-40

forever loop, 139-40
for loop, 137
repeat loop, 138-39
while loop, 135-36

multiway branching, 131-35
procedural assignments, 119-24

blocking assignments, 119-20
nonblocking assignments, 120-

24

383

structured procedures, 116-18

always statement, 118
initial statement, 116-17

timing controls, 124-30
delay-based timing control, 124-

27
event-based time control, 127-29
level-sensitive timing control,

129-30
Behavioral statements, Verilog syntax,

353- 55
Behavioral synthesis tools, 6
Bidirectional switches, 216-17

delay specification on, 220
Binary operators, 28, 93-94
Bitwise operators, 92, 97-98, 282
Blocking assignments, 119-20
Blocks, 140-45

named blocks, 143-45
disabling, 144-45

nested blocks, 143
parallel blocks, 141-43
sequential blocks, 140-41

Bottom-up design, 11-12
combined with top-down design, 12-

13
buf/not gates, 64-67

gate instantiations of, 65
truth tables for, 65

buf/ notif gates, 66-67
gate instantiations of, 67
truth tables for, 67

C
CADtools, 6

and GIGO phenomenon, 6
Capacitive state, trireg, 323
Case equality operators, 96
case statement, 132-34, 301

and logic synthesis, 285
casex, 30,134-35
casez, 30,134-35

Cell characterization, 289
elk signal, 18-21
CMOS flip-flop, 224-26

CMOS inverter, 225
Verilog description for, 226

CMOS nor gate, 220-23
simulation output, 222
switch-level Verilog for, 221-22
testing, 222

CMOS switches, 215-16
delay specification on, 219

Coding styles, Verilog, 299-303
Combinational UDPs, 231-38

definition, 231-32
4-to-1 multiplexer example of, 235-38

simulation output, 237-38
stimulus for, 236-37
Verilog description of, 236

shorthand notation for don't cares,
234

state table entries, 232-33
Comments, 28
Compiled code simulators, 363-64
Compiler directives, 42-43, 344

'define directive, 42
'ifdef directive, 43
'include directive, 43
'timescale directive, 43

comp.lang.verilog, 364
Computer Aided Design (CAD), defined,

3
Computer-aided logic synthesis tools,

277
Concatenation operator, 93, 99, 282
Concatenations, 86
Conceptual internal data representation,

255-59
Conditional compilation, 175-76
Conditional execution, 176
Conditional operator, 93, 100-101,282
Conditional path delays, specify blocks,

202-3

384 Verilog HDL: A Guide to Digital Design and Syntjesis

Conditional statements, 130-31
Connection rules:

ports, 53-55
illegal port connection, 54-55
inouts,54
inputs, 53
outputs, 54
unconnected ports, 54
width matching, 54

Continuous assignment, 86-87
examples of, 87
implicit, 87

Cycle-based simulation, 364

D
Data flow level, 16
Data flow modeling, 85-114

continuous assignment, 86-87
delays, 88-90

implicit continuous assignment
delay, 89

net declaration delay, 89-90
regular assignment delay, 88-89

examples, 102-11
4-bit full adder, 104-6
4-to-1 multiplexer, 102-4
ripple counter, 106-11

expressions, 90
operands, 91
operators, 91-102

Dataflow statements, 48
Data types, 31-38

arrays, 36
integer register data types, 34-35
memories, 36
nets, 32-33
parameters, 37
real register data types, 35
registers, 33
strings, 37-38
time register data types, 35
value set, 31-32

vector register data type, 36
vectors, 34

deassign, 169-71
Decimal notation, 35
Declarations:

port, 51-52
Verilog syntax, 349-51

default statement, 302
'define directive, 42
defparam statement, 37, 172-73
Delay back-annotation, 208-9
Delay-based timing control, 124-27

intra-assignment delay control, 126
regular delay controls, 125
Delay models, 194-97
distributed delay, 194-95
lumped delay, 195-96
pin-to-pin delays, 196-97

Delays, 88-90
implicit continuous assignment de­

lay, 89
net declaration delay, 89-90
regular assignment delay, 88-89

Delay specification, types of, 77
Delay values, 77-79, 86

examples of, 78
max value, 78
min value, 77
typ value, 77

Design constraints, 289-90
Design constraint specifications, 306
Design guidelines, user-defined primi-

tives,245-46
Design partitioning, 303-6

horizontal partitioning, 303-4
parallelizing design structure, 305
vertical partitioning, 304

disable, 144-45
$display, 38-40, 186

task,39-40
Displaying hierarchy, 181
Displaying information, 38-40

Index 385

Distributed delay, 194-95
Driven state, trireg, 323
$dumpfile and $dumpvars tasks, 185-86

E
Edge-sensitive sequential UDPs, 240-42
'else directive, 175
end, 135, 140
endfunction, 162
'endif directive, 175-76
endmodule, 48, 50, 58
end primitive, 230
endspecify,198
end table, 230
end task, 158
Equality operators, 92, 96, 282
Escaped identifiers, 31
Event-based time control, 127-29

event OR control, 129
named event control, 128-29
regular event control, 128

Event-driven simulation, 364
Event OR control, 129
Expressions, 90

Verilog syntax, 359-60

F
Fall delays, 76

specify blocks, 203-4
Fault simulation, 364
Fetch routines, 261, 331-33
File output, 179-81

closing files, 180-81
opening a file, 179
writing to files, 180

$finish, 41-42
force, 171-72

on nets, 172
on registers, 171

forever loop, 139-40,281
fork, 141
for loop, 137

and logic synthesis, 285
Formal syntax definitions, 345-62

behavioral statements, 353-55
declarations, 349-51
expressions, 359-60
module instantiations, 352
primitive instances, 351-52
source text, 346-49
specify section, 355-58

Formal verification, 8
4-bit full adder, 104-6

with carry lookahead, 105-6
simulation output, 75
stimulus for, 74-75
using dataflow operators, 104-5
Verilog description of, 74

4-bit ripple carry counter, 13-14
design hierarchy, 14

4-bit ripple counter, 106-11
behavioral modeling, 146-47
stimulus module for, 110-11
Verilog code for, 108

4-to-l multiplexer, behavioral modeling,
145-46
4-to-l multiplexer, 102-4

using conditional operators, 103-4
using logic equations, 103

ftp.cray.com:/pub/comp.lang.verilog, 365
ftp.netcom.com:/pub/el/eli, 365
Full connection, specify blocks, 200-202
Functional verification, of gate-Ievel-

netlist, 296-99
Functions, 48, 344

compared to tasks, 157-58
defined, 157
examples of, 163-65

left/right shifter, 165
parity calculation, 164

function declaration and invocation,
162-63
See also System tasks

386 Verilog HDL: A Guide to Digital Design and Syntjesis

function statement, and logic synthesis,
286

G
Gate delays, 76-81

delay example, 79-81
delay specification, types of, 77
delay values, 77-79

max value, 78
min value, 77
typ value, 77

fall delay, 76
rise delay, 76
turn-off delay, 76-77

Gate level, 16
Gate-level modeling, 61-84

4-bit full adder, 72-75
logic diagram for, 72
simulation output, 75
stimulus for, 74-75
Verilog description of, 72-74

gate delays, 76-81
gate-level multiplexer, 68-71

logic diagram for, 69
simulation output, 71
stimulus for, 70-71
Verilog description of, 69-70

gate types, 62-75
Gate-level multiplexer, 68-71

simulation output, 71
stimulus for, 70-71
Verilog description of, 69-70

Gate-level netlist:
functional verification of, 296-99
timing verification of, 299

Gate types, 62-75
and/ or gates, 62-64
buf/ not gates, 64-67
buf/notif gates, 66-67

GIGO phenomenon ("garbage in garbage
out),6

Greater-than operator, 95

Greater-than-or-equal-to operator, 95-96

H
Handle routines, 261, 327-29
Hardware Description Languages, See

HDLs
HDLs:

designing, 6-7
designing at RTL level, 8
emergence of, 4
importance of, 6-7
trends in, 8-9

Hierarchical modeling concepts, 11-26
design block, 20-21
design methodologies, 11-13
4-bit ripple carry counter, 13-14
instances, 16-18
modules, 14-16
simulation components, 18-19
stimulus block, 21-23

Hierarchical names, 57-58
referencing, 57

Hierarchy, displaying, 181
$hold checks, 207
Horizontal partitioning, 303-4

Identifiers, 30-31, 57
escaped,31
'ifdef directive, 43, 175-76

if-else statement, 301
and logic synthesis, 284-85

iii.net:/pub/pubsite/wellspring/, 365
Illegal module nesting, 17-18
Illegal port connection, example of., 54-

55
Implicit continuous assignment, 87
Implicit continuous assignment delay, 89
'include directive, 43
Information, displaying, 38-40
Initializing memory from file, 183-84
initial statement, 116-17,230,281

Index 387

Inout ports, 54
input, 230
Input ports, 53
Instances, 16-18
Instantiation, 16-18

defined,16
of lower modules, 48

integer register data types, 34-35
Integrated chips (les), 3
Internal data representation, 255-59
Interpreted simulators, 363
Intra-assignment delay control, 126

J
join, 141

K
$<keyword>,38
Keywords, 30-31, 343

L
Left shift operator, 99
Less-than operator, 95-96
Less-than-or-equal-to operator, 95
Level-sensitive sequential UDPs, 239-40
Level-sensitive timing control, 129-30
Lexical conventions, 27-31

comments, 28
escaped identifiers, 31
identifiers, 30-31
keywords, 30-31
number specification, 28-30
operators, 28
strings, 30
white space, 27

Library cells, 289
Library routines, PU, 259-72
Logical-and operator, 94
Logical equality operators, 96
Logical inequality operators, 96
Logical-not operator, 94
Logical operators, 92, 94-95, 282
Logical-or operator, 94

Logic optimization, 288
Logic synthesis, 275-318

and always statement, 285-86
and assign statement, 283-84
automated, 278
and case statement, 285
computer-aided logic synthesis

tools, 277-78
defined, 275-78
example of sequential circuit synthe-

sis, 306-15
circuit requirements, 306-7
design constraints, 311
design specification, 306
finite state machine (FSM), 307-

10
logic synthesis, 311
optimized gate-level netlist, 311-

13
technology library, 310-11
verification, 314-15

and for loops, 285
and function statement, 286
gate-level netlist:

functional verification of,
296-99

timing verification of, 299
and if-else statement, 284-85
impact of, 278-80
modeling tips, 299-306

design constraint specifications,
306

design partitioning, 303-6
VeriIog coding styles, 299-303

RTL to gates, 287-96
design constraints, 289-90
example of, 291-93
logic optimization, 288
optimized gate-level descrip-

tion, 290-91
RTL description, 288
technology library,289

388 Verilog HDL: A Guide to Digital Design and Syntjesis

technology mapping and opti-
mization, 288

translation, 288
unoptimized intermediate
representation, 288

synthesis design flow, 287-96
tools, 6

designer's mind as, 276
Verilog HDL constructs for, 280-81

interpretation of, 283-86
Verilog operators, 281-82

Logic synthesis tools, 6
Loops, 135-40

forever loop, 139-40
for loop, 137
repeat loop, 138-39
while loop, 135-36

LSI (Large Scale Integration) chips, 3
Lumped delay, 195-96

M
max delays, specify blocks, 204
max value, 78
Memories, 36
Memory, initializing from file, 183-84
min delays, specify blocks, 204
min value, 77
Modeling techniques, 169-90

conditional compilation, 175-76
conditional execution, 176
overriding parameters, 172-74

defparam, 172-73
module_instance parameter values,

173-74
procedural continuous assignments,

169-72
assign, 169-71
deassign, 169-71
force, 171-72
release, 171-72

system tasks, 179-86
displaying hierarchy, 181

file output, 179-81
initializing memory from file,

183-84
random number generation, 182-

83
strobing, 182
value change dump file, 185-86

time scales, 177-78
Modify routines, 261, 335
module, 48, 58
Module_instance parameter values, 173-

74
Module instantiations, Verilog syntax,

352
Module name, 48
Modules, 14-16,47-50

abstraction levels, 15-16
behavioral (algorithmic) level, 15
dataflow level, 16
gate level, 16
switch level, 16

components of, 48
nesting of, 17-18
root module, 57

$monitor, 40-41, 186
Monitoring information, 40-41
MOS switches, 214-15

delay specification on, 219
MSI (Medium Scale Integration) chips, 3
Multiway branching, 131-35

case statement, 132-34
casex, 134-35
casez, 134-35

N
Name, connecting ports by, 56-57
Named blocks, 143-45

disabling, 144-45
Named event control, 128-29
Native compiled code simulators, 364
Negation operator, 97
Negative numbers, 30, 94

Index 389

Nested blocks, 143
Net declaration delay, 89-90
Nets, 32-33
Next routines, 261, 329-31
Nonblocking assignments, 120-24

application of, 122-24
processing of, 123-24
read operation, 122
write operations, 122

nor operator, 98
Number specification, 28-30

negative numbers, 30
question marks, 30

o

sized numbers, 28-29
underscore characters, 30
unsized numbers, 29
x or z values, 29

Object types, 255-56
Oblivious simulation, 364
Open Verilog International (OVI), 363

simulators, types of, 363-64
Operands, 91
Operators, 28, 87, 91-102

operator precedence, 101-2
types of, 92-102

arithmetic operators, 93-94
bitwise operators, 97-98
concatenation operator, 99
conditional operator, 100-101
equality operators, 96
logical operators, 94-95
reduction operators, 98
relational operators, 95-96
replication operator, 100
shift operators, 99
table, 92-93

Optimized gate-level description, 290-91
Optimized internal representation, 288
Ordered lists, connecting ports by, 55-56
or operator, 97, 98

output, 230
Output ports, 54
Overriding parameters, 172-74

defparam, 172-73

p

module_instance parameter values,
173-74

Parallel blocks, 141-43
Parallel connection, specify blocks, 199-

200
Parameters, 37
Path delay modeling, 197-205

specify blocks, 198-205
conditional path delays, 202-3
fall delays, 203-4
full connection, 200-202
max delays, 204
min delays, 204
parallel connection, 199-200
rise delays, 203-4
specparam statements, 201-2
turn-off delays, 203-4
typical delays, 204
x transitions, 205

Path delays, 196-97
Pin-to-pin delays, 196-97
PU, See Programming language interface

(PU)
PU library routines, 259-72

access routines, 259-68
examples of, 261-68
mechanics of, 260-61
types of, 261

utility routines, 268-72
Port declarations, 48
Port list, 48
Ports, 51-57

connecting to external signals, 55-57
by name, 56-57
by ordered lists, 55-56

connection rules, 53-55

390 Verilog HDL: A Guide to Digital Design and Syntjesis

illegal port connection, example
of,54-55

inouts,54
inputs, 53
outputs, 54
unconnected ports, 54
width matching, 54

declarations, 51-52
defined,51
list of, 51-57

Postprocessing tools, 185
primitive, 230
Primitive instances, Verilog syntax, 351-

52
Procedural assignments, 119-24

blocking assignments, 119-20
nonblocking assignments, 120-24

application of, 122-24
Procedural continuous assignments, 169-

72
assign, 169-71
deassign, 169-71
force, 171-72

on nets, 172
on registers, 171

release, 171-72
on nets, 172
on registers, 171

Programming Language Interface (PLI),
8,249-74

interface, 250
uses of, 251

internal data representation, 255-59
library routines, 251, 259-72

access routines, 259-68, 327-35
conventions, 327
utility access routines, 268-72,

334-35
utility (tU routines, 336-41

tasks:
general flow of, 255
invoking, 254

linking, 252-54
in yeS, 254

and Verilog simulation, 250-51
in Verilog-XL, 253

uses of, 251

Q
Q signal, 18, 21
Question marks, 30

R
$random, 182-83
Random number generation, 182-83
$readmemb and $readmemh, 183-84
real register data types, 35
Reduction operators, 92, 98, 282
reg, 230

as general-purpose variable, 34
storing strings in, 37

Registers, 33
Register transfer level (RTL), 4,6, 16,280
Regular assignment delay, 88-89
Regular delay controls, 125
Regular event control, 128
Relational operators, 92, 95-96, 282
release, 171-72

on nets, 172
on registers, 171

repeat loop, 138-39
Replication operator, 93, 100
reset signal, 18-21
Resistive switches, 218-19
Right shift operator, 99
Ripple carry counter, See Four-bit ripple

carry counter, 20
Rise delays, 76

specify blocks, 203-4
Root module, 57
RTL, See Register transfer level (RTL)
RTL to gates:

design constraints, 289-90
example of, 291-93

Index 391

S

design constraints, 293
design specification, 291
final, optimized gate-level de-

scription, 293-96
IC fabrication, 296
logic synthesis, 293
RTL description, 291-92
technology library, 292

optimized gate-level description,
290-91

technology library, 289

Scientific notation, 35
Sensitivity list, 129
Sequential blocks, 140-41
Sequential OOPs, 238-43

compared to combinational OOPs,
238

edge-sensitive, 240-42
example of, 242-43
level-sensitive, 239-40

$setup checks, 206-7
Shift operators, 93, 99,282
Shorthand symbols, for user-defined

primitives, 244-45
Simulation components, 18-19
Simulation seconds, 35
Simulation time, 35
Sized numbers, 28-29
Source text, Verilog syntax, 346-49
Special characters, 38,40
specify,198
Specify blocks, 198-205

conditional path delays, 202-3
delay specification on, 220
fall delays, 203-4
full connection, 200-202
max delays, 204
min delays, 204
parallel connection, 199-200
rise delays, 203-4

specparam statements, 201-2
turn-off delays, 203-4
typical delays, 204
x transitions, 205

Specify section, Verilog syntax, 355-58
specparam statements, 201-2
SR latch, 48

components of, 49-50
example of, 48-50

SSI (Small Scale Integration) chips, 3
Standard cell library, 275-76, 289
Standard Delay Format (SDF), 209
State Dependent Path Delays (SDPD),

210
State table entries, combinational OOPs,

232-33
Static timing verification, 193,299
Stimulus block, 21-23
$stop, 41-42
Strength levels, 32, 321
Strength modeling:

advanced net types, 322-25
supplyO and supply1, 324
triO and tril, 324
tri,322-23
triand,324
trior, 324
trireg, 323
wand, 324-25
wor, 324-25

signal contention, 322
strength levels, 321

Strings, 30, 37-38
format specifications, 39

$strobe, 182
Strobing, 182
supplyO and supply1, 324
supply1 and supplyO, 217-18
Switch level, 16
Switch-level modeling, 61, 213-28

bidirectional switches, 216-17
CMOS switches, 215-16

392 Verilog HDL: A Guide to Digital Design and Syntjesis

delay specification on switches, 219-
20

bidirectional switches, 220
MOS/CMOS switches, 219
specify blocks, 220

elements of, 213-20
examples of, 220-26

CMOS flip-flop, 224-26
CMOS nor gate, 220-23
2-to-1 multiplexer, 223-24

MOS switches, 214-15
power and ground, 217-18
resistive switches, 218-19

Synthesis design flow, 287-96
System tasks, 38-42, 179-86,344

displaying hierarchy, 181
displaying information, 38-40
file output, 179-81

T

initializing memory from file, 183-84
monitoring information, 40-41
random number generation, 182-83
stopping/ finishing in a simulation,

41-42
strobing, 182
value change dump file, 185-86
See also Functions

table, 230
Target technology, 288
task,158
Tasks, 48, 157-68

compared to functions, 157-58
end task, 158
examples of, 160-62

asymmetric sequence generator,
161-62

input and output arguments,
160-61

task,158
task declaration and invocation, 159

Technology-dependent

288
optimization,

Technology-independent design, 279
Technology library, 276, 289
Technology mapping, 288
Technology optimization, 288
Terminals, See Ports
Ternary operators, 28
Test bench, 18
time register data types, 35
'timescale directive, 43
Time scales, 177-78
Timing checks, 205-8

$hold checks, 207
$setup checks, 206-7
$width check, 207-8

Timing controls, 124-30
delay-based timing control, 124-27

intra-assignment delay control,
126

regular delay controls, 125
zero delay control, 127

event-based time control, 127-29
event OR control, 129
named event control, 128-29
regular event control, 128

level-sensitive timing control, 129-30
Timing simulation, 193
Timing verification, of gate-level netlist,

299
Top-down design, 11-12

combined with bottom-up design,
12-13

Traffic-signal controller:
behavioral modeling, 147-53
specification, 147-48
stimulus, 151-53
Verilog description, 149-51

triO and tri1, 324
tri,322-23
triand,324
trior, 324

Index 393

trireg, 323
Turn-off delay, 76-77
Turn-off delays, specify blocks, 203-4
2-to-1 multiplexer, 223-24

defined,223
Verilog description for, 223-24

Typical delays, specify blocks, 204
Typical design flow, 5-6
typ value, 77

U
Unary operators, 28, 94
Unconnected ports, 54
Underscore characters, 30
Unsized numbers, 29
User-defined C routines, 251
User-defined primitives, 229-48

basics of, 229-31
combinationa1- 231-38

definition, 231-32
example of, 235-38
shorthand notation for don't

cares, 234
state table entries, 232-33

definitions:
parts of, 230-31
rules for, 231

design guidelines, 245-46
instantiating, 234-35
sequential, 238-43

compared to combinational
UDPs,238

edge-sensitive, 240-42
example of, 242-43
level-sensitive, 239-40

shorthand symbols, 244-45
Utility access routines, 261, 268-72, 334-

35
example of, 269-72
mechanics of, 268
modify routines, 261, 335
types of, 268-69

Utility (to routines, 336-41
display messages, 340

V

get argument list information, 336
get calling task/function informa-

tion,336
get parameter values, 337
housekeeping tasks, 341
long arithmetic, 339-40
miscellaneous utility routines, 340-

41
monitor parameter value changes,

338
put parameter value, 337
synchronize tasks, 338-39

Value change dump (VCD) file, 185-86
Value Change Link (VCL) routines, 261,

331
Value set, 31-32
Variable declarations, 48
vector register data type, 36
Vectors, 34
V erifica tion:

formal,8
functional, 296-99
static timing, 193
timing, 299

Verilog coding styles, 299-303
defining if-else or case statements
explicitly, 302
instantiating mulitplexers vs. if-else

or case statements, 401
meaningful names, using forsig-

nals/variables, 299
mixing positive and negative edge­
triggered flip-flops, avoiding, 300
and multiple assignments to the

same variable, 302
using arithmetic operators vs. design

building blocks, 301

394 Verilog HDL: A Guide to Digital Design and Syntjesis

/

using base building blocks vs contin­
uous assign statements, 300-
301

using parentheses to optimize logic
structure, 301

Verilog HDL,4
compiler directives, 42-43
data types, 31-38

arrays, 36
integer register data types, 34-35
memories, 36
nets, 32-33
parameters, 37
real register data types, 35
registers, 33
strings, 37-38
time register data types, 35
value set, 31-32
vector register data type, 36
vectors, 34

defined,7
delay back-annotation, 208-9
delay models, 194-97

distributed delay, 194-95
lumped delay, 195-96
pin-to-pin delays, 196-97

examples of, 367-80
behavioral DRAM model, 376-80
synthesizable FIFO model, 367-

75
FTP site, 365
hierarchical modeling concepts, 11-

26
hierarchical names, 57-58
lexical conventions, 27-31

comments, 28
escaped identifiers, 31
identifiers, 30-31
keywords, 30-31
number specification, 28-30
operators, 28
strings, 30

white space, 27
logic synthesis with, 275-318
modeling techniques, 169-90
news group, 364

Open Verilog International (OVI),

363
origin of, 363
path delay modeling, 197-205

specify blocks, 198-205
popularity of, 7-8
simulators, 365
system tasks, 38-42

displaying information, 38-40
monitoring information, 40-41
stopping/ finishing in a simula-

tion,41-42
tasks and functions, 157-68
user-defined primitives, 229-48
Verilog-related Mosaic sites, 365

Veriwell simulator, 365
Vertical partitioning, 304
VHDL,4
Viper simulator, 365
VLSI (Very Large Scale Integration)tech­

nology, 3-4
typical design flow, 5-6

W
wait, 129, 153
wand,324-25
while loop, 135-36,281

compared to for loop, 137
White space, 27
$width check, 207-8
Width matching, ports, 54
wire, 33, 323
wor, 324-25
World Wide Web (WWW), Verilog-relat­

ed Mosaic sites, 365

X
xnor operator, 97, 98

Index 395

xor operator, 97, 98
x transitions, handling, 205
x value, 29

Z
Zero delay control, 127
z value, 29

396 Verilog HDL: A Guide to Digital Design and Syntjesis

	Verilog HDL: Guide to Digital Design & Synthesis
	Contents
	Part I: Basic Verilog Topics
	1 Overview of Digital Design with Verilog HDL
	1.1 Evolution of Computer Aided Digital Design
	1.2 Emergence of HDLs
	1.3 Typical Design FLow
	1.4 Importance of HDLs
	1.5 Popularity of Verilog HDL
	1.6 Trends in HDLs

	2 Hierarchical Modelling Concepts
	2.1 Design Methodologies
	2.2 4-bit Ripple Carry Counter
	2.3 Modules
	2.4 Instances
	2.5 Components of a Simulation
	2.6 Example
	2.6.1 Design Block
	2.6.2 Stimulus Block

	2.7 Summary
	2.8 Exercises

	3 Basic Concepts
	3.1 Lexical Conventions
	3.1.1 Whitespace
	3.1.2 Comments
	3.1.3 Operators
	3.1.4 Number Specification
	3.1.5 Strings
	3.1.6 Identifiers and Keywords
	3.1.7 Escaped Identifiers

	3.2 Data Types
	3.2.1 Value Set
	3.2.2 Nets
	3.2.3 Registers
	3.2.4 Vectors
	3.2.5 Integer, Real, and Time Register Data Types
	3.2.6 Arrays
	3.2.7 Memories
	3.2.8 Parameters
	3.2.9 Strings

	3.3 System Tasks and Compiles Directives
	3.3.1 Syatem Tasks
	3.3.2 Compiler Directives

	3.4 Summary
	3.5 Exercises

	4 Modules and Ports
	4.1 Modules
	4.2 Ports
	4.2.1 List of Ports
	4.2.2 Port Declaration
	4.2.3 Port Connecion Rules
	4.2.4 Connecting Ports to External Signals

	4.3 Hierarchical Names
	4.4 Summary
	4.5 Exercises

	5 Gate-Level Modelling
	5.1 Gate Types
	5.1.1 And/Or Gates
	5.1.2 Buf/Not Gates
	5.1.3 Examples

	5.2 Gate Delays
	5.2.1 Rise, Fall, and Turn-off Delays
	5.2.2 Min/Typ/Max Values
	5.2.3 Delay Example

	5.3 Summary
	5.4 Exercises

	6 Dataflow Modelling
	6.1 Continuous Assigments
	6.1.1 Implicit Continuous Assignment

	6.2 Delays
	6.2.1 Regular Assigment Delay
	6.2.2 Implicit Continuous Assigment Delay
	6.2.3 Net Declaration Delay

	6.3 Expressions, Operators, and Operands
	6.3.1 Expressions
	6.3.2 Operands
	6.3.3 Operators

	6.4 Operator Types
	6.4.1 Arithmetic Operators
	6.4.2 Logical Operators
	6.4.3 Relational Operators
	6.4.4 Equality Operators
	6.4.5 Bitwise Operators
	6.4.6 Reduction Operators
	6.4.7 Shift Operators
	6.4.8 Concatenation Operator
	6.4.9 Replication Operator
	6.4.10 Conditional Operator
	6.4.11 Operator Precedence

	6.5 Examples
	6.5.1 4-to-1 Multiplexer
	6.5.2 4-bit Full Adder
	6.5.3 Ripple Counter

	6.6 Summary
	6.7 Exercises

	7 Behavioral Modelling
	7.1 Structured Procedures
	7.1.1 initial Statement
	7.1.2 always Statement

	7.2 Proceduiral Assignments
	7.2.1 Blocking assigments
	7.2.2 Nonblocking Assigments

	7.3 Timing Controls
	7.3.1 Delay-Based Timing Control
	7.3.2 Event-Based Timing Control
	7.3.3 Level-Sensitive Timing Control

	7.4 Conditional Statements
	7.5 Multiway Branching
	7.5.1 case Statement
	7.5.2 casex,casez Keywords

	7.6 Loops
	7.6.1 While Loop
	7.6.2 For Loop
	7.6.3 Repeat Loop
	7.6.4 Forever Loop

	7.7 Sequeltial and Parallel Blocks
	7.7.1 Block Types
	7.7.2 Special Features of Blocks

	7.8 Examples
	7.8.1 4-to-1 Multiplexer
	7.8.2 4-bit Counter
	7.8.3 Traffic Signal Controller

	7.9 Summary
	7.10 Exercises

	8 Tasks and Functions
	8.1 Differences Between Tasks and Fuctions
	8.2 Tasks
	8.2.1 Task Declaration and Invocation
	8.2.2 Task Examples

	8.3 Functions
	8.3.1 Function Declaration and Invocation
	8.3.2 Fucntion Examples

	8.4 Summary
	8.5 Exercises

	9 Useful Modelling Techniques
	9.1 Procedural Continuous Assignments
	9.1.1 assign and deassign
	9.1.2 force and release

	9.2 Overriding Paramenters
	9.2.1 defparam Statement
	9.2.2 Module_Instance Parameter Values

	9.3 Conditional Compilation and Execution
	9.3.1 Conditional Compilation
	9.3.2 Conditional Execution

	9.4 Time Scales
	9.5 Useful System Tasks
	9.5.1 File Output
	9.5.2 Dusplaying Hierarchy
	9.5.4 Random Number Generation
	9.5.5 Initializing Memory from File
	9.5.6 Value Change Dump File

	9.6 Summary
	9.7 Exercises

	Part II: Advanced Verilog Topics
	10 Timing and Delays
	10.1 Types of Delay Models
	10.1.1 Distributed Delays
	10.1.2 Lumped Delay
	10.1.3 Pin-to-Pin Delays

	10.2 Path Delay Modeling
	10.2.1 Specify Blocks
	10.2.2 Inside Specify Blocks

	10.3 Timing Checks
	10.3.1 $setup and $hold checks
	10.3.2 $width Check

	10.4 Delay Back-Annotation
	10.5 Summary
	10.6 Exercises

	11 Switch-Level Modelling
	11.1 Switch-Modeling Elements
	11.1.1 MOS Switches
	11.1.2 CMOS Switches
	11.1.3 Bidirectional Switches
	11.1.4 Power and Ground
	11.1.5 Resistive Switches
	11.1.6 Delay Specification Switches

	11.2 Examples
	11.2.1 CMOS Nor Gate
	11.2.2 2-to-1 Multiplexer
	11.2.3 Simple CMOS Flip-Flop

	11.3 Summary
	11.4 Exercises

	12 User-Defined Primitives
	12.1 UDP basics
	12.1.1 Parts of UDP Definition
	12.1.2 UDP Rules

	12.2 Combination UDPs
	12.2.1 Combinational UDP Definition
	12.2.2 Stable Table Entries
	12.2.3 Shorthand Notation for Don´t Cares
	12.2.4 Instantianing UDP Primitives
	12.2.5 Example of a Combinational UDP

	12.3 Sequential UDPs
	12.3.1 Level-Sensitive Sequential UDPs
	12.3.2 Edge-Sensitive Sequential UDPs
	12.3.3 Example of a Sequential UDP

	12.4 UDP Table Shorthand Symbols
	12.5 Guidelines for UDP Design
	12.6 Summary
	12.7 Exercises

	13 Programming Language Interface
	13.1 Uses of PLI
	13.2 Linking and Invocation of PLI Tasks
	13.2.1 Linking PLI Tasks
	13.2.2 Invoking PLI Tasks
	13.2.3 General Flow of PLI Task Addition and Invocation

	13.3 Internal Data Representation
	13.4 PLI Library Routines
	13.4.1 Access Routines
	13.4.2 Utility Routines

	13.5 Summary
	13.6 Exercises

	14 Logic Synthesis with Verilog HDL
	14.1 What Is Logic Synthesis?
	14.2 Impact of Logic Synthesis
	14.3 Verilog HDL Synthesis
	14.3.1 Verilog Constructs
	14.3.2 Verilog Operators
	14.3.3 Interpretation of a Few Verilog Constructs

	14.4 Synthesis Design Flow
	14.4.1 RTL to Gates
	14.4.2 An example of RTL-to-Gates

	14.5 Verification of Gate-Level Netlist
	14.5.1 Functional Verification

	14.6 Modeling Tips for Logic Synthesis
	14.6.1 Verilog Coding Style
	14.6.2 Design Partitioning
	14.6.3 Design Constraint Specification

	14.7 Example of Sequential Circuit Synthesis
	14.7.1 Design Specification
	14.7.2 Circuit Requirements
	14.7.3 Finite State Machine (FSM)
	14.7.4 Verilog Description
	14.7.5 Technology Library
	14.7.6 Design Constraints
	14.7.7 Logic Synthesis
	14.7.8 Optimized Gate-Level Netlist
	14.7.9 Verification

	14.8 Summary
	14.9 Exercises

	Part III: Appendices
	A Stremgth Modelling and Avanced Net Definitions
	B List of PLI Routines
	C List of Keywords, System Tasks, and Compiler Directives
	D Formal Syntax Definition
	E Verilog Tidbits
	F Verilog Examples

