

y"" 1'",.<1 ... """ Edo • .,.i.J 0;"""", ECS' !>I.mol, iI<m<NO
l'ubli r. n.... Rol>Nm
\ro« I"r._., ,nd 0;"""", oIProd""",,, ,"" M,"u''''''''';.'' ESM' 0.,.'" W R""'''';
E""uh", " '""ins &l;t"" .'w. O'B_
"'">liOI EQ;1<,t: Ds,jJ A. GNHJ<
I"roduclx.. Eon"" lJonNI S-/",

Duet'", 01 Cf .. , i ... So""." """ ""r-""
C,,,",, Dl=tot: CMOk A""",
A" Edit""X_8ZJw """,f.,,,,, ".,." T,wI,' ffidooi
M>ou'''''"'''' B"I"'~ u. M,Oo...tJ
M., ' ''Hot M •• ,"''' H"", s,,,,,
"bou'lM C"",,'Th< """" Wo<'lfOOnd ... """"",' '''monipul,,«! ,mol' t>y Cbo,' .. R. KOmo """'i"f
"""''''''',,''' No ~',,,,,, CT«' .. ", ... ""'i),"" """",I """". o.'P' n.. ""ode. ". """,," ~ 01 ,ho
t"""",,"",, dlj<'''' ""P "",,,'" "pm,,,,,d t>y ,ho "",,,1.,..01. 0I0cIc di",.m, VHDl."" Ve,i!os
<00<,''''' 'I'''' ;",pIe 'ooo,

C> >004, 2001.2lm. 1m 1' 0. """"""'- b,,"
P=-I"r"",dtol
... ,,'''' P""""'t ,,", '0<
U""",,., ,""", ''l ""'".

All 'WI" , ... ",ed. No port of th~ \><:>ok "'1"" "1"00"'''. i, ony fono '" t>y any"" "itiMM P"_ i, _Tilons f t"" f'UbI,,"",

''<0""" ""n'"" H, u· " • """''''"''' 0I1"r ... """ EJueo,x.., 1",,-

A IL, ... "" F1c, 10K ." """, ... ",,01 ALl< .. C"'P"'''''''' ' GAL . "" PAL.", ,,,.,1<,,,,,,, 0/ latl;ce
><~'''' C"""",t""" "1,",,,, G,Oph"" MOOeIT ecnooloL" ,n<! MOOeISi", .f< " m"~' 01
.... ,'" G,.pIl;';' C"'p"'.t>oo. RAMBUS ond RDRAM or< "si'''''" ",,,,,,"""', 01 RAMH US, 10K.
Xih", . "" Spo"," ." ~,,,,, """'m"",. 0/ Xil i",. l ",. V,<i"'tl ;, • "~",«I "ode nt'" 01
Cad<""" lk~S" >)""= ,,..-, ~,,,,,"t ;' "v«,,..j "..Jc ... ,k 0/ 'Oe MicrooofI c:o.-,..:.n ,"""
Tho ,",hor "xl ""bl6"'" of th6 """" ~,,~ ..,..j ,heir "''' '"",11 i" ""PO"'" ,Ill< \><:>ok.11'I«o eff"",
,,,,I..., ,he Je.,,,,,,",,,,,, "".«0. and te"i", 0/ ,he tt>eor ... '"~ 1"""'''' ,,, ",,,n,,, .. ,"";,
en...,i"' The .",bot .II<! ".t>li;h" m.', "" ",,,,,My'" >0)' ".d, <Xf"<"<" '" p'i«I , _it.
"1"" to n",. 1""1' <>< ,he """'",,"Lot.,. "",,,o...l in "u •....... The ,",b", and p ublHhor 11
"'" be li, hI< .. any"""' ,.". urile.taI '" ron>e<o",",ir<1 dontoVO in WOoe<1;.,o ~,,, n.,,, """'" ou, 01,
tho fum ~h;" .. ",d"'m""" '" "" 0/ ,0<>< r>r<'S"""

P,;,, '0<1 ;0 ,,.,. U. ;t«! S"", "'A m ... , "",

10987,;~'32

I,BN U-13-14051~- X

f'<.""" E<hIc>.,,,,,, Ltd .. L"""",,
p"non Edo>co,.,. Au,,,,,;., f't ,. Ltd. Syd""
f'<",,,o EdI>c>,"", S;"",.,.." "',. Ltd.
f'<,non E<hIc>.,,,,,, S""" AN Lt.! .. U""" K~
p,.non F.duca,.,. C ,"'" T"" ... ,
f'<.""" E~ "" M,,;ro, 5,A, de C. v,
Pcmon Edo>col00n--.. ".... To"yo
f'< •,. EdI>c>,,,,,, M, I.)"io. I"re. Ltd .
.... non Edu<.,,,,,,, '''' .. Up,," s.ddk 1<;, H"'k",,,

I'rdace

OChapt e r 3

DIG ITAL C OMPlffERS AN]) J ~FOR).tA t ION
1· 1 Digital Computc~

Informalion Repretentatton
Computer SmlClUre
More on the Gcnerit Computer

1·2 NumberSystc""

' .J

,.
, ., ,.
,. ,

Binary Numbers
Octal and Hexadecitnlll Numbers
Number Ranges
Arithmetic Operations
Con,"Ct~ion from lX<;imal 10 Other Bases
Decimal Codes
BCD Addition
Parity lIit
Gray Codes
Alphanumeric Codes
ASCII Ooaracter Code
Chapter Summary
Reference!l

""""=
OChaplc r 2 29

xii;

3
3 , , ,
8 ,

n

" " " '" " W

" " " " " "
COMlltNATIOt<AL LoGIC C tllCUrrs 29
2· 1 Binary Logic and Oatc$ 29

Binary Logic 30
w gic Oat"" 32

2·2 Bo(Man Algebra 33
Basic Identilie$ or fI.oolean Algebra 3S
A lg~bralc Manipulation 37

o IIi

Complement of a Function " " Standard Fnnns "
Minlenns and Maxtcnns " Sum of Products " Product of Sums .,

'4 Two-Level Circuil Optimization " Cost Criteria " Two-Variable Map " Three_Variable Map SO
Four-Variable Map " ,., Map Manipulation '" E"ent ial Prime Implicants " Nonessential Prime Implicants ..
Product-of-Sums Optimization 62
Don 'I_Care Conditions 63

' ·6 Multiple-Level Circuit Optimization " ,., Olher Gale Type!; " ,., Exclusive-OR Operator and Gates " Odd Function ,. ,.. High_Impedance Outputs n
2-10 Chapter Summary "' References "' Problems "
DChapter 3 87

COMBINATIONAL LoGIC DESIGN 87
3·' Design Concepts and Automation " Design Hierarchy S9

Top-Down Design '" Computer-Aided Design '" Hardware Description Languages " Logic Synthesis " 3·' The Design Space %
Gate Propeflies " Levels of Integralion " Circuil nchnologies " Technology Parameters '" Positive and Negative Logic ,m
Design Trade_Offs 003

3·3 Design Proce<!ure "" 34 Tec~ n OIOS)' Mapping 'W
Cell Specification '"

" 0 Come."

,.,
Ubi-am
Map,MII T echniquell
VeriflCatioo
Manual Logi< Anal).is
Simulation
Progra mmable Im ple men tation Techn ologies
Read·Only Memory
Programmable Logic Array
Programmable Array logic Dc,-ices
Chapter SummaI}'
References
l"roblem.

'" 1\3
m
m
on

'" '" '" 00

'" m
m

D Chaple r 4 141

CoMDINATION!lL F liNCTIONS AI<D CIRCUITS

" "

.;

,~,

,~,

Combinatio nal CircuilS 141
Rudimentary Logic Functions 142
Value· Fixing. Tran<ferring .• nd In' -cnin, 142
Multiple-Bit Functions 143
Enablin8 146
lXa.>ding 147
Decoder Expansion 148
Decoder and Enablin, Cornbinalion. lSI
En~oding 152
Priority Encoder 153
Enrodcr bpansi"" 155
$electing 156
MuUiplexe", 156
Muluplexer Expansion I S8
Ahcrnallvc Seteaion Implememalions 159
Combinational Function [mplemenlalion 161
U.inl lk<:o<Iers 162
Using Multiplexer:< 164
U. ing Read-Only Me,norie, 166
Using Programmable \...Qgk Arrays 169
Usin. Ptogrammable Arra)' Logic De,-ices 171
Ullng Loo,,",p Tables 17S
H DI.. R~presentation for Combinational Circuiu-VI1 D I.. 176
HOI.. Reptl'Stntatioo. r", CombInational Circuils-Verilog ltw
Chapter Summary 1\10
References 191
f"foblcm. '"

0." •• " 0 ,

DChapter 5 201

ARtTHMETtC FUNCJ10~S AND CIRCUITS 201 , , herative Combin"ional Circuits '" 5-2 Bina!)' Adders 202
Half Adder 2m
Full Adder 2"'
Binary Ripple Carry Adder '" Carry Lookohe.d Addcr "'" , .; Binary Subtraction 2W
Complements '" Subtraction with Complemcnts m

'4 Binary Addcr- Subtractor!; '" Signed Bina!)' Number!; 216
Signed BinaT)' Addition and Subtraction '" Overnow 220 ,., Binary Mult iplication 221 ,., Other A rithmctic Functions ill
Contraction 2M
Incrementing m
Decrementing no
Multiplication by COnSI"nlS m
Di\'ision by Constants '" Zero Fill and Extension m

" HDL Representalions-V HDL '" Behavioral Description m

'" HDL Repre""nta1ions-Verilog 233
Behavioral Description 2" ,., Chapter Summa!), m
References '" Problems '"

DChapter 6 241

SEOUE~TtAl CtRCUtTS '" " Sequential Circuit Definitions W

" Latchc. 2M
SR and S Ii Latchc. '" D Latch "" '"' Flip-Flops '" Ma,ler_Slave Flip_Flops "" Edge-Triggcre<:l Flip-Flop '" Standard Graphics S)'mbols '"

,; 0 eon"",,

Direct Inputs
F1ip_ Fk'p Timing
Seq uential Ci rcuit Anal)"i.
Input Equations
State Table
State Diagram
~quemial Circuit Timing
Simulation
Sequemial Circuit Design
Design PTOCf'dure
Finding State Diagram. and Stale Table!;
State Assignment
Designing wit h 0 Flip-Flops
Designing with Unus.ed States
Verifieat;"n
Other Fli p-Flop Types
JK and T Flip-Flops
H DL Representation for Se<juential Circuits-VHD L
HDL Rep res.emation for Se<juential Circuito;--Ve,ilog
Chapter Summary
References
PTobieIM

DChapter 7 309

R (GtSTERS A ND R EGtSTER T RANSfERS
7-1 Registers and Load Enable

Register with Parallel Load
7·2 Register Tranders
7·) Register Tran.fer Operations
7-4 A Note for VHDL and Verilog Us.e.,; Onl)'
7-S Mierooperations

Arithmetic Microoperations
Logic Microoperatioll'l
Shift Microoperation.

7·6 Microoperatiom on a Single Register
Multiple-e'· Based Transfers

" '"

SMt Registers
Ripple Counter
Synchronous Binary Counters
O ther Counters
Register Cel! Design
Multiplexer and Bu ... Based Transfers for M ult ipJe Registers
Th ree-State Bm

'" '" '" "" ,.,
"" '" '''' '" '" '" m
m
m

'" '" '" "" '" m
m ,.,

3Q9 ,,,
'" m
m

'" "" '" '" 3D

'" '"
'" '" m
m

'" '" '"
CoGI.... 0 ...

Serial Transfer and Microoperations
Serial Addition

7· 10 HDL Represcntalion for Shift Registersand Countcrs - VHDL 351
7·1 1 H DL Represe ntation for Shift Registers and Counters--Verilog 353
7· 12 Chapter Summary 354

Refercnces 356
Problems 356

o Chapter 8 363

SEOUE~C!NG AND ComROl
8·1 The Conlro l Un it
8·2 Algorit hmic State Machin.,.

,.,
The ASM Chart
Timing Conside rations
ASM Chart E,~mple.

HinMY Mult iplier
Hardwircd Control
Se'lucnce Registor and Decodcr
O ne Flip .Flop pe r StH tC
HI) L Representation of the Hinn,), M\llhpl ier-VHD L
HD L Representation of Ihe Binary Multiplicr_Vcrilog
Microprogrammed Control
Chapter Summary
References
l'roblcms

DChaple r 9 399

M r,MORY BASICS ,., Memory DefinitiMS

" Rondom·Acces. Memory
Writ e and Read Op"r.tioM
Timing Wa,'eform.
l'rorenies of Memory

" SRAM Integra led Circu its
COincident Selection

" ArrayofSRAM lCs ,., DRAM les
DRAM Cdl
DRAM Bit Slice

% DRAM Typ"<
SynChronous DRAM (S DRAM)

,·i,i 0 Coo"."

363
3M
363

'" ;68

36'
""
'" '" '"" 3"'

'" '00
;n

'" '"

339
3W

"" '"' ."

." ."

""
'" '" '" '" '" '"

Double Data Rate SDRAM (DDR SDRAM)
RA~IBUS8 DRAM (RDRAM) ,., Arrays of Dynamic RAM ICs

" Chapter Summary
References
Problems

o Chapte r 10 429

CoMPUTER O l:.StGN BAstcs ,., Introduction

'.2 Datapaths ,., The Arithme!idLogic Unit
Arithmetic Ci rcui t
Logic Circuit
ArithmetidLogic Unit ,., The Shiner
Barrel Shifter ,., Datapath Repr=ntatia., ,., The Control Word ,., A Simple Computer Architecture
[nstructioo Set Architecture
Storage Res<:mrtts
Instructioo Format'
I nstructioo Specifications , .. Single_Cycle Hardwirecl Control
Inst ruction De<X>dcr
Sample Instructions and Program
Single_Cycle Compute. Issues , .. Multiple-Cycle Hardwired Comrol
Sequential Control Design

100JO Chapter Summary
References
Problems

o Chapter 11 483

I NSfRlJcnON SET ARCHfTl.'.CTURE
t I_ I Computer Architecture Cone<:pu

Basic Computer Operat;on Cycle
Register Sct

11 _2 Operand Addressing
Three _Address Instruction,

'" '" '" '" '" '"
429
430

"" '" "" '" '" '" "" '" '" '" "" "" '" '" ".
'" ...
."
'" '" '" '" '"

"" '" "" '" '" '"'
Co.","" 0 "

11-3

11-7

11-8

11-9

11 -10

Two-Addr~s InstruNions
One-Address Instructions

Addn:ssing Architeclures
Addressing Modes
Implied Mode
Immediate Mode
Register and Register-I ndirect Modes
Dircct Addressing Mode
Indirect Addressing Mode
Relati"e Addre",ing Mode
Indexed Addressing Mode
Summary of Addressing Modes
InStfUction Set Architectures
Data Tran,fer Instructions
Stack Instructions
Independe nt "e ... uS Memory-Mapped 1/0
Data Ma" ipulation Instructions
Arithmetic Instructions
Logica l and Bit M~nipul ation Instructions
Shi[t [nstructions
Floating-Point Computations
Arithmetic Ope rations
Biased E~pc>ncnt

Standard Operand Format
Program Comrol [nstfUNions
Conditional Branch [nstructions
Procedure Call and Return [n,tructions
Program Interrupt
Types of In!errupts
Processing Extemal ln te rrupts
Chapter Summary
References
Problems

Dehapter 12 527

Ri se AND e l se C " NTRAL PROCESS tNG UMTS
12-1 Pipelined DJiapath

Execution of Pipeline Micr""perations
12_2 Pipdined Control

Pipeline Programming and Performance
12-3 The Reduced Instruction Set Computer

• 0 Coo,O""

"" '" m
m

'"' '" '" '" '" '"
'" ;00

'" "" "" "" "" "" "" "'" "" '" m
m

'"
'" "8

'" '" '" '"

527

'" m
m
m
m

12-5

Instruction Set Architecture
Addressing Modes
Dat.path Organiza1ion
Omlrol O rgani1.a1ion
Data Hazards
Control Hazards
The Complc~ Insl r"':lion Se1 Compu1er
IS A Modifications
Datapalh Modifications
Control Unit Modifications
Microprogrammed Comrol
Microprograms for Complu Instructions
More on Design
High-Performaoce CPU Coocepts
Recent Architecturallnno~a1ions
Digilal Sysums
OIaptcr Summary
References
Problems

o Chapter 13 579

ISPlIT-O UTPUT ANO C OMMUl'ltCATtO:,<

13·1 Computer 110
13·2 S"mplc Peripherals

Keyboard

13·5

Hard Oi,k
Graphic:< Display
110 Transfer Ral es
110 rnte. faces
110 Bus and Interface Unit
Example of 110 Interface
Strobing
Handshaking
&ria l Communication
Asynchronou1 Transmission
Synchronous Transmission
The Keyboard RC"i1;tcd
A Padel·Based Serial 110 Bus
~lodcs orTransrcr

Example of Program·Controlled Tran,f~r
[nterrupt_ln itialed Transfcr
I'r;orily Intcrrup1

Coo","" 0

'" '" '" '" '" SS3

'" '" ,.,
'" '" '" "" "" ,n
'" '" m
m

>7,

'" "" "" "" '" "" '" '" '" '"' '" '" '" '" '" '"
'" '" "" "" .,

DaisrChain Priority "" Paralld Priority Hardware ,m
,;] Dir~1 Meillury Acc.:.-ss "" DMA Controller "" DMA Tronsfer "" 13·8 [/0 Processors "" tJ·9 Chapter Summary on

References 6B
Problems ,n

o Chapte r " 617

MEMORY SVSTr:MS 617
14·1 Memory Hierarc:hy "" ,., Localitrof Rdercnc<= "" [4·3 C""he Memory ,n

Cache Mappings '" Line Si~e '" Cache Loading '"' Write Metlwds '"' I ntegrat iOfl of Concepts '" Instruction and Data C""hcs m
Multiple·U,,-el Caches m

"4 Virtual Memory "" Page Tabl.,.. '" Transl. lion Loohside Buffer "" Vinual Memory a nd Cache "" 14·5 Chapter Summary "" RefereTlCe§ "" Problem ~ ,n
[r<DEX 647

A;; 0 Cooten"

The object of thi5 te~t is to provide an understanding of the fundamental, of logic
and computer design for a wide audience of readers. Many of the fundamentals
that arc presented here ha"e not changed in decades. On the OIhu hand. the
advances in underlying technology have had a major dfe<:1 On the applicat ion of
the5<' fundamentals and the emphasis to be placed on Ihem, The proceS'S of design
has been automated by USing hardware description languages and logic .ynthesis.
and the quest for sp<:ed and low power has chnged (he fundamental. of computer
design.

The coment of this third edi(ioo continues (0 focus On fundamentals while at
the same time rcHuting the relative importance of hasic concc:pts as the te<:hnol­
ogy and the design proce .. evolve. As an illustration. microprogramming. whkh
has declined in u5<' as a primary control un it design method. is treated only as a
control uni t design technique for implementing complex computer instruct inns.
Also. o""r time. the fundamental terminology i. e,'olving and. along with it. our
perspective nf awx-iated concc:pts. For example. in this editton. 5<'<1ions On NAND
circuits and NOR circuits appear in the broader context nf technology mapping.

The te" continues tn provide tbe option to instructors to prn"ide v"y basic
co"erage of either VHDL or Vetil"- or omit hardware descriptinn language
(HDL) coverage entirely, The perspe<1i,'e of the introductory co~erage here i, the
correspondence of the HDL description to the actual hardware it represents. Thi.
vit81 perspective. whkh is critical in writing HDI.., fnr IOSk synthC'iis. can be lost in
n,ore detailed treatmen ts focusing On the language and fiuency in i .. u5<'.

tn summary, this edition of Logic and CompllleT De,y;gn F""dammla/s fea­
tures a strong emphasi, on fundamental. underlying contemporary IOSk design
using h~rdware description languages. synthesis. and ,'.rif,c8 tlon as wcll as changes
in emphasis in the use nffundamentals nf computer design. The focus on bask con­
cc:pts remains and manual e~.rci5e!l to enhance thorough understandi ng of these
concepts continue as a mainstay.

In nrder In support the evolving p<:rsp<:cli~e and to deal with growing struc­
tural problems. notably chapter length. this edition features a m~jor chapter reOr·
ganizalinn, Chapters I Ihrough 6 of the book lreat logic design. and Chapters 7
through 9 (\e.1 with digital systems design, Chapters 10 through 14 focus directly
on compmer de.ign. Thi. arrangement provides ""lid digital s)'!ltem design funda ­
mental, ,,·hile accomplishing a gradual. bnltnrn.up development nf fundamental5
fnr u5<' in top~own compu ter design in later chapters. Eleven of the 14 chapters

o ••

CO<1cain new material not pre5Cnc in the second edition . and .pproximace ly 50% of
the problems are m<.><lified or neW. There are <we r a dozen text supplemcnts avail-

l~ t ~~ I~~ 1!lI [i~lli I ~I~~ I@I ~~I MI~ j,J 1 JJ ",1:,
from prior ed itions. Summariell of tbe topics covered in eacb chapter follow.

Chapter I-Oi~t.1 Compute .. and InformAtioll introduces computer systems
and information representation. including a new $I.,<;lion on Gray codes.

Chapter l-Con,hinarional Logk Ore"i" deals with the basic lheory nnd
concepts lor designing and optimizing gate circuits. A new section on muiti·[",·cI
logic optimi'.alion appea [n addition to tbe basic literal count_ gate inplll COIInt i.
introduced as a more accurate cost criterion for use with multilevel logic circuits.

Ch~pter 3------Co "'bination~1 Logic Design pr<wides an ove!'>'iew of the COn­
temporary logic design proce .. and deals with gate c),aracteriSlics and delay, and
technology is>;ues such as use of NAND. NO R. AOI and OAL and XO R and
XNOR gate functions. The deta il. of steps of the design process including proble m
fonnul ation. logic optimiza tion . technology mapping. and '-erification are co\-ered
for combina liona l logic. As a pa rt of technology mapping. this chapter contains
basic coverage of ROMs. PLAs, and PA Ls. eo.-erage of Field Program mable Ga te
Arrays (FPGAs). ,,'ilh the focus on the parts typically used in .tudent labs. is pro­
"ided as a " 'ebsite supplement to permit updat ing as tb is technology cbanges dur­
ing the]ifelime of th;s edition.

Cha pter 4--ComlJinational Functions and Clrrn.ts covers the buildIng blocks
of combinational dellign, Remnants 01 MS[logic ha>-e been removed with tbe focus
changed to I) lundame nl al combinational funct ions and their implementalions and
2) techniques for uti liling and modifying these funct ions and I~eir associal.d
implementations- This focus provides fundamcnUls for a cle understanding of
structured logic design and for visuali,ing the logic re.uiting fmm HOl syn thesis
In addition to co>'cring dttod ing. cneo<ling. code COIl\"ersion. selecting. and distrib­
uting. new functions s l>Ch lIS enabl ing and input_fi . ing are introdured. Int roductory
sections on Verilog and VllOl arc provided for tbc various t}'p<:s of functions.

Chapler 5-Arithmctk .",,"<Iion. and Clrroil, deal' with arithmetic lunc·
tion! and th eir implementations. Beyond number represe ntat ion. addition. subtrac­
tion and mulliplication, function. and implementations are int roduce<l for
incumenting. decrementing. fIlling. u tcnsioo and .hi fting. Verilog and VHDL
descriptions are provided for arithmetic functions.

Chapter 6--Sc..qucnlial Cir introduce. sequemial circuit anal)'5;" and
design, Laiche!, master-s la.-e fl ip·Oops. and edge-lrigge r." nip-Oops arc w ,'ered
with all empbasis on the [) type. Otber types of flip-llops (S-R. J·K. and -Il whi cn
are used less frequcnUy in modem designs. are co"ered but given less em phasis
wilh in-dtplh coverage moved to • website supplemen t. Verilog and VHDl
descriptions of Oip_flops and scq uential .i",uits are provided.

C~aplcr 7- Registc .. alld Regi"er T"'n, fcrs ties toge ther dosely the imple.
mentation of regist ... and tbeir applica t;on~ Shift register and counter design arc
based on combining registers with lunctions and implementations introduced in
Chapters 4 and 5, Only the ripple CO\lnter ;., presented a. a IOtally new conce pt.
This approoch is in keepi ng with tbe reduction of focus o n circuits originating as

,.. 0 Pr<fo«

MSJ parts. A new section focuse5 on register cell design for regislers performing
multiple operalions. Verilog and VHDL de""riplion. of Ihe various regisler types
are imroduced.

Chapt .. , 8--Seque n";ng wnd Cuntrol co~ers control un ;1 design . An add; ­
tional feature added to the Al gorithmic State Mac hin e (ASM) represent .tion is a
multiway branch thai is analogous to the ··case·· from Veri log and VHDL. Hard_
... are control is emphasized. "'ith reduced emphasis on microprogrammed COIltrol.

Chapter ~Mc"lOry Basic; covers SRAM. DRAM. and b .. ic memory sys­
tems. A new section on synchronous DRAMs treat. the basia; of these curren t
tednologies. Veri log and VH DL meMOry models are provided on Ihe website.

C pte' IO--Comp uter Oos.lgn 8*, 101 oovers regiSler files. function units.
dat apaths. and two simple oomputers. A single-qde oomputer and a new multi­
ple-qdc oompute r arc designed in S(lme detail with ooth employing hard·w;red
comrol.

Chapte, II_ Instru ction Se t ArchitcC1u introduces many facets of in,truc_
tion sel archi teclure. It deals with address count. addressing mode .. architecture ..
and the types of in.truct;ons. Addrer;s;ng mode. and other aspectS of instruction.
arc illustrated wilh britt ""gme"IS of instruction code.

CIoapler U - RI SC a .. d CISC Cen'",1 l'~nK Unit. introduces pipelined
(!alapaths and oontrol. A Red"""d IlUtruction ScI Computer (RISCj design using
pipelining is gi,·en. A new Complex Instruc, ion Sct Computer (CISCj design is pre­
sented. This design use, a microprogrammed oontrol unit in COIljunc!ion with the
RI SC foundation to impl~nlCnl compl~x in'trUC1ion~

Chap'e . 13- lnpn, -O"tpul MOd Cnmm .. ni",,,i,,n deals ",;th dat. tran.fer
b"t",een Ihe CPU, input_output interfaces and peripheral dc,·kes. DiscuS$ions of a
keyooard. a CRT display. and a hard disk a. peripherals arc induded. and a key­
board inte rfa"" i~ illustral~d . Olher topic:s ~o'"CTed range from scrial com mu nica _
tion. includ ing the Universal Serial Bus (USB) '" an illumation.lo I/O processors.

Chaple. l~ __ Memory S,."ems has a particul3T focus on memor~ hierarohies.
The cenoepl of locality of refore""e i, introduced and illustrated by consideration
of the cachelmain memory and mai n memorylhard disk rel'l\ionships. An o,·crv;ew
of e""he design pa ramelct"$ i~ prO\·ided. The I",almenl of memory management
focu on paging and a tra nslation lookaside buffer suppurling ,·;nusl memory.

In addition to Ihe text itself. there are substantial support fea.ures provided.
descriptions of wh ich follow.

Companion Web, il e (h ll p1Iwww.p",nhaJl.romimano) COn lent i"cludes the
following material: I) (\>·clve reading suwlemen!> induding new material and
m.terial deleted from prior editions. 2) VHPL and Vcrilog SOurCe files for all
unmples. 3) sol ulions for aoout one- th ird of a ll text Cha pler and reading supp le­
ment problems. 4) errata. 5) Powerl'oint- .lides for Chaplct"$ I through 9. and 6)
projee'io" original~ fo r complex f'gures and lables from the lut

D~ign Tools packaged with most domestic and internalional printings of
the te" consi>! of (he Xilinx" ISE Student Edition $Oflw. re graciously provided
wilhout cltarge by Xilinx. Inc. Download acress to the demo XE version of the
ModelSi m- logic si mulator from Model Technology Incorporated is availabl<:

Prer..,. D ,.

through Xilinx. These tool. can be used to emer schemati", and 51ate diagrams.
compile and ,imulate VHl)L rode. Verilog ~ode. o r schematics, synthesize C PLD

~M rmn IIImlmml!llDm m~ nmmm 11m IIImlm~ Im~I;M;!~IIUl WJ~ I~,
purchase of low-<:O$t experimental bard ... ·are, these too,," provide everyth ing
needed for 5tudent, to pe,fonn C PLD·based Or FPG A·based experime ms.

Instructor's Man ual C<NItent include. important suggestions for use of the
boo~. information for obtaining altemati"e CAO lools, and an problem oolutions.
Thi5 manual i. available from Prentice I iali to in.trueton at ... a~mk institutions
who adopt the book for classroom IISC.

Because of ils broad co"erage of both logic and computer design. thi, boo~
can seTVe :\evera! different objective. in sophomore through junior leve l cou~s.
Chapler.t I through II. with ""Iected section. omitted. provide an overview of
hardware for computer science. computer engineering. e lectrical enginee ring or
enginuring stu~nt. in genua! in a single scm«ler course. Chapter.t I through 8
give a basic imroduction to logic design. which can be completed in a single quar·
t .. for el""trkal and computer enginee ring studems. Coverage of Chapter.t I
through 10 in a semesle r. with perhaps K>ftIe supplementary maltrial, provides a
stronger. mOre C<NIlemporary logic design Irealmem. n.e enlire book. covered in
t, qu.rters. provides the basks of logic and computer design for computer engi­
neering and scieace ",udems. Co"erage of the emire book with appropriate .upple·
mentary material or a laborato,y compone nt can fill a two·semeSler scquence in
logic design and computer a rchitecture. Fi nally. due 10 its moderalely paced treat·
ment of a wide range of topics. the book is ideal for ",If-uudy by ~ngin~er.t and
computer sciennst,-

Among the many contributions 10 thi, book. uc~lIent ~tail~d comm~nt.

and suggestions on drafUl of Chapter.t I Ihrough g were provided by Richard E.
Haskell. Oakland Univer.tity; Eugene Henry. Un;vcr.tity of Notre Oame; Sung Hu,
San Franci$CO Slate Univer.tity: and Walid I lubbi. New k~y Institute of'Jechno-­
logy. Their C<NItributions to text impr",..,ments are greatly appreciated. Faculty and
stu~nts at th~ Uni,·er.tity of WiSCQOsin also contributed to the teXl. A .uggestion
from l'rof""'r Jim Smith motivated the direct ion taken in C ISC design in Chapter
12. and Professor I...eQn Shohel suggested specific improvcmenUl based on his use
of the 2nd Edition. A special thanks goes to Eric Weglarz for his in-depth reviews
of new material for both content and darily.Alw than ~s to Eric and to Jim lJu for
preparing oolutions to new and modified problems for Ihe Instructor'. Manual.
Our special appreciation goes of to all of IhOiSC al Prentice Hall and elsew here for
their efforts on this edition. NOlable are Tom Robbin. and Alice D workin for their
guidance and support. Eric Frank for hi. contributions during the early stages of
th;,; ~dition. and D aniel Sandin for hi • ...,ry effici~nt and helpful ha!KlJjng of the
production of this edition.

Finally. a "ery specialthank5 10 Val Kime for her patience and understanding
throughoul the de"elopmenl of the third edition.

..., 0 1',"..,.

M . MORRIS MASO
OiARU".S R. KIM!!

- -

LOGIC AND
COMPUTER

DESIGN
FUNDAMENTALS

DIGITAL COMPUTERS
AND INFORMATION

L
ogoc design lun<lamemals and COIT1!l"1e, dMign lvndamell1als ora t!l& topics 01
11>. t>ooI<. logic design <leals with lt1e basic OOOCIIplS and tools use<! 10 clestgn
digital ha rdware consisti".. 01. "'rcu~s. Compute, design Ooals with the

addiIJonal """""I'ls and tDOls used to design coml>U1ers and oI~ complex digital
hardware. Compulen ar>d digotal hardware in ge"",al life rekmed 10 •• digital
'ysloms. Thus, _ booIc is about undemanding and <!esigrlinV digital 11'51"""', Due
10 its gene rality aoo OOIIlPI""iIy, the OOI11p<JIBr prrNide. an """'I ""hide lor rnlng
the ooncepts 01, and tools 10<, digital system ""sign. In a<ldibon. due to its widespread
usa, It!e """'PUler "self Is <Ie5e<ving of stud)'. Hence, !he foe, 1hi11 boo!< Is on
compute", and their de.q,.
The computer will be 001 on~ .. vehicle. b<JI 81$0 a motivator lor 8t..:!y. To this end, we
U$O the exploded piclof;al diagram 01 a compuler 01 the class common/)' referred to as
.. PC t sooaI <::Omp\I1or) gill$tl on the ~e page. We uS<! ttlis gGOe<ic C<>m\l<Itaf
to hiltlight the signIfie.once of the mat"rial ~rod .,.., its fSll,ltJonship to !he overeH
system. A bIIlaler In thol cI\aj)1er, we win (li$cuss !he "',,';ow major ~. of IIle
geooric cornpuIer arid see !>Ow they relate 10 a bIOCI< diagram oft"" usod to oescribe ..
compute<.

1- 1 D IGITAL COMPUTERS

Today.digital computers ha"~ su<h a prominent and growing role in modern .ocicly
thai we orten say we are in the ~i nform8t io" 8ge." Computers 8re invol"ed in our
busines. transactions. comrn unications. tn,"spona!ion. rnedical !realrnenl. and
COle n .inmenl. They rnon;tor our weathe r and environment. In the indus!.ial world.

o ,

4 0 CHAi'TEIi. 1 I OIGITAL COMi'VTER5 ANO INFORMATION

Ihey are heavily employed in design, manufaCl uring. diSlribulion. and sales. They
have conuihured 10 many sciemific disco,'eries and engineering d""c!opmenIS Ihal
would have been unauainable O1herwisc,NoTably.lhe design of a new processor for
a modern compuler could nol be done " 'ilhoul Ihe use of many compuleJ'$!

The mOSI slriking propeny of Ihe digiTal compmer is ils genera~Ty. h can fol­
Iowa sequen"" of inslructions. called a program, thaI operalC$ on given data . "llIe
user Can specify and change Ihe program or The dala according 10 specific needs. As

a result of Ihi$ fiexibi1ily. general-purpose digilal compuleJ'$ can perform a variely
of informal ioo-processing lasks tbaT range over a very wide Spe<:lrum of applica­
lions. The general_purpose digilal compUler is Ihe best ho"" eumple of a digi'''1
J)'Jlem, CharacTerislic of a digital SysTem is iTS manipulation of discreTe elemenu of
informalioo. Any sellhal is reSlricled 10 a finile number of elements contains dis­
crele information. Examples of discrele selS are the 10 decimal digils, Ihe 26 k ll eJ'$
of Ihe alphabet. the 52 playing cards. and the 64 squares of a chessboard. Earl)'
digital compuleJ'$ were used mostly for numeric compUlations- In this case. Ihe dis­
crele elements used were the digiTS. From such an application. Ihe term digiml
compm~' emerged.

Discrete elements of information are represenled in a digital system by
physical quan!ilie~ call ed s;gnalJ. EIe<;Trical ,ignals ,uch as vollag.,. and currenTS
are mosT common, Electronic devices called transiSTors predominale in the cir­
cuitry thaI ;mplemenu these signals. The .ignals in mOST presenr.<lay e!e<;lTonic
digilal sySTems use jusl Iwo discrete value, and are therefore said 10 be bjtJary.

We typically represent Ihe IWO discrele .'alue.> by range.> of volt age values
called H IGH and LOW. OutpuT m lt age ranges and input ,'oltage ra nges are illus_
traled in Figure 1-1. The HIG H OUlpUT voltage .'alue ranges beTween 4.0 and 5.5
volts., and Ihe LOW OUIPU! vollage ".lue ranges between - 0.5 and 1.0 mit . The
high inpul range allows 3.0 10 5.5 mlts 10 be r~gnized a HIGH. and Ihe low
inpul range allow. - 0,5 TO 2.0 vollS 10 be recognized as a LOW. The fact Ihallhe
inpur ranges ate longer Ihan Ihe output ranges allows the circuils To funClion oor­
reclly in spile of variations in Iheir behavior and undesirable "noise" vollagc. Ihat
may be added 10 or subtracted from the OUTpUts.

We give tbe OUTpUI and inpUT voltage ranges a number of diffe rent name ..
Among Ihese are H IGH{H) and LOW{L), TRUE(T) and FALSE{F). and I and O.

H'GII

ww

lJ fi GU RE H
An Enmple of V<>1t. ge Rang .. for Binary Signar.

t_t I o;gi .. l Compu,... a s

II i. clear thal the higher vollagc ranges arc aSSOCi"led with HIGH or H, and lhe
lower "ol1age range~ Wilh LOW or L. We find. howcver. thal forTRUE and I and
FALSE and 0, lhere is a choice. TRUE and 1 can be a$sociated with either the
Itigher Or lower "ollage range and FALSE and 0 with lite olher range. Unless otlt ­
erwise indica lcd_ we _umt that TRUE and 1 3« associaled Wilh lhc highcr of the
voltage range .. H. and tltal FALSE and 0 are associlued Wilh tlte lower of lhe "011·
age ranges.. L.

Why i. binary used? In conlrasll0 the sil ualion in Figure 1·1. consider a '1)'$'

tern ..-ilh 10 values represenling lhe decimal digil" In .uch a .)'Stem, the voltages
avaitab!~y. 0 to 5.0 WI1S--<OUld be divided imo 10 ranges, e!>Ch of length
0.5 volt. A circuil would provide an OUl put ,'oltage wilhin each of these 10 ranges.
An input of" circuit would need to detennine in which of tho 10 ranges an applied
,·oltagt lie .. If we " 'ish to allow for r>Oise on the ,·ollagts.. then oulput ~oItage might
be permil!ed to range over less lhan 0.25 "olt for a gi"en digit repr"""nlation, and
boundaries between inputs could vary by only Ie .. than 0.25 volt. This would
require complex and costly elecllo~ic circuits and still could be disturbed by small
"noise" voltages or small variation,! in lhe cirtuits occ-urring during their manufac·
ture Or use, A. a con5e<]uence. the use of such mullivalued circuit. is very limited.
Inslead, binary ciKuits arc used in which correct ci rcuit operation Can be achicved
with significant varialions in bolh the Iwo output voltages and the two input
ranges. The resulting transislor circuit with an output that is either HIGH or LOW
i$ simple. easy to dtsign. and extremely reliahle.

Information Representation

Since 0 and 1 are aswciated with the binary number system. they are the pre_
fe rred nameS for lhe signal ranges. A binary dig;~ i. called a />it, Information is
represented in digital computers by groups of bits. By using various coding tech·
niques. groups of bi ts can be made 10 rcpr"Senl not only binary numben. but
also other groups of discrete symbols. Groups of bits. properly arranged. can
even specify to the compmer the in.tructions 10 be executed and the data to be
procew:d.

Discrete qua n,ities of informalion either emerge from the nature of the data
being processed or may be purposdy quantized from continuous values. For
cnmple. a payroll schedule i. inherenlly discrete dala containing employee
names. social s.ecurily numbers. weekly salaries. ineome taxes. and SO on. An
employec's pa)'check is procew:d using discrele data values . uch as Ictl CTll of the
alphabet (for the employee's name), digits (for the salary). and spedal symbols
such as $. On the olher hand. an enginur may measure the speed of rotation of
an automobile wheel. which varies conlinuously with time. but may record only
specir", valueS at specific times in tabular forn\. The enginee r is thus quanti>:ing
the cont inuous data. making c!>Ch number in the lable a discrete quantity of
information. In a case , uch as this. if the measurement can be convened to an
electronic signal. the quantization of the signal in both \lalue and time can be per·
forme<! automatically by an analog-t<KIigilal conversion device.

6 0 CHAPTER 1 I m(aTAL COM~ AND INFORMATION

Computer Structure

A block diagram of a digital rompul"';S shown in Figure 1·2. The memol)' Slores
programs as wen as inpul. OUlpUI. and inlermediate dala. The datapath f"'rform.
arithmetic and other data·processing operations as sf"'cified by the program. The
control unit suf"''''ises 1M How of information between the variou, unit&- A dala·
path. when combined with the control unil. forms a component referred to as a
untral processing ,mil. or C Pu.

The program and data prepared by Ih" user arc transferred into memory by
means of an inpul devi"" such as • keyb<>ard. An oulpul de,·ice. such as a CRT
(calhode-ray lube) monilor. di'pla)"s Ihe results of the compUlations and present'l
Ihem 10 Ihc Use'. A digilal compuler can accommodate many different inpul and
outpul devices, such as hard disks. floppy disk drives. CD-ROM drives. and scan­
ners. These dC"ices use SOme digilal logic. bllt of len include analog electronic
drclliL'l.optical sensors. CRTs or LCD< (liquid crySlal displays). and electro·
mechanical componCnl&-

The conlrol unil in Ihe CPU rClricv~ .. Ih. instructions. One by one. from Ihc
program stored in lhe memory. For uch instruClion. Ihe conlrol unil manipulates
lhe dalapMh 10 e~ecute Ihe operation specified by lhe instruction. Bolh program
and data are slored in memory. A digilal compu!cr is a powerfuls)"tem. II can f"'r­
form arilhmelic compulMions. m.nipula!e strings of alphabelic charaNer$. and be
programmed to make decision. based on internal and eXlernal condilions.

More on the Generic Computer

At Ihis point. ·"e will bricft)' diloCUSS Ihc generic rompUlcr and relale il' various
pans to lhe block diagram in Figure 1-2. AI the lower letl of the diagram al lhc
beginning of Ihis chapler is Ihe heart of the compUlcr. an integra led drcuil callcd
Ihe prox:~sso,. Modcm processors such as this one are quite complex and consist of
millions of lransiston The processor contains four functional modulcs; lhe CPu.
the FPU. the MMU. and the inlernal cache.

M<""",y

~ I
~,~

"oi, tj D'''r-tII I
In~IIQ\i!~!

o FIG URE I· l
Block Diagram of. Digital Computer

We have already discussed the CPu. The FPU (floating-pain! unit) i. some·
what like the CPu. exc<!pt that ilS datapath and control unit are specifica lly
designed to perform lIoating.point ope,ation<- In essenCe. these operation. pro·
cess info,mation ,epresented in th. form of sciemific nOlation (e.g .. 1.234 X HI' J.
permiuing the generic computer to handle "ery large and "ery . mall numbeB.
The CPU and the FP U. in relation to Figure 1·2. each contain a dM.path and a
comrol unit.

The MMU is the mcmory managemem unit. The MMU plus the imemal
cache And the separate blocks near the bouom of the computer labe led ··External
Cache" and "RAM" (random IlCc<!SS memory) are all part of the llli"mory in Figu,e
1-2. The twO caches are special kind. of memoT)' that allow the CPU and FPU to

get at th. data to be processed much fa.ter than with RAM alone. RAM I'l what is
most commonly refe rred to as memoT)'. As it' main function. the MMU causes the
memory that appears to be ""aibble to the CPU to be much, much IIITge' than the
actual size of the RAM. This is accompl ished by data transfe .. between the RAM
and the ha,d disk . h"wn at the t"" of the picture of the generic compute,. So the
hard disk. wh ich we discuss later as an inpulfoutput dev;';". appears conceptually as
a part of the memory and inputloutput

The con nection paths .hown betw~en the processor. memory. ~nd external
cack are the pathways between integrated circuits. These are typicall y imple.
m~ntcd as fi ne copper conductors On a printed cireui. ooard. The connection paths
below the bus interface are referred to a. the processor bus. The connections ab",'e
the bus interface ale referred to a~ the inpuUoutput (lIO) bus. The p'Ottsso' bu.
and the [10 bu. auached to the bus imerface carr)" data ha"ing di fferent numbers
of bit, an d have different ways of controlling the mo,'e ment of data. They may also
ope.ate at different speed<- The bu, interface hardware handl", t""'" difference.
so that data can be commun icated between the two bu

All of Ihe remaining Struelu.", in the gene.ic compute. at<; COnsidcn:d pan
of [10 in Figure 1-2. In terms of sheer physical vol ume. these .tructure. dominate.
In orde. to enter informat i"n into th~ computer, a keyboard i, p",,,idcd. In order
to "iew o utput in the form of te~t or graphics. a graphics ad.'pter card and CRT
monitor are provided. The hard disk. discussed previously. is an electromechanical
magnetic storage devic<!. It •• or", la.ge quantities of information in the form of
magnetic nux on spinni ng di'ks coated wit h magnetic materials. In order to control
the ha.d di.k and tran,fer inform.tion to and from it." disk C<)ntrollcr is uscd. The
kcyooard. graphics adapt~r card. and disk controller card are all auached to the
I/O bus- Thi, allows lhese devices to communicate through the bus interfacc with
the CPU alld other circuitry connected to the pr~r bu

·l'!.c generic coonpu'er con,islS mainly of an interconnection of digital modules.
To understand thc operation of each module. it i. neceWlT)' to h~,"e a basic knowl·
edge of digital .ystem, and their general behavior. Gapters I through 6 of this book
deal wit h logic design of digital circuit, in generaL Gaptcrs 7 and 8 discuss the pri.
m~ry components of a digital .ystem. their operati"". and their design. "The opera­
tional characteri.tic5 of RAM are explained in Chapter 9. Datapath and control for
simple computers at<; introduced in Gaptcr to. Chapters 11 through 14 present the
basic5 of computer design . T)'pical instruction, emplO)'ed in computer instruction set

8 0 CHAI"TER I I DlGtTAl COMPUTERS AND INFORMATION

architectures are presented in Chapter II. The aTChiteclure and design of CI' Us are
examined in Chapter 12. Input and output devices and the var;"u, ways tnat a CPU
can communiC.;lte "'th them are discussed in Cbapler 13. FmaUy. memory hierarchy
concepts re!aled to the each'" and MMU are introduced in Chapter 14.

To gui<k the reade. Ihrough Ihis material and to keep in mind the ··fo.",("· as
we carefully examine many of Ihe ··lree .. ·· accompan)ing discussion appears in a
blue box at the beginning of each chapter to lie the topics in the chapler to the
associated componenl' in Ihe generic computcr diagram at the ,lart of thi' chapter.
At the complet;"n of our journey. we will have covered moot of the various modul.,.
of the compuler and will ha'·e an understanding of Ihc fundamentah that underlie
both its function and design.

Earlier. we mentioned that a digital computer manipulates discrete clements
of information and that all information in the computer is represented in binary
form. Operands used for cakulations may be expressed inlhe binary Dumber sys·
tern or in thc deeimal system by means of a binary code. 11,e leuers of the alpha­
bet are also convened into a binary code. The purpooe of the remainder of Ihis
chaptu i'l to introduce the binary number system. binar)· arithrncti~. and selected
binary codes as a basis for funller 'Iudy in Ihe succeeding chapters. In relation to
'he generic compUlcr. this material is ,·cry important and ~pans all of the compo­
nents except some in 1/0 lhat invol,·e mechanical operations and analog (as COn·
lra,ted .. ·i th digital) electronics.

1-2 NUMBER SYSTEMS

The d~cimal number system is emplo)·ed in evuyday arithmetic to repre"""1
num~rs by strings of digilS. D<:pending on il' position in the string. each digit
has an associated ,·alae of an intcgtr raised 10 the power of 10. For examplc. the
decimal number n4.S i. interpreted to represem 7 hundreds plus 2 tens plus 4
anits plus 5 tenlhs.. The hundreds.. tens.. units, and tenths are powers of 10
implicd by the p<>'<ilion of the dig;t .. The value of the num~r is comput ed a.
follows:

n4.5 - 7 X 10' +2 X 10' ~ 4 X](1' + 5 X 10-'

The coo,·enl;"n is 10 wrile only the digilS and infer the COOTesponding powers nf 10
from their position .. In general. a decimal number ,,·ith " digil. to 'he left of the
decimal point and m digils to the right of the decimal point is represemed by a
strin g of coefficient's:

Each codfocient A, is One of 10 digits (0. l. 2. 3. 4, 5. 6. 7. 8. 9). The subscript
value i gives the position of the coefficient and. hence. the weigh' 10' by which
the coefficient must be multiplied

The decimal number system is said to be of ba<e or rod,,, 10. because .he
coe(f1cienlS are mulliphed by powers of 10 and lhe Sy>lem uses 10 distinci digit .. In

)_1 I Numb..- Sy....... 0 9

gener.I, a number in ba"", conlains' digil$, 0, 1.2, ___ ,' - I, and is e~pressed .s a
power series in, wilh Ihe general form

A 0-' A 0-' A' 'Aj . _ IT + _ _), + ... + ,T; ..-

-, -) - ... , -..
+ A _" + A _1' + ... + A _ ... " + A _ .. '

When the number is expressed in]">Q'!ilional notation, only the coefficienlS and the
radi x point are ",yincn down;

In general , the -.- is called the '/ldu p<Jin'_ A . _I is referred to as the "'Ofl .igmfl­
ra", {Iigi1 (msd), and A_ .. is referred to as the 1M" <icni/icanl digil (Isd) of t""
number. Note lnat if m = 0, the Isd is A ..., .. Ao. To distinguish between numbe ...
of different bases, it is customary 10 endose Ihe coefficients in parentheses and
place a subscripl aher the rig.ht parenlhesi. to in<l icate the base of the nu mber.
I lowever, when the contexT makes the base obvious, it is not necessary to use
parenTheses The following illuslrates a base-5 number with" .. 3 and", .. 1 and
ils conversion to decimal:

(312.4)!" 3)(5'+])(5' +2x5"+4)(5- '

.. 75+5+2+0.8 .. (82.8)'0

Note that for all Ihe numbers witho ut the base designated, the arithmelic is per·
fOfmed with decimal numbers. Note also Ihat the base-5 s)'Stem uses only five dig­
its, and. therefore. the values of Ihe codficients in a nurn""r can be only 0, I> 2. 3.
and 4 ",he n e~pressed in that s)'S~em.

An alternaTh'e method lor conv~rsion to bas<:]0 that reduce< The number 01
operati-ons is ba.ed on a lacto.-ed form of the power serieo:

(.. . {{A . _1 ' + A . _,), + A . -J)' + ... + A ,), + A o
_ 1 - t _ 1 - I _ j _ l

+ (A_, + (A _:+ (A _I+ .. + {A ",'I+(A _ .. ~ , -I-A mr)r)T .. .)r)r)r

For ' he example above.

(312-4), " (3 X 5 +1) X 5) +2 +4)(5-'

" 16)(5 +2+ 0_8 ~(82_~)1O

]n addition to decimaL three num""r system, are used in compuler work:
binary, octal, and he<adecimaL These are hase·2. b""c·8. and basc·16 nu ml>ct s)"i­
tems, respeCTively.

Binary Numbers

The binary number syslem i. a ba..,·2 syslem wilh 1"'0 digits: 0 and I. A binary
number such as 11010_] 1 i< expressed wilh a string of I's and O·~ a nd, p<.>$Sibly, a

10 0 CH.}.I'TER.' I DIGITAL COMPUTERS AND INFOR.MATION

o TARLE 1·1
I'o,, ·~rs of 1''''0

"
,.

"
,.

"
,.

0 ,
" ,~ " 65.536 , ,
" '" " 131.072 , • W ,.~ " 262,144 , • " ,= " 524288

• " " ... " ~ 1.048.576 ,
" " g,l'i2 " 2,O'n.lS2

• M " "'" " 4,194.J(j.l , ,~ " 32,768 " 8.388,«<j

binary point. The d""im.1 c~uiv"lcnt of a binary num ber can be fou nd by u p"nd­
ing the number into a power ,erics with a base of 2. For example,

(11010), _ I x2' + lx2'+OX2l + 1 X2 ' -tOx 2" - (26),o

As noted earlier. the digih io " binary number are called bits- When a bit i~ eq ual
to 0, it does nOt contribute to the sum during the c<mversion. Therefore, the con·
version to deci mal C'n be obluincd by add ing the numbers with power<; of two cor·
responding to the bits that are equal tn I. Fnr e.~mple.

(110101.11)2 • 32 -t 16 -t4 + I -t O.S + 0.25 - (53.75)\0

'll' e first 24 numbers obtained from 2 to the power of n atC lisled in Table I·!.
In computer "'ork . 2'" i< referred 10 liS K (kilo).2'" as M (mega). and 2-'" as G (giga)
11",\

4K _ 22 x 2'0 ~ 2" ~4,096 and 16M _ 2' x 220 .. 2Z4 . 16,777,216

The com'ersion of a 'kcim31 number to binary can be easily achieved by a
method Ihat successively sublracts ",""CT! of Iwo from the decimal nu mber. Th
converl the decimat number N to binary. first rmd Ihe greatest number tha t is a
power of two (see Table j .l) "nJ that. suhtraClcd from N. produces a posit;-·c dif.
ference. Lcl t h~ difference be designated N,. Now find the greau>l numhcc th,1I is
a power of two and that. , ubtracted from N" pTOduces a posili'"e difference N,.
Cont in ue Ihi< pTOc<:dure until the difference is ,-ero. In this waY,the decimal num­
ber i. converted to its powers.of. two componCnls. The equivalent binary number i<
obtained from (he coefficients of a power scriL"< that fonns the Sum of the compo­
nents. l's appear in Ihe binary number in the positions for which terms appear in
th~ power "'ries. and 0·, appear in all other positions. This method is demonstrated
by the cOI",e"ion of decimal 625 to binary as fol lows:

625-512 - 113 _ N ,

113 - 64 = 49 = Nl

512 _ 2'

64 _ 2"

49 - 32 .. 17 = ",)

17 -]6-] - "',

1_2 ' Numb •• S,.,..n.. 0 II

32 _ 2'

]6 .. 2'

1 - 1 - 0""',]="1!'
(625), . .. 2· +2" + 2' + 2' + r> '" (]OO]]](XXI]h

Octal and Hexadecimal Number.

A S p.c,iouoly mentioned. all wmputet1 and digital o)'Stcms usc the binary .epre­
senlat ion. The octal (ba>e·/I) and hexadecimal (basc · 16) syslems are u>eful for rep­
resent,ng binary quanlitie. indirectly t>ecau,", they P""'''' the properly Ihat their
base. are po"-c~ of two. Since 21 .. 8 and 2" ..]6. cach <>elal digit correspond$ 10
thrce binary d'gilS and each he~ade";ma] digit wrrespond$ to four binary digiu.

The more oompacI representation of binary numbe~ in til he r oclal or
hcudecimal is much more COfI"enienl for people Ihan using bit 'Irings In binary
lhal are Ihree to four timell IS ion$- Thus.. m05t compUicr manual, 11)(: tilher
octa] or bexadccimal nUlnbers 10 Jpe<:ify biliary quanhl;CS A group of I ~ btlS. for
elllmplc. can be represented in lbe octal 'Y'lem with only fj'·e dili !s. A ,roup of
16 bilS can be represented in heudecimal wilh four d,gits. The ch.oice betwecn an
octal and a hexadecimal . cp.es.enlalion of binary numbe .. is a.bit.ary. allhough
hexadecimal tend. 10 win out.lincc bi tt often appear in a group of .i~e divisible
by four.

The <>elal number .y.tem i, the base·/! 'y",cm with digits O. 1.2.3.4.5,6.7.
An uamplc of an octal numb·c r Is 127.4. To detc.minc it. equivalent decimal v~ l u c.

we expand the number in a power series with a base of 8:

{I27.4), " I X Rl +2 x8' +7 X go +4 X 8-' = (87.5)'0

Nore that lbe digits 8 and 9 Clnnot appear in an octal number.
I! is cw;tomary to " "" tbe fil"Sl r dig'l$ from th~ d,"",mal system. stlrtin, W11h

0. 10 ,epre""nt lhe coefficJcnl$ 'n • base..,. system wben r is 1e5$,han 1O.1be lellers
of the alphabet are used to lupplemenl the d'p ts when r is \0 or more. 1be hexa ·
dmmal number S)'SIem .. a base-16 s)'Item wilh lbe til$! 10 digits borrowed rrom
lhe decimal system and lbe]el1ef$ A. n. C. D. E. and F used for tbe '·alue~ 10. II .
I Z. 13. 14. and 15. respec!i"~ly. An eU01ple or a huadecimal number;'

(B65F), . .. II X 16) +6 X I~ + 5 X 16' + 15 X 160 .. (46687) '0

The firsl 16 nU01bers in the decilllal. binary. <>etal. and hexadecimal nUlIlber $)'1.
tC IIl ' arc liSled in Table 1·2. Note thntt hc ileq ucnce of bina!)' numbers follows n
prciCfibed p"ttcrn. The lea.t $iKnificam bit .ltcrnatc, belween 0 and I. th e !joCwnd
significant bit alternates belween t "'0 0', and Iwo 1"s. the third significant hit alte r·
n.leo bet",..,n rour 0·, and (our I· .. and the lIl05t significant bit alternatel' betwee n
e.ghl 0·, and c ighl I· ..

The oo'l\"ersion from binary 10 octal is u . ily a.romplish~d by p"rtitioning
lhe binary number into Croups o f th.e.: bit. e ltCh. Marting from the binary poInl

12 0 CHAPTER 1 f DlGITAL COMPlITERS AND lNFOR.MATlON

o TAlILE I·:
Nulll""n; .. iI~ OifJc«:ntll s

DeclllUll BiMr'y Octal He .. de<:lmaI
(ba ... 10) (ba .. 2) (ba .. 8) (ba_1fi)

00 0000 00 " "' ~, m
~ 0000 m ,
"' 00" ru ,
M moo ~ ,
M 0101 ~ ,
~ 0110 ~ ,
ru Oll l "' ,
00 ,~ '" •
M '00' " •
00 1010 " A

" 1011 " " " "00 " c

" 1101 " D

" I llO " ,
" I II I "

,
and pr(l«cdin g t<> !l,e leI! and to the righ1. The corresponding octal digit is then
a~signed to each group. The following example i1lU$1ra1C!; the p,ocedure:

(010 110 001 101011. 111 100 000 I 10), .. (26153.7406)8

The corresponding octal digit for each group of tluee bits is obtained rrom !he firs t eight
entr>cs in Table 1·2.Th make the lotal count of bi!;" multiple ofth,ee.O·~ can be ",Ided
0i1 the lef! of the string of bits to the lell of the binary point. More importantly. O·s must
be added on the right of 1he string of bil$ to the right of 1he binary point to m"ke the
number of bilS a mul!iple of three and obtain the correct octal resull.

Con'·crsion ffOm bina,y to he~adccimal is similar. except that 1he binary
numl>er i ~ diviMd into gfOUI'" of four digits. The previous binary number is con·
verted to hexadecimal as f01l0W!;:

(0010]]00 0110 1011. 1111 (J(O) Ol IO), .. (20iB.F06),.

The corresponding hexadecimal digit lor each group of four bits is obtained by ref·
erence to Table]·2.

Conversion from octal or hexadecimal !O binary is don~ by re.ersing the pro·
cedure just performed. Eac~ octal digit i, con.erted !O a 3·bi1 binary equivale"t
and Ulta O's ar<: deleted . Similarly. each hexadecimal digil is con.erted to its 4·bit
binary equi valent. This is illustrated in ' he following .xomples:

(673.121. _ 110 111 Oil. 001

(3A6.C)" ~ 00 11 1010 0110. 1100

010 _ (110111011.00lOlll

_ (11101 00110. 11),

Number Ranges

In digital computers, the range of numbers thm can be represenled is ba""d on lhe
number of bits available in the hardware ~tTUctures that ,tore and process informa­
tion. The number of bil' in these . tructures is most frequently a power of two. such
as 8, 16, 32, and 64 . Since the numbers of bi ls is fixed by the struclures, the addition
of leading or trailing zeros 10 repre""nt numbers is necessary, and Ihe range of
nu mbers Ihal can be represented i. also fl~ed.

For example, for a computer proceiliing l6-bil unsigned integers, the num­
ber 537 is represented as 0000001000011001. The range of integers thai can be
handled by tni s representation is from (I to 2'6 - 1. Ihal is, from (I to 65,535. If the
same computer is processing l6-bit unsigned fractions with tn. binary point to the
left of the most significant digit, then the number 0.375 i. represented by
0.011((((0)))))))). The range of frachons tht can be represented is from (I to
(2'0 - 1)12". or from (1,(1 to 0~741 2.

In later chapters. we wil l deal with fixed-bi t rcpr.scm"lions and range.
for bina ry signed numbers and floating-point num ber .. In both of these cases,
.ome bits are used to represent information ot her Ihan simple inleger or frac·
tion value ..

1-3 ARITHMETIC OPERATIONS

Arithmetic operations with numbers in ha"" r follow the same rules as for decimal
numbers. However. when a base other Ihan th~ familiar base 10 is used, One muSI
be careful to use only, allowable digits and perform .11 eomp LlI .tions with base·,
digils, Examples of the addition of two biM')' numbers are as lollows (nole Ih~
names of the operands for addil i"n)'

Carries:

Augend:

Addend:

Sum:

rom
01100

+](XX) I

11101

101100

101 10

+10111

101 lO t

The sum of two binary numbers is cakulated following the same rules as for ded_
mal numbers.. e ~cepl Ihat tne , urn digit in any position can be only I or O. AI,o, a
carry in bin ary occurs if the Sum in any bil posilion is grealer Ihan l. (A carry in
decimal occurs if the sum in any digil position is greater than 9.) Any carry
obtained in a given posilion is added 10 the bits in the column one significant posi­
tion high". In Ihe first example. since all of the carries are 0, the sum bits are sim­
ply Ihe sum of the augend and addend bils, In the second exa mple. (be sum of the
hil~ in Ihe second column from lhc right is 2, giving a Sum hil of 0 and a carry bil of
1 (2 _ 2 -l- 0). The carry bit is added with the I', in the third posilion, giving a snm
of 3. which produces a sum bit of I and a carry of 1 (3 = 2 -l- I).

14 0 CHAI'TER t I DlGtTAL COMI'UTEIlS AND tNFORMATtON

The following are ","mplcs of the subtraction of two binary numbers: as with
addition, nott the names of the operands:

Borrows,

Min uend:

Subtrahend:

Difference:

rom
10110

- 10010

00'00

00llO

lO t to
- 1001 t

"''''

00110

\00 \ 1 11110

-I I I IOX -lOOI I

01011

The rules for subtraction are the same as in decimal. except Il1 ut a borrow inlO a
given column "<ld. 2 to the minuend bit. {A borrow in the decimal system adds 10
to the min uend digit.} In the firs t example shown. no borrow~ occur, the dilfer_
ence bits are simply tho minuend bit. minus the sut>1rahend bits. In the second
example. in the right pos itio". the subtrahend bit is I with the minuend bit O. SO it
is necessary 10 borrow from the sccond poo;ition ... ~l1 own . This gi,'''-~ a difference
bit in the first poo;ition of 1 (2 + 0 - I • I). In the second poo;ition. the borrow i.
subtracted. so a borrow is again necessary. Rec.1111hat. in Ihe c"ent that the subtra.
hend is larger than the mim,cnd, we . ubtract the minuend from the subtrahend
~nd give the r"wlt " minus sign. This is the case in the thicd ex~mple, in which tili'
interchange of the twO opemnds i. shm,"".

The fin.1 operation to be illustrated is binary mull iplieotion, whi t h is quite
simple. The mult iplier digits ace nlw;ll"' I or (J. Therefore. the partial product' ace
~q"nl e i1her to the multiplicand or to O. Multiplication is iliustrMcd by the foll ow_
ing example:

Mu l tiplic~nd:

Multiplier:

I>r<~l uet:

10 1 1

)(tol

lOll

"'"
I U I 1

II(JI II

Ar ilhme tic operations with octa l. hexadecimal, or any other base-, s},stom
will normall y require the formulation of table. from which onC oblain, sums and
products of two digits in that base. An easier alternative for adding two numbers
in basc, is to convert each pair of digits in a column 10 decimal. add th~ digils in
decimal. and then convert the result 10 tho corresponding ,um and carry in the
ba.e-, sy.tem. Since addi tion is done in decimal. we can rely on our memories
for obtaining the entries from the famil iar decimal addition table. The ,equence
of step' for adding the two hexadecimal numbers 59F and E46 is .hown in
Example 1-1.

EXAMPLE 1·1 Hexadecimal Addition

Perform the addition (59F),. + (£46)",

t_J I Arithmcno Op<m;oru 0 15

H • • ~deeim~1 Equivalent Decl"",t Clk:ullUon

'" EH

13 E 5

17l Carry

" I 119 - 16 + 3

:~5 Carry , .
- -
14 _ E 21 _ 16+.S

The equivalent decimal calculation columns on Ihe right show (he menta l reaSOn­
in g thaI must be carried out to produce cach digit of the hexadecimal sum. Instead
of adding F + 6 in hexadecimal. we add the "'lu;va lent decimals. 15 + 6 = 21. We
then con,·ut back to hexadecimal by noting thot 21 = 16 + 5. Thi' gi'·es a ,um
digit of 5 and a carry of I to the next higher order column of digiti- The other two
columns are added in a similar fashion. •

The multiplication of two base·, num bers can be accomplished by doing all
the arithmetic operations in decimal and com·erting intermediate result, one at a
time. Th;s is ill ustrated in the multiplication of twO octal ~umbers ,how~ ~ ext in
Exomple 1-2.

EXAMPLE 1·2 Octal Multiplication

Perform the multiplicatio n (762)3 x (45).,

~., ~., Declmat ~.,

'" , " - 10 _ 8+2 - " " 5><6+1 - 31-24+7 - " 4672 5><7+3 38=32+6 - '" 3710 '" 8 - 8+0 '" 43772 4 x6 + I 25 - 24+ I " 4,, 7+3 - 31 _ 24+7 - .n

The computation, on Ihe right show the meni al calcul ations for each pair of OCtal
digits. The octat digits 0 thTO ugh 7 have the ,arne volue as their corre,ponding doci ­
mal digits. The multiplication of two octal digits plu, a carry. derh·ed from the calcu ·
lalion on the previous line. i, done in decimal, and the res ull is thtn ron'·erred back
to OCl,!. The lefl digit of the two-digit octal rcsull gives the carry that mustOe added
to Ihe digit product on the next line. The blue digits from the oclal result, ollhe dec·
imal calculation, are copied to the octal partial produc," on the left. For example.
(5)< 2). - {12l.. The left digi!. I. is the carry to be added 10 the product (5)< 6) • .
and the blue least significant digit. 2. is the corre'ponding digit of the octal partial
product. When there is nO digit produC1lo which the corry can be added. the carry is
written direclly into the octal panial product. as in the case of the 4 in 46. •

16 0 CHAPTER I I DIGITAL COMPUIE1.5 AND INFORMATION

Conversion from Deelmal l o Other Bases

The COfIversion 01 a number in base r 10 decimal is done by upandinllhe number
in a po, •• e. series and adding al1lhe lerm!. as shown previously. We now 1're$Cnl a
g~neral procedure for the re...::,.,.. operalion of oonverting a decimal nllmber 10 ~
number in 00"" r Ihat is rd aled 10 Ihe al(crnalive u pan.ion 10 o;Iecinl~ 1 in Scction
1·2. If the nUOlber includel " rodix point . il is ne<:essary 10 separa le the number
into a n integer pan a"d a fraction I>Irl. since Ihe two pariS OlUSI be converted dif·
ferently. The wnversion of a dcciOlH I integer 10 a number in base. i$ done by
dividing the numher "nd all successive quol ie n15 by r and accu mula ting Ihe
remai nden. This prooxdure Ii bell explai ned by e~ample.

EXAM PLE I·) C,".ve~o. or Oet;m."nl~'" 10 0<1 111

Con.·c r! dccima115) 10 QCI.I:

The con...::rsi"" i. 10 bale 8. Fim. 153 is divided by 8 10 li.·e a qUOlienl 0I1~ and
• remainder of I.u shO'll·n in bl ue. Thcn 19 is divided by g 10 live:' qUOIiem of 2
and a remainder of 3. ~lnally. 2 is dl,·ided by 8 10 give a qUOlienl 01 0 and a
remainder of 2. The coefflcienls of Ihe desired OClal numbe r are obl.ined from
the remainders:

15318_19-+-1/8

19//1 - 2 -+-3.'8

218 - 0 -+-2/8

(153),o" (231 h

Rem"lOde' - I 1
- 3
- 2

Le"", Significant digil

Mosl ligniticn nl dig',

•
NOle in Eumple I·) Ihll the remaindeB are rud from laot 10 fiBI. as indio

cated by the arrow, 10 obt.in the COfI\"Cned numhcr.' I"be qlK)ti~nu are dIvided by r
unlillhe result ;s O. We a lso can usc Ihrs procedure 10 con'"Cr! decimal imegen 10
binary as sho ... ·n in Example 1-4. In Ihis ase. the base oIlhe t;QfIverted number is
2. and theTCf~.all the divisions m\lSl be done by 2.

EXAM PLE 1-4 Cn~.·~f).lo,o nr Oet;m. 1. I"r'"' to Binary

Con,·ert decimal 41 to binary:

4112 _ 20 + 1/2

2M - 10
1000 - S

5f2 - 2-+-112

2n - ,

1!2 - 0 -+- 1!2

(41)'0 - (l0l001),

R~ma i ndcr _ 1

- 0

- 0 -,
- 0 -,

Least significarll digil

1_3 I Afith",.ric Oper>tion' 0 17

Of course. the decimal number could be converted by the sum of powers of two:

(41)w · 32 + 8 -I- 1 · (101001)2 •
The conversion of a decimal fraction to base r i, accompli,hed by a method

similar to that used for integers. except that multiplication by r is used instead of
division. and integers are accumulated instead of remainders. Again, the method is
be,t explained by example,

EXA~1 PLE 1·,5 ConH'n;ion "r o.,..,lm~1 r ""Jons I" Bi .. "ry
Convert decimal 0.6875 10 binary'

Rrst.0.005 is multip~ed by 2 to give an integer and a fraction, The new fraction is
multiplied by 2 to give a new integer and a new fraction. This process is continued until
the fraclional part equals 0 or until there are enough digils to gi'''' sufficienl accuracy.
The coefficients of Ihe binary nwnber are oblained from Ihe integers .. folioW!;:

0.005 X 2 2 13750

03750 x 2 - U7500
0.7500 x 2 _ 1.5000

0.5000 x 2 = 1.0000

(0.6875)\0 - (0, 1011),

Integer = I

- 0

1

Most "gOlfkant dtgtt

Least SlgOlficant dlgtt

•
Note in the foregoing example thai Ihe inlegers are read from firsl 10 1 .. 1, a,

indicated by the arrow, 10 obtain Ihe convened number. In the example. a fini te
number of digits appears in Ihe convened number. The process of mUltiplying frac­
tion, by r doe. not necessarily end with zero, so we must decide how man}' digitS of
Ihe fraclion to use from Ihe conversion, Also. remember tnal Ihe mulliplication,
are by number r. Therefore. 10 con"ert a decimal fraction to octal. We must multi_
ply the fractions by 8, as shown in Example 1-6,

EXAMPLE 1-6 Conwrsion or o.,..,imal ."'cciOIl< to Octal

Convert decimal 0.5 jJ to " three-digit octal fraction,

0.5jJ){8 = 4 1().1

0. 1(\4){ 8 - 0,832

0.832)(8 = 1'1656

O.656){ 8 - ~248

Integer = 41 Most significant digit
- 0
00

- 5 Least stgmfican1 dlgtt

The answer. to three . ignificant figures. is obtained from II1e integer digits- Nole
thai the last integer digit. 5, is used for rounding in base 8 of the ,;erond-to-thc-Iasl
digit. '" to obtain

(0.513)10 - (0,.t07k •

18 a CHAI'TER 1 I lJIGITAL COMPUTEI>..S AND IN FOItMATION

The ~onve~ion of decimal numbers Wil h bolh integer and fraclional paris is
done by oonvCTting each part separate ly and lhen combinin g lhe two answers.
Using the results of Example I-J and E,"mple 1-6, we obtain

(153_513},o - (231.407)"

1_4 DECIMAL CODES

The bin~ ry number sySlen' is the most natural system for a com pUler, bUI people
are accustomed 10 Ihe decimal syslem, On~ way 10 rewlve this di{fercnce is to con­
vcr! decimal number,; to binary. perform all arithmdic calculations in binary, and
then com'crl Ihe binary results back 10 decimal. This m.lhod requires thaI we store
the decimal numbers in the compu ler in a way thaI lhcy can be converted 10
binary. Since the "omputer can accept on ly binary values, we must represent the
decimal digilS by a code that contains I's and 0' .. It is also pos,ible to perlorm the
arithme tic opcr"li..,ns directly wit h decimal numbers when they are .tored in the
oompulcr in coded lorm.

An II-bit binary rode is a group "f II bits that assume up to 2" di.ti nci combi.
ll alio", of l's and O's, wit h each combi nation rcpresenl ing ""e element 01 the sel
being coded, A sct 01 fo UT ckmenls can be coded with a 2·bit bina ry «><Ic, with
each element assigned one of the following bit combinOl i,,"S' 00, 01 , 10, 11. A set of
1\ elemonts requires a 3·bil code. and a SCI of 16 elements req uires a 4·bil code_The
bi t combina tion, of an lI. bit code can be determined from th e count in bi nary from
o to 2" - t. Each element mu,t be assigned. unique binary bit combination, and
nO IwO elements Can have th e sa me "alue: otherwiw, the code assignment is
.mhiguous,

A binary code w;1I h,ve w,,'" unas.<;ig"cd bit combinations if Ihe nllm ber of
elements in Ihe set is not a power of 2. The 10 «ecim.1 digils form such a set. A
binary code Ihat di,tinguishes among 10 clements must cont. in aticall foUT hits,
bUI six out 01 Ihe 16 possible combina tions will remain u" assigned, Numerous dif·
lerent binary codes Can be Obtained by arrangiag four bits inlo 10 distinct combi .
n. tion .. The code most comnwnl y used for the decimal digits i, the straightlo 'ard
binary assign me nl listed in Table 1·2 on page 12. This is ca lled binarY'''OII~,1 deci·
",,,/ and is commonly rderred to as BCD, Ol her decimal cOOes arc possible. a few
of whic h arc presenled in o,apter 3_

T.ble 1·3 gi>'es a 4·hit code {or eac h dec im al digit. A number with /I decimal
digits will require 411 bits in BCD. ThUs, decimal 3% is represented in !lCD wilh 12
bils as

0011 10010110

,,;Ih each gro up of four bits represent ing one decimal digit. A decimal nu mber ;n
!lCD is the same as its equivalent binary number only when the number is
belween 0 and 9, inclusive. A BCD nu mbe r greater tha n 10 has a representation
d ifferenl from its equivalent binary number. eve n though both conlain l 's and O's.

1-4 I oro", .. coo.. 0 19

o TABLE I ·J
Rinary·CotIetI Ded"",' (BCD)

DecI"",1 'CO
Symbol Dlgi!

" = ~, , OM , 00"
• moo , 0101

• OliO , Olll

" ,~ , '00'

More{wtr. (he binary combinalions 1010 lhrough 1111 are not used and have no
meaning in lhe BCD oodt,

Consider decimal 185 and iI' corresponding value in BCD and binary:

(185)10 - (00)1 100) 0101)1\CD = (10111001),

The BCD value has 12 bits, hut (he equi"alenl binary number needs only 8 bil"- 11
i$ ohvious that a BCD number need, morc bit. lhan ilS equivalenl binary value.
Howcvcr. lhere is an advantage in Ihe use 01 decimal numbe~ because comp uler
input and outpUl data are handlcd by people who use the decimal syslem, BCD
number> arc dc<:im.1 number> and nOi b inary numbe cvcn though they arc rep·
re"'nled in bils. The only difference between a decimal and a BCD number is lh,t
decimals are wrinen wilh (he symbols 0, 1. 2 9. and OCD numb<:rs use Ihe
binary cooe, 0000.0001 . 001 0, 1001.

BCD Addition

Consider the addition of (wo decimal digits in BCD. togelher wilh a pos,ible carry
of I from a previous I.", significant pair of digils. Since each digil doc. not exceed
9. Ihe sum cannot be grealer Ihan 9 ... 9 ... 1 = 19. the I being a carry. Suppose we
add Ihe BCD digits a, ilthey wert binary numbers. Then the binary sum will pr<)o

duce a result in Ihe range from 0 10 19, In binary. this will be from 0000 10]0011,
bUI in BCD, il should be from 0000 10 1 1001, the firsl 1 being a carry ,nd Ihe nex(
fOllr bit' being Ihe BCD digil sum. When the binary sum is less than 1010 (wilhoul
a carry) , lhe corresponding BCD digit is correct BUl when the binary sum i$
grcaler (han or equal 10 1010, lhc result i< an invalid BCD digit The addilion 01
binary 6, (0110),. 10 Ih" su m con"erts ;t lO the correct digil and also produce. a dcc­
imal carry as required, The reason is Ihat Ihe differcnce between a carry from Ihe
mosl significant bil position of the binary sum and a decimal carry i. 16 - 10 = 6.

20 0 CHArTER I I DIGtTAL COMPUTERS AND INFORMATION

Thus, Ihe decimal carry and the correct BCD sum digil are forced by adding 6 in
binary, Consider Ihe nexl Ihree-<ligil BCD add ilion example,

I EXAM PLE I·'
III)

"" +489

'"

Bcn Addition

OCD carry

Binary swu

Add 6

BCD sum

BCD resull

,
moo

+0100

'00'

'00'

moo
+"'00

1101

+0110

10011

00 ..

'"" + 1001

.. n"
+ 0110

10111

01 11

In each position, the t o BCD digils are added a< if Ihey were IWO binary number>.
If Ihe binary sum i, grealcr Ihan 1001. we add 0110 to oblain I~e com'<;1 BCD digil
sum and" carry. In I~e righl column. Ine binary su m is equal to 17, The presence of
Ihe carry indicales Ihal Ihe sum is grealer Ihan 16 (certainly grealer Ihan 9). so a
correclion is needod. The addilion of 0110 produces the correCl BCD digil ,urn.
0111 (7). and a ~arry of 1. In Ihe nexi column. Ihe binar), sum is 1101 (13). an
invalid BCD digil. Addition of OlIO produces Ihe correct BCD digil sum, 0011 (3).
and a carry of I. In lne final column.lhe binary sum is equal 10 1001 (9) and is (ne
correcl BCD digil , •

Parity Bit

To deleci error.; in dala communication and processing, an addit ional bit is some­
timo. addod 10 a binary code word to define il$ parily. A parity bil is Ihe extra bit
included 10 make Ihe tOlal nwuber of I', in Ihe re,ulling code word either even or
odd. Consider Ihe following Iwo cha racters and Iheir e,'e n and odd parily:

'MOO'
1010100

Wilh Even ParRy

0100:0:11
11010100

With Odd P.~ty

II(((JOOI
01010100

In each case. we use Ihe exira bit in the leftmost posilion of Ihe code 10 produce an
even number of 1 's in tnc cnaraCler for e,'en parily or an odd nu mber of I's in Ihe
character for odd parilY. In general. one parily or the other is adopled. wilh even
parily being more commOn. Parity may Ix use<! wilh binary numbe ... as woll a.
with code .. including ASCH for characler .. and Ihe parily bit may be placed in any
fixed posilion in Ihe code.

1-5/c...,.Codu a 2 1

Thc pa nty bit i. helpful io detectiog CrrOrs duri og Ihc lrBnsmission of
information from one location to another. Assuming that even parilY is u..,d.
the .impl~!t ca~ iii handled a. follow,: An eve n (or odd) parity bit i. gener­
ated at the !Iendi" , end for all7·bit ASCH charoclers; thc 8·bil characlcrs tha t
include parity bils are transmitted to th eir deSl ination. The parity of uch char­
acter is Ihen checked al the receiving end; if the pa rity of the received character
is nol (vCn (odd), il meanS ,hat al leasl ooe bil has changed illi value during the
'ransmission. 1"" method detects 0""". three. or any odd number of errors in
each charaetu tran.mitted. An uen number of erron is undetected. Other
errOt"·detectioo oodoe5. SOme of which are based On additional parity bots, may be
needed to tlke nre of an uen numbe r of errors. What is done afteT an error i,
detected depends On the partirular applicat ioo. One possibility i. to request
retransminion uf rhe message on Ihe assumplio n that Ihe error Waf randum
and will nol OCCur agai n. Thu •. if th e recdver detects a parity error. it $ends
back a NAK (neg. rive ad"owledge) conlrol Characler ronsilling of Ihc even·
parity eight bilS, 10010101. from Table 1-5 On page 25. If no error is detected.
the receiver send. back an ACK (acknowledge) control character. OClOOOIIO.
1be !lending end ... ill respond 10 a NAK by transmitt ing the mc:ssale Ipin.
untilthc correct parity is received. Jf. after a number 01 attempt!'. the Il1Insmis·
sion is still Ln errOt". In indio;at;Oft of a malfunction in Ihe Iransmission plIth is
gIVen.

1-5 GRAY CODES

A~ we rou nl up ur down u,ing binary codes,lhe numhcT of bill Ihal change from
o ne bi nary value 10 Ihe nul vaTies. 'l"il is illuSlra lcd by the bi nary rode fur the
uclal digits Oft the Idt in Thble 1-4. As ... ·e count from 000 up to I I I Ind ~roll
OVeT~ 10 000. the numbe r of bils Ih.1 chanlC bel .. ·cen the binary "ah.es rBnges
from Ito 3.

O TABLE 1-4
G yCode

Binary '" .,~

'" - Chang .. ,- Chi_ - , -." , ." '" , '" '" , '" '00 , '" '" , '" '" , '" '" , '00 - ..

22 0 CHArTER I (DIGITAL COMPUTERS AND INFORMIITION

For many applications. multi ple bit changes as the circuit count, is nol a
prob lem . There are applications. however. in which a change of more than one
bit when count ing up or down can cause serious problems. One such problem is
illustrated by an oplical s hafl angle encoder shown in Figure 1-3(a). The
encoder is a disk allached 10 a rotating shaft for measurement of the rotational
position of the shafl. The disk contains areas that are dear for binary 1 and
opaque lor biaary O. Aa illumination source is placed on one side of th e disk .
and optic al .ensors, one for each of th e bits to be encoded. arc placed on the
other side of the disk. When a dear region lies between the source and a sensor,
the .ensor responses to the light with a binary I output. When an opaque region
liu between the source and the senwr. the sensor responds to the dark with a
binary O.

The rotating shaft. howe,w. can be in any angular posilion, For example.
suppose that the shalt and disk are positioned so that the senso ... lie right at the
boundary belween OJ! ""<.I 100, In this case. senso ... in positions B,. BJ and Bo
have the light partially blocked . In such a situation , it is undear whether the three
senso ... will see light or dark, As a consequence, each sensor may produce either a
l ora O. ThUs. Ihe r,,"ulling encoded binary number for a va lue between 3 and 4
may be (0), 001. 010, OJ 1. 100, IOJ. 110. or 111 . Either O! I or 100 will be satisfae­
tory in this case. but the other six vatu,," are clearl)' erroneous '

The solution to this problem becomes apparent by noting that in those
cases in which only a single bit changes when going from one ,'alue 10 th e next or
previous ,'alue. thi' problem callnot occur, For example, if the sensors lie on the
boundary be tween 2 and 3. the resulting co<le is either OIl} Or 011. eit her of
whkh i, satisfactory, If we change the encoding of the values 0 through 7 such
that only one bit value changes as we count up or down (including rollover from
7 to 0). then the encoding will be satisfactory for all positions. A co<le ha"ing the
property that only one bit at a time changes between codes during counting is a
a'ay code, 'lnere arc multiple Gray codes for any sct of n consecutive integc ... ,
with" c,'en,

o t'lClJHE 1·3
Optical Shalt Angle Eocooe r

1_6 I AJprumunloric 0xI<. 0 23

A specific Gray eode lor the octal digil .. c.lled a bi""ry reflected Gr"y code.
appears on the right in Table)·4, Note that the counting order lor binary codes is
now I))}, 001 . 011. 010. 110. 111. 101 . 100. and I))}. If we want binary codes for pro­
cessing. then Yo'e can build a digital circuit or use ""ftware thaI converts Ihese codes
10 binary before they arc uscd in further processing of the information.

Figure 1-3(b) shows the oplical shaft angle encoder using the Gray code from
Table i4. NNe Ihat any Iwo segments on the disk adjacent \0 each other ha"e only
one region that is clear for one and opaque for Ihe other. The Gray code is named
for Frank Gray who patenled it' use for shaft encoders in 1953.

The oplical shaft encoder illustrates one use of the Gray code concept. There
are many other s imilar use, in which a physical variable. such as position or .'oU­
age, has a continuous range of ,'alues that is convened to a digital representalion _
A q uile different use 01 Gray code, appea" in low.power CMOS (Complementary
Metal Oxide SemiconduCIOr) logic eircuits thaI count up or down. In CMOS,
power is consumed only when a bit changes. For the example codes given in Table
1-4 wilh continuous counting (eilher up or down), there arc 14 bit changes for
binary counling for every eight bit changes for Gray code rounting. Th u .. Ihe
power consumed at the co unlcr oUlputs for the Gray code counter is only 57% of
lhal consumed at the binary counter outputs.

A Gray coJe for a counting sequence of " binary code words (n must be
e,'en) can be constructed by replacing each of lhe first rtI2 numbers in the sequence
with a code word consisling 01 0 followed by Ihc c"en parity for each bit of Iho
binary code word and the bit to its left. For example. lor the biM!)' code word
0100. Ihe Gray code word is O. parity(O.I}. parily(l.Oj, parity(O,O) = 0110. Nnt.
take the sequen~e of numbers formed and COP)' it in re"C"e order wilh Ihe left­
mosl 0 replaced by a I. Thi' new seqoe nce provide<> Ihe Gray code words for the
second 1112 of the original" code word& For e~ampl e. for BCD codes. Ihe first five
Gray code words are OOOO.I))} I. 0011. 0010, and OliO. Reversing lhe order of these
coJ"", and replacing Ihe leftmosl 0 with a I. we oblain I 110. 1010. lOll. 1001, and
11))} for the lasl fi"e Gray code",-

For Ihe speci"1 cases in which the original binary codes are 0 Ihrough 2" - 1.
each Gray coJe word may be formed directly from the oor~spondlng binary code
word by copying ils leftmost bil and Ihen replacing each 01 the remaining bils wilh
the evtn parity or Ihe bil 01 the number and the bit 10 ils lefl.

1- 6 ALPHANUMERIC CODES

Many applications of digital computers require Ihe handling of data consisling nol
only of numbe ... bUI also of leners. For instance. an insurance company wilh thou­
sands of policyholders uses a computer 10 process its files. To represent the names
and other pertinent information, it is nCCCSS3!)' to formulaIC a binary code lor the
le ners of the alphabel . In addition. Ihe same bina!)' code musl represenl numeral.
and special char.cters such as S. Any alphanumeric character..:t lor English is a
sel of clemenls Ihat includes Ihe 10 decimal digils, the 26 leners of the alphabet,
and several (more than Ihree) 'pecial charactcrs. If only capilal leners are

24 0 CHAPTER I I DIGITAL COMPUTEI<.S AND lNFORMATION

included, we need a binary code of at le.1St si:< bils. and if both uppercase letters
and lowercase letters are included. we need a binary code of at leaS! beVen bits.
Binary codes play an important role in digital computers. The codes musl be in
binMY because compulers can handle only I's and 0'1. Note that binary encoding
merely changes Ihe symbol., not Ihe meaning of the elements 01 informalion being
encoded.

ASCII Character Code

The sWnd;l, d binary code for Ihe alphanumeric characte .. is called ASCH
(American Slandard Codc for tnformation loterchange). It uses seven bits 10

code 128 characters. as shown in Table 1·5. The seven bits of the code "'C desig.
nated by 8 1 Ihrough 8 ,. with H? being Ihe moot significant bit. NOle Ihal Ihe
moSt significant Ihree bits of Ihe code determine the column of the table and
Ihe lellSt significanl four bil' the row of the table. The le{{er A. for example. is
represented in ASCII as 1000001 (column 100. row 0001). The ASCII code con·
t.ins 94 characters thai can be prinled and 34 nonprinting characters used for
various control functi,,"s 'me prin ting characters consisl of Ihe 26 uppercase
lette rs.. the 26 lowercase le{{ers.. the 10 numerals. and 32 special printable eh",­
aClers such as %.@> and$.

The 34 control characlers are designaled in the ASCI I table with .,bbrevialed
names They arc listed ag.in below the table with their full functional names The
conlrol characters are used for routing dala and arranging the printed !e~t into a
prescribed for","t. There arc lhree types of control characters: formal effectors,
information separators, and Conllllunication ronlrol characters. Format effeclors
are charatters that con!rol the layout of printing. They include the fam ili .. type _
writer controls such as backspace (!lS). horizontal tabulation (HT), and carriage
rel urn (CR). Information separators are used 10 separate the data inlO <li"is;ons­
for example. par.graphs an,1 pages. They include characlers such as record ""para_
lor (RS) and file separator (FS). The communicalion conlrol characters are u .. d
during Ihe transmiS$ion of te.l from One IOCJOtion to the other. Examples of com_
munication control characlers arc STX (slart of lext) .nd ETX (end of lexl) ,
which are used to frame a lext message transmiHed via communicalion wires

ASCII is a 7-bit code, but mosl compulers manipulate an S-bil q uan!ily as a
single unit ca ll ed a byte. Therefore>ASCII characters mosl often are stored one per
byte. wilh the mosl significant bit ""I to O. The extra bit is somelimes used for spe­
cific purpn<es. depending On the application . For example, some prinlers reoogniJ.e
an addilionall28 8-bil characters. with Ihe most significant bit set to I. These char­
RCUrs enable the printer to produce additional symbols. such as Ihose from the
Gree k alphabel or characters with accent marks as used in languages olher Ihan
English.

, UNIC(lOE This supplement on Unicode, a 16.bit slandard code for ,epresent;ng the ~ symbol' and ideographs for the world's languages. is available on the Companion
Websi1e (htlp~lwww.prenhall.com/mano) for Ihe le xt.

t_7 I Ch.>", .. Soonnoory 0 2S

0 TABLE 1_S
AmerkKn Standard Code for InformKtion In.eKhonge (ASCII)

s,.B.B,

B,B, B,B. - 00' '" ,n '00 '" '" '"
0000 NULL DC> "

, • • ,
"''' roN OC, , , 0 • ,
00'" m 00 , , ,

" ,
oon = = • , C , , • ",00 '00 DO< , , D T ,
0101 "0 '" • , , U • •
011 0 .0, SYN • • , V , •
om .ee ~ , e w • w
,~ " CAN , • N , • •
'00' NT '") • , , ,
1010 " ,un • , , ; •
1011 ~ '00 • , [,
"00 " " < ,
110 1 " e, w M m
1110 'D " > N ,

" 1111 " "'
, , 0 0 OEL

CCHIIsoi C,,**,'*rI:

NUL L NULL DLE D.,a link ""
roN Stan of "".ding OC, DcvK:<: control 1
on S.an oltex. Dd D"'-K:<: con.roI. 2
ET X End of'e" = DeVK:<: con.roI. J

'00 End of tr.m.mi>sion DO< Device con.roI. 4
"0 Enq"iry '" i"ep'ive ""kDOW!ed!<
'C< Ad_ ledge SYN SynchroooLl$ idle

' R Oell IT. End of " ansm',,"'" block

'n Oack,pa<o CAN Canoel
,rr Ho,i.on •• l tab '" End of medium

" Une feed '" SU",""'"'e
~ Venical 'at> ' SC """~
" Fo<mf~ " File ..,po'''''' e, Carri.~ relum e, Oroup ..,.,., .. '"
ro Shih out " K«Ofd "'pon,O!

" Shih in "' Unil sepo,",""

" "'" OEL 1)., ...

1-' CHAPTER SUMMARY

In Ihis chapter_ we h.~e inlroduced digilal ' ySlem, and digilal computer.; and h.'-e
shQ""I1 why ~ ""h s)'Slems u'" signals having only IWQ values. We h.,'e brieHy inl,Q_
duced comr>u,.r Slruclure wi,h a block diagram and discussion Qf 'he na'ure of Ihe

26 0 CHAPTER I I DIGITA L COMP1JfE~ A N D INFORMATION

bloch Number system concepls. induding base (radix) and radix [>Oint. were pre ­
sented. Bc~au se of their corres[>Ondence to two-valued signals. bina ry numben;
were discussed in detail , Octal (base 8) ond hcxadecimol (base 16) were also
emphasized, since they are useful as short nand notation for binilTy. Ari\hmclic
oper.tion$ in b"",. other tha n base 10 and the conversion of numbers from one
base 10 another were covered , Becausc of the predominance "f decimal in normal
use. Binary Coded Decim.1 (BCD) was treated. The parity bit was presented as a
technique for error detection. and tbe G ray code. whieh is critical to selected appli_
cations. was d~fmed. Finally. t~ e rcpR'SCn1ation of information in Ihe form of char_
acters instead of nu mbers by mCanS of the ASCI I code for the English alphabet
waS pTesented ,

In subseque nt ohal'tcr" we will treat the representation of signed numbers
,Ill" fi o"ting-jXlim numbers. We will also int roduce additional codes for t he d~cim~ 1

digits. Altho ugh these topics fit well with the topics in this chapter. Ihey are difficult
to moti,'ate without as.«ociati ng them wit h lhe h~,,' w",e used to impleme nt the
opemtion, they denote. ThUs. we delay their presentation until we exam ine lhe
",sociated hardware.

REFERENCES

I. G RAY. F. P"lse Code Com",,,,,iUltio,, US. PaleJ1 t 2 632 (l5~. Mareh 17.1953.
2. M""o. M. M Camp." • • Ellgineering: lio"I"'ore D~'igll, Englewood Oiffs. NJ :

Prentice Hall. 19M.
3. M ANO. M. M. Digital Design . 3rd ed. Englewood Cliffs. NJ : Prentice Hall .

'"" 4. MANO. M, M. Comp",er Sptm, Architeel",e. 3rd cd, Englewood Cliffs. NJ:
Prentice Hall . 1993,

S. PA nEIlSON . D. A .. A"I) He""F.>Sv.). L. CO"'I',uer Orgoni:ario" "",/ Dc,ig":
The H,m/"'nre/So/t nre Imerlace. 2nd cd San Mateo. CA: Morga n Kaufman n.
1 ';98.

6. T""'-F.NRAUM. A. S. StrllCl",ed CO"'I,,,,a O'Koniza,ioti. 4th ed. Upper Saddle
Ri"cr, NJ, Prenlice ~Iall. 1m.

7. Wllllll. R. Ho'" Comp"'N~ W",k. Emeryville. CA: Ziff·D.wis Press. 1993.
8. WlllJ ".~S. M, R.II lIistory oICO"'pW;"K 7h:liII"/ogy. Englewood Cliffs. NJ :

Prentice -Hall,I985 ,

PROBLEMS

,a The plu'. (+) indic.1tcs a mOre advanced problem and the asterisk (*) indicates"
~ solu1ion" ava .lable on tbe Comp"~ ion Website fOT the text.

I - I . ' Lisl the binary. octal. and hexadecimal n ~mhers fTOm 16 to 31.

1-2. What is the exact number of bits in a memory Ihat contains (~) 4$K bit,;
(b) 3S4M bits: (c) 8G bits?

1-3. What is the decimal equi,'al~ nt of thc larg~st binary integer that can be
ohtai ned with (~) 12 hilli and (h) 24 hits?

I to ·Convert the following hinary numbers to decimal : 1001101. 100ooiLlOl.
and 10101 110.1001.

1_5. Convert lIw foll "wing decimal numh<:r. to hi""ry: 125. 6\0. 2003. and 189·14,

1-6. Each of the following (,vc numbers has a different hase: (111 00111);,.
(22120),. (3113),. (4110k and (.343)". Which of Ihc fi"e num bers have Ihc
same value in decimal?

1-7. · Convcrt Ihc following numbers from the given base 10 Ihe other three
bases listed in Ihc table:

Decimal

369.3125 , , ,
,
101 11 101.\0' , ,

~., He._I 1 , , , ,
326.5 , ,

F3C7.A

1-8. ·COIIven the follo wing decimal numbers 10 the indicaled base, using Ihe
mel hod, of Examples 1·3 on page 16 and 1-6 On page 17:
I") 7562 .45 10 OClal (h) 19J8.25Jlo huadecimal Ie) 11517510 binary.

1_9. °Perform the follo"iog oon.'ersion by using bas<: 2 instead of base 10 as .he
intermediate hase for Ih c conversion:
(_) (673.6). '" hexadecimal (h) (E1C8),.lo tXla l (e) (310.2). '" 00:1"1

1-10. Perform Ihe following binary multiplication.:

1_) 1101 X 1001 Ih) 0101 X 101 1 (e) 100101 x 0110110

I-II . +Divi.ion is composed of multiplieations aod subtractions. Perform the
binary divi~inn 1011110 + 101 10 oblain a quotient a nd remaimlcr.

1-12. There is considerable evidence to suggest that base 20 has historically been
used for number Sj'$lems in a number of cultures.
Ca l Wrile Ihe digils for a base·20 <)'Stcnl. using an extension of tlle sam~ digit

represeolalion seheme employed for heudccimal.
(b) Convert (2003)," 10 base 20. (~) Com'erl (BCH.G)zo to decimal,

1- 13. · In each of Ihe following case .. delermine the radi~ r;
(a) (BEE), - (2699) ,. (h) (365), - (1<14),.

1-14. The follo""ing calcnlation was performed by a particular breed of unusually
inldligent chicken , If Ihe radix, used hy the ehi~kcn corrCSfJOndS 10 ils lo.ai
number of toes. ho'" ",any loes docs .he chicken have on each fOOl?

«3n+ (24),) x (21), ~ (1501),

I-I So *Rcprese nt Ihe decimal numbers 69-1 and 835 in BCD. and theo 'how Ihc
sleps necessary 10 fono Iheir Sum.

28 0 CHAYT~ I I DIGITAL COMPllTERS AND INFORMATION

1- 16. . P'md lhe binary reprelol:nlatioos for each of the follo"-in& BCD numbers:
t_j 0100 1000 0110 0111 (bl 0011 0111 1000.0111 0101

1_17. List tbe j·bil binary num ber equivalent' for 16 lhrough 31 ""jth a parily bil
added in the ri"'tmosl position giving odd parity to Ihe overall 6-blt
numben. Repeal for e~n panty,

1_18. By using Ihe procedure gh'cn in ~cl ion 1·5. fi nd Ihe Gray code for Ihe
hexade<:imal digits.

1- 19 . .. What is the pe"'cntagc of power consumed for continuous CO llnting
(either up or down but nOt OO lh) at the output. of a binary Gray rode
counter compared 10 a binary cou nter ", a function of Ihe numt>cr of bits, fl.
in the two counters?

1_20. What bit po6ili<>n in an ASCII code must be complemented to chang. the
ASCll leuN repre$<l:nted from uppe~ to """'en:'''''' and vi«! v ?

1- 21 . Write your full name In ASCI1. ",ing an S-bil code t_) .. ith lhe IdtmQ(;t hit
ah • ."ys 0 and (b l wilh the leftmosl bil selected to produce even panty.
Include a.pacc bet .. ,"n no~ and a period after th" middle init ial.

I-n . Decode the follo .. ';n, ASCI1 code: 1001010 1101 11 1 1101000 1101110
01()UX) 1000100 1101111 1100101,

1_23. 'Show the bit configuration that r.prc&<!nlS the decimal number 36S in
(a) binary. (b) BCD. t~) ASCII,

1_24. A computer represents informAtion in group" of 32 bit" How !tIAny different
integers can be represente,1 in ,a) bina.y, (b) BCD, and (~) lI·bi. ASCII , all
"'iog 32 bilS?

COMBINATIONAL
LOGIC CIRCUITS

I
n IhOs chapter, w;ll learn about galeS, the most primm"" logic elem""IS L>S<Id in
<ligna! systems. In addlllOn, we "';11 learn the matMmatOcall&Chriques used In
<!e!;jgning dA:UilS from _ gal(l$ and learn how to cI9sign C(l6t-ef\eclive cifCUils.

These techniques, which hndamen\al to !he cIesign (II almost . 1 digital cirw'ts,
are baMd on Booi&an aIge!><a. One DspecI 01 design ia to avoid un~ry cirwilry
and ""cess cost, 8. goal aocomplisl>ed by a techniqLJe cahd opIimi1:atJOn . Kama."!)'I
maps provide a ~aphic&1 meltJod 10< enhar(:ing undel'$tanding (It optimization and
$OIving $rtIaI1 o¢mization problems lor "two-leYor logic circuits. More general
optimi2a1ion rnelhods\or eilWits with mont man two -.. are introdu<:ed. Types 01
logic gatos d>aractoristic ot COI11&fT1l(lra'Y integrnted cifcuiI impIemoolation am
dlSCHSSe(!, ExcIusiYu OR and ExcluSive tKlfI9"tes are in1foduced, along with
associated algebraic techniQ
In terms 01 too <liagrnm at the t><>gioo<ng of Chap!a, t. """""1'\5 trom this """'pie<
apply to most oj the gene<ic compytar. Exceptions are circuits that ara large/\l
""""O<Y. Sucfl as ca"'- and RAM, 8000 analog ekK:trooic cirouits in too moni1or and
hard <IisI< controIIef. NevenheI8ss, with its use throughout the design of mos! 01 the
comput&r, 'oO'hal slll<!)t in !his chaplet Is lundamental to an iI>-<Iep!h """"rstanding
01 COII'IJlUIers and digital s)'Stems and how they are 00sigrIed.

2-1 BINARY LoGIC AND GATES

Digital ci",uilS arc hardware components that manipulate binary infonnatioD. The
circuit. are implemented using {raos;.toTll and imeroonneaion. in complex semi­
conductor devices called im~gra/ed cire"i/.<. Each basic circuit i. r~ferred to a$ a
logic 8«1~. For .implicity in de,ign, we modd the transistor_based electronic

o "

30 0 CHAPTER 2 f COMBINATIONAL LOGIC CIRCUITS

drcuils as logic gote>. Titus. the designer need not be concerned with Ihe inlema l
electronics 01 the individ ual gates. bul only with tl1 cir ex1emal logic properties.
Each gate perform. a specific logical operation . The o ut puts of gatcs aTe applied to
the inputs 01 other gales 10 fOTm a digital circuil.

In order 10 describe Ihe operalional properlies of digitat circuits. il i. neces­
sary to inlrod uce a mathcmatic~t notation that specifies the operation of each gate
and that can be used to analyze and design circ uil>- This binary logic 'Y'tem is one
of. class of m~t hcmat; cal systems referred to ge nerally as fjQo/ean a/g.br~._ The
name is in honor of the Englhh mathemat ic;"n George Boole. who in 1854 puh.
lished " book introducing the mathematiea l thcory of logic. The "p,."citic Boolean
algebra we will <Iudy is uscJ 10 describe the inlcrconnection of digital gate. and to
design logi~ circuit. thIOugh the manipu lalion of 1:h",tean cxprcssioTI s. We first
introduee the concepi of bina ry logic anJ show its relationship to digita l gates anJ
binary signals. We then present Ihe propcrti~""j of the Bootean algebra. together
wilh Olher concepts ,md methods useful in designing logic circuits.

Binary Logic

Binary togic deats wilh binary variables. which take on two discrele ,".tue .. and with
the operations of mathem.tica l togic app li ed to these variables. The two values the
variabtes take may be called by different names, as mell tioned in Sc<:tion 1· 1. but
for our purpose. it i. C(H\vcnicTIt 10 Ihink in terms of binary "alues and assign I or 0
to each variable. In the first part of this book. variable. are designated by tellers of
the alp habet, ,uch as A. H. C. X . Y. and Z. Later this notation will be expanJed 10
include .triTI g. of leners, numbers, and speciat charaelers. Assoo:ia!eJ with the
binary variables are three Imsie togicat operalion. call ed AND. OR. and NOT

1. AN D. This operation is rcprcsenlC<J by a dot or by the ab5ence of an opera­
tOT. For ",ample. Z .. X - Y or Z .. XY is read "Z b equal to X AN!) Y"The
logical operation AND i. int"preled 10 mean that Z .. 1 if and only if X .. I
and Y .. 1; otherwise Z .. O. (Remember that X, Y . • nJ Z arc binary ,'ari·
abIes anJ can be equal 10 only 1 Or 0.)

2. OR. This operalion is represenled by a ptus symbol. For example. Z .. X ... Y
i. rcad "Z is equal 10 XOR V:· mea ni ng that Z .. I if X .. I or if Y _ 1,0r if
both X " 1 and Y - l. Z .. 0 ifanJ on tyif X .. 0 and y .. O.

3. NOT 1hi, operation is represented by a bar o,'er Ihe v.riabte. For example,
Z oo X is rcad "Z is eqoat 10 NOT X.~ meaning that Z is what X i. no!. In
olher words. if X " I. then Z .. 0; bUI if X .. O. then Z .. 1, The NOT opera­
tion i. also rdcrred 10 as the CQmpl~",e", operation. since it ch.nges a I 100
anJaOtol.

Binary logic resemblcs binary arithmetic. anJ the opera lions AND and OR
h","e simi larities to mu ltiplication and adJilion. respecti"ely. This is why the sym­
bols used for AND anJ OR are the same as those "sed for mut(iptkation anJ addi­
tion. However. bi nary logic .houlJ nOI be confused with binary arithmetic. One
should realize thai aTI arithmetic variable designates a number Ihal may consisl of

2-1 I IIinory LoP< ... d Got.. 0 J 1

many digils, ",hereas a logic variable i. a l",a}'. e ilher a I or a 0, The follo"'ing equa­
lions defi ne the logica l OR operation,

0-1-0 - 0

0+1 - 1

1+0_1

1 + I - 1

These resemble binary "ddilion. "oCC pl for rhe lasl operation. In binary logic. we
ila"e I -+- I _ 1 (read "one OR one is e<juallo one"). bUI in binary arilhmclk. we
have 1 -+- I - 10 (read "one plu~ one;~ equal 10 IWO"). To a,-oid ambiguity. rhe
~ymbol " i~ wmelim", ust:d for Ihe OR opera lion instead of Ihe + symbol. But a.
long as arilhmelic and logic operOlioTls are nOi mixed. each can use Ihe + symbol
wilh ilS O"'n independent meaning.

The nexi equa lion. define Ihe logical AND operalion:
0-0 _ 0

o· I - 0

1 -0 - 0

' ''is ope ral ion i~ idenlicallO binary multiplicalion. provided thai we use only a sin.
gle bi\. Alterna live symbols 10 1M . for AND and + for O R. are s)'mOOI,; " and".
respeolivel y. Ih al represent conjuncli,'c and di~juncli,'e operations in proposil,onal
calcul us.

,'Or each combination of lhe values of binary variabk. such as X and Y.
lhere is a value of Z ~fI<'cified by Ihe definilion of Ihe logical opera lion. The detin i·
lion. may be li.ted in compacl form in a truth lable. A Inllh lobl~ for ~n oper"l;on
is a lable of oombinations of the binary variables Jho",ing the relalionship
I>clween Ihe values Ihall he variables lake on and Ihe v"lucs of lhe resuit of Ihe
opera lion. The truth lables for the operations AND. OR. and NOT are sho wn in
Table 2-1. The .abies lisl all p(:.ssible oombinalions of value~ for two liariabl"'land
the resulls of the operalion, They clearly demon~trale the delinition of Ihe three
opera lions-

o TABLE 2-- 1
Tnnh T_t>t"" ror Ibe TIoI'H Bll>it l.<>ginol O"""'li

'"' '" '" • , Z _ x·y • , Z _ x . y

~ " "
,

" " " " ,
"

,
" , "

"
,

"

J2 0 CII"l'TIlll/ COMBINATlON"L LOGIC CIRCUITS

...
Logic sale$ are cle.::tronic circuits thnt operate 00 One or mOre in pu t sig"nls to pro­
duce an outpu t sigoal. Electrica l j;g"nl. such as voltages or cu rrents exist through ­
out B digi ta l ~ystem in eilher of IWO recogni~able value .. VoUage-opcraied circu its
rnpood to two ,.,paralc voltage Tloges that I'f:pr"",nl II binary vlriable equal to
logic I or logic O. n illUSlrllled in figure I-I. The input termlllais or logic galO$
acttpt binary signak within the allowabk range and respond It the output tenni­
nak .. "ith binary lignals lbal fall "'"lIhin. specified range. n.e intermediate I'f:gions
bct-...«n the allowed ... "8"1 in the figure are ~d only during cbanges from 1 10
o or fTQlt1 0 to I. Th"'" changes are called 'rtI/U;IWIu. and the ;ntermediate rcgiQn$
are called the ITami,ioll T~g;O/U.

llte graphiC! sym bols uS"d to designate the three tyl""i of gatLos- AND. OR.
and NOT_ are shown in Figure 2- I(a). TI,e gates are electronic ci rcuits that pro­
duce the equivalent. of logic-) and logic-O output sig"al$ in accordallce with their
resllCClive truth tables if the equivalent. of Iogic-I and Iogic-O input signals arc
applied. The two inpUI signa]s X and Y to lhe AND and Oil. gatO$ take on one of
four possible rombi tions:OO. 01. 10. or 11. 1besc input signak are iohown as tim­
ing diaga.m in Fig"l'f: 2-I(b). together with ,he liming diagrams for the rom::_
,ponding ou tput signal for ea.c:h Iype of pie. n.e horizontal axis of a tinrUlg
dwg,am fcpres.en" (ime. and the "crt"'al uis sl>o" ""$ a sicnal as it changes belwe<:n
the two possible voltage levels. ""e low level . epresents logic 0 and the high level
rcpreS"nL& logic I. The AND ga te responds wi' h a logic- l output sigoa l when bolh
input signals arc logic] l "e Oil. ga te reSIIO"ds with a logic.] outl)"t signal if either

~=O-Z- X.Y : :::::[)--z - X + Y .--{>o--z-x
NOT"" "1'0'0_

0 __

(0) 0"\>1>"'''-'''

xl 0 o I t l

("1'0'0) X· y l~-"'--;='=='=-N_'~
(OR) x+yW l
(NOT) X J 1

o F1GUKt: l _l

DiB,t.] Lop: Ga< ..

• of

in ,

l:=[)---- p - "IIC

(O)Th'-""'P'" "N[) ~'O

z_z I _on A1gdn 0 33

'p.: II O _ A+B+C+D+E+P ,
" . f (b)S .. ·;"pu'OR~'o

o nG UII.E2-2
G., .. wilh More Ih.n Tw<> InpulS

input signal is logic I. The NOT gale is more commonly referred 10 as an Inverrer.
The reaSOn for litis name is app3rem from the response in Ihe liming diagram. The
OUlpUllogic signal;s an inverted ,'ersion of inputlogk signal X

AND and Oil. gales may bave more Iban Iwo inputs. An AND gale wilh
Ihree inpul, and an OR gale wilh ,i . input. aTe , hown in Figure 2-2, The IhTee­
input AN D gale respond, wilh a logic-J OUlput if alllbree inputs are logic I. The
output is logic 0 if any inpul is logic 0 The si~-input OR g~te responds witb a
logic I if any input is logic 1: its OUlput becomes a logic 0 only when all inputs are
logic O.

2-2 BOOLEAN ALGEBRA

The Boolun algebra we presenl is an algebra dealing witb binary variables and
logic opeTations. The variable$ are designated by IeUe", of the alphabet. and the
three basic logic operations are AN D. O R. and NOT (complementation). A
Booleall ap,usloll is an algebraic expression formed by using binary variable.,
the constants 0 and I. the logic operation symbol., and parentheses. A Boolean
function can be described by a Boolean eq ual ion consisting of a binar)' variable
identifying the fu nction followed by an equal sign and a Roolean expression.
Optionally. the function idemifier is followed by parentheses endosin g a list of
the funNion variables "'para ted by commaS- A ,i"gie-ompI" 8QOlean [u"ction is
a mapping from each of the possible combinalions of values 0 and I on the func­
tion variables 10 value 0 or L A n",itipl~-o"tput 8QOI~Qn [Ullction is a mapping
from each of the possible combi nations of values 0 and 1 on the function vari·
able< to combiaalions of 0 and I on tbe funclion OutPUIS. Consider an example
Boolean eq uation represcnling funClion F

F{X.Y.Zj - X-tYZ

The two parIS of Ihe '" pression. X and YZ, are call«l termS of the expression for F
The function F is equal to 1 if term X is equal 10 1 or if Y Z tenn is equal to 1 (i.e"
both Y and Z are e9ual to I). Otherwise, F is equal 10 O. The complement opera.
t;on dictates that if Y ~ 1. then Y must equal O. Therefore, we can say that F E I if
X _ I. or if Y _ 0 and Z _ L A Boolea" equation expresses lhe logical relalion·
sbip between binary variables. It is evaluated by determining Ihe binary "alue of
the ""pression for all possible combinalions of values for Ihe variables.

A l.looIean fuoction can be represenled by a truth table. A tmth tQI>I~ for a
functiot> is a list of all combinations of I's and O's that can be assigned to the binary
variables and a list tbat .Ilovo .. Ihe value of Ihe tur><:tion for each binary combinalion.

3 4 0 CHAI'rnR 2 I COMBINATION AL LOGIC CIRCUITS

~ TABLE 2·2
Trolh T.blo
f ,h • • ""0<1;00 F _ X + yz

• ,

" " " " " "
,
" "

,

"
" ,
"

,

" "
,

The trulh lables for the logic operation. given in Table 2-1 are special cases of truth
lables for funCl ions. The number of TOW< in a Irulh lable is 2". where" i. Ihe numbe r
of ' ·.riables in the funClion . The binary combina lions for Ihe lrulh lable are Ihe n· bil
binary numbers Ihal correspond to counling in de<;imal from 0 Ihrough 2" - I.
Tabk 2·2 ,hows Ihe truth lable for the funcl ion F - X + yz. There arc eigh l possi_
ble binar)' combinations Ih~t assign bits to the Ihree variables X. Y. and Z. The col­
umn labeled F contains eil her 0 or I for each of Ihese C<)mbin~lions. The t~ble ,how"
Ihal the funClion is ~qu"1 to 1 if X = I and if Y - 0 and Z - I . Olherwise. Ihc func­
lion is equal to O.

An ~Igcbraic expression for a Boolean funclion can be Iransfonned inlo a cir·
cuit diagram composed of logic gales Ihat implement, the function . The logic cir­
cui t diagram for funclion F is shown in figure 2-3. An inverter on input Y
generates Ihe com"'plemenl. Y . An AND gate operales on Y and Z.and an OR gale
combines X and YZ. In logic circuit diagrams. Ihe variables of Ihe function F are
laken as Ihe inputs of the circuit. and the binary ,'ariable F is laken as Ihe out pul of
the circuit. ff the cireuil has a single OUlput. Fi, a single output funct ioo. If the cir­
cuil has mult iple oUlputs. function F is a multiple oUlput funClion wit h mu ltiple
equations required 10 represent its output<- Circ uil gales are inlercooneclcd by
,,'ire~ Ihal carry log,ic 'igno l<- Logic circuits of this Iype arc called combinational
logic circuits. since the variables are "combined" by the logical operations. This i, in
cont rast to Ihc sequential logic 10 he treaTed in Chapler 6 . in which variables are
stored over time as well as being combined.

o nCURE1_J
Logic Circuit Diagram lor F = X + YZ

l-Z I BooI Alj<rl>n 0 3 S

There is only one way lhal a Boolean function Can be represented in a truth
lable. However. when the function is in algebraic equation form. it can be
expressed in a variety of wa}'s. The particular expression u..,d to repre"..nt the
funclion dictatcs the in lCrCOnneelioo of gale. in the logic cireuil diagram. By
manipulating a Boolean expressioo according to Boolean algebraic rules. it is often
JIOSSible to oblain a simpler expression for the .. me funclion. Thi. simpler up'"".
sion rcd...:es both the number of gale'S in the circuil and Ille numbers of inpu ts to
the gales. To see how this is done. it is necessary first to study Ihe basic rule. of
Boolean algebra.

Basic Identities of Boolean Algebra

lab]e 2-3 lists Ihe most ba.ic idenlities of Bookan algebra. The flOlation i. simpli­
fied bJI omitting the s}'mbol for AND ""henever doing $0 doe. nOI lead 10 ""nfu·
sio,'- The first ~ine i(lcntilies show the relationship between a single '-ariable X. its
comple ment X, a nd the binary ""nstanl> 0 and 1. The nexl five idenlil ies. 10
through 14, have counterparts in ordinary algcbra_ The Ia" thr~e. 15 through 17, do
nol apply in ordinary algebr •. but ar~ u .. ful in manipulating Boolean expression~

The basic rule. listed in the table have bccn arranged inlO 1""0 ""Iumn. Ihal
demonstrate the properly of duality of Boolean algebra. ll>e dual of an algebraic
upr"",io" i. obtained by int~rchanging OR and AND Optration. and replacing I's
bJI O's and 0'$ by I·~ An equalion in one column of lhe table can be oblained from
lhe corre.ponding equation in the other column bJI taking the dual of tM: exp"""_
sion' on bolh sides of the equals sign . For example, relation 2 is the dual of rdation
I beC.1USC the OR has been replaced by an AND a nd the 0 by 1. It is important to
note that most of the lime the dual of an expression i. not equal to Ihe original
e~p'cl$ion. SO Ibat an e~prel$ion usually cannot be replaced by its dual.

The nine identities in"olving a single variable can be ea.;ly verif,ed b)' sub·
stiluting each of the 1"-0 possible values for X. For e.ample. to show that X + 0 ..
X. let X .. 0 to obtain 0 + 0 .. 0, and then let X .. I to obtain I + 0 .. 1. Both

o TARLEl·J
8 ",,,, Idenl;,i .. or 800 lu n AI1l"bno

••
X +O _ x , x- I _ X , X + I _ I , X·O _ 0 , X +X _ X , X-X _ X , X + X _ 1 , x-x _ 0 , x - x

" X + Y _ "X " xy _ YX Commutative

" X +(Y+Z) - (X+Yl+Z " X(YZ) _ (XYlZ A"""" •• i""

". X(Y+2)- XY+XZ " X + YZ _ (X+Y)(X+Z) Di",;OOli, X + Y _ X_Y ". X ' Y _ X IY DeMorg.n'.

3 6 0 CHAI'TER. 2 I COMBINATIONAL LoGIC CIRCUITS

equation, ar~ true according to the definit ion of th~ OR logic operation. Any
expression can be substituted for the variable X in all the Boolean ~quatjons
listed in the table. ThUs, by ident ity 3 and with X .. AB + C. we oblain

A B+C +l _]

Note lh"t idc"(ity 9 states that double compbUl'ntation restore, tbe variable to its
original value. Thus. if X _ O. then X m I and X .. 0 .. X.

Iden(iti"" 10 and 11. the commutati,·c laws, s(ate (h"t the order in which the
variables are "'rine" will not ~ffect the result when using the OR and AND opera ­
tions Identilie, 12 and 13, the aW)Ciativc laws, .t"te that the result of applying an
operation over three vari"bleo i, independent of the order that i, laken. and there­
fore. the p",entheses can be removed altogether a. foUows,

X +(Y +Z) " (X+Y)+Z - X+Y+Z

X(YZ) .. (XY)Z" XYZ

These two laws "nd the firs t distributive law, ide ntity 14, are well known from ordi_
nary algebra, SO they should not impose any difficulty. The second di$tributive law,
given by identity 15, is the dual of the ordinary distributive law and doe. not hold
in ordinary algebra. As illustrated previously. each variable in an idemity can be
replaced by a Boolean expression, and the iden tity slill holds, Thus, con.id~r the
expression (A + H) (A + CD) , Lening X_A. Y _ n, and Z .. CD. and applying
the II-Ccond distributi,'e law. we Obtain

(A + B)(A+CD) " A+OCD

The las(twO idemities in Table 2·3,

ar~ referred 10 a. DeMorgan·. theorem. This is a very important theorem and is
used 10 obta in the complement of an expression and of the corresponding function.
DeMorgan's theorem can be illu'trated by meanS of truth tables that assign all (he
possible binary values to X and Y. Tab le 2·4 snoW1 (wO trulh lables that verify the
first pari of DeMorgan·. Iheo"m. In A. we evaluate X + Y for all po<.ible values
of X and Y. Th is is done by first e,'aluati ng X + Y a nd then ta king it. complement.
tn Il. we evaluate X and Y and (hen AND them together. 11,e resu ll i$ (he Same

0 TARtE 2·4
Truth Table, to V, rlr, Ddl0'i"n'" Thooren,

"
, ,

'" "" "
, , , , i ·Y

" 0 " " 0 , , ,
"

, ,
" "

, , 0 " 0 ,
" 0 0 0

" " " "

l _l I 1io<>I< ... A.,.,.. 0 37

for tM four binary oombinatiom or X .nd Y, "'hoch verifieo tM identity or the
equation.

Note tile order in which the operations Me performed when evalunting .n
e . pression. In part I) of the table, th e complement o\"er a single variable is evalu·
ated first . followed by the AND operatio n. JUSt ~s in ordinary . Igcbra wilh multipli ·
ca tion and addition. In part A. the OH. opera tion i. eval ualed fitSt. ·lllen. nOling
lha! tM oomplement o,..,r an expression ' IOCh • • X + Y ill consi<k red as .p«ifying
l'OT (X + Y), evaluale 1M expression " ·Ithin the parenlMse5 and take tbe
complemenl of 1M rau l!. It is customary toexdude the parenlheses ... ·ben complr:·
mentin, an expression. since a bar over the enti,.., npression joins n togelher.
Th",,(X + Y) is expressed as X + Y ,,·hen designating the complement of X + Y.

DeMo.gan·. IhcOTe m can be extended 10 three Or more variables. l lte Kcn·
eral DcMorgan·S llM:orem caD be nprc5&C:d U

X, + X, + ... + .1.'. _ X,X, .. X.

X, X , ... X , - XI +X, + ...• X.

Ob.erve th.1 Ille logic "I"'nllion changes from O R to AND o r from ANO 10 OR.
In addiTion . the complemenl is rtmovW from Ihe enlire expression and platt<!
inslead ove r e""h variable. For example.

A +B +C + D - ABeD

Algebraic Manipulation

Boolea n "lgehra is" uscfu l lool for .impHfy ing digital circuils. Conside r. for exa m·
ple.lhe Doolean funolion represented by

F - XYZ+XYZ + XZ

The implementalion of Ihis equation ... ·'lh los'" &"Ies is sho n in Agu", 2-4(a).
Inpul v;!Iria llles X and Z . rc complemenled with invenel$ 'o o btain X and Z. The
Ihree ter"" in the expreMion are implemented ,,·ith Ihree A.,"\IO ptes. The OR pte
fonn~ the logical OR of lhe ' Cr"m$. Now consider a simphfocation of .he expreision
for Fby applying oon,e of tIM: identi.ies liMed in Table 2·3:

, - XYZ i XYZ+XZ

- XY(Z +Z')+ XZ by idenlity 14 -XY·I + X Z b\· idenTity 7

- XY + XZ by ilknl;'y 2

n.c upression io reduced to only tWO terms and can be implemented ,,;th
l!"'es" ,II"",,, in f igure 2-4(b). It is obvious th~1 lhe circuiT in (b) ia simple, than
the one in (a). yet. both implemem ,he Ioamc funclion. It is possibLe 10 uSC a tru,h
table to verify th at the Iwo impiemcn la1l0M arc equivalent. lhis i. Iho ... n in
Table 2·5. As eXpr~5S4'd in Fig ure 2-4(a). Ihe fu nction ill e<]UaITO I if X .. 0, Y _ I.
and Z - I;if X - O.l' - l.and Z - O:or if X and Z are oolh I.lltis produce. lhe

38 0 CHAI'TEII. 2! COMDINATIONAL lOG IC CIRCUITS

(. j F - XYZ+XVZ"+XZ

(b) F _ XV "- XZ

o FIGURE 2·4
Impl emenla tion 01 Book.n Fuoclion .,i,b Gate.

o TABLE 2· 5
Truth Tabl~ for Boole~n Func'ion

lour I's for F in part (a) of Ihe table. As expres.<ed in Figure 2-4(b). the function is
~q ual to I if X = 0 and Y ~ 1 or if X- I and Z - 1. This produces the same four
I's in part (b) of the table. Since both e~prcssion, produce the same truth table.
'hey are equivalent. Therefore. the two cireui!, have the same output for all (lOSSi.
ble binary combinations of the th ree inp ut variable,- Each circuit implemems the
same function, bU! the one with fewer gate< is preferable becau&<.' it requires fewer
components.

When a Boolean equation is im plemented with logic gates. each term
requires" gate, and each variable wit hin the term designates an input to the gate.
We define a /ileml a, a single variable within a term that mayor may not be com­
plemented. The e~pre"ion for th e function in Figure 2-4(a) has lh ree terms and
eight literals: the one in Fig ure 2·4(b) has two terms and four lit erals. By

l_l I !look ... AIg<bn 0 39

reducing Inc number of terms. tne number of li terals. or botn in a Boolean
expression. it is often possible 10 ohlain a simplN cireuit. l.loo1ean algebra is
applied 10 reduce an expression lor the purpose of ohtaining a simpler circuil.
For highly oomple~ functions. finding Ihe best upression based on counts of
lerm, and lit erals IS ,·ery diff.cult. even by Ihe usc of computer programs. Certain
methods. ho ever. for reducing expres>ions are often included in computer tools
for .ynlhesizing logic cirCU;Is. These mel hod, can oblain good. if nol the be".
SOlulions.. Th c o nly manual method for lhe general case is a cut·a nd-try proce·
dure emplo)"ing the basic re lations and other manipulations that I>ccom e familiar
wilh ""c. The following namples use identil ies Irom Table 2-3 to illu,trate a few
of Ihe possibilities,

I. X +XY - X(I+Y) - X
2.. X Y +XV - X(¥+Y) - X
J . X+X Y - (X+X)(X + Y) - X+Y

Note that the intermediale step X - X · 1 has been omilted when X i, factored out
in equal;on 1. The relalion,hip I + Y - I is useful for elim;naling red,:!"danl
lerms. as is done wilh Ihe lerm XY in Ihis same equalion. The relalion Y + Y - 1
i, useful for oolllbin ing Iwo lerms. as is done in equ alion 2. The Iwo ",nn. being
combined must be idenlical excepl for one variable. and Ihal variable mu", be
complemenled in one lerm and nol complemented in the othe •. Equation 3 is sim_
plified by mUnS of the scoond di,lribuli,·c law (ide ntily 15 in Tablc 2·3) . The fol·
lowing are Ihree more e""mple. of simplify ing Boolean expression"

4. X(X+Y) - X+X Y - X
5. (X+ Y)(X+Y) - X + YV - X

~ -
6. X(X + Y) - XX + XY - XY

NOle Ihal the inlermediale <lop< XX .. X .. X·I have been omilled during Ihe
m;onipulation of equalion 4. The c~pression in equation 5 is simplified by me.!n, of
Ihe occond dimibuti'·e law. Here again. we o mil Ihe intermediale 51ep< YY .. 0
andX+ O_X .

Equalion,4 Ihrough 6 are the duals of <!<jual;on, I Ihrough 3. Remember
Ihal the dual 01 an expression is obtaine<l by changing AND 10 O R and O R to
AND Ihroughoul (a nd l·s 10 0·, and 0·, to l·s if Ihey appca< in Ihe expression) . The
,j""llIy I'riMdl'l~ of Boolean algeb .. S1ales Ihat a Boolean equalion remains valid if
.... " take Ihe dual of the expressions on oolh .ides of Ihe equal' sign. l "hcrefore.
equation, 4. 5. and 6 can be oblaine<l by laking Ihe dual of equation, I. 2. and J.
respecti.ely.

Along wilh Ihe resuUs just gi'·cn in Clluation, I Ihrough 6. Ihc foll owing COl!·

."ns", II",,,,,,,,, is u<cful when simplifying Boolean expression"

Xy+xz + YZ - XY + XZ

The theorem .bo thai the third lerm. YZ. is redundant and can be eliminated.
Note Ihat Y and Z are aloSO<iale<l wilh X and X in Ihe f,l"St 1"·0 lerms and appear

40 0 CHAPTER 2/ COMBINATIONAL LOGIC CIRCUITS

10gelher in lhe lerm Ihat is eliminated. The proof of the consensus theorem is
obtained b}' tirst ANDing YZ with (X -+ X) _ 1 and procecds as follows:

XY+XZ+YZ XY+XZ+YZ(X+X)

- X Y+XZ+XYZ+XYZ

- XY + XYZ+XZ+XYZ

XY(I+Z)-+XZ(i+Y)

- X Y-+XZ

The dual of lhe consensus theorem is

(X -+ n(\' -+ Z)(Y -+ Z) - (X -t Y)(X -t Z)

The following example sho how the consensus theorem can be applied in
manipulating a Boolean expression:

(A-tB)(A-+C) - AA+AC+AB-t8C

- AC-+AB+BC

AC -+ AB

N01e that AA _ 0 and 0 -t flC = A C. The redundant term eliminated in the lasl
step by the consensus theorem i5 BC

Complement 01 a Function

The complement representation for a function F. F, is obtained from an inter_
change of l 's to 0'$ and 0', 10 l's for the values of Fin the lruth table. Thc comple­
ment of a funclion can be derived algebraically by applying DeMorg.n·, theorem.
The genera lized form of thi. theorem sl.te, lhat the complement of an expression
is obtained by imerchanging AND and OR operations and complementi~g each
variable and constam, as ,hown in Example 2· t.

EXAMPLE 2-1 Complementing t"undions

Find the complemenl of each of the functions represented by the equation.
F, _ XYZ -t XVZ and Fl - X(VZ -t YZ) . Appl}'ing DcMorgan 's theorem as
many times as necessary. we obtain the complem~nts as follows'

F, • XYZ -t XYZ = (XYZ)' (XYZ)

(X + Y -tZ)(X -t Y-t Z)

X(YZ -t YZ) = X -+'"eZec+,ycZ~)

2-J I S,,,,,J:ttd futm, 0 41

X-t (l'z , YZ)

~ X-t (Y-tZj(Y -t Z) •
A simpler method for deriving 1he complement of a function i, to take the

dual of the function equ.tion and oomplement each literal. This me1hod foUow!
from 1he generalization of DeMorgan's theorem, Remember lhat the dual of an
expression is obtained by interchanging AN D and OR operations and \', and O's.
To avoid confusion in haodling complex functions, adding parentheses around
terms before ta~ing the dual is helpful, as illustrated in the next example_

EXAM PUC 2-2 Comf"le"",nt;ng Fun<l;on< by Usin~ Duals

Find the complements of the functions in Example 2· 1 by taking the duals of their
equation! and complementing each literal.

We begin with

F, _ XYZ -t XYZ - (XYZ) -t (XYZ)

The dual of F, i,

Complementing each lit eral, we ha>'e

(X -t Y-tZ)(X -t Y -t Z) - '"

Now,

F, = X(YZ -t YZ) _ X« Y Z) -t(YZ»

The dual of F, i.

X-t(Y -t Z)(Y-tZ)

Complementing e"ch lileral yields

X -t (Y -t Z j(Y-tZ) _ F"

2-3 STANDARD FORMS

•

A Boolean func1ion expressed algebraically can be wriHen in a variety of u'a}'S.
There are, howe,'er. specific way. of writing algebraic equations that are considered
to be standard forms. The standard form. facilitate the simplification procedures for
Boolean expre'-S;ons and frequently resuh in more desirable logic circui1s.

The standard forms contain prodl<ct terms and """ 'em An example of a
p.oduct term is XYZ. Thi, i, a logical product consisting of an AND operation
among three literals. An example of a su m term i< X + Y + Z. This is a logical . um
consisting of an OR operation among the litera ls. h muSt be realized that the

42 0 CHAPTER 2 f COMIliNATIONAL LOGIC CIRCUITS

words "product" and '·.um~ do not imply arithmetic operations in Boolean alge­
bra: instead. thc}, sJ'<'cify lhe logicat operation. A NO and OR. rC'J'<'ctivcly.

Mlnlerms and Maxterms

II has becn sho,,'n lhal a lrulh table dclin c", • Boolo.n function. An algebraic
expression representing the function i. derived from thc tablc b)' finding thc logical
,urn of ~II product term. for which the function .,"ume", the binary v.lue I. A
product term in which all thc variables appear eMcliy once, either cornplcmcnt~d
or uncomplemented, is called a mimam, lis characteristic property is that it repre­
sents exactly onc combination of the bi",!ry v.riablcs in a truth table. h h.! the
value I lor that combination and 0 for a ll others. There are 2" Jistincl mintcnll~ for
" variables- The four minterm! lor the two ,'miables X and Yare X l'. X y, xl',
and XY The eight mintcrms for the lhrce ,'.riables X, y, and Z are li'leJ in 'I"blc
2-6. The binary numbc~ from (((I to 111 are listed under the variables. For each
binary combination. there i, a related minterm. Each minterm i, a prod uct term "f
e,;<ctly three li terals.. A li teral i, • complemented variable if the corresponding bit
of the rclated binary combination is 0 a nJ is an uncomplcmentcd vari.blc if it is 1.
A symbol "'; for each minterm is also shown in thc tab lc. where the sUMcript j
denotes lhe decimal c'luiv;<lcnl of the bin'lT)' combination for which the mintcrm
has the val ue l. This list of mintcrms for any given n ,'ariables can t>e formed in "
similar m.nner from" lisl of the binary numt>e,.. from 0 through 2" - I. In addi·
tion. the truth table for each minlerm is gi"cn in !he righl half "f the lable. -rncsc
truth tobles cl ca rly show th.t each minterm is I for the corresponding binary com­
bination and 0 for all other combin alion~ Sud] truth lable. will t>c hdpfullolc r in
using minlcrmS to form Boolc.n expressions.

A ,urn term lh nl conl~i ns a ll lhe variableS in complemenled or nncomple_
menled form is called a ",axlem" Again, it is possible to formulatc 2" m"'terms
with II variables. 11," eigh t ma,lerms for three varillblcs arC listed in T;\blc 2-) ,
E;\ch maxterm is a logical ' urn of the three variables. with each variablc t>cing com­
plcmented if the corresponding bit of the binar)' numlJcr is I and uneomplemcnted

o TA8LE 2·6
Mint"nn' fur Th",e Vari.hle,

Product

• , , .. - Symbol ~ m, m, ~ m, ~ ~ ~

" " " xi'z ~
,

" " " " " " 0

" "
, Hz m, " " " " " " " " " XYZ ~ " " " " " " 0

" XYZ m, " " "
,

" 0 " " " " XY2 m, " " " 0 " " " "
, xi'z '0. " " " " " " " 0 XYZ "- " " " 0 " " " XYZ m, " " " 0 " 0 "

2_3 I S .. t><Iord Fo<n" 0 .,
o TABLEl-7

~t.'lenm f TIl..., \ "ariab!a

, • , -,~ ,- M, ., .. . ,, , , , X->-Y->-Z M, , ,
"

, X->-Y +Z M, , , ,
" X+y +Z M. ,

"
,

0 , , X->-Y->-Z MJ
, ,

" " X+Y + Z M., , , X + Y +Z M, "
,

" X ->- Y->-Z M, , ,
- - -X+Y->-Z M, , ,

ifil is O.l'he ,)1nbol for a mnle rm is MI' ... hcrei denotes Ihe decimal equiva lent of
Ihe binary combiruuion (Of ... h.eh the maXterm has the value O. In the right half of
the table. the lrulb table for each mutenn" &i'-cn. Notc thaI the vahoc of the mU'
term is 0 (Of the coIT.-sponding combination and I for all other combinations. It is
now deu ..,he.e the lenni ~ minterm ~ and ~mutenn" come from:. minterm is a
(unction. 11(>1 equal to O. baving lhe m,ninmm number of l". in its truth lable ; a
onaxterm i. a funclion. not equal to L. having the ma.imum of l's in il$ truth table.
Note (rorn Table 2--6 and TobIe 2·7 Ihat R minle"n and ma.term "'ilh th c SlIme .ub­
.cript "rc lhe compleme"t. of clICh oIlier; lhul is. M) - m). r-or example. f". J _ 3.
we !lave

mJ- XYZ - X + Y+% _ AI,

A Doolean functiOfl c~n be , epresented algebraicall y f«)m ~ si"cn truth table
by fonning the logical sum of all lh e minlenDS lhal produce 8 I in lhe function.
·I'h" ,,-,pression .. called. sum of mllllrm", Consider the Hoole"" funclion F in
Tloblc 2-8(&). 1k function .. C<]ual to I for each of the follo ... ·ing binary combina'
tions o f the "ariables X. Y. and Z; <XXl. 010.101 and lll. ·I~ combinations,.rc·
.pond to minlerms O. 2. 5. and 1. Ily examining Table 2-8 and lhe 'rulh tables for
lhese minl"nns in Table 2-6. it is evidenllh. l the function Fan be cxprc"""d BLge­
braically a. the Iogical,um of the Sialed milllerms:

F .. XYZ +XYZ + XYZ ';-XYZ .. mo+ m, ';- m, + m,

Thi. can be further abbrcvia(ed by listin g only th e decimal . UMe.iplS of the
minterms:

F(X.)',%) .. ~",(O.2.5.7)

The .ymbol ~ ",nd< for the Ios"'al.um (ll<:><>k,n OR) oflhe min'erm .. TIM' ""on·
b<!n following it rep""",nt thc mmIC.on. of lhe functi"". The leners in parenl he.
ses 1011o ... ·;ng Florm a lIS! of the variables in the o«Jcr taken ... hen Ihe mlnle,m.
are COfI~encd '0 prod"'" tenllS.

44 0 CHAPTER 1 1 COMBINATIONAL LOGIC CI RCUITS

o TA8LE 2-8
800lean ~'unctiun' ofTh..,., ".riabl",

"1 , , , , ,
'"

, , , ,
,

" " 0 " " " I ,
" " " " I

" I 0 " "
, I

" I I " "
,

" "
,

"
, , ,

"
, , 0

" 0 " " , I 0

Now consider the comple ment of a Hoolean fUllc\i<>n The binary v~ l "e, of];'
in Table 2-S(a) are obtained by changing 1's 10 0', and 0', to I's in the values of
F. Taki ng the logical Sum of mintCTms of 7:, we o b13in

or, in abbreviated form,

f\ X. I',Z) '"' 1:",(1,3,4. 6)

Note that Ihe minterm numbers for F are the ones missing from the lisl of the min·
term numbers of F We nOw take the c."npl<ment of];' to obt~in f';

- (X+Y+Z)(X + Y + Z)(X + Y+Z)(X +Y + Z)

This shoW'! the procedure for expressing a Boole,'" function as a prod"cr of max·
'ams, The abbreviated form for this produCl is

F(X Y,Z) _ nM(1.3,4,6)

where symbol fJ denotes the logical product (Boolea n AND) of the maxterms
"hose numbers aTe li sted in parenlh~ses. NOle lh,t the decimal numbers included
in lh. product of maxterms will always be the some as th~ mintum list of the
complemented function, such as (1 . 3, 4.6) in lhe foregoing exa mple. Maxter m, are
seldom used direclly when dea ling wit h Bool~an functions. as we ean always
replace them wilh the mimerm list of F,

The following i$ a \ UmmaTY of the most important properties of mi nt erms:

1. There are 2" minterms for " Boolean variables. These min tenns Can be c"alu·
at~d from [he binary numbers from 0 to 2" - I.

2. Any Boolean funClion can be expressed as a logical sum of mimcrms.

2_3 I S .. "d"d Form. a 45

J. The complement of a function contains those minterms not included in the
original function.

4. A function that indude, all the 2' minterms is equal to logic 1.

A lunction that is not in the sum·of_mi nterm s form can be con"cried to tha t form
by meaos of" truth table. since the truth table always specifie.; the minterms of the
funClion . Consider. for example. the Boolean function

E - Y+XZ

The expression is not in su m·of.minterms form. be<;ause each lerm does not con­
tain all th ree variable.; X. Y; and Z. The truth table for this funclion is listed in
Table 2-S(b). from the table. we obtain the minterms 01 the function:

E(X. Y,Z) - ~m(O,1.2.4.5)

The minterm. for the complement of E arc given b)'

E(X. Y.Z) - 1m(3.6.7)

Note that the total number of minterms in E and If is equal to eight. sinee the
function has three variables. and three variables pr{)duce a total of eig.ht minlcrm ..
Wil h four variables. there will be a total of 16 minterms. and for two variables,
there wHi be 4 minterms. A n example of a funetion thaI indudes all the minterms is

G(X. Y) - 1,"(0. 1.2.3) _ 1

Since G is a funchon of Iwo variables and cont ains all lour minterms. it is always
equal to logic I.

Sum of Products

The • .,m·of·mi nterms form is " standard algebraic c~ prcssion that is obtained
dire<:tly from a truth table. The e~pression so obtained contains the maximum
II umt>er of literal. in each term and usually has more producI terlT1$ than necessary.
This is because. by definition. each minterm must include all the variables of the
function. complememed or uncomplemented . Once the sum of minICnn. is
obtained from the truth table. Ihe ne~1 step is 10 try 10 simplify the expression to
see whether it is possible to re duce the number of product terms a nd the number
of literals in the lerms. '[lIe resuh is a simplified expression in .>u"'-oj-produciS
form. This is an alternative . ta ndard lorm 01 expression that coma in, product
lerms with one. IWO. or any numi>er of literals. An example of" Iloolcan funclion
expressed as a 'U rn of products is

F - Y +XYZ+XY

111e exp ression has three pr{)duct terms. ille firs t with one li tera\. the second wit h
three literals. and the thi rd with two literals.

The logic diagram lor a sum-<>f-produCls Corm consists of a group of AND
gate. followed by a single OR gat~. as shown in Figure 2_5. Each pr{)duct term

46 a CHAJ'TEJl l f CO.\II11NA1'IONAL LOGIC C IRCUITS

,-----,

a I'IGU II. E2-5
S"m.u"''''odllC1. lm plcmentat"",

re<juires an AN"D gale. exccpl for • l~nn wilh a single literal. The logical 'un. is
formed "'ilh an O R gale lhat hat .in&le lilera" and lhe OUl plll$ oIlhe AND gales
as inputs. I I is assumed .hat lhe inpul variables are dirtt.ly a,-ailable in their com­
pkmenl~d and uncompl~rm:nted forms. ~ ,n'·ffi~ ... are nOl included in the dia­
vam. 1l>e AND gale& (ollowed "" lhe O R &ale fonn a cimlll OOI1figurluioo
referred to as a ",,"£>./n"('1 impk"'tll/~.i"" (IT """_lfi"tl eircui •.

[f an e.xpreMion is IlOl on lum-of-prodUC\$-form.;1 can be OOI1"~'I~d to lhe
slandard lonn by means of Ihe disuibulio'c law .. C0ll5id~r lhe cxpreMion

f" _ AB +C(D -+-E)

Thi. IS nol in .um-of.products fQrm. because Ihe IeI'm D -+- E is parI Q(a prodUCl.
bUI i, nO! a . ingle literal, Th e e.prcl\Sion can be converled to. s um of produclS by
applying Ihe appropriate distributive law a, follow.:

f" _ AI) -+-C(V +£) _ AB + CD + CE

The fUnc1ion f' ;. implerm:ntcd in a non.landard fonn in Figure 2-6(a). Thi.
re<juire. 'wo AND gales and two OR gales. nw"" a.., Ih..,e le,"('I. of galin, in the
circuit. f" i. implcrm:nted in IUon..of_prodUC\$ form in Fi,ure 2-6(b). ThIS circuil
requires lhrce AND pies and an OR gale and uses (l.u leo·d. of gating. The d«j­

$lo11 as to , ... hether to u~ • two-le,..,1 or multiple-""..,I (three le"el, 0<' more)
implerm:nlation is complex. Among lhe issues ;nvoh-ed are the number of p Ia
number of gale inpulS. and the anwunt of ""lay bel,,-cen lhe time the input values
are ~l and Ihe lime lhot resuhin, OU1JlUI values appear_ Two_leve1,mplementatioos
are the nalural form for cerlain implementation l~hnologie .. as we ... ill see in
Chaple.4.

Product of Sums

Anolher .tandard form of expressing Boolean funclion. algcbraically it the 1",,,1·
"c. of"'-"", Th ill form is oblained hy fmming a logic.1 produci of sum lerm~ Each
logical sum term may have an y numb<:r of dtSt,nCl literal .. An example of. fune·
lion expr d in prod uct-of-Jums form ill

F _ X(Y + Z)(X + y+z)

Thil; exp<ession luis sum tennl of on ... t"-o. and .h.-ee hlerals. The fum ternn per_
form an O R operalion.and the product i. an AND operalion.

,
J ,

~~
,

J 0

c
J ,

(.)AO+C(D+E) (~)Aa+CD +CE

o FIGURE: U;
Thr«·\...e,cI and T".,.lcvellmplomentotioo

The gate s!ructure of the prod uct_ol_sums expression consiSis of 3 group of
OR gates fw the Sum ler "" (••• cpt for a .ingJe]ite'al term), followed by an AN O
gale. This is . hown in Figure 2-7 lor the preceding function F As with the ,u rn of
products. this standard type of expression resulls in " two-level gating structure.

2-4 Two-LEVEL CIRCUIT OPTIMIZATION

Th e complex;ly of tbe digilal logic ga1C$ Ihat implement a B<Xl]e,m function is
directly related to the algebra ic expression from which the function is implementoo.
Although the trut h table representation of a function is unique, when e xpressed
algebraically, the fUlICli,," .ppcaTS in many different forms. Bool"," expressions
may be ~impl ificd by algebnoic manipulation", discussed in Section 2-2. However.
this proc~ d ure of sim plification is awkward b<:cause it lack. 'pecific rules to predict
eac h succceding step in the m.n ipuWive procc.,; and it is difficult to determine
whether the sim pleS! expression has b<:en aehi~v~d, By contrast. the m~p met ho<I
provid"'l a , traight fotward p,OC(:d urc for optimiring Boule,n functions of up to
four v",i"bl"", Ma p!; for iive aDd.ilI variables ca n b<: drawn as well. but are m"'e
cumb<:rsome to use. Th~ map is also known a, the Ka"""' l<iJ "'af!. Or K·map. The
map is a diagr.m made up of S<j u'Tes. wit h each sq uare representing one minter",
of the iu nction , Since any Boolean function can I", expresscd as ~ su m of mintcrm>.
it follow, that a H'>olcan function is rccogni'''d graphically in the map by those
squ" res whose mintcrms are included in the function. In fact, the map prcscnts a
,'isual d iagram of all1)OSSib ie way' a function may be expressed in a standard form ,
By roxognizing ",,,iO llS pattern>. the user can deri>'e alternative algebraic

;.~o-

o t'lGlIKE 2·7
Pr<>duc1-of·Sums Implemen,., iQn

48 0 CHAI'TEIl21 COMlltNATrONiI.l. LOGtC Ct~CUtTS

npressions lor the same function, from which the simplest can be sele<:\e<J, The
oplimized expressions produced b)' the map are always in sum-of·products or prod·
uet-of·sums form. Thus. maps handle optimization lor Iwo·le"el implementations,
bUI do nol awly directly to po&Sib1e simpler implementalions for the general case
"'ith three or more level .. Initially. this section covers sum-of-prod""" oplimization
and. later, applies ilto performing produc\·of·sums opl imi~"tion,

Cost Criteria

In th e prior section. counling literals and terms was ment ioned"", a " 'ay of measur­
ing Ihe simplicity of a logic circuit. We introduce two COIiI crileria 10 formalize this
concept.

The first criterion is literal COSI. the number of lilerat appearance> in a Bool.
ean e 'pre<sion corresponding exactly to the logic diagram. For example. for the
circuits in Figure 2-6. the corresponding Boolean expre"ion, are

F = AR + C(IJ + E) and F - A8 + CIJ+CE

There are five literal appearance> in Ihe first equations and six literal appear­
anceS in the second equ~lion. so the fi rst equation is the simpiesl in terms of til­
eral cost. Literal cost has Ihe advantage Ihat il is vuy simple to evaluate by
counting liter.1 appearances. It does not. however. represent circui t compln;ty
accurately in all caws. eVen for Ihe compariso n of diffue nl implerneMations of
the same logic function . The following Boolean equation .. both for function G,
illustrate this situation;

G - ABCD + ABCD and G - (A+B){B+C){C+D)(D+A)

The implement"tions repre..,nte<l by the.., equations both ha"e a titcTat COIit of
eight. But . the first equation has two terms and the second equation has four ternlS.
This suggests thai the first equation has a lower cost than the second equation.

To capture the difference illu<lrated . " 'c deflDe ga/~ input ~O$I as the IIum\>er
of inputs to the gate. in the implementalion corresponding exaclly to the given
equation or e<tuations. l" is cos. can be dClumined easity from the logic diagram
by simply counting the total number of inputs to the gates in the logic diagram. For
5um-of' produCI$ or producl-<lf-sums equations. i\ can be found from the equation
by finding the sum of

(1) all li teral appearances.
(2) the numDer of term, excluding terms thai con,;st only of a single litera l. and,

optionally.
(3) the number of distinct complemented single literals.

In (1). all gate inputs from outside the circuit are represented. In (2), all gate inputs
within the cjrc:uil. excepl for those In in,'erters are represenled and in (3), im'erters
needed 10 complement the input variables are counted in the event that comple­
mented input variabtes are not provided, For the two preceding e<tuation .. e~d"d·
ing the count hom (3), (he respeeti,'e gate input counts are 8 + 2 .. 10 and 8 + 4 " 12.

2_4 ITwo-ln'<1 Circuit Op<muz";o,, 0 49

Including lhe count from (3), that of input inverte~ the respective counts are 14
and 16. So Ihe first equation for G ha$ a lower gate input cost even thoug.h the lit_
eral costs are equal ,

Gate input cost is currently a gO<Xl measure for contemporary logic imple­
mentation. since it is proportional to the number of transistors and wire. used in
implementing a logic circuit. Representation of gate inputs become, particularly
important in measuring emt for circuits with more than two level .. Typically, as the
number of levels increases, literal cost represents a smaller proportion of the actual
circuit emt since more and more gates have no inputs from oUlside the circuit
itself. Later, in Figure 2-29, we introduce complex gate types for which evaluation
of Ihe gate input emt from an equation is in"alid, since Ihe correspondence
betll'een the AND, OR and NOT operations in the equation and the gates in the
circuit can no longer be established, In such case .. as well as for equation forms
more complex than ,um _of.products and product_of.sums, the gate inpul count
mu't be determined directly from the implementation.

Regardle", of the cost criteria used, we see later Ihat the ,implest expre",ion
is nm nece",arily unique. It is &ometime. possible to find two or more expressions
that satisfy the cost criterion applied , In that ca>e, eit her solution i, sati,factory
from tbe emt standpoint .

Two-Variable Map

There are four minterms for a Boolean function with Iwo variables. Hence, the
two-vari.ble map consi~us of four squares. one for each minterm, as shown in
Figure 2-8(a). The map is redrawn in Figure 2-&(b) to show Ihe relationsh ip
between the squares and Ih. two variables X and Y. The 0 and I mar~ed on Ihe
left side and the top of the map designate the values of the variable .. The variable
X appears complemented in row 0 and uncomplemented in row 1. Similarly, Y
appears complemented in colu mn 0 and uncomplernonted in column 1. Note that
Ihe four combinations of these binary value, correspond to the truth table rows
"""",,iated witb Ihe four minterms.

A function of two variables can be represented in a map by marking the
squares that correspond to the mintenns of the function. As an example. the func_
tion XY is shown in Figure 2-9(a), Since XY is equal to mimerm mj, a I is placed

~
c;r;] ,.j

~ 0 I

"~ t@:g
,,,

o FIGURE 2_8
"IWo-V.,i.ble Map

~o, 'f.-O l "EE oLE]
1 I t~

(oj XY (b)X " Y

o H GURE 2-9
Representation of Functions in the
Map

so 0 CHAI'TUI. 2 I COMlUNAll0NAL LOGIC C[RCUITS

inside [he "'Iuare Ihat belonp [0 mJ_ figure 2-9(b) .hows tbe nt.3p for the logical
sum of thrtt m;nterms:

- -
m, + ml + m) - X Y +XY+XY = X+ Y

The oplimilcd expreloSion X + Y is detennine<l from the tWO-S<luare area for the
variab le X in the se.:ond row and the IWo-S<JUare area for Y in the SCC()nd column,
Together. these two areas enc lose the three "'Iuar"" beJong;nllto X Or Y. Th is sim­
pli fication can be ju'ti ned by a lllcbr~ic manipulat ion'

X Y+Xy+ X Y _ XY+X(Y+Y) - (X + X)(Y +X) - X + y

11><: exact procedure for cwnbining square!! in tbe map will be clarlfted In the
eumpl"" thai follow.

Three-Variable Map

ll>ere are eight minterms for th",e bina!'}' vari~bIe:s. ll>ercfore.. Ihru_vari.able
map """,iM. of eighl squares. lIS slto"-n in figure 2-10. The map dr:oWJl in par1 (b) is
marked wilh !l;nary numbers for each row and e""h column toshow the bina!'}' val_
ue. of the minlenns. NOie Ihat lhe numbers along Ihe coIumn~ do not follow the
binary coun t "'que"",c, The ehUKlerill>c: of Ihe listed sequence is Ih.t only one bi t
changes in value from one adjacent colu mn 10 Ihe neXI. which corre.po"ds to the
Gray rode in trod uced In Chapter \ ,

A mint erm "'IuJre can be localed in the map in two ways. First. we e~n mem­
orile t~ e number< li'ted in FIgure 2- IO{a) f(>f each mlnlerm location. or we can
refer to the bina!)' numbers alon, Ihe rows and column. in Figure 2-IO(b). for
eump\e. the square aSSIgned (0 III. corre.pond~ \0 row 1 and column 01. When
the# two nwubers are combi""d. they gi"e the binary number 101. "'bose decimal
cqu;~alent"~. _

Anot r ,,'ay of looking al square ffl, - XYZ i. to consider it 10 be In Ihe
ro .. marked X and I CQlumn beionsong 10 YZ (column 01). NOie Ihal Ihere ale
four squart:< " 'h<:re each variable is equal (0 I and four " here each I, equal to O.

~ .,
m, m,

,.,

,
00 "' " m, m, olxY'l XYZ XYZ

m, ~ , X YZ ,', '" ,
'"

C "lCUKE Z-IO
lbr=Van.bIe Map

'"
XYZ

XY:":

The variable appoor>; uncomplemented in Ihc four square, where il is equal 10 1
and complemented in the fo ur squares wl1ere it is equal 10 O. For convenience. we
wrile Ihe variable name along Ihe four squares where il i. uncomplemented. Afler
one t>ccomc. familiar with maps, Ihe use of Ihe ,·.riable names alone i, ,ufficienllo
lat>cl Ihe map regions. To Ihi , end. it i, important 10 note Ihe lOCal ion of Ihese
lat>cl. 10 obtain all minterm, on Ihe map.

In the two-variable map. Ihe funclion XY demonSlraled Ihal a function or a
lem, for a funclion can con,;.t of a ,ingle .quare of the map. B U1 to achie,·e simpli.
ficalion. we need 10 consider mult iple squares corresponding to producI lerms. To
undersl"nd how combining square •• implifies Boolean funclions.. we mUSI recog­
nize Ihe b.,ic proporly possessed by ~ J.iacent square,· Any two adjacem squares
placed horizontally or vertically (bul not diagonally) 10 form a r""tangle corre­
spond to minterm' thai differ in only a single variable. The single variable appears
uncomplemenled in one square and complemenled in Ihe other. For e~"mple. "'5
and ... , lie in two adjacent square .. Variable Y is complemented in m, and uncom_
plemented in m,. wl1ile Ihe Olher two variables malch in both 5<!" .. e .. The logical
Sum of two . uch adjacent minterms can t>c simp lified into a single producI lerm of
Iwo variables:

"'l +"'7 - XYZ -+ XYZ - X Z(y-+ Y) - XZ

Here the Iw{) ,,! u"res differ in Ihe variable Y. which can t>c removed when Ihe log.
ieal sum (OR) of the two minlerms is formed . Th us. On a 3·variable map. any IwO
minternts i" adjacent squares thai arc ORed together produce a producI lerm of
two variable .. This is sho"·n in Example 2·3.

t:XAMI'U: 2·J Simplifying _ Boolnn .'unction Using_ Map

Simplify the Boolean function

F(X. Y,Z) - ~m(2.3.4.5)

i-Irsl. a I is marked in each minterm [hal represents the function. Thi' is .hown in
Figurc 2· 11. where the squares for minlerms 010. OJ 1. JOO. a ttd IO J are marked
wil h J.~ r"Or conven ience. all of the r~n\aining sq uares for which the funClion 11 ,,,
value 0 arc left bl"nk ralhcr than entcring Ihe 0· .. The next slep is 10 explore col ·
lect ion, of squares on Ihe map represe nting product lerms to t>c considered for Ihe
simpli fi ed expression. We c,,11 such objects reciallgie •. • ince thcir shape i, Ihat of a
rectangle (induding. of course. a square). Reclangles thaI correspond to product
Icrms are reSlricted. however. 10 contain numt>cr> of squ"re. thaI are powers of 2.
sud", 1.2.4.8 So our goal i, to find Ihe fewesl ,uch rectangles Ihat include all
of Ihe minlerms marked wilh I·s This will give the fewest producl lerms. In Ihe
map in Ihe figure. Iwo rectangles enclose all four squares containing 1· .. The upper
righl rectangle represents the prod uct lerm XY. This is delermined by ohserving
Ihat Ihe reclangle is in row O. corresponding to X. and Ihe laSI two col umns. cOrre­
sponding to Y. Si milarly.t~ c lowcr left rectangle represent' Ihe producI term XY.
(The second row represent' X and Ihe two lefl col um ns represenl Y .) Since these

52 0 CHAI'rnR 11 COMIlINAnONA~ lOGIC CI R.CUITS

o FIGU RE1· 1l
Map fOf F mp .. 2.3: f'(X, Y.Z) _ .Im(2.3.U) - xy .. xl'

lwo rectangles include .11 of Ihe I', in Ihe map. lhe logical .um of Ihc corlUpOOd­
ing I"'" product lenn. gives lhe optimized uprcss;on for P.

- -F_ XY+XY •
In $Orne casn. I"" $<juar", in lhe map are adjaceOi and form. rc<:langlc of

Mze 1-..0. e"en Ihough Ihcy do nOi louch cach Olhe,_ For uample, in Hlurc 2-10.
,...., is adjacenl 10 ml and m, is adi~nl 10"" I:>ccause lhe minlerms differ by One
variab". Thi. can be readily ,'crined algebnlically:

mo+ntj - XYZ +XYZ - XZ(y + Y) - xl'
tn, + tn6 " XYZ+ XYZ - XZ(Y + Y) - xl'

The rectangle. correlponding 10 these two product tenni\, xi? and xl'. are shown
00 the map in ~jgure 2-12(a). ll a~d on (he localion of Ih_ reel.ngles. we mu.t
modify the dcfinilion of IKijllCCnt squar", 10 include Ihis and other. simil.r cues.
We do $0 by considerin, Ihe map II being dra".., on a cylinlkr, at tbov.'n in
~lgurc 2.12(b). ,,-bere lhe ri,ln and Ie!! edges touch eacb ot hcr 10 correctly estab­
lish mimenn adj~ncies and form the reel.ngh In the map" in Fi,ure 2. 12, "e
ha,'c simply used numbers nther Ihan m·. to reprcscm Ihc mintenns. 60th of
thc5c notalions ill be used freely.

(., ("

a nGUME l-U
Tb"",· ""noble M.p: flo, .nd on • C)'Iinde1 to SIIow Adjao:n, Sq,.arco

2_4 I 'JWo..lev<l Circuit Oprimizotioo 0 53

, ,
00 " " "

Z OO\OJ

,
" '"

"
, , ,

"
, , , ,

[, , , , , ,

"
, ,

(oj ,OJ
o nGURt: 2-iJ

Prod""t Term, U.inK Four Mintenn.

A four-square recJangie represen!:! " product tenn that is tbe logical sum of
four mintenns. For tbe thr~e-,'ariable case. such a prod uct term ;s only one literal.
As an e. ample. the log~al ,um of the four adjacent m;nterms O. 2.4. and 6 reduc""
to a 'ingle liter.ltenn Z:

"'o+ ",, + m. + mo - XYZ+XYZ+XYZ +XYZ

-- - --
- XZ(Y + y)+XZ(Y + y)

- XZ+XZ=Z(X+X)=Z

The recta~e for tm. product torm i~ shown in Figure 2-13(a) . Note that the prod­
uct tenn Z uses the fact that the left and right edge, of the mop Ole adjacent in
order to form the recta ogle. Two other e.ample. of rectangle, corre'ponding to

product term. derived from four mintenn. are ,hown in Figure 2-13(b).
In general. a, more squares are combined. we obtain a product te rm with

fewer literals. Three-variable maps exhibit the following characteristics'

One square represents a mintenn of three literals.

A rectangle of two squares represent' a product term of \"·0 literals.

A rectangle of four squares represents a product term of one literal.

A rectangle of eight squar"" encompasses the emire map and produces a
fuoction th.t is always equal to logic 1.

These characteristics are illustrated in Example 2·4 .

~:XAM Pl..E 2·4 Simplif)ing Th",,~-Variahle Function, .. ·i th Map.

Simplify the following two Boolean functioru;:

F,(X,Y,Z) - 1m(3.4.6.7)

Fl(X. Y. Z) - 1",(0.2.4.5.6)

The map for Ft '$ shown in Rgure 2.14(a). There are four square, marked
with 1's. one for each minterm of the function. Two adjacent sq uares are combined

54 0 CHAPTER Z I COM IlIN AT10NAL LOG IC Cl""CU1TS

,
(.) F,(X. Y. Z) ~ l:m(J. 4. 6.?)

~ Y7.~X 7.

,
(b) F,(X. Y Z) a l:m(O, 2.4. 5. 6)

_ 7. ~ XV

o FlGUKE1_14
Maps for E,,;.mple 2-4

in Ihe Ihird column 10 give a two-liter.llerm YZ . The remaining two sq u.rcs with
1's are also adjacent by the cylinder-based definition and are shown in th e diagram
with their values enclosed in half rectangle .. Wh en combined. these two sqoarcl
gi,'c the tw,,·literal term X Z . '!l'e oplirni?.cd function thus becomes

F, · YZ+XZ

The map for Fl is shown in Figure 2·14(b) , Fi r$k wc immtdiately c< ,mbine tht
four adjacent squarc$ in thc first and last columns based on what we learned from
Figure 2·13. to give lho ,ingle literal term Z, The remaining single squ.re repre·
senting minter m 5 is combincd wit h an adjacem square that already i, being us<-'<l
once. This is not only permissible. but desirable. $in<;e tht t",,, adjacent square.; gi,'c
thc tw<c!iteral tcrm xl'. whilc the singlc square represents the lhree·literal min·
term XYZ, The optimized function is

F, _ Z + X Y •
O n occasion there aTC allernati,c ways of combining squares to produce

equa lly optimized expressions. An example of thi' is demonstrated in the m.p of
Fig ure 2· 15. Min{errns 1 and 3 are combincd to give {he term XZ. and mi merms 4
and 6 produce Ihe torm XZ, However. there are two " '3YS th.t {he square of min·
term 5 can be combined " 'ilh another adjacent <quare 10 produce a third twO­
litcral lerm. Combining it with minterm 4 gives the term XV; combining i{ instead
with min{erm I give~ the term YZ. Each of the two pos,ible optimiled expressions
lis{ed in Figure 2-15 has three terms of two literals each. so lhere are lwO possible
optimized SOlutions fOT this function .

If a funclion is not expressed as a sum of mimerms. we can use the map {O
obtain {he minlerms of Ihe function and then simp li fy {he function. It is necessary,
howewr. {o have {he algebraic expres,ion in sum-of-produc{s form, from which
each product term i, ploned in the map. The mimerms of the function are {hen
reud direc!l}' from the map. A, an "'Ample. consider the Boolean function

" ' }; 00 01 11 10

.DIEiEJ[]
X[lmwcEl

,
o FIG UR E l-iS

F'\X. Y, Z) ~ 1.,.,(l.3.4,5,6)
- - -

- XZ + XZ + Xy

- XZ+ XZ+YZ

o n GUKE 2·16
F'\X. Y, Z) M 1"'(1.2.3,5,7) - Z +Xy

Three product ter m. in the expre,;s;on h",-c ,wo literals arid are represented in a
lhree-variable map by ' '''0 sq uares each . " \e two <quares corresponding to the
lin;11crm, XZ. are found in Figure 2·16 from the coincidence of X (first fowl and
Z (two middle columns), to give ,'s in !.quaTe! 001 and 01 L Note Iha, when mar ~_

ing I ', in the squa res. it is possible {Q find" 1 already placed Ihc.e (rom " preceding
leT"'_ This happens wilh the """ood term. X Y. which h". I's in squares 0 11 and 010:
but square Oil i. COmmOn wilh Ihe fi rsl (erm, XZ. SO on ly one 1 is marked in i(.
Contin ui ng in this fashion. we find that Ihc funClio n has five min terms, as irldicated
by Ihe 1\,'" 1', in the figure. The minterm, are read directly from the map to be 1. 2.
3.5. and 7. 'l1,e function as originally givcn has four product tern,s. It can be opti.
mized on the m"p to only lwO simp le terms as

F _ Z + XY

gi"ing" ,ignilicanl reduction in the cost of implementation.

Four-Variable Map
There are 16 minteTm, for four binary var iables.. and therefore. a fo",·,'ariable map
consists of 16 "Iuares. as shown in Figure 2- 17. 'l1,e minlerm assignment in each
"I"an, i, indic.led in part (a) of the diagram , The map is ,ed rawn in (b) 10 'how
the relalionsh ip of the four variable<- The ro" .. and columns are numbered SO that
only nne bit of the binary number change. in ,'a lue betwee n any two adjacent col­
umns or rows, guaranteeing the ,ame property for adjacent "IMre<- The row and
col umn number correspond, to a two· hit Gray code. as introduced in Otapter I
The minte rms corresponding to each sq uare can be obtained b)' combi ning the row
number wilh the col umn number. For example. when combined. the nu mbers in
the Ih ird row (II) and the second colum n (01) give the binary number 1101. the
binaT}' equivalenl of 13. 'IlIu,,- the sq uare in Ihe third row a nd second oolumn rep­
re", nlS minterm tn,) , In addition. each variable is marked o n the map to show Ihe
eight "Iuarcs in which it appears uncomplcmc~t td . The oth .. eight squares.. in
"'"hieh no label i . indicated . oorresponJ to Ihe variable bei ng compicmenled . Thu •.
W appears oomplemenled in the first two ro" .. and uncomplemented in the seoonJ
two rOws.

56 0 CHAI'rER 2 I COMBINAllONA~ LOGIC CIRCUITS

~ ., .,
., ., m,

-" m" -"
., ~ -"

(.)

'!-z
w 00 "' m, 00

., "'
-" " w

-" '"

o FIGURE 2017
rour_Vari.ble M.p

" '"

,
")

The method used to simplify four-variable functions is sinlnar to that used to
simplify three-variable funct ion!. Adjacent squares are defined 10 be square, next
to each other_ as for two- and three-variable maps. To show adjacencies DeIWeen
square!. the map of Figure 2-18(a) is drawn as a toru, in Figure 2-18(b), with Ihe
top and bonom edges, as well as the right and left edgtt louching each other to
show adjacent squares, For example_ "'<J and "'2 are two adjacent squares, as are "'0
and m,. The combinations of squarei that can be chosen d uring the optimizalion
process in tbe four-variable map are as follows:

One square represents a mimerm of four literals,

A rectangle of 2 squares represents a prod uct term of Ihree literals.
A rectangle of 4 squares represents a product term of IWO lilerals.

A re.:taogle of II squares repre""nt. a product leno of one lileral.
A recta ogle of 16 square, produces a function that is alway. equal to logic 1.

';Z' wx 00

00" "
"' •

" " w

'" •

"' ,
,

" ,
,

(.)

o flG URE 2-13

,
" '"
) ,
, • ,
" "
" '"

(0)

Four-V.riable Map: Fl., .nd on. TOnI' to Show Adjacencies

2-I / T Lnd Circui< O"om'lIoo" 0 57

No other combination of sq~aru can be u~. An imerestinl product lerm of
Iwo lil erals X 2, i$.hown in Fi,ure 2_18. In (b). when the map i5 viewed a5 a
torus. the adjacencies of the squaru Ihal represe nl Ihi. product tcrm a rc duro
but in (8) these square5 are on the four COrnen of the map and app<=ar qui le
removed from each Olher. Thi' product lerm i5 importan t to recall. since it i.
often missed.lL also "' rYe' a. a reminder 1ha1 Ihe left edge and Ihe right ed,e of
tbe map are adja«m. a. are Ihe top ed,e and the oollom edge. Th u ... in lene raJ.
reclang1e~ on a map cross the le ft and ri,ht edges. top and bollom ed,es. or
bolb.

1b.e neJCt examples show tbe procedure for simplifying fou.·variable Boolun
function ..

EXAMPLE l oS Simplif)ing a 4-\".riabl~ . ·u""tlon "jth a Map

Simplify the Boolnn function

F(IV. X , Y. Z) ~ 1",(0.1.2.4. S. 6.8. 9. 12. 13. 14)

lbc nUnlerms of the funetioo are marked wilh \ ., in Ibe map of Fi,ure 2·19. Eight
squares in lhe lWO left columns are(JOltlbined 10 fo rm a rectangle for lhe OM lileral
lerm. Y.The remaining three I 's cannot be _IIbined 10 give a simpli6ed lerm;
raIM., lhey mU51 be (JOItlbined II!! t or rOU'·square rectangle .. """, lop two 1'$
on Ihe ri&ht are combined with the top IWO I'J 00 the left to cive the term w Z .
Note again lhat it is permissible to U$C Ihe $arne "'luare more than once. We are
now left with a sq uare marked wilh a I in the thi rd TOw and fo~rlh col~mn (min·
term 1110). Insl ead of loking tbis square alone. which will give a term of four liler­
als. we combine il wilh "'IUlre. alrud)' u$<Cd to form a ""'Iangle of four S<juarn in
the I"''''' middle rO"" and the two end columns. giving the telID xl' . The optimized
expression is Ihe lopc.ol $Urn of the three lel1l"ll:

•

w'I:-
,

00 "' " '"
00 , , ,
, , , ~ , , , ,

~

•

• , ,
,

o FIGURE 2· 19
Map for Exomple 2·S : F _ Y + if::! + xl'

58 0 CHAPTER 2 f COMBINATIONAL LOGIC CIRCUITS

co c

A~r "' " '"
OOcb , ,

"' , ,
"
10 li t II I II ,,-

,
o n GuKE 2·1D

Map for h 'mple 2,,(;: F - 80 + BC +ACD

EXAMPLE 2-6 Si"'plif)';nK 8 4-Vari~b'" t"nnclion .. itb. Map

Simplif)' the Boolc"n function

F " ABC+BCD "'ABC +ABCD

Thi. function has four variables: A, B, C, and D. It is expressed in su of.product'
form with thTec terms of thTct Ji teT.ls each and One term of four li1erals.. The area
in the map covered by the function is shown in Fi&.u!.e~.2{J. Each te rm of three lit·
eral< is represented in the m.p by two $<juan's.. A 8C is represented by $<j uarcs
0000 a nd 1)001. BCD by square. 0010 and 1010, and ABC by squares 11))} a nd
1001. '11,c !Orm with four lituals is minterm 0110, The runc~o-,,- i5 simpli fied On (he
map by tak ing the l 's in {he four comers., {o give {he term B D, 11' is producl term
i$ in {he ~me map localion~ as Xl' in FIgure 2, 18. The two I'!..il! t~c lOp rOw aTe
combined wit h the two l 's in the bonom row to gi,'c {he term BC. The rcmaining
h i"-. squaTe 0110, is combined wilh ilS adjacent square, 0010, to give the term
ACD. The oplimi7.ed function is lhus

F .. BD+BC+ACD •
2-5 MAp MANIPULATION

""'hen oombining square, in a map, il is neces",ry {o ensure {hal all {he minterms of
{he fUl1 ction ure included, A(t~e lame time. it is necessary to minimize t~e number
of lcrms in the optimized function by amiding a ny redund.n{ terms whose min ,
terms are alre.dy included in other lorm~ In this = tion , we consider a procedure
that assis{s in the recognition of useful pUl1crn ~ il1 lhe map, O ther {opics {o be 000,

er.d are the optimization of products of sums and thc optimization of inoompletely
specified function~

Ea$entlal Prime Impllcants

The procedure for CQmb ining "Iu" res in a ",ap m"y ~ made more system.t'" if
we int roduce Ill e term. "implicant: "prime implicant," and "~ntial p.ime
implka nt ," A product term i, an i",plie,,,,, of ,1 fun Clion if the function ha, the
value I fo. all minterm. of the product lerm, Clearly, all rectangle. on a map
made up of squares CQntaining I', CQrr~spond to implicant .. If the removal of any
literal from an implicant P result. in a product lerm that is nOi an implicant of tbe
function , then P is a pri~ implloJm, On. map fot an n,,'aliable fUnclion, the...,1
of prime implicant. corre.pond. to the ...,t of all rectangles made up of 2'" squaU'!
containing I's (m '" 0, l. ___ n). with e""h rectangle containing as many squares ..
""",ible.

[f a minlerm of a fU<>clion is included in on ly one prime implicant, Ihal prime
implicant i5 said to be ~sU"'ial. Thu .. if a squnre wntain. ng a 1 is in on ly One .ecl ·
angle repre§cn\in8 a prime implicant, Ihen that prime im plica nt i, eo",nti.1. ["
Figure 2.15 on page 55. the term. XZ ar'J XZ a.e ew,,,tial prime implicanl" and
the lerms Xl' and YZ a.e nones5entia' prime implica;;t ..

The prime imrhoanH of a function /1 i>e obt.inL-d from a map of the func­
tion as all possible maximum CQllectlon. of 2"' "'1ua.eo CQntainin, n (m - 0,
I n) that con.,itute rectangles. This meanSlhal a single I on. map rCpIl'scnl$ a
prime implicant if il is not ad;"","ntt/) a"y othe. I 's, Two adjacent 1'1 form a .ectan­
gIe representi", a prin,e implicant, provided thai they are not within I rectangle of
four or more "Iuares CQntaining]' .. Four l's form a rectangle represc:J\ling a prime
implica nt if they arC nol wilhin • re<:langle of eight or mo.e '"'luares comaining I' ..
and so on. Each cSo$Cntia l prime implicant con lnin$ at least one "'1uare Ih~t is not
eonlaine(1 in any o lher prime implicant.

The SY$temalic procedure for finding Ihe optimized expression from the map
re'luires that we fir!t delermine .11 prime implicam .. Then, the 0Il. imi7.ed expr",,­
oion ill obtained f.om the logical .um of all Ihe ~ntial prime implicants. plu.
other prime impiicanl$ ncc<kd to include remaining minternt'! not indUd<:d in the
essential prime implicant .. lbi, procedu.e ,,',ll be darilied b)' examples.

EXAM PLE Z·7 Sim plifia u ion U.inl PrilM lmplkMnlS

Con, icier 'he mnp of Figure 2·21. There arc Ihree way. th.t we cnn CQmbine fou r
'"'lua rc. inlO .eclangle .. The product terms obtained from these combinMio" , a re
the prime implicnnlS of Ihe functioo , A/), Iii) and AB. The leml, A/) and 80 are
essem ial prime implicant .. bUI A8 is nOI essent ial. Th is is because minle. n1S I and
3 can be incllKled only in Ihe lerm AO,.ltd mlnle .. "" 12 and 14 can be included
only in ' he leon 80. But min term< 4, 5. 6, Ind 7 are each includc:d in lWO prime
implicants.QDC Q(... ·hleh is AA ... the leon A8 II not an essential prime impitcanl.
[n fact. once the e_nt ial plime implkanu Ire dIoIcn.lhe lrurd Icon i, not II«ded
because all the m,nterm. are already inCl1Kled in the essenlial prime ,mplicant ..
The OIltim~cd expr ion for Ihe function of Figure 2-21 i.

F =AD + /JD •

60 0 CHAI'"T£R 2 I COMBINATIONAL LOGtC CIRCUITS

;R: C

" 00 "' " W

00

"' ,
" ,
'"

D

o FIGURE l·U
Prime Implicant' for E .. mple 2·7: liD, B D, and A B

EXAM Pll! 241 Simplifi<ation Via Es..,lItial ~,td NOII nllal Prime Implko"l>

A second example is ,hown in Figure 2-22. The function plotted in pan (a) has
seven mintenn .. If we try to combine square., we will find that there are six prime
implicants. In order (0 obtain a minimum number of terms for Ihe function. we
must first determine Ihe prime impUcants that are essentiaL A, shown in pan (b) of
t.!!<:... figure, the function ha, four ",sentia. prime implicant .. The product term
ABC D is essemial because it i.!,.lhe onl~:..rrime img!icant that includes minterm O.
Similarly, (he product .ermS BCD, ABC. and ABC are essential prime impli.
cants because they are the only prime implicants (hat include mimerms 5. 12, and
10, respoctively. Minterm 15 is included in lwo nonessential prime implicant .. The
optimized expression for (he function consists of Ihe logical Sum of Ihe four essen·
t;al prime implicanls and one prime implicant Ihat includes m;nlerm 15,

F ~ ABCD +BCD +ABC+ABC + [A~D
ABD

ru c
A';;(00 "' " W

C
01 11 10

00 ,

"'
,

"
, , ,

00

D

, ,
, ,

00

"'

w
L..J,=

D

,

(a) PI""i". ,he m;n"",,,, (b) £Men,iol prime impticon"

o FIGURE loll
Simplilkation with Prime lmplio.n" in Example 2·8

•

o 61

The identification of es.stntiaJ prime imp/ironlS in 1M map p.ovid" an addi·
tional tool ""hich shoW$ the lerll1§ tha t muSt ab5o!utely appear in e,'ery $lIm..,'·
produ<:t. expression lor a fun<:lion and p,O'<idei B parl;.1 nruclure for a mOre 'ys'
tematic method for choosing patterns of 5QuarelL

Nonessential Prime Impllcants

lkyond using all essential prime implicanu. 1M folio..ing rule can be _ppljc,d 10
include the remaining minle""" of the function in nQf>C5Senlial prime implicanu:

Sekdioll Rule: Minimize the C\'VerLap among JJrime implicanu as mIlCh as pol­

sible. In par1ic,llar. in Ill<! final solution, make W~ Ihal cadi prime implkllnl ~lectcd
includts At lellS' """ minlerm DOl included in any Qlhe, prime implicant $elected.

In mOSt cases. this .e.\l11S in a simpl ified, aahougi1 nOt necusarily minimum
cost, $unl-<)f.produClS upression. The II$<: of 'hI! $Clection rule is iIIu'trated in the
next exa mple.

EXAM I'U: 1·' Simpl;!)";a, _ ."un<1'o11 Ullin~ lhe So:lecli"n Rule

Find a simplified sum-of· prodoCI$ form for FlA. B.C. m - :!:m (0. 1. 2. 4, S. 10, !l.
13.15).

The map for Fils give n in ~i8U"" 2·23, ich all prime implicants Jhov,,,. ji C i,
the only essenti.l prime implicant. U,in8 the preceding selection rule. we can
choo.se the re ma;ni n8 prime implicanrs for the lum.Qf.prodoclS f<>Tm in the order
indicated by the numbe Note how th e prime im plicanlS I arid 2 are s.c~cted in
order to ind .. de ",intc.m. wit bo m o>'c.loppin&. p.ime i",plicant 3 (ABO) and
prime implicant BCD both indude the one remaini n8 minturn 0010 .• nd prime
implican t 3 is .. "'t ••• ily ""leeted 10 include the minterm and complete the sum-of·
products expression:

f{A. B.C.D) - AC + ABO +A8C+A8D •

D FIGURE 2·2J
M.p for n.ln'ptc 2-9

62 D CHAPTER 2 I COMBINATIONAL LOGIC C IRCUITS

roduct-ol.sums Optimization

The optimized Boolean functions derived from the map" in all of the previous
e.ample. werc expressed in sum_of_prod uCIS form. With only minor modification.
the product_o{_sums form can be oblained,

Thc procedure for oblaining an optimized expression in product-o{-sum,
{orm {olio"" from toc basic properties of Boolean {unct ions. The t., ptaced in the
squares of the map represent the minterm. of the function. The minterm, not
incl uded in the {unction belong 10 the complement of the (unct ion, Prom this, we
sec th.l the complement of a function is represented in Ihe map by the squares nM
marked by l 's- If we mark Ihe empty squares "ith O's and combine Ihcm into va li d
rectangles. we obtain an oplimiled expression of the complement of Ihe function
We tben take the complement o{ F to obtain the function F as a product of sums.
This is done by tak ing thc duol and complementing each literal. as described in
Example 2-2 on page 41.

EXAM PLE 2-](1 Simplif)'ing a Product_of_Sum$ Fo""

Simplify the following Boolean function in product_o{_sum, form;

F(A. B. C. D) - :im(O, 1,2,5,8,9, 10)

The \', marked in the map of Figure 2-24 rcpresent the minterms of the funclion,
The squares marked with 0', represent the minterms not included in F and there_
fore denote the complement of F Combining the "'Iuare, marked it h O-s.. e
obtain the 0plimized complemented funct ion

F - AB+CD+BD

Taking the dual and complementing each liter"1 give, tne complement of F Thi' i,
Fin product-of-,ums form:

D I'IGUR£ 2_24
Map lor Example 2-10: f - (A + B)(C + D)(B + D)

The pre~;0U5 tltllmple shoW5 the procedure lor obIaining the produCl.-;>f­
$um. opt;m;uuion when the funClion is origina lly expressed aI a Sum Of minterms.
The procedure i, alK> va lid when the funCllon i, originally expressed as a prod""t
of maxterrol5 or a product of SumS. Rem embe:r th at the maxterrn nu mbe:rs are the
same as the ",interm numbe:1"l of the complemen ted function. SO 0', are entered in
the map for the nla~tcrnl' or for the complenlcnt of the function. To ent cr a lune-­
tion e ~ presoed '" a prod""t 01 sums into the map. we take the compienlent of the
function and. from it. find tbe squares to be marked .. -ith 0· ... fur eumplc. the
lunction

F - (A + R + C)(B +D)

can be: ploned in the map by fil"lt obta ining its complement.

and tben markin, 0', in the squares representing the minterms of F. The remaining
sq uare< are marked with I ' .. Then. combin ln,the I's gives the oplimi~ed upres­
.ion in sum-of_producl5 form. Comblnina the 0', and tben oomplemcn lOna ,w.".
the opIimiud expression in product-of·sums form_ Thus.. fot any fUnclioo pIoned
on lhe map. "'e can tlcrive the oplimized fU""lion in eilber one of the 1"'0 standard

'm=
Don·t-Care Conditions

The mint crms of a Boolean function specify all comb,nat ion. of varinble value.
for whicb the fU nclion i. equal to 1. The function is ... umed to be: ~ualto 0 fot
lhe rest of the mlnterm .. Th~ a mpl ion. however. is not al",a) ... valid. sin« there
are appliouions in ",'hich lhe f"""lloo is not 5p«"l1ied for certa,n ,'ariable "al""
combinations. There are t,,·o cases in which this ocaITS. In the finl ca",. Ihe inpul
combinalions never O<Ctlf.As an examp".lhe four-bI t bonary code for lhe dmmal
digil$ h ... six combinalions Ihal arc rtOl used and nOl expected 10 occur. In lhe sec­
ond <:Me. lhe i"pul combinations arc . ~pected to occur. but ",e do nOl cUe "'hI
the outputs are in re!ponse to these combination .. In both case" the OUlp"ts are
said to btl unspecitled for the in put combina lion .. Function, Ihat h.ve un ipcrifie<:J
outputs for some inpul conlbinations arc ca ll ed j,,~oml'letely <pno/fit'/ / 'lIIcrIOl". In
mOSt applicatIons .. we simply do nOt ca re ",hat "allle i. a .. umcd by Ihe function for
the unspecified minterms. For tbis reason. it is . u$lonlary to call lh. unlp...:ificd
minte rm< of a funclion don',·.""" lYmditkm$. The.., COfldilions ean ~ uoed on a
map to pro'ide further simplilicalioo of Ihe funclOon.

It should be leah~ed Ibal a don·l<.r. minterm cannol ~ marked with a 1 on
lhe map. because thaI would rcqui", thaI the function Ilwa) ... be: a I for such a min­
lerm. Like"'ise. pUllIng a 0 in the ""u",e r"'lu;"", the functioo 10 be: O. To distin­
gui,h (he don't<ore condition from 1', and IrS. an)(i. used. ThUs. an X tnside a
sqllar~ in Ihe mop indicale. Ihat we do nOI Cltr. ",helher the val ue of 0 o r I i$
a .. igned 10 11,e (UII Cti011 for the part icular O1i111ernl.

64 0 CHAI'TEP-ll COMBINATIONAL LOGIC CIP-CUrrs

minter"", may be used. When simplifying function F, using Ihe I', we can choose 10
include Ihose don'H:are m~lerm, Ihal gi"e lhe simplesl prime implicanlS for F
When simplifying function F using the 0'., we can choose to include those don't­
care minterms that give the 'implest prime implicant, for F, irrespe<:live of Ihose
induded in the prinle implicant' for F. In both cases.. whelher or not the don't care
min terms are induded in the terms in Ihe final expre,,;on ;" irrelevant. The ha n­
dling of dOn'l care condilion, i, illustrated in Ihe nexl example,

EXAMPLE l-11 Simplilkation .. -illt Don't Care Conditions

To clarify the procedure for handling Ihe don't-",,,e condition., consider the fol­
lowing incompletely $re<'ified funclion F Ihat has Ihree don't-care minterm, d:

F(A,B,C,D) - :£m(1.3,7, 11 , 15)

d(A,B,C, D) 1m(O,2,5)

The min terms of F are the variable combinations thaI ma~e Ihe funclion equal to
1. The mimerm, of dare Ihe don't-care minterms. The map optimizalion i, ,hown
in Figure 2-25, The mintenns of F are ",",ked by I ' .. those of d are marked by X'So
and the remaining 'quare, are filled with O's. 10 get the simplified funclion in sum­
of-product' form, we mu,t include all five 1', in the map. but we mayor may not
indude any of Ihe X'., Mpending on Whal yields the ,imple't expression for Ihe
function, The term CD include, Ihe four mimerms in lhe third column, The
remaining minlerm in square ()))l can be comhined with square 0011 to give a
three-lileralterm, However, by including one or two adjacem X's, "'e can combine
four square, inlO a rectangle to give a two-literal term, In part (a) of Ihe figure,
don't-care minterm, 0 and 2 are included Wilh lhe 1's. which r.,ultl; in the 'impli -
6ed function

F _ CD +AB

m
A~ 00 "' " '"

00

"'
" " '"

, , , ,

"
, , "

" "
,

"
" "

, "
" (o)f - CO+AIl

o nGURE l-l5

'?: '"
00

"' "
" " '"

00 "' " '" , , , ,
" , ,

"
" "

,
"

" " ,
"

" (b)F - CO+AD

E.ample with Don·t ,Core Condition,

"

In pan (b), don't"""re mintenn ~ "includtd with thc I' .. and the $implificd func­
lion oow is

f - CD +AO

The IWO e~prcssions represent t,,'o functions that orc al gebraicalt y unequal. Both
include thc specifioo mintcrms of thc original inwmplctcly specified function, but
cach includes diffcrcnt don't-<:arc mint tnnL AI far as the incomplctely specified
function is ~nwd, both expressions are actt~able l1te ooly differcnce is in
tbe value Qf F fex the un~pecified minterms.

It is also JXlUiblc IQ oolain In optiml2ed product-"Of-sulm Clpr$i<)O fex the
fUnetiQn of Figu re 2·15. In tbis case. the way to combine the O's i. to include don'l'
care mimerm, 0 and 2 witb the 0'. giving the ol'timi~ed complemented function

Thking tbe romplemcnt of F &,vt$ the oplimi'A:d upression tn product-of·sums
101m:

•
11lc fore.oin, cumplc shows thaI lhe don'l-care mimenn. in Iht map arc

inilially considered lIS representing both 0 ~nd I. Thc 0 or 1 value e.'cnlually
assigned depends on Ihe optimi""tion process. Due 10 Ihi. rTOeesL the optimized
runcrion will hove" 0 or I value for each minter", of the originnl function, incl ud·
ing those Ibat were initially don'l cafeL ThuL although 'he OUlputs in the initiat
specification may con'ain X' .. ,Ite outputs in a panicular implementation Qf the
spe.cification are only O's and l's,

2-6 MULTIPLE-LEiVEL CIRCUlT O I>TlMlZATION

Although we have found Iha' Iwo-Leyel circuil op,imization can reduce the cos,
of combinalional 'ogk circuits, there arc of Ion addilional cost inp _vollable
by uSin, ci rcui ts with more than two level .. Such circuits are referred to as mulli·
ple_le.'e l circui! L The", savings arc iIIu~tmted by Ihe implementHtioll of Ihe
function

G .. ABC +ASD +£ +ACF+ADF

Figure 2-26(.) &,"Q tl>e t",'O-level implementation of G ""hicb hat B <c·input cost
of 17, No .. suppo6c tha, .. -e _pply tl>e distrib\lli.'e law of Boolean algebn IQ G 10
g ... e

G - AR(C+D)-f E +A(C+D)F

This equation &i.'e. the multiple-level implcmema!ion of G in FiS,,,e 2·26(b) which
has a gale in pul cost of 13, an improvement of 4 gale input .. In FlgUfc2.26(b),

66 0 CHAPTER 2 I COMBINATIONAL LOGIC ClRCUI~

G

'"

"j 'OJ

o FIGURE 2·26
Mullil'lc.U:vcl Circuit Example

C; D i, implemented twice. Instead. one implementation of this subfunction ean
he shored to give Ihe CiTCUil in Figure 2·26(c) with a gate·in put cost of 11. an
improvement of 2. This common usc of (C + D) suggests thai G ean "" wrinc" a'S

G " (AB+Af)(C + D)+e

ThiS increases t~e cOOt to 12. BUI by factoring oUl A from A B + A F. we obtain

G " A(B+f)(C + O) + e

Flgur~ 2·26{d) gi,'cs the multi·level implcmenlation of G using thi s equat ion wh ic~

has a gale inpUI coot of only nine. is slightly more lhan one·half of the origina l
cos\.

Thi. reduction was achic,-~d by a sequence of applica tion ~ of algebraic iden.
tilies at each SlOp obsen-ing lhe effect on lhe gale inpu t cost, Just as ,,·ith the usc
of Boolean algebra 10 oblain $i mplifi~d two·level circuits. the procedure u~cd here
is not particularly systematic. Furlhcr. an algorithmic pr"""dure correspondin g 10
the usc of Kamaugh maps for two·le.'el circuit optimization lhat gi"es an opti·
mum circu il cosl does nol exist due to the broader range of possible action, and
the n~rnb<:r of SOl ut ions pos, ibk $0 multiple· level optimization is ba",d on lhe
u"" of a set of lransformations that are applied in conju nction with cost evalualion

to find a good. but not neeessarily optim um solution . In th o remainder of thi,
section, we ronsider such transformations and illustra te their appli cation in reduc­
ing circuit cost . The transformations. to 00 illustrated by Ihe nexl example. are
defined as follow"

1, Factoring is finding a faclored form from either a sum-of-producls expression
or product _of_sums e xpression for a function .

2, D~coml'osirion is the expre .. ion of a function as a set of new funClions.

) , Ex/rac/ion is tho expre .. ion of multiple functions as a set of new functions.

4, S"bs/irwion of a function C into a function F is expressing F as a function of
C and some or all of Ihe original variables of F

5. EliminMion is the inverse of subst itUlion in which function C in an expres_
sion for function F i, replaced by the expression for G. Elimination is also
called jlallening Or co/lapring.

f:XAMPLE 2-12 Muhilevel Optimizatiou Transformations

The following funct ions " 'ill 00 used in illumating the transformation!:

G=A C E+A C F + A D E + A D F + /JCD EF

11= A /JCD + A C E+A C F + BC E + BC F

The forst transformation to 00 ill ustrated is factoring by usin g function G. Ini­
tially. we will 1001: at algebroic jaclOring. which avoids axiom, that are unique to
Boolean algebra, such as those im,otvin g the complement and idempotence. Fac­
lors can 00 found not only for the entire expression for G. but also for its suoox­
pr"",ions. For examplc. since the first fo ur terms of G all contain .'ariable A. it can
00 factored o ut of thcse terms giving:

In thi' case. note tnal A and C E + C F + DE .. D F arc factors. and BCD E F is
not im'olvcd in the factori'!S operation . By factoring out C and D. C E + C F + D
E .. D Fcan 00 wrinen as C (E + F) + D (E + F) whic~ Ix! rewritten as (C + D)(E
.. FJ. Placing thi' e~pre.si(>n in G givcs:

C=A(C .. O){E+FJ + BC D E F

The term BCD E F could Ix! factored inlo product terms. but such factoring will
nOt red uce Ihe gate in pul count and so i, not considered. The gate input count for
the original .um-ol-products expression for G i, 26 and for the factored form of G
is t8 . for a saving of 8 gate inputs. D ue 10 the factoring, there are more gate. in
,"ries from inputs to outp ut s. a maximum of four level, i~stead of Ihree levels
including input inverters This may result in an increase in the delay through the
circuit after technology mapping has oocn appti~d.

68 0 CHAPTDt 2 I CO,\IBINATIONAL LOGIC CIRCUITS

!ft.e second Iranstormal!On to be illuSiraled i. decomposition which "IiOWll
operation. beyond algebraic {aeloring. The {aelDred (orm o{ G can be wrillen as a
decomposilion as folloWll:

G=A(C +D)X, + BX, EF
X, =CD
X, .. E + F

Once XI "nd X, have been de6ned.lhey can be complement ed. and Ihe comple­
menlS can replace C+ D and E F. respeclively. in G. An illuslralion of Ihe substilu­
tion Iransformation i.

G=A X , X, +8 X, X,
X, .. CD
X, _ E+F

The gale inpul count lor Ihis decomposition i. 14. for a ,"ving of 12 gate inputs
from Ihe original sum-<>f_produclS expression for G, and of 4 gale in puls from Ihe
factored form of G.

[n order 10 illustrate Ulraction. ""e Med 10 perform decomposilion on fI and
exlracl common subexpressions in G and H. FaclOring out B from H, we have

H= B(A C D + A E + A .. C £ + C F)

Determining addiliona[facIo," in H, we can wrile

H= B(A (C D) .. (A + q(E + F))

Faclors X " X,. and X, can now be eXlracled to oblain

X, _ C D

X, _ E+F
X, =A + C

and faclors X, and X, can be shared between G and II. Performing .ubstitution,
we can wrile G and H a.

G _ AX,X, + BX,X,

HxB(AX, + X,X,)

A logic diagram is given for Ihe original sum·of.products in Figure 2-27(a) and for
Ihe extracted lorm in Figure 2-27(b). The gate input cost for the original G and 1/
without shared terms. e~cepl for in pul invef\ers, is 48. For decomposed G and II
withoUI shared lerms between G and fl, it is 31. With shared terms. il i. 25 , cutting
the gate input cosl in half. •

Thi. example illuslrate. the value of Ibe transformations in reducing inpUl count
cos!. In general. due 10 Ihe "ide range of ahemal;"e solutions and the complexily in

,
,

delem,jning (he dj.,;.., ... to use in decomposition and .Xlroclion. obtaining truly opti­
mum SOlution. in tern" of gate input count is usually not fea<ible, SO only good solu­
tions are sought. The key (0 successful transformatioru; is the dctcnninalion of the

70 0 CHAPTER 2 I COMIlINATIONAL LOGIC CIRCUITS

Jactors 10 Ix, uscJ 1n Jeeomposldon or eXlracl;on and choice of the transformation
sequence to apply. These dc>ci,ions are complex and beyond lhc scopt of our study
here. but are rcgula,ly incorporated inlo logic synlhcsis tools.

Our discu,;,jon thu, far has deah only wilh muhilevel optimization in terms
of reducing gate inpul count. In a large proportion of designs. the le ngth of lhe
longe.t path or paths through the circuit is often constrained due 10 the path delay.
the length of time it ta~~s for a change in a signal to propagate down a path
through lhc gates. In such cases. the number of gates in series ma y need to be
reduced. Such a red uct ion using the final transformation. elimination. i, ill ustrated
in the following example.

EXAMPLE 2-13 Eumple <;fT",nsr<;nnati<;" fo. Delay Reduction

In the circuit in Figure 2-27(b). lhe paths from C. D. E. F and A to H "I I pa"
through four 2-input gate •. Assuming th at all multi .input gates contribute the
Mme delay 10 the path. a del"y greater th an that contribut ed by an inverter.
these are the longest delay paths in the circuit. Due to a specification On maxi_
mum pa th delay for the circuit. these paths must be shortened to at most three
multi .input gates or their cquivaknt in m ulti·input gates and in,wter delays.
Thi. path ,horlcning ,hould be done with a minimum increa,~ in gat~ input
count.

The elimInation transform which replaces intermediate ,'ariabtes. X h with the
expres.ions on their right hand sides or removes other factoring such as thm of
variable B is the m""hanism for r~ducing the number of gates in series. To deter_
mine wh ich factor or combination of factors should be eliminated, we need to look
at the effect on gate input count. The increase in gate in put count {or the combina·
tions of eliminmions thm reduce 1he problem path lengths by at least o ne gale are
of intere,t, Ther~ are only three such combinations: eli mination of the faclOring of
B. elimination of intermcdime variable, X" X l. and X,. and elimination of the fac­
tor B and the three intennediate variables X,. X,. and Xl' The respective gate
input count increase, {or these action, are O. 12. and 12. resp"C1i"ely, Clearly. the
removal of lhe factor B is the best choice since the gme input count does not
increase. This also demonstrates that. due to the additional decomposition o{ H.
the gate input ro:o;t gain of 3 that occurred by factoring out B 31 the beginning has
disappeared. Th~ logic diagram resulting from elimination o{ the (actor B is given
in Figure 2-27(c). •

While the neces",!), delay reduction was obtained by "sing elimination to
reduce the number of gates along the palhs in Example 2·13. in general. such a
gate reduction may not reduce delay. or may even increase it due to differences in
the dela)' characteristics of lhc gales to be discu!»Cd funher in Gapter 3.

2-7 OTHER GATE TYPES

Since Boolean functions are cxpre=d in terms of AND. OR. and NOT operations.
it i, a 'traightforward procedure 10 implement a Boolean function with AND. OR.

and NOT gales. We find . however. that the possibility of consid~ring gates with
other logic operation, is of considerable practical interest. Factors to be take n imo
consideration when constructing other types of gates arc the feasibil it}, and eoon·
omy of implementing the gate with electronic component'" the ability of the gate to
implement Boolean functions alone or in oonjunction with other gates. and the
oon\'enience of represent ing gate functions thal are Irequemly used. In this section.
we introduce these other gate types which ar~ used throughout the rest of the text.
Specific techn iques lor inoofporating these gate types in circuits are gi"en]fl

section 3-5.
The graphics "YTllbob and truth tabtes of six logic gate types are shown in

Figure 2·28. ",-;th six additiooal gate types gi,'en in Figure 2-29. 'The gates in Figure 2-28
are referred to as primili"~ gates. and those in Figure 2-29 are referred to as <'omple ..
gates.

Although the gates in Figure 2-28 are shown with just two binary input
variable •. X and y, and one output binary variable. F. ""ith the exception of the
inverter and the buffer. all may have more th an two inputs. The distinctively
shaped symbol. shown. as well as rectangular symbols not shown. arc specified
in detail in the Institute 01 Electrical and Electronics Engineers' (tEEE) Sum ·
,/a,d G'aphic SymboL, /0' Logic Func{io"s (IEEE Standard 91-1984). The
AND. OR. and NOT gate, were defined previously. The NOT circuit inyerts the
logic sense of a binary signal to produce the complement operation, Recall that
this circuit i. typica lly called an ;,,,,en,, rather than a NOT gate. The small cir­
ctc at thc output of the graphic symbol of an in"erter i, formally called a nega_
lion indica/or and designate. the logical complement, We informally roler 10
the negation indicator as a "bubble." The triangle symbol b)' itself designates a
buffer circui t, A bl/ffe, produces the logical function Z ~ X , , ince tbe binary
value of the output is equal to lhe bioary value of the input. This circui t i. used
primarily to amplify an electrical signal to permit more gates to be atlached to
the outp ul or to decrease the ti me it lakes for signal. to propagale through the
circ uit

The J ·state buffer is unique in that outputs of 3-state buffers can be con­
nected together provided that only one of the sisnat, on their E inputs is I at any
given time. This type of buffer and its basic use are discussed in detail later in Ihis
section.

The NAND gale represems the complement of the AND operation. and the
NOR gate represent. the complement of the OR operation. Their respective
names are abbreviations of NOT-AND and NOT-OR. rc\peCliv~ly_ The graphics
symbols for the NAND gate and NOR gate oonsist 01 an AND symbol and an OR
symboL respectively, with a bubble on the output. denoting the complement opera­
tion. !n comemporary integrated circuit technology, NAND and NOR gates are
the natura l prim it ive gale function. for the simplest and fastest electronic circuits.
11 we considcr the inverter as a degenerate version 01 NAND and NOR gates with
just one input. NAND gate. at"ne or NOR gate. alone can implemem any Bool­
ean fu nclion, ThUs, lhese gate types arc much more wiMly used than AND and
OR gates in actual logic circui ts, As a oonsequence. actual circuit imptementations
ar. often done in terms of l1>osc gate types.

72 0 CHAI'TER 1/ COMBINATIONAL LOGIC CIRCUITS

o ... pf,;';" SrmOoi.

N.m< Diot;r."j" AI!;<b<.;c T,.'"
,hap" <quo'''''' ,,~

H ,
,)-, " " " "D f - XY

"' " ,
" " "

H ,

:=D-- f "" " 0' f _ X . Y

"
, ,
" "

1'101' , -{>O- , F_X
(;,,"',,«) ffi " , , "

ffi Rulf« '-t>-' F _ X " . , ,

"
,.

:=ifF "" Hi·Z
)·S,,,. Bulf., "' Hi·Z ,

" " "
" ,

,
?- ' "" NAND F _ X:V

"' ,
"

" "
" ,

:=D-F ""
,

NOR
F _ x:;:y "' " CO " " "

o II.GUkE 2·28
Primitive Digit. l Logic Gote<

Emu,ive-OR
(XOR)

fudII"ve-NOR
(XNOR)

ANO·O~·I)<VE~T

(AOI)

OR ·ANO ·INVERT
(OAI)

AI<D·OR
(AO)

OR·Alm
(OA)

2_7 I O,her Gare1fp<. 0 73

O",phic>S),mOOb

~=D-F

~=D-F

w

I ;0- ,
,
w ~

o FIGURE: 2·29

A ll"bnic
eq uatIOn

F ~ XY+XY
- X e y

F _ XY +XV

- 5:$V

F ~ WX+ YZ

F ~ (W + X)(Y ·Z)

F - (W+ X XY+Z)

Comple .. Digital Los"' Gotes

H ,

"" • "'
, ,

"
,

" •
"

, . " ,
"' • , • •
"

,

A gate Iype Ihat alone Can be used to imple ment all Boolean functions i5
call~d a universal 8a/~. To show the NAND gate is a universal gate. we need o nly
show that the logical operations of AND. Olt. and NOT can M obtaj n~d with
NAN D gates only. This is done in Figure 2·30. The complement operation is
obt8in~d from a one· input NAND gate oorr~sponds to a NOT gate. In fact, the
one· input NANO is an in valid .ymbol and is replaced by the NOT symbol . as
shown in the figure. The AND operation requires a NAN D gate followed by a
NOT gat~. Th~ NOT in'~rts th~ outp ~t of t h~ NAND giving an AND Op' ration as

'4 0 CHAI'TER 21 COMbiNATIONAL LOGIC C IRCum

A~D : =:C:::)- --{[)o---- XV - XV

o FIGU R El·.)O
L.op:al Operal..,.., ... "h NAND G., ..

Ihe resull_1lt.e OR operation is achlt\'cd using a NAND gale wilh 1'IOTs on each
inP'll When IkMorgan', Ihe(>fem 1:1 applied as shown in Figure 2':lO, Ihe in~e ...
siom (a"""l and an OR fu,ltIion rt'Sutlt.

-n.e exe)",ive·O R (XOR) galC sho n in Figure 2·29 is .imilar 10 lhe OR
gale, bUI e~dud." (has Ihe value 0 for) Ihe oombinalion ilh bolh X and Yequallo
I. The graphiC'! symbol for Ille XOI{ ga le i. simi lar 10 Ihal for Ihe OR gale, CX'"'PI
for Ihe addilional cu ,wd line On Ille inp UIs. The ucl",i'·e·OR has Ihe special sym·
bol @ 10 designate ils operalion, Th~ cxcl u\i,-e-NOR is the complement of the
exdusi,'e-OR, as indicalcd by Ih~ bubble al Ihe outpul of iIS graphi'" symbol.

The ANO·OR.1NVEIfl' (AOI) gale forms the complement of a sum·nf·
prooucts. The are many different AND·OR·INVERT gales depending on the num·
ber of AND gatCS and the numbers of input. to each AND and dirwly to lhe OR
&ale. For eumple .• ufl'PO$C th .. the (uncl1on implemented by an AO I is

F - XY + Z

Thi. AOI is referred to lIS. 2-1 AOI sin<:e il consiSIS of a 2.inpul AND .nd I tOp.>1
d"~ly 10 Ihe OR gale. If Ihe funelion implc_nled is

F- TUV"' II'X + YZ

Ihen the AOI is called a 3·2·2 AOI. The OR·Al'.'D-11'IVERT (OA I) is Ihe dual of
the AO] and implcn,cn" the complement of a pTOdUCI.of-.um. form, The AND·
OR (AO) and OR-AND (OA) Irc ,"eroion, of the AOI and OAI ",i!hnu! !he
complement_

In general . complex ga l~i ~re u~d 10 reduce Ihe circuit complexi!)' needed
for implementing specific Uool en n function. in ocdcr to reduce inlegraled circuit
COi5t. In addilion, they reduce II,e time required for signal. 10 propagate through"
circuit.

& CMOS CIIICUlT'S Thi. supplemenl, ,,-hleh discu...,. the Implementation of both
~ [lfimitive and rompk~ "ICI "",Ih CMOS lechnology. i •• vailable o n Ihe Com·

panion Web5ite for Ihe In! .

2-8 ExCLUSIVE- OR OPERATOR AND GATES

In addition to the e~cl usi .. e·OR gute shown in Figure 2·29. there is an exclusive·
OR operator with its own algebraic identities, The exclusive·OR (XOR) , denoted
bye, is. 10gic.1 operalion that performs the functi on

X Efl Y=XV + XY

It is equal to 1 if exactly one input ,.,.riable is equal to L The exci usive·NOR.. also
known as the .q,,;v~len"", is the complement of the exclusive-OR and is expressed
by the funct ion

X $ Y - XY + X Y

It is equal to I if both X and Yare equal to 1 or if both are equal to 0, The two
funClions can be shown to be the complement of each othcr, either by meanS of a
truth tahlc or, as foll oW$, by algebraic manipulation:

X $ Y - XY + XY - (X + y)(X + V) _ XY + XV

The follOl"ing identities apply to the excl usive·O R operation:

X$O = X X $! = X

X$X= 0 X $ X= !

X $ V - X$Y X $ Y - X $ Y

Any of these idcn tilies Can be wTirocd by using a trulh table or by replacing
the e operation by its eq ui valent Boolean expression . It can also be shown that lhc
exclusi,'e·OR operation is both commUl ative and associati"e; that is.

A Efl B - B EflA

(A $ B)$ C = A $(B $ C) = A $ B $ C

This means that the two inputs to an exclusi,'e ·OR gate can be inte rchanged with·
o ut affecting the operalion , It also means {hat we can evaluale a three-variable
exclusive-OR operation in any order. and for lhi' reason. exciusive-ORs with three
OT more variables can be e ' pTesscd witho ut parentheses.

A two-input exclusive -OR funclion may be constructed with com'ent ional
gates Two NOT gates. two AND gates. and an OR gate are used, The a"ociativ·
ity of the exclusi"e -OR operalor suggests the possibilit y of excl usive-OR gates
with more than two inputs The exciusive·OR concept for more than two vari·
abies. howevcT. i. replaced by the odd function to be di.cu.sed next , Thu •. there
is no symbol for exclusive-OR for more thn two inputs By duality, the exclu­
sive-NO R is replaced by the e,'en func tion and has no symbol for mOre than lwo
inpUls.

76 0 CHAPTER 2 I COMBINATIO:-lAL LOGIC CIRCUITS

Odd Function

The exdusi,'e-OR operation "'ith three or more variables can be conven ed i1110 lUI

ordinary Boolean function by "'placing the Ql symbol with its equivalent Boolean
expression. In partiClllar. the three-variable case caJI be converted to a Boolean
expression as follows:

X!ll Y$Z - (XV+XYjZ+(XY rXV'jZ

- XYZ+XYZ+XYZ+XYZ

lbe Boolean expression dearly indicates that the three·variable ud",,;ve·O R i.
equal to 1 if only one variable i, equal 10 1 or if all three ""riables are equal 10 L
Hence. where8$ in Ihe two-variable funclion only one variable need be equal to 1.
wilh three or more variables an odd number of variables mU>t be equal to I . As a
consequence. the multiple" 'ariable uclusive-OR operation i. defined a, Ihe odd
"'nc/ion, In fact, strictly speaking, this is Ihe correct name for the El operation with
Ihree or more variables; the name "udusivc·OR~ is applicable 10 the case with
only Iwo variables.

The definition of tbe odd function can be clarified by plolling lbe function on
a map. Figure 2-31(3) $ho"''1lhe map for the threc-,'ariable odd function. The four
mimerm, of Ihe function differ from ucb other in at least two literal, and hence
cannOt be adjacent on the map. These millienn, are .aid to be distance lwo from
each otber. The odd funct ion is identified from the four minterms wh()5e binary val_
ues have an odd number of 1'" The four-variable case is shown in Hgure 2-31(b),
The ~ight minterms mar~ed wilh I's in the map constitute Ihe odd function . Note
the chuacleristic panem of the distance between the \'s ill the map. It should be
mentioned Ihatthe minlerms not mar~ed with 1', in the map have an even number
of 1 's and con'litute the complement of the odd functiOfl, called the e.'m fWV::lion.
The odd function ;, implemented by mUnS of two-input uclusi"e-OR gates, as

m ,
;}:oo "' " '"

00 , ,

"'
, , ,

"
, ,

'"
, ,

,
(b)ABC$ D

o FIGURE 2-31
.\laps for Mult iple-Variable Odd Fuoct ion,

2 _9 f High-lmp<d.m« o..'pu" 0 77

)-- c

(0) P - X (j)\'(j)l (b) C _ X (j) Y (j;> Z (j;> P

o FlGURE:.32
Mul<iple. lnput Odd Fu",,;OIU

shown in Figure 2·32, The even function i, obtained by replacing the outp ut gale
with an exclusive.NOR gate.

2-9 HIGH-IMPEDANCE OUTPUTS

Thus far, we have considered gates that ha\'e only output values logic 0 and logic I.
In this section, we introduce two importanl structures. tbree-state buffers and
transmission gOles, that provide a third output \'alue referred to as (he high·;mfNd·
ana .tat~ and denoted by Hj ·Z Or just plain Z or z, The Hi-Z value behaves as an
open circuit, which means that, looking back into (he cir~ui(, we find thai the out ­
put appears to be disconne<;tcd , High impedance outputs may appear on any gate.
but here we restrict consideration to two gate structures with single data inputs.
Gates with Hi·Z output val ues can have 1heir OU1PU1S connected together, pro­
vided that no two gates drive the line a! the same time to opposite 0 and 1 values,
In cootrast, gates with only logic 0 "Dd logic 1 OUlPU!S cannot ha"e their oU!pU!s
connected loge!her,

Thru-Sla'~ Buffen The 3-state buffer W", introduced earlier a. one of the
primiti,'e gates. As the name implies, a three_state logic output exhibits three dis·
tioct states. Two of the "states" are the logic 1 and logic 0 of con"enliODallogic, The
third "Slate" is the Hi·Z value, thai , for three-state logic, i. referred to as the lIi·Z
sla/~,

The graphic symbol and truth table lor a 3-sta1e bufler arc gi.'en in Figure
2-33, The symbol in Figure 2-33(a) is distinguished from the ,ymbol for a nonnal
buffer by the enable input. EN. entering the bottom of the buffer symbol. From the
trulh lable in Figure 2-33(b), if EN - 1, OUTi. equal to IN, beha\'ing like a nom,al
buffer, But for EN - 0, the output value is high impedance (lli·Z), regardl~s of
the value of IN.

Three-state buffer outputs can be connected together to fonn a muhipl e~ed

output line, Figure 2-34(a} sbows two 3·'tate buffers with their outpUtIl connected
to lorm outpm line OL. We a,e interested in lhe oU!put of this structure in tenns
of the four inputs ENL ENO, INI. and lNO. The oU!put behavior is given by the
truth table in Figure 2-34(b), For ENI aDd ENO equal 10 0, both bull., oU!puts are
Hi-Z, SiDce both appear a, open circuits, OL is al<o an open circuit, repre~nted
by a lli_Z value. For EN! _ 0 and ENO _ I. the output of the lOp bufler is INO

78 0 CH APTER l I CO.'lIJINATlONAL LOGIC cn'.CUITS

(.) J..ot;< .ymbol

o X Ili·Z

• •

o fIGURE 2·jJ
Thrce· .. ote Buffer

"'--r---
(5) -~---- ----- EN! _--,-vr~

(.) J..ot;< Diog..,

'"' '"" IN I IN. "'
" " "

, Hi·Z

(S)O(~)l ,
" " • , , , , , • "
, • , • ,
"

, , , • • " , , , , , , , • ,
~ , , , "

(b)T"' Lh llObl<

o FlGURF. 2·M
Thr •• "l.tc BuflerS r'Ol"ming a Multiplexed Line OL

and the output of bottom buffer is Hi·Z. Since the ,·aluc of IhD combined with an
Op'n circ uit i$ iuu //'.'0. 01. has value I I\D. giving th~ second and third rOwS of the
(ru(h table. A corresponding. bur opposite. case occurs lor EN! - 1 and ENO - O.
so 01. has value IN1. giving the fOurlh and fiflh rows of (he truth lable. For ENI
and ENQ bolh 1. Ihe situation i. more complicated. If IN! _ INO. then their
mutual ,·aluc app'arS at OL. Bul if INI "" INO. then their values connic. at the
outpur. The COIlfticl resuhs in an electrical currenl ftowing from lhe buffer ourpur
Ihal is 31 1 inlO the buff~r out put thai is at O. This currenl is often !arg~ cnn ug!' to

2-9 (High_lmre4mc<> Ou'P"" 0 79

cause healing and may even deSlroy Ihe circ uil. as symbolized b)' the "smoke"
ioons in the truth table. aearly, such a sit ualion must ~ avoided , The designer
must ensure thai ENO and EN l ne,'er equal I at the same lime. In the general
case. for" 3-'tale buffers anached 10 a bus line. EN Can equal I for only one of Ihe
buffers and must be 0 for the re,t. O ne way 10 ensure this is to Use a decoder to
generale Ihe EN signals. For the two-buffer case, the decoder is just an inverter
with select input S. as shown in doned lines in Figure 2-34(a), It is imeresting to
exa mine the truth table wit h the inverter in place, II consiSIS of Ihe shaded area of
Ihe table in Figure 2-34(b). Clearly. the YIllne on S selects bet"'een inputs INO and
IN I. Further. Ihe cireuit output OL is never in the Hi-Z state.

Trans",;",;on GDfeJ In integrated circuit logic. there i, a CMOS transistor
circuit logic that is important enough 10 be separately represented at the gate leveL
This circuil. called a tr""s",;"io,, gale (TG). is one form 01 an clecITonic switch for
connecti ng and disconnecting two points in a circuit. Figure 2-35(a) sho"'~ the
IEE~ symbol for the Iransmissiun gate. It has four external connections or ports. C
and C are the control inputs and X and Yare the signals 10 be connected or discon ­
nected by Ihe TG. In FiguTe ~-35(b) and (c). the switch model lor the uansmission
go te appear>, If C - I and C - O. X and Yare connected as represented in the
model by a ""closed'- switch and signals can pass from X to Y or from Y to X. If
C = 0 and C = I. X and Yare disconnected as represented in the model by an
"open" switch and signals cannot pass between X and Y. tn normal use. the control
inputs are connected by an invertor "' shown in Figure 2-35(d). so that C and Care
the complements of each other.

To i\tustTalc the use of a transmission gate. an exclusive-OR gate constructed
from two transmission gates and t"", im'crters is shown in Figure 2-36(a) , Input C con_
trols the paths through the transmission gates, and input A provides the output for F. If
input C is equal to I. a path exi'tsthrough tran,mission gate TOI connecting F to A.
and no path exi'ts Ihrough TGO. [f input C is equal to O. a path exiSls through TGO con­
necting F to A. and no path exi,ts througb TO 1. ThUs. the output F is oonnectcd to A.
This results in the exclusive-OR truth lable. as indicated in FIgure 2-36(b) ,

,

'-$-'
c ,.,

, -,
C _ lanJC _ O

''l ,
X _______ -:::- y

C _ O.nJC _ 1

,,' c

o !'IGURE 2_J5
Tran,mruion Ga'e (TG)

,
"

ro

(0'

80 0 CHAPTER. 1 'COMIIINA110NAL LOGIC CIRCUITS

H '" 'CA • , .. Nopo.h P.,h •
" P.,h ~opo.hl

" Nopo,h P.,h , , r .. b NOPl.h 0

,.) (0)

o fII GUJlIi: 1-36
nan",,"""" Gat. ~,..;"" OR

2-10 CHAPTER SUMMARY

llIc primili". lock opc:r"ions AND. OR. and NOT define Ihro. primil;'·. logic
components called gates. from which digilaJ .yolems are implemenlcd. A Boolean
algebra defined in lerm! of lhese opera.ions provide •• tool for manipulating
Boolc~n funetions in designing di,itallogic eiKuits. Minterm and ,"u.erm Stan·
dard form, correspond directly .0 truth tables for funetion .. n,cse st.n<lord
forms c~ n be manipulated into , uOl·of.product§ and producl.o(-I UIiIS forms.,
which correspond to two ·lcvel ,ate circuits. TWo eost mcasures to be "'inimi,cd
in optimi"ing a circuit are the number of input literals 10 the circuit and the tOlal
number of inputs to the gatCS in the circuit. K_maps with tWO 10 four variables
arc an effective .lternalive to algebra,e manipulation in optimiring small circuits.
The$e maps can be used 10 optimize sum-of-producl$ forms, produtt-of_.um.
form .. and incompletely ipecified functions with don'H:are condit ions. nans­
fornu for optimizing multiple 1e,,,1 circuil$ "',lb tbree or more leveh of gating
ar. illu.1rated.

The primitive opc:ntions AND Bnd OR afe DOl dir«lly implemenled by
primiti'" logic clements in the mOSt popular logic family. Thus, NAND and NOR
primitiv.,. '" well as romplcx ,.tell th., im plement lbese families arc introdoced.
A more complex primitive. the uclusive-OR. 11$,,'ell 8$ ito CQIIlplemcnt. the
excl usive-NOli. . arC presented alOft, with their mathematical p.opc:.ties.

REFERENCES

t. BooLE. G. An Im'u/igarion of/he Laws ofThoughr. New York : [)ovcr. ISS4.

2. KA RNAUGH, M. ~A Map Method for Synlhesis ofCombinal ional J.o&k
Circull5. ~ n"""""Uons of AlEE, CommunictJrion "nd El«'To"i(l. 12.l»'r1 I
(Nov. 1953). 593·99.

3. D'EnlEYER, n L Losic 1RJ.8'" of Digum Sy~r.mu; 3rd ed. 8Qston: Allyn
Bacon. 1988.

4. M No, M. M. Do"giml DMign, 3rd cd Upper Saddle River, NJ: Prenlice Hall.
2002.

S. ROTH. C H. F",,,jamenlOl. of Logic Design. 41h cd. Sl. Paul: We~1. 1~2.

Ii. H ... YES.).]> '''''od"c/ion 10 Digital Logic Design. Reading, MA: Addi",n ·
Wesley. 1993.

7. W ... ~ERL Y. J. F. Digiml Design: Principles and PmC/las, 3rd ed. Upper Saddle
River, NJ: Prentice Hal), 2000.

8. G!lJS~I. D. D. P'inciples of mgiml Design, Upper Saddle Ri'·er. NJ: Prentice
H~II. 1~7.

9. / EEE SWI/da,d G'''I!hiC Symbols /0' Log;c Fimelion.<. (lncludCll IEEE Std
910-1991 Supplement and IEEE SId 91 _19&4.) New York:The Inst itute of
Ele.:!ric.,t and Electronics Enginee~ 1991.

PROBLEMS

d'.!;;.. The plus (;.) in dic~tcs" more advanced problem and the asterisk (0) ind icales a
~ solution is available on Ihe Companion We\>sil e lor Ihe lex!.

2-1. ·D<:mon,trate by mea"" of Irulh tabl", Ihe validilY of lhe following ide1lt ilies:

ta) DeMorgan', theorem ror three variables: XYZ - X + y ;. Z
tb) The "'-'Cond di'lribmi"e law: X + YZ - (X;' Y)(X + Z)

(e) XY;' YZ ;'XZ - XY+ YZ +XZ

2-2. 'Prove Ihe idenlity of each <or the '<ol)<owing Aoote~n equations, usmg
atgebraic man iputation:

(M) XY+XY+XY _ X;.y
(b) AH+RC +AII + HC _ 1
(e) Y + X2+ XY _ X+Y+Z --- - ---
(d) XY + YZ + XZ + XY ~YZ - XY +XZ+YZ

2-3. +Prove Ihe identilY of each of the followi ng Boolean equations. using
algebraic manipulalion:

-- - - -
ta) AB + BCD + A BC + CD - B + CD
(b) WY + IVYZ + WXZ + WXy .. WY+ WXZ +XYZ +XYZ
(e) A C+AB + BC+ D _ (A +B +C + D)(A + H +c+ 'OJ

2---4. +Given Ihat A· B _ 0 and A + Il _ I . use atgebraic m.nipul.tion to prove
thm

(A +C)·(A + il)·(1l + C) - /J·C

2-3. +A specific Boolean algebra wilh ju,t IWO element< 0 and I has been us-ed in
thi s chapler, Other Boolean atgebras can be defined wilh more Ihan two
elements by using clemenls thaI correspond to binary 'Iring"- These
algebras r<orm the mathemalicat foundation ror bitwise logical operalions

82 0 CHAPTI;R II COMUINATIONAL L(x; IC CIRCUIT'!!

Ibal e ill ~Iudy in Chapler 1. Suppose Ibat Ih~ Slnni' a~ each. nibble
(h.alf of. byle) Qf {Qur bits. Then Ihere are 2", '" 16. elemenl5 in Ih. litebra.
wbere an el._nl I j, Ihe 4-bit nibble in binary rorrcspoo;1ing IQ I in
decimal. S"...,d ()fI bilwise applicaliQn Qf lb. I o-elemenl Soolun algebra,
define ncb Q(Ihe follo"'iog for Ihe new algebra S() that the Boolean
identities bold:

(a) The OR opcrationA I /J for any Iwo element. A and 8
(b) The AN D operation A B for any two clemenlSA and H
(t) The element Ihat acts as the 0 (If Ih. algeb ..
(d) The element Ihal acts lIS the I f"!.,.liK algebra
(e) fur any element A, lhe element A,

2-4. Simplify Ihe fQllo-Aing Soolun npreosi<>ru; 10 cxprCS5lons tontaining a
minimum number oIlilerals:

(a) AC +ABC + HC
(b) (A + B)(A + Ii)
IT) AOC+AC
(d) BC+B(AD + CD)
(e) (B + C + BC,(BC + AB + AC)

2--7. °Reduce Ih. following Hoolean expr.",;ons to Ihe indicated number of
lite rals'

(.) x l' + XYZ + XY to three literals

(b) X + y(Z + X+Z) 1011010)ilera ' ,

(e) WX(Z+l'Z)+X(W+WYZ) 10 one literal

<d) (AB + AB)(CD + CD) T Ac to four lilerals

2-8. U.ing DeMorpn'J IheOfem. up",.lhe function

F - ABC+8C + AB

(.) "ilh only OR and complemenl """ralions.
(b) " ilh ()fIly ANO and complement operalions.

2--9. °Find the complement of Ihe following exp't$$ions:

(a) AB+AB

Ib) (V W + X)Y+Z

(e) WX(l'Z + YZ) + WX(l' + Z)(Y + Z)
(d) (A + B + C)(A" + C)(A + 8q

2--10. · O blain lhe trulh lable of the following functions, and ~xpress each function
in sum.of.minlerrn1.nd prodUC1-of. rnaxlerms fOJm:

(.) (XY + Z)(Y + XZ)

(b) (A + 0)(8 + C)

IT) \VXY + II'XZ+WXZ + YZ

2-1.1. For Ihe Boolean functions E and F. as given in Ihe foUow ing \r uth table :

, , , , ,
0 0 0 0
0 0 0 " 0 "

, ,
0 , , 0 0

0 0 0
0 ,

" "
, , ,
"

,

(a) List lhe minterms and maxtenns of each fun~tion.

(b) list the minterms of E a nd F.
(c) List the mimcrm, 01 E + Fand E· F .
(d) Express E and Fin sum-ol-mimerms algebraic form .
(e) Simpl ify E and Fto e xpressions wilh a minim um of lilerals

2-12. ' Convert the following expressions into sum·ol·product. and product-<>f­
sums form.:

(M) (A 8 -t 0(8 -t CD)

(b) X -t XI X -t Y)(Y + Z)

(c) (A -t Be -t CD)(B + EF)

2-13. Draw the logic diagram lor the following Boolean e xpressions The diagram
shoul d correspond exaclly to the equation. Assume that the complements of
the inputs are not available,

(a) WX Y + WZ+YZ

Ib) A(BD -t 80) -t DIBC + BO

Ie) WY(X+Z)+XZ(W + Y)+WX(Y + Z)

2-14. O ptimize the following Boolean funct ions by means of a three_variable ma p:

(a) F(X. Y,Z) - :l:m(1.3.6,7)

(b) F(X, Y,Z) - :l:m(3.5.6,7)

(e) F(A ,8,C) - :l:m(O.1 .2.4,6)

(d) F(A,B,C) m :l:",(O.3. 4.5,7)

2-15. ' Optimize the following Boolean expressions using a map'

la) X Z+YZ+XYZ

(h~ A8 -t BC-tABC

(e) AB+AC -t BC -t ABC

84 0 C H AI'1CIl 2 I COMIJINATIONAL LOGIC CIRCUITS

2- 16. Oplimize lhe: foil_on, Bookan funclion. by meallS of .. four-~afiable map:

(lI) F(A,B,C D) .. :::",(2,3,8.9,10,12,13,14)

(b) F(IV,X, Y,Z) .. :::",(0.2.$,6,& 10,13,14.15)

(e) F(A,B.CO) ... :::m(0.2.3. 7,11.10.12.13)

2--17, Oplimiz~ Ihe following Bonltan (unclions. using a map:

(a) F(II'. x. y. Z) .. :::", (0.2,$.8.9. 11.12. 13)

(b) F(A,B.C. 0) .. :::1110. 4.6.7.9.12.13.1 4, 15)

2--18. · Find Ihe minterms o(Ihe (0110"" in8 e xpression, by fl1"51 pIOIl;n, each
expre .. ion on a map:

Ill) XY + XZ +XYZ

Ib) XZ - WXY + WXY+W}'Z+ WYZ

Ie) BD+ABO + A8C

2-1.9. 'Find all the prime implicanlS for lhe following fIook:an (Unci ions. and
delermine ,,'hich are elSCnlial:

(.) F(W, X, y. Z) .. :::111(0. 2.S, 7.8. 10. 12,13. 14. 15)

(b) F(A . 8. C. D) .. ::;", (0.2.3.5.7.11. 10. 11. 14. (5)

(e) F(A. 8. C, OJ .. ::;"'(1.3.4. S. 9, 10. 11. 12. 13. 14. 15)

z....IO. Optimize the follow;n, l.Ionlca n funel;ons by finding a ll prime implica,m
and essential prime implicAnl' nnd applying the selection rule:

(a) F(W.X, Y.Z) .. :::",(0.1.4.5.7.11.9. 12.14.15)

(b) F(A. 8.C,D) .. ::;",(1.5.6.7.11.12,13.15)

(e) F(W,X. Y. Z) .. ::;",(0.2.3.4.$.1.8. 10. II. 1Z,13. 1 S)

2--21. Optimize lhe: (oIlovo"n, Boolean (unci ions in prodUCl --of,sums fQITII:

(a) F(W.X. 1-'.Z) .. :::",(0.2. 3,4.8.10. II. IS)

(bl F(A. B. C, D) .. lIM(0.2.4. 5.& 10. 11.] 2. n, 14)

2--22 • • Oplimize the followin, expressionl in (I) ium-of-producu and (2) product­
of-$ums form"

(~) AC+ liD -+-ACD -+-AlleD
(b) (A + B + O)(A -+-B + C)(A + 8 +0)(8 + C+O)
(e) (A +B +D)(A -+- D)(I! + IJ -+-D)(A + B +C +D)

2-23. Optimize Ihe followin& fun<:liom into (1) .um-of_product. and (2) product.
of·..,ml (orm.,

(.) F(A,B,C.D) _ ::;111(2.3.$.7.8.10.12.13)

(b) F(W,X, Y.Z) .. IIM(2. 10. 13)

Prob)., 0 85

2-14, Optimize the foUowing Bool~~n funClions F togelher wilh the don 'I-care
conditions a:
(a) FlAB, C,D) _ ~m(O,3,5, 7, II, 13), a(A,B,C,D) - :£"1(4,6,14,15)

(h) FlW,X, Y,Z) - 1",(0,6,8,13,14), d(W, X, Y,Z) - 1m(2,4, 7,10, 12)

(e) FlA, 8, C) - 1m(0, 1,2,4,5), a(A ,8, C) = :£,.,(3,6,7)

2-25, ' Optimize the follow;ng Bool~an functions F together with the doo'l-care
conditions d, Find all prim~ implicam, and e.semi.1 prim~ implicants. and
~pply the selection rule.

(a) F(A, 8,C) = !m(3,5,6), d(A , 8, C) - 1,.,(0,7)

(h) F(W,X, Y,Z) - ::::,.,(0,2,4,5,8,14, 15), a(W,X, y, Z) - :£m(7 , 10, 13)

(e) F(A,8,C,D) - 1m(4,6,7,8,12,15),
a(A ,8,C,D) = !,.,(2,3,5, 10,IU4)

2-26. Opt i miz~ the following Boolean funclions F together with the don 'Hare
conditions d in (I) sum-of· products and (2) product -of -sums form:

(a) F(A,8,C,D) ~ liM(1.3, 4,6,9. II),
a(A,8,C,D) _ ::::,.,(0,2,5,10,12,14)

(b) F(W,X, y, Z) ~ 1m(3,4,9, 15) , d(W,X, Y,Z) ~ :£m(O,2,5, 10, 12,1 4)

2-27. Use d«omposilion 10 find minimum gate input counl, multiple-level
implementations for Ihe functions using AND and OR gate. and inverters.

(a) F(A,B,C,D) _ A 8C + ABC + ABO + A BD

(h) F(W,X, Y, Z) - WY + XY + WXZ + WXZ

2-23. Use extraction to find a shared, minimum gale input count, mul liple·le.oel
implementation for Ihe pair of functions given using AND and OR gales and
inverters.

(.) F(A, 8 , C, D) - 1m(O, 5, II.)4, 15). ,I(A, B, C, D) - ::::",(10)

(b) G(A, B, C, D) = !,.,(2, 7, I 0, 11. 14), ,i(A, B, C, D) - :£",(15)

2-29, Use elimination (o Hanen each of the function sets given into a two-level
su m· of_products form.

(a) FIA ,B,G.II) _ ABG + BG + A 1/, G(c'D) = CD + CD,
I/(B,C,O) - B+CD

(b) T(U, V, y, Z) _ YZU + YZV, U(W,X) = W + X,
V(W,X,Yl _ WY + X

2-30, .Prove thm lhe dual of the exclusive·OR is also its complement.

2-3 1. Implement the following Boolean function with exclusive-OR and AND
gate .. using a minimum number of gale inputs:

F(A,B,C,D) _ ABCD +AD +AD

86 0 CHAPTER Z I COMBINATIONAL LOGIC CIRCUITS

Z-J2. t a) Implement funclion H = XY+XZ using Iwo Ihree-stale buffers and an

(b) ConsiruCI an e~du,h'e-OR gale by interconnecling IWO Ihree ... tate
buffers and Iwo inverters.

2-JJ. (.) Connect Ihe OUIPUIS of three 3-slale buffers IOgelher, a nd add add ilional
logic 10 implement Ihe funclion

F=ABC .. ABD .. ABD

A"ume Ihat C D, and i5 are data inputs to Ihe buffers and A and B pas'
Ihrough logic Ihal generales Ihe enable inpUIs.

(h) Is your de,ign in part (a) free of Ihree_oJale OUlpUI conllict,? If nOI,
change Ihe design if necessary 10 be free of such conflicts.

Z-~. U", only Iransmission gales and inverters 10 implement the function in
problem 2-32,

2_35, Depending on the design and the overall logic fami ly being used, it is usuall y
not a good idea 10 lea,'c the output of " Ihrce -slale or transmission gate
circ uit in the high impedance (Hi-Z) stat"-
(a) For the transmission gate circuit designed in problem 2-33. give all input

combinations for which the output F is Ihe high -impedance "ate.
(bl Modify the enable logic driving the enable inputs so that the output is

either a 0 or a I (instead of Hi_Z)_

COMBINAT IONAL
LOGIC D ESIGN

I
n this chaj>1er, we ... am aOOUl tho 00';11" 01 comt>natK>oai ci rcuits. We In!re'''.lCa
the use 01 8 ~ierarchy aoo lOp-down 00s>grt. bottl 01 w!1ict1 a re essent",1 to t"'"
de$>gn 01 digita l circuits. Further, rompuIe r-alOed des'll" .,; briefly dffiCUsood.

i",," uding hardware CleSCriplion "r>gLl8.QeS (HOLs) aoo logic SyntheSIS, two COI>OOpts
with Cf...cial ,<>Ies in ."" "Hie",nt design of mode<n, oompIex drru its.

Concepts ",tatoo to tt>e ur"l(l(trlying technology for digital cl rcu~ implemematioo a re
co"" .. ,,,,1 in the design space $(!C\ion. Tl>e p 'OI"' rl ies of logic gales, ioclud<ng inI"9ffiIioo
I<wols, logic lami';"., ar>J parM'Iel<m. for logic technologies, ate I>'"sanled. Fan- in , fan-
0"", aoo propagatioo delay for gal a re defined , arid !he positive and nega~ve logic
COI'\CeI>Is Me introdt.>ced. Finally, ' ,adeoOlf. t>e_ dimensions of !he ~g<1 spac",
such as 0051 and perlorma r.ce. a relouche(j '-'PO<'
A ~gn procedure with ~"" major staps is presented. The Ii"" three steps,
specification, Iorm"",!,,,", and optimizatioo a,,, illustra!ed by ,,<ampl"'" Fixe(!
ImpiementatiM tochnoiogies are intrOOlJCoo, aoo , .. elmo'ogy mappong for these
'~es. the next step of the design procedure, is oot;ned aod illustratoo. The final
step of the deolgn procedure. ve riticatioo, i6 iIIl.OSIratoo by an example using t>o1h a
manual method and logic simulaboo. The chaptar COfICludes with an intrOduCtion to
programmable implementation technologies.

The various concepts", ,ros chapte r are pervasive "' the oas;gn 01 the 1I<'"",ic
computer in the diagram al 1M beginning 01 Chapter 1. Concep,s lrom ,ros chapte'
apply across a~ of the dOgital components of the generic compute, including memories.

3-1 D ESIGN CONCEPTS AND AUTOMATION

In Chapter 1. we learned about binary numbers and bina,y codes that represent
discrete quantities of information. [n Chapler 2, we introduced the various logic

o 87

I!""'!:) I"UOI,.Ulqwo:). jO ",.,:W'Q ~>O11l
1-i31tllOI,l 0

",,",II<> W -
I!""'!'

l' UO<""iGWO".) "OO"! "

'uS!iap U,",Op-<iOI pUO Al{" • .I~Il{ U~I'~P :U~ .. ~p 01
palUIJJ ~,da~uoo 1~IU~W"pU nJ Oil'll ""npoJl"! "'"' ""~>OJd U~!S~P ~III jJU!uy~p ~JOp£l
""lq"!J"A md,,! " ~1I1 JO UO!).)un) • W p:}sS;>Jd~a ~! UO!UUn; lI~n' II~Ua "~Iquuo"
Indino 4""3 JOJ auo '!;UOII~unJ UU~1009 IU Aq P"'l!J:'S~p "'l OSIU uua I!""J!" I"UO!I
"oU!4lU"" V "~lq"!J"A Indu! ~1I1 JO UO !10U!q",,,,, lIoua JOJ 'anl"" ,ndlno al{I 'I'll
1"4) J lqo, II lnJI" Aq pay,,,OId, "'l nu, 1'""1' IUUO!IUU!qul""" '!;n'lL "mdmo IpU~ 00
anlM "JUU!'! alq!''!iQd ,uo.! ~J~l{1 "~ lqU!'"A mdu! "41 jO UOl1UUlqw"" AJOUlq 1I'0~
JO,J '!;UOljV ulqwo, Indol ~'"Ulq ~Iq!ssod uZ ~J. ~'~1I1 '!;"lq"PUA mdu! u '0::1

'0 ,!k>1 JO I "Sol.anl""
uo ~"~.I 1"41 I"US!, '('"OIq • ~. AIl""S.'lId .I<lxa "lq"U"" mdmo puc Indul lIa"a
" IU~WnOnAua aql ,(q :>sn JOJ ' lq"I!""u .Je "lqU!'",' Indino IU "III plI. ',!n"!J " 'II
jO IU ,W OW!AU" "III WOJj ~woo S;>lquU"" IndUl "a'll "j"(• .lnSld UI u ... olls Slllno
"n, 10UO,,"Ulqwoo. JO lU.JS.,p ~:>Olq V 'SJodmo al{I I. 'InuS!, al""11,8 puc <I ndu!
"II I wWJ 'I"ug!< Id~"". '''IUS "!~O l P31" UUO""1 0I "'lL "UOII"," UUOOJ'IUI puc '!;aluS
,!$<>I "' lq"U"" Indlno "'lq"U"" IOdm JO '''''>UO~ I!""''' I"UO!I"U!4W"" V

9 J ~ld~ q:) U! Fluas~~d ~J"
W"""~ IC'lu~nb"S .. ~nl"" 114 p~J01S l"uJaIUl pue SlndUl 10 .lU!1 U! ~~u'nb~s . ,(q
p~ypOlds "'IISllW I!n",!~ 'ql 10 ~O!AUII~ ~'l.1. '!;l nd u! Is"d 00 <WIn lnq '1~ n l"A Indul
lu~lJtl' ~1I1 uo AIUO IOU puOId~p Im~Jl' 1"' IU~nb:>s • JO 'Indmo ~l{1 '~,u""b:>S\Jo~
" SV .. ~n l.A P"OIS puu sindu! pa!ldd~ ~1!nO!A~,d 10 UO!I~ "nl U ;)'" 'uml U! '4'!4'"
"IU'w~I' ~j"'01S ~ 41 UI S"' I"A llq ~l{1 PU" 'IUdUl ali i JO suOlI"unJ "'" Slndlno
Im~"a 1.'lu~"b"S .. ~nl"A l)q 0.10" 1"111 SI"aulap AOldw~ <I! n,,!a 1.!IU~nb:)S "IS.'I
-UOJ UI -suO!I"nb u.~loofi JO 1M n,(q ,(11 "~!~0 1 P~!j!o:Jds ~ un, 1"111 uOlluJOIdo U"
,w.lopOld lIn",,, I"UOU"Ulqwo, V .. anWA IndUl al{I uo '>UO!I.J;x!O "!~Ol Aq paU!lU
-J~I~p ~J" ~W!I AU8 I" Slndlno ;)SOIl'" s~ld "!80I JO SlS!'U'''' l!n ,J!" IUlIO!I"U!qUJo,
V ·1"!lU,nb:>s 10 ICUOII"O LqWOO ~ A.W ,wolSil, j"I!8IP JOJ '1Ina.ll~ "S",

"u1i!,~P [UI!li!p
lu a!,!U~ pun ~"!P~JJ~ 10j '1001 lueuodwl lSOW aql ~uowo 0.1" '!;'''l{IUA' 0I110] PU"
""lIunSU"1 uO!ldp",,~p aJ""'!'JuLI '11001 uli!sap p"p!e-JJ lndwo, 'uli!'ap u,",Op -dOI
"A4'J"~O!1I uli!""Q "w~I"'. pu~ 'Im'J" ' 3ldwoo 10 USIS.p a41 01 I""uass;> aJ" 1"111
'1001 pue ",,,b\Ulla"l JO J"'lwn u • s~A IO,'U! u1i !so>p 1"I!li!p u'OpOl~ ·o'!lJ.Jd IIS!SOP
~p!"0Jd pn,tlpo'1U! Saldw"~~ onou"" allL "1001 U~IS~p p~pm-J~lndwoo JO :>s n
~l{1 01 P~I"I"J "'lll!-" OOals <!8!",P al{I 'UO!I!PP" U J 'Sl!nJJ!a I"UOil"U!G'u"" JO/ samp
-:noJd u1i!s:>p '!I.W~I"'< alU ltlUlJOJ 01 'lJJ)d"lI~ Sllo!AaJd ~ql 11! p~J!nb," ~~P~I'"'OU~
~1I1 Mn 01 SI lald.II' SllIl JO :>SOdmd ~'lL "UOII"IU"W~ldwI ~I.S I."'wouo"" 'A~!!P"
01 J~pJO U! suo!lenba puc suo\ssaJdxa uoal'x'lI al !w!ldo 01 "'Oil P'UJ":>I PU" so)08

N~ISila ::>1~1 'TVNOUVNlIIWO::> I [">f3.I.dVH::> 0 88

' '1X1l q ONVN l£ '(u)."£ ~m~!d U! 'Oldw".~ Jo,{ ' Im:)JI~ u JO W~J'.I"!P J!IUW~4""
"41 Iu""~..td", 01 p~Jmb~.I ~llxo [dwo:> 01(1 '''''"P~..L ~4JH"''' 4 ~ ' II" jO lSJ[,I

'S~Xllq 1 ""!4:U"'~14 pu~

,aT4]J.J~14 ql!'" POIU!XI"'U sld~ouo:> I"",sn jO J:>qwnu • \lU!I"'I'"II! U! IlIJdp4 a..L.
Z"£ :>JlI~!.i U! ~lmJ..LIO a41 pue 'WU.l8"!p ='lL -\1,"04' ~Xllq PUI \<lp 40"~ JO ~do:> ouo
,(IUO 411'" z-£ a.ln'.lu U! P""" s~Xllq 01 Spuod'31Jo, wUl8u!p 'I'lL -('1)£"£ "..LlI~!oI ul
u,"04' 'U '~""Iq ;}SMJ U"'~ ·~40.l"Ja! 4 ~4 1 jO UO!lU1U""",daJ I,edwoo ~JOW" Op!'
"OJd 01 ,"pJO ul 'w o41 jO tt ~"J '!41 UL 'Salmi O NVN a41 ~J" ~:>JI 041)0,.'""""1 ..
~'lL 'dOl ~ql lU lOO..L a41 411,,, a~JI U JO WJOj ~ql ,u4 ,mplI..Ll' S UUlll'~.I a411"4 ' alON
'uOIl" ,u ""OJd~J "41 8u! slI (u)£"£ OJlI~!d UI u,,,oq' '" 11Il0l.1'' UO!IJ UlIj"PPO IlIdu!" ~ " 41
,oJ .\4J'"J~!4 041 'UOI1"1U"""daJ '''[I '.IU!On " ~pew ' ! I! 4,!q,,, WO.lJ ''1''''1'1 ~S04 1
'1""1'1 q'"' ""Ol:>q '.IU!P~\lU OJ pu~ ~""Iq dO l aql 41'." 8u!uUIS .\'1 ,UO!)J3UUO:>
"~I U! ~ql Il1 uql!." p"IU""JldaJ :>q n", ,(qJJUn!l[~ql)0 " ..LlIIOn' l" "'lL ·pJu'.I!,,,P
ImO.110 ~41 '.Iu!luasOJdJ' ,('1",n.i~1I1 • ~ \nttl'UO' ""!l~wa4"" PU" Slo<[w,(, P01"1'"
~UllIlI$J..L "41 Pu" ',,8!~~p W'!'f.'.Jnn,'1'U 01 PJJUp..L " q,,,oJdd" u8]Sap ' I'lL

'[O<[w,(,
~41 JO UO! IUIUJUlJldw! "41 lu:.so..Ld"J 1"41 ""U"woq:>s '\'1 p"""lda, OJ" S[<>Qw.\, 'P'''I
dO] " 41 W01) pJUII'IUII\OP a,OlU aM '" ';tSuJ 4'UJ U! 1"41 OION ""1"\1 ONVN '.Iu"n
P",U~WOld,ul '! ~O''' ''!'~jO''~ ~4 1 '(p) 1..L0Id til '.\II" U[,I 'Sal"'.I ~O"",'!'np' J p~p~u
"UO:U~'UI 0"'110 I'''UOO 01 u ... oq. '! VOlq 1I0!IJlmj pp<.> IlIdUl"£ "'(0) Il~d U['I!IIOI
"'!" UOpJUOj"Pro lndu!"6 ~q l W..L") 01 p~P~UUO:>J~IUI aJ" ' lo<[W.\' mOj ~'l l. "~Wll
..tTl"j I'~W:N"l" UOIPUOj ppo lOd u!"£ ~~ l 'OJ I()(IIU.(, ~'lL -u""PU") ppo lOd Ul-£" '!
4"'4." jO qJU~ "Volq [U' !IUOP! ..tn Oj OI UI Im,,,o aql do ~"~'q 01 uaw,!" ~U~ J~ujj!$"P
"ql ':l!I"W) Q:)S $141 ul '(e) u.d u, IO<[WA' a41 .1'1 pOlu ;>S;)JdOJ \L"OJIO ~41 ,oJ \la,,!'.!
.. '~!!JJI''''1~' JO ·wu,~.!p ~!'.!"I "'('I) ued ul ·~J n'.ly ''II JO (") uud U! ulI\oq<" 1"'0110
11"""'0 "'II 'OJ IO<[WA' V 'UO!PUlIj ppo Il1du!"~" 'IU"W~ldL1l1 !l0,,,, a'll ·Z"£ "..LnS\.:!
U! l!n"'!~ IOUO!I"U!qwOo • .lq p~l.JI'n [[l " q,"o,dd~ ,,'~n buo~ pue .P!'!P" " 'lL

"S.!. ,d. qJ J~I.1 "! p"U~O'
~SWJld.~ "ql 01 II~," .In "nba Alddu '~~P\ ~ lj l 10'1 '1l0!,~n:)S!p "41 UI .. 1"1O_1l0 .. WJOl
"4 ' a.n "" 1!1!" OJ!~ ~!jjol 41!." .(1!J~wud 8u'1JolI'I 'j"~"" ~'U!' 1"41 "ION J,u".~~u
.0 P"I":N~..L "<l uuo .. ~"",d <I'll 'S~JOlq lOlI"W' OIU! u"lO..Lq :>q u", 11'.(ll1U~ ~ljjUl'
" ,. p,u'.l!SJP "<l 01 ' ''Idwo) pue "S..L"I 001 11" "" '1X1[q •)['UOP",y!,:NS l!n'..L!~
a4 ' '.\:>qo ~ ~Xllq "41 '.IUIP~UUOOJJIUI Aq paW10j l!nOJ!' "41 lu q1 0< 'pa",pp .lIIOj
"Jl.' ~'" '''''"J,alU! 1]"41 pUU !~Xllq aSa'l1 JO $1l0!I'Unj "'lL '110'''0 aql WJOJ 01
paPaUUOJ,alU! J,. ' 1""1'1 J'll, "~:JOI</ II "J ~," ,~,ald OIUl dn ua~OJq S! l!n",!,:I'lL
p",n '! 4,.oJdd ... "obuo, pu~ ap!~lp~ u '~I! X~ldwoo I!""'!) 4,n$ ~1!1I\ I ~JP 01

.lapJO UI " W! I u I" ~uo .al"~ ~U!PJUUOJJalU!.lq .lldw!, p,u'.l]S~p:>q U"J lIOJ"] '0
wal'.(s xo[dwoo OU 1!o'lL -a~g Ul alq!SUJ4~Jdwoou! U. :>q 01 Ju:><Id" ,aIUS p"pau
"UOOJJ 1U! "41 ''\\ !XJldUlOJ 4,n, 41!M ·'~I"'.I JO .uo'll'w JO ,ual I.'~~'>S SU!"IUOl
UJ1JO I!O"!, Jos"IOOJd (IS,A) pal"J8"", a[.:.s"~jjJ"1 .('J' al8u!s 0 '1'"J ul "~IU'.I
p~p'UUOJJ"IUI JO ,uo'll'w U! " ' lIOJ ~"W wal'.\' I. \!S!P '''Idwoo \I ' P"IO~UUOO
-,alU] ~'" 1"41 SaJlIlOlI'l' J!SOI "410 10 '~1m1 ,,'.I0t JO pao;:odwoo" l!nOJ!' " ',a"a
",,,04 'UO \I.,uawaldw! JO , WJ"I \I["""J:NO II 11\0'1 AIPoxa Sumyap uO!ld!J:)Sap
• pUe 'Ind1no PU" ' mdUl "II '.IUlII\04' 1000W.(' " ~q pay!">d, "<l .low 1!nOJ!' \I

Alj::UBJa!H u6!sao

68 0 ""'!'I,womv"", "d.,.IO:) ,,11\'>(1 I 1"£

90 0 CHAI"TER- 3 I COMJIINATIONAllOGIC DESIGN

= =
~ =

~

"
"

~

" " 9·lnpu' " " - '" C-" fu"",,,,,,

Ii; ~- At Hnput

" ', - " - ". lu""'",,,
(.) Sym"," [Of cirCUit X, - "

" 11).input 3. lop.'
~-

, - "" A, odd Ilu C-",
lu",,'oon

fu __

" " " J V
Ih,L "".' V

X, ~o
V ·- "

~ / (b) Onu;, .. ;n!«"",,,,,,1«l 3.'nptJt _
I"oc'"," 1>10< ..

'"
(e) .Hnpu' """ [u""'''''' e;",u;, ..

I) > A; ~ l>-
;n" rroft nocted excl "", .. OR
bi<>< "

o flGURE 3-Z

(d) E><I ",·OR block ... n'efOOltnectO<l
1'IANo.

Example of Design Hierar<hy ond Reu",ble fl lock.

appear. This means that if a 9·inpUi odd·function circuit was designed directly in
terms of NAN D gates, the .chemotic fOT the circuit would consist of 32 imercon·
necled NAND gate symbols.. in contra" to just 10 ,ymbols used 10 d~ribc 'he cir·
cuit implementation as " hierarchy in Figure 3-2. Thus. a hi ~rarchy gives"
simplified representation of a complex circuit.

Second. tbe hierarcby ends at a set of··leav",·· in Figure 3·3. In this case.lhe
leave, consist of NAND gale .. Since the NAND gates are electronic circuit .. and
we arc interesled here only in designing the logic. the NAN D gales are commonly
called primi1ivr blocks. These ore rudimentary bloc~s, such as gate .. thai have a
symbol. but nO logic schemalic.Primitive bloc~s are a rudimentary I}·pc of pre·
,I~fi,,~d bloch In general. more complex ~trUC(UTeS thai likewise ha,·e ,ymbol ..

'-I 1 I)aIp> Cor.upt. ODd /w,_ 0 91

D-NMW ,.,
o I'lGVR I! ~J

D,~."", iteprncn,jn, ,''' Hierardly for Fill'''' 3-2

o

'"

bu. no logic: schema • ..,., are aM pre<!efin.ed blod ... Inslead of sdw:malics, .heir
func.ion can be defined by a program or descrip' ion .ba. can ",rve as a model.
For example. in Ihe hiefarehy depicTed ill Figure 3.3. Ibe exciusive·O R galu
could have been con.idered as predefined block .. In .uch a case. Ihe diagram
describin g .he exclusive-OR blocb in Figure 3-2(d) would no. be necc1S"'y. The
hi .. archieal represen.a.ions in figure 3·3 would .hcn end wi.h the uclusive-O R
bloch. In any hierArchy. Ihe "le.ves" consis. of predefined block .. lOfIl" 0(whIch
may be primi'ives.

A .hird '~ry importan. properly .ha •• esullS from hierarchical de$i", 1$ the
reusc o f block. as ill"nrated in FiJl,urcs 3-J.(.) .nd (h). 10 parT (0), .here ., .. four
copies of lhe).inpu. odd·funCTion block and .. igll' copies of the udusive-OR
block. In pa .. (h) .• here i:'I only one ropy of the 3-inpu. odd·function block and one
copy of Ihe cxclu.i....,_OR block. This "'prCKn" Ihe f...,ttha •• M desig~r lIa. 10
de.iS!' only one).inpul odd-funclion blocl! and One exciusive·OR block and can
use Ihe", blockS four limes and eigh.'im~$, r"'pecli,·ely. in 'he 9·inpul odd.function
circuit. In general. suppose Ihat a' various Ie"els of the hierarchy. Ihe blocks u",d
a", carefuUy defined in loch a manner ,hat many of 'hem are iden'ical. 1'Or IhC$C
repea.ed blocks. Odly one design" nccess.ory. This design can "" used everyv;here
the block is rcqu;ud. The appearance of I block "'i'hin a de$ign i. uUed an
in$/Dnu of Ihe block and ilS use is called an ilUlllrllimion. The blod::: is ~lUtlbk in
lhe ""nR Iha. il can be: used in multiple [IIaces in .he circuit desiJl,n Ind. possibly. in
lhe design of other circuilJl as .. 'CU. Thia concept vea. ly re<!ucn Ihe design effort
"'quire<! for c:omplu ciJTIJilJl. Note ,hal . in Ihe implemenlation of Ihe ciTcuil. "'pa_
rale hardWllre has 10 be provided for each InSU.nce of 'he block as repre~n.ed in
Figure 3-3(a). The feu~. as represented in Figu", 3·3(b). is confined 10 'he sch~mat·
i"" not '0 'he aClu~1 hardware impl.mentalion.

92 0 CHAI'TER 3 I COMIlINATIONAL LOG!C DESIGN

Aller oompleling a discussion of Ihe design p,-oc~ss. in Chapters 4 and 5. we
focus on predefined. reusable blocks that lypically lie at the lower level. of logic
design hierarchies. TheSt are bloch lhat provide basic funclions used in digital
design . They allow designers 10 do much of the design proce<s above Ihe primiti"e
block level. W~ rcf~r 10 these particular block. as !unc/;onalblocks, Thu .. a func­
tional block is a predefined collection of interconnecled gate~ Many of Ihese
fUnclional bloch ha"e been avoiloble for decades as medium-scale integrated
(MSI) circuilS that were imeroonneCled to lorm larger circuits or sy.;tem~ Simil ar
blocks are nOw in oomputer·aided design tool libraries used for designing larger
integrated circuit~ These funclional blocks provide a catalog of elementary digital
components that are widely used in the design and implementation of integrated
circuits lor computers and digital 'ystem~

Top-Down Design

Ideally. the design proccs:s is performed lOp dOR'n. This means that the circuit fUnclion
is spt:Cified typically by lext or a hardwarc description language (HDL). plus COn­
straints on =t, perfollllance, and reliability, At high le\"els of the design. Ihe circnit is
then repeatedly di,ided imo block:! a. ne<:essary untillhe block. arc .mail enough !O

perform logic design. rw manual logic design. tilt: blocks may need to be furtber
di'ided. In aUlOmalcd synthesis, the HDL <Jescription is convened 10 logic automati­
cally, Then. for boIh manual design and automated symhesis, the logic is optimized
and then mapped to the available primitive dement~ In fact, reality departs signifi­
camly fronllhis ideal view, parlicularly at the higher le"els of the design. In order to
obtain reusabi~ty and 10 make maximum use of predcfined modules, it is oftcn neces­
sary to perform portions of tbe design bmlom "P, In addilion. a panicular circuit
design obtai~cd during the design proce .. may viobte one of the oonstl1lints in the
initial src<'ification. In this case. it is newssary to backtrack upward through tt>e hier_
archy until a level is reached at which the violation can be eliminated, A ponion 01
the design is then revised at that lc,'cl and the re" isions are carried back do"nward
through the hierarchy.

In this text, since reader familiarity "ith logic and computer design is proba_
bly limited. we need to build a ready set 01 functional block, to ptovide direction
in lop·down design . Likewise. a sense of how to break up a circuit into blocks that
can se,,'e to guide the top-<iown approach also must be mastered. So tbe focus in
much of the text will be On bol1om-up rather tha~ top·down design, To begin build­
ing the basis for top-down design. in Cbapters 4 and 5. we focus our efforts on the
design of frequcntl)' used functional block~ In Chapters 1 and lO. we illustrate how
larger eircuil~ and $ystem~ are broken down into blocks and how these block. ate
implemented with funClional bloch Finally, beginning with Chapter 11. we apply
these ideas to look at design fTOm mOre of a top·down perspective.

Computer-Aided Design

Designing oomplex 'y.;tems 000 intcgrated circuit' would not be feasible without the
use of comp",er-aide{j desig" (CAD) took Schemmic mpwre tools support the dra"ing

) _1 I lk,;gn Con«p" ,,,J Au,,,,,,,,;,,,, 0 ~ 3

of blodli and interconnections at allle,'.I, "f the hierarchy, At the level of primitives
and functional blocks, libraries of graphics symbols arc prm'ided. Schematic caplUre
tools SIlpportt~e construction of a ~ierarchy by pcnniuing the generation of ,ymbols
for ~i<.'Tan;hical blocks and the replicalion of symbol, fOJ reuse.

The prinlitive block, and the functional block .ymbols from libraries h"e
associated modd. that allow the behavior and t~c timing of the hierarc~ical hloch
and the emire cireuil to he verified , This verification is performed by applying
inputs to Ihe blocks or circui t and using a logic sim"lmor to determine the output:!.
We will he illustrating logic simulation in a number of examples

The primitive block, from libraries can also ha,'. associated data. suc~ as
physical area information and delay parameten. lhat c3n be used by logic symhe­
siurs to optimize designs bein g generated a utomatically from hardware descr ip_
tion bnguage specifications.

Hardware Description Languages

Thu. far. We have mentioned hardware description languages only casually. In
modern design. howe"er. such languages hR,'e bceome crucial to Ihe design pr<>­
cess. Inilially, we justily such languages by describing thcir uses We will then
briefty discus~ VOHL and Verilog~, the most popular of these language s B~gin­
ni ng in Chapter 4. we imroduc<: bo lh of these languages in detail. although, in any
given course. we cxpeclthat only one of them will be co"ered,

Hardware dcscrip,ion languages rescmble progra mming languages. but are
specificall y oriented to describing hardware s, ructureS ami behavior. 'l1,ey differ
marked ly f,om typica l programming languages in that they '"presen, e~,cnsi"e
parallel operation wherea. most programming langu.ges represent serial opera­
tion. An obvious uSC for a hardware description language is to provide an alterna _
tive to schemati"" When a language is used in ,bi, fashion, it is referred to a. a
sl",c"'T~1 tk""T;I";,,/1 in which the language describes an interconnection of com _
po nents. Such a struclur;,1 de=-iption, referred to as a n~IIi.>'" can be used as input
to logic sim ulation just as a schematic is " ",d. For ,hi , application. models for each
of the primitiv" hloc k, are required. If an HDL is used. then these models can alo;o
be wrille" in the HDL provid ing a mMe uniform, portable representation lor si m­
ulation inp ut.

The power of an HDL becomes more apparent. however, when it is used to
repre,enl more than just schematic information . II Can represent Boolean equa­
tions. trul h t"bles, and complex operations such as arithmetic. ThUs. in top_down
design . a ,'ery high-level descriptio n of an entire sy,lem can bc precisely specifi ed
using an HDL As a part of the de,ign process. this ~igh - le"cI descrip,ion can then
he refined and partitioned into 10"'cr_Ievel descriptions Ultima tely. a final
description in lenns of primiti"e component, and functional bloch can he
obtained as the re,,,1t of the design procc<s. NOle that all of these descript ion, can
be simulated , Since they represcnt the ."me .y.tem in tern" of function. but not
neces<arily timing, they should respond by giving the same logic val ues for Ihe
same applied inputs This vi tal simulation property supports de,ign verif,eation
and is one of the principal reMon, for the uSC of HDLs.

94 0 CHAPTER 3 f COMB!NAT!ONAL LoG!C DES!GN

A final major reason for the growth of the use of HDLs is logic synthesi ..
An HDL description of a ,)'stcm can be written at an intermediate le"el referred
to as " register transfer language (RTL) level, A logic synthesis 1001 with an
accompanying library of component. can convert such a description into an inter­
conncclion of primitive components that implements the circuit. This repl.ce­
ment of the manual logic de,ign proce" make. the design of complex logic much
more efficient.

Currently. lher~ are lwo HDLs, YHDL and Yerilog. that are widely_used .
,tandard hardware design languages The language standards are defined.
appro'·cd. and published by the Institute of Electrical and Eloclronies Engin~ers
(IEEE). All implemcntalions of Ihe"" languages must obey their respecti,'e stan­
dard. This standardization gives HDI..< anOlher advantage over schematics. HD I..<
are portable across computer-aided design tools wherea~ schematic capture tools
are lypically unique to a p'rlicular vendor. In addition 10 the standard languagcs,"
num1:>cr of major companies have their o"'n internal languages. often dC\'eloped
long before the standard languages and incorporaling femme. unique to lheir par­
ticular prodUCIs.

YHDL 'tand, for VHSIC Hardware Description Language. YHDL was
developed under contract for the U. S. Department of Defense as a pari of
the V~ry_High_Spee<l Integrated Circuits (V HSIC) program and sul)sequent ly
became an IEEE standard language. Yer;loge was developed by a company,
Gateway De$ign Automation. which wa. bougll1 by Cadence- Design Systems.
Inc, For a while, Verilog was a proprietary language. but eventually 1:>ccamc an
IEEE standard language, In this t~xt . we present brief introductions to both
VHDL and Verilog. These portions of the leX! are oplional and permit your
in"ructor to CN'er One of the two language, or neither.

Regardle" of the HDL, there is a Iypical procedure used in employing an
HDL description as simulation input_ These procedure steps are analysis, elabora­
tion, and initializalion, followed finally by the simulation_ Analysis and elaboration
are typically performed by • compiler similar to those for programming lan­
guages. AnolJ5;' che.c"s the description for violations of the synta .• and semantic
rules for the HDL and produces an intennediate representation of Ihe de,ign,
Elaboralion Iraversei the design hierarchy represented by the de",ription; in this
process, the design hierarch)' is ftaUened to an interconnection of modules tha t
are dc",ri1:>cd only by their behaviors. The end result of the analysis and elabora­
tion performed by the compiler is a simulation model of the original HDL
description, This model is Ihen passed to the simulator for execution, fniliafil.olim'
selS all of the ,·ariahle. in the simulation modd to specified or default values. Sim­
"Iarion executes the simulation model in either batch or interactive mode wilh
inpuls spe<:ified by the user.

Becau"" of the abilily to deocribe fairly complex hardware efficiently in an
HDL a special HDL struclure called a lesrbench may 1:>c used. The testbcnch is a
description that includes the design to be testcd. typically referred 10 a, the device
under Ie", (DUT). The te.tbench describes a collecl;on of hardware and software
functions that apply input. to the DUT and anal)'"" the outputs for correctness.
This approach bypasses the need to provide separate input' to the simulator and to

J _t I D<":gn Con<<p< •• oo Au,.,.".oon Cl 95

analyze, often manually. the simulator outputs. Con,truction of a lestbench pro­
"ides a uniform verification m~chanism that can be used at multiple levels in the
top-down design process for verification of correct function of the design,

Logic Synthesis

As indicat~d ~arti er, the avai lability of logic synthesi, too!, is one of the driving
forces behind the gro,,;ng u.., of HDLs. Logic synthesis nansform, an RTL
description of a circuit in an HDL into an optimized nellist rtpreseT1 ting storage
element' and combinational logic. Subsequently, this neilist may be tran,formed
by using physical design tool, into an actual integrated circuil layout. This la}'out
..,rves as the basis for integrated circuit manufacture. The logic ,ynthe,i, tool takes
care of a large portion of the details of a design and allows exploration of the
cosilperformance trade-<>ffs e""ntial to advanced designs.

Figure 34 gives a simple high-level flow of the Sleps involved in logic .ynthe­
sis. The user provide. an HDL de",ription of t~e ~i tCui t to be designed as " 'ell as
"arious oonstrainl$ or bounds on the design. Electrical oonmaints include allow.ble
gate fanouts and output loading restrictions. Area and speed constraints direct the
optimization step;! of the synthesis. Area eonstraints typically gi"e Ihe maximum
permissible area that a circuit is allowed to occupy ,,;thin the integrated circuit.
Atternatively. a general directi,'e may be given which specific> t~at area i$ to be
minimized. Speed constraints are typically maximum allowable value. for propaga­
tion Mlay on various path. in the circuit. AUern3li"cty, a general direeti,'e may be
given 10 maJ<imize speed. Area and speed both translatc into the <:<)1;t of a circuit. A

ItDL O<""ipl;oo Elecorooi<, SpeOO. Th<h ooioJY
of O",.h .od A". COOS".;"" Lib..,y

n.".l.t"",

Interm«l,ole
Rep"' .. nt'Oion

j

I'rwp,inta..t;oo _ CIp<;m,"'"", _ Tc<' "",""y ~'l'P'nl

I
Nelli!!

Cl nG UR E l-4
High-Levet ~10 .. ' /", log'" SyntOes;, 100\

96 0 CHAPTER] f COMIIINATIONAL LOGIC DESJGN

fast circuit will typically have larger area and thus cost more to man ufacture. A cir_
cuit that need not operate fasl can be optimized for aTea, and. relatively speaking,
costs less to manufacture. 10 some sophisticated ,ynthesis tools, po"'er consumption
can also be used as a constraint. Additional information used by a synthesis 1001 is a
technology library Ihal de.cribe, the logic elements a"ailable for use in Ihe nenist
a. well a, their delay and loading properties, The laner information is essential in
meeting constraints and performing optimization.

The fim majoT step in the synlhe,is process in Figure 3-4 i, • translation of
the HDL descriplion into an intcrmediale form. The information in Ihi. represen­
tation may be an inieTconnection of generic gates and storage clements, not taken
from a libnry of primi!i,'e bloc~s, called a lechn%gy library, It may also be in an
alternate form Ihal represent. clusten; of logic and the interconnections between
the clusters,

The ""cond major .tep in the synthesis process is optimization , A preoptimi -
1.ation .tep may be u .. d to simpliry the intermediate form, For example, logic that
is identical in the intermediate form rna)' be shared. Nc,t is the optimization in
which the intermediate form is pcocessed to anempt to meet the constraim •• pec;.
hCd. Typicall y. two·le,'el and multiple-l eve l optimizo tion are performed. Optimiza­
tion is followed by technology mapping which replace, AND gates, O R gates, and
in"erten; with gates from the technology library. In order to evalume area and
'peed parameters ass.ociated Wi1h these gates, additional information from the
technology library i. used. In sophisticated synthesis tools, further optimi7.ation
may be app lied d uring technology mapping in ordec to improve the likelihood of
meeting the constraint' on lhe design . Optimization can be a "cry complex, time
consuming process for large circuit,,- Many optimization passes may be necessary
10 achie,'e the desired re,ulls Dc to demonstrate that constraints are difficult , if nOt
impossible, to meet. The designer may need to mooify the constraints or the HDL
in order to achieve a satisfactory design, Mooification of the HDL may include
manual design of SOme portions of 1he logic in order to achie"e the design goal,,-

The output of the oplimization/leehnulogy mapping processes is typically a
nellist corre'ponding to a schematic diagram made up of stomge elements, galCS,
and other combinational logic functioMI bloch This output serve, as input to

physical de.ign tool, thal ph)'sicall)' place the logic elements and route the inter·
connections between them to proouce the la)'out of the circuit for manufacture, In
the case of programmable pan, such as field_programmable gate arroyo a, dis·
cussed in SectIon J~. an analog to the physical design tool, proouces the binary
information used to pwgram the logic within the part"-

3-2 THE DESIGN SPACE

For a given design, there is t)'pically a target implementation technology that spec­
ifies the primitive clements available and the properties of those elements, In addi­
tion. there is a set of constraints 1hat applie. to the design . This section deals with
the potential primitive gate functions and pwpertie. and brieny di!>C\lsscS design
conslraints and the trade·offs that must be considered while aUempting to meet
the constraint,,-

Gate Properties

Digit.1 circuit' are constructed with imegrated circuits. An integrotcd cIrcuit
(abbreviated IC) is a silicon ilCmiconduetor crystal. informally ca lle..:! n chip. con·
taining the electronic romponents for the digital sate. and storaae clcm""t .. The
variouo componentS are imerronnectcd on the chip. The chip is mounted in a
ceramic or plastic container. and connections are welded from the chip to the
external pill1to form the integrated cirroit. 'The number of pins m.y range f.om 14
on 3 .maJl IC package 10 several hundred on • Large packago=. Each IC has a
numeric designation printed on the surface 01 the package for idenllf\callon. Each
vendor publi,hes tbtasheets or a calalog that contains the descnplion and all the
Oe<:es!<3ry infornlDllon about the Ie. that it manufactures. Typically, thi, inlonna·
tion is available On vendor "'eb!;i t~

levels of Integration

As Ihc technology o f IC. has improved, lhe number of gates Jlf"i!Cnl in a lingle sil.
icon chip bas increased considerably. Cuslomary relerence to a pad:a&e as being
cilher a $mall. , medium. , large· . Of very la .. c«ale integnlled device is U$/!d 10 d,f·
fCttntiale bel""ecn chip" "ith jusl a few internal gales and Ih06C ""Ih tbousand!; to
tem 01 million~ of pt

Small.Jcalc I"'~«nllcd (SS I) devices contain sevcr-al independent primiti,'.
gates in a single pachge. The inputs and OUtput! of the gates are connected
directly to the pin. in the package. The numbe' of gates is usually le515 than 10 and
is limited by the !Iumber of pins ."ail »blc Oil the Ie

M~diu"" $("'" jrr1~grtlled (MS1) dc.ices ha.e approximately 10 to leMl ,ate. in
a single package. They u.ually p<:rform specific elementary digilal fUI\C1;ons, .uch
a. the addilion or four bits. !>1ST digilal function. are similar 10 the functional
blocks ~ribcd in Chaplel'$ 4 and Chapter S,

u.rgr~Qlr ilttrgrtJltd (LS I) de,'ices tontain bel,. n 100 and a lew lhou .. nd
gates in a single package. 'They include di,ilal .ystems such as $mall p""""""rs,
small memories. and pfOlJ1lmmable modules.

Vuy /Qrg~'$€"I" jltugrtJl~d (VLS I) de_ices contain several thousand to ten. of
million. of gates in a single package. E~ampll'1l are complex microprOCC5I5()' and
digital signal proce5l5ing chips Because of their . mall transistor dImensions. high
density. and comp.,ati,·el)· low cost. VLSJ device. have revolutioni/,ed di,na l s)'s·
tem and computer design. VLSI I""" nolng)' gives dI.'1Iigners Ihe capabilit y to <TcalC
complcx 'lrUC1ur~ that previou!ly were not CCOflomicaT to manufacture.

CircUlI Tec:hnologies

Digilal integrated ciTCUil$ are da"ified nOi onl)' by their function. but ako by
their specific implementation te<:hnolOCY. Each technology has its own ba.ic dec·
Ironk device and circuit structures Upoll which more complex di,it.1 circuits and
functions are developed. The 'peeific electronic dc,'iccs used in Ihe co nstruct ion
of the basic circ uits provide the name for thc technology. Currently .• itieon ·based

98 0 CHAPTER J I COMJ1INATlONAL LOGIC DESIGN

o FIG URE J...S
Implemen,"tion 01. 7.inpu, NAND Gate
u.in~ NAND Gat'" with 4 ()f Fn.'or Inpu"

Compl"mentary Metal Oxide s"miexmd uctor (CMOS) technology dominates d ue
10 it. high circuit density, high performance. and low pow"r consumption. Alter­
nati"e technologies ha~ed On Gallium Arsenide (GaA,) and Silicon Germanium
(SiGe) are used selectively for very high speed circuits.

Technology Parameters

For each specific implementation technology. there are details that differ in their
electronic circuit design and circuit param.te~ The most important parameters
used to characterize an implementation tcchnology follow'

Fan·in specific. Ihe number of inputs ~v"il"t>le On a g"le,
Fan-{)II/ specific,; the number 01 standard loads driven by a gate output. Ma,d·
m",n fa" ' f)w for an "ulput ,pecifles the fan-<>ut Ihat Ihe oulpUI can drive with·
OuI impairing gate performance. Standard loads may be defined in a variety of
w")IS depending upon the lechnology.
Noise margin is the maxim um external noise yoltage superimposed on a normal
inpUI value Ihat will nOI cause an undesirable change in the circuit output ,
Cost for a gate speciflC'l a measure of its contrib ution to Ihe c"Sl of Ihe inl e·
gralcd circuil oontaining it.
Pr"ptllitl/ion deltly i. the time required for a change in value of a signal to prop·
agate from input to output. The operati ng speed of a circuit is inYcl'$e ly relauxl
to the longest propagation delays through the gates of the circuit,
Power (iissipaliof1 is the power drawn from the power ,upply and consumed by
the gate. The power consumed is dissipated a~ heal. so the power dissipalion
must be considered in relation to the operating temperat ure and cooling
r<quirements of the ch ip,

A lthough all of thC'le parameters are important to ,h. de'igner. further details on
only selected parameters arc provided next.

F IN fur high-speed technologies. fan -in, the number of inputs to a gate, i.
often restrict~d on gale primitives to no more Ihan four Or five. This is primarily
due to electronic considerations reiated to gate speed. To build gates with larger
fan .in. interconnuted gates wilh lower fan ·in are u .. d during technolog)' mapping.
A mapping for a 7-inpul NAND gate illustrated in Figure 3-5 i, made up of two 4-
input NANOs and an inverter,

PROP.G.TION DELAY The delennination of propagation delay is ill ustrated in
Figure 3·6. Three propagation delay parameters are defined. The high -IO-Iow

J_2 I n.. Oe.ip Sr- 0 99

"
I t \

mVOlIT
, , ,

O~

'"\
,-

I /
o flGU RE}.6

I'rovagation o.l.~ for In In''crler

propagation li"'t I""L is Ih c dela~ measured from Ihe reference "ollase On the
input IN to Ihe rdc",nce ¥oltage o n Ihc output OllT. with Ihe oUlput ¥o ltage
going f.om H 10 L n.e reference voltage we are using is the 50% potnl , half ... ', y
bet"'un lbe minimum and tbe maximum values of the voltage liignJl1: OIber .er­
e",,,,,,, ml1ages may be "",d. dependinll On lbe logic family. lbe low-w-high prop.
agalion lime '1'U1 ' s Ihc <klay IIICMured from Ihc .d"",n"" ¥oltage o n the inpul
mltage IN 10 tbe ",feren« voita&" on IIIe OUtpul voltage om. with lbe OUlput
voltage Coing fro m L 10 H. We define the prOpiJ$arim, tlday I the maximum of
the.., two delays. The rcaw n we have chO$Cn Ihe m""imum value is ,hat we will
be mosl co"cerned wil h finding the lonaest Ume for a signal 10 propBgatc from
input. to out putL O lherwise. the delinil ion! given for I ... may be incon,iSlcm.
depen ding o n Ihe use of (he dala. M'nufacl ure B usually specify the maximum
and typical va lues for both I.,OL ,nd '1'1.11 01 for ' ... fOf thei. proc:luCI$.

TWo differeD. models. IrJru;poo-l delay and ;""ni,1 delay. ar~ ernployed in
model;ng gatel duri"8 .imuialion. For ''''''sport d"My. IIIe change in an OU'pUI in
..... po''''e 10 Ihe chan", of an inpUl OttUrs afler a speci fied propag"uon <klay. IMf>­

,ia/ tI~l"y os $&milar .0 lnompon delay. e~«pt Ihal if lhe inpul changes caU$C IIIe
OUIPUI 10 change IWicc ,n alt inlerv:lI 1e5S Ihan Ihe 'rj«,um 'imr. Ihen Ihe lim of
the Iwo ""Ipul change. <Joe. not occur. ·1lIe rejeclion lime is a specified ,'alue no
larger tha n the propagalion delay and il ohen equal to Ihe propagalion del"y. An
AND gate modeled wilh bolh a """"POrt delay "nd an ine rtial de lay ii ill ustrated
in FIgure)·7, To he lp vi,nalize the oklay l>eh~vior. we have al", give n Ihe A NO
outpul " 'it h no dcl~y, A colored bar on Ihis w'lVe(urm iho,,~ • 2 ns propagalion
delay lime afler each input change and. smaller blad bar sho 8 rejection lime
of i ns. lbe OUl put modeied with Ihe InoftS90rt tklay is idenlocal .0 thai for no
delay. excepl thaI i. i •• hifled 10 II><: righl by 2 n .. For lhe inertial delay. tile "'''"¢­
fonn is lit e ... ·~ Sh'fted. To define lhe waveform for lhe <k1a)·e<J ""'PU', we will call
each change in a ,,"ovdorm an ~,/p. To dele nninc ,,'hether a pa.ticular edge
appea", in ,he [D ""'put. it must be: delermined ... helhe. a second edge OCCurs in
the NO outpul before the end of the . ejecli..,n lime fw Ihe edge in quell ion. a ~d
whe lher Ihe cdge will result in " change ill the [0 output. SinC<l edge b OCCurs
before lhe end <If l!o e reject ion ti me for edge a i" Ihe NO outp ul, edge a dOC$ nul

100 0 CHAI'TER 3 I COM IlINATlONAl LOGIC DE5IGN

u U
I ru U

F I'o[}ela)· ___ --'
(ND)

T,.n'!'Of1

I- Ft .. FEJ5iOO , • , , •
I n nJ Dcb ' (TD)' ______ ~~---,'----'

lnen .. l

0<1.)' (JD)'-::=~==~~_:_--~=~==;=~='-"c;;:: ~- I I I I I I I
0 2' 6 # 10 11 14 16T,mc(ou)

o nGUR£3·7
Example, of Bch . ,ior ofTron'J>Ort and Inorti.1 Delay.

appear in (he 10 outp ut. Since ~dg~ b does not change the state 01 10. it is ignored.
Since edge d occurs at the rejeclion time alter edge c in (he NO OUlpUt. edge c does
appear. Edge e. however. occ urs wit~i n t~ e rej~et;on time alter edge d, so edge d
does not appear. Since edge e appeared and edge d di d not appear. edge e doe, nOt
cause a change.

FAN-our One approach to measuring lan-out is the use of a n~"d~rd 1000d. Each
input o n a driven gate provides a load On the Output of Ihe driving gate which is
measured in standard load Unils. For example. the input to a specific in,'erler can
h"'c load equal to 1.0 standard load . If a gate dri"es si x such im·erlers. then the
fan-oUi is e<juallo 6.0 standard loads. In addition. thc output of a gale has a maxi·
mum load that it can drive call ed ils ma,imum fan·oul. The determi nation of the
ma.imum fan·out is a function of the particular logic lamily. Our discu",ion will be
rcstrictcd to CMOS. curre nt ly the mOSt popular logic family. For CMOS gates.. the
loading of a gat~ output by th~ integrated circuil wiring and the inputs of other
gates is modeled a. a capacitance. This ca pacitive loading bas no eff",,! on the logic
levels as loading often does for other famili~s. Instead. the load on the OU1put of a
gate determines the time required for Ihe out put of the gate to change from L 10 H
and Irom H to L, II the load on the outp ut is increased. then thi< time. called the
lrans;t;"" I ;m~. incr~ases. Thu,," the maximum fan-<lut for a gate i, Ihe number of
standard loads of capaci tance thaI Can be dri,'en with the tran<it ion time no greater
than its maximum a llowable value. For example. a gale with a maximum fan·o ut of
8 standard loads could dri>'e up to 8 in"ertel> that present 1.0 standard load on
each on their inputs.

Because it rc presents capacitance driven. the actual fan·out of t~e gate, in
terms of standard load" also affects the propagation delays of the gate. Th us. a

3·2 (The De,;gn S!'""e 0 101

simple expression for propagation delay can be given by a formula or lable that
consider!; a ftxed delay plus a delay per slandard load limes the number of stan·
dard loads driven, as shown in Ibe next example.

EXAMPLE 3-1 C.lculalian ofGote Delay Based on t"an·Out

A 4·i~pUl NAND gate output is attached 10 the input' of the following gates wit h
the given number of standard loads repre~nting their inputs:

4·inpul NOR gate· 0.80 sta~dard load
3·input NAND gale - 1.00 standard load, and
inverter - 1.00 standard load,

The formu la for the delay of the 4. input NAND gate is

1"" _ 0.07 + 0.021 x SL ns

where SL is the sum of the standard loads driven by Ihe gate.
Ignoring the wiring delay. the delay projected fO! the NAND gate as loaded i,

1¢ = 0.07 + 0.02 1 x (0.80 + 1.00 + 1.00) = 0,129 ns

In modern higb·,peed circuits, the portion of the gate delay d ue to wiring capaci .
tance is often significant. While ignoring such delay is unwise. it is difficult to evalu­
ate since it depend, on the layout of the wire, in the integrated drcuit .
Nevertheless. since we do not h.,·e this information or a method to obtain a good
estimate of it , we ignore this delay component here •

Ooth fan_in and fan -oUl must be dealt with in the technology mapping step of
the design process. Gales with fan- ins larger than those avaitable for technology
mapping can be implemented with mul\iple gates. Gates with fan-<lut' that either
exceed Iheir maximum allowable fan -out or ha"e too high a delay need to be
replaced with multiple gates Or have buffers added at their out puts.

Cosr For integrated circuits, the cost of a primiti,'e gate is usually based on Ihe
area occupied by the layout cell for the circuit . The layout cell area is proportional
10 the size of the transistors and the wiring in the gate la}'oul. Ignoring the wiring
arca. the area of the gate is proponionallO (he number of transistoTS in Ihe gale.
which in 1urn i, usuatty proportional to the gale input count tf the actual area of
(he layoul is known , then" normalized value of this arca provides a mOre accurate
eS1imation of cost Ihan gate input count.

Positive and Negative Logic

Excluding transition .. the binary .ignals at the inputs and outputs of any gale have
one of twO val ues: H or L. One value repre..,nts logic I and the other logic O. There
are two different "ssig.oments of signalle,'el. to logic values. as sho,,'n in Figure 3-8,
Choosing the high le"el H 10 represent logic I defines a posi(i"~·/ogic s~tcm

Choosing the low level l. 10 represent logic 1 defines" 1U!8t11i"e-/ogic '~tcm , The
terms "positive" and ·'negative ~ are somewhat misleadin&> since both signals may be
posit;,'e voltages or both may be negative voltages. It is not the actual signal values

102 0 CHAPTER J f COMBIN ATIONAL LOGIC I)E.SIGN

Sifn·1 '- Siln. 1 "'" voh", val"" .. I"" ... 1""

" " •
, • , ,

(.) Fl><iti.elofi< (Il) N,,,, 'ive.

0 FIGURE 3-8
S'gnal AS$ignment and Logic ~Iari ty

Ihal ddemt ine Ihe Iype of logic. but ,.Iher the assignment of logic values to the rel­
Ofiv~ ampli,ud~s of the two signal ranges.

Integrated circuit data sheets define digilal gat~s in t~mtS of both logic "alues
and signal va lues Hand L If Hand L are used, it is up to lhe user 10 decide on a po!;­
itive or negative logic assignment. Consider. for e.ample. the truth table in Figure
3-9(a). This table is given in a data bool: for the CMOS gate shown in Figure 3-9(b).
The table specifies the physical beh""or of the gate when H i, 5 "olts and L is 0 .. oilS­
The truth table of Figure J -9(c) assumes posili,'e logic. ",th I assigned to Hand 0
assigned to L The table is the same as the truth table for the AND operation , The
graphics symbol for a poosilive-logic AND gate i, shown in FIgure 3_9(d).

, , ,
, , , X=§----z ,
"

, Y Got.

"
, ,

" " " (a) r",," ",~Ie (b) Got. ' I"ck J;"S'. ",
.. ith Il.n<l L

, , ,
" " " ~=D-z " " "

,
, ,

(c)1ho,h .. hk (JJ I't><i\;v<-\ot;c
I"" !'O'h, 1oJi< ANO ",,,

, , ,
,

~=D---z "
" " " " (e)Tm'htabl< (I) Neg.at;v<.1opc

I"" ... "< ;ve,,,", OR; l'''.

o FIGURE J-~
Ikmon"'.t ion 01 i'o>iti,'e and Negative Logie

J_2111>< D<,;gn Sp'co 0 103

Now consider the negative logic assignment for the same physical gate, with 1
a>signed to Land 0 assigned to 1-1. The result is the truth table of Figure 3-9(e) ,
This table represents the OR operation with the table rows re'-crsed , The graphic
symbol for the negative-logic OR gate is shown in Figure 3·9(f). The small triangles
on the inputs and output are polar;ty indicalO'''. The presence of a polarity indica­
tor on an input or output signifies that negative logic is a,"u mcd for the COrre·
sponding signal , ThUs, the same ph)"lical gate can operate as eit her a positi,'e .]ogic
AN D gate or as a negative· logic OR gate.

The con"eNion from positive logic to negati,'e logic and vice versa is an oper­
alion that changes l 's to O's and O's to I's al both (he input' and the output of a
gate. Since this interchange of l's and O's is a part of taking the duaL the conver­
sion operation produces the dua l of the gate function. Th u .. the change of all gate
inputs and outputs from one polarity to the other results in la king the dual of the
function, wit h all AN D operation, (or graphics symbols) con"erted to O R opera·
tions (or graph ics symbols) and vice versa. In addition. one must not forget to

incl ude the polarit y indicator in the gmphics symbols when negative logic is
assumed. and one must also recognile that the polarity definitions for circuit inputs
and cireuil OUtpul8 h" 'e been changed . In this book we do not use ncgative logic.
but assume that all gate, operate wilh a positive-logic assign ment.

Design Trade-Offs

Previously, it has I:>ccn 8hown that there is a relations hi p belween the actual fan_
out of a gate and its propagation delay. Higher fan-out increases the propagation
delay. For e~ample, a circuit has a gate G having a fan,oul equ.1 10 16.00 standard
load .. The delay through thi, gate, including Ihe delay component based on the
standard loads dri,'en, is 0.406 n .. To reduce this delay. a buffer is added to the out­
put of gate G and the 16,00 ,tandard load. sre connected to the buffcr output. The
outpul of gale G now drives just the buffer. The delay for this combination of the
gate and the buffer in series i< only 0.323 ns, giving a delay reduction of ovCr 20% ,
Gate G alone ha. a cost of 2.0 while gate G plu< the buffer h.,'c a cost of 3.0, Thes-c
two circuits illustrate a cost/performance trade·off. the most common of the uade­
offs with which a designer must deal. While thi' example use, two simple circuit ..
cosllperformance trade-offs can be made at much hi gher levels in a syste m design,
These trade-off' rna}' inn ucnce functional specifications for the sySlems and Ihe
implementation approach us-cd for s}'.km function ..

Cont inuing with (he simple e xample, the designer has two choices If gate G
al'mc is fast enough . il should be s-clccted because of its lower cost. On the other
hand, if it is nOt fast enough, then gate G plus the buffcr should be selecled. In
order to make tn is trade·off. we need to have one or more const raint. on the
design of the circui!. Suppose that the constraint is Ihat the maximum input-to-out­
put delay 'pol""" = 0.35 ns Since gate G alone doe, not meet this constrain t. Ihe
buffcr must be added. Alternalivdy. suppose thaI the constraint is that the ma~j ·

mum nu mber of area units for the circuit i, 2.5. Since gate G plus the buffer do not
meet th is constrain t. galc G .Ione must be chosen. Finall)'. suppose that ""th Ihe
delay and area constraints given are e'pectcd to be met. Then neither solution is

U"~IOOH P~\l!IdlU!' ~41 Supnpo.ld .~ 4'ns '~,,,p~I'Io .tJolualU~p uo 8U1~Js!l"S
Ii'l <ll)S"'l UOll.ZllUUdo ~41 ,,"'", AU"lU u l 'U01Wl!lU!ldo JOJ I!n,~J pu~ a l'l"
_Id""," U" S~ml!ISUO' 1"4." Inoq. IUaU1~I"I'I"JaU'~" '~. U1 Olljn'YJlp 'lll'~,uanb
·",uo, ~." ·~3.1' 3mddolU ~3010U4'~1 ~41 llIun u."ou ~ IOU "'" SJ!lU!1 InO' U~J PU"
"S'"PP ~1"3 "ISO' '108 Jn41 P"J ~ 411i'l pal""'ldlUO'" "'1.1 '''03 4,"a JO Ino-U"J ~41
uo <llOll~j[wll pue 'I In"1' a411j"3nOJql l"u8!," JO alU!1 uo!,e8"doJd ~1'IU,"OIl" lUnw
-!X"lU 'P""" ~108 ~ 41 JO 1S<XI ~41 W 4,n, 'IU!""""O, .laplSuoo IsnlU USIS~p IrolPmd
V - P0 41~lU U01Hr.'!lU! ldo ~4 1 3msooq, 10) ~pln8 " '" ~AJ"" "!J~I!.lJ aYlms 'uoII
-."ldd.10ln"u"d" 01 "SwOJ80Jd OO! loJ~!!dw IS P"'"'I'1~lndwo, 10 'POl.jI'W dew-)!
~41-UO! I"1 "d!u~", ' 1".I'Iaj]n.e 4,n. 'spoql'w ~lq"I'"A" .I"'Iwnu" JO liu" .1'1 p~ "'.loJ
• .1<><1 "'l uro UOIIl!ZllUlldO ·uo!"~Jd . ~ .10 ~I'I"I qlllJl PO.UOOU! u~ U! lln<a.l lin",
UO!I"laJd.I~IU! Suo " Aug puu ';l laldwo,m ~m SUOIJ""y,,<><I. Q41 uallO ~uo!ss~ldx~
JO .al'l"l qln11 Sml~lnlU.lol U~4l1\ ~IP~lJOO ""'~JdJ~IU! O<j 'UO!lroyp>ds I'XI.J,<
1"41 IUBUodlU! ' 1 11 "Suo!ss~Jdx~ U"~IOOO 10 .al'l"1 41n.l l lill~"dli\ am .two) ",a'll
-pa>! w!ldo "'l u"'" 1~41 .twO) OIU! U011"'YP;x!' ~ql '\lnuoo UO!I"l"w,Ud "Ind
-mo pUB ' lndu! "41 JOJ 'aw~u'O <IO<1W.(, Q,,,p<><l.~.1 '41 ~pnpUl Pl n04' PU" UOI I
·d!J)S;lp 'OH ue 10 I~~I S. q, n. 'lUlOJ 10 AI~!J"A " ~~"I U"' UO!lroyp:xis ~'ll

' u3!.~p I""y ~41 JO SS~UP~.lJoa ~ql A) IJ'II : UO!llt)y!J~,\ ~

'AllOlou4~~1 "O!I" IU~W"ldw! ;)1'I"l!",<e ;)1{1 8u!.n 1'!llaU 10 1U • .d
-"!P I<I~U " 01 IS! I13U .10 1U~.dmp "SOl a'll W.l0J.ueJl. :~u!dMI\I ,\ljoloU"~~l. "

maua,<ul
PU" ~O "SONV SUi.n l!n:up 8Ul\ln.~.I a41 .101 1S1II~U 0 ~plllOJd 10 W0l8"!p
,,801 ~ lI\~.la 'UO!I"'!W!ldo PA~l'~ld!llnW puc PA~l'Oll\l AlddV 'UO!I~I!UJ!ldO 'f

"S\ndlno pue slndUl U~~lI\l"'I sd!Il'UO!I"I'J ""J!nb~J ~41
au gap 1"41 ,uo!lunb~ U"~IOO\I 1"!1!"!'0 ~lqel 41n11 ~41 ~AU~O 'U"!I"lHUUO;! "

"al'l"I!"AC
~pe~JI" IOU '! "uo J! l!n"J!' J41 ,0J UO!lc,y"ad. " ~luM 'U"!I"~ypads 'I

,sd~I' j U!",olloJ ~41 ""'IO,\U! ~Jnp""
·o.ld ~'ll 'W".l801P ~)S01" ''''I!J:)s~p 1"4 1 1'!II~ U .lO W"JS"!P ~!80I" U! S~IU U!lUln' puc
lUal'lo.ld a41 JO UO!l"" ~!":xI. alll 1U01J Sl.l"I~ l!n,.I" I"UOI I"III'1WOO 0 10 u81S~p 3'1l.

nLflOEDOlid N~ls:'Ia r-r

"SIUleJI'>IIm J~4 10 II" jU11~~w ~1!4'" P""'lW!U!W "'l OIIW' ~41 '1111<1 p~xy "'I Aern
IU!"JI'>IIOa AUPP al{I ~U I".lISUO" ISO" puc ~epp 410q 8U1A"4)0 P"~I'U! '~ldill"X~
JO:l ·l ln,.I!~ U~AIS • 10J paYlm. '''" I'!l '!ql uo 'IU1"JI""Oa II" IOU 'AII""!d\..L

' lod lno Iln"'!~ J41 ,('I paP!AOld Mllp puc pool p.lnpuel~ IUnlU!u!l'l
Slnd u! 11=" al{I SUIAUP ' lin",1' 01 p.lu""~Jd 'P"OI p'"pUeIS lUnw!~~ I'I

uOlled'S'Slp l~,"od IUmu!x"I'l
!I!un "~'" lUnlU!xt l'l

A~ lap IndlnO-<>I_lndUl wnlUlnl-'l

'SlI\OIlOJ'.'! 'lU,"1IS UOO 1m,." "1'I1SSO<i 10 I'll " jdwll'S V
"W~41 '1'3lU 'Im",1' 0."1 . '11 JO ~uo 1"41 OS paX"lal ~ ISIlW .IU!"".

-uo, a'll .10 ' lill"'lSUO" ~41 SH~W 1041 punoJ "<l l.nlU uj!.~p NI~U "';;JOI'"J'lI1l'S

N~!S"'Ia ::J[~llYNO\~VNIIWIO::J I f 1IlldYH::J 0 tOI

3·1 1 t1<.ign l'ro<<dUf'< 0 105

~xpres<ions in a standard form for each output, The next step is mult iple lovel opti­
mization with terms shared between multiple outputs. In more sophisticated syn.
thesis 1001s. optimization and technology mapping may be interspersed to improve
the li keli hood of meeting constraints. It may be necessary to repeat optimization
and technology mapping mult iple times 10 meet the specified constT3ints.

The remainder of this chapt~, ill ust'"t~s the design procedure by using three
examples. In the rest of this "'CIion, we perform the fi rst three steps of design.
specification, formulation. and optimization, We then consider implementation
technologies and the final two steps in separate ",etions.

The first two example specifications are for a dass of circuits called code con ­
verlers. which translate information from one binary <X><k 10 Mother. The inputs to
the circuit are the bit combinations specified by the fi rst code.. and the outputs geuer­
ate the corresponding bit combination of the second code. The combinational circuit
performs the tT3nsfonnation from one code to the othe,. The firs t code converter
example convetlS the BCD <X><k to the excess-3 code for the decimal digits. The
other ron" crts the BCD code to the seven signals required to dri"e a ",ven."'gment
light-emini ng diode (LED) display. The third o.ample is the design of a 4·bit equal·
ity COmparalOr that represents a circuit ha,ing a large number of inputs.

I EXAMPLE 3-2 Design of a 8 CD----f(>-Eu 3 Code Con"erter

o TABLE .l-1
Truth Table for Code Con.'erter Exompk!

Oeet"",t
Digit

o
,
; , , , , , ,

•
0 ,
0
0
0
0
0
0

tnput

'" , ,
0 0
0 ,
0
0 , 0

0

0 0
0 0

, W

0 , ,
0 0 , 0
0 0

0

0 ,

Oulj>ut
~-~ , ,

0
0

" , , , 0 , 0 , ,
0 ,

0

,
,
0 ,
" ,
0

0

0

SPECIFICATION: The ""ass-3 cod£ for a decimal digit is the binary combination
corresponding 10 the deci mal digit pl us 3. For example, the excess-3 code for deci­
mal digit 5 is the binary combination for 5 .. 3 = 8. which is 1000. The excess·)
code ~ as de,irable p<Op"rties wit h respect to implement ing decimal subtraction ,
Each BCD digit is four bits with the bi ts. from most significant to least significant,
labeled A. B. C. D. Each excess-3 digit is four bits. wit h tbe bits. from most signifi·
cant to least significant. labeled W. X. Y. Z ,

106 0 CHAPTER 3 I COMBINATIONAL LOGIC DESIGN

= C
00 "' " '"

00 , 11111 1

'?:
'"

00

"'
[" ,
'"

o
W _ A+IlC~BD

00

,

,
,
,

c

"' " ,
,

, ,
,

o
Y _ CD~CD

'"

,
,

o tlGURE.l-1Il

"

"

"'
,

"
,

'"

A'R 00

00 ,

"' ,

"
, ,

'"
,

, ,
, ,

"' "

, ,
,

" Z- o

Maps lor BCD--,(}-Exce ... 3 Code Con>'erle,

,
,

c

'" ,
,
,
,

"

"

F(lRMU 1lOtl: The exccss.) code word is easily obtained from a BCD code
word by adding binary 0011 (3) to it , The resulting truth table rela\ing the in put
and OU1PU\ variables is shown in Table 3· \. NOle \hal \hc lour BCD inpm vari·
ables may ha,'e 16 b it combinations. but only 10 are listed in tbo \ruth lablc. The
six combination. 1010 th,ough 1111 are nm lisled under \he inputs, since \hcse
combinations have no meaning in \he BCD code, aod we can assume Ih.t Ihc)'
will never occur. Hence. for the se input com bi nations. it doe, nOt maner what
binary values wc assign \0 \he excess·3 outpulS. and therefore. we can \real them
as don ·t·eare condilion ..

QPTlN\Zo\1lOtl: Since \his is • four-variable funNion. we use \he K·map~ in
Figure 3·10 for the io;\ial optimiza\;on of \he four output function .. The maps are
ploned to obtain simplified sum·o!·produc\s Boolean expression, for lhe outputs,
Each of the four maps represents one of \he output, of Ihe circuit as a function of
the four inpms, The J"s in Ihe maps are obtained direc\ly from the trut h table oul·
pm columns. For c~"mple. the column under oUlpm W has I', for min\enns 5. 6. 7.
8, and 9. Therefore. the map for W muM have l"s in the squares cotTesponding to
these mimenns, The six don"toCaTe minterms, 10 through 15. are each marked w;\h

an X in all the maps. The optimized functions are listed in sum-of-products fonn
under the map for each output ,-ariabl"

The two-level AND-OR logic diagram for the circuit can be obtained directly
from the Boolean expressions derive<:! from the maps. We apply multiple-level
optimization as a second optimization step to dctennine if Ihe gate input count.
which is currently 26 (including in,-erlers). can be reduced. In this optimization. we
consider sharing subexpression, between the four outp ut expressions. The follow­
ing m~niput"tion illustrate. optimization with multiple_output circuits imple­
mented wilh three levels of gates;

Tj-C+D

W - A+BC+BD " A+BTj

x. lic + IJI) + nco m nr, + BCD

Y_CD + CO

2 - D
The manipulation allows the gate producing C + D 10 be shared by the logic for w
and X. and reduc<:d the gate input count hom 26 to 22 . This optimi,cd res ult is
vicwe<:! as being adequate and give. the logic diagram in Figure 3-11. •

EXAMPLE 3-J Design ora DCl>-to-Seven_Sq:;ment Decoder

S,""C'FICATION; Digital readouts found in many consumer electronic products such
as alarm dock. often use Light Emining OiodCl; (LEOs) Each digit of the readout ,

,

,
D

I-
,
v

, l-v

l-
I

v
o HGURE .l-11

Logic Di.gram 01 BCD-fo----Ex«ss-3 Cod. Con'tr1cr

w

, ,

108 a CHIII'TER J I COMBINATIONAL LOGIC DESIGN

•
,0-
-0< a U23LfS6789
" (b) "UP""lo """"""'" lot <tior4y

a FIGUREJ.1l
s.~n·S.tm<nl o..pIay

is formed from """ " LED scgmeniS, ElICh Kgmenl can Ix UJuminalW by a digjlal
sigl,aJ. A UCJ)..to-4C'·~n . ..,g" .. nt decoOc:r is a combinational circUli thai aca:pU a
decimal digit in BCD and gencratcllh~ appropriale outputs for the !.Cgmcnt. of the
display for Ihat d«imal digit. 1110 seven outpUiS of Ihe decoder (n, />,~, d.~, t, g)
select Ihe corresponding segmcnll in the di'play. as shown in Figure 3-12(8). The
numeric de,ignalion' cho=n to repre!.Cnl the decimal digitI arc shown ill Figure
3-I2(b). llte BCD-Io---se"ell~gmem decoder hu four in pul!, A. H. C .• lId D ror
Ihe BCD digil and K~en oulpUIS,,, through g, for conlrol hllg lhe !.Cgmell""

FCIIIWlIUIT1IQH: 1lte llUlh table of the combin.oliooal circuil ;. ~SIe4 ill Table 3-2 On
lhe ~ of I~gurc l-12(b). each BCD digil illuminates the proper SCl""'nL5 for IIx
decimal display. For nample. BCD 0011 oorresp0II<15 \0 decimal 3. " hich is dis­
played a. !.Cgmcn .. ~.I>, c. d. and g, The Uuth lable "",umes Ihat a logic I "gnal illu­
minates the SCliment and a logic 0 signal tmllS the !.Cgment off. Some sc"en-o.cgment
displays operal. in revelS" fashion and are illuminated by a logic 0 signnl. For Ihe..,
displays. the "'ven ourpu .. must De complemented. The six binary combinalions
tOtO Ihrouglt 1111 have nO meanin8;p BCD. In ,he previo ... example. we ass;gned
these cornbinali 10 doo't-are conditions. If ,,"'e do 11M: same h~re.lhe design ,,"iU

a TA8l.E J.l
Trull> Tobie for BCI~-sep.m,

~

BCD Inpu. s.. ... -Soogmenl Deoodtr

, , , , • • , • • ,
, , , , , , , , , , , , ,

"
,

All "'ber in"",~ , , , , , , ,

most likely produce some arbitrary and meaningless displayi; for (he unused combi ­
nation .. As long a, these combina(ions do nO(occur. we can use that approad to
reduce the complexity of (he comw(er. A safer choice. tum ing off all the segments
when anyone of (he unused input combinations occurs. a"oids any spurio us displays
if any of the com binations occurs. but increa"", the convert er complexity. This
choice can be ac.;omplished by assigIling 311 O's to minterms 10 through 15,

OpnlollZ,o,TION: The information from the trut h table can be transferred into seven
K_maps from wh ;~h the initial optimiZc<l output functions can be derived , The plot_
(ing of the seven fu nctions in map form is lell a. an e~ercise, One possible way of
simplifying the seven funct ions resuhs in the following Boolean func(ions:

a - AC+ABD +B CD+ABC

b oo AB+ACO + ACV +A BC

AB + AD + BCO +ABC

d .. ACD + Aiic + ii CD + Aii c +ABCD

e _ ACD + liCD

t .. ABC + ACD + ABD+A/IC

g - ACD + ABC+AlJc+ AH c
Independent implementation of th~'Se seven functions require. 27 AND gates and
7 OR ga(e .. lIowever. by shari1lg the six produc(te'ms COmmO n 10 (he differtnl
outpu l e,prcssions. the number of AND gat"" can be reduced to 14 along with a
substantial sa"ings in gate input count. For exam ple. the te,m BCD occUrs in a.c.
d, a nd ~. The <)u tput of Ihe AN]) gate th.t implemen tS thi s prodUCt term goes
directly to the inputs of the OR gates in all four function .. For thi' func(io n, we
stop optimization with (he two· level circuil and shared AN]) gOles. reali,ing thaI il
might be possible to reduce the gale inp ut count even further by applying muhiple
level optimization. •

The BCD-Io-seve,, -segmenl dc-co<le, is called a decode, by m",1 m.nufac_
luras or integrated circui(S bc~ause it decodes a binary code for " decimal digi!.
Howe,'er, it is actuall y a code converter that converts a fo ur·bit decimal code (0.
seven_!>i, code. The wo,d ""decode,"' is usually r.:sen'cd for another t)'PC of circuil,
presented in the next chapter.

In general, the lot.1 number of gates c.n be reduced in a multiple_OUl put
combinational circuil by using common lerms of Ihe OUlput function .. The maps
of the outpul functions may help find the commO l\ terms by finding ident ical
implican(s from two Or mOre maps. Some of the COmmOn terms may not be prime
implicants of Ihe ind ividual function .. The desig"er ",ust be inventive and com­
bin. squares in the maps in such a way as to creale common term •. This ~an be
done more fo,ma lly by using a p,oced llre for sim pli fyin g mult iple'OUlput func­
ti ons. The prime implicant. are defined nol only for each individual function, hut

110 0 CHAVTHl II COM III NATIONAL LOGIC DESIGN

al"" for ~II possible combinations of the oul put functions. "'ese pJ me ! mplt~ nto
are formed by using the ANO Op"rator On eVNY possible nonempty subS<'1 of Ihe
OUiput funelions and finding Ihe prime implicanls of each of Ihe resulls. Using
Ihis enli re set of prime implica nts. a format selection process ca n be u$<o find
the optimum two-le"el mulliple OUiput circuit. Such a procedure is implcmented
in "arious forms in logic si mplification ..,ftwarc wilhin logic .ynlhesi. tools a nd is
Ihe method used to oblain the equations in Exa mple 3·3 ,

I EXAMPLE: J.4 Oe.illn ur . 4-bil Equalil)' Cumparalur

SPECIFICATION: The input s 10 the circuil consisl of lwo '·cetors; A(3:O) and B(3:O).
Veclor A eon5ists of four bils. A(3). A(2). A(J). and A(O) ilh A(3) as Ihe most
sigllificant bil. Vector B hs a similar description ",jlh B rcpl"""d by A,The OOlput
uf the circuil is a single bil v~riable E, Out put E is equal to I if A and I:l arc eq u.,l
and equal to 0 if A and B a..., un equal.

FOftItULATION: Since Ihis circuit has eight inputs. use of a trUlh table for fonn u_
lalion is impractical. In o,der for A and D 10 be eq ual. Ihe bil values in each of
Ihe respective positions. 3 duwn to O. of A and I:l muSt be eq ual. If all of Ihe bit
posiliuns fu, A and B contain eq ual "alue. in every posilion. then E _ I: other­
wise. E ~ o.

O mIOlZATION: For !his circuil. we use intuition to immcdia!cly develop a multi ­
ple level eireuil using hierarchy. Since comparison of a bil from A and the corre­
sponding bit from B muS\ be done in each of Ihe bi t positions. e can
dc<:omposc Ihe problem inlo four [·hil compa rison cireuil$ and an additional dr_
euil that combines the four comparison ci, cY;! OUlpU," to obtain E. For bil posi­
tion i , define th. circyil output E, 10 be 0 if A, and 8 , have the SlI me values
and E, _ I if A, and 8, have different v.lues. This circuit can be described by the
equation

E, _A i 8, +Ai Bi

which has the circuil diagram shown in I~gure 3·13(a). By using hierarchy and
reuse. we can emplo)' fOOf copies of Ihi$ eircuil. one for CB<'h of Ihe four bits of A
and H. Output E ~ 1 only if all of the £, v.lues are O. This can be described hy the
equanun

E_ £,, +£,+E, +£,

and has Ihe diagram given in Figure 3-13(b). Both of the circuit' giYCn arc opti­
ilium two· level circuits. ·rne ,we rail circuit can be described hicr;' rchically by the
diagram in figure 3-I3(c). •

3-4 TECHNOLOGY MAPPING

There ;lTe three primary ay. uf dc.igniog VLSI circuits. In filII cII"om design. an
enlire design of Ihe chip. do .. ·n to Ihe sma lieSI detail of Ihe layoul. is performed,

3_4 I TedltlOlogy Mopping 0 III

'~ " ,
" E, ME

,.j
~ -lMX 1'.0

ME E

"j
o FIGURE 3-13

Hierarchical Diagram for. 4-bit Equalily comparator

Since this process is very e~pensive, custom design can be justified only for dense,
fast ICs thaI are likel y 10 be w id in sizable q uant ities.

A closely related technique isswndard cdl dwgn, in which large pans of the
design ha"e been performed ahead of time or, possibly, used in previous designs.
The predesigned parts ate connecied to form the Ie design. Thi s intermediate­
cost methodology gives lower density and lower performance than rul) custom
design.

The third approach to VLSI design is the use of a gMe areay. A gate array
use, a rectangular pattern of gates fabricated in s.ilicon. Thi' pattern is rcpeated
thousands of times, so that the ent ire chip contain' identical gates. Depending on
the technology used, panern arrays of 11))) 10 mill ions of gates can be fabricated
within a single Ie. The application of a gate array requires that the design specify
how the gates arc interconnected and how the interconnections are routed. Many
steps of the fabrication process are common and independent of Ihe 6nal logic
function. These steps arc economical, since they can be used for numerous differ­
ent design .. In order to customize the gate array to the particul ar design, addi­
tional fabrication step~ are required to imerconnect the gates. Due to the
commonality of fabrication steps and ability to sliare the results of these steps with
many different design'>. this i, the lowest cost melhod among Ihe fixed implemen­
lat ion technologies

For standard cell and gate arra}, 1echnologies, circuits are constr ucted by
interconnecting cell .. The collection of cells avai lable for a given implementa ­
tion technology is called a cell lihary. In order to design in terms o{ a cell

112 a CHAPTE<.. l I COMBINATIONAL lOGIC IJES1GN

library, it is necessar)' to characterize each of the cells (i .e .• provide a deta!leJ
specification of the cells for use by the designerl . A library of characterize<i
cells provides a foundation for the technology mapping of ci rcuits. Coupled
with the library is a technology mapping procedure. [n this section. We cons;der
technology mapping procedures for cell libraries consisting of (I) single gate
types such as NAND gates. and (2) mul tiple gate Iypes. Technology mapping
may focus on a number of the dimensions of the design space. particularly On
cost and performance , For simplici ty. o ur procedures focus onl y on o ptimizing
cost. Further. these procedures are rudimenlary versions of technology mapping
algorithms used in oompuler-aidcd design lools and are suitable for manual
application to only the simpleSI of circuilS Nevertheless. they give us some
insight into how a design using AND gales. OR gales. and inverle", can be
transformed imo cost-effeClive designs using cell types supporl ed b)' available
implementation technologies

Cell Specification

Specificalions for cells used in standard cell and gale array designs typically have
many compOnents. Typical component. indud" 1M: following:

I. A scbematic or logic diagram for the function of the cell.
2. A specification of the area the cdl occupies. often normalized to the area of a

small cell such as that of a minim um area in"erter.
3. The input loading. in standard loads. that each in pul of a cell presenls to the

output driving it.

4. Delays from each inpul of a cell 10 each OUlPUI of a cell (if a palh f.-om the
inpul to OUlPUI uists). including the effect of Ihe numb<'r of Siandard loads
driven by Ihe output.

S. One Or more 1em j>lates for the cell for use in performing technology mapping.
6. One or more HDL models for the cell.

If the lools used provide automated la)'out. then the following addilional compo­
nents are also incl uded in the specificalion;

7, An integrated circui t layout for the cell.

8. A fioorplan layout showing the localions of the inputs. outputs and power
and ground connections for the cell for use during the cell inicrconncetion
process.

The firsl five compOnents listed arc included in a simple lechnology library of
cells," the nexl subsection. Some of these components are d iscussed in mOre
detai!.

Libraries

The cells for a particular design technology arc organized ;nlO one or more libra,­
ies. A /obm,)' i, a co ll eclion of cell specifications. A circuil that initially consislS of

3_'1 I To<hnniogy M.pping 0 III

AND. OR and NOT gale, is OOnverled by Icchnology mapping 10 one Ihal uses
only cells from Ihe applicable libraries. A very ,mallicchnology library i, described
in Table 3-3. Thi' library contains primiti'·. inverting gates wilh fan.ins up 10 four
and a single AO I circuit.

The firsl column of Ihe table contains a descriplive namc for Ihe cell and Ihe
second column contains Ihe cell schematic. The third column contains Ihe arca of Ihe
cell normalized to the area of a minimum inlierter. Area can be used as a very simple
mcasure of Ihe COSI of the ceiL The next column gives Ihe typical load Iha! a cell
input places on the gale driving it. The load values arc normalilcd 10 a quantity
called a siandard lood whi<h in Ihis case is the capacilance presented 10 the driving
circuit by the inpul of an in"erter. r n the case of Ihe cells given. the input loads are
aimOSI all Ihe same, The fifth column giv", a simple line ... equation for calculating
Ihe typi<al input-to-output delay for Ihe cell. The variable SL is Ihe .um of all of Ihe
standard loads presenled by the inputs of cells dri"cn by the cell output. It may also
contain an e.timale. in Sia ndard loads. of Ihe capacilance of the wiring connecling
Ihc ce ll OUlput 10 Ihe inputs of other cells. This equalion illustrates the notiOn Ihat
cell dela)" con,i" of some ~~ed delay. pl us a delay Ihal is dependent upon Ihe capac­
ilance loading of Ihe cell as represented by SL. Cell delay c;llculation is illustraled in
Example 3-5.

EXAMPLE 3-5 CMk" lati"n of Cell Oel~y

This example illustrates Ih~ effect "f loading on cell delay, A 2NAND outpul
drili~$ Ih~ following cell" an in'·encr. a 4NAND. and" 4NOR n,e , um of Ihe
standard loads in [his case is

SL _ 1.00 + 0,95 + 0.1>0 ~ 2.75

With this "aluc. the delay of the 2NAND dri"ing the cells specified is

Ip '" 0.05 + 0,014)(2.75 m 0.0I!9 n$ •
The fInal column of Ihe lable gives templates for the cdl funCli<1U that use

only basic functionS as components. In Ihi. case. the basic function. arc a 2·input
NAND gale and an in\'c ner. Use of these bask fUnClion templales provides a way
of r~preSl:nting each cell funClion in a "standard" form. As illu<traled by lhe 4·
input NAND and KOR cells. the hasic function lemplate for a cell is not ncce",or·
ily unique. II should be nOled Ihal these diagrams represenl only a n~IJist. nol
actuallocalion. orientati"n. or interconneci la)'out. For example. consider the tern·
pl ~l<: for the 3NAND. If the left NAND and the foll<>wing in,'erler were connecled
10 the top input of Ihe righl NAND. inslead of to its ool1om inpuk Ihe lempl.le
would be unchanged. The value of these l~mpl"leS will beeome apparent in Ihe
nexi section on mapping techniq ues.

Mapping Techniques

In Ihi' subsection. we considcr the mapping process for fixed ceillechnologies. A
com'cnicnl way 10 implement a Boolean function with NAND g.les is 10 oblain
the oplimized Boolean funClion in lerm, of the Boolean operators AND. OR. and

11 4 0 CHAI'TI'R I I COMU'NATIONAl u:x:.; IC DESIGN

a Ti\.BU 3-3
Eumplc CeU Ubo • .,. ror Tcdo.oIogr Mappin,

"-"- '-"'" .-~, ' 0' N oII .. d I.,., 0001,., ,"-< ... 1'0'._ S<k-.o,;, A ... ,- ~ .. T p'

In .. " .. {»- '00 '00 o. -j)o-• Mil" SL

lNAl'iO :0- W '00 = :D-• (1.01." i\.L

lSAl'iO D- ,~ '00
~ :D-{>oD-

• 0.0.1 " SL

.NAND 0- ~ '" = ~
• (lUll. Sl

~i>D-
2."011 D W '00

o. ~ + n.ol!" SL

)1'01011 D- ~ '" '" -J>. "~
. 0.011" SL

-yo

-<>

0- '"
)0,

<NOR = •• + 0.011 " SL

-<>?"' . V

V"'

2-.1AO' B>- 2.1.'1 '"
om got>-• 0.019 " $L

3_4 I Te<hnology Mopping 0 tiS

NOT and then map the function to NAND logic, The conversion of an algebraic
expression from AND. OR. and NOT to NAND can t>e done by a simple proce­
dure that chang'" AND-OR logic diagrams to NAND logic diagrams. The same
conyersion applies for NOR gates.

Gi"cn an oplimized circ uit thai cons ists of AND gates. OR gales. aod invert­
ers. the following procedure produces a circuit using either NAND (or NOR) gates
with unrestricted gate fan -in:

L Replace each AND and OR gate with the NAND (NOR) gate and inverter
equivalent circuit, shown in Figure 3-14 (a) and (b) ,

2. Cancel all inverter pairs.
3. Without changing the logic function. (a) ~push - aU inverters lying t>etween (i)

eit her a circuit input or a driving NAND(NOR) gate output and (ii) the

»--
(0) M.pp;t\£ to "ANn I " "

(b) Mopping '" NOR 3" '"

--po-[)o- - --
(d) C'r>e<lliO£ in"",,, !'Om

o FIGURE 3·14
Mawing "f AND G ates. OR Gate, and In"erters to
NAND gates. NOR gares.and Inverter<

116 0 CHAPTER} I COMIUNATIONAL LOGtC DEStGN

driven NAND(NO R) gale inp uts to,,'ard the driven NAND(NOR) gate
inputs. Cancel pairs of in,'crters in serie, whenever poMible during th is ' tep,
(b) Replace inverters in parallel with a single inverter that drive, all of the
output, of the parallel inverters. (c) Repeat (a) and (b) until there is at most
one in"crter between the circuit input or driving NAND(NOR) gate output
and the anached NAND(NOR) gate inputs.

In Figure 3-]4 (c). the rule for pushing an inverter through a "dot" is given , The
inverter on the inpUllinc 10 the dot is replaced "'itli inverter,; on each of the output
lines fTom the dot . The cancellation of pain; of im'e rters in Figure 3-]4(d) is based
on the Boolean .Igcbr"k identity

X=X
The next example illustrates this proced ure for NAND gales.

EXAMPLE 3-4 Implemen tation .. ilh NAND Gales

Implement the following optimized function wilh NAN D gates,

F - AB -+- (AB)C -+- (AB)D -+- E

The AND, OR, inverter implementation is given in Figure 3-15(a), In Figure 3-15
(b). 'Iep 1 of the procedure has been applied replacing each AND gale and OR gate
wilh its equivalent circuil u,ing NAND gates and inverters from Figure 3· 14(a).
labels appear on dots and invene .. 10 a"ist in the explanation. In 'lep 2. the
,
"

,.,

,,)

c

, ,

, ,
,----- .---~

~ 3 I 4

" '
, _______ J

,.,

,
,-~--'

'"
o n GUR£3·tS

SolutiOflto E~.mple)·6

, ,
Pl-c , , ,

J_4 I Ted",ology M,,'pin~ a 117

in"erler pairs (1) 2) and (3. 4), cancel. giving dirccl connections betw""n the corre­
sponding NAND gate. in Figure 3-1S{d). As shown in Figure 3-15(c). inverter 5 i.
pushed through X and cancels "ith inverters 6 and 7. respectively. Thi. gives direct
connections between the corresponding NAND gates in Figure 3-1S{d). No further
steps can be applied ,ince invertcrs 8 and 9 cannot be paired with other inverters.
and nmS! remain in the final mapp«l circuit in Figure 3-15(d). The next example
illustrate, this procedure for NOR gates. _

leXi\MPt[3-7 1mplenlcntalion "ilh NOR G.le.

Implement Ihe same optimized Booie.n function used in Example 3-7 with NOR
gates:

F _ A8 +(AB)C +(AB)D +E

The AND. OR. in,'ertcr implementalion is gjvcn in Figure 3-16(a). In Figure 3· 16(b).
step I of Ihe proced ure has been applied rcplacingeach AND g"le and OR gale with
its equivalent circuit using NOR g~tc. and inverters from Figure 3·14(b), Labels
appear on dot. and inverters to assist in the expl"n"li"n. In step 2. inverler I can be
pushed through dot X 10 c"ncel wilh inverlers 2 and 3. respectively_ The pair "f
inverte" m, the D inpul line caDcel as well. The single imwtcrs on input linesA. B,
and C and outpul1ine F must rcmain.giving the final mapped circuitlh~1 appear'$ in
~igure 3-16{c). •

In e.ample 3_6. the gate input C<:>&t <>f ,be mapped circuil is 12. and. in
Example 3-7. Ihe gat~ inpul cost i, 14. so the NAND im plemenlalion is less
costly, Also. the NAND implemenlalion in volves a maxim um of threc gales in
..,ries while the NOR implementa ti on ha,,, m~ximum of fiv~ gates in series. Due
10 the longer serie. of gatcs in Ihe NOK circuit. the maximum delay from .n
inpul change 10 a corr~sponding output ch;onge is likely to be longer.

In the pr~C(;ding procedure and example" the mapping t"'8el consisl~d of a
single gate type, either NAND gal<:s <>r NOR gales. The following procedure han_
dle. mu ltiple gat<: Iypes'

L Replace each AND and OK gat~ Wi1 h an optimum equivalent circuit consist_
ing only ofl -in put NAND gate. and inverlers.

2. In eacb line in Ihe circuit al1ached 10 a circuit input. a NAND gal~ input. a
NAND gate out put. or a circ"i l OUlput in which no inverter appears. inserl a
serial pair of in,·crlers.

) , Perform a replacemenl of conncclions of NAND ga!"" and inverters by Ihe
a,'ai lable library cells such th"t Ihe gate input cost which re,uits within fan­
out free sub.:ircuits is oplimized. A fan -OI,I free s"bcirc"it is a circ uit in which
each gale oU'P'" drive. a 'ingle gate inpul , (This step is not covered herc in
detail due to its complexit y. bu t is prMidcd on the course website with an
example. The lemplaleS shown in lhe risht colu mn of Table) _3 are used to
malch connecti"ns "f NAND gales and in,'er1e" to a,'a il able library cell ..)

tt8 0 CHAPTER J I COMBINATIONAL LOGIC DESIGN

c

" , (.,

(e)

o FIGURE 3-16
S<:>lution to Example 3·7

4. (a) Wilhoul changing the logic function. ~push" all inverters, lying betwun
(i) a circuil input or a driving gate oUlput and (ii) the dri"en gate inputs..
toward the driven gate inputs Cancel pairs of inverters in series whenever
possible d uring this step. (b) Replace inverters in para llel with a single
in"ener lh.1 driws all of the output, of the parallel inverten. (e) Repeal
(a) and (b) until there is at mosl one inverter between the circuit input or
driving gate out put and the attached driven gate inputs..

This procedure i. one of tbe foundations for lechnology mapping in commercial
synthesis lools.. The intermediate replacement of lhe initial circui t gate, with only
2· input NAND gate, .nd inverters breaks the circuil up into small piec •• in
order 10 provide the maximum fl exibility in mapping cells to achieve an opti.
mized result. Example 3·8 shows an implementation approach using a small cell
library,

3_4 I T&hnology M'rping 0 119

t:XAMPLE 3-8 Implementation "'ith ~ Small Cell Library

[mplement the same optimized Boo[ean function used in Examp[es 3·6 and 3·7

F - AB + (AB)C +(AB)D + E

wilh a oelilibrary containing a 2-inpot NAND gate, 3·inpot NAND gate, a 2-input
NOR gate, and an invener. The AND. OR. inv~rter implementation ;. given in
Figure 3-17(a) , In figure 3·17(1)). steps 1 and 2 of the procedure haye been app lied.
Each AND gate and each OR gale has been replaced with ilS equivalent circuit
made up of 2-input NAND ga1es and in,'erters. Pairs of inverters have been added
to the internal line, without inverters. Due to lack of space, the pairs of in"erters
on Ihe inpub and o ut puts are not shown. App[ication of Ilep 3 resuits in the map­
ping to the cells from the oelllihrary shown in Figure 3-17(c), The hl ue outlines
enelow connections of NAND gates and inverters, each of which is to be replaced
by an avai[able cell using the templates in Tab[e 3-3, In this case, all oflhe a .. ailable
cell s have been lISted at [east once, Applicalion of step 4 cancels out three of the
inverters, giving the final mapped circuit in Figure 3--17(d), •

The ",[ulion fOT E, amp[e 3-8 has a gate input cost of 12.compared to costs of
12 and 14 for Example, 3-6 and 3·7, re'pecli,'ely, Alt hough the C06t in Eumples 3·6
and 3-8 are ide ntical. it should be noted 1hal the cell libraries differ. In partkular,
Example 3-6 benefits from the use of a 4-input NAND gate that is unavailable in
Example 3-8. Without this cell , 1he solution would cost tu'o additional gale inputs.
Thus, the use of a mNe diverse cell libra!)' has pro,;dcd a COSt benefit.

,
"
,

"
tf< / > ,

, ,.,
,
" ,

" , > , ,

" " " " ,,' (0)

o "IGURE 3--17
Solution to b''''ple 3--8

1 20 0 CHAPTER 3 I COMElIN!lTION!lL lOGIC DESIGN

Th provide cont in uity wit h examples in earlier >ections of this chapter, the
following example shows the mapping of the BCD- to-Excess-} Code Convener
for an expanded cell library_

EXAMPLE 3-11 Te<:hnology Mappin, ro. BCD-Io-Eucss-} Code Co".· .. rtu

The fi~"1 result of the technology mapping for the BCD-to-Excess-3 Code eon­
,'crier is given in Figure 3-18. The origin al A ND. OR, inverter logic diagram
appeaTli in Figure 3-11. and the cen library used i, gi" en in Table 3-3. The optimiza­
tion has resulted in the Use of the follo,,'ing cell s from Ihat library: in wrtccs_ 2-
input NANDs. a 2-input NOR. and a 2-2 AOI. •

The gate input cost of the mapped circuit in Example 3·9 is 21 . with a gale input
C():\;l of n for lhe original AN D. OR, NOT circuit. The opti mization procedure.
aside from locally minimizing inverters. ,,'orks separately on the various parts of
the circ uit. These p"rts are separated by gate fan-oUis in the original AND-OR cir­
cuit. The selection of these points ill the oplimiw tioll Can dfetl lhe oplim.lily of
the tinal resull . In the case of this circuit, a different original circuit may yield a
bener optimi"atioll_ 111 genero!. this problem of scp",,,le optimization and m"ppi ng
is hondled by using combined optimization steps and mapping steps in commercia l
logic optimi~ation tools.

<~ ADVANCEO TECHNOLOOY U N(l Tnis supplement On technology mapping,
~ including detailed examples illustrating the mapp in g pr()Ced ure for ge<ICral eell

libr.ries, i, available On the Comp;<nion Website for the text.

, ~

w

~ I

" P,

c ~

'1 t>-'
,

o FIGUKE 3- lg
Te<ohnology Mapping Enmple' BCD-to--e, ,,, .. -3 Code Con vetter

3_S I \!u;fKotioo, a 121

3-5 VERIFICATION

In this seet;on. manual logic anal)·si. and computer simulation -based logic analy ­
sis are considered. both with the gool of v~rificat;on of circuit function (Le ..
determination of whether or not a given circuit implement. its speeified func­
tion). If the circuit doe. n()l mcel its spc:cifieation, then il is incorrect. As a con­
SC<Juence. verification plays a vital role in preventing incorrect circuit designs
from being manufactured and used. Logic anal}'sis also can be u",d for other
p urposes. including redesign of a circuit and determina tion of the funclion of a
circuit.

In order 10 verify a combinalional circuil. it is essent ial thaI Ihe specifica_
tion be unambiguous and corrC<'t . As a conS<:'1ucnce. specifications such as truth
tables. Boolean equations. and HDL code are mOSI u",ful. Initially ... ·c cumin.
manual "crilicalion by continuing ";Ih lhe design example. "'c introduced in Ihis
chapler.

Manual Logic Analysis

Manual logic analysis consisls of finding Boolean equations for tbe circuil outputs
or, addilional1y. finding Ihe truth table fQT the circuit . The approach taken here
emphasizes finding Ihe equal ions and then using lhose equal ions 10 find Ihe Irmh
lable. In finding Ihe equalion for a circuil. il i. often convenienl to break up the cir_
cuit into subcircuil$ by defoning intermedi3te variables.1 .. lecled poiOlS in the cir­
cuit. Point. Iypically selected are tbose at which a gale output dri"es two or more
g3te inputs. Such points 3rt: often referred to as ian-O"I po;m •. F"n-out point. from
a single invener on an inpul Iypically would not be selected. The delerminalion of
logic equalions for a circuil is illuSltaled using lhe UCD-to-E"oess-3 C<Xk Con­
vener circuit designed in previous "'Clions.

EXA;\IPLt: ~IO M.nu~1 V~ritk~tion or RCD-to-t;.~3 Code Con"~"er

Pigure 3_ 19 show. (8) Ihe original lruth lable specificalion. (b) lite final circuit
implemcnlat ion. and (c) an incomplete trulh lable to be completed from Ihe
implementation ."d Ihen compared 10 Ihe original truth lable. The Irmh table val_
ue. are to be detcnnined from Bootean equations for W. X, Y. and Z derived from
Ihe cireuil. The point Tl is .. !ecled a, an imermediale variable In simplify Ihe
analysis:

TI .. C ..- D .. C ..- D

IV .. A·(TI·8) .. A ..- /J · Tl
- --

X " (B'TlHB'C'D) " B· n +BC'D

Y _ CD..-CD _ CD+CD

Z~ D

122 0 CHAPTER l I COMBINATIONAL LOGIC DESIGN

Inpu' 0u'1"'.
OCO E.xc< .. ·3 :Pot _w , , C 0 H , ,

, " " " " "
,

" " "
,

" "
,

" " "
,

" " "
, , , ,

"
,
" "

, , , , ,
"
,

ttr>.J
c - ~ ,

" " "
,

" " " " " " "
" " ,

" "
"1 r-

~

,.)
o FIGU RE J- l9

Verilicali",,; BCD-to-.-bce,,·3 Code Convcn t r

Subsliluting {he e~pressi on for T! i~ the equahon~ for W ~nd X , we ha"e

W ", A + B(C+ D) .. A + IJ C+ H 0

X .. Ii (C + D)+IJCD .. 7iC+HI)+RCD

Each 01 {he product lerms in {he four OUlpul ~q ua{ions ~"n be mapped 10] 's
in lh~ lrulh lable in Figure 3·19 (e), The mappings of the 1', for A. Ii C. BD. CD.
and D are shown. After the remaining product terms ar~ m.pped 10 1'$, {he bl.nk
entries are fillcd wi,h O'$, Thc new lrulh table in thi' case will match the original
one, verifying thai {he circuit is corrcc{ •

,~. LooK: ANALYStS '(1,i, supp lem.n{, induding additional logic anal ysis techniques
~ and examples. is availJble on the Companion Webs ite for Ihe {exL

Simulation

A" alternative to manual verifica'ion is the use of computer simul ation for verifica·
tion. Using a computer permits truth {able verification to be done for a significantly
la rger numb", of variables and g.reatly reduces the tedious analysis effort required,
Since sim ulation uses applied va lue .. if pos<ible, it is de~irable for thorough v~ri r, .
cation to apply all]X>'>Sibl~ input combinations. The next exa mple illustrate, {he
use of Xilinx ISE4.2i FPGA developm~n{ {OOt$ and XE [I Modelsim simu lator to
verify {he BCD- to-Excess-3 Code Convener usi ng.1I possible input combination,
from the Ifuth {able.

}.oS I V.ri/ico<ion 0 12.1

EXAMPLE)'lI Simulation-base<! Verification of BCl>-to-E~.,..,...3 Code
C(ln~el1er

figure 3-19 shows (a) the originallruth table specification. and (b) Ihe final cir_
cuit imple mentation of the BCD-to-Excess 3 Code Convener. The circuit imple­
me ntation has been entered into Xilinx ISE 4.2i as the schemalic shown in figure
3·20. Since there are no AOls available in the symbol library. the AOI has been
modeled with available symbols. In addition to emering Ihe ""hematic, the inpUl
combinatioM gi"en in figure 3· 19(a) have also been entered as a waveform.
These input wavdorms are given in the INPUTS sect ion of the simulation out put
shown in Figure 3-21. The simulation of Ihe input waveforms applied to the eir·
cuit produce. the outpul "'avdorms given in the OUTPUT secl;on. Examining
each inpUl rombination and the corresponding output combinat ion represented
by the waveforms. we ca n manually verify whether the oUlPUIS malch the original
truth table. Beginning with (A.H.C.D) ~ (0.0.0,0) in th~ inpUl waveform. we find
thaI the rorresponding QUIPUI wa .. dorm re presents / W,X. Y.Z} _ (0,0.1. 1). Con­
ti nuing. for (A.B,C.D) ~ (0.0,0.1). th e values for the OUIPUI waveforms are
(W.X,Y,Z) _ (0,1.0.0). In bolh cases. Ihe values are correct. This process of check­
ing Ihe waveform values against the specifICstion ca n be wnlinucd fo r th e
remaini ng eight inpul combin.tio", to romplele the verification . •

,
® ISV

NM<D2

NANDl

"-
INV

NOIt~

"
,
v I~'V

NANU2 ,
,

v INV » NA!<Dl

SANDJ -------------, , ,

" Lr-
,

'"
, , , AND:! , , < ,
~1

, , , , ,
' AI<D:! AOI: '------------- ,

o ~lGURf:).2(I

Scllcmo'N: fo< SimnJ.,ion of BCD-,o-u.,.,...3 rode: Con""fi<r

124 0 CHAYfER) f CQMl:IINATIQNAL LOGIC DESIGN

O [JTP!J['S

w , , ,

" o FIGURE3-:1

, .

,

tOO "'

Example 3· 10: Simul .. ion R"ults---8CD-to-E,ce .. ·3 Code Con'''rler

.a AOV (:EO VfRtR<:ATlOH This supplcmcnt. containing addit ional verification tech­
~ niques and examples, is aoailable on the Companion WeMite for the t" ~t.

3-6 PROGRAMMABLE IMPLEMENTATION TECHNOLOGiES

Thus far, we have introdured implementa.ion tc<;hnologies that are fi xed in the sense
that thcy arc fabricated as integrated circuits or by connecting together integrated
circuits. In contrast. programmable logic devices (PLDs) are fabricated with struc­
tures that implement logic fUlICtions and structures that are used to cont rol connec­
tions or to store infonnation specifying the actual logic function, implomented.
These latter structures require programming. a hardware proced~re that determines
which function$ aT~ implemented. The next three ,ubsections deal with three types of
simple programmable logic devices (PLDs) : the read.only memory (ROM), the pro­
grammable logic array (PLA). and the programmable aTTay logic (PAL'") de,'ire. In
a Companion Website supplemenl, the more comple, fieid-pTOgrammable gate array
(FPGA) i, discussed and illustrated. Before treating PLDs. we deal with the ,upport­
ing programming technologies. In PLDs. programming technologies are applied to
(I) est"blish or break imerconneclion" (2) build lookup tables. and (3) control tran­
sistor switching. W~ will relate the te<:hnologies to lhese three applic:otions.

The olde't of programming technologie<; for controlling connections i, the use
of /""<'$. Each of the programmable point. in the PLD consists of a connection
fonncd by a fuse. When a voltage considerably higher than the normal pow-er sup_
ply "oUage is app~ed "croM the fuse. the high current breaks the connection by
"blowing out" the fuSt:. The two connection states. CLOSED and OPEN. arc repre­
.. nted by an imact and blown fuse. respecth'cly,

A second programming tcchnOlog)' for controlling connection, is mask p.o·
grammiNg. which is done by the semicond uctor manufacturer during the last steps
of the chip fabrication proce,;s, Connections ore made or not mode in the metal
layers ser~ing as cond uctors in the chip. Depending on the desired function for the

chip. the .truclUre of these la}'ers is determined by the fabrication proceM. The
procedure is costly because masb for generaling . he layers and custom fabrication
aTe required fOT each customer. FoT thi. reason. ma.k programming is economical
onl)' if a large quantity of the same PLD configuration is ordered.

A th ird programming technology for controlling connections is the u'" of
anlifi"~ . As Ihe name suggeSIs. the ant ifu", is just the opposite of a fuse. In contrast
to a fuse. an anlifu", ron,isl, of a small area in which 1" '0 ronduC1Ors aTe ",paral~d
by a material having a high resi'lance. The antifuse acl, as an OPEN palh before
pTogramming. By applying a '"flUage somewhat higher Ihan Ihe normal po""er sup­
ply voltage across Ihe IWO conductors. the malerial ""para ling Ih~ IWO cond""tors
is melted or olherwise changed 10 a low resi'tance. The low-resistance material
ronduCIs,causing" w nn ection (i .e .. a CLOSED palh) to be formed.

All three of the preceding connection technologies are p"rmanen!. The
device. cannot be reprogrammed. be<:ause irre"ersiblc physical changes ha"e
occurred as a resuU of ""-vi.,., programming. ThUs. if the programming is incorrecI
OT needs to be changed. the de,·ice mu.1 be discarded.

The final programming lechnology . hal can be applied for rolltrolling con·
nections i$ a single. bit Slorage dement driving the galC of an MOS "·ch~nn el tran ­
sistor at the programming poinl. If the stored bit , 'alue is a 1. Ihen Ihe uansiS!or i,
lurned ON, and Ihe connection belween ilS SOUrCe and drain forms a CLOSED
path. For Ihe .lored bit value e<]uallO O. lhe lransi'lo< is OFF. and Ihe conne<:tion
belWeen its source and drain i< an OPEN path. Si""" storage element conlent ~an
be changed c1ectron;"ally. Ihe device can be easily repTogrammed. BUI in order 10
slOre values. Ihe power supply must be available, Thus.. the 'torage element lech­
nology i. volalile; tilal is.. Ihe programmed logic i, IOSI in the .b:scnce of Ihe poweT
supply vohage.

The secood application of programming Ie<:hnologies i. building lookup
labl ... In add ilion 10 wnlrolling connections.. storage eiements are ideal for build ­
ing th~ tables. 10 Ihi. ca~. the input combinalion for the Iruth latM i. us.ed 10
",k-cI a slorage elemem containing the corresponding OU1PUI value lor lhe Iruth
table a nd provide il as Ihe logic function output . The hardware consisls of (I) Ihe
stoTage elemenls. (2) Ihe hardware to progTam values inlo Ihe SIOT'ge elemenls..
and (3) the logic Ihat ",lecI' lhe slorage elemem coDlenl.lo be applied 10 Ihe logic
function output Beca~ .torage elements are being sdected hy Ihe input ,·alues.
Ihe s10rage elements wmbined with lhe hardwaTe ;n (3) Tesemble a memory in
"hleh slored dala values are ",Ie<:led 10 appear on the memory outpul by using an
address applied to Ihe inpuls. Thus. Ibe logic ~a n be implement ed simply by storing
the lrulh 1able in lhe memory-hen.,., Ihe term look"p tabk

The Ihird applicalion of programming technologies is conlrol of transiSlor
Swilching. The """,I popular Ie<:hnology is N",d on . toring charge on a Hoo1ing
gale. The laller is localed below the regular gate wilhin an MOS lran.islor and is
complelely isolated by an ;nsulaling dielectric. SlOred negative charge On lhe Hoot·
ing gate makes Ihe transiSlor impossible 10 lum ON. The abscn.,., of 'tored negaliYe
charge makes it p<l§.ible for Ihe transistor 10 lurn ON if a I II G I~ i. applied to il<
regular gate_ Sin.,., il is possible to add or remo,'e lhc stored charge. lhese technolo­
gies can permit erasure arK! reprogramming.

126 0 CHAPTER}! COMHINIITIONIIL LOGtC DEStGN

I I I ID
(.) COmenl;, ... t ,ymOOi

o nGUREJ·22
CO<lventioo.t .nd A rray Logic Symbols for OR G.te

Two tech nologies using controt of tra nsistor switching are called ec(JSub/t: and
electrically emsabl~, Programming applies combi nations of ,'oltagc higher than nor­
mal power supply ,'oltagcs to the transi.tor. Erasure uses exposure to a ,tro"g
ultraviolet light source for a specified amouot of time, Once this type of chip has
~eo erased. it eM ~ reprogrammed. An electrically erasable device C,m ~ erascd
by a process somewhat simi lar to the programming process. using voltages higher
than the normal power supply value. Since transiitor control prevents or allo"",, a
counection to ~ es tablished between the source an d the drain. it is really a form <>f
connection control. gi\'ing a choice between (1) a lway. OPEN Or (2) OPEN or
CLOSED. depending on an applied HIGH or LOW rcope<:ti,·cly. On the regular
transi.tor gate. A third technology based 1m oontrol of transistor switching is flash
technology. whiCh is very widely used in flash memories. Flash tec hn ology i. a form
<>f electricall~'·erasable technology that has a v.riely of erase options includ ing the
erase of stored ch.rge from individ ual Hooting gates. all of 'he "o~li ng gates. Or
spe<:ific subsets of Hoating gales.

A typical PLD may have hundreds to mil lions <>f gMes. Some. but not all.
programmable logic technologies have high fan-in gates. !n order to show Ihe
in lernal logic diagram for such technologies in a (xmcise form. it i. necessary to
employ a special 8"te symbology applicable to array logic. Fig ure 3·22 shows the
conventional a nd array logic I}'mools for a mu ltiple· input OR gate. Instead of hav·
ing mUltiple input lin es to the gate. we draw a single line to tho 8" te. The input
lines are drawn perpendkular to this line and are selectively connected to the gate,
If an . is present al th e intersection of two lin es, there is a conn ection . If an x is nOt
present. then there is no conn e<;tion . In a similar fashion. we can draw the array
logic for ~ n AND gate. Since this was first done for a fu:;c·based tec hn ology. the
graphi'" representation. when m.rl:<d with the selected connections. is referred to
as aj"u map. We will us.. the .ame graphics represe ntation and terminology e"en
when the programming tuhnology is not fuses This type of graphi'" reprcsctlla.
tion for the inputs of gates will be used su l=quently in drawing logic diagrarm.

We next consider three distinct programmable device structures. We will
describe each of the structures and indicate which of the t""hnologies is tJ'llicall y
used in its implementation. These type' of I'LDs differ in the placement of pr<>o
grammable conne<;tions in th~ AND·OR array. Figure 3-23 shows the locations of
th~ connection! for the three types. Programmable read·only memory (PROM) as
well as Hash memory has a fi.<ed AND array constructed as a decoder and pro­
gram mable connections for the outp ut OR gates. The PROM implemenl:! Bo<>lean
function, in sum-of.min terms form. The programmable array logic (PAL~ device
has a programmable connection AND array and a fixed OR array. The AND gates
are programm.d 10 provide the product terms for the Bo<>lean functions. which are

3-6 I Prng .. ""nabl< Impl< tion Uchnoloc;" 0 1 27

Inp""
e," rr.~"mm'bk Pr"""""".bIe C-AND "<>y Cort<>«l;oo, OR '!T' Y (_,)

Inp' " L''''''c'c"_;;'_,_'::._':'"-"Jr-----'1L,--_O_'"_::'_,,_, -"J~~ OulfK'''

(b) ""'Inmm.oble . n oy I<>P< (PAL) <1<..,.,

1o"""
I"rosnommahl<

,,",-~
I",.,s,am mabk

--~ -C, .. n<rt M;D.n.y C,m"",'""" OR . noy Ou'"""

o FIGURE 3-23
Basi< Config.rat;on ofTluee PLDs

logieally summed in each OR gate. The most Hexible of the three type. of PLD i,
Ihe programmable logic aTfay (PLA), ,,'hich has programmahle connection~ for
Doth AND and OR arrays. The product terms in the AND array may be shared by
any O R gate to provide the r~quired sum-()f_products impltmentation. 'ille nam<'$
PLA and PAL- emerged lor devices from different vendor.; during tile develop­
m~nt of PLDs.

Read-Only Memory

A read -onl y memory (ROM) i. essenti.lly a device in which "permanent~ binary
infonnation i. stored . The information must be specified b)' the d<'$igner and is
then embedded into the RO!\1 10 form the required interconneo:lion Or ele<:lronic
device pattern. O nce the pattern is <'$tablished. it stays within the ROM ~ven when
power is tuTned off and 011 again; that is. ROM is nonvolalile.

A block diagram of a ROM device is shown in Figure 3-24. There are k inputs
and" outputs. The inputs pro~ide (he addr(:loS for (he memory. and ,he outpul$ gi"e

" mp"" (add"",,) ---1 2' xn ROM t--- . ""tP"" (dota)

o f lGUKE 3-24
BIocl Di_vam of ROl>!

128 0 CHAPTER J I COMIlIN ATIONAL LOGIC OESIGN

words in a ROM device is determined from the fact that k address input lines can
specify 2' words. Note that ROM does nOI have data inputs.. because it does not
haye a wrile op,,,.tion. Integrated circu it ROM chips have one Or mOre enable
inpuls and come with three·siate OUlput~ to facilitate the construction of large
arrays of ROM

Consider. for example. a 32 X 8 ROM.1be unit consi.ts of 32 words of 8 bits
each, There arc r,,'e input lines that f<:>rm the binary numbers from 0 Ihroug.i> 31 for
the address. Figure)·25 show< the intcrnallogic construction of this ROM. The five
inputs arc dec<:>dcd into 32 distinct outputs by means of a 5-to-32·linc dcc<:>der.
Each output of the dec<:>der represents a memory address. The 32 outputs are con·
""cIcci throug), programmable connections to each of the eight 01{ gate>. The di.·
gram """$ the array logic convention used in complex circuits. (See Figure 3·22.)
Each OR gate mu.1 be considered as ha"ing 32 input ~ Each output of the dec<:>der
is connected through . fuse to one of the inputs of each OR gate. Since eac h 01{
gate has 32 intoTnal programmable connection .. and since thore are eig.i>t OR
gatcs. the ROM contain, 32 X 8 - 256 programmable connection, In gene"'l, "
2* X n ROM will have an inlernal k- to-2' line decoder and n OR gate~ Each OR
gate h;>s 2" input .. which are connected throug.h programmable conneclions to
each of the outputs of the decoder.

!'our technologies are used for ROM progr.mming. If milsk programming is
used.thon the ROM is called si mply a ROM. If fuses arc used, the ROM Un' be p",.
gramme<! by the user ha"ing the pr<:>pcr programming equipment. In this case. the
RO.\1 is referred to as a prog"''''mnble ROM. or PROM. If tl,e 1{0.\1 uses the eraS­
able floating-gate technology. then the ROM is referred to a. an erasab/~. progrom_
mubl" 110M. Or EPROM, Finally. if tho electrical ly erasable technology is used. the

" , , ,
'. ,

$-,.,..]2

" -.
" '"
"

N

"
"

o n GURi:,l.Z5
Internal Logic of. 32)(8 ROM

ROM is referred to an eieclrictJlly ~rasab~. programmtlbl~ ROM. or EEPROM or
ElpROM. A. discussed previously. nash memory is a modified >ersion of E1PROM.
'The c""""'" of programming Ied!nology <kpend$ 011 many factors. including the num·
ber of identical RO.\h to be produced.lhe desired permanence oftM programming.
(he desire for rcprogr;lrrunabili(y. and (he desired performance in lerm$ of delay.

Programmable Logic Arrav

The programmable logic array (PLA) is . imilar in ~pl 10 the PROM, ex""pt
(ha(the PLA does nOi pro>i<k full decoding of (he ,·ariable. and doe!; not generale
all Ihe minlerms. The dttodcr i. repla""d by an array of AND gales thaI can be
programmed 10 generate product lerms of the input , .. riahles. The product term.
are thCD selc<;lively connected 10 OR gates 10 provide the Sum of product. for the
required llooIean fnncti""s.

'The internal logic of a PLA "';Ih three inpuI' and twO Onlputs i •• 00"" in
Figure 3-26. Such a circuit is 100 small 10 be cost effective. but is pre5<'nled here 10
demon,lrale the Iypical (og;.; configura lion of a PLA. 1'lte diagram uses the army
logic graphics symbols for complex circuits. Each input goes through a buffer and
an inverler. represented in Ihe diagram by a composile graphics symbol Iha! ha.
oolh Ihe true .Dd lhe complement outputs. Programmable connections run from

.--c
"

.--c
"

, }---1~+--~

,)----j---<f-- XBC

o f11G URI,;j .. 16
PLA with 1bra: lnJ>U"- Four Product T<mr.. .00 Two QutJ>U"

" ,
"

no 0 CHAPTER J I COMBtNATlONAllOGlC DEStGN

each :npu t anJ :1$ complement to tbe :nputs of each AND gate, as :nJ:cated by
the intersections between the vertical and horizonlat tines. The outputs of the
AND gates have programma ble connections to the inputs of each OR gate. The
OU1PU1 of the OR ga1e goes 10 an XOR gate. where Ihe other input can be pro­
grammed 10 receive a signal equal 10 either logic I Or logic 0,--The outpUl is
in>'ened when Ihe XOR in put ;' connected to 1 (since X$l - X). The output
does not change when the XOR in put is connected to 0 (SiDce X$O . X), The
panicular Boolean funclions implemented in the PLA of t~e figure are

F, · AB+AC+A8C

Fl · AC+BC

The product terms generated in each AND gate are lisled by the output of the gate
in the diagram. The product term is determined from 1he inputs wilh CLOSED cir­
cuit connections. The output of an OR gate gi>'es the logic sum of the $C lect~d

prodncl terms. The o ut put may be complemented or left in its true form , depend .
ing On lh~ programming of the connection associated wilh the XOR gate.

The size of a PLA i~ specified by the number 01 inputs. the number of prod­
uc\ terms. and 1he number of outputs- A typical PLA has 16 inputs. 48 produc1
terms. and eight outp uts. For n inputs. k producl terms. and m outputs, the int~rnal

logic of the PLA consists of" buffer_in,'erter gates. k AND gates, m OR gates.. and
m XOR gates, There are 2n X k programmable connections betwe~n th~ inputs
and the AND array, k X m programmable connections between the AND and OR
arrays, and m programmable conneclions associated with the XOR gates.

As with a ROM. the PLA may I:>e mask programmable or field programma·
ble. With mask programming. the cuslOmer submits a PLA program table to lhe
manufacturer. The table is uwd by the vendor to produce a custom_made PLA
that has the int ernal logic specified by the customer. Field programming use. a
PLA called" jidd'prvg'ammal>ie logic array. or FPLA. This device can be pro­
grammed by the user by means of a commercial hardware programming unit.

Programmable Array Logic Devices

The programmable array logic (PAL"') device is a PLD with a fixed OR array and
a programmable AND array. Becauw only the AND gates are programmable. the
PAL device is easier to program than. but is not as flexible as. the PLA, Figure 3-27
presents the logic configuration of a lypical programmable array logic device. The
particular device shown has lour input' and four o utputs. Each input has a buffer­
im'crter gat", and eac" OUlput i. generated by a fixed OR gale. The de" ice bas four
sections, each composed of a three· wide AN D-OR array. meaning that there are
three programmable AND gates in each seclion . Each AND gate has 10 program­
mable input connections. indicated in the diagram by 10 vertical line. inteJ'$ecting
uch horizontal line, The ~orizontal line symbolizes lbe multiple-input configura­
tion of an AND gate. One of t~e outputs shown is connected to a buffer.inverter
gate and then fed back into the in puts of the AND gates lhrough programmed con­
nections. This is ohen done with all de>'ice outputs.

3-6 I I'n:>gt~l'IIm.ble I"'plemen"';"", Tedutologie. 0 131

AND ~"'" inputs

o 1 ' J 4 ~ 6 7 8 9 -

i< 1
«mI, ,

,
, ;:::J

c.

I, _ A 3;l-
,

;:: I , / ;::
c.

,
L , ,
-Ql ,

•
~ • J

c,

I, - C

" -J\
I

"
" ~

c.

•
01 2] 41 6 789

o FlG URE Jo21
PAL" De.ke with Four Inputs. Fou r Output" and . Three-wide AND·OR Structure

Th~ particular Boolean functions implomented in Ihe PAL in Figure 3·2] are

F, =AB -t AC-tABC

F: - AC -t BC - AB-tC

These functions are the .arne"" lhose implemented u,ing the PLA. Since the out·
put complement is not available, F2 is conveTted to a ,urn of products form.

132 0 CHAI'TEfl3 I COMIHNATIONAL LOGIC DESIGN

LJI HULJ" mw .". L.to~, to, L ~."" ll!
A small PAL integrated circuit may have up to dght inputs, dght O\Itputs, and eight
sections. ~acll consisting of an eight·wide Au"lD·OR array_ Ea~h PAL device output is
drh'en by a three-state bulfer and also sen'es as an input. These in put/outp uts can be
programmed 10 be an inpul only. an output only. or bidireC1ional with a variable signal
dri,ing the three .. tate huffer enable signal, Flip_flops are often included in a PAL
de,-ice belwcen the array and Ihe three-srate buffer at the outputs. Since ea<ll output
is fed back a, an input through a bulfer-inverter gate into the AND programmed
array." SC<Iuential cirruit can be cilSily implemented.

,t€J::,., VLSI PAOOR M ... OLE LOGIC DeVICEs This supplement . which covers the basics of
~ lwO t}'pical Field Programmable Gate Army. (FPGAs) used in course laboratories

is avail able on the Companion Website for the text. The supplement uses multi ·
plexers, adders. fli p-flops.. latcllcs. and SRAMs, An appendix to tho supplement
provides a brief introduction to these components,

3-7 CHAPTER SUMMARY

Thi. chapter began with the introduclion Ol lwO important design concepts. design
hierarchy and top..Jown design. that are u",d throughout the remainder of the
book, Computer-aided design was briefly introduced. with a focus on hardware
description languages (H Du) and logic synt hesis.

In Section 3-2. properlies of thc underlying gate technology were introduced.
Two component type' with an add~d o ut pul '-alu~ called bigh·impedance (Hi·I).
Ihree-<Iate buffers, and transmission gates wer~ described. Importalll technology
parameters, including fan-in. fan·out. and propagation dela}'. were defined and
illumaled. Positive and negative logic conventIons describe two different relation­
'hips belwccn '-011 ago Icyel, and logical valucs.

The core of this chaptcr is a five·step design procedure described in 5e<otion 3-3.
These steps apply 10 both manual and compuler-aided design. The design begins with
a definmg specification and proceeds through a fonnulation step in which the specifl­
Calion i, convened to a table or cqualion" The optimization step applies two· level
and multipic_level optimization to obtain a circuit comf>'.'Sed of AND gates. OR
gales. and im'erlors. Technology mapping com'em thi' circuit into cne that cfficiemly
uscs the gates in the availabk im plementation technology, Finally. vcrificaliQn is
applied to assur~ that the final cireuit satisfies the initial specification. Three ",,"m­
piC'S illu,trate the fim three of these ",el"-

In order to discuss Icchnology mapping. fl~cd impicment ation tcchnologies
including full custom. standard celL and gale array approachos were introduced.
Cell specification and celT librarics aloo wCre introduced. and mapping techniques
resembling those used in CAD lools were prescnted and illustrated for single cell
typcl and multiple cell types.

The final section of the chapter dealt ,";th programmable logic technologies.
-mrce basic technologie read·only memory. programmable logic arrays. and pro·
grammablc array logic de,ices-provide technology mapping altcrnatiycs,

REFERENCES

I. HA(T£l.. G .• ASO F. SolotENZI. ~ SyttlhtJUDitd Vmfiration AI60rilhrm.
BoolOll: Kluwer Academic J>\Iblidl.ers. 1!196.

2. DB MICHEll. G . Symhuu ami Opllmi.alilm of Visual Circuiu. Nc'" York:
McGraw·Hill. Inc., 1994.

3. K",,",pp. S. Frequfnlly.A5bd Ql4tJtioliS (FAQ) AI>ouI Pros,mnmablt Logic
(hnp:llwww.o plimagicoomlfllq.html).OpliM.gicTM. Inc .. 0 1997· 2001.

4. LAl"rICE SEMI OO.~DUcroR CoIlF'Q Il"T1ON. LAttiCt!
GA LJ(R)(htlp:llwww.lalliccsemi.oomJproo ucu/5pldlGAUindex.cfm). Latlice
s.;,miconduClor Corporalion, 0 1995·2002.

S. TR1MIlEROER. S. 1.1 ., ED. F/tld·Programmilblt Galt Army T«htlOlaSY. DOI!ilOll:
Kluwer Academic Publil hers. 1994.

6. XIUSX. Isc.. Xilitu Spar/an""/1 £ Data Shut
(hUp:lldirecUilin x.com/b,·docs/pu blie, tionslds077 _ 2.pdf). Xilinx, I "'"- 0
1994-2002.

7. ALTEItA(R) COIU'OltAll0)l. Alten FLEX IOKE E mbedded P'og,.,.",mabk
Logic On-ict Rlmilyl)ala Shttl ~er. 2.4
(hnp:l"' aUera.oorni1'teratureldtldsflOle.pdf). Allera Corporation , 0
1995 ·2002.

PR08LEMS

.t:1J::A The plu. (+) indicates II more advanced problem and the asteri,k (0) indicates u
~ solution i, available on lhe t e~l web$ it e.

J-I. Design a circuit to implemenl the following pair of Boolean equllt ions:

F _ ,l,(CE+O£) " A 0
F_8(CE .. O£) .. 1i C

To simplify dra,,-;ng the schematic. the circuit i110 us<: a hierarchy based 011

the faaoring .00-..,., in lhe equa1ion. Three in.lances (oopie<) of • single
hierardlic.aJ circuit component made lip of I".., AND gales, an OR gale. and
an inverter are 10 be used. Dra the Iogjt: diagram for the hierarchical
componenl and for lhe ~rall circuli diagram using . symbol for the
hierarchical component.

J-l. A hierarchical componem wilh lhe rlll>Ction

/I-XY.XZ
;s 10 be used along wiTh inv.ncl"$to implemem 1he fo!lowing eq uation:

G - A IiC+A BD+A 1i C+ABD
The overall cireuil can be oblained b)' using Shannon', expansion 1h~orem.

F_ X · 1i!..X) + X· F,(X)

,,·here F,jX) i. F evalualed wilh ,·an.ble X " 0 and F,(X) i< F evalll.1ed
with variable X. I . This upan$.ion F can be implemen1ed with function /I
by ielting Y _ Fo and Z _ Fl' The upansion theorem can then be applied 10

t J4 0 CHAPTER 31 COMIlINATlONAL LOGIC DE5IGN

each 01 r~ and 1', us1ng a vadable 1n each, preferably one that appears in
both true and con'plcmentcd form . The proceS'> can then be repealed until
all ,,-;. are .ingle literals or conslants. For G, use X _ A to find Go and G, and
then use X _ B for Go and G ,. DTaw the top 1c,-cI diagram for G using II as
" hierarchical component.

J-J. An imcgratcd circuit logic family has NAND gates with a fan_out of 8
slandard loads and buffers with. fan-out of 16 .tandard loads. Skelch a
schematic showing how lh. output signal of a single NAND gate can be
applied to 38 oth~r gat~ inp ut. using as few buffers as possible. A,sume that
each inpul is one standard load.

J---4, °The NOR gates in Figure 3-28 h",'c propagation dclay Ipd ,. 0.078 nS and
the inverter h .. a prop"galion delay IpJ ~ 0.052 ns. WlIat is the propagation
delay of the longest path througJ' the circuit?

J..-S, The waveform in Figure 3_29 is applied to an invertc<. Find the output of lhc
invener, a.suming thm

(~) it has no delay.
(b) it has a transpon dcla}' of 0,(16 n5.
(e) it has an inertial del")' of 0.06 ns with a rcjection timc of 0.06 "I;.

3-4. Assume lhat tpd is the a,'crase of 'PHl and 'PI,H' l'inJ the dd.y from each
inp ut 10 the oUlput in Figure 3·30 by

,
o

, ,
- 0.6 ""
- 0.6",

, ,

o FlGURF. 3-28
Circui, to< Problem 3-4

n , , , ,

o flG lJ RE 3-29

, ,

W.veform for Problem 3·5

, , ,
7 Tom<: ("')

" C

o nC;UREJ.JO
Ci,enil fo, rmblem 3--6

Pml:>lcm. 0 135

(a) Finding IpHl and 1",-,. for each path a"uming 11'111. = 0.30 nS ~Dd IplH =
050 n, for each gale. From these values, find IpoJ for each path.

(b) Using 'poJ _ 0,40 ns for each gate,

Ie) Compare),on, answers in part (a) and (b) and discuss any difference ..

3--7. +The rejection time lot in ~niaJ dela)'s is required to be less tnan or equal
to the propagation delay_ [n terms of the discussion of the example in
Figure 3-7, why is (n is condition necessary to determine the delayed
out put O

J-a +For a given gate, '.,.L _ 0.05 ns "nd IplII = 0.10 n<. Suppose that an inertial
delay model is to be developed from this information for typical gate dela)'
beha,·ior.

(a) A"uming a positive output pulse (L H L). what would the propagation
delay and rejection lime be?

(b) Discuss the applicability of the parameters in (a) assuming a negalive
oUlput pulse (H L H)

J.-9. .Show that a posilive logic NAN D gate is a ncgalive logic NOR galo and
vice ,·e[Sa.

J.-IO. A majori ty function has an oUlput value of I if there a,e more l's tnan O's
On its inpul .. The out pul is 0 Otherwise. Design a Ihrce-input majMity
function,

J.- ll • • Find a function 10 delect an error in the rcpresentalion of a decimal digit in
BCD, In other words. write an equal;on with value 1 wnen lhe inputs are any
one of the six unused bit combinations in the BCD code , and '-alue O.
other"iise,

J.-12. Design an Exccs.<._to----BCD code converter that gives out put code I)))) for
all in valid inp ut combinations-

J.-Il. (a) A low-voltage lighting system is to use a binaTy logic control for a
particular lighl. This light lies at the inter<ection point of a T-shap"d hallway.
There is a swilCn for this light at each of the thT~e end points of the T. These
,witches haye binary outp uts 0 and I depending on their position and are

136 0 CHAPTER j I CO'\\BINATIONA~ lOGIC nESIGN

named X,. X,. and Xl' The light is controll ed by an amplifier driving a
thyristor. When Z. the input to the amplifier. is 1. the light i, ON and when Z
i, O. the light ;, OFF. You ore to find" function Z = f"(XIo x,. X,) SO that if
anyone of Ihe switches is changed. the value 01 Z changes turning the light
ON or OFF.

(b) The function for Z is not unique. How many different functions for Z are
lhere?

3-14 . .. A troHic light conlrot ", a . impk inlcr..,ction use, a binary counler 10
produce the following sequence of combinations on lines A. B. C. and D;
OCIOO. 0001. 001 I. 0010.01 10.0111. 0101.0100. 1100. 1101. 1111. 1110, 1010.
1011,1001. 1000. After 1000. Ihe sequence repeats, beginning again witli
OCIOO. forever. Each combination is present lor 5 se~on ds before the n c~t
one "PPC"T"S. Thcse line, dri,·c combinational logic with o ut puts to lamps
Rl\' S (Red. North/South). YNS (Ye llow - Norlh/South). GNS (Green·
NortIllSouth). REW (Red· East/We.I). YEW (Yellow . Ea,IIWeSI). and
GEW (Green. E""tlWeSI). The lamp cOnlrn\\ed by each outpu t is O N for
a I applied and O FF for a 0 applied. For a gi"en direction, as.ume Iha t
gn.:cn i. 011 f<Or 30 seconds, yellow is on for 5 seconds. and red is on for 45
seconds. (The fed intervals overlap lor 5 sec<>nds.) Dividc up Ihe so
seconds availa ble for the cycle through t hc 16 combinalions into 16
intervals and delermine which lamps sho uld be Ii i in each in(erv"l b~scd
on upectcd drive r beh,(vior. Aswme thaI . for inlerval OCIOO. a change ha.
just occurred and that GNS '"' 1. REW '"' 1. and all other outputs " e O.
Design lhe logic to pmdutc lhe six oulp ut ' using AND and O R gates and
invertcrs,

3-15. Design a comb in ational circuit thai accept. " 3·bil number and generaleS a
6·bit binary num ber OUlput equ.' to the sq uare 01 lhe inp ul number.

3-16. .. De,ign a combinational circuit t h~t acrepts a 4-bit number and generates a
3-bit binary number OUlpUI thm approximates the S(luMe root 01 the
number. For uample. if the sq uare rool is 3.5 or larger. g,ivc a result of 4. If
the square root is < 3.5 and 2! 2.S. g,i"c " result of 3.

3-17. Design a circu it with a 4·bit OeD inpul A. B. C. D thot produces nn output
W. X. Y, Z that is equal to the input .. 6 in binary. For example. 9 (1001) .. 6
(0\10);15(1111).

3-18. A traffic metering system for controlling the release of traffic from an
entrance ramp onto a superhighway ha, the lollo"'ing specifications for"
part of its controller. There are Ihree parallel metering lanes, each with its
Own SlOp (rcd}-go (green) light. One of the", lanes, the car pool la nc. is
given priority for 8 gree n light over the other Iwo lane .. Olherwise. a'-roun d
robin" scheme in w~i ch the green lights altemat ~ is lI'<Cd for the othcr two
(left and right) lanes. The part of the co ntroller thm determines which light is
to be green (rather than red) is to be designed . The specificalions lor the
controller 101101":

Inpucs:

" " RS
RR

Oulputs:
' L
LL
RL

I'robICm> 0 t3 7

--- Car pool lane sensor (car present - I; car absent - 0)
--- left lane sensor (car present - I: car absent --- 0)
- Right lane senSOr (car present - I : car absent - 0)
--- Round robin signal (select left - 1: select right - 0)

_ Car pool lane light (green _ I: red _ 0)
- Left lane lighl (grccn --- 1: rcd --- 0)
--- Right lane light (gree n - I: red - 0)

Operutinn,
1. If there is a car in tho car pool lane, PL is I .
2. If there are no cars in the car pool lane and the right lane. and there
is a car in the left lane. LL is I .
3. lflhore are noc"" in lho car pool l"no and in tho left lane. and there
is a ear in the righl lane. RL is I,
4. If there is no ear in the car pool lane. lhere are cars in both lhe left
and righllane .. and RR is I. then LL = 1.
5. If thore is no car in tho car pool lane. there are cars in bot h the left
and righl lanes, and RR is O. then RL _ 1,
6. If any PL. LL. Or RL is not specifIed to be I abo,'e. then il has value O.

ia) Find the trulh table for lhe controller part.

(b) Find a mini mum mull iple-Ic,·cI gale implomentalion with mini mum g"te
input count using AND gates, OR gatos and inverters

3-19. Complete lhe design of thc BCD_t()-!;C\"cn_segmcnl decoder by pcrfonning
the following .1eps:

ial Plot the seven maps for each ofthc outputs for thc BCD--to--sevcn_
segment decodcr ,pc~i fi£d in Table 3-2.

(b Simplify the seven OUCput functions in sum-<>f- prod uC1s form, and
determine the total numoor of gate inputs that will be needed to
implement lhc decoder.

(~) Verify that the SC'·Cn output funclions listed in the text gi,·c a valid
simplification. Compare the number of gat" input. with Ihm obtained in
part (1)) and explain the difference ,

3-~O. +A NAND gale wit h eight input' i, required. For each of the following
cases. minimize the num"", of gates u",d in the multiple-level result:

(.) Design the 8· input NAND g"te using 2-input NAND gates and NOT
gates.

(bl Design the 8-inpm NAND gate using 2-inpul NAND gates.2-input NOR
gate" and NOT gate, only if needed.

(0) Compare the number 01 gates used in (a) and (b) ,

1 3 8 0 CHM'T ER II COMUINATIONAL LOGIC DESIGN

,
0

" ,
"
:~

D ~'ICUkE j.JI
Ci,~" fo' P,obI<m 3--21

,
)-

" , ~

" ' "
V :::] ,

;r
D n CUKE j.31

CirCuit fo< l'roblcm J.--22

' -11--;::=[7,1
,

D " ICUK E j.jJ
CimU, for Problem J.--23

3--21 . Pcrfonn a minimUn)·CQ61 (use m,"'m~m tOlal normaliled arCa at 005t)
technology mapping u,ing NAND ce il, and inveners from Thb le).) for the
circuil shown in "'gure)·31.

J..-22. Perform a low-<:Ol'I (use minimum 100ai nonnali·tcd .r~a as COl'I) le<:hll0logy
mapping u~ing ail cells fmmThble 3·3 for Ihe circuit.hown in Figure 3·32,

J..-lJ. By u,;ng manual methods, verify Ih"1 Ihe cirruit of figure)·33 generales 'hc
ud~";~c.NOR funclIon.

J..-U *Manually ,'crify Ihal Lhe functions for lhe output< F and G of Ihc
bierarrhical circtUl m Figure 3-34 are

F -= X Y+XY Z+XYZ
G.,\'Z+XyZ+ XYZ

,-1-, ,
I

w_
,

~
v

o FIGUJI;f. J...,W
an-u" for f'l'oblenu }-2A.nd 3-25

'-" Manually "crify that the truth table for Ihe outpull F and G of (he
hiuarchical circuit in FIgure 3-34 i$ as follow"

w , , , , ,
• • • • • • • • • • • • • • • • • • • , • • • • , , • , • • • •

l--26. The 1Of,ic diagram fur a 7411CIJ8 MS! CMOS <l<cuit is given in ~18ufe 3·)5.
Fmd 1M Boolea n fundioo for """'h of Ihe output$. Describe the circuil
fun<:lion carduUy.

140 0 CHAl'TER J I COMBINATlON",L LOGIC DESIGN

G< - - -,

o FIGURE 3-35
Circuit for PrOOlem 3--26 and Problem 3--27

3--27. Do Problem 3-26 by using logic simulation 10 find the output wovefonns of
the circuit or a parlial truth table listing. rather than finding Boolean
functions.

3-28. In Figure 3·21. simulation resu lts are gi,·en for the BCD-lo-fuccss·3 Code
Converter for the BCD inputs for 0 through 9. Perfonn a similar logic
simulation to deunnine the results for BCD inputs 10 through 15.

COMBINATIONAL

FUNCTIONS AND

CIRCUITS

I
n 1M. chapter, we will learn aboula "umber a! runCllon. and the COO'~i"9

fundamental circuM that ara very useful", des>gn ing large< dig ital cir<:uilS. The
fundamental, reusable "rou lt •. which"", call functional t.-ocI<&, im!>emem

hJncIions of a ~ngle variable, OOooders. encoders, code cOIweners, multiplexer., and
programmable logic. Aside 1m", being Important build ing bIock5 lor large' cifeuits and
")'StaInS. many 01 ~ functions are s~y load to the various components of
hardware description languB9"s and sa"'" as a ""h",,,, for HD!.. pre.ental""', A. an
a lternative to 1I1,Jth tables, &qtJalions. arid scMemalics, VHDl and V&rilog hardware
dO$(;ripti(ln lar>gua~ ara Intrl)duc&d.

In 111 .. gene<ic computer d"'!J'sm at the beginning 01 Chapter I, multiplexers are very
imponant lor """"'ling data in the p«)C<)S$Of, in memory, and "" 110 t>oards . De<:oders
ar" uoed lor selectir>g boa rds attached 10 the Input-output bus and to d<!(:odI>

instructions to determ;"" th<I Operations perlorrned in IIle pr<)Ce$$Or_ Encoders a
'-'Sed in a numoor 01 compooents, such as !he keybOarIJ . Prog rammable logic is used
10 handle complex i ""truc~""s within p<oceSSOfS a$ _~ as in many other
oomponents of too computer, 0...",11, funct""", ' biocI<S are widely ...sed, $0 concepl$
from this chapter app~ across most componenls 01 the generic computar, ir.:JC'ding
memories.

4-1 COMBINATIONAL CIRCUITS

In Chapter J, we defined and ill ustrated combinational Circuits and their dcsign_ In
this section, we define spoci/ic combinational functions and correspond ing

o 141

142 0 CI-I~I'TER' I COMUIN"nON"1. FUNCTIONS "NO CIRCUm

s"" .".
o n GUHE 4·1

Bl<>ck Di.vom of. Sequen'i.] Circuit

....... ,
,,0'0

CQmbinalional cireuits. referred to n. fi"'~';()"al hlocks. In som~ cases, wc will gQ
througb thc design process for obtaioing . circuit fr<lm thc function. ",hlle in other
""5I:s, we will simply prescnt the funetieln and an imple_ntatiOll oi il. ~ func:·
lions ha"c .pecial imponance in digilal design. In thc p;I.l. the funCironal blocks
"'ere manufactured as small and medium sc.le integrated cireuits. Tod.y. in very
large scale integrated (VLSI) circuits. functional bIocb arc uoed to dc$ign circuils
with maoy such bloch. CombInational functions and their implementalions ar ..
funda_ntallO Ihe undentanding of VLSI circuits. By .mog a h;"no",hy. we typi.
cally construct circuils a, in, lancet of t"- functielns or lhe usociau,d functionaL
blocks.

Large-scale alMl very lar,c ' lCIllc imelVated circuilS are almost ah,'sy' sequen·
ti~1 circuits 3$ dcscribi:d in SecliQn),1 and det.iled !xginning in Chapler 6. The
functions and functional block. diICu!scd in Ihi ' chapler. are combinational. I [ow·
ever, they Me "ften combined with ' Iorage clemen', to form Sl:qucmial ci .cuit. a,
.hown in Figure 4_1. Inputl 10 the ""mbinalioo al circuit can come from both the
external environment and froo; the 5lorage elements. Oulputs ffQnl the combma.
tiel"81 circuit go to both lhe exlernal environmcntand tQ lhe 5lorllge ele Oienti. In later
chapters. we usc the combinational functions aod bIocls defined here. in Chapter S.
and in Oapt~r 6 with storage dements 10 form J;eq ... ntial circuits Illat perform very
useful functiorK. Fun the functions and bIocU defined he", and in Chapter S
Sl:fV(: as a ba~is for dncnbi!l& and understanding both combinalional and seq ... ntial
cin:ui'" usin& ILardwarc detcriptioon Ian&uagcs in tM and ,ub5eq ... nt chapters.

4-2 RUDIMENTARV LoGIC FUNCTIONS

Value-fixing. Iransferrin" invening. and enabling are among the most elementary
of oombinat;onallogic functiont. The fint IWQ operations. value·fixing and tran!fe •.
rin" do nQl involn any Boolean operat<>rs. They usc only variables and (OnSt.nlt.
A. " consequent ... logic ga tCI Are not ;n"Qlved in Ihe implementaliQn Qf theSl:
operalions. Inverling ;nvQlves only one logic gate per . 'ari.ble. And enabling
involves one or t"'o loilc ilnc1 per variable,

Value-Fixing, Transferring, and Inverting

If. 'ingle-bil function depends on a single variable X. at mOM. four different fune·
tielns are poss;blc. 1l!bIe 4-1 &ives the truth t.ables for th functions. 1bc fint and
lasl col"""" oithe table ani", eithe. am .. ant value 0 or oonstant value I 10 the

4_2 I Rudirn<n''''Y leg"' Functioo>. 0 143

o TARL.: 4_1
r"n<lions of One Variable

o
o

o , ,
o

funct ion. th us performing "alue-fixing. In t~c second column. the function is simply
the input variable X. thus rrans/er-ing XffOm inp ut to output , In the third column.
the function is X. tbus in"ming input X to become omput X.

The implementation. for Ihe~ four functions are gi"en in figure 4-2. Value
fixing is im plemented by con necling a conslant 0 or constanl 1 to outp ut F as
shown in Figure 4_2(a). Figure 4_2(b) Sho S alternative representation, used in
logic schemalin For tbe positive logic convention. conslant 0 is repr=nted by the
eleelrical ground symbol and eonstanl 1 by a power supply "oltage symbol , The lat­
ter symbol ;'; labeled with eit her Vee or Vo". Transfe rring is implemenHxl by a sim_
ple wire connecting X to I' as in Figure 4-2(0). Finall y. iO"erting ;,; represemed by
an inverter hich fonns I' = X from iOpUl X as shown in FIgure 4-2(d).

Mullipl.Bit Functions

The functions defined so far can be applied to multiple bits On a bitwise basis. We
can think of these multiple-bil function, as VeClofS of single bit funct ion& For exam­
ple, suppose that e have four function& 1'" F" F" and 1'0 thaI make up a four-bit
function F: We can order the four functions with 1', as tbe most significant bit and F~
the least significant bit. pro\'iding the vector I' 5 (1'" 1',. 1', . 1'0)' Suppose that F coo­
sislS of rudimentary functions F, = O. 1', = 1. 1', = A and F~ = A , Theo we can rite
Fas the vector (0, I,A, ::4) , For A _ 0. 1' _ (0, 1,0. I) and for A _ I, 1' _ (0.1. t.O) .
Thi~ multiple-bit function Can be referred 10 as F(3:0) or .imply as I' and is imple­
memed in Figure 4-3(a). For con"enience in schematics. we often represent a sel of
multiple. related ires by using a single line of geealer thiche., ,,>jth a slash aCrOSS
the li ne. An integer giving tbe number of wires repr~nted accompanies .£he slash
as shown in FIgure 4-3(b). In order 10 connect the values O. L X. and X to the

---,-,
0---' -0

,.,
o FIGURE 4-2

v 0: or v""

TL __ p _ \ x---,_ ,

'0'

,,)

x-{)o-p -x

",
Implementation of Function. of • Single Vari.ble X

144 0 CH APTER 4 I COMBINATIONAL fUNCT10NS AND CIRCUITS

.~.' , "
, "
, " ,.,

:~' .. , , , . ,.,

o FIGU RE 4-1
Implemcn j,on 01 Mul.i·bi. RudiIJ'H:ntary Fb"",ion.

approrri3le bits of f; we break f up in.o four wires ,,-jih each wire labeled wiih Ihe
bil of F. Also, in Ihe pro«ss of lransferring. ""e may wish 10 U$e only a $ub:\.el of Ihe
elements in f. for example, fl and f , . The nola lion for Ihe bi" of f can be used for
Ihi' pur~ as ,hown in Figure 4·3(c)_ In Figure 4·3(d), a more comple> case illu,·
trale. Ihe use of Fl, FI, Fo al a deslinal inn. NOle Ihat ,ince F~ F" and Fo are nol all
logelher. we cannOI US<: Ihe ra nge nol81ion fU:O) 10 denote this sub,"e<:tOT_ Instead,
" -e muO! usc a combination of 1\0"0 subve<:ton. F(3), F(I:O) denoted by subscri pts 3,
1:0. The aclual notation used for '"«'tors and .ub,'eciors ,'aries among the schemat;';
drawing tools or HD L lool$ available. Figure 4-3 illu"ra",,, just one approach. For a
specifIC tool, the documenlation .hould be ronsulled.

Value-fixing, Iransferring and inverting have a variety of applications in logic
de,ign. V~lue·fixing involve. replacing One or mOre variables with COnSI"nt value.
1 and O. Value fixing may be permanent or temporary. In permanent value·fixing,
the value can never be changed. In temporary value-fixing, lhe value. can be
changed,oflen by mechani~. thaI are somewhat different than Ihose employed in
ordinary logical operation. A major application of fixe<! and temporary value-fixing
i~ in programmable logic devices. Any logic function thaI i5 wilhin the c~pacily of
the programmable device can be implemcnled by fi.1ing a set of values. a, illus­
trated in the next example_

.:XAMPI.£ 4-1 \'.lue.H~inK rn. I",plcnlcnting •• "unctio.

Consider the truth lable shown in Figure 4-4(a). A and Bare Ihe input variables
and 10 through I, are also variabl es. Values 0 and 1 can be aloSigned 10 10 through I,
depending upoo the desired funcli<MI. NOIe Ihal Y is actually a funclion of six vari­
ables giving a fully-expanded truth table containing 64 rows and !Ie,'cn columns.
But, by puning 10 Ihrough I, in the output column, ,,'e considerably red uc<: Ihe si~e
of the table. The equation for the OUlput Y for this truth lable ;.

Y(A.B,/(),/I,I"J,) " A Ii 10+A 81,+A Ii I, + ABI,

The implementation of thi. equation is gi,..,n in Figure 4-4{b). By fixing the values of
10 through I" we can implement any funClion yeA, B). As !>hown in Table 4.2. we can
implement Y .. A + B by using 10• 0,/1 _ I, I,. I, and I,. I. Or, we can impbnent
y.,A Ii + A Ilby using 10" °,1, . l , I,~ I,and 1,~O.Eith crofthese functions can

"" , o 1 I,

" "
"

(.)

,

"

~

o nClJWE 4·4

v

4_2 I Rudime,,",y I.ot:k Func';"n, 0 145

U ,

" >
"

"

" ,..--,
• Fe)-,

'.

hnpkmont'lion ofTwo FU"ct;oo. ~~ U.;ng V.lue_Fixing

o T,\.lIlE 4·2
I'un<1ion In.plcmenta,;"n by VarDe.~I.ing

" 0

" " •

"
"
(,

be implemented pcrmanenil)', or can I>e implemented temporarily by fixingjo" Q. /,
= 1.1) = I,and usi~ g I, as a vari.ble wilh I, _ I for A .. B and I , _ 0 forAB .. A B.
The final circuil is shown in Figure 4-4(.). •

146 0 CHAPTIiR. f COMBINATIONAL FUNCTIONS AND CIRCUITS

Enabling

The concept of enabling a 'ignal first appeared in Section 2-9 where Hi-Z outputs
and three-slale h uffe .. were introduced. In general. enabling permi!!; an inpul
signal 10 pass lhrough to.n output. In addition to replacing the input sign.1 wilh
lhe Hi-Z .tate. di~abli Tl g al$O can replace the input sign.1 wilh a liJ<ed outp ut
value, either 0 or I. The additional inpul ,ignal. often called ENABLE or EN. is
re quired to delermine whether the out put;s enabled or not . For example. i f EN is
I . then the input X reaches the Oll! pll! (enabled) but if EN is 0, t~e Oll!put is fixed
at 0 (di,abled). For this case. with the di,ahled value at O. the input signal is
A NOed wi th the EN signal as shown in Figure 4-5(a), If the disabled value is 1.
then the inpll! signal X is O Rcd with the oomplen,ent of the EN signal., shown
in FlguTc 4-S(b). A lternatively, the signal to the output may be enabled with EN. ()
instead of 1 and the EN signal denoled a. EN as EN is inverted as illustrated in
Figure 4-5(b).

t;XAMI'LE 4-2 Enahling Applinlion

In most automobile<. the lights, radio. and power windows operate o nly if the igni­
tion switch is turned on. In thi. case, lhe ignition switch acts as an "enabling» lig_
na!. Suppo6C that ",'e model this automotive subsySlem u~ing the following
va,iahles and definitions:

Ignition switch IG _ Value 0 if off a nd value 1 if on
Ught Switch LS· Value 0 if off and v~h,e I if On
Radio Switch RS _ Val ue 0 if off and value 1 if on
I'I)wer Window Switch WS· Value 0 if off and value I if o n
Lights L . Value 0 if off and value I if on
Radio R _ Value 0 if off and value 1 if 00
Power Windo .. .,. IV · Value 0 if "ff and value 1 jf on

Table 4-3 contains the condcnSl'd truth table for Ihe operation of Ihis automobile
subsystem. Note that when the ignition switch IS i~ off (0). a ll of the controlled
acce",ories are off (0) regardle", of their swileh settings. Thi' is indicated by the
firlt row of the table. With the use of X'" thi' condenStd trut h table with just nine

E~=O-F ,.,
, ' - ,,--EN~ F ,.,

o F1GUII.£4-5
Enablin& CiTeui"

+-3 f 1)«oo;ng 0 ..,
o TABLE 4-3

Truth Table ror E""blia~ Applica tion

tnpul CCflSOry

Switch .. Conlro1

• " " w, , , W

0 , , , 0 0 0
0 0 0 0 0 0
0 0 • 0 0

" • " " 0

" • • 0 , , , 0 0 0 0
0 • 0

" 0

rows represonts the .ame information as the usuall6-row truth table. Wherea, X's
in o ut put column$ represent don't-care cond itions. X'8 in input columns are used to
represont product terms that are not mi nterm« For example. OXXX represents the
product term IS. Just as with minterm" each variable i, complemented if tht cor­
responding bil in the inp ut combinalion from the table is 0 and is not comple­
mented if Ihe bit is l. If the correspond ing bit in the input combination i, an X.
Ihen the "ariable d<:>e$ not appear in the prod uct term. When the ign ition switch IS
is on (I). then lhe acce,"ories are connoll ed by their respective switche" When IS
is off (0) . all acce<sories are off. So IS replaces the normal values of the outputs L.
R. and W with a filled value 0 and meets the definition of an ENABLE signal. •

4-3 DECODING

In digital compulers, discrete quantities of information are repre",nted by binary
cod~ ... An ,, -bit binuI}' code is capable of represonting up to 2" distinct elemem, of
coded information. Decoding is the conversion of an n-bit input code to an m·bit
output code with" S m S 2" such that ~ach valid input cod~ word produces a
uniq ue output code. Decoding is performed by a ,Iecmler. a combinational circuit
wilh an n_bi' binary code applied to its inputs and an m-bit binary code appearing
at the output:!. The decoder may have unu:sed bit combinations On its inputs for
which no corresponding m-bit code appears at the OUlputS. Among all of the spe­
cialized functions do6ned here. decoding is the mOSt importam since th is function
and thc corresponding functional blocks arc illCOflX'rated into many of the other
functions and functional bloch defined here_

In this section. the functional blocks that implement decoding are called
rHo-m-linc decoders.. whcre m S; 2". Their purpose is to generate the 2' (or fewer)
minterm, from the n input variahles. For n * 1 and m * 2. we obtain the]-to-2-line
decoding function with input A and outputs Do a nd D ,. The truth table for th is

148 0 CHAI'TF.Il4 I COMBINATIONAL fUNcnONS ... NO elllcurTS

• " . ", [>0-0. -;;:
" • • • 0, _ A ,., (.)

o nGURF, "-6
A 1-lo.2·Line Deeuder

decoding funclion is given in Figure 4-6(a). If A .. O. Ihen D. _ I and D, .. O. If
A ~ I. lhen O. ~ 0 and 0 , ~ I. From Ihi' lrulh lable. D •• A and 0 , .. A giving Ihe
circuil shoVin in FIgure 4-6(b).

A second decoding funclion for " s 2 .nd m ~ 4 " 'il h Ihe lrulh lable given in
Figu,", 4.7(a) Miler illumales Ihe general nalUre of d«,odcrs_ This table has 2-
, '.ri.ble minterms as ils output s, wilh each row conlaining one ou tpu t value
cqualto I and Ihree o ul pul va lues equal 10 0 , Output OJ is eq ual 10 I whenever
lhe 1\0'0 input value. on A , and A . arc the binary code for Ihe numMr i. A~ a
consequence. Ihe circuit implements lhe four pos,ible minterm. of 1"'0 vari­
a bles, one minterm for each OUlput. In Ihe logic diagram in Figure 4.7(b).uch
miDlerm is implemenled by a 2·inpu t AND gale. The"" AND gares arc con­
neeled 10 Iwo 1.lo·2.1ine decoders, one for each of Ihe lines drivi ng Ihe At>:O
gale inputs.

Decoder Expansion

Large decoders can M conSTructed by si mply implementing each minterm funclion
using a single AND gale "';Ih mo,", inpuls. Unfortunalely. as dlXO'krs become

~
,
~ " "" ". ", ". ".

" v • • • • • 0. - A, • • • • • • • • • • • o, - A,

(.)
O,- A, A..

I>,- A,

(0)

o nGURE 4-7
A 2-lo-4-Line Deeoder

4_3 I D<fl><Iing 0 149

larger, this approach give, a hi gh gate inpul coum. In this = Iion, we give a proce ·
dure t~at uses design hierar<~y and colloctions of AND gates to construct any
decoder wil~ " inputs and 2" output<- The resulting decoder has the same or a
lower gate inpU! coum than the one constructed by simply enlarging each AND
gale.

Th construcl " 3-lo-S.JJ ne decoder (Ii E 3). we can use a 2·10-4· lioe decoder
and a \ -t<>-2· line decoder fceding eight 2· input AND gales to form Ihe minterms.
Hierarchically. the 2·t0-4· lino decoder can be impleme med using IWO \ -to-2 ·Jine
decoder, feeding four 2. inpUI AND gales as observed in Figure 4·7. The resulting
structure is shown in Figure 4-8.

'The gener.1 proe<:dure is as follows:

Lelk E Ii .
2. If k is e,'en, divide k by 2 to obtain kn. Use 2' AND gates driven by IWO

decode rs of o utput size 2m. If is k is odd. obtain {k + 1)J2 and (k - 1)12. Use
2' AND gat es driven by a decoder of output size 21" lYl and a decoder of
output size 2(' - 1Y!.

3. For each decoder resulting from step 2, repeat slep 2 wilh k equal to the val­
ues obtained in step 2 until k = I. For k = I. use a \ ·to-2 decoder.

~i~
)- ,

")-]
,

~ -I
, ,

"
,

]

,
o ~lGUKE4-S

A) ·'0-8·UIlC [)eroder

I SO 0 CHAPTI'R 4 I COl>\IUN ATlONAI. fUNCTIONS ANIl CIR,C\JITS

o I'IGU Il r. ... 9
A 6-,Q-64·U ... I>rcod<r

J:XAMPU: 4-3 (H<>-4;I..I.iM l>«oder

For a lHo-M-line decoder (11. .. " .. 6). in Ihe lim eX«Ulion Qf S1ep 2, 64 2.inpul
AND gales arl: driven by IwtI decodenQf QUIPUI $itt 2' '" g (Le..by IWQ)·1()-8..1iM
deroden). In Ihe second e~eculi<>ll Qf !lep 2..1< ~ 3. Since I< is odd, l~ r!:Sul! if (I< ..
1)12 ~ 2 and (ot _ 1)f2 .. l. Eig.I\I 2·jnpul AN D gales are driw=n by a de«lder ()f 001,
put siu 2' .. 4 and by a decoder of OOlput size 2' .. 2 (i.c .. by a 2·104· line dect>dcr
and by a l-to-2·line deroder, res~etively) , Finally. on the nexl execution of slep
2. k .. 2. giving four 2·;np ut AND ,ate. driven by twO de<:o,ltrs with o utpul .i~c 2
(i ,e., by two 1·lo·2·line decoders), Since all de<:odcrs have been expanded. Ihe
algorithm terminates with step) 81 this point. The resulting .twcture i. shown in
Rgure 4-9, Thill StruCt Ure has B gale input roun! of6 -+- 2 (2 '" 4) -+- 2 (2)(8) -+- 2)(64
~ 182. If a single AND ,ate for e~h minlerm ... ·ere used. Ihe resulting gale input
rount would be 6 .. (6 '" 64) .. 390.10 a substantial gate input count red""tiQn has
been .ehieved. •

A. an alternall"c upansion situation. $tlppo5C lhal mul!iple decoders are
needed and IMt the decoders hl\'e rom"",n inpul variables. In this ease, in.IC-'! ()f

4_J I D<roding 0 lSI

implementing separate decode,,- parts of the decoders can be 'hared, For exam ­
ple, , uppose that three decoders d •• dt.o and de "re function, of input variables os
follow"

d.(A.B.C.D)
'/b (A,B,C.E)
d,(C,D,E,f)

A 3-t0-8-line decoder for A. B. and C can be .hared belween d. and dt.o A 2-10-4-
line deeoder for C and D can be shared between d. and do. A 2·t0-4·line decoder
for C and E can be shared between Ii" and d,. If we implement all of this sharing.
we would ha,'e C entering three different decoders and the circuit would be redun­
dant. To use C jusl once in .h."cd decoders larger Ihan I 102. we can con,id .. Ih.
following distinct ca..,,,

I. (A. II) sh.red by d. and Ii", and (C. D) shared by d. a"d d,
2. (A. B) shared by d. and Ii", and (C. £) ,hared by II" and d", or
3. (A. 8. C) shared by d. and dl>-

Since ~aseS I and 2 will dear ly ha,·. the same costs, we will compare the cost of
cases 1 and 3, For case I. the coots of function, d •. d .. and d, will be reduced by the
cost of two 2·to-4·lin o decoder, (exdusive of inverters) or 16 gate inputs. ,-or case
3, the costs for functions ,i. and d" .re reduced by One 3·t0-8·line decoder (exchl'
$ive of inverters) or 24 gate inputs. So case 3 should be implemented. Formaliza­
lion of Ihi. proce,lure in to an algorit hm is beyonJ o ur current $<:(Jj)c. SO only this
il lustration of Ihe approach i. given.

Decoder and Enabling Combinations

Tho function. ,,·to·m·line decoding with enabling. can be implemented by attach_
ing m enabling circuits 10 the decoder OUlpUIS. Then. m copies 01 the enabling sig·
nal EN are attached to the enable control inputs of the enabling circuits. For" .. 2
and '" ~ 4, the result ing 2-t0-4·line decoder with enabt<: is shown in ~igUTC 4· 10.
along Wilh it$ trut h table. For EN .. 0, all of lhe output. of Ihe decoder are O. For
EN ~ I. one of the outputs of the decode> determined by the value on (AbAO). i. 1
and a ll others are O. If the decoder i. controlling a sel of li ghts. the n with EN K O.
aU lights arc off. and with EN. I, exactly one light is on, with the other three off,
For large decodors (II <: 4). the gate input count Can be reduced by placing the
enable circuit' on lhe inputs to the decoder and their complements rather lhan on
each of lhe decoder outp uts.

In Section 4-5, selection using muhiplexers will be co'·ered. The inverse of
sekction is distrihUlion in which infonnalion recei,'ed from a single line is trans­
mitted to one of 2' possible out put line .. The cirC uit which implements such distri_
but ion is called a dmw/lipluu. The specific output to which lhe input signal i.
tra nsmitted is controlled by the bit combin ation on" selection lines. The 2-1O-4-line
decoder with enable in Figure 4·10 is an implementation of a I_to-t· line demulti_
plexer. For the demultiplexer, input EN provide. the data. while the other

152 0 CHAI'TER -I I COMBINATIONAL FUNCTIONS ANlJ CIRCUITS

, --f
".

~ " '" ~ 0, ", ", ", , , ,
" " "

, , ,
"

, , , , " , , , , , , ,
" "

,
,., .,

o n GURE4·10
A 2- lo-l·Une Decoder wilh Enable

inpulS act as the se lection variables. Although th e two circuits ha,'e different
application$, their logic diagrams are exactly the same. For this reason . a
decoder with enable input i5 referred to as a decoder/demultiplexer. The data
inpul EN has a path to aU four outpUlS. but the inpul information is directed to
only one of the output" as specified by the two selection lines A l and Ao. For
example. if (AhA .) _ 10, output D , has the value applied 10 input EN. while all
other outputs remain inactive al logic O. If the decoder is controlling a sel of four
lights, with (A ,.Ao) _ 10and EN pcriodicaUy changing between I and O.the light
controlled by D, flashes on and off and all other lights are off.

4-4 ENCODING

An encoder is a digital func1ion that performs the inverse operation of a decoder.
An encoder has 2" (or fewer) input lines and n output lines. The output lines gen ­
erate the binary code corresponding 10 the input value. An example of an
encoder is the oclal· t<}obinary encoder whose truth table is given in Table 4-4.
This encoder has eight input" one for each of the octal digit" and tl1ree OUlputS
thai generate tl1e corresponding binary number. It is assumed thaI on ly one input
has a value of I al any given lime. so that the table has only eight rows with spec·
ified output "alue" For the remaining 56 rows. all of the outputs are don't cares.
From Ihe 1ruth table. we can observe that A; is 1 for 1be columns in which DJ is 1
only if subseript j has a binary represenlalio~ with a I in the ith position. For
example. out put A~ = 1 if Ihe input is 1 or 3 or 5 or 7. Since all of these values
are odd. they h.,'e a 1 in the 0 posi1ion of their binary representation. This
approach can be used 10 fi~d the truth table. From the table. the encoder can be
implemenled with n OR gates, one for each output variable A;. Each OR gale

4--4 I I'A<oding 0 '"
o TABLE 4-4

Tnotl> T r ... Orta!.t .. Bina.,. t:~
~ " " 0 , " 0, 0 , " " " ..
0 , , , , , , , , ,
" "

, , , , ,
" " "

,
" " " " "

,
" " " " 0 " " "

,
" " " " " " "

,
" " " " " " " "

, , , ,
" "

,
0 ,

" "
, , , , , ,

" " " "
, ,

"
combines the inpul variabk$ OJ havinl. I in the 1'0"" for ",hieh A; ha. value I.
r..,.. Ihe S-lo-J-Iinc encoder. the rewllinl output equalions.'"

Ao .. O, + OJ+ O,+ Or

A, - /), + 0 , + /). + 0 ,

A, - 0.+D,+ D6 +D,

,,·hich can be implemented with Ihru 4· inpul OR gale$.
The enCQder jusl defi ned has Ihe limilalion Ihal only one input can be ~clivc

al "ny given lime: if two inpuls are aClive Jimullaneously. Ihe oUlput produces Mn
incor'e<:1 CQrnbinalion. For cnmplc . if OJ and D. are I simultaneously. Ihe output
of Ihe encoder will be III because all the Ih"'e OUlPUt< are e<juallo I. Thi. repre·
se" IS neilher" binary 3 ..or a mnary 6. To rew!>·c tbi, "mmguil)", \.Qft1e encoder eir.
euil' mllSt eslablish an inpul priorily 10 cn'u'e Ihal only one inpul is e!>COded. If
.... e eslabli.h a higher priorily for inputs "ilh higher subscript numbers. and if bolh
/)J and D. are I 311be g !lle lime. lhe OUlpul "'ill be 110 because O. has higher pri·
ority Ihan /),. Am)lhcr ambitu'l)" in Ihe octal.lo-binary encoder is 1hal In OUlpul
of .11 0·, is generated when all the i"pulS are O. but Ihis OUIJ>llI is lhe same as "hen
00 is e<juallO L l"isd~p"'ncy can be resoh-ed by providing a separale OUtput to
.ndicale Ihal aileasl one input is equal 10 I.

Priorlly Encoder

A pri{>Tit)' encoder is " conlbi" "tio,,"1 circuil Ihal implements" priorilY funCI.on,
A. mentioned in the preceding paragr~rh. the operalion of the priorily ~"codcr is
such Ihot if Iwo or more inputs Irc equal to I at Ihe same lime. Ihe Inpul having
Ihe h;gh~" priority tak"" pr"""dence. The lrulh lable for a four.input priority
eoooder ;" gi,·cn in Table 4·5. Wilh Ihe use of x · .. Ih;" condemcd lrulh lIllie wilh
JUIII Ih ·e ""' .. represem, the same informalion u Ihe usual 16-row Iruth lable.
Whereas X·. in OUlptJl coIumn~ represenl d""·I-eare condilion$. X', in inpul

IS4 0 CHAI'TER 4! COMBINATIONAL FUNCIlONS AND CIRCUITS

o TABLE4-S
T.ulh Table of I'riorit)' EJ>C<>der

tnputs Outputs

0, 0, 0, 0, " ~
,

0 0 0 0 , , 0
0 0 0 , 0 0
0 0 , 0 ,
0 , , 0 , , ,

ool umns arc used to represenl p.oduct terms that are nol mi nte.ms. For example.
OOIX r~presents the p.oduct torm D ,D,D,. JUSt as witll minttrms. caell ,'ariable
is complemented if the corresponding bit in the inp ut combination from the table
is 0 and is not complemented if the bit is 1. If the corresponding bit in the inp ut
combination is an X, then the "ariable doe, not appear in the p.oduct te.m. ThUs,
for_OO!!. the variable Do. oorresponding to the position of the X, doe, not appear
;n D,D,D,.

The number of .ow, of a full truth table represented by " row in the con·
densed table is 21'. where (! is the num ber of X"S in th e row. For example. in
Table 4-5. IXXX represents 2' - 8 truth table row .. al l ha"ing the same value for
all out put .. In forming a condensed truth ,able. we mu.t include each minterm
in at least one of the rows in the sense that mint~rm can be obtained by filling
in I', and 0', lor the X's, AI,o. a mimerm mus, never be included in more than
one row such that the rows in " 'hich it appears have one or more conflicting
output va lue.,

We form Table 4·5 as follows: Input D, ha, the highest priority: '0. re gard­
Ie .. of the va lues of tile ot her input .. when this input i. l. the output for A ,Ao
i< I I (binary 3). From thi< we obtain the last row of the table. D2 ha, the next
priority level. The output is 10 if Dl = 1. provided to Ol DJ = O. regardless of
the value, of Ihe lower priority input,. From thi,. we obtain the fo urth row of
the table , The output for D, is generated only if all inpu ts wi th higher priority
are O. and .0 on down the priority levels. From thi .. we o btain the remaining
rows of th e table . The valid output designated by V is <et to 1 only when one or
more of the input. are eq ual to I. If all in pms are O. V i, equ"1 to O. and the
other two outputs of the circui t arc not used and are specified a< don't-care
conditions in th e output part of the table.

The maps for simplifying Outputs Aj and Ao are shown in Figure 4-11. The
minterm, for the two function. are deri"ed from Table 4-5, The output values in
the table can be transferred dir""tly to the maps by placing them in the square.
co"cred by the corresponding product term represented in the table. The opti­
mized eq uation for each funClion is listed under the map for the funct ion. The

~,o. 0,
,0 , 00 "' " ..

00 , , ,

"'
" , , , ,

, .. , , , ,

'" '" ", - 0, · 0, o,~ o,l),

o FlGUHt; 4· 11
Maps for Priorily Encoder

e-qua(ion for OUl pul V is an OR fUn(1i"" of all Ihe iDpul ~a riableJ. 'Ihe priorilY
en<:Oder it implemented in Figu . .. 4-12 acoord'ng to (he follo"',n, n oolean
fUMtiort'l:

Encoder Expansion

A O - 0 1+0,'0,

A , .. 0 J+ O)

V - Du+O,+ D, +D)

Th"" far, "" h.,'c CQRSide.ed only all encode ... EncodeR can be upan<ied (0
larger numben of inpu!1 by upanding O R gal In Ihe implcmcnla!1on of

D t"IGU HE 4-12
Logic Di""om of . 4.lnput monty Encoder

156 0 CHAI'TEIl 4 I COMBINATION AL FUNCTIONS AND CIRCUITS

decoders, Ihe use of mu ltiple·level cirtuits with OH gates beyond the o ut pul lcvels
shared in implementing the more significant bit, in the omput codes red uce, Ihe
gale inpul oo uni a, n incrc~s for" <: 5. For n ;" 3. multiple ·levc! circuit' re,u lt
from technology mapping anyway due to lim ited gate fan·in. Designing multiple_
level circuits with shored gate. reduce. the cost of the encode rs after technology
mappmg.

4-5 SELECTING

Selection of information to be used in a oomputer is a "ery important function, not
onl y in oomrn unicaling between the parts of Ihe system. but also within the parts as
well. Among other uses, selecting in combination wit h value fixing can impleme nt
oombi national functions, Cin;uits th;>t perform selection typically ha"e a set of
inputs from which selections are made. a single nutput. and a sel of oo1\trol lines
for m. king the selection . Fir>!. w. con,ider selection using mulTiplexers: then we
brielly examine selection circuits im plemenled by uoing Ihree-1;tatc drivers Or
trall smi ssion g.te ..

Multiplexers

A mult iplexer is a combinational circuit tha t selects bin a.)' information from one
of many input lines and dirccts the inf"rmation 10 a single o ut put line. The sele<:­
tion of a particular inpul linc is controlled by a set of input variables, ca lled selec·
lion illpm.,. Nonnnily. there are 2" input lin .. and n selection inputs whore bit
combinations determine which input is selected . We begi" witb II . I. a 2·IO· I·lille
muhiple,cL This function has two information inputs, 10 and I ,. and a single sek'Ct
input S. The truth table for the drcuit is given in Table 4.6. Examining the tablc. if
the select inp ut S ~ O. the output of the multiplexer takes o n the values of [0- and. if
inpul S. I. the outp ut of the multiplexer takes on the "alues of I]. Th us, S selects
eit her inpu t 10 o. inp ut I, to appear at outpul Y. From this discussion. we can see
that the equation for the 2_to_ I. li" e multiplexer OUlput Y is

o ·I"ADLE-w.

,
" o

" "

'rnlth Tabl~ f ... 2·to· I·Une]I.Iultipl""~,

" "
" "

"
o ,
"
" ,
"

,

" "
" ,
"

-I--S I ~I<rt;ng 0 151

r-C~'
L .. b~"1
Orcu",

)-,
"

)-

o FlGURE4-B
A single bit 2-to-l· Li nc Multiplexer

This same equation can be obtained by using a J -variable K-map. As show"
in Figu,~ 4-13, th~ implcm~nlation of the p,,,,,,,ding cqualion can be d<oe<>mposed
into a l-t0-2-hne decoder, two enabling circuits and a 2-input OR gate.

Suppose thaI we wish to des ign a 4_tO-I· line multiple _.r. In Ihis case. the
function Y depend, On four inputs f". f, . I,. and f) and two select inputs 5 , and 50.
By placing the va lue. of fo Ihrough" in the Y col umn. we Can form Table 4-7,"
condensed truth lable for this multiplexer. In this table. the information ,·ariable.
do nO! appear as input column. of the table but appear in the output column. Each
' ow "'prese n,s multiple rOWS of the full truth tahle. In Table 4_7. the row 00 forep­
resent. all ro"' .. in which (5, . So) ~ 00 and. fo, '0 - I. give. Y - I and. for ' 0 - O.
gi"es Y _ O. Since there are six variables. and only 5, and 50 are fixed, this single
'ow rep'~'5Cnt. 16 ro", .. of the co.-responding full truth table. From the table. we
can write the equation for Y as

- -
Y .. 5, 5010+ 5 , 5,,1,+ S, So},+S, So l,

J{ this equation is implemented directly. two in,·erters. four 3-input AND gates. and
a 4-inpul O R gale are ,equiTed. gj"ing a gate inpul cou nl of 18. A differem imple·
menta!;"n can be obtained by factoring lhe AND terms.!o gi,-e

This implementation ca n be constructed by combining a 2-to-4-line decoder.
four ANO gates used as enabling circuits and a 4.input OR gate as show" in
Figu,e 4-14. We will refer to the combin~hon of AND gates and OR gate> as an

o TABLE 4·7
Cnndnoed Trut h Tol>!e fo< 4-, ... I·Linr
Mul, jpleUT

5 , So Y

" 0 , o 1 I,

o '. '.

158 0 CH.}.PTER' I COMBINATIONAL FUN=IONS ANU CII<.CUITS

-, ,
V

4 x lAND·OR
V

,
"

)-
">

"

"
o ~'I GUR£""14

A Single Bil 4-(o-l ·line Mulliplexer

m x 2 AND·OR. where m is the number of AND gates and 2 is the number of
inputs to the AND gate~ This res ulting circuit has a gate input count of 22. which is
Ihc more costly. Nevenheless. it pro"ides a "rucmral basis for constructing larger
n·to-2" line multiple_en; by expansion.

A mul tiplexer is also call ed a dam sdecm, . • ince it ",Iects one of many infor_
mation inp uts and stcon; the binary information to the output line. The term ··mul·
tiplexer" is often abbreviated as "MUX:'

Multiplexer expansion

Multiplcxen; can be expanded by considering larger values of n vectors of inp ut
bits. Expansion is based upon the cireuit strUelure given in Figure 4· 14 consisting of
a decoder, enabling circuits., and an OR gate. Multiplexer design is ill ustrated in
E~amples 4-4 and 4·5.

I EXAMPLE 4·4 64-to-I·Line II-lulliplexer

A mul tiplexer i. to be designed for n = 6. Thi, will require a 6-10-64_lino decoder
as given in Figure 4·9. and a 64 x 2 AND-OR gate. The resulting structure i,
, hown in Figure 4· 15. This structure has a gate input count of 182 + 128 + 64 =
374. [0 contrast if tne decoder and t~e enat>ling circuit are replaced by ;u.·erters
plus 7· input AND gates. the gate input count would be 6 ... 448 + 64 = 518. For
single-bit multiplc~e,.. ,uch as this one. combining Ihc AND gate generating D;
with the AND gate drh'en by D, into a single 3-input AND gate for every i = 0
through 63 reduce, the gate input count to 310. For multiple-bit multiplexers. this
reduction to 3·input ANDs cannot be performed without replicating the output
ANDs of thc decoders. As a result. in almost all cases, the original str uct ure ha< a

.j...5 I klor<rin& 0 159

~------ --- -------------------- ----------- --- --------,

A,-f , , , , ,
A, ---+ , , , , ,
~-t ,

• • •

'1"""""""ccJ"""~-::=t~~~~~::::Jlcccc"",,,J ' ,-f
,---------------- --------------- ------------

o n GUIU, 4-15
A 64·to-l·U"" MultiplUC!

I""",r ,ate 'npul COIiI. The nexl example muslntes the expansion to a multiple·bit
multiplexer. •

EXAMPU: 5 4·1 ... I·Litte (}gad Multipl .. ".

A quad 4·I()o I· linc muhipleur. ",hieh has two 5<'1""IOon inpul< and each infOfma·
lion iopul repla~ed by. '-ector of four inpUIs. i5 10 be de.igned, Sin~ Ihe informa­
lion in pu l. Ire a ,'cctor. Ihe out put Y a lso l.>e<:omes a !o ur-.,Ie menl vcolor. The
im plemenla!ion for Ihi. multiplier req uire. a 2'10-4-li no docoder, 8~ given in figure
4-7, and {our 4 >c 2 AND·OR gales. Thc rewlling S1ruc\ure is shown in ~Igu", 4-16.
This ot.ructure has . gole input """nl of 10 ~ 32 • 16 '" 58. In contraSl, if four 4·
input multipluers implemented ,,;th 3-input lites ..-ere placed .ide by .ide. the
gate input COlInl would be 76. So, by sharing Ihe dewdtr • ..-e reduced the gale
inPUI coun!. •

Alternative selection Implementatlon8

By using Ihree-5lale drivers and I r~n smiSJion gates. il i. possi ble to i",plc",cnl dala
selcclors and mull iplcxe .. with e"en 10"'.' COSI Ihan is achievable wi llt gales.

160 0 CHAPTER 41 COMBINATION AL fUNcnONS AND CIIlCUITS

o n GURfo:4-16
A Quad 4·1<>- I·Une Mul,jplexer

THREE-5TATE IMPlEWE~AT100S Three·state dri>cr" introduced ill Chapt er 2. pro·
vide an alternative impleme ntation of mult iplexe In the implementat ion giye n;n
Figure 4.17(a}. four) .<late J ri," rs with their outputs connected to Y Teplw:e
enabling circuits and the output OR gate to give an impleme ntation wit h a gate
input co unt or 18. 'n ,e logic ca n b<: "duced rUTther by distributing the d"ooding
acTOSS 1he 1hree-st~te drivers as shown in Figure 4-17(b). In this case. 1hree pairs of
enabling eircuit<. all with 1WO.outp~t decod.rs consis1ing of simply a wire and .n
in,wler. drive Ihe enable input ~ The gate input coum for thi. circuit is reduced to
just 14.

TRANSMlSSlOt! G ATE IMPLEMENTAT10N As a modi fication of t~e J-s1ate approach in
Figure 4. 17(b}. ""I~ction ci rcuits can be constTucted with transmission ga les. This
implcmcnlation. shown for 4-to-1 selccrion in Fig ~re 4-18. uses transmi>sion ga les
a, .witehes. The TG circuit pro_ides a transmbsion path betw".n each / input and
the Y oU1put when the two selecr inputs on the transmission gates on the path ha>e
tbe val ue of 1 on the terminal without a bubbl" and 0 On the terminal wi1h a bub·
ble. Wit h the opposite "alue on a selecr input, one of tbe 1ransmission gate, on the

, , '
" 0

" 'f C-

" -I

"

.. ,

"

o ~lGUKE4- 17

Scleclion O=,to U .. ", llI~"""te Dr;"" ..

palh beh.a\'CS ~ke an open "" .. ch. and the 1»01 11 ;. diMonnected. 1be two '!election
inpuls S, and So control the tnn~miS$iOn paths in the TO circulll.!'Qo- uample. if
So - 0 and S, = O. IMr" is a dOOlCd pIIlh from input I . to output Y. and 1M OIlier
three inpu~ a,e disconnected by Ihe mher TO circuil>. Th" cost of • transmission
&Btl' i. cquivaleOl to a gale input coun, Qf one. ThUs, the gate inpul COOn, of Illn
transmission galc-baoed mul,iplner is eight.

4-6 COMBINATIONAL FUNCTION IMPLEMENTATION

lftcodCfS and multiplexe .. can be used to implement Boolean function!. In addi·
lion. the programmable logic devi~$ inlfoduced in Chapler 3 can 1M: viewed as
comaining funct ional block. sui'able for implememing combinational logic fune­
lions. In this ='ion. we cover the use of decr>ders. multiplexer;_ rcad.<.>nly memo
oriel (ROMs). programmable loVe arrays (PLA.). prosramm.bl~ array logic
dc~kel (PALs). and loo~~p t.bl~s (LUTI) for unplemcming oomb'Mllonal logic
function ..

162 0 CI-I/wrel<. ~ I COMBINATIONAL FUNCTIONS AND CIRCUITS

,
V ,

V

I
'. ro

(So - Q) I
TO

(S, _ 0)

ro
(s. - I)

TG
(So - 0)

1'0
(S, _ I)

IU '. (50 - I)

T

o n GURF, 4-18
'-1o· I ·Lin< Mull;pl<,er u,;ng TTan>m;";",, Gale,

Using Decoders

A decoder provides (he 2" mimerms of " inpUl variables. Since any Boolean
function can be c.pres..,d a, a Sum of n,intenns. on" can use a de~oder to gener­
ate the minterms and combine them wit h an external OR gate to form a sum·of­
mintenn$ impi<:menlnl ion. In this way, any combination~1 circuit with II inpuls
and", OUIPUI, can be implement ed with an II. to·2"· linc decoder and /Ii O R
gales.

The procedure for implemenling a combinational circuit by m,.ns of •
decode r and OR gales requires Ihatthe Boolean function. be expressed as a sum
of mintcrm~ This form can bc obtained from Ihe Iruth lable or by ploning each
funclion on " K-ma p, A decoder;' chosen or designed Ihal generales a ll Ihe min­
term< of Ihe inp ul ,'ari.ble$. The inpulS to each OR gale are selected as the appro·
priate mimerm out put, accord in g 10 the lisl of minterm, of each funclion. This
proce .. is ,hown in Ihe nUl e~amplc.

~;XA~lI'LE 4-6 Derockr OR G.t~ Implenlf:nt.tiOll or. BilllOr)' Adder IIiI

In Chapt~r I. "'~ consid<:.ed binary addlllOll.ll>e sum bit output S.nd the carry bit
output C for a bit """i.ioo in 1M addition are given in .errI15 of Ihe 1 0 bits being
added . X and Y. and 1M incoming tarry f.om the ris.hl. Z. in Table 4-8.

o T,\BLF.4--3
·tru.h T.hle f"l" l ·lHt Bin • ..,. Adder

, , , , ,
, , ,

"
, , , ,

" , , , , , , , , , , , , , , , , , ,

I'.OOllhi •• ru.h lable e ob.ain Ihe funel;on. fot: Ihe ""mbinalional cir<;uil in sum·
of·minlenns form:

SIX. Y.;!) _~"'(1.2.4.7)

C(X,Y.Z) "' ~",(3.5.6,7)

Since there are Ih.ee inpul. and 8 lolal of eight m;nlerms. "'e need a 3-10-8· Ii"e
de<:ode •. ll>e implemenlalion '5 . ho,.·n in FIgu,e 4-19. 111c dtt-odcr generales all
e;glll minterm, for inpulS X. Y. and Z. The OR gale for OUlpul S fo.ms lhe logical
sum of minlerms 1.2.4. and 7. The O R gale for output C forms the logical ~um of
m'nle 3. 5. 6. and 7. MinlCnn 0" nO\ w.ed. •

A funl."tion wilh " long lost of m[nlerms ''''lui"" an OR gale ,,·i,h • luge
number of inpUIs. A function ha'·,nll lISt of k mintenn. can be expreW!d ,n ilf
complement form ilh 2" - k min,cnns. If Ihe number of mime in a func.ion
F i,veale. Ihan 2"f2.lhen Ihe co.nplemcnl of F. F. c.n be c"pr~ ,.·ith fe....-c.
minl e.ms. In ,ueh a C8S<'. il is advantAgeous 10 use a NOR gale instead of an OR
gale. The OR portion of Ihe NOR gale prnduccs Ihe logical , um of Ihe minle.""
of .;;-. The OUlput bubble of Ihe 1'1011. g~le complements Ihi. sum and generales
Ihe normal output f:

·llI e dcooder melhod can l>e uoed 10 ""plemen! any combina1lonnl circuit.
1·lowe,·er. Ihi. implemenlalion mOSI he compa",d ,.;111 olh~1" """,ible implemctlla.
lion. 10 delermine !he ""'. solulion. The: deoo<kr melhod may provide lhe b" , 1
solution. pankularly ir 1M combinallOnal circuit II •• many OUlpu~ based on Ihe
same inp"l~ and each OOlpul function is expr~'<l \\,Ih a <maU number ofminlenn$.

16" 0 CHIIVTER ' I COMUINIITIONAL f UNcnONS ANO Cll1.CUlTS

a n GURE 4·19
Implemenling ' Ilulary AddoT Usi ng> De<:odeT

Using Multiplexers

In Seaion ".j. "'C leamed Ihal I decoder oombin~d "';Ih an III" 2 AND-OR gale
implemcnu I multiplexer. The dc<:oder in lhe multiplcur generalcs Ihe minlerms
of Ihe sel«lion inpulS. The AND-Oil. gale pro,·ides enabling cin:uil~ Ihnt deter­
mine "helher the minlem,. are "all"ched·· It> the OR gale with Ihe inform.lion
in pulS (/,l used .5 Ihe enabli ng ,igMIs. If I, inpul is I. Ihe n mi nlerm "" i. allached
1<.> the Oil. gate. and. if the I, input i~ a O. Ihen minterm rIIi i, replaced by ~ o. V~ltje_
hing applied 10 the I inpu1' provides a melhod f<.>< impl."",nl,ng 8 O()Olean func­
I n of ~ variabl .. with a muhiplexer h~vil1g II selection inpul5 and 2" dala II1pulS,
one for each minlenn. Funhcr. an ",-oUIPUI funclion can be implclnC'nlW by using
value-fix'ng on a muhiplexer "'lb m_bil informalion vecto,", iMlead of Ihe indr.id­
lIall bilS-1S ill",'nIW by the nexI enmple.

EXAMPU: 4-7 Mullipluer Imple n,en'Mliod of. Hina.,. Adde. Ril

The values for Sand C from Ihe 1_bil binary adder Irulh lable si,·en in ·n.ble 4-8
can be gencTIIled by USing v.lue-fi~in8 0 11 Ihe i"formalion inpulS of a multiplexer.
Sin.oc 'hc", arc Ihr~e sel~clion inpulS and a 10lal of .igbl minlerms. c need B dual
S-lo-I-Iine multiplexer for implemenling Ihe 1 0 OUlpulS, Sand c.1"he ;mpl."",n­
lalion based on It..: uUlh labie is d\o n in Figure 4-20. Each I"'ir of values. M>Cb as
(O. I) on (I". I,M. is laken direclly from Ihe corresponding row oflhe laSI 11.-0
trulh lable columns. -

A I1Wre efficient mdhod imp1tmcnl~ a Boolea" funchon of" variables "';Ih a
mul\'pluer Ihal has only II - 1 sel""lIon inpUis. The first" - 1 variable, of Ihe
fu nction ~re oonncckd to the selecliml jll pu," of Ihe m~hiple~cr. 11,e remaining
,·ari;,ble of Ihe fUII Clioll is u,ed lor Ihe infor ma lion i!puts. If the fina l vuriable i5 z .
each dalu inpul of Ihe mu ltipluer wi ll be ei lher Z. Z. I. or O. The funclion can be
implc"",nlW by 811aching inlplemcnlat;Qn5 of Ihe four rudimcnlary fU"",, lion. from

o nCllR !;; 4-2(1

._6 I Combin>tion.1 Fon,ction Impl.nt.nution 0 165

, , ,
" " ,
"
• • ,
" " • ,

=
=
=
=
= -
-
-

=
=

" ~" " 8"0-1
SO MV"

" " '" 11.<

'" I,.,
'" I,.,
'. ' ..
'"
1" ,

" ',.
'" '.

'.
" ~

, ,

Impicmcnling . l-bil l),nary A<kler ... i," a DuaI8_to-l _Line Muhiple«T

T .. bl~ 4_1 to the information in puts to the multiplexer. The next example demon­
SlrnK"l this pTOC<'durc.

EXAM P : 4-H Alt~mati"e Mulliplcxcr III'plclncntuliun "f M MinaI')' Adder Hit

This function can be implemented with a du~l 4_to _J_line multiplexe r. as shown in
Fi8ur~ 4_2 1. The desisn pToc<:d ur~ can be ill ustrated by considering the SLlm S lhe
Iwo v"riablc< X and Y are applied to the selection l in~$ in Ihat order: X is con­
ne<:led 10 the S, inpu1. and Y is connected to the SG input. The '-alue< f'" the data
input linc. are determined fTOm 'he (TUtlt (abl~ of (he function . Whcn (X, Y) - 00.
the uulpul S is <XJuallo Z because S _ 0 wh~n Z _ 0 and S _ J when Z - I. Th is

" Sl Dtal
Y SO ~t(>-'

MUX

o neURE 4-11

, ,

Implementing' j_bit BinaTY Adder with. Dual S-tt}-l _Line MultiplexeT

166 0 CHAI'TER 4 I COMBINATIONAL FUNCTIONS ANI) CIRCUITS

requircs that the variabl~ Z be applied to informalion input foo- The operation of
the multiplexer is such that. when (X. Y) • 00. informalion input foo has a path 10
the output that makes 5 equal to Z, In a similar fashion. we can determine the
required input 10 lines ' , .. f>n- and I)IJ from Ihe vat ue of 5 when (X Y) • 01. 10,and
II. respecti,'ely.A similar approach can be u",d to determine the valu,," for [O!' f ll ,

~.~~. .
The genoral procedure for implementing any Boolean function of" vari.bles

with a multiplexer w"th n - I sdeetion inputs and 2"-1 data inputs follows from
the preceding example, The Boolean function i. firs! li.ted in" truth table. The firs!
n - 1 variahles in Ihe lable arc appliN to Ihe seleetion inputs of tne mu ltiplexer,
For each combination of the seleetion variables. we evaluate the output as a func­
tion of tlie last variable. This function can be O. I, the variable. or the complement
of the variable. These values are then applied to the appJOpriate data inputs. This
process i. illustrated in the next example.

EXAMPLE 4-9 Muhipk> .• e. Implementallon of 4·Varlable Function.

As a second example, consider Ihe implemenlalion of the following Boolean
function:

F(A. B, C. D) = ~",(1. 3, 4. J I. 12. 13. 14. IS)

This function is implemented with an 8 x I multiplexer"" shown in Figure 4-22 . To
oblain a cnrrect rcsul[, Ihe variables in the truth table are cnnnecIN 10 selection
inp uts 52' 5" and 50in the order in which they appear in Ihe table (i,e .. such Ihat A
is cnnnected to 5,. B i, cnnnc>ctcd to 5,. and C is cn""""ted to So. re<pectively).
The value< lor the data inputs are determined from the truth tablo. The informa­
tion line number i. determined from the binary combination of A, B, and C. For
uample. when (A. B. C) - 101, the truth table shows tbat F - D: so the input
variable D is applied 10 information input fJ' The binary constant. 0 and I corre­
spond to IWO fixed signal ,·alues. Recall from Section 4·2 that, in a logic schematic.
these constant values are replaced by the ground and power symbol' a, ,hown in
Figure 4·2 •

Using Read-Only Memories

On the basi. of the decoders and multiplexer> covered th us far. Ihere are Iwo
approaches 10 the implemenlation of read-only memories. One approach is based
on a decoder and OR gates. By inserti ng parallel OR gate,. one for each ROM
output. to .um the minterms of Boolean functions. w'e were able to generate any
desired combinational circuil, The ROM can be viewed as a device that includes
both the docoder and the OR gates within a single unit. By d osing cnnnections to
Ihe inpuls of an OR gate for those minterm. that are included in the function. the
ROM outputs can be programmed to represenl the Boolean functions of the out­
put variables in a cnmbinational circuit. The alt ernative approach i. ba",d On
value-fixing on a multiple-bit multiple,cr, The I, ".tuc. are u",d as e"abling

,
" ,
" ,
"
" , ,
, ,
, ,
, ,
, ,

"' 0 ,
" " " "
" "

, ,
" , " "
"
, , ,

, " "
, , " , " , ,

" " , , ,
"

" " , "
" " , "
"

, ,
" "

, , ,
,
"
, , , " , ,

, , , , , , , ,

, -"
, -o c

" ,-o ,

" , -,

, -, "
, -"
,-,
, -,

8xlMUX ,
'. ,
" L , ,

L
; , ,
" '-- ,

o "'CURE 4-11
Impkm<nting 0 R:>u,-lnpul Funtlion ,,·;111 " M ulliple.er

r-

signals to determine whi ch mimcrms arC connected 10 (he OR g.lC$ wilhin {he
muhiplexcr bilS. This i< illu<lrated by Example 4-8 which is e<Juivalent to a ROM
wit h three input' and tW<J ou{plllS. The "programming" of lhi' ROM approach i,
done by applying lhe trUlh ,able to th e in/(lTm",io" inputs to (he multiplexer.
Becau:;e Ihe decoder and OR gates approach is just a di fferen t model. it 100 can
be ~programmcd" by using a trul h lable to determine the conneelions between
thc decoder and the OR gates. ThUs. ;o practice. when a combinational eireuil is
designed by means of. ROM. il i. nol necc<sary to design the logic or 10 show
{he inlernal connectio"s inside the uoit. All that (he designer ha, 10 do i, 'p"cify
Ihe panicular ROM hy ils name and pro, ide Ihe Iruth lable for Ihe ROM. The
Iruth lahle gives alllhc informal;on for programming (he ROM. No inl ernal logic
diagram ;s needed (0 accompany Ihe lable. Example 4-10 shows Ihi' usc of a
ROM.

t:XAMPn: 4-10 lmp(ementJn~ a Combin~lional Cirmil U'i"~ a ROM

De,ign a combinalional circuil u,ing a ROM. The circuil accepls a 3-bil number
and generales an OUlput binary number equal to Ihe .quare <.>f Ihe inpul number

168 0 CHAPTER 4 I COMBINATIONAL FUNCTIONS AND CHtCUITS

The first step in de,igning the circuit is 10 derive the truth table of the combi­
"lOtion" I cin;uit. In mo>\ cases. thi' is all thai is needed, In other ca:;cs. we can use a
partial truth table for Ihe ROM by milizing certain properties in the output vari­
ables. Table 4-9 is the tr uth tohle for the combinational circuit. ThTCe inputs and six
o ut puts aTe needed to accommodate .11 of the possible binary numbers. W. nole
thai oulpul 8 Q i. always eGual to in put Ao,so there is no need to generate 8 0 with a
ROM. Moreover. output 8, is .Iwa)'s O. S(l this output is a known con,tanl. Th Us.
we actually need to gener-ne 'mly four outputs with the ROM; the otheT lwo are
TC;>dily oblained. The minimum size of ROM needed TII ust have three inputs and
four outputs. Three inputs specify eighl words; SO the ROM must be of size S x 4.
The implemenlalion of Ihc ROM is shown in FiguTe 4·23. The three in puts specify
eight words of four bits each, The block diagram of Figure 4-23(a) 'hows the
req uired connection. of Ihe comhinational ej'CIIit . The truth table in ~-;gUTC 4-23(b)
specifies the information needed for programming the ROM. •

o TA8LE4-9
Trulh T~bl~ for CI lt ur Eun'ple 4-10

Input. Output. . , " .. '. " '. '. " '. DecImal

" " " " "
,

"
, ,

" , , ,
" "

,
"

, , ,
"

, , ,
"

, ,
"

,
"

, ,
" "

, , ,
" "

, ,
" "

, ,.
"

, , , , , ~ ,
"

, , , ~

"
, 0 "

'. " ' . '. " '. 0, ,
"

, 0 "
, , ,

"
, " , , , ,
" " 0 , 0 •

,--
" , , 0 0 • ,
'. " " " • " , , , , , 0

8 x '''OM

" , 0 0 •
" " "

(b) ROM ""'h lObi<

o FIGURE 4-23
ROM Implom<"lation of Example 4·10

ROM devices are widely used to imple ment complex combinational circuits
directly from the ir truth tables. They are useful for conve rt ing from one code.
such as Gray code. to another. such as BCD. They can generate complex arith ­
metic operations. such as multiplication or division, and in general, they are used
in applications requiring a moderate nu mber of inputs and a large num ber of
OUtputs.

Using Programmable Logic Array,

The PLA is similar in concept to lhe ROM. except that the PLA does not provide
full decoding of the variables. so it does not generale all the minterms. The dC«>der
is replaced by an array of AND gates.each of which can be programmed to gener_
ale any product term of the input variable .. The product lermS are then selectively
connected to OR gates as in a ROM to provide the sum of products for Ihe
required functions.

The fuse map of a PLA can be specified in tabular fOnTI. For exa mple. the
programming table tbat specifies the PLA of Figure 4_24 is listed in Table 4·10. The
table con,iSlS of three soclions. The 6rs\ section lists the product term numbers.

r;' "
, " X F ... in,",,'

~ Fu« bIon ,
"'

• ABC

, , • • , , V • ,
"

o FIG URE 4-24
PLA "'i,h Three Inputs. Foor Proou<1 Terms. and T"" O",pUlS

1 70 a CHAPTEJl ~ I COMurN"TlON"L f UI'CTrONS ...r":D CUI.cun'S

D TARLE4- IO
" r""",nmlftJ T rOf lbe I'LA I. Fogure 4-2.1

""'" ~
.~~ In '" ,,~ , • , '. '.

A' ,
" AC ,

,e , ,
ARC , • •

The second $«lion lopCOlks rhe requ"td palhs bell"ttn inpulS and AND &lites.
1'11 •• third $«lion s~ilks the paths between the AND and OR pIes. For nch
output variable e may have a T (for true) Or C (fOT complement) for controllin,
the OUlpul exdus;ve·O R pte. 1'he product Ic"", listed on the leh are n01 perl of
the table; they are included for reference only, F01- each product t.rm. rhe Inputl
are mar~.d with I. O. or _ (dash). If a variable in the producl t.rm appears in ils
true form . the correspondIng i"put variable is marked with a I. If th. variabl. in
the product term appearJ compicmen ted. Ihe corresponding inpul variable is
marked wit h a O. If the v"ri"ble is al)$C tl1 in Ihe proouct tcrm. it is ma'ked with a
dash.

n,c paths between the input. and the AND gates "rc s~ified under Ih. col .
umn heading " Inpuls" in the table. A I in Ihe inlmt column 'pedfiel " CLOSED
cirru;t from 1M: inpur variable 10 the AND gate.A 0 in Ih. inpul column specific. a
CLOSED cirruil from lhe complemenl of lhe variable to the input III the AND
gale. A da$h specifie. OI'EN crrruil' for both the inpul variable and itl comple­
men1. It .. assumed that an OPEN lerminal On Ihe input III an AND ptc behl".,.
like a I.

The path. hetween the AND and OR gales are specified und.r Ihe column
headin, ·OutPUIS. - 1"htc ou tput variables are marked with n for those product
term, that arc included in the function. Each pToduCI leno Ihal has a I in Ihe
output column requires a CLOSED palh from the output of the AND pIc 10
Ihe input of Ihe OR gale. ThO$C product term, marked wilh • dash specify an
O PEN circuit. II is 3nun>cd Illat an open terminal on Ihe input of ~n OR g"le
bellaves li ke a O. Fin.lly. " T (true) output diclOle, th aI the <>Ihcr ,nput of Ih.
corre'ponding XOR gRle I", conn~cted to O. and a C (complemenl) 'I",df,es "
conneclion 10 L

The size of a I'LA IS spedO.d by Ihe numlxr of inpUIs. the numlxr of prod·
uct lenos. and th. number of out puts. A typical PLA hal t6 inpu". 48 product
tern,s. and eight OUlputS. FOr n inpulS. I< product IUms. and m OUlpuU. the inlernal
logic of lbe PLA consist, of " buffer_Inverter gales. k AND gales. m OR lales. and
m XO R gates. 1"htcre arc 2n)t k pr"".mm.bl. conntthOru: between lhe inputs and
the AN D arra~. k)t '" programmable connections bet"".n the AN I) .nd OR
arra)~ and m pr<>&rammable ronnectlOn' ~3ttd "ith the XO R ptes.

4_6 I Combin>cional Fu",c\ioo Impl<m<ntooo" 0 171

In designing a digital system with a PLA. there is nO nted to show the ,nter_
nal connections of the unit. as was done in Figure 4_24. All that is needed is a
PLA programming table from "'hich the PLA can be progra mmed to supply the
required logic, As with a ROM , the PLA may be m .. k programmable or fi eld
programmable.

[n implementing a combinational drcuit with a PLA, a careful inycstigation
must be undertaken in orMr to rcduce thc number of d istinci proouci term .. 50

thai the complexity of the circuit may be reduced, Fewtr product I~rms can be
achie, 'ed by si mplifying th~ Boolean funclion to a minimum n um ber of lerms.
The number of li teral, in a term is less important, si nce all the input variables
are available anyway. It is wi.." howe"cr. to avoid extra literals. as these may
cause problems in tesling the circuit and may reduce Ihe speed of the cireui!.
Both the true and complement forms of each function shou ld be simplificd 10 see
which one can be expressed with fewer prooUCI lerms and which one provides
proouci terms Ihal are common to other functions, This process is shown in
Example 4-11.

EXAMPLE 4-11 Implementing a Combin~lional Cirruif U'in~ a PLA

Implement Ihe following Iwo Boolean functions with a PLA:

F,(A,B.C) _ :!;m(O.I,2,4)

F,{A,B.C) - :!;m(O,5,6,7)

The 1wo funclions are simplified in Ihe maps of Figure 4-25 , Both the true
and complement outpulS of the functions are simplified in sum·of·product< form
The combination that gives a mi nimum number of proouci term, i,

F, _ AB+AC + BC

1'1 - AB+AC+ABC

The simplificalion gives four distinct proouci lerms: A B, A C. B C. and ABC.
The PLA programming lable for this combination;'; shown in the figure. NOle thai
outpul Fl.is Ihc true oulput, e,'en Ihough a C is marked o,'er it in Ihe lablc, Th;,; is
because F, is generated with an AND-OR circuit and is~vailable al the output of
thc OR gate, The XOR gate complements Ihe function F, 10 produce the true F,
output. •

Using Programmable Array Logic Devices

In d,,",igning wilh a PAL de,·jce. Ihe Boolcan funclion, must be .implificd to fit into
ead, "'Clion as ilill5traled by the example PAL device in Figure 4·26. Unlike the
arrangement in the PLA.a produci lerm cannol be shared among Iwo or more OR
gates. Therefore, each funclion can be simp lified by it,elf. withoul regard to

172 0 CHAPTER 4 f COMBINATIONAL FUNCTIONS AND CIRCUITS

,
" ;:;;, 00 01 II to

oc ' ~OOOIIlIO

,G::EEE]
+~ AI:.

c
F\ _ AB + AC +BC
F, _ AB~AC ~ BC

c
F, _ AB+AC +ABC
F, _ AC ~AB +ABC

Out"""
f'<odutt 1o""" (C) (I)

term ABCF, F,

AO

<C ,
OC , , ,

ABC , , ,
"

o FIGURE 4-ZS
Solution to Exampk 4-11

common product term .. The number of product lerm, in each ..,ction is fixed. and
if the number of t~nns in the function is too large, it may be neceilSary to use two
or more ..,C1ion. to im plement one Boolean function. In ,uch a ca.." common
lennS may be useful. This proass is illustraled in Example 4-12.

EXAMPLE 4-12 iml'lenlenting a COInbinational Circuit U,ing M PAL

As an example of a PAL device incorporaled into the design of a combinational
circuit, con,ider the following Boolean functions. given in sum _of_minterms
fonn :

W(A ,B,C,D) _ :E ",(2, 12, 13)

X(A, B,C,D) - :E ",(7,8,9,10,11,12, \3, 14. 15)

Y(A, B,C,D) ! ",(0,2,3,4,5,6,7,8,10,11,15)

Z(A,B.c'D) - ! m(I,2,8,12, 13)

Simplifying the four functions to a minimum numt>er of terms results in the follow­
ing Boolean function"

W= ABC+ABCD

X - A + BCD

, w

o FlGUKt: 4·U;
Coou«.k>f, M.p for PAL. Do .. "", for Eumple 01.-12

t 74 0 CH~i'TUl-' I COMIIIN~T10N~l FUNCI"IONS ~ND C I><'CUITS

y - AB+CD+BD

z. ABC+ABCD +ACD+ABCD

- W+ACD+ABCD

NOle Ihat Ihe funclion for Z has four prodllCl lerms. The logical sum of 110'0 of
Ihese lerms is eq ll;ll 10 IV Tllu", by using W, il is possible to reduce Ihe number of
lerms for Z from four 10 Ihree, so Ihal Ihe funclions can fil inlo the PAL device in
figure 4·26,

n.e PAL programming table is sin,ilar to the table used for the PLA,
•• Cepl that only the inpu15 of the AND gales nC<:<! to be programme\!, Table 4·] 1
lis", the PAL programming table for the pr.a.ding four !loolean functions. The
table is divided imo four sections "'ith three product terms in each. to conform
with the PAL device of Figure 4·26, The first twO sections need only two product
terms to implement the Boolean function. By placing W in the first section of the
device. Ihe fecdb3Ck conne<:tion from FI inlO the array is avai lable to reduce Ihe
function Z to thT"" tenns.

The connect ion map for thc PAL device. as specified in the programming
table. is shown in Figure 4·26. FOT each I or 0 in th table. we mark the corre·
sponding intersection in the diagram with the symbol for a C LOSED ci«uit COn·
nect;on. FOT each dash. we mark the diagram with O PEN circuit connections for
both the true and complement in puts. If th e AND gate is nol used. we lea"e all
of its inputs as CLOSED circuits. Since the corresponding inpul recei,'es both
the lrue and Ihe complement of each input variable. we ha'-e A'A x O. and the
outpul of the ANI) gale is alwa)'1 O. •

o TAHI.E 1t
I'AI.- 1'."V"n.mlnl Tobie for F..an.ple 4·t1

AND Inpull
Produc. - , • , 0 W DUlpuil

, 0 w _ '"< ,
" " " +A8CD ,

• X - X , , +BCD

• ,
" , - " • ' CD

• " " + 8D

" , - W
U " " +ACD

" " " " + AR CD

4_61 eomblla,ion.l Fun<tion Impl<mo;n"tioo 0 175

Using Lookup Tables

Field-programmable gate array~ (F'PGA~) and complex programmable logic
devices (CPLDs), often use lookup tables (LUTs) for implementing logic, Pro­
gramming a ~ingle function w;th m inputs is the same as programming" single
output ROM (Le., the look up table simply stores the truth table of the fun~lion).
An m-input lookup table can implement any function of '" or fewer variables.
Typically, '" ~ 4, The key problem in programming lookup tables is dcaling with
functions with> '" input ,-ariables. Also. ,haring of lookup tables among multiple
functions is important, These problems can be dealt with using multiple _level
logic transformnlions, primarily decomposition and extraction, 'll1 e optimization
goal i. to implement lI'e function or functions by using a minimum number of
LUTs with the constraint that a single LUT can implement a .ubfunction of at
most m variables. This ca~ be accomplished by finding a minimum number of
equations. each with at most m variable~ that implcmem the desired function or
funct;on~ This process is ill ust"ted for single-<>utput and multiple-out put func­
tions with '" ~ 4 in the following examples.

I I<:XAMI'Lt; 4-13 Im"lcn,enting .. Single-Output .'und;oo "jlh L.K.ku" T.hlco

Irnplem"nttht fQlIow'"g Boole"n functIOn w;th lookup tables'

Ft(A,R,C, 0, E, F,G,H,I) - ABCDE'" FGIIIOE;

The number of input variable, for a function is called the support s of the fu~ction.
The supporl for F, is s .. 9. It is "Pl"'rent that the minimum number of lookup
tables k needed i, at least 914 (i.e., k .. 3). Further. for an m_output function, the
minimum number of lookup tables for a single-<>utput function mll5t obey an even
more stTingent relationship, mk ~ s + k - I, SO k must .. tisfy 4 k ~ 9 + k _ 1 Solv·
ing, k ~ 3, so we will loox for a decompos ition of F, int{) three oqu"lions. each wi!h
at most J" 4. Factoring F,. we obtain

F, _ (A/JC)l)l;.' ''' (FG I/I)O£:

Based on thi' cquatiM, P, run be decomposed into three equations with.,,; 4,

F,(D,E,X"Xl) • X,DE+ X,DE

X,(A .B.q _ ABC

X,(F,G,fI,I) _ FGIII

Each of these thTCC equation, can be implemented by one LUT. givi ng an opti_
mum implementation for Ft. •

176 0 CH AVTEII. ~ I COMnlNATIONAL FIJ"'CTIONS AND CIRCUITS

EXAM PLE 4-14 Irnplc'O>enting _ l'tIullipic:·OuIPUI Function "llh Lookup Table,;

Irnplernenllhe foUowing pair of Boolean functK>n with loo~up lables,

F,(A.B,C,D,E.F.G, II.1) - ABCDE+FGIIIDE

F:(A,B,C,D,E.F.G.fU) - ABCEF + FGHI

Each of the.., functions requires a support s ~ 9, Thus.. at leasl three LUTs are
required for each funetion. Ilut t",o of the LUTJ can be shared, SO the minimum
number of LlTfs needed is k ,. 6 - 2 ,. 4. Factoring Fl with sharing of equations
witb the decornposilK>n of F1 from the prevK>us uarnple &i'-es

F, _ (ABCl£F+(j.·GHI)

This produces an utraction for FJ and f i e

F,(J),E,X" X1) - X,OE+X,J)E

F,(E,f:X,.X:) = X,EF + X,

X,(A,B,Cl - ABC

X,(F.O.JI.I) _ FOil'

In this =. the extraction requires four LUTs, the minimum number. Note that in
general, there is no guaramee that a de.:omposition or e,t,"clion can be found thaI
requires the minimum number of LUTs calculated. •

4-7 HDL Rn'IU''''ENTATION FOR CO.\lRINATIONAI.
CIRCUlTs--VHDL

Since an HOL is used for describing and designing hardware, il is VCT)' important to
~eep the undcrl)ing h:u-dware in mind as you wrile in t/ll: language. This is p"-I1irularly
cri6ral if your language description is to be synthesiud. For example. if you ignore lhe
hard"....-e tbat "'ill be generated, il is very easy to specify a large complex gale >lTUClure
by using x (mulliply) when a much simplcrstTUClure using only a few gates is all tbat is
needed. FOr this reason. we initially emphasize description of deJailed hard""re "irh
VHDL and proceed to more abslract, higher.le""l d=riptions later.

Selected example. in this chapler are u..,ful for imroduc;ng VHOL as .n
alternative mean. for repre""nting detailed digital circuit .. Initially, we show
structural VHOL de5criptK>ns that replace Ihe schernalic for the 2-!0-4-line
decoder with enable giv~n in Figure 4·10 on page 152. This example and one using
the 4-to-l -line multiplexer in Figure 4-14 on page 158 illuslrale many of Ihe

fundamental conct!pls of VHDL We then present higher level functional and
behavioral VHDL descriptions for these circuits that further Hlusuate fun damen­
tal VHDL concepts.

t:XAMI'L£ 4-15 Structural VIIDL fnr a l-tn-4-Llne Deroder

Figure 4-27 sho"' .. a VHDL description for the 2-10-4-line decoder circuit from
Figure 4· 10 On page 152. This example will be used 10 demonstrate a number of
general VHDL fealures as well as structural description of circuits.

The text between two dashes -- and the end of the line is interpreted a, a
comment. So the description in Figure 4·27 begi ns with a two·line comment ide nti .
fying the description and its relation,hi p to Figure 4-10. To assist in discussion of

__ 2 _~o _ ~ L\"" D<K:D<kr with Enobl., S~ruc~ur41 VHIlL """,,cr iptiC<l
_ _ {S<><> Figur. 4 _1 0 for l ogic di"9"'""1
libra ry i l cdf_ vhdl,

''I'" i _ . .t<Llog;'c_ 1164 . • 11 . l cdC vhdl . fWl<;J>rimo dl,
en~in decodec LtO_ ' _w_en<Obl. h

port (~ . 11.0 . Al , in 3 tQJ.ogic ,

00,01 . 02, D3 , ov.t 8tdJwicl' e"" deccdec:Lto_4_",_~1."
archite cture s t ructura l-1 of deccde~-2_to_4_w_~le i.
~nt lUM

port tinl, In s t dJogic ,
outl , out stdJogicl,

_ c<:epO.".nt ,

c~tAND:l

port {inl , in:l , i n ~t<l.logic,

ouU , out .teI_logi cl'
. nd cooopon<Ont ;
. ign.ol "Ln . " -" 00, 00 , 00, -'" N1, ~~<Llogic;

,.0 , =, ~« -, tin1 -> ,", ~U - > AOJlI:
,,1 , = , ~« -, tinl -> " ~U - > AlJlI,
,,:l , -, W' -, t inl -> '" -" ,~ -> ~ -", _u -> NOI ;
,,3 , -, ~« -, t inl 0' M, ,~ ~> Al -", _u -> N11'
,,40 -, ~« -, tinl 0' ..0_", ,~ _> Al.outl -> N21,
,,5, ~, ~« -, tinl 0' M, ,~ 0' ~, -0' -> N31,

\/6, ~, ~>, -linl -> ~, W ., rn, -0' 0' DOl ,
,,7, ~ ~« - lin1 -> ~, W -, m, -0' ., 011 ,

"a, ~ ~>, -, lin1 -> ~, w " m , -0' .. 021 ,
,.9, - ~« - lin1 .. ~, W _0 m , _u _0 031 ,

o NGUR£4-Z7
Stru<tur.>t VIIDL [>e",ripllOO of 2·t0-4·Un< De<od<r

, , , , , , , , ,
" U
U
U

" " " U

" " '"
" " -- 21

-- 2'
-- 25

" " '" " " "

178 a CHAPTER 4 I COMIllNAT10NAL FU N CTIONS AND Cll"CUITS

tb [s descriPtion, comments p roJJi ng t numL . lave Len J1J on t ,!gL,
As a language. VHDL has a s}'nta. that descril:>cs precisely the valid constructs
that can I:>c u<ed in the language. This example wi ll illustrate many aspects of the
syntax , In parlicular. nme the use of "'micolons. COmmas and colons in the
description.

Initially. " 'e skip li nes 3 and 4 of the description to focus on the overall struc­
ture. Line 5 I:>cs,ins the declaration of an .",ity. "hich is the fundamental unit of a
VHD L des ign. In VHDL. just as for a symbol in a schematic. we need to give the
design a name and to define ils inputs and outp u!$. This is the function of the .",ily
decloralion. J:n~i~y and h are keywords in VHDL Keyword" which we show in
bold Iype. have a .pecial meaning a~d cannot be used 10 na me objects such as enti_
ties. inputs. outputs or signal<. Statement .ntity decoder~2_to_4_w_enable
i. declares that a design exists wilh the name decode~_2_~0_4_w_en .. ble.
VHDL is c~ insensiti" e (i.e" names and ke y,,'ords are nm distinguished by the
use of uppercase or lowercase leners), DECODER".2_4_W_ENAB LE is Iho ""me as
Decoder _2_'_w_Enable and decoder _2_ '_w_enable.

Next. a POTI diXlam/ion in lines 6 and 7 is used to define the inputs and out·
puts just as we would do for a symbol in a schematic, For thc e .. mple design. there
are three input signals: EN. AO . and At. The fact Ih.t these are inputs is denoted by
thc mode in. Likewise. DO. Dl. D2 and D3 are denot~d as outpUIS by the mode
out . VHDL is a strongly.lyped language, so the type of the inp uts and output must
I:>c declared, In this case, the t}'pe is s~<Llogic, which repreS(;ntS """dard logic.
This tJ-'P" declaration spedfie, the values that may appear on the inputs and the
out puts. as well as the operations Ihat may I:>c applied to the signals. Standard logic.
among its nine values. includes the usual binary values () and 1 and Iwo add itional
"alues X and U. X represents an un known value. U an uninitalizcd v.lue, We hs"e
chosen 10 use standard logic. which includes thesc ,·atues. since these values are
used by typical si mulation tools.

In order to use the t}'pe s t<Llogic, it is necessary to define the values and
the operations. For C(lTwenience. a ptldage consisting of precompiled VHDL code
is employed. Packages are usually stored in " directory referred to as a libraTY,
which is sha red hy $Orne or all of the tool users. For std_lOlJ i c , the basic package
is ieee. st<Llogic_1l64. This package defines the ,'alues and basic togic oper.
ators for Iypes std_ uIOIJic and s t d_ IO\Iic , In order to use s t <Llogic. we
ind ude line 3 to call up the libr ary of packages called i eee and include line 4
conta ining ieee . s~<Llog ic_1 164 .• 11 to indicate we want 10 use all of the
package s t d_lO\lic_1164 from the ieee library. An additional library.
lcdf_vhdl. conta ins a package cal led func-llrims made up of basic logic

e gates. latchcs and nip. nor< described using VHDL, of whkh we use aU. Library
lcdCvhdl is available in ASCII for copying from the Prentice Hall Companion
Website for the te>t NOIe that the statements in lines 3 and 4 are lied to the entit y
that follo"s, If a nother e ntity is included that uses type st<LIO\lic and the e\e.
mellls from func-prims. these statements must I:>c repeated prior to that entit)'
declaralion,

The e ntity dedMation ends with keyword "nd followed by the entity na me. Thus
far. we h",'c discussc<l the equivalent 01 a schematic symbol in VHD L for the circuit.

4_7 I ItnL R.ep","'n""on Ii::.. Combino"on.l Circui,.-VHDL 0 179

STRUCTURAL DESCRIPTlOH Next. we want to specify Ihe funclion of Ihe circuil. A
parlicu lar represenlalion of Ihe funClion of an enlily is called Ihe ""hilee"'", of
Ihe ent ily. ThUs. Ihe conten .. of line 10 declare a VHDL archileclure named
9tructural_ l for the enti ly decoder_ 2_ to_ 4_ w_enable 10 exisi . The delail,
of the "rcl1 ilect ure follow. In this ca"" we use a "",cwral "",crjption that is equiv·
alent to the schematic for Ihe cireait given in Fogure 4·10

First. we declare Ihe gate ty(><..,. we arc going 10 use as components of our
description in tines 11 Ihrough 18. Since we are bui lding this architecture from
gates. we dedare an inverter call ed NOTl and a 2-inp ul AND g.te c.llcd Illi02 as
mmp.,,,ents. These gale Iypes are VHDL descriptions in package func""prims
that conl~in Ihe ent ily and archileC1Ur~ for each of 11"1" rate>. The name and the
pori declaration for a CQmpoMnl must be idenlical 10 those for Ihe underlying
entily. For NOT1.port giv~", the input name inl a nd the output name outl . The
<"mponent declaration for I\N02)!!VeS input n"meS inl and ;n2. ~nd OUlpul
name out!.

Ne~l. b<;fore specifying the inlerwnn cction of the gate\; which i5 eQ uivate nl
to a circuit netlist. we need to name all of the net. in the circuit. The inpuls and
oulpulS already ha,. name .. 11,e inlernal nelS are Ihe oulp ut$ of Ihe Iwo i",·crt_
CIS and of Ihc teftmost fo ur AND gates in Fi gure 4-10. These output nets arc
deciared as .jgnoi. of Iype std_logic. AO_" and Al _n are the signals for the two
i",·crler oatpulS and NO. tll. N2. and N3 arC the signals f"r Ihe four ANI)
ga le outPUIS. Likewise. all of Ihe input. and outputs decl"red as port. arc sign"ls.
In VHDL. there arc I>oth signals and variables. Variables are evalualed inslanla_
neousty. t n contrast. signats ~rc cv"tualed at ~ome fut ure poi n I i~ lime. Thi~ time
ntay be p hysical tinte. such as 2 ns from the current tinte.or may be what is called
delw limp. in which a .ign.t is evatualed one delt" lime from Ihe curre~t lime
Delta lime i. viewed as an infinit esimal amount of time. Some time dolay in eval­
ualio n of .ignals is essenlial to the inlernal opera lion of Ihe typica l digilat simu_
lator and. of COUISC. based on the delay of gates. is realistic in performing
<imul.ti,,"s of circ uit s.. For simplicily. we ,,·illlypically be simutaling cirouils f",
correcl function. not for perform"nce '" detay probtcms.. F"r <uch function"l si m_
ulation. it is easiesl 10 lei Ihe delays default to delta times. ThUs. no delay will be
explicit in o ur VHDL descriplio~s of circuils. alt hough delays may appear in Icsl
benches.

Following Ihe declaration 01 Ihe internal sig na ls. th e ntain body of the
arch itecture .I'''t' with the kcyword begin. The circuil dcscribed consislS of
Iwo in"crlc rs a nd eight 2-i np\!1 AND gales. Line 21 give. th e label gO to Ihe
lirst in>"<:rlcr and indicates tbal Ibe inverter is componenl NOTl. Nexi is a por~
.. p . which map' the input and OUlp ut of Ihe inverter to the signals 10 which
Ihey are connected. n ,is particular form of port map uses _> with Ihe pori of
the gate on Ihe left and t h ~ . ignat to ,,"hid il is co~n ~ctcd on Ihe right. For
exampte. Ihe inpul 01 inverle, gO is 11.0 and th c output is 11.0-". Lines 22
Ihrough 30 give Ihe remaining nine gales and the sig~ ats connected to Iheir
inputs and output,. For example. in tine 24. 11.0 and AI _ n arc in puis and Nl is
the output. The archi tecture is completed with the keyword end followed by ils
name structural 1 •

180 0 C HAPTER 4 1 COMIJINATIONAL FU NCTIONS ANI) CIRC U ITS

EXAMPLE 4-16 SlnKfural VHl>t fo, a 4-1 1 Mulliplner

In Figure 4-18. Ihe strutlurn l desaiplion of the 4-1<>-1 · li"" mulliplcxc. from
~lg ure 4·1 4 o n page ISS illu5lralel lwo a<kl ilK>nal VH DL ooncepl$: Ild_losk_ ,'(tIO'
and an aile rna live approaclilO m"llPins porls

In lincs 6 and 7. inSlead of sp«ifying S and I as individual Sid_logic inp OIIs,
Ihcy are specified a. JtJJogic_vt<wrs. In specifying ,'eClo,s, we usc an index. Since

-- 4-to-l Li ne IIY ltipl.,..r, S~""'tu.al IIHl:t. Duc.iption
-- IS- Figura 4 _U Cor 1"",le d.l~ 1
111>rarr 1_, Io:;I.Lv!><I.l:
.... 1_. at<Ll"",le_l16-4,aU . ledLvhdl . C""""-l><'~ .all :

antl ty .ultlplexar_4_to_l_a~ 1.
pon IS : 1 .. at4.).Oql<:.-v..:t(,rIO ~o 1),

I : h . _t4.).ogl<:.-v..:..,..IO to II:
V: out aULIogicl:

_ ... 1t!pl""'_'_toJJot:

arcb1t..:nn atnx::tuuU o f .. l t lpl.-r_'_to_Lat 1.
c~.nt lOTI

port l inl: In at<LlOqle:
""U: out n",-!ogle):

and e_. nt ,
e_.nt 1IND.2

port l i nl. In2, I " at<LIOqlc,
out l, out at<L1Oqle),

.n<! c I ' t :
C I t aR'

_rt l l n l . In<!, till, In', 1 .. at<Lloqie:
out! , ou.t n4..1"",le),

a"" ",_nt :
ai"....1 S-,, : at<LIOqI<:.-v..:t.orIO to II:
01"....1 D. N, at.d...logl<:.-v..:torIO to I I; ... ~

gO , lOTI port _p (SIO), 5.J>IOH:
\/1' NOTI port _p ISU), ,-,,(111:
\12 : Nm port _" 15.J>UI. 5-"101. 0101) ,
\/1: Mm pO~t _ " (8-,,111. 510) . 01111 :
g" AND:.l port _p ISIl) . 9-"1 01. 0 12)1 ;
g 5, = port _" lSI],), S IOI. 01 1 11,
gf;, AND. po~t _" (010), t l OI , NIDII,
"' , 1IND.2 po~t _" 1011), t i ll , NII II:
\/s , 1IND.2 pO~t _" 101ll. Illl, N1211 :
g'j , NfD2 port _" (Dill. 1111 . NOli :
g l O, OR' port _p IN(OI, NU). N(2). NIlI. VI,

_ at"",~uraU:

o FlGUkE UI
s.ru.-. VIIOl. o..rnpuo. of _I_Lin< ullipkKT

, , ,
• ,
• ,
• ,

--10
--11
--12
--u
--U

--15
--16
--17
--18
--19
--20

~" __ 22

--23
--u
--25 __ 26

~"
--~8

--29
--30
--31
--32

~" __ 16

- -35
--36
--37
--38

4_7 I HDl R<p n,., fm Combimt;o".1 Cif<ui.>-VHDL 0 1 8 1

s consist. of two input signals numbered 0 and 1. the index for S is 0 to 1. The
components of this vector are S (O) and S (1) , I consists of four input signal.
numbered 0 through 3, ,0 the index for I is 0 to 3. Likewise. in lin"" 24 "nd 25.
we 'pecify signals S_n. D. and N a, std_Iogic_veclO~ D represents the decode out_
puts. and N represents the four imernal .ignal ~ between the AND gates and the
OR gate.

Beginning at line 27. note how the signal, "'ithin std_logic_vectors are
referred to by giving the signal name and the index in parentheses. It is also possi_
ble to refer to sub.'ectors (e,g., N (1 to 21, which refers to N 11) and N 12). the
eenter two ,ignal, in til. Also. if one wishes to have the larger index for a VectOT
apP""r first . VI'ID L uses a somewhat different notational .pproach. For cxample.
s i '1",,1 N, std_ log-ic_vector (3 downto 0) defines the first bit in signal N as
N 13) and the I ... t .ignal in N as N 1 0).

In Hnes 27 through 37. an .ilem;>ti,·e method is used to specify the pon maps
for the logic gates. Instead of cxpHdtly giving the compo~cnt i~put and output
name.;, we assume that these nameS ;>T~ in the port map in the same order a, gi.'en
for the component. We can then inlplicitly specify the signals attad,ed to these
names by listing the signals in same order as the names. For example. in line 29.
S--" (1) appears first. and so is conn""'t~d to ; n1 . S--" I 0 I appea ... second. and so
is conncct"d to ; .. 2. Finally. D I 0) is connected to out 1,

Otherwise. this VHDL d=ription is similar in structure to that for the 2-t0-4-
line d«:oder.except that the schem.tic represente<l i.th"t in ~Igurc 4·14 on page 158,

•
DATAFl.OW DESCR'PT>ON A dataflow dcscripti(>n describe$ a circuit in term, of
function ratheT than structure and is made up of conCUfTcnt as<ig.mllcnt statements
or their equi" alent, ConcurTcnt assiYl1" cnt statements are executed CO~c\lfTcn.ly
(i.e .• in paml1e1) whenever one of the values On the right .hand side of the state_
ment cha nge .. For c~ampl c. whene"eT" change occurs in a value on the right·ha~ <!

side of a Boolean equation. the left·hand side i, evaluated. The use of dat.How
descriptions made up of Boolean equatioru; i. iUustrated in Example 4_17.

I ~:XAMPU'; 4-17 I)KM1 · VIII)L rur M 2-t ... 4-Linc Dcroder

FiguTe 4·19 .how, a VHDL description for the 1·to·4 line decoder circui t from
figure 4-10 on page 152. Thi' example " 'iII he used to dcm<mstr.tc a dataftow
dc~cription made up of Boolea~ c<.juati,m<. The library. use. and entity St" tC­
ments are identica l 10 those in Figure 4-27. so they an;' ~ ot repeated here. The
data How description begins in lioc 9. 'Ille .ignals AO_n and A1Jl arc defin~d by
signal ""ignments that apply the not operat ion to the input signal AO and Ai,
respective ly. In line I I. AD_n . !H_n and EN are combined with an and operator
to form 00. D1. D2. and DJ aTe si milar ly defined in lines 12 through 14, Notc
that !hi~ data no,,' de'-<ription is much simpler than the .tructural description in
Figure 4-27 ,

182 0 CHAI'TEI'. 4 I COMBINATIONAL FUNCnONS ANI) CIRCUITS

-- 2-to-4 Line Do<:;oder, o..t afl"", VHlL Description
-- (S- Fi=~ 4-10 f or loqic diagra:,,)
lJ~Q Hbrary, un , and tity .".tri .. f r<n Lto_ 4_do<c«ler. ot'

.1",1>411 AOJ>, AlJ> ' "td,..l oqic, .., ..
MJ> <= not M,
;.1--" <= not Al,
00 <_ MJ> . 1>4 111--" aw1 E:J ;

Dl <_ 110 .1>4 /U--" aw1 EN;
D2 , _ AO_n ."." Al and E:J;

D3 <0 AO and ;.1 and E:J,

. nd d.o.t~flow_l ,

o H GUR E 4-2'1
D" .1Iow VHDL D=;rip';oo of 2-r0-4-Lin< Dtuxlc:r

, , , , ,
• , , ,

>0
n
n
n

" "

In lhc nexl lwo exomple .. we describe the 4-1O-I-li nc mul1 iplcxer 10 illu.lrale
lwo ahernalive forms of da1a How descriplion : when _else and with_sclect.

EXAMI'LE 4-18 VIIDL for a 4-to-I-Lille Mu ltiplucr Usillg When- Else

In Figme 4-30_ in .. ead of u,ing Boolea n equalion-like . t,temenl. in the architec­
lure 10 describe the rn u ll iplex~r, we use a ... "m-ds" sI81~mcn!, This .{.{erne"l i, a

-- ~-to-l Line Nux , CcnditiC<lal Do.tafl"", IIH!X. De=riptiC<l
-- U~in .. ~en-Else (See ~le 4-7 for function tIDle)
l1bnry i~,
u .. i_. std.loqic_1l64 _all,

. nUty ...,ltiple.>;"cL t"_L h
port (S 1" ,t<Lloqic_vect or(l <lowneo 0),

I , i n ~t<Lloqicvector(J downeo 0) ;

y , oue '"<Llogic) ;
.nII ftlltiple""r_4..toJ_"" ,

a rchit . ctur. f~tiC<l_tabl. of mul~ ipl ... r_'_to_l_~ 1_
boo-g-i n , <- HO) .. h . n , '00 - d ..

I (l) ~ .. , '01' . 1 ..
I (2) ~ .. , • - la- . 1 ..
I(3) .. h . n , 0 -11 - . 1 ..
'X' ,

.~ funct io,,---tID le ;

o ~'IGUR[4-30
C()I'Id;{ioo,) D,,,,Mow VHDl D<.",,;pc;oo of 4-l<>-1 lire \ \ul';plexo , U.in8 Wt.en_El ..

•• 7 I H DL R<p",,,,ntatioo f()< C"",b">t;o". 1 Ci«ui.>-VHDL 0 183

representation of the function table given a, Table 4-7 on page 157. When slakes
on a particular binary value. then" particular input I (i I is aSiiigned to output Y.
When th e ,·alue on S is 0 0 . thcn Y is a'-Signed l {O). Othe,.,.·i..,. th e .1 •• is
invoked SO tnat when th e value on s is 01. then Y is a"igned I (1). and so on. In
standard logic. each of Ihe bits can take on 9 different values. So Ihe pair of bits
for S can take on 81 possible values-onl)· 4 of whien have ~en specified so far. In
order 10 defme Y for the remaining 77 values. the final .1 •• followed by X
(un~nown) is given. This assigns Ihe ,·aloe X 10 Y if any of these 77 values o«:urs
on S. This OUlput val ue <x<;urs only in simulation. however. since Y will always
lake on a () or 1 value in an actual drcuit. •

EXAMPLI:: 4-19 VHDL rOt ~ 4·to_I·Line Multipl~xer U.illg With_Select

Wit h_,elect i, a variation on when ·else as iIIuslraled for the 4·1O· I-li ne multiple>er
in Figure 4·31. The expression. Ihe val ue of which is 10 ~ used for the dedsion.
folloW'lwith and preeede, •• I.ct. The valu"" for tk e>pre"ion thai causes the
altemalive assignments then follow whan with each of the assignment-value pairs
separated by comma .. In the e>am ple. S is Ihe signal. the value of wh ich dc,er·
mine, the value selected for Y. When S _ " 00 ". 1 I 0) i, assigned to Y. When S =
" Ol " .I (l) isassignedlo Yandwon. · X · isassigntdl(> Y when other •. where
other. represents the 77 standard logic combinations nol already specified . •

__ 4_to _\ L\"", ,""", Condi t ional Doota fl "", VHDL Deecdp t i on

U.i"" wi t h s..\QCt IS- Tabl~ 4 - 7 tor funct iCXl table l
libr .. ry ieee;

" .. i_ . nd_ logi c llM ... ll ;
.ntity multiple xer_ 4_ to_ l_ws 1.

port (S i n .td_logi c _v<octorU 4ownto 01 ,
I i n etd_logi~_"""tor(3 4ownto 0 1,
Y .,.,t .td_\og l~l ;

...., "'"'lt iplex.,r_~_to_l_' .. ,,,

uchit.ct"r. fun~t iCX_<abl .. _ of to.lltipl llX@r _ 4_to _ l...."", h ... '" .. itl> S •• hc t
Y <_ I IOI _ "00 " .

I(l l _ .. " 01 " .
I(21 _n "1 0 ".
I (3 1 _n "11 ".

·x· _n ott..~.;
. nd "'-""'ti"*'_tllhlQ_ws;

o nGU HE 4·31
Cood i,ional D".How VHDL De!.crip<i"" of 4·l<).1 U"" Mui1.ple"" U.ing Wi,h·S<i..."

, , , , ,
• , , ,
" U
U
U
U
U

" U ,.
U

184 0 CHAPTER 4 I COMBINATIONAL FUNCTIONS AND CIRCUrrs

NON thai when·else permils decisions on mult iple disiinci signals.. For exam·
pie. for Ihe demultiplexer in Figure 4.\0. the Mt when can be conditioned on
inpul EN wilh the 'Ubscqucnl when's condil ioned on input S. In comra't. Il1 c wilh·
Wkel can depend on only a , ingle Boolean condilion (e.g.. either EN or s, bUI not
holh). Also, for typical symhesis tools. when·else Iypically results in a more com·
plex logical stractUTe, since each of Ihe decisions depend, not only on Ihe condilion
currenlly being evalua led. bUi alro on all prior decisions as well. As a consequence.
111 0 siracturc Ihal is synthesized takes into aceounl this priority order. replacing Ih.
4 x 2 AND·OR by a chain of four 2·to·1 multiplexers. In conlras!' Ihere i, no direct
dependency between Ihe decisions made in with·select. With·wleol produce< a
decoder and Ihe 4 x 2 AND·OR gale.

We have now covered many of the VHDL fundamemal, needed for describ ·
ing combinalional circuils. We will continue wilh more On VHDL by presenling
mean, for de'-Cribing arithmel ic circuils in Chapter 5 and sequenlial circuits in
Chapter 6.

4-8 HDL REPRESENTATIONS FOR COMBINATIONAL

CIRCUITS-VERILOG

Since an HDL is uscd for de'-Cribing and designing hardware. it is very impor!ant
10 keop the underlying hardware in mind as you write ;n Ihe language. This is par·
ticularly crilicaJ if your language de'-Cr;plion is to be synthesized. For example. if
you ignore the hardware that "ill be generated. il is vor)' easy to specify a large
compl .. gate structure by using X (mulliply). when a much simpler slructure using
only a few gales;' all I~at is needed. For tbis reason. ini tially. we cmpha<ize
describing detailed hard,,'are with Verilog. and finishing with more abstract.
higher·level descriptions.

Scle<\ed examples in Ihis chapter are useful for inlroducing Verik>g as an altema·
t;"e means for represcnting delai!ed digital circuits. First. we show a 51ructural Veri log
dcscriplion thu\ replaces the schemat;c fn.- the 2· t0--4-line decoder ",ilh enable given in
Figure 4· 10 00 page 152. This example. and one \I..ing the 4·to-l · hne mu ltiplexer in
Figure 4·14 on page 15$, illus{rate many of Ihe fundamental concepts of VerUng. We
then present higher level functional and beh$ioral Verilog dcscriplions for these cir·
cuilS thai funher illustrate Verilog roncept~

t:XAMPLt: 4.2(1 SlruClural Verilo~ for a 2-lo-4-Line [)e<O<Ier

The Verilog descriplion for the N04·line decoder circuit from Figure 4·10 on page
152 is given in Figure 4·32. This de'-Cription will be used 10 introduce a number of
general Vcrilog features. as well as 10 illuslrlle struct ural circuit descriplion.

The text between IWO sla<he, II and Ihe end of a line as shown in lines I and
2 of Figure 4·32 is interpreted as a comment. Rlr mulliline commenls, there i$ an
alternalive nOlotion using a I and "
/' 2-to·' LIn<! D<!Cod«r with Enable, Suuctural Veriloq oo.~c.
(See Fi~u 4_10 for l oqic diao:;p:_l ' /

/I 2-to-4 Line De<:o<ler wJ.th EnAble , Structural verllog One .
II (~Pigur~ 4-10 tor 1000ic cl.1~"",) _ul. <loecod<>r---"_to_4_~,,-vlm, .0.0, AI, 00. Dl. 02. DJI,

tRPUt EN. AO. AI ;
output 00. 01. 02, 03,

"iU AOJl. lUJi. NO. Nl. 1/1, Ill, -,
goIADJI, ADI.
gllAl.JI. All,
~

g311.'O. AO--". AlJl).
gUNI, AO. AlJ>).
g 5 1N2. AOJl. AI).
C6INl. AD.All.
,,7100. NO. m i.
"SIDI. Nl. mi.
,,9102 , m. EIII.
,,10103 , Nl. ENI ,

en ul.

o tlGURE4-J1
Slructu,,1 II<riI<>c DescripoiOll of 240-4·U ... o..:oo.r

0 , S;

" ,
"

,
" ;

" •
"

,
" •
"

,
" • " •
II 10
ffll
I I 12
II lJ
11 16
I I IS

" .. II 17

I I lS
I I 19
I I 20

To a.-i,{ in discussion of {he Verilog descriplion. commenls providing line number.
ha" e been added On Ihe right. A. a langu;lge. Verilog has a Synla> that descri~$
precisely the valid construcls (hat can ~ used in the language. This e xample will
illuslrale many aspects of Ihe syntax. In parlicular. nOle the uS< of CQrn m3S 3nd
colon< in the description. Comma. (.) are typically us<d 10 s<paral e . Iement< of a
Ii.t and 5emicolons (;) are u5ed to tcrmina!c Verilog Slatcments.

Line J ~gins the declaralion of a _uh. which is the fundamen{al building
hlock of a Veri!og design. "The remainder of (he description defines tbe module. c nding
in line 2{) " ' th • ..-ul •. Note thai (here is no ; ~fter .ndDodul • . lUll as for a
symbol in a schematic. ~ need 10 give {he design a name and to define it> inputs and
OUtputs. This is lhe function of {he ,noJul~ S'a"","'" in line 3 and II\<; inpul and QuiP'"
<k<:/{mllioru that follow. 100 ,,<)rds _ul •. inpUt and outpUt are ~(yW()rds in
Wrilog. Keyword<. which ,,~ show in bold t}"pe. ha"e a special meaning and cannot ~
used a. IlllIDCS of objects such as modules. inputs. outputs, or wi res. The statemenl
_ul. d"cod .. r_2_~o_4j,~_v declares that a design or design pan exists ",th
the name decoder_2_t.o_4_st_v. Further. Veril,,!! names arc case s<nsi.ive (i .e ..
names are disti nguished by the use of uppercase or lowe""l", 1c1Ier1).
OECOOER..2_'_st_v. Decoder_ 2_ 4_6t_v, and decoder_2_4_s t _V are all
distinct na""",-

ll>S{ as we would do for a 5)mbol in a schema.ic. we give tbe names of lbe ,Icco;\er
inputs and ou.puts in the modu~ stal~ment. Next. an iflp'" <k<:k1r-alwn .. used 10 define
,,-t1ich oJ tbe """"'" in ,he module .tat.rnen, are inputs. For!he example design. there

186 0 CHAI'fl'R ~ '(:OMIIINA'·IONM .. fUNCTIONS!.Nl) (:11l.<::UITS

ate three input oignal!t EN.AII. and Al.1"" fllCl thatthe3e arc inpulS is detlOO:d by the
keyword i_t o Similarly. an OIl/pm ,/«:Ia",tit., is u>ed to define (lie ootput~ DO. 01.
02 .• nd 03 nre denoted as ootpulS b)' the hywonl output.

lnplIl ! and outpulS as well at OI)I ~r binary signal tYI"'$ in Ver ilog e"n ta ke on
one of four _a lues. The t\lm nbvi()IJ$ ",111<:$ nrc 0 and 1. Added aN x to represent
unl no"'n >1I l ue~ and Z 10 replflent high impedance values. on Ihe outputs of 3·.tat"
Iogioe. Vc,ilog also has strength vplues Illal. ",hen combined with the four values
given. p...,...ide 120 poso.iblc sjgnal ~tales. Strength values arc u",d ill cl«lronic ";=;t
modd;n&- OOvo..,ve,.so ... illl>ol be: OO<Isidered ,",re.

SllIUClUf\A.L Onc...-noN Next. we "'3nt 10 ~r)" the lunelloo of Ihe dero<!e,. In
thi$ (as<:, we u ... a sm,ctllrol d~J<:rip,;on Ihal ;s e<ju;valenl '0 the circuit ",hema tic
given in Agure 4·10 on page 152. NOle that the ""he malic i. mAde up of galcs Vcr·
ilog provides 14 primiti,·" g;r tc$ as keywords. Of these . we arC inlereSled in eighl
for now: but. not . and. Or. nand. n or. I<Or and x nor. but and not h. ,·c .ingle
inputs. 3t1d a ll OIhcr gale types may ha_e from Iwo to any imegcr num,",r of inputs.
bu f i:I_ buffer. "hich has lhe fune.ion : ,,·ilh .. os lhe inpul and , lIS llIe out·
put. It is as a n aml'lilioer of electronic "goals Iha, can he used 10 provide grca,er
fanou. or lJl1al.." delays. >«>r is Ihe uciu.ivc.OR gale and or i •• he uciusi,..,·
NOR <c. ' hc romf'!ernc nt of Ihe ucluslvc·O R. In OUr tumple. we " 'ill, iust
I gale 'l·pes. not and aDd a~ . IH:noo"" ,n I",,,,, S and II of ASllre 4·32.

Before specifying Ihe imerconn«:tion of .hc gales. ,,'hich is IIIe sa"'" a. a cir·
C1lit neHi ... we necd to n"mc all of Ihe IIcts in 'he cireuit. The inpUIS and OUlputs
already hove ~"mes. The imerna l nelS lire Ihe oUlp utS of the tWo i nv~ rt e", a nd of
' he fo ur Idtmc-.; t AND &"es in Figure 4· 10. In line 7. t il eS<' nell ore dl'elared as
wir~J by LIS<: of the Keyword .. i r •. Nan,e. AOJl and A1_" "fc uS<'d for lhe
in"erler outp uts and NO. HI. H2. and «3 for the outp uts of 'he AND ga' es. In
Vcrilog. "i". is ,he default neltype. Notably. input and outpu t ports turvc lhe
dcfalllll)'PC .. i

FOIIQVli", lhe decLara,ion of 'he mlemal signat., ,he draoll descnbcd 00<1.

lain. tWO in,..,rtcrs and eighl 2· inpul AND ga'es. A $Ia,emcni consists of a galc
Iype follQVI'cd by a Ii" of in$lan<;:a of tha. ga,e Iype "'jlIIra,ed by romm Each
in".nee consis'l of a gale name and. cncloS<:d in paren'h~'Ses, the gate OUlpU' and
inputs Sl!par"'ed by commas, wilh Ihe OUl pUI give n lirst. The Ii ... t ""ement begins
on li1l e H with Ihe not gate Iype. Fo llowing is in"erter gO wilh AO-" as the outpul
and .>.O as Ihe inpu, . To complete the Itatcme nt. gl is simIl arly ~ribcd. Lin es II
througb 19 give the rem3inln~ eight ga'es and lhe sigoa", connee,ed 10 lh~ir oul·
puts a nd Inl'uli respectively. For nampk. in line 14. an in5la~ of. 2·;"pu, AND
gale named g 5 i. defined. It ILas OUlpUI 112 and in puts AO_n and Al.1loe modu'" is
romplc:t~'(j ,,'uh tbe kel"'-ord . '-111. . •

EXAM 1'1..1: 4-21 SlnK"IlInl V~riloJ r 1 ... · l·Lin~ Multlp"'ur

In ~lgure 4·33. the S1roccural dcscnp!ion of Ihe 4·lo--- l· line IIIul,iplcxer from
Agurc 4·14 On page 158 ill ustr"l eS Ihe Vuilog concepl of a \'e<;lor. In li tl e. 4 and 5.
;'\llead of Il'ecif~ing s and I as li~ gle bit wires. Ihcy are . pedfocd as mu ltiple bit

II 4-to-l Line lIul tiplexer , 5UUCtural VerllOl/ Description
If (See l'i<,lUre 4-}4 tor l<l9ic diallT_1
.odul. =ultipl~r~4~to~1 __ t~vIS. I. YI:

input !l:O] S:
input [3,01 1:
output Y;

wir. [1.01 n(><_S;

wir. [0,31 D. N;

-,
gnOlnot..jl[OI. 5[011 .
gnl(not..jl[l]. 5[1J1;

-110[0[01. "",t3!l1, oot3[0]1.

IIHO!l1. not3liJ. 510)).
112(0(21. 5(11. oot31011.
113(0[31 . S [11. SIOIl ;
gQ(N{OI. 0[01 • 1 [01 I.
1I1 (N{11 . OU). III I I •
~(N{2J. 0[21 • 1[211.
113(N[3I. 0[31. 1[311 ;

or \JO(Y. N[OI. NUl. N121. IIIlI I;

o nGUME 4-33
StrOCIu~ V.nlos Dcocriptioo 01 4·<o- I·L \lu ltJpk=

0 187

"
,

"
,

"
,

" •
" , " •
"

,
" •
" • ff 10

" " II II

" " " " " " " " " " " " " " ff 20
ff 21
ff 22
II 2]
II 24

" "
" " " "

wir"" ca[led "eClOrJ. The bits 01 a veelor are named by a range of inl.gers. Thi.
range is given by maximum and minimum values. By specifying th""e two values.
we s[>Ccify Ihe widlh of Ihe ve<:tOT and lhe namCS of each of il> bils. Veclo, range.
are illustrated in lines 4, 5, g and 9 of Figure 4·33, input (1: 0 1 S indicales Ihal S
is a ,'e<:lor with a width of IWo.. " .. til Ihe mosl signif.cant bil numb<cred 1 and lea.l
signifICant bil numbered D. The rornpoocnlS of S a.e SO] and S(O). inpu t
(3 , 01 1 declares I as a 4· bit input , with the mosl significant bil numbered 3 and
leasl . ignificant bit numbe.ed O. wi". [0: 3] 0 is also a 4·bit VedOT rcp"""'nting
the four internal wires between t~c leftmost and TightmOlll AND gates. but in lhis
c«Se.lhe mDSl.ignif,can l bit is ~umbe.ed 0 and lhe leaSI <ignif,<a~t bit i< numboored
3. Once a ~ector ha. been declared, t~en the enlire '""lor or its subcomponents
can be referenced. ror uample. S refers 10 the t,,-o bilS of S,and S11 J rders 10 Ihe
mOll! ,ignificant bit of s. II refers 10 all four bits of II and 11(1,21 refers 10 Ihe mid­
dle two bils of N. The", type< of refercnces are u<ed in s[>Ceif)'ing the output a nd
inputs in inslance< of Ihe galC< in linc< 11 Il1 rough 25. Otherwise. thi, Vcrilog
dc=iplion i, similar in SI.uclure 10 Ihal loT lhe 2·10-4· line derodc •. excepl t~al Ihe
schematic rCPTesented i. that in Figure 4·14. •

188 0 CHAI'TE1l4 I COMBINATIONAL FUNCTIONS AND CIRClJITS

CUAFl.OW OESCRIPTIOtI A d.taHow descriplion is " form of Vcri log dcS(:ription
Ihat is not baSl'd on structur", but rather on function , A dalBHow description i.
made up of dataHow stalomenls, For Ihe firs! dataflow description, Boolean eq u._
tions are used ralher than Ihe equivalent of a logic schematic. The Boolean equa­
tion. given are uecute<l in parallel whene>'er one of Ihe values on Ihe righi_hand
side of the «Iua1ion changes.

~:XAJI.IPU: 4-12 l)at~Ouw Vcrilo_ rur a 2_lo4_Linc O«odcr

In Figure 4-34, a dataHow descriplion is given for Ihe 2'1O-4-]inc deroder, This par.
ticular d.tanow descriplion uses Ihe auigJlment Slatement COIlsisling of Ihe key·
word .uign followed. in Ihi' casco by a Boolean equation. In such equal ions, "" c
use Ihe bitwise Bool<:30 operalors gi>'cn in Table 4-12. In line 7 of Figure 4-34, 1m,
- 1.0 and - .0.1 are combined wilh an t. operal()l", This t. combinalion is assigned 10
Ihe OUlpY! DO , 0 1. 02. and Ol arc simila,I)' defined in lines 8 through 10.

In the nexl Ihree examples, we describe the 4_10-1·lioe multiplexer to iIIus·
Irale Ihree altemal i"e forms of dala now description: Boole.n equations, binary
combinations as COnditions. and binary decisions as w"dilion~

EXAMPLE 4- 23 l)ataH"",' \"crilog fur .. 4-to- l-Line M ult iple, • •

[n Figure 4·35. a , ingle Boolean equalion for Y describe. the mul, iplexer. This
el]ualion is in sum-()f-produCIS form " 'ilh ~ for AN)) and I for OR. Components
of the s and I 'ecloes a.e used as ils "riables.

t:XAMPI .t; 4-ZoI " eril'-'\C fm • +t ... I-Linr Multipln~. V.in. COdl],i li ... '"

The descriplion in Figure 4·36 ",sembles the funelion lable gi"en as Table 4·7 on
page 151 by using a conditional oper.lo, on binary wmbinations If the logical
value "'ilhin the parenlheSC'l is Irue, Ihen th. ,alne before Ihe : is a"";gned 10 the
inde pendenl variable, in Ihis case, y, [f Ih. logical "Ine is false, then the value after
Ihe : is assigJled. The logkal eq uality Op(:rolor is den<.>led by • • , Suppose " 'e w n_
sider condition s . .. 2' bOO. 2 ' bOO . epresenl.'l a wllSlanl, n.e 2 speci~c. thM
Ih~ wnstanl wntains 1"'0 digits. b Ihallhe constanl is given in binary. and 00 gi>'es
the ""nSlant value. "'1lS.. the expresJiion has value true if .'ector S is C<jualto 00;

D Ti\ 8 1.f:4-1l
8 i, ,,;,,,, \'erit"ll 01"" 010",

Openotlon

•
"

"- 0< -'

Ope .. lor

Di,,.i5<; ,,"OT
Bi",'ioc: AND
Bi,wise OR

Bn .. -ioe XOR
[lil,,'ise XNQR

' -8 I Hl)l "'~"Pon' fu< C"mbin. tion>l ~Ve~

I! l-tO-4 LiM Deo<x:loor .. Ith Enable : DotaU"" Verll(;9 Dese .
I! ISee Figure 4 - 10 ror logi c di c ...) _1. <I<ocodo>r~_to_"-df...v(rn, AD. AI. DO. 01.~. OJ),

input rn . AD. AI,
""twt DO . Dl. 00 . 01 ;

.... ign 00 ~ m , _M , - AD ;

... 1"" " • rn' -M " AD ; "" ru m,M , ~AO:

... dgn 00 • m, M , M,

_I dul.

a FIGURE 4-34
ON_ Vmlo!; Descn"""" ol2-<0-4·Li .. Dorod<r

/I 4-to-l Lin. Mo ltiplexer , !:ootefl"" Veril cq Description
/I ISM Piqun 4-14 for l Ogic d;<t<;Jr""')
_uh ltiplo><ec4_wJ_df...vIS . I . Y) ,

bop". [1 : 01 S ;
bo_t 13 : 01 I ,
out put Y;

(_ SII) " ~S IOI " IIO])I
I (S ill " - S (O] " II 2])

D tlG UR£ 4·3S

(- Sil l " SI OI " Ill])
ISll l "S (O] " II 3]):

0

0. .. _ V.rilo!; o..criplioft of .;. I _Lin< Mulhpl<-"" U,;nl • I:\00I<.., F_ioI>

'89

"
,

"
,

"
,

" •
"

,
" • " ;

" • "
,

II 10
1111
1112

otherwise, it i, fal..,. If the expression is true. the" 1[0] i, assigned to Y. If the
uprew;on is false. then the "exl e .pTessioo oo<>"ining a? i. evalu.led. and 50 on .
In Ihi. C3"'. fOJ a condilion 10 be evaluated. all con<lit;ons preceding il must evalu­
ale to fal.." If none of the decisions evaluate to ITue. then the default value 1 'bx is
a"';gned to Y. Recall thaI default value x represent. unknown. •

I . :XAM PU: 4-25 Ye.iI~ rOO". 4-lo-l·Line Mulliplue. U'iinK Binary 1)O"risi

The ~nal form of ""taDow description is .110"" in Figure 4-37. 11 i. based on condi ­
lional operators used to form a decision tree, "hich cotrt$pOndo 10 a f""IOTed
Boolean expression. In lhi. case. if S (11 is I. then S 10 J i. evaluated 10 del ermine
whether Y i. assigned I 13J or assigned I (2] . If Sf l] i. O. then S f 0] is evaluated
to determine whelhu Y i. assigned I (1] or I (0] , For a regUlar <lruclure . uch as a
multiplex«. thi. approach. based on ,,,,o·,,,,y (b;nary) decis;on .. g;Ve!i a simple
dataflowexpr.,."ion. •

190 0 CHAPTER ~ I COMUINATIONAL f UNCTIONS AND CIRCUITS

II 4-to-l Li".. ltiplexer: o..taflow Veriloq o.,scriptiOCl
/I IS- Tabl" 4-7 for functioct tabl el
-...1 • ..,ltiplexer3 __ t oJ.....cCv(S, I, YI:

i nput [1:0] 5 ,
i nput [3:0] I,

output y:

aui"" , . " " " " __ h

o nGURE 4·.106

..
:,

2 'bOOI ; I [0]

:I 'bOll ; I [11
; ' blOI , I [21

2 ' blll , I IJ I , ,.~

Cond ilioo.] Datonow Verilog o"""ril'tioo of 4·,<>- 1 \,.;". Mult;pl<:= U.;ng Combin";oo,

/I 4 - to - l Liruo MJ.ltipl -..r; ""tan"" Verilw DelOCrip t i on
II Is... Tabl~ 4-7 for func~ion table)
_ul .. ""ltlplexecL to __ LtLvIS. I . Y);

input [l: OJ S;
input IJ:OI I ;
OOoItput Y;

.ulgn Y • S[ll ? (5101
{S {OI 7 I[l]

o FIGURE4-l 7

? ll~]
IIO]I

1 1211

C",\d;t;oo,,1 D.o",~ow V.,;log o...,liplion of 4·", .. 1 Un< Mullipbcr U,in. Binary [)ee",.,.,.

This complete< our initial inlroduction to Veri log. We will cominue with more
On Verilog b}' presemin g means for describin g arit hmetic cirtuits in CIlaptcr 5 and
sequ~ntial circuits in ChapteT 6.

4 - 9 CHAPTER SUMMARY

Thi' chapter bas dea lt wit h a num ber of combinational CiTcuit lype .. c,lled func·
tional blocks, thm arc frequenl ly used to design larger drtuit~ Rudimentary cir·
cuits that implement functions of a single variable were imToduced. The design of
decoders that activate one of a number of output lines in response to an input code
was co>'ered . Encoders, lhe inverse of docoders. generate a code associated with
the active line from a set of I ;ne~ The design of muhi pl~~~r~ wh ich take data
applied at the input selected and prese nt it at the out put. was ill ustrated.

The design of combinational logic circuit. using decode rs, multi pl e~e rs.

and programmable logic was covered. In combination with OR ga tes. decoders

provide a simple min term _based approach to impl cme~t ing combinational cir_
cuits. Procedures were gi,-cn for using an n-to-l -line mulliplexer or a single
in"ener and an (n - I)-to-l-Iine mulliplexer to implemem any n-in put Boolean
function. RO Ms can be programmed with truth tables. PLAs and PALs can be
programmed wit h their O,,'n Sp""ialiled programming tables. Mul tiple-level
logic deeomposition and exlraction from Cha pter 2 map combinational equa_
tions for looku p table implementations.

The lall two section'! of the chapter introduced VH DL and Verilog descrip"­
tions for combinational circuit .. Each of the HDI..< was illustTated by descriptions
;ot st ructural. functional. and behavioTal level. for various functional block. pre_
sented earlier in the <hapte,.

REFERENCES

1. MM<(l. M, M. Digimllk!.ign. 3rd ed. Englewood Oiffs, NJ: Prentice Hall.2002.
l. W ... KERL Y. J, F. Digi,ollk!.ign: Princip/~. and Prn<:liu.<. 3rd ed. Englewood

Cli ff .. NJ: Prentice H.II. 2\XX.l.
3. //igh-Speed CMOS wgic DalO BQ{)k. Dalla,:Te •• s IlI m Umenls, 1989.

4. IEEE Siandard VIIOL La"g"ag~ Rrfut't!u .110"",,/. (ANS I/IEEE Sid 1076-
1993: revision of IEEE Std 1076-1987). Ncw York, The in"itute of Electrical
and EI«tronics Engineers, 1<)9.f.

5. S .. ITl!. D. J. HOL Cho'p lk!.ign. Madi""n.AL: Doone Publication" 1996.
6. I'ELLERIS, D, "SO D. T"VLOR. VHOL Made Ea.:;1 Upper Saddle Ri" er, NJ:

I'rentice J lal l PTR. 1997.
7. $n;F ... S, S ND L. UNDIt, VII DL for D~.igne,". London: Pr~nl"'" Hall

Europe.I997.
&. Y "NClULl. S. VIIDL Swnu'. G"jd~. Upper Saddle Ri,'cT. NJ: Prentice

Hall. 1998.

9. I eEE Siam/"rd Descrip"-o" La"g""ge /J".~d Oil Ihe l'eri/"g(TM) lI"rd~'''re
O~5criprio" Ltmg"age (I EEE Std 1364· J 995). New York: The lnslitutc of
Ele.olrical and E1~ctronics Enginee 1995.

10. PAI.~m;AR. S. Veri/OK IIDC A Gui,/e 10 [)igila!l)e.ig" am/ Sy"",u". Upper
Saddle River. NJ, SunSoft !'reM (A Prentice Hall Title). 1996,

II. BIIASKER. J. A Vui/,,!: IIOL Pri",,,,, Allen to",·n. I'A: Star Galaxy I'ress, 1997.

12. T " O .. AS, D .. AND P. MOORBY, The V~ri/og J/,,,,/w,,," Oeseri",;.", Lallglillge
4th ed. Boston: Klu"w Academic PubliShers, 14<}8,

13. CILETTl. M. M<x/elillg. S,.IIIII ... i.<. ,,,,II Rapid ProlQ/ypin!: M'ilh Ih~ Vail,,!: II OL.
Upper Saddle Rivu. NJ: Prentice ~Iall. 1999.

PROBLEMS

,& The piUS (+) indicales a lIIore advanced probl~m and the .~teri,k (.) indicates.
~ solution is available on the lex! ,,'e bsite.

192 0 CI-I"PT(M. 4 I COMIJIN"TlON"L fUNCTIONS "NIJ CIRCUITS

4--1. · (a) DflI an implemenlalion diagram for a constanl .·octor funcllOn F .. (F,.
F". Fl. F .. FJ- F .. F,. 1',,) .. (I. O. O. I. O. I. I. 0) usinllhc ,round and
['O"'cr ,),mbols from Figure 4.2(b).

(b) Draw an implemcn"lion diagr.m for a rudimentary "cct()1" functiOOl G ..
(G7• G,. <!.!' G" GJ • G,• G" Go) .. (A. A> o. 1. A ,A.!. 1) using inpu ts I.
O.A.and A,

4-2. (a) Draw nn impicmcI11ntion dingram lor r!:!,di!!!cntary veclor funclion P ..
(F,. Fo. P,. F •. FJ• Fl. F,. 1-'0) .. (I. O. A. A. A. A. 0, I), u,ing tne ground
and ['Ower sym boll in Figure 4-2(b) and .hc wire and in~~rh:r in
Figure 402(c) a nd 4-2(d),

(b) DflIW an impieme nl ation diavam for rudimental! ''eCtor lunclloo' G ..
(G1. Go. G,. G •. GJ- G,. G,. G,,) .. (F,. Fl. O. 1. F ,. F~ 1. 1). U.inl the
ground and powe r symbol. and componenlli oe"CC1or F.

4-.l. (a) Draw an implement •• ion dillfllm for the • ...am G . (G,. G .. G,. G •. G, .
G1, G,.G.) .. (F,,, F, .. F .. F •. F,. F,. F,. "'0).

(b) Draw a o.in'I,lc impkmcntatJOd for the ",dimenlary .'ectOr II .. (111. flo.
11, . II •. II,. Ill ' II, . 110) .. (I-J. Fl. P, . F .. GJ- G1, G" Go).

4-4. A home security lyStc m toM a m.,ter .witch that i, used 10 enable an al~rm.
li ghts, .ideo cameras. and a call 10 local police in the c~c"l one or more of
six sets of sensors deteol$ an in!f u,ion_ The inpUIs, OU lpUI .. and operalion of
the '""bling logic arc spe.:ificd as fo llows:

Inputs.:
5 ,. i ~ O. 1. 2. 3. 4. 5 · oignal. from.ix..,MOt set, (0 _ ;ntr",1OIl detccted. I _
no in,ion detected)
M - master . ,,·i.ch (0. lICCurity .ystcm on. 1 . """un' y ')'Ste m of 0

o..fpuo.:
A • a!ann (0 _ .lann 00. 1 . ala rm of 0
L ·lip,hts (0 . lighl' on, 1 .logbt. 011)
V _ ,·idtocametM (0· ~ideocamera, off. 1 - video camen. 00)
C . caUto police (0 • CIU off. 1 . c~1I on)

Openlljon:
If One Or more of the selS of s-enso" de.""" an intrusion and Ihe RCUrily
'y,um i. on,then all OUIPOIS nrc on , Olherwise. all output. are off.

Find a minimum SIIte inpul COunt rea lization of th" ennbhng 108k using
AND and OR g"te. "tid in~erICrs.

4-5. Design a 4·lo-l6-line decoder using IWO 3-t0-8-hne decode rs and 16 2_l nput
AND gat.,..

..... Design a 4-to-l6-linc decQdcr with ena ble """g five 2'10-4-hnc dttodcrs
"'lh enabl« auho",'n in Agure 4· 10.

1'JOOIe 0 19)

4-7. 'Design a S·lo.32-li ne decoder using four }.to.8-line decoders and 48 2-
inp ut AND gates.

4-tI. A spcci~1 4_1o-().line decoder is 10 be designed. The inpu t codes uscd are!n)
lhrough 101. r'Or a gi"en code applied. tM: output D,. "'ith i equal to the
decimal e<juivalent of tit<: code. is I and all OIher outputS are O. Desi&" the
decoder wilh a 2-10-4-line deroder. a l-l0--2-line decoder. and six 2·input
AN D gates. such tht all decoder outptllS are used at least once.

4-9. Draw the detailed logic diagra m of a 3-10-8-linc d~oder using only NOR
and NOT ga tes. Indude an enable input.

4-111. "Design a 4-inpul priori ty encoder wit h inputs and outpU" as in Table 4·5.
but with the truth table representing the ease in " 'hieh input Do has the
highest priority and inpul D, has tile 10"''''' priori ty.

4-lf . Deri"e the truth table 01 a BCD-to-binary priority encoder.

4-12. (M) Design an 8-to- l-line multiplexer using a 3-t0-8-line decoder and an 8" 2
AND_OR.

(b) Repeal part (a). using two 4-to-l·~ne multiplexe .. and One 2-io--l-line
multiplexer.

4-1.1. Design a 1 lo-l·line multiplexer using a 4_10-1 line decoder and" 16 x 2
AN D-O R.

4-14.. Design a d ual 8-to-l -line decoder using a 3-10-8-line decoder and two 8 x 2
A ND·ORs.

4-1~ Design a dual 4-10-1-line mult iplexer using a 2-10--4-line decoder and eight-3-
state bulk,,-

4-16. Design an 8-10--1-line multipl",er using lransmission gales.

..... 17_ Consiruci a 10010-1_line multiplexer ",ith. 3_t0-8_line decoder. a l_t0-2_ line
decoder. and a 10 x 3 AND-O R. n,e selection codes OXIO Ihrough 1001 must
be direcrly applied to tile decoder inputs without added logic.

..... 18. Construct a quad 9_to _I_line multiplexer with four si ngle 8-to-I -li1le
mu lliple~ers and one quadruple 2-10-1 -line multiple .. er. The multiplexers
should be inlCraKlnected and inputs labe led SO thai the selection codes 0000
through 1000 can be dir«\ly applied to the mul1iplexer selection inputs
without added logic.

..... 19. 'Con' truct a 15-to-l-line mul1ipl "~er wilh two S-IO-I·li ne mu ltiplexers.
Intecronn""t the two mu l1i plex~rs and label the inputs such thai any added
logic required to ha"e selec' ion codes 0000 Ihrough 1110 is min;mi'.cd .

..... 2(1. Rearrange the oondensed truth lable for the circuit of Figure 4_10. and "crify
thai th e circuil can [uncrian a, a demulliple~er.

194 0 CHAI'n1\. 4 I COMHINA110NAl FUNCTIONS ANI) CIRCUI'TS

;6-21_ A combinalional drcull It deftned by Ihe loI"""in~ Ihree BooIun fUnc1ions:

F,_ X + Z+XYZ

f-I " X + Z+XYZ

f) - XYZ+X+ Z

Design Ihe dreuil with a decoder &nd external OR gate1-

4-n. A combinationa l circui t is .!pecified by the following three Iloolean
functions;

Fz(A.8.C) - :::m(I.2.7)

F)(A.8.C) .. Tl M(O.1.2. 4)

ImplcmCnllhc circuil ",',.h a decoder and ulemal O R gates.

;6-21 Implemen! a binary full adder w,lh a dual 4-lo-l·line mulliplc~cr and a
singlc in'·crler.

;6-24. lmplcmenl the followin, Boolo.n function with an 8_lo_I· line mull iplexer
and a single invener with "ari~ble D as its input:

FlA. 8. C. {)) - l.,,(2. 4.6. 9. 10. I I. 15)

4-25. · Implement lhe Boolean fU'ldio"

F(A. 8 . C. D) .. ~",(1.3.4. II. 12. 13. 14. 15)

"".h a 4-lo-l·line n,ull1p1exer and e~lemaJ gal Connect 'npulS A and 8 10
the seledion lines. The input ffilu,remenlS for lbe lour dalB lines .. ill be a

o tlC UMI;III
BII"'l)'-lo-Decun.1 ROM Coo'~'\e'

I'rOOIcnu a 19.5

funClion of the variable. C and D. The value, of these variables are obtained
by "'pressing f · as ~ funclion of C and 0 for each of Ihe four case, when A 8
~ 00. 01. 10. and II. These funClions must he implemcnled ,,·ith e,ternal
gale!.

4-26. Repeat problem J ·25 using two 3·to-S-hne decode ... with enables. an
in,·uter. and 011. gates with .• maximum fan·in of 4 .

..... 27. Gi,·cn a 256 x 8 11.01.1 chip with an enable input. 'how the external
conneOion'S necessary 10 con.truct a I K x 16 nO M with eight chips and a
decoder .

..... 211. *"Ille 32 x 6 ROM. lOgclhcr ,,·ilh the ~ line. a. ,hown in Figure J ·38.
con,·crt, a f>.bit binary numher to ilS corresponding I,,"o·digil flCD number.
For ,,,'mple. binary 100001 con'·erlS 10 BCD 011 0011 (decimal 33). Specify
the trulh lable for Ihe ROM .

..... 29. Spedfy the sile of a ROM (n umber of words and number of bilS pcr word)
lha l will acco mmooale the lrul h lable for Ihe following combinational circ ui l
components:
(_, An 8·bil adder ub"oclor wilh Coo and C_.
fb i A binary multiplier thaI multiplie, 1"·0 8·bit numbers.
Ie) A code con'·erlcr from a J·digil BCD number 10 a binary number .

....... lO. Tabulale the trulh I.,ble for . n 8)(4 RO M that implemen .. Ihe followi ng
four Boolean functions:

A(X.Y.Z) .. ~m(0.1.2.6.7)

8(X. Y.Z) .. ~ m(2.3.4.S.6)

C(X. Y.Z) .. :£ m(2.6)

D(X. Y.Z) .. :£ mO.2.3.5.6.7)

4-31. Obtain Ihe PLA progra mm ing table for Ihe four Boolean funct ion. (j.{ed
in Problem 4_30. Minimile the number of producI (crm .. lJe sure 10
a ll cmpl 10 share pr<:>duCl lenn~ !>elween function~ that .re nol prime
implicants of individual funclions and 10 con,ider the use of complemented
(e) OUlpullO.

4-32. Dcri,·c Ihe r LA programming lable for the combinalion.1 circuit Ihat
square. a 3·bit num!>er. Minimil.c the number of prodLICI terms

4-JJ. Lisl Ihe I'LA programming \able for . BCD- Io-E , cc ...) code com·erter.

4-.J.l. • Repeal Problem 33. u,ing a PA L device.

4-35. The following i, the lruth lable of a Ihr"e-inpUl. four.<JUlput combinational
circuit. Oblain the PAL programming {able for the circuit. and mark the
ruse. 10 be blown in a PA L diagram 'imilar 10 the one shown in Figure 4-26.

t 96 0 CHAPTER ~ I COMBINATIONAL FUNCTIONS ANI) C IRCUI'TS

... - """"" • , , • • , •
" • • " " " • • ,
• • •
"

, , • "
,

• " • , " "
,

" " "
, ,

"
,

" "
,~ All HDL lil<'S for cirUlil! referred 10 In Ihe remaining problem~ arc ilable in
~ ASCII form for simul~hon and cdlhng on lhe Companion Websilc for the ICKI. A

VHDL or Veril~ oompilerlsimulalor ill neces53J}' for the ~ms or portions of
problems re<Juesllna: simul~lion, Descriptoons ClIn .. ill be _illen. bo",'c' ·cr. for
many probleTm "ilh , usln, compilalion or simulation_

.... 36. Compile and .imulale Ihe 2.11)-4.linc dCC<J<kr wilh enable in Figure 4·27 for
sequence 0)). 001. 010, 011 , 100.101.110. Ilion E.fl. -'0. AI. Verify Ihal
Ihe cirUlil fUnclions as a decoder. You will nee<.! to compile librury
lcdf_vhdl. ~unc-prill\ll first si nce it is used in the sim ul ation.

4-37, Rcwrile the VHDL given in Figure 4·27 for tne 2·t0--4·line decoder using (\)
Old_logic vector nOlutinn instead of std.Jogic notation for A and D..n a nd (2)
implicit opecilication of .he component input and output nameS by their
order in package func-Pri in lib.ary lcdLvh<:ll given in .he
Companoon Wcb5ile Gallery. See Figure 4-28 and accomp.;l"ying te~t for
Ihe>c """""pt .. Comp'1e and Simulate the resuhing file a. in pfOblem 4·36-

4--31l Com[lile and sim ulale lhe 4.t.,..I .~ne multiplexer In Figure "'28 for the
5e<Juenor: of an 16 combinations of 00. 10.01, lionS and \0)),0100,0010.0001
on D. You ",n nc:cd looompole ~bn.!)' l cdLvhdl. f unc-pcl ... Ii since il
is used in iIw: simulahon, Verify that the ci"",il funclions "". mulllple~er.

4-.l'iI. · Find a logic diagr~m thal correspond. to the VH DL OIruc1ural dCliCTiplion
in Figure 4-3\1. Note that complemen ted inputs ace nol av.ilable.

4-40. Using Figure 4.28 as a framework. write a .Iructural VHDL de$C1"iplion of
the circuit in Figu.e 4. 4(1. Replace x, Y. and Z with X (0: 2). Con. ult package
func ri "'" in libmry lc:df_vh,U for information on the ".ious gatc
component .. Compile ~unc-pci!fllll nnd)'ou. VHD L. and simulalc your
VHD L for all eight possiblo! inpul combinationo 10 verify your dtwiption'.
oorre<:lne<s.

"-'I. Using Figure 4·27 ., • framework. wri'e a Mruc1ural VHD L dcW'PIlOO of
the cirUlil in figure 4-41. CoMUit package hmc-prl .. in library

__ C""'i""<1",,,,1 Cirauit 1 , Structural VIIIL IlHCripUon
library l~. lcdf_vhdl ,
" •• ieee .• t<LlogicJ164.all. lcdevh<ll.!uncJlr imo. dl ;

_eiey ~_ckLl h
port lx l. ><2. ><3. x(, 10> atd,Jogic;

r , oue . tA-logic);
and ~ckt...l;

a~chtt.ct"c. s t ructural 1 of ~ckt-l io
~t /Url

porel inl, il> ot<L!oqic;
outl: wt atd,Jogic),

_~ ... "t'
C-.-o"_t AND'.l

poct (inl. in<! , In otd..).og1c,
outl , out otd,Joqicl;

_c--=-"e,
c_t CRJ

port (.tnl . in2. Inl , In .~logic,

outl , wt atd,Joqicl'
_ c-.-o"_"t ,

dgnal nl, nl. n~. n4 5. n6 ... ,.
"', ~. -" _0 linl ., "" ~u 'oil' = -" _0 I inl .. ." M'
'012, ~, -" _0 (inl .. ", ,~ M' .. n 21;
Q~ ; --" _ 0 (inl .. ~, ,~

M' .. nll;
9 4 , ~ -" _0 'm' ., u, ,~

M' .. n51;
'015, --" _0 linl .. ., .~

~" 61,

.. nil;
·~nt); ,
.. ." .. "" .. ""

9 6 , ~ -" _0 (inl .. ~, .~ .. ~,
i n3 .. "" M' .. f) , .= otrueturaV;

o nGURt: 19
VHDL for ProbIrm 4--39

I'n>bi.rm. 0 197

l cdf_vhdl for infoTm8tion on the v.rious gale cornpon~nt"- Compile
func.,.l>rims and your VIiDL. an d .imulale YOUT VHDL for ail 16 po"ible
input comb;nation< to ,,,,rify your dtscTiption', co'rect ne$~

4-42. Find 8 logic diagram represenling minimum two-level logic nceded 10
implemem Ihe VHDL dala How description in Figure 4-42. Note thai
complemented inputs are available.

198 0 CHAPTER 4 I COMBINATIONAL FUNCTIONS AND CIRCUITS

o nGURE 4·40
Cirt "il 10.- Problem. 4--40. 4--4J. 4-51. and 4-53

o nG UME 4·41
Ortu it lor Prob lem 4--4J and 4-oW

-- Corioinational Circuit 2, Do.tafl"" VIIl:L !)'scripti(X'l
- 111>.-...,. i~,
u •• i ~td_1D(liCn64,all;
.nOlt)' C<>'t'b_ckc2 h

port {a , 1> , c. d, a..n, b..n. c..n , d-"" in ~t<L1D(lic;
t,,, <>ut .t<L1D(licl,

-- "..11. b....n, a re ccnpl......,.,U of a, b, .. , • r""I*'UV<lly .
• "., corrt>_ckt..:;!,

archlt.ctur. rl4Uflow_ l of comb_ckU ia ... ,.
t <_ b """ la or la..n""" ell or Ib....n""" c an<! <t,.. .. I;
9 <- b.nIl Ie or (A_n '""" c....nl or (c....n """ d_nll'

""" daun""_l;

o H GURE4-42
VHDL for Probk m 4-42

,

4-43. ' Writ e a dataflo,,' V HD L description for the circuit in Fig~re 4·40 by using
the Boolean equJtion for the output F

4--44. +Write " dataAow VHDL description for Ihe priori!)' encoder using Ihe
"when else" dataftow conCept from Figure 4-30, Compile and si rnub!e }'our

PmbItm. Cl 199

dCKliplion .. ith a OCI ol.npul "«1('1'$ Ihat are a good lest fIX lhe priority
fu .. ehon it ~rfIXm ..

"-4.5. Wrile a dataHow VHDL de5CTiplion for an 8-to-l -~ne muhipkxer u~ln, lhe
"wllh ..,Iee!" datano-.· roncepl from Figure 4·31 . Compile and simulale your
description wilh a loCI of inpul ... eclors thl are a good lesl for Ihe IoI:lcclion
1"""lion it perlorm ..

4-46. .Compile and Slm ulale Ihe 2·10-4. \i ne d,~er in Figure 4-32 for "'quell"c
Ixn 001. 010. 0 11 . 100.101 .110. Ilion E. AO. A1. Verify Ihat Il,e circui l
funct ions as" decoder.

4-47. RC"'ritc the Verilog de5Criptioli given in Figure 4·32 for Ihe 2·10-4.111\(:
decoder using "eclor notation for inpul .. OUlput .. and wire .. Sec Figure 33
and accompan)'ing tnt for these conceplS. Compile and SImulate the
r.,.ullin, file ""n problem 4-46.

4-I!l Compile and simulate Ihe 4·10-1·llne muhiplacr in Fig",e 4·33 10' lhe
OC<I""IICC o f aU 16 rocnbinalloos of 00. 10. 01. lions and 1000. 0100, 001 O.
0001 on D. Verify Ihalthe circUIt funclion.as a multiplexer.

~. · Fi nd a logic diaV"m lhal rorr<!5j)Qnds 10 Ihe Vcrilog slr""lural de!;Cnplion
in Figu,e 4-43. NOle Ihnl rocnplcmcnled inputs are not available.

4-50. U,ing Figure 4·32 as a framework. ",nle a ,truelural Verilog descripllOn of
Ihe circuit in Flg"re 441. Compile a nd simulate your Verilog for nil 16
possib le inpul cnmbin"lion. 10 ... crify your descriplion', eorreclncn

4-51. Using Figure 4-33",,, fr"'nc",or~ . w",e a 'truel ll ",1 Verilog descriplion of
Ihe circui t in I~gure 4-40. Repll.cc x. Y •• nd:;; wit h lDput [2: 0] X. Con,pilc

II COd>inoti.,...1 Ci.-cuit I, Stroctu •• l Verilw n.cription
.o4ul. ~c~~I(xl. xl. xl. ,,4.f),

t_t xl. xl. xl. x4,
oooo""t f,

wi nl. nl. nl. "'. 015. 06, -,
IrDlnl. xl I.
gil"'. n31 : -g2lnl. ~. nil.
gllnl. ~. vL
114 1n5. V. ,,4) • 1 ,
g51n6. d. n41.);

0<

g6lf. ~ . "'. n61.
• _h

o n GUKE '..0
VenloJ for _rn ~

200 a C H,..PTER ~ I COMlfIN"'110NA~ FUNCfIONS AN]) CI RCUITS

/I OOoIbiniltlon.t.l Clr<:ul~ 2, o.un"", Ym-UO\I o-cription
_d. <XlIlI>_clU' ... l la, b, c, d, a..n, b...n, cJi, " .ft, f. ql,
/I a..n, bJi, ,., QOIIPl_u 01 a, b, • rtooptet lvoely,

i"pu~ a , b. c. d. a..n, b.Jt, CJI. <lJ>:
output f. g,

ud"" ~ ~ b ~ 1& 11"-,, . ell I IbJl . c . "'-"I:
... t"" \I ~ b . Ie I 1"-'" c..n l I {C.Jl . <lJ>1 I: ._ul.

[J n (;UME 4.-14
Ven lotl for F'robIcm 4--52

and "mulale your Vcriloa for all cigll! possible input combi i<:>m 10 verify
)'O\lr de:ocripiion'u'Orrecln"N.

4-S2. Find a Jogic diagram repretCnling minimum 2·lc>d Jogic nttUed 10
implement .he "c.ilog dalaftow description in Figure 4..(4 , Note . hat
compic"",n'cd inptl'~ uc _nilablt.

4-S3, · Wr;te a datafto", Verilog dcscrtplioo for the circuil in l'ig". e 4-40 by uling
Ihe Ilook.n "'IUal ion for Ihe OUlpu t F and using Figure 4-3~ as a model.

4-54. By us ing lit e cotl dllional dalano'" co ncept from Figure 4-36. "'r'le a Veri log
da lafi ow descripliol1 for nl1 lI_lo- t ·line multiplexer. Coml,i l" H"d simulUlc
your dt$<.iplion w,t h a sel of illpUI "cClnTS Inal are a good leSI for Ille
set""lion (uncliOl' il]>c.fo.m~

4-55, .. Wrile a dalaf\ow dcscriplioo for 'he priority encode. in figure .1-1 2 using
lhe binary declo..,n dlllal\ow canapl f'om I;;gu.c 4_37, Compiic and
simula.e your description ,.ilh a sel of inpul vecton Iha. are a good leM for
lhe priorily (1I"""on;1 performs.

ARITHMETIC FUNCTIONS
AND CIRCUITS

I
n "'i. chapter, \he!ocYs contllllJO' to be on functional blocks, specifically, a
spedal class olluncbooa l blocks ll1at .,orform arill1meli< operations, The concept
of tte rall"" ei reu". maOO up ol antly. 01 comI)ir;ational cells Is introduced. Blocks

clesogned as iterative arrays for parlorm ing addition, addition and subtraction, and
multiplication a re """"'00. The simplicity 01 these arithmetic C:;fl)lJ it. comes f rom using
CO/TIIlffimem rep,,,,,,,matioos!Qf mt>crs and comple""'tlt-based ar ithmetic. In
addllion, we Introd""" ci rcu~ cont,ac~on that pe,mits uS to ~gn new lunch"",,1
blocks. ContrOOlioo invot\<es awlica!io<1 01 va lue·lixing to the inputs of "xisting blodts
and simplification of the ",suiting circuits. Thc$.o circuits perlo<m ope<ations stJCtl as
Oncrementi r>g a number, decrementing a number, Or multiplying a number b)I a
constant Many of these new Iuncb"",,1 block. are used to constrL>;! sequentia l
luoc1ional bIocI<s In Chapl'" 7

In the gen(! ric computer dia!1'8m al too be{jinni"ll of Chapler 1, adclers. adder­
subtractors. and multlpljers aM used In the processor. Incrementors aM
"""",menters a re used wiOOly in o!her components as well, $0 concepts from this
dlapter ~pply aCrOSS most oomponanlS of the IJOneri<; oomputar.

5-1 ITERATIVE COMBINATIONAL CIRCUITS

In this chapter, the arit hmetic blocks arc typicall)' desigI1ed to orera1e on binary
inpu t ,'cctOts a nd produce binary output ,'eelors. Further, the funct ion imple­
memcd often requires that the same sublunct;on be applied to each bit positio n.
Th us. a funct ional block can be dcsigI1ed for tite sublunetion and then used repeti _
tively for each bit posi1ioD' of the overall arithmetic blocl being designed. There

o 20 1

202 0 CHAPTER S I ARITHMIOfIC fUNCTIONS AND C lltCUITS

A •. ,B,., A, B, 1'1 j j
X. ___ "- "

,
Coll o·i '., • • • " <:< 11 I " <:<11 0 -- ~

Y. -- - p Y,

I L C~I C,

D FrClJKE 5-1
Block DIagram Qf an Iterallve Cil'<uir

will Qften b<: one Qr more connections to pass valuCl; between "dj~ccnt bit posi­
tions. These internal v.riables arc inputs Qr Qutputs QI the subfunctiQns, but nQt
ac"," .. ible outSIde of the overall arit hm Clic block. The ,ubfunction block. are
referHd to as cells and the o\'era ll imple me ntation is an Mmy of cell •. The cells in
the array are often, but nO! always. identical , Due to 1he repcti1iw nature of Ihe
circui1 and Ihe asscoe;alion of a veclor index wil h each of the circuil cells, the over_
all funct iona l block is referred to a •• n ilemll"'e a"a)" Th" use of ilef3li"e arrays. a
special case of hierarchical circuits, is useful in handli ng "ectors of bits, lor e xa m_
ple, a circuit that adds IwO 32· bit binary integem At a minimum. suc h a cireuil has
64 inpuls and 32 outpUIS, As a consequcn~e. beginn ing with (ru(h (abies and wTiti"S
equalions for Ihe ent ire circuil is out of the question , Si nce ilemlive circ uits are
based on repetitive cel~ the design process is oon,iderably .impli ficd by a basic
struc1ure that guide, the design,

A block dIagram for a" iterative cireuit Ihat operales on two II -input vectors
and proouces an II -oulput veclor is shown in Figure 5· 1, In this case. there are two
lateral connections between each pair of ce ll' in the arm)'. one from IclilO righ t
and Ihe olher from right to left. A lso, optional connections. indicated by dashed
lines. exist at the right and left end> of 1h" array. An arbitrary array employs as
many lateral conn ections as needed for a particular design. The definition of the
funC1ions a,,,,,,iated wilh such oonnecliom is very importa nt in Ihe design of the
array and ils cell , In partIcular. the number of connections used and their lu nctions
can affect both t h~ cost and speed of an ilerali"e circuit .

In the next section. we will defIne cells for performing add ition in individual
bi1 posilions and then defme a binal)' adde r as an array of cd'"

5 -2 BINARY ADDERS

An arithmetic circuit i$ a "'mbinational ci rcuit Ihat perform. arithmetic operation.
such as add ilion, subtraction, multiplicalion . a nd division with binary numb<:rs or
" 'ith decimal numbers in " binary code, W" will develop ari1hmetic circu it' by
mea", of hierarch ical. iteralive design , We begin at the lowest le\'ol by finding a cir­
cuit that ""norm s the addition of Iwo bi nary digits. This ,impl" addilion consist' of
four possible elementary operations: 0 + 0 - 0.0 + I - 1. 1 -0- 0 - I. and I + 1 - 10.
The first 1hrec operations produce a sum requiring only one bil to represent ii, bur

5-l I Bu...ry AM= 0 203

o TA8LE 5-1
Truth n ble of lI alf Adder

Inputs

, ,

" " "

Outputs

" " "

,

"
when bolh the a ugend and addend are equal to I. Ihe hinary sum requires two bils.
Because of this ~asc, Ihe resui! is always represented by two bits. the carry and the
sum. The carry oblained from tbe addition of IWO bits is added 10 the nexi higher
order pair of . igniflcant bils. A eombinational eircuitthat performs the addition of
Iwo bils is called a full! alMer, One that rerfonns the addilion of Ihree bils (IWO
significant bils and a previous carry) is called a 1,,1/ a,idu. The nameS of the cireuits
Slem from Ihe fact that Iwo half adders ean be employed to implement a luU adder.
The half adder and Ihe full adder arc basic arithmetic bloch wIth which other
aril hmelic circuits are designed

Half Adder

A half adder is an arithmetic circuit that generate, the Sum of two binary digils.
The cireuil has 1100 inputs and t,,'o outputs. The input variables are the augend and
addend bit< 10 be added. and the OUlput variabks prod uce Ihe sum and carry. We
assign Ihe symbob X and Y 10 Ihe IWO inp uts and S (for "sum") and C (for "carry',)
to Ihe outp UIS. The truth table for the half adder is listed in Table 5-l. The C output
is 1 only when bolh inpuls are I. The S o ut put roprosent' the least significanl bil of
the sum, Tho Boolean functivus for Ihe Iwo outputs, easily obtained from the truth
lable. arc

S - XY + Xy=xe y

C - xy
The hall adder can be implemented wilh one exclu,ive·OR gale and one AND
gale. as shown in Figure 5-2.

o t' IGURE 5-2
Logic Di.gram of H,I! Add<r

204 0 CHAI'T'ER 5 I ARITHM~IC FUNCTIONS AND CIRCUITS

o TA8LE 3·2
Trutb Table or ~'ull Adder ,,- Outputs

, , , , ,
0 0 0 0 0
0 0 , 0
0 0 0 ,
0 , 0

0 0 0
0 , , 0

0 , 0

Full Adder

A full adder is a combinational circuit that forms the arithmetic sum of three input
bit>. BeIlides the throe input .. it ha, two OUlputs Two of the inpul '·ariablcs. de~ oted
by X and Y represent the two significanl bils 10 be added. The third input. Z, repre­
sents Ibe carry from Ihe previous lower ,ignifica nl position. Two output:s arc ncee/l­
sary because Ihe arithmelic sum of three bits ranges in value from 0 to 3, and binary
2 and 3 need two digits for their representation. Again. the Iwo outputs are desig­
nated by the symbols S for "sum" and C for "carry": the binary variable S gi"es the
' -alue of the bit of the sum. and the binary variable C si"es the output carry. The
truth lable of the fu ll adder is listed in Table 5·2. The "alues for the o utputs are deter·
mined from the arithmetic sum of the three input bits. ""'hen all the input bits are O.
the outputs are O. The S output i~ equal to I when only one input is equal to I Or
when all three inputs a,.., equal to I. The C output has a carry of 1 if two or three
input. are equal to l. The maps for the two outputs of lhe full adder are shown in
figure 5-3. The simplified sum.of. product function, for the two output< are

S = XYZ + X YZ + XYZ+XYZ

C - X Y + XZ-l-YZ

The two·level implementation requ ire, ""ven AND gates and Iwo OR gates. How·
ever. the map for output S i$ recogni zed as an odd function. as discussed in Section
2· 7. Furthermore, the C output function can be manipulated to include the exclu­
si,·e·OR of X and YThe Boolean functions for the full adder in tenns of e xclusi,·e .
OR operations can then be expressed as

S - (X$ Y) $ Z

C - XY+Z(X$ y)

,
s _ XYZ: '" XYZ '" XYZ: ... XYZ

_ X <!l YE!lZ

5_1 I B;,,>ry Add"" 0 205

n ' ~ 00 01 I I 10

,[:EEB5j
,

C - XY+XZ+YZ
- XV + l(XY ... XV)
- XY+Z(X$Y)

o FIGUK£ 5·)
Mal" for Fu ll Adder

The logic diagram for th;' mulliple-Icvol implememo tion is shown in Figure 5·4, It
consists of lwo half adders and an OR gate.

Binary Ripple Carry Adder

A parallel binary adder is a digital circu it Ihal produces the arithmetic sum of two
binary numbers using only oomb;nationallogic. The parallel .ddcr uses n full adders
in parallcl. wilh all inpU! bits applied simultaneously to produce the sum. The full
addc"l are connected in eascade. wilh the carry output from one full adder con­
nected to the cony input of the next full "ddeT. Since a I C~Try may appear ne.r l~ e
least significant bit of the addcr and yet plOpagatc through many lull adders 10 the
most signiticanl bit. just as a wa, ... ' ripplcs outward from a pebble dropped in a
pond. the parallcl adder is referred to as a ripple carry adlin. Figure 5-5 .ho"'~ the
inlerconnection 01 four lull _adder bloch to forn> a 4· bit ripple carry adder. The
augend bits of A and the addend bits of B are designated by subscriplS in increasing
order from right to left. with subscript 0 denoting the le.st significanl bit. The car­
ries are connected in a doin Ihrough Ihe full adde The inp ut ClIrry!Q the parallel
adder is Co. and the OUlput carry is C,. A n n-bil ripple carry adder requi res n full
adder&. with each output carry conMctcd to the inpUl carry of the nexl-higher-<>rder

, ------ ---------
I !l, lf O<l<lcr

,---------------
H, llodd<, ,

,
./ , , , , ,

I
,

'> ,
~---------- ----------- c

,
o FIGURE S'"

Logic Diagrom of Full Adder

206 0 CHAPTER S I ARJTHMET IC FUNCTIONS AN I) CIRCUITS

" "
I I

"
c,

"
C,

"
C,

"
! ! !

o FIGURF.5·5
4·Bil RiPl>Ie C"rry A<kIc:r

fUll ad,icr. For uamplc. oonsider Ihe Iwo binary numbers A _ lOll and II _ 0011.
TIleir .um. S _ 1110. is fOf'med ",·ilh a 4·bil ripple carry adder as foU"",-.:

Inpul carry
Augend A
Addend B
SumS
OUlpul carry

01 \ 0
I 0 I I
Q.Qli
1 I I 0
00 I I

The inpUI carry in Ihc lea't Signitie"nl position is O. Each full adder receives the
corresponding bit. of A and B and the input carry aod generate. II><: sum bit for S
and tit<: output carry. The output carty in each position is the input carry of the
ncxt . highcr-order f/O'Iition. as indi<:at ed by the blue lines.

The 4·bit adder is a Iypical example of a digital componen1that can be u""d
as a building block . II can be used in ma ny applicalions invol"ing arilhmetic opera.
tions. O bserve Ihal the design of Ihi. circuit by Ihe usual mClhod would require a
Ituth table wi,h 511 entrics,.i nce tllerc arC ninc inpulS to the circuil. By c~scading
the four instanCCll of the known fuU adders, it is possible to obtain a simple and
'traightforward implementalion without dir~tI)' wiving this latg<:r problem. This
i. an example of Ihe power of ileralive circuit' and circuil reuse in design.

Carry Lookahead Adder

The ripple carry adder. a lt ho ugh simple in concepL has a long circuit delay due to
the many gates in the carty path from the least Significant bit to the moo(significant
bit. For " typ;';al <k!;ign. the longcs(delay path through an ,,·hi t ripple carry adder
is 2n ... 2 gate dela} ... ThUs. fOf a l6-bil ripple carT}' adder. the delay i. J4 gate
dda~ ll1is delay lends 10 be one of the largest in • typical oomputer ~ign.
Accordingly. we find an alternative dcsign. Ihe c~rry look~he~d ~i1der. '\lfacti,· • .
l'hi~ adder i. a practical ~ign wi(h reduced delay at the pri'" of more complex

S_2 I Din.ry Adde" 0 207

hardwue. The cany lookahead deSIgn can !:>c ohlained by a Iransfonnalion of Ihe
ripple carry design in which Ihe carry logic over fixed groups of bits of the adder is
reduced 10 two-level logic. The lransformalion is shown for a 4-bil adder group in
Figure 5·6.

First. w'e construcr a new logic hierarchy. separaling Ihe parts of lhe full
adde ... nol involving lhe carry propagation path from Ihose containing lhe palh,
We call the first part of each full adder a pania/full add" (PFA). This separalion is
shown in Fig ure 5·6(a). which presenlS a diagram of a PFA and a diagram of four
PFAs connecled 10 lhe carry palh. We have remo,'ed the OR gate and one of lhe
AND gates from each of the full adders 10 form Ihe ripple carr)' palh,

There are IWO OUlpUIS. 1', and G •• from each PFA 10 the ripple carry path and
one inpul C;. the carry input. from the carry path to each PFA. The funcrion p. =A,
m Bi is called the propagale funclion. Whene"er P, ;8 equal to I. an inooming carry
is propagated through the bit position from Ci 10 C;+\. For Pi C<]ual to O. carry
propagalion lhrough the bit posilion is bloeted. The function G, _ A, B, and is
called lhe genetdle function. Whene,'er G, is equal to I. the carry out put from lhe
posilion is 1. regordless of lhe value of p .. so a carry has !:>cen generated in lhe
position. When G, is O. a carry is not generated. so that Ci + I i, 0 if Ihe carry prop.­
gal"d Ihrough Ihe position from C,is aloo O. The generale and propagate funclions
corre'pond exactly 10 the hall adder and are essential in conlrolling the values in
the ripple carry path. Also. a< in the full adder. the PFA generates the ,um function
by the exclusive-OR of lhe incoming carry C, and the propagate function P,.

The carry path remaining in lhe 4-bit ripple carry adder has a IOtal of eighl
gates in cascade. $0 lhe circuil bas a dela)' of eight gate delays. Since only AND
and OR gates are involved in the carry path. ideally. lhe dela)' for each of Ibe four
carry signals produced. C, Ihrough C,. would be just lwo gale delays. The basic
carry lookahead circuit is simply a circu il in which funClions C, Ihro ugh C, have a
delay of only lWO gale delays. The implementation of C, is more complicaled in
order 10 all ow the 4-bil carl}' loobhcad adder to be extended to mu ltiples of 4
bits. <uch as 16 bits. The 4-bit carry lookahead Cifcuit is shown in Figure 5-6(b). 11
is designed 10 direclly replacc Ihe ripple carry path in Figure 5-6(a), Since lhe logic
generating C, i. alrcady two-lcvel. i(remain, unc~an gcd. The logic for C" how_
e"er. hs four Ie"ds So 10 find the carry lookahead logic for C,. we musl reduce
the logic 10 two levels. The equation for C, is found from Figure 5-6(a). and the
distributi,·c law is applied to obtain

This equation is implemented by the logic with outpul C, in Figure 5-6(b). We
oblain the two-Icvel logic for CJ by finding ilS eq uation from Ihe carry palh in
Figure 5.6{a) and applying the distributive law,

208 0 CH APTER ~ I ARITHMETIC FUNCTIONS AND CIRCUITS

,---------------- ---- --, , , ' , , , , , , ,

/'---r{
, , , ,

<
,

---- ,

~' ~' ~'

"
~ 1" ,

'" ~, ~, '"
~ G, r, C, i, G, P, C, J, G, P, 'Ol ____ _ t <!:o ___ ~, r----- ------ - ---- --- -- ---- - ------- - - - -. , ,

, ,
--1 L--1 L--' --'

,
" l l ,
, '~ , " C. .--------------- - -- --- - - ---------~--~-- - -------- ------------------~ ,.)

I"' - I" I"' -, Ie, I"' • Ie, ~ I~ -<.

~

Lot
r<

" ~ 1-(

Lof ,

""f<,J rO

I," Q I
,.,

o FIGURE 5-6
De,..,Iopm<nl of . carl)' Lookohead Add<:r

~2 I Binary Adden a 209

The two.l~vel l ogic "'i t~ output C, in Figure 5-6{b) implements this function.
w~ could impl.m~nt C. using the .. me method . But ""me of the ga tes ,,'ould

ha"e' fan_in of five, ,,'hich may incrn~ the <iclay. Also. we arc interested in reUI_
ing this 5.lme ci","it fOf higher num~red bits (e.g..4 through 7.8 throop II. and
12 through IS o f a 160bit lKIder). For this a<kkr. in ~itions 4. s..nd 12 We ,"'OU1d
like the carry to be prod~ as fa!it as J105Sible ",ithout using excessi, .. fan, in.
Accordingly want to repeat the ... me carry Iookaltead trick fOf 4-bil groups
that "'0 u~d to handle the 4 bi ... '111 .. will allo,.. U5 to re...., the carry Iookalw::ad
circuit fOf eac h gruup uf 4 bilS. and also to usc: the Ioame <;",uil for four4·bil i"0ups
a. if they "'orC individual bits. So insl cad of ge nera ling C,. w'e produce ge nerale
and propagate functiuns tnat apply to 4-bit groups instead of a , ;nglo bit to act a,
Ihe inpuls (ur the i"0up carry lookahead circuit. Tu propagale a carry frum ~ to
C •• " .. n~ed to have all four of the propagale functioo! " '1u.llo I. &i"inllhe grollp
pmpogatr function

P O- 1 - 1',1'11',1'0

To represent lhe ",neratioo of a carry in po$ilionl O. L 2. and 3. and itl prop.ap_
tion to C • . we need to consider the 8"neralloll of. carry in each of lhe position .. as
represcnted by Go Ihrough GJ• and the propallation 01 each of the"" four ge ner,
ated carri ... to ~ition 4. This give, the 8"'''1' gCliU(l'. function

TI>e group propaaale and group genente equalioo. arc impiemcnled by the logic
in Ihe 1 -.. part 01 Fogure 5-6(b).](there arc only 4 I);t. in the adder. lhen the
logic circulI used (or C, can be used 10 ",nenle C. from theoc lwo OUlpU L$. In a
longer adder. a arry Iootahead circu't identical to that in lbe figure .• u:ept for
labeling. is pl~d at the scoond le>'el lO cenerate C •. C •• and Ct>. This com:epl can
be extended " 'llh more carry Iookahcad circuiu in the 5CCOIld level and ,..ilh olle
carry look8head circu,t in Ihe third le vel tu gencr~lc carries for positions 16.32.
,,"d 4~ in a 64-bi t adde r.

A",um;" 3 Il,at an .xclu,h'e OR ron tribul es 2 gate delays, the longe5l Je lay in
the 4_1>il eatry look" he.d adder i, 6 gale tklays, compared with 10 gate delays in
the ripple carry adlkr. The improvemenl is very modest and perhaps not worth all
t h~ extra logic. ll ul ~ppll'ing Ihe carry Iookah.nd ci",uil to a 160bil adder using he
copies in t" -o le'cI. of loohhead reduces the delay from 34 10 jus. \0 lite dela~'S,
,mprm'ng the performantt of the adder by. f,.lor of dose to Ihree. ln _ 64-bit
adder. ,,·ith the usc: of 21 carry loohhead circui ts in three Ie"els of Iootahead. the
d~lay .. reduced frOll1 130 gale delays to 14 l ate dday:<. &I,ing more than 3 f~or
of 8 in improved perlonnanc~. In genual. for the implementation we hn'·. shown.
Ihe dd3)' of a c~rry loo k"hcad .dder designed for Ihe oot performance is 4L + 2
gate dela)'!, whe re I. i. the nu mber of looka l1 ead Ic,'~I, in the di:$ign.

210 0 CHAI'TEIl ~ I M\JTHMETIC FUNCTIONS AND CIRCUITS

I
5-3 BINARY SUBTRACTION

In Chapter 1. we briefly examined the subtraction of un,igncd binary numbers.
Although beginning tc~!S <xwer only <igned number addition and .ubtraClion. to
the complete exclusion of the unsigned ailcrnative. un,igned number arithmetic
pla)'ll an im p<Jrtant role in computation and computer hardware d""ign. It i~ u"cd
in ftoating.p<Jint units, in signed-magnitude addition and subtraction algorithms,
and in extending the prc"(;ision of fixed'p<J;nt numbers. For these reasons, we will
treal u" signed number addition and subtraction here. Y.'e alSO. however. choose to
treat it first so that we can dearly justify. in terms of hardware cost. that which oth ·
erwi,e appears bilarrc and of len is accepted on faith. "amely. the usc of comple­
ment representations in arithmetic.

In Section 1·3 .• ubtmction is performed by comparing thc subtrahend with
the minuend arid subtracting the .maller from the larger. The uSC of a method con­
taining this comparison operation resuits in inefficient and cosily circuitry. As an
ahemali,'C. we ean simply subtract the subtrahend from the minuend. Using the
same numbers as in" .ubtract;on e~aTrlplc from Seclion 1-3. we have

Borrow. into:
Mim,cnd

Subtrahend:

Difference:

Correct Difference:

I 1 HK)

10011

- 11110

10101

-01011

If no borrow occurs into the most significant position, then we know that the su[')·
trahend i. " 01 larger than the minuend and Ihat Ihe resuh is positive and correct. If
a borrow doe. occur into Ihe most ~ign;ficant position. as indicated in blue. then we
knuw that the wbtrahend i. larger than the minuend . The re.u lt mu.t then be neg­
alive. and SO we need to correet it. magnit ude. Wc can do this by examini ng the
res"lt of the caiculation ",hen a borrow occurs :

M-N+2"

Note that the .dded 2" represents the VAlue of the borrow into the most signific.~nt
position. Instead of this result. the desired magnitude i. N - M. 11>is can be
oblained by subtracting the pre<:eding formola from 2":

2'-(M-N +2") - N - M

In the previous u'",pl •. I(((((J - 10101 ~ 01011. whicl1 is the corrcct magni tude.
In gene,al. the .ubtraction of 1wo n.digi1 numb<:r<. M - N, in base I can be

done as follo,",'S:

I. Subtract the subtrahend N from the minuend M.
2. If nO end borro,,' occur<. then ,II ;., N. and the re.ult is nonnegati,·. and

correct.

5-J I B;n..-y Snbt"cbon 0 211

J, If an end borrow OCCUN, then N > M, and the difference, M - N -1- 2", is sub­
uacled from 2", and a minus sign is appended to the resuh.

Subtraction of a binary number from 2" to obl ~in ~n ,,·digit result is called taking
the 2~ complement of lhe " umber. So in step 3. we are ta~;ng the 2's complement
of lhe difference M - N -1- 2". Use of Ihe 2's complemem in .ubtr.ction i. ill u.­
trated by the following example.

I £XAMPL£ 5_1 Ulldgne<l Binary SubtrlKl ioll by 2'. Cornplcrn~nt Subtract

Perform lhe binary subtr"~tion 01100100 - 10010110. We have

Borrows into;

Minuend:

Subtrahend:

Initial Resu lt

HIe end borrow of 1 implies correction:

,.
- I"itial Result

Final Resuh

10011110

01100100

- 10010110

11001110

,==
- 11001110

- 00110010 •
To perform subtraction using this method requiTe$ a $ubtr~Nor for the ini_

tial subtraction. In addition, when n~ceS$ary. ~ither lhe sublraclor must be used
" second lime 10 perform the correction, or • scpMate 2's complemelller circuit
musl be provided. So, lhus fM, we r~quire a sub!raclor, an adder, and possibly a
2'. complemenler to perform both odditi"n a nd ,ubITRclion. 'nle block diagram
for a 4_bil adder_<ubtractor using these functional blocks is shown in Figure 5·7 .
The input s arc applied to bolh Ihe adder and the subtractor, so both operations
arl: performed in parallel. If an end bonow value of I o"curs ill the subtraclion,
then the selective 2's eomplemenler recei"es a value of I on ilS Complement
ill put. This circui t then takes the 2's C(lmptemenl of lhe ou tput of Ihe subtractor.
If the end borr<>w has .alue of 0, the selective 2's complemenleT passe. the out·
put of the subtractor thro ugh unchanged. If subtraction is Ihe operation, lhe" a
1 is ~pplicd 10 S of the multiplexer thal selocts lhe OUlput of the complementer.
If addition i. the operation. Ihen a 0 is applied to S. thereby selecling lhe oUlput
of lhe adder.

As we will see. this circ uit is more complex Ihan necessary. To reduce the
amount of hardware, we would like 10 sharc logic belween the adder and the sub­
tmclor. Thi, can also be done using lhe notion of Ihe complement. So before con­
sidering the oombi"ed adder--subtractor further, we will take a mOTe caTd ul look
at complement ..

212 0 CHAPTER ~ I A R.I TI-L\\£f1C FUNcnONS ANi> CIIlCUITS

Bum), ,ubl,.,;(",

S, I«,;",
2', oomp!<me n,er

o flGURES_7
Block Diagram of Binary Adder-Subl'OCIor

Complements

There are two Iypes of complement s for each ba",-r sJlStem: the radix comple­
mem, whi ch we saw earlier for ba$e 2, and the <limin;,ite,/ radix complement, 'ne
first is referred to as th e r~ complemem and the ","ond a, the (r - l)'s comple­
ment. When the value of Ihe base T is substiluled in Ihe namtS,lhe Iwo types are
referred to a, the 2's and l 's complements for binary numbers and the lO's and
9's complements for decimal numbers. , especti ,·eiy. Since Our int erest for the
present is in binary numbers and opcrations. we will deal with o nly l 's and 2's
complements.

G iven a number N in bina ry ha"ing " digi ts. the I:, e<>mplement of N is
defined as (2" - l) - N. 2" ;s represented by a bi nary number that consists of.
I followed by It O's. 2" - 1 is a binary number represented by n 1's- For exam·
pIe, if" - 4, we have 2" - (IOClOOJz and 2" - I - (1111),. Thus, the l's comple­
mem of a binary Dumber is obta ined by subtracting each digit from 1. Whon
subtracting binary digit. from L ""'~ can have either I - 0 - 1 or 1 - I - O.
which c. use, Ihe original bi t to change from 0 to 1 or from I to 0, rospoctivd)',
Therefore, the 1', complement of a binary num~r i. formed by changing all l 's
to O's and all 0', to l ·il-th.t is, applyi ng th e NOT or complement operalion to
each of th e bit'. Following are two numerical examp les :

The 1', complement o f 101 1001 i. 01 0011 O.

The l·s complement of 0001111 is IIICXXXl.

In 'imilar fashion. the 9·s complemcnt of a decima l n umber. the 7". compl.·
men! of an oct"1 number. and the IS·, complen'ent of a hexadecimal number are
obtain~d by . ubtrActing cach digit from 9. 1. and F (decimal 15). rc.pecti_dy.

Given an n-digit number N in binary. the 1 "s complemml of N i, defined as
2" - N for N ___ O and 0 for N - O. Thc reason fonhe special case of N - 0 i. that
the ","ult must ha'·e n bito. and subtraction 010 from 2" gives an (n ... I)-bil rcsull.
100 ... 0 . This special .-e is ""hi.,oed by usinll only an n ·bil .ubtractor or otllc",,_
dropping lhe I in the nlra posiloo". Comparing ";th tbe I·, complement. "'e note
lhat the 2·s complemenl can be oblained by ~'nK I to lbe I·, complemelli •• i~
2" - N _ 1[(2" - I) - NJ + 11· For example. lhe 2·, complemenl of binary 101100
i. 010011 + I _ 010100 and is obtained by adding I to the I·, oomplemeOl value.
Again. for N _ O. lh. re.ult of lhis aJd ition is O. achieved by ignoring the carry out
of the mosl significanl position of the addilion . lllese COnC<.'plS hold for other base.
a, "ell. As ... ·c ",ill sec laler. they are ,"~ry useful in simplifying 2·, compl.menl and
.ubtraclion Imrd"·are.

Alw. thc 2'1 complement can be formed by lea'·ing sli least oignificanl 0·, and
the fim I unchanged and then replacing I·s "'''h 0·, and 0·0 ,,·ith l's in all other
hIgher signitkanl bit .. Th ,he 2·, complement of 1101100 is 0010100 Bnd is
oblained by leaving the Iwo Iow..,..d~r O·s and the first I unchanted and then
replacing I's wnh 0·, and 0·, with \', In the ot~ef fo ur most ,igniticanl b;lS, In other
ba~ the first non7.cro digit is ;ubtractcd from the base '. and lhe remaining digil5
to the leli arC r~placed wilh r - 1 minU$ their values.

Ii i, nl,o worl h III"ntioning ,hat the cOlllplement of lhc complemenl restorc.s
the number to Its original value. To ..., this. nOle thai the 2·, oomplemcnt of N i$
2" - N. and Ihe coonplcmeol of the compl~mCn1 i. 2" - (2" - N) - N. giving bad
,he onginal number.

Subtracllon with Complement.

Earhu. we uprcssed' dc,ire 10 simpl ify h3Tdware by shanng addcr and subtrac·
tor logic. Armed "'i th complemenls. we are prepared to defin~ I binary subtrac·
tion procedure lhal use, addition and Ih e co.responding oomplement logic. The
subtraclion of two It·digit unsigncd nU"1bers. M - N. in binary Ca n be done a,
follows:

I. Add the 2'. oompkmenl of Ihe . ubt rahcnd N 10 Ihe mlnL>end M. This per·
forms'" + (2" - N) - M - N+ 2".

l. If,., l! N. the .um prod""'" an cnd carry, 2". Oi"",.d ,IN: end carry.lea>inK
re.ull M - N.

3. If ,II < N. the Sum dooca no' produce an end carry .ince it i. «Iual to 2"­
(N - M). the 2·, complement of N - M. Perform a correction. taking the 2·,
complemem of lht sum and pladng a minus ,ign in front to obtain lhe re.u lt
-(N- M).

214 0 CHAPTER ~ J ARITHMETIC FUNCTIONS AND CIRCUITS

The examples that follow further illustrate the foregoing procedure. Note
that, although we are dealing with unsigned numbers. there is no way to get an
unsigned result for the case in step 3. When working with paper and pencil , we rec,
ogoire, by the absence of Ihe end carry, that the answer must be changed to a neg­
ative number, If the minus sign for the result is to be presef"ed, it muSt be ,tored
separalely from lhe corrected ~,bit result.

EXAMPLE S-Z Un,igne<i Binary Sublract;un by 2', Cumplem~d l Addition

Gi,'en the two binary numbers X - 1010100 and Y = 10000]], perform the sub·
traclion X - Y and Y - X usiog 2\ complement operation .. We have

X= 1010100

2'scomplementofY - 0 11 1101

Sum - l001(X)O I

Discard endcarry2' - - ICXXXXXXl

AIlS"''': X - Y = 001(((11

Y - 100001 1

2'scomplement of X = 0101100

Sum _ 1101111

There i. no end carry,

A"$w<r: Y - X - -(2'. complement 011101 111) - - 001(((11, •

SUbtraction of unsigned numbers al.o can be done by means of the I's com­
plemem, Remember that the I', complemem is one I",s than lhe 2', complement.
Because of this. Ihe result of adding the minuend to the complement of the subtra ­
hend produce, a , um that i, one less than the correct difference when an end carry
occur>. Discarding Ihe end carf)' and adding one to the , um ;s referred to as an
end·ara""d carry.

EXAMPLE S-l Unsigned Binary Suhtnctlon by 1', Compl~ment Additio"

Repeat Example 5·2 using I', complement operations. Here, we have

X - Y - 1010100 - 1000011

X - 1010100

l 'scomplementofY - -t01i1i00

Sum _ 10010000

End.around carry L-+ 1

An.,...'er: X - Y _ 001(((11

y - X - IOCOOII - 1010]00

y ~]OCOOl1

l'srompl~m~ntofX " +0101011

Sum ­

There is nO end carry.

1101110

A" ~r: \ ' - X .. -(l's compl~ment of]101110) .. -0010001. •

Nore that the n~ga'ive reoul! is obtained by taking the I', romplem~nt of tbe
sum,~inee this i, the rype of compleme nt being used.

5 - 4 BINARY AOOER-5UBTRACTORS

Using either the 2\ or l's tOmplem~nr. we have eli minated rhe subtraction opera_
rion and need onl y the appropria re rompleme nter and an adder. When performing
a , ubtraction we complement the subaahend N. and when performing an addition
we do nOl complement N. These ope",. ions (an be acromplished l>JI using a ,(:lec­
tive complementer and adder interconnecred to form an adder-subm.crOT. We
have US«! 2's rompkmcnt. sinee it is most prevalenl in modun system$. The 2',
complement ca n be obrained by raking rhe I', complement and adding I ro rhe
least ~;8nificant bi!. 'l'he l's rom plcmenr can be impl~mented ea~;ly wirh ;nverler
circuits., and we can add 1 to Ihe sum l>JI making lhe inpur carry of rile f"'rallel
adder equal ro 1. ThUs. by using I', complement and an unused adder inpur, the 2',
compleme nr is obtained inexpensi"ely. In 2', complem~nt subl"'ction, as the cor·
rection step after adding. " " complement rhe result and append a minus sign if an
~nd carry does nOl ocrur. The correction operarion is perfo ... ned by using eitller
the adder~ublraC!or a serond lime " 'irh M - 0 Or a select"·" complemen rer as in
Figure 5·7.

The circuit for sublucting A - 8 consists of a paran~1 adder ru; ,hm.n in
Figure 5-5. with inverleB placed berween each B lerminal and rh e rorrespond ing
full ·adder inpul. The inpul oarl)' Co must be equal 10 1.1'11e operation thar i, per·
formed become. A plus lhe I', romplemenr o f B plus]. This ;s eq ual 10 A plus
the 2', complement of B. For unsigned number .. ir gives A - B if A ;O: B or rhe
2', comple me nl of 0 - A if A < 8.

The addi rion and subuaction operarion, can be combined into One drruit
wilh one rommon bina!)' add~r. This is done by including an exclu,ive-OR gate
with each full adder. A 4·bil addcr~ublr"cto< circui' ;s sho,,'" in Figure 5-8. Input
S oonlrol, lhe operalion. When S • 0 rhe circuir is an adder. and !ten S K I lhe
circuir becomes a , ubrract or. Each exclu. i,'e-OH gale rccei,'es input S and one of
lh ~ inpulS of B. OJ. Wilen S .. O e have B, III O. ff the full addeB receive lhe value
uf B. and lhe inpul cany is O. 'he cirruit perform. A plu. 8. When S .. 1. we ha"e
8, III 1 ~ Ii; and Co " l. In thi, case. the circuit performs the operar;un A plus the
2', complement of B.

216 0 CHAI'TER ~ I AR.lnIMETIC rUNcnoNs AND CIRCUIT'S

" . . "
•

"
r-1 "

c,
"

C,

"
C,

" f-. "
I I I I

"
o FIG URE S-!!

Ao.I<Ier--SubU·.ctor a,,,,,il

Signed Binary Numbers

In Ihe previou, section. we dealt "ith the addition and subtraction of unsigned
numbe We will now e~lend Ihis approach 10 sig<led numbc indooing a further
use of complemenl' Ihat eliminale, the correction step.

Pos'li,·., integers and the number zero can be repre",med as un~ign"d num­
be To repr=nt negati~e intege we need a notalion for negalive ~alues. [n
ordinary ar;lhmetic. a negali,'c number is indicated by a minu' sign and a positive
number by a pl u. ,ign. Because of hardware limitations. computers mu", represenl
everything "ilh 1'5 and 0' .. including the Sign of a number. As a cons.cquence. il is
customary to reprcscnlthe ,ign "ith a bil placed in the moo;t significanl position of
an "-bil number. The con"enTion i, to make Ihe , ig<l bil 0 for posili"e numbers and
I for negalive numbe

11 i, imponanT 10 realize that botb 'igned and unsigned binary munbers con,i'l
of a Siring of bil~ when represenled in a computer. The user deterrninL'S whelher lhe
number i, 'igned or unsigned. If tbe binary number is signed. lben the leftmost bit
represcnl~ the sip> and the rest of lbe bils rerre"'nl Ihe number. If the binary nUm_
ber i. assumed to be wISigned. then the leltmoo;t bil is tbe tnO:'ll ,ignificant bit of tl>e
number. For exa mple. tbe ming of bit, 01001 can be considered a, 9 (unsigned
binary) or +9 (signed b;nary). b<:cause tbe lefttnO:'lt bil is O. Similarly_ Ihe Siring of
hi .. tlOO! represent. tbe binary equivalent of 25 when con,idered '" all unsigned
numbcr or -9 wbcn considered as a sig""d number. The laner is because the I in Ihe
leftmost position designales a minus sign and the remaining four bit' represent
binary 9. Usually. there is no confu.>ion in identif)ing the bit~ bcaluse Ihe t)·"" of
number representation is kno n in advance. TIle ,epresentation of .igned numbers
just diseuw:d is referred t" a~ Ihe Jjg"~'I."'~g,,;tud~ S)'SICm. [n this S)'Skm.the nUm_
ber consists of a n,agnilude and a ,ymbol (+ or -) or a bil (O or 1) indicating tbe
.ign. Thi. is the representation of signed numbel'S us«! in ordinary arithmetic.

In implemcn'ing signed-magnitude ad(lil;on and SUbm,clion for ,.-bit num ­
b<:n. the si ngle sign bit in the leftmost position and the n - 1 magnitude bits are
processed separalOly. The magnitude bits are processed as unsigned binary num­
bers. ThUs. sublraclion involves Ihe correction .tcp. To avoid Ihis ,Icp, we use a
different system for representing negati,'e numb<:n. rderred to as a signed_com_
plemem s)'Stcm, In Ihis sy,'em, a negali"e number is represented by its comple ­
ment. While the signed-magnitude s~tem negates a number by changing il' sign,
'he signed-<:<.>mplemcnt '~tem negates a number by taking its complement, Since
positi,'e numbers always stan wilh 0 (representing a plu, .ign) in the leftmost
pollition, Iheir complements will alwa)'. SIan with a I. indicaling a negative num­
ber. The signcd-<Xlmp1cmenl '~tem can use eit her the l's or the 2-, OOmplcment,
but the laller is the most common, A. an example, consider the nnmb<:r 9, repre _
sented in bina'}' with eiglll bit .. +9 is represenlcd ",;th a sign bit of 0 in the left­
most position, followed by the binary equivalent of 9, to give 00:01001. Note that
all eiglll bilS musl ha"e a value. and thcrefore.O·. are insened helween Ihe sign bit
and the firs t I. Although there is only one way to represent +9. we ha"e three dif­
fcn:nt ways to rcpresent - 9 u.ing eighC bits:

[n signed-magnilude repre..,mation:

In signed_l's complement representation,

[n signed-2's complement representation:

1(0)1001

111101\0

111\0111

In signed magnin""', - 9 is obcained from +9 by changing the sign bit in lhe left"","t
position from 0 to L In signed l's complement, -9 is obtai""d by complementing all
the bits of +9, including the sign bi1.ll>c signed 2's complement representation of - 9 is
obtai""d b)' tsking the 2's complement of the positive number, including the 0 sign bit.

Table 5·3 li,ts all possible 4_bit.ign~d binary numbers in the Ihree representa­
tions. The equivalent decimal number is al50 shown. Note that the polliti'''' numbers
in all three represenlations are identical and have 0 in Ihe leftmos' position_ The
signed 2's complement system has only one representation for O. which is always
positive , 11,e other two system. have" positive 0 and a negative 0, which is some­
thing nol encoumcrcd in ordinary arithmel;';' NOle 'hal all neS"!i"e numbers have a
1 in the leftmost bit position; this is the way we di"inguish them from positive num ­
hers. With 4 bits- we can represent 16 binary numbers. In the signed-magnitude and
the I's complemem represe"'ations. there a re .. ven pollil;ve numbers and seven
negati,·. numbers, and two signed lOro •. In the 2's complement representation,
there are seven pollili,·. numbers. Onc zero. and eight ncgalivc numbers.

The signed-magnitude s~'stem is used ;n ordinary arit hmetic, but is ""'kward
when employed in computer arithmetic due to the !.Cpamt. handling of the sign
and the correction "ep required for subtraction. Therefore.lhe .igned complement
is normally used . The l's complement imposes difficulties bttause of its two repre_
sentations of 0 and is seldom used for arilhmetic operation .. It i. useful as a logical
operation, since the change from I to 0 or 0 to I i. equivalent !o a logical comple_
ment operation . '11,. following discussion of signed binary arithmetic deals exclu_
.i,·ely wilh the signed·2's complemenl rcpresentahon of negalive numbers because
il pre"sil. in actual use. By using r. complementation and the end-around carry,

2 1 8 0 CHAPTER 5 I ARI11tME11C f UNCTIONS ANt) C tRCUtTS

o TA BLE Sol
SiJMd Kin...,. /'I'~m'~ " SIgned " I .,--- ~-, --, _.-

H 0111 011l 0 1 t] .. 0110 01 10 Ot 10 ., 0 101 0101 0101
H 0<00 0<00 0<00 ., 00" 00" 00" ., OOW oow OOW" .." .." ., 0000 0000 "'" - 0 1111 ,.., -, 1111 1110 ",n -, 1110 1101 10tO -, 1101 "00 tOll -. "00 lOt I "00 -, 1011 1010 1101 -, 1010 '00' 1110 -, '00' "'" 1111 -. ,..,

(he ~arne procedores as thOle for signed 2', oomplemen! ellt1 be applied to signed
l's oomplemen(.

Signed Binary Addition and Subtraction

The addition of two numbe!'$, M + N, in the s;gnr:d-mag,n itudc .~tem follOW! th e
ruks of ordinary arithmetic: If the ,ians arc the "''''''. we add the t o maanitudcs
and give the sum the ,ian of M. If the lians a rc different-e subln.a the rnaan;'
tude of ,'II from the nUianitudc of M. The a~nce or p",scnce of an end oo.row
then dctenni""" the sign of the ",suh. based 00 the .ign of M. and de termines
,,'hether or not • 2'1 complemen t wrrc<1ioo is ptrformed. For example. since the
"'8M an: different . (0 0011(01) + (I 01(0101) cau 0100101 to be ..,bt.loCted
from 001 1001. The resu lt il]]]0100, I nd an cnd borrow of I occurs. Ute end bo ...
row indicates that the maanitude of M is Imalie. than the magnitude of N. So the
sign of the result i. """""lte lhat of M and is lherefore a minu~ The end borrow
indicates that the ma gnitude of the .~uh, 1110100, must be corrected by ta king it5
2', complement. Combining Ihe sign and the corrected magnilude of the rcs ult, we
obtain 1 (0:11 100.

In COn(.ru;1 to thi s signed-magnitude case, the rule for adding numbers In lhe
signed·complement 'ystem does not require compariwn Or subtraction. bU l only
addition_ The p.-.x:edure is !.imple and can be staled as folio"", for binary numbers:

1bc addition of Iwo !.ign.ed binary numbers " ,Ih negalive n~mbe" ",pre!;Cnted
in signed·2', romplc:nlenl tonn is obtained frolD the addition of lhe two num·
ben. includin& lberr !.ian bits. A o:arry QU(of (be sign bit "",ilioo is disearded.

Numerical eumplr$ of signed binary addition are giv .. n in E~ample 5-4. Note that
negati,-e numbers will already be in 2's complement form and that the sum
obtained after the addition, if negative, is lell in that same form.

I EXAMPLE 54 Signed Binary Addition Using 2', Complement

+ 6 OOOXII IO -6 11111010 " WJOOIIO -6 11111010

'" txXXlllOl +n txXXlllOl - B 11110011 - B llllOOIl

'" (XXl10011 +; OOOXIIII -, IllllOOI -" 11101101

In each of tbe foUT cases. the opeMion performed is addition. induding the sign
bit .. Any carry out of the sign bit position is discarded. and negati,-e results are
aU10malically in 2', complemenl form, •

The complemcDI rorm ror repre .. nting negalive numbers is unfamiliar 10
people accustomed to the signed-magn;',,"e system. T" detem,ine the value of a
negali'-e nUmbeT in .igned'2's complement, II OS ne«$$ary to convert the number
to a positive number in order to put it in a more familiar form. For eumple. the
signed binary number 11111001 IS negative because the leftmost bit i$ L Its 2-s
complement is OOOXIIII , which is the binary equiv.leDl of + 7, We therefore recog·
nize the original number to be equal to - 7.

The SubITaClion of two signed binary numbers when negative numbers aTe in
2's complement form is very simple and can be stated as follows:

Take the 2's complemenl of the subtrahend (including tlie sign bit) and add it
to the minucnd (including the sign bit). A carry QUI of the sign bit posil",n i.
discarded,

This procedure stcms from the fact that a subtraction operation can be changed to
an addition <>peration if the sign Qf the subtrahend is changed, That i ..

(= A) - (+8) _ (= A) +(-8)

(=A) - (- 8) ~ (=A) .,. (+ 8)

But changing a positive number to a negative number is c .. ily de",e by taking its 2's
complement , The reverse is als<:> ITll(:, because the complement of a "'-'gati,'e number
that is already in complement form produces lbe corresponding positive numbe •.
Numerical example!; aTC shown in Eumple ~,S.

I EXAMPLE 5--5 Signed Bina.,. SubfTllction Using Z'. Complement

- 6 11111010 11111010 + 6 OOOXIIIO
- (-13) - 11 110011 + txXXllIOI - (-13) - 11110011

+ 7 000XI1I1 + 19

The end carry is dis<:arde<l.

OOOXIllO
+ txXXlllOl

(XXllOOII

•

220 0 C I IAI'TER ~ I AR mlMEfIC FUr-;crIONS ANl> CIII.CUITS

It i~ worth noting that binary number.; in the ,ignc"<l-complemenl s)"tem are
added and subtracte<! by the same basic addition and <ubtr""tton rule~ as are
unsigned number.;. Therefore. computer.; need only one common hardware circuit
to bandle both types of aritb metic. 11,,, u.",r or prog.rammcr om,t interpret the
results of such addition or .ubtraetion differently. depending on whether it is
assun.ed that the number.; are signed Or unsigned . Thus.. the same adder~ubtractor

d""igned for unsis,ned number.; can be used for sigJ1e<! number.;.
If the 'igne<! number.; are in 2's complement representation. then the circuit

in Figure 5-8 can be used with no correction step required. For 1 '. complement. the
input from S to Coof the adder must be rcpl"ced by an inp ut from C. to Cn.

Over1low

To obtain a correct an.wer when adding and subtracting. we must ensure that the
result has a sufficient number of bit, to accommodate Ihe sum, If we stan with two
n-bit numbers.. and the sum occupies n + I bits.. we say that an O>'erjfow occur.;. This
i. Irue for binary Or decimal number.;. whcther sigJ1ed or unsigned. When one per·
forms addition with paper and penciL an o,'e.How is not a prohlem. since we are nO!
limited by the ,,;dth of Ihe page. We just add another 0 to a posilive number and
another Ito a negative number. in the most signiflCSnt posilion. 10 extend tbem ton
+ I bils and then perfOllll the addition. O"crflow is a problem in complllers
because the number of biu Ibat hold a num""'r is fixed. and . result that e ' ''''''ds the
number of bits cannot be accom modate<!. For this reason, computer.; detect and can
signal th. occurrence of an o"nftow, The overflow condition rna)' be handled .ulo­
matically by interrupting the uecution of the program and ta~ing special action.
An aUemati,'c is to monitor for o"erflow conditio"" using software.

The detection of an ",'erHow after the addition of two binary numbers
depends on whether Ihe numbers arc considered to be signed or unsigned, When
two unsigned number.; are added. an overflow is detected from the end carry out of
Ibe mOSI SigJ1iticant position. In unsigned subtraction. the magnitude of the result
is always equal to or smaller than the larger of the original number.;. ma~ing o,'er·
How imposoible. In the case of Signed 2', complement number.;. the most Significant
bit always represents the sign. When Iwo signed numbers a.e added. the sign bit i~
treated a, a part of the number. and an end carry of 1 does not neces.arily indicate
an overflow.

With signed numbers.. an overHow cannot occur for an addit ion if one num·
ber is positive and the other is neg.tive:; Adding a positive number to a neg.tive
number prodUCe!! a r.,,;ult whase magnitude is C1jualtoor smaller than the larger of
Ihe original numbe"- An overflow may occur if the two number.; added are bolh
positi,'" or both negati,'e. To see how this can happen . consider the foIlO"'ing 2's
complemCnt uample: Two signed number.;. + 70 and + 80. arc storcd in two S-bit
registers. The range of binary numbers.. expressed in decimal. that e""h register can
accommodate is from + 127 to - 128. Sir.ce the Sum of the two stored numbers is
+ ISO. it uceeds the capacity of an 8-bit regi",r. This is also true for -70 and -80.
These two additions. together with the two most significant c.rry bit ,'.Iues.. arc as
follows:

Corrie:!: 0 1
+70 01000110
. ~ . ,~

>-~ I Bm.ry Molbpbo<>bon 0 22 1

Conies: 10
- m lOlllOI O , - ~
-,~

Note (hal the S·b;, result that should ha,'e been posit;". bas a negal;'-. sign bit and
that the 8-bil Wiult thaI sl>ould ha,". bttn negative ha~ a positive sign bit. If. how_
ever.the carry out ufthe .ign bit position is taken as the sign bit of the result. then
the 9-bi[anS"-er so obtained will be COrrect. Bm sin« there is nO position in lhe
T~SUIt fur Ihe 9t h bit, e say tliat an ",-ernow has ooxurTcd

An overflow condition can be detected by obsen--ing the cany into the sign bit
position and Ihe carry out of Ihe sign bit posilioo. If these 1"'0 carrie. are not equal.
an overflow has occurred. This is indicated in the 2", complement example just rom­
pitIed. ",her. Ihe tWO cames are explicitly shown. If the two carries are applied to

an exclusive_OR gate. an ",'.rfto is detected when the output of the gate is equal
10 I. Fo. this metbod 10 work co. ",clly for 2's complemcnl, it is nece..ary eitber to
apply the I 's complement of the subtrahend to tbe adder and add I or to ltave o,'er­
Ilow deteclion (Kl Ihe circuit thaI forms the 2's complement, n.e laller condition i.
duc to overflow ,,-hen complementing Ibe nlaximum n.gat;~e numbe.,

Simple logic thaI p.ovides O\'erflo,,· (ktectinn is shown in Figure 5,9. If Ihe
number!l ore con.i(krcd unsigned, then Ihe C outpul being equaT to I detects 0
ca rr~ (an o,'crHow) for an add ition and indicates that no correction ,tep i, "'qui rcd
for a subtraction . C being equal to 0 de tect, no carry (no o"er1!ow) for an additi""
and indicates Ihat a correction step is required for a subtraction.

If the numbers are considered signed, then Ihe Qutp"t V ts used to detect an
overflow, If V 3 0 a fler a signed addilion OJ subtraction. it indicales Ihal no ove r­
now has occurred and Ihe ... "ult is correct. If V '" I, then the resull of the opera­
tion contoins" + I bits, bUI only the rightmOSI n of those bil. fit in the n -bil result,
s<> an overflow has occurred, The (n + I) lh bit is Ihe actual sign_ but it cannot
occupy the Sign bit posil ion in the result.

5-5 BINAR Y MULTIPLICATION

Multiplication of binary numbers ;s performed in the same way as w;th decimal
n"mben The mu ltiplicand is multiplied by each bit of the multiplier. staning ft,,",
the least significant bit. Each such mult iplication form. a pania l prodllCl , Successive
partial producl< are shifled one bit 10 the left. The final prodUCI is oblained from
the sum of the partia l producl'-

' "<-
' ___ l--I ~""i

o FIGUR E 5-9
o.e .IIo,,' De,eClioo Logic; for Additioo and Sub"""lioo

222 0 CH APTUl S f ARITHMETIC FUNC'nONS ANI) Cl It.CUITS

To su how a binary muhiplier can ~ implement"" with a combinational cir·
cuit, OOf\sider the muhiplicatioo of t,,-o 2·bit num~~ as sho,",," in Figure ~·10. ll>e
multipli.:and bi~ are 8 , and 80• Ihe multipl;"'r bilS areA, and AQ,and the product i,
C,C,C,Co. The fj"" panial product is formed by mUltiplying B,Bo by A o_ The multi.
plicalion of Iwo bits Such," Ao and ilo produ""s a I if both bilS are I: othcrwi!oe it
produces a 0. This is identical to an AN D operation. Therefore. Ihe panial product
can ~ implemenled ,,;th AND g;>tes as shown in the diagram_ The second partial
product is formed hy muhiplying B, Bo hy Aland is shifted one position to the left ,
The Iwo partial productS are added wilh two half-adder (HA) circuits. Usually there
are more bilS in the partial products. and it will be necessary to u.., full adders to
produce the ,urn of the pa n ia! products. Note thai the least significant bit of Ihe
product does not have to go through an adder. since it i. formed by the o utp ut of
the firs t AND gate.

A combinational circuit binary muhiplier with more bits can ~ constructed
in a similar fashion . A bit of the multiplier is ANDed with each bit of the multipli·
cand in as many levels as there are bits in Ihe n, ultiplier_ The binary output in each
le>-el of AND gates i. add"" in parallel with the partial product of tlte previous
Ie>'el 10 form a new panial product. The laSlle>-cI prod,..:es Ihe product. For J mul ·
tiplier bit. and K multiplicand bits. we need J x K AN D gates a~ d (J - 1) K-bit
adder> 10 produce a producl of J + K bits. A, an example of a combin alional eir·
cuit binary multiplier. consider a circuit thaI multiplies a binary number of four
bilS by a number of lhree bit .. Let the multiplicand be repre .. nled by B1Bl B,Bo
and the multiplier by Al A,A o_ Since K ... "' and J ... 3. we need 12 AND gale, and
lwo 4-bit adders to produce a product of 7 bits. The logic diagram of Ihis kind of

" • ~

" ~ " •
",", "'-

A,B , '" \.,
<, <, <, <. " " •

••
'" '"
I ~ . < •

o FIGURE S- tO
A 2·Bi, by2. Bi, Binary M~I'iplicr

" " " ,

" • " •
y y'r j ,-- ,~.

' ·bo, .dOe,
C.~ ". ""'I""

" " " •
yyy ,-- Au",'"

~'"
4-1';, adde.

0'''1'''' ".

c, . c, c, c,
a ~'rGURE 5-11

A ~· Bit by] · 8i, Binary Muh'plie.

multiplier C; ' CU;\ is shown in Figure 5-11. Note thaI thc Carry Output bit enters the
adder al the nc~t level down in the multiplie •.

5-6 OTHER ARITHMETIC FuNCTIONS

There are other arit hmetic fUnc'lioo, beyond +, - . and ><. thl are quite imporlant.
Among Ih"'" function. are incrementing. decrementing, multiplication and divi.ion
by a constant. greater Iha" comparison. and less Ihan comparison. Each of these
functions can be implemented for multiple-bit operands by using an iterati.'e array
of lobi, cells. InStead of using Ihese basic appmach(:$. a rombinalion of rudimentary
function. "' ... a new technique called contraction is used. Comrac.ion begins with a
circuil such as" binary adder. " carry-lookahcad adder. or a binary multiplier. This
approach ~implifies dC"Sign by oonwrting existing cireuit< into u""ful. leSS"""",,"pli.
cated circuits insle!id of (Ie>igning (he laller circuits direcUy.

224 0 CHArTa<.; I ARITHMETIC FUNcnONS AN!) CIItCUITS

Contraction

Value-fixing. transferring. and im-ening on inpull; can ~ combincd with function
blocks as done in Otapler 4 10 implemenl new funclions. We can implement new
funClion, by U'ling similar technique-s on a given circuit or on it, equalio,,, and then
comraCIing it for a 'pecific applicalionlo a simpler circuit We will call the procedure
COII"tK:,i<)n. 'The gool of contmClion is to accompli,h Ihe design of a log>: circu it or
functional block by U'ling ,e.ults from past designs. It can be applied by Ihe designer
in designing a target circuil or can be applied by logic s)'nthesis tools to simplify an
inilial circuit with '-alue-fixing. transferring. and in''e'ting on its inputs in order to
obtain a target circuit. In both cases. comraclion can alSO be .• pplied '0 circuil Oul·
puts that are unused, to simplify a sou"", circuit to a target circuit First, ",'e illustrate
contraction by u,ing [loole.n equations.

t:XAl\1 I' LE s-6 Contnodion of Full Adder E'IIIYlion.

The circuil Addl to ~ designed i. to form Ihe Slim S, and carry C;'J for the si ngle
bit addition A,,, I -t C,. This .ddilion is " special case with B, _ I of thc addition
performed by a full adder. A ; + /J, + C" ThUs. cq uati'm, for Ihe new circuit can be
oblained by laking thc full adder equations..

S,. A,Eil lliEilC,

C,.,. A , II, -tA,C, + /J,C,

selling B,. 1, and simplifying the resuhs. to obl.in

Si - A,1!lI I!lCi - A,eC,

Ci.,~ Ai I + A,C, +IC,", A, -tC,

Suppose Ih"1 this Addl circuit is used in place of each of Ihe four full adders in a 4-
bil rirple carry adder. Instead of S ~ A + /I + Co. the computation being performed is
S ,. A + 1111-tCo- fn 2'. complemcnt. this computation isS ., A-1 +4 If Cu= O.
this implements Ihe dec","'e'" operation S ., A - t, using consider.>bly less logic than
that used for a 4-bil addilion or sublrOClion. •

Contraction can ~ applied to equalions. as done here. or <lireelly on circuil
diagrams ",ill! rudimentary funClion. applied to function block inputs. In order 10
,uCttssfull}' appl}' contr.ction. the desired function must be able to be obtai ned
from the initial circuit by application of rudimentary function, on its inputs. Next
we consider contraclion based On unused OI1tpUts.

Placing an unknown ,·alue. X. on the o utput of a circuit mean, that output
will not be use<l. Th Us. the output gate and any other gale, Ihat dri~c only that oUl·
pUI gate can ~ removed. The rules for oontmcting equation, wilh X's On one Or
mOTe outp uts are as follows:

I. Ddcte all eq uations wilh X', 00 Ihe circuit out PUIs..
2. [f an intermediate variable does not appear in any rcmaining equntion. delcte

it. equation.

"

J. If an input variable does nOi appear in any remaining equation, delete it.
4. II.cpea\ 2 a nd 3 until no new deletions arc possible.

The ruks for ooolr.Cling a logic diagram wilh X's on one or mOte outputs arc as
follows:

I. Beginning a1 (he outputs, delete all gales Wilh X', on their outpUls alld place
X'. on their input wires.

2. If all input wires driven by a gale are la~led wilh X'$, delete Ihe gate and
place X's 011 its inpm>.

J. If 311 input wires driven by an e~lernal input are la\>tled Wilh X'So delete (he
input.

4. Repeal 2 and 3 until no new dde!;on! are possible

In Ihe next subsection, contraction of " logic diagram i. illustrated for the
incre ment operation

Incrementing

I"CT<n'~"'ing mUnS adding a fi . ed value 10 an arithmetic variable. most often a
fixed .-alue of I. A n "·bit incremmle, that performs the openhon A • I can be
obtained by using a binary adder that perform, the operation A -+ B with /J " 0 ... 01 .
The use of n ~ 3 is large enough 10 delennine the incremcmer logi<:: to CQrlSlTUct
the circuit needed for an n_bit incrementer.

Figure ~.12(.) Sho",., a 3·bit adder with the inputs fiud to represent the
compurationA • I and with Ihe OUlput from Ihe most significant carry bit C, lhed
at ,'alue X. Operand B .. 001 and the incoming carry C.", O. 50 that A + 001 -+ 0 i.
computed.Ahematively. B" (l(X) and incoming carry CO" I coUld h •• ·c been used.

:-- -:":"~";"~"i":"J"i"i":";~~~" ~f ----; ------------ -, ~f -----~ --------; ----, ~
, , ,

':;~~J::t:::!:::'~-iI : : :1:::'::;:'
------, ,

, ', e,' ' " (-. +0

" ",
,----------' , ' ,

" ",
o n GU RE S· 1l

Contraction <>l A<kkr to Increme"'OT

,- ------- --' , ' , ~ , , , ,
------ ---,

226 0 CHAPTER S / ARITHMETIC FUf\;CTIONS ANI) CIRCU ITS

Based on vaJue·fi:<ing. Ihere arc three dislinct contraclion cases for Ihe cells
in Ih~ adder;

I. 111e least significant ""II on Ihe righl with So _ I and Co" O.

2. The Iypical <:<;11 in Ihe middle wiln 8 , = O. and

3. The mOllI si&nificanl cell on the left with Bl ~ 0 and C) " X.

For Ihe righl cell. Ihe OUlpul of gale I ""comes Ao SO il can I:>e repl aced by
an in'·erler. The oUlput of .&.ale 2 be<:ome. A Go so il can be re placed by a wire
connecled In A o- Applying Ao and 0 10 ga le 3. il can be replaccd by a wirc. cnn_
neclingA" 10 the output 50- The nUlput of gate 4 is O. so it can be replaced wi th
~ II value. Applyi ng Ihi$ 0 and Ao from gale 2 10 gale 5. galC Scan t>e replaced
by a " .. ire connecling An 10 C,. The resulting circuil i. shown as Ihe righl ""II in
Figure 5- 12(b).

Applying Ihe samc lechnique to Ihc Iypical cdl with B, .. 0)'idds

5, .. A, eC,
Cl - A,C,

giving the circuil shown as Ihe middle cell in Figure S-12(b). For the left cell wilh
B, .. 0 and C, _ X. Ihe effects of X aT<: propagaled firsl to 1ja"C effort. Since gale A
has X On il' OUl put. il i. removed and X's arc placed 00 ilS Iwo iTlpu,,_ Since all
gales driven h)' gales Band C have X's on their inpu ls, they can be removed and
X's "Ill be placed on their in pUIs. Gales D and E cannot be remo'·ed. since they
arc each dri"ing a gale wilhoul an X on ils i"puL The resulting circuil is ,n()Wn as
the left cell in Figure 5-12(b).

For a n incremenlor wilh n > 3 bils, Ihe leasl significanl incremenler ctll is
used in pas;l;on O. the typical cell in pas;l;ons Ilnrough n - 2. and Ihe mosl sig­
nificant ccll in posilinn" - I. In Ihis ~xample.lht righlmost cell in position I is
contracled. b ut . if desired . il could be replaced wit h the cel l in posilion 2 wi th
Ho = 0 and Co ~ I. Li kewise. Ihe OUIPUI C) could be generated. but not used. In
holh cases. logic "Olll and power cfficienC}' arc sacrificed 10 ma ke all of Ihe cells
idenl;cal

Decrementing

Decrementing is the addition of a fixed negative val ue 10 an arithmelic variable. mOllt
oflcn. a f,xe.! value of - I. A deeremenler has already been designed in Example 5-6.
Allernatively. a decrementer could be de!;;gned bji using an adder-$ublraclor as a
Slarling cireuil and applying B _ 0 ... 0\ and Co z O. and selecting Ihe .ubtraction
operalion by selling 5 to L Ilcginning wilh an adder-$ublraclor. wc can also usc
conlraction 10 design a circuil Ihat increments for S z 0 and decrements for S _ I
by applying B a 0 ... 01. Co _ 0, and letting S remain a .ariabk In Ihis case. Ihe
resull is. cell of Ihe complexilY of a full adder in the typical bit posilions. In fact.
by going bac~ to baSICS and redcfining 'hc carry funClion and designing Ihe cdl
using ,his redefinition. the COSt can be lowered somewhat. Thi. illn,mnes that

oon(T1'Idion, while il yields an implementation, may not produce a r""ull with t""
le~t CQSt or best pcrfonnallCl:.

MulUplieation by Constants

Asou min g the circuil in figu re 5· 11 i. used as a basi. for multiplication, mulliplica­
tion by a constant can be .chiewd by simply applying the consta nt as the multiplier
A If the value for a particular bil posilion i. I . than Ihe mulliplicand will be applied
10 an adder. If the value for a panicular bit position i. 0, (hen 0 will be applied to an
adder and the adder will be remo.'ed by conlraction. In hoth cases, Ihe AN D g" I<:$
will be removed. The process is illustrated in Figure 5.13{a), For this case. the mul ·
tiplier has been se t 10 101. In the contr'C1;on process. si nce 0 + B ~ B, the carryoul
value is always O. The end r""ull of the contraction is a circuit Ihat conveys Ihe two
lea.t significant bits of B to Ihe o ut puts C, and Co. The circuit add. the lwo mOlt
.;gni~canl bit. of B to B shifted two position, to the lefl and applies the result 10
product outpUI< C. through c"

An imporl nnl special case occu'" when the constant equal 2i(i.e .. for nlu lti·
plicatiOfl 2i)(B). In this case, only one 1 appears in the mulliplicr and all logic is
eliminated from Ihe circuit rcsull ing in only wi res, In this case, for the 1 in posi·
tion i, the res ult is B followed by i O's, The functional block that resulls is simply a
combination of skewed lransfers and value fi' ing to O. TIl e functi<>o of (his block i.
c~lIed a 141 sh'fl by i bu p<>siliol1> ,,';<1, I;~ro /ill. Z~ro fill refc," to the additiOfl of
O's to the right of (or to the left of) ao operand such as B. Shi fling i. a "cry in'por.
tant operatio" app li ed 10 oot h numerical and nonn um crical d~ta . The oontractio n
result ing from a multipheation by 21 (i .e .. a left shift of 2 bit positions) is shown ill
Fig ure 5· I3(b).

DIvIsIon by Constanta

Sine<: we have nol covered the divi.ion operation, our discussion of division by
conSlams will be restricted to d ivision by powe", of 2 (i.e .. by 2' in bInary).
Si nce mulliplicalion by 2' res ults in addi tion of; O's to lho right "fthe multipli·
cand, by ana logy, division by 2i res ults in remova l of the i le ast significant bits
of the dividend. The remai ning bits are the quolient and the bits discarded are
rhe remainde r. The funClion of this bloc k is "" lied a ri/illt .\1Iilt by i hi/ pmit;""..
JUSI as for left shifting, right shifting is likewise a very important operation. The
function block for division by 2' (i.e .. right ' hi fting by two bit pOSit;"ns) is
shown in Figure 5·13 (c).

Zero Fill aOO Extension

Zero fi ll. as def,ned previously for multipli cation by a con Slant. can a lso be used
to increase the number of bits in an operand. For nample, suppose Ihal a byle
01101011 i. 10 be used as an input 10 a circuil that requires an input of 16 b;\5..
O ne possible way of producing the 16·bi t input is to ,-ero·fi ll with eight 0', o n the
left to prwuce (lOO{)()((I()() I IOIOII. Another is to ,.ro-fi ll on the right to prod uce

228 0 CHAPTER ~ I ARITHMETIC FUNCl'IONS ANI} CIRCUITS

(

, (, , (~'c
I-' l- I-

::r::r::r
c,,'. , / ''''ru'

-p~'~c
,~ H,,,A<lder
'""ru' ,."

,.)
11, 11, 11 , 1\0

~~
C, C. C, C, C, C.

''l

~
C, C, C, Co C , c,

(,)

o FIGUR.: S· I J
Conor.01ion. of Mult iplier: (oj for 101 ~ B. (b) for 100 , B. and (ej for B .. 100

0 1 10101 100iXXlOOO. The former approach would be appropriale for o~ralion.
such •• addition or subtraction. The laller approach could be used 10 pTOduce a
low.preei~ion H,·bit muhiplicalion T"suh in which the byte represent' the most

s·] I HOL Rep",,,,n"""".-VHOL 0 229

significant tight bits of the actual product with the lower hyte of the product
discarded,

In contrllSt (Q zero fill. sign a'I~ im' is u~d to increase the number of hits in
an operand repre""nted by using a complement repre""ntation for signed
numbers. I f the operand i. positi,·e. then bits can be added on the left by extending
the .ign of the number (0 for posi tive and I for negative). Byte 01101011. which
reprrscnts 107 in decimal. exunded to 16 ~15 beoomes 000000000110101 L Byle
10010101. ",hich in 2's complemeOl represeOls -107. eXlended to 16 bits becomes
t 111111110010101. The reaSOn for using sign eXlension is to proselVe the com pie·
meOl representation for u gned numl>ers. For example. if 10010101 were utended
""ith 0'" Ihe magnitude represented would be "ery large. and furth ... the leftmost
bit. which should be " t for a minus sign. would be incorrect in .he 2's-complement
reprcsen.allon.

D~C""'l ARmIMUJ(; The supplement that discus.\.CS decimal arithmet ic functions
and circuit implementations is available on Ihe Companion Web$ite for the text.

5-7 HOL REl'RESENTATIONS-VHDL

Thus far. all oflhe VH DL descriplions us.ed have contained only a single entity.
O<!scriptions that represenl circuits using hierarchies h."e multiple entities, one for
each dislinct element of .he hierarchy. as sho"'n in the next example.

I EXAM PLE 5-7 Ilienorchical WIDL for _ 4-8il Ripple C_rry Adder

The example in Figures 5·14 and 5·15 uses three en, ities 10 build a hierarchical
de""ription of a 4· bit ripple carry adder. The style used for the architect ures will be
.. mi ~ of Structural and dataflow dt""ription _ The three entities ore a half adder. a
full adder Ihat uses half adders., and lhe 4·bil adder itse lf. The archite<:lure of
hal f_adder consists of 1"-0 dataflow ignment" one for _ and one for c. The
a rchitecture of fUll_adder uses half_adder as a CO'"p""tnt. In addition.
three internal signal" h .. . he. and te . are declared. These signals are applied to

IwO half aJdcn and are also used in one dataftow a,sign",ent to con,truct the full
adde r in Figure 54. In Ille /ldder_' entilY. four full adder components are simply
ronne<:ted to~ther using Ihe signal' given in Figure 5-5.

Note thai CO and C4 are an inpul and an output. respeclively. bUI C(O)
through C(4) arc internal signals (i.e .. neit her inputs nM oulputs)_ C(O) is
as,igned CO and C4 is a>signed C (4) , The use of c (0) and c (41 separately from
CO nnd C4 i. not cS$<.'nti.1 here. bul is useful to illUSlra'e a VBD L constraint.
Suppose "'.., wanled to add o"erHow detecliOllto the adder as . hown in Figure 5·9_
If C (41 is not defined separately. then one might aHempl to ""rile

V < _ CI31 "Or C4

230 0 CHAI'TER 5/IIRITHMETIC FUNCTIONS AND CIRCUITS

- - 4 - bit Adder: Hierarchica l ""taflowlSt ructural
-- {se. Pi !iUres 5-4 and 5-5 for logic cliagr".,.1
library ieee ;
u •• i..e . ~tdLlogic_1164 _ al l,

. "Uty haH_ad1er is
pore Ix. y : i n ~t<Llogic,

•. c out s t Vogicl;
.Ad hal Cadder,

ar~bit<octur.o data f low_~ ot half_adder 1.

-'" .<_x _ r y,
e <_ x . n<'! y:

_ dO-t<o!low_3 ;

lihr_ry i_ ,
u .. i_. s t<LloglcJl64 .aU,
. ne1ey full_~r I.

port: Ix. y, z , in nVogic ,
•. c out s«Llogic l,

_Ad fulL<>OOer,

. rcbit . etur. a truc_dataflow_ l of ful~dder i. c_. halfJ'<ldar
port { x , y , in std.-logic:

s , c , out .~loglcl:
• ..., earponent,
. 11JIl&1 hs. he, te , nd..-logic,

-'" HAl: halCad<ler
port _p Ix. y. ho . bel:

HA2 : half_adder
port 0I&l> lho. ' . • , tel:

e<"te or be :
. "" Btft1C_datafl""'~ :

library i_,
u •• ieee . _«Llogi c..1l64 all:
a"tity addor_ 4 i .

port (B . II in ot<Llogic_ vectorD ~to 01 ,
eo : 1n ."<Llogic;
S : out: *t<Llogic_"""torD ~to 01,
e 4: out s«Llogicl;

...,4 a<Her_4:

o fiGURE S·I~
H ;er"",~i<al S'ruc'u",lID.a"iIQw Oes<ripOioo of 4·B;, Full AckI<r

5-7 I HI)I. Rq>r<><n .. rion>---VHl)l 0 231

. rc4it.etur •• truct ur.I_' of ~r_4 i.

ca.pone~e ful~r

pon 1x. y. z , ill _t.<L1ogic;
•• c , out a t<t.)og;c);

.<14 "'","""",ent;
dqna l C , _t:d..logic_"""tor(4 dc.onto 0) ;
begin

BitO, full_adeler
port _p (BIO) . 1«0) • C(O) • 510) •

BiU, full_""""r
port _p (B(l). "(11. cnl. S(\) .

Bit2 , fUll.ftdder
port _p (8(21 . "(21 . C(2) • S (2).

Bit], fulV<ld<>r
port _p (B I 3 I • "131. Cll) • SO)'

C 10) ~. CO;

" ~. CI'I;
.~ . tructural_',

o FIGURE 5-15

C(l));

C(2));

C(311;

Cit));

In VHD L. thi. is incorrect. An Onlput eannol be used a. an internal signal. ThUs, it
is necessary 10 define an intcrnal sign.lto use in place of C4 (e.g.. C (4 I) givi ng

V <= CO) >c.". C(4) •
Behavioral Descript ion

The 4-bit adder provide. an opron unity 10 ill ustrat e dcserip!ion of circuits at a
levels highcr Iha n Ihe logic level. Such levels of deseription are referred to as !he
bebavioral level Or the registe r transfer level We ,,;ll sp<:cifically ~Iudy regist~ r

transfers in Chapler 7. Without studying register Iransfen. however. we can still
Show a behavioral le~el description.

I EXAMPLE S-S s.-ha~ioral VHDl for a 4-Bil Ripplc Carry Adder

A behavioral description for the 4-bit adder i. given in Figure 5· 16. In Ibe archite<:­
ture of Ihe tntity """"r_ 4j>. the addition log;< is de=ibed b y a singJe statement
using + and .I. . The • represent' addit ioo and the ~ represenl$ an <>peTation caned
eo"cale~Uljo". A concalenation Op<:ralor combines two signals into a singJe .;gnal
having illl number or bits cq ual to the .um of the nu mber of hi'" in the original , ig_
nals. In the exam ple. '0 ' ~ A represents the , ign.l vector

'0 ' A(31 A (2) A(l) AIO)

III 0 CIIAPTI:R 5 f ARITtIM£TIC fU~CTIONS ANI) C IR.C UIT'S

-- 4-blt Addoo~, Behavioral Ducdpdon
libr"ry 1_:
~ •• 1_, 1t<1-1ogl c I164 .• 11 ,
~ .. 1_,It<Llogic"""ign<><"l .• ll ,

.n~lty ~r_t-p I.
port ia. A , h. ,,~ol._logi.c_vecurl) _to 0):

co , I .. s!:<l_ logic,
S , _t et.<Llogicvecurll _to 0):
C4: _t .uLlogic),

.nd _r_tJ>:

.,,~bH..,tu beba"i oul of _r_Cb Ie

.ign"l ItUfI\ : at<Llogi c _v<>ctor 14 _to 01, _." <.1 ' 0' 'AI· 1'0' .. B) • 1'0000" CO),
Ct < 14),
S <0 _I) _to 0),

"nd beN"!,,.. .. . ,

(] FlGUR!! !ol6
Bffia,. """, lln<ripI ... of 8" ""II A.-.

Wil h I ~ 4 = 5 ~ignals. NOle Ihol ' 0'. which appear. on Ihe left in the concatena­
lion cxpr~ss ion appears on the left in Ihe signal lisling. The inputs to the addition
arc all convcrltd 10 3-bil quantiliC"l lor C(lnsist~ncy .• inre lhe output ,,,,,ludi ng C4 is
3 bilS. This ronveT3ion i. not esselltlal, but i$ a ""Ie approach.

Si~ • can not be performed on tht st~logic Iypc. ,,'e need an adtiilional
packalc 10 define adtiilion IOf Ihe It<Llogic I~pe. In thIS case. ""e arc using
std....loglc_ ... ·ith. a package preso:=m ;n lhe ieee libraf)'. Funhtr. "'"e ",;sh 10
.pe<:ir.cally dcline Ih~ addilion to be unsign~d. '" ".c U$C Ihe Wlligned cxlension.
AI roncalen .. ion in VHDL cannOi be used 011 Ihe lof! side of an assignmem
,1. lenlent. To obla in C4 and S as lhe rCl ul1 01 Ih~ add, lion," ~ ,bit l igna l "urn i,
declared. The signal Bum is aSll;gncd the r~su h of lh~ addilion inel ud ing the carry
oul. R>lIowing a", IWO addilional al$ignment Slalomenls whi ch ~plil aum inlo oUI­
pUIS C4 and S. •

Th" compicles our inlroducl00n 10 VHDL lor a , ilhmehc circuit .. We wiU
conllnue ""'lh more 00 VHD L by presenhng .neallS for dc5cribing sc:quenlial cir­
CU,IS in Ch~pte' 6.

5-8 HOL REpRESENTATIQNS-VERILOG

Thus far. a ll of the descriplions ulled have co,uuined only a , h'glc module. Descrip­
ti on. lh ~t rcprcscnl .i.cuilS using hi~rarchy ha>'e mu hiplc mod ules. o ne for each
diSiinct (letnenl 01 lhe hi~ra"'hy. 3.lhown in lhe n~xt example.

1/ o-bl< ~r, Hierar Chi cal Dot>flcw!"~ctu<~l

II Iso. . i gor .. 5-0 ~ 3- 5 10< l~lc di~r""

_ 1. 1IIo1C ___ vl x, y ••• <),
1"",,~ x. y ,
.,.., ~ •. c,
•• 01 K Y'
•• o1 e ~. y,

_b full ,tJor_V(x. y, z . •• c),
i DI"'" ~. y. .,
""t e,

.... If--''''''''._v ""1 (x, y. Il10. he,.
K>.l l ba , z , '. <e"

•• alg~ < • ce hc,

1 r vl CO. S. Co),
'_t [l,OI a, .. ,
, CO,

.... ' ' [) ' Ol S.
"" co,

wlul J 1] C,

BlcOlalO]' >.[01. CO. 8 101. CillO .
• j<lIIO] ... [1]. Cillo 0[11. C[11f .
• 1<~lat~1. A!~1. CI~L "Ill. CillO.
Bi<JI'(lt. A(J], C (ll. Sill. C4h

o nGURE 5· 17
Hi=hk.1 u".o.,..'/S'ruct"",1 V ... iloj: DescriptIOn of 4-1>i, A<kI<r

~: XA.\I PU: 5-9 Hio. n:hkool VerilOl: fo •• 4-Bil Ripple C. rry Adder

The descriplion i~ Figure 5·17 uses lhree modules 10 represent a hierarchical
design for a 4-bil ripple carry adder. The Slyle useJ for lne modules witt be" mi. of
51ruciural and d,",IIow dcscriptio~. The lhree mod ule. are " ha lf adder. a fu ll
adder built .round half adde~ and the 4-bit adder itself.

The ba l f _add .. r module <onSi&iS or iwo dataflow 3$<ignment$.. one [0' •
and one for c_ The ful l_adde~ moo~1c uses lhe halCadder as " component as
in Figure 5 In lhe f Ull_adder . lhree inlemal .. ires, b" . he. and t~ are
declared . Input$.. outputs and these wire namCS arc applied 10 the lwo h~l[adde~

234 0 CHAPTER ~ I ARITHMETIC FUNCfIONS AND CIRCUITS

and te and he are ORed to form carry c. Note that the SlIme name. can be uscd
on different mod ule, (e.g.> x, y, s, "od e are uscd in both the h .. lf_ .. dde~ "nd
fu l L .. dder),

[n the add .. ~_ 4 module, four full adders are simply connected together using
the signal, given in Figure 5-5. Note thal CO and C4 ore an input and an o utp ut.
respectively, but C (3) thro ugh CO) are internal signals (j ,e .. neither inpu t. nor
o utput.), •

Behavioral Description

Tho 4-bit adder provides an opportunily 10 illustrate description of circuit, at a
levels higher than the logic le,'ct , Such levels of descriplion 3re referred 10 as Ihe
behavioral le,'el or th e register Iransfer level. We will spe.oifically st udy register
tra nsfers in Chapter 7. """,thout st udying register transfers. however, we can still
show the behavioralle"el descripti on for the 4-bit adder.

I EXAM PLE ~-1(l fk, hu,ioral Verilo-g for a 4,Bit Ripple Carr) Adder

Figure 5-18 , how'S the Vcrilog description for the adder. In module .. dde~_ 4JJ_ v.
the addition logic is desc, ib<:J by a single slatement u,ing • and i) , The • , e pre­
sent addition and the i) represcm an operalion ca lled conCUIenalioll, The opera ­
tion + performed on wire data type, ;. un signed , Concalenation combines two
signals into" single signal ha,'ing its number of bits equal to the sum of the number
of bilS in the original signals. [n the example. {C4, 5j repre,ents the signal "cctor

C45[3] 5 [2) S11) S [O]

with I • 4 _ 5 SIgnals. Note that C4, which appears on the left in the concateMtion
e~pre",ion. appears on the left in the signal li Sling, •

Th i' completes our int roduction to Vcrilog fo, aritbmetic circuilS, We will
continue wit h more On Vcrilog by prescming means for describing scquenti~l cir­
cuit, in Chapter 6.

1. eMor"J>_V{A, B , OJ, ., Cf),
l __ t [1,O) A, B,

'<>wt CC,
""t"". [] , O) .;
<Nt.,." CO,

•• "gn {c. , S) • A • B • OJ,
._~l.

o n GU RE S_ l l1
8ehovi<l<al Do:s<;,ip<ioo of 4·Bit Fu t! A<Id<r U'Jll~ Verilog

S-9 I a...po •• S,. 0 235

5- 9 CHAPTER SUMMARV

This chaptc r introduccd circuit' for performing "ri thm~tic. The Implementation of
bin ary adders. includin, the car ry lookahead .. dder for improved performonce. was
treated in detail, The I~btraction of un,ign~d binary numbers u,in, 2's and ['s com·
plement.! was presented, as was the rcpresentation of signed binary numbers and
Ihdr addition and subtraction. The adder~ub\Ta<."lor. de~doped for unsigned
binary '" found to apply dirtttly 10 the addition and sub\,*"ion of signed h

complemenl numbers eU. A very brief mlrod..aion to binary multiplicaIJon.
using """"bi lion.l cin-uits made up of ANO &at"" and binary adders. "-as given.

Addilional arilhmetic operations inlrodU«d included incrcmcnung, decre·
me nling. multiplicalion and division by a constant. and .hifl ing. The in'plcmentaliom
for these oper.tions were obtained by a design tC<"hn;.que we caUed contraction.
Zero fiU and ,ig" extension of operands WIIS also int roduced.

The l"'Ittwo $Cetion' of the chapter provided an introduction 10 VHDL and
VerilO& deKriptions for arithmetic circuit!.. Both H D1.. were il1 ustroted by studying
descripliOll$ ot the functional and behnionll le"c I1 fo.- "anous fUuellon.1 bIocb in
the chapter.

I. MANG. M. M. Oigi,allNsign. 3rd cd Englcwood Oiffs. NJ , Prentice I iali. 2m2.
2. W AKaRl. V. J . F. Oigllal De.ign: ("i"dlile. ",,,I Prac.ic<!S, 3rd ed. Englewood

Oiff .. NJ: I',entice HaiL 2(0),

3. HiKh ·Spud CMOS Logic Daw 80()k . I)~lIa" Tcxa. Instrumenl" 1989.
4. IEEE S,allda,d V/ IOL La"g,~ge Rt/trt:nct Manual. (ANSI/IEEE Sid 1076-

199): revision 01 IEEE Sid 1076-1987). New York , The Institute of ElCC1 rical
and Electr(ln i(:s Engineers. 190M.

S. s. ... rrH. D. J. ffDL Cltip Oesign. MlMlison.AL: Doone Publicati 1996.

6. PE LLEll t ... D . AND D. T AYlOR. VflOL M",I~ ED.'!! Upper Saddle:: R," cr. NJ,
",""nlice lIall PTR. 1997.

1. ST1'.FAr<. S, ANn L L'''DH. VflDL fo, D~si8"uJ. London: Prentice Hall
E urope.I991.

8. IEEE S"""/",,I D~fC'iplioil L;mguagt Bast'/ "" .iI. V.,Uo!?® lIo,d",,,,~
DNa/p'io!! u.llg"a8" (I EEE SId 1,l64· 199S). New York:The Instilu, c of
Electrical a nd Eleclr0nic5 E nginee rs. 1m.

9. PAI.,nkAR. S. I'trik>g HDL" A GuM, fQ Dt,i'allJaiK" ""d S}'mh,-,is. Uppt"r
Saddle R",cr. NJ . SunSof\ Press (A PJentioc Ha IITitle). 1996.

10. BIIASKU. J. A ~'~riJog IJDL Prtm~ •. Alkntown, PA: Slar G alaxy Press. 1':197.

II. n IOMAS. 0 .. A"D P. MOORBY. Tht Vui'''11 flord"'"rt: O~'ipllon ' ,,''''KUlig.
41h ed. Iloslon: Kluwcr Academic P~bli~hcn. 1998.

12. CILl.1Trt. M. /I/",I<U"g. Syn.he.i<, ("Il' /I I/pili J>ro'OIyp;ng wi,h ,Iu Veri/og H f)L.
Upper Saddle River. NJ: Prem ice Hall . 1999.

236 0 CHAPTER S f ARITHMETIC fUN=IONS AND CUt.CUITS

PROBLEMS

The plus (+) indicates a more ad"anced probkm and the asteri," (*) ind icates a
solut ion i. a"ailable on the Comp"nion Website for the text.

5-1. Design a combinalional circuit that forms the 2-bit binary ,urn S,Soof two
2·bit numb<:r< A,Ao and B,Bo and has I:>oth a earry input Co and earry
output C:: , Dosign the emire circuit implementing each of the three out puts
with a two· Ie,'" circuit plus inverter< for the input ,·ariahles. Begin the
design wit h the following oquations lor each 01 the two bits of the adder:

S, = A ,B,C, + A,B,C, + A,B,C, + A,B,C,

C,., - A,B, + A,C, + B,C,

5-2. *'The logic diagram of the first stage of a 4_hit adder. 8S implemented in
imegrated circuit type 74283. is . hown in Figure 5·19, Verify that the circuit
imp lements a full adder.

5-3. ' Obtain the 1 's and 2's complements of the following unsigned binary numb<:rs:
JOOI 1 100, 10011101. IOIOIOOJ, ((((((0), and 100X0XI.

5-4. Perform the indicated subtraction with the following un'ignod binary numbers
by taking the 2', complement of the suhtrahend:

(a) 11111- 1((((1 (c) 101111 0-101 11 10

(b) IOJIO - IJlJ (d) JOI - IOJOOJ

)--

I
]

V V

o FIGUK£ S·19
Cifmit for Problem 5-2

5-5, Repeat problem 5-4, assuming the numbers are 2's complement signed
numbers. Use extension 10 equalize the length of the operands. Does O\wftow
occur during the complement operations for any of the given numbers? Does
owrflow occur for the overall subtraclion for any of the given numbers?

~ . Perform tne arithmetic operations (+36) + (-24) and (- 35) - (- 24) in
binary using signed-Z"s complement representation for negati,'e numbers.

5-7. The following binary num bers ha,'e a sign in the Idtmost position and, if nega.
li,'e. are in 2's complement form. Perform the indicated arithmetic operations
and verify the answers

(a) 100111 + 111001

(b) 001011 - 100110

(e) 11(0)1 - 010010

(d) 101110 - 110111

[ndicate if o,wllow occurs for each computation .

5-41. +Design three "ersions of the combinational circuil "'hose inp ut is a 4-bit
nu mber and whose output is Ihe 2', complemenl of the input number. for
each of the following caws:

(R) "llIe circuit is a simp~fied Iwo-level drcuit. pl us inverlers as nceded for
the inpol variables

(b) The d rcuit is made up of four identical two_inpul. Iw'o-output cells. one
for each bit. The e<:lIs arc connected in cascade, with linc~ ,imi lar to a
c~rry belwun them. The value applied to the righlmost carry bit is 0,

(c) The circu it is redesigned with cor,y lookahead·like logic in order '"
speed up the circuit in pari (b) for use in larger circui lS wilh 4" inpul bit"

5-\1. Use cont raction beginnin g wilh a 4· bit adder WiTh carry out to design " 4-bit
incrcmcnt.by-2 circuit witb carry out that ~dds Ih<: binary value 0010 10 its 4·
bit in pul. The function 1l> be implemented is S '" A + 001 0,

5-10. U"" contraction beginning with ~n ~· bit adder_subtraClor without carry "ut
to de,ign an g·bit drcu it wit hOUT carry oul ,hat increments its input by
00:OX110 for input S ~ 0 and decrements its input by 1)())Jt))1O for input S . I,
Perfonn the design by designing the distinct I_biT cells needed and indicating
the l)'pe of cell use in each oflhe eight bit posit ion"

5-11. +(a) Usc contraction beginning WiTh a 4· bit carry loobhcad .dder with input
carry and group carry and group propagate funClioru; 10 design a 4· bit
carry.lookahead.based circuit that incrcments its 4-bil inpUT b)' thc
binary equivalent of2.

(b) Repeat part (a), designing a 4· bit carry· lookahead-bascd circuil thaI
adds 0C«l to iI' 4-bit inpUl.

Ie) Construct a 16·bit carry. loohhead circuit thm increment' it ' l6· bit
input by 2. giving th. I()'bit out put pl us an oU1put carry. by using the
circuilS de'ign t d in (a) and (b) an addit ional contraction of a 4· bil

238 0 CHAPTER 5 f AR1THM~TIC FUNCTIONS AND CIRCUITS

"'ith inputs PO-J• GO-J • P<-,. p and P
'
2-'" and the addilional logic

needed 10 produce C,. (Nole Ihal. due 10 pan (b). G ...
"

GS-II ' and G ,1_

"are equal 100.)

5---12. Design a combinalional circuit Ihal compares 1"'0 4-bit uns igned nu mbers A
and 8 10 see whdhcr B is grealer Ihan A. 'The circuit h,lS Onc o ut pul X. so
Ihat X - I irA < Band X - Oif A ~B.

5---13. "'Repeat Problem 5·12 by using three·input, one-oulpul cir~uits. one for
each of Ihe four bits. The four circuits are co nn""led logether in cas<:ade by
carry·like . ignals. One of Ihe inputs to each cell i, a carry inp ut . and Ihe
single output i$ a carry outp ut.

5---14. Repeat Problem 5· \2 by applying cont raction to a 4-bil subtractor and using
the borrow out ,s X.

5---15. Design a combinational circuit Ihat compares 4·bit unsigned nu mbers A and
8 10 see whether A _ 8 Or A <: B. Use ,n ilerative circuit as in Problem 5·14.

5---16. "'Design " j ·bit signed'!n"gni' lldc addcr---5ubtra<:lor. !)i,;de lhe circuit for
design imo (1) sign generation and add---!lublract comrol logic, (2) an unsigned
number aJJer_$ublrac10T using 2's c< ,mplemcnl of lhe min uend for
subtraction. and (3) seleclive 2', complement result correction logic.

5---17. 'The addcr_$ubtract<>r drcuit of Figure 5·1) has lhe f"l lowing val ue, ,,,
input select S and data inputs A and B:

, • ,
(., 0 01 J1 01 J1
(.) , moo Oil'
(,' , 1101 1010
(0) 0 Oill ,010
(,) =, ,=

Delermine. in each case. the "alues of the OUlpulS S,. S,. S, . So, and C •.

5---18. ' Design a binary multiplier thai multiplie. two 4· bit unsigned numbers, Use
AND gales anJ binary adders.

5---19. Design a circuil Ihal multiplies a 4·bjl multiplicand by Ihe consta nt 1010 by
applying conlraction 10 ,he sol ution 10 Problem 5·18,

5--20. (y) Design a circu;t llial mult iplies a 4-bil mult iplicand by til e oonstanl lCO'J.

(II) De,ign a circuil Ihat divides an g· b;t divide nd by Ihe constan1 ICO'J giv ing
bolh an g·bil quolienl and an g·bit remainder ,

I"robkm. 0 239

•

All files referred to in the remaining problems are available in ASCII form for sim'
ulation and editing on the O:>mpanion Website for the text A VHDL or Veri log
complier/simulator is ne""s.sary for the problems or porlion, of problems request ­
ing sim ulation. Descriptions can still be written, however. for many problems with­
out using compilation or simulation .

5-2 1. O:>mpile and simulate the 4·bit adder in Figures 5-14 and 5-15. Apply
combinations that check out the rightmost full adder for all eight inp ut
combinations: this also serve, as a check for the other full adders. Also.
apply combinations that che<:k the carry chain connections between all full
adde.,; by demonstrating that a 0 and a I can be propagated from c o (0 C4

5-U. ' Compile and simulate lhe behavioral description of the 4-bit Adder in
Figure 5- 16. Assuming a ripple carry implementation. apply combinations
lhat check out the rightmost full adder for alt eight input combinations. Also
apply combinations that check the carry chain conne<:lions between all full
adde .. by demonstrating that a 0 and a 1 can be propagated from CO 10 C4 .

5-23. +Using Figure 5-16 as a guide and a "when el"," on s. write a high· le,·cl
behavi", VHDL description for the adder-subtractor in Figure 5-8. Compile
and simulate your description . Assuming a ripple carry imple mentation.
apply combinations that check out one of the full adder---'Subtractor stages
for all 16 possible inp ut combinations. Also. apply combinations 10 check the
carry chain conncetions in between the full adders by demonstrating that a 0
and a 1 can be propagated from co to C4.

5---24. +Write a hierarchical dataflow VHDL description similar to that in Figures 5-14
and 5-1 5 for the logic of Ihe 4·bit can)' loohhead adder in Figure 5-6, Compile
and simutate your description . Devise a .. t of te.ts that does a good job of
exercising the logic m Ihe adder.

5---25. Compile and simulate the 4-bit Adder in Figure 5-17. Apply combinations
that check out the rightmost full adder for atl eight input combinations: this
also .. rves as a check for the other full adders. Also.apply combinations that
check the carry chain connections between all full adders by demonstrating
lhat a 0 and a I can be propagated from c o to C4.

5-Z6. 'O:>mpile and simulate the behavioral description of the 4-bit adder in Fig.
ure 5-18. Assuming a ripple carry implementation. apply all eight input
combinations to check out Ihe rightmost full adder. Also. apply comhinations
to check Ihe carry chain connections between .tt full adders by demonstrat­
ing that a 0 and a 1 can be propagated from co to C4.

5-27. Using Figure 5· 18 as a guide and a "binary dcci.ion-- on s from Figure 4-37 .
write a high-level behavior Veri log description for the addcr---'Suhtractor in
Figure 5·8. O:>mp,le and simulate your de>;cription. Assuming a ripple carry
implementation. apply input combinations 10 }'OUr design that will (I) cau ..
all 16 possible input comhinations to be applied 10 thc futl addcr---'Subtractor
stage for bit 2. and (2) simultaneously cause the carry output of bit 2 10

240 0 CHAPTER ~ I ARITHMETIC FUNcnONS AND CIRCUITS

appear at one of)'our design's outputs. AI",. apply comt>in"tions that ched
the carT)' chain connections between all fuU adders by demonstrating thai a 0
and a 1 can be propagated from co 10 C4.

5--28. + Write a hierarchical Verilog dataHow description similarto that in Figure 5-17
for the logic of the 4-t>it carry lookahead adder in Figure 5-6. Compile and
simulate your description, Deyise a set of tests that does a good job 01

exercising 1he logic in 1he adder.

SEQUENTIAL
CIRCUITS

11
1hII poIm, - """" studied orIy COI'I'IbIIIationlollogic. AlthougI'I such logic II

capable ot inl_1ing opetal101'1S. such:kIIIIon and subtraction, the
~rlorlllllncoo 01 1'" sequanc .. 01 _",no"a using COITIbInI.l_ logic

ak)ne requl, .. case.CIing many S\,UC1Ufa. lOgel,*". Tr.. hardware 10 de 11>11,
however, I, very ~<nlly and inn .. xitMe. In onIe, 10 ~rlo,m usel'" "r n .. 1bIe
.equ.m" •• 01 OJ)erllUon •. we need to be able te consl",,,! circuilatha' can I tora
in!ormation oet""'" \he QPerati(lns. 5<J<:h clrcultl I r, ca lled ""q ml" ~ rcultl,

This chaple' ~In. wm, an injroduc\lon to _nllal circuits, wI1lch I. k:H lowed II)'
• otucl\l oIlhe bUIc elemenl. !Of otorlng bInIory InlOfmatioo. cak>d "!Chat ."" nip.
!lops. w& <I1str.gulsh n;p.nop. from latchet Vod Il\ldy va"",," !)'pel 01 .. ell , W,
!hen ani"'" MIIlHIntioIl circuits a>nIIlUng 01 both ntp.lIopsand comIIIn.Mk>nallogic.
Sta1e "' __ IIate diagrams P<tI¥ide. mMM/or -.ibi'ijj!he behaolloo 01
sequent .. , CifC SOobMql MCIIont ot the cI\epIef -..p the ~ ""
d&signIng ~i., cit<:uol' and rlfylng 1_ corNCt.-a. In the '<lal two
stoCIionI., ... ptovIde VHOI.. and ~rq hardware dellCriplion lang.o..age
"""esentono,.. lor llOr.ge elements and tor lhe type 01 ""'lIJ8I1tial clrcuitl in thO.
cI1apter.

Latches. fllpollopll. and l&quontial .. rcuilt are lundamemBl componenla In the !IeaIgn
01 almost . 1 digital 1Ogk:. In the generic COInj)Ytlr ~ 81 \tle IJegirring 01 Chap1er I.
letcI>es and IIIp-l\opI are wiI::I$$j><&ad In !lie design. The e><cepIion isll'o(lomOly o;:Ir!;uils,
since Iatge ponioooa 01 """""'Y am dooa;gooed as eI8cItonic an:uits IlIItMH It>In as.
circuits. ~, due 10 the wide use 01 ~ sto<ege. IhII Chapter
oontaO»s II.ondamen\IIII-.w lor ""V In-Oe¢' ~ 01 compIIIM ,lid
digIIaI ~ _ -1I""f are :!::'"g oed

o 24 1

242 0 CHAPTER 6 I SEQUENTIAL C IRCUITS

Inl"'''
Com.,; , .. ioo.1

""u"

a F1CUKE6-1
Block Diagram of. SequeMial Circuit

6-1 SEQUENTIAL CIRCUIT DEFINITIONS

L- Pre .. n'
I " ...

The digital circuits considered thu. f~T ha"e been combinational. Although every
digita l ')"item i. likel y to include a con' \>i natiunal ciTcuit, must .)'ste m, encoun­
te,ed in practice also include ,wrage element" requi ring tha t the systems be
described a. sequential circuit"

A block diagram of a sequential circui1 i, , hown in Rgute 6-1. A cornbina1iunal
cireuit and .torage clements are interconnected to form the sequential circuit. The
storage clements are circuits that are capable of storing binary in formation. The
binary information stored in th"", elcmcnt$ at any given time defines the sMe of the
sequent;al circuit a t thlll time, The sequenlial circuit receives binary inform ation
from its environment via the inpul~ 'lnes« inpu ts, togelher with the present state of
the stot~£e clements, determine the binary ,'a lue of the output~ lbey also determine
the value, used to sp"cify the nexl swe of tM storage element" The block diagram
demunstrates Ihat the outputs in 8 SC<Jucnli.1 circuit "re a fu nction nut unly of the
input" but also of the present stme uf the .Iorage e lement" The next ,Itale of the stor­
age ele ment' i. also a function of thc inpub snd the present State, Thu" a sequential
circuit is specified by a time SC<Juence of inputs, internal Slates.. and OUlputs.

There are twu ma in Iype' of seque nt ial circuits, and their cla .. ification depends
on the times at which 'heir inputs are observed and their interna l slate change~ The
behav;or of a synchronous s~q'''!nlial cirellil Cnn be deflned from the knowledge of its
signals al discrete instanlS of time- The behavior of an async/"on,m . >'eqllemill/ cirCllil
dep"nds upon Ihe input' al any instant uf time and the order in continuous time in
""hkh the inpul$ change.

Information is 'Iored in digil"l s)"items ;n many way" including the usc of
logic circuit" Figure 6-2 (a) shuws a buffer. This buffer has" propagation delay I",.
Since information present al the buffer input at time I appears at Ihe buffer oUlpu t
at time I + I"" the information h"" effectiw,ly been stored for ,ime I",. But, in gen­
eraL we wish 10 'tore informalion fur an indefinite time that is typically much
longeT than 1he time dciay of one or even many gate" Th i, stored value i, to be
changed at arbit rary times ooscd on the inpul. appl ied to Ihe circuit and , hould not
depend on the sp"cific lime delay of a gale

Suppose that the oU'pu, of Ibc buffer in Figure 6-2(a) is connected to its
input as shuwn in Figurcs 6-2(b) and (e) . Suppose funk, ,hat the value on the
input to the buffer in part (b) has been 0 for al least time rpd' Then Ihe o ut pul pro­
d uced by the buffer wi ll be 0 at time r + Ipd' This uutput is applied to lhe in pul so

,.,
,.,

'0)

o tlGURI: f>.Z
LoJi< Structures fOf S,,,,,"S Inform"ion

that Ihe OUlp .. ! wHl also Ix 0 at lime I + 2 '",. This relationship b<:lwecn input a nd
output holds for alii. so .he 0 will be ~Iored indefinitely. The ",me argum(nl can be
made for nori", a I in the circuit in Figure 6-2(~).

1l><: uample of lbe buffer iI! .. .,ra,C1 ,h., Sforage can be OOflSlructed from
logic with delay ronnecled in a closed loop. Any loop thai produces ''''''' SIOI"age
mus, also ha..., a PfOP"rty possessed by the bulfer. namely. lILa. ,he.e m~ be no
inversion of the signal around tbe loop. A bulfe . i!; u..uaJ1y implemented by ng
' '''0 ;nvcrle~., $ItO"-n in Figure &-2(d). The , iJllal i, inverted {witt, 1hal it.

X- X
giving no nel inversion of the signa l .round Ihe loop. In fact. this eump!" is an
ill ustration of one of the most popular melhoos of impl~menling storage in rom­
puter memories. (~Oap'c. 9.) However. Rlthough the circui ts in 1-Iguret 6-2(b)
through (d) arc able Lottore information. t h~re is rKI a)· for th~ information to be
changed. By rcplacin& the in.",rten "'1lh NOR or NAND &ates. the informatIOn
can be changcd. /uynchronoU'l storage circuits .:a11W latches are made in (his mall­
ner anod ale discussed in the ne~t sect

In ,eneral. more oomplu asynchronous clfcuilS are difticuh to de$i",. llnce

their behavk>r is highly de~t><knt on the propagation dda)'S of the gates and on
the timing of the input changes. Thus.. circuits thai fit the 'YIlchronoU'l model arc
the choice of "'O$t designers. Ne.'erth.I.$$, ~",e asynchronous design is /lece5l!ary.
A ,'cry importanl CUe is the use of asynchronous latches as blocks to build storage
elements. called nip-nops. that store informllllon In synchronous circuit$.

A synchronous K<l""'"tiaJ circuit employs signals that aff«t tbe SIOI'!\gc ele­
mellls only al dlJCrCte instant. oflUne. Synchronization is achie.-e.j by a tllnillg
<bior: ailed. docl< ~lH "hid! produces a p"riodic train of docl<"..bo. 1be
pulses arC di,"ibuted throughoul the $)'SIcm In such a way that synchronous Storage
elements an: affected only in some opcci6cd ulallons!tip to evel)' pulse. In pnct..,..
the d ock pul5cs are applied .. ;,11 othe r Ioignals that opccify the u 'luiud change in Ille
storage clement!. 'Tht OUlpU," of Slonge ele mellls Can change their va lue only in tile
pre,..,nce of clOCk pulscs. SynchronOWl ""'Iueminl circuits that use clock pulses as
inputs to stor.ge dements are ca lled docked .tlf"cnliu/ c;",,,;" , Th= are the type of

244 0 CHAPTER 6 I SEQUENTIAL CIRCUITS

Combin.U"n>1
cire";!

Oo:>::k pul ...

(b) Timin, d i .. ram 01 cJocK 1"'1",.

o t' IGlJRE 6,3
SYTlChfOTlOI" Ck>chd Sequenti . 1 Cir<uil

circuit most frequ~Dtly encoumered iD practice, since they """,rate correctly in spite
of wide diffe,..,nce< in circuit delays and are rdati"ely easy to design.

The storage eleme nts used in docked sequential circuits are called tl.ip·ftops.
For simplicity. assume circuits with a single clock signal. Aflip·flop is a binary storage
device capable of sloring one bit of information and having timing ~haracteristi", to
be defined in 5e<;tion ()'3. The block diagram of 3 s)'nchronous docked sequential cir_
cuit is shown in Figu,"" 6·3. The fli p-flops re«>ive their in puts from the combin.tional
circuit and alS(> from a clock sign.1 with pulses that occur at fixed interval, of time. as
shOWl] in the timing diagram. The flip_nops can change ~tate only in response to a
dock pulse. For ~ynchronou, operation, when a dock pulse is absen! . the flip,flop
outputs cannot change even if the outputs of Ihe combin.tional circuit dri"ing their
inputs change in value. ThUs. the feedback loops shown in the figure bet,,'een lhe
combinational logic and the ftip·flC>pll are bro~en, As a rosull. a transition flom one
state to the olher occurs only at fixed time intervals dictaled by Ihe clock pulses. giv.
ing synChronoUs op<:ration. The sequential circuit outputs are shown as outputs of
lhe combinational circuit. This i. valid ev~n when SOme sequential circuit output' are
actually the flip· flop output~ In thi' case, the combinational circuit part ~twun the
Hip·flop outputs and the seq uential circuit outputs consim of connections only,

A flip.flop has one Or twO outputs. one for the normal value of the bit stored
.nd an optional one for the complemented value of the bit stored , Binary informa·
tion caD enter" fl ip·flop in a variety of ways. a fact that gives rise to different typ<:\
of flip· Oops. Our focllS will be On the mOSt prevalent fl ip·flop used today. the D fli p·
Hop. In ""'lion 6·6, other flip ·Hop types will be considered. In preparation for
studying Hip .Hops and their op<:ralion, necessary groundwork is presented in the
next section on latches fronl which the Hip. Hops are constructed.

6-2 LATCHES

A . torage element can maintain a binary <late indefinitdy (as long as power is
deli,'ered to the circuit). until directed by an input signal to switch sta tes. The
major difference. among the various types of latches and Hip·Hops are the number

f,-2 I !..akh<. 0 245

of inputs Ih~y poss.css a nd the manner in which Ihe inputs affect the binary state.
The most basic Siorage ele ments aTC lalches. from " 'hich flip·flops aTe usually con­
structed. Although latches are most oft~n used within flip·flops. they ca n also be
used with more compl~x clocking melhods to imp\em~nl s-:quenli.\ circuits
diT«"\ly. The design of such circuits i .. however. beyond the scope of the basic tre.t­
ment gi"cn here. [n Ih;,; section. the focus is on [.tehes as basic primilives for con·
siructing storage clements.

SR and ~R Latches

The SR latch is a circuil C<)nstruCled from two c,oss-c<>upled NOR g. te .. It is
derived from the sing[e.[oop storage e[e mem in Figure 6-2(d) by simply ,epbcing
Ihe invcnen wi lh NOR gates. as shown in Figure 6-4(3). Th is replacement allows
th e $lored value in the latch 10 be changed. The latch has tWO inp'O!. .. labe[ed S for
set and R for reset. and two useful stales. When output Q - I and Q - 0, Ihe [atch
is said to be in Ihe ut Statl:. When Q _ 0 and Q _ I. il is in the reu' slate. Ou tputs
Q and Q aTC normally the complements of each other. When bolh input s are equa l
to I at the same time, an undefined Slate wilh both OUlputs equaltu 0 (ltturs.

Under normal conditiuns. both inputs of the I"tch remain al 0 unless Ihe stale is
to be ch.nged.lbe appLicalioo of a [10 t"" S input causes the la lch to go to Ihe sel
(I) Slate. The S input mUSI g<> hack to 0 before R iHhanged to I 10 avoid occurrence
of II>c undcfinc-d SI. I" As sbo"" i~ Ihe function lable in Figure 6-4(b). lwo inpul
conditions cause the circuit to be in 1M sel Slate.The initial condition is S _ I. R _ 0,
to bring the ~ircuil to the sct statc. Applying a 0 to 5 with R - 0 leaves the circuit in
the same state. After both inputs return to O. il i, possible to enter Ihe resel Slale by
applying a I to the R inpuL The I tan Ihen be TCm(»'ed from R. and Ihe circuit
remains in tM resel sl. te. ThUs. when boIh inpuls are equal 10 0, Ihe [alch can be in
eilM' the set or tM resel.'ale.dc""nding on wh ich inpUI was mOSI recently a I.

If a I is applied 10 bolh the inputs of the I"tch. bul h OUlputs go to O. This
produces an undefined stale becau§e it violat.,. Ihe re<Jui .. menl thai the out puIS
be Ih e complement of each Olher. It also results in an indeterminate Or unpred ict·
able nexl state "'he n bolh in puts return to 0 simulta neously. In normal operation,
Ihese problem, arc ""o,ded by ",akins sure that n are nO! applied 10 I>olh inputs
simult aneously

, , 00
11(11<><,)

0

L
, • , • Se, • • , •

r "
, • ,

" •
~ ... , "'t< • ,

0
5(Sc1)

, , • • t:n<lerUl<d

(.) LoP< ""'I ,om (b) F\I"","", ,obit

o ~'IGUKE ()--4

SR Latch with NOR Gate,

246 0 CHAJ'TEP. 61 SEQUENllAl CIII.CUITS

,
o

L

L

".,"" ".," ",".,"' '',. ,''' ' "", ,, .. ,, ,,,, ,.,1 ,,,, ... ,, ,, ,,,. ,, ",.,,,, ,,,,,. ,, ,1 ,,. ,, ,,, ,, ... ,,,, ,. ," "" •• ,"',',.," ",.,""'"

o n ClJK E 6-5
Logic S;mulat;on of SR Latch Behavior

The behavior of 1hc SR latch described in lhe preceding paragraph is illus­
trated by thc ModelSim"' logic sim~lalor wa,'cfom,s shown in Figure 6-5_ tnitiatty,
the in puts .nd the SI,11. of the lalch "rC unknown, as indica led by a logic level ha lf­
way belween 0 and I. When R becomes I wit h S al O. the latcb is reset with Q flrsl
beroming 0 and. in response. Q_b (which rep,esents Q) becomes l. Next. when R
becomcs O. the latch remains reset. storing the (] .alue pTesenl on Q. When S
bcrome~ I w;lh R a1 O. lhe latch is sel. with QJ> going to 0 first and. in response. Q
going to I nul. The delays in tbe changes of Q and Q_b after an input "hall g'" arc
directly related to lhe dda)'!l o{ lhe lwo NOR gate. used in the latch implemenla­
tion_ When S rctums to O. the lalch remains set. slOr;ng the I va lue present on Q.
When R becomes I wilh S e<:Jual to O. the latch is resel wit h Q changing 10 0 and
Q_h responding by changing to l. The la1ch remains resel when R relurn, 10 O.
When Sand R bolh become I. bolh Q and Q_b become O. WI,en S .nd R , imult._
ncou$ly relurn to O. both Q and Q_b take On unknown value .. This form of indeler­
minate stale behavior for Ihe (S. Ii) seq uence of ill PUI< (1. 1). (0, 0) TesuilS from
~ssuming s;multaneo us inpul changes and equal gate delays. The actual indelermi­
nale beha"ior thaI occurs depends on circ~il delays and slighl differences in Ihe
limes at which Sand R change in lhe actual circuil. Regardless of lhe simulation
results. lhese indelerminate beha.iors arc viewed as unde,inble. and Ihe input
combination 0.1) i ~ avoided. In gen.nl.lhe latch slale change, only in respo nse to
inp ut chang~ and TCmains unchanged otherwise.

The S R iJlch wit h Iwo cro:o;s--coupled NAND gales is sl10wn in Figure 6-6, It
operales wilh both inpulS normally at 1. unless Ihe stale of the la1ch has 10 be
changed. The applicalion of a 0 to Ihe S input causes OUlPUl Q 10 go 10 I. puni"g lhe
latch in the SCI state. When the S inpul goes back to 1. lhe circuil remains in lhe scI
slale. With bolh inputs at I. lhe slate o{ Ihe lalch is changed by placing a 0 on lhe R
illpUL This causes the circuit to go to the rescl state and May there e"en aftcr both
inputs return to), The condilion Ihal is undefined for thi' NAND lalch is when both
inputs are equal 100 al Ihe same lime. an input combinalion thaI should be avoided.

Comparing lhe NAND latch wilh lhe NOR latch. note thaI Ihe input signals
for lhe NAND require Ihe compl.menl of th0SC .'alue! used for the NOR. Because
the NAND latch requires a 0 ,ignal to change ilS Male. il is referred 10 as an SR

6-2 I '-ho< C ..,
, , QQ

5(Sot)
Q • • L "

sc,

r • " "
R " ...

R (Ran) 0 • • "~
,.)I.<>p<.up- (b) f<m<tioII taI!Io

C n GURE6-6
51? UIOIi "',h NAND G., ••

)mch. The bar above Ihe IeUCr1 designntes Ihe fllellballhe i~puI~ muSI be in Ihei'
complemcnl form in order to ac1 upon .he circuit ~I.Ie.

The OI>erat ion of Ihe basic NOR and NAND laIChe~ n be modin~d by PfO­
.';ding an additiooal control input .hB! delerm;IICl1 when Ihe Slale of lhe I •• ch can be
ch.n~. An SR lalch wilh a control inpul 11 st.""'11 ill Fogure 6-7. 1l consisI' o f lhe
basK NAND lalch and lWO a<!dilional NAND pIes. The control inpul C acLS .. an
enable .. gnal (QI" Ihe Ol/><" Iwo illpulL ~ outpu. of lhe NAND p.es MaY''' the
1ogic· 1 Ie'lel as loog •• Ihe ronlrol inpul remaiM al O. This is lhe quiekenl conduioo
for Ihe SR IM'eh composed of lwo NAND ga.<$. When lhe conlrol input Joel II> l.
information f,on' Ihe S and R in pul!; is allowed 10 affe<:t 'he SR lalch. The SCI Slate
is rcached wilh S - 1. R - O. a~d C - 1.1b change to Ihe rese. ""IC. the inpu,"
must be S _ 0, /(_ 1. and C _ l. In eil hcr case, " 'hen C returns 10 0, the circllit
remains in itJ curren t .I. te. ContrOl input C - Odi .. bles Ihecircuil SO Ihat Ihe ,late
of Ihe ou.p<l! doeo not change. regardl~of Ihe values Qf S and R, More.; ... er. wben
C - I .nd bolh lhe S and R inpllLS are equal to O. (he sta'e of lhe circuit does nOl
change. n.ese oondilions Bre ~"cd ill Ihe function I.ble aa:ompanyillg Ihe diapm.

An undefined $laIC Ottul'$... ·hen all Ihr« inpulS are equal '0 I. This condilion
plac:csO', 00 hOIh inpubot the basic Sf(lalch.aivingan undefined $laIc. When lhe
control in plll ~ back 10 O. one cannot conclUSIVely del~'mine the nexl sta.c, sjnoo

, , , "e,"'''. 0/ 0

0 • , , No'~.n ..

" " ~<-" , 0 -0: "-,_

" 0-1'5<

• -
(oj ' __ .ro.v-

C HGUKE6-1
SR Uleh with Con. roll np",

248 0 CHAI'T~R. 6 f S~QUENnAL CIRCUITS

the SR latch sees inputs (0.0) followed by(l. I). The SR latch with control input is
an impol1ant circuit because otner lalches and Hip-Hops are constructed from il.
Somc\imes the SR latch wi\h connol input is referr~d to a. an SR (or RS) Hip.Oop:
however. acrording \0 our \~rminology. il does not qualify as a Hip ·Hop. since Ihe
circuit doe, not fulfi ll tho flip-flop requirements presented in the next section.

D Latch

One ,,'ay to eliminate the undesirable undcfined . tate in the SR latch is to ensme
that inputs Sand R are never equal to I at the $ame limc. This is done in Ihc D
la\ch. shown in Figure 6·8. This latch has only Iwo inputs: D (data) and C (control).
The complement of D input goes directly to the S input, ~nd D is applied to the R
input. A. long a. the control input is O. Ihe SR latch has both inputs at Ihe 1 level.
and Ihe circuil cannot change ,tale regardl"ss of the value of D. The D input i.
sampkd when C M L II D is I. the Q outpul goes to 1. placing the circuil in I~e set
slate. If /) i\ O. ou tput Q g"'-"5 te> O. placing the circuit in Ihe reset Slate.

The D latch receives its designation from ils abili ly to hold ,Ima il1 ils internal
storage. The binary information prescnt at t~e data input of t~e D latch is tran.­
ferred to the Q output ,,'hel1 the control inpUI is e oabled (I) . The output follows
change. in the data input, as long as t~e control input is enabled. When the control
input is disabled (0). the binary information th~t was present at the d~ta input ~t
the lime the transition occurred is retained al the Q output unlil lhe conlrol ioput
is eoahled again.

The D latch in VLSI circuits i$ often conmuctcd with transmission ga les
(TG5). as shown in Figure 6-9. TheTG was defined in Figure 2-35. The C input con­
trols two TGs. When C - 1. Ihe TG conn ected 10 in pul 0 conducts, aod \he TG
connected to OUlpUI Q disconnects. This produce, a palh from input D through IWO

"1- -r=:O>---';' =iJ.-,-o
L J ,-+----1
r l ,

(oj u.p: d;.grom

o X No clt.>"Il'

o Q • 0, R ... , .1>"
Q • I, $<""'e

(b) Functioo ,.bIe
o FIGURE6-8

D L .. ch

o

6-3 I Fhp-Fl"". 0 249

'" , '7
-I ro Q

~
v

o n GURt::6-9
D u,<b .. ·i,h Trarumi .. ion Ga'e>

inverter> to output Q.l1ms. Ihe OU'PUI follow. the dala inpul a. long a. Cremains
active (I). When C changes 10 O. Ihe 111'$1 TG di"'OllneclS input D from Ihe circuil.
and lIN: se<;OrKI TG <XmneclS Ihe two invene~ allhe OUIPUI imo a loop. Hence. Ihe
value Ihal wa. presenl al input D at Ihe lime thai C wen! frorn 1 100 is retained.,
Ih" Q oulpUI by lhe loop

6-3 FLIP-FLOPS

The stale of a lalch in a flip-flop is allo",ed 10 SW;lch by a momentary change in
value on Ihe con lrol inpul. Thi$ change is ca lled a "i88~T. and;1 enables. or lriggers.
the flip-flop. The 0 lalch ""ilh clock pulse. on il' conlrol input is Iriggered every
lime a pulse 10 Ihe logic-l level occurs. A. long as the puis<: remain. al Ihe active
(1) level. any changes in Ihe data inpul will change the Slate of the b'ch. In this
sense. Ihe latch is tT~t1Sp""nt. since it. inpul value can be seen from the OUlputS.

As Ihe bk>ck diagram of Figure 6·3 $ho",'S. a sequenlial circuit h~$. feedback
path from Ihe OUlpU," of Ihe fiip-Oo[>$ '0 Ihe combinatioo circuit. As " conse­
quence. lbe dal. inputs of the flip-flops are derived in paJ! from Ihe oulputs of 11",
same and other f1ip_nops.. When lalches are used fo< lhe storage tieme nts. a serious
difficu lly arises. The slatc Iransition, of the laIches stan as soon as Ihe clock pulse
changes 10 the logiC_I level. The new S1~le of a lalch may appear al its o~lp ut while
Ihe pulse i •• till ac,ive. Thi, outp~t i. connected to the inputs of SOme of the lalches
Ihrough a combinational circuit. If Ihe inputs applied to the latches change while
'he dock pulse is $Iill in Ihe Jogie· 1 level. the latche, will respond to n J/al< "~/·

lie.!' of other latches instead of Ihe or;g;nalltat~ ""{,,..s. a nd a . uccession 01 changes
of state instead of a single one may occur. The result is an unpredictable .itualion.
since the Slale may keep changing and continue tochnoge until the clock return. 10
0, The final stale de~nd, on how long Ihe clock pulse stays al level logic I.
Bec.,,,se of ,his unreli able opermion. Ihe o ut put of a latch Carlnol l>e applied
directly or Ihrouglt combin.tional logic 10 'he input of 'he sa me or another la'ch
when all Ihe lalches are triggered by a single clock signal.

Bip.fiop ci.cuits are «Instructed in sueh a way as to rIUIke them ope rm"
properly when they arc pan of a !.Cquemial circuit thaI employ" a . ingle clock.

2 5 0 0 CIIAPTER 6 I SEQUENTIAL CIRCUITS

Nore rhar rhe problem wilh (he lalch is (hat it is Iran'parent; A. OOOn as an input
changes. shorrly rhereaflu the wrresponding ourput change. 10 malch ir. TIlis
lransparency is what ano,.~ a change 00 a lalch outpur 10 produce additional
change< al other latch outPUI ... hile Ihe dock pulse is al logic L The key to rhe
proper operation of Hip-Hops is to prevent them from being transparent. In a Hip­
Hop. before an OUlput Can eilange.lhe path from its inpuls 10 ils out PUiS is broken.
So a fl ip-flop cannot "see~ Ihe change of ils oUlput or of Ihe outpulS of olher. like
/lip-Hops at il' inpul d uring (he S<lme clock pu lse. Thus. the new .tiue of a Hip.nop
depend, only on Ihe immedialely preuding Slale, and Ihe lIip-lIol's do nOI go
through multiple change. of .I.te.

There are Iwo ways Ihal lalches are C(>mbined 10 form 3 lIip.Hop. One way is
10 combine 1"0 latches such Ihal (I) Ihe inputs presented 10 Ihe lIip-Hop when a
dock puis<, i. present control il' .Iale and (2) tM slate of the flip.flop changes only
when a dock pulse is not present. Such a circuil is called a rnasru-.I"v~ t1ip-Hop.
AnOlher way is 10 produce a fl ip·flop Ihat triggers only during a signal rransirion
from 0 to 1 (or from 1 10 0) on Ihe dock and Ihat is disabled at all other limes,
including for the duration of tbe dock pulse, Such a ci.-cuit i. S<lid to be an ~<lg~.
trigge~d /lip-Hop. Next. Ihe implern~nlalions of Ihese 1"'0 Hip. Hop Iriggering
approach .. are presemed. It is necessary 10 consider the SR flip-Hop lor Ibe rna ...
ler·sla .. e triggering approach si~ a properly<nnslructed 0 Oip-Hop has tM same
behavior for bOlb Iriggering Iypes.

Master·Slave Flip-Flops

The masler-sla"e SR Hip-t\op, C(>nsisling 01 Iwo latch .. and an inverler, is shown in
Figure 6-10. 11le .ymbol with S. C. and R on il is lhal for the SR 1"leh ,,;th control
inpul (Figure 6-7). " 'hkb is relerred 10 bere as a clocked SR lalch. The 1~ 11 docked
SR Weh in ~-;gure 6·10 is called the m .. ler. Ihe right Ihe .Iave. When Ihe clock
inpul C is O. lhe outpUi of the in"erler is I. The sl"'e latch is lhen eMbled. and ilS
OU1PUI Q is equal 10 Ibe master OUipUi Y.The master lalch is disahled. beca use C is
O. When a logic-! dock pulse is applied.lhe values on Sand R control the value
slored in Ihe ma,ler latch Y. The slave. bO"'ever, is diS<lb led as long as the pulse
remain. al the I 1<:".1. because i\5 C input;' "'Iual 10 O. Any ch.nges in the external

,
,
,

,
,
,

, , o
- , , ,

o n CU KE6- lO
SR Ma<ter·Sl"" Flil'""F\op

6-JI F~p-Fl"l" 0 251

5 and R inputs change Ihe maSler outpul Y. bUI cannol aff""l Ihe .la~e OUIPUI Q.
Whe n Ihe puls<: rei urns to O.lhe masler is disabled and is isolaled fn)TTl (he Sand R
inpUIs. At the same time. the slave is enabled. and the current value of Y i. Irans·
ferred 10 the output of Ihe ftip.ftop at Q

A ModelSim logic .imulation illustrating master·sla.'. Hip-ftor SR behavior
i. shown in Figure 6-11. Initially. all values are unknown including the dock C.
When Sand R bolh go to O. and the dock goes frorn 1 to O. the output of Ihe
master. Y and Ihe output of Ihe sla.·(. Q. bolh remain unknown. sin« Ihe prior
value is eff""tively being stored. 5 is at 1 with R al 0 to set tile /lip. Hop in
response to Ihe next dock pulse. Wh en C becomes 1. Y sets to l. When C
becomes O .• he s1a"e copies the value of Y se lling Q 10 L Aller S rClurns 10 O. Y
and Q remain unchanged. storing Ihe 1 ~alue .hrough the next dock ~riod. Next.
R be.:<:>mes L After the clock pulse transition from 0 to I. Ihe maSler 1.lch is resel
with Y changing to O. The .lave latch is not affected. be~" use its C input is O. Since
the maste r is an internal ~ircuit. its change of SI.lc is ~ 'I presenled at oUlput Q.
Even if the inputs Sand R change during Ihi. intel'lal ."d the Slate of the masler
lalch respond'! hy changing, .he OUlput of the f\ip-H I' remains in ilS previ"""
sla te. Wl>cn Ihe pulse return. 10 O. the " .. ~= :i<HI from the maSler is allowed to
pass throug.h to the slave. For the si mulation e~ample. tl1c ~aluc Y _ 0 is copied to
the . Iave talch making Ihe extern.l outpm Q - 0, Note that these changes are
delayed from the pul,"" changes by gale delays. Also. the external inputs Sand R
can change anytime aftcr the clock pul"" goes through i", negative tran.i1ion, Thi,
is because, a. the C inpul reaches 0, the master is disabled, alld Sand R h .. 'e no
effect until the nut clock pulse. The ncot sequence of signal changes illustrates
the "'one', catcbing"' behavior of the SR master·slave Hip-Hop. A narrow pulse to I
occurs on S at the ""ginnillg of a d ock pulse. The master latch respotlds to the I
on S by Changing Y to I. ' [nc n S goes to 0 and a narrow 1 puLse occurs <HI R. The
masler latch respond, to the 1 on R by changing Y back 10 O. Since Ihere are no
further 1 "alues On S or II, th e mastcr COl1tinue. 10 ,tore 0 which is copied to the
slave latch, changing Q to 0, in response to the dock changing to O. ThUs, the mas·
ter latch -caught"· both the 1 On S and the 1 "" R Sin"" the 1 On R was caught

c---"

'0

Q

", I, "1,,,,1 • ••
o nGU ME 6-11

" t, "I" t. too... l~ ..

Log", Simu lation of an SR Ma"cr_S Ia\" Fl i~Fl""

l SI 0 CIIII PTER. I SEQUENTlIIl ORcurTS

hm. lhe OUtput Q remained It O. In gene",l. the McorrectM response i, aSiiumed to
be tile response 10 the input ~al ucs " 'hen the dock goes 10 O. So. in Ihi. ca"". the
response happen. to be correct. ahhough more by accident wit h Ihe changing va l­
ue. in Ihe " raster. For the ne.! dock pulse. a narTOw I pu l..: oe<:urs on S ",,{(ing
the mas ler outpO! Y to I. The dock I h~!t socs to 0 and the value I is transferred
IQ the slave latch and appears Qn Q, [n thi. case. the corre<:t vnlue o n Q should be
Ounce Q was 0 bdore the dock pulse and botb S and H arc 0 just before the
dock goes to O. Since Q equals 1. due to M [·S catching~ <>n S. the n,p,fIop is in lbe
w~ state. For the fina[dock pube of intere'll. both S and H b«ome I before
Ihe clock IJOC$ to O. This applies the InYlilill combinalion 10 the masler [atch mak­
ing both) ' and Y equal 10 I. When Ihe clock changes w O. Ihe S H latd\ w,t hin
the masler sees its inpuls change from (0.0) 10 (I. I). ca us,ng the ma,ter latch to
enter M unknown lilate wh ich i. immediately tra nsferred to th e inputs of the
slave which abo e ntelS an ullkn own 'Ia tc. This demonstrate, th.t S " I, R _ I is
an i n~a lid input com bination fm the SH. mastcr·sl ,,·e Hip·Hop,

Now wnsider a seq uential sySlcm wmaiaing many master-slnvc flip-Hops.
wit h the OUlpU IS of some Hip-flops goin, to inpUl' of o lher nip-nops. Assume that
Ihe tlock pulses to all of tbe Hip-n0p5 atc synchronized and occur at the same
lime. At the beginning of ellth dod pulse. some of the masters thange ",ale. but
all tbe sJa>'e5 ",main in tbeir previous ",ales. This means Ihat lhe nip-llop !.la~.,.
arc still in lheir original .. ate$. "hile lhe n,p.fIop masters ha ,,,, ~hansed 10 lhe new
states. After the clock pulse returns to 0, $Orne of the Hip-nop tLA~es change .taiC.
but nonc of II\e ne,,' states ha~e nn d fcct on any of the mMters until the next
pul"" , ThUs. the State. of Hip·n0p5 In a 5ynchronou. system t.n cha nie simulta­
neously for the ",me dock p ulse. e~en Ihough ou tpUlS of Ai p.nops are con nccted
to inpu ls of Ihe same or other Hip·nops.lltis is p"',ible because Ihe input. affect
the state of the Hip.nap only while the clock pulse is I and the new Slate appears
at tbe outputs. only after the clock pulse has ret urned to O. ensuring that II\e Hip­
flops are nt)l transparent-

IU- , eliable "'"'Iuenrial circuli Operalion. all oignalll must JlfOpiple from lhe
outputS of Hip-nops. through the wmbma"nnal circuit. and ba<:k to InputS of mas­
ter-slave Hip-Hops. " hile Ihe clock pulse ",main. at Ihe Iogie-O level. Any changes
thaI occur at the inputs of Hip-fk>p5 afler the clock pul"" goes to the 100000Ilc'·el.
wh ether iment ional or not. affectth~ Hip .Hop . tate and may res ult in Ihe storage of
,nwrreet ,'a lues. SupP"'e that the delay ;n Ihe combina tiona l cirtui l is such tha t S
is st,ll changing after the d ock pu lse has gone to the logic·) level , Suppose a lso
that. as a wnsequence. the master i, s.ct to I by the presence of S " I. When S
finally Slops changing. il is at O. indi<:.tinS Ihal tl\e state of the /Iip-nop ", .. I1<>l10
be changed from O. Th lbe I ~alue In tbe masler. whi<:h "'ill be tran,ferred to Ihe
!.lave. is in error. TI>e", are t"" ronseqllCn<:e5 of this beha~ior. First, Ihe master·
s1a..., n'p-nop is also ",f~ncd 10 as al"'lJt·'~rM Hil""nop..wnce it can respond 10
input values that cause a change in stale and OCCur anyti"", durina ,IS clock pulse.
Second. the circuit mu>! be d~.igncd W Ihat combina tional ci",,,;t delays are short
cnough to pre"ent Sand R from eh"n,ing during the clock pulse.

A fn"stcHlave D fl ip.fl op ean Ix: oonstructed from the SI< mastcr .• la,'c nip.
Hop by si mply r~placing the m"5ter SH latch wit h a master D lalch, 'The result ing

6-1 I Flip-Flop' 0 253

"
, Q

,- ,
, ,

"
o ~'I (;UKt: 6-1Z

N~gotiv~ EdSe-Triggered 0 flip-flop

circuit is shown in Figure 6-12. The resulting circuit changes its value on the nega­
tive edge of lht clock pulse juSt 3S the master.,I.,·e SK Hip·f1op doc:s. Ho"·cver.
lhe D type of flip-flop does not demonstrate lhe usual pulse-triggered beha,·ior.
Instead il demonstrates edge-triggcred beha,·ior. in this case. Mgati"e edge-trig­
gered behavior. ThUs. a master-slave D flip-flop COfl'tructed as shown. is also an
edge_triggered flip_lIop_

Edge-Triggered Flip-Flop

An etlge-Iriggertd flip-flop ignores tbe pulse "'hile it i. at a constant le"el and trig­
gers only during a Ir"n.sili{m of the dock signal. Some edge_triggered fl ip_flops trig­
ger o n th e positi"e edge (0-10- 1 transition). wh ereas others trigger On the negati"e
edge (l_to-O tran'ition) as illust rated in the previou. subsection. The logic diagram
of aD-type positi"e-«lge-triggcred flip_flop 10 be a nalr~ed in dNail hcre appears
in Figure 6-13. Th is flip-flop takes exactly the form of. ma.ter-sla,·e flip-flop. with
thc maSler a I) latch and the slave an SR lat< h or " D la tch. Also, an in"ute< ;5
added to the dock input. De<;ause tbe master I,tch is, D latch. the fl ip-flop exhib­
it< edgc-trigg~red rather than ma,ter·.lave or pulse-triggered behavior. For the
dock input equal to O. the master lalch is enabled and lranspa"nl and follows the

" , o

,- 0

" v 0 , o

" v

o "IGUK!:: 6-13
l'o\.iti •• Edge_Triggered D Flip.FIop

254 0 OlAP'TER 6 I StQUENTIAl CIRCUm

D inpUI ""Iue. The >Ia"e Jalch is disabled and holds lhe oIate of the nip-flop flIed.
When the posill~ edge 0ttUf1.. Ihe clock 'nput change< 10 I. This disables the mas­
ICr lalch 50 thai ,IS ~aluc is fi~ed and enables lhe "a". lalch 50 thai" copies the
""ale oil"" maSler latch. The sla te o f the master latch 10 be ~ Il ihe litate Ihal
il present Bltlle posilive edge of Ihe clod<. "Illll5. lhe beha"ior appea", 10 be edge­
tri~red. With Ille clock inpul C<luIIIO I. the rna .. er lalch i, di~bled and cannOt
change. 50 the .. ale of bolh Ihe mailer and the ,Ja~e remain unchanged. Hnally,
when the clod input changes from I 10 O. the master is cnabled and begins f,) li ow·
ing Ihe D value. ijut d uring IIie 1- I<Hltran,ition. the slave is diSllblcd before any
change in the maSler can reach il. 11m .. Ihe value stored in Ihe slave remai",
unchanged during Ihi, transiti on. An allernalive imple mentalion is s!vcn in I'rob·
tern 6-3 31 1he end of the chapter.

Standard Graphic. Symbol.

The ""andard 8"'phics Iymbols for 11M: diffcrentlypes oI1alch", and ",~"ops are
sho>o." in FIgure 6-14. A nip-nap or lalch IS designated by a rectangular block w"h

, - - 0

,
I) " " h I Coo"", D ... ,,' 0 (.... " ...

(I) ... "

, -

-,

- ,
~ ,
- ,

- - 0

~

- -,
n~SR U ,.,... SX n.1-,~~·_-~~o U'='-_-'-'cdD

(b) "'-.st. .. ~

- - "

~>< ~I>'
_L-.J

.fThw.w D 1. T,v<'cd U

«) Edae-1;;,.. Fli.,.flopo

o n CUKI: 6-14
Stand&n:l Grap/IiaI Symbol< for ,chet and Flip-flop

6-3 f flip-flop. 0 255

inputs OIl the left and outputs on the righ!. One output designate!; the norm al State
0(Ihe Hip_nop, and Ihe ot""r, with a bubble. de!;ignate. the complement output.
The graphics symbol for the SR latch or S R flip-H"" has inputs S and R indicated
inside Ihe block. In the ca~ of lhe SR lalch. bubble!; are add«! (Q lhe inputs (Q

in<licale thaI selling and reSClling occur for O-Ie\'e! in put.<. The graphics symbol for
the D latch or D flip-nop has inputs D and C indicated inside the block.

Below each symbol. a descriptive (itle. which is not pan of the symbol. ;.
given. In the lilk$. JL denotes a poo;;itive pulse. 1.1" a negati"e puls(\ I a poo;;;_
tive edge. and 1. a negative edge.

Triggering by the 0 level rather than the I level is denoted OIl the latch sym­
bols by addi ng a bubble at the triggeri ng inpul. The master_slave is a pulse-triggered
flip_flop and is indicated a, such with a righI-angle symbol call ed a P05fpo"ed OUlp'"
indicator in front of the OUlpUI~ This .)'mbol shows Ihat Ihe OUlput signal change.
at Ihe end of the pulse. 10 denote Ihat the master-1llave flip-fl"" will resp<lfld to a
negative pul~ (i.e" a pulse 10 0 with the in:>cti"e clock value at 1), a bubble is
placed OIl the C inpul. To denOl. thaI the edge-triggered flip-flop respond. 10 an
e<lge. an arrowhead_like symool in front of the I<:!tu C designates a dynamic inp"'.
This dynamic in,lie,,'or . ymbol denotes the facl Ihat the n ip-nop respond, to edge
ltalUition, of the input clock pulses. A bubble outside the block adjacent to the
dynamic indicator designates II nega_ i'·c...,d~ ~rMsi_ion for triggering .he cireui'­
The absence of a bubble designates a positivc-<:dge tra1\<;iti"" for triggering.

Oft eo. all of the flip-Hops lIS<'d in a cir~uit are of the Jame triggering type .
• uch as positi"e--edge triggered. All of the flip-Oops will then change in relalion \0

the Ume cloc king e~cn'- When u$ing nip_nops having different triggering in the
Jame scqucnlinl circuil . one may 'till wi.h \0 nil". all of lhe fl ip_nop outputs
chaQge relati~e to the Jame docki ng event, Those Hip-Hops thaI behave il\ a man­
ner opposite from Ihe adop_ed polarity lransilion can be chan.ged by llle addition
of inverte", to their clock inputs. A preferred pfOcedure is to provide both positive
and negative pulses ffOm the master clock generator that are carefully aligned. We
apply positi"e pulses to poo;;itive-pulsc·,riggered (master-,Iave) and negati,·e·edge­
"iggered nip-flops and negative pulses to ncgati,'e-pulsc·triggcred (m.".r-sla,'e)
and posi'i"e-<:dge-lriggered flip-Hops. In this "'"y. all flip_nop Outpu lS will change at
the Jame time. Finally. '0 prevenl specific timing problem .. some designers u"" flip­
nops having differenl triggering (i.e .. both positi~e and negalive edge-triggered
flip-lIops) with a single clock. In thesc cases, nip-flop outputs are pU.--p<:I'CI)· made
10 change at di fferent times.

In ,hi. lexl. i t i. assumed that all nip_Hops "rc of the posili"e_edge_triggered
t)'jX. unless otherwise indiealcd, Th i' provides a uoiform graphics symbol for the
nip-Hops and conSiStenltiming diagram ..

Note that there i. no input to the D nip-flop ~hat produce, II "no change"
condition. This condilion can be accomplished either by disabling Ihe clock pulse.
on the C input or by leaving 'he clock pul~s undislurbood an<l connecting the out­
put back into the D input u,ing a mu ltiplexer when the state of the fli p-flop must
remain the !-lime. The technique Ihat disable. dock pulses is referred to as clock
gating. This le<:hniquc 1)'pica~I)' u~s fewer ga'es and ""'es power. but is oflen
amided because the gated clock pulse. into the nip-flops are delayed. The delay.

256 0 CHAI'TEIl 6 I SEQUEN11AL CllI.Currs

called dock skew. cau"," galed clock and nongaled dock flip-flops 10 change al dif­
ferenl limes. This can make Ihe circuit unre liable. ,ince Ihe OUlp'lIS of some flip­
lIops may .each olhcrs ... ·hile thei. inputs are itill affecling Iheir Slate.

Direct Inputs

Flip.nups oflcn provi d~ special inpulS for selling and r~setting Ihcm asynchro-­
nously (i .e .. independent ly of the clock input C). The inp uts Ihal asynchronously
set the Hip-flop ~Te called direct .et. or p",et. The inputs that asynchronously re .. t
the flip-llop are called direcr US~r. or dM •. Application of a logic I (or a logic 0 if.
bubble is pre .. nt) 10 l!lese inputs affeCls Ihe Hip-Hop oUlput withoul lhe use of Ihe
clock. When po er i. turned on in a digital system.lhe Slales of il> Hip-H"", can be
anything. The direct inputs are u .. ful for bringing Hip-flops in a digital sY'tem 10 an
initial , tale prior to Ihc normal docked op"ralion.

The IEEE standard graphics symbol for a posilive-edge-triggered 0 Ilip_lIop
wilh direct set and direcl resel is .hown in Figure 6-15{a). The nOlations. CI and
ID. illustrate COfltrol dependency. An inpul labeled Cn. wlotre " is any number,
controls ailihe other inputs slarting with the number II. In Ihe ligure. CI controls
input 10. Sand R ha,'e no I in ffO<lt of them,and therefore. the)' are not controllC<.!
by the clock al Ct. The Sand R inpUis have circles on Ihe input lines to indicate
that they a re active at the Ingie.{) level (i.e .. a 0 awlied will result in the set or reset
action).

The function table in Figure 6-15(b) specifies the operation of the circuit .
The Ii .. t three ro ... " in Ihe lable se.e.::i1y tbe operation 01 the direct inputs Sand R.
These inputs beha"e ~ke NAND SR latch inputs (oce Figur. 6-6).operating inde­
pendently of the dock. and are therefore asynchronous inputs.. The last Iwo rows
in the function lable specify Ihe clocked operation for value. of 0, The clock at C
i. shown with an up.mrd arrow 10 indicale that the ~ip.flop is a positive.edge·trig.
gered type. The 0 inpul effeCl. are controlled by the clock in the usual manner.

Figure 6· 15(c) shows" less formal symbol for the positive·edge-triggered Ili p.
Hop wilh dire<:t .. t and reset. The positioning of Sand R at the top and bottom of
the symbol rather than On the left edge implies that resulting output changes are
not controlled by the dock C.

, , , , QQ A , , , , , , , - Q , , , , ,
- '" - Q , , , , lJot;kf J

" - >,
~O

, , , , , , ,
T

(0) G""pl"" .,....boJj (b) F."","", table (c) !>impl.ified Symbol

0 FIGURE 6·1~
D ~l i l'""FIop wi,h O;,ect Se, 'old Reset

6-l/Flip-Flopo 0 257

Flip-Flop Timing

There are timing paramet~n lI$SOoOiated with the Qfl<'rati(ln of both pulse-lriggered
and edge-tr;gger~d flip-flops. Th~se parameters ar~ ilJustrat~d for a ma"er-sla.·~

SR flip-flop and lor a negative-e<Jge-triggered D Hip-flop in Figure 6-16, The
p"rameur'$ for th e po:sitive-edg~_triggered D flip_flop are the same except that
they ar~ refere~d to the "",iti ve clock edge rather Ihan Ihe negative clock e<lge.

The timing 01 the response of • flip-Hop 10 its inpuls and dock C musl be
taitn into acrount when using the flip-fk>ps.l'or both flip-flops,lhcre is a minimum
time calJed the .~t"p time. t .. for which lhe Sand R or D inputs mu.1 be maintained
al a coDMant value prior to the occurrence of the dock transition that causes the
o utp ut 1<:> ~h "nge. Otherwise. the masler oo uld be changed erroneously in the case
of the master-slav" flip-flop or be at an intermediate value at the time the sla.'c
copies it in the case of Ihe edge-triggered flip-flop_ Similarly. then: is a minimum
time calJed the hot.1 ljme. t •• for which the S and R or D inputs must not change
afUr lhe application of the clock transition thaI causes Ihe outpul 10 cha nge_ Oth­
er.;ise. Ihe masler mighl respond 10 the inpul change and be changing allhe time
the slave latch OOpiC5 it_ In addilion. there is a minimum dock puis< widlh I ... to

r--..... "'
c ---.J

I' , SiR_

h::!.-I Q[I ==========~=lI~~t=====J
(b) Ed&<-triucr«l (.. ",' ive ..,.e)

o flGURE6- 16
Flip.flop Timmg Parorneten

258 0 CH AI'TER 6 I SEQUE.'ITlAL C[RCUITS

I
msure Ihal [he masler Ita< lime enough [0 caplur<: Ihe ;npul values correctly,
Among Ihese paramelen. Ihe one Ihal differs mo.l belween Ihe pU~.lriggere<!
and edgNriggcred Hip.Oops iSlhe ~IUp lime as shown in Figure 6-16, The pulse·
Iriggered ni!>"ftop has ils setup time equal 10 lhe dock pu~ widlh. whereas Ihe
selup lime for Ihe e<lge·uiggered nip·nop can be much smaller Ihan lhe dock pulse
widlh. As. consequence. e<!ge.triggering Icnd< 10 pr()Vide faSlcr de~igns since Ihe
Hip·ftop inPUIS can change laler wilh respect 10 Ihe upcoming Iriggering dock edge,

The pTOpI1!!aliOH ,J~lay tima tl'll1. teu. OF 'pd of Ihe fti!>"Oof'S are defi ned ..
Ihe imerval belwoon Ihe trigge ring clock edge and the .Iabi lioalion of the 0011'01 to
a new value. 'Ibese limes are define<! in Ihe same fashion as Ihose for an inve rter
excepllhallhe valu,," arc measured from Ihe lriggering dock e<!ge ralher Ihan Ihe
inverter inpul . In n gure 6-16. all of Ihese paramelers are denoled by rf'. and are
gi"en minimum and maximum values. Since Ihe changCll of the ftip.ftop OOlpuis are
lO be se paraled from the conlrol by the fti!>"ftop inputs. the minimum propagation
delay time shoul d be longer Ih.ll the hold time for correCt operation. "these a nd
mher pmamelcrs are specified in manufaeturers' data books for specifIC integra ted
"i",uit proJucts.

Similar timing parameters can be defined for latches and direct inpul$. ",ilh
a<idil;nnal propagat;nn delays nu<led 10 modellhe uan.parem beha"ior of latches.

6-4 SEQUENTIAL CIRCUIT ANALYSIS

'lbe behavior of a sequ~nt i"l ci r~uil is delermined from th e inpuls. outputs, and
present slale of the ci",uit. The outputs and the next slate are a fu nction of the
inpulS and Ihe prdoCnl Slate. The a nalysis of a sequemial drcuil COflsislS of obtain ·
ing a .uitable descriplion Ihat demonSlrates the ti"'" Stquence of inputs. OUlputS.
and s,ates.

A logic diagram i. rerogni~ed as a ~ynchronous seq uential circuit if it
includes fIip 'fIops with Ihe clock inputs driven directly or indirectly by a clock sig·
nal a nd if Ih e direct selS and reselS are unused during the normal funct ioning of Ihe
circuit. The fli p·Oops may be of any type. and the logic diagram mayor may nOi
include combinat ional gale'$. In this section. an ~ Igebr.ic rcpre>;ent.lion for spe<;i­
fying the logic diagram of a sequential circuit is given. A ,'ate table and Slate dia·
gram are presenled that describe Ihe behavior of Ihe circuil, Specific uamples will
be used Ihroughout Ihe discussion 10 illuslrale the varimrs proc~ures.

Input Equations

The logic diagram of a seQuen tial circuit consists of ftip·f\ ops and. usua lly. combi..a.
tional ga tes. The knowledge of Ihe type of fli p.f\ops use<I and a lisl of Boolu n
funcl ion~ for Ihe combinational circuit provide all the information needed 10 draw
the logic diagram of the sequemial ci",uil. The part of the combinat ional circuit
Ihat generate. Ihe Signals for the inpuls of flip·ftops can be described by a set of
Boolean fUIIClions calle<! flip ·flop i~/"" equflti",u. We "'ill adopl Ihe com'cn tion of
using Ihe flip·flop inpul oymbolto denote the ftip·ftop input ",!ual ion vari.ble and
using Ihe na me of the fIip.ftop OUlput as Ihe subscript for the variable. From this

e>ampie. it become, apparent Ihat a Hip-Hop input equation is a Boolean expres­
sion for a combinational eircuil. The subscripted symbol is an output "~riable of
the combinational circuit. lbis output is always oonnectcd to the input of a Hip­
flop-Ihus the name -flip.flop input "'luat;':m.¥

The flip-flop input equation, constitule a convenient algebraic expression for
specifying the logic diagram of a sequential circuit. The)' impty the t)'f>e of Hip-flop
from the letter symbol. and they lull)' spe<:ily the combinational circuit Ihat drives
the flip-flops. TIme is nOi included e~plicitly in these equat ion-. but is implied from
the clock at the C input of the flip·nops. An example of a sequential circ uit i, given
in Figure 6·17. The circuit has t,,·o D-type Hip-Hops, an input X. and an output Y. It
can be specified by Ihe following equalions:

D .. ~AX+BX

Y ~(A+B)X

The ~nt two equaI;"n, arc for nip-flop inpul .. and Ihe Ihird equalion specifics Ihe
output Y. Note Ihat lhe input e'luation. use Ihe symbol D. which i. the same as Ihe
input symbol of the flip-flops. The sut>scripl' A alKl B de!lignale Ihe oUlputs of
the respe<:live flip-Mops.

0

C

"
,

C ,
~

V

a flC lJ5I[6-17
Exampk of. Sequential Cireui,

260 0 CHAPTER 6 I SEQUENTIAL CIRCUITS

State Table

The functional relationships among the inputs. outputs. and Hip-Hop state. of •
sequenti.1 circuit can be enumerated iTI a slale mbl~_ The ,tate table for the cire ~it

of Figure 6-17 is shown in Table 6-1. The table Con$ill\ of four ,"-""tioTIs. labeled
pre.oem 'lale. "'p"l, "exl Sltlle. and ,,!liP''', The presenHlate ""'tion shows the states
of fl ip-flops A and II at any given time I. The input section give, each value of X for
each possible present stat~. Note that for e.ch possible input combination, each of
the prese~t states is repeated. The next-state ""'tion shows the .tates or the Hip­
ft ops one dock period later. al lime I + 1. The o ut put sectio~ giYes the value of Y al
time, for each combin otion of present ,tate anJ i" pul.

The dorivation of •• I"le lable consim ollirst listing all posoible biM 'Y com­
binations of present state and input,- In nblc 6-1, there are eight binary combi na_
tions. from 000 10 III The next-state values are t~en determined from the logic
di~gram or from the Hip-Hop input c<.]u;ot ions. For a D flip-Hop. the relationship A{,
+ 1) .. DAI) holds. Thi' means that the nexl st.le of llip·Hop A i. equal to the
present value of it. input I). 1bc value of the D input i. specified in the ni p_fl op
input equation ", a funclion of the present st.le of A ~nd B and input X . There_
fore. the next Slate of fl ip_nop A must satisfy lhe eq uation

A(I + I) - DA - AX + BX

'rbc ncx!-sw tc se<;tion in the state table under column A has three 1', where the
present state " nd input val ue satisfy the conditions (A,X) _ II {)T (H.X) _ 11. Sim·
il"rly. the next Slate of nip_nop I) is derived from lhe input equation

B(I + l) - D H - AX

and is equal to 1 uhen lhe present Slate of A is 0 and input X is eq ual 10 1 The out­
put column i. derived fTOm the oUlput equation

Y _ AX+BX

o TABU: 6_1
S'a' e Table for Chuit of .1gure 6_ 17

P nl State Input Next State Outpul

• , , • , ,
" 0 0 0 " " " "

,
" " " 0 " "

,
"

, 0
0 " " "

,
0 ,

" 0

" "
,
0 "

6-4 I S<qu<nti.J eiK";' Anoly'li. 0 261

o TA 8 LE 1>.1
T" ... n;m~nal St.t~ Table ror Ih~ Clrroil in Fig"" 1>.11

,-,
atllie ,-. , - , ,-. , - ,

• , • , • • , ,

" " "
, , , , ,

"
,

" "
, , , , ,

" "
, , , ,

" , ,
" "

,
"

,
"

The ,me table of any sequenlial circuil wilh D-Iype Hip-Hops is oblained in
Ihis way. In general. a sequenlial circuil ,,<jlh m nip.Hops and" inpulS needs 2~ ' "

r(>WS in Ihe Stale table. The bina!)' n"mbeTll from 0 Ihrough 2"'+0 - I are li,led in
Ihe combined present-slale and input oolumns. The nexl ·slale seclion has m wi·
umns, One 10.- each Hip-n<.>p. The binary values for Ihe nexl Slate are derived
directly from the D flip-fl<.>p input e<jualioM. The output seclion has as man)' 001 ·
umns as Ihere are OUlput variable<.. Its binary "alues ~re derived from Ihe circuil or
from Ille Boolean funclions in Ihe same manner as in a truth lable.

Table 6-1 is one-dimcnsional in the sense thai the pr=nl slatc and input
combination. are combined inlO a single column 01 oombinal ions. A Iwo-dimen­
sional ,tale lable having Ihe pr=nl slate laoo.lalcd in Ihe left oolumn and Ille
inpulS tabulated across Ihe lop rOVl' is also frequently us.:d. '[lie next·Slale emri.,.
are made in each cell of Ihe lable for Ihe presenHllate and input oombinalion OOf­
"'sponding 10 Ihe localion <.>f Ihe ""IL A similar Iw<.>-dim<:nsional I.ble is used for
Ihe OUlPUt!; if Ihey depend upon lhe inputs. Such a slale lable is shown in Table 6-2.
Sequenlial circuit!; in which Ihe outputs depend on Ihe '''puts. as well as 01' Ihe
slales, are refeTT~d 10 as M~i1ly mo;le/ circuil>. Olherwise. if the OUlputs depend
only on Ihe 'Ial"" lhen a one-dime nsional column suffices. In this case, lhe circuit!;
are ref~rred 10'" M{}()re ",odd ~irouil~ Ea<h model is named aft~, il' <.>riginaIOT_

A. an example or a Moore model circuil. suppose we want 10 obtain the logic dia­
gram alld stale table or a "'l""nlia[cirruit lhal is sp<:cifle<l by lhe lIip.1\op inpUi equalion

DA - A ffiXffiY

and OUlput equalion

Z=A
The DA symbol implies a D-Iype Hip-Hop wilh OUlpul designaled by Ihe lener A
,[lI" X and Y variables ar~ laken "" inpul. and Z as Ihe oul pu\. -n,e logic d,agram
and Slate table 10< this ci,-cuil arC shown in FigUf~ 6·1~ . The .Iate ,able has one
column for the present ,late an d one oolumn fOf Ihe inputs. The nexi ,Iale and
output afC also in single columns. The nexl SlalC i. derived from Ih~ Hip.flop input

262 0 CHAPTER 6 f SEQUENTIAL CIRCUITS

(b)Sl>'" M • .,

o FIG URE: 6·18
Logic Di.grom . nd Slot. Tabl. for D A - AffiXG! Y

equal ion "'hich specifi~, an odd funclion. (See Section 2-8.) The oulpUl colu mn i,
simply a copy of lhe column for the present·stale variable A.

State Diagram

The information available in a statc table may ~ represented graphically in the form
of a state di,gram. ln this type of diagram. " Slate i. represented by a circle. and Iran·
silions between states are indicated by directed lines connecting the circles. Examples
of st"te diagrams are given in FiguTtl 6-1~. Ftgure 6-1 '}(a) shows the state diagram for
the sequenti,l circuit in Figure 6-17 and ils stale table in T,ble 6-1. The stale diagram
pro, ides the same information ", the state table and i< obtained diTectly from it. The
binary number inside each circle identifies the state of the f1ip·Hops. For Mealy modd
circuits. the directed lines .r~ labeled ",;th two binary number>; separated by a 'lash.
The input value during Ihe present stale pre<:~de, the , lash, and the value following
the s1asb gives [he output value during the pre""nl state Wilh the gi"en input applied.
For exam ple, the directed line from state 00 to ,tate Ol is labeled l,u. meaning lhal
when the ""quential circuit i, in the p,esen! 5tateOO and [he input is 1, the output isO.
After the next clock transition. the cin; uit goes to the next state, (11. If the inpul
changes to O. then the outpul becomes 1. but if th~ input remains at L the output
Slays at O.l11is infonnalion i, obtained from the state diagram along the two directed

00

"'
"'
,.,@-'''--<

01. 10

OO"I~IXl"1
01.10

,.,
o FIGURE 6-19

Stale D,woms

.. ,
lines emanating from the ci",'" wjlb stale 01. A dirl'Cle<l line connecting a circle wilh
itsclf indirates Ihat n" change of slate OC<:u~

The "'He di.'gram or Figure 6-19(b) is for the ..,quc1\!;al drcuil of Figure 6-18.
I lcre. only one fl ip-flOfl wilh tWO slaies is .,.,.,.;le<!. There are ''''0 binary inpulS, and
the ",,'PUI depe nds ""I)' on the <tale of the flip.flop. For stICh a Moore model circuil,
the slash on the directed tines i. rK>I included. since Ihe OUtput. depend only on the
518'" and nol on Ihe input value:.. Instead. the output i. included under a slash below
the ,'ale in a <i,"' •. There are ,wo inpUI C(Kldilions for each ,Iale tran<ilion in {he
diagram. and they are separated by a comma. When there are tWO input ,""iables,
each SlalC may ha,'. up ,,, (our d irc.olCd lines coming o ul of Ihe corresponding circle.
depending upon the nu mber of states and the next o',,'e for cach binnry combination
of thc input valU<$

There i. no difference between a sta le table and a ,1.le diagram, exccpl for
their manner of repusenlalion, The .Iale lable is easier 10 <lcrive from" gi'-en
logic diagram and inpul equ.lion~ The .Iate diagram follows dire<:tly from Ihe
.Ia te lable. Thc sl8le diagram giVC!l a piclorial view of state Iran,itiom ami i. the
form I1Iore sui table for human interpretalion of Ihe operalion of Ihe drcuit. For
exa mple. the 'tatc diagram of figure 6· 1 'l(a) clcorly ,how< Ihat, starti ng at state 00.
the o Ulput is 0 as long as Ihe in pul sta)'s al I, The f"'t 0 inp ut aher a ming of I',
gi"e. an outpul <.>f I and send~ the circuit back 10 the inilial state of 00. The state
diagram of figure 6-19(b) shows that the circuit .tay~ at a given stal e as long as the
1WO inputs ha," Ihe same "alue (00 or II). Thcre is a state transition bet"'een the
Iwo ,tate. onl y when the twO inputs arc diffe ren t (01 <0,. 10).

Sequential Circuit Timing

In add it ion to analyzing the function <of a circuil. it is also important to anal)",,, it'
pcrformance in terms of the maximu", i"rUl'IO~Ulrm delay and the trnui,,"'m
dock fr~q'wl<'y.f .. , a t which it can operate. fi rst of all. the clock frequency is just
'he inverse of the dock pcriod '. shown in Figure 6-2t1 So. Ihe maximum allowable
clock frequency corr~ .. ponds to the minimum allowable cloek perioo ',r To dc!CT_
mine how small we can make Ihe clock period, we need to delermine Ihe longe.t

264 0 CHAJl'TfJI. 6 I SEQUENTIAL C IRCUITS

•
C~ I

J-'"'+~ ' I ' ~+

o "ICUKE (,,10
!;equen,i.1 O,oui,'l1 rnin8 Pn.mc'ers

d~lay fmm the tr;wring edge of lhe clock to the nextlriuerin, edge Qf the clock.
1l>c5c delays are measured on all such paths ,n the cirw't dovoll ,,'hie-II changin, sig.
nab f""'.'9-Il'ue.. Each of these p.1lh Iklays """ IlIrtt component:>: (1) a nip-nop
~ .. on de laY.Ip4.FT-(2) a combina" OfIal I.lklay .lIrough.he cha ,n of ga.n
along .he path.' CID.I ... and (3) a f1ip·fIop SCIUP time.l~ As a signal dian&<, propa .
gaiL .. do",," 'he pa.h. il is dela)'ed sOCtt$$ivcly by an amouILI e{fual.o each of .h=
delap . No.e that we ha,'e u:ICd ' ''';' inslead of the mOre de'"iled ,·a lue .. '",-" .nd
tF'!IL.' for bolll the ft ip-ftops and CQlnbina'ion.llogic gale. to simplify .he delay cal ­
culations. Figure 6-20 summaril.c' the delay picture for bol h Ihe edge-trigg,,~d and
puisc''''ggcred flip.flops.

Ahcr a I)()!:,tivc edge on a clock. if a H, p.t\op is '0 change. ils <lU'PUI changes
a t time '"u ... af.er Ihe doc\: edlJ". 'l'his cha nge enters the combinational logic
pa.h .nd must propagale do..-n the path 10 a flip-flop input This re{fUirCl an addi ·
tional lime. ' COMB. for the SIgna l change 10 reach lhe sea)nd mp.nop. Finall y.
before Ihe <>ex. posil;"e d ock edge . • his change "' , be he ld On ' he ftip."""
,npu' for selUp .im<" I~ This paill . 1'F'P1'1' a. well a. olher possible paths are iIlu.­
lrated in Figur~ 6--21. For paths p, ~ . .,. driven by primary inpuli, 'pd.fl' ji r~placed
by I ;. " 'hieh i$ the late<t .ime 111.1 the '"Vul changes afler Ihe positive dock edge.
For a f><1 th 1' ,0lIT driving primary QUl putS. ', i. replaced by t .. ,..hich "' Ihe latest
. ime th3' Ihe outp ut i. permilled to c h~nge prio r 10 the ncxt dock edge. Fi nally.
in a Mealy n.odel circuit . comb, nat ional palM from input 10 OUt PUI . /'u<,our. thai
uoe oo.h I , and ,~ can appear. Each palll """ a i lack lime. ,_ Ihe cstra time
allowed in the clock period beyond Ihal rC<luircd by the pa.h. From Figu re 6-21 .
• he follo,.,ng C<lua,ion for a pa.1I of .)'pe PW.fl' result>::

I • • I (lplJ'f' '' 'pI.co.'B .. I,)

In order 10 guara n,ee Ihal a changing vulue i. caplur~d by Ihe r«ej"ing Hip.Hop.
1 .•• .-.. mUSt be great er thnn or "'lualto ,.c ro for all of the pa.h" Thil req uire •• hat

'. ~ rna. (lpo1FP " 'COM"" t,) ='..-

6-0 I Sequ<n"'" c;..,..;, AnaIpo. C 265

,
-::, , ,
'"

r,/

""

;

~ /

c n culu: 6-2 .
Sequentia l Ci",u" T1minB p.,In

where (he muimum i, taken over all pa,hs down ... hieh signals propagn'e from Hip­
Hop (0 mp_fk>p. The n~XI example presents "'p..,..,ntati,.., ""leulalion, for palh.
P ITW

t:XAM I'U; 6-1 C.....,k ~riod ... d ~'re"uenty C.kuboliom

SUPP""'" tll a! all nip-n~ us<:d are (he sa me ~nd ha,'e I,.. • 0.2 "" (nan~nd "
1O-9 se<:onds) and I, " 0, 1 ns. Then the longe'l pm" b<ginning and ending wi'h" /1;1'­
flop will be the pa th ... ilh Ihe largc.t r n>M H- Further. , uppose thnt the I"rge",
I""CO'>t8 i, 1.3 "" and that I~ has !xcn sel to 1,5 ns. From Ihe previous equalion for ',..
.. '" can write

1.5 lIS ~ I,.... .. 0.2 .. 1.3 .. 0.1 _ I""", .. l.6ns

Soh;ng. we ha,'e ,_ . ~O.I ns.5O Ih,s value of I, i, too .mall. In OO'der for I,.... to
be grea,er .Mn or equal to zero 100' the I"""". path. I. ~ Ir-- ~ 1.6 liS. The ",;ui­

mum frequency f 111.6 ns ~ 6~ MHl (mcg.tIcnz = 11I""},,,1a per ..:<:Ond). We
note that , if 10 is too large '0 meet Ihe circullipecifications. we mus, either employ
faslcr logic ""I" or change the circuil delign '0 red uce the prohlc malic 1',,11, delays
Ihrough (he eircuil while ,Iill performing the dC$ircd function. •

266 0 CHAPTER 6 I SEQUENTIAL ClItCUITS

[[is inlere'ting 10 nOle thai Ihe hold time for a fl ip-flop, I,. doe, nOI appear in Ihe
d ock period equal ion , h rciales 10 another liming conslraint equal ion dealing wilh
one or bolh of IWO specific silual ion~ In one case. outpul changes arriw at thc
inp uls of one or more flip-flops 100 soon . In Ihe other case. the clock signals reach­
ing one or more fl ip_fl ops ore somehow delayed. a condition rderted 10 as clock
,l<ew. Oock skew also can affect Ihe ma,im um clock frequency,

Simulation

Sequential circui l simulalion involves issue. not present in combinalional circuits.
Fi~1 of all. rather than a sel of input palterns for which thc order of applicalion is
immaleriaL the pallcms mu,t bo applicd in a seq uence, This seque nce includes
timely applicalion of inp ul patterns as well as clock pulses. Second. Ihere must ""
some means 10 plaC<:! the circuit in a known slate . Realislically. initiali zation to a
known slate is accomplished h}' applicalion of an initialization subsequence al Ihe
kginning of the simulation. In Ihe simplest case. thi5 subsequence is a resel signal.
For flip-flops lacking a circuil reset (or sct).a longer sequence typically co nsisting
of an inilial reset followed by • seq uence of normal input pal1erns is re<:juired, A
simu lator may also have a mea n. 01 selling the initial stale wh ich is uscfulto avoid
long seque~ces Ihat may be needed to get to an initial state, Aside from gelling to
an inilial state. a third issue is observing Ihe slate 10 verify rorre.orness. In some cir­
cui ts. application of an addit iOM I sequence of input' is required to determine Ihe
stale of the circuit at a given point, The <imp lest allernative is to sci up the simula­
tion SO that the stale of Ihe circui t can be observed directly: Ihe approach 10 doing
this varies depending on Ihe simu lator and whet~er or not the circuit romains hier­
archy. A crude approach that works wilh all sim ulalors is 10 add a circuit output
with a path from each state variable signal

A final issue to be dealt with i~ more detail is the timing of application of
inpUIS and observalion of outputs reialive to Ihe active clock edge. Initially. we dis­
cus< the liming for i,,"C1ional simulation having as its ohi""li,'" detennination or
,'eriflcation of the funcl ion of Ihe circuit. In functional simul alion. componenls of
the circuil have no delay or a "cry small delay. Much mOre complex is liming simu ­
lalion i~ which Ihe circuit clement' have realistic delay. and v .. ification of the
proper operation of the circuit in term, of timing is the ,imulation objective.

Some simulstOT$, by default. use a ,'ory small componenl delay for funct ional
simulation so thai Ihe order of changes in signals can "" observed provided that lhe
lime scale used for display is small enough, Suppose that the component delays and
Ihe selup and hold time, for flip-flops are an 0.1 ns for such a simulation and that Ihe
longest delay from positi" e clock edge to positive dod: edge is 1.2 ns in }'our circuit.
If you happe~ to use a dock period of 1.0 ns for }'our simulation. when the result
depends on Ihe longest delay. the simulation resulls will be in error! So for functional
simulation with such a simulalor, eilher a lODger dock period should k chosen for
Ihe simulalion Or the default delay needs to "" chang"" by Ihe user to a smaller value.

In addition to Ihe clock period. the time of application of inputs relative 10
the positive clock edge is important. For functional simulation. to allow for any
small . default component delays. the inputs for a gh'en clock cycle should be

6-51 S<q""n,"1 Cmui, Ik';gn 0 267

,-

,

Stot.

,

I I

"

" I

o HG URE 6-22
S;mulalion T,ming

I

,
,

changed well before Ihe posili"c dock edge. pTcfcTably e.," y in Ihe clock cycle
while Ihe dock is s(i ll ;II a I value. 'l1\i s is also an appropriale lime to change Ihe
resel signal values to insure Ihal Ihe reSCI >;gn,,1 i. contrOlli ng Ihe Sla te rather Ihan
lhc dock edge or a meaningles, comb;nalion of clock and rc..,t.

A final issue i. the lime 01 which to exan\ine a simulation result in funclional
simulation. AI the ve ry latest. Ihe state variable "alues and outpulS should be al
their (inal v~ l ucSj uSI t>cfotc Ihe po:$ilive clock edge, Although il may be possible 10
ot>serve Ihe values al olheT loc.tions, lh;s location pmvides a foolproof obseTVa­
I;on lime for funClional si mulalion.

The idea, just pre.ented ;lTe <umrnarized in I~gure 6·22. Inpu t change, in
Resel and Inpul. encircled in blue, <lCCUT al about Ihe 25% poini in th e cloc k
cycle. Signal value, on Slale and OUlpul. as well as on [npUI and Resel. all
encircled in blue and lisled. are observed jusl t>cf"re Ihc 100% (Xlinl ;n Ihe
clock C)'cle.

6-5 SEQUENTIAL CIRCUIT DESIGN

The design 01 clocked seq uenlial cireui" sla rls from a sel of specificalion. and CuI­
mi nales in a logic diagram or a lisl 01 Bool~an funclion' from which Ihe logic dia­
gram can t>e oblained. In conl rasl to a combinal;onal circuit. which is fnUy
specifoed by a lrulh lable. a sequential Circuit require, a slalc lable for it' specifica­
lion.Thus, Ihc forsl slep in Ihe design of a sequential ciTcu;1 is 10 obt.in a , tale lable
or a n equivalent represent ation such as a slale diagram,

A ,ynchron" us sequent ial ciTcuil i, made up of Hip_nops and combinalionai
gales. The design of the ciTcu;1 con,im of choosing the flip-fl o!" and finding a COm­
binalional eirc llil Mruclure which. IOgetheT wilh Ihe Hip_Hops, prod uces a circuil
I~" ' fulfi ll. Ihe ""cd specifocations. ·n, . mi ni mu m number of fl ;r>-f!ops is deter·
mined by Ihe numt>cT of slales in Ihe circu;l : n fl ;p-flo!" can repr""ent up 10 2"
binary stales. The combinational circuil is dCTi"cd from Ihe Male lable by cvalual ­
in g the flip_flop inpul equal;ons and outpul equalions. [n faci. once lhe type and

2;68 0 C HAPTIR ~ I SEQUENTIAL CIRCUITS

numbo:r of nip-liops .re delermlned.lhe design proceM Iransforrrtll a scquenllal cir·
cuil problem imo a combinluional circuil problem. In this ,,'ay. the techniques of
combinational circuit de!i;i,n can M applied.

Design Procedure

The following procedure for Ihe desi", of sequential circuit' ,n "mil .. to that for
combinational C;rcu;I' bUI hns rome additioMI "cpo:

I. Sp"";fi",tlon: Wrile a lipedfico tion for Ihc ClrcU; I. if nol already ava;l~blc.

Z. tOrmul.lion: Obla;n ei.her a Sta,c diagram or " >l aIc mble from lhe Sla,c·
menl of lhe problem,

J. Stale A..s'tamenl: If only a Slate diagram is a"ailable fTOm lilep I. obtain the
stalc table. A ... ign binary oodc1 10 Ihe ~Iat<$ in II><: lable.

4. ni Flop Inpu l [qutlo. Oc lcnninalion: Select ,he ni 1IofI I)",e or I)·pes.
o.,,,,·c the flip-flop inpul C<j~lion. from the ".,~t·Slatc enlries in Ille
encoded slate table.

S. Output Equa'iun Dt'crmillMtioll' o.,rivc output equation, from tile QU'PU'
cOlries in the "alc .ablc.

6. Optimi,.ation: Optim~e the ftlp ' lIop input equation. and OUIPUI equatIons.
7. TechJlology Mappinl' Or.w a logic diagram of the circuit using nip.nops.

AND.. O Rs. and in,'crtcrs. Tunsform Ihc logic diagram 10 a neW diagram
using Ihe available fllp.flop nnd gale lechnology.

8. ,"critiation: Verify the corre<:tneM of thc fina l design,

For con\'enien~. we u'ually omil the I«hnology mapping in .. ~p 7 a~d use only
flip-flops. AND gat OR gales. and in""neB in the ",hema'ie.

Finding State Diagrams Il"Id State Tables

Tltc ~perification for • circuil "often in the form of a "erbal de"'nplion of ,he
beha,ior of the cirmit. This deSC'ription needs to M interpreted in order to find a
state diagram Of stale table in lhe formula,ion step of the design procedUre. This is
the often ,Ite mOSI crcDt"'e part of the design procedure. with many o f the subse·
quent steps performed .utomalit:ally by compuler·ba",d took.

Fundamental to Ihe fomlula,ion of Slale diagrams and lables ;~ an i~tuilive
understanding of the co"""pt of a ,tate, A stale is used to "remember" some'hing
about the hiSlory of inpul comb,nA,io", applied '0 the circuit at either tri"ering
dock cdges or during "iggering pulse!. In me cases. the $la le, may lilernlly store
input "alue~ retaining a comple,e history of Ihe "'quen~ appearing On Ihe inpu,s.
I~ mOS' ca...,,,, howe.'cr .• stale is An "b>lm<;tion of the sequer>ee of input combina.
,ion. at 'he triggering poinl s. r uample. a given "a,e S, may represent the fac,
that am0ll8 the sequcnoe of ~alues applied to a single bil Inpul X. "Ihe value I has
appeared on X for the last three oonsecutj,"C dod: edga"Th the aram would
be in stale S, after SC(Iucnces , .. 00111 or ... 0101111. but would not be in ,ta lc S,

'uoUnq I""~' ~ ~U14Snd ~q JO "llU~l UOJP~P P~I~A]P~ ~ .IU Lil
II 'UOIIIPPU ul 'dn p~J~,"OO .] Iln ""'l~ 041 ua4" .' lIc",WLiloln. P~IUfl!l~" Auunsn ']
l.u~I' la'Ol a'll '31mS 13<3J ~4 1 pau"" U~IJO S] a lUI' IU]I]U! a'l l 'P"j ul ' HCI< lm" ul 'II
U] I]n,,",!, 341 s;"tld 1""01 a'l l '"'''''' ~'Il 01 P~!lddu Slndu] '"410 II" JO .. alpm~~M
·1~<t.>IS U<JJ JJI'Vlu '0 IJ<~J u '] w']UU4'~W "'lL " I"" ' 1'11 01U! ~IUI' u."ou~un
,'uu WO') I]n"''' ' 41 10~ 01 papIAo,d ~ l<nw WI!U"4)aw al c,"p'"4 " "341mJ
PU" 'JW'S 10!1!'" U1I\OU ~ U all"4 I~nw <t.>IS"P a." 1"41 sIT""'P "41 ',." •. "04 ',Ndu4'
' !41 ti l <><l.ll <I'll JO 3<[II"" ,d"4~ IU~llb.sq". 0] o~].ap aNI 'IIIl"1<I I""uallb",
,as'"1 ~41 JO AU"W 'ptJ Ul 'papa<in "'l U~, 'lIld ' IlO IIlJ~UTU"~W .,OJ3<[.lUI' u."ou~
"01110'''' ' 41 /0 UOIllOO. ~UIJq 01 alq. ~ I,nw aJuonb"" l"ql l"q '~I"I' U1I\OU ~UIl
ue u! l!nJJ]~ .41 'II]" ao u,nb"" lndUl U" "Idd" 01 alq!ssod S! H 'u ,,,ou ~un ..
sdo~-dl~ a'll JO al" l' a'll 'uo paU.l" l l"' ~ 'i! Lilal'iASI"II~ lp. UI Jall\od .41 u~'IA\

'P:>Z'I"'I'U' "'I A"IU W)41 JO uO! l.lod" "IUO ' UO!I"l a<iO 1I"",l) " 'II
uodn p"""q 'sdo~-d]~)o .l3<[wn u a~lul C .. ~l''Il J[·p"llS.p .1"1' 1"!I]U! . 41 uodn
~uIP ua<i,P 'I 01 I'" "'l .I"W ,WO< Illq'O 01 I"''''' "". sdo~·d!~ .""", l<OW UI "!J"l'
UOII"J;xio p.pop a.lOj"'l «Z'9 ~ln~!,j """) .",dUl (p"J!p) snOU01 4JU,\SU J!J 41
lU sdo~-dW "41 01 P~Hdd" '! I"U~!' I""a' 'al~.w a'll '.II1~",d.u ''' '"'' u,,,ou~un U" U!
' lI n""" ""~4 1 ~Ullml' 'PIO~" "'lL "lin"",!,, lu~uOOwo, . wO< I~"al l. U! ""0Il·dIU "'II
jO .1"1' . ql JZII"!I!U I 01 l"U~!~ l~"''' ,Jlrow " "pl~old 01 A.I.W01'nJ '1 I! ·uo p~uml
I ... tl " l~."OO a'll u' q,'l'I sdo~-dW .41 JO "1"1' ~41 "'ou~ lOU soop 'uo aoUlS

'.1"1' .".U" jO UO!I! U~3P

~41 ~UlPIO~~ 'I .Ill",' llldu! pue 'S .1"1' luo.unJ 10J '1" IS IX' U ~4 1'. po;;n "'l U"~
'S JlUI~"OS ,'s N"I' ,oJ POU!J"P UOII'""sq" ~'Il '3'1""UI 'loR" '1, I .,. ~an l"~ ludUl
'0141 1'"1 "'II 1"41 "0;; .," '""u,"b"" ",au ~4 1 SmUlw"x~ .III i 'S ~ ",UI' lX"U .41
uoJ.lO PJpa.u 'lUI' lI\OU ~ "'111 100 ...• ,u""b,,, ~U!A]8 'I " ' I mdu! 1~' U ~4 1 pue
11100 ... ""u,,"b~, . '11 01 . np r ~'"I Ua u''''! '"'I LS JI .. ",~pa ~""p ~A11IlJ,,"UOO ""J41
""I "41 l" paJu;xld. '.4 1 .nl"A .ql .. UO! p "Jl",e U" S\1 ~1.nOIMld p,u!J'P 'S ~1""
JOp!'u<)c) 'alu'I"" II ! O.L "lluas:>,dol al"l' 'I'"~ 1"41 UO!pml"1" "41 JO .~P"INlOU ~ "
"'I'll ~ U!OP l OJ UI,!U" q""w "'lL '.Aoq" p.U!i1nO is 41l1\O.IS "1"1' paliOlluo,un IU"A
"ld 01 .al"I' lxau ,. P"""'l "'l .al~I' 1"41]Upu",,". ' ! II 'UOII"U!q woo ludu! N !ldd.
"Iq!ssod PU" a l"IS lu,,,n, ".laM ' OJ al.l~ ... 'u "~U1PP")0 P" ' ISUI j.Zl' U! "IIUYUI
u'Aa AII"'1UOIOO 10 a~'"1 AIU ao.uun "wOO"'! 01 '.I"IS JO 1'lS "'I I JOJ I"!IU'IOO "
''''''lL 'P"PP" .J" S~I"'S NI"U 'WU.l~"!P alUI' JO alqq al" lS •• al"I"twoJ .uo sV

'I'""P ul "'l! l"""P 01 11" 'lIJ!P ~OW "'I Plno.'l'I
l"ql .UO! I"U!qwoo Ind u] JO "'llonb"" l,ed)0 I"" X'ldwoo • lU,,"~ld.l AI~nb!un
lC(S!W I 01 1~"ba:Z \>So, " 41 ul ,:0 I" 'X lIq SU'I U011"U!qwoo mdu! . 41 pUe 'I ' I
'z "q md",o 041 .. 1"41 UOIP"Usq" ~41 IUo;;~Jd.J lq~!W 's ~lel'~ldw"x~ l Oci -'a ndu l
.ql uo Ie II~" I" !»ndmo '41 uo pa)ln:xw:> '~"4 1"41 ""UI"A 01 ~UUJ") OJ ~q UO!1
-~")lsq" a'll "'I!l""P OIl'!'"' "'l .low II ,,""OJ 31UO< UI '31"1' 'IJ"~ i\q p.lu"""dOJ
UO,,'Ull'q. a'l l IL"OP QIU." 01 I"p,n '! I! ~lq"1 .I" 'S ,0 wu.ISe!p "lUI'. ~U! I" ln WlO)
UI '! I '! 1'10' 10 '00 '00 JO 01 'O('II '00 ;s"~ u"nb",,)OJ 's '1"1' til "'l IOU PIUO'" lmJ
-Jp "'lL 'OJ 'II 'I I ' II ' 10'00 10 01 '01 '(1 '10 '10 '10 '00 '00 ".JU~"""" .(dUlu. ~U !
-"olloJ J41 JOJ 'S JI"1S U! "'I PI"O," ,," '11<1 "4.1 .. 'UOII"Ulqwoo p. !ldd" A]l U>O.' lSOUJ
''II ,. 01 puu p'll ltw;xl UOU"UlqIUO~ 'I'". JO SUO! I!Ia<i,.l ',' !lnJasuoo JO ''''lWIlU
.'U" 'I ll" OJ '11 ' 10 '00 J"p'O U! .. "' " P~!ldd " ~UO!I"Ulqwoo Indm "q·Z 10 ""u~nb'lS
"41 1" '11 PUj oql lU"",)dal Iqi!UJ OS "'"1< V '001110'" .10 11(0)'" ."ou~nb"" lall"

69t 0 u:iI!,>(] l!n",!::> (.!,u,n!»s I ~-'I

270 0 CHAPTER 6 I SEQUENTIAl CI RCUITS

'(""~D' Re",' 1.)'O"L---/

c - c

Y('+ I J-

,-
'--'i---

R<s<' -

"J Mjt><hro""", ~ ... "

o FIG URE 6-23
A,ynchwoou. "nd S),nCh'OOOLlS Re",' for D Flir-Hops

The resel may be awnchronous, la king place without clod (riggering. (n {his
ca."".lhe reset is applied to Ihe dir""t input> On Ihe circuit fli p-flops. as shown in
Figure 6·23 (a) . This dc,ign assigns 00 ... 0 to {he ini{ial ' late of Ihe Aip_Aop' 10 be
rescl. If an ini{ial sla{e Wilh a differenl code is desired. lhen the Reset signal can be
selec!ively conneelcd to dirc"(:[set inputs instead of direct reset inputs. I (i. impor­
tant 10 nole lhat these in puts shoul d nO! be used in Ihe nonna] ,ynchronous cireui{
design process. Instead, (hey "rc reserved only for an asynchronou, r<:Set lh. t
relurns lhe sySlem. of which {he cireui{ is a componcn!. 10 an ini!i.1 slate. Using
these direct inputs as a pan of the ,ynchrnnous circu i! design violates Ihe fund,, ­
menl,,1 synchronous circuit definit ion. since it permi!s " Ilip-Ilop stOIC to change
async hronously within direct clock triggering.

Alternatively. the reset may be sj'nchronou, and require a clock triggering
ncnl {o occur. The reset must be incorporaled into lhe synchronous design of the
eircuil. A Simple apprnirch In synohronous reset for D Hip-Hops. ,,;(houl forma lly
including the reset bi{ in the inpm combi nations, is 10 add lhe AND gale shown in
Figure 6-23 (b) aflcr doing lhe normal circu it design. This design also assigns 00 .
() [<, lhe initial slate. If a different inili~1 slate code is de, ired . {hen O R gates wi!h
Reset as an inpul can selec(ively replace Ihe AND gales wilh in'·erled Reset.

To ill uSlrale {he formulalion process. lwo examples fo llow. each ""lulling in a
different slyle of Sla te diagram.

EXAMPLE 6-2 Find ing. State llIagnrm rOt a Seque nce Re<ogni,er

The firsl e,ample is a circu it {hal recognizes the occurrence of a particular
,equence of bils. regardless of where it occ urs in a longer sequence. This
··sequcnce-"cognil.er"' has one in put X and one OUlpU(Z. It has Rese{ applied 10
the direct rescl inputs on ils flip_Aops {o in i{iali,e the Slale of the cir<uit (0 all
zeros. Tlle circuit i. to ",cogn ize Ihe occurrence of the sequencc of bi .. 1101 on X
by ma~ing Z C<Jual to I ,,·hen {he pre_ious Ihree inpul< 10 {he circuil were 110 and
enrrent input is a I. Otherwise. Z equals 0.

The fI", step in the formulalion process is (0 delcrmine whether the Slate
diagram or table must be a I"1ealy model or Moore model circuit. The portion of
lhe prereding specification {hat saY' ma~ing Z equal {o I when Ihe previous
three inputs to Ihe circuil are 110 and {he current inp ut is a I " implies (ha{ lhc o ut·
put is determ ined from not only the current state. bUI also {he currenl input. As a

~
,. /' ,. , , c

(.,
'" ,.

(,'

",
o tlGURE 1i-24

Construction ofo SIOte Di.gram for Example 6.2

consequen"", a Mealy model cireui! with the output dependent on both sta te and
inputs i~ requi red.

Recall {hat a key factor in (he formu lation of any state diagram is 10 recog­
nize {hat slates arC used to "remembcrM oomelhing aboul1he history of the inputs.
For uample, lor {he sequence 1101. to be able 10 prod uce the o utput value 1 coin.
cident wilh the final 1 in the sequt n"", the circuit must be in a state th.! Mremem _
be,," that the previous three inputs were 110. With this concept in mind. we begin
to formulate the state diagram by defining an arbitrary init ial Slate A a~ the reset
stale and (he Slate in whkh ""one of the ..,quonce 10 be recognized has occurred,"
11" 1 occurs O~ the input. ,ince 1 is Ihe firsl bit in {he sequence. this evenl mUSI be
"remembered," and the slale after Ihe dock pulse cannot be A. So a second stale,
B, is cstablished to represent the occurrence of the first I in the s.equence. Further.
10 repres.ent the occurrence of the firsl I in the s.equene", a ITansilion is placed
fTom A 10 B and labeled wilh a I. Since this is not th e fi nal I in the sequence 1101.
its output is a O. This init ial portion of the stale diagram i< given in Figure 6-24 (a).

The next bil of the sequence is a L When lhis I occurs in slate B, a new state
is needed to Tepresent the occurrence of two l's in a row on the input-that is. the
occurrence of an addit ional I while in slate B. So a stale C and Ihe a<socialcd ITan_
silion are added . as shown in Figure ~_24 (b). The ne.l bit of the sequence is a O.
When thi, 0 occurs in state C, a slate is needed to represent the occurrence of the
two I's in a row followed by a O. So Ihe addilional slalC 0 with a transit ion having
• 0 ,nput and 0 out put is added. Since state 0 ropreseDls the occurrence of 110

272 0 CHA!'TEIl 6 I SEQUENTIAL CIRCUITS

a. the previous Ihree input bit values On X. the occurrence J a ! !n stale ~ COm­
pletes Ihe sequence 10 be rewgniud . $0 Ihe t,."nsilion for the input value 1 from
state D has an output value Qf I. The resulting partial lIate diagram. which com­
pletely repre",nt! Ihe ClCCUrrence of the sequence]Q be rec<>gnized. i •• hQwn in
Figure 6-24(c).

Note in Figure 6-24(c) that. for each Slate. a transitiQn i. 'pe<:ified fm Qnly
one of the two possible input values. AISQ, the state that i~ the destination Qf the
transition from D for input I is not yel defined. The remaini ng transitions mu.t be
basttl On the idea that the r«ogniur i5 to idenlify Ihe "'qucnce 1101. rcgardle$$ of
where il OCCU" in a longer "'quenee. Suppose that an inilial part of the sequence
1101 is represented by a state in the diagram. Then . the transition from thaI 51ftte
for an inpul value that ""presents Ihe next inpul value in the sequence must enter a
.tate such that Ihe I QUlput occurs if 11K remaining bil$ of the sequence are
applied . for exam pte. state C represents the first two bits. II. of seque nce 1101. If
the next input value, is O. then Ihe state that is entered. in this case. D. gives a I
out put if the remaining bit of Ihe sequence. I. is apptied.

Next. evaluale wh .. e the transition for Ihe 1 input from Ihe D stat e is to go.
Since Ihe transition input is a 1. it could be the firs t or second bit in the seque""c
10 be rec<:>gnized. But beeau", the cirru;t is in stale D. il is evident that Ihe prior
inpul was. O. So this I inpul is the lim I in the sequence. since it cannot be pre­
ceded by 8 1. 1be state that .epusents the <>CCYfrence of a firsl I in the sequence is
a , >0 the transit io n wilh input 1 from sta te D is 10 Stale R This transition is shown
in the diagram in Figure 6·24{d). E~amining state C, we ca n trace back thro ugh
stat es B and A to ",e that Ihe <>ccurrence of. 1 inpul in C i. al leasl the second 1
in the sequence. The Slale representing the <>CCUTTence of two I's in sequence is C,
>0 the new transilion is to state C Since the comhinaliQn of Iwo \', is nQ] Ihe
sequence to be rec<>gniled. the output for the Iransition is O. Repeati ng this same
analysis for missing transiliQn, f.om Slates Band A. Ihe final Slate diagram in
Figure 6·24(d) is Qbtained. The resulting St ate table is given in two·dimens;onal
form in Table 6-3 . •

One issue thaI ari",. in the formulation of any slate diagram is ,,-belher. in
spite of besl designer efforts. .. cess slates have been used. This is not Ihe ~ in
the prereding uample. si"". each Slate ""pr~nt' input history Ihal i. e ntial for

O TA8L[6-3
Shlle Tab'" for Siale Di~gram i. Figu"" 6-2 .

Ne" Stale Output Z ,-,
~. . -. . - , .-. . -,

A A , • • , A C • • C D C • • D A , •

r~cognition of the stated sequence. If, however. ex"'"s' stales arc present, Ihen il
may be desirable 10 combine Slates inlo the fewesl needed. This can be done using
ad hoc methods and fonnal sla le minimizalion procedures. Due to Ihe complexily
of Ihe lauer. particularly in Ihe ca.e in which don'l-ca' e entries appear in the state
table, formal procedures are not covered here. For Ihe inle rested studen!. Slate
minimizalion procedures are found in Ihe referen","s listed at the end of Ihe chap·
ler. The neXI e xample iIluslrales an additional melhod for avoidin g eXIra slale ..

EXAMPLE 6-3 .' Indlng a Stale Diagram for a BCo....o-Excess-3 Dc<:oder

tn Chapler 3. a BCD-to-excess-3 decoder was designed. In Ihis example. Ihe func·
lion of Ihc circuit is ,imilar e~cepl Ihal the input .. ralher Ihan being prcsen!ed to
the circuit simultaneously. are presented serially in successi,·. doc~ C)·cle .. leasl
significant bit firsl . In Table 6·4(a).the in put sequen",". and corresponding output
.. que nces are tiSled wilh Ihe least significam bit first. For e~ample. during four sue·
cessive dock cydes. if 1010 is applied 10 the inpul. Ihe output will be (((II. In order
10 produce each output bil in the same dock C)"de a, the oorresponding input bil,
Ihe output depends on the prC&enl in put value as well a, Ihe slale. The 'p<."C;fi~a·
lions also slale thaI the circu it musl be ready to receive a new 4-bil sequence as
soon as the prior sequence has compleled. The input to Ihis circuil is labeled X and
Ihe outp ut is labeled Z. In order to f<xus On the panerns for past input .. Ihe ro"'~
ofTabte 6-4(a) are sorted according to Ihe firsl bit vatue. Ihe second bit value. and
the Ihird bit value of the input sequence .. Table 6..ol(b) resull ..

The stale diag13m begins ,,;th an initial state as shown in FIgure 6·25(a).
Examining the fi rst column of bils in Table 6-4(b) indicate,; that a 0 prod uces a 1
output and a I produces a 0 outpUI. Ne,l, .. '. ask Ihe queslion. "Do we need 10

o TAliLE 6-4

,
0

0

0 ,
0 ,
0

S~quence Tables for Code Conurler E ... mpt~

(a) Sequence. tn O<der 01
DtgltoR.~

BCD tnput Exceoa-30utpul

, , , , , ,
0 0 0 , , 0 0
0 0 0 " 0 0

0 0 0 0
0 0 0 " 0 0 ,

" 0 0 0 0 " 0 " 0
0 0 " 0 0 ,

" 0 0 0 "

(b) Sequen.,... tn Ordet of
Common Preli . ..

BCD tnput E.oeoa-3 OUlput

I 2 3 ~ , , , ,
o 0 0 0 0 0
o 0 0 0
0" 0 , 0
o 0" 0 , 0
o '0 0 0 ,

o 0 " 0 0 0
o 0 0 0 ,
" " 0 0 0 ,

, 0 0 0 , 0 , o 0 0

6_'i I S<qucnti.ol (:i"ui,])",i&" 0 Z 7S

AI Ihi. poinl, six polCnlial new .Iate. might re.uli lrom Ihe Ihree ,Iale. JU'I
added. NOiC, however, Ihal Ihese , Iale. are needed only 10 define thc outpu t, for
the fourth input bit since it i. known thai Ihe nexi Slale Ihereafler will be /,,;(in
preparalion for appl)'ing the "ext input sequence 01 lour bils. How many ,Iale. docs
one need 10 specify the differenl possibilities lor the output value in the last bil?
Looking at the final column. a I inpul alway, produces a I OUlpUt and a 0 may pro­
duce eilher a 0 Or" I output. Thus.at mool two stale. are necessary. one thai has a 0
oUlput to a 0 and one Ihal has" 1 output to" O. The output for a I input i, the .. me
for bolh states. In Figure 6.25(c). we have added these two .t~t~'" For the circuit to
be ready to receive the next sequence. the nex t , tate for Ihe", new Slates is !nit .

Remaining is Ihe delennination of the btue arcs shown in Figure 6.25(d). The
arcs from each of Ihe bil H2 slales can be defined based on the third bit in the
inpul10utpu t sequence.. The next .tme can be chosen based on the re.ponse to input
o in Ihe fourth bil ol the sequence, The B2 Slate reaches the 83 .tate on the left with
83 M () or 83 M I as indicated by B3 _ X on thc upper hah'e of Ihe B3 ,Iale. The
othcr two B2 state. reach Ihis same .tale with 113 = 1 as indicatcd On Ihe lower hatf
Qf Ihe <tatc. Thes<: sa me two 62 . tates re~ch thc 63 ,Iote on the righl wilh B3 '" 0
as indicated by the label on Ihe state. _

Stale Assignment

In contrast to the . tate. in the analysi, exa mples. Ihe Siaies in lI,e diagrams Con·
Mrueled h.,e been assigned I)' mhotic names rather t h~n binary cod"" It i. ncce.·
. ary 10 replace the.., symbolic "arne. with binary codes in order 10 proceed wilh
the de.ign, In general. if Ihere are", .tates. then the ewcs m~'1 ",,,,,ain n hit,.
whete 2" 2: III. and each .,ore m.,St be ,"!>Signed a un ique code. So. for the circuit in
Table 6.3 wilh four . ta tes. the codes as,igned to Ihe Slales require two bits..

We Ix:gin by as'igning " <:<~le w the initiat reset swt", II 1101 <lCCUt'S a. the
lim four input. to the circuit after Reset. 1, it , hould be recogni,ed . But if 1 U1, 01.
or 1 occur> as the fit'St ;nput 'i-C4uencc. they shoutd n<>l be rccogni,et!. The "nly
.talc that eIIn provide thi< property is .wte A. So. with dircCl r • ..,ts u..,d on the
fli p-flops. Ihe code 00 must be assigned 10 stale A. As a ba,i. for encoding thc
temaining ,Iotes. eXlensive w<>rk !)n thc as,ignment or code, to statcs eXills. bu, it
i. too comptex for our treatment here. These method, have focused primarily on
atte mpli ng 10 selc..:t code. ill .uch a way Ihat the logic requited to implemenl Ihe
ni p.ft op input eq uations "nd outp ut equations i, mini mized. In our example. we
,imply assign Ihe .tate codes in Gray code order. beginni ng wil h .Iate A. ']1,e Gray
code is se lecled in this case simpty beca use it makes it casi';r for the nCXHlate and
output luncrions to be placed on a Karnaugh map, The .Iate ta bl e wilb Ihe code.
assigned i, .hown in Table 6·5

~signing with D Flip_Flops
The remainder of Ihe ",q ~"nlial circ~il deStgn procedure will be ill ustrated by !ht
next example. We wiSh 10 de'is~ "docked scq"cnti"l circuit Ihat operales accord­
ing 10 the state table for Example 6.2. thc "'quence recogn izer, ,hown in Table 6-5.

276 0 C IIAI'TER 6 I SEQUENTIA~ CIRCUITS

o TAIILE6-S
Table 6-3 .. ' il~ Names Kepi by Diu I')' Codes

P_StahI HeIl Stahl Outpul Z

., , . , , - , , . , , .,
00 00 "' " " "' 00 " " " " '" " " " '" 00 "' "

Thi' slale lable, wilh Ihe binary codes assigned 10 Ihe Slales. specifies four Siaies.
1"'0 input values. and two OUIPUI values. Two Hip-flops are needed 10 represenllhe
fo ur Slales. We label lhe Hip-Hop outpul. with the ICller< A and B, lbe inpul wilh X,
and Ihe outpul with Z.

Sleps I througl1 3 of Ihe design procedure have IJ.ccn compleled for Ihi, cir_
cuil. Beginning slep 4, D Hip-Hops are chosen. To complele 'tep 4. Ihe Hip-Hop
input equation, are obtained from the next-stale values hsled in lite table, For slep
S. the output equation is oblained from Ihe values of Z in Ihe table. The Hip-Hop
input equations and output equation can be expressed as a sum of minlerms of the
pr<'Sent_sla'c v.riablesA and 8 and the inpu.variabl. X:

A(I + 1) K D A(A,B.X) ~ l m(3.6.7)

B(I + 1) - D 8(A.B.q - l m(1.3.5.7)

Z(A,B.X) _ :l' mrS)

'Ille Boolean funclions are simplified by using the mnps ploUed in ~Igu'" 6-26.
The si mplified functions are

,
D~ _ AB +BX

DA-AB+BX

D8 - X

Z - ABX

o nCUHE 6-26
Map' [or Input EGuatio",.OO Output Z

,
Z _ Aiix

J >- ,
J D

J ,

D •
, , .,

o FlGUMt: 6·27
Logic Diagram for S<~"ential Circuit .,it h D Flip_F1ops

The logic di"smm of 'he ocquent ial circuit is show" in Figure 6·27 .

Designing with Unused States

A drcu;t with" nip. Hops ha5 2" binnry SIMes The 'IM~ ,able from which the circuit
waS origi nally derived. howeve,. may have .ny number of states",'; 2", Slat"" {hat
are not used in sped/ring {he ",que" t;al circuit are n<>t li,;led in the ~I" tc ,able. In
si mplifying lhe inp ut cquati(ms,lhe un Ll«:d .!ales Can be Irealed as don't-care con­
dition" The "ate table in Table (Hi defines three flip./lops,A . 8, and C, and one
input. K There is nO OUlpul column, whi ch mean' thai the flip-flops serve as out·
pUI. of the circ ui t. Wit h three Hip-flops, il is Jl'C'Isible 10 speeify eight states, hut the
state {able lists "nil' five . 'l1, uI. lhere are lhree unu,ed SIal'" lhal aTC nO! included

o TARtE 6-6
Slale TKhie r .. , f)e";~ning "ilh Unused SIal""

Pre .. nl S"'''e Input Ne.t Slate

• , , • • , ,

"

278 0 C HAPTER 6 I SEQUENTIAl CI"-CUrTS

,
, , ,

r-, ,
" ,

x X X X , , , , , , ,
,

D. _ :;;C'X: + iiiix

o nCUKE 6-211
M.ps lor ()pIimiling Infl'l' Equation.

in the table: 000. 110, and Ill. When an input of 0 or I is included ""ith the unused
presenHlate ~al..es. $i~ unused combinations arc obtained for the presem·state
and input columns: 0000. 0001, 1100, 1101. 1110. and 1111. These six combinations
ar<: IIOt listed in the fl'IC I.ble and hence may be tre.ted .. doo'H:are minterms.

The Ihree input equatioo, for the D Hip-Hops arc deri"ed from the next-Slale
values and are simplifled in the maps of Figure 6-28, Each map has six don't-care
mi nterms in the S<Juar.s corresponding to binary O. I, 12. 13. 14, and 15. The opti.
mized equatioos are

DA = A X -l-BX-l-BC

D8 - ACX+ABX

Dc - X

The logic diagram can be obtained direclly from the inpm equations and will not
be drawn here.

H is possible that oUlside imerference or a malfunction will cause the circuil
to enler one of the unused states. ThUs. it is SOmdimes dcsira!:>le 10 specify, full y
or at leaSl partially. the next Slate values or the output values for the unused
slales Depending On the function and appl",al;on of the circu;l, a number of
ideas may be applied, First . the OUlputs for the unused stale, may be specified so
that any act ion. thai r..,ult from enl!)' into and transitions bet"'een the unused
stales are not harmful. Second, an "ddilion.1 OUlp ut may be pro"ided or an
unused out put code employed "'hich ind ica tes thai the drcu;t has cnt ~red an
incorrect state, Third, to ensure thai a return t<.> normal opera tion i~ po<Si!:>lc with_
Out re""l1ing lhe entire .y.tem, lhe nexl .. tate behavior for the unused Slates may
be specified. Typically. nexl <lates ar<: seleeled such that <.>ne of the lIormally ",""ur·
ring ~tales is reached within a few clock cyde .. regardl~'" of the input values. The

6-S I s..qu"I\ti.1 Cirew, lJ<<ign 0 279

decision as to which of the three options to apply. either indi>'id ually or in combi ­
nation, is based on the application of the circuit or the poli cies of a particular
design group.

Verification

Sequential circuit, can be verified by ' howi ng that the circuit produces the original
state diagram OT state table, In the simplest cases. all pos,ibl e input combinations
are applied with the circuit in each of the states and the state "ariables and OUlputs
arc obsef"ed. For smoll circu its, the aClUol verification can be performed manually.
More generally. simu lation is used , In manual $im ulation. it is straightforward tQ
apply each of the state-input combinations and ,'erify that the output and the next
state arc corrcct.

Verification with simulation is less tediou,,- but typically requires a sequence
of input combinations and applied clocks. In ordor to check out a state-i nput
combination, it is first necessary tQ apply a sequence of input combinat,ons to
place the circuit in the desired state, It is moot efficient to find a . ingle oequence
to test all the state-input combinations. The state diagram is ideal for generating
and optim i'<ing such a sequence, A se'luence must be gen~rated to apply each
input combinat ion in each state whil e observing the output and next state that
appears after the positive dock edge. The sequence length can be optimized by
USillg the .tOle diagram, The re.et . ignal can be used", an input during thi'
s.eq~ence. In particular, it i. used at the begin ning to reset th e circuit to it s initial
state.

I n Example 6-4, both manual a nd simulation-based ,'erification are iII umated,

EXAMPLE 6-4 Verifying the Sequence Retugniur

The state diagram fot the sequence recognizer appears in Figure 6-24(d) and the
logic diagram appear> in Figure 6-27, There arc four 'tates and two input comhina·
tions. giving a total of cight stote-input combinations to verify. The ne xt state can
be observed as tbe state on the flip-Hop o ut puts after the positive clock edge. For D
flip· Hops. the next state is the same as the D inp ut just before the clock edge. For
olher types of Hip-Hops, the flip-flop inputs just beforo the clock odge arc used to
delennine the next state of the f1i p.flop, Initially. begin ni ng with the circuit in an
unknown Slate. we apply a 1 to the Reset input. This input go,,, to the direct reset
input on lhe two Hip-flops in Figure 6-27. Since there is no bubble on these inputs.
the I ,'aluo reoets both fl ip-flops to O. giving Slate A (0.0). Nexl. we apply input O.
and m,n uall y simulate the drcuil in Figure 6-27 10 find that the output is 0 and the
next state i, A (0.0). which agree. with the (ran,ition for input 0 ,,'hile in state A,
Next. simulating statc A with inp ut L next .tatc B (0.1) and output 0 result. For
. tate II, in put 0 gives output 0 and nexl state A (0.0). and inp ut t gi,·cs o ut pul 0 and
nexl sta te C(1.l). Th is .ame process can be cont inued for each of the two input
combinations for statc. C and D.

For ,'crification by simulation. an input sequence that applie. all state_input
combination pa ir,; is to be generated accompanied by the output sequence and

280 0 CHAPTF.Jl ~ 'SEQUENTIAL CIKCUJTS

,~.

Edge:

Input R:

Input X:

St •••
(".B):

Outpul Z:

,
, -,

•
•
•
'.'
•

,
00

,
"' \

• ,
• •
• •

0.0' M

• •

" ,.
• .,

,
•
••
•

o I'ICURE6-29

<.10 , ,.
~

"00 ,.,

• • •
• • •
• • •. , ' .. U

• • •
'"

, ,.

,
" 7 111

,
•
•
'.'

."
00

" l'

• • " "
• • • •
• • • •

••• •• •. , , ..
• • • •

'leo' ~""ncc OeM."ion 100- S,mulation in e..:omple 6.3

" "
•
•
'.' M

•

,ta te se<!l>Cnce for checking outpu l aJKI nut-state ,·alues. O ptimitallO<l ' C<juires
that the number of clock p<:riods u~ ucced the number of state-input combina­
tion pairs by .. few p<:tiodt IS possible (i.e.. the repetition of state-input combina­
tion pairs should be minim~)_ This ~an be ,nterpreted as dra-..;ns the shortes'
path through the state dial"'m that passes through each state-input comblnallon
pair at teast once..

In Figure 6-29(&). for eorlVenience. the codes fo. the statc' .~ sho n ~nd
the palh Ihrough the diagram is denoted by a $<:q uence of blue inlcgcrs begi n­
ning wit h I. '11,"S4' integers COrTespond 10 Ihe positive cloc k edge nu mbers in
~lgure 6-29(b), where Ihe "criticalion ICquence is to be de.'elo p<:d. The ,.Iues
. hown fo. the dock edge nu mbers arc those presc nt just before the posit ive edge
of lhe clock (I.e., duri ng Ih e se lu p t, me interval). Clocl: edge 0 is at 1 . 0 in II",
, im ulatio n and give. ulIk nown va lue. for all signals. We b.!gin wit h va lue I
applied 10 Resel (I) to place Ihe circui l in .tat e A. 11IpuI .'a lue 0 is applied firsl
(2) so that (he S1ale remains A. foll owed by I (3) checki ng the second input COm­
bination for stale A. Now in State B.,.,., can eilher mO"(fo.ward to Slate C or go
back to Slate A, It 1$ not apparent ,,-hich ch<:Me<: i. besl. so " "C u bit rarily apply I
(4) and go to $laic C In 5tate C. I Ii applied (5) so the "Ia[e remains C Nut . a 0
i. applied 10 ched the final input for Slatt C Now in !!ale D. " 't ha"e an

&-<; I 0."", Fbp-FlcpTyp<, 0 281

'r'=' ~ ~~ I ~ ~ ~~ ~ ~ ~

" '----.r '---.I

,
I,,,,, ,,,,,,,,,, ,,,,, ,, .. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,, ,,,,,,,, ,,,,,,, .. ,,,,,, ,,,, ,, .,,, ,,,,,, ,,,,,,
o lOOn, lOOns .lOOn,

o ~lGUME 6-.l(I
Simulation ror E ... mple 6.S

.rbil rary choice to relUrn to state A or to state B. [f we return to ~Iale B by
applying I (7). Ihe" we can cheek Ihe transition from B 10 " for in pul 0 (8).
Then. Ille ollly Temaining Iransil iolllO check i. sla le D for input O. To reach state
D from slale A. we must appl y Ihe seq ~en"" !. !. 0 (9) (10) (II) and then apply 0
(12) 10 chcck the Iransilion from D toA. We havc checkcd cight Iransitions ,,·ith
• sequence consist ing of rcset plus!! inputs. Although this test sequence i. of
optinl~m I~ngth. oplimality is not guaranteed by Ille proc<:dure ~sed. Howe"cr. it
usually produces an efficient sequence.

[n order to sim ulate the circuit. we enter the schematic in l~gure 6-27 u5ing
the Xilin~ ISE 4.2 S<:hematOc Editor and ente r the seque nce from Figure 6.29(b) as
" waveform using the Xilinx lSE 4.2 HDL Bcncher. While enlering the waveform,
it i5 inlP0rtanllhat the input X ohange5 well before Ihe dock edge. This insures
that the.e is time available to di'play the current OUlput and 10 permil inp~t
changes 10 propagate to the nip,nop inputs before the set up lime begins.. This i$
iliustTOted by Ihe INPUT wa,dorm' in Figure 6·30 in which X changes shortly
after Ihe po!lilive doc~ edge pro~iding a good ponion of Ihe doc~ Jl"riod for Ihe
change 10 propagale 10 Ihe flip_flops. The cirtuil i5 simulatcd wilh .he MT[Model­
Sim simulator. We can then compare Ihe ,·alue. just before Ihe po!liti~. dock edge
on the STATE and OUTPUT wavefonns in Figure 6.30 wilh Ihe values shown on
the slate diagram for eac h dock period in Figure 6-29. In Ihis case. the romp.1rison
vcrifi"" that the circuit operation ill correct. •

6-6 OTHER FLIP-FLOP TYPES

This ""ction introd""c. j K and T Hip-Hop< and Ihe repre""ntalions of their behav_

~
ior u..,d in analy.i. and dc.ig,n
B"causc of lheir I r importance In contemporary deSIgn relative to D Hip­
flops. Ihe analysis and d"";gn example5 illu'lrating their Usc are given On the
Companion Wcbsi'e for the tnt.

282 0 CHAPTER 6 I SEQUENTIAL CIRCUITS

JK and T Flip-Flops

Four ')'pe5 of Hip-fl""" arc characler~ in Table 6-7_ including 'lle Sf(and 0 from
seclion 6-3 gi~ for refercnce. an ... llIe IK and T in.roduccd here. Wilh .he excep­
lion of Ihe Sf(flip-Hop .. -hich ,s maslcr-.lave. tile .)'n,OOI for a J'<1S"ive-e"'gC-lrig.
ge.ed version of each Hip·flop Iype is givcn. A logic diagram for"n implemcnlalion
of each flip·flop type is either rderenced or given. A new concept. tile r/r"rar''''is·
Ik "'hie. defines Ihe logie~ I properties of nip·Hop operation in tabu l"r fO'1II. Specif.
icall y. the table define. the n c~t Il",e a, a funclion of the presem ",a te '''td input s.
Q(I) refers to the prese"t .tnte prior to the application of a clock pulse. Q(I + I)
representslhe stale one dock perioo laler (,.e., Ih e ne.<ISlale). Note thaI the !rig­
Bl'ring edge (or pulse) al input Cis IH>I listed in the characteristic table. but is
"",,umed to occur be'w«n time I and I + 1. Next to the characlerl5.ic lable. tile
~MrtJt;'cmlic cquation for each nip.fIop type is gh'en.lbe$e equations der.roe the
nex. Mate afler the dock pulse fot each of lhe nip-I\nps "". function of lhe preset
inputs and Ihe presenl stale before thc clock pulsc. The final COlumn of Ille .able
consiSlS of UCilJJlior! /ahkJ fot each oIlhe Hip-Hop types. These l.bIes define the
inpul value or ,·.Iues rC<Juircd to obIain each possible nexl "ale ,,,,Iue afler the
dock pulse. given Ihe prescm Siale "alue befote Ihe clock pulse. ExcilJlion tables
ean be used 10 delermlne tbe Hip-Hop input equalions from .tale lable information,

Hislorically. the JK Hip-flop was a modi~ed version of Ihe maller-slue SR
Hip-Hop. While the SI{ Hip-nop proolltts undefined outputs and 'ndct~rmintlte

behavior for S ~ R _ I. the IK nip_Hop eau"", the output to complemcnl its current
value. The masler-.lave version of Ihe JK Hi['-Hop has pul""-trisgered behavior
and. in addi tion. exhibil' a property called " 1's catching_" Once I = I or K _ I
occurs. such Ihat the master changes to th~ opposite "ale, the maSler ca nnOl be
changed back 10 its original ,talC before the clock pul", ends. regardless of Ihe "al_
ues on I and K. This wOfSCIlS the ""lup lime problem Ihal already uiSIll for the
pulse-triggered flip-Hop. The.salnl' soiulion appli"" as for lhe SR nip-flop (i.e" mak­
ing the setup lime. I" Ihe emire dUralion of lhe triggering [,ul",,). To .void .hi.
addiTional contribulion 10 Ihe length oIlbe clock cycle. .rc me only ed,e-mwred
IX nip-Hops built upon In edBl'.trigcrcd 0 Hip-flop.

In Thble 6-7.11>e symbol for. po!Jli"e-edge-triggered JK nip-nop is shovo'n as
well as illl logic diagram !KIna a pO$itivc-cdge.lriggered 0 n'p-nop. The charactens­
tic table gi.'Cn <Ie.scribe. the hch."ior of lhe JK flip-flop. The J inpul beha,·cs like
lbe S input to set Ihe nip_nap. The K inpul is similar 10 tbe R input for r~l1ing Ihe
nip.Hop. The only difference belween the Sf("nd JK flip-n"", is theif response to
the condilion " 'hen holh inpu" are equal to L As can be verif,ed lfOm the logic
diagram, Ihis rondition conlplemcntS Ihe st"'C of Ihe JK flip.Hop. Wilen I " I and
Q = O. then 0 _ I. oonlpl CIlIC li ting Ihe J K nip.nop outputs. When K • lund Q • 1.
then 0 = O. complementinl the JK Hip-nop outputs. Th is den",n"r"les Ihat.
regard Ie ... of the value of Q. the rend,tion J - I and K - 1 cau""" the Outp u" of
the nip-llop to be complemented in respon"" 10 • clock pulse, The rn:xt .late
beha.ior is summarized in Ihe characteristic table column of Table (,.7. The clock
input is ,",I explicitly ,hown, but , clock p~tse is assumed 10 have occurred
belween the pr"",nt.late and lbe netl stalC of Q.

D TABLJ:~7
Hip· n op Logk,C~M ~rh!kT~h"" .nd [qp.lio~s. EJ;ri!.lio~ TI'!!",",

+J " Q(l+l) ,,..., \)(1+i) " 0 110.

"
ko l'lf;u IJ , , ~~ 0l1+1) - 0(,) , , 'M , , ., , , ..

, • QI •• I)- ~" QI •• I) , , --u , • ~,) ~- " " " • ~-
~ SoxHpre6-10 • , • ~ Ol, +[) .5(1) + Ntl)-Q(') "

, ,
" .. . , , • , ., ,

" " , ,-, , , -- , , • • ~-, • Q U + l) 0,.. QUI QI'.I) , , 0,.. .. ;.;."

B ;~B:" , , ~,) NoJ '''''"II'' • , , • Nochonl<

" 'i>o c
, , , . ,~ Q(t "') - J(,j .i,'j(,) TKO) QII! , , , • .. , , , .. , , • , ,-, , ~') C""'fIItmo" t , , .. ~~.

:0 ':5[J
, 1.1\1 01) ~ \)(" ')

, 0,.,-
, , ~,) ~-

Ott "1) - 1(t)eQ\I) ~"
,
~-, 01') c--... ~,) , C"opI<."'"

o
N

e

284 [) C HAI'TEIl. I SEQUENTIAL CIRCUITS

Th~ T (loggIe) nip.nop is equ;valem to the JK Hip.1Iop ",ilh J and K lied
togelher ... Ihat J ~ K _ T. Wolh this ronnection. only the rombinations J = O. K" 0
and J .. l. K _ I are applied. If e take the characteristic equation for the JK nip.
flop a~d make th;~ ronnection. the eqU3tion b<;C(mIe$

Q(I+I) .. 1'O" T Q _ ToIIQ

The .ymbol for Ihe T fl ip-nop "lid ;15 lugi< diagram ba..,d on thc preceding equa_
t;on are given in Thble 6_7. The en"racteri.tie equation for Ihe T IIip_nop is that
ju~t &i"cn, and Ihe charOl:lcri~tic lable in 1,'ble 6-7 sho" .. thaI for T. O. the 'r nip_
flop outputs remain unchanged, and for T . l. the outpuU "rc complemented.
Since the T flip.flop CIIn only hold ils Ilale unchanged Or compltOlenl Its Sla te,
thcre is no way to C5tablish In ioillal state using only the T inpul without addtng
ntemal sampling of Ihe curreol OUtJ>llI in the nnl >laIc Jogic outside of the fl ip.
flup. ThU$.the Tflip_nop is usually inilial~ to a kno ... n stalc by using a direa ""t
or direcl r.,;cl.

6-7 HDL REPRESENTATION FOR SEQUENTlAL C IRCUrrs­

VHDL
In Chapter 4, VH DL wa~ u..,d 10 describe combinational circuits. U kewi"", VH I)L
can describe storage element. and ""quemial circuits. In Ihi' ""ction. dose,iprio".
of a po&it ive-edge-rriggcrcd D ftir>-flop And a se'luc nc.., recognizer drcu il ill ust,",e
, uelt uses of VUDL 1l,~ descrir>tio", h"'olvc new VHDL concepts. tlte mOSt
import.nt of which is the prOC~J. Thus far. concurre nt statcmenlS have descril>ed
C(mIhin8tions of conditions and aclion. in VUDL. A concllrr~nt ~I .temen t , how­
ever. is limited in tlte comr>luity that can be represen 'cd.Typically. the sequcnliol
cirruits 10 M de$cribcd are oompr.,x enough that de$cription "'ithin I concurrenr
>latement i. "ery difficult. A proc:al CIIn he vie""d as a "'r>lacemcnt for a concur­
rent 5t~tementth31 permirs ronsi~nbly llreat~' descript;"e lK>""r. Mulliplc pro­
CCMCO may execute concurrenrly, and I process may uccute coroc:urrenlly "lth
concurrent state nts.

'The body 01 a prOCCSltypically implements a sequential provam. S,gnal val­
ues. hich ar~ assigned dunna Ihe r>'~ howe"e',chanJ(' only wMn the r>'oce>S
.. rompleled.if the poniott Of "r>r0CC5S executed ..

B .,_ A;

C u B;

then .• I the comr>I(lion of Ihe process. B will contain Ihe origill.1 con ten ts of I'. and
C will contain Ih~ original contentS of B. In contrast. after excc"l ion of these twO
'tatements in a pmgram, C would contain the original con' ents of 1'.. l b achieve
r>rogram -like behavior. VIID L ~ another construct c.lled a ,'uT;ahlr. In COntraSt
to a signal ,,-hich (valu.tei after SOme delay. a .'ariable evalllat"" imorn:d,ately.
Thus. if 8 i. a variable in the cx«Ullon of

B , _ A;

C ,. B;

B will instantaneously e~31"'le 10 Ihe COrllen\l; of A and C "'ill t>'aluate to lhe new
contenll of s.!IO that C finally contains the oritinal ronlents of A. Variables appear
only ... ithin prQCt'§SeS. Note the use of , .. ilL5lead of <_ for ,·.riable o"'&"menl.

EXAMPI..E 6-5 Vlml.. fot Puslth·e- .;d~ Tri~",d D Flip-no, .. ith Hel'O"t

a~sk process structure;' illustrated by an example process describing the arc hitec­
ture of a positi ve-edgc-triggercd f) nip-flop in Figure 6-31. The process hegins wilh
the keyword p r oc:: • • •. O pt ionally. proe ••• can be preceded by a process na me
fo ll owed by" rolon. Following in parc nt hesc. arc lwo .ignal$, eLK a nd R~SET. 'nl is
;ilhe Mmjlivily lisl for the process. If dlher CLI': or RESET change.lhen the pr~'
i!exccured. In general .• proc>:\S is cxccuted whene~er" signal or variable in itl sen·
silivlty list changes. It is imporlant 10 nOle lhol lhe sensilivity list is not 0 parameler
lis! containing all inpull and tptl\l;. R>< uample. D does not appear. since a change
ill its valuc can~ initiale. possible change in the ,,,,Jut ofO_ FOIlO'wing the sensiti .
vity liS! at the Ixginning of the pr1)CCM is the keyword begi .. , and .llhe end of the
~ the key .. "Ord .1Id appears. The word p r oc ••• folk",,;ng .rod is optional.

.... 'ithin the body of the prOCCP. the,e ue additional V H DI.. rondltional
structure. that can .ppear. Notable in the figure 6-31 example ;. If. thu _cl,.e.. l be
general structure O'f an If·thu _cll'O" in V I IDL i.

-- _ltiV<ll-Edq.--rriwerrod [l ,Up-rIO!> .. ith _t,
•• IIl!IX. Proc ••• !)M(;riptlon
library 1_;
u •• leeo . • t~loqlc_1164 .• l l,
. ntitr dff h

port lClJ(. IIESE"I". [l b ncLloqic,
o , out .td.,.loqlcf I

areb.1 t.ct u r . ~ o r dff 1e
lIII>l-.,.,.itlV<ll ... ·trigger«! Wt .Ute .torlOlle

.... Ith asyncItrtlnouz ~ .

......
" """ ... lC:U<. RESB'l'I

ir (RESEr _ '1') t h4n
Q<_ '0',

. hif 1CU< ·~t and eLI(. '1') U,.n
Q <_ 0 ,

. nd if :
. if :

- p""""'" -,
o tlGUMEo-J I

'1H DI..I't-or:=r Ik!.<riplioo 01 """'i"".EdF·TrilJtC,«I f1i ... ~lop wilh fteoc.

286 0 CH APTER 6 I SEQUENTIAL CIRCUITS

i f condition then
sequence of st~tement8

(e1a if condition the n
sequence of st~tement8)

. 1 ••
sequence of st~tements

end if i
The statements " 'ithin braces { I can appear from ""ro to any num ber of times. The
jf·then·else within a proc~ss is si mil ar in effCCI to the ",hen e lse coneurren1 assign·
men1 statement lIIuSlrating. we ha"e

if />. _ '1 ' t hen

Q <~ x;
e l .if B _ '0 ' thoon

Q <- Y;

.1 ••
Q <_ Z;

.nd i f ;

If A is 1. then flip·flop Q is loaded "ith lhe content, of X. If A i, 0 and B is O. the n
tli p.Oop Q is loaded wit h the contents of Y. Otherwise. Q is loaded with the content,
of z. The end result for the four combinalion of va lue, on />. and B is , 0 0, , - 0 0 < - , , -0, , -, 0 <0 , , 0 "

, -0 0 < - , , " , -, Q <0 ,
More compk. oonditional execut ion of state men], can be achi eved hy nesting if·
then·else structures. as in 1he foliowiTI g code '

if A = ' 1' tnen
if C _ '0' then

Q <~ w;
e1_e

Q ,, _ x;
end if ,

. 1.if B ~ ' 0' then
Q < ~ Y,

. 1 ••
Q <= Z,

. nd if;

The end ,..,sult for th ~ eigh1 combi nation, of value. on A . 8. and C is , - 0 , , -0 , , 0 0 Q « ,
, 0 0, , -0, , -, 0 « , , 0, , -" C -° Q <0 , , - 0, , 0 "

, 0 , Q « , , - , , , 0, C -° Q <0 W , 0 "
, 0 0, C -, 0 < - ,

~~--~~~-

" • 1. B - t. C • 0
A • 1. B • 1. C • 1

Wilh the information i~{roduced tit". (m, the po5iti,·e·~dge-{ril!.&tred 0 Hip·
Hop in Figure 1).3 1 can now be studied . The sensitivity list for the process includes
eLK and RESET. so the proccM j. exe<:ut ~d if either eLK or RESer Q' 00111 ell""g"
,-aluc_ If 0 (hang~"5 valuc, the ,'a\\le of 0 is 001 10 change for an edge_triggered nip­
Hop. so D doI:lo nQl ~war on II><: ..,miti"i!)' list lJased on the if-t hen-el~. if RESET
is 1. the Hip./Iop OUtput Q is reoet 100. Otbe ',$<:. if the dock ""I"" changes. .. hieh
i. reprc",nt«! by appending ' event to eLK. l nod tbe nC"'dod value is 1 . .. hlch is
represented by eLX. ' 1', a p<l6ilive edge has occu(Y('d on CLK. The .null of the
po6itivc edge occurre nce i. the loading of the ""I\le on 0 imo lite nip-Mop iIO thaI i1
appears on output O. Not" that. due 10 (he sUuC!"'" of th e if-then-eM. RESE'l'
e<I,,"1 10 I dominates the clocked behavior of the D lIip.llor cau,ing Ihe QU lpul Q
10 go to O. Simila. $i mp lc description. can be used 10 re prescot other ftip·llop type.
,md trigg~rina a pproaches. _

EXA.\If'U: 6-.(; VII OL for Ihe Seq~ M.erop>"""

A more ro"'I)Ie~ ~xampl" in l1,ur"C'$ 6.32 and 6.33 n:r<e5enl. lhe KqUCJ'K:C recos'
oi~"r Slate d,aaram ,n n,ure 6.24(d). The an:hiteclure in this dc!cripllQn ronmu
of three di't inct processes. which "an e~"'ute simultane<:>u.ly and intcra<t via
,harM signal value .. New conttpt, incl uded arc I)'PC dc<;lMa,inns for dennin, new
'ypes and cak sl ~tcmcm. for handlin g rond illo""

'll\e 'ype d"<;I",,.lioo permits u' to define ncwtype' """logou. 10 exi.tin, lyJl'C'l
such as at<t-loglc . A type doclaration I>c,in< wilh tt>.> keyword t~ f()ilo"'~d by
the name of the new typ<:o Ibe keyword h .• IId. "'it hi" parentheses, the Ii!.! of val"""
for signals or lhe ne type. Using the ".ample fro,n Raure 6.31. " "e have

t:n>ec Bt&te_type 1. IA. B. C. OJ,

The name or the ne w t)1'" is Btat __ type and the values in th,~ ca§c arc Ihe
names o f the Slales in Fis urc 6-24(d). Once. t ypo. bas b<:en declared. ;1 can be
used for dec larin, s ignals or variables. I'rom th c example in Figurc 6-31 .

• 1gnal Beate, nl1 x t_state : Btate_ typl1:

indicates th"t eta t . ~nd next_ata t e aru sign"l. I ~"t 'If" of the type Ita La_t YP'!.
TIm' •• tate aod next st&te "'0 ha>'c values A. B.C.and D.

The baSIC Ir·'hu·~N ("'thoul u~ing the Ih1l) make. a two · .. ·ay <k,,,,,i<>"
~d 00 " 'helhe r & ooodilioo i< TR UE <>r FALSE.. In conlra<l..lhe ~ sla tement
can make a mulu"-,,y decision based on " 'hieh 01 , number of 'Ialemen'~ "TRUE.
A simplified form fot the B'""eri<: <ase Slale menl i.

cas. exprese10n is
(when ehoice. .~

sequence of stataments :)

I nd ca."

o
;§ ::l
~ g

J;
w"
I • •

f
{

.. .. !i : j ~;- t~~

,:" 1 ~ ' ~" .' .,' t A i< . !! ·i . ~8'"
1>, 1. C",:", 15. ... o ~ ':0 '
~ ~ ~ . ~ ~ ~ .>; ~'! .. ,. ,.. .. " " , -... " i "s '" I!' V:-
~, ~ A ' B .. ~ ,
> f:' ~!!' 15 ><~

: i~ : . ~
"" ...
.. :; !I
~ ... , .
• •

! •

!
~ ,

• . ' ,

~. I ';!' 85. ~::; B' " 1 _ " , ••

... Ii. "'! . "- ' ::; ~:a:; ~~ ...
" '"' !'oj • .. I ~. " ", " . ,. .~_,; "5.'

~ i ;; j '~
~e f ~ i~
-. e r' " ..
, h r
f " ~

I
" i
t ,
t

1 ' "n Pl" I
. ,

... .. ::: . , '
rt " ~ ,, '
:;~ .. , i
~ .. . " ,"
!i:.?" O

~~i
~gl! r . • i .

! 8 ~ .. , , 5. ... ;- , ,

!N !~ i ~ ii
~ ; '!aii! , ;.e.il

~s '"
S::1 . ~- ,
I,... • , l:! .s" ... - r e~
n
::- 0 • o~ .. ~ .. t '. !

· 'I • • • • •
l~ •

ii
" ,

" ~
~

o

I
• ,

I
Q

~

6-7 I HOL IV""" """ fix S<qu< .. <w CitcW<>-VHlJL 0 2 8 9

-- Sequenc. R=ogni=r , \IHI:L I'rocess Da8cripticm l<XIf\t i nuedJ
- co>

if X 0 '\' ~be"

".".tJtate " " .h.
r>excatat. '" ",
.~ H; -. " .>

" , • " ' ,-
nextJOtate '" " .h.
t'le><tJtate .> " .~ H ;

."" c ;
.nd "roc ... ,

I'rOcess) - outl •. l1: ... function, 1lII>1..,.,.,U <>.1t[:<1t as functi""
cf J.r.p..t X at><I . ""too.
""tput:,..[u,""" "roc ... IX . a tateJ -..

cu •• taU i.
who" A _>

Z ~_ '0';

"". " EI _>
~<_ 'O';

"". .. C _>
Z<_ ' O' ;

_ .. 0 _>

if X _ '1' the<>

Z._ '1',

.1 ..

Z . " '0 ' ,
.nd it,

.nd " ... ;
end "roc ... , -,

o F1 GUHE 6-33
VHDI.. I'roce>. D<scriptioo of. Scq<O<nC< R«:<>p>izer (oonti""""')

The choices musl be value. Ihal can be 1.ken on by a signal of tbe type U5ed in lhe
expression. The""", Slaumenl has an effect similar 10 the ,,'ilh_ 1ed concurrent
assignment stalemenl.

In Ihe enmple in Flgur'" 6-32 and 6-33. PrOC " 2 uses a .. so: statement 10
define the nut S1ale funClion for the sequence rerogniu<. The ~ ~Iatement
mak'" a multiway decision based on the current .1.te of lhe circuit. A. B. C. or D. If·
'he n~"" Slatements art lIS<'d for each of the ,tale alternati .. es to make a binary
d~ci,;on based On "'helhe. input X is 1 Or O. eoncum;nt assignmen l slatements are
then used 10 assign the nexi slate based on the ei(l)tt possible combinalions of >!ate
value and input value. For e mple. ",,".ide, the $!ale alternalive whe" B. If X

2110 0 C H AI'TEII. 6 I SEQUENTIAL C1II.CUITS

equals I. Ihen the next ,tate will be C; if X equals 0, then the next ,tate will be 1\,

This corrcspond:s to the two transition< OUI of state B in Figure 6-24{d). For more
complex circuit" easc statement, can also be used for handing the inp ut condition ..

Wilh Ihis brief introduclion to the '" statement. the o"era ll sequencer recog_
nizer can now be studied. Each of the Ihree processes has a di'tinct fu nction. bUI the
processes interact to provide the overall sc4u~ncc recogI1iler. Proce~ s 1 describes
the storage of the st.te. Note that the descriplion is l i~e that of the po:o;iti'·e-..dgc­
triggered Hip-flop, There are two difference .. however, The signals im'olved arc of
typ<: st<lt"_t:ype insload of type std_ lOQic. Six'ond. tk state that resu lts Irom
applying RESET is state A "nher than stale O. Also. s;""" we arc u\ing stale nam..,,;
such as II.. B. and C. the number of state variable> (i ,e" the nu mber 01 flip-flops) is
unspecified and the Slate codes are unknown , Process 1 is the only one of the
three processes Ihat contain, storage.

Process 2 des<ribes the next state funct ion. as di«u,<;ed earlier. The sensi ­
tivity list in this case contains signals X and st:a te , In general. for describing com·
binational logic. all inpu ts mu , t appear in the sensiti"ity list. since. wheneve r an
input change .. the process must be executed.

Process 3 describes the output function. The same case statement frame work
as in Proc .. s~ 2 with ,tate a, the expression is used , Inste.d of assigni ng ,late
name> to next state. val ues Oa nd 1 are assigned to Z. If the va lue a,signed i, the same
for both values 0 and I on x. no if·tben-dS<' is needed. SO an if·then·else appears only
for st.te D, If there are multiple input variable .. more complex If·then...,l", combina.
t;ons or a ~_ otatement. as illu,trated earlier. Can !x u,.,d to represent the condi­
tioning of Ihe outputs on 'he input'- Th i, examplo is a Mealy ,tate machine. in ""hich
the output is a fUDclion of the circuit input~ If it weTC a Moore ,wte machinc, ",'ith
the output dependent only o n the ,talC. input X would not appear on the sen,it i"it),
lise and there "''QUId be no if·t n..., l ... structure, in the ""se statement, •

Ther~ is a common pitfall present whe ne,'cr an if·then·else or c_ ,tate me nt
is employed. During synthesis. uno~peeted storage elements in the form of latche,
Or fl ip-flops appear, For the simple if·t hen·e lse used in Figure 6-31, using this pItfall
gives a specifIcation Ihat synt hesizes to a Hip.Hop. In addition to the two input sig­
n"l .. RESET and eLK. the signal CLK' .. v .. nt: is produced by applYIng the pTC.
defined a n ribute ' event to the CLK signal , CLK ' .,vent is TRUE if the value of
CLK change .. All possihlc combinations of values arc represented in Thble 6-S.
Whenever RESET is 0 and the CLK i, fi .• ed at 0 Or I or has a negative edge. no
aClion is specified. In VHDL. it i, ass umed Ihal. for any com binations of condition'
that ha"e un specified actions in if·then·el ... OT ~Mse ,talcmems. the left-ha nd side
of an .ssignme nt slatement remain, unchanged. This is eq nivak nt to Q <= Q.
caus,ng storage to occur. Thus.. all con,hinations of condilions mus t have the re,ull_
ing action specifIed when no slorage is intended. If this is nOt a natur~l situation. an
other. can be used in the if·then else or ""se. If there are binary va lue, used in
the <>ose 'tatement. just as in Scct ion4-7, an oth. r . mUSt also be u",d 10 handle
combinations including the seven values other than 0 and 1 permitted for std_logic.

Together, the th ree processes used for the seq uence rCCOgI1izo r deseribe the
state storage. the next 'tate function. and the output function for a sequential

o TARL£6·M
111",11.,,,1 .. " .. rgene .. ",,," .. f , .ge In VIIOL

Input.

RESET. 1 ClK. I

fALSE fALSE

PALSE PALSE

PALSE T~UE

FALSE TRUE

TRUE

ClK'_

fALSE

T~UE

FALSE

TRUE

Action

Un<pe<:ihtd

Unspecified

Un'peciikd

Q <= I)

circuil. Since Ihese are all of the compo" cm, of a SC'lucnli., circuil al lhe .Ia lc
diagram level. the desc,iplion is complete, The use of three dislincl proces ' is
only one mClhodology for se'lucnlia l circuit description, Pairs of processes or all
lhree processes can I:>c co",bined for more clega"l dcscriplions Ne"(,lhciess
the th ree ·process descriplion is Ihe easiest for ne users of VH DL and also
works well wilh .),"thesis lools

To synlhesile the circuil inlo aClual logic. a stale assignmenl i, occded. in
addilion 10 a lechnology library. Many synthesi, lools will make Ihe ""te assign·
menl independently or based o n " directive from Ihe usc,. It is al""l)O';sible for I h~

user to ,pccify explicitly Ihe ""IC igomen!. Thi, Can I:>c done in VHDL by ... ing
an enumeration Iype, 'The encoding for the state machine ;n Ftgures 6-32 and 6-JJ
Can be specified by addi ng Ihe following .fler tl><" typ41 stll te~t~ declaration:

att ribut . enum~"ncodin\l ' ~crin\l'

IIttributa "nu~eneoding of 8tllce~type :

t~ h ' 00. 01. 10, 11 ' ,

This is nol a 51andard VHDL construct. but i1 is recognized by many .ynthesis
t(Klls.. Another oplion is not 10 use a Iype dedaration for the Slates. but to declare
the slate variables as Signals and use Ihe act ual codes for lhc ~1"l es. 10 'his Case. if
nales appear in Ihe simulalion oulput, Ihey will appear as Ihe encoded Slale ~aTucs.

6~8 HDL REPRESENTATION FOR SEQUENTIAL CIRCUITS­

VERILOG

In aapler 4, Veri log "'a, used 10 descrilx combinnl;onal circuils. Li hwi$C, Vcr·
ilog can describe 'torage elements and sequential circuits. In this ... ,ion. descrip·
lion, of a posi\ive edge·triggered 0 Hip.flop and a S<XJuence recognizer circuil
iIIuslrate such uscs of Verilog. These <lC5cript;on, ,,;11 involve new Vcrilog concepls
the mnsl imporlant of "hich are Ihe process and the regi'ter Iype for nels.

Th us far, conlinuo ... as.<ignmenl SI.lementS have been used to describe com·
binations of conditions and actions in Vcrilog. A cont;nuons assignment statemonl

292 0 CHAPTER 6 I SEQUEN'TlAl CIRCUITS

is li mited in what can be described, howe"er. A proceJS can be viewed a, a replace­
ment for a continuous assignment Statement that pormits considerably greater
dcscripli ". power, Multiple pr""",sse, may execute concurrentl y and a process may
executc C(lncurrently with continuo us assignmem statements.

Withi n n process. proced ural assignment statement$. which are not conli nu­
ous assignment" ore used , Because of Ihis. Ihe assigned values ne ed to be retained
o"er lime. This retention of information can be ac~; eved by using lhe register typo
rather lhan the wire typo for net" The keyword for the register type i, r ag . Note
that just beca use a nN is of type r e ll dOC$ not mean lhal an actual register is asso­
ciated with its implementation . There arc additional conditions that need to be
present to causc an actual regisler 10 exist.

There are two basic Iypes of processes. the initial pn:w;ess and Ihe alway.
p~ The i n i t i al process execute, only once, beginning at t _ O. The alway .
process also executes at t J). but executes repeatedly thereafler, To prevent "'mpant.
uncontrolled CXecutiOll, some timing control i, needed in the form of delay or event_
based waiting. The ' operalor followed by an integer can be used to specify delay. The
o opera lor can be viewed as -·wait (or e"ent" @ is 10110,,-00 by an expression that
describes lhe event or events the occurrence o(which will ca U5e the process to execute.

The t.ody of a pr""",ss i$ like a sequential program, The process begins wi th
the keyword begi n and end, wilh the keyword a nd, There are procedural assign .
ment statements thaI make up lhe t.od)' of the proce ... These assignment Slate­
ments are classifi ed as blocking or non blocking, Blocking assignments use g as the
assignment operalor and nonblocking assignment. use ~= a, the oporator. Block ­
ing ='g"m.lUs are executed sequent ia lly. much li ke a program in a pro<:ed ural
lan guag~ such as C. Nonb/ocking assignments e\'aluate the right -hand side, but do
not make the assignment until all right_ha nd sides ha", been evaluated , Blocking
assignment. can be il lu st rated by the following process body. in which A. B, and C
are of type r eg'

bag in
B = 1\;
C ~ B;

.~

The first statement transf~rs the conlents of 1\ inlo B. '(he second statement then transfers
the new contents of B into C.At process compiction. C contains the original contents of 11.

SUPfX'I'C lhat Ihe same process body uses non blocking assignme nts:

bagin
B <= 1\ ;
C < ~ B,

.~

The [;,,;t statement tramfers the or iginal contents of A into B and the seoo<1d statemenl
lransfers the original contents of B in10 C. Al p"'""" completion. C contains the origi­
""I contents of E, not those of I\. Effectively. the two statement have executed concur_
rently instead of m seqUCTlU!. Nonblocking assignmenl5. exce pt in Ihe cases in which
we want registers (of type r eg) to be "\'al tiated sequentially. "ill be used .

t:XAM I'I. E 6-7 V~ri log fur l'oliti"".Edg~. Trigge",d 0 Flip. ~lop .. i th Res~1

The.e new ooncept. Can nOw be applied 10 Ihe Verilog descriplion of a positive ·
edge· triggered D nip·~op gi.en in Flgure 6-34. The module and its inpms and
outputs are declared. 0 is dedared a. of type r a w since;t wilillore information.
The process begins "'ith the keY"'ord alway • . Foliowing is . (po.Kg_ CLK or
po.KWa RESET) This is Ihe ~>'~m com,o/ Slalement for the pH>ceSS that ini.
tiates process execution if an event (i.e .. a sp<:cified change in a 'p<:cified l ignal
occurs). For the D flip-flop. if either CLK or RESET changes to 1, then the process
is e xecuted . It i. import anI to nOle that the event conlrol stalemenl is nol a para·
meter IiI! oontaini"8 all input$. For eumple, D does not appear, since a change in
ilS value cannot iniliale a ~ible change in Ihe value of O. Following Ihe event
oontrol <lalement at Ihe beginning of Ihe process is the ke}'word beg-in. and at
Ihe end of Ihe process Ihe key"-ord and appear ..

Wilhin Ihe body of Ihe process.l hcrc are addilional Verilog oondil ional struc­
tures Ih.t can appear. Notable in the Figure 6-34 ex.mple is if·else. The gene,al
structure of an if-else in Veri log i,

if (condition)
bewin procedura l 8tatements aDd

(.1 •• if (condition)
beg-i" procedural staterne"t. and)

(.1 ••
bewin procedural statements and)

If Incre i, a single prO<:<!duc'l <latcment, then the begin and and are unnecessarY'

if (I'. a al)

o <a K;

al.a if (II a .. 0)
o < a Y;

a l .a
o <a Z;

Note that a double equals .isal i. used in oond;lion .. If A i, 1. then Hip_Hop 0 is
Ioad<:d ""ilh Ihc oo",.nts of x. If Ai. 0 and B is O. then Hip-flop 0 is loaded wilh thc
comenls of Y. OthcTVI-·i .. , 0 ;' loade<.! " 'ith Ihe con'enlS of z . The end re. ult for t""
four oombinalion of values on A and B is

• 0 O. • 0 0 Q <> ,
• • O. • • , Q <- ,
• • L • • 0 Q <0 • • • L • • , Q <- ,

The ir...,lse wilhin a p.-oceS$ is similar in .ffeel to the oonditional operalor in a
oominuous assignment , talemenl introduced earlier. 11le conditional operator can
be used ,,-ilhin a process. bUilhe if-else cannot be used in a oominuous a .. ignmenl
"alem<:nl.

294 0 Cl-l"'I"T~R. ~ I SEQUENTI"'~ C IR.CUITS

" _iUYII-EI:t,;,oo-Trlwered 0 Flip-FlOp with Reset,
" v.rllOll I'I'OCeM DMCrlpdcn

_1. dfLv(CU>. JU:SrI'. D. 01,
i ~ CU<. RRSKT. 0,
ou~P"t Q;
r..;o Q,

al_y •• (po ". CU< or 1'0"411. RI'.S!:l')

!>e"in
It (RESET)

Q <_ 0;

al ••
Q <_ 0 ;

o tlGURE 6-.w v..;"" I"roo:e>o Ib<:rip''''"' or """""",-Edp-Tn"""", FI tl"p • ,," R.,...

More complex colldi tiona l eX«lIlion of ' 18tcmcn l$ con be acbie~ by nCSt·
ing Ir~1,;o, ~ru(1urcs. For uample 'c might ha" c

" " •• " " " •• 01
0 .- W,

.1 ••

0 .- " .1 •• " " •• 01
0 .- " .1..
0 .- " In th;' l)'pe of $ltU<tllrc. an el .. is associ.led ,,'ilh the clo!;al if prccedinl ll Ihat

does nO. already ",",.., an .1 ••. lltc end resu ll for lhe eight combill8lions o f values
onA.B_andC is

• • O. • • O. , • 0 0 <. ,
• • O. • • o. , • , 0 <. ,
• • O. • • .. , • 0 0 .- ,
• • o. , • , . , • , 0 .- ,
• • , . • • O. , • 0 0 .. w
• • '. , • O. , • • Q .- ,
• • , . , • •• , • 0 Q '" w
• • '. , • •• , • • 0 .- ,

Reluming 10 Ihe ir·d ... ,n th~ posilive-edge-triggereJ 0 nip-ft<>p Iho n in
Figure 6--:14. 8S1iuming lhat a posili~e edle has oa:urred on eilher eLK Or RESET. if
RESET ;' I. the ftip-tlop OUlput 0 is resel lO O. O1.Mr ise. tM ~al .. e on D is 110rcd in
lhe ftip.tIop SO Ihal 0 e<j uals D. Due 10 the SIru(1ure of the ir RESET <:«u3110 I

dominates the clocked to.:hnior of tlte f) Oip.Oop ('ll\L$ing the output Q to 80 to 0,
Similar simple descriptions can Ite u.ed to represent other Oip-nop ty~s a rid Irig.
gering approaches. •

EXAMPLE 6-8 Verilog for the M ilUe nte KctOKntur

A nIOfe complc~ example in Fog"", 6-35 repreioenlll the sequeooe real8nir.cr 1Iale d,a.
gram in Figure 6-U(d). 'llle arehitocture in this dc:5<:riptioo consi5I. of Ihroe d''IIInct
I'"' "M that can tlC<"IJte oimultJUleOl&ly and ,nl tract via sllarcd !iI,"~1 values. New
concepti included a.e 51ale encoding and CDC ~Iat~""'n~ for handling rondlhoM

In Figure 6-35, lhe module a fK,Lre<:_y and ,"put and output ~.ri3bk:l CLK,
RESET. x, Dnd Z arc declared. Next , regi,;le" are dedared for atat. and
nex t_atate. Note thai .ince next_sta te need ,,<.>1 t>e stored. It C<luld also be
dedared a ... wire. bUI .since il is ass igned wilhin nn al..-aya . il m uSI be dccla red as
a r eg. BOlh ,egiSlers arc two bits. with Ih e n"'51 significanl bit (MSII) numl>cred I
and Ihe leasl sIgnificant bil (LSR) numl>cred O.

NexI, a name is gi" en to elOCh of Ihe Slales laken on Il)' atate and
next_.t .. ee .• nd binaf}' codes are assigned to them. Thil. can to.: done "''"II a
parameter sta lemen l or a compiler d i.ecl ive oS.UI1II . We ... 'ill usc the paramete r
$I.lemenl.li~ the "-,mpole. di.-ective «<tulres a ..ome",'hal inconvenient · to.:fore
each Slale Ihrou&hOut the deKript ion. F.om the diagram in Figurc 6-24(d). the
statc:s a.e A. n. C, a nd D. In addItion . the parameter S1lllemcnl! givc the . ta te
co,k'!l assigned to """h of these sta les.. The " Ota llOn used 10 deline the "nte coJe:oi is
2 'b followed by Ih e binary code. The 2 d~nOl c, In nl Ihere arc Iwo bilS in the code
and Ihe 'b denotel thaI the ha$(> of Ihe cOOt given i. bin,,,),.

The ir...,l"" (",ilhout using the el"" If) makC$ a I ... ·o-way dcci>ion based on
",helher 8 condilion il T R UE o r FALSE. to ronm'~I, lhe 1;11"" Stalemenl can make
a multiway decision based on "'hich one of a number of stalemenls II TR UE. A
simplified form for Ihe generic <tie 51.te"",nl'$

ee •• expre •• lon
tca •• axpe •• alon : statement,)

.nde •••

in which Ihc lor I) represent one Of more ouch entries..
The ca ae expreuion must hove ".lucl lh"t can be laken on by • • ign,,] of

the I)'I>C u>cd in . apre aaion. lypic •• lI y. Ih~re arc sequences of ",ulliple .. ate·
ments- In Ihe cnmplc In Figure 6-35. the nose .t. lemenl for the next $Iat c function
makes. "'''''''''ay dec;";on basal on the currenl slate of lbe circuit. A., B. C, or Do
For each o f the ca ... expressions. conditio,,"l St.l~mc nl5 of various t)'JII'$ are....,d
to make a bInary deci$;on basro on hethe. ,"pul X i. I or O. Nonbloo;king _i",·
men. s.alementS are then uocd to assign the nexl " ate based on the eight possible
combinations of stale "8Iu~ and input value. For example. consi<Ie. the uptC$Sion
B. If X ~qual. L. Ihcn 'he next "ate w,]11>c C: if X equal. O .• hen the next Mate wiLl
be I\. "[lo is correspond. 10 tile Iwo I rans i"on~ OUt of ",a te B i~ Figur~ 6-24(d).

With this brief introd uction 10 Ihe "'!"' , Inlement, the ",'crall ""q ~encer rerug·
nizcr can now be undc~t"od. Each of Ihe Ihree procc!>SC' has. di<1inCI funclion, but

296 a CHAPTER 6 I SEQUENTIAL CIRCU ITS

II _neg ~i2~r, Veril.,.. Proc~~~ De$CripHan
I I (See Fi.".,u 6_241dl for .tat .. di"'ijrarnl
uh "~"(CLX. RES'"", x, ZI;

input CLI(, RESEI'. X;
output Z,
r . g [1,01 .tat@, next~tate ;

par_tu A _ "'bOO, B _ " ' bOlo C _ Z'blO , 0 _ "'bll:

r e" Z,
/I state r""iO<eI ' lltc>l-,~. poo;iti~ ed\Ie- tri!N=ed
/1 .tat e .tor.".., with asynclY<anooo. n_t .
a lway •• ("" .. 4". eLK or ""._. IU!.5ETI

"""'in
if (RE= __ 11

, tate <_ '"
. h •

• tat" <_ next...:!Ute ,
o~

II ~~ a~a~g function, imp1~t8 next . t . t • • • function
ff of X and .taU
al ... y • • (X 0:< ~tau)

boI"l1>
c a ..

"

",
" "

(• • at~l

" " -- " ~-_.~~U < -

.1 ..
O~_

. taU .-
H (X) nexC~t.o.U

H(X) n=t~tate

U(X) tl.e>:t~tate

. nde .. a
o~

"'
" ------

C;d •• """,--"ute <_ A;
C;du """~_~taU <_ 0 ;
B, d .. ~t_~UU <_ A:

II output functiC<l' i '1:>h.,.>n' . output!lS tunctiC<l
II of X and sute
alway •• (x or s t a t el
boIgin

<0" l oUt"l ., , -- 0,

"
, <- 0 ,

" , <- 0 , , , <- , , ,
. nd<: ...

o~

. '-"'Ie

0,

o t' IGU RE fi..35
V<riloj: Proc"s> Dcscripli<Mt of. Seq""""" RecOin;,,,

6-S I HlJL Rep' "'''''''' for Seque"tial Cir<ui'o-V"dJ.,., 0 297

the processes interact 10 provide the owra ll sequ .. ~ce recognizer. The first l"ocL'"
describo. .. the slate register for ,loring the sequen"" recognizer ,tate. NOle that Ihe
description resembles that of the positi"e-edge-triggered Hip-flop. There arc two dif­
ferences, howe,·er. Fim. there arc 1"'0 bilS in Ihe slate register. Second. Ihe slatc that
r.,,;ull. from appl)'ing RESET is Slate A rather tha n stfile 0 , The first process is Ihe
only one of the three processe<l that has 'torage associated with il.

The second p,oce .. describe. the next state function", discussed earlier. The
eyent cont rol "alement contains signals x and st<tte . In general. lor describing
combinational logic. all input' must app"ar in the e,'ent control slateme nt. since.
,,'henevcr an input changes, the proce .. must be executed.

The final proce", describes Ihe oUlput function and uses the .. me <a ... <lale ·
menl framc"'ork as in the next state fu nct ion process. Instead of .ssignin g slate
names. ,'alue, 0 and 1 arc assigned to Z. If Ihe value assigned is the s.1me for bot h
valu ... 0 and 1 On x. no conditional slatement i, needed, so a condilional statement
app"ars onl y for stale D. If there are mult iple input ,·ari.bles. more complcx if-else
combi notions, as ill ustrated earlier. can be used to represcol the conditioning of
the o utput, on the inputs, This e .. mple is a Mealy stote m.chine in which the Out·
put is a function of thc circuil inputs, If it were a Moore ,late mac hi ne. with the
outpul dependent o nly on the state. inpul X would not appear On the .. "cnt conlrol
S1alem~ n\ and Ihere would be no conditional siructures wilhin the case SI.lement.

•
There is a commOn pilfal! present ,,'hene,"er an Ir·el", or ca ... statement is

employed. D uring ,ymhcsis, une xpected storage clemems in the form of lal<hcs or
Hip-Hops appear. For the "cry 'imple if·cl ... used in Figure 6-34. Ihis pitfall is
emp loyed 10 &i,'e a specification thai ,ymhcsizes to" fli p.fl op. In addition 10 the
two inpul signals. RESET and CLK. events po •• d". CLK and po • ..,.". RESET

are prod uced. which are TRUE if the value of the rcspeclive signa l change, fro", 0
10 l. S<;:leCled combinat,on, of "alues for RESET and the two events are shown in
Table 6-9. Whene"er RESET h"" nO posilive <XIge. or RESET is 0 and eLK is fixed
al 0 or 1 or has a negative edge, no aClion is specihcd. In Ycrilog. the assumplion is

o TAStE 6·9
1II"' I ';o n or generation of . tonge in Veri I,,!;

Input l Action

posed~ R~SET
,00 RESET . ' posedge eLK

FALSE FALSE Unspecified

FAt.5 E TRUE Q <_ D

TRU E FALSE

TRUE TRUE

298 0 CHAPTIJI.. ~ I SCQUlNTlAl CIKC\.I ITS

Ihal. for any combma"oo o f cond,t,ons ",ilh unspecifi~d octions in ir.flse or ClOse
~atemenl$. th~ It fl.hand SIde or.n _,,,,menl slatemem .. ill re"...,n unchanged.
This is ,,",!ui'·alen' 100 <_ 0 ca .. ~in! ~\Orage 10 <><:<:ur. ThUs. all comb'nalion~ or
rondilion, mu .. Ita,.., I~ resuillng IOClion specified ... ·hen no >!orage is ,nl~nded. To
prevem undesi rable l~tchCI and nip-nop> from OCC"urring. for If..,..., tlrUClures,
care mll,1 be laken to i"elude .1 •• in all casc:5 if stor3ge ;, no. dClorcd. In a tl""
.Intcmem. a der~"h •• a .cmen. wh ich defines Wh31 h'pp"ns for all chok." nol
'p"cificd ,hould be added. Wilhin Ih", defMUIi stakment. a 'peciflc "c~, l.alC can
t>c ~p"dfied. which in 'he e' '''''ple is . tate A.

Together. Ihe Ihree procell6CI used fur Ihe SC<l"ence recogni~cr dcscril>e the
slate . tUTOgC. the nex. "ate fUncli,,,,. and the output function for Ihe so:q uenlial cir_
cui!. Since Ihese are . 11 of the component. or a sequen.i al circuil 81 the ~I"tc dia·
gram level. ,he ~iptioo ;s complete. The,"" of Ihr.,., di'tinct pr~ is OIlly
one melhodology for sequent ial circui. de>cription. For eumple. the DCXI , tale and
ou tput p~ could be ea>ily comb,ned. ~evcf1heless.the three-proceM descrip­
liOl\ is t~ easiest for ne .. USCB of Vcri"", and al!iO works ... dl ... i lh ~yo.hesas louis.

6-9 C HAPTER. SUMMARY
Sequenlial circuils are t~ foundallon upon ... ·hi~h m06' digital design .. baso.
R ip-Hops arc Ihe basi<' ~torage elements for synchronOWl sequen tial circuil" I'hp­
Hop:s a rc conslroctcd of more fundamental eleme nt s called lalChes. By .hemscl,·c ..
lalches are 'ransparc"l and. as a conSC'lu" n"c. arc ~cry difflcul! 10 u"" ill ~ynchr()­
nO a, ... -quco.i.1 circuil' u,i"S n si "Sic clock. When latches arc cORl i)incd to fo,m
nip·nops. nontr.nsp",cnl slorage clements ,·uy " ",venien. for usc in , uel, circuils
arc formed. n,.re arc .wo lriggcdnS mc.hods u>ed for nip·nops: ",a$ler·~ln'·e au d
edge trigg~r;ng. In .ddi.ion. Ihcre are a number of Hip-H"" typeli. incl uding D. SII .
J/(.and T.

Sequenlial circu il' are formed us.ing Ihese ftip.n"!",, and <"<>mbin"tionallogic..
Sequential circu,IS can be analYl.ed to find Male lables and S1a.e di"&f1'1IMS .hal rep­
....,.,nt the beha>lor or.~ circuil" Also. analysis can be performed by uSln, logic
';mula.ion.

1l!e5C same .tale d,agrams and s'ale .ables ~an be formulated from ~erbal

specifieali()!U or digilal CIrcuits. Uy a!lignina binary codes to.he I.ales and finding
n,p-"op input ""'!UDliOfll" ",quenlia] circuilll can be desiancd. The desi", procca
also includes issues such.1 find ing logic for the circuit OUlPUI., resell;na.he Sl8'e at
power-up. and controllong the behavior of Ihe circui ·hen i. Cn tc,", "ates unused in
the original specioca.ion. Finally. logic . imula .ion pla)'s an imporlant role in verify­
ing .h3t the eircuil de.igned meelS the original specifica'ion.

As an .liernati,·c.o the uSC of logic diagmm., stalc diagram.,."", s.ate ta bles.
sequcnlial cireuil' cnn be defined in VHDL or Ve, ilog descriplions. ·n"!,",, descrip·
tions. Iypicall y al .h" bo!havior~ 1 le'·cl. pro,·ide a powerful. nexible aPI"(),IIch 10
scquenlial circu,l <pc<:ir"'alion fOI OOih ,imulation and aUIOffil l i<' cireui. I)"n lhesi ..
These rcpresenlations in""l v~ proces"", Ihal PJ",·idc added descrip1ive po""r
beyond t~ coocurr~nl aSSJ"'n1~m s.alemcnlS of VHDL and.~ conlinuous "'.
mcn l Slate"",nl of V~rilog. l lw;: prot"'W"S ... hich permil programhke coding and use

"'oI>Ie"" 0 299

if.then-else and case condilional statements. can also be ust."<I to efficient ly describe
combi nalionallogic.

REFERENCES

I. M,,~o. M. M, Digital Design. 3rd cd, Englewood Oiffs. NJ ' Prentice Hall. 2002.

2. Ronl. C. H. F",u!amenmis af Logic Design. 4th cd , SI. Pa ul: West. 1992.

3. W"KERLY. J. F. Vigi"'l D"-<ign: Principles ami Practices. 3rd cd , Upper Saddle
Ri.-er. NJ : Prentice Hall. 2000.

4. IEEE S/am/aF(/ VI1DL uIIIguage Refem,ce Mamwl, (ANS1/t666 Std 1076-
1993: revision of 166E Std 1076·1937). New Yor\; : The Instit ute of Electrical
and Electronics Engineers. 1994,

S. PELLERI,.. D. A)oP D. T "YU)R. VJlDL Made Easy! Uppcr Saddle River. NJ:
Prent ice Hall PTR. 1997.

6. S·rHAN. S. A~D L LI~OIl , VlIVLfor IJe" ·iX,,ers. umdon: Prentice Hall
Europe. 1m.

7. IEEE Stamlim! Descriptio" L""g"age Basf(' on tl,~ Vui/uX(1"M) iI'","mT~
Descripfjan umg.wge (I EEE $td 1364-1995). New York: The Institute of
Electrical and Electronics Engineers. 1995.

8. PAU<ITKAR. $, Veri/og HDL: A Guide to Digiwl Desig~ 01'" S)'lIIhesis. Uppcr
Saddle Ri,'cT. NJ: SunSoft Press (A Prontice Hall Titte), 19%,

9. Ctll;TI1. M __ Ma.leling, S),lIIlIesi .. and Rapid PTotl)lyping willi t"~ Veri/og
HOI.. . Uppcr Saddle Ri,·cr. NJ: Prentice Hall.lm.

10. n IOMAS. D. E., ANn P. R. MooR.lV. The Veri/og l-Ia"J"'QTe Oe"'cTiption
La~g"age 4th cd, Booton: KluweT Academic Publishers, 1998.

PRO BLEMS

6 The plu, (+) indicate, a more advanced proble m and the asterisk (.) indicate, a
~ solution is a,'ailable on the Compamon Website for the text.

6--1. Perform a manual M computer-based logic simulation similar to that given
in Figure 6-5 for thc SR latch , hown in Figure 6-6. Construct the inp ut
sequence. keeping in mind that changes in state for this type of latch occur in
response to 0 ralhor Ihon 1.

6--2. Perform a manual or computer-based logic , im ulation similar to that gi"en in
Figure 6-5 for the SR lotch with control input C in Figure 6·7 , In paTticular.
examine (he bchavior 01 the ciTCuit when Sand R are changed while C ha,
the .alue 1.

6--3. A populor alternative design fOT a positive·edge.tTiggere<i 0 fli p-flop i,
shown in Figure 6·36. Manually or automatic.lly ,imulate the circuit to
dctennine whethor its functional behavior is identical to that of the circuit in
Figure6·13.

300 0 C H Af'TE1I. 6 I SEQ UENTIAL CIRCUITS

Q

,

Q

o FIGUR"; 6-J6
Circuit for !'roblen' 6-3

6-4. A Sl'1 of wavef"rms applied 10 SII ~nd 0 Ilip. llops is shown in Fi gure 6 ·37
These waveforms are applied to the flip· flops ,hown along "'ith the "alue, of
Iheir tim ing p"ramclers.
(M) Indicate Ihe k:>(:a(ion$ "n the waveforms al which t he re are inpul

combination or timing paramctcr "iolalio", in signal S I for flip- flop 1.
(b) Ind ioate lhe IOC~lions "n the w,,,..,rNms.1 which lhere arc inpul

combination or timing parameter violations in signal R I for flip-flop 1.

Sl .l>2

Rl.Dl

I ' I I " , ,

~~~i ~ 
~ _ ... _ •. o"' 

t, _ 0,0 n, 

n 
I " , I I , I " , I I 

12 16 20 24 liI )2 ~n.) 

~:=bJ ~:-Q 
~ - L(l". 1, - 1.0", 
to - O.'! '" ' . _ (l.h. 

o nGURE 6037 
W.,·cform. and Flip-H<>p> 10< Problem 6-4 



Problem, 0 JOI 

(e) List the times at which there are timing parameter violations in signal 02 
for Oip-Oop 2_ 

(d) List the limes at which there are timing parameter "iolations in signal OJ 
for Oip-Hop 3. 

Violations should be indicated e,'en if the stale of the Hip_Hop is such that 
the violations will not affect the nexl stalc, 

6-S_ A seq uential circuit with two D fli p-flop' A and B. two inputs X and y, and 
one output Z is <pedfied hy the following inp ut equations, 

D .. _ XA+ XY DB=XA+XB Z=XB 

(a) Draw the logic diagram of the circuit, 
(b) Derive the state table. 
(e) Derive the state diagram. 

.... "A sequential circuit has three D flip .flops A , B. and C. and one inp ut X The 
circuit is deseribed by the following input equations: 

D.. (BC+BC)X + (IJC+HqX 

D, A 

Dc - B 

(a) Derive the sta te table for the circu it. 

(b)Oraw two statc diagram<;..one for X = 0 and the other for X = l. 

6-7. A sequential circuit has one flip-flop Q, two inp ut' X a nd Y. and one output 
S. The circuit consists of a 0 fli p_fl op with S as it. outp ut ,md logic 
implementing the function 

D _ X WYWS 
with D a, the input to the D flip-flop, Derive the statc table and ,tate 
diagram of the sequential circuit. 

6-3. Starting from state 00 in the state diagram of Figure 6-19(3). determine the 
state transitions and output seq uence that will be generated when an input 
sequence of 100110111 to i, appl ied. 

6-9. Draw tho state diagram of the seque nt iat ~in;uit .pccified by t~ e . ta te table 
in Table 6-10. 

6-10. °A "'quen!ial circuit has two SR flip ·flops. onc input X. and one output Y 
The logic diagram of the circu it is shown in Figure 6-:J.8. O~ri"e the state 
table and state diagram of the drcuit . 



302 0 CHAPTER 6 I SEQUfNrtAL ClRCUrrS 

o TARLE 6-10 
Sta te T.M. ror Urru;t of Problem 6-9 

tnputtnput 
P .... nt State • • NextSt_ 

• , , , • , 
, , , , , , , , , , 
0 0 , 0 

" 
, , 

" " " " " 0 0 , 
" " , 0 " , 0 , , 

" 
, 

0 " 
, 

" 0 , , 0 0 , , 
" , , 
" , 

OUtput 

, 
o 
o 

" o , , 
" " , , 

6-11. A sequential ciTCuit is given in Figure 6-38. The timing porametcn for the 
gates and lIip-~ops arc as follows, 

In"crler I"" ~ 0.5 nS 
XOR Gale: r"" ~ 2.0 ns 
F1i p.hop:lpO _ 2.0 nSot, _ 1,0 ns and t, _ 0.25 ns 

(a) Find the longest path delay from an external circuit input passing 
lhrough gates onl~ 10 an eXlernal circuit oulp"l. 

I , • V • " 
C C 

" 
, " 

, 
./ 

o FIGURE 6-38 
C;",." for Probkm ()-IO. ()-11. and ()-12 



Probl."" 0 JOJ 

(bl Find Ihe longesl palh delay in Ihe circ ui t from an extern .1 input to 
positi,'e dock edge. 

(e) Find the longc.t path delay from positi,'e clock edge 10 outp ut. 
(d) Find the longesl palh dela)' from positive dock edge to posilive clock edge. 
(~l Dekrm; ne Ihe ma.<im um frequency of ol"'r" tion of the circuit in 

mega hen z (MHz). 

6-12. Repeal problem 6·11 a"uming thai the circu;1 consisls of Iwo copies of the 
circuit in Figure 6-3R wit h in pul X of the second circu it copy dri,'cn by input 
Y ofthe fi rst circuit copy. 

6-13. A seq uential circ ui t is gi "en in Figure 6-17. 

Ca) Add Ihe nCC~8sary logic and/or connection. to the ci r~uit to provide an 
asynchronous r=t to , tate A ~ fl. B & I for signal Re:set & 1. 

(b) Add the necessary logic and/or connections to the circuit 10 pro, ide a 
synchrono us re:set to state A & O. B & 0 for signal Reset _ O. 

6-14. 'Design a sequ ential circuit wilh tW0 IJ Hip. Hops A and B and one input X. 
When X = O. the sta to of the circuit re mains the same. When X - l. Ih e 
circuit goes through the stale transitions from 00 10 10 to II 10 01. back to 
00. and then rel"'als. 

6-15. • A :seria l lwo's complemelller is to be designed . A binary inleger of arbitra ry 
length is prese nted 10 Ihe :seria l Iwo's complo mentor. least signifi ca nt bit first. 
on input X, When a given bit is presented 0 1\ inp ut X, the corre~pondi ng 

o utp ut bit is 10 appear during the same dock tyde on output Z, To indicato 
tha t a :sequence is compkte and that the circuit is to be ini tialized to rccei,·c 
a nother seq uence, input Y I>eromes I for one clock cycle. O lherwise. Y i, O. 

(d Fi nd Ihe ' t;tle diasr"m for the serial (wo·s complementcr, 
(b) Find the Slate table lor the serial two's complemen ter. 

6-16. A Universal Serial Bus (USB) com mun ication link require, a circuit thaI 
produce, the :sequence 00000001. You are to design a synchronous seque nt ial 
circuit thal starts producing this sequence for input E _ I. Once the seque nce 
slarls, it completes. If E & I. during the la,1 output in the sequence. the 
sequence repeats. Ot herwise. if E = 0, the output remai ns constant at 1. 

(a) Draw the Moore slatc diagram for Iht circ ui l 
(b) Find t h~ ,tale table and make a sWte "",ignme nt . 
(e) De,ign the circuit using D f!i p·ftops and logic ga tes. A reset should be 

included to place the circuit in the appropriate initial state at " 'hich E i$ 
t xamined 10 dclerm i n~ if the sequencc or con,tam I's is to be produced , 

6-17. Repeat Problem 6-16 for the sequence 011111 10 that i, used in a different 
comm~nicatio" network protocol. 

6-IH. +The seq uence in Proble m 6-17 is a Hag u,",d in a comm unication network 
Ihal represents the ooginning of a me",agc. Thi. Hag must be unique, As a 
co nsequence, al m",,1 five l's in seq ue nce may appear anywhere el se in the 



lO~ 0 CHAPTI:R ~ I SEQUI:NTI"1. CIRCUITS 

message.. Since this is un.ealwic lor normal message contenl. a trick called 
zero.inserrion ;, used. The oormal _ge. " hidt can contain !lrings of ,'1 
Ionge. than 5. enters input X o f a 5e<JuemiaJ ze.o-in"" n iQn circun. l ltc 
circuit has t ... o outpull Z and S. When a fifth I in ... quencc appears on X, a 0 
is in ... ned in the Irrum Of OUl pUU appearing on Z and the outpul S .. 1 
indicating to the circuit lupplying rhe zero-insertion circuit wirh inpurs that 
il mu<l .. all and not apply a !l eW in pur for one clock cycle. This is neccs~ .y 

since Ihe in sertion of O's in Ihe ou tput sequence causes it ro be longer tho" 
the in put sequence wilhout the stall. Zero-inserli"" is iIlullra ted by the 
following exa mple seq" cnCC1: 

Sequence on XwilhOUt any $Ialls: 
Sequence on Xwilh $laIl1; 
Sequence on Z: 
Sequence on S: 

01111100111 111100001011110101 
0111111001111111100001011110101 
01111 HXXllllll011oooo1011110101 
1XXXXXl1!XXlOOOO1000000000000000 

(a) Find the stale diavam lor rhe circuit 
(to) Find the sta.e table lor the cirnait and make a Slate _""menl. 
(e, Find an impLementation of tlle cin;uit using D Hip-flops and logic: "lea. 

6-19. In many communic31ion and nerworking 'y"lem'l, the oignall ransmined On 
lhe communication lone uses a non·relum·to-zero (NR Z) formal. usa ~ 
a specific version referred 10 a! non·relurn-.o-zcro in verted (N RZ I). A 
d reui. thar con ve rtS a ny message sequence 010', a nd I's to a 5e<J uence in the 
N RZI form at is 10 be designed, The mapping for ouch a dn;uit is ~$ folloWS: 

(a) If lhe message bit is a O. Ihen Ihe NRZI form at m"""'ge rontalns"n 
immedi • • e change from I to 0 or change from 0 to I. depending on lhe 
currenl NRZI vallie. 

(h) If lhe MCS$8ge bil is a I. ' h(n the N RZI lormal message rem.ins fixed al 
o or I ,dependin, on Ihe CUrrent NRZ I , -.Iut. 

This transfonnalioo is illustnoted by the follov.ing exampLe "'hieh aSSllm« 
IMllhe inilial vat ... of the NRZ I mCWIge is I: 

Message: 10001110011010 
NRZI Mcs.age: 10100001000101 

(a) Find .he Mealy modelllale diagram for Ihe circuit. 
( Il) Fi nd the .rale table for the circuit a nd make a Slate assignmenl. 
(e) Find an impleme nt ation of Ihe circuil using D Aip. nops and logic ga les. 

6-Zi). + Repeal problem 6. 19, de,igning a seque ntial circuit thar tr.nslorm$ an 
NRZI mcs ... ge imo a normal message. The mapping for i uch I circui t is a. 
follows: 
la) If a change from 0 to I o. from I 100 occurs between adjlOlXnt bilS in t"" 

NRZI messagc.lhen the me$$8ge bit is a O. 
(I» If no mange occurs bet""Ccn adjacent bilS in the NRZI message •• hen the 

message bil ... I. 



, 
----' 

'-----------------
o FIGURE 6-39 

Sign.l, fOT Problem 6-21 

l'robk,m 0 305 

L 
L 

6--21. A pair of signals Request (R) and Acknowledge(A) is used to comdinate 
transaction, belween a CPU and ils I/O !)'stem. The interaclion of the,e sig­
nal' is often referred to a, a "hand,hake.M The,e signals are synchronou$ 
with Ihe clock and, for a transaction, are to alway, ha,'e their transitions 
appear in the order ,hown in Figure 6-39 , A handshake checker is to be 
designed that will verify the transilion order. The checker has inputs, Rand 
A. asynchronous reset signal, RESET, and has output. Error(£). If the Iran­
,ilion, in a handshake are in ord.r. E .. O. If the Ira",itions are out of order. 
then E II<:comes I and remains at 1 untillhe an asyn chronous reset ,ignal 
(RESET = I) is applied 10 Ihe CPu. 
(a) Find the . ta te diagram for the handshake checker, 
(h) Find the stale table for Ihe handshake checker, 

6--22. A serial leading ]" detector is to II<: designed. A binary integer of arbilrary 
lenglh is pre"'nted 10 the serial l.ading ]', delectm, most significant bit first, 
on input X. Whe n a given bit is presented on input X. the corre'ponding 
OUlput bit is to appear during the ,arne Clock cyde on OUlput Z. As long as 
the bits applied to X are O. Z .. O. When the fiTht I is appli ed 10 X. Z . 1, For 
all bit values applied 10 X after Ihe first I is applied. Z = O. To indicate that a 
sequence is complete and Ihat the circuit is 10 be initialized 10 receive 
another ,equence. inpUl Y become, I for one clock cycle. Olherw;se. Y is O. 
(_) Find the state diagram for the serial loading I's deteclor. 
(b) Find the Siale table for the serial leading l's detector. 

1i-13. *A ,.quent;al circuit has two fl ip-Oops A and S, one inpul X and one outpul Y. 
The stale diagram is ,hown in Figure 6--40, Design Ihe circuit wilb D Hip_flops. 

li-U • A set_dominant masteroslave fl ip-flop has ,.1 and resel inputs. It differs 
lrom a convenlional maSler_slave SR Hip-Hop in tbat. when botb S and Rare 
equal to 1, the fl ip-Hop i, scI. 
(. ) Obtain the characteristic table 01 the sci_dominant Hip_flop. 
(b) Find the Siale diagram for the set-dominant fl ip-flop. 
(c) Design the set-dominant flip-Aop by u$ing an SR flip-flop and logic gates 

(including inverters). 



306 0 C HAI'TER ' I SEQUENTIAL CIRCUIT'> 

• 

• 

o ncUlu: 6-0141 
Sto,,, [)iapam for Prtlbkm 6-23 

6--25. Find lhe logic: diavam lor Ihe circuil havillg the ~Iale lahle &i>'en in l l1ble 6-5_ 
Use D ftip.1Iops. 

6--Ui. + The Uale lable for" Iwisled ring counler is gi"en in Table 6- 11 . This circuit 
has no inpUls. and it5 () ulpUlS are the unc<>mplcment ed outpull of the flip. 
flops. Since it hns no inputs. il ,imply goes from slate to ,Wle wh enever a 
clock pulse OCI::ur!o'. 
(a, Iksign the circuit usi ng D f1ip.nop" and a"uming Ihat Ihe ullSpedfled 

nul ".Ic! arC don 'I-care COfldilion .. 
(b) Add Ih. nttt$Sll.ry Iogie to Ihe .ircull 10 inilialize illO .Iale 000 on 

power-up ma,ler resel. 
(~) In Ih. subsection "[lc,signmg " 'jlh Unused Slales"" 0( Section 6-S. II"ee 

techniques for duling " -IIh silu31ions in ",hieh a circUlI accidentally 
enleB an unused .,ate are dlscu..wd. lllhe cirruil you desiylcd in pam 
(a) and (h);' used in. child·, loy. whieh of the Ihree techniques &i"en 
would you apply? Jusllfy your decWon. 

o TABU: .. tl 
State Ta.,.. rur Probkm 6-26 

P ...... ISt.te N • • I $1&'" .. , .. , 
"" '00 
'00 n. 

'" ,n 
,n .n 

'" 00' 
00' "" 



Prohl<m. 0 307 

(d) Based on your decision in part (e). redesign the circuil il necessary, 
(e) Repeal pari (0) for Ihe caS<! in wh ich Ihe circuil is used 10 conlrol engi nes 

on a c(""mercial airliner. Juslify your decision , 
(f) Repeal part (d) based On yo ur de.;i,ion in part (e) . 

6-27. Do a manual verification of Ihe rolution (either yours or Ihe o ne posted on 
Ihe lexl websile) 10 Problem 6---24. Consider all Iransil ion, where S and R 
change wilh Ihe dock eq ual 10 0 

6-211. Do an automalic logic simulalion·ba",d verificalion of your design in Problem 
6---25. The inp ul ""quence used in Ihe .imulalion should indude a ll 1<an,ilion, 
in Table 6-6. The simulation outpul should indude ihe inp ul X and the SI"ie 
~ariab l.-.; A. B, and output Z. 

6-29. ·Genera le a "erificalion sequence for Ihe circuii described by Ihe 'Iate table 
in Table 6---10. To reduce Ihe length of the simulalion ""quence. assume Ihat 
the . imul;l lor can h.ndle X inpul. and use X', whenc vcr possible. Assume 
Ihal a Resel input is available 10 inil ia hze Ihe slalc toA ~ O. B ~ 0 and Ihat 
.11 transition, in thc ,tate diagram must t>e e~er<:ised . 

6-30. Design the circuit specified by Table 6---10 "nd U$C the seq uence from Problem 
6---29 (either yours or the one posled on the lext web sile) to perform an 
automatic logic simulation_based veri fica lion of your design. 

6-31. ·Obtain a timing diagram similar 10 Figure 6· 1 1 fOT a positive-cdge-tri gge red 
JK Hip_Hop du ring four dock pul",$. Show Ihe liming signals for C. J, K . y, 
and Q. Assum~ thaI iniliall y Ihe O\1tp ut Q is eq ual to I. wit h J _ 0 and K _ I 
for Ihe firsl pulse. Then. for successi"e pulse$. J goes to 1. followed by K 
going 10 0 and then J going back to O. Assume th.1 each inpul changes near 
Ihe negalive edge of the pu lse, 

.. AlIlil es referred to in the Temainingprobkm< art a.;ailahle in ASCII form for sim_ 
~ ulation and ediling on Ihe Compa ni on \>" cbsite for the lext. A VHDL or Vcrilog 

w mpilerisirnulator is ne.;essary for Ihe problem, or portions of problem, requesl­
ing sim ulalion. Descriptions con \ till be wrillen. howe .. er. for man y of Ihe prob­
lems witho ul using compilalion or simulation , 

6-32. 'Write a VHDL de",ripl ion for Ihe mult iplexer in Figure 4-14 by using a 
process containing a case statement ratheT Ihan Ihe contin uous assignmenl 
statemenls as shown in Seclion 4-7. 

6-33. Repeal Problem 6·32 b)' usin g a VH DL prOttS< containing if-Ihen-else 
, Iate me nt<-

6-34. +Wrile a VHDL descriplion for the sequent ial circuit wilh the slate diagram 
given by Figure 6-25( d), Ind ud e an asynchTonous ItESET .ignal 10 inilialize 
Ihe circuil to stale Ini t. Compile your description. apply an input $Cquence 
10 pass Ihrough every arc o{ Ihe slale diagram .1 least once. and verify the 
correctness o{ the slalC and outpul "'quence by comparing the m to Ihe slale 
diagram, 



308 0 CHAPTER ~ I SEQUENTIAL CIRCUITS 

6-35. Write a VHDLde$criplion (or the circuit speci6ed in Problem 6-IS. 

6-J6. Write a VHDLde~ption (or tbe circuit speci6ed in Problem 6-1\). 

6-37. ·Write a VHDL de$criplion for a JX negative-edge·triuercd flip-flop "';th 
clock c Lle Compile and simulate your description. Apply a ,.,qucl1C"e that 
c"",",," all eight combinations of input. J and K and .tored value Q 10 be 
applied in some clock cycle. 

6-38. Write a Verilog deKription for the multiplexer in Figure 4_14 by llii", a 
process containing " caSol Statement rather than the conlinuo us assignment 
stalemenlS as shown in Se<:tion 4·8. 

6-39. ·Repeat Problem 6-38 by using a VeriJog proce .. contoining if...,l"" 
statem..nU. 

'-40. +Write a VeriJos de$CriptlOn ro< the sequential circuil ai"en b)' tile Slate 
diagram in Fljure 6-2S(d). Include an M)"DChronous RESET signal 10 
initialize tile cirruil 10 $late 1nl t. Compile your dexription. Ipply In inpul 
seqnel1C"e 10 pall throua.h e~ery arc of the .... te dialVam at leasl once •• nd 
~erify the (Ofrectnc:ss of the SI.le and output sequence by comparin, them 
10 the SI.te dialVlm. 

6-41 . Write a v~riloJ description for Ihe ~irruit specified in Problem 6- IS. 

6-4l. Write a Verilog description for Ihe drcuit specified in Problem 6-]\). 

6-4J. ·Write a Verilog description for a JX negative-edge_triggered flip-flop with 
clock eLK. Compile and simulate your description. Apply a sequence Ihal 
causes all .i&ht combinations of inputs J and K and nored v8lu~ Q to be 
applied in some clock cycle. 



REGISTERS AND REGISTER 
TRANSFERS 

I
n Chaplers 4 and 5, Wi! studioo combinabonal l l,ll'lCtional blocks. In Chaple, 6, we 
" xamir>ed sequootka l "'<cuits. In this chapter. we tHing Ihe two Kloos togelhe< at'l<l 
present sequentla l l<.>rdional bIod<s, ~""ral ly ref .. ".-d 10 a. registers arid 

counters. In Chapter 6, 111& eirellits 1M! were "r>aiyzed o r <le6igned did r>Ol haVO:> any 
patticu lar $lrucrurn. and 100 number 01 nip-flOpS was quite sma~_ In contra.t, the 
cit'(:uilS we consider he", ha1/9 more Sln.octure. with multiple sta~s or ce~. that are 
identical or dose to iOOntk:a1. AI$O, becauw oj !hIs st'llCIure, ~ is easy to acld more 
sla~. to ~ circuits with maR)' """e fl ;p.lk>p6 than ttw circuits in C~ter 6. 
Registors are particularly useful 10, stOfing information during !lie proces.sing of data 
and countars as,""! in seq .... r.ci"ll the processing 

In a diQiIaJ.ystem. a dalapath Ur>;! a control ""it are Ir9Quenl!y Pfesent at the top 
~s 0/ the cIe'ign hiemrct1y. A d8lapalh oor>sisl$ of process;ng log'" and a coIl9CliO<1 
of r<>gistars that parlor"'" data ~e$$ir>Q . A control unifis made up oj klgc that 
determines IhfI sequence 01 data'processi"ll operatiO<"l$ per'lormOO by too datapath. 
R09is!e, transle, notab"" describes ek>menta ry d,'ta·p,<)CeS$O~ ""tOons referred to 
as micrr:>op(1rafioru. Register transfefs mow ;,,1o<m8t"'" 00_ ~sta"" betw""n 
registo", and memory. and lhrough processing lOgic . Dedicated l ra~s"', oorc!ware 
U$i~g multiple,a", and shared transter oo,,;tware CAlled buMS Im~t !tlese 

"""""",enl$ 01 data 

In the gIO""ri(; computer at tr.e b9g0nnng 01 Chapter 1. reglste", are used ..... t"" .. ""1)' 
10< tempo<a ry storage ot data in areas aside trom memory_ Registers 01 this kind "re 
oftel1large. wi1t1 at "'asl 32 bits. Special registerS called shit! mgiSle", a ra u&ed less 
1'8Q"""tly, appeari,,!! p'Omarily In the fnput---<>UIpUt parts 01 Ir.e system_ CounterS am 
u5ed in the varkius pa rIS 01 the compute r to con1f~ or keep If""" 01 the sequence 01 
actiV<tios. CM>rall , sequential hJncbooal bk>cI<s are used _y in tr.e generic 
computer. In pa'lictJlar, the CPU am FPU parIS of thfl processor each contain large 
rMJmbers of registers that are involved In regl516' (ra"""rs and e><e<:ution 01 
mIC'oope<alions. 1\ is in the CPU and !tie FPU that <lata lransle rs, additions, 
sub1factions. and othe r mlcrooparalions take >"ace, Finall)', (r.e conooctions sI>own 
between va rious e leelfOOK: parts 01 the compute, a re ruses, which we <!;scuss fo< tna 
fl"'t time tn this chaptar 

o JO'J 



310 0 CHAPTER 7 f REGtSTERS AND REGtSTER lRANSFERS 

7-t REGISTERS AND LoAD ENABLE 

A register include. a se t of flip_flops.. Since each flip-flop i. capable of storing one 
bit of information , an n-bit register. composed of n flip-flops. i, capable of storing 
n bit, of binary in formation. B}' the broadest de fmition. a "giS/a consists of a set 
of flip-flops. together wit h gates that implement their .late transit ions.. This broad 
definil ion includes Ihe "arious sequen tial circuils considered in Chapter 6. More 
commonly. the term regjsler is applied to • sel of flip-flops.. possibly wilh added 
combinalional gales. Ihal perform dala_processing tasks. The flip-Oops hold data. 
and the gates determine the new or tra nsformed dma to be 1ran.terred int o Ine 
Hip-flops. 

A co",,,,, is a register that goes through a predetermined seque nce of stales 
upon the application of clock pulses. The gatc. in the counter arC connected in a 
way tho t produces the prescribed sequence of binary states.. Although counters are 
a special type of registers. it is common to differentiale them from regislers. 

Regis1ers and counters are .equent ial fun clional blocks thai are u,ed 
extensively in the de,ign of digital systems in general and in digital compuler! in 
particular. Registe .. are u.eful for stori~g and manipulating information: 
coun ters are employed in circuits that ..,quence and control opera tions in a digi ­
tal s)'Slem. 

Tne simplest register is a register that consists of only flip-fl op" without c~ter­
nal gates. Figure 7-I (a) shows such a register conslructed from four D_type Hip­
fl opo;. The commOn Clack inpUI triggers all Hip_Hop' on the rising edge of e.ch 
pulse. and the binary information available at the four D input' is tran,ferred inlO 
the 4-bit register. The four Q output, can be sampled to o~ain Ihe binary informa­
tion stored in the register. The Clear inpu t goes to the R input' of .n four flip_ 
flops and is used to dcar the regi'ter to all O's prior to its cklC~ed operation. This 
inpul i. labeled Clear rather than Clear. since a 0 must be appli ed to resel the Hip ­
Hops asynchronously. Activation of the asynchronow; R input' 10 llip_llops d uring 
normal docked opera lion can lead to circui t designs that are highl)' delay depen­
dent and that can. therefore. easily n,"[function. Thus. we maint ain Clear at logic 1 
d uring normal docked operation. allowing jt to be logic 0 onl)' when a s}" t~m reset 
is desire<l. We note that the abili1y 10 clear a register lO.n 0', i, optional: whether a 
dear operation is pTo"idcd depends upon the use of the register in the syslem, 

The transfer of new information into a register is referred 10 as i""dil1fi the 
regisler. If all lhe bits of the regiSler are loaded simullaneously with a common 
dock pulse. " 'e say that Ihe loading i, done in parallel , A positi"e clock lransition 
applie<lto the Clock input of the regisler of Figure 7-1(8) loads all four D inpuls 
into the flip·Oop' in parallel , 

Figure 7-1(b) ,hows. symbol for the regi'ler in Figure 7_I(a) . This symbol 
permil' lhe use of Inc regiSler in a design hierarchy, The symbol has an inpuls 10 
the logic circuit on its left and all outpu1S from the circuil on Ihe right. The input' 
indude the clock input with the dynamic indicator to represent positi"e-edge trig_ 
gering of the flip-Hopo;. We note that the name Cleor appears inside the symbol, 
with a b ubble in lhe , ignal line on the o utside of the symbol, Thi' notation indi_ 
cates thai application of. logic 0 10 the signal line activates the dcar operation on 



" 
c 

:Y-
0 . O 

c 

" 
" 

c 

" 
", " , 

" 
(a) Lope di'vam 

0. 

0, 

7_1 I Rog;'l<n."d l""d &ubi< 0 3 11 

0 . 
0 . 

0 , 

(b)Symboi 

I.oo<l ~ Ciop""l,l"d iop"" 
M "'---L/ oIfi,p-tlops) 

(el l<>Od "",,,01 ioput 

o t'lGUM t: H 
4·Bi, Regi'[er 

(he fl ip-flops in the register. If the signal li ne were labeled outside {he symbol, (he 
label would be Clear _ 

Register with Parallel Load 

Most digit al systems have a master clock generalOr tha t suppl ies a continuous 
tra in of clock p ll lse, '11", pul,e< are applied to al l flip-flops and registers in the 
system. In effect, the master clock aen like a h~""l l hal supplies 8 constant beal 
to all pans of 1hc system. For the design in Figure 7-1 (a). the dock mil", be pre­
vented from reaching (he doc~ inp ul to the drcuit if 1hc oontents of the register 
are (0 be left un changed. Tllu\., a separate con trol signal ;s used to conlrol the 



3 1 2 0 C H AI"fER 7 I RJ;(;1 S'Tt;R$ AN D REGISTER 1RANSF~ 

clock cycles during ,..hich clock pulses are 10 h ... ·e an effect on Ihe rcgisler.1 ... c 
dock pum are prevcnl ed from rcaching Ihc rcgi:sler "·h~n it. ronlenl is n~ to 
be chonged. This approach can be implemenled wilh a load conl rol inpul LOdIf 
combined wilh Ihc clock ... shown in Figurc 7-1«). The oulPUI of Ihe OR 1"le 
is applied 10 the C inpUIS o f the regi'ler nip_~op<. The equ3lion for Ihe logic 
, hown is 

C ;"1"'" - Loall + Cloc! 

When Ihe J.,..a" signal i, 1, Clop"'. _ Clod<. so Ih~ register;5 clocked normally. 
and nn, information is tron.ferred inlo the register on the po<;ti.·e transilion. of 
lhe clock. Whcn lhe 1..0<1'/ ,ignnl It O. C i"pUlS _ L .... r,lh Ih;, oonstanl inpul 
applied. Ihere are no J>06>I ... e lransilions on C inpuu. so lhe conlenl. of lbe register 
remain unchantcd.l"hc cffca of lhe l..o<Id .&ignal on Ihe signal C urpuu illho"-n in 
Figu", 7-1(d)_ Note Ih311he dock pulsa Ihal appear on C "'PillS are pulses ,o O. 
which end "'Ih lhe ~illvc edgc Iha, IrigeB lhe ft ip-ftops.1ltesc pulses and..dges 
appear ..-hen Load i. I and arc replaced by a oonSlanl I when '-""II is 0. In orller 
for Ihi' circuit 10 work oorreclly.l..o",/ mu' l be oonSiant at the oorr«1 value. ei,her 
o or 1. throughout the in terval" hen C/QC! is O. One .&itualion in ,,'hkh Ih" OCCUB 
i. if 1..0<111 OOmCS from a Hip. llop that " triggered on a po<itivc edge or Ct,,,,!. a nor­
mal circumstana: if all Hip.Hops in Ihe .ys lem arc positi>'e~dge niggcrcd. Since the 
cI<xk is turned on ""d off nl thc regi"er C inputs by the uSC of a logic satc. the 
led",iquc i, referred 10 as clf"'! 8111j"g. 

Inserting gal'" in Ihe dock pulse pal h produtt~ differenl propagolion delays 
belween Clod: and the inputs of n,p·nops wilh and withoul clock "'ling. If Ihe 
clock signais arrive al differenl flip.fIop" or registe .. al differen l tinlCt-, c/o.:! .ke ... 
;, ,'lid 10 exiS-!. BUI 10 ha • .., a lruly s)nch r""""" S)"Slem. " "C II\U>l en, ure lhat ~1I 
clod pulses am>.., MlI\ullft_ly Ihroughoull he s)'Stem $0 thaI ,n Hlp-flops Ing. 
gcr al lhc same lime. For Ih;, rell$On. in roulinc <ksignl. control of tbe opcmtlOfl of 
lhe regisler ""Ihoul using clock pl10g is -.dvlsable. O lhe .... ise. delays 11\"" be con­
lro1led 10 dri,·e Ihe clock skew .. d"", to nro as poosible. ThIS is applocablc in 
aggreui>'e low """'-c. or high speed dcMgnl. 

A 4-bit register ",ith " oontrol input Load that is dir« led Ihrough l "le$ 
iOlo Ihe D input. of Ihe nip.flops. ,n5lead 01 throogh Ihe C inpu ts, i. sho"n In 
I~gure 7-2(c). This reiister is based On 3 bit cell shown in Figure 7.2(a) con.isting 
of a 2-to· l multiplexcr and a /) fllp·nop. The .ignal EN selects between the dot~ 
bil D cntuiog th e cell and Ihe v~lue Q al Ihe outpul of the cell . For EN . I. D i. 
selecled and the cell is loaded. For EN _ O. Q i. se lected and the OU lpot i. loaded 
back into Ihe fli p.Hop. preser~ing ils currenl .tale. The fudhack eOM «,lio" from 
output 10 inpul of Ihe flip·nop is nece.sary because the D Hip.flop. unlike olher 
flip-Hop lyl'd does nOl h."e a "no change·· input condil ion: Wilh each clock 
polse.lhe D ,nput dete rmines the nexl slale of tbe OUlput. To lea.·c the ou lpUl 
unchanged. it is ne<"CS$Ary 10 mike Ihe D input equal 10 ,he prescnt valuc of the 
output. The logic in R,urc 7-2(1) can be vl",,-cd as a "" .... If!'" of D flip-nop.. D 
PIP-Pop ... ilh e""bl~. having the symbols"",,·n in Figu", 7_2( b). 



-- -- -'co--"'---=--=---=--=--=;---, 

o E~ : y-,j ....>-rr> 
e' , 

, 0 flop-l'Iop ... ;,~ . ... b!< '-----

-----------------------,., '" 
0 -

" e 

0 , 0 - 0, 
101< 
e 

0, " EN 
e 

" - o. 
lOS 

-"-
'0) 

o n GUKE 7_Z 
4_Bit Regi"cr ,"';Ih 1' .... n.1 Lood 

The regiSleT is implemented 1:»' placing four 0 flip.~ops with eMbles in paral · 
lei and coonce!ing the LOdd inpm 10 the EN input .. Wh en LOllli is L the data on 
(he four inputs is transferrod into 'he register with the nUt positive cl<x ~ edge. 
When LOll" is O. the curre nt value remain. in the regiSler.' the next posit ;'-. clock 
edge. Note that (he dock pul ... are applied cont in uously to Ihe C input>. Load 
determine, wbclhn the ne.! pul.., a=pts new information Or leaves lh~ inform. _ 
tion in the regisler intact. The transfer of 1oforn,a!;on from lopulS 10 regisler is 
dOlle simullaneousl)' for all four bit< during a single posit;,·" pul'" tramition. This 
method of transfer ill traditionally preferred over clod gating. since it ~,'oids clock 
~kew and the potential for malfunctions of the circuit. 

7-2 REGISTER TRANSFERS 

A digita l '~'stem i, a sequential circu it made up of interconnected Hip-Hop. and 
gates. In Chapter 6. ,,'e learned thaI s<:quenlial CIrcuits can he srxcified by mean' of 
state tables. To specify a large digital system wi th .. ate ta ble, ilvery difficult. if not 
impossible, because the number of .tales is prohibitively large. To ",'ercome thi' 
d iffICulty. digital 'ystcms are designed using a modular. h;"rarchical appr<)ach . The 
.)'Stem is partitioned into . ubs)'Stems or modules. each of which performs some 



314 0 CHAPTER 7! REGtSTERS AND REGISTER lRANSFER5 

functional task . The modules are constructed hierarchically from functional bloch 
such as registers. COUnters. decoders. multi plexers. buses. arithmetic elements, flip· 
Hops. and primitive gates, The various subsystems communicate with data and con· 
trol signals to form a digital s}·stem. 

In most digital system design>. we paTtition tbe '}'stcm into two tn>es of mod· 
ule s; a dalapalh. which performs data-processing operations. and a cOll/rol urlit. 
which determines the sequence of Ihose operalions. Figure 7·3 'hows the general 
relalionship between a datapalh and a control unit. Co"'rol $ignals are binary sig­
nals that aClivate (he varioUll data-processing operations. To activate a se<Juence of 
such operations, the control unit sends the proper seq uence of contTol ~i gnals to 
the datapath. The control unit. in turn. receives status bit s from the datnpath. 
These status bits describe aspects of the slate of the da tapath . The Stalus bits arc 
used by thc control un it in defining the specific sequence of the operalions to be 
performed. Note Ihat the datapath and control unit may also interact with other 
pan, of a digital system. such as memory and inp ut-outp ut logic, through the pathS 
labele<! data inputs, data outputs. control inputs, and control outputs. 

Datapaths are defmed by their registers and the operations performed on bin a')' 
data stored in the registers. uamples of register operations are load. dear. shift, and 
mum. 'The registers are assume<! to be basi<: componem, of thc digi tal .ystem. The 
movement of the data stored in registers and the processing [l<'rformed on the data are 
referred to as rtgiilec rrwlSfec opemtiOl", The register (ran,fer operation. of digital sy"­
terns arc specified by the follo"'ing three basic compo""ms: 

I. Ibe wt of registers in the s}'stem. 

2. the operations that are performed on the data stored in the registers. and 

3. the controlth.t supervise. the sequence of operations in the system. 

A register has (he capability to perform one or more elementary operarions 
such as load. count. add. subtract, and shift. Por c.ample. a righl-llhift register is. 
register that can 'hift data to the right. A counter is a register thai increments a 
number by one, A single flip.flop is a I-bit regisler that can be""t or clcared. In 
fact. by lhi' definition. the flip-Ho!," and closely associated gates of any sequential 
circuit can bt: call ed registers. 

An elementary operation performed on data stored in registers is called a 
microopumion. E' amples 01 microoperations arc loading tlie contents of one 

eon"," __ 
'"p'''' 

eon"or 
"n;t 

o FIGURE: ' ·3 

Ctoft"ol ~!".t. 

s,",", ,ip.h 

fJ .. ,,r 
Co ,,of Dot. 
output< ;nputo 

D'''J'Oth 

tnteract ion between D.tapath,nd O:mt!ol Un it 

DOl. 
'K"P"'" 



register into another. adding the contems Of two registers. and incrementin, the 
content. of a regil;ter. A microoperation is ~sually. but not always.. performed in 
parallel on a ,'ector of bllO during one el<xk cycle. The result of the microopera ­
lion may repla~ the previous binary dOln in the register, Alternati.'ely. the result 
may be transferr~ to another registcr.le~vin, the previous data unchan,ed. The 
Stquential functional bl<xks introduced in this chapter are re,isters Htat imple­
ment one Of more microoperations. 

The OOfmol unit pro.ides signals tha t SoeqOKncc the microopention, in a pre­
scrihed manner_ -1M l'QuJu 01 a current mkroopt"ration may determine ~II the 
5C<juence of control SIgna'" and the oequcnce of future microopentions to be ue­
cuted. Note that the: term "mkrooperation." 11:1 used here. does not refer to Iny par. 
ticular way of producing the control .i8."al,; sp«ifically. it doe, not imply lhat the 
control ,i8."31. are gene rated by a control unit bMed OIl a technique called micro­
programmin .. 

Thi. chapter introduce. regi.ters.t heir implementation, and register tran,f"rs 
using" simple register transfer language (RTL) to represent "l"tel'i and specify 
the operations on their contents. lbe register transfer language U!IC$ a Soet of 
expression. and 5tatemenl$ that ~mblc stalemenl$ u>Cd in HDI..I; and program­
ming langl.Lll.gt'S. This notation can ooncisely 5peCify pan Of aU oIa romplu d'gltal 
system .uch as I rompu!.r. The specification then Steves '" • ba$is fOf • mOfC 
detaiIM dcsi8." ofthc system. 

7 - 3 REGISTER TRANSFER OPERATIONS 

We denote th ~ rcgi$ters in a digital .ystem by uppercase letter< (wmctim,,! fol_ 
lowed by numerals) that indicate Ihe funct ion of the register. For example. a 
register that hold, an address for the memory uni! is usually ca lled an address 
register and can be designa!<'<I b\' !he name AR. O'h.r designations for regi.­
len arc PC for pros .. m counter. IR rOf inllrucllon regis!er. and R2 for re,is!er 
2_ The individual fl ip-Ik>ps in an .. _bit register are !\l'lcally numbered in 
5C<juence from 0 to .. -1 .• taning wilh 0 in the le"'t .ignificanl (often the right­
m"'t) ]XI"ition and increasing toward Ihe III",t significan t ]XI"ition. Since the 0 
bil is on the righl. Ihi. order can he: referred to a.IiIlI~_~",lillJl . in Ihe sume mon­
ncr a. for bytes in Chapler I. The reve rse order. wit h bit 0 On the left. is 
referred to as bill_c",liull. Figure 7-4 shows rcpresentations of registers in block 
diagram form, The most common way to represent. register is by a rectangular 
box with the n"mc of Ihe register in.ide. a. in port (a) of the figure_ '!be indi"id_ 
uII bitl can be Identified a. in pan (b). The numbering of !);ts repre~nted by 
JUS! the leftmost and nghtmost ""Iuell at the top of a register bo~ i. illultrot<'<l 
by a t6-b.t register R2 in ~rt (0). A l6-bit progn.m oounter. pc, is partitioned 
into lwo sections ,n part (d) of the figure. In this casc_ bit. 0 Ihrough 1 are 
assigned the symbol L (for 10w-ortler byte). and bits 8 through 15 arc o .. ig.ned 
the symbol II (for high-ord~r byle) The label PC(L). which may also be writ­
ten PC(7:0). reren to the low-order byte of the register. and PC(I/) or 1'C(IS:8) 
ref~rs to the high_or~cr byte. 



316 0 CHAPTER 7 f REGISTERS AND REGISTER 1lI.ANSFEII.S 

176l ~ 3 2101 
(. ) Rev.'er R (b) lodi,)du.l Nt> 0/ 8-t>o, rezi>l<' 

\"'------------------------j" "1''---------'"-1''----------;" 
LI--Z~~~,,~~~~I LI~K~(~")==~~K~()~) ~ 

(e) "' umbe,i"1 0/ 16-toi, ",v."" (d) Two_p." 16-biI ",v.'<r 

o FIGURE 7-1 
Block Diagram, of RegISters 

Da1a tra~sfer from one register to another is designated in symbolic form by 
means of the replacement operator (<---) . Th= the S1atement 

R2 +- Hl 

denotes a transfer of the content' of r~gister RI into register R2. In othor words. 
the slatement dc~ignales the copying of the con1ClH, of Rl into H2. The register RI 
is referred 10 as the wurce of the transfer and 1he register H2 as the des/ina/ion. B)' 
defin ition. 1he CO "tentS of the source register do not change", a resuh of the trans­
fer: only the contents of the destination register. R2. change. 

A statement that specifies a register transfer impiie. t~a! do t.path circuits arc 
available from the o ut puts of the wurce regi.ter 10 the inputs of the destination 
register and that the d~stination regISter has a parallel load capability. Normally. 
we want a given transfe r to occur not for every dock pulse. but only for 'pecif,c 
valu,," of the control , ign.l .. This can be specified by a cOIu1i1ionul ./alement. sym­
bolized by the if·,lre" form 

if(K, - 1)then(R2+-Rl) 

where K, is a control signal generated in thc control unit . 10 fac1. K, can b<: any 
Boolean function that evaluatos to 0 or I. A more conci,e I"ay of writing the if­
thon form i. 

This control condition. terminated I'"lth a colon. symbolize. 1hc r~q uiremcnt that 
the transfer operation b<: executed by the hardwore only if K, _ I. 

E"ery Matement wrilten in register transfer notation presuppooes a hardware 
construcl for implementing the transfer. Figure 7-5 shows a block diagram that 
depicts the transfer from RI to H2. Th~ " o utputs of register RI are connec1ed to 
the" inputs of register H2_ The lener" is used to ind icate the nu mber of bits in the 
register transfer path from Rl to R2. When the width of the path i. hOl'·n. n i. 
replaced by an actual numbeL Register R2 has a load control input that is acti_ 
vated by the control signal K,. It is ","umed that the signal is S)'nchlOnized with the 
same dock a. the one applied to the register. The flip-flops are "ssum~d to be ]>OSi­
ti,·e·edge triggered by this dock. A, shown in 1he timing diagram. K , is set to I on 



7·l I R<gi>ln T..,..{uOpontioo>. 0 3 17 

" ~ T"nol" """''' ~fO I 
1 IH 

• 
" " 
A A 

I • I 
, ._~I~'--\ _ _ 

o FIGURE 7·5 
Tran,fer from Rl to K2 ""hen K, _ I 

Ihe rising edge of a dock pulse at lime I. The nnt posilive transilion of Ihe clock al 
lime I + I finds X, - I, and the inputs of R2 are loaded ;nlO Ihe regiSiu in parallel 
In Ihis case. Xt TelUrn, to 0 on Ihe posili"e clock IrallSilion al lime I + l. so Ihat 
only a ,ingle transfer from RI to R2 occurs. 

Note that the clock is nOt inCluded as a variable in Ihe register transfer Slale­
menU. It is assumed lhat all transfers occur in response to a dock transition. Even 
though the control condition X, boeoomes aClive allime I, the &ctual tran,/er does 
nOl OCCUr until the register i. Iriuered by the next po!>itive ,,,, ... ition of the clock, 
attimel+ I. 

The bas;" s)'mbol, we use in regisler transfer nOlalKm are li sled in lable 7·\. 
Regi<ters are denOled by an uJIPCrcase leiter, po!>sibly foll"""ed by one or mo,.., 
uppercast: leltcrs and numeral$. l'arenthese, are used ro denole a part of a register 
by specifying Ihe range of bin in the regiSler or by giving a symbolic name 10 a por· 
rion of the regiSler, The left-poinling arrow denores a transfer of dal. and Ihe 
direcliQll of tran,fer" A COmma is used to teparale twO Or more register transfers 
thaI are eJtecuted at lhe ... me time, For example, the Slatement 

Xl'R2 .... RI.Rl .... R2 

denoles an operation that exchanges the conlcnts of tWO ,..,gisters simuhaneousl)' 
for a posilive clock edge at which XJ - I. Such an nchange is possible with regis­
te .. made of Hip-Hops. but presents a difficult timing problem with registers made 

o TA8LE 7·1 
8~>i<: 5),,,,,,,1> ror M"1I"" " Transl"cn 

Lett ... 
(ond nwn<ntls) 
J>a«nlh ..... 
A,~ 

~ 

Soqu •• e brackets 

Denotes 0 «gl<,e. 

DenOleo 0 part of 0 '.gisl.r 
Den", .. ' .. n,l.r of <1> .. 
ScPO"'I" .im"ltan..,,,, tron,r ... 
Specifi<-> on add, ... fQr memory 

' ...... 
All, R2, DR, III 

R2(I), 112(7:O),A H(L) 
RI<-1l2 
111_112,112<- 111 
DH+-M1ARI 



318 0 CHAPTER 7 I REGISTER.<; AND REGISTER'IRANSFER.<; 

~ ¥lUHl 
Texlbook RTL, VIII>L, and Verllog Symbols ror Rq;isler Tran,fe .. 

Oponmon T .. , AlL VHDL Vorllog 

Combin .. ion.l A»ignmenl _ <_ ("'!KuTTenl) assign _ (non blocking) 
Regi"er Tran<fer • <_ (concurrcnt) <_ (nonblocking) 
Addttion • • • 
SuNrtI<tion 
BiIWi;c AND , 

'"' • BiIW;'" OR , "' BilWi"" XOR • '"' 
, 

Bitwi"" NOT "" Shift left (logic.1) " ." « 
Shih rigbt (Iogital) • ., » 
Veclo""Rcg;.le", A(3 ;O) A(3doWJltoO) A[3;Q[ 
Conoalon .. ion " • 1 .1 

of latches. Square brac~et. are used in conjunction with a memory transfer. The 
letter M dc,ignates a memory word. and the register enclosed inside the square 
brac~ets pro,ides the addr,,",s of the word in memory. This i, uplained in more 
detail in Olapter 10. 

7-4 A NOTE FOR VHDL AND VERILOG USERS ONLY 

Although there are ,orne similarities.. the register transfer language us.cd here dif­
fers from both VHDL and Verilog. In particular. there is different notalion u""d in 
each of the three languages. Table 7-2 compares the notation for many identical or 
'imilar register tra~sfer operations in t~e Ihree languages. As )·ou study this chap­
ter and others to follow_ this table will assist you in relating descriptions in the text 
RTL to the corresponding de.cription, in VHDL or Verilog. 

7-5 MICROOPERATIONS 

A microoperation i, an elementary operation performed on data stored in registers 
or in memory. The microoperation, most often encountered in digital systems are 
of fo ur typ"s: 

1. Ttamfer microoperations. which transfer binary dala from o~e regi".r to 
anolhcr. 

2. A rilhmeTic microoperations. which perform arit hmetic o~ data in regi"ers. 
3. Logic microoperalions, which p"rform bit man ip ul ation on data in registers. 

4. Shifl microoperations. which ,~ i ft data in regi"crs. 

A given m i crooperat io~ may be of more than one t)·p"- Por example. a I·s comple­
ment operation is both an arithmetic microoperation and a logic microoperation . 



7_S I M~...oon. 0 319 

Transfer microoperations were int rod uced in the previous sen ion, This type 
of microopcration docs not change the binary data bin as they mo.'e from the 
source register to the destination register. The other ' hree types of microoperat ions 
Can produce ne w binary dat a and. hence, new information. In digital systems. basic 
sets of operations ate used to fonn sequence. that implement more compliCllted 
operations. In this section. we define a basic set of microoperntions. symbolic nOla­
tion for these microoperations. and deser;pt;ons of the digital hordware that imple­
me nt, them. 

ArithmetIc Mlcrooperatlons 

V.'e define the bask arithmetic microoperations as add. subtrnck increment. de<;re­
men!. and complement. The statement 

R1l <----R l + R2 

specifies an add operation. It Slates that Ih c COnlent, of register R2 are 10 be added 
10 the con lenls of regisler RI and the sum transferred to register RO. To implement 
this statement with hard,,·are. we need three registers and a combinational compo­
nent thm performs the addit ion. such a. a parallel adder. The other basic arith­
metic operations are li"ed in Table 7-3. Suhtract;on is most often implememed 
through complementation and addition , Instead of using the minu, operator. we 
can specify 2'. complement ,ubtraction by the statement 

RO ..... R I ~ R2+1 

- -
.. 'here R2'pcci/ic> the I', complement of R2.Adding Ito R2 gives the 2's comple_ 
ment of H2. Finally. adding the 2's complement of R2 to the rontcnt~ of RI is 
equivalent to RI - H2. 

The increment and decre ment microoperations arc ,ymbuli~"d b)' a plus-()ne 
and minus_,,"e opetation. respectively. These operations are implemented by using 

o TARLt: 7-3 
Arithmetk MIrroofoe"'tion, 

RO .... Rt • R2 

H2 .... R2 

R2 .... R2 -1 

HO .... Ht + R2 + t 

RI .... HI +1 

Rt<-RI - ! 

Contcnt> of RI p lu. R2 t"''''/cITed to RO 

Com ple ment of the conton" of HZ (I', complement) 

2', complement 0( ti>c content, of Rl 

RI plu, 2', romplcmcnt of R2 ".n,r.rred '{) RO (,uh"o<tion) 

1l"lCrcmentl1>c COOtent, of R I (count up) 

Deere,""nt ti>c rontents of RI (COIlnt do .. 'o) 



320 0 CHAI"TER 7 I REGISTERS AND REGISTER'IRANSFERS 

a S~iJ ooJJ,oJ corJ. an JL~ullJor. or a LMry uJ6wn MunIer 
with parallel load , 

Multiplication and division are not li lled in Table 7·3. Multiplication can be 
reprel':nted by the symbol. and division by I. These 1"'0 operations are not 
included in the basic set of arithme tic microoperations Ix<:ause they are assumed 
to be implemented by sequences of basic microoperations. [n contrast. mu[tip[ica ' 
tion can be considered as a microoperation if implemented by a combinational d r· 
cuit as iJluSlrated in Section 5-4. [n such a case, Ihe result is transferred into a 
destination register at the dock edge alter all signals have propagaled thro ugh the 
entire combinational circui!. 

There is a direct relationship between the statements written in register trans· 
fer notalion and the regisl e~ and digital functions required for their imp[ementa· 
tion . To illustrate. consider the following two statements: 

XK] :Rl <---R I +R2 

XK,:RI <---RI + R2 + 1 

COnlrol ,'ariable K, activates an operation to add or subtract. [f, at the .. me time. 
control variable X is equal to 0, Ihen XK, = I. and the contents of R2 are added 
to the contents of RI.If X is equal to 1. then XK, _ 1. and the content s of R2 are 
subtracted from the contents of Rl. Note that the two control conditions are Bool_ 
ean functions and reduce to 0 when K, _ 0, a condition Ihat inh ibits the execution 
of both operations simultaneously, 

" 

" • 

-( c., Ad<i<,·Sul>t,,"tO' 

C. 
SeIea(S) , 

• 

, C " ~ " 

o flGURt: 7-6 
tmpleme"tation of Add .nd Subtract Mkrooperation. 



A block diagram showing the implementation of the preceding two .tate· 
menu i. given in figure 7.fJ. An ,,·bit adlkr-"Sllbtra<:tor. similar to the one shown in 
figure 5..8. receiv.s its input dala from r.gisl .... Rl and Rl. The sum or difference 
i'l appli ed 10 Ihe inpub of Rl . The Scle<:t input S of the adder~ubtractor selecl> tb. 
operation in the circuit. When S,. O.the two in puts are added. aod when S g I. R2 
i. sublracte<l from RI. Applying tM control variable X 10 the S input activates the 
required operation. The outp~t of the adder~ubtrnctor is loaded inlO Rl On any 
positive clock e<lge at which X K , .. 1 or XK, ,. L We can simplify this to just K,. 
"mce 

Thus., the control variable X sele<:1S the operation. and the control variable K , 
loads the result into RL 

Based on the discussion of overflow in Section 5-3. the overflow output i. 
transferred to /lip-flop V. and Ihe output carry from Ihe mo<l significant hi t of the 
adder-5ubtractor is transferred to flip-llop C. as sbown in figure 7.fJ. These trans­
fe", occur when K , .. 1 and are not ",pr~nted in Ihe register transfer statements; 
if desi",d. ,,'e could show them as additional sim ultaneou. tran.fe .... 

logic Microoperalions 

Logic microoperations are useful in manipulaling the bits <loud in a regi<ter. These 
ope rations consider each bit in the register separately and treal it as a binary vari· 
able. The symbols for Ihe four basic logic operations are shown in Thble 7-4. The 
NOT microoperalion. represented hy a bar o\"er the lOurtt register name. compte­
ments aU bits and thus is the same as Ihe I's complement. lbe s)mbol " is u5e<i to 
denote the AND miCl"OClP"ration and the s)mbol ", to <knote the OR microopera. 
lion. By using Ihese special .ymbols, it i5 possible 10 distinguish hetween Ihe add 
micrOOfJ"'ralion rep",sented by a ... and Ihe OR micrOOfJ"'ratioo. Atthoug.llthe ... 
s)mbol has two meanings. OOe c.~n distinguish between Ihem by noting where the 
symbol occun;. If t"" ... occurs in a microoperatiOll. it denotes addilion. If 1M + 
""'urs in a control or Boolean function. il der>Ole< OR. The OR microopera,ion 
"ill alway. use the v symbol. R>r example. in the statement 

(K, + K ,):Rl <---- R2 + R3. R4 <---- RS", R6 

o TA8LE 7..4 
'-<>ii< Mk-roopenllioft. 

/OO .... Ki 
RO .... Rt"R2 
R1l ... RI",R2 
R1l ... RI EJ) R2 

J.oeical ";".ise NOT (I', "')f"plemeotj 
l..ogkaJ bi'wise AN D (<*.rs .,; .. j 
Logic.oJ bi!wioe 0 11. (..,,, biuj 
Logica l bi'wise XOR (compteruen" biuj 



m~ I ~lLv~ r. ~!J LU ll O~ ;~I!IIM lL." I~ "JI. '" . ~IJ 
condItion. The + belw'een R2 and R3 specifies an add mlC1"ooperalion. The OR 
microopcrnlion i. designate<! by the lymbQl v bel",e"n regi,te,s H5 and 1(6. The 
logic mitrooperalions Can be easily implemented with a groyP of gates. o ne for 
each hU p<)5ilion. The NOT of a rcgi~l"r "f" bit. is obtained ... ith II NOT gate. in 
p;l.allel. The AN D mi<:.ooperalion Is obtained lISing a group 0(" AND gates. each 
of whirh receive$ a pair of corrcspon<linl input'! from the lwo ""UfCC repsten. lbc 
out pun of the AND gales are aJlPloed to the COITesponding inputs of lhoe d~lina· 
lion rcgioller.lbc OR and e~ch •• h'c-OK mocrooperatiorul "''lUI", a similar arrange­
mell! of gales. 

111" IQgic mkrooperation~ con change bit value .. clear a "",,up of bits. or 
iosen new bil valu .. into a register, The following uamplC'S show how Ihe bib 
SlNCd in Ihe 16.b'l reg;,ter N l carl be sele<:(ively changed by using ~ logic microop' 
era!ion and M logic operand slOred in til e 16· bi! regi't"r 82. 

The AND microopcralion c~n be used for d~aring Olle <" more bi" in" reg. 
ister to 0.1lM: Boolean equations X·O . 0 and X·l - X dictate Ihal, ,,'hen 
ANDed wilh 0,. binary variable X produces. 0, but ,,-hen AN I>W " ',th I, the 
VlInabk remaln$ uncMng..d. A given bit 01 group of bits in • re,"ler can be 
cleared to 0 i( ANDed "i(h 0, ConSKler Ihe (ol"",';n, uample: 

(010110110101011 

<XOJOO:l) 11 I 11 III 

<JOOXOX) 10101011 

The 16·bil lo,ic operand in R2 hu 0', in the high·order byte and 1'. in the low· 
order byte, By ANDing the comenlS of R2 "'ilh Ihe conlcnlS of HI , il is possible 
10 clear lhe h"h'order byte of HI and I<: ... e Ihe bi!! in the ]ow·order b)'te 
unchang..d, ThUs. the AND opcratioo call be used to ..,leclively clear biu of a 
re,'.IU. ThIS operation is sometimes called m .. sking (N" Ihe bots. because it 
muh o r deletes all I', in the data in RI, based on bit po5ition. thaI are 0 in the 
nlluk prOVIded in 82_ 

The OR mlCrooper3tion i. u~ 10 set One or more bits in a regiSler_ The 
Boolean equations X + 1 _ 1 and X + 0 X dictates that. when ORcd with I. the 
bi llury v"ri~blc X produce. a I. but when ORcd with 0, lh~ varia!>le remain. 
unchanged. A given bil or group of bits ,n a register can be SCI to t if ORed with I, 
C01lsidcr tile follov.'ing uanlille: 

10101101 10101011 

11111111 <JOOXOX) 

1111111110101011 

" 
" RI +- RI,,'l2 

(do'.) 

(m .... ) 

The high-ortlcr bYle of RI is!<:t to all \'5 by ORing il with all 1'5 in the 82 
operand. '!lIe low-order byte relllains ,,"ch""ged because i1 is OHcd with O'$. 

The XOI{ (e.dusi,'c-OR) mi<roopcration can be used 10 C()llIplCllIcnl one or 
more hilS;!I a regi.ler, The Boolean cq~ation~ X $ 1 - X alld X $ O - X diclale 



tha!. when a bin aT)' varia ble X is XO Red wit h 1. it is complemented, but when 
XO Red with 0, the variable re main. unchanged. By XO Ring a bit or group of bits 
in regi.ter RI with I's in ",I<:cted positions in R2, it is possible to complement the 
bits in the se lected positions in RI. Consider the following example: 

10101 10\ 10101011 

llllllll OOOOOJOO 

01010010 10101011 

" 
" Rl..-Rl $ R2 

(data) 

(mw) 

The high.order hyte in HI is complemented after the XOR operation with In, and 
the Io,,'-{).der byte is unchanged, 

Shift Mlcrooperatlons 

Shift mierooperat ions arC u",d for lateral mo,'ement of dat a, The contents of a 
~urce register c.n be shifted either right or left. A I'/I.hifi;s to,,'ard the most s;g· 
nificant bi t, and a ,ig/'I,'hi{l is toward the least significant bit. Shift microoperations 
are used in the se rial tro nsfer of data . They ore .1$0 u",d for manipulating the con· 
tents of registers in a rithmetic. logical. and control operations. The de.tination reg· 
ister for a shift microoperation may be the same . s or different from the source 
register, We u~ slrings of Jelten 10 represent the ~hift microoperalions defined in 
' Iable 7·5. r-or enmple. 

RO<- Sr NO, R I <- sl R 2 

are two mierooperations that re;(pectivel)' specify a I-bit shift to the righl of the 
content~ of register NO and a trande r of the contents of R2 shifted one bit to the 
Idt into regioter HI.The contents of H2 are not changed by these shifts. 

For a left·shih microoperation, we call tt>c rightmost hit of the ocstination 
regisler the incoming I>il, For a right-shift microoper.tion, we define Ihe leftll106t 
bit o f the destination register as the incoming bit, The incoming bit m.y h",'e d if­
ferent v" lues. depending upon the t)'llC of ~h ift ",ictOOp"ration. Here we ,"", ume 
that, for <r And sl. the incoming bit is 0,"' shown in the exam ples in Table 7·5, The 
Oil/going bi' is the leftmost hit of th~ $OUtre regist er for the left·shifl operation and 
the rightmost bit of the $Ource register for the right·shift oper.tion, For the lefl and 
right shifts shown, the outgoing bit value is simply d;oc8rded, In chapter II. we will 

o TAHtE7·5 
EUD, pIn .. f Shift, 

.hil, left 
.hill righl 

,-" 
~""tlo.' 

RI<'- .I R2 
RJ..-srR2 

EIght-bit • • omp'" 

10011110 
11100101 

An", ""'": 
DMtI .... "'" '" 

OOllltOO 
01110010 



3 24 0 CHAPTER 7 f REGISTERS AND REGISTER TItANSFEIlS 

7 - 6 M1CROOPliRAT ION S ON A SINGLE REGISTER 

Thi, section co"eTll the implementation of one or more mkrooperat;on$ with a sin . 
gle register a< the destinalion of .11 pTimaTY TeI;UIt .. Thc ,ingle Tegister may also 
ocrve as a source of an operand for binary Bnd unary operalions. Du~ 10 the d ose 
ties t>clweeTI a single set of .tOTOgO elements and the microope,ations, the combi · 
national logic implementing l~e microoperalious is assumed to be a part of the 
Tcgi.tcr and is called dedicated logic of lhe regisler. This is in conlrasl 10 logic 
which is shared by mult ipl~ destination regisleTS. In this ca.e. the combina1ional 
logic implementing the microoperations is called sl",,~d logic for Ihe sel of dc>tina. 
tion rcgiSlers. 

The combinalional logic implementing thc microopcrations deserit>cd in lhe 
pre.iow; seclion Can use One or mOTC functional blocks from chapter. 4 and 5 or 
can be dc.igned specifically for the register. Inilia lly. funclional blocks willbc used 
in COTI\binalion with D [lip-Hops or D·Hip·Hops with enable. A simple technique 
using mult iplexers for se lection i< introd~oed 10 all"w mUlliple mitTooperati<,"s " n 
a sin gle register. Next, single and mul1iplc function registcTll that perform shifting 
and counting are designed. 

Multip lexer-Based Transfers 

lhcre are <:>eeasions when a register receives data from two or more different 
SOurce. al different times. Consider the foll owing conditional Slateme n, having an 
if·'''nl ·d$~ f"nn 

if(K, " l)then(R(I .... Hl) else if(K~ " 1) then (RO .... R2) 

The .alue in register RI is transfer,..,d to register HO when control signa l K , equals I. 
When K, _ 0, the value in register R2 is transferred to RO when Kl equals l. Other· 
wise, the contents of RO remains uno hanged. 'lhe conditional Slatement may be bro­
ken into tWO parts uSing the following control conditions: 

Th is specifies hardware connections from Iwo registers. RI and R2, to one common 
destination register RO. In addition, making a selection between two source regis· 
ters must be based on .alues of th~ control variab les K , and K 2 . 

Thc hlock diagram for a circuit wi1h 4-bil registors that implements the condi· 
tional register transfer statements using a multiplex~r is shown in Figure 7.7(8 ). 
The quad 2-to-l multiplexe, sele<;1S between the two source registers. For K , .. I, 
Rl is loaded inlo RO, irrespcctiv~ of the ,'alue of K, . For K, .. 0 and K, .. 1. R2 is 
loaded inlo RO. When both K, and Kl are equal to 0, the multiplexer selects R2"s 
the input to RO, but. l>ec,use the control function. K, + K" con n~cted to thc 
LO,\D input of RO equals 0, the contents of RO remain unchanged. 



" • " I ru 

L , 
~ 

" ,\I!)X • '" , 

"' 
.r 

(0) IIlo<k d"V. m 

" " 
" REG IITER 

- W.O eo 
!-to-l MUX 

0 REGISTER , W.O 

1= '" ,. 
0 0, Q, " 1= '" Q , " '. '" ~ = '" Q, " " 0 , 

• " 0, '" = "' " " 0, Q, 

1-
REGISTE;1l " W'" " 0 

= Do 
0, 0, 

= '" Q 
0 , Q, 

(b) 0< .. ,100. 

o FIGURE: '·1 
U", of Mullipk;« n to Sekd b<;,,.'«n T"'Q Rep"e .. 

The detailed logic diagram for the hardware impleme~l"tion is ~hown in 
Figu re 7_7(1J). Th~ diagram uses functional block symbols IJ.""d upon detailed 
logic for the registers in Figure 7-2 and for" quad 2-\0-1 mu ltiple-c, from 
Chapler 4. NOle thai since thi$ diagram represent' just a I"" t of a system. Ihere 
are inputs and QUIPU IS th at are nm yel ronnecled. Also, the clock i, nOI shown in 
lh . block diagram. but i. shown in the detailed diagram. II is imponanl 10 relale 
Ihe infom,alion gi.en in a block diagram sueh a. Figure 7_7(0) with Ihe detailed 
wiring connections in the oor<esponding logic diagram in Figu re 7·7(b)_ In order 



326 0 CHAI'Tl'R 7 I flEGISTERS AND flEGISTEIt 'JR.,<.NSFERS 

~~------------, , -, , ~ )-, · , · , '. · , , 
J , , 

• De.l;':,,«1 • 
"'" " 

,-, , , , ... 
, 

>.::r 0<. , ~ 

D<docatod • """ . , "L 
MUX 

, H , 
,------- • '" R<~;"'" 0, · . · . , 0,«<1 loti;.: , . 

• , 
o F IGURE 7-8 

Generalization of Mul"pk'Cf SeIe<liOf1 for ~ Source; 

-

, , 

10 savc space. we often omit the detaikd logic diagrams in designs. However. it is 
possible to obt ~in a logic diagram wilh delailed wiring from the corresponding 
block diagram and a li brary of functiona l blocks. In fact, ,uch a proccdure is pcr­
form~d by computer program. used for a ut omaled logic synthesi .. 

The preceding cxampl~ can be generalized by allowing Ihe multiplexer to 
have" SOurce, and these sources to be register outp uts or combinational logic 
implementing microoperalions. Thi' generalization res ~hs in the block diagram 
shown in Figure 7-8, The diagram assumes that each source is either the OUlputs of 
a register or of combinat ional logic implementing one or more microinstruction .. 
In those cases in which the microopcrations are dedicaled 10 the register, the cor­
responding dcdic~t~d logic is included as a part of the register, In Figure 7-".lhe 
first k sources are dedicated logic and the 1",1 n - k sources are either registers or 
shared logic. The control signals that sele.ol a given SOurce are either a single con­
trol variable or the OR of all control signals corresponding to the microopcrations 
associated with the source, To force RO to load for a mkroopcratio n. these control 
signals are ORed together to form the Lou,i signal. Since it is assumed that only 
One of the comrol signal. is I at any time. these signals must be encoded to provide 
the selection codes for the mu ltiplexer. Two modifications to the given . tructure 
are ]>O'Sible. The control ,ign.l. could be applied directly to a 2)( n AND-OR cir­
cuit (i.e .. a mu ltiplexer with the decoder deleted). Alternatively. the control signals 
could already be encoded. omitting lhe use of the all-zero code. so that the OR 
gate still form. the Load signal correctly. 

Shift Registers 

A register capable of .hifting its stored bit. latera lly in one or both direction, is 
called a _,-hiji T<gisra. The logical conftguration of a shift register consists of " 



0 

p. e 

,-6 I Micloopt", ..... on. Siooel< R.o&i.... 0 3Z7 

0 0 

> C p. e 

(b) S,..,.,. 

o n CUM.: 7·9 
4·811 Shll. Re .... e. 

" -
>e 

chain of nip-flops. ",ilh .he ou.put of one n,p'Hop connecled to the input of the 
nc ~ . nip-Hop. AU Hip-H""" have. common dock pul'lt: inpul that lCIivatl!S the 
.... ift. 

The simplesl possible shift rcgis.e r UK' only Oip-Oops. a. shown in Fi gure 
1·9(a ). The outpul of a ,i"c n flip· nop Is connecled to the D input of Ihe fl ip· nop 
al i" right. The clock is comOlon to nil n'p·nops. The .ulal j"pm 51 is th e inpul 
10 the leflmos l fli p. Hop. 11'e serial aiilpUl 50 is laken from Ihe output of the 
righ tmosl (lip·Hop. A .ymbol for Ihe Shift ,egi"e. is given in Figure 7·9(b). 

Sometimes it i, necessary 10 oontrOl llle register SO Ihal it shif .. on ly on K lccI 
posil;,'" clock edges. Rlr the .hift register in ~,gu,e 7·9, the ' hift can be COtItrolied 
by connecting the clod Ihrough lhe log;c ShlJ"ll in Figu..., 7·1 (c), .. ith Shil' replac· 
inl Luad. Again. due.o clock skew. thlt It usually not the """". ~"'blc approach. 
Thus.""e lum lat ... Ihalthe shifl opention an be controlled through the f) inputs 
of the nip-flops llItller than '''rough the clod: in)JUts C 

S..,. REOIST£II wmo P.uw.UL LQ.oo If all nip-flop output. of ..... ,ft ...,gister • ..., 
aa:es.oible. Hlen informalion emered serially by shifllng can be laken oul in paralld 
from the Hip-flop O1It)JUt<. If a para llel load capabilily is also addtd to. ' hift regisler, 
then dala entered in parallel ClI n be , hifted out ""iaUy. ThUs, • shih regilt.r wilh 
accessible Hip-Hop outpulS and parallcl Io3d Can be uscd for eonvetting in.coming 
parallel data to outgoing ocri.1 data "nd .icc ,·cl"S.a. 

The logic diagram fM a 4· 1>;1 ~hi ft rcg;.lcr w;lh parallel load and the sy",bol 
for Ihis regi"~r are ,hol' iIl in Figure 7.10. lhcre are two conlrol inpuls, one for Ihe 
shif. and lhe olher for the load. Each " age of Ihe regi'ler COIlsislS of a D Hip. nOf', 
an OR gate, and thr"" AND gat M. n.e fi rsl AND gale enables II>e shift upc ,atiQn. 
The second AN D gate enables the input dala. The Ihird AND gale restores Ihe 
wn lcnl' Qf Ihe "'g"te, .. hen no QPCntion is ""Iui...,d. 



328 0 CHAI'TER 7 I REGISTERS A N U "'EGIST~R lRANSFEItS 

, , , , 
~ , 

r />, 
~ 

'n 
~, , 

, J , 
~ 

Q 0, 
SilK 4 

Shot, 
~, 

" 
J-j r;;-, , 

oL)-r , 
~ 

Q 

~ 00 
Q , Q , 

Q, 
Q, Q, 

Q, Q, 

(b)Sym",~ 

, Fr> r;;-
~, 

.- Q, 

~ 

, 

o FIGURE 7-10 
Shih Rogister with Por.lkl Lood 

The o?<,ralion of this register is specified in Table 7-6 a nd is also given by the 
register transfen;: 

Shi/I : Q <-sIQ 

Shi/f" Load: Q+-D 

The "No Ch"nge'· operation is implicit if ne itber of tbe conditio"" for transfen; is 
satisfied. When both th~ shih and load control inputs are O. the third AND gate in 
eacn stage is enabled. and the out put of each fl ip_fl op is applied to its own 0 inpu t. 
A positive transition 01 the cloc~ restores the conte n1, to the register. and the out­
put is uncha ngod. When the , /li ft inp ut isO and the load input is I. lhe second AND 
gale in each slage i. enabled. and the in put 0, is appli ed to the D inpm of the oor­
respondi ng flip-flop. The next p<>&itivc d ock transition transfers 1he parallel input 
data into the register. When the ,nift inp ut is equal to I. the first AND gate in eac h 



7 _6 I Mi<roop<t"""'u Oil. Sing!. Regi"" a 329 

a TABLE 7.6 
.-un<!ion T~ble fot Ih. Kegi .. « of Hgure 7·10 

Shill 

" " 

Operation 

No oh"n~c 
load parallel dal> 
Shill down lrom Qo to QJ 

'lage is cn~b led a nd the other two are disabled_ Since Ihe Load inp ut is disabk-J by 
the Shift inpUI on Ihe second AND gale. we mark it wilh a don'l-eare condition in 
the Shift row of Ihe table. When a positi ve edge occurs On 'he doc • . the shift oper­
" tio n causes Ihe data from the serial input Sf 10 be lransferred to Hip-flop Qo. Ihe 
output of Q" 10 be transferred '0 fli p.flop Q,. ,md .., on down Ihe line, N"le that 
b .. ,eause of Ibe way Ihe circuit is drawn . thc shift occurs in Ihe downward direction, 
If we rotate Ihe pose a 'Iu"rt~r lurn c"un1Cr<lockwi se. the tegisler sh ift. from left 
10 right. 

Shih tegislers " e often used to interf","" digit"1 S)'stcms Il,at arC di"nnt from 
each other. For example. ,uppose il i, ne<:essary 10 IranSmil an II-bil 'Iuanlit)' 
belween IWO points- If the di$tancc is far. it wi ll be expen,ive to use" Hnes 10 Iran,· 
mit Ihe n bil' in paralleL It may be more economic"IIO use" single line and Imns· 
mit Ihe inlormation serially. one hil al " lime. Tho Iransmincr load, the ,,-bil dala 
in p'"" IIc1 inlO a shill tegister and Ihen transmits Ihe data S<'riall y along the com· 
mon line. The receiver accepts the dala seriall)' imo a 'hih regiSle,. When "II" hit< 
ate ac<:umulntcd. they can"'" taken in parallel from the outputs of Ihe registor. 
ThUs. Iho transmiller perform, a parallel·looSeti,,1 <"",'crsi"n 01 dala. a nd thc 
tc<:eiv~r d()l."s a -;erial.to-para llellX}nvcrsion, 

BIOIRECl1OtIM. SHIFT REGIS,",R A register capable of 'hifting in only o ne dire'C,io n 
is e;,lkd " ,,,,i(/irff'iollal .l-hif' register_ A rogi'ler thal can 'hilt in both directio ns i, 
called a bidi,ectionalshif! '~iljjter. I, is ]lOS'ible to modily Ihe citc ui t 01 Fig !!te 7. 10. 
hy adding a fourlh AND gale in each Slage. lor shi f.ing the dala ;n the upward 
direClion, An inv",hgation Ollh~ tCsullant circuit will rel'cal Ihat Ihc lo ur AND 
gates. logelher with Ihe OR gate in each 'Iage. con,h"'le a multiplexer with Ihe 
selechon inpUlS «,."roll ing lhe operalion of Ihe register. 

O ne siage of a bidireClional shih regiSlet with p'".lId h~,d i< sh",,'Ti in Figure 
7·11(a)_ Each stag~ con,isls 01. I) flip-Hop and a 4-lo-l-li ne muhiple,er. The '11'0 
selcClion inputs 5, and So selcct onC of the multiple,er inpulS 10 apply to Ihe I) 

fl ip.llop_ 'll1e selection line, col\trol Ihe mode 01 opera tion of the regiSler ,!Ccording 
to Ihe function 'able " n :ahlc 7·7 and Ihe regi'ter traml,'rs: 

5, -50: Q<----sIQ 

s, -so: Q <---- srQ 

S, -S,,: Q<----I) 



llO 0 CHAI'TER 7 I II..f.GI$TCRS AND REGISTER lRAN5fOlS 

" 

-

" 
~, 

MUX 

" , 
" " , ~ , , 
, 

" 
~ , 

~. 

fL 0" 

-0, 

fL 

~. 

Moxi< 5, 

""_So 
Let, ",riol '"I""' 

(.J D>p: d'qT'''' ol " .... 'ypo<lll ..... 

o FIGUIU; HI 
DKlireclion.1 Shift Rcy.t<r ... ith Porollo. Load 

o TA III.F.'· 7 
. 'an('liott T ... fo< , Ite Kept,.,. of F''!:u .... '·7 

_ eonlrGl -* " ~ ",..~ 

" 
, No cllallj/C 

" 
, Shift 1I0I<0'0 

" Shih up 
p ... lIel load 

0-
0 , 
0, 

0, 

The "No Gange" <>perotion is implicit if nonc of the conditions for Ira n~fers is sat, 
isfled, When the mode oontrol S, ~ • 00, input 0 of (he mult iplexer is sclec\ed, Th is 
forms a path from Ihe OUl pUI of clOtll ~ ip,tlop into its o " 'n input. The next elock 
Iransilion IraDsfen ~he current stor<:d ,'.I<le back into ,,,.ell l\ip-Oop. and 1>0 chan", 
of stale Ottun. When S,So " 01, Ihe lerminal marked I on the mul"plcxer hM a 
path 10 lhe D inpul of each n,p-nop. Thcx palm cause a "'un .oov,'n oporalioll, The 
senal,npul is lransferred inlO the fiTS! 51a~ and the contenl of each Slate Q, I'is 



7 _6 I Mi<roop<,,,;on, on • Singlo Regl"., 0 JJ 1 

transferred inlo slage Q,. When S,So = 10 .• shih-up opera lion resu llS in a sec<.>nd 
serial in put Ihal enten; the last stage. In add'lion. the val ue in each slage Qi ~ I i, 
Iransferred into stage Q,. Finally. when S,So - II . lhe binary info!lllalion on each 
parallel input line is Iransferred into Ihe corresponding Hip-Hop. resulting in a pM' 
allel load. 

Figure 7-11 (b) show •• symbol for the bidir""tiona' shift regisler from Fig ure 
7-1 1(.), NOle thaI bol h a lell serial in put (LSI) and a right serial input (RS/) are 
provided , If serial outputs are dosired. Q3 is used for left shift and Q", for right 
shift, 

Ripple Counter 

A regiSler Ihal goes Ihrough a prescribed sequence of distinct states upon the 
applicalion of a sequence of inp ut pulscs is ca lled a cowUer. The input pulses may 
be dock pulses or may originate from some olher source. and they may <.><:Cur at 
regular or irregu13r interva l, of lime. In o ur discussion of counters. we assume 
clock pulses. but other signals ca n be 'Ubsliluted for Ihe dock , The sequ ence of 
sIal", may follow the binary number seq uence or any olher prescribed sequence of 
,Iales. A counler that follow, lhe binary number sequence is called" binary 
co"mer, An n·bit binary counler consisls of n Hip-Hops and can count in binary 
front 0 Ihrough 2" - 1. 

Co unlers are available in two calegorics: ripple cou nt ers and s}'nchmnous 
counters. In a ripple counter. tbe Hip.Hop output Iransilions serve as the sources 
for Iriggering the changes in olher fl ip-fl ops. In other words. Ihe C inpuls o{ some 
of Ihe fl ip-flops are triggered nOI by Ihe common clock pulse . but ralher by the 
Iran"lions thaI occur on olher Hip-Hop output"- In " synchronous counler. Ihe C 
inputs of all flip. Hops reed". Ih. common clock pulse. and the change of ,tate i, 
delermi ned from the present stOIc of the counter. Synchronous counte rs are dis­
cussed in Ihe nexI IWO subscelion .. Here we present lhe binary ripple counter and 
e ' plain its oporation , 

The log,c diagram of a 4-bil binary ripple cOunlCr i< shown in FIgure 7-12. 
The counter is construcled from D Hip- Hops connecled such tnat Ihe application of 
a positi,'e edge 10 Ihe C inpul of each fl ip. nop ca uses Ihe fl ip-flop 10 complement 
ils ,tate The complemented output of each fl ip-flop i, connected to Ihe C inp ut of 
Ihe nexI moot significant Hip.flop. The Hip. Hop holding the leasl significant bi t 
receives Ihe incoming clock p ulse .. Positive·edge triggering makes each flip-flop 
complement ils value when Ihe signal on ils C input goes Ihrough. positiw transi. 
t,on. The posil ive nansilion occun; when the complemenled output of the previous 
fl ip-Hop. 10 which Cis connecled.goes from 0 to 1. A I-levet 'ignat On Reut driving 
the R in puts dears the register 10 all zerOS asynch ronously, 

To understand Ihe operation of a binary ripple counter. let US examine the 
upward counting sequence given in the lell hall of Tahle 7-8. The count slarts or binary 
o and incremenls by one wilh c.ch counl put"", Afta lhe counl o{ IS. lhe co<mter goes 
back 10 0 10 "'peal Ihe count. The leasl significan!..bil (Qo) i, complemented by each 
count pulse, Every time thaI Qo goes from I 10 O. Qo goes from 0 10 I. complementing 
Q" Every lime Ihal Q, goes from 1 100, it complements Q,. Every li m. Ihat Q, goes 



332 0 CHAPTER' I REGISTER.S AND REGISTER "TRANSFERS 

0 

." c 
l " 

I L 0 

c 
" l 

L " , 
l " 

I C 0 

C 

" 
R."" 

o Fle URE H2 
4· Bil Ripple CO""IOT 

o TABLE 74 
Counlin. Sequence .. r Rin.ry Cou nler 

Upw_'" Counllng Seq .... ...,. Oownw.'" Counting Sequ. n.,. 

0, 0, 0 . 0, 0, 0 , 0 . 0 . 

" " " " " 0 " " " 0 " " " 0 , , , 
" " 0 0 0 0 , 

" " " 
, 0 

" " " " 0 " " " " " " " 
, 

0 " 
, 

" 
, 

" " " " " 
, 

0 , 0 , 0 0 

" 0 " " 
, , , 

" " " " , 
" " " " 

, 
" " " " 



from I to 0, it complements Q" and SO on for any higher order bits in the ripple 
counter. fur example. consider the transition from count 0011 to 0100. Q<l is comple­
mented ""th the count pulse positi"e edge. Since Qo goes from I to O. it trigger,; 0 , and 
complements it. As a result, 0,. goes from Ito O. which complements 0" changing it 
from 0 to L ~ does IlOl trigger Q" because Q, pNXIuccs a negative transition, and the 
flip-ftops res]lO<ld only 10 posih"e transitions. nlU~ the count from 001 I to 0100 is 
achievcd by changing the bits one al a time. The counter goes from 001] to 0010 (00 
from 1 to 0). then to CO)) (Q, from ] to 0). and finally 10 0100 (Q, from 0 to I). The 
Hip-Ilops chango one at a time in quick succession as the signal propagates through the 
counter in a ripple fashion from one stage 10 the nexl. 

A ripple counter that counts downward gives the sequence in the right half of 
Table 7·g, Downward counting can be accomplished by conneCling the true output 
or each flip.flop to the C input of the next flip-flop, 

The advantage of ripple co unters is Iheir simple hardware. Unfortunately. 
they are asynchronous circuits and. with added logic. ca n become circuits w"th 
detay dependence and unreliable operation, This is particularty true for logic thM 
provides feedback paths from counter outputs back to counter inputs. Also, due to 
the tength of time requi red for the ripple to finish. large ripple coun ters can be 
slow circuits. As a consequence, synchronous binar), counters are favored in all but 
low.power desig,ns wheT<: ripple coulllers ha"e an advantage. (See Problem 7·] 1-) 

Synchronous Binary Counters 

Synchronous counters. in contrast to ripple counters. have Iho clock applied to 
the C inpu", of ali flip-flops. ThUs. the common clock pulse triggers all ni p. flop' 
simultaneously rather than one at a time. as in a ripple counte r, A synchronous 
binary coun ter that counts up by I can be constructed from the incrementcr in 
Figure 5-12 and 0 flip-flops as shown in Figure 7.13(a). The carry oU'put CO i, 
added by not placing an x value on Ihe C, om put before the contraction of an 
adder to the incrementer in Figure 5-12. Output CO is used to exlend the counter 
to more stages. 

Note that Ihe Aip·Hops trigger on tho positi"c--edge transition of the clock 
The polarity or the clock is not essential here. like it ",as for the ripple counter. The 
synchronous counter can be triggered wi,h either the positive or the negati"e clock 
transition. 

SER .... L ANn PARALLEL COUNTERS We will use the synchronous counter in Figure 
7-13 to demonstrate Iwo alternative designs for binary coumers. In Figure 7_ \3(a). 
a chain of 2·input AND gate, is used to provide information to each stage about 
the state of the prior stages in the counter. This is analogous to the carry logic in 
the ripple carry adder. A coun ter thaI uses such logic is said to ha"e serial gilling 
and is referred to as a serial col<mer. The analogy to the ripple carry adder sug· 
ge, ts that there might be co unte r togic anatogou, to ' he carry lookahead adder, 
Such logic can be derived by contracling a carry lookahead adder, with the result 
shown in Figure 7-\3(b). This logic can simply replace that in the blue box in 
Figure 7-\3(a) to produce a counter with parallel galing. call ed a parallel co,mler. 



334 0 CHAPTI'.R 7 I H.EGISTER5 AND REGISTEIi. lRANSFElL'l 

~-- -
~ 

("""' o • • bI< EN 

i-'l!: 

-----
~ 

;;;-f-l , 
'---

" , 
'---

0 , 
'---

" , 
'---

r Q , 

r-~ 0 , 

,,~ 

""'P"' CO 

(.J !.uP< INI"m-$<: ... 1 G." ... 

«) Symbol 

o ~lGUKE 7·13 
4·Bi, Syr.chronou$ Binary Coon'.r 

The advanlage of parallel galing logic i. Ih .. , in going from .Iale 1111to .tale 
0000, only One ANO gale delay occurs insoead of Ihe four ANI) gat. delays Ihal 
occur for Ihe ""rial counter. Th .. re<luctiOfl in delay allo"", Ihe counter 10 operale 
much faster. 

If we eonne", h,'O 4· bit parallel counters logether by connecting Ihe CO oUl· 
put of one 10 the EN input of the other. Ihe result is an g· bil ""rial· parallel C<"Iunler. 
This counler hi Iwo 4·bit parall el parts conncelcd in ""ries with each Olhcr. The 
idea can be eXlende<l 10 counle ... of any lcnglh. Again. employing the analogy to 
carry lookahead adders. additi"".1 le~el. of galing logic can be inlroduced to 
replace the ""rial connections between the 4· bil ""gmenu. The adde<l reduction in 
delay Ihal resuits is u""lul for conslruning large. fast counters. 

The symbol for the 4· bil counter using posilive-edge lriggering is shown in 
Figure 7.13(e) 



UP-DoWN BINAIIY COUNTER A synchronous count-<lown binary counter goes 
through the hinary stales in reverse order from 11 11 100000 and back 10 1111 to 
repeal the count. The logic diagra m of a sy nchronous count-<lown hinary counler is 
similar 10 the circuit for the binary up-counter. except that a decrement"r is used 
in'lead of an increme nter. The two operalion~ can be combined 10 fom) a counter 
that can count bot h up and down. which is referrL><l to as an up-<lown binary counter. 
Such a counler can be de>;gned by contracting the adder-1l ubtractor in Figure S-8 
into an incrcmcntcr-<iecremcnter and adding the D Hip_flops. The cou nter counlS up 
for S ~ 0 and down for S ~ I. 

Alternati,'ely. a n up-down co unter with ENABLE can be designed directly 
from co unter beh",'ior. 11 needs a mode inp ut 10 seicct between Ihe two operations. 
We deSignate this mode ..,lecl inpul by S. with S - 0 for up.count ing and S _ I for 
down.,;:ounting_ Let variable EN be a oount cn"ble inpul, with EN - 1 for normal 
up· or down-coun ti ng and EN - 0 for disabling both counts. A 4_bil up-<lOWTl 
binary counler ca n be described by the foll o",ing Aip ·Aop input equ"tions; 

D~o - QoffJEN 

O~. - Q, EEl«Qo':5.;.Qo·S)·EN) 

D~ , - Q,ffJ«Qo' Q"S,;, Qo ' Q •. 5) ' EN) 

D~J - Q)ffJ«Qo -Q, -Q, S +Qo -Q, -Q"S)'EN) 

The logic diagram of Ihe circui t can be easily oblained fmm lhe inpUI e'lumion .. 
bUI i~ not included here. II should be noted that the equation .. as "·rinen. provide 
parallel gating using distinct carry logic for ~p,c"u"lill g and d<>wn_counting. I( is 
also poo;.siblc 10 uSC Iwo diStinct scrial gal ing chains a, well. In contrast. the counter 
derived using Ihe incrememer--decrementer uses on ly a single carry thain_ Overa ll, 
the logic o"st is similaT 

BtNARY COUNTER WITH PARALLEL LOAD Cou nlers cmplo)'ed in digital syslems quite 
often require a parallel·load capability for transferring an initial binary !lumber into 
the counter prior 10 the co unt """ralion. Thi' fu nction can he implemenled by an 
incTementeT with an ENABLE,,, ENABLE .. and" 2-inpul OR gates a, shown in 
figure 7_14. The" ENABLEs are u,ed to enable and disab le the para llel load of 
input dala. D, u$ing the signa l Lo.d_ Note lhal ENABLE on the incremcnter i, used 
to e nable or di,able cou nti ng using Counl Load , """lth the Load and Count inputs 
both al 0, the outp uts do not change. evCn ,,'hen pulscs arc applied 10 the C inputs. 
If the load input is maintained at logic 0, lhe Count input controls lhe operalion of 
the counter. and the outputs change to the nexl binary count for each positive Iran _ 
.ilion of Ihe dock. The dala appli ed to the D inp ut. is loaded into the Aip-Hops 
when Load equals I. Iegardless of the value of Count beca use Load is ANDed with 
Count. Counlers with para llel load are ,'ery useful in the design of digital com put. 
erS. In subse4 ~"nl chapler,,- we will "dcr to them as rogi'lers with load and incre ­
ment opcrat ion~ 



JJ6 0 CIIAvrER 7 f R.EGIsn;p.S AND IUCISTFR'IRANSFERS 

~., 

-- --- ----, 

o nCURE 7_14 

jD , 

D -Q, 
, 

4_Bit Bin.'Y Count« ...-ith Parallel Load 

The binary counter with parallel load can be converted into a ~yn<bronoU$ 
KeD counter (without load input) by connecting an external AND gate to it. as 
shown in Figure 7-15. The counter stans with an all-zero output. and the counl 
in pUI i. ah"3)'$ aClive. As long a~ the OUtpUt of the AND gate i~ O. each positive 
clock edge increments tbe counter by one. When the OIltpUt reacbes the coum of 
1001. bulh Qo Bnd QJ become I. making the output of the Al-': D gate equal to I 
This condition makes L.:>Dd active: SO on Ihe next clock transition. the counter doe, 
nOI counl. but is loaded from its (our inputs. Since all four inpul$ are connected 10 
logic O. 0000 is loaded inlo the counter following tbe count of IOCIi. ThUs. the eir­
cuit counts from 0000 through 1001. follOwed by 0000. as required for a BCD 
counler. 



r-~=c=>~o-~<:,,~_{>~CTK' 
1- Coun' 

~ 

Other Counlolll 

0 , 

0 , 

0 , Q, 

0, Q , 

0 , QJ r-"- 0, 
(LopoO~ 

g o. 

001-

o FIGURE 7· 15 
BCD Cou",er 

Counlers can be designed to generate an}' (lc~iTCd num ber of ,1ale. in sequence. A 
dil-ide-by-'" co''''',,' (a loo known as a mOlI,,/o-N co~"'er) is a counler thaI goc' 
[h",ugh a repealed sequ ence of N .late<- The sequence may follow the bina,y 
counl or may l>e any other arbitrary sequence. In eilher case. the design of {he 
counler follow> the pr<xcdure prescnted in Chapter 6 for th. design of ,ynchm_ 
no,,~ sequential circuits. To demon,lralc this procedure. we will present (he design 
of two counlers : " RCI) counler and a counter wilh an ",bj'r~ry sequence of 
Slales. 

BCD CoUNTER As shown in the previous section. a tlCD cou nter can be oblaincd 
from" binary counter wilh parallel load . 11 i. also I"'-"Iibk tn design a UCD 
counter directly using individual Hip_nop', and gate .. Assuming D-'yp<: flip-flof'S for 
the oounter. we lis, the present SlMe. and e<)rre'J>On<ling next states in Table 7-9. 
An out put Y is included in the tab le. This output is cqu.,l '0 1 when the present 
,late i. 1001. In this way. Y can e""hle the co unt of the next decade wh ile ih o,,'n 
decade switches from 1001 to (0)). 

The fl ip-flop input <qu •• ,ion, for D are obtained from the next·stale val ue. 
listed in the table and can be simplified by meanS of " .map<. The unused stMe. for 
minterms 1010 through 1111 arc u,ed as don't",a,. conditions. The simplified input 
cqu~tiuns fnt the BCD counter are 

D ,W' Q, 

D1= Ql EeQ, 'Q. 

D.~ Q.@Q,Q, 
D.~ Q,e (Q,Q, + Q,Q,Q.) 
y~ Q,Q. 



338 0 C HAPTER 7 I REG ISTERS AND REGISTER "TRANSFERS 

o TARLE 7·' 
Slate TobIe and Flip-flop Inpu!> f<>r BCD Counler 

P..-nt State NexI Stale OUtput 

0.- 0.- 0.- 0.-.. O • 0, 0, o.(t • • I a,It"1 Oz(t+ 'l 0 ,(1+ 11 , 

" " " " " 0 " " " " " " " " " " " 
, 

" " " 
, , 

" " " 
, , 

" " " " " 
, 

" " " " " " 
, 

" 
, 

" " " " 
, 

" " 
, 

" " 
, , , , 

" " " " " " " 
, 

" " 
, 

" " " " 0 " " 

o TABLE 7·10 
StAte Table and F1ip.Fl<>p Inputs for Counter 

Prelent 
St.t. Next St.t. 

OA_OS_DC. 

• , , Alt.1 )81(' I le(t. I I 

0 0 " 0 0 , 
0 0 , 0 " " " " " " " " 

, 
" 

, 
" " " " " 

Synrnronou. BCD counter< can be cascaded to form counter~ for decimal 
numbeTll of any longth. The cascading i. done by replacing D, wi.h D, = Q, eo Y 
"'here Y is from the ne xt lower BCD counter. Also. Y needs to be ANDed ,,'itb Ihe 
product terms to the right of each of .he XOR symbol in each of the equat ions for 
D, Ihrough D,. 

ARBITRARV COUNT SEOUENCE Suppose We " 'ish 10 design a counler Ihal has a 
repeat ed sequence of six states, as listed in Table 7-10. In this sequence. Hip-Hops B 
and C repeal the binary coun t 00. 01.10. " 'hile nip ·Oop A aitemales between 0 and 
I every three count~ Thus. Ihe count sequence for the counte r is not straight 
binary. and IWO slates, 0 11 and Ill . are not incl uded in the count . The D flip· llop 



7_7 I R<g;',." Coil D.,;g. 0 339 

I I JI 
>0 

I 

>0 ~ 

I I --1 

"-I'-] 

'"' '" ow 

/ 
'o(~,OO~)( 

<0, 

,., 
o FIGURE '·16 

Coon,e. with Arbitrary Co"", 

input equations can be simplified using minlerm, 3 and 7 as don"t.eare conditions, 
The simpli fied funetion. are 

DA~AeB 

DB - C 

Dc · Be 

The logic diagram of the counter is ,how" in Figure 7-1 6(a), Since there are 
two unuSt:d ,tate .. we analyze the <ircuit \0 determine their elfect The state dia· 
gram obtained is drawn in Figure 7 -l6(b J. Thi' diagram indica le, lhat if the circuit 
ever goe< to one of Ihe unm:ed states, the next count pulse transfers it!O one of the 
valid states, and the c;",nil then contin ues 10 coun t oorrectly. 

7-7 REGISTER CELL DESIGN 

In Section $· 1. we discussed iterative combinational circuits. In Ihis chapter. we con· 
nect ,uch circuit' 10 fl i~fiops to lonn ",quentinl circuits. A ,ingle ·bit cell of au iter­
ative combinational circuit connected to a fl ip-flop that provides the output forms a 
tw<)-State sequential circuit called a rt!g;51a ".11. We can design an n_bit register wit h 
one or more associated microoperation, by designing a register cell and making n 
copies of it, Depending on whether the output of the fl ip_flop is an input to the iter_ 
aliw circuit cell. the register cell may have its next "ate dependent on its present 



340 0 CHAPTER. 7 I REGISTERS ANO Rf.GISTER TIVlNSFER5 

stale and inputs Q1" on its inputs only_ If Ihe de~ndenty is only on Inputs. I~en ce!! 
design for the iterative combination.1 circuit and attachment of the iteralive circuit 
10 Hip-flops is appropriale_ If. however. lhe wile of lhe nip..llop is fed back to the 
inputs of the iterative circuit cell. s.equential design melhods can .Iso be applied. 
The next eumple illustrales simple reg;>!er cell de>ign in such a cas.e. 

EXAMPLE 1_1 Hegist~r Cell De";gn 

A regiller A is 10 implement Ihe following regiller transfers: 

AND:Af-A"B 
EXOR:A f- AeB 
OR:Af-A"B 

UnleSll'pe<:itied olhe",·ise. we assume Ihal 

I. Only one of AND. EXOR. and OR is equal 10 I. and 
2_ For all of AND. EXOR. and OR equa l to 0_ the content of A remains 

unchanged. 

,\ .imple de.ign approach for a register cell with conditions 1 and 2 uses a 
register wilh parallel load constructed from D flip-flops with Enable (Enable .. 
Load) from Figure 7-2. R>r this approach. the expreSllion for Load is the OR of all 
oonlrol signals that caus.e a transfer to occUr. 1". expression for Di consists of an 
OR of the AND of each oontrol signal with the operation On Ihe right _hand side of 
the oorresponding tran,ilion 

For thi' example. the resulting equations for LOAD and D,arc 

LOAD _ AND .. EXOR + OR 
D, ~ A(I+I), _ AND·A o'H,+ EXOR,(A;ii, + A ,8,) + OR(A, + B,) 

lbe C<]uation for Do' has an implementation si milar to that used for the s.el""tion 
pan of a multiplexer in which a s.et of ENABLE blocks drive an OR gate. AND. 
EXOR. and OR are enabling signals. and the remaining p.rt of the respective 
term, ill D,consists of the function enabled, 

Using D ftip..flops for the regist er 'torage and DO clock galin8> a multiplexer 
must also be implemented in each cell; 

D ( FF - LOADD, + LOA D -A, 

This equalion is giwn to show the hidden COSt inside of the basic parallclload regi'!_ 
ler cell. 

A more romplex approacb is 10 de.;gn direclly for 0 flip-flops using a sequen­
tial circuit d""ign approach rather than the ad hoc approach based on parallel load 
flip..Oops. 

We can fonnulatc a coded state table with A a'! the state variable and output. 
and AND. EXOR. OR. and B as inputs. as sh",,"'n in Table 7-11. 

By formu13ting the flip_flop input equalion for D, ~ A(I + 1),. 

D, ~ A(l+l)o' = AND·Ar B, + EXOR·(A,H, + A ,H,) + OR(A, + H,) 
+ AN D ·EXOR ·OR,A, 



7_1 I R<gi .... Oil Dait;n 0 34 ' 

o TA.BLE 7_11 
St.Jr T . .. and FUp-fIop Inp.t. rOf C .... t ... 

Nell State,t,(l + I) 

(AHD.O) 
(E:tDlbO) (DR.'I (OR. II (UOR . 'I (EXDR.'I (AND . 'I (AND . II 
(DR:(II (B..o1 (B. ' I (B.o1 (Bo ' l (B..o1 (8"1 

" o " " " " " 
Due to the relationship to.lw~cn Ih~ O R op"ratQr and Ihe AND and EXOR op"r­
.IOrs end other algebraic .eductiom.. th i, can to. simplifie<l 10 

A(H I), E (OR + AN OlA,-B,. (OR .. EXO R) (A ,8 , + A ,B,) + AND .. EXOR A, 

The lenm OR .. AN D, OR .. EXOR. and ANI) + EXOR do no! dtpcnd on I"" 
~al,," A ; aoo B, associ.tlled wilh any of the cell .. The loVe for lhese tennl can to. 
.hared by all of Ihe "'gister cells. Using C,. ~ and C, ,,,, intermediate vari.ab.., .. 
the follow;ng..,t of equal ioo, results: 

C, ~ OR+AND 

C, . OR . EXO R 
C,. AND+EXOR 
D, _ A(I+I), ,. C,A,il,+ C,(A,ti, .. A JIl,).- C,A, 
An implement.t ion for regi, jer ce llA , and the logic . hared by all of the cell. ;, 

gi'-en in Figure 7·17. wilh the impkm~nt ltion for logic 'hred by ,h~ regi~ler cellt in 
A . lIefore comparing these rc:sulll with those from the .imple approach, ,,'e can 
apply .imilar simplification and IogiI; !haring 10 the ,"""ult. of the . ;mple a pproach: 

C, . OR .- AND 
C,. OR+EXOR 
D,. A(,..'),. CtA,H,+ C,(A,S ; + Ii ,8 ,) 
LOAD. C, + C, 
Du F- LOA!)-!), .. LOAD A; 

I f these equalion. are used direcUy Ihe COSt olth" ,imp'" apj>TOaCh is somewhal 
higher. Howe,"" •. if Iheoe equalions arc plm'ided '0 a minimization 1001 inslead of 
being uo;ed di"'C1ly. the ..... me equal ion' as the moTe complex nt~lhod wilt resutt. 
Thus, the case of using Ihe .impl<:$1 approach doe. nol n~eessllrily cnuse any 
inefeasc in hardware c<>sI , • 

In the pr~ced i ng example. there Irc no late ral conneclion' betwe<:n adjacenl 
cell .. Among Ih~ opc"" io'" requiring IUlerai conn~C1ion. are ,hifts, arit hmetic 
operat ions. and COfllpari<Onl>. One npprOllClt to the des;gn of Ihe.o;e $lruclUres" 10 
comb"", combinational de;ilJlS ""ell In Chapter 5 with selection logic .nd nip­
fIors. A ",ncn., approach for mullif .. nelional registers u.ing nip-H. " 'il h parallel 
Io.ad i • .oo"'n ill Figure 7-11. Tlri. s;mple aj1flfOaCh b)'p;t.SS<'$ "'gislcr cell design . bu, 



342 a CHAPTER 7 f REG!STERS AND REG!STER 'IRANSfEi<.S 

~---------- -----

EXOR -L'::j::;:1C:;>---i-c. 

• l'::D--+C. AND+-

-------

Cell i 

a FIGURE 7·17 
Logic Dias"m · Regist« Cel! De'ign Example 7·j 

if directly implemented. can re,ult in e.cessi.e logic and too many lateral COnneC­

tions. lbe alternative is to do a custom regisler cell design . In such designs, a criti· 
cat factor is the definition of the lateral conneotion{i) needed. Also, different 
operations can be defined by Wntrolling inpullO the least . ignificant cell of the cell 
cascade. The custom design approach i, illustrated in the next example by the 
design of a multifunctional register cell. 

EXAMPLE 7·2 Register C~JJ D~I~n 

A register A is 10 implement the following register transfers: 
SHLA .... 'III 
EXOR:II .... A$B 
ADD:A <-II +B 

Unless 'pecified otherwise, we aSSume that 

I. Only one of SHL. EXOR. and ADO is equ~llo I, ond 
2. For all of SHL EXOR. and ADO equal to (), the wntent of II remain, 

unch.nged. 

A , im ple approach to designing a registcr cell wit h condition< and 2 is to 
us.c a rcgister with parallel load con trolled by LOAD. For this approach, the 
expression for LOAD i. the OR of all control signal' that cause a tran<fcr (0 occur. 



7_7 I ~ CoU Deoip 0 J"J 

The Implement,tion for D, oonsisH of an AND·OR, "ith each AN D havinS' con­
trol signal and the l<>sic for the operation (In the right·hand side"" in input" 

For Ih is uample, the resulting equations for LOAD and Diare 

1..0AI) . SH I.. ..- EXOR ... AOD 
0 ,,, 1'1(1)1), - SHl Ai--'''- EXO R (1'1 ,$ Bi) ... ADD «A, $ 8,) e C,) 
Co.,. (A; $ B;)C; ..-A;8 ; 

Thcsc equations can be used without modillcation or can be optimiud 
Now. suppose. inslead, that .. e do a custom de$ign assumillJl that all <lill>e 

""gistcr ""lis arc identical. This means that the IeUl and most _iJr!il\cant cells will 
be the same as .hO$oe internal '0 the cell chain. l!ccausc of thi .. the value <Ii Co mUSt 
be .pecified and the use. if an y, of C. mUSI be de.ermined for nch of the three 
operations. For Ihe left shift, a zero fi ll of the vacated right ... ""t bit i$ assumed, gi" ­
ing Co _ 0, Since Co is not in"olved in Ihe EXOR operation, it can be assumed to 
be a don 't ·ure. ~Inally. (or the addition, Co cit her can be assumed to be 0 or can be 
left as a variable to permit a carry from. previous addition 10 be injected. We 
assume that C. equab 0 for addition , since nO additional ClIrry-in is speciftcd by ,I«: 
register troMfer slatement. 

Our fi rit fom,ul.tion goal is to min,mize lateral oonn.-ction. bet"'t'Cn cells. 
Two of the ' h""e OJI('ralioom, Idt $hifl and addition, require a Lateral CQllneclion to 
the left (i.e., toward the mo.t oignilicanl end of the cell dlain ). Our goal is to usc 
one signal for both operations. $,lly. C~ It already e";'t' for the IKIdnion but must be 
redefine<llo handle both the addition ond lhe left .hift. Also in our cu,tom d~.ign, 
the parollelload Hip.Hop will be replaced by a D flip-flop, We can nOw formulate 
the sta lc tabl~ fQT Ihe r~gister cell .hown in Thble 7·12: 

D;_ A(l-t I),. SiT[. EXOR ·ADD A ,.. S Ill~C,.. EXOR (A,$BJ+ADD·(A,eR,ElIC,) 
C .. , ~ SHJ...A, .. ADD(-(A; Ql B;)C,..- A ,B,) 

llte .erm A,$B, appcoatlO in both Ihe EXOIt and ADD terms. In (lOCI , if C,. 0 dur­
ing the EXOR OJI('ution, .hen the func1 ions for ,be ,Urn in ADD ,nd for EXOR 
can be i<1ent~t In the C .. , equation, .. """ Si ll.. and AD D are both O,,'hen EXO R 
is I, C, is 0 for all cello in the ClS<'ade ucep11he lea<l significant one. r...,r the least 

o TA8LE 7-n 
State Toble.Itd Hip . • lop loputo fo< He,ll ter ee l. Design in E .. mple 7·1 -, 

51.1" ..... 
_. 

,. .. :1 5 t.,. AJ.!. l)/Outpul c,., 

",-. , stll . 1 , , EX~ . 1 ADO. 1 , 
EXOR . O .. , , , , .. , , .. , , , , 

AOO.O C, .O , , .. , , , , 
" .X 00 00 1,(1 010 111) !l'X IIX 010 1,(1 !lO (I{! 

llX (I{! 0/1 III Will I llX WX 11\) M 0/1 111 



344 0 C I-<AI'TER 7 I REGISTERS AND 1l£G1~'TER 1lU.NSFERS 

~---------------, 

EXOR_f~~~~~~~]:~ '"" " 
" SilL I ' , 

: Sha • ..:! lop: , ---------------_. 
". Sill ADD 

c ------------------_. -- - -j--- ---------------. 
~" 

-I '- J)-
./ 

, c;-, 
" hi , , , 

, 
)-

, , , , 
~. ~, 

, , , 
, .1 : , , - -- --- - --- --- -- . 

o nGU RE 7·18 
log'" Di'Vam. Rev.le, Cell De>;!" Eumple 7·2 

~i gnificant cell. the specification . tates lhat 4 K O. Thus. input v3lue. C, Me 0 fOT all 
cells in regiMer A. So we can combine the AD D and EXO M operations all follow<: 

D, E A(I+I), E SHL, EXOR ,ADD ·A, .. SHL·C,+ (EXOR + ADD),((A ,EB,)eC,) 

The cxpreuion5 SHL · EXOIt ·ADO .nJ EXOR .. ADO. thai are indepe ndenl 
of A" Bi • and C" can be shared by all ceJJs. lbc resulting equa t;OIl5 are 

E, ~ EXOR + ADD 

E,_ 121 +S~I L 

D; a E, 'A,-+- SI-ILC,+ E,'«A,EB,)EIlC,) 

C.-I ~ SHL·A, + ADD·« A ; iii B,)C, .. A ,B,) 

The , es ulling regisler ce ll appears in Fogure 7·18. Comparing lhis resuh wi th the 
register cell for the simple design. we nOle the following two diffe""nces: 

), O nly onc lateral connection between cells uists instead of 'wo. 
2. Logic bas been ve ry efficiently sbared by the add;l;oll and lhe EXOR 

operation. 

The custom cell design has produce<l connection ."d logic ""ings not present ;n 
the hl(lCk le,'c ] design ,,'ilb ()r wilhout oplimi1.alion. • 



7-8 MUL11PLEXER AND Bus-BASED TRANSFERS FOR 
MULTIPLE REGISTERS 

A typical digitnl syslem has many registers.l'ath, must be pro"id~d 10 transfer data 
from one register to another. The amount of lugic and the numbcr of httcrcunncc· 
tions may be excessive if each regi.ler has ils own dedicated set of multiplcocrs. A 
more cffic>ent .elM,me for tranMening dala bet' ... ~n regislers is a 5ySI~m that uses 
a !oharw t",nsfer palh called a bus_ A bus is charact erized by a set of common Ii ".,., 
.... ith """h line drhl'n by selection logic. Control a;gn.aJs for the Iot;ioc select a single 
"""fCC and o ne or more dcstinatiOM on any clod cycle for '" hieh a (",,,,fer occurs. 

[n Seclion 1-4. ,,'c "",W Ihal multipleurJ aJtd f"'ralle1 load .eal.leR can be 
used to implcnlenl dedicatw \randel'S from multiple """.ees. A block diag,am fo. 
such tran,fers bclween Ihree regi.lers is shown in Figure 7·]9(8). There a re three 
n_bit 2·to. [ multiplexers. each with its own select ,ig" al. Each regisler has ils "wn 
Iu;.d signal. The la me .y.lem based un a blls Can be implemented by u!li ng a .ingle 
n-bit 3-t".] multiplexer and parallel load .cgilters. If a set of multipluer uutputs is 
. hared a1 a common path. ,hese output lines are a bus Such a sySlem ,"'i lh a .ingle 

r 
• • " 2 ,.,.1 , MUX 

" 

• • l...,-t , ""' • 

• • 2_10-1 
L- , ""' 

r 
" 

'0 

Ii' " , , • 
" , ).'0-1 

M L'X 
• -, C-

" 

" , 

(M s;"p, B .. 

Cl flG UIU: ' · 1.9 
SinSie Bu, .'crsu. I).eJic.,cd Multiple .. " 

,­
LOll L2 

r 

"" 

" 

" 



346 0 CHAPTER 7 I REGISTERS AND RF.(;ISTER lRANSFERS 

Example, or Re~i,te'T .. n, rc .. U,/ng Ihe Single 8ws 
in .iK"'. "19(b) - ~ 

Regit.Ie' T,,,,,.fer " ~ U " " 
1/0 ... 1/2 0 " " RO ... Rl. R2 ... RI 0 " RO ... RLRI+-RO Impossible 

bus fo, Iransfers between Ihree regislefli is shown in Figure 7·I9(b). The control 
input pair, Select. determines the contents of the singJe S<j urcc register thai will 
appear On the multiple.er outputs (i.e.. on the bus). The load inputs detemlinc the 
destination register or registers to be loaded wilh the bu. data. 

In T"ble )·13, tran,fers uSing the single·bus implementation of Figure 7.I9(b) 
are illustrated. The first transfer is from H2 10 RO. Scle<:t equal. 1O,selecting input H2 
to the multiple.er. Load , ignal LO for ,egister RO i'! I. with all other I<~,ds "t 0, cauS­
ing the (x:mtent$ of HZ on the bus to be loaded into RO on the next positive dock 
transition. The seeond transfer in the table il lustrates the loading of the conlcnU of 
HI in to both RO ,md H2 , The source RI is sele<:ted because Select is equal to 01. In 
this case. L2 and LO "re both 1. cau,ing the contentS of HI on the bus to be loaded 
into regiSters RO and H2. The third transfer. an exchange between RO and RI. is 
impossible in a single dock cyde, lince it requires two simul1,neOU\ sources, RO and 
Hl. On the single bus. ThUs. this transfer requires at least two buses or a bus oom· 
bined with a dedicated path fro", One of the registers to the o(her. Note that such a 
transfer Can be e. ecuted on the dedica(ed multiplexers in Figure ).!9(a)_ So. for a 
single.bus system, sin,ullaneous transfers with diff.rent SOurces in a single d ock 
cycle are impossible, whereas for the dedicated multiplexers, any combination of 
transfers is possible_ Hence. 1he reduction in hardware lhat occurs for a singJe bus in 
place of dedicated multiplexers results in limitation,! on simult.neous lransfers. 

If we aSSume that only singJe·source transfers are needed, then we can use 
Figure 7·19 10 compare the complexit y of the hardware in dedicated versus b",,· 
b~d systems, First of all. assume a multiplexer design, as in Figure 4·16_ In I~gure 

7· I9(a). there are in AND gate, and " O~ ga(es per multiplexer (not counting 
inver(ers). for a t01al of 9" gates. In contrast, in Figure ).19(b) . the bus mult iplexer 
requires onl y 3" AND gates and" OR ga tes, for" total of 4n gates. AI,o, the data 
input connections to the nlultip iexers are red uced fmm 61, to 3,, _ Th Us. the cos( of 
the selcction hard",.,. is reduced by about half, 

Three-Slate Bus 

A bu, ca n be constructed with the three· state buffers in troduced in Section 2-8 
instead of ",uhiplexers. Thill has the polemial for additional red uctions in the num· 
ber of connection .. But why use three-state buffers instead of a multiplexer. panic· 
ularly for im plementin g buses? The reason is that ntany three·state buffer outputs 



can be connected t<>cether to form a bit li~ of. bY$. and Ibis bu. is implemented 
using only one Ie'-el of logic gate!.. O n the mher hand. in a multiplexer.'UI'h a lara<' 
number of sourccs meanS a high fan ·in OR. which requires multiple levels of OR 
gates, inuoducing more logic and increaling delay. In contrast. three·stRle buffer> 
provide a practical way 10 construCl fast buses with many sources,so Ihey are often 
prdcrrcd in such CUe .. More important . howe>'cr. ilthe fac1 that ' ;gnal, can trave l 
in two directi<;ln$ on a three-'itate bus. Thus. the three·state bus can uSC the ""me 
interoonnectioo 10 carry . ignals illlo and out of. logic circuit. This feature. wh ich is 
III(J6I important " 'hen cr05Sing chip boundaries, i. illustrated in f'ogure 7-lO(a).1be 
6gurc . hov.'S • legister with" Ii ..... that se ..... e "" both inputs and outpuu I)'ing 
across tIM: boundary of the shaded ."'a. If the three·stale buffers.", enabled, then 
the line, are o utputs; if tile three-state bulfen arc disabled. then tIM: lines can be 
inputs. The symbol lor lhi, structure il also given in the figure. Note thnt the bidi­
rection.1 buS lin es are represented by a two·hcadcd arrow. Al so. a smali inverted 
lriangle denotes the three-state OUlputl of Ihe regi.ler. 

Figure 7-2O(b) ~ nd Figure 7·2O(c) show a multiplexer-implemented buS and " 
three-'itate bus. rnpeetively. for comparison . The symbol from Figure 7·20(1) for . 
"'!Bter with bidirectional input-<>utput I~ i$ used in Figure 7.20(,). In COnltast 
to tIM: lituation in Figure 7·19. " 'he,,, dedicated multiplexers were replaced by. 
!>us. these two implcmenlations are idenlical in terms of their re!Bter tram.fer 

I 
~D 

-! o • , , I 

'0 

J~ 

'V ~ 

I~ 
(.) !I<P*' ""~ bo<Jire<lionol 
.. "",_,,,,,, Ii ... _ .)",boI 

0 

~ 
0 

.~ 

" 
• 

~ .. • ,,, 
" .\lUX 

0 I 
0 

~ • 

o FlG U K t': 7-2(1 

~ 
UJ t.l U 

~ 
t.2 Ll 1.(1 -" " '-, 

OO V 

~ 

", V 

En 

~V 

~ 

...;..!1" 

• 

0 

0 

0 

(,)"" ........ bw...". 
.. ""en W>tb bioli,..,;o.w 
Ii ... 

Thru.s"to Hus~ ..... Mul'iple>er Bu. 



348 0 CIIAPTER 7 I RE:GISTERS ANI) REGISTER 11t.ANSFOlS 

capabnlly.IJOIe tbat. ~ tbe tbruooSt8!c bus. Ibm arc only Ibr« Jala ronncd;';""s 
to Ihe set of register block. for cach bit ollbe bus. The muhiplcxcr_impicmenled 
bus has six data ""nn""tions per bi. 10 the SCI of rcgisler block .. This reduction in 
the n<lmber of data connection. by hull. along with the ab ility to eaSIly ""nSlruel a 
bus .... ilh many ilQUTCCI>. make. the three-sl~le bus an attracli,·c allernalive. The u"" 
of such bidireclional inpul-<>ulpullinC\l i. panicularly effective belwecn logic cir· 
cuits in dlffe'enl ph)""Sica1 pachges. 

7-9 SERIAL TRANSFER AND MICROQPERATIONS 

A digilalsystem;, s.roid 10 operate In I serial mode ,,·hen informltion in the ')'Siem 
i. Iran.ferred or manipulated one btl 81 a lime. lnformalion is transferred onc bil 
at a lime by shifling Ihe bil. oul of One register and iUIO a &eCOnd reg;';lc,. Th .. 
tronsler melhod is in contrast to para lteltransfcr. in ,..hich all Ihe bil. of Ihe regi ... 
ler arc I,ansferred at the IIIme time. 

The ""rial Ir~nsfer of information from .egisle. A 10 regisler IJ i. done with 
.hih regi.I" ..... a. sho"·n in the block dtagr.m of Figure 7·21 (a). n.c .erial OUlpul of 
regi.let II ;1 CO<Inecled 10 Ihe serial inpul of.egiste, B. The ..,rial inf)UI 0( register 
A .ccch·cs 0·$ .. ·hlle il! data arc tnmferred 10 re&i~lcr B. It is alw possible fo< reg­
ister A 10 r«<""',, olhocr binary information. or if ".., walll to ma,nlal" Ihe <tala in 
regilter A. ".., can connect in ... rial OUlpUI to ils serial inpm $0 ,hal the infonna. 
lion is circulated lnck into lhe regille •. The initial CO<Ilent of re,isle r IJ is shilled 
oullhrough il> ~rial outpul and ;sI011. "n!e1oS il is transferred back inlo regisler A. 
to 3 Ih,rd shift regiue •• or to other sioragc. The shift control inpul Shift dclcrmi nes 
when Rnd how n"",y times the 'egislcrs nrc shifted. The reg"tcrs using SMft are 
con trolled by mean. of thc logic fWIII Hg"'" 7.2. which allowllhc dock pul"". 10 
pass 10 lho: shifl regiSler dock inpull only when Shifl has the ~a l"e logic I. 

(b)T-"I~ 

o t ·IGUKE 7·21 
5<".1 'r'a",ror 

T, T, 



In Hgure 7·21. each shift regisler has four 'Iages. "lllc logic Ihal supervises Ihe 
Iransfer mUl l be designed to enable Ibe sh ifl registers. through the Shift signal. for 
a fixed time of four clock pulses. Shill register enabling is shown in the timing dia· 
gram for the clock ga!ing logic in Figure 7·21(bj . Four pulses find Shi/! in tM active 
sta tc. SO thai Ihe output of the logic connected to Ihe d ock inputs of Ihe registe,.. 
prod"""s four pulses: T,. T,. T, . and T • . Each posili.e t",n ,ilion of these: pulses 
causes a shifl in both registers. Afle, Ihe fourth pulse. Shi/! changes hack 100 and 
the Shift regislers are di>abled. We note again Ihal. for positi"c-e<ige triggering. the 
pulses on the clock inputs are O. and the inactive 1e ,'.1 when no pul"'", are present 
is. 1 ralher th.n a O. 

Now suppose Ihal Ihe binary contcn! of regist er A before the ,hifl is 101 L 
Ihat of register B is 0010. and the SI of regi,ter A is logic O.l11en Ihe seriallr.nsfer 
fromA 10 B occur.; in four sleps. as shown in Table 7·1 4. With the fir.;t pulse T,. Ihe 
rightmost bit of A is shi fted inlo Ihe leftmost bit of H.lhe Id lmast bil of A receives 
a 0 from lhe serial input. and althe >ame time. all olher bilS of A and Bare shifled 
one position to the rig.h t. The nUl Ihree pulses p"rform identic~1 operations. , hifl· 
ing Ihe bil> of A into B one at a time while transferring O's to A. After the fourth 
shift, the logic sUp"rvising the transfer changes the Shif' signa l to 0 and the Shifts 
stop. Regi<ler 8 contains lOll. which is the prcviou. value of A . Registe r A con· 
tain. all 0' .. 

The difference between serial and paraUel modC5 of operalion should be 
apparem fTOm this example. In lhe parallel Dtode. informaliOl' is available from all 
bils of a regiSler. and all bits can be Iranderred simultaneously d uring one dock 
pulse. In the serial mode. the register.; have a si ngle ..,rial input and a single serial 
output, and information is transferred one bit at a time. 

Serial Addition 

O p"rations in digital compute,.. are u,ually done in parallel because of the fa<let 
sp""d alla;nable. Setial operations are slower. buI h,,,·,, Ihe advantage of r"quir' 
ing less hardware. To demonSlrate the serial mode of op"ration. "'e will show the 
opetation of a serial adder. Also. w" compare the se rial adder 10 th e parallel 
«,unlCrp"T1 presen!ed ;n Section ~·2 10 iliusITa te the tim.-space [racie'off in 
design . 

o TA8U:1· 1~ 
E>an.ple (If s.,ria l T ..... fcr 

TIming 

~'M Shm ~i.terA Shift R<>gi. t.< B 

Inilial .. l"e , 0 , 0 0 , 
" Afte< T, 0 , 0 , 0 0 , 

After T, 0 0 , 0 , , 0 " After T, 0 0 0 " 
, 0 

After T, " 0 0 0 " 
, 



The 1"'0 binary numbers to be added senally ar<' stored in 1"'0 shift ,"giners. 
Bil. are added. one pair at a time. Ih rough a .ingle full·adder (FA) ciTeuit. a. 
shown in Figure 7-22. The carry ou t of Ihe full adder i. Iransferred into a D fl ip· 
flup. The output of thi< carry lIip.flop is then used a, the carry input for the ne~1 
pair of Significant bilS.. The ,urn bit on the S QUtput of the full adder could be 
transterred into a third shifl regi$lcr, bUI we have cbosen to transter the sum bits 
inlo fCpter A •• the contents ot the .egisler are mifted out. The se rial input of 
.egister 8 can r«<:i'·e • ...,'" binary number •• its contents ani: shifted Oul during 
the addition. 

lbe operation of 11 ..... rial adOer is as foLlows: Regisler A hQld, Ihe augend. 
r<'giSier 8 holds Ihe addend. and lhe carry flip-Rop bas been ruet 10 O. The serial 
out pUIS ot A and 8 provide a pair of significanl bil. for the full "dder at X and Y. 
The outpUt of the carry fl ip.flop prOVides the carry input al Z. When Sioifi is SCI 10 
1. the OR gale enable, Ihe dock 10. both rcgi'ters and the fli p·flop. Each dock 
pulse shifts bolh regillers "nee 10 the right . InI",fe ... the sum bil from S into Ihe 
ldlm061 lIip-nQf) of A. and Iran,fers the carry " ut pul into the carry nip-nop. Shifl 
controL logic enables lhe "'gislen for .. many clock pulst'l.' there arc bils in the 
r<'gQ;len (four pulltl in Ihis eI.tlmple). For CD pul ... a""'" sum bit is tnlruferred 
to A .• ncW carry is transferred to the Rip·1Iop. and both re&iSlen are .... iftcd once 
10 lhe right. This process conlinues unliL lhe shift control logic dlanges Shift 10 O. 
Thu ... lhe addition is a<:romplishcd by passing each pair of bill and lhe previou§ 
ca rry through. single full_adder circuit "nd trBnsferring the 'UnI. One bil ft( a lime. 
back into res;"cr A. 

'1' 

~. 

~ 

D n GUM[ 7·22 
Sc,;.1 Addnion 

I " 

I" ull ,,<1<1., 
(A,"re S-4) 

I-

~ 



1-10 I III)L ~,.oo.. ro. Shifi Il<P«'n and eo.-....... VIlOI. 0 3S 1 

Initially .... 'e can rnet regiSler A . regilte. 8. and the Corry nip-Hop to O. Then 
we shih the first number into 8. Ne~t. the first number from 8 is added to the 0 in 
A. While H il being sh ifted through Ihe full adder. we can transfer a second num ­
ber 10 il through its serial inp ut. The SC>"ond numoor can be added 10 lli e contents 
of regiiler A at the $ "ne time that a third number is transferred serially into regis­
te, B. Se,ial addition may be repeated to form the additi()fl of t .... o, Ihree, or more 
numbers. ... ·ith their sum accumulated in rep ter A. 

A comparison 0( the ",rial adtkr with the parallel adder de§C'fibcd in Se<:1i<M1 
5-2 pr<Wide$ an eumple of space.time trade-off. The parallel adtler has " full 
adtkn for n_bot operand .. ,..hereas the llerial adtler requires only OM full adtler. 
Excluding the ,e'"ters from both. the pa,ml"'l adder is a combinational cirntit. 
,..Mreas the ",,'ial adde, is a se<juent ial circuit becau"" ;1 include$ the ca rry Hip­
Hop. The ..,rial circuit also lake." dock cycles to romplete an addition. Idemical 
ciTCuiu. such u the n full adders in the p~rull el adder. connuted together in a 
chain constitule an eumple of an ituaTiv~ I"gic array, If the values on the carries 
between lhe full adtlen are re8ar<le<i M Itnte variables. then the Itltes from the 
lea .. slgnilkant cnd to the most significant end Ire the same IS the stattl appelring 
in sequence' ()fI tM nip-l'Iop output in thc serial adder_ Notc that in thc iterative 
~ array the .. ates appear in space. but in the sequential cirntlt the It~tes appe~r 

in time. Hy COf\\'erllng from one o f these implemenlations to the other. OM can 
make a !pA<'C-time trade-off. The paralLel Midc:r in spac:e is" times la. gcr than the 
se.ial adtkr (ignoring the a rea of the carry nip.nop). bUl it .. n times fa'te" Tile 
serial adder. althol/llh it is n times .Iowcr. " n timel .maller in SP.lc:e. 'Ill,s Jive. the 
dc.igner a sign,Hcant Choice in cmpllasi~ing speed or area. where more area trans­
latcs into more CO'lt. 

7-10 HDL REpRESENTATION FOR Sl-HFT REGISTERS AND 
COUNTERS-VHDL 

Eumple. of shih regi'te. and a bina.y counter illustrate the U'iC of VIIDt. In "'p­
rese nting regISters and OVC.--ations o n regiltc. conlcn!. 

EXAM""': 7-3 VllOt for _ 4-llit Shif'! He~l<ter 

The YHDt. rode in FIgure 7-23 des.::ribcs a 4-bitlefl .hift register at the behavioral 
Ie,·ct. A RESin' input is present that directly ruet, the register conlcnti to zero. 
lbc shift replcr cootai", Rip_flops and SO hlOl • process de§C'fipli()fl resembling 
that of aD nip-llop. lbc four nip-flops arc rep<cscnted by the li",al ahHt. of 
Iype std..10lilic_vector o(.~ fou •. 0 cannot be ~ to reprnentlbe nip-ftops 
since' it is an OUtput and lhe Ili p-liop output. must be ~ internally. The Ielt obifl 
is achieved by applying the ooncatenali<MI operator" to Ihe right three bits of 
shi ft and to shift 'nput S 1. Thi. quantity is transferred to slli f t moving the 00<1-

lents one bit 10 the lefl and loading th e vnlue of Sl into lhe rightmost bit. follow­
ing the pr<lCC'S' tllat perfom" the shift are two stalements. one which Msill'lS the 



352 0 CHAI'TEFl. 7 I R.ECIST[RS AND REGISTER lRANSFERS 

-- 4-bit Shi ft ~i.ter with Reoet 

library i_, 
u •• 1_ . ~td .. y >gic_ 1l64 all ; 

. "tity or,LLr i. 
""r~ (CLK, RESET . Sl in otQJ.ogi c ; 

Q ' ou~ 5tcLlogic_vector( 3 downt" 0); 
00 , ou~ stcLlogic ) ; 

....:I. ~rg.3_r; 

ucbiueture 
d""" l .mitt ... '" 

beh<ovi orAl of e LV..-'_r h 
."cLlogic_vectorl) downto 

proe ... (RESl':l" , CLIO ..... 
it (RE:5lIT ~ '1') the n 

s h itt <_ ·0000 " ; 
.l.if {CLK ·.v.n~ an4 ICLK ~ '1'11 tb.n 

~hitt <_ "hift {:l ~own~o 0) ~ SI; 

and if , 
e"" proc ... , 

o <~ oh ift ; 
SO <" . h ilt ()I ; 

.n<! behaviora l; 

o nGUilE 7·23 

011 

Beh",'ioral VHDL Description of 4-bil Left Shift Regis'er wi,h Direc' R""" 

\'alue in shift to output Q and the othor which defines the shift Oul signal SO as 
the contents of the Idunost bit of shift. • 

EXAMI'U: 1_4 VHOl for a 4-011 COlln.er 

The VHDl code in Fig ure 7_24 de>erib<:s a 4_bit counter at the behavioral leveL A 
RESET input is present that directly resets the counlor contents 10 ZerO. The 
counter cont .ins fl ip·flops and. therefore. has a process description resembling that 
of a D Hip.flop. The four flip-Hops are r~presenl ed by Ihe signal count, of Iypc 
st<1..1ogi c_vec t o r "nd of size four. Q canno. be used to represent the fl ip-flops 
since it is an output and the flip.flop o utput, nlUSI be used internally. Count ing up 
is achieved by adding 1 in the form of - 0001 · to cou n t. Since addi tion is nOI a 
norm"1 oper'lion On type s t <1..1 09ic_vec t or, it is necessary 10 use an addi­
tional package from the iee'" library. st<1..1ogic_una i gned. al L which 
defines unsigned numo.r operations on lype st<1..1 ogic. Following the process 
that perfonns reset and countin g are two Slalcments,one which assigns Ihe value in 
coun t 10 output Q and the olhor which defines Ihe count out signal CO . A .. ·hen_ 
el,.. stateme nt is used in which co is set to I only for Ihe maxim um count with EN 
equal to 1. • 



7_1\ I HUL R""",,,,",,,"" Ibr Shift R<gi><<<, ."J Counu,n-Il<tilog 0 353 

library i_, 
u •• i..- . st,'-logic_1164_all, 
" •• i_ . • "<!Jogi",-wuolgned a ll , 

antity count_4~ i. 
port (CLr; . RI;SlIT, rn , in .~log1c, 

Q , out atdJogic_V<!CtorO 4ownto 0) , 
CO , out .td_loqic), 

.".". count_Lr; 

arcbitactur. behavioral of coun"-'_ r i • 
.:ignal count , .td_lWic_v.etorll _to 01, 
bag-in 

"roc ... (RI;SET, CUo;) ..... 
if (RI;SlIT _ '1' 1 .han 

count <_ ·0000 · , 
.lair 1CLr;'event and ICLK. ' 1'1 .n4 lEN . 'I'll tban 

COlliIt <_ count • · 0001-, 
..... H , 

.nd proc ... , 
Q <- =~, 
CO <_ '1' when count. ·1111- and EN _ ' 1 ' al •• '0', 
.nd b<>havloral, 

o n GURE 7_U 
Il-ehavionol ytlDl. Desaiplioo of 4--bit Bina'l' Count"' "'-;th Di=:t ReKt 

7-11 HDL REpRESENTATION FOR SHIFT REGISTERS AND 

COUNTERS-VERILOG 

Examples of shift regisler and binary counter illustrate the u .. of Verilog in repre­
senting registers and operations o n register coll tenL 

EXAMPLE 7_5 Verilo!: Code for a Shift ReKi,je< 

The Verilog d~iption in Rgure 7-25 describes a left shifl register at the behav_ 
ioral level. A RESI>"T inp\!1 is p'esenl thai directly 'C .. l! the regisler contents 10 
zero. The shift register conl.ins flip-flops. so has a process description beginning 
.... ith a lwaya re .. mhling lha, of. D nip-flop_ The four nip_nops are represented by 
Ihe ve<;lor Q, of type r-u wilb bil. numbered 3 down 10 O. The left shift is achieved 
by applying ( I 10 concatonale the righl three bils of Q and shift input SI. This 
quanlily is IransfeHcd to Q. moving the contento one bit to the lefl "nd lo.ding Ihe 
value of Sl inlO Ihe righlmosl bil. JUSI prior to Ihe p,ocess Ihat performs the 'hifl 



J S4 0 CHAPTER 7 I REG[STER.S AND R EG[STER TI1..ANSFER5 

-..1. &l'}_4..r_v (CLK, RESET. SI, Q,50); 
lDPUt CLK, RESEr, SI; 
output [3,0) Q; 

output: 50; 

.... g [3;01 Q; 

assign 90 ~ 013J; 

a lway"(poudg. CLK or ...... <1".. RES"") ... '" it (RESer) 

Q <. 4' biJOOO; 

d-
O <~ ( QI"OI. SI); 

o JilGU KE 7_25 
11<0""""[ "".ix'll Dcs<riplioo of 4_t>il Ldl Shih K'ii",,, with Pi...,.,l R"""l 

is a continuou, ."ignment statcmcnll h.1l assigns lhe COntent, of the leftmost bit of 
Q to the shi fl OUlput SigMt so, • 

EXAJI.!I'LE 1-6 V'rit,,)!: Code for _ Counter 

Thc Veri log d,,,,,rip,ion in Figure 7-26 describe, a 4_bit binary countcr ~l lhe 
b<;;ha"ioral level. A RESET input i, present that diTCClly Tescts the regi'ter con. 
tcnt, to zero. Th~ ~ounleT contains Hip-flop, and, therefore. lhe description "On­
tain! a process resembling that for a f) fli p-flop. The four fli p-Hops are represcnted 
by the signa l 0 of lype reg and size four, Count ing up is achieved by adding I 10 
Q. Prior to the process that p"rforms reset and cou nting is a conditional contin u_ 
Oui ai~ignmenl stalement that defines the counl out sign.1 CO , co is set to I only 
for lhc maximum counl and EN cqual to 1. Note that logica[ AND i, denolcd 
by&&, _ 

7-12 CHAPTER SUMMARY 

Regi.ters are set. of flip _fl ops, or inleTconnected se t, of fl ip-flops, and combina· 
tional logic, The . im ple.t regiiters are Hip.flop. lhat are loaded with new con­
tent. from their inpll 1S on e,'cry clock cycle. More complex are reg;'ters in 
which Ibe flip-Hops can be loaded with new content! under the cont rol of a .ig­
nal on only selected clock cycles, Regi'ter transfers are a mcan. of representing 
and ~pccifyin g element ary processing op"rationl;. Regisler tran.fers ca n b<;; 
relmed to corre'ponding digilal system hardware. both at th e block diagram 



1_111 Cb>p<.o< Swnnouy 0 3SS 

/I 4-bit Binary Ccwlur with _t 

_d_ counLU_V I(:LI<. RESFI', !lI, 0, COl, 
ilVlt cLle RESET, Ul; 
output (J,O) Q, 
output 00; 

a .. lg" 00. lcount ~~ t'bllli n 1)1 •• l'bl) ? I , D, 
.1_,," (po .. 4q .. cue. or pO_"""", usnl ..... 

H IR£S!'l'1 
Q ~. ''I>0000; _h_ if 11lI) 

o ~. 0 • "WOOl; 
.~ _ _ "h 

o FIGURE ',U; 
1ktIo"icnI Veri..,. Desai", ... ot H .. , 8,...,. Coomer wi'" 1),,,,,, M ..... 

level and al Ille delailed logic leveL i\herooperalions arc "emenlary operal ions 
performed o n dAta ilored in register .. Arithme tic microoperations ,nelude oddi ­
li on and 'Ublraclion, which are de..;rib;:d as regiSler tran,fe,. and are imple. 
mented with corresponding hardware, l.ogic microoper.lions-that is. Ihe 
bi tw;.., "ppliea1i on of logic primilive. ~ueh as AND. OR, and XOR, combined 
wit h . binary ,,'ord-provide ma!Oking and ..,Ieclive com plemen ting on other 
binary words. Left. a"d righl-shifl microoperalions move data laterally one or 
more bil posnions at a .ime. 

Shih rc",ters IKid a new dimension .0 data lransfer, s;""" .hey Ire des'gned 
'0 """"0 infolYl\ll.ion Ia.erally one or more bot posilion. a. a lime. When combined 
" ;lh the abili.y 10 be loaded wilh data, a ~h,ft rcgi5lcr can be ....,d 10 convert <\;o t. 
pr~nted in parallel inlO dala pre..,n ted lIe.iall y. lihw~, Il lhe outputl of the 
regis,er arc accessibl e. a . hift regiS'.r can be "sed 10 co",·e .. dala prese nlcd seri. 
ally into dn1a prCfCmed in parallel, Th i,luternl movement of dma Can also be used 
in hardware structu,e. lha, perform ..,ria l arit hmel ic 0p"ration~ 

Counters are used 10 provide a seq..cnce of value .. often in h,nary counling 
<:or<k •. The simpies' of rounte" ha. no inputs OIher 'han an . oynch.oooU$ ' .:$et for 
ini'iaJiz.ation 10 u .o. This );iDd of roun ler simply oouoto clock pulses. More rom· 
plu ve",ions can also be loaded " 'itll data aDd h.,.., onpulsignah ,h.1 cnable them 
10 oount . 

Muhipluers ~Iec. among mul1iple .rsnsf.r path. eDiering a .-eg'!it.r. Buses 
a.e ohared .egisler tran.fe. pa'h. for muhiplc ,eg;'lers and olfer reduced hardware 
in trade for limitAtion. on I"""ible .imuh aneous Ir.nsfers. In addition 10 multi plex­
ers. three .• ,"te bulle", en hance Ih. imp icmcn tnt ion of bu"", by providing b;dir",,· 
, ional transfer pat h! and reduced """nections. 



356 0 CHAPTER 7 I 1liG1STEIt.S AND REGl~TER TRANSFERS 

REFERENCES 

I. M"NO. M. M. Digilal Desisn. 3rd ed. enSkwood Gilf .. NJ: Prem ice Hall. 
2002. 

2. WAKERLY. J. F Digiml Desig".- Prine'ples and T'raCliu\ 3rd ed. UppeT Saddle 
River. NJ: Prentice Hall. 2000. 

J. IEEE Standard VIIDL Langaog" Rfjf"'''Y Ma""al. (ANS I/IEEE Std 1076. 
1'193: Tcvi, ion of IEEE Std 1076-1987) . New Vork: The In,tit ute of Electrical 
and Electronics Engineers. 19'14. 

4. IEEE SUmdu,,1 De"CTip'ion Long""g~ Based on Ih. Verilog(TM) llimlw"r~ 
De,wipl"'" u",g"ag~ (IE EE Std 1364·1995). New York: The Instilute of 
Electrical and EIeClronics Engineers. 1995. 

S. Tum"A'. D. E .. ANn P. R. MOORBY, The Veri/og Hardwure D~.,cril"i"n 

L~"g""g,' 4th cd. Boston: Kluwer Academic Pubtishers. \998. 

PR08UlMS 

,~, 11,c p lus, (+) indie"t", a more advanced problem and the asterisk (0) indicate, a 
~ solunon "avaIlable o n lhe Comp;ln ion WebSlt" for the tex!. 

7_1. Use manual or compulcr·b~sed sim ulmion 10 demonstrate that the eI""k 
gati ng function in Figure 7-I(c) works properly Wilh Ih c Tcgiste r in Figure 
7· 1 (a) , Use a posili,·e.cdge.lriggcTcd nip· flop wilh Clock as its dock in pul If> 
gellu" tc Load. Be sure to use nonzero gate And Hip.ftop delays. 

7- 2. +Changc lhe O R gale in Figure 7-I(c) into an ANI) gate. and remOw the 
in"erter on Load. 
C~) Perform !he sa me sim ulmion as in Problem 7_1 to demf>nSlrale Ihal the 

new dock gating circ uilry dOCi nOI work correctly. Explain what gocs 
wrong. 

(b) Will the cireui, work ronectly if the fl ip-fl op generati ng LOt/d i. lrigge red 
by Ihe negative rather than thc positive edge of Clock? 

7-3. Assume thM Tegisters RI and K2 in Figure , ·6 h01'1 1"'0 unsigned nu mbers. 
When selcct inp ut X i, eq ual 10 I. the adder---'Subtractor ci rcuit performs Ihe 
arilhmClic opcrmion " R1 + 2's co mplement of R2.--This sum a nd the output 
carry C. are lransferred in to HI and C when X, _ I and a positive edge 
oce urs on the clock. 
(a) Show that if C _ 1. then lhe valu" uansfcrred to R1 is equal to HI ~ m. 

hUl if C ~ O. the value trans/erred to HI is the 2's comple ment of 
R2 - Rt 

(b) Indicate how 1he val ue in 1he C hit can be used 10 de1ect a borrow after 
tho subtraction of two unsigned numbers. 

7--4. 'Perform the bitwise logic AND, O R. and XOR of the t"'o 8-bit operands 
IOOIlOOlalld IlfXrtlll . 



_.n" 0 JS7 

7- S. Giv~n Ih~ 16-bil operand COXIll l l 10101010. whal operalion must be 
performed and what operand must be u",d 
(0 ) 10 clear all e"cn bil positions to O? (A>sumc bit posilion. are 15 through 

o from Idl lo righl.) 
(b) to sel the leftmost 4 bits 10 I? 
(.0) 10 romplemenl the center S bits? 

7-(;. 'Slan ing from Ihe $obil operand 01010011. show the ~alue$ obtained after 
uth shift microoperation given in Table 7·5. 

7-7. 'Modify the register of Figure '·11 SO Ihat il will operale according to Ihe 
following funclion table using mode selection inpuls 5, and So. 

" ~ Regllt ... aperlUon 

" " No ehonge 

" Clear "'3i't.r to 0 

" Shift do .. 'o 
Load poraJkl da,. 

7--8. °A ring counler is • shifl register ... in Figure 7.9. wilh the serial output 
conne<:ted 10 the serial input. 
tM) Starting from an initial stalc of IOOO.lisllhe sequence of stales of the 

four flip.flops afler each shift, 
(h) Beginning in State 10 ... 0. how many Slate. are ,here in the COunt 

seque nce of a n n-bil ring rounter? 

7- 9. A sw;tch-tail ring counter (Johnson counler) useS Ihe complement of Ihe 
serial OUlpUI of a right shift regisler ... its serial input. 
(a) Starling from an inilial state of COXI. lisl Ihe 5<:quence of S181e$ alter each 

.hift unti1111e regisler relu,IIS 10 COXI. 
(h) Ilcginning in ,tate 00 . __ 0. how many Slates are Ihere in Ihe counl 

ICquence of aa ,,·bit .witch-tail counle,? 

7- 10. How ma ny flip.Hop values are complemented in an 8·bil binary ripple 
counler to reach Ih~ ne"t count "alue aft~r 
(a) 1I1O[11[? (b) Ol1ll1l1? 

7- 11. + For the CMOS logic family. III<: po"'er ronsumplion is proportional to Ihe 
,um of the changes f,om I-to-O and 0-10-1 on all gate inputs and output. in 
the circuil. When designing rounters in very low power circuits. ripple 
rounlers are preferred over regular .ynchronou. binary rou nlers. Carefull y 
count Ihe numbers of changing inpulS and OUlpUI,. induding those related to 
the clock for a complele C)'cle of values in a 4-bil ripple counter "ersu~ a 
regular synchronou, counler of Ihe <arne length. Ila",d on Ihi' examinalion. 
explain why the ripple counter is $uperior in term, of power con,ump.i'm. 

7_12. Conslruct a 16-bh "'rial-parallel rounter. using four 4-bil parallel counters. 
Supf'OS" all added logic is AND gal'-'$ and serial conn~"Ction< are employed 



lSI 0 CIIAPTEIl 7 I RF.GtSTIIlS AND IlEGt~ "Il!.ANSFOlS 

~Iw!!, Il, [00' ~"I'B lliU" 1(, m"~"m ""mk, J l~n pl~ '". 
ch"in thai a ,ignal mu" propagate through in !be 16·bil rounter? 

7_1J. tA 64_bil synchronou, parall el COunler is In be designed. 
1M) ])raw the logic diagram of a 64-bil parallel counter. u, ing S·bi! parallel 

routt!er block. and two level. of parallel gating ronnedions between the 
blocks. In lhese bloch. CO is nOi dri"en by EN. 

(bl WIIa! OS the ralio of Ihe muimum fr~""'ncy of ~"tion oflh .. rounte r 
10 tlla! of a 64-bil...,ri.aI .parallel roumer? A5Sume that tile D fI,p'tIop 
propaga!J()Illime" ,,,itt the delay of an AI'\"D gate and thal lhe niJ>"t\op 
ilCtUP time i, equal to the delay of ltD AND gale. 

7- 14. Uunl the synchronou, binal}' roUn ler of Figure 7·13 and an AND gale. 
con, truct II. counler that counl. from 0000 Ihrough 1010. Repeal for a coum 
from 0CUl to 11 10. Min imize Ihe numbe r of inpu ts 10 lhe AND late. 

7-15. Uling two binary counte .. of the type shown in Figure 7·13 and logic ga!e5, 
conSllucl II. binary COUntC' that cou nlJ from decimal 9 !hroug" de<:imal 129. 
Add Itn addilional input 10!he C<,}Ilnler Ihal initializes il lync hronOU!lly to 9 
" hen Ihe siltlal lNIT" I. 

7- 16. °Verify the flip-Hop inpu l equations of the synchrotlOU"! BCD rounle. 
specified in Table 7--,). Draw lhe logic: diagram of lhe SO> COunter "';Ih a 
COUn t enable inpUI. 

7- 17. 'Use I) nip_Hops and galeS to design a binary counter " 'i llt each of the 
following ,epealed binary sequences: 
(_) 0.1.2 (b) O.I.2.3.4.S 

7- 18.. Use I).type Hip·flop< and ,ale, 10 design a counler ""ith the following 
,epealed binal}' seq"",n",,, O. 1.3.2.4. 6. 

7-19. Use only 0 '1)1'" flip-flops 10 design a COUnle, ";ll1lhe follo\O;ng repeated 
binary seq"",n",,: O. 1.2.4.8-

7-ZO. Draw!he logic diagram of a 4·bil rcgi<le. "'lh mode seleclion inputs S, and 
So. The ,elister is 10 be operated accordina 10 tile following function lable: 

'. • Regilier Oper~llon 

" " So thange 

" 
, Clear reJi>tcr to 0 

" CompIr .... n' ""'put 
Load par.llel doll 

7-21. ·Show 111. diagram of the IInfdwar~ lh.t implements th e re8i.ter transfer 
, ,,.tenlenl 



!'robIcm. 0 359 

7- 22. The oulpUIS of registers 110. RI. fa. and RJ arc conne<1ed through 4·, ... 1 
multiple~ers to t~ inputs of 8 founh regiSter R4. Each register is 8 bIts long. 
The required translers. as dicta ted by four control variables. are 

C~ : H4 .... RO 

C,: H4 .... R I 

Ct : R4 .... fa 

C): R4 .... Rl 

The control vanables are mutually ucluSive (i.e" only one variable can be 
eq ual to I al Bny time) while lhe other three are equal '0 O. AI..,. no 
tra n,fer into R4 is to occur for all control vanable, equal to O. (a) Usi ng 
regiller, and a multiplexer. draw a d~tailcd logic diagram of the hnrd w.re 
tha t implemcnll a single bit of these register .. ansfers. (b) l)raw a logic 
diagram of the limple logic thai maps the control variablCli as inputs to 
outputs that au the two se lect nriabl« for the multiplu"", 10 OUtp UI. 
that are Ih. load signals for regi,ten. 

7_11 'Uling two 4-b,t r<:gI'te", Rl and H2. and Ao'lD gates. O R ptd. and 
in>"erters. draw one bit slitt of I~ logic di.agnlm lha, implemcnu all of the 
following $latements: 

Co: R2t-O 

C,: H2 .... H2 

Cear fa synchronously wit h the clock 

Com plement R2 

TraMf.r Hlto H2 

lbe control variables are mUlually uclusi..., (i.e.. only one variable nn be 
equal 10 I al any lime) "'hile 11M: otlter tWO are equal 10 O. i\1so, no t",nsfer 
into fa is to Otto, for all ront rot variables "'luBlto O. 

7_24. A register <;ell is 10 be designed for tn 8.bil register A Ihat has Ihe follOwing 
rcaister tmnsfer functions: 

Co:A .... A,,11 

C ,:A ...... Av'B 

Find optimum lor: using AND. O R. and NOT ~ale5 for the 0 ' npul 10 the 
o flip-fIop'n the cell 

7- 25.. A rcps.er cell is to be d«igned for In S.bit regislcr RO that hItS the 
follow' n& rcgistcr monsfer functions: 

S,·S,,:RO ...... O 

S, ' So:HO .... HOv Rl 



360 0 CHAPTER 7 I REGISTERS AN]) REGtSTER lRANSFERS 

J,tMJJUI 
S,'So:RO<---ROARI 

Find optimum logic using AND, OR. and NOT gates for the D input to the 
D flip-flop in the cell. 

7- Z6. A Tegister cell is to be designed for register B, which has the following 
registeT transfers: 

S,:B +- 8 + ,1 

S",B<---B + I 

Share the combi nat ional logic between the two transfe rs as much as 
lK>Ssihlc 

1_27. Logic to impkm~nltran ,fcrs ;!mong lhree Tegi.lers. NO. R I . and R2. is to be 
implemented. Use the control variable as.u mpt ion, gi"en in Problem 7_2. 
The register tran sfers ;!rc", follo"'-,: 

CA: R I+- RO 

CB: RO ..... R1.R2+-RO 

Cc: RI ..... R2.RO ..... R2 

Using rcgisler,; and dedicated multiple' er$, dr"w a detai ted logic diagram uf 
the hardv.-arc lhat impleme nls a single bil of thes.c register transfers. 

Draw a logic di agram of .impte lugit that eom'erts the control variable~ (.\. 
C .. and Cc as inputs to outputs thnt are the SIOLEcr in puts for Ihe 
mult iplexers and LOAD signa ls for the registers. 

7- 28. "Two register tramfer , talcme"ts are gi" en (otherwi,e. ]{ I is unchanged) 

C,: R I+- Rl + R2 

C,Cl : RI ..... HI + I 

AddR2l0RI 

Increment HI 

(a) U,ing a 4·bit co unter with parall ello.d a, in !-.gure 7_13 and a 4·hit 
adder as in FiguTe 5·5. draw the logic diagram that implements these 
register transfers. 

(b) Repeat part (a) using a 4-bit adde r as in Figure 5-5 plus external gates as 
needed . Compare with the impleme ntation in I"'rt (a) , 

1-29. Repeat Prohlem 7- 27 using one mull iplcxcr·bawd bus and one direct 
connection from one registe r to a nother instead of ded icated multiple xers. 

7_~. Draw a logic diag"'m of abu, s)'stem similar to the one ,ho"'n in Figure 7.7. 
but usc three-state buffers and a decoder instead of the mu lliplcx cTS-

7-31. "A ,),.Iem is 10 have the followi ng sct of register transfers, impleme nted 
usin g hu,es: 



C,' ROf- RI 

Cb, R3f-RI. R I f- R4. R4f- RO 

C,' R2f-R3. RO<-R2 

Co'R2<-R4.R4 <- R2 

l'robI<nu 0 361 

(~) For "aeh de.tin.tion register. li,t all of the sou""," regi.tem 
(b) For eac h sou""," register. list all of the destination r~gi.teffi 
(~) Wi th consideration for wh ich of the transfers must occur simultaneously. 

what is the minimum number of buses that can be used to impicment the 
set of transfers? Assume that each register will h.we II single bus as its 
mput. 

(d) Oraw a block diagram of the system. showing the rcg.istcrs a nd buses and 
the connccti<>nS between them. 

7-32, The following register transfers are to be executed in, "t most. two clock 
cydes: 

RO <- RI 
R2<- RI 
R4<-R2 
R6 <- R3 
R8<-R3 
RY<-R4 
RIO<- R4 
RI I<-RI 

(a) What i. the minim um number "f ~uscs required? Assume thaI only one 
b,,~ c.n be auached 10 a reg.ister input a nd Ih"t any net conne<;led 10 . 
register input is counted 0$" ~US-

(h) Draw a block diagram conne<:li ng register.< ~nd mu ltipicx" .... 10 
implemen t the tra nsfem 

7-33. What is the minimum number of dock cycle, requi red to perform the 
following set of register 1ransfers usi ng two buses? 

RO <- Ri R7 .... RI 
R2 .... R3 
R5<-R6 

Assume th.t only one bus can be attached to a register input and that any nel 
connected to a register input is counted a. a bus. 

7- 3-1. ' The con tcnt of a 4-b;t register is in iti"Hy (lOOO, The register is sh ifted eight 
time. to the right. with the sequence 10 11(0)1 a, the serial in put. 'lite 
IcftmO'it bit of Ihe SC<Juence is applied fn',,- What i< the co nt ent of the 
regi<ler afler each .hift? 

7-.\5 • • The serial adder of Figure 7·22 uses two 4-bit regi<tcrs. Register A holds the 
binary num ber 0111 and register B hold, 0101 The carry nip .nop is initially 



362 0 CHAI'TER 7 I REGISTERS AND REGISTER 'JRANSFERS 

reset to O. List the binary values in register A and the carry Mip.Mop after 

• 

each of four shifts. 
, All files referred to in the remaining problems arc a_ailable in ASCI t lorm lor 

simulation and editing on the Companion Website for the text. A VHDL or VeTl · 
log compiler/simulator i. "ece.,;ary for the problems or portions of problems 
requesting simulation. Descriptions can still be written, however. for many prob· 
lem. without using compilation or . ;mul,,;oo. 

7- 36. 'Write a beha"ioral VHDL description for the 4·bit register in Figure 7_1 
(a) . Compile and . imulate your descript ion to demonstrate correctness. 

7-37. Repeat problem 7-36 for the 4·bit register with parallel load in Figure 7·2. 

7- 38. Write a VHDL description for the 4·bit binary oounter in Figure 7-13 using a 
register for the 0 6ip-60ps and Soolean equations for the logic. Compile 
and sim ulate your description to demonstrate oorrectness. 

7- 39. ·Write a behavior Verilog description for the 4-bit register in Figure 7·' (a) . 
Compile and sim ulate your description to demonstrate correctness. 

7-40. Repeat problem 5·39 for the 4·bit register with parallclload in Figure 7·2. 

7-41. Write a Vcr ilog description for the 4-bit binary counler in Figure 7-13 using a 
register for the 0 Hip ·Hop' and Soolean equ"tions for the logic. Compile 
and simulate your description to demonstrate oorrectness. 



o -• -

'j , .,,' "'." ,,0, "n~O~ -, -".".' - , a· "'. ,. " , ~ ~ii'S.&-~ ~ ~;~!i,Q ~[~~., i; ~~ilg.~:1 
<> ::"' ~c!!" CO~!~ 3:,,3 'i,~ " Q!J..@lS'g 
~Ol§;;-~s. ~~,~;r a -!.!i[;~ ~ ~p, ~-g ~ .. i .. to <II <3 C ", ,,, It:> ~ 5'", '~ii''I'~,"L [iih~ ~ 2:"i~' =-S-~S!.~l":3' ­
~" ~g,"I' ;;' '''i'S2.''' il ., = 1O~~i5. ~ 'C:-< 
~ ~_¥. i ~ <Ii '" 1\" g ;,.. iii is. = ?I ~ \l. ~,.. ~ ~":E 
;'C~ 33, <> 3 1< ., ";/O c z 3'" g-g~~l~ ii ~.H ~i[~ g· ~.H]~~~i­
!h~~.i~-8.§ [~i~ ~i§' ~- R~].2 ~! g i .. - sil";<>,,,,,,, ;!II ""'"£ _ ~3g c 
~ t ;ld ~~,~ ~ ~ ~ ~~~[hi~~ar 
~;'l'" 53 ~ ~i"~~ ~ &~.! 2,liI" -"i>: c~ " 
i 'l·n 'P" fh' ",.!.,'.! Qi(-~ii;i' :5"5"',.." -g!l"' :;! .2 ;';li;oi!!.ii'" 
0I-~!. _ .. 3 [ .. ~ ~2: s- ~.- ~ ~~I<>"'5!:Siil'll. 
ii",3"i'>_'~iIi ., ,.. 3"" 38s-odl. ,:!.i!.s -i·i'§~'g. H,-, 3 .8 q: ~; -~-" 3 11'0 1> "ai.@i.,,,, _ ",;",,,3 _ co 
-l· ;;;?g:I: 3 ::ro; "' i! :S ' ~~j' i3.!:!Q ~!il" "' '' ''' 12" 5" 0" Il. ,.. 3"'3" 11: &"' $~-~~fo'!i!:~Cl~ ;i ;;'!!,~ ~~I-~" 5" i!1 
., "'-,..-{I):> ~ "'_.-" ... '"~ 11~,,"t:T 
~- .3 !<l~P ~~H_ ~ ~~1i5 ~~ £g:hrh: 
~ i~:il~~"'~~~ r~i~~ig~~~~a 
'. l[.~ 'H' ~ ,,~~ '"h.i:"i ~ ii "g ". ~ ~" :Ii ~ ~ <:l i" .,--g . .. ;! ~ 9' Ie. 
'~_~;'\. ~Q. ~i".~ @2.'" g~2."',~€",' 

"'''' ~ => " <; ::> S ., ~ .. <i'i c. 
3 &.~ ~ h.5·~ * ~ii ~~ li!"g~~~ 
!!I ."Ii· g3? Ol '·qi fl~ ii% , " . . . I - - ,,-g. 'l'j , 
"!. co &. S!. => 9 '" "," c. 

~VJ 
tim 

D 
n~ Oz 
Zn >-l _ 
?=I Z 
00 
t'""" 



364 0 CHAPTER 8 I S~QUENCING ANI) CONTROL 

8-1 THE CONTROL UNIT 

The binary informalion 'Iored in a digilal computer can be classified as eilher dala 
or c<K1!rol infonn. lion. As "'e ",w in Ihe previou. chaplcr. dala is manipulal~d in a 
dalapalh by using m~ralions implemenled wilh regi.ler Iransfers. These 
operations are implemented "itb adder- sublracto ..... hifle .... registers. multiptucrs. 
and buses. The conlrol unil provides signals Ihal activate Ihe various microopcra­
lions wilhin Ihe dalapalh 10 perform Ih. specified processing lasks. Th. control unil 
also delcrmin r:s the seq uence in which the ,·arious aClions are performed. Because 
Ihe logic design of a dir,ilal syslem is oflen lTealed in Iwo dislinCl pan" Ihe r.gisler 
and regi,ler Iransfer design for datapalhs was oov.rcd in enapler 7 and the design 
of Ihe conl'oJ unil is oovered in Ihis chaple •. 

G.nerally. Ihe liming of all regisl .... io a synchronous digilal syslem is con· 
Irolled by a master clock gencralOr. The clock pulses are applied 10 all Hip_Hops 
and regi'te ... in Ihe syslem. including Ihose in Ihe conlrol unit. To prevent clock 
pulses from ch~nging the 'I,n. of all registers On every clock cycle. SOme regislers 
haye a load connol signal Ihal enabl ... an d disable. Ihe loading of new dala inlo 
the reg •• ler. The binary variables thai ronl'ol Ihe selection inpulS of multipluers. 
buses, and pr<><:tSSing logic and Ihe load control inputs of regislers are genera led 
by the comrol uni!. 

The conl'oJ unil Ihat generale. lhe signals for >C<juencing Ihe microoperalion' 
is a sequential circuil .... ilh slales Ihal dictale Ihe comrol signals for the s)"Slcm. AI 
any give n time. the state of the sequential circuit activates a p'ese,it>cd sel of 
microoperations. Using slalU, condi lions and control inputs. Ihe ",quentia l comrol 
unit delermincs Ihe next slale. The digil.l circuil Ihal aclS a. Ibe conlrol unil pro­
vides a scquen"" of signals for aClivaling Ihe mic,ooperations and also delermines 
its Own nexi siale. 

Based on Ihe a.·crall sy.lem design. there are 1 .... 0 dislinci types of conlroJ 
unils used in digilal syslems. one for a r-rogrammable ')"Slem and the Dlher fOT a 
nonprogrammable sySlem. 

In a p'ogrammabl~ s)·srem. a porlion of Ihe input 10 Ihe processor consist. of 
a sequence of jn"",c,jOn$. Each in\lruction specif,es Ihe ol)Cralion that Ihe sySlem 
is to perform ..... hich operands 10 use. where 10 pia"" Ihe result, of Ihe operalion. 
and. in some cases. which instruction to execute next. F<)T programmable S)'llems. 
Ihe inSlruClion$ are usually siored in memory. e;th., in RAM or in RD.\{. To exe· 
cUle lhe instructions in oequence. il is necessary to provide th. memory address of 
Ihe inst'UClion to be executed . This address comes from a .egisler called Ihe pro· 
gram collmer (PC). As Ihe name implies. the PC has logic Ihal permits illo counl. 
In addition. in order to change Ihe seq uence of opcralions using decisions based on 
stalUs infonnation from Ihe datapalh. Ihe PC needs parallel load capabili ty. So. in 
the case of a programm.ble system. the ron"ol unil ronlains a PC and associaled 
decision logic. as well as Ihe necessary logic 10 imerprel Ihe in'lruclion. Exum;"g 
an instruclion mean. aclh·:uing the necessary sequen"" of microoperalions in the 
dalapalh required 10 perform the operalion specified by Ihe ins1n>C1ion. 

For a mmprogrommable sprem. the comrol unil is nol responsible for ob,ain. 
ing instructions from memory. nor is il responsible for sequencing Ihe eXe<;mion of 



those instructions. There is no PC or similar regi.ter in such a system. Instead . the 
control unit detennines the operations to be perform"d and the sequence of those 
opera lion" based on ils inputs and the SlatllS bil' from Ihe datapalh , 

Th is ch.pler focuses on non programmable system design , It ill uslrates the 
use of algori thmic state machines (ASMs) for control unit design plus special ­
ized techniques for ASM implemenlalion. Programmable ,),stcms are covered in 
Chaplc,.,; 10 and 12. 

8-2 ALGORJTHMI C S T ATE l\1ACHINES 

A processing I .. k ca n be defmed by register transfer microoperations controlled 
by a sequencing mechani,m. Such a task can be specified as a hardware algorilhm 
that consists of a finite number of procedural sleps thai perform the processing 
task. The most challenging and creative part of digit al design i. the formulalion of 
hardware algorilhms Ihal nchie," the required objecti,·es. A hardware algorithm 
can be used as a ba,is for bolh the data path and the control unit of a system, 

A flowchart is a conve nient way to specify a sequence of procedural sleps and 
decision paths for an algorithm. A flowcl'" rt for a hardware algorithm must have 
speci.1 ch.rnCleristi", Ihat tic it closely 10 Ihe hardware implementation of Ihe 
algorithm, As a consequence. we use a special floweharl called an a/gor;I"mic Slalr 
machine (ASM) chart to deli ne digital hardware algorithms. A .Ulle ",achille is j ust 
anolher term for a sequent ial cireuit. 

The AS M chart resem ble,. conventional Howchart. but is interpreted some­
whal differently. A conventional Howchart describes procedural slep' and deci,ion 
palhs wilhout a ny concern for thcir relatio nship 10 time. By contr""l. thc AS"·] 
chart provides not only a sequence of events, but is distinguished by the faci lhal it 
describes Ihe liming relalionship t>clween lhc Siaies of the control unit and Ihe 
datap.lh aClions that occur in the stales in response to clock pulses, 

The ASM Chart 

The ASM chart contains three basic dements: the state box. the scalar decision 
box. a nd Ihe conditional output box, as illustrated in Figure 8·1. For con,·enience. a 
founh dement. t~ e >"ector dcci,ion bo~, h;ts been added. This addiliona l compo­
nent simplifies representalion 01 mulliway decisions and eSlablishes a correspon­
dence belween HDL represenlalions .nd ASM Charls. 

A state in Ihe control sequence is indic.ted by a stale box. as shown in Figure 
8-1 (al . The .Ulle box is • r""t.ngle conlaining register Iransfcr opera lions Or outpu t 
signals that are acti" aled while the cont rol unil is in the state. Implicitly, activalion 
o{ an outp ut signal means .ssigning a value of I 10 ' he SIgnaL The symbolic name 
lor the state is placed at the upper left comer of the box. and the binar), code for 
the Slate, if assigned, is place<! at Ihe upper right corner of the box. 

Figure 8-1(b) shows a specific e xample of a slate box. The stale has thc $)'m · 

Ix)lic name IDLE. and the bi nary code assigned 10 it i. COl. Inside Ihe box is Ihe 
register Iransler R <---- 0 and the output RUN. The regisler transfer indicales thai Ihe 



366 0 CH"'PTER 8 I SEQUENCING "'ND COr-ITRO~ 

En'l)' En'l)' 

I B,ool)' 
IDLE l ~" c_ ~ 

Rosi<'" "1"""';"" ,., 
<>r ""tPII' eo, 

I I 
E." 1::, ;1 

(.) St.,e bo. (b) E .. mp!< 01 ..... box 

R'~"'<t "1"""';"" 
<>r ov'put .,." 0 

fu" 1 

! 
E:.i, 

(e) c..na;t""'" ""'PII' bo> 

o HG UREII-I 
ASM o.ar! Elcmen" 

(e) Sc.l>. <Ie<:isioo box 

"'i, 2" - I 

regi$te< R is 10 be resel 10 0 on any dock pul>e Ihal QC<;urs while Ihe control is in 
state IDLE. RUN indicate. thaI the output signal RUN i. 10 be 1 during Ihe lime 
Iha, Ihe coniroi i. in Siale IDLE. RUN is 1 for any Slate box in whi<:h il appears 
and i.O for any Slate box in which il does n01 app"ar. 

n'e sc~/nT ,/~cisio" btu dcsc<ibes the effect of an inpUI on Ihe <xmlroL II is a 
diamond-shaped box wilh lwo exit palhs, as shown in Figure 8-1(c). The i"pUi COn­
dilion i. " s;ngle binary input vari~ble or a single Boolean expression dependenl 
only upon inpUls, One exil palh i. laken if the input condition i. lrue (I). and the 
othe< i.taken if lhe input condition is false (0). 

The third elentent. Ihe condilio"tI/ ompul btu, is unique to the ASM chan. 
The oval shape of the box i, .hown in Figure g·l(d). The rounded COme ... differell­
liale it from the 5Iale box . The cnlry path IQ a rondil,onal OUipUi box from a $tate 
box musl pass Ihrough one or more decision boxes. If Ihe conditions "pecified on 
lhe palh through the decision boxes leading from lhe "t ~te box 10 a conditional 
OUlpUi box are satisfied, Ihe register Ira"sfe~ or OU tputs listed inside the rondi­
tional ou,put box are acti,·.ted. 

TIle _ tk<-i.tion btu """,",'n in Figure 8.]{e) describes Ihe effert of a vector 
funCliQn Qf input. on the rontrol. It i. a hexagon-.haped bo~ with up 10 2" e~it 

paths for an n-element binary ,·ector. The inpul condition is a vectm of " ,. I 
bina!)' input variables m Hoolean e>pressions dependcnt uport only Ihe inpuls An 
exit path is taken if Ihe veclor value match"" the label ror rcspond ing to the e~;1 

path. 



8-2 I Algori"",,;" S<ate M, chin .. 0 367 

IDLE r""ry ASM BLOCK 

AVAil 

1 
I;.i, " START 

, 

( '-0 ) 
f 

~ """'/ J. 00 01 10 IlJEX;" 
MULO MOW 

MUll MOW 

o FIGURES·! 
AS),,! Block 

An AS!>! Mod consist, of one slate box and all of the deci,ion and condi· 
tional output boxes connected between the . tate box exit and ent ry paths to lhe 
same or other state boxes. An example of an ASM hlock is shown in Figure 8·2, 
The block represcms decisions and output aClions that c.n take place in Ihe state, 
Any outputs for which condilions are satisfied within the ASM block are aClivated 
in Ihe block. Any register tran,fers for which condilions are satisfied within Ihe 
ASM block will be execUied when Ihe clock evcm occurs. This same clock evenl 
will also Iransfu conlrol lo the next state as specified by decisions wilhin the AS.\{ 
block. For the block in Rgure 8-2, the ,talc is IDLE. While in the siale IDLE. Ihe 
OUlpUi AVAIL is equal 10 L If START is O. then the next state is IDLE. If START 
is I. Ihen at Ihe clock evem.A is cleared 10 all 0',. and, depending on Ihe value of 
the "eclor Q( I:O), the nexl slale is MULO. MU Ll . MULl. or MULl , In Ihe figure. 
Ihe enlry path and the five exit paths for the AS)"1 block are labeled .t the bound­
aries of the ASM block , 

The AS M chart is really a form of state diagram for Ihe sequcnlial circuit part 
of the control unit. Each state box is equivalcnt to a node in the state diagram. The 
deci,ion boxes are C<jui"alent to input values On Ihe line, thaI connect nod"'! in the 
diagram, The register I,ansfers and output, in lhe state boxc~ and the conditional 
o utput boxes correspond to the outputs of the sequtntial circuit , OUlput, in " state 



368 0 CHAI'TER 8 I SEQUENCING ANO COrvTROL 

box arc IhO§C Ihal ",ould be specified 00 a slale node in Ihe slale diagram wilh a 
Moore model dependency. OUlputs in a condiliOllal outpul box correspond 10 Ihe 
input valu.,,; on the lines conne.:ling stales in Ihe stale diagram. Since theS<! depend 
OIl the inputs. a Mealy model dependency is pre"'''l. If all dependencies in an ASM 
are M""", model dependencies (i.e... th~re are no conditional OUlput bo~es). the 
ASM is a Moore modeL. [f lhere are one or more condi lional bo~es ";lh Mealy 
dependency. the ASM i~ a Muiy model. 

Tim[ng ConsIderations 

In order 10 clarify lhe timing con.ide"" i",,, for the ASM. ".., uSC tile sample ASM 
block in Figure 8-2. n", timing of the events related to stale IDLE is illustrated in 
Figure 8-3. In considering the timing of the", e\"ents. re.:ali lhal only positive-<:dge­
Ir;,ggered Rip-ftO!J$ are used. During clock cycle [. the control unit is in present stale 
[O LE. OUlpul AVAIL i~ I. and inpul STARTis O. Based on the ASM block. w""n a 
positi,·" ~Iock edge 0ttUr$. the stale r"mains at rOLE. and AVAIL remains at I. 
Also, the comem. of register A remain unchanged. In clod: cycLe 2. STA RT 
becomes I. So when the ne~1 positive clock edge occurs. register A is cleared to O. 
With START at L Q(I:O) is examined and found 10 he 01. For this value. wh~n the 
clock edge 0ttUr$. th" nUt .ute bcoomcs MULL lbe new .tate MUll and the new 
value of A botb app"ar at the beginning of ~lock cycl~ 3. lbe value of AVAIL 
heromes D.since AVAIL docs nol appear in llle Slate box for Slate MU Ll . NOIe lhat 
the output AVAIL _ 1 appears oonrurrcntly ,,;\h Ih" pres<:nt stale lD t E. but the 
result of the register transfer for A appears concurrently wilh the next state MUtl . 
This is bcrouse OUlputS ooxur as)"JICbronou~ly in response to $tal~ and inpul ,·alues. 
""t register !ransfen and .tate changes both wait until tile next positive clod edge. 

I Clod <),<"1<2 I O<:><k <)'<Ie J I 

~-===~"-=====~"~======I START _ 

SlOl< lDLE X MULt 

o FlG U HF.1I-3 
ASM Timin, Bcbavioo-



6-1 I ASM 0.." Ex. mpl., 0 369 

10111 Muitipl"",," 

10011 Muitip"", 

10111 

10111 --10111 
110110101 

_ .. 
o ~'IGURE 8-4 

Hand M"lhplioa'ion &amplo 

8-3 ASM CHART EXAMPLES 

A binary multiplier is used to iUUSlralC ASM chan formulalion, The mu ltiplier 
multiplies two ,,-bit unsigned integers to produce a m _bit integer result. 

Binary Multiplier 

In lhis example. we introduce a hardware algorithm for binary multiplication. pro­
pose a ,imple dalapath and control unit for its implementation. and then describe 
its register trans{crs and control b)' use of an ASM. The s)'stem used for illustration 
multiplie. two unsigned binary number .. In Section 5-5. a hardware algorit hm to 
e,ecute this mul tiplication without using srorage clement. resuhed in a combina­
tional multiplier with many adders and AND gate .. In contrast. the hardware algo. 
rithm developed here results in a sequenti.1 mUltiplier that useS o~ly o~ e adder 
and a long shift register. The .Igorithm is ill ustrated, the register transfer structure 
proposed. and the ASM chart formulated. 

MULTIPLICATION ALGORfTMM The multiplication of two unsigned binary numbers 
is done with paper and pencil by succcssi,'c Shifts of copies of the mul .i plicand (0 
Ihe left and an addition. The process is best illustrated with an aClual exa mple. Let 
uS m~ltiply the two binary numbers 10111 and 10011. as <ho".., in Figure 8-4. To 
carry out the multiplication. we look .t succe"ive bil:\ of the mul1iplier. least sig­
ni ficant bit first. If the multiplier bit is I, the multiplicand is copied down for ~se in 
(he addition 10 foll ow. 01herwise O's are copied down. The numbe~ oopied in suc­
ce"ive lines are shifted one position to the left from the pre>'ious ~umber copied, 
(0 align Ihem with (he respective mU lt iplier bit being prottS$ed. Finally, the num· 
bers are addcd and their sum fOnTIS the product. NOle that the product oblained b)' 
multipl)'ing two ,,·bit binary numbers can ha,'c up to il, bit' for n :1: 2. 

When the muhiplication procedure is implemented with digi(al hardware. it is 
useful to cbange the process ,lightly. First. instead of ha" ing a digital circuit that 
adds n binary numbers ,imultancously, it i, less cxpensive to provide a circuit th.t 
adds just Iwo numbe~ Each (imo lhe muhiplicand or O's are copied. the)' are 
immediately added to aparTial product. The partial product is stored in a register in 



370 a CHAPTER B I SEQUENCING ANI) COl'ITROL 

pr~par'l;oo tor Ihe $h:lt aetlon 10 'ollow_ !koood. ;nslead of sl..:fI;og Ihc cop,es of 
the multiplicand to th~ 1~lt. th~ panial product is shifte<l to th~ right. This le.~es 
Ih~ panial producl and the copy of Ihe muhip~cand in Ihe same relali~e posilion 
as Ih~ Idt shill 01 the multiplicand did. But. more importanl. instead of a 2 " -bil 
adder. only an ,,·bit adder is needed.1be addition aJ"-a},> takes place in Ihe ""me" 
pos;tions. instead of mo";n8 10 Ihe lefl ooe bit position each limc.'hird. when the 
corresponding bit in tile multiplier is O. there is no need to add all O's to Ihe pani.l 
product. since Ihis does not alter ito resulting value. 

The mulliplication example is relICated in Bgurc 8·5 with these chang"" Note 
Ihalthc initial partial product is O. Each time the multiplier bit being prOC<!>oSCd is I. 
an additioo of the multiplicand. follo"'cd by a right shift. is perfonncd. Each lime 
Ihe multiplier bil is a O. only a right shift is performed. One of Ihese Iwo actions i. 
])erfonned for uch bit o f Ihe mulliplier. $0 in this case. five such actions occur. An 
unsigned overflow occurring during an addition is indicaled in blue. This overflow 
is not a problem. however. si nce the right Shift Ihat immediately follows brings the 
exira partial product bil into Ihe regular most significant bit position. 

MULTlPUER BLOCK DlAGRAII The block diagram for the binary multiplier is .ho"" 
in Figure~. The multiplier datapath is first COIlSlructcd from componcnlS covered 
in previOU$ chapters. All bUI counler P arc upandcd 10 n bilS: counle, P "'quires 
flog:" l bits for counling the processing of Ihe" bits of the multiplier. (r xl dcnot .. 
Ihe &malle$t integer grealer than or equal to .t_) We use the parallel adder from 
Bgure 5.5. a parallel.load "'gister B si milar to I~gure 7.2. and parallel.load shift 
rcgiSle<s A and Q $imilar to Figur. 7·10, Counter P is a '-c<sion of the parallel·load 

" .. I~t \I 

lOOlt -1!!!!! 
101\1 

01011 1 

!Q!!L 
tOOOIOI 
1000'01 

01000101 

001000101 

.!Jill! 
1101 to'OI 
OIlOtlOtOI 

Mul1;pb<ond 
Mul1ip1i<r 

t ",,;,.! 1""'" prod"'" 
Add ",wb{>ta..!.';"'" mut';pti<r t>it ;. 1 

P.",,] pO<Joct .~« _.0<1 bor"", ,M, 
Pat".t ",O<Joct .ft« ,M, 
Add mu"ipl><>"".';D« mu'"p1ier to. ;. 1 

p ..... t proooct .fter """ . "" boforo: .. at' 

P' ''"'t ~ o~", ""if! 

Po"do[ prod<><1 .~'" .M, 
P."", ",odoct or"r ""if] 

Add mu],jpl><>"" ... """ mulliplier ton ;. , 

P." .. I rr"'-'oct ofter 000;1 ... 1 ""'on: "';1\ 
Prod"", of"r r....t .M, 

., l<ote .11.0, "".rn- "n>p>rori/y """"r1<><l, 

o FlGU KE8-5 
H.t<J .... re Mulliplic.aliott Example 



8-3 I ASM Char, Ex.mpk. 0 311 

counter in Figure 7-14 that counts down instead of up, and C is a flip-flop that can 
be either synchronously cleared to 0 Or loaded from C"",. These d.t.p.th com~ 
ncnts are connected a, sho"''' in Figure 8-6. 

The multiplicand is loaded into register B from IN. the multiplier is loaded 
into register Q from IN. and the partial product is fonned in register A and stored 
in registers A and Q. Th is d ual use of Q is possible because we Use a rig.hl shifl of 
the multiplier in Q to examine each suecessi'-e mult iplier bit that appears in Q". 
The right shift vacates the m06t signi6cant bit in regisler Q. This.pace accepts the 
least significant bit of the partial product from A as it is shifted. The n·bit binary 
adder i, used for adding B toA. The C flip-flop stores the carry C""" whether 0 or 
1. from the addi1ion and i. reset 10 0 during the right ohifl. In order to count the 
Dumber of add·shift or shifl actions that arc to oc<:ur. counter P is provi d~d_ It is 
initially set to n - I and counted down af1er the formation of each partial product. 
The value in P is check~d j ust bcfor~ it is decremented. So" operations oc<:ur, one 
operation for each value in /" n - I down through O. Each operation is either an 
add and shift or just a shifL When P contains O. the final product is in the double 
register A and Q. and proces,ing 'lOp'-

The control unit stay< in an initial state until the Go signal G becomes L 
Then the .ystem slans the multiplication . The sum of A and B fonns the N most 
significant bits of the partial product. whkh is transferred back to A. C_ from the 
addi tio~ is tran5fcrred to C Both th~ partial prod uct and the multiplier in A and Q 
are shi fted to the right. The carry from C . hi fts into the most signifiCllnt bit of A. 

j "' Muh;plioc.ond 

Coun"" P R,~"« B 

r "",0 1 " 
Zero deted r (Go) "- Pml.,loddo, 

, 0 " 
~,~ O. Multiplier 

un ;' 
0 - , ShLI, ",,,,1<r A Sh,ft ",,,,1<' 0 

, 
° 

C"",,,,l ~Y'.t. -~ om 

o HG URE3-6 
Btock P'.gram lor B;"ory Mu ltiptier 



J72 0 CHAP'T'ER 8 I SEQUENCING AND CO,,""T'RQL 

the le8$t significant bit of A shifts into the most signlfK:ant bit of Q. and Ihe leasl 
. ignificant bil of Q is discarded. After this right_shift o""ralion. one (additional) bil 
of Ihe pMtial product has lransferred into Q. and the multip~er bits haye shifted 
OIlC position to the right. In this manner. the teast significant bit of Q. Qo. always 
hoLds the bil of the multiplier Ihat Ihe COIllrol unil examines nex\. The control unit 
~decides" whelher to add. bas«d on Ihe value of Ihis bit It also cbe<:b signal Z. 
which is 1 for Pequal 10 zero and 0 for P nonzero, to determine whether the multi_ 
plicalion is finished . Qoand Z are Ihe Status input> for the oonlrol unit. wilh inpul 
G as Ihe only eXlernal control input. The control signals from the oontrol unit to 
the dalapalh activalc the required microoper3l ions. 

MUL...-uER ASM C.......,. An ASM chan giving the oequence of o""rations in lbe 
binary multiplier", shown in Fig""" 8-7. Initially.lhe multiplicand is in 8 and lhe 
mulliplier in Q. The loading of these Iwo ""&isters is !lOt handled e~plicitly by the 
multiplier contrOl unil. As long as .he ASM", in sla.e ID LE. and G is O. DO ""lions 
occur. and .he ASM remains in IDLE. The mu ltiplication process Slatts when G 
b¢oome, J. As Ihe ASM mOves from Slale ID LE 10 Slale MULO. regislen; C and A 
are cleared to O. and the counter P is loaded with the constant n _ L In Slale 
MUUJ. a decision is made based upoo Qo.the least significant bit of Q.lf Qo is I. 
the contents of 8 are added tv those of A. wilh the result Iransf~rred to A and the 
carry lransferred 10 C. If Qo is O. reg;,;ter A and bit C are lef. unchanged. In bolh 
cas.eo.. the next state;s M ULl . 

In sta.e MULl. a rigllt shift is performed on the combined con.ents of C.A. 
and Q. This shift can be expre...,d by the som~whal me.sy liSl of he simultaneo", 
register transfers: 

C <--- O. A{n _ I) <--- C.A <--- Sf A . Q{n _ I) <--- A{O). Q <--- <r Q 

To simplify representation of th;s operation. we add • bit of nOl~hon. using II to 
define a composj,~ ugjSl~r made up of other registers or pieces of Olher registers. 
This <>peml>On. lI. is called concalmaljOll. For exam ple. 

C II A IIQ 

represents a single register obtained by combini ng registers C. A and Q from the 
mOSI significanl end to Ihe least signific.nt end. We c.n use .his composite regiSler 
'0 represent the riglll <hift 

C IIA II Q <--- If C IIA II Q 

as shown in figure !!--7. Recalllh.t we are assuming .h.t Ihe leftmost bi. of Ihe 
result for a right sh ift lakes vn the val ue 0 unless other",ise spocified. so Cbecomes 
O. This is represented explicitly, however. in the ASM char._ since C is sel to 0 in 
another slate as well . The explicit listing allow, C <--- 0 10 be performed by using a 
single con rrol signal for bo.h state .. 

Counler P is decremented in MULl . The value in P i. checked in slale 
MULl before l'is decremented. This illustrates a yery in'portant tin,ing differe"", 
between. Slandard flowchart and an ASM chan. The decision on Z, which repre­
sent. l' K O. follows the register transfer .tate ment that updalt< P in the AS)'l 



S-J J ASM Ch.o" E.OrrIpl« 0 373 

IOLE 

--l 
" , , 

I 
C<-O.A<-O 

P "' n-! 

Mew 

J-
" " 

, 
I 

A .... A + B, ,-'-

MULl 

C<-O.CIIA U Q<-"C I A I Q, 
P<-P-l 

--l 
" , , 

o FIGURE H·7 
ASM Chart for Bin.ry Multiplier 

chart. Since the decision on Pis ["'rformed asynchronously and the regisler trans· 
fer statement is .ynchronous "ilh the next positive clock edge. the de<;i\ion on P 
precede< the update of P. Al the next dock edge. when P i, updated, the result of 
this decision is avail able to delermine the next stato. The Ii.,;t" - 1 times that P is 
checked, its content is nonzero. 00 Sialus bil Z remains 0. and the loop, consisling 
of state, MUUl and MULl, is executed again . The nih time P is Checked. the con· 
tent of P is zero. SO statu, bit Z is I, This indicates that the multiplication is com· 
plete. causing the ASM 10 re!Urn to .tale IDLE. The final producl is a,'ailable in A 
II Q. with A holding the n most significant bilS and Q the" least significant bits of 



374 0 CHAI'1UI. 8 I Sf.QUI:NONG Ar<U CONTROL 

-, "-I ~~, I I R ....... ll I 
r-1j , 

~\ P.,.lkl'-r \ Z<ro <kle<1 

j (Go) " 
RiJII' Shift " 

~,~ 

'I -, M~~;pti« 

u-:f .... I R<&o""r A --I SII;f\_rQ 

' j ~ 

',J 
IOUi 

I I 
--'--

" 0 
, 

C_O, A O-O 
P ... . - l 

r Ml'l 

,-, , 
\ ~ I Q'-"~ U (A .O) I O .....l, I Q.-.. ~. tA.O) I ~ 

1 00 / "'-- '" I 
"' """ " 

/' 

I ~ II O"'''~ I IAI H) I ~ E I O"'''~II(A HI)' 

,0> 

o n <:UMt.: II-lI 
AI •• ma~>'C: Brr .. ry MIIl.iplier 



8_~ I H.rdwired Cootroi 0 37 S 

the product. It i. worthwhile to ree.amine the hardware multiplication e,ample for 
" - 5 in Figure 8·5. this time considering the relationship to the datapath and the 
How of the ASM chart. 

"The type of regi<;tcrs se\cetcd for the datapath correspond to the mierooperalions 
listed in the ASM chart. Rcgi<;tcr A is a shift regi<1er with parallel load that accepts the 
sum from t~ adder. It also needs a synchronous clear lo,..,..,t the register to O. Regis· 
ter Q is a shift register. The C flip-Hop needs to accept the inpul carry and also needs a 
synchronous clear. Registers B and Q abo need parallclload in order to load the mul­
liplicand .'nd the multiplier prior 10 the $tart of lhe multiplication process. 

Figure 8-8 sho .... ~ an alternali,·c multiplier design that uses Ihe .-ector decision 
box in its ASM chart. In part (a) of the rtgure. Shift Register A has been replaced by a 
combinalional rigl,1 shifter that ,hilts I bit to the right. similar to Figure 5·13«). and a 
register with load enable as shown in Figure 1-2. Thi. combines the adder with a com­
binational right shift. ·n,is pennits the number of states used in Ihe ASM chan in Fig­
ure 8~ to be reduced to just OllC. In order to reprcscnl the change in the multiplier 
,iHtapath. it is necessary to write a regisler transfer statement that combines the addi­
tion with the shift. Also. the dmapath change permits Ihe Aip-Hop C 10 be deleted. 
A..suming thalllte combined delay of the adder and right shift (which consists only of 
wires) is nO more than the "dder. the r<."duction in slates in the multiply loop substan­
tially speeds up the multiplication operation. 

To illu,I,"le Ihe ,·cctor decisiol, box .... e have used concatenation 10 combine Z 
and Qo into the .-ector (Z. Qo) which is denoled as Z II Q.,. The decision based on this 
vCl1or;5 shown in the center of t~ ASM chart in Ftgure 8-8(b). There are fom output 
combination~ ror 'he comltin"ions in which Z i$ 1. the next Slate is IDLE. For the 
combinations in ... hich Z " O.the next state is MUL. For Ihe (X)rnbinalions in which QD 
" 1. the output i~ an add.righl 'hi!1 wilh input operand, A and B.and [or the combina· 
tions in which Q~ .. o. the output is an add-right shi'l wilh input operands A and O. 
These are representcd hy the combined add and shift transfers in conditional output 
boxes lor the [our output combinalion5 ,'" Z II Qo-

8-4 HARDWIRED CONTROL 

In implemenling a control unit. t ... o distinct aspects must be considered: the con· 
trol of the nticrooperations and the ",quencing of the control unit and mieroopcra­
tions. Very simply pUI. the first ha, to do ... ith the part of the control that gener~t es 

the control signals. and the second has to do with the part of the eontrol that deter· 
mine> whal happen, next. [[ere. we separate these two aspects by dividing the orig. 
inal ASM specification into t ... O p.rlS: a table Ihat Mfines the control .ignals in 
terms of Slates and inputs. and a .implified ASM chart that represents only transi · 
tion. from state to state Although ... e are separating these two aspects for design 
purposes. they can share logic. 

The control signals are based on the ASM chart. The control signals needed 
for the multiplier datapath are listed in Table 8-1. where we have chosen to exam· 
ine the data path registers and tabulate Ihe microop<:rations for each register. 
lIased on the tabulated microoperations. the control signals are defined. A control 



376 [) C HAPT!;IlS ' SEQUENCING AND COI'ITROL 

[) TA.BLE 8-. 
Conn ... Siplh , ... K....,. Muldplkf 

alocl<~m 
_. --_. 

Iol",,,, ,,*.clon Signal Ha .... 

R<~i'l.r A : "., Inilialize IDtE, G 
A .... A .» ~. MUI.o· Q 
C I AIIQ .... "CI AII Q Shil, <Ie<: MULl 

R<~'lot B: !I_IN """ , I.OADB 

Flip.Flop c: C., Clea,-C IDLE · G. MULl 
C~C_ """ 

Rcl"l"' Q: a .... IN "",,_0 I.l)ADQ 
CMAIQ~ .. CIA IQ Shirl <lee 

Coonlet r: I'_N _' Initialize 
1' .... 1'-. Shifl_dec 

"gnal can be used for aClivalin. mic.oopcroliom in more Ihan one regi5ler. This is 
.ealiOnabie. in Ih .. casco ~1I('e Ihe dal~palh is d<:dicaled 10 only one Operalion. mul­
liplication. ThUs, lhe rom.ol si&nals do nol need 10 be scparaled I'l provid<: Ihe 
generalily required for implemcnling addilional, potentially unknown operalions, 
FinaUy. Ihe Boolean exp.ession fo. eac h conlrol signal is deri.'ed from Ihe local ion 
o. loc.lions of Ihe microope'alion in I~C ASM chart , For example. for register A . 
there are th.ee microopcraiions Ihown in Table &-1: dear. add and load, and right 
shift, Since the elcar Operation always occurs al Ihe .ame time as Ihe c~ar for nip­
flop C and Ihe loading 01 counler P. aU of lhese microopcrations Can be aclivaled 
by the sameronlrol "",al. named [n ilioli= Because C isdeared in Siale MULl as 
... 'eU. howe,·er. we cl>oou: I'l separale '1$ rontrol ligna!. So Initialize is used for 
dearing A and lo3ding P. In the IasI column fOf Initia[ize. lhe Boolean expression 
fOf .. llich In;lia"ze is 10 be act;,·c. as delermined from lbe ASM chart. is liven in 
c~rms of the slate IDLE and ;npul G. Since lnicialize is Co be I " 'hen G is I in stace 
IDLE. IDLE and G are ANI)ed . .... c this point. Ihe name fOf lhe , laiC is trea ted I. 
I Boolean ""riable. Dependin8 on the implementation, Ih.erc may be luch a Ii"",[ 
. epresenting Ihe SlaiC. or lhe Siale may need I'l be expressed • • a function of tbe 
Slate variables. The ligna[ for c~aring C. C1ea._C, is to be a.cIive in Iiale IDLE for 
G equal to l. as well as in Siale MULL, ThUs, G is ANDed wilh IDLE. Dnd Ihe 
resu lt is ORed wilh MULl. The 'llher IWO internal multiplier conlrol signals. Load 
and Shift_Dec. are <k~ned in a similar manner. The final Iwo signa[s. Lo"d_U and 
Lood_Q. load Ihe multiplicand and multiplier from oUlside Ihe mult ipli er syste m. 
These signals will nol be consider~d exp[ icilly in Ihe remainder of the design , 

With the inlonnalion on microoperations removed. we can redraw Ihe ASM 
chat! so Ihal only Ihe informs lion On sequencing i. represenled, 111is modified 
ASM chart for the binary multiplM:. appeul in Ftgure 8·9. NOIe Ihal all 'lf the con­
ditional OUlpul bo~ .. hove been removed. [n addition. any decition box nOl . I (ttI­
ing tbe ""~I Slate is rCIDO\'ed. In ~rticular. in Figure &-7. lhe decision box Q. 



m 00 

1. 
• G 

, 

"ew ., 

MlJ U '" 

• , , 

o FlG UNE H·9 
Seq""l>tin~ Part of AS),! Oar! for (be Ili".ry Multipher 

affected only a conditional output OOx_ One:<: 1hat renditional output box is 
removed. Ihe 1wo exil palh, from decisiOll box Qo clearly go 10 the ""me stale. So 
Ihi. decision box has no df"", (>n the next ,Iale and is remove<!. 

From th i' modified AS M cha n . we can design tne sequencing pan of the 
wntrol unit (i ,e., Ihe parI Ihat represents Ihe next· ,tale behavior). The division of 
oonl rol inl0 nexl-Slale behavior in Ihe fo,m of lhe modified ASM chan and out· 
put behavior in the form of the conlrol signallable ,ho" .. how the ASM oorres· 
ponds 10 Ihc nex(-$lale and output parts of a ,""quen!i.1 circuit. Figure 8-9 
corre'ponds 10 the OIal e diagram of a sequential circuit wilhoul lhe oulpulS spec­
ified, ucepl (hal Ihe repusen!alion' "«od in the diagram for stales and Ira",i­
lions a re different. Because of Ihis correspondence. we can IrCRllhe ASM chari 
as a slale diagram and form a slale lable for Ihe sequencing part of Ihe cont rol 
unil. Then the com rot unit can be designed by Ihe seq uenlial logic design proce· 
dure. as oUllined in Chapter 4. Howe~er. in man y cases.lhis me lhod is diffIcult to 
carry o u' because of the large number of states for a typical control unil. As a 
consequence. we use speciatiud methods for controt unit design Ihat are ~aria · 

lio", of Ihe classical sequential logic methods. We next present and illustrale two 
such design met hods. 



378 C Ct IAI"nR 81 SEQUENCING ANI) CONTROL 

Sequence Register and Decoder 

The seq ~ence regisl.r and decoder m~lhod. as Ihe name implies. U$CS a sequence 
regiSler fur Ihe control Slates and a doxoder 10 provide an OUIPUI signal COrre· 
spondi ng 10 each of the sial ... A r~8iS I ~r wi lh" Hip-Hops ean have up 10 2" slale, 
and an ",10-2" decoder has up 10 2" OUlpulS. o ne for eac h of Ihe .Ialet. An ,,·bil 
""Iucnce rcJiSler is e_nt;ally" ~ip-flops. ">gel her wilh Ihe Msocialed gaits Ihal 
d fW Iheir $lale lransilions. AddiliOllllllogoc ..... y be required 10 produce Ihe nec· 
csury conlrol signal OUlpul .. 

TIle sequencing pan oflhe ASM chan for lhe binary mulliplier Iw Ihrec .ules 
and I ...... inpuLS. To implem<cnl Ihe ASM chat! "'Ih a $njucnce register and ~T. 
"'e need I ...... /lip-flops for lhe regislcr and a 2'10-4-~ne decoder. S,nce lhere ore Ihree 
$lates. only Ihree of the four deoodc:r OIllpulS are used. Allhough Ih;,; is a simple 
example. the proce<lure 10 be oullined "pplieo 10 more comple~ ,ilu,'iOllI as well. 

"Il,e Slale lable for the SI."<Iucncing pari of the control uni t is shown in Table 8--2: 
it is derived directly from Ihe AS.\t chari in Figure 8-9. w~ <ksi8!'l'lC the 110'0 Hi p­
IIops as M, and Mo and lL'lSigIIlhe binary ~al" 00. 01. and 10 to IDLE. MULO. and 
MULl. rcspecth'ely. NUle Ihallho: .npul oolumr\'i "'''e unspecil\cd c" tries (x) wilen· 
C"er lUI input ~ari3b1c is nul used 10 de.ermine the ""X, .ule. The ou.puts of the 
s.eq ... ncing part of 1M con'roI are dcsipalcd by 'he 5Ia'e names. The binary rode for 
lhe prefCnl Slalc de.crmi .... Ihe particular output ~ariablc that is e<j .... ,lo I at any 
gi,-en lime. ' llI l1t. when lhe preocnt 5Iale iJ M,M~ ~ 00. ""tpul IDLE e<juals I. ",·bile 
lhe OIber OUtput. equal O. Since the5e OUlpUlI ~nd on lhe prncnl 5I~le only, they 
c;on be g<:nenled with Ihe 2-10-4-li"" deoodu having input' M,and M. and OUlput, 
IDLE. MULO. and M UL L 

As menlion~d ea rlier. the sequ~ntial circuit can be desi8ned from Ihe state 
table by muns of the ..,quen tial log;c de.ign procedure presented in Chapter 4, 
Thill eUmple has a small number of tlale. and inpul .. "" we eQuid use map" 10 

simplify llIe a oolean function .. In mos. rontrollogi<: application!\, lIowever. the 
number of t . a'e< i. much lar,er. The applicalion 01 tile conventional D,ethod 

[J TA BLE &-2 
State T ..... r ... Seq""".. K<'ti>ter . .... Deroder Par. 
ur M .. ltiplier C"n' roI Unl. 

Input. - G , 

101£ , , , , , , , 
MUU> , , , , 
MULl , , , , , , 

• , 

~ .. 
••• 

Y, .. , , , , , , , , , 
, • 

OKo<Ior Output. 

IOlE MUlO MUll 

, , 
, , , , , , 
, , 

, , , 
, 



H I H • .d...m.l Con""" 0 179 

r~quir~s ~xcessiv~ work to obtain Ibe simplified inpu t equalions for tbe fl ip- floJlS. 
Here, tbe de> ign can be sim plified if we lake into consideration Ih~ fact that the 
de.:oder OUtpull are available for use in the design, Instead of using flip-flop out­
put!; as th~ pr~sent stale conditions, w~ might as w~1I use Ihe oUlputs of th~ 
decoder to obtain Ih is information. These outputs supply a single signal repre· 
senting each of Ihe poosible present slates of the circ uit. Moreover. inslead of 
using maps 10 simplify Ihe flip_flop equalions, we can obtain them di rectly by 
insp"clion of tbe state table. Fo. eumple. from Ihe nexl -st ale conditions in Ihe 
lable. we find Ihat lhe nexl Slate of Mo i. equal to 1 when Ihe present state is 
ID l.E and input G is equa l 10 t or when the present <late is MUll and input Z is 
equal 10 O. These conditions give 

D .... IDl.E G + MUll · Z 

for the D input of lhe Mo nip-nop. Similarly.tbe D inpul of Ibe M, flip-nop is 

D,"" ~ MULO 

NOle Ihat these equations deri,'ed by ill5peclion ffOm the stale lable use tbe slate 
names ralher Ihan Ihe state variable names, sinc.: the de<:<:>der producing Ihe state 
symbols is present. In some cases, it may be possible to find simpler D nip-flop 
input equaliOfls by using the stale variable:5 directly instead of the statC$. We Ca n 
remove redundancy and redu« 005t by writing the Boolean equations for the 
decoder and applying a simplificalion program to the set of control equation .. 

The logic diagrarn for th e control appears in Figure 8-10. It OOnSi!l$ of a twO­
bit regisler wilh fli p-flops M, and Mo and a 2·t0-4·line decoder. The three outputs 

ri' I 
, , 

J 0 , 
, 

=--
V ~ 

I'" , 
I" 

-'" 

a .. 
o I'IG UR£ 8-10 

Conlrol Uni, foc Binary Mutliplicr U.in, 0 .'ic<jUCTlCC R<~1CC ODd a Decoder 



l80 0 CII"PTER 8 I SEQUENCING "ND COI'ITROL 

ot (he decoder are used (0 generate the con(rol outputs. •• wcllll$ inputs to the 
next_ftate logic. The outputs Jnitialiu, CJea,_C, ShifUJec, "nd Load are <!ete,­
mined f,om Table g.1. Initialize and Shift_dec ",e already available ., ,ignals, so 
that only lat>elcd o ut put lines are ndded. Ilowever. as show n in the figure, we must 
add logic aales fo, Clca,_C and Load. We complete the bi nary multiplier de.ign by 
connecting the output. of the conlrol unillO Ihe oonlrol inpun of the dalapal h. 

One Flip-Flop per State 

Anolher po6ilble method of oontrollogic desiJII;' lhe "'" of one nip-Mop per Slate. 
A nip-ftop is uslgned to each of Ihe stalC$, and al any lime. only one of tM nip­
flops OOf1lains • 1. with .11 lhe rCit conlaining O. "''hen Ihe I I. in lhe flip-flop 
as.igned 10 a particular 5tate.lhe sequential circuit is in that "'me state. '!be .ingle 
I propagales IrQm one flip-nop to anQllier under the oont rol of deci,ion logic. In 
,uch a oonRg uralion. each fl ip·flop represents a slate th.t i. presenl only when the 
sing]" 1 is tlored in the flip-Hop. 

11 is ob"ious Ihal. shon of IQme errOf deteclion m oorreelion techniques. this 
melhod uses the maximum number of flip-nop'! I", Ihe sequential circuit_ Fm 
namplc. a sequen tial circuit wilh 12 Slales using minimum >"Iriable encoding 
n«ds four ftip-ft<>p<. "'''th one Hlp-llop per .tatc. t~ tim."t "'quires 12 nip-H<>p<. 
one for each ilate.A t first glance. il may ~m Ihat Ihis method ... -ould ;nc"'ase t~ 
ooot of the ')"llem. since mOre Hip-Hops are Il~d. But tM method offe~ some cost 
advl nlages Ih.1 may not be apparent. One ad".ntage is Ihe simplicity with which 
the logic can be designed-merely by inspeclion of the ASM churl or .tate dia_ 
gram. No stale or e xci tation tablet .re needed if D ftip. no~ arc ~mployed. Thi. 
orrers a s~vin(lS in de.ign eflort. 

Figure 8-[[ .hows the symbol replacement rules fm transforming an ASM 
cha n inlo a ~quenlial circuit wit h one Hip-llap per $ta\~. These rules are """I 
easily applied 10 an ASM chan representing ()fIly ocquencing information. such as 
that of figure 8-9. Each rule speci~es Ihe replacemenl Qf a component 'lfa" ASM 
chart Wil h a logic cireuiL As shown in !-.gure 8-1I(a). the $Iale box is replaced by 
a D ftip_noplabeled with the name of Ihe State. The entry to the Slate box oorres­
ponds to the D input 10 the flip-flop. The uit of the state box oorre~pond. to Ihe 
outpU I of the Hip_nop. 

In Fi8 ure S-l1(b). the scalar decision bo) is replaced by a 2_way demu lli· 
plexer. The signal oorresponding 10 Ihe entry 10 the decision box i$ $Cnt to one Qf 
two exil line$. depending on the value of ,i",al x.1f X i. O. the &ignal i. $Cmlo Ihe 
uil 0 lone : il X i. I. the si,nal is sent 10 the exit I line. s... for example. if the .ingle 
1 in the circuit i. ()fI tbe entry tQ lhe deCIsion box. and X;' O. 11Ie I is pa~ to the 
uil 0 line. The (\cmultiplexer ael.like ..... ·,Ich that directs the I Ihroug.h lhe paths 
In the cireuil CQlTcsponding to paths on lhe ASM cbart. 

In figure R-11(c), the "eclor decision box is replatt<! by an n_,.."y demulti­
plexer. The lignal corresponding 10 lhe cIli ry tQ tile decision box is sem 10 one of the 
1!' - I lin~depending on the "slue of the .i",al vOXlor X '" Xr;. .•• • X ... I• If X i. O.lhe 
~isnal I. selll to the exit 0 line: if X it 9, Ihe .ignal is $Cnt 10 Ihe eXil 9 line. So. for 
example. if the single I in the circuit is 011 Ihe cnlry to the decision box, and X is 9. 



~'" ) 

'"~ 

x..x, .... x. . • 

o tlGUKE lI-U 

~·4 I H.rdwired Cootml 0 381 

Eotry 

TIl 
(.)S1O«oo. 

En.IY 

~, 

(II) Scala, Doci<ioD Box 

Entry 

.~ 
,-'-

(e) VectOf Deti!.ioD Box 

(d)Juoct;"" 

DEMUX 

" '" C 
'" O. 

' . ° e-r- , 

T,o",fofn>a'iooJ RnIc:. fOl" O:mt,oI Unit "ith 0"" F1ip-1'l<>!> pef SlOt. 



382 0 CI-lAPTF.R 8 I SEQUENCING AND CONTROL 

the I is passed to the nit 9 line. The demuhiplexer acts like a switch that directs tM 
I through tM pat h. in Ihe circuit corresponding to paths in tM ASM chan. 

n..: junction in Figure S·ll(d) i$ any point at ,,·hich two or rno..., directed 
lines in the ASM chart join together. If a I is present in the drcuit on any line cor­
responding to one of the entry paths. then it must appear o n the line corresponding 
to the exit path. &i'·ing that line the value I. If none of the lines corresponding to 
eOlry path. intO the junction have the value I. then Ihe exit line muSt have Ihc 
value O. Thus.. Ihe junction is replaced by an OR gate. 

With thes.e four transformations. tM s.eq ueneing pan of the ASM chart can 
be replaced by a circuit with Ofle Hip·nop per stale. just by inspeelion. In order to 
handle outp uts. it is merely a matter of a tt aching con!follines to the proper loca­
tions in the circuit Or adding OUlput logic. The outpulS are based 00 the origina l 
ASM chart or the cont rol sign.l lable deri,·ed from the chart. Anaching a con trol 
line based on an ASM chan is illustrated by the conditional outpu t '001 shown in 
Figure 8-] I (e). The condilional OUlput 'oox in the ASM chan is just replaced by a 
co",,",,ction in Ihe eircuil. But to cause the outpul actions to happen. a control line 
is tapped from Ihe co nnc'Ction and labeled with the output variable. The Ira nsfor· 
mation i. sho"·n in blue fo r clarity. 

We nOW uSC these transfonnations to find the control unit with one nip-nop 
per state for Ihe binary multiplier. 

EXAMPLE 8-1 Hinary Multipli .. 

The AS)'! charI in Figure 8-9 will be uS<'d for the sequencing part of the design. 
N<.>te thai the binary codes &i,·en are ignored. since they we..., for the former design 
approach. The resulting logic diagram i. shown in Figure 8·12. 

First. we. replace each of Ihe three state 'oo~es by a 0 nip-nop labeled "ith 
the name of the state. as indicaled by Ihe circled 1·5 in the figure. SeCOf'd. each of 
the deciSion '001es is replaced by a dem ultiplexer with the d",,;sion ~ari able as its 
selection input. as indicated by the circled 2·s in the figure. Third. each junction is 
replaced by an OR gate. as indicated by the circled n . FInally. the connections 
rep...,s.ented by the directed lines in the AS M chan arc added from the outputs 10 
the inputs of lhe corresponding compo"""ts 

To h.ndle the control Out PUIs.. we can use eithe r Table H· ] or the original ASM 
chart in Figure 8·7. From the table. we s.ee that the Boolean function for Initialize is 
al ready avai lable in the logic diagram. SO we simply add the outpul labeled Initial­
ize. Li kewis.e. the output for Shih_dec can be added. For Oear_C and Load. how· 
e,,,r. logic gates are added. All of the output connectio"" and logic added arc 
designaled by tbe circled 4·s in Figure 8-12. 

One final i ..... in Ihe design of Ihe control logic with One /l ip.nor pe r <lale 
is initialization 10 the .t.'1e h.,·ing a 1 in the ID LE lIip.llop and a 0 in all of Ihe 
other .. This e,in be done by using an as)·nchronous PRESET input on the ID LE 
nip.nop and an asynchronous CLEAR on the other nip-nops. [f only an asyn­
chronous CLEAR i. available. r.ther Ih.n both PRESET and CLEAR. a NOT 
gate can be placed just before the D input a nd another NOT gate jU'it after the 



!I--I I Hardwired c.""roI 0 383 

r'- (]) 
y 

lOLl: <D 
° 
'-" (]) 

DEMU)( 

" "-
G - '" G. 

ill 
In;,;, ,;,,, 

I- (]) Gl 

~11l <D o, 
° , 

M UU <D ill 
° , 

~. 
® 

DEMU X 

" G. ,-
'" O. 

o n GURE3.12 
Control Un;, ,,-ith One Flip-Flop per Stot. fo< 1he B;nary MuJ';plier 

OU1PU1 of the IDLE nip-Hop. Then 1he IDLE nip.Hop will actually contai n a 0 
,,-hen in 51ate IDLE and a I al an other times. Thi. permiu the asynchronous 
CLEAR to be "",d 10 inilialize all three flip-flops in Ihe cir~uil . h should be 
not~d thai. other than ror resell;ng lh~ cin;uil. Ihe US<: or asynchronous Hip-flop 
inputs for implementing AS M. or ocher sequential cin;uilS i. generally poor 
design pra<lioe. • 



384 0 CHAJ'TER 8 I SEQUENCING AND CONTR-OL 

Once the basic design of the comrol logic with one flip-flop per state is com­
pleted, it may be ~sirable to refine the design. For example, if there arc a number 
01 junctions connected together by lines. the OR gates that res~lted from the tran ... 
formation may be combined. Atso, demultiplexe ... casca~d ""ith each other may 
be combined. Other logic reduction or and lechnology mapping may also be 
applied to Ihe design. 

8 - 5 HDL REPRESENTATION OF THE BINARY 
MULTIPLIER- VHDL 
The hinary muhiplier jusl Slud;w can be represented during the design process a. a 
behavioral VIIDL description. Such a d.e$cription for a 4·bit .'ersion of Ihe multiplier 
appea" in figures So\3 and So14. This VHDL code represents the block diagram in 
figure S-6 and Ihe ASM chart in figure So7. The VHDL code consists of entily 
binary --,"ul tipl ier and an architecture bo!havior_ 4 , The architecture COIltains 
two assignment statemenlS and Ihree processes. The processes arc simit;!r to Ihose 
used lor the ""quena: .ecognizer in Chapter 6. The primary difference is thaI the 
outpul function proo::>:U ha. been replaced by a process describing the datapath rcgis­
ler \ransler>. Due 10 Ihis change.lhe VH DL representalion COI.esponds more closely 
10 Ihe description in Table Sol and Ihe ASM ch~rt in figure 8·9 Ihan 10 ,he ASM 
chan in Figure So7. 

In Ihe entity. muttiptier inputs and OUlputs are defined. Allhe beginning of 
the a.chilecture, a type declaration defines Ihe three Slales Internal signals some 
of which will generate registe ... arc dedared nexl. Among the"" are stat .. and 
n"xL"tat .. for the conlro!. registers A. a. p a~J Q, and Hip-Hop C. Also. interme· 
diale signal Z ;s ~dared lor convenience. Next, an assignment is made which 
forttS Z 10 be I whenevu P contains value O. FoltQ\>;ng this., Ihe OUlPUl$ of concat­
enated regislers A and Q are assigned to tbe mulliplier OUlput MllLT_ Olrr. This is 
necessary, ratherlhan making A and Q cir~uit OUlputs.. to permit A and Q to be uSC<J 
wilhin tbe circuit. 

111e remainder of Ihe description c<>n~iS1S of Ihe thrc<> processes. The first 
process describes the state register "nd indude. a RESET .s welt as the docking. 
The $«Ond prO<:<:$! describes the next slate function from Figure So8. Note Ih.l, 
S;""" clocking and RESET are included in the slale regisler, lhey do nOi appea. 
here. In Ihe sensitivity list, alt signals that can affect the nexl Slale. G. z. and IItate 
are included. Otherwise. Ihis prO<:<:$! • .,..,mble, Ihat for Ihe nex t _ stat" p'QCe$$ 
in the sequence recognizer, 

The final process in Figur. 8-14 Je",ribes Ihe datapalh function . Since the 
condit ions for performing an operation are defined in term, of the stal", and 
inputs. this p.ocess also imp licitly der."e. the oontrol .igna ls given in Thble S·L 
The"" ooOlrol .ignals do not appear explicitly. however, Since the dalapath func­
tion has regislers as all assignment J('$\inalions., an Irande"ar. oontroll'"<l by eLI<. 
Since OOments will be loaded imo these regi.ter~ befo.e the multiply operalion is 
ever performed, it is unnecessary 10 provide a reset for the"" regist",.,. The first if 
.ta tement controls Ihe loading of the multiplicand in registu B and the second if 
stalement conlrot, Ihe toading of the multiplier ;"10 regiSle r Q. 



~ 
e 

o 

~ 
1 , , 
J 
1 , 
! 

i 
~ , 

• 

~ 
" ! , .' ., 
".. 8'-.0 o ' 
-;:1 'i° B 

H :1' I 
i; ~ ~O~ 

:<: ". ~ " 
... .. 0 J! .. .... .. ~ 

;, "I" I-J!J ... ....... .... 
:5.:. ~ ~ -',' .... ... ... ~ '1 
)~ ~':::''''13'' ~~ .. 3"'''...I ~ ~ 
~ , ,"" .~ -~ 
... '" u" ... ,· . ...... ... , .. - '" ~'" 8'8':l!!1 a~ -~ 
.. ~ '-<1')12 "' ... 

' '1 oi ,! -.~\ 
~£-~ ii~~:' 'j 
'10.· ",,1. • 1··-::& .. .... ~ ~ .. , , . . 

, 
• o , , 
• I -- , ",... 0 

~j ~~ i l;"", .s 
~ i ~ I~ 

_ '. 
i: ~~iH 
... ... :l ..... I, ",., , 

.. -~ ..... 00 ',',. ' -': '" "0. .. 

'!_&1l~ " ll .. " ", . .. , 
• J ~ . ... ; 
~ 'iLco.u ~tI 
" .. .... .... ........ .. I 

~ ; !m' :1 A S::;: ..... 
0< , , 

y 
, 
• ~ - " 

! , . !_ d i I • i : J 'II~ : ~ ... .:;!,! 

! " "~ . a •• '" H 

i 
,,' .. 

,-' ., " . o -! ~ ,, 0 .' v ... "' .... v ,, " • .. . . ~ ~ .. .. 
t , MJ I" ! '~W .. ~!t~S 3 ,'" '!!-'-" .. liivo v "' "t!' .. J ,. _, ."._!' J ,"" •• 3,3 ' , i ~ ., .. ... .. " ~ ... ., 2"'1" • ~ c - •. d'" :l "I" ;: = d a~ ! '<! 
.. .... .. l "'i c: "'1 " :l i'''' ....... ) 
.z e f" 

• 

i , 
! 
• , 

, i 
~ ! , 0 
08 
ro: s:: 
o 



386 0 CHAPTER ~ I SEQUF.NCING AN ]) CONTRO l, 

_ can, 

...., "roc".; 
dat_tll,..!w>c, "roe ... 1ClJ<1 
.. ~i&bh 0. , n~_logic_vectorl ' _eo 0) , .. ,,,. 

If 1ClJ<'~t and eLK . ' 1 ' 1 th.oo 
U !.(;JI,£:e • '1' then 

8 <. KiLT_lN, 

.. <>4 H , 
if I.OM>;l • ' 1' U .... 

Q <. MULT_ rN, 

.on<! U, 
c ... nat .. h 

_ IDLE _ > 

H G _ '1' th<On 

C <. ' 0 ' , 
A <. ' 0000 ' , 
p~. ' 11", 

_<>4 If, 

" h<00 I<I)LO _> 
H QIO) • '1 ' then 

0. ,. ('0' ''') • ('0" 81, 
.In 

o., · C ... , 
. <>4 If, 

C < . CA.(') , 

.. <_ CA.(3 dooo>~o 01; 

""_n KiLl . ' , ., , . , 
0 •• 
• ., _ ..... cu., 

_ ..... If, 

<ODd "roc .... , 
.. <>4 hoobavior_ 4; 

'0' , , • 
"(0) 

• -
W -,. I) , 

" Q(1 <100mto 
"Oi", 

o n GUKE3-14 

1) ; 

VltDL o..rnplioo <Jf. B;fWY M"I,; p",or (Co.It;nL><d) 

The regisler Iransfe ... direclly invol"ed in Ih~ multiplicalion art c(m,roIled by 
a ca •• <talcmenl dq)('nd~nl ul)On lhe conlrol .tate. input G, and inlernal <ignal. 
Q(O) and z , These transfers are outlined in Figure 8-7 and Table 8· ' , R~pTesenla . 

tion of lhe addil;on in .Iate MULO Tcquircs SOme dfort. n",t of a U, to p<:rfor m 
addition OIl Sid_logic veetors. a u •• 'iateme~ t appears ju.t before l~ e emily deda· 
Talion for the package ;e .... . std.., l ogic_unsiglled ,&ll. . In addition iO the 
'Urn from the addition_ we also need to iran.fer the carT)' out. C_. from lhe addi­
tion imo C, To achieve this, we perform a j·bil addit;on with O's appended (0 lhe 



left of A and B and Ihe rt:$ult assign«! to a 5·bit variable CA.. The alternative would 
be to write C & A 0$ the transfer destination. but lIS<" of concatenation & in destina· 
tions is not permitte<l in VHDL. Since CA. is a variable. its value is assigned imme­
diately and is available for O$lSignmen1 (0 C and " aftet the if slatement. III State 
MOLl. Ihe shift is performed by using concatenation. 0$ was done in the uamp!e in 
Chaptet 5. f' is decremenle<l by subtracting a 2-bit consta nt with value I. 

This description can be simulated to validale il. correctness and synthesized 
to automatically produce the logic if desired. 

8-6 HDL REPRESENTA.TIO N OF THE BINA.RY 
M ULTlPLt£R- VERILOG 

The binary multiplier just studicd can be represented during the design process as 
a behavioral Veri l"ll description . Such a deocription for a 4·hit version of Ihe multi· 
plier appears in Figures 8· 15 and 8· 16. This Verilog rode represcn" the block dia· 
gram in Figure 8--6 and the ASM chart in Figure 8·1. The Veril"ll rode is contained 
in a module bin''':YJrlultiplier_v. The deocriplion contains two assignment 
Slatemenls and three processes. The processes are similar 10 those used for the 
seque nce rerosni,er in Chapter 4. 11,. primary difference is that the output func· 
lion proccu has bee n replaced by a process deocribing the datap.'th regisler tr.ns· 
fer. Due to Ihi. change. the Veril"ll representalion corresponds more clos.ely to the 
<k$c-ription in Table 8-1 and lhe ASM chart in Figure 8·9 than to 'h~ AS M ch.rt in 
Figure 8·1. 

At tbe beginning of lhe description . multiplier inputs and outp uts are 
""fined. A parameter decIMation defines the Ihr~ stalt:$ and their binary codes. 
Internal signals of type register are ""fined. Among these are the .. t .. t~ and 
ne"t_.t .. t~ for the contrOl. regislers I\.. B. P and Q. and Hip-Hop C. Based on 
clocking specifications. mosl of these will become aClual positive..,dge-triggered 
registers. The notable e~cept ion is ne>< t _"t .. te. AIS(>, intermediate signal Z of 
type "ire is declared for coovenience. Nut, an assign men. is made which fOTees z 
to be I whenever P contain, vaJue O.ll1is O$lSignment uses the operation O R (I las 
a r~d"crion opemlor. Reduction is the applic",ion of an operator to a wire Or regis· 
ter that combine.lhe individual bits. In this case. the applical ion of OR to P causes 
all bits of P to be ORed together. Since the OR is preceded by a _. that overall 
operation performed i. a NOR. Olher <>per.lors may .Iso be applied as re<luction 
operators. The second aS$ignment statement assigns the OUlputs of concatenate<! 
regiSlers A and Q 10 the mull iplier OUlput tillLT_OUT. This is done for c.-",vcniene<' 
to make that output a single structure. 

The remainder of Ihe deocriplion ronsists of th e thru proce<SCS. The flrst 
proass deocribes the state register and includes a RESE"I' as well as the clocking. 
'llI e second process dcocribes the nut s,.te function from Figure 8-9. Note that 
.ince clocking and RBSET arc irn;luJed in Ihe state regiSler, they do not appear 
here. In the event control statement. all signals that can affect the next sta te. G. Z. 
and .t .. t .. are included. Otherwise. this process resemblt:$ that for the next >late 
process in the sequence recognizer. 



JSS a CHAPTER 8 I SEQUENCING ANI) COI'ITROL 

II Bi""IY IIult1plier with n . 4, V~ri1O\1 Deo.cription 
II s.... Pil/Ur .. 8- 6 and B-7 for block diagr"", and A9t Chart 

_ .. 1.0 binuyJOO,>ltipl1ecv ICLK, RESIrr, G, L£WlB, !.(W)Q, 

KILT_ IN, MIJl.T_(X11'); 
input CLK, JlE5E."I', G, L£WlB, LCIo\DQ; 
input [J , OJ KlLT_lN , 
Q\ltpue [7 , 0] KlLT3:<1I'; 

r-.g [1 ,01 ~ t.~., »extJtaU, P; 
par ... ur IDLE . 2'bOO, ~ _ 2'bOl , KILl _ 2'blO, 
r-.g [) . Ol A, B, Q: r_ C; 

wh. Z; 

auign Z ~ _I P; 
.. .1 .... IfJLT_CQI' _ (A , O); 

II.tate r"'lin"r 
alway •• (poU49_ CLK or p<> • .od~ RES!.T) _ .. 

if IRESET __ \) 

. tate <_ lot..E ; 

do. 
"ta te < _ ne>ctJtaU; 

.~ 

I/"""t Otat .. fWlCtiOfl 
al ... " •• (G or Z or nate) -,. 

cu_ (nat. ) 
IDLlI, 

if IG __ ll 

~tat~ <. KILO ; 
_1 .. 

r>extJuu <_ IDLE; -, 
"""tJtat .. <_ MULl ; 

KJLl : 
if IZ_·l) 

r>@XtJtat . <_ IDLE; 
_I .. 

"""t....taU <_ ~; 
.. nd<: .... . ~ 

Ildo.""""th fWlCtion 
.. l .. ay" (_.od~ CLK) 

a nGUR[ S·IS 
Veriloa Dc:><riplioo of • BInary Mulupll<' 



-" it Il.Oo'.C8 • • 11 
B ~. KJL1'_rn, 

it IWADO " 11 
Q <* IfJLTJN: 

c ... (natel 
IDLE: 

" (G n " -,. , .- 0, , .-4'bOOOO, , .-2'bll, 
O~ 

~, 

" (QIO] •• " <0, " "' -" KILl: -" c.* l'bO, i\._ (C. A{l,ll), 

0.* (A[OJ. O{),IJ), 
P._ P - 2'bO), 

O~ 

.1>4<: .... 
OM 
• ..-ul. 

a FIGUk E 8-16 
VcriIotI o...:n"""" of • 8inuy Multlpher (Coolinued) 

The final procc>s d • .c,i\>e. the datnpath ru"clion. Sin"" the condition, for 
perfonning an operation aT<O defined in lerm5 of 'he Slates and inputS, 'his p' OttSS 
also implicilly defines lhe conlrol signal. given in Table 8-1. The .. oon1.01 .ignalll 
do nOI op",," uplicitly. however. Sinu the dOI.palh runction Ita. "'giSle", a. all 
."';gnment d .. ,inations. all tran.I.", "TC controlled by eLK. Since contentS will be 
loaded into th= regislers l>efore Ihe multiply operation is evu performed. il is 
unne«$Sllry 10 provide a reSCI for Ihese rcgi~lers. The first if s.atement oonlroh 
the loading of lhe multiplicand in10 regis,er B and the second if 5tatement con­
trols Ih~ loading of the multiplier into register Q. 

The register transfers directly invol"cd in the muhipli<:~tion are COnlrolled by 
a ea.a statement dcpendenl upon the control state, input G. and internal signal. 
Q I 0) and Z. These transfers are OUllined in l~gu re 8-7 and Tahle 8-1. Representa. 
tion of the addition in state HULO us<::sconcatenal;on of c and 1\ to obtain the carry 
OUl, C_, for loading inlo C. Verilog does permit the used o f 1\1..., 4-bit operands 
with a ~·bil result for Ih e addil i<:m. In 51ale OWL1. lhe shifl i. perfonned by using 
concatenation as "'"' done in the example in Chapter 5. P is decremented by sub­
trocling a 2·bit con,t.nt with value [. 



lllO 0 CI-I"-P'ffiR 8 I SEQUENCING "-Nil CONTROL 

This dCs.:riplion C~n be simulaled 10 validate il! COrT~ctne", and syn thesiz~d 
10 automalically produce the logic if desired 

8 - 7 MICR OPROGRAMMED CONTROL 

A connol unit with its binary comrol ,·alues stored as ,,·ords in memory is called a 
mi"r(>p"'KTamm~d corum/. E",,~ word in the wnITol memory contains a miemi,,· 
struction Ihat specifies one or more microopo-rations for Ihe system. A sequence of 
microinstruclions constitutes a microprogram. The microprogram is usuall y fi~ed at 
Ihe system design lime and so is stored in ROM. Microprogramming involves plac· 
ing representation, for combinations of values of control ,·ariables in words of 
ROM. Th"'" repr"",nlations are acccss<:d via success,ve read operalions for use by 
the rest of Ihe comrol logic. The conlenls of a word in ROM at a given address 
sp<:cify the micrOOp<:rations 10 be performed for both lit( datapath and the control 
uni t. A microprogram can also be 'Iored in RAM. In Ihi' case. il is loaded al sys­
tem startup from SOme fonn of nonvOI.tile ,Iorage. such as a masnctic disk. With 
either ROM or RAM. the memory in the control unil is call ed ro,Hml m~mo,y. If 
RAM io used. Ihe memory is referred to as "·';I~b1. comrol memory. 

~lgure 8-]7 shows Ihc general configuralion of a microprogrammed oontrol. 
The comrol memory is a,"umed to be a ROM ,,·ilhin which all control micropro­
gram! are pennanenlly $Iored. The wnlTal addrt!M "'Kisler (CAR) specifies Ihe 
address of the microinstrlloClion. The wmml "~M ,~gisr'r (CDR). which i. optional. 
may hold the microinSlruction <urrcnlly boeing .. eeuled hy the datapath and the 
wnllol unil. One funn ion of Ihc con1rol word is 10 determ ine the address of the 
ne xt microinslruction to be e,cculed. Th is microin,t r""lion may be Ihc nexI one in 
"'quence. or it may be located 5OII1ewhere else in the wntrol memory. Therefore. 
one Or more bitS that .pecify the method for delennining lhe addre9$ of the ne ~t 

microinstruClion are presenl in Ihe current m;croin ... ·uction. The nexl address may 
al", be a function of stalus and eXlema' control inputs. When a micro;Mtruclioo is 
.. ceuled. Ihe "~x'·ad,lr,n K~"~ra/Qr produces the next address Thi! addr..,; i. 
transferred to Ihe CAR on Ihe nexl clock pulse and is used 10 read the nexl micro­
in struction to be c'cculed from RO M Th Us. the microin!lTuctions contain hits for 
aClivaling microoperalioM in the datapath and bit' Ihal specify Ihe sequence of 
microinSlrlloClion. executed. 

The next·address generator. in combinati"" with Ihe CA R. is somelimes called 
a microprogram s~q"'nct'T, , ince il delennine! Ihe sequence of in.tructions read 
from control memory. The address of Ihe next microinstruclion can be specified in 
se,·eral ,,·ays. depending on tbe se<[uencer inputs. Typical funClio", of. m;cropr(l­
gram sequcncer ar~ incrementin g the CA R by ,,!Ie and loading the CA R. Possible 
sources for the load operation include an addre .. from control memory. an exter· 
nally provided address, and an initial ~dd ress 10 !larl conlrol unit operation. 

The CDR holds the pr=nl microin'lruclion "hile Ihe nexl address is com­
puted and Ihe next microinstruClion is read from memOl)'. The CDR bruk. up tlte 
long combinational dda)' path' Ihrough Ihe control memory followed by Ihe dala­
path. lis presence allows the system to usc a higher clock frcquency and pr~ 

information faster. The inclu<ion of a CDR in a system. howe,·er. romplicales Ihe 



C"",ruI 

'"r' jO""_ 

~< .. -odJ_ 
rol><'otor 

Seq""""" 
C""'ruladO,,,. 

"'~"'<r 

. - C"",ruI od<Ir<S5 

"""= 
0"" , .. 
-~ (110M) 

~ .. 
C··-1..·······1..··, 
, Coo,ruI do .. "P'« , 
, (opI"""l) : 
C····T····T···r ···, -- ---- ---- --M 

" .. u.lol .... C"""" Coolrul<i 

a F1GURF.1I-11 
Mi<ro,>rovammW C"",roI Unit Ch-gani .. ,;"." 

sequ encing 01 microinstructions, particularly when decisions are made based on 
Sla.us bil$. r'Or si mplj.ci.y in our brief di<ru$$ion. we omi, ' he CD R and take the 
microinstruction. directly lrom the ROM ou tputs, The ROM operal ... a. a combi­
nat;onal circui •. wi lh the address as Ihe inllut and tM: corresponding microin5lruc­
lion a$ Ihe o utput. The contc ntS 01 Ih e specified word in ROM remain on lhe 
output line. as long as the address va lue is appl ied to .he inputs, No readlwrite sig­
nal is nceded. as it is with RAM. e ach dock pu l~ e~ccu le. the microopera'ions 
specified by the microinSlruc1 ion and alSO Iransfers a new address to the CAR. In 
this , . se.lhe CAR is Ihe only component in the con.roltll8t receives clock pul.." 
and Slore5 slate inlonnation . The n.,.t _addre$$ generalor arid the control memory 
are combinational ci rcuits. Thus.. the state of the cODlro! unit i. given by Ihe COn­
lenlS of the CAN. 

Microprogrammed control has been a very popular alternative imple"",nl._ 
tion technique for control uni," for both programmable and n""programmable sys­
tems. Ho,,·cver. as .y<lems ha,'e become more complex and ""rformant(: 
specificahons have increased Ihe need for co""urrent parallel sequences of acti,'itie .. 
the lockstep nature 01 microprogramming h.s becorne less attractive for rontrol unit 



392 0 CIIAPTf.R 8 I SEQUEN"CING AND CONTROl 

imple mentation. Further. a large ROM or RAM tends to be much slower than the 
corresponding combinational logic. Finally. HDl.5 and synthesis tools facilitate the 
design of a)mplex COI,trQI units without the necd fQr " I""btep programmable 
design approach. Overall. micropmgrammed comml fm the design of connol un;ts. 
particularly direct datapath C<)<\trol in CPUs. has dedi ned significantly. HQw<:~"r. a 
new flavor of microprogrammed control h"" emerged. for implementing legacy corn· 
puter archite<:turcs. These archite<:t urC$ h.,'e instruct;"" sets that do not f<)llQw COOl· 
temporary architecture principle .. Ne,'enheless. such architectures must be 
implcmcnlcd due to m"ssive investment. in software that usc. them. Further. the 
conlemporary archite<:ture principles mDltlle u«<l in the imptementations to mect 
performance goal .. The control for these system, is hierarchical wi th micropro­
grammed oontrol selectively use-d at the top Inel for complex instruction implemen. 
tation and hardwired control at the I"",·er level for implementing simple instructions 
and Step> uf complex instructions.1 a w ry rapid m te. ·Ihis fla~or of microprogram_ 
ming is cm·ered for a Complex Instruction Set Computer (eISC) in O>apter 12. 

In formation on the more traditional na,·or of tnicroprogrammed colllmt. derived 
from pa.1 edilion. of this lext. is available in a supplement. Micmprogrammed 
Control. on the Companion Website for the t~xt. 

8-8 CHAPTER S UMMARY 

This chapter lias uamillcd the interaction betwcen d.t.paths and COIItrul uni ts and 
Ihe difference between programmed and nonprogrammC<l s~stems. 11\. algorit h_ 
m;c >late machine (ASM) is a mean, for representing and specifying control func­
lions. A binary multiplier was used to illuSlrate AS).! ch~f\ fonnulalion. Th'n 
implementation approaches to •• ,quential circuit design. sequence ,egister plus 
decoder and One flip·nop per state. were pru,·ided. in addition 10 the basic design 
procedure in o>arter 4. VI·IDL and Verilog alternatives for de",ribing combin.­
tiollS of dat.path and control were also iilu,lrated, Fin3l1y. microprogrammed ron­
trol was hri.fly di ",usscd. 

REFERENCES 

1. M,,)<o. M. M. ComputeT E"gi""ri,,g: HaTd ... "" Daign: Englewood ailfs. 
NJ: ]>r.ntice 1·1011. 19M. 

2. MA!<O. M. M. Digi.,,1 Design. 3rd Ed . Englewood Oiffs.. NJ Prenlice Hall. 

'"" 3. I fiE Ii SW",/ard \I H DL f"''''WlIuge /l.efer~"<'< "'"""ul. (A NSIIIEEE Std 1076-
1993; revi,ion of IEEE Std 1076-1987). New Yurk:The Inst;tule of Electrical 
and EIe<:trQnics Engineers. 1994 

-'. S'1IT1I. D. J. HDL Chip Daign. Madison.AI..: Doone Publications. 1996. 

S. IEEE SIan,/",,/ D~.aiplion lA"g"age Baud on Ih~ Vuifog(TM) fI"Td"·"r. 
OacTip'io" fA"g""ge (I EEE Std 13064· 1995). New York: The I nslitute of 
Electrical and Electron;cs Engineers. 1995, 



6. J> AL.'<""'AR. S. V~rilQg H I)C A. G"id~ to /}igital Duign and Syntll~_'is. SunSoft 
Press (A Pr~ntia Halll1t1c). ]996. 

7. 'iHOMAS. D. E .. AND P. R. MOORIIY. Th~ V~rilog lIardwarr Desoipli()f1 
umguag~ 4th ~d. &>Slon, K]uw~r AC!ld~mic Publishers. 1998. 

PROBLEMS 

h The plus (.+) indicales a marc: advanced problem and Ihc aSlerisk (.) indicates a 
~ SOIUlion is aV8ilabl~ on th~ Companion Websit~ foo- ll>e lext 

3-1. 'A state diagram of a sequential circuil is given in Figure 8-]8. Find Ihe 
corre'ponding ASM chart. MinimlU Ihe chart romplexily by using both 
Ve<:tor and scalar deci,ion boxe .. The input' 10 the circuil are X, and X,. and 
Ihe OUlputs are Z I and Zz. 

3-:!. 'Find Ihe respon.., for Ihe ASM chart in Figure 8-19 10 lhe following 
scq~nce of illpuls (,"",ume Ih31 lhe inilial Slale is STI): 

A, 0 0 , 0 
8, , , 0 0 
C 0 0 0 , 
Stale: STI 

Z: 

8--3. An ASM chart is given in Figur~ 8·19. Find Ihe 51ale table for Ihc 
oorresponding sequcmia l Circuit. 

lI-4. Find Ihe ASM chart corresponding 10 I"" following descriplion: Th~re arc: 
IwO ' Iatel. A and R. If in Slate A and ;npul X is I. Ihen Ihe nexl slale is A. If 
in Slale A and inpul X is O. Ih~n Ihe n~xl .I.le is B. If in O1ale Band inpul Y 
is O.lhen Ihe n~'1 Slale is H. If in Sla'e B and input Y is 1.lhcn the nexl Slale 
i.A. OUlPUI Z i. "'lUaIIO I while Ihe ci"",il is in Slale B. 

/'''''' 

I~.II ~I.IO 

(--\:j'i':>---""" ,""'"'----.(~~ 00 " 

"''' 
a n GURE lJ.1.8 

SI.,e Oiq;,am lor Problem 8-1 



3114 a CHA!"TE.R' I SEQUENCING ANn CONTROL 

m 

J-
• , , 

./ 
m 

• " 
, 

/' 
m , , 

J-, , • 

o nGUKIE 1-,' 
ASM Ouort for ProI>km 8-2 and Probl<m S.3 

&-5. ·Find Ihe ASM for I circuit th.I delects a differcntt in val"", in .n ;Opill 
signa' X al I .. .., successi,·c po5Ili,·c clock edge.. If X hili different valuQI at 
, ... .., .lJCCeSSive POSH;"\! dock edge.. Iheo OUlpul Z is cqu"ll" I for the next 
clock cycle. Othcrv.;sc. output Z is o. 

8-6. +The ASM chart for a synchronou~ ci«:uil wi,h clock CK for a washing 
machine is,o be dc~eIOped. Th e circuit has th ree external inpUIs, START, 
FULL. and EMPT Y (w hich are I for al mosl a single clock cyde and are 
mutuaJly exclusive). and external oUlput<. HOT. COLD. DRAIN. and 
TURN. The datapath for Ihe control consists of. down-ooul\tcr. ,,'hleh hal 
three inptl~ RESET. DEC, and LOAD. ThIS counter synchronou<ly 
decrcmcnl.! once each m,nute for DEC = l. but can be loaded or 
.ynchronously rcsct {)II any cycle of clock CK. It has a single output , ZERO. 
whkh is t whene'"r tile counter contains ,·.Iue zero and is OOl/>e".·,se. 



i'robItm, 0 395 

In ils operalion. Ihe eircuil g""s Ihrough four diSlincl cydes. WAS H. SPIN. 
RI NSE. and SPIN. which are delailed as [oli o"' .. : 

WASH: Assume that t"" circuit is in ils power-up stale I DLE. If START is I 
for- a dock cy.::le, HOT beoomes I and remaillS I until FULL ~ 1. filling lhe 
washer ",;Ih hOI waler. Nex!. using LOAD, Ille down..;:ounler is loaded w;lh a 
val ... from a panel dial which indicales how many minUles the wash cycle is 10 

lasl. D EC and TURN then become I aad Ihe washer """'hes illl contcnill. When 
ZERO becomes I. Ihe wash is complCIe,andTURN and DEC become O. 

SPIN: Ne.l. D RA IN becomes I. draining Ihe wash waler. When EMPTY 
becomes I. the dowll-counlcr i. loaded with 7. DEC and TU RN Ihen 
become I and the remaining w",h ""aler is wrung hom the contents. When 
ZERO becomes I. DRAIN. DEC. and TURN relum to O. 

RINSE: Nexi. COLD bccQmes I and remains I Iml;1 FU LL ~ I. fil ling lhe 
w.sher wilh cold rinse waler. Next. using LOAD. the down-coun1er is loaded 
wilh value 10. DEC and TURN lhen I",come I and the washer rinses i1s con_ 
1.nlll. When ZERO l>cromes I. Ihe rinse is complele, and TU RN and DEC 
becomeO. 

SPIN: Next, DRAIN beCOl'rlCS L draining the rinse waler. When EMPTY 
becomes I. the down-counler is loaded with 8. D EC and TURN then 
beC()ll,e I and Ihe remaining rin", water is wrung from the ronlenl$. When 
ZERO become. l. DRA IN. DEC. and TURN return 10 0 and the cireui1 
returns to state IDLE. 

(a) Find the ASM chari for Ihe washer circuil. 

(b l M<.>dify YOlur design in par! (.) anuming Ihat Ihere are 1"'0 mOre inpulS, 
PAUSE and STOP PAUSE cau"," the cireuil. including the counter, 10 
hah and all OlUIPUIll IOl go 10 O. When START is pushed. the w.sher 
rCSumCS opera lion "1 lhe point it paused. When STOP i-s pushed. all 
output, are resct tOl 0 ueepl fOlr D RAIN which is sci tOl l. Wh~n 
EMVrY I:>ccomes 1. the 5tate returll$ 10 IDLE. 

S--7. Find an ASM chart for" traffic ligbl controller thaI works as follOlws: A 
liming signal T is lhe input 10 lhe conlroller. T defines Ihe yellow light 
inlernta. ,,'ell as the changes of Ihe red and green lighls. The oulpulol0 lhe 
signals are defined by Ihe foliOlwing table: 

GN Gree ... Ligl". Nortll/Soulh SigJ1.1 
YN Yellow Ug/ll. North/Solllh Sig".l 
RN R¢<.I Ugh! . NorllllSouth S;",.I 
GE G,.en UiI'l, EasllWeOl Signal 
YE Yellow Ug/lt, El5IIWesl Sign.l 
RE Red Ughl. E. S1IWesl Signal 



3 96 0 CHAPTER 8 I SEQUENCING AN ]) CONTROL 

Wh ile T - O. the green light is on for one signal and the red light for the 
other. With T = I. the yellow light is on for the signal that was previously 
green. and the signal that was pre"iously red remain! red. When T becomes 
O. the .ignal that was previously ~'ell ow becomes red. and the signa l that was 
previously red becomes green . This pallem of allemating change, in color 
continue"- Assume that the controller is synchronous with a dock that 
changes much more freq ucnlly than inpul T. 

8---3. "Implement the ASM chart in Figure 8· 19 by using one fl ip-flop per state. 

8---9. "Implement the ASM chan in Figure 8· 19 by using a sequence register and 
decoder. 

8-10. +Implement the ASM chan derived in Problem 8---6(a) by using one flip. Hop 
per state. 

8-1.1. "Multiply the two unsigned binary numbers 100110 (mult iplicand) .nd 110101 
(multiplier) by using bolh the hand method and the hardware method. 

8-12. Manually simulate the proc<:" of mulliplying the two unsigned binary 
numbers 1010 (m ult ipHcand) and 1011 (multiplier). List the contents of 
registers A. Q. P. and C and the control state. using the system in Figure 8-6 
with n equal to 4 and with the hardwired control in Figure &-12. 

8-13. Detennine the time it takes to proceso the mU lliplication operation in the 
digit al sy1;lcm described in Figure 8-6 and Figure 8-9, Asoume that the Q 
register has n bit< and the interval for a clock cycle is f nanosecond"-

8-14. Prove that the multiplication of two ,.·bit numbers gives a producl of no 
more than 2n bits. Show th.t Ihi. condition implie. that no overHow can 
occur in the final result in the multiplier circuit defined in Figure 8·6, 

8-15. Consider the block diagram of the multiplier ,hown in Figure 8-6. Asoume 
that the multiplier and multiplicand consist of 16 bits each . 
(a ) How many bits can be expected in the product. and where i. it available? 
(b) How many bits arc in the P counter. and what is the binary num ber that 

must be loaded into it initially? 

(e) Design the combination.1 circuit that ch""ks for zero in the Pcounter. 

8-16. ' Design a digital sy1;tem with three 16-bit registers AR. BR. and CR and 16-bit 
data input IN to perform the following operation .. OISSUming a two', complement 
representation and ignoring O\'erfiow: 
la ) nansfer two 16-bit signed numbers toAR and BR on successive dock 

cycles after a go signa l G becomes L 

(b) If the number inAR is positive but nonzero. multiply the contents of BR 
by two and transfer the result to register CR. 

(c) 11 the number in AR is negative. multiply the comenls of AR by Iwo .nd 
transfer the resull to register CR. 

(d) lithe number in A ll is uro, reset register CR 10 0, 



_m, 0 397 

8-17. +Modify Ihe multiplier design in Figure R-6 and Ihe A SM chari in !'igure 8-7 
10 perfonn 2", complement signed·number multiplicalion using Boolh', 
algorithm. which emplo)'& an adder-subtractor. The decision 10 add, 10 

,ublrOCI. or 10 do nothing is made On Ihe basi, of the current least significant 
bil (LSB) in Ihe Q regisler and on Ihe previoU$ LSB bit from I"" Q regiSler 
befon: Q was shifted right. ThUs. a Hip-Hop mu.t be pr01lide<l to slore the 
previous LSB from Ihe Q regiSle,- The initiat "atue of the previoU$ leasl 
.ignificant bit is 10 be O. The following lable defines thc decisions: 

LSD of a PflOYiou. LSD of a Actlo>n 

o 
o " , 

o 

Le .. " pa",.t prodl>C\ unchanged 
Add mu lliplicand 10 partiat prodl>C\ 

Subtract muttiphcal><l hom panial prodUCI 
Ua,'. partial prod"", unchanged 

8-18. +Design a digilal syslem Ihat multiplies Iwo unsigned binary numbers bylhc 
repeated addition met hod. fur example. to multiply 5 by 4, Ihe digilal syslem 
adds the multiplicand fOt.Lr timt<: 5 + 5 + 5 + S K 20. i..tl the multiplicand be 
in register BR. Ihe multiplier in regisler AR. and Ihe product in regisler PR. 
An adder circuil adds Ihe conlenlS of DR 10 PH. a nd A R is a down·counte,­
A lero-<lele<:tion circuit Z ehe<:ks when AR becomes zero aftcr each lime 
Ihal il is de<:rcmenled. O""ign Ihe conlrol by the Hip-Hop pcr stale method. 

S-19. ·Wri le. compile, and simulale a VHOL description for the ASM shown in 
Figure 8-19. U5(: a simulalion inpul that passes Ihrough all palhs in Ihe ASM 
chart. and include bolh tile otale and OUlput Z as simulation outputs. COITect 
and resimulale your design if necessary. 

S-:W. · Wrile. compile. and simulate a Verilog description for the ASM in Figure 
8·19. Use code 00 for <tatc ST1. 01 for stale STI. an d 10 for slate ST3. Use a 
,imul ation input Ihat pas ... through all paths in the AS M chart. and include 
bolh Ihe slale and Z as simulalion output .. Correct and ,esimulate your 
desig:o if nc~ry. 

8-21. Perform the de. ign in Problem 8-S using Verilog inslead of an ASM chart . 
Use Slate names SO. SI. S2. -" . . and code< thaI are the hinary cqui .. lent of 
Ihe integer in the .tate name. Compile and simulale your de.ig:o using a 
<im ulalion inpu l Ihal Ihoroughly validales the design and Ihat provide< 
bot h state and Z as ,im1llation out pUIS. Correct and fesimulate yo ur desig:o 
if necessary, 

S-22. +Perfonn Ihe de.ig:o in Problem 8-7 using VH DL instead of an ASM chart. 
Compile and simulale your desig:o by running Ihe traffic light through Iwo 
full cydes. Use realistic inler ... al. for T and a slow dock. Adjust the dock 
in teTVal. if necessary 10 avoid long sim ulation Ii ...... 



398 0 CHAPTER 8 I SEQUENCING AN]) CONTJt.OL 

Compile and simulale your design by running the traffic light through two 
full cycles. Use the state assignment melhod in Problem 8-21. Use realistic 
intcn'als for T and" .Iow clock. Adju>! the dock intervals if ncccSS,ITY to 
a>'oid long simulation times. 



MEMORY BASICS 

M 
etI'IOfy ill majof component oIa cligllal COfl'l\l'JI .. , ~r<i is present In. ~rQ& 
poopoolioo,OI'" diyilallysternl. Ra~ "*'>O<Y (RAM) Il10< .. 
data temporarty, alld read-only ........:.ry (ROM) stor .... dale permaoenlly 

ROM ...... 101m oIa ... rIet)I 010.>0 ........... _ ~ Io\JIC dIM::eII 
(PLDo.) tM1 ... _ inIonnation 10 define lOgIc dlt:uUII. 

o..lIIUdy 01 RAM tMogIns tJylooking 3. ~ in ~r"" 01 a IIICIdIII WIth onputa. OUIpuIS. and 
signllllimOriog. We ,...,. use equiVBlonl k>gk;aI modM 10 unde<sIand 'hoI inIor .... 
......n<ingo 01 RAM ~ _ static RAM and <Jynamic RAM 8'" "",,_...s, n.. 
"""",8 lY1'" 01 (tynamlc RAM used lot ~n1 01 dllla a1 h9I1 SI>\HIdf !>II1_ 
11>8 CPU and momory ~'" surveyed. Finally,.,.;o poJt RAM chips togelhet 10 build 
s""pltl RAM sy6!oms 
In mat1y oIlhe previous chapteu. the ~ presenli1d were bf(>8d, pena~ to 
mud1 oIlhe generic ~ at !he beginning 01 ChapI9< ,. In 1M ct\IIJIIet. for !he 
lim -. we can bit fI'IOftI pnocise and poinIlO epecffic ..- oIlMr\'IOI'Y end <'9Ia1ed 
..... ' ........ 011. 8egoo'."U wit!> .... proOIUOr . ... ir1Iemal cache is Iargety very Iasl 
RAM. o.n.m .... CPU, .... extemaI _ illIrgIIIIy liS! RAM. The RAM subsystem, 
~ ill -r ......... II • type 01 ~. In .. 110 _. _ In:! ~ "*"'l<y 10< 
SIOfing inIorrnation IIbouIIhe scr-. on'IIIQO Il'lIIIe vicIeo ~. RAM ~rs in dis!< 
cache in lhe <hie oont.-, I<> &peed \.If) cbk IICOI!IOI&. Asi<Iu ffom!he I'IoghIy 0&f'I1taI 
role 01 the RAM luboyslem in sl<>ring data ."" programs, we fOnd memory in varklus 
Iorms appl~ in most oubsyslems oilhe g.tne<1c computer_ 

9_1 MEMORY DEFINITIONS 

In digilal 'l"I~ms. m~mory is a collection of 01:11$ capable of OIOOIIj binary 'nforma­
lion. In addItion 10 lhex «lis. _mory contams (i<'CIronic cirruiu (If 8torin. and 
retrie~ing the intOl'mal;on. A. indicated In the di""",""", 0( the genc:ric computer. 
memory .. used ill many dIffereD! par .. of. ,nodcfn compute •. p.ovidinl temporary 

o 399 



400 0 CHAPTER 9 f MEA-lORY ElAS1CS 

or permanenl slorage for subslanlial amountS of binary information. In order for 
this informalion to be processed, il is sent from the memory to processing hardware 
consisling of regisler.; and combinational logic. The processed information is lhen 
returned to the same or 10 a different memory. lnpul and output devices also inter­
aC1 with memory. Information from an input device is placed in memory so lhat it 
can be used in processing. Output inform ation from prt>Ce>sing is placed in memory. 
and from there it is sen! to an output device, 

Two types of memories are used in various p.rt. of a computer: random ­
aecess m.mary (RAM) and read-only memory (ROM). RAM accepts ne,,' 
information for storage to be available later for usc. The proce .. of storing new 
information in memory i, referred to as a memory ""ite o)X',ation . The process 
of transferring the stored information oUl of memory i. referred to as a mem­
ory read operation. RAM ca n perform both the wrik and tht read operations, 
wh ereas ROM as inTroduced in Chapter 3, performs only read operation,,­
RAM sizes may range from hundreds to billions of biu. 

9-2 RANDOM-AcCESS MEMORY 

Memo!}' i, a colleC1ion of binary storage cells togelher wilh associated cirouits 
needed to transfer information into and oul of the cell"- Memory cells can be 
acce,sed to transfer informalion to or from any desired location, with the a~ss 
taking Ihe same time regardless of lhe local ion , hence. lhe name random -lleuss 
memory, In COnlraSl, ser,"1 memo'}', such as is exhibited by a magnetic disk or tape 
onil. lake, differem lenglh, of time to access information, depending on wh~re lhe 
de' ired location is relative to the current ph~ical Jl'O'ition of the di.k or tape. 

Binary information i, stored in memory in groups of bil"- each group of 
which is called a word. A word is an entily of bits lhat moves in and out of 
memory as a unit- a group of I', and O's that represents a number. an instruc_ 
tion , one or more alphanumeric chuacters, or other binary-<:oded informalion. 
A group of eight bits is called a byte, Mosl computer memories use words Ihat 
are multiple, of eight bit. in length. ThUs, a 16-bit word comains two bytes, and 
a 32-bit word is made up of four byt~<- The capacity of a memOTy unit is us ually 
sta ted as the tOlal num ber of byte. lhat it can store. Communication octween a 
memory and ilS environment is achie"ed Ihrougb data input and OUlput lines, 
addre", seleclion lines, and comrollines thai specify the direction of transfer of 
information. A bloc. di~gram of a memory i. shown in Fi gure 9-1. The n da ta 
input li ne, provide lhe information to be stored in memory, and the" data o ut_ 
put lines supply the informa ti on coming out of memory. The k addre", lines 
specify the particular word chosen among the many available, The two control 
inpun specify lhe direnion of traosfer desired: the Write iuput causes binary 
data to be transferred into memory, and the Read input cause. binary dala to be 
transferred out of memory, 

The memory unit is specifi ed by the number of words it contain' and the 
number of bit' in each word . The address line. select one particular word. Each 
word in memory is assigned an identification number call ed an addr<!Ss. Addre,,,,,, 



n da .. ;nP"1 h".. 

[] flG U RE 9-1 
Block Diagram of M.mor~ 

Tange from 0 to 2" - I, wheTe k is the number of addTess lines. lne selection of a 
specific word inside memory is done by applying the k-b;t binary address to the 
address lines. A decoder ac.:epl5 tbis ooddress and open. the pall .. need<.>d to select 
th. word specified. Compmer memory varies greatly in Sile. It is customary to 
TdeT to the numbeT of words (or b)"tl:1) in memory with oDe of Ihe lelle~ K (t ilo), 
M (mega), or G (giga). K i. equal to 210, M is equal to 2"', and G is equal to 2"'. 
lnus.64K _ 2'". 2M _ 2",8nd 4G _ 2J1. 

Consider. for example, a memory with a capacity of 1K words of 16 bi" 
each . Since IK - 1024 - 2'". and 16 bits constitute two bytes. we can say that the 
memory can accommodate 2048. Or 2K. bytes. FIgure 9·2 show> the possible COn­
tents of the first three and the last three ",ords of this size of memory. Each word 
contains 16 bil$ that can be divided into two bytes. 'Ine words aTe Tecognized by 
their decimal addresse, from 0 to 1023. An equivalent binary address consisls 01 
10 bits. The /irst address is ,pe<:ilied using ten 0'<. and the last address i. ,pecified 
with ten I' .. Thi. is because ]023 in binary is equal to 1111111111. A word in 
memory is selecte<l by its binary address.. When a word is read or written. the 
memory operates on all 16 bits as a single unit. 

\lUlOOOl.W 0 tOl 10101 OtOlI 100 
1010101l '0001(0) 

0C0Dnl1O 2 OCWl lOIOlOOO110 

1111111101 )021 10011101000'(10) 
1111111110 '022 OCW"OIOOOlllIO 
Illll] l tll 1023 1101]tl000lO0Ioo 

[] flG URE9-2 
ContenlSof a 1024 X 16 Memory 



402 0 CHAPTER ~ I MEI>\OR Y IIA5JCS 

The i II: X 1/; m~1nOI'Y of the Agure has 10 bil$ in the addreM and 16 bits in e.-ell 
"' .... d.l( iDSlead."'e ha~e I 641< x 10memory. it is ~ 10 ",dude 16 bits in the 
addre<&, and each .. -oro will consist of to bi lS.1be number of address bits needed in 
memory i. dependenl on the 10111 number of words lhat can be stored lhe re and i. 
independ~nl of Ihe number of bils in ~ach wo rd. The number of bill In the addr~ 
for a word is determined frolll the rcialiomhip 2' "" III . where In is Ihe I<JI"I number 
of ",'Ords and k is the min imum number of address bit:! ""tisfying the reiR ti ons hip. 

Write and Read Operations 
'The lwo .",., .... liol1$ Ih~\ a random-attC'f6 m~mory can perform art " Tile and ,ead. A 
wn'/t: i. a lransfu imo memory 01. new word to be SlorN. A ~ is a tran,fer of a 
ropy of a Slored word \JUI 01 memory. A Wri te ';&'1"1 sp:ciIie5the Imn!S.,...,n open­
tion,:and a Read signal ~ the lransfer-out operation_ On ~pl;", ooe oIthc$e 
conlrol signal>, lhe imernal cin:uits inside memory pr .... ide the desired func\ion. 

The ste.,..that mull be laken for. wrile are as follov."$: 

I , Apply !he binary addre5ll of the <ksired ,m.d 10 the address hntS. 

l, Apply the dala bits lhal must be slored in memory 10 Ihe <Jail ,npullines. 
3, Activate the Write inpul. 

The memory unit will th en I ~ ke the bil~ from the dal. input lines and Store them in 
th. word specified b)' th e "ddf<'si lines. 

The step' that must be laken for a read are as follows: 

1. Apply the binary address of Ihe de,ired word 10 the add1"('5' lines. 
l, Activale the Read inpul. 

The memory willlhen lake the bits frQm .he word lhal has been ..,I.,,,.ed by lhe 
addr~ and apply th~m 10 Ihe dal. OUlput tinn. ~ conlenls of the selected word 
arc not changed by rudi", tMm. 

Memory is made up o f RAM ,nte&nlted ciralits (chi.,..). plus BddOllonal lo&ic 
drcui ... RAM chips usually provide Ihe two rontrol ,npu lS for lhe relOd and ""rile 
.",.,ralions in a """e ... ·hat different eonfigllralion frQm thai JUS! dc$ct,bed. Ill$\ead 
of having "'parale Read and Wrice inpu ts 10 ronlToillle '''"0 .",.,nllions. mos. inle' 
trnted circuil1 provide a t leu •• Chip Seleci thaI ..,Ieci.!he chip 10 be read (rom or 
wriu~n 10 and. Rc~dlWrile thaI determ ,nes lhe particul.r openltioo. l'lIe memory 
operations that ,esult from thQlO con.rol inpuLS are ,hown in Tahle 9- '. 

The OIip Selecl is u..,d 10 enable the parlicular RAM chi p Or chips ronlain' 
ing the word to be ac<:em:<J. Wh en Ch ip Select is inaclive. 'he memory chip or 
chips arc nol selected. Bnd no opera lion i. performed. When Chip Se lecl i$ ICl i>'e. 
Ihe Read/Write inp u. determine' the operation to be performed. While Ch ip 
Setect acceMe!l chips. a signal ii also provided Ihat accesses the entire memory. We 
will call lhis $ignaltlle Memory EnabLe. 

Timing Waveforms 

The operation of the memory unit is conlrollcd by an eXlerlUlI de,'ice, luch as • 
CPU The CPU i. 5)nd!ronilMi by its own clock pulses. The memory, howe>·~r. 



o TA8LE,.1 
Contrul1np~1S to. M . .. ory Oaip 

Ch~_ 

" 
" 

, , None 
Write to .. lected " ur<! 
Reod from ..,Ie,,,ed ,,-ord 

does not employ the CPU clock. Inslead. ils read "nd wrile operaliOlls arc lime<! 
by cbange< in val ue. on the CQntrol inputs. The ac(dS rim~ of. memory read oper· 
ation i, Ihe muimum time from Ibe application of Ibe add,e .. to the appearance 
of tbe data at Ihe Dala OUlpUt. Simil.rly. tbe .... ,il~ cydt rim~ is tbe muimum time 
from the application of the addre .. to the completion of all internal memory oper· 
alion, required 10 ,lore a word. Memory writes may be pe.fonne<l one afler the 
olher at the intervals of the C)"Cle lime. The CPU must [,<o'ide the memory control 
signals in , uch a way as to synchronize its OW" internal docked operat;ons with the 
rud and write operations of memory_ Tbis mean, that Ihe acceos time and the 
wrile cycle lime of the memory must be related within the CPU 10 a period equal 
10 a fixed number of CPU dock pulse periods. 

Assume. a. an cum pie. that a CPU operates with a clock frequency of 
SO MHz. giving a period of 20 ns (I "s • 10- 9 oj for one clock pulse. Suppos.e now 
that the CPU commun icates with a memory with an ao:eos time of 6~ ns and a 
write cycle time of 75 ns. The number of clock pulses required for a memory 
request is Ihe integ .. value greate, than or equal to the targe r of Ihe ao:eOS lime 
and the " ',ite cycle time. divide<! by the clock period. Since tbe period of the CPU 
clock is 20 n .. and the larger of the access time and w,ite cycle time is 75 ".. it will 
be neC<$S8ry 10 devote at leasl four clock pulses to each "",mOly request. 

The memory cycle timing shown in Rgure 9·) is for a CPU with a SO MH~ 
doc k and memo!), with a 7S·ns write C)'cte time and a 6S.ns ac<:ess time. The wrile 
cycle in pan <aJ sho"", four pulses Tl. T2. T3. and T4 with. cycle of 20 Ill, For a 
w,ite ope"'t;on. the CPU must provide Ibe address and input data to Ihe memory. 
The addrcos is apptied. and Memo!), Enable is set 10 tbe high level at the posilive 
edge of Ihe TI pulse. The dala. nuded somewh.t later in Ihe write C)"Cle. is applied 
at the positive edge of n _ The IWO lines Ihat cross each other in the address and 
data waveform. designate a poosible cbange in value of the mu~lines. The 
shaded area, represent unspecified values. A change of the Read/Write signal to 
o to designate the wrile opcraliCKt is also at the positive edge of 'no To avoid 
destroying data in other "",mOly words. it i, ;mponant tbat this change occur afler 
the signats on the address lines ha"e beoome fi:<ed at the desired val ues. O,he,wise. 
one or more other words mighl be n' '''''''ntari ly addressed and accidentally wrilten 
over with differen t data_ The Read/Wrile signal must stay at 0 long enough afler 
apptication of Ihe address and Memory Enable to allow the write operation 10 
complete. Rnall~ addreos and dala signals musl remain stable for a .horl lillle 
after tbe Rea d/Write gO<:$ to I. again to a"oid destroying data in other memory 



404 0 CHAI'TEIt. 9 I MEMO It. Y DASICS 

_lII .. _ 

\ 

X 

_ lII .. _ 

n 

.­
(oJ Wm • .,a. 

n 

x , 
~':':"=J~ _ ___ _________ _ \~== 
,.~ 

w,i,. 

~" 
W l p..1 '0' .-

(b) 11....,.,.. 
o I'I (;UKF; J-.) 

Me..-,. Cyck 11m,n, WI>"efonm 

x 00,. ",'id X ::::n 

word .. At the C()mpletjon of ,he fourth d""k pulse, the memory wri, e opcralion 
has ended with 5 ns to spare. ~ nd the CPU c.n apply the addre .. and comrol $ig' 
nal, for another memory requesl wilh ,he next 71 pulse, 

The read cycle shown in figure 9.3(b) has an address for Ihe memory thRI is 
provided by tl\(> Cpu. The CPU applies the addtes&. sets lhe Memory Ennble to I. 
and seto Read/Wr;te to 1 1(> de, i",ale. read openl1ion, all at the positive edge of 
71. The memory pl,..,es the data of ,he " 'ord sele.:,ed by lhe address onto ,he dal8 
OUlput lines wilhin 6.'l '" from lbe lime lhal lbe add ..... is app~cd al>ll tbe memory 
enable;s activated. l ltcn. lbe CPU transfers the da,a imo one of its in ternal reps. 
ten during the posi""" tr.lt!ition of the nexl n pulse. " 'hich can al"" change lbe 
add ..... and con,rob for tbe rout memOl)' Tf!quest. 



~_J I SMM I.,"g"'"" C;onll<. 0 405 

Properties of Memory 

Integraled circuil RAM may be either slatic OJ dynamic. Slaric RAM (SRAM) coo­
.i.ts of internal latches that Ilore the binary inform3lion. The stored infonn.lion 
remains valid as long as power is applied 10 Ihe RAM. DJ,,~mic RAM (DRA M) 
siores the binary information in the form of electric charges on capacilors. The 
capacit"'"' are accessed inside the chip by n-channel MOS transistors. The slored 
charge On the capacitors tends 10 dischar~ ,,-ith time, and Ihe capa.cilOrs mLlSI be 
periodically recharged by r~fff.hjng the DRAM. This;" done by cyding Ihrough the 
",ords e,..,ry lew miUiseCOllds.. reading aoo re"'TIling them 10 reslore the decaying 
chrge. DR AM offers reduced po",er eonsun,pt;';'n and larger storage ~apa.city ill a 
sillgle memory chip. but SRAM is easier to use and has shorler read and write 
cyck ... Also. no refresh i. required for SRAM. 

Memory units that lose stored informal;';'n when po,,'cr is turned off arc said 
10 be "olalik Integraled circuit RAM .. both SIalic and dynamic. are of this Cate­
gory. since the binary cells need eXle,nal powe, to maintain the Slored informalion. 
In eontrasl. a non,·o/a.i/e .mmory. sueh.s magnelic disk. relains its sl"rcd informa_ 
lion after the removal of po",.r. Thi. is because Ihe dala stored on magnelic compo­
nents is represenled by Ihe dir""li'm "f magnelization. whi~h is relained aftcr 
po""er is turned oft Anolher oonvolalile memory;" ROM. discu ...... in Section 3-9. 

9-3 SRAM INTEGRAT£D CIRCUITS 

As indicated earlier. memory ronsisl$ of RAM ch ips plu. additional logic_ We ",ill 
ronsider Ihe internal structure of Ihe RAM chip first. Then we will Sludy combina­
tions of RAM chips and addil;';'nal logic used 10 ron.truct memory. The internal 
structure of a RAM chip of m .... ords wilh n bits per word coru;isl' of an array 01 mn 
binary SIQ"'8e cells and associaled cirruitry_ The cirruily is made up of decoders 10 
select Ihe ""01"d to be read or ",TIllen. read circuits. "'Tile eircuil .. and OUlPUI logic. 
Tlte RAM crll is Ihe basic hinary storage ce ll used in Ihe RAM chip. which is Iypi­
cally designed"" an deetronic circuit ralher Ihan a logic circuit. NC,'Crlhcl.,... il is 
possible and ron"enient 10 model the RAM chip using a logic model. 

A Sialic RAM chip serveS"" Ihe basis f"r our discussi"r'- We firsl p=nl 
RAM cell logic for 'Ioring a single bil "nd Ihen use the cell in a hierarchy 10 
describe Ihe RAM chip. Figure 9--4 shows Ihe logic model of Ihe RAM cell. The 
storage pan of Ihe cell i. modeled by an SR latch. The inpul. 1<> Ihe Mch are 
"nabled h)' a Select signal. For SeI""l equal to O. the stored ronlenl i. held. For 
Selecl equal to I. Ihc stored conlcnl is delermined hy Ihe values on Jj and Ii .'1Ie 
outputs from Ihe lalch are galed by Select 10 produce cell OUlputs C and C. For 
Selecl equ~ 10 O. both C and Care O. and fOT $elect equal 10 Leis the Slored 
value and C is its romplement. 

T" oblain simplified static RAM diagrams.. .... e inlerconnect 8 set of RAM 
cells and read and wrile cireu i" 10 form a RAM bi • • lice Ihat conlains all of Ihe eir· 
cuitry associated wilh a single bil posilion of a sel of RAM ,,"Ofds.. The logic dia­
gram for a RAM bil sliee is soo",'n in Figure 9-5(a). The porlion of Ihe model 
repre"D1ing each RAM cell i. highlighted in blue. The loading of a cell latch i. 



406 0 OMP'TER 9 I MEMOli. Y lI,o\$ICS 

, 

• 

, Q 

, Q 

o t'IGU KE9-4 
SloliG RAM Cell 

now oonlfo lled by a Word s"lect in pul. If Ihis is O.then both S and R IfC O,and Ihe 
celllMch OOfIlenu remai n unchanged. If Ihe WOTd s,,1ect input is I . then Ihe val .... 
to be loaded into Ibc latch is controlled by 1" "0 signals B and B from the Wrile 
I..ogic.. In order for either of the.., signals to be 1 and potentially chance 'he Stored 
val ..... ReadlWrite muM be 0 and 0 '1 Select mU51. be 1.1Mn the Dala In value and 
il$oomplem.en l are app~ed to B and 8. respectively. 10..,1 or re&C:I the latch in the 
RAM cell .., lected. If Dat3 In is I lbe 100ch il; ..,110 1, and if Dala In is 0 II><: latch 
i. resel to O. oompleting the ,..rile operalion. 

Only onc ,..ord is written al" time. That i<. only onc Word s" lecl line is I . and 
all other Word s.,lect lines arc O. Thus. only one RAM cell attached 10 Band B is 
wrinen.l1tc Word Seleci also controls the reading of the RAM cells, using shared 
Read logic. If Word s"lect is O. then lhe lIored value in the SR Iitch i. prevented 
by the ANI) pt" from reaching the pair of OR gales in the Read Loaic. But if 
Word Select i$ I, lbe stored val .... passes thrOtlzh 10 the OR gates and is captured 
in tl><: Read L.o&ic SR latch. If Bit s,,\ect iI also I. the capt ured valtoe appears On 
Ihc Dala Oul line of tbe RAM bil slia:. Note Ihat for ~rticular Read Logk 
design. tile read Otturs regardlcso of Ihe value of RcadlWrite. 

The synlbol for the RAM bilslice given in Figure 9·S(b) is used 10 represent 
Ihe internnl mucture of RAM chips. Each Word s"lect hne c~tendl beyond the bit 
slice, SO thai when Ill ultiple RAM bil slice, are placed side by side, corresponding 
Word Se lect line. connect. The other ,ig.nal. in the lower Jlortion of the symbol 
rna)' be connected in ~ariou. ways.depending On the structur. of the RAM chi p.. 

ll>e symbol_nil blod: di.a8Jll m for a 16 X I RAM chip .re shown in figure 9-6. 
Botb ha~e foor add ....... inpulS for the 16 one-bil ,,_<is "OIed in RAM.1"1tere are 
abo On. Input. Data Output, and ReadIWrito ,,;gnals1M Chip s,,1ect at the chip 
level oorruponds to tbe Memory Enable.1 tl><: level of _ RAM ODn!iJSling of multi­
ple chips 1M internal 'itructu~ oflbe RAM chip ODn'iim of a RAM bit sJitt having 
16 RAM cells. Since there are 16 Word Select lines to be DJntroiled sueh that one 
and Qnly one has the value logic I al a give n tim .. , a 4· to- il;-line dc"CQder i. used 10 
decode the four address bits into 16 Word Select bits. 

Th~ only additional logic in the figure is a triangular symbol ,..ith one normal 
input. o ne normal OUtput. and a loeCond input on the bonom of Ihe symbol. This 
symbol is a three·stale buffer lbal allows conslruction of a mullipkxer ,..itb an 



w 

• , 
., 
~ 

• 
• 
• 

, 

, 

, 

, 

J)- , 

• • • 

'l..-J I SRAM to,rg .... «1 Cittu;" 0 .. 07 

y- O 
Q 

J> 
- -0 

0 .~ , 
RAM «II 

w •• 
.~ , .- • 

~ . , 

J)-

)C 
- ~ 

SJ 
JWri'O k>P: 

• 
• 

, Q ~ )- Wo<d 
.~ ". , 

, 0 
R A.M ",II 

II J 
V . , Q 

, Q 

.'. ,,, 
,~, 

"""'" I Q 
o FlGURE ~ 

RAM B" St~ Modoel 

• • 
• 

ReodlWrit. 

"'" Du.;. 
D . .. "", 

BW' !,l" 
Wril. ..I«< 

0 . .. "", 

arbitrary numb<:r of inputs Three-state outpu," arc conn""ted together and 
properly controUed uSing the Chip Select inputs. Il y using three-state buffers ()fl 

the outp uts of RAM chips, these outpu," can be connected together to provide the 
word from the chip being read on the bit line. attached to the RAM outputs. The 
enable signals in the preceding discussion correspond to the Chi p Select inpu .. on 
' he RAM chips. To read a word from a partkular RAM chip. the Drip Set""t value 
fo.- that chip must be t. and for aU other chips attached to the same output bit Unea 
the OUp Se lect must be O. The.., combi nation. containing a single t can be 
obtai ned from a decoder. 



(,)S),,"\>01 

, 

, 

, 

I- [lat. 

""""" 

.·,.,.1. 
-,' W""I ",1oct 

" 'r-, 
" 

, 
• 

" 
, 
• , , 
• • , 

W , 
, 

H 

" " " 
" 

0. .. inpu. 

R.~ 

ClIip ",loa 

-1 
I RAM cdl1 

RAM cell 

• 
• 
• 

RAM ",II 

R.odIW,ite 

'" 
o. .. ift 

D.u",,! 

~~ Bi, 
Write ,~, 

(1)) BlocS. diaVU> 

o F1GU KE9-6 
16-W",d by J_Bit RAM OUp 

Coincident Selection 

0". "",.,.t 

Inside a RAM chip. the de<:oder with I: inpulS and 2' OUlputs req uires ,. AN"D 
gale!! wilh k inpulS per gale if a straightforward design approach is """d. In addi­
.ion. if the numlx' of words is laIgt' . and all bits for one bit Jl'OOition in the word 
are contained;n a single RAM bit sl ice. the number of RAM cells sharing the read 
and wTile circuits is s iS<) large. The electrical properties resulling from b(>lh oC 



the$<: situations cause the acress and write cycle times of the RAM 10 be<:omc long. 
which i. undesirable. 

The tOlal number of decoder gates. the number of inpulll per gate. and tile 
number of RAM cells per bit .Iice: can all be reduced by employing two decoders 
with a coincidml se/«'ion schemc. In one possib le configuralion. two kl2-inp ut 
decoders are used instead of one k.input decoder. One dec<:><kr controls Ihe word 
..,Ieet lin.,. and the other comrol. th e bit ..,Iect ~nes. The result is a t""o--dimensiOllal 
matriJt ..,Ieclion scheme. If tl>e RAM chip has m words ";Ih I bil per word. then Ihe 
scheme ..,Ieclll lhe RA M cell at the inte...,Clion of the Word SeleCl row and the Bit 
Select column. Since the Word ScI""1 i. no 1000ger strictly ..,Iecting ".-ord" its name is 
changed 10 Row ~1«I.An outpul from the added doooder that selttU One Or more 
bit .Iices is referred to a. a CoIum" S~lul. 

O:>incidcnt sclcClion is illustrated for the 16)( I RAM chip with the structure 
shown in Figure 9-7. The chip con.i'lll of four RAM bil slices of four billl each and has 
a total of 16 RAM cells in a lwo-dimension~1 arr1ly. The two most significam address 
inputs go througl1tlle 2-t~4-~ne row decoder to ..,Iect one of IIIe four rO"l of Ihe 
array. 'n ,e IWO least significaJlI address inpUI' go Ihrougl1 the NtH-line column 
decoder to ..,lecl one of Ihe four coIumTlll (RAM bit slices) of the array. The column 
decoder is enabled with the Chip Scl..,t input. When tile Chip Select isO.aU output' 
of Ihe d.<:<>der are 0 and nOne of the cells is selected. This prevem. writing imo any 
RAM cell in Ihe array. Wilh Chip Select at I,a single bit in Ihe RAM is acre...,d. For 
exam pit. for the addTCM 1001. Ihe forsl two address bits aTe decoded 10 ..,Ieel TOW 10 
(2,.) ofthe RAM ceU array. The seoood t,,·o address bi!] are decoded to ""lcct column 
01 (I w) of the array. The RAM cell accc'SCd. in row 2 and column I of the array. iscell 
9 ( 10., 01,) . With a row and column selected. Ihe Read/Write inpul del ermines Ihe 
operation. During the read operalion ( Read/Wrile .. I), the selected bit of the 
..,Iccte<! row goes thTOtlgh the OK gale to lhe three-$late buffer. Note Ihat the gate is 
drawn according to tit<: array logic established in Figure 3-22. Since the buffer is 
enabled by Oip s.,1tt1. 1he valL>C read appears al the O.la Output. OUTing the write 
operation (ReadfWril e .. 0). the bil .,·ailable OfIthe Oala Input line is transferr«l 
into the ..,Iccted RAM ceU. Those RAM ""lis not ..,leCle<! arc disabled, and thcir pre­
vious binary values remain u"ch'nged. 

The same RAM cell array is used in Figure 9-8 to produ"" an 8)( 2 RAM 
chip (eight words of two bit< each). The row d..,oding is unchanged from lhat in 
FlguTe 9-7; Ihe only change> are in Ihe column and output logic. Since there are 
just Ihree address bils. and Iwo arc handled by Ihe row decoder. the col um n 
decoder has only one address bit and Chip Stltct .. inpu,s and produces ju.t 1"'0 
Column Select ~ne .. Since 1",'0 billl al a time are 10 be written or read. the Column 
Se1""1 lines go 10 adi"""n l pairs of RAM bit <lice .. TWo inpUI lines.. Dala Input 0 
and Data Input 1. each go 10 a different bit in all of the pairs. Finally. correspond­
ing hits of the pairs share Outpul O R ga les and Ihree_stale buffers. giving oulput 
lines Data O utput 0 and Data Output I. The operation of this ,truClure can be 
illustrated by Ihe application of Ihe address 3 (011,). The firsl two bits of the 
address. 01 . acress row 1 of Ihe array. The fonal hit. 1. acce'SCs col umn I. which COn_ 
sists of bit slie<..'S 2 (10,) and 3 (I 1,). So the word to be "Titlen Of read liel! in RAM 
cells 6 and 7 (011 0, and 011 1,). which conlain bits 0 and I. respectively. of word 3. 



41 0 0 CHAPTER 9 I MEMORY BASICS 

o t'l(;UR£ 9·7 

-"­, 

Oiagram <If. 16 ~ I RAM Using. 4 ~ 4 KAM ~n Array 

We can demon ~lraie Ihe savings of Ihe coi ncidenl selection scheme by COn· 
sidering a more reali"jc sialic RAM size. 32K x 8. This RAM chip cOnl. ins a 10lal 
of 256K bils. To make lhe number of roWS and column. in Ihe array equal. "·e lake 
Ihe square rool of 256K. giving 512 .. '1'. So Ihe firsl nine bill; of III<: addr~ are 
fed 10 the row decoder and Ihe remaining six bits 10 Ihe column decoder. Wilhoul 
coincidenl ... Ieclion . Ihe $i ngle deeodu would have 15 inpul~ and 32.168 OUlpUts. 
With coincident ... leCl ;on, there is one 9-t<>-512-line decoder and one 6-lo-6l -Jine 
decoder. 'Ibe num ber of gales for a stra;ghlforward design of Ihe single decoder 
,,·ould be 32.&Xl. For Ihe Iwo coincidcm deeoders. Ihe number of gales is 608, 
reducing Ihe gau COunl hy a faclor of more Ihan 50. In addiliOtl. ahhough ;t 
appears Ihal Ihere are 64 limes a. many ReadlWrile circuits. Ihe column ... Iection 



o F1GU MI> 9-8 

-"­• 

9-4 I A .... y of$RAM Ie. 0 4tt 

" 

-- --- -

Block Diagrom of,n 8 ~ 2 RA1>1 Uoins' 4 ~ ~ RAM Cell Array 

can be done between the II.AM cdb and tbe Read/Write circuils, so Ihat only the 
original eight circuil' are required. Because of Ihe reduced number "f RAM cell$ 
a\lathed I" each lI.eaJlWrilc circ ui t at any lime. the access time of the chip is also 
improved. 

9-4 ARRAy OF SRAM yes 
Integrated circuit RAM chips are ovailable in a variety of si •. es. If the memory Unil 
needed for an applicalion i. larger lhan the capacity of one chip. i. is necessary to 
rombine a number of chips in an array to form Ihe required size of memory. The 
capacity of the memory dep<:nds on two paramcters, the number of words and tbe 



412 0 CU"PrER. I MI:.MOR Y II"SU:;S 

riUmLr J II per W{J L Increase In t numL J worl reqUIres tt we 
increase Ihe address lenglh. Every bil added to the lenglh of the addre~$ doubles 
the number of words in memory. All increase in the nu mber of bit~ per word 
requires Ihnt we increase Ihe number of data input a nd out put lines., bul Ihe 
addrJ/SS length renla;n, the same. 

To Iltustrate an array of RAM 1Ct. let u. Ii"'t imroduce a RAM chip using 
the roodensed representation for inputs and outputs S!Knoll in Figure 9-9_ The 
C3p11C1ly of thi, chip i. 6-IK words or8 bits each. lbe chip re<julre$. [6-bit address 
and S input and OIItl"'l lines. [n.lead or 16 lines for lhe address and Slines each for 
data input and data OUlpul. each i1 shown in the block di'gram by a single line. 
Each line has a slash ""rOM il wilh a number indicating Ihe number of lines repre­
senled. '!"be CS (Chip Select) input sel«ts the particula r RAM chip. and the RIW 
( Rcad/Write) input specifICS the rCAd Or write operation whe n Ihe chi p i, 
sdecled. 'The small triangle ihown 81 the o utputs is Ihe .tandMd graphics symbol 
for Ih ree~tnle OIIlpUls. The CS input Of the RAM controls the beha.1or of the data 
Outpul linea. When CS = O. Ihe chip is nOl selecled. and all its dlla OII II"'IS are in 
the hl", .impedance state. Wilh CS . 1.lhe da", OUlpullines carry the eiJ.ht bits of 
Ihe ... It'CIed word. 

Suppose lhat we " "8nl 10 illCfease Ihe number of " 'ortls in Ihe ~mory by 
u.ins t,,·o or more RAM chips. SinO!: every bit added 10 the .ddr~ doubles the 
binary number Ihat can be formed. il is natu .... l to increase the number of words in 
(actors of two. For uample. Iwo RAM chips will double the numl>Cr of word. and 
add one bit 10 the OOIIIf'O'Iilc address. Fo ur RAM chips mullipl), Ihe number of 
words b)' fo ur and add two bi .. to the cOlllf'O'lile addrcso. 

Consider the possibilily of corulrucling a 251i K " 8 RAM wilh four 64 K ,,8 
RAM chips. DS . hown in Figure 9.10. The eiJ.h1 data input lines ,0 to aillhe chips. 
The Ihre<Htale outputs can be connecled lozelher to fOfm Ihe eIght COIIImon 
data outpul li~ This t~pe of OUlput conne<tion is possible only with thrN:-.;tale 
outpula.JUSI one chip select input "'111 be aeti,·c at any time ... h,le Ihe other thrN: 
chips ,"',11 be disabled.lbe eiShl OUlputs of Ihe ..,l'"Ctw chip will conlain I', and 
0' .. and the OIher thrN: "'ill be in a high-impedance stale. pr~nting Oflly open 
ciT~uilS to the binary outpul .ign. ls of Ihe ~Iect~d ch ip. 

Th~ 25!5 K·word memory req lli res an IS-bit addreso. The 16 least ,igniflcant 
bil. of the addre ... are applied 10 Ihe addre ... Input. of all four chips. The two mOSI 

6-IK" ~ RAM 

1.,.., ..... • ~" v • f--"--OUlpul ..... 

,- " "DRS 

"".~ ~ 

RudlW,il< -
o n GU M.E9·9 

SymOOl tot. M K x 8 RAM CIIip 



, . 
, ';~' 

I" 
I"'""'" L .. 

, -, - ~" I , . 
write -

~ - ~" 
ADRS 

-
~ , 

:- ~" 
ADRS 

-~ 
'--- DATA 

.oM 
~ 

~. 

., 
o tlCUME 9-tO 

Block Di.o""m of. 2S6K X a RAM 

sign ifiC<lnt bits arc ~pplied 10 a 2 x 4 decoder. The (Qur outpu ts of the <k<:o.kr are 
applied 10 the CS inputs of the four chir»- The IDemOf)' i. disabled wilen [he EN 
input o f the decoder, Memory Enable. i. e<juaJ to O. All four ompul. of the 
decuder are t""n O. and none of the chip' is ..,Iocted. v.'ben the decoder is enabled. 
addre .. bil5 17 and 16 determine (he pal1i<:ular chip thai i. selected_ If these bilS 



414 0 C H AI'rER 9 I MEMORY BASICS 

16 i" p"'do" U ... 

j, 
" 

60IK X 8 RAM 60IK X 8 RAM 

" " +, , 
M" V DATA V , 

ADRS AO~ 

~ ~ 

"" 
-
~ 

, 
" 

16 """1"" do" Ii "". 

o F1GUJU 9·11 
Block Di.~m 01. 60IK X 16 RAM 

arc equal to 00, the first RAM chip i< selected. The remaining 16 address bit. then 
selcct a word wilhin tne cnip in the range from 0 to 65535. The next 65536 WOT<is 
arc selected from the second RAM chi p with an tS·bit address lhm.tam wilh 01 
followed by the 16 bilS from the common address lines. The add ress range for each 
chip is lisled in decimal under its symbol in the figure. 

t1 is also possible 10 combine 11"0 chips to form a composile memory con· 
laining the same number of words. but with twice as many bits in each word. 
Figure 9· 11 show, lhe imerconnection of 11"0 64K X 8 chips to form a 64K x 16 
memory. The 16 data inpUI and data Out pul line. arc split belween the two chips. 
Both receive the same t6-bi! address and the common CS and HIW comrol inputs. 

The two lec hniques just described may be combined 10 assemble an array of 
idemical chips imo a large-eapac;!y memo')". The composite memol}' will have a 
numbeT of bils per word that is" muhiplc of that for one chip, The 100ai number of 
wOlds will increase in factors of 1"'0 times lhe word capacily of one chip.A n ex!er­
nal decoder is needed to selcc! the individ ual chips ba«:d on the addilional addr""s 
bits of the composite memory. 

To reduce lhe nu mber of pins oa the chip pacbge. man}' RAM !C~ provide 
common terminals for Ihe data input and data output. The common terminals are 
said to be bidirlXtional, which meaas that for the read operation they acl as out· 
put .. and for the write operation lhey act "' inpms. Bidirec!ional lines are 
constructed with three-stale buffers and arC diso:us~d funhcr in Section 2-S, The 
u«: of bidircc\ional signals require, con!rol of the !hree-S!ale buffers by both Chip 
Selecl and Read/Write. 



~_5 I DI<.AM IC. 0 41 S 

9-5 DRAM Ies 
Because of its ability to provide high storage capacity at low cost, d}lIamic RAM 
(DRA~) dominales Ihe high-capao:ity memory appli~alions, including the primary 
RAM in c.:>mputers,. Logically, DRAM in many ways is 'imilar to SRAM, Ilow­
evcr, because of the ele<:tronic circuit used to implement the !lorage cell, its elec­
tronic design is c.:>nsidernbly more challenging. Further, as the name "dynamic" 
implies., the storage of information is inherently only temporary. As a c.:>nS<'([uence, 
the information must be periodically - refreshed" to mimic the behavior of static 
storage. This need for refresh is the primary logical difference in the behavior of 
DRAM compared to SRAM. We explore Ihi$ logical diffe.ence by examining the 
dynamic RAM cell, the logic requ ired to perform the refresh operation, and the 
impact of the need for refresh on memory system operation. 

DRAM Cell 

The dynamic RAM cell circuit is shown in Figure 9.12(a). It consim of a capaci­
tor C and a transistor T. The capacitor is uscd to store electrical charge. If there is 
sufficient charge stored on the capacitor. it can be viewed a. storing a logical l. If 
Ihere is insum<:ient <:harge $tor~d On the ca!>,,<:itor. it can be viewed a$ storing a 
logical O. The transistor a<:ts much like a switch. in the same manner as the trans­
mission gate introduced in Chapter 2. When the s .... itch is "open,- the charge on 
the ca!>"citor roughly remains fi:<ed, in other wo<ds, is sto<ed. But wbeD the 
s .... itch is '"dosed.'" charge can flow into and out of the capacitor from the external 
Bit (B) li ne. This cha rge Oow all ows the cell 10 be written .... ith a I Or 0 and to be 
read. 

In order to understand the read and write operations for the cell, we will use 
a hydraulic analogy with charge replaced by water, the capacitor by a small storage 
tanl, and the transistor by a ~alve. Since the bit line has a large capao:itance. it i. 
represented by a large tanl and pumps which can fill a nd empty this tan k rapidly. 
This ana logy is giyen in Figures 9-1 2(b) and 9-12(c) with the valve dosed. Note 
thai in one case the small storage lank i$ full represcnting a stored I and in the 
other case, it is empty representing a store<! 0. Suppose that a 1 is to be wrillen into 
the cell The "al~e is opened and the pumps fill up the large tank. Water flows 
through the valve, filling the small . torage tank as sho"" in Figure 9-12(d). Then 
the vah'e is <i()1;{:d. leaving the small tank full which represents a l.A 0 can be writ­
ten using the same sort of operation" except that the pumps empty the large tan\: 
as shown in Figure 9.12(e). 

Now, suppose "'e want to rcad a sto",d value and that the ,'alue is a I "",re· 
sponding to a full storage tank. With the large tank at a known intermediate level, 
the vah'" is opened. Since the small storage tan k is full. water flow< from the small 
tank to the large tank iocrea,ing the le"el of the water surface in the large tank 
. ligh tly a. shown in Figure 'J-12(f). n,i, inc.ea;c in level is observed as the reading 
of 1 from the storage tank . Correspondingly, if the storage tank is initially emp'Y­
there wilt be a slight decrease in the level in the large tank in Figure 9-12(g), which 
is observe<! as the reading of a 0 from the storage tank. 



ll!l=:-~ lllt:=~ 
(d) (e) 

ll~, ;;; ~ lllEl ~ ,., w 
[) n CUk E,.. n 

Oy ... mi< RAM «n. hyd,.~1or: .".Iosr or ""U ope""""'. and occU 1I'IOd<1 

]n the rcad """ration juS! dncribf,d, Figures 9.l2(f) and 9· 12(g) show that. 
regardless of lite initi •• 'tored value in lhe . ,orage tank. it nOw ronla,ns an inter­
mediale value ... hieh will not cause c"uugh of a change in lhe lovd of the uternsl 
tank 10 permit a 0 or I to be obscn'ed. So lhe read operation has destroyed the 
stored v •• 1ue: this is referred to as a dcs'",elivc rrull. To be able 10 rcad the original 
.tored value in lhe (mu.e. we mUSt !<SIUr#: ;1 (i.e .• relurn the storage lank 10 il' 
original le.'el). To perfono the 'C$10re (00- a Slored I oo..:,,·.d. the large lank i. 
filled by 11M: pumps and the ..... I1 •• "k fiJis Ihrough the opt .. vllve.. To perform the 
restore for a Slored 0 ~ .... -ed. tile larg. lank is emplied by the pumps and the 
small tank dralM through lhe: op<:>n ,-.Ive. 

In the aclual .tonge cell.the«: Ire Other paths presem for (harte flow. These 
path. arc aoalogollS to small leaks io lhe Slorage lank . Due 10 Ihese leak .. a full 
small storage tank will e~enlually drain to a poim al which the inerea$(l in the le~cI 
of the lorge lank 00 a read ca nnol be observed .. an increase. In fnel, if Ihe .mall 
tank is le$$ than half full when rcod . it i$ pOSSible Ihat a Mereas.: in the Ic~el of the 
large tank may be <:>b5;:,,'ed. To eompeusalc for these leaks. the small itorage tan k 
.tonna a I must be periodically refilled. 'Thi, i, rcferre<llo a. a refresh of the cell 
contents. E~ery stonge cell mU>l be refreshed before it. Ic~cI has declined to a 
",""nt al ,,'hidlthe stored value cao no longer be ~rly obsen-cd. 

Throu", Ihe hydraulic analOBY. the DRAM operation has been explained. 
Ju" 10$ for lhe SRAM. We emrJoy, logic model for the cell. The IIl/XkI 'hown in 
Figure 9·12(h) i, a D latch. The C input 10 the D latch is Select and the D input 10 
Ihe [) latch is B. 10 order 10 modtlthe OUlput of the DRAM <0:11, "-c uSC a three_ 
.tale hufftr with Select as it. control input and C as it5 output. In the original clee­
Ironic circuit for the DRAM cell in I~gure 9·12(8). 8 and C arc Ihe .,.me signal. 
but in the JOKieal model they arc ""parate. This is necessary i" the modeling pro­
''''is to ",'(lid connecting gate QUtpulJ together. 



9-~ I DIlA."I ICs D "t 7 

DRAM Bit Slice 

Using the logic m<::>del for the DRAM cdl, """ can construct the DRAM bit-slice 
model shown in Figure 9-13. Th .. model .. similar to that for the SRAM bit-slice in 
Figure 9-5. It is apparent that. aside from the cell structure. the two RAM bit slices 
are logically . imilar. Howe,·er. from the standpoint of cOSt per bit. they are quite 
different. The DRAM cdl CQnsi,ts of • capacitor pillS one transistor. The SRAM 
cell typically contains six transist""" &i'-ing a cell complexity roughly three time. 
that of the D RAM. Therefore. the number of SRAM cells in a chip of a given sitt 

-, 
• ~ • 

• • • 

~ 
· , 

Writ< 100>< 

, 
.~ 

oH c 
Q 

C O~AM cell -, 

• • • 

-~ 

Q °H 
C D~A"1",D -, 

----
.!. R<od t.,.", 

D nGURE9-13 
DRAM Bit Slice M<><kl 

W~ 

.~ 

• 
W,..d 
.~ , 

• 
• • 

W~ 

.~ ,., 

-

DRAM cell 

• • 
• 

0. ... 
Dao. ""I 

R<ad' B" 
Wiii< xle« 

(b) SymOOI 

D.'. "'" 



418 0 CH /lI'TER ~ I MEMORY ElAS1CS 

1s less lan onc-tblrJ 01 those in Ille DRAM. The DRAM cost I"" bil is less than 
11"3 Ihc SRAM COSI per bil. which juS1 ifies the use of DRAM in large memorie .. 

Refresh of Ih~ DRAM contents remains to be discu<Sed. BU I firsl. we need 10 

develop the typical st ruCture used to han dle addrc"ing in DRA Ms. Since many 
DR AM chips are used in a DRAM. we wanl 10 reduee Ihe physical size of Ihe 
DRAM chips. Large D RAMs require 2{1 or more addr~"$S bi t .. which would requi re 
2{1 addr .... pins on each DRAM chip. To ",d~e the number of pin .. the DRAM 
address ill applied ..,rially in 1"'0 pans "'ith Ihe row address firsl and lhe column 
address """""d. This can be done since the row address.. which perfonn, the row 
..,lection. is actually needed before the column address.. which reads ou t the data 
from Ihe rOw selected. In order 10 hold Ihe rOw address Ihro ugho ut Ihc rcad or 
wrile slored in a regisler as sh",",,'", in Figure 9_14. The column 

I . The load .ignal for the row address 
and for Ihe column add",..." i, CAS 

thai in addilion 10 RAS and' :~~"',,~ l~'l;~: 
ch ip R/W (RcadlW,ilc). and OE (i Ihal this design 
uSC-' signals aClive at the LOW (0) level. 

The hming for D RA/>·I wrile ,md read opcraliOl' appear, in Fig ure 9.15(a). 
The row address is applied 10 the address input .. and Ihen RAS chang"", from 1 to 
O. loading Ihe rOw ad<.ln. .... inlo lhe row addr"" register. This address i, arr1ied I" 
Ihe row address decoder and selccts a row of DRAM cells. Meanwhile. 1he column 

00 

"" 0' 
Columo --

I 

Her"" h I coo,rut!.-" 

-
~,- I """nO<. 

I I DHA " ORA\' 
RQw ...... ,"" I-- .. .. 

"'P'" • '"' '" 0 • 
R.,... '",,,nA I .... L--

. . 
(QJU~""nl I rrL Inp<JtIO\I'r<>ll.oi" 

. 
(""'",n _ret> 

Col"mn_. 
"'~O<' 

a FIG URE 9-1" 
Bk<:k Diagnom of • DRAM r ""Iuding Refresh Log" 

DRAM .. 
.~ 

.r-

0.." ;n! 

0. .. "'" 



A~()( 

oW 

"" 
0.'1"" on.'*' ,-"-WO. 

n n 

,- X == Addrsw 

\ 
\ 

o nGUMF. ~·15 

n 

)C ; 

\ 

'J..~ I DRAM Ie. 0 419 

I~--

I 

I 

- I 
I 

Timing f", DRAM WI;!. 000 Re;><l Opo ... , ,,,,," 



4 20. 0 CI-I,o\PTER 9 I MEMORY lIASICS 

address is applied. and then CAS ehanges from Ito 0. loading the column addresl 
inlo Ihe onlumn addre ... register. Th,s addr"", i. applied to the col umn addresl 
d~'<'Odcr. which !'01e'Cts a set of column. of the RAM array of sile equal 10 the nUm_ 
l>cr of RAM d"la bil .. The input da'n wil h Read/Write _ 0. is "pp lied over a lime 
inte".1 , imH ar 10 Ihat for Ihe cotu mn addrcIS. The dal. bil. arc applied to Ihe SCI 
of bit hne. ielecled by Ihe column address decoder which. in lum "pp ly the val ue. 
10 the DRA M cells in Ute selected TOW. " 'riling Ihe IleW dala into Ihe cells. "''hen 
CAS and RAS return 10 I. Ihe ,,·,ile ')'l'le ill (lOltIpiete and t~ DRAM ce ll. store 
Ihe I>CWIy .. nutn data_ N01e ,hat the slo'ed data in all o f the o ,hcr eel" in the 
addresse.:l row has been reslored. 

1llc: rud operalion timing oho"'n ,n Figure 9-IS(b) i ... milar.liming of the 
addre"" operallon. i. the samc_ Ho"'cvcr, no dala is applied and RudlWrite 1$ I 
instead ofD. Data value. in lhe DRAM C<!II. in 'he selected ro", arc applied to the 
hil hne, " " d sensed by the sen ... amplific1"$. The I I 
the value. to boo! se nt 1o Ihe Dala output. which 
ing Ihc rc~d QjXralion. all value. in the addressed row arc 

To SUllPOn rdresh. additionollogic sho .. o in color is presenl in the block dia· 
gram in Figure 9-1 4. There i. a Refresh COUnter and a Refresh cOfUToller. 1llc: 
Refresh counter i< u.cd 10 proYtUe Ihe add~ of the row 01 D R AM cells 10 be 
refreshed . It It eMo:n1ial for the ref.~ m0de5 that require the add"'-H 10 he pm­
"oded from within tht DRAM chip< 1llc: refresh <:(lUnler .dval'K:CS on each n:fresh 
eyde. Due 10 ,he numher of bits in th~ counter. ,,-hen it reach~ 2" _ \, where n is 
the numb;:r of ro",. ill Ihe DRAM arrny. il advances 10 0 on the next rdresh. The 
sta nd.rd way$ in "'hien a refresh cycl e can be triggered and I h~ corresponding 
rdt~sh type, uTe as follows; 

I. MAS unly ref_h. A row address is placed on Ihe address lill~ nnd RAS i. 
changed to D. In this """". the rdresh addresses must boo! applied (,om outside 
lhe DRAM chip, ')-pically by In Ie called a DRAM COfluoILc •. 

2. CAS bel....., RAS rer .... 1L The CAS i< cbangcd from I to 0. fol ...... -cd by a 
change: from I '00011 RAS. Addll'OIIal refresh cycles can be performed by 
chonging RAS " 'ilhout changJllg CAS. The refresh addre!6CS for IhlS case 
come from ,he refresh counter, " 'hich i. incremented .f,c, 'he refresh for 
etch ')'l'1e. 

3. Ilidden ",r",. h. Following a norrll.1 read Or write, CAS is left a l 0 and RAS 
is cycled. effecli,'ely performing u CAS before RA S ,ef,e,h, During a hidden 
refre,h. the o U'pu, data from the prior read remain. valid. Th us,l he refresh i. 
hidden, Unfortunately. toc time la ken by the hidden ,efresh ill significant. so 
a subsequent rud or wrile operation ~ delayed. 

In all ~ noIc that the ,n'"at'OII of • refresh ill controlled externally by 
using tl\c Ri\S and CAS .ignal .. Each row of a DRAM chip requlTcs refreshing 
... ·;Ihill a specified maximum rdrC$b lime. Iypically rangillg from 16 to &I miUisec­
onds (m,). RcfrcshCi may be performed al ""enly .paced pointS in the refre.h 
lim". an approach called d;"rib~tcd rdre'h. Alternatively. all refre,hes may be 
performed one after the othcr. Uti approach called burst refre.h , For exa mple, a 
4M ,, 4 !)\{AM has a refre< h time of 64 m. and has 4096 rows 10 be ,efreshed , The 



41 DRAM TJP<' 0 42 1 

length of lime to perfonn a single rdre5h is 60 ns.. and the ,..,fresh inte"al for dis· 
trib~ted refresh is 64 msJ4096 .. 15.6 microsecond5 (J.lS). A total time oul for refresh 
of 0,25 ms is used out of the 64 m, refresh interval. FOT the s.ame DRAM. ~ burst 
refresh also ta kes 0.25 IllS. The DRAM controller mUSI iniliale a refresh every 15.6 
~ for di$lribuled ref,..,sh and mU$1 iniliale 4.096 refreshes se<juentially every 64 ms 
for bursl refresh. During any rdresh cy<:le. no DRAM reads OT writes can occur. 
Since use of bum refresh would halt computer operalion for a fairly long period, 
dislrib uted refresh is more commonly used. 

9-6 DRAM TYPES 

Ch'er the last 1\<" decades. both the capacity and speed of DRAM ha5 illCJeased 
significanlty .. ~ quest for spew has resulted in Ihe evolul;';'n of many Iypes of 
DRAM. Several of the DRAM types are li5ted with brief descriptions in Table 9·2. 
Of Ihe memory Iypes tisled. the firsllwo have largety been reptaced in tlte markel' 
place by Ihe more advanced SDRAM and RDRAM approaches.. Since "'e have 
chosen to provide a discussion of error-corrceling code. (ECC) for memories on 
Ihe texl websile. our discussion of memory typ'" here will omit the ECC fealUre 
and foc-us On synchrono us DRAM. double dala rale synchronous DRAM, and 
Ramb~ DRAM. Before con5idcring Ihese Ihree types of DRAM. SOme of tlte 
underlying concepts are covered briefly. 

Firsl of alt, alll hree of Ih"5e DRAM types work well beeause of Ihe parlicu_ 
lar ellvi roomenl in which they operate. In modern high-speed compuler 'y1tems. 
Ihe processor inleracts with Ihe DRAM wilhin a memory hierarchy. MO:SI of Ihe 
instructions and data for Ihe processor arc felched from two lower level, of the 
hierarchy. Ihe LI and L2 cache .. These are comparatively .maller SRAM-based 
memory Structure. ,hat are CO"cred in detail in Chapler 14. For OUr purposes.. the 
key issue is Ihal mo:sl of 1M re""5 from Ihe DRAM are not direclly from the CPU, 
but instead are ruds initialed to bring data and inSlruct;';'ns inlO Ihese caches. The 
,..,ads are in Ihe form of a Une (i.e .. some number of bytes in conliguous addresses 
in ",emory) Ihal is brought into Ihe cache. For example. in a gi"en read. Ihe 16 
bytes in he. adeeimal addresses (j(]()))) through C«lOOF would hi: read, Thi, is 
,eferred to as a b"w read. for bum rcad .. Ihe cffeclive mle of re. ding b)'les, 
which is dependent upon reading bursls from conliguous addresses.. ralher than Ihe 
access lime is the important measure. With this measure. the three DRAM types 
we are dillCussing pro\ide very fa<1 performance. 

5eoond. thl: effecliveness of these three DRAM Iypes depends upon a .'ery 
fundamental principle involved in DRAM oper.l;';'n. the reading out of all of Ihe 
bits in a rOW for each read ope .... lion. The implieal;';'n of Ihis principle is Ihal all of 
Ihe bits in a row arc available after a read using Ihat row if only they can be ~d. 
With Ihese Iwo concepts in mind.lhe s)'nchronoll'l DRAM can be inlroouce<l, 

Synchronous DRAM (SDRAM) 

The use of clocked Iransfers differentiales SDRAM from conventional DRAM. A 
block diagram of a 16-megabY'e SDR AM Ie appears in Figu", 9·16 The inputs 



422 a CH,o\I'TER '} I MEMORY 8,o\SlCS 

D~m!U 
DRAM 1)""" 

Fa .. Pall" MO<lo 
DRAM 

E",~"""d D.ta OUI' 
put DRAM 

Double D". Rat. 
Synch"""",. DRAM 

~om~DRAM 

Abbr",'.tion 

FPM DRAM 

DMerlpllon 

Tak~ "'vo ... a!" oI.he fac' .ha, ..... he". row .. 
~d .• U 01 ,lie row vol_ '''' ,,,,ilable '0 be 
"'.., ""._ By ."'""VIII,Ile ooIumn a.ddrno. da •• 
from d,If~"'n. _,.,..... an be ",ad "" ... "hou. 
'.'f'f'I)'1111 .Ile row add~ and .... i"lII fOl Ille 
delay _aloo .nIh .adilll ""I ,be toW cell.,o 
paSJ if Ille toW porlioo of Ille add.~ malch. 

EDO DRAM E" cIKb Ihe lenglh of lime that ,'''' DRAM hold< 
Ille 0"" value, on iu output. 1'".n.illl"g Ihe 
CPU 10 "".fOlm olhcr • .uk. durin,lh" tcCCSS 
1-1""" i, kl>O"OO3lbc d.la ... m >lill be .vailable. 

SDRAM Ope ... ICl.itb. clod Dille. II •• " be,"I ")'11-

ch, .......... Th" perm''', ,,"'ttr ,,, ...... ion 
"", ..... u ""'''''''Yond CPU. WoKe the CPU 
k_~ exactly "'Ilen lhe date .. ·m be ... ailablc. 
SDRAM .,,,, takes od .. ",oF oIl1le,ow value 
.. "lol>lli'y and oividco memory inlo drSlincl 
blinh pclmitting ovc,I.I'P"~ ao«sse~ 

DDR SDRAM The ...... H SDRAM """"PI tn .. d ... OUlput is 
provided on boon Ille ... goll.e ... <1 In. po>i,jve _w"" 

RDRAM A proprie'ary 'ech"""'w ,'''', ~ '''ry hoV! 
me....,.,. ocrr:ess "', .. "';"10 ","".<:Iy na'row ... 

ECC May be opplied 10 mool 01 t Oo DRAM t)'p<S 

.","e'o oorrect sinll'" bn d ... o" or' and often 
del«t double errO«. 

and OUtputs differ lillie from Ihose lor 11M: DRAM hlock diawam 10 Figu,~ 9·1 4 
wi. h ,he cltCeplion of Ihe presence of Ihe dod: for syochrO<lOu, open"ion. Inler­
nally .• herc are a number of diffcrcOCC$. Since 11M: SDRAM appears s)'1Ichroo"'" 
from the OU15ide,. ,be", are I)'lICh,OfiOUS 'e&'Slell on Ihe addreH input! and the 
da'. ;npuU and outputs. In add"ion. a eoIumn address COIJnter has been .dded • 
..... hich is kcy 10 ,1M: opera. ion of .he SDRAM. While Ihe control logic may appear 
\0 be Similar, Ihe con trol in Ihis case if much more oomple~ ,ina: 'he SDRAM ba, 
a mode con lwl word Iha t can be loaded from I h~ add,"," bus. Considering a 16 
MU memory. lhe memory array oon lni ns 134217.728 bilS and i$ olm os! sq uare. 
"ilh 8.192 . 0 ..... ' and 16J1\4 columns. There arc \3 ro ..... add",ss bils. Since ,here are 



"'1ll1U!AJ!IU"I'! SS~'pp~ UWnlOJ ~'11 U! '~"""'I I! "!'lL"0 '£ 'l 'I J~PJO ~41 U! P~IU"" 
-""d ~l~ SOIA'I ~'11 1~'11 'IOU 'LI-6 . ,mllo.,) ul 'S:I~N VOl' Iu""b:><qn. uo lIUlp'.' 
JOj "1'I"I'~At .,e $.lIMl '1unoJ pu~ 'p.!tfl 'pUOOJ'S "'n ' J~lel $.l[JkJ 0"'1 lIu!-"nXIQ 
~lIN VOl' OA!lfSOd '41 I~ WV}lOS .tfl lUO'] pu~, ~ 01 "!'lUI!"AU U~tfl'! "IMl UI"P 
"'lL "p.I"'IIUI 'IAq el"p ISJY ''11 )0 lIUlp"'" "'II PU" , 01.!1I.1 "".ppe " 'II UI N,nld., 
$S~'PP" uwnlOJ " 'II 'II!'" 'pa!ldd~ ""u ooqO'I' " .. ppe uwnl"" ""I pue sso'PP~ uwn 
"10' .'11 'po!'O>d ~""P 1'l!'I1 .'11 lIu!,no ".:>!lld lIu!~uI" "'0' "'11)0 lIu!p •• , ''II''PO 
"uO>d ~""P O,"II.OU ' 4ll1uunO 'P'I"'llm "'l 01""01 " 'II JO l!U!P"~l "41 PUg "I.!lIo, 
'"S;>'PP~ "'II u! p~Jnldu, "'I 01 ss.'ppe ",0, "'II =nu, '10!'1"" '(SV}I) "'1011' ".'PIle 
"'0' "'II pu~ "'JpP" ",OJ .41 )0 UOlI""'ldd~ '41 '111M <utll~ p".J "'lL "LI-6 .,nllo.,) 
UL lL"0'l"'! ,nOJ 01 I~nbo '1ll1uol ISJn'1 'II!'" opk> p."" ISJn'1 .)0 l!U!W!1 "'lL 

"Indm ='PP" ''11 lIIO.JJ 
olliOllOJIUOJ "'II OIUI P'OM 10JIUOO .poW" 8u!f"'0( A'1 I;/S U.~ ' ."'''lliu'IISJ",! 0'11 
",.~J. 1~4) 'O)A'I JO '::.qwnu alll. 'po!'~ ~""P ,;xl .UO 'InJlno ' '11 uo lIu!,u~d. 
U!li"'l lalA'1 "lOP "'I ) "'1',\:1 ~""p "'OJ" )0 A"IOP I"UOII!PP" OU JOI)V "p.'jdd • 
.... pp~ uwn\oo "'II 'I)!'" p'Ull(»),::.j .! daiS P"" 1""10" "'II ')"ON ~I~ ~""P ",oJ. 
" ~"' dOli '!'1' "AIl"WOll'l "J!li<>l 0 11 ~'11 U! P"'O)< pue "ll"UJOIU' 1"" P""'" .... PP" 
"'OJ P.'lddu . 41 A'1 p.yo:>d. ""Ml StOl ) O ",0, "'''uo " 'I' .... :>.IPp. uwnl"" N~!;>;J(!. 
"UKlJ) u0I1.'Oodo P'''' I"n)", u.lIU!<W0J.1"'" ""opu "f"'!'n I, A'SoIOU!UllOI "'~u "wos 
pu~ "IU.'~JJ!P 1"'1,"'~WOS I, "~A."'0'l 'lIu!wll ~ 'lL -=J]lf'g uwnl"" 0'1' A'1 P"""'0l 
"loJ ISJ~ =JPp~ ",OJ ~41 '~' ldd~ WV}lOS ' 'II " t~VlfQ 'elnh, ~'ll 41!,""V 

lIW91 "~'PP" 01 SlI'1 JO ''''Iwnu 1~'1J"" ~ ql liUlA!8 
I'Z 'l~nba II snld fl 1"4 ' aloN ")Iq "~jpP" UWTlI"" II .~,!"bOl 1:!'lL "StOZ 'I. "b~ 
4~14·" 's .(q POP!" !P M/t"91 "! """'O'PP~ uwnlo~ )0 J~WIlU ' '11 "I,(q ,:><I sl''1 II 

r-
1 
~ , 
• 
! 
, , ,. 
1 , 
• , 

L 

'"Uo 

;~Vli(lS 91'1191 I JO w",jof() ~""a 
g l "6"lill~ 1.:I 0 

I ","ooo ..... ppol".) I 

I ,_ ownl"') I 

~Oil I 
r - r 

" i 
, , , • 

• f ! 
, 

! 
, 

j 
~ 'om 11" ""0"0>,," i , , 

'--- L L '---

fZt [) ,od.i.L .... VlI(] I ~-6 

~ 

~ , , , , 
L 

(0:1 n 

ri "'" 
,. 

~,~ 

[j 
' " 



424 0 CHAVTER? I MEt.10R Y DASICS 

C~ 

I--~'-I 
N 

we 

RAs I 

CAS I I 

ADD~6SS ROW X X COL X 

DATA~=================", X~,.~"C'->(~~"C'~ )(~"~'~ )(~OO~t---
o nGUKt: 9·17 

Timing Diagram for an SDRAM 

byte immediately nttdcd by the CPU. Ihe 1""1 two bill; arc OJ. The .ubscquent 
bytes appear in the order of these two bits counTed up modulo (burst lenglh) by 
tht col ~mn "ddr~",' co~nter. giving addresses ending in 01. 10. II. a nd 00. with all 
other address bits fi .• ed , 

It is interesling to comparc the byte ratc for rcading byles from SDRAM To 
that of the basic DRA M We aSSume that thc rc"d cycle time IRe for the basic 
DRAM i, 60 ns and that thc clock period (cu, lor the SDRAM is 7.S n<. The byte 
ratc for the basic DRAM is one byte per 60 ns.or 16.67 MB/sec. For the SDRAM, 
from Fig~re 9-17. it requires 8.0 clock cycles. or 60 ns. To read four bytes. giving a 
byk rale of 66.67 MB/.ec. If the burst is eight in't"ad of four byTes. a rcad cycle 
time of 90 ns is required. giving a byte rate of 88.&9 MB/see. Finally. if the burst is 
th~ cTItirc 204S·byte row of the SDRAM. the read cycle time become'S 60 + (2048 -
4) x 7,5 _ 15.390 ns.gi"inga byte rate of 133.07 MB. which approaches the limit of 
one b)'te per 7.5 n, clock period. 

Double Data Rate SoRAM (ooR SoRAM) 
The second DRAM type. double data rate SDRAM (DDR SDRAM) o"ercomes 
the preceding limiT " 'it hout decreasing the clod period. Instead. it prO"ides two 
bytes of data per clock period by using both the posili" e and negative dock edges. 
In Figure 9· 17, four h),tes arC r~ad> One per pusiti"e clock edge. By using both 
dock "dges. "ight bytes can be transrerred in the same read cycle time rRl' For a 
7.5 ns dock period, the byte rate lim,t doubles in the example to 266. 14 MB/sec. 



9_~ I [)RAM TJP<' a 425 

Addilional b.,ie leehniques can be applied to further increase tl1C bYle rale. 
r-or example. inslead of having single bYle data. an SDRAM Ie can have the data 
110 length of four byles (32 bits). Thi> gh·es a byte rate limit of 1.065 GHlscc with a 
7.5 ns dock period. Eighl bytes gi,·cs a byle rate limit of2.13O GB/S<'C. 

The b)·te rates achieved in Ihe examples are upper limils. If the actual 
accesses needed are to different rows of the RAM. the delay from the application 
of the RAS pulse to read oUilhe ~rsl byte of da,. i. significanl and leads to perfor. 
mance well below the limit. This can be partia lly offset by breaking up the memory 
into mul tiple banks where each of the banks performs the row read independently. 
1'T0vided that the row and bank addresses are available early enough. row reads 
can be ""rformed OIl OIle or more banh while data is 'till being transferred from 
the currently active row. When the column reads from the currently acti'·e row are 
complete. data can polentially be availablc immediately from mher banks. permit· 
ting an unintcrrup\e<! now of data from the memory. This "",milS the .ctual read 
rate to more closely approach the limit. Nevertheless, due to the fact that multiple 
row accesses to the .ame bank ma)· occur in seq uence. the maimum rate is not 
reached . 

RAMBUS. CRAM (RCRAM) 

The final DRAM type to be discussed is RAMBUS DRAM (RDRAM). RORAM 
ICs are designed to be inlegrate<! into" memory system Ihat U$CS " packet_bas.ed 
bus for the interaction between Ihc RDRAM res and the memory bus to the pro­
ceswr. The primary ",mponcnt' of the bu, aTe a 3·bit path for the ww address. a 5· 
bit palh for the column addre,s, and a l6-bit or an 18· bit path for data . ·The bu, is 
s)·nchronous and ""rforms transfers on both clock edges. the same property po<. 
sessed by the DDR SDRAM. Information on the three paths mentioned abo,·e is 
tr.nsferred in packets that are four clock cycles long. ,,·hieh means tlla! there are 
eigh t transfers/padet. The number of bils per packet for each of th~ path' i, 24 
bits for tM: row address packet.40 bits for the column addre.s packet. and 128 bits 
or 144 bits for the data pack~l. ·llIe larger data packet includes 16 parity bil' for 
implementing an crror-=rrecting code. The RDRAM Ie cmpl,,)·s th~ <"<)!leep' of 
multiple memory banks mentioned earlier 10 pro,·ide capability for concurrent 
memory accesse, with different rOw addresses.. RDRAM u,",' the u,u.1 row 
""tivate te.:hnique in which the addressed row data of the memory is read. From 
this row data. ,he column address i5 us.ed to ""Ieet byle pairs in the order in "hieh 
they are 10 be transmil1ed in the packet. A typical timing pic,u," for On RORAM 
rcad access is shown in Figure 9·18. Due 10 the sophi'ticaled electronic dcsiS~ of 
the RAM BUS sys tem. we can consider a docl: period of U!75 ns, ThUs, the time 
for tr.n,mis,ion of a packet is t"I<CK~ 4 X 1.875 = 7.5 ns. The C)"cle time f"r ace¢;<­
ins a .inglc data padet of 8 byte pairs or 16 bytes is 32 clock cycles or 60 n, ., 
s!>own in Figure 9·18. The corTe'ponding b)·le mte i, 261>.67 I.HII""c. If fOtlr of the 
hyle packets are a.ccessed from the same ro"'. the rate increases to 1.067 Gill ... ..::. 
By reading an enlire RDRAM r(>W of 2041! byles.. the cycle time inere.se. to 60 + 
(2048 . 64) " !.87S/4 ~ 990 ns or a b)1e rate limit of 2048/(WJ ~ 1(1"") = 2.06'1 
MIlI""c. appr""",hing Ihe ideal limit of 411.875 n, or 2.133 GIlI",c. 



426 0 CHAPTER 9 f ME.MOR Y IlAS1CS 

II--~ 

~============== 
oow ROW) 

ooc 

DATA~;:;:;:;:;:;:;:;:;:;::;~~"~'~C~'~~;:;:;:;:;:;l ~ toe 

o FIGURE '·18 
Tlmingof a 16MB RDRAM 

9- 7 ARRAys OF DYNAMIC RAM ICs 

Many of the .ame design principles ~d for SRAM arr.Y" in Seclion 9·4 apply to 
DRAM arrays. There are. however, a number of different requirements for Ihe 
control and addressing of DRAM arTa)'1, These requir.menls are typically hand led 
by a DRAM c:onlrol/er. The function. performed by a DRAM controller include 
the following: 

L control~ng separation of the address into a row address and a column 
address and provid ing the.., .ddresses at the required times, 

2. providing the RAS .nd CAS signals at the required times for read. write. 
and refresh operations. 

3. performing refresh operations at the necessary intervals. and 

4. providing statu, signals to the rest of the syslem (e.g.. indicating whether the 
memory is busy performing refresh). 

Tho DRAM controll er is a romplex synchronous sequential circuil with the exter' 
nal CPU clock pro>'iding synchronization of its operation. 

9-8 CHAPTER SUMMARY 

Memory is of two types: random.ac<:ess memory (RAM) and Iead-only memory 
(ROM). For both types, we apply an address to read from or write iDio " data 



-... C 427 

word_ R~ad and wnle operalion~ have ~itic sleps and associaled liming parame· 
t~rs, iocluding!>CUM time and wril e cycle lime. Memory can be Ilalie or dyn~mic 
and volalile or nonvolatile. Interna lly. a RAM chip consi'I' of an array Of RAM 
cells. decode,s. write ci,.uilS. rcad circuilS. and oUlpul circuits. A combinnt;on of a 
wril~ circuil, read circuit. and Ihe .<SOci~((,"d RAM cells can be logically modeled 
as a RAM bit slice. RAM bil slices, in lOrn, can be rombi""d 10 form Iwo-dlmen· 
si"".1 RAM cell arrays.. ,,·hieh . .. ith d~'<XJders Bnd OUIPUI circuil' added. form Ihe 
basis for a RAM chip. Oulput cimlll' use Ih,u-slale buffers in order to facilitale 
connecting together an . r",y of RAM chips .. ·;thOlIl significant additional logic. 
Due 10 the need for refr"",,. additional circullry is requ ired ";Ihin DRAMs. as ....,11 
as in .rrays of DRAM chips. In a qU«1 for fasle. memory access. a number of ne ... 
DRAM Iyfl'd have been developed. The mOSI rcanl fomlS of Ihese high·speed 
DRAM, empl"y " sync hronous interface tbnt uses " clock !O conlrol memory 

e "cec,,,,s. 

Error dele<:lion and correction codes. ofien b,ased on Hamming codes. are u$Cd 10 
delect or concct crmll in slored RAM dill •. Material fmm Edllion I covering 
.hesc cod« Iii available On Ihe Companioo Websile for .he tul. 

a M31erial covenns VI~DL and "erilog for memor;e> i, avail.ble on the Companion 
~ Web5ite for the lext. 

REffiRENCES 

l. WE,·n !. N. H. E .. """ ES"" "';;III",., K. Principles 0/ CMOS V LSI D.,Jgn: A 
SyswnI f'e'$fH:C"lIv~. 2nd ed. Reading. MA: Addison· Wesley. 1993. 

2. Micron Technology. Inc. Mkroo 156.111>: xJ, xli. xl6 SDRAM . 
... ,," .... micron.rom.2I.Xl2. 

3. Micron Technology. Inc. M;croo ()JMb: xJ1 DOR SORAM. " ...... ·.micron.CQftI. 

""'. 4. SoB~IJoI" ... M .• "Ram""" Tech""I"IY Baskt," Humb". lkulotH, I'",,,m. 
Ralnbu,", Inc .. Oclober 2001. 

s. Rambu,", Inc. f/(lmbl'" /J;,~cl HDRAM 121J1/44· Mbit (2$6..-16118:<32.)· 
f'rdi",,,,,,,y III/"nnmio/l. Documenl [)LOO5~ Vc .. ion 1.1 I. 

PROBLEMS 

.1"'~ plus ( .. ) ind,CIIIe>. mOte ad'1UIe<:d probkm and.he &$Ierisk (oJ indicate> a 
~ .oIution i. ,,·s llabie on the on the CompanIOn ""emile for lhe lext. 

9-1. "1be following memories Drc lpCCificd by lhe number of woo-d. times lhe 
number of bits rer word. How ","ny address line> and input ·output dala 
lin .... are nceded in each case? <a) 16K" 8. (b) 256K )( 16. (c) 64M" 32. and 
(d) 20" 8. 

9-2. Give the numbcr of byte, slored ill Ihc memories lisled in hobl"", '1-1. 



4 2 8 0 CHAPTER 9 I MEMORY IIASICS 

9--3. ' Word num~r (835)10 ;0 Ihe memory shown in Figure 9-2 conlains the 
binary equivalenl 01 (i5,103)IOo List Ihe 10-bii address and the 16-bil 
memory CoOlenl, oflhe word. 

9-4. A 64K )( 16 RAM chip uses coincidenl decoding by splining the inlernal 
decoder inlO row select and column select. (a) Assuming that the RAM cell 
array i. square, what is the size of each decoder. aod how many AND gates 
are required for decoding an add,ess? (b) Determine the row and column 
selection line, that are enabled when lhe input address ;. the binary 
equi"alent of (32(0) 10 ' 

9--5. Assume that the largest decoder that can ~ used in an '" x I RAM chip has 
13 address inputs and thut coincident decoding is employed. !n order to 
construct RAM chips that contain more l ·bit words than m. multiple RAM 
cell arrays, each with decoders and read/write circuits, are included in the 
chip. 
(a) With the decoder restrictions gi ~en, how many RAM cell array' a,e 

required to construct a 512 M x I RAM chip? 
(b) Show the decoder required to select from among the different RAM 

arrays in the chip and its conn ections 10 address bits and colum n 
decoders, 

4. A DRAM has 14 address pins and its row address is I bit longer than its 
column address- How many addre,ses, total. doc. the DRAM have? 

9--7. A 256Mb DRAM Use$ 4-bit data and has equal length row .nd colu mn 
.ddresses. How many address pins does the DRAM have? 

9-a A DRAM has a refresh interval 01 128 ms and has 4096 rows, What is the 
interval ~tween refreshes for diStributed refresh? What is the minimum 
number of address pins on the DRAM? 

9-9. *(a)How man)' 128K x 16 RAM chips are needed to provide a memory 
capacity of 1M bytes? 

(b) How many address lines are required to access 1M bytes? How many 01 
these lines are connected to the address inputs of all chips? 

(0) How many lines must be decoded to produce the chip select inputs? 
Specify the size of the decooer. 

9--10. Using the 64K x S RAM chip in Figure 9·9 plu, a decoder, construct the 
block diagram for a SI2K x 16 RAM. 

9-11. Explain how SDRAM takes advantage of the two-<limensiona! storage array 
to pro,ide a high data acces,s rat" 

9-12. Explain how a DDRAM achieves a data rate that is a factor of two hig.ber 
than a comparable SDRAM. 



z 
'-' ~ 
Vl 
I'Ll 

Q Vl 

~8 
I'Ll Vl f-; -< 
::JI=Q 

~ 
U 

~~ 0"" !1 .5: 
Ii; ~ ., ~11 _ -ai-~ L ~;sir ~ 
5 ;< E~ - jgl" .. -g~.'I' 6-gIl"LL E-
"- ~ g~1ii c "'E ,,," "- - g ''' ':? g:: 

~ I:j. ?,gn!'-i1'~i~;! 
i ~'" -'= "-«>r:>~~..2"'" " .. ",6:"'"2 

0jll""'i .,"-O~!_=~~~ *"~ E U;S," 
~.,Pll ~~ - .. !:O .. - "~'l5l'l""-',0'0 "h " .'"' "'c" ,! _.·., ·1·_ .. ··"°_,· _°' • ~"'~"'8~ p.s;.9!~~~;~ jl1= !-~$~!,! 

!l~~(: ~~$~~§~j~~~~ :~§~_2.~ 
!1~hlf§ "O~~P:~"~E _-.,OOoSg .. 
~-~[r~~ ~ ~hE~1d~ ,~~ !f!,§ '!!~] 
,~!~ ,~,~! ~'-§!~ hi~~~5 i~-! hl! 
c_" I.e - c,s"I"-O-it1b "5 i"tl""E .2 
-~.2l -E~ - _ .!lSEO.;."':? ,!;: @ ~io ­
' - 0' • !,tL.,,~' - -- o-I'! "_$_ S Co., ,, _ .~" -- (;- ""','" "' = ~ _ 
,,:;-£~.c £'" - ~t!O 5~:?J:" 
'l5 "2 ~ S "" ! 'i e;;.g g "' ~ '; ~ 1): r ~ " -I I) F ~ 
0- .·",.' ·.· •• 1." , ., ~n ·~~~-"t:& ·g,.;E !~t ~ .§~~';-

" .£ .,"" E !!:-i! "' '''' "-;;; h:J - g,~ §-~ .. li~~!. ~ a;~g1Ul~i~ 
•• , , .• "< , •• '"0 ! " • ' . ' ° • '-0' 12 ",,,.,-ll ~ -ill:" " c Ii; goo! 0. .l:i .£'o,.Q. i 
- §§'5..- _ "'-; 1l, -" ·3 . " .9-0 ~ --E 5~ 51§~~es~I&!I~~fi D ~ 
~ ! i!1"i] !I> {l ~"S e:> ~ ".:l ;J ~ .g.i 1 ~ ;J 15 F g lt

e 
-£ -; ·g - s - ", - ~~.c;'1''',;",I=· ~:? 

0 ." . ~h ~·!'- !Wl~ 'l-i '~mi, ~ ~ E "'E ";;; «"l!! - "'~ - "' E ,"""1l,,, 
~~ jg ~~~§g.~,;: §i ~.EB8~llU 

• N • 
o 



430 0 CH,&.PTER 10 I COMPUTER DESIGN B,&.SICS 

10-1 INTRODUCTION 

Computers and lheir design are introduced in this chapteT. The specification for a 
computer conj;ists of a description of it, appearance to a programmer at the lowest 
level. its ins(melion se, architecmre (ISA). From the [SA. a hi gh·lewl description of 
the hardware to implement the computer. caJled the computer architecl"", is for· 
mulated. This architect ure. for a simple computer. is typically di_ided into a data­
path and a control , Thc datapath is defined by three basic components: 

I. a set of register", 

2. lhe microoperations (h.( arc performed on data stored in the registers.. and 

). the control interface, 

The control unit provides $ignal$ thai COn(rOlthe microoperation, performed 
in tho datap"th and in other components of the system. such as memories. In addi· 
tion . the control un it controls its Own operation. delermi ning lhe sequence of 
c"ent, that occur. This sequence may depend upon the resnlts of current and past 
microoperations e>ecuted , [n a more complo~ computer. t)'pically multiple control 
units and datapaths are present. 

To build a fou nda tion for considering computer designs, init ia lly. we extend 
the ideas in Chapter 7 to the implementation of datapaths. Specifically. we consider 
J genoric datapath. one that can be used. in some cases in modified form. in a ll of 
the computer designs con>i d~red in the remainder of the text. These fut ure design • 
• how how a given datapath can be used to im plemen t different instruction set archi· 
tectures by simply combining the datJpath with different control units. 

10-2 DATAPATHS 

lnSle"d of ha\'ing each individual register perform its microoperations directly. 
computer s)'stems often emplo)' a number of storage ,egilten; in conjunction with a 
. hared operation unit called an arithmeridlog;c un;'. abbre"iated ALU To perform 
a microoperaiion, the contents of 'pecified source register.; are applied to the 
inputs of the shared ALU The ALU perlorms an operation, and the result of this 
operation i, lransferred to a destination regisler. Wit h the ALU as a combinational 
circuit . the entire register transfer operation from the source registen;, through (he 
ALU, and into the destination register is performed during one clock <:Jcle. The 
shifl operations are often performed in a separale unit. but sometimes these opera_ 
tion. are also implemen1Cd within the ALU 

Recall that the combination of a sel of regi~t en; with a , hared ALU and inter­
connect ing paths is the dat apath for the s)'stem. The re,t of this chapter is con­
cerned with the organization and design of data path' and a,sociated control units 
used to implement simple computers. The design of a particular ALU is under­
taken to show the process in\'oIYed in implementing a complex combinat ional cir­
cuit. We also design a shifter. combine control ,ignals into cont rol words, aDd then 
add control units to im plement twO different comp ute rs. 



10-2 I D.tapoth, 0 431 

The datapa!h and the control unit are the two pan, of the processor, or CPU, 
of a computer. In addition to the register .. the datapath conta ins the digit.llogie 
that implemenlS the various microoperations. This digital logic consists of bllSt: .. 
multiplexer .. decoders. and proce"ing ~i rcuits. When a large number of registers is 
included in a datap"th, the registers are most conveniently conne<:ted through one 
or more buse .. Registers in a datapath interact by the dirc~t transfer of data, as 
well a, in the performance of the various type' of microopcrations. A simple bus­
based data path wit h four registers. an ALU, and a 'hilter is shown in Figure 10-1. 
The shading and bl ue signal names rdate to Figure 10-10 and will be diseu,sed in 
Section 10-5. The bla~k signal n.me~ are ~d here \0 deseribe the detail, in Figure 
10-1. Ea~h register is connected to !wo multiplexers to form ALU and shifter input 
b uses A and B. The select input' on each multiplexer se]eCI onc register for Ihe oor­
re'ponding bus. For Bu, B, therc is an additional multiplexer. MUX B, so that con­
. tanlS Can be brought into the datapath from outside using Constant in. Bus B also 
connects to Data out, 10 send data o utside the data path 10 other components 01 the 
system, such as memory or input-output. Likewise, Bus A conne~t:s to Addre\.i out. 
to send addre .. information outside of the datapath lor memory or inpU! -output . 

Arilhmelic and logic microoperations are performed On lhe operands on the 
A and B buse, b}' the ALU. The G select inputs seleClthe microoperal ion to be 
performed by Ihe ALU. The shift microoperations are performed on data on Bus B 
by the ,hilteT. The H select input either pa,se, the operand on bu, B direclly 
through to the shifler output or sele<"'IS a shift microo~ration. ),.lUX Fselect. the 
output of the ALU or the Outp UI of the shilteT. MUX D sele~ts the outp ut 01 MUX 
F or external data applied 10 Data in to be applied to Bu, D. The lancr i, ~on­
nectcd to the inputs of all the registcrs. The destinalion select input' determine 
wh i~h register is loaded Wilh the data on Bus D. Since !he sele~l inputs are 
decoded, only one register Load signal is active for any transfer of data into a regis­
ter from Bus D. A Load enable signal that can force all Load signal' to 0 using 
AND gales is present lor transfers that ar~ UOIIO change the contents of any of the 
four registcfli. 

II i, useful to h.,·c <:<:rtain information, based on lhe resul!s of an ALU oper· 
alion. available for use by !he control unil of the CPU to make ded,ion~ Four sta­
tus bit:! are shown with the ALU in Figure 10-1. The status bil" cany C and 
overflow V. were explained in ~onjunction with Figure 5-9. The zero stalUs bit Z is I 
if the output of the ALU contains all zeros and is 0 otherwise. ThUs. Z _ 1 if the 
re,ul! of an operation is zeT0, and Z _ 0 if the re,ul! is nonzero. The sign statu, bit 
N (for negative) is the leftmost bil of Ihe A LU outpul, which is the sign bit for Ihe 
re,ul! in signed·number rcprc<entations. Status values from the 'hilter can also be 
incorporated into the statu, bits if desired. 

The control uni t lor the datapath direcls the inform.tion How thro ugh Ihe 
buses.. the ALU, the shilter, and Ih~ registers by applying signals 10 the sele~t 

inpul:s. For c,ampk to perform the microoperalion 

R I <- R2+R3 

the C()nlrot unit must pro"ide binary sel""tion value, to the following selS of control 
inputs: 



432 0 CHAl'TEIi. 10 I COMPUTER DESIGN BASICS 

B",lect 

w,« , 

.~ .. 
~ 

. ~ 

"' 

f>. '- 1 MUX 

0 ~ 

f>. 
~ I 

II • 

'15'lJ",; 
,.w n d,t; 

; 

~,. 
,~. 

, 

, 
':~;:' 

, Sh;f", ,. -0 :.;. 
" , 

'~ , 
... n<tioo .... , 

, §¥~ 
o t'IGUR£ 1(1.1 

Block Diagram of a Generk Datapath 



I. A select. to place the roment, of R2 ontoA data and. hence. Bus A. 
2. B select. 10 place the contem. of RJ onto the 0 input of MUX B: and",8 

"'I~ct. to put lhe () input of M UX 8 onl0 Bu~ H. 

3. G ... Ieel. to provide the arithmetic operation A ... B. 

4. "'F ... I""I.to place the ALU output on th~ MUX Foutpu1. 

S. MD scl<:<:t. to place the M UX F out put onto Bus D. 
6. Destination select. to seleel Rl as the destinalion of the data <m Bu. D. 
7. Load enable. to enable a register- in this em.e. Rl - to be loaded. 

The sets of ,'al"e< must be g~""rated and must ""come av"il.l:>lc Of' thc ror· 
responding rontrol lines early in Ihe dock cycle. The binaT}' data from the two 
$OUrce ,egisters must propa8"te thmugh the multiplncT> and the ALU and on imo 
the inputs of the destination "'gi'ler. all during the ",mainder of the .. "'" dock 
cycle. Then ... hen the ne~I positive clod edge arriv .... thc binaT}' dala 011 Bus D is 
loaded inlo the destinalion register. To ""hieve fast oper.tion. the A LU and shifter 
"rc COn't'"Cled wilh c.,mhin'tionallogic having a limited num""r of level .. , uch as 
"CarT}")ookahead adder, 

10_3 THE AilrrHMETIcILoGlC UNIT 

111c ALU i. a combinational circuil Ihat performs a set of hasic arilhmelic and 
logic microoper'lion<. l -"e A LU has a num"", of 5(:leClion lin-e< used to determine 
the operation to be performed. The selection lines arc decoded within the ALU. w 
th.t k SC ll"elion lincs cnn <pedfy up to 2* distinct oper'lio"" 

tigur<; 11).2 ,;ho"'1 'he symbol for ~ typical ,,·hit ALU Thc" data inputs (rom 
A arc combined wi,h ,he" data inputs frolll 8 to generate Ihe result of an operalion 

f)'I> 

inl"" I< 

'"" 'Of'll' B 

Cm)' '"I"' t 

arer>hon( 
.~ 

0 

0 

0 

--
0 

0 

0 

- -

'" " 
' " 

c. 
0, , ,,·bi, 

", onth"""", 0 " 

"'" ~o" 

,-, (I<W) 

c. C_ , 
" " 
o fI GU II£ I().Z 

Symbol fo< an n· Bi, ALU 

0 

0 

0 

I),to 

""'1"" a 

Corr, ""'ru' 



434 0 CHAPTER 10 I COMPUTER. DESIGN BASICS 

'-

" , 

" " 
._bit 

" pon.lle l , -, 
B "']>II( " .. ' , 

o FIGURE 11}-3 
BI""k Di.gram 01 an Arithme(ic Circui( 

at the G outputs. The mode·seleCI input S2 distinguishes between arithmetic and 
logic operations. The two Operation select inputs S( and.so and the Carry input Co. 
specify the eight arithmetic operations with S2.t O. Operand select input So and Co. 
specify the four logic operations with S, at I. 

We perform the design of this A I-U in three stages. First. we design the arith­
metic section. Then we design the logic section, and fInally. we combine the two 
section$ to form the ALU, 

ArithmetiC Circuit 

The basic component of an arithmetic circuit is a parallel adder, which is COn· 
structed with 8 numher of full ·adder circui" connected in cascade, as shown in 
Figure 5·5. By controlli ng the data inputs to the parallel adder. it is possible (0 
obtain difler~nI type' of arithmetic operations. The block diagram in Figure 10-3 
demonstrates a configuration in which one set of inputs to the parallel adder is 
controlled by (he seleCI lines S, and So. There are n bits in the arithmetic circuit, 
with two inputs A and B and output G. The n inputs from B go through the B input 
logic to the Y inputs of the parallel adder. The input carry C .. g""'s in the carry 
input of the full adder in the least·significant ·bi! position . The output carry C"", is 
from the full adder in the m<lSt-,ignificant-bit position. The output of the parallel 
adder is calculatN from the arit bmetic .um as 

G~X + Y + C .. 

where X is the n-bi1 binary number from the input' and Y is (he ,, ·bit binary num· 
her from the B input logic. Cio is the input carry. which equals 0 or I. Note that the 
symbol + in 1he equation denote, arit hmetic addition . 



II).J !Tho"'~ lhoiI 0 4:JS 

o TAIU. F. 1 .. 1 
~' ...... ",. T. ble fur Ar1I~ .. ell< Clr .. it 

~~, Input G - ... ~ Y ... C .. 

• • , C .. - 0 C .. . t 

0 0 III 0', G - A (tran"er) G - A-I (increment) 
0 , B G _ A + !!.(add) G _ A .. B .... 

0 B G - A+ B G .. A .. B + I (subl....,,) , III I', G " A - I(~ment) G .. A (tramfer) 

Table \0.[ 5hows tlte arilhmet;'; ope"'tions that arc obtainable by controlling 
tlte value of Y with the lwo ..,I<:etian inputs $1 and So- If the inputs from 8 are 
ignored and we i" sen all 0', al Ihe Y inpula. Ihe Output sum becomes G .. A ... 0 .. 
C". Thio gives G .. A when C .. " 0 and G '" A ... I ,,·hen C .. - 1, In the fi rsl case. we 
have a direct tra nsfe r from iopUI A to outpul G. In lbe oeoond c;Ue.lhe >'alue or A i. 
incremenled by I. RIr .. strai!',ht arithrnel;'; addition. it is nea:ssal1' to apply lbe B 
inpuu 10 tlte Y inputs oIth. parallel adder. This gi...,. G .. A ... II .. 'hen C. .. O. 
Arit t.mel;'; IoUbtraction io achie>-N by apptyina lhe complement 01 inpu1$ B to the Y 
inpul5 01 the !'Irallel adder. 10 obtain G .. A ... Ii + I "hen C .. .. I. This &iva A 
pillS Ih. 2'1 complcmenl of 8. ...-hich is equ ivalent 10 2', complement subtraction. All 
I', io the: 2', cQm plcment repr .... ntalion for _\. 11", •• applying all I '. to .he Y inputs 
with C" .. 0 produces Ihe <lecremcnl operation G .. A - I. 

The B inpul logic in Figure 10-3 can be implemented with /I multiplexe .... The 

~~:;:~n~::~~ :~~::r~:X~,:i~.~·~~~~: ~I~I~: ~~d .. I~.~~;:i~~I~~~~ ~~~ 
arilhmetic circuit can be con'truc.ed wilh n full adders and n 4·to-l mullip[uc .... 

"The n umber of ga le. in lhe B ,npUI lop;: can be reduced if. instud of using 
4-10-1 multiplexers. .... go Ihrou!',h lhe logic dcsian of one stage (one bit) oI.he B 
in""t Iog,c. This a n be done as $hown in ~i,urc 10-4."The Irulh table for one Iypical 

,~. 00."", 
" 
, , 

" • • " " '1"; - 0 , 
• • , • 00 "' " .. • , • " '1"; - 8; 

• , , , 'EEEEl • • , '1", . 8 , 
S,[II II • , • • '1", _ I , ". 

{.;m.>h .. 1>1< 
{b)Mop~ 

V, • B,s. ... !!;S, 

D nCUK[ 111-4 
8 Inpullogic for 0 ... Slaac of Arithmetic Circu;t 



4 3 6 0 C~I"TER lq f COMPUTER DE5IGN HASICS 

, 
• 

, 
" 

, 

, 
, 

, , 

, 

, 
~ 

~ 

, 
~ 

V 

o t lGU KE 10·5 

)~/ 

--i 

i -
)~ 

c. 
~ 

" 
' 0 

C, 

" 
" 

" 

" " 
" 

" 
" 

" 
" 

" 
I" 

l<:>g>c Di.gram of 3 4·bit Arithmetic Cir<u;t 

I-

I- 0, 

I- 0 , 

-0 , 

stage; of the logic is given in Figure 1()..4(3). The inputs ar~ S,. So. and H .. and the 
outpu1 is 1'; Following the requirements specified in Table 10-1. We let 1'; _ 0 when 
S, So ~ 00. and similarly assign the othu three values of 1'i for each of the combina· 
tions of the selec1ion variables. Output Yi is simplified in the map in Figure 10-4(b), 
to give 

Yi - 8 ,-50 + HiS , 

where S, and So ar~ common to all n 'lages, Each stag~; is associat~d Wi1h in pul Hi 
and output Yi for; - 0. 1. 2 ..... " - I. This logic corre'ponds to a 2-to-l mulli­
plcxcr with Bo' on 1he s.:lect in pul and S, and So on the data input\. 

FIgure 10-5 shows the logic diagram of a n arithmetic cireuit for n - 4. The 
four full·odder (FA) circuits con'litUle the parallel adder. The carry into 1he first 
stage is the inpul call)' e ... All other carriO!$ are connected internally from one 
stage to the n~. t . 'Ibe s.:lect;on variables are S,. So. and e ... Variabtes S, and So 



, , '-"~I 
MUX 

" " 
" , Out"", Op<<>,;o" 

0 • • G _ A . R AND 
Q, • , 6 - .0, ' 11 0' , 

0 G _ A $ h '0' , G- A ,m , 
(b) Foo<""" Iloble 

V 
, 

,.) u..", I".., .. 
o FIG URE 111-6 

On. St.~ <>I Lo&i< Cirtu;, 

renno) all Y inpul. of the fu ll add" .. according to Ihe Boolean funcliOll derived in 
~lgure 100(b). Whenc.c. Co. i, I, A + Y ha, I added. n.c eight arit hmetic Qpera_ 
tions for Iht cir~uil as a function o f S,. Su. and C ... arc listed in Tobie 10-2. II is 
imeresling 10 nole that the oper"tion G • A appears twice in the table. Thi. is a 
barmles. by"product of u~ing Co. a< One (If the control variahl« whi)" implement_ 
ing bOlh incrcmclll and decrement in'tructions. 

Logie Circuit 

The logic microopcralion. manipulate the bilS of (he opcra~d. by treating uch bit 
in a regi~lc' as a binary v .• riahle. giving bilwi~ operations. There arc four COm­
rn""Iy used logic operations-AND. O R. XOR (exclusive-OR). and NOT-from 
",h;"h ot he .... can he eQnven;"nlly derived . 

Figure 1(}.li(a) .ho"", one Slage "r .he logic cinoui' _ I, c"",i". of four ga'e. 
and a 4_'0_1 mult iplexer. although simpliflCMion eQuid yield Ie," complex logic. 
Each of the fuur logic oper~tions is gc" craled through 3 g~," Ihal performs th e 
Icquired log;". The outputs of the gate. arc appl ied 10 Ihe input. of the mul'iplexer 
",ilh two selcclio", variahles S, and .'>c., These choose OIle of ' he data inputs of ' he 
multiplexer and direCi i,. vallie '0 Ihe "ulput, n.e diagram shows a ,ypi",,1 "agc 
",ilh subscripl i . For Ihe logic ci.cui, ",j,h n bils. 'he diag.am must he repea,ed n 
hm~ .... IN ; _ O. I. 2 .... . " - 1 _ The ",Ie<:,i"" Y"rjahk~ art applied 10 all " "ge<. 111. 
funcliOll ,ahle io Figu. e 1O-6(b) Ii", 'he logic operalions obl.ined for each eQmbi· 
o",ion of Ihe ",ICClion valllc,,-

ArlthmetlcILoglc Unit 

The log;" ci.-cui, con he comhined with the "rjlhmctie ci.cuit 10 produ,,", 3n ALU 
Sclcclion ""riables S, and 5"ean be commoo to bolh circuits, provided Ihat we usc 
a third selcctloo va".ble to dilferenliale between the Iwo, The configuratioo for 
Ooe <Iage of the A Ll) i. illu" .. tcd in Figure 1(}.7_ The oulpulS of the .,rithmd;" 



438 0 CHAJ'TER 10 I COMPUTER DESIGN IIASICS 

• 
• , , 
• 

<; 

A; 0 ... "'l" 0/ 
II; .nlhmelie , <"<oI! 

'. 
' . 
II; One'''S''oI , 
'. 

\oii<drcui[ 

o FlGUk E 1n.7 
One Slage of ALU 

C" , 

I 2_">_1 

" MUX 

0. , , 

and logic circuits in each stage are applied to. 2-t<r] mullipluer wilh selection 
•• riable 5:. When 5, - 0, the arithmetic output is selected, and when 5, _ 1, the 
logic output is selected , NOlc that Ihe diagram show'S juS! One typical stage of the 
ALU; the circuit must ~ re~ated n time. for an n-bit ALU. The output carry Cjol 
of a given arithmetic "age must ~ connected to the inpul carry C; of the next 
stage in sequence. The input carry 10 Ihe first stage is the inp ul carry Co., which also 
aCIS as a selection , 'ariable for the arilhmelic operations, 

The ALU s~cifled in Figure 10-7 provides eight arilhmc\ic and four logic 
o~rations, Each operation is selected through Ihe ,'ariables 5" 5 L, 50, and Co.' 
Table 10-2 liSIS Ihe 12 ALU operalions, The first eighl are .rilhrnc'ic operations 

o TARLE 10-: 
Funol iun Table rur ALU 

'. . 
" , 
" " o 0 

o " " , o 

" o , , , , , , , 

• 
0 
0 

0 
0 

, 
" 0 

'-

" 
" 
0 , 
0 , 
0 , 
0 

Oper.1lon Functloo 

G- ' Tron,ier A 

G - A +1 l""rernentA 
G _ A + B Add ition 
G - A+B+ I Ad<! "'II' <atry input of I 
G - A + B A pltl> I', oomplernen' of 8 
G - A +B +I SubulICtion 
G - A-I DEcrement A 

G-' Tran,fer A 
G _ AA8 "0 
G - AvB 0' 
G - A$B '0' 
G - A: NOT (I ". complemen') 



t (l-..j I Thr $.hifk.. 0 439 

and are selected with S, - 0, The nexi four are logic operation, and are selected 
with S, - I. To provide selection cod~.,. uSing", few biu as po&!iible. So and C; are 
used to control the seleo:tion of the logic operation. instead of ~ and S, . Selection 
input S, has no effttt during the logic "!,,,ration< and is ma,ked with X t<) indicate 
thai its value may be either 0 or I. Later in the design. it is assigned value 0 lor 
logic "!,,,rations. 

The ALU logic ,,'C have designed is not ao simple as it could be and has a 
fairly high number of logic levels. contribut ing 10 propagalion delay in the circui t. 
Wilh the uSe of logic . implitic" tion software. we can simplify this logic and 
reduce the delay, For exanlpie. il is quit e easy to simplify Ihe logic for a single 
'tage o f the ALU. For reajistic n." means of further reducing the carry propaga­
tion delay in the ALU, such as the carry lookahud adder from Section 5·2. is 
usually necessary, 

10- 4 THE SHIFTER 

The shifter shiflS the value on Bus B. placing the result on an input of MUX F.'The 
basic ,hif'er pe rform. one of two main t)'pe. of transformalions on the da ta : right 
shift and left shift. 

A seemingly obvious choice for a shifter would be a bidirtttional shift register 
with parallellood. Data from Bu. B can be lransferred to the register in parallel 
and then shifled to the right, the left . or not at alLA dock pulse load, the output of 
Bus A into the shift register. and a second clock pulse performs the shift. Finall)'. a 
third clock pu lse transfe rs the data from the shift register to the selected de'tination 
. eglster. 

Ahematively, the tran.fer from a source register to a destination register 
ca n be done "'ing Onl)' one clock pulse if lil. shi fter is implemented as a combina . 
tional circuit as done in Chapter 5, Because of the faster "!,,,ration th.t results 
from the use of One d ock pulse insuad of three. this is the preferred method, In a 
combinational shi fter. the 'igMl' propag~te through Ihe ga,e, withou, the need 
for a dock p ulse , I'lenee. the only dock needed for a shift in the datapath i, for 
loadi ng the dala from lI us H into the selecled de'tination register. 

A combinational snifter can be constructed with multiple.e ... ., shown in 
~lgurc 10-8_ The selection variable S is applied to all four multiplexers to select the 
type of operation within the shifter. S - 00 causes B to be pa!:\ed through the 
,hiller unchanged_ S • 01 causes a righJ.shift operation and S - 10 causes a left ­
shift operation. The right shift fi ll, the po$ition on 'he left with the value on serial 
input 11<_ The left shift fills th e position on the right with the value on serial input 
h. Serial outputs are available from serial output H and serial output L for right 
and left 'hifts. re'pecti,'ely, 

The diagr.m of Hgure 10-8 shows only four otageo of the shifler. which has n 
stages in a s)'Stem with n-hil operand .. Addit;on.1 sele<:tion varia hi", may be 
emplO)'ed to specify what goes inlo I R and I L during a 'in&le b;t·position shift. Note 
,h.t to Shift an operand by m >- I bit pD§itions.. this shifter must perform a serie< of 
m I-b;t ]l'O!lition ,hifts.taking m d ock cycles. 



440 0 CI-IM'TF.R 1(1 f COMI'I,./TEIll>f.S1GN !:IAS' CS 

" 
,;, 1 

'f'U' L 

'. 
• , , 

, 

Barrel ShIfter 

' " " 
, , • , ' " • , 

o FIGURE 1'-' 
' ·0 ,1 SNit Sb,n~. 

• , 
.~ 

r-i 
" 
, 

'" • , '" " 
, • 

'. 
In dalapluh awlicalions. orten lltt da •• musl be . hifled morelhan one bil "",ilion 
in a single cI()C~ cycle. A barr~1 5h'f'~r is One form of combinnlion"1 ci.cuil Ihal 
shiH, o. rOlal~' lhe inp ut da la bits by the number of bil "",i lion! speci fied by a 
binary va lue on a set of .."""lion lines. The shifl we consider he.e it a ,olation to 
lhe left, Which means thaI Ihe bina.y dala i. shifted to Ihe kn. wilh lhe bit< coming 
from Ihe most ~",ilkanl par. of Ihe .cgiSIU .otaled bac~ inlo) Ihe le"'l ~gnilic.an1 
part of tl>c . egisler. 

A 4-bh \IC~ of this kind of oorrel ",mer is sbown in Fi,ure 1().9. It consisu 
0( fout mul1iplexeB with common 101:1«1 rine5 S, and 50. n.... Io1:lection wriables 
dCle.mine lhe number of "",ilions Ihallhe inpul <!ala .... ,[[ be "'ifled 10 lhe Icfl by 
mtalion. When S,50 " 00. no shin oa:urs. and lhe inpul data hns a d,reel palh to 
Ihe OUlpUIS. When S,s., = 01, lhe input data are rOlated one PQiilion. with Do 
,oin810 Y,. V, going to Y,. DJ going 10 Yl . and DJ going 10 Y~. When S,s., .. 10. 
the inpul is fomed lwo PQiition" and when Sj .s(, K 11. the Totalion is by three bil 
po<Iilions. TQble 11).3 gives Ihe funtlion .able for the 4-bil oorrel Shifle •. For "ach 

o TAB LE 16-J 
h,M:lI .... T ..... rOf 4-Hi! Ibn-d ~Ifl~r - W~ 

• • ' . '. '. '. --, , D, D, D, 0, No t"u,i<)n , , 0, D, Do D, R",.lo "II<: p"";lioo , D, Do D, D, R",.to 1"'0 1'0>,,100. 
0, D, D, D, ROiOI o Ih.« positio .. 



0 , 

, 
" , , , " " , 

M 

° , 
I 

, , , " " , , , , 
M 

" , 
I 

o t "' C U RI<: 11).9 
4·B;1 Barrel Shifter 

0 , 

" " 
, , , , " " 

, 
M M 

" " , , 
I I 

binary value of the selec1ion ~"riables, the table ~sts the inputs that go 10 the cor· 
respooding ootpot. Thu .. 10 rolale th • .,., position ... S,s" must be "<iualto II. cau~· 

ing Do 10 go 10 Yl . 0, 10 go 10 Yo. D, \0 go to Y ,. and DJ 10 go 10 Y/ . Note that. 
by using this left-rotation barrel shifter. one can generale all desired right rOlalions 
as well. For example. a lefl rotal;"" bji Ih,"" fJOSitions ;s Ihe $arne as a right '01" ­
lion by one position in Ibis 4-bil barrel shifter. In general . in a 2"-bit barrel shirler. 
i positions of left .,,[alion i$ Ihe same as 2" - i bils of right ' (>la1ion. 

A barrel .hifter with 2" ;OPUI a nd outpll! lines requires 2" multiplexers. each 
having 2" data inputs and" selection inpulS. 't1,c number of positions fOT Ihe dala 
10 be: rolaled is $pe<;ilied by Ihe ock"'ion variable. and can be from 0 10 2" - 1 
pos;lion .. For a large n. Ibe fan-in 10 gales i, 100 large. so larger barrel 'hifters oon· 
sisl " f layers of multiplexers.. as sho .... n in Section 12·2. Or of spedal structur~"$ 
designed .llhe Iran';SIOr level. 

10-5 DATAPATH R£l'RESENTATION 

The dalapalh in figure HI· I includes Ihe regi. ters.. selecli"n logic for Ihe regi s­
ters.. the ALU, the sbifter. and Ihree additional multiplexers. With a hierarchical 
,truClure. we can reduce the apP,,,,,,"1 complexity of the dat~palh. Thi, reduction 
is important. since we frequently use Ihis dalapalh . Also. as illustrated by the reg_ 
isler file to be discussed nut. the uS(: of a hierarchy allows one implementati"n 
of a mooul e to be «placed ,..ith anothe r. so that " 'e are not tied to specific logic 
implementatioo .. 

A typical datapath has mOre lhan four registers. Indeed. compute", ,..ilh 32 '" 
mOre reg;sters are common. The construclion of a bus s)'Slem with a large number 



442 0 C HAi'TER to I COMPlJI'El<. DEStGN BAStC5 

of rcgi51ers requires different techniques. A ",I of registers having oommon micro­
operation, performed on lhem may t>e organi~ed inlO a T~gis"T fik The l)-piea l reg­
i51er file is a .pecialtype of fast memory that permits one or more " -<)rd. 10 be read 
and one or more words 10 be "'rillen. all simultaneously. Funclionally. a simple reg_ 
ister file oonl ains the equivalent of tile logic shaded in blue in Figure 10-- 1. Due to 
lhe memory_like nature of r~gi~ler files, the A seleel. H ..,Ie<:t. and Destination 
sele<:t inpUls in the figme. become three addresses.As shown in Figure 10-1 in blue 
and On the register file symbol in Figure 10- 10. the A address acccsses a word to be 
read onto A data. the B address accesses a second word to be read o nto B data. and 
lhe D address accesseS a wo rd 10 be wriUen into from D data. All of these accesses 

• 
D~.t. 

Write 
m 

Dodd' .... 

~'" 
R'ple, file 

m ,-- ,--
'". U """,, 

Con". ", in 
" " 

" , • ~B .. ktt MUXB 

,-' " 

""' 
" 

, A " 
"--, f"uf><l;"" 

uo" , 
, -- , 

" 
~D .. 1e<:I • ', I --iM 

" ' 0 

o n GURE 1{}. IO 

m 

" 

" 

Add", .. "'" 

D." "", 

D ... in 

Block Oiagram of DOl'POl" U.ing ' he Regi,ler File and Pun-c1ion Unit 



--~~~-

1(1.5 I O.tapOlh R<p« ...... rion 0 '" 
a TABLE 1{1-4 

G ~Ien, II MIen, . OO ",,, Mien Codes OdiMd 
in T,.,.,... or I'S Cod .. 

., 0 " FS(3;{I) - s.~3,n) _'(3:0) Mk;roo" .... "on 

0000 , 0000 ~ ,., 
0001 , oao I ~ 

F _ it + ] 

0010 , 0(1]0 ~ F - II +8 
OO! 1 , 001l ~ F_A+B+l 
0100 , 0100 ~ F _ A +8 
(I I (I 1 , 0101 ~ I'-A+8+1 
(11 1 (I , (I I I (I ~ F _ it - \ 

(11 I 1 , 01 !l ~ , . , 
1000 , 

"" n J' _ ... ".8 
1001 , 

"'" ~ F - AvB 
1010 , ! I'l l (I ~ F _ A $B 
I (I 11 , 1 I'll 1 " F _ A 
I 100 XXXX " 

,. , 
I 1 (I 1 XXXX " F _ " B 
1 ! I (I =, " F _ olB 

occur in lhe $8me clock cycle. A Write inpUl corresponding 101M: load Enabk signal 
is 81>0 p1"<>vick=d. When all .• 00 Write si8,nal permi!s regiSlers \0 be Iooded, during lite 
curren! clod: cycle, and. when al O. prevents regis,er loading. The size of tlte register 
lile is 2-" ... where m is lhe number of register address bits and n is the number of 
bjl< per register. For [he datapath in Figure 10,-1. m - 2, giving four ..,gi.len, and M is 
unspecif>Cd. 

Since lhe ALU and lhe stufter are shared processing units with outputs lhal are 
selected by MUX F.h i. ronve"ient 10 group the two units and the MUX together to 
form a shared funniOfl unit. Gray shading in Figure 10-1 highli!.hts the function unil. 
which c.an be represeme<! by tf>< .ymbol gi'-en in Figure 10010.The inputs tOlhe fune­
l iOfl unit are from BusA and B .... 6,and the output oftbe function unit gOts 10 MUX 
D.ll>e function unit also has lbe four 'lOtus mI. II; C. N. and Z as added OUtput$. 

In Figure 10-1. there are three scu of ..,Ien inputs: Ihe G ..,Iecl. 1/ ..,Iect. 
and M F ..,Iect. In ~Igurc 10-10. there is a single ..,1 of ..,Iect inputs labeled f'S. for 
" fu nClion .., lect.~To fully specify Ihe fUncliOfl unil symbol in Ihe figure .• 11 of the 
codes for M F ..,1<0(:1. G "'lcct. and 1/ select mu§! be ""fi ned in term. of the codes 
for FS. Table 10-4 defines lhese code transfonnations. The codes for FS are given 
in the lefl column. From Table 10-4. it is apparent thai M F is I for the leftm"'t 
twO bits o f FS both equal to l. I f MFse1c.;. - 0. .hen ' he G select codes <k.crrnine 
the function on Ihe output of the funclion unit. If MFsciect - I. Ihen tbe H ..,Icc. 
codes determine the function on the output of the function unit. To show this 
dependency. the code. thai determine the function unit outputs arc highlighted in 
blue in the table. From Table 10-4. the code Iransformation. c.an be imple n.enled 
using the Boolean equations: MF. f,-F,. GJ • F" G,. F,. G, • F,. Go _ F", 11 ,_ 
F,. and Ho - Fo-



444 0 CHAI'n,1l 10 I COMI'IJ1'EIlI)~IGN 8 ASICS 

n.., SIal .... bil' are assumed II.> be meaningkss when Ihe .Iuller IS .decu:d. 
Bhhough in a 11\/,lU wmplu ')'Slcm. iih,fler .. at .... bits can be <ks>gn«I to repllOlX 
,hose fOf the ALU wheneve. I .h,fte. mlcroop<:lluion is spec,rocd. NOIe ,ha' ,he 
OIa''''' hi' implemenlalioo dcpelld ..... I"" 'p,:cific implerncnlahon ' h~1 has been 
used for Ihe a.ithmetlC circuit, Alternalive impicmcnlatioll' may nul p.oduCt: Ihe 
same re.ult,. 

10-6 THE CONTltOL WORD 

The ... leeli"" va.iables f". 'he dn'ap"lh contml Ihe micruopc.aliuns cXC'i:u,ed 
wilhin Itt.: dalapath for any liven duck pul .... FOf Itt.: dalapath in Section J()"S.ttt.: 
..,lection ,·uiabl ... wn .. o!lhe addre"". for the data read fmm the ,cli.le. m~. thc 

fut1C1ion perfo.med by lhe funcl'oo unil . and the dala I<.>owlo<d Inl" the rcpsler me • 
•• well as lhe $/01<'C1ion of uten",1 dala. We will"","" demonstrate how Ih"'lie ron· 
'rol variables ""Iecl lhe microopc .. tKm< for the datapath. The d>ooce or """ .. 01 
'''riable valu.t:$ fur lyrical mocroopcratiun. "'ill be diseu>sed. ~nd •• ,,"ul;I1IOO of 
Ihe dalapath " 'ill be ilillwated. 

A bl<xk di~iV1'm of. dal'plth th.t i. a specitk vc .... oon of the datupalh In 
Figure 10-10 is shown in ~lgu", I ()"Il(a ). It has a regiSler file wilh e'ght .eIPSle ..... 
R\llhmugh R7. The regisler foIe pmvide. Ihe inpu .. to d,e fu""' ion un il through 
Ous A and Bu, Il. MUX II ""Iects belween cons.~nl value. un Com.um in ~nd 
regiSler values On B dala. The ALU "nd lero-delcClion logic wIthin Ihe funCl,o n 
un it genera.e the binary do!" for ,he four Sla 'us hi,,; V (o"erfi uw). C (c~rry). N 
(sign). a nd Z (zero). MUX D sclce .. !he function unit output w the d"!a on l)al8 
in as input for Ihe regiller file. 

·o,e.e arc 16 binary oont" .. 1 input,. Thei. oon>bi"cd values ~<ify a ('",""'/ 
"'·uM. The l/o·b,l (""tro! wUfd LS defined ,n figur~ 10011(b). II "IlI"i ... of ,""VCLl 
parU called ~Id.s. each d .. i",nled by. pair of JeUe!'$. The three relister rlelds arc 
Ihree bits each. The .emainmg roclds have one or four hi .... The Ih.cc hots of I)A 
selec1 one of eight <k$linalion r""'lel'S for lhe resuit of lhe microopcnllion. 1bc 
Ihl'« hiu of AA oelecl one of eighl SOUrce regiSle .... fur the Hu. II Inpul 10 lhe 
ALU 1be three hi .. of 8A $/Olect • SQ<Irce "'giSler for Ihe 0 inpul of Ihe MUX 8. 
The single M8 hi! de!ermm.:s ",hethe. H .... B carries the con!ents of Ihe sek.'Cled 
IUUrce regislcr or a CQIISI.nt vaJ~ The 4·bil FS field oonlrol. the opcrlllOfl of Ihe 
fUnclion unil. The FS field rom.ins ooe of the IS codes frO<lt Table 1()..4, 'llIe .in. 
gle bit of MD ",leclS the funClion UI1I1 oU'pUI or .he d .. " un Da!a in as the 'npu, 
10 n us D. The final field. HW. deler",in", whether 0 regIster is ",riuen or nOI. 
When appl ied!o . he conlrol inpul" .he 16·bil cuntrol word spcct!i~s a p"rticu lIL' 
microo[lCration. 

'The functions of oil muningful wnlful codes are specified in Table I()..S. For 
each of lhe field,. a bInary code for each of the funClion. is g,ven. "11" re~'SIC' 

""Ieclcd by each of lhe ficlds DA. AA. and BA i.,he one ,"'ilh the dc<;.mal e<juiv • . 
lent C<jual to lhe bina.y number fUl' Ihe rotk. Mil sc!e<;\s cuher the retoSlcr 
""Icelcd by lhe BA tield or B WnStalll from oul5ide of the datapath on (,'o" ".nt in. 
The ALU opcrallon ... the ,Infte. ope .. llOfl .... and the sckc!oon of Ihe ALU or 



1(1.6 I 11>< C<>ntrol w.,rn 0 445 

0 

RW~ • Wri'e 0 ". 

~ DA I~ "~~ . ~. 
Rqj>I" r ... 

~ AA 11 ,-- ,--
'" A do,. II dOl, 

0 0 

C.-,., i. 0 

MlI@: , " I MUX OJ 

'"' 0 
,~ ,- , 0 
0 •• 

, • 
• ] ~~ ,. FollClion , .oi' , 

• 0 0." '" 
• , 

M~_ MUXD 

80' D 

" " 1)121110 9 8 7 6 ~ 4 l 1 10 

o tlGU RE ,$. II 
Dalapa,b ,.-j,b 0>"1r0l Variabk. 

shifler oUlput. are all speci fied by Ihe FS field_ The field MD oon1roh Ihe jnfonna. 
I;On to be loaded into lhe regi. ter file. The fin.1 field . RW. h .. the functiOfl' No 
Wrile. 10 prevenl wriling 10 any regi.ter<, and Wrile. 10 signify wriling 10 a reg;'ler. 



.... 6 0 CHAPTER 10 I COMPlITER DESIGN IIASICS 

o TA 8LE 1()..5 
E_<t>dinl of C .... rml Word for 1M n . l.p.th 

"' "' -
Fune" .... - ,.- -,~ - Functio<l - ,~ -
'" "" fl.egist., , J' _ A ""' Funct,,,,, , No write " " 00' eon"an, F _ A +1 "'" D.tI In Write 
~ "" 

F _ A +B 00" 

" "" F _ A + B + I 00" 

" '00 F _ A + 8 "'00 

" '" F _ ,-\ + 8 + 1 mOl 
~ '" F . A-t 0)10 
~ '" 

, . , 0I1l 
F _ A h B ''''' F _ A ... 8 "'" f ' -A Gl II 10 lO ,. , 1011 , . " , "" F _ srB 1101 
F - li B 1110 

The cormol word for a &i"en microoper"ion can be deri~cd by ,pecifying the 
~alue of each of ' he conlrol fields. For example. a subtraction gi"en by the statemenl 

Rlof-R2 + R3+1 

specifi ... R2 for the A input of the ALU an~ HJ fo< tl>e 8 input of the ALU. It also 
specifics functMm unit """ration F - A + B + I and selection of the func. ion unit 
output for input inlo the register file. Finally. the microoperalion seie<olS RI as Ihe 
destin alion regisler and se ls RW to I 1<) cau,,", HI 10 be wrinen. The oonl rol word 
for this microinstruction is specified by its seven fields. with the binary value for 
each field obtained from the encoding lisled in Table IO-S. The binary control word 
for this <Ubtr&elion mkrooperalion. 001 _01 0_011_0_010'-0_ 1. (,,;th underline * _ " 

used for con"eniencc to separate the fields) is obtained as foll()W$: 

I"ICld: DA AA flA MEl FS MD RW 

Symbolic: HI KJ. R3 Register F - A + IJ'" 1 FUfI<tion Write 
B,na'Y 001 010 011 (I 0101 (I 

Th. con trol word for Ih. microoperat;on and those for several m her microopera­
lion. are given in Table 10-6 using symbolic nOlation and in Table IQ..7 using 
bi nary c<:>des. 

The second clGlnlpie in Table \Q..6 is a shift nlicronperalion given by Ihe 
".temenl 

R4of-sJ R6 



10--<; I TI>r Control Won! 0 .., 
o TABLE I~ 

E~antple. of Mic:rot)~ .. tion. for Ihe Ootap.tth. U. in g S)'mbolic Not.ti"" .-....... ~ ~ U ., " "' -
R I <---R2-R3 " ~ " Regi'l.r F - A+B + I ~unc1jon Writ. 
R4 ... sJ t:! 6 "' '" t:!egi$1er F _ ,I H Fur.ctjon Wr;,. 
R7 ... R7 + } " " R<~i"cr F _ 11 + 1 Fur.chon W,ite 
R l ... RO+2 " '" ConSlan, F _ 11 + 8 FUnclM>n Write 
LhlOout ..... R3 " Regist .. No Writ. 
R4 ..... D .. ain " Dat. in Wri te 
RS+-O "' '" '" t:!.gi".' F - AB 8 Function Wrile 

This sta1ement specifics a .hift len for the ~hineT, The content of rcg;$ler R6. 
shifled to the lefl. is transferred 10 R4 , Note that because the shifter is d,i,'en by 
the B bus. 1hc SOurce 10< Ihe shif, is sl""'ified in Ihe SA field nlher tha n the AA 
field. From the knowledge of the symbol. in each field. the control "" oTd in binary 
is derived as <hown in Thble 1()"7, For many microoperations. neither 'he A data 
nOr the B data from the Tcgistcr file is used. In these cases. the respective symbol ie 
field is marked with a da'h. Sin"" these value. are unsl""'ified, the corresponding 
bin. ry v.lues in Table 1()..7 ~re Xs. Continuing Wilh lhe last lhree example5 in Thble 
11).6. to make the content. of . register avai!able to an uternal destination only. 
we place lhe conte nlS of lhe register on the B data OUlput of the regis ter file, with 
RW - No Write (0) to prevent the register file from being writ ten, To place a .mall 
con~tanl in a register or use a small constalll as one of the operands. we place the 
constant on Constanl in. set MB to ConSlant. and paloS the value from Au~ A 
through the ALU and Bus D 10 the destination register, To clear a register to O. 
Bus D is sc i to all 0', by using the same regislcr for both A dala and /J data ,,;\10 a n 
XOR operation sp«ified (FS - 1010) and MO - 0, The DA field i, set 10 the code 
fOT lhe d~tinatiQn register. and RW i, Write (I). 

o TABLE 10·1 
.:.ampl .. or Micmopenotio,.. fro .. TMbl~ 16-6. Using Rinary Coat rot Word • . ,~ -,- ~ " " .. " "' -

Rt._ R2 _ R3 00' "" "" " 0101 " H4 ..... ot t:!6 ' 00 = "" " lltO " R1.-R7 + 1 '" '" 
,~ " "'" " Hl ..... /lO<2 00' ~ = 00" " D .. aout ..... H) '" '" "" " "" 

, 
" R4 0---D ... ;" '00 '" '" 

, "" , 
R5 .... 0 '"' ~ ~ " 1010 " 



It is apparent from Ihese e . a mpl"" thaI many microoperalions can be per­
formed by the same datapath. Sequ~nce. of such micrOOp"r~tions can be rcatiled 
by pro"iding a cootrol unit tbat produces tbe applOpriate sequences of COIltlOl 
"-Ofds. 

To complete tbis section, we perform a ,;mulatioo of the datapath in Figure 
10- I I, The numt..,r of bits in each registcr, ". is e<ju"1 10 K An unsigned dccimal 
representation. which is most con"en;ent lor reading the simulation output. is used 
for all mu ltiple bit <ignals We aSSume ,ha t the microoper;l1ion, in 'f"ble 11}-7 .• "c· 
cUled in sequence. provide the inputs to the datapath and that the initial oont ent 
of each regisler i. ilS number in decimal (e.g .• R5 contains \((((1 0101), - (5)10)' 
Figure lIJ.- 12 gi,'es the result of this simulation_ The first ,'a lue displayed i. the 
<-loc k wilh Ihe clock cycle. numt..,red for rcferer>ee. The inputs.. output" and state 
for the datapath are given roughly in the order ullhe How of infonnalion IhlOugh 
Ihe path, The firs! four inputs are the primary control word field" which 'p"cify 
the register addresses that determine Ihe register file outputs and the function 
se lection, Next are inputs Constant in and MI:!. which "',"1'01 the inpUl10 Bu. B. 

!)Ali [4 !1 It [0 14 13 f-
AA 12 10 11 I ) f-
lIA O 16 !O [j !o f-
~"S U [ 14 [t 12 10 It " f-

':;o,,,,"o,-,n , U Ix 
!>IB , ~ 

Ao;\dre>L"'-" !Z 10 17 [0 f-
0..'''-''''' lJ 16 Iii ]2 [J 16 f-
0,," in (lR 118 f-

MD, ~ 

BW ' ~ 

"., 
'"" ,," 
".' 
"" 

, 10 

"" • ,.' , Is 
St"'" to".! 2 10 10 1 1 Ix 

o FIGUR!:: 18·12 
Simulation ol (he ),1""()(1f>e'''io" Soquen<e In Tabk: 1\J-7 



10-7 I A ~ml'l. u",'l"'",r A,d",,,'''''' 0 449 

Following are the output. Addre'" out and I)"t, out. which are the output s from 
Bu~ A and Bus B. respecti"ely. '[be next three ,'ariables-Dala in. MO. and RW_ 
are the final three input. 10 the dalapath. 'Ibey arc followed by Ihc conlent of the 
eighl registers and lhe SlatuS bits. which arc gi>'en as a vector (V. C. N. Z ). The ini ­
tial rontent of each "'gistu is its numDer in decimal. Tile value 2 i~ applied 10 
Constant ooly in cycle 4 ,",'here MB equals L Otherwise. the value on Constant in 
i. unknown as indicat~d by X. finally. Dala in ha, value lIS. In the simulation. this 
value comes from" memory that i< addressed by Addre" out and Ihat h;os value 
HI in localion 0 ,",'ilh unkno",'l1 values in all other locations. '[be r<"lulting value. 
ucept ,,'hen Addrc"" oul is O. is represented by a line midway Detween 0 and I 
indica ling the value is unknown. 

Of nole in Ihe limulation resull. is that chang"" in registers "' a ",suit of a 
particular micr'-"'P"r8t;on appe.r in the cl<>ek cydo: ~f'u thai in which Ihe microup­
eration i. 'pecified , For example. the result of Ihe subtraction in dock cyde I 
appears in regi.ter RI in dock <lele 2. This i5 tx-cau5c the re~ult is loaded inlo nip­
nop5 on Ihe posilive edge of Ihe clock al Ihe end of the dock cycle l. On the other 
hatld. the values on Ihe Stalu, bils. Addre" "Ut. and Data "ul "ppe.r in the .. me 
clod C)'clc as Ihe microoper.tion controlling Ihel11. since Ihey do not depend on a 
posilive clock edge oocurring. Since the", i. n" oomb,nat,onal delay specitied in 
Ib" simulation. these values change at the same 'ime as Ihe regi.ler value!. Finally. 
note that eighl clock cycle. of s;mulation are used fur s,,"en micrO<Jperalion. SO 

Ih"t the .. aluC5 in the registers that resull fr"m Ihe I" .. micmoperation e~cculcoJ 
can be omcrved, Although Siall.s bils appear for all microoperalions. Ihey arc not 
a lw,,)'s meaningful. For eO<ample. for the micfOop"rot;"ns. R3" Data out ,md R4 .... 
Da" in, in dock cycles Sand 6. respeclively. the valu" of the "alu. bits docs not 
rciale 10 Ihe re.ult since the FunctiOfl unit i. n01 used in these operations. finally. 
for R5 .... RO GJ RU in d<>ek C)'ele 7. the arilhmcuc unil i~ n,,1 used. SQ the values of 
V a nd C from Iha, unil arc incl"",nt. bUI Ihe values for Nand Z do rcpresenl the 
stalu,; of Ihe result as a signed 2'. com[,icment mteger. 

10-7 A S IMPLE COMPUTER ARCHITECTURE 

We introduce a sim[,l" com[,uler archile"turc tu "btain a begmning undc..-t;tnding 
of com['ule. design and 10 illustrate control designs fur programmable SYSIO"' ... [n 
a programmable .ystem, a porlion of the inpul tu the ['roressor ronsi'l' of a 
s.:quence of m.rrucliOltS. Each ;n5lfUction 'p""itic'$ Ihe operal ion Ihe system i, 10 
perform. which operand, to usc for the operation. where 10 place the results of 
Ihe "perati"n and. in wmc Cases. which instruction to exc<Ulc next. Ft.>, the pr". 
grammable system. the inslrueliOfls are u,u>llly slored in memory. ""hieh is eilhc r 
RAM or ROM. To ex"",ulc th~ ,n<lrucli"n. ,n "'4uence. Lt is ncc~ ....... ,y tn pru,'ide 
tbc addr ... in memory of the instruclion to b.: execulcd, In a comp uter. thi' 
add,e." comes from a register calkoJ thc I'w;:,,,,,, Hm"'e, (i'C), A, tile ""me 
impl ies. the PC has logic Ihat pem,," it to count. In addili"n. 10 <h.ng,· Ihe 
"'qucncc of operations u,ing deciSions based on Slatus information. t he PC need. 
parallclload capability, So, in Ihe case of a programmable s)"l"m. Ihe control unil 



450 0 CHAPTER 1<1/ COMI'VTF.R DIiSIGN HASICS 

conta ins a PC and associated deci,ion logic. as ,,"'ell a.lhe n~ry logic 10 inter­
prelthe instruction in order 10 e~eeule it &~culi"g an inSlrUClion mCOnS actival· 
ing Ihe necessary .equence of miCrOOl"'ralions in Ihe dalapalh (and elsewhere) 
required 10 perform the operation specified by the instruction. In ronlraSI 10 the 

preceding, nole Ihal for a nonprogrammable S)'Slem. lhe control unil ill nol 
responsible for obtaining instructions from memory. nor is it responsibte for 
sequencing the execution of those inslructions. There is no PC or similar regi'ler 
in such a syslem. InS!ead. the control unit determines Ihe ol"'Tations to be per· 
formed and the sequence of those 0l"'rations. based on only its inputs and Ihe sla· 
tu, bits. 

We show how Ihe operations specified by instructions for the simple com· 
puter can be implemented by m;';rooperations in Ihe dalapalh. plus movemenl of 
information belween the dalapalh and memory, We also 'how two different con­
lrol structures for implementing the sequences of opera lions nee<::!osary for corllrol. 
ling program execulion. The purpose here is to illumale 1""0 different approaches 
1000<1"01 design and Ihe effects that such approa<:hes ha"e on dalapath design and 
S)'Slem I"'rformance. A more extensive sludy of Ihe concepls associaled wilh 
instruction ..,ts for digital compute", is presented in delail in Ihe next ehaplcr. and 
more complete CPU designs are undertaken in Chapler 12. 

Instruction Set Architecture 

The USCr ~pecir.es Ihe op"'ralions to be I"'rformed and their sequence by Ihe use of 
a ProK""" . which ill a lisl of inslructions Ihat specifies Ihe """ralions. Ihe 0l"'rand .... 
and the sequence in ",hich p<<.>e<:sSing i. 10 OCCUr. The dala processing I"'rformed 
by a comptller can be altered by specifying a new program .. ilb different inslruc­
tion. or by .p.,cifying the ... me instructions "';Ih different dala. In,,ructions and 
dala arc usually slored logelher in lhe same memory. By mean. of Ihe lechniques 
discu>scd in Chapter 12. however. they may appear 10 be coming from different 
memories. The control unit reads an instruction from memory and decodes and 
execules lhe in.truction by issuing a .... quencc of one or more microoperalion!."The 
ahility 10 execute a program from memory is lhe mOSI imponanl single pr"""rly of 
a general -purpose computer. Execution of a program from memory is in sharp 
C<"'tr~SI 10 the non programmable multiplier control unil considered earlier. " 'hieh 
executes only a single. fixed operation. 

An ;"'Iruclion is a colleo:tion of bit. thai instruo:ts the computer to p"'rfOrnt a 
sp<:cific """ralion. We eall Ihe collection of inSlructions for a computer ils inJlFUC· 
lion J~I and a Ihorough descriplion of Ihe inslruction set il. instruction J~ (,..;hilte· 
''''~ (lSA). Sin,ple instruction set archil""lu,es have Ihree major components; Ihe 
storage resources. Ihe inslruction formats, and lbe instruction specifications. 

Storage Resources 

The slorage resources for the simple computer a..., rep .. ",nlcd by Ihe diagram in 
Figure H)·D. The diagram depicts the computer Siructure as viewed by a uscr pro­
gramming it in a language Ihat dir""lly specifies Ihe instructions 10 be exerulc<l. It 



](1-7 I " S;mple Computer "",hitK'''''' 0 451 

[ 1'r000m """nte , 
[ '"' I""""'t .... --1" )( 16 

H<Ji>t« file 
8 x 16 

~" 
~ 
2")( t~ 

o FIGURE UI-IJ 
Storage It"""u"", Di.gr.m for a Simple Computer 

gives lhe resource. the uS<:r 5ee$ avail~hle for SlOring info" nat;"". Note that lhe 
archileclure indude, two memories, one for Slorage of inSiruct;on. and the other 
for Slorage of dala. These may actually be differenl mcmories, or lhey may he lhe 
... me memory, hUI viewed as different from Ihe siandpoinl of the CI'U a. discu"",d 
in Chapler 12. Also 'isible 10 the programmer in the diagram is a register file wilh 
cigh l l6-bit .egi'tcn; and the l6-bil progra m counte., 

Instruction Fonnats 

The formal of.n i" lime1io" ;s uwall)' depicted b)' a rectangular box symboli.ing 
the bits of the instruction, a, lhey appear in memo.y wo.d, o. in a roOlro! .egi.lcr, 
The bib are divided into group' or parts called fi~/d., Each field is assigned a spe­
cific item, such as the operalion code. a ronSlant v.lue, Or a regi~lcr file address. 
The variou'! fi.lds <peeify diffe.ent functions for Ihe instruction and, ",'hen shown 
logcther, con'litule an instruction formal 

The opera/iol! code of an instruction, often shortened 10 "opcodc," i." group 
of hilS in the ;n~tructi<>n lhal speeiC,« an op<:ration. ouch as add. subtract , shift, or 
conlplemenl, The number of bits required for Ihe opcodc of an inSlmction i~ • 
function of the total number of operation'! in th. in.truction set. It muS! con';'t of 
at lea't '" bilS for up to 2"' distinct opermion .. 'me designer assign, ~ hil comhina_ 
tion (a cod;:) to each operation, The conlputer i, designed to accept this h il config­
uration at ,h. proper time in the S"<!uence of acti.ili"" and to supply the proper 
OOfllrol word "'que""c 10 e~e<;UtC the ~p<:cificd operation . A~ • spOCiC,e example, 
collsider a computer Wilh a maximum of 128 di'tinct operations. one of Ihem an 



452 D CH.-.I"1"£R Hl I COMf'VTE1l I)E.$IGN B'-'SIC5 

addition operation, The opcodc assigned to this ope ration rons;sts of ""v~n bitJ; 
0000010. When the opoode OOOOOIO;s detected by the oo01rol un;l. a sequence of 
rontrol ",·or<l$" applied to the <!atapath 10 ptrform the intended addilion. 

The opcode of an instruction specifies Ihe operation 10 be performed. The 

opermion n,ust be performed using dala stored in (ompuler registers or in memory 
(i,e.. on the contents of the slorage resources). An instmeliOll. therefore. must 
specify nQl only the operalion. but also the registeB or memory WQrds in which the 
operands are 10 be found and the result .. to be pbced. 1be operands may be 
specified by an instruction in IWO ways. An operand .. said 10 be specified explicilly 
if the instruclion contains special bits for;ts identification. For ~xample.the instruc· 
lion performing an addilion may cont.in three binary numbers specifying Ihe regi .. 
lers conlaining the two operand-; and the register that "",eives lhe resull. An 
operand i. said 10 be defined implicitly if il is included as a pan of the definition of 
Ihe QJl<'ralion i~lf. as represented by lhe oprode. TlII!>er Ihan being gi.-en in the 
in"ruction. For example. in an locre..,.,nt Regisle. QJl<'TlIlion. one of the operands is 
implicitly + I. 

The three instruction formals for doc simple """'pUler . ,.., ill ustrated in 
Figure 10-14, SuppDSll that the computer has a .egister file consisting of eigh t rcgis· 
Ie .... HfJ th!"Qllgh In. The instruction format in Bgure 1(l.14{a) consists of an opoode 
that specifies the""" of three or fe"'cr registe .... '" nceded. One of the registers is 
designaled a destination for the r~sult and IWQ of the regISters SOUf'tt$ for operands.. 
F<>r con'·enie""". the field name. are abbreviated D R. for "Deslinalion Regi.ter: 
SA for "Source Regi1;tu A.- and sa for "Sou"" RcgiS1~r R"'''e number of "'gis. 
ler fields and regis1ers actually used are determined by the specific opcode. The 
op<:OOc alS<) specifies Ihe use of the regi.tcrs. For .. ample. for a subtraction opera· 
li01l. suppose that the Ihree bits in SA are 010. specifying R2. lhe three bill in sa 

" --
--

" 

, , 
Dc>" .. ,.,.. 

"'p"',(DR) 

( a) lI.op<er 

, . 
Dc>IHwioo> 

",p ,<,(llN) 

(b) b"m<d .. " 

, , 

, , 

«) lump'n.! """'<~ 

D fiG URE 1~14 

, , " 
s......,. "'I' -"'I' ;,t".-. (s.-.) "'«8(SB) 

, , • 
500>« "". 
~I<f ,\(S.-.) Op<<>od (OP) 

, , • 
Sour« "'1_ ~ (AD) 
~,<. A(SA) (11.<0<') 

ThITe I"'iruction Fonn:o" 



are OIl. specifying H3. and tl>< three hIts In DR are 001. spL'Clfying HI. illCn th~ 
ro.H~nlS of H3 will be subtracted from Ihe c",Hl·nts of H2. alld the re,uh .... ill be 
placed in HI. As an additional example. suppose that Ihe Ilfl"'ration i. a store (10 
memory). Su~ funher. Ihat Ihe lhree hilS in SA 'I"'cify II~ ,!Od Ihe three hil, in 
sa sp<:cify 115. For Ihis parlicular op<:ral;"n.;1 is a<o;umed th,,1 Ih~ regis\t"r sp<:cified 
in SA contains lhe addre$$ and Ihe regisler specified in SB contain, Ihe op<:rand 10 
be stored. So IIIe "aloe in 115 is slored in the ""'mOT)' local;"n given by the value;n 
II~ . The D R field has no dfect. since the ,tore 1lfl"'r-.JtiOll pI'ewnlS the rcgi,tcr file 
hom being wrille n. 

The in,truction fonnal in Figure 10-14(b). has an o!",o'k. lwo reg;"e, lields, 
a nd an op<:rand. The operand i. a constant called an i",,,,e,lial~ "p~,a"d. ,ince il is 
immediately ava ilable in the instructiOfl. For example. fOf an add immediate opera­
lion wit h SA sp<:eiflcd as 117. D R specified as H2. and operand U P equal toOl I, the 
val ue 3 is added to the cont ents of 117. and Ih~ fesult of the addilion is placed 10 
Kl . Since the operand is only Ihree bih rath~r Ihan a full 16 bils. Ihe remai ning 13 
bin must be filled by using either zero fill or sign exten,;"n as discussed in Chapler 
5. In . hi. JSA. zero·Jili is <"",,;fi~d for the operand. 

The instruct;"n format in Figure 10-14(c, . in contrasl to the olher Iwo for· 
mat' . does nOi cbange a ny register fi le or m~mory contents. Inslead. il .ffect' t h~ 

order in which the instructions arc fetched fmm memory. The IOC;ltion of .n 
instruction 10 be fecelled is detennincd by the program rounter denoted by I'c. 
Ordinari ly, the program wunter felches Ihe in'truct","s from ""-Iuc"tial addr<."S<cS 
in memory a. the program i. executed. But much of 'he power of a procc,"", 
comes from it' abilily to change the order of execution oflhe insiructions based on 
result. of 'he proc<!ssing perform ed. These changes in Ihe order of instruction e~c· 
cu tion are based OIl the use of instructions referred to as jumps and branches. 

The e~amplc formal given in Figure 10-14(0) for jump and hranch instruc· 
tion. has an operati"" code. one register field SA. and a split address Held A D. 11 a 
branch (possibly based <'" the wntent, of the regISter specitied) is to neeur. the 
new ad dress is formed by adding the CUffent PC contenls and the conlents of the 6-
hil addr= field. This addf~ .. ing method i, called PC relative and the 6-hil address 
field. which is referred to a. an QddT~.<s of"~f i. Irealed as a signed Iwo', comple_ 
nlent number. To preserve the two's complement reprcscmal;"n .• ign ~~N",i"" is 
applied 10 the 6-hit address to form a 16-hit off""t before the addition. If the left_ 
most bit of the address ficld AD is a 1. thcn the 10 bits 10 it< left arc filled with I's 
to give a negative two's complement off sci. If the leflmost bit of the address field is 
O. then the 10 bit. to it. leh are filled with 0', to give a positi,'" two', complemenl 
offsel. The offset is added to the COIltent, of Ihe I'C to form Ihe locat;"n from 
which the ftCxt in.troction i, to be fetched. For e,ample. wilh Ihe /-'C valu. equal to 
55. surpose thai a branch is 10 occur to locat ion .1.~ if the contents of R6 is equal 10 
lero. The opende would $p<.'Cify a braoch on ,ero inslruction. SA "x,ufd be spL'Cihed 
a, N6. and A D "'ould be the 6-bit. IWO·. comrlemem rcpre..:ntalion of - 20. If 116 
i. '.cro. then PC oOfllen1< becorn~,< 55 .. (_ 20) • :"\5 and the next inslruct;"n would 
be fetched from addres. 35. Ot~rwi",. if R6 is nOnZero. the f'e WIll coont up to 56 
and the next instruction will be fetched from address 5(>. Thi, addressing me, hod 
.Ione rrovides only brallCh addres""s with,n" ,mall range ho<low a nd aoov" Ihe PC 



4S4 0 CI-li\I'TER 10 f COMf'VI'EI<. DESIGN Pi\SICS 

value. II ~e Jum p pm"ide, 8 broader range of addresses by using the unsigned con· 
lents of a 16·bit register as the jump targeL 

The three formals in Figure 10-14 are ">cd for Ihe ,imple compuler 10 be dis· 
cussed in Ihis chap,cr_ In Chapler 11, .... e pr~>cnt and discus< more generally other 
inslruction types and format'" 

Instruction Speclficatlons 

instruction specifications describe each 01 the dist inct inst ructions Ihat can be 
executed by Ihe I)'stcm, For each instruction. the opcodc is given atong wit h a 
short hand name called a mn~mo"ic. Ihat can ~ u>cd as a symbol;'; repre>cntation 
for the opoode. This mnemonic. along with a reprcsenlation for each of thc addi· 
tional in struction field. in (he format for (he in"ruction, representS the notalion 
to be u>cd in spedfying a ll of the fields of the instruction symbolically. This sy m­
bolic representation is then con"crled to the binary represco lation of (he instruc· 
tion by a program called an arumbl,,_ A description of the operation p<:rformcd 
by the instructi on cxeeut ion is gi"en. including the S1atus bits that are affected by 
(he instruction_ This description may b<: tc~t or may use a register tran,fer·lik~ 
nOlatio n. 

The instruction specifications for thc simple computer arc given in Table [0--8. 
The regi'ter Iransf~r notation introduced in previous chapters i. used to describe 

o TARU: 16-.8 
In"ruet;on Spffilka,;o", f .... 'he S imp(~ Comp~'~r 

st.'u. 
~~ 0pc0<Ie M.-.on'" F"""", OHc,ipt;"n ... 
).foveA 00:0:00 MOYA "'D.RA R[DR j .... R[SA] '.Z 
["",emeot OOOOOO( (I'C RD.RA R[DRj .... R[SA) + I N.Z 
A~ OOJOO(O ADD "'D.RA.RlI 1'.[01'.)'" R[SAj_ RISK] '.Z 
SuN,,,,,, OOOJ10 I SUB RD.RA.RIi ... [DRI .... R[SAj- R[S8) '.Z 
Dec,ement OOOJI to DEC RD.RA R[DRI ... R[SA j-l '.Z 
AI'D 0001000 AN D RD.RA.RR RIDR) +- R[SA j ~ RISII] N.Z 
0' OOOIOO( OR RD,RA.R R KIDRI .... RISAj y RIS8) <Z 
bd ... h..,OR 0001010 XOR RD.RA.RB RIDR] .... RISA) 61 RIS8) N,Z 

I'af 000(011 I'af RD.RA RlDR)+- R[SA) " Move B OOO( 100 MOYB RD,RlI K[DRI'" RISB] 
Shih R"h, 0001101 SHR RD,RB RIDR] .... " RISR) 
Shift '-"I' OOO( 110 SHL RD.RB RIDR) +-.( RISBj 
Load (mmediate (oo( 100 Lot RD. OP RIOI'.) +- >f OP 
Add ! rnmediate IOCOO IO AD! RD.RA.Or RIO ... ] .... RI SA ) .. riOI' 

""" OOIOOOJ 1.1) RD,RA R)DR] .... M)SAI 
S,o,. 0100J00 Sf RA.RB MISAI .... R[SB) 
B,.nch "" Ze,o llOOJOO BRZ RA.AD if (R(SA1 - 0) PC ... I'C ... AD 
IIro""h OIl NeEati," Iloml 8 ... :>1 RA,AD if (R(SA] <0) PC .... PC .... AD 
Jump lllOOOJ JM P " PC.- R(SAj 





4 S6 0 CHAPTER 10 I COMI'\1TVlI)ESIGN BASICS 

and appl)'ing sign extcnsioo. we obtain 1111111111101100, which represenl5 - 20 in 
two's C(>mplemem, If regi'ler R6 'S 7.ero, Ihen _ 20 is added 10 Ihe PC 10 give 35. If 
r.gisler R6 is nonlero, Ihe new I'C ~Alue will be 56. h , hould t>e noted that we 
have assumed thnt Ihe addition to Ihe f'C content OC<Uf5 before the PC has been 
incremenled "hleh would be the case in I"" simple computer. In real system .. how_ 
ev~r.the PC has sometimes been incremcnu,d to point to lhe nUl in>lrllC1ion in 
mel"ory, In such. case, lhe ..... Iue stored in AD n.uds to be adjustcd accordin&iY to 
obtain lbe n&hl branch address. 

1'he placement 01 instructions in memory ... shoom in Thbie 11).'1 i< quite arbi. 
tmry, In many compotef5, Ihe w-urd ienglh i. from 32 to 64 bu!.. $0) I"" instruction 
rormalS can hold much large. immediale operands and addrc:56CS Ihan th"'" we 
have givcn, Depending on the compuI~r architecture, some of Ihe in.truction ror­
malS may ucc upy Iwo Or more oons<:culh'e memory words. Also. Ihe nu mber of reg· 
iste," it often I~rger. so Ihe regi!ler field. in Ihe i",truction, lI1u,1 rontain 1I10re hits. 

At thi! point, il i. vital to reoogni7.c Ihe difference bet"'een a computer oper­
alio .. an.d a hardware micm()peroli(HI. An operation i:s srecified by an in.rruction 
. Iored in blnary, in Ihe compuler's memory. llte control unit ,n the compuler O'lC:S 
the lIddrcss or add.~ provi<led by Ihe pro&<"m counle. 10 retrieve Ihe 'Mlruc· 
tion from n .. ".>O<)'. It then decodes Ihe opcodr: bits an.d other inrormation in I"" 
instructIOn to perronn the require(] mtCro<>peratiOfls for the eltCCUl10n of lhe 
instruellOn. In conlrast, a microopcralion is 5P"Cifioo by Ihe bits in a control word 
in th~ ha/dw"re " 'hieh is de<X>ded by the compulcr hardware to ~~ccute the micro­
operalion. The cXl'Cution or a oomp ulcr Op"ration oflen ""'<Iuires a 5<'q uencc or 
program of microopcrmion" r.ther Ih"n a single microoperation. 

10-8 SINGLE-CYCLE HARDWIRED CONrROL 

The block diagram for a <vmputer lhat "'" a hardwired control unil and thai 
fetches and UCCUI"" an iMlruction ,n. single clock cycle is sho".-n ,n Fogure ]1).15. 
We refer 10 this computer as the single-cyck <VnIputer. The siorase r~r«$, 
inslructlOn (ormat .. and instructIOn Sp«ificalions for this compuler .r~ given ,n lhe 
pre"iQus section. The data path shown is the same as thai in Figure II).I I with'" = 3 
and" .. 16. Th~ data memory /II is hllachcd to the Address out. Dala OUI. and Data 
in by ro,,"cction< to the <Jatapath. It ha. U singk ronl rol .igna l MW which is 1 to 

"'rite Ihe memory, and Oother"i..,. 
llte Conlrol unit appeaf5 on the lefl in Figure 10-15. Although not us ually 

lOOu&ht of lOS pari of the control unil, the instruction memory. loee.her with its 
address inpul5 and inslruction .... tpUIS .. ,s shown for con'..,nicnce W,lh Ihe control 
un.t. We do 1101 "Tite 10 the inSlructlOn me ..... ry. in theory, mak,ns il a <VnIbina_ 
lional ralher than a ""'luenlial COI11ponenl. As p""iouoIy discussed. lhe PC pm­
,'i<k-s lhe inSlrOC1ion addre$S 10 the in>lfuction memory. and the: iOSlruction output 
from Ihe initr""tion memory gOC$ to the conlrol logic. which. in Ihis cas<', is Ihe 
in.truction de.:odcr. The oUlpul fr(om Ihe inSI.uel;on memory also goes 10 E. lend 
a"d 7..ero 1111, which pro"ide Ihe "ddress off,.,. to Ihe I'C and Ihe ron'tant ''' pu t. 
ConSla"t in. to the datap;lth, respectively. Exkn,ion appends the Ic/'most bit of 
lhe 6-blt nd<Jrcss off"'l field AD to Ihc lefl of AD. pr"""",ing its two's complement 



10-81 s;,.gl.-Cyd< Hml .. ;....1 Coro,roi D 457 

o BAM F M II. M P J B 
AAAOSOWWLO(; 

CON'TRO L 

D nGUME HI-15 

:~'.r _ IIA 

,r-"" 
,-, 

~'O ' lJ III 

BlocK Di'gr.", lOT. Sinllk-C)<le ("o"'puler 

i 't 

, , 

,..,presentation Zero fill append, 13 zer"" to the left of the operand (Or) field of 
the instruct ion 10 form a 16-bit unsigned operand for uS/; in the datapath. For 
e""mpl., operand value 110 become. {l(l()(l(((((((11O or +6. 

Tl«: PC is updaled in each doc~ <yde. The behavior of Ihe Pc. "hkh i,. 
complex regiSler. i, determ ined by Ihe oprode. N. ~nd Z. ,ince C and V are nOI used 
in Ihiscontrol unil design. (f a jump occur$. the new rCvalue becomes the val ue on 
Bus A . If a branch is I. ken, then Ihe new PC value i. Ih. Sum of Ihe previo"" PC 
,-.Iue and the sign_ex1ended addre ... off..,l. "hich in IWO', complement can be 
ei lhe r poo.itive or negali,-•. O thcrwi"". the 1'C i, i""'remented by L A j .. mp occurS 
for bi t 13 in the instrUClion cq .... lto l. For bil 13 equal 10 0_3 oo,,<lil;oo3 l branch 
occ ..... The Slam, bil Ihal;s Ihe rondil;on for tile branch i, selecled by bil 9 of Ihe 
inslruclion. For bil 9cqual to I. N is <elected and. for bil 9 equal tQO. Z is selected 



4S8 0 CHAPTER IQ I CO~"'lITE'" DESIGN ElASICS 

All pari" of the computer that are seque ntial are shown in blue. NOle Ihal 
the re is no scqu~nl i"llogic in the control part Nher th.n the Pc. ThUs, aside from 
providing the address to th~ inslruction memory, the control logic is combi national 
in this case. Th ai facl. combined wit h the slruclure of Ihe datapath and the use of 
separate instruction and data mcmories. allows the single-cyc1 e computer 10 obtain 
and execute an instruct ion from the instruclion memory .• 11 in a single dock C)'c le. 

Instruction Decoder 

The in.truction decoder is a rombinatioo"1 circuil that pro" ides all of the control 
words for the datapalh, based on the contents of the fIeld. of the instruction. A num­
ber of the fields of the control word can be obtained directly from the contents of the 
fields in the instruchon , Looking at Figure Hl-16. we KC Ihal Ihe control word fields 
DA. AA, and BA arc equal to the instruction fields DR. SA. and Sil. respectively. 
Also. collt",1 held Be for selection of the branch condition status bits is taken 
directly fronl the last bit "f Opc<>de. The remaining control word fields include dala· 
path and data memory contro l bits Mil. MD, HW.and MW. There are two addc.;l bits 

tn" ,=;"" 

""""" '" " " 
" " " " " '" " U ~ ~ 

L I 

,'-, 

IY I 
t ..... 17 "\-I ~ t3-1 1 '" ~ , • , , , " 
0' " "' M' " MO ,. Mw " " ~ 

o FIGUKE 10· 16 
Diagram of InW""I;on De<:oder 



for Ihe cont.ol of Ihe PC, PI-, ~n d J B. [f Iherc is 10 be a jump or bran~h, PL ~ I, load­
ing the I'C r-or PL .. O. the PC;s incremented. With PL " I, JB .. I calls fw a jump, 
and JB .. 0 calls for a condiliOllal branch. Some of the single bil control word fic1d5 
require logic for their implementalion. 10 order to design Ihis logic, we divide the 
various inSlTUc1;OnS po&sible for Ihe simple compuler iolo differenl fuTlClioo Iypes 
aod then assign the first three bits of Ihe oprode to Ihe various I)".... The inSlruction 
fUllCiiOll types sh"",,, in Table 1(}'1O arc based on Ihe u"" of specific hardware 
'eSOurces in Ihe compuler, such as MUX 8,Ihe FUnClion unil,lhc Regisler file. Dala 
memory, and the PC For example.lhe firsl funclion Iypc USCS Ihe "LU,SCls MUX 8 
10 use the Register file source. sen MUX D to use Ihe Function unil OUlput, and 
writcs 10 Ihe Regi'!ler file. Olher inSlruc1ion hlOc1ion lypc' are defined as various 
combinations of use of a constant input inslead of a regi'!l.r. Dal3 memory ruds and 
wriles. and manipulalioo of Ihe PC for jumP'S and branches. 

Dy looking 01 Ille relationship belw""n Ihe in'lm,lion fUnclion lypcS and 
Ihe ne~essary conlrol word value. needed for Iheir implement'lion, bils 15 
through 13 and bit 9 were assigned as shown in Table 1(}'10. Thi'! assignme nt 
a\lcmpled 10 minimize Ihe logic required to implement the decoder, To pcrform 
the design of the de<:oder, the values for all of Ihe lingle bit field, in Ihe control 
word were determined f.om the funelion lyres and enlered into Table 1(}'10. NOle 
that there are a numher of don'l care (X) entries. T.ealing Table 1(}'1O as a truth­
toble and oplimizing Ihe logic fun<lions. Ih" logic for th~ lingle bit OUlpU" Qf the 
inslruction dC«>der in Figure 1(}.16 .esults. [n Ihe oplimizalion. Ihe four unused 
cod.,. for bit. [5, 14, 13, and 9 were assumed 10 have X value. for all of Ihe single 
bil fields. Thi$ implie5 Ih'" if une of Ihew COlic. occurs in a program, Ihe effect i$ 
unknown. A more conservati,'e de,ign specifies RW. MW, and PL all zew fm 
these fQur code'! ' 0 insure thaI the '!Iorage resource stole is unchanged 1M these 

o TABLE 1(1.10 
T",lh Tobie ro. I." •• <lio" o.,rode. ~ic 

Inllructlon B~I COImoi Word Bltl 

In. lTuctlon Funellon ry ... " " " • .. .0 ~ MWPL " " 
".o><lioo" unit ope.ati"". using 0 0 0 , 0 0 0 0 , , 
regi.ters 

Memory ... " 0 0 , 
" " 0 , , 

Memory ,.·,ite 0 " 
, 

" 
, 

" " 
, , 

"u""tion unit operation. u.ing 0 0 , 0 0 0 , , 
regi.ter an<l coo,l.n' 

Condi,ion.] br.och Oft ""ro (Z) 0 " 
, , 0 " 0 " 

Co<rdition.al brooch on ""p'ive (N)I " 
, , 0 " 0 

Ur.conditional Jump , , , 0 0 , 



460 0 CHAI'TER 10 I COMPUTER DEStGN BAStCS 

un used codes. The opt imization resu llS in the logic in Figure to-16 for imple ment­
ing MB. MD. RW MW. PL. and JE. 

The renl aini ng logic in the decoder dcal' with the fS ~~Id. For all but the 
co nditional bra nch and un",nditional j ump instructions. bits 9 thmug h 12 are fed 
directty through 10 lorm the FS ndd . During w nditionat branch operat ions. Slid 

as Branch on Zero. the vatue in SOurce register A must be passed through the ALU 
w II"" the ,talUs bilS Nand Z e"" be eva lu alcd . Th is require, fS = IXO)' The use 
of bil 9. hO"'CVCT. f(>r ,(alu, bit se)cction I"r condit iona l bmnche •. req ui res al times 
th m bit 9. which controls the righlm'';;1 hi l 01 FS, be a I. The contradicl ion i~ val ue. 
belween bil ~ "nd FS is resolved by addi~ g an enable On bit 9 Ihat force. FSo to 
."ero whenew! PL _ I "' ,hown in Figure 10- 16, 

Sample Instructions and Program 

Si. in'truc!ions for the single -cycle computer arc lISted in Thble 10- I I , The .ymbolic 
"ames associated wit h Ihe inSlructions arc usefu l fOT listi~ g progr~ms in sym bolic 
fonn mther th"n in bin ary code. Because of the imporTance of instruction decoding. 
the rightmost si. column< of Ihe table show critical wntrol signal ya lues for each 
instruction. based on the values obta,ned using Ihe logic in Figure 10-16. 

Now suppose Ihat I h ~ ~"t inslTuct ion. ~Add Immediate" (A D I). is prc$ent On 
Ihe oUlput of thc instr uction m~mory .hown in Figure 10-15. Th~n.on the basis of 
the f",;1 three bits of thc opcode. 100. the outpulS of the instruction d",oder ha,'e 
the "alues MB - I. MD _ O. RW = I. M d MW = O. The last three bit' of the 
in" " 'Clion. 01' ...... "re eXlended to 16 bils by zero fi ll. We denote this in " regi"er 
trnnsler statement by zf. Since MH i, I. this zero-filled val ue is placed on Bus B, 
With MD "'Iua l to O. the function "mt o ut put is $elected, and since Ihe 1"'1 fou r 
bits of the opcoJe. 0010. spccif)' lield FS. the operatio~ i,A + B. So the ,-ero-fil led 
,-aluc on Bus B i, added to the oomen" of rcgl<ter SA. wil h Ihe resuit presented 
on Bu, D. Since RW = L Ihe v"lue on Bus D is wTitten into reg;,;ter DR. Finally. 
wit h MW - O. no write into memory occurs. Th is ent ire operalion takes place in a 
single cloc' C)·clt. Al the beginning of the next cycle. the desli nation regisler i, 
written and. since I)L a n. the PC i< incremented to point to Ihe next instTUction. 

The ,econd instruction. LD. i," load from memory wit h opcode 0010000. The 
fi rst Ihrce bits of thi< opeoJc, WI. give control va lue, MD _ 1. RW _ I. and MW 
= O. 'Ille", va lues. p lus the r~gister source field SA ~ nd register destinat ion fie ld 
DR. fully spccify thi< instr HClinn. which load, the co ntents of the memory address 
specified by register SA into regisler DR. Again. since PL = O. the PC i, incre­
mented . Note that Ihe ".101", of Jll a nd Be arc ignor~d . since th;,;;,; neit hcr "jump 
nor a bra nch instruction . 

The third im lruct ion. ST. sWres the wntents of" regISter in memory, The fi tst 
threc bits of t h~ opcode. OJ(). ~ive oonl ro1 'igMI v"lues MB = O. RW = O. and MW 
- I. M W = I ca u,es a ",emory write operatio" . with Ihe addres, and d"'a from the 
regi"er tiI~. RW • (l prt:VC nh Ihe register file from i"<:illg written, The . dd r~," for 
[he mc",ory writ" comes from the register ""I"'tcd hy fl cld SA. "nd the data fm 
the memory writc COme from the register ",lccted by SA. <;nce MB _ 0, The DR 
field. "lthough pre<cnt. is nOl u""d . "nee 11 0 writc O<Xur.s 10 " register, 



o TARLE 10·11 
Six Inst runi"", for the Single·Cld e Computer 

Operation Symbolic - .,- Form. 1 DucrlpUon FUIlCllon MB MD RWMW PL " " 
100Xl1O Am Immed iate Add ,mmed,ale II I DR I<-R(SAI Hf 1(2:0) " " 

, 
" " op<rand 

00."", CD Register Loa d memory IIIDR) .... MrRrSAIl " " " " , 
COItlent into 00 

regisl" 
, 

",ron> "' Regist« Storr register MIR( SA IJ <- RISB] " " " " " ~ 
~ ronlcnt in , m,_ 
< 

OCQl1lO " Rogi".r Shift left II[DR ) ... ,IRrS B) " " 
, 

" " 
, 

" > 
" OCQlOl l .00 ROgiSior Cnmplomcnt R[DR);-RISA( " " " " " , 

reg,,"r ~. 
"ron> URZ Jump/tI"""h If RISA ] = 0, br,,,,," If RISA1_ 0, " " " " " " lol'C+ .. AD rC .... pC + >eAD. 0 

If R[SA ] ... O,PC .... I'C + 1 • 
[ 
0 

• • -



462 0 CHAPTER 10 I COMPUTER l>ESIGN BAS ICS 

Because this computer has load and store i~8lruClions and does not combine 
loading and storing of data operands with other operation,. it is rderrcd to as hav_ 
ing a load/sloTt .rchitecture_ The use of such an archi tecture simpli6es the execu­
tion of instructions. 

The next two in<truclions Use the Function unit and wri te to the Register fi le 
without immediate opcrands. The last four bits of the opeode, the value for the FS 
field of the cont rol word, specify Function unit opcration. fur tho.e two instruc­
tions, only one source register, R[SA] for the NOT and R[ SB] for the shift left,and 
a destination register are involved. 

The fmal instruction is a condi tion.1 branch and ma nipulates the PC value, It 
ha. PL = I. cau,ing the program counter to be loaded instead of incremented. and 
IB _ O. causing a condi tion.1 hranch rather than a jump. Since Be = O. register 
R[SA] is tosled for a ,'alue of zero. If R[SA ] eq ual' zero. the PC value t>ecomes PC 
+ se AD, where se !lands for sign extend , Otherwise. PC i, incremented. For this 
instruct ion. the DR and SB field, become the 6_bit address field AD. which is sign 
e>1cnded and added to the Pc. 

To demons trate how instructi on, such as these can be used in a simple pro­
gram.consider the arithmelic e~pression 83 - (2 + 3).The following progra m per­
forms this comp ut ation . assuming that regi<tcr R3 contains 248. location 248 in 
da ta memory contains 2, location 249 cont ains 83, and the res ult is to be placed in 
location 250, 

CD RL RJ Load RI with cont~n" of Ioc.tion 248 in memory (Rl - 2) 
Am Rl. Rl. 3 Add3'oRl(Rl - 5) 
<00 R I, R I Complom<nt KI 

'"C RL RI Increment Rl (Rt - -5) 
INC R3. R3 Increment the contents of R3 (R3 - 249) 
CD R2, R3 Load R2 wit h conten" of 1oc.,>On 249 in m<mory (R2 - 8.1) 

AOD IU. R2. RI Add content, of Rl to contents of R2 (R2 = 78) 

'"C R3. R3 Increment the contcn" of R3 (R3 - 250) 
<T R3, R2 Store R2 in memory loo",ion l50 (M[2'50[ - 78) 

The SUblraction in this case is done by laki ng lhe 2's complement of (2 + 3) and 
adding it to R3: the subtTaction operation SUB co uld have been used a, welL If a 
register field is not used in o,ocuting an instruction, it' ,ymbolic valuo is ominod. 
Thc symbolic >,alues for the register-In'" instructions. when the lallcr are prescnt. 
are in the oTder DR. SA. and SB. For immediate types. the fields are in the order 
DR. SA. and Of> To store this program in the instruction memory. it is necessary to 
convert all of the symbolic name, and decimal num bers used to their corre'pond­
ing binary code .. 

Single-Cycle Computer Issues 

Although there may be instances in wh ich single-qde computer timing and con­
trol strategy is uS<.'ful, it has a number of shortcomings. One sh ortcomi~ g is in the 



arca of performing ~ompl ex operations. For example. suppose that an inSlruClion is 
de,ired that execnt., unsigned binary mult iplication u,ing an add·and·shi ft algo­
rit hm. With the given datapath. 1his cannot be accomplished by a microopemtion 
that can be executed in a single dock c)idc. Thus. a control organization that pro­
"ide, multiple dock cycles for the execution of insuuClions is needed. 

Alw, the single-ryde computer has two distinct 16-bit memories. one for 
instructions and one for data. For a simple computer ,,-jth instructions and data in 
the same 16-bit memory. two read accesses of memory are rcqui red to execute an 
instruction that load, a data word from memory into" regis1er. The first acces.s 
obtains the instruction. and the second access. if required. reads or writes the data 
word. Sine<: two different addresses must be applied [0 the memory addr.ss inputs. 
at least t",o dock cyde .. one for each address. are req uired for obtaining and exec ut­
ing the instruction. This can also be ae<:omplished ea,ily with multiple-cycle control . 

FInally. the ' ingle -cyde co mputer ha, a lower limit on the dock period based 
on a long worst case dday palh. This path is ,hown in blue in the 'implified dia­
gram of FIgure 10-17. The total delay along the path i> 17 ns. This limits lhe ctod, 
frequency 10 58.8 MHz. which, although it may be adequate for some applications. 

~ ,~ 

l .. tru«ioo ... 

-~ 

R<~i"" file 3 
(flo"'!) n. 

MUXB '" 
Fuoc(ion 

U"" "" .. , 
D ... 111<"'<" )' 

MliXD .. , 
R<~« f,l' ) r 
(W~'o) 

o FI GURE 11).17 
Wo'" Cue Dc],)' P"h in Singlc·C)·tto Computer 



464 0 CH,o,PTER lOl l COMPUTER I)ESIGN n,o,SICS 

is 100 slow for a modern computer CPU. In order to have" higher clock freque ncy, 
e it her Ihe delays of the components on the pat h or the nu mber o{ components in 
the path must bc reduced. If Ihc dda)'li of tk compon"nlS cannOt bc reduced. 
redudng the numbcr of components in the path is the only altern'live , In Ch.pter 
12. pipeli ni ng of Ihc dal"p"lh rcduce' Ihe numbcr of componentS in the longeq 
combinatioMI delay path and pennit. the clock frequency to bc incre.",d, A pipe­
li ned dalapat h and control gi"cn in Chapter 12. demonsl,ale, Ihe improved CPU 
performan"" Ihal can be oblained. 

10-9 MULTIPLE-CYCLE HARDWIRED CONTROL 

To dcmon'lra ic mull ipic-cyclc control, we use thc arehitccture of the sim ple com· 
pUle,- but modify ils dal.path, memory, .nd cont rol. The gool of Ihc modific.lions 
i. to demOn.lrale the usc of a .ingle memory for both dala and instruclions and 10 
demon,tratc how mMe complex instruction, can be imple mented by using multiple 
clock cycle. per inmuclion, The block diagram in Figure 10· 18 .hoWli the modifica· 
tions to thc datapalh. memory. and control, 

The changes to thc .ingle-cycle compuler can be obwrvcd hy comparing PIg. 
ures 10-15 and to- IH. The first modification. whIch is possihle with . but not "''''ntial 
10. multiple-cycle ope18tiOl)_ replaces the "'par.to inSIJUClion memory and data 
memory in Figure 10-15 with Ihc single Memory M in Figure 10· 18. To fetch 
instructions. the PC is the address so ur"" for Ihe memory. and 10 (elch dala . Bus 
A is the address source. At the addre," input to memory. mu ltiplexer MUX M 
.clects between th<)$ twO address w urres. MUX M require. an addilional control 
signaL MM. which is add~"<l 10 the control word formal. Since inslructions {rom 
Memory M are needed in the co nt rol unit. a path is addcd from its output 10 the 
in struclion register IR in the conlrol un it. 

In execut ing an in, tru,ti"n aCrOSs mu ltipic clock cycles. data gene rated dur­
ing Ihe current cycle is ofTen nceded in a lalcr cycle, This data can be lemporarily 
stored in a regisler {rom the ti me it is generated un ti l the time it is used. Registers 
used for such te mporary storage during Ihe execution of Ihe inslruction are usually 
nol visible to the user (i.e .. are nol P"rl of the storage resources). The second mod· 
ification pT<widL'<; thc", temporary slorage regislers by doubling the number o{ reg­
iste rs in the ,egisler file, Regi'ters 0 through 7 arc . torage resources and registers 8 
through 15 are u",d only for Icmporary storage d uring instruction execution, so 
are not part of !he storage rcso u,,,,,. visible to the uscr. The addre"ing of 16 regis· 
ters requires 4 bits. and become, more complex. since addressing of the first eight 
regi,ters must be oontrolled from the instruclion and Ihe control unit . and the sec­
ond eight registers arc controlled {rom the comrol unit. This is handled by Ihe Reg. 
ista addrc" logic in Pigure 1O· 1H and by modified DX, AX. and BX fields in th e 
control word . The detail. of this change will be discu""d latcr when Ihe control is 
defmed. 

The PC is the only contro l unit component reta ined and it mu't also be modi. 
hed. D uring the ",ecution of a nHlltiple-C)'dc instruction. t h~ PC must ~ held at 
ils current va lue for all but one of the cycles. To provide Ihis hold capability.", well 



as an increment and two load operations. the PC is modified 10 be conlrolled by a 
2-bil control word field, PS. Since Ihe PC is conlrolled completely by Ihe control 
word. the Branch control logic previously represented by Be;, absorbed inlo the 
Conlrol Logic block in Figure 10-18. 

Because of Ihe mulliple qdes of Ihe modified computer. Ihe instrUClion 
needs 10 be held in a register for use during its execulion since its values arc likely 
to be needed for more Ihan jusl Ihe first cycle. The register used for Ihis purpo<e 
is Ihe im",,,;:t;oH Ttgisrer fR in Figure IO-IH. Since the IR loads only when an 
inqruclion is heing read from memory. il has a load.cnable sign.IIL Ihal is .dded 
10 Ihe conlrol word. Because of Ihe multiple..cyde operation. a sequent ial control 
circuit . which can pro. ide a sequence of control words for microoperations used 

D'''P.Lh 
oon",~ 

MtCROPROGRAMM~t' <"ONTMOL 

o FIGURE 10.18 

Fun<tioo 
"n,t 

Block Di.gr.m for" MUlhple_Cyde ComputeT 



466 0 CHAPTER 10 I COMPUTER DESIGN BASICS 

27 142l21!11O 1116 1312 

1:1 
o tn;UiU: 1{1-19 

Con1rol Word Formal for Mull iple-Cy<le Computor 

10 in1erpret the in s1ruction is required and replaces the ins1ruc1ion decoder. The 
""luemiaJ control unit consislS of the Control state regi.ter "nd the combin"tion"1 
Co~trollogic, The Cont rol logic has lhe state. the opoode, and the sla!us bits as its 
inputs and produces the control word;lS i10 o ut put. Concepl u~lIy. the cont rol word 
is divided imo Iwo paris. one for Sequence conlrol, "'hich delennin"1; !he ne.! Slate 
of Ihe overall control uni t. "nd one for OJwp.lh comro], which comrols the micro­
operations executed by the Oa!apalh and Memory M as shown in Figure H)-IS 

The 2S-bit modified co~ trol word i. given in Figure 1(}"19 and Ihe definitions of 
the fields of Ihe control word are given in Table 10-12 and 10-13. I~ "Table 10-12. the 
fields OX. AX. and BX controllhe regisler selection. lIlhe MSil of one of these 
fields is O. Ihen the correspondin g register "ddres~ OA. AA, Of BA i. Ihat given by 
o II DR. 0 II SA. and 0 II SB, respectively. I f the MSB of one of these field. is I . then 
the corresponding registe r "ddre'" is the conte nlS of t~e field OX. AX, Or BX. This 

0 rAUL!:: 1O·1l 
Cont rol W .. r-d loronnation for notopoth 

" " " ,- ., ,- ~ ,- ., ow •• M' 
RI DR i RISA i R{Sl:I i oxn lIeg •• ter 0 F - A "'" FnUI '" Addr ... '" wri'e 00' "'Tite 

" "" "" l())) Con,taol F _ A " 1 ~, Data In Writ. >'C Write 
~ ~ m '"" F_ A +8 00'" 

"" 'W "'" lOW U"use~ 00" 

'" '" "" lOll Unused "'00 
'" '" '" "00 F _ A_B +1 OWl 

'" '" '" 1101 F_ A-I 0 110 

". '" ". 1110 Unused 0 111 

'" '" '" 1111 F _ A,.,B ,~ 

f _ AvB '00' 
f _ A 6 B 1010 

' · A 1011 ,. , "00 
f - " B 1101 

f'~.I B 1110 

Un u .. <i 1111 

,-
" 



10-9 I Mul';pl • .cyck H ... dwi",d Control 0 467 

..,1.Clion process is performed by Ihe Regisler address logic. wnicn conlain, three 
mult iplexers. one for each of DA.AA. and BA.controlled by lhe MSB of DX,AX. 
and BX. respecti,'ely. Table 11}.12 also gives the code values for Ine MM field. 
which determines whether Address OUl or PC ..,,,'es as Ihe Memory M addres~ 
The remaining fields in Table 11}.12. MB. MD. RW, and MW. hove the same func­
lions as for the singJe-cyc1e computer. 

In the sequential oontrol circuit. the Siale control regisler has a sel of stales. 
iw;t as a sel of fl ip.flops in any olher seq uential circuit. has. AI the level of our dis­
cussion. we assume Ihal each slate has an abstract name which can be used as bolh 
the state and the nexl state value. In the design process. a Slale assignment needs 10 
be made to these abslract Slate~ Referring 10 Table 11}.13. the field NS in Ihe con­
trol word provides the ne~t slate for the Control Slate register. We ha,·. assigned 
four bils for the stale code, but this can be modified as n«,essary depe nding on Ihe 
number of stales needed and Ihe Slale assignment used in Ihe design, This panicu­
lar field could be considered as integral 10 Ihe control and seque mial cireuil and 
nol pan of the control word. but it will appear in Ihe stale lable of Ihe conlrol in 
any case. The 2-bil PS field controls Ihe program counte r. Pc. O n a giyen dock 
cycle Ihe PC holds ils slale (00). increments its slatc by I (01), conditionally loads 
PC pl us sign-extended AD (10). or uncondilionally loads the conlents of R[SA1 
(11). Finally, Ihe in,lruelion regisler is loaded only once during the execution of an 
inslruclion. ThUs. on any given cycle, eit her a new instruction is loaded (IL _ I) or 
the in'tru~tion remains unchanged (lL _ 0). 

Sequential Control Design 

The design of the sequential cont rol circui t can be done using lechniques from 
Dlaptcr 6 and Chapter S. Howe,·cr. compared 10 the example, Ihere. e"en for this 
comparatively simple compater. the control is quite complex_ Assuming there are 
four state variables. Ihe combinational Control logic has 15 inpul variables and 28 
OUlPUI variables. It !Urns out that a con&nsed , tale la ble for Ihe cireuil is nol too 
difficult 10 de,'elop. but manual design of the detailod logic is ,'err complex_ making 
the usc of a PLA Or logic s}'nlhesis more Yiable options. As a consequence. we focus 
on state !ahle development ralher than detailed logic implementalion 

We begin b}' developing an ASM chart thai represento the instructions Ihat 
can he implemented whh the mi nimu m number of clock C)'clts_ E.tensions of this 

o TABLE 1(l..!J 
CUDlrullnf .. rma tlon fur S .... uence COlll ... 1 

" " " 
Ne.t State '"~ ~. Action ~. 

Gives ne.1 stale Hold PC 00 No load " of Conlrol Slate ,~"' "' Load in"', 
Registe, 6ra<><h '" Jump " 



468 0 CHAPTER to I COMPUTER DESIGN BASICS 

chari can then be deyeloped for implementation 01 instructions requiring more 
Ihan Ihe minimum number of clock cycles. The ASM charts provide tho in lorma­
tion needed to develop lhe state table entrk"S for implementing the instruction 
",I. For instruclions requiri ng a memo'}' access for dala as well as for the inSITUc­
tion itself, al leasl two cycle. are required. 11 is convenient to <eparale t he cycle. 
inlo Iwo processing steps: ;nsrrucr;on felch and ins/rucl;on aeCld;on, O n Ihe basi. 
01 this division, Ihe AS M chari for the Iwo-<:yde inslructions is given in Figure 10-
20, The instruction felch occurs in .tale INF at the top of the chan, The PC con­
lains the addre .. of the instruction in Memory M . Thi. addre .. is applied to the 
memory, and the word read from memory is loaded into the IR on the clock pulse 
thai end~ Siale INE The same dock p ulse caWie. the nCw state 10 beco me EXO. tn 
slate EXO. the instruction is decoded by use of a large veClor deci<ion box and Ihe 
microoperations execut ing a ll or pari of the in<truclion appears in a conditiona l 
output box , If Ihe instruction can be comple led in state EXO, the next slate is INF 
in preparalion for fe lching of the next instr uction. Furlher, lor inslructions that 
do not change PC contenn during lhoir execution, the PC is incre mentod . If addi­
lional Slales are required for inSlruction c,eculion, the neXI stale is EX!. In cach 
of Ihe execution <tates. Ihere are 12S differenl input combi nations pos<ible, based 
on the opcode. When Ihe stalus bit. are used, Iypically o ne al a lime, t he OUlput 
of the ,'ector deci<ion box feed, one or more scalar decision boxes as illuslraled 
for the branch instructions on the lower righl of Figure 10-20. 

Next, we describe a sampling of the inslruction executions specified by the ASM 
chart in Figure 1ll-20. The /ir,;t opcode is ((((OX) for the mo"e A. (MOV A) instruclion , 
This instruction involves a <imple transfer from the source A regi<ter to the destinalion 
regisler. as specified by Ihe register Iran,fer shown in ,late EXO for Ihe in\lruction 
opcode,A lt hough Ihe stalu, bils Nand Z are "alid, they are nol used in Ihe execulion 
of Ihis instruction . The PC is incremented on the clock edge ending stale EXO, an 
action that occur,; for all but branch and jump instruclion. in the ASM chart. 

The third opcode is (0)))10 for the A DD instruction wit h the regisler trans­
fer lor addition shown, In this case, slatus bin V, C, N, and Z arc valid, all hough 
nOl used. Tho eleventh opende, OO]oco:J, is the load (LD) instruction, which uses 
Ihc valuc in the register specified by SA for the address a nd loads lhe data word 
from Memory M inlO Ihe register specified by DR. The Iwelfth opeode, 01(0))), is 
for Ihe slore (ST) instruction. which Siores Ihe value in regiSler SB inlo Ihe loca­
tion in Memory M specified by Ihe address from register SA. The fourleenth 
opeode, 1001100, is add immediale (ADI), which adds the zero-filled value of the 
O P field, tho righlmost three bits of the instruction, to the content. of register SA 
and plae<:!s the result in lhe regisler D R. 

The sixteenth opende, t loco:J I, is the branch on negali"e (BRN) instruction. 
The dCcoding of this instruction caUS<."S thc value in tho register specified by SA to 
be passed through Ihe Funclion unil in ordcr 10 cvaluate ,(aIUS bil' Nand Z. The 
values Nand Z then prOp"gale back to Ihe Conlrollogic. Based on Ihe va lue of N, 
the branch is taken or nol taken by adding Ihe eXlended address AD from Ihe 
instruclion 10 the value in Ihe PC or incrementing the Pc. respectively. Thi' is rcp­
re .. nted by tho scalar decision box for N .hown;n Figure 10-20. 



IR <- M!PCl 

II 

, 

PC <-R1S" i 

o HG URE 10·20 
lI.,ic ASM Chart for Mul'iple-C~cf. Compu'of 



o TARLE 10-14 
S.a.e Table for T .. ·o_Cyclr I .... "'<lio ... 

Opo:ocM VC NZ 

INP XXXXXXX XXXI 

"" oooom "~'X 

"" 000000' "" m ~OO ,m 

~" OCO'J101 = 
ex" OCO'Jno ,m 
EXO "",om XXXX 

"" (((11001 un 
ex" (((11010 "" "" (((1101 1 = 
"" (((11100 = 
EXO 00'0000 = 
EXO "'~ XXXX 
ex" 1001100 xxxx 

'" If.OX110 XXXX 
ex, ,,~ XXXI ex, ,,~ xxxo 
EXD I JOCO'JI XXIX 
EXO I l00000I ". ex, 1110C0'J XXXX 

,~, 

"ale 

~" 
'" 
'" INP 
INP 
TNF 
INF 
INF 
INF 
INP 
INP 
INP 
lNF 

ON' 
'N' 
'" 
'" 
'" 'N' '" 

_______ O_"_'~ __ .. --co-
.P M MRMM 
lSDX AX BXBFSDWMW 

, 00 = XXXX = , XXXX , 
" 

, 
" 0 "' = ." = , 0000 , , , " 0 "' m" ." XXXX , ..,,, , , , 0 

0 "' ." ." ." 0 0000 0 , , 0 
0 "' ." ." ." " 0101 " 

, , 
" 0 "' ." ." XXXX , 0110 0 , , 
" 0 "' = .... , ." " ,om 0 , , 
" " 00 = "m = " "" 0 , , 
" " 00 = = ." " 1010 0 , , 0 

0 00 = onx xxxx , lOll 0 , , 
" 0 • "'" = ." " "00 0 , , 
" 0 • ." ." xxxx , xm , , 

" " 0 "' xxxx ." ." " = , 0 " 
, 

0 "' moo = "" 
, "00 " 

, 0 0 

" "' = = = , 0000 0 , 0 0 

" '" OM' = = , 0000 , 0 0 " 0 "' XXXX "'" xxxx , 0000 , 0 0 " 0 00 XXXX m" xnx , 0000 , 0 0 0 
0 "' XXXX = "" 

, 0000 , 0 0 0 
0 " XXXX = "" 

, 0000 , 0 0 0 

MOVA 

'N< 
ADD 

'0' 
Dec 
"D 

'" xo, 

"" MOVB 

CD 

IT 

LDI 
AOO 

'" aRZ 
BRl" 
RRN 
JMP 

Com"""'tI 

/ 11 <- M[l'q 
.... (O R[ <- H[SA]' 
II\DR[ <- RjSA]. I' 
II\DR[ <- R(SA). R(SIl[' 
R(DRI<- R(SA) + R(SB I' I ' 

R(DR] <- R(SAJ + (-I)' 

R\ DR I .... R(SA I A R(Sa]' 
R[O R1<-II[SA] v lI[sa]' 
R[OR1'" X[SA] Oil X(SB1' 
.... [DR] ... R(SA( ' 
R[DRJ;- R[SBJ' 
R[DR];- M[R[SAI1' 

M[R(sA ll .... RISHI' 
XIDR) .... rl 01'" 

RloRI <- R[SA1 +.f DP' 
PC ... I'C +scAD 
PC ... I'C + I 

PC .... PC+scAD 
I'C ... /'C, 1 
PC ... R[SA] 

• , 
• 
o 



F.om thil ASM chari, the Slat. table for the sequential control cirwit can be 
developed as shown in Table 10-14. The present 5Iat"" arc given al abstract "at. 
names. and the opoode. and status bilS serve as inpu t .. In the ca~ of Ihe status bil .. 
only tho<c bi .. Ih8t are u~d in the instruction are specified, By using combino lions 
of bilS and mult ip le ".tus bit patterns. i. is Il'OSliible to specify funclions of •• atus 
bi.s. Note that ntany of the entries in Tltble 10-14 con.ain X .. symbolitin, "don't 
eMes." For the1c entrin. Ihe input or .nouru is no. u..w in 'he liven mi •• oope,.· 
.ion or the specific: bill of the code that are X are not us.ed for controlling it. II is, 
useful esercise 10 detennine how uch of the entne. in Table 10-14 ,S obuined. 
~d on Table 10-12. Table ]O-13.,nd Fi,u •• ]0-20. 

I. ill inte.esun, to b, iefly comp.a,e the 'imin. of the ex ... ution 01 instl"U(1ions 
in Ihis org.aniuo.ion wi.h that for the single-cyde compute •. r,: IOCh instruction 
requi.es two clock cycles to fetch and e~ecutc. compared with one clock cycle for 
the sing le·cycle compu'er, Because the very long delay path from the PC .h.ough 
the Instruction mcmory. Instruction decoder. dotapath. and b.anch control is bro· 
ken up hy .he inl.l1I<.ion .egister. the clock period. a.e ""mewhat shoner, Never· 
Ihelen due to setup time requi.emenlS fo. the added flip-flops in the IN and • 
potential im","l.noe in delays for the various p.aths through the circuit. the overall 
time taken 10 ese<:ute all in"ruction oould be JUSt as Ion~ as or Ion,er lhan in the 
single-cyde compute •. So what is the bene6t of this organizalion o.he. th'n abili.y 
to u~ a .ingle memOf)'1The next ' .... 0 inst.uction. give the anS"·.,. 

The 6~t in$tl1l<ti"" to be added ill • "load .egiste. indirCCl" (l RI). with 
opcode 0011)001. In this instruction. the contenlS of .egister SA addrCS5 a wo.d in 
memory, lb~ word. "hich is known as an ,,,,/irt:C1 alil/",,,. is then u$C<ltO address 
the word in memory that i$ loaded inlo regiSler OR. Thi s can be ,epresentcd .ym· 
bolic.llyas 

NIDRI .... M IMjNISA 111 
The ASM mar. for the ueeu""" of thIS instruction i$ given in FIgure ]1).21. 

Following lhe in.truction fetch. lhe .. a,e becomcs EXO. In this .. ate. RISA] 
addresses lhe memOJ)' to oblain the indirCCl address. which is then placed in .. m· 
porary 'egister RS. In the nul state. EXI . the nut memory attelo5 oceun wi.h 
Ihe .dd.elS from Rll. The ope rand obtained i~ placed in RIOR] to complete the 
operation, and 'he PC is incremented. '1"11" ASM then ,eturns to Slate IJ'lF to 
felch the nc~t in struction , The "eCtor decision box lor opende is req uired for all 
states. .inec these ",me "ale. a.e used by other in,!ructions for lhei. execution. 
Oearl)'. with two accelo5eS'o Memory M.this in.true.ion cou ld not be executed 
by Ihe sin,le-clock-cy<:1c computer or u.inatwo clock cycle. in lhe multiple-cyde 
compu,e,. Also. to avoid disturbing tile contems of ""gis,e .. RO through R1 
(execpt for RISA]). the use of regis.er R8 for .emporary storage is euenllal. The 
lRJ i"'tructi"" 'equires ,hree clock cycles for iI, ueeullon. To IOCCOInphSh the 
... me operation in the oingle-cyde compute •• equi.es lwo lO in.trUClions.. taking 
Iwo clock cycles. In the multiple-cycle compu'er, due 10 Iwo ins""""ion fetch"" 
and two data accesses.. ,. would require Iwo LO 'nsITUction ... but would tuke four 
clock cyctea. So the l RI instrue.io n ,ivcs An imp.ovement in uecution ,ime in 
the latter case , 



472 0 CHAI'TE'" 10 f COMPUTE'" DESIGN UASICS 

EXO 

1 EXI 

/' '--- 00100) 1 

""""" R8 <- MIRISAIl 

l-
-j ool OCMJI 

PC<-PC" I R[DR I<-MIRa] """"" To IF 

o FIG URE IO-Zl 
ASM Orart lor Re~"cr Indirect Instruc1iQn 

The final two instructio ns to be added are ~shi n TiSht muhiple" (SRM) and 
"shift left mulliple" (SLM). wilh opoode, (0)1101 and (0)1110. respectively. TheM! 
Iwo instruction, can share moot of the microinSlruction M!quence to be used. SRM 
s""cities that the contenlS of regiSler SA are to be shifted to the right by the num· 
ber of posit ions given by the three bits of the or field. wilh the result placed in 
register DR. The ASM chari fOf this o""ration (and for SLM) is given in Figure 10-
n. Register R9 stores (he number of bit positions remaining (0 be shifted, and (he 
shi ft ing;' performed in register R8. 

Initially, (he content. of R[SA] to be shi fted is placed in R8. As it is loaded 
into R8. it i, cheeked to see if it is 0 and shifting i~ not noeded. Likewise. the shift 
amounl being loaded into R9 i, checked to sec whether it is O. meaning that shifl_ 
ing is not needed. If either case is satisfied. the instruction execution;' complete. 
and the ASM How returns to ,tate INF. Otherwise. a righHhi f( operation is per· 
formed on the contents of register RS. R9 is decremented and tested to see 
whether il will be O. If R9" O. then the 'hift and decrement are rep"atcd . If R9 = O. 
then Ihe contents of RS ha"c been shif,.d b)' t~e nu mber of bit position, specified 
by or. so the result is transferred 10 RIDR] to complete the instruction execution. 
and the ASM How Td urns to state INF. 

If both the operand and the shift amount are nonzero. SRM. includ in g fetch. 
requires 2.,. + 4 clock C)'cles. where s is the number of position, shi fted. The range 
of clock C)'cles required . including the instruction fetch. is from 6 10 IS. If Ihe same 
operation were implemented by a program using (he risht ·shift instruction plus 
increment and branching, then 3s + 3 instruction. would be re<:juired giving 6s .. 6 
cycles. The improvement in Ihe required number of clock cycles is 4 . .. 2. SO 6to 30 
clock C)'cle. are saved in the mult ip1e..c;yclc computer for a nonzero operand and 
shift amount. Also. flve fewer memo,)' locations are required for storage of the 
SRM instruction. in contrast to Ihat for the progra m. 



./ <U)1l01 , 
""'~ 

lUI <- R/SAJ , 
0001110 

~, or 

, (0)1101 

J , R9 o-- IfOP ~ 

"- (o)lllO 

~, 
, 

IUI+-If R8 )-

OOOIlOI 
~, 

,.-/~'t-

'------:: 0001110 
RIj __ oI NS 

~ 
" 

0011101 , "'90-- R9_1 ~ J (1001110 

"{ lOX' 

I 

-"- PC <- PC + I 

,.-/ ----- OCKIl10l 

~ RjDRjo- lIS }-
(1001110 

To INF 

o FIGURE 111-22 
ASM ClIart roe Rigllt-Shift M~I"pI< [ .. ,rue'''''' 



o TABU: 10-15 
S ••• ~ Tobie r", IIh", ... ';on or ] .. ",,,,,,ions H.'- in~ Three or M .. re Cy<ie:> 

Inplll. 0uI5>LII' 
SI.I,," ----'----- "'U' ------------------

."'11 I M 
Opcode VCNZ L PS OX AX BX MB FS MO RW MM W 

£ XO 001(0)1 XXXX EXI '00 ,,,, ." XXXX , 0000 , , , , 
"" 001(0)1 XXXX 11'11' , " ." ''''' xm , 0000 , , , , 
'" (0)1101 XXXO EXI , 00 '''' ... "" 

, 0000 , , , , 
EXO (0)1101 XXXI INI' '" '''' ... "" 

, 
"'" 

, , , , 
[lXI (0)1101 XXXO EX2 '00 '00' "" "" 

, "00 , , , , 
EXI (0)1101 XXXI '" " " '00' "" "" 

, "00 , , , 
" EX2 (0)1101 XXXX '" " 00 '"" "" '"" " 1101 , , , 
" llXJ o:xJIIO I xxxn "" '00 '00' ,." mx , 0110 , , • " ,~ 0011101 "" '" " 00 '0" '00' "" 

, OlIO , , • " ex< 0011101 "" lNF " "' "" '''' "" 
, 0000 , , , , 

EXU 00111 10 UXO EXI " 00 '''' ,m XXXX , 0000 , , , , 
'" 00l1l1O 1111 INF " 00 '''' "" XXXX , 0000 , , , , 
EX I 00l1 11O 00" EX2 , "' '00' "" XXXX , "00 , , , , 
EX I (0)1110 00 ' lNF , "' '00' "" XXXX , "00 , , , , 
'" fUJI 110 00' EX) '00 '''' XXXX '''' , 1110 , , , , 
EXJ (0)1 \ III XXXO EX2 '00 '00' '"" xm , 0110 , , , , 
.oX) (0)\\10 XXXI "" '"' ,on '"" xxxx , OliO , , , , 
EX4 (0)1110 "" '" , " "" ''''' xxxx , 0000 , , , , 
• ,"' , ................... ......,... ..... 1'<; ... .., . , __ 

'" '" 
SRM 

SRM 

SRM 
SRM 
SRM 
SRM 

"M 
SJl.M 
,~ 

,~ 

SLM 

MM 
,~, 

,~, 

,~, 

,~, 

Com .... nll 

HS.--MIRISAj.---->EXI 
R[DR j .... MjR8) .... INI" 

HS.--II[SAI.Z ,->EX I 
I18+-RISAj,l":->INF' 
R'J<--- zf OP.Z , ... EXl 

~.fOP.Z''''IN~''' 

R8 .... " R8, ... EX3 
R9 .... R9 _ l,Z: .... EX2 
R9 .... R9 _ l,Z: ... EX4 

RjDRJ .... HlI. ... JNF* 

HS.--R[SA).Z , ... EXI 
I18+-RISA )2, ... INF· 
119 .... zf OP.2 : ... EX2 

119+-.t Or.Z:"'INF* 
R!l_ oJ I/8, ... EX3 
119 .... 119 - 1.2: ;->EXl 

119 .... R9-12: .... EX4 
RIDRI .... R8 .... IP 

c 

o , 



10-10 I Chap''' Suntrt>..). 0 475 

In the ASM chart in Figure 10-22. the .tate'S Il'F and EXO (and EX1) are the 
same as thOiSC ~ for the tWQ<yde instructiQn. in lhe ASM chart in Figure 10-20 
and fm the LRI instructi<>n in Figure 10-21. AJsc.. implementat;on of the left .hift 
muU;ple ope r.tion is show" in Figure 10-22 in which. b.sed On th e <>peode, the left 
shift Qf RS replaces the right shift of RS, As a consequence. the logic implemenling 
the stales used fm implementation Qf these two instructions can be shared . Fur_ 
Iller. the logic used for the sequencing of the states can be shared between Ihe 
SR M and SLM instruction implementations. 

The state lable specification in Table H).IS is Mri"ed by using Ihe ioform.­
tiQn fmm Ihe AS)'l chart in Figure 10-22. and Tahles 10-12 and 10-13. The codes 
arc derived fmm the register transfer and sequencing .ct;on de5Cribed in the com­
ments on the right in the same way that Table t 0·15 was derived. 

ImplementatiQn of the LRI and SRM instructiQn. illustrates Ihe Oexibility 
achieved using multiple-<:ycle controL Implementation of additional inS"'''''tion, is 
explQred in the problems at the end of the chapter. 

10- 10 CHAPTER SUMMARY 

In the first part of the chapter, lhe ""n'""pt of datapathS fOT information processing 
in digital .ystems was introduced. Among the major components of datapaths are 
regisler files. huses. arithmelictlogic units (ALUs). and shifters. The contml word 
pro"ides a means of organizing the control of the microopcratiQns perfOl1lled by 
the datapalh. These concepts were combined into the concept of a datapath, which 
SC"'e. as a ba,i. for c.ploring comp~le" in the remainder of the text, 

In the second part of the chapter. oontrol design for programmed systems 
was introduced by e.amining 1"'0 different implementatioos of basic control units 
for a simple oomputer architecture. We introduced the ooncept of instruction set 
architectures and defined instruction fonnats and <!pCrations fQr the simple com­
puter. The first implementation of Ihis oomputer is capable of uecuti"g any 
in<lructi<>n in a 'ingle dock cycle. Aside from having a program COunler and i.,. 
logic. the control unit Qf thi ~ """'pUler con!ist~ of a oombinational decoder circuit. 

AmQng the shmtoomings Qf the single--cyc1e oomputer are limilations Qn the 
complexity of the in,t ruction, that can be uecuted on il. problem~ with the inter· 
face 10 a single memmy. and the relatively low clock frequencies attained. To deal 
with Ihe fn>;1 tWQ of these shortcomings. we examined a multiple_cycle version of 
the simple oomputer in whicl1 a .ingle memory i. used and in.truction, are imple­
menled using tWQ distinct phases: instructiQI\ fetch and in'tructiQn execution. The 
rem.ining ir.sue of long dock C)'ck's is dealt with in Chapler 12 by introducing pipe­
lined datapaths and cOnim!. 

I. M",,"o. M, M. Com/""~, Engilluring: 1/,,,,/,,,"," Design. Englewood Cliff .. 
NJ: Prentice Hall , 1988. 

2.. MASO. M. M. C""'P"'~T Sy>fem ATChi,,,,,,uTe. 3rd Ed. Englewood Oiffs, NY; 
Prentice Hall . 1993. 



476 C CHAPTER III I CO.'UVI'ER UESIGN I<ASICS 

3. I'A lT1!RSON. D. A.. AND J. L. I · I ENN~S~Y. Compu", O'8Unl~IJ/"'" ollil D"lig"; 
11" IIlm/w" ,dSoflk"ar" /merfda, 2nd ed. San Francisco. CA: Mvrgan 
K~ufm~nn, 19'1S. 

4.. H E."N($$Y. J L.. AND D , A. PATIUISON. CompmuA",hilft"/ur,,:A Q,,~milO'w~ 
APPfQQCh. 2nd ed San Franci,.;o.CA: Morgan Kaufmann. 19% 

.t:::b. PROBLEMS 

~ 'The plus (+) indicalc, a mOJe ad~ana-d problem and the aSlcri\k (0) indicales a 
solulion i, aYai]able on lhe ComraniOfl Websilc for Ihe lexl. 

1(1..1. A dnlapath similar 10 111 c one in HguTc 10-1 h'" 128 regislers. 1-Iow many 
selection line, are needed for eaeh SCI of multiplexe" and for Ihe dl"<:ode r? 

10-2. · Oiven an S-bil ALU wllh OUlput5 f j Ihrough Fo and av.ilable carries C. 
and CJ • ~w the I~ cin:uil for gcncnlling Ihe >ignals for lhe foor ~alus 
bOIs N (5igo). Z (7ero). V (o,·erflow). and C (carry). 

10-3. ° lkoign an arilhmel;'" cII'tuil wl.h ''''0 ""I""'hon nri.bks S, .. 1(1 So and 1 .. "<) 

n-bll dala inpul> A and 8 . ·rnc circuit generaleo Ihe follo""'in8 eigln 
arithmetic operatIOn, in wn)unclion ,,·,lh carry C .. : 

0, • c ... 0 '- ' , , , F - A+I:I(.dd) l ' - A + 1:1 + 1 (,ublrac1 A - IJ) , , F _ A + I:I 1' _ A + I:I+1 ( ... btr .... R - A) , F _ A - I (deac .... al) F _ A'" 1 (InaO"","I) 

F - A (l·,Comt>I<menl) F - A + I (2·.Compkmenl) 

Draw I"" logic diagram for Ihe lwo least .iglllficanl bill or . he arithmetic 
CITCII;I, 

10 .... 1. ·D~lign a 4-bil arilhmelic circuit , wit h two .el~otion YI"iablct S , a nd So­
Ihal generates Ihe following aTllhllletic opera lion" .. '- ' . c~ .. I 

" F .. ...... I:I(odd) F - A .. I:I-+l 

" F _ ~ (Innofer) f" _ ~ .. I ( ....... mcnl ) 

" F _ I:II"'!!"I"'''''''"') F _ B + 1 (nep"') 

" F - A+8 f" - A+B +I(.u"' ...... ) 

Draw Ihe logic diagr.m for a single bit stage, 

11)-5. Inpull X, and Y; of each fuJi adder in an arilhm<:lic cirCUli hnvc digilallogic 
spedficd by 1M Boolean funellOns 



1'robI«n, 0 477 

",here 5 is a seleclion variabl", C .. is Ihe input carry. and A, and B; a.e input 
data for stage i. 

(a) Draw the logic diagram for the 4-bit circuit. using full adders and 
multiplexe"" 

(b ) Detennine the arithmetic operation performed for each of the four 
combination, 01 5 and C""OO. 01. 10. and II. 

lo.-.i. *Iksign one bit of a digital eirruit that "",fo. m< the four logic operations 
of exdusive-OR.exdusive-NOR. NOR. and NAND on register ope.andsA 
and B with the result 10 be loaded into registe' A. Use two selection 
variables. 

(a ) Using a Karnaugh map, design minimum logic for one typical stage. and 
show Ihe logic diagram. 

(b) Repeat (a). trying diffe.ent assignments of the select;on CQ<!eslO the 
four operations 10 see whethe. the logic lOT the stage can be simplified 
lunher. 

10-7. +Design an ALU that perionns Ihe 10Uo"'.-ing operations: 

A" 
A +B + I 
)j .. , 

Give the result of your de!lign as the logic diagram for a , ingle <lage of 1M: 
ALU You. design should ha"e only a single carry tine between stage. and 
th.ee selection bits. If you have access to logic simplification wltwa ••. 
apply it to the design to oblain redueed logic. 

1tJ---.8. *find the output Yof Ihe 4-bit barrel shifter in figure 10-9 for each of tM: 
lotto",;ng bit pallerns apptied to 5"s." D,. 01. V,. and Do' 

(a) OCOIOI 

(r) 101010 

(b ) 01001 I 

(d ) llllOO 

10-9. Specily 1M 16-bit control word Ih.t muSI be applied to Ihe dat.p.tb of 
Figure 10- t t to implement each of Ihe fottowing mk'noperation.: 

(a) ROf-Rl -'-R7 

(e) R6 ...... 1 R6 

(e) RI ..... R7+1 

(g) /{1 ..... R2$RJ 

(h) R7f-O 

(d) R3f-SJR4 

(f) R2f-R4 - Comtant in 

(h) R5f- Data in 



478 D CHAPTER 10 I COMP\fl'[Jl I)UIGN BASICS 

111-10. °Oi,'en the foUowing If>.b;! control words for Ihe dalapath of Figure 10-11. 
determine (a) the m;crooperalion thai i. cx,""uted and (b) Ihe change in the 
contolll$ of the register for each control word (assume lhal Ihe registers 
"rc ij·hit rellisters and that. before thc exec ution of a control word. they 
",nlain the value of their "umbe. (e.g. .• egisler R5 C(>ntains 05 in 
hend,""imal». Assume Ihat Co.manl ha. value 6 and Dala in has value I B. 
~h in Iw:xadecimal. 

(a ) IOII00 101 0 10000 I 

(h) 110 0]0 100 0 0101 0 I 

(0) 1011100000110001 

(d) 101 000000000000 I 

( .. )100 100000 1 ] 10] 0 I 

(f)OlI 000 000 0 0000 1 I 

III-H. Given the ""quence of 16·bil control words below for the dalapalh in 
Fig ure ]0-11 and the initial ASCII character codes in g.b't r~gil;lers, 
sim ul ate the dalap.th 10 delermine the alphanumerii: characters in the 
registers after the uecution of Ihe sequence. The .esult is a scrambled 
word: ,,·hal i. il? 

011 011 001 000100 I 
100 100001 0 1001 0 1 

101 101 001 0 10100 I 
001 001 CXXJ 0 1011 0 I 
001 001 OOJ 0 0))1 0 I 

110 110 001 00101 0 I 
1111110010010101 

0011110000000001 

oooooooo 
00'00000 
OI00JlOO 
01000111 

01010100 

01001 100 
01(((((11 

01001001 

111-12. A clalapalh has five major <l')mpI)IIcnl .. A Ihrough E. altacheJ in a loop from 
.ellsle. file 10 register file ';mlla. 10 Ihal in Fogure 10-17. The maximum delay 
01 each oflhecomponeots isA. 2 n.;8, I n" C.3 11$: D.4 ns:.nd E.4 ns, 

la) Whal ;slhe maximum clock frequency Ihal can be used for Ihe 
datapath? 

(bl The dalapath i, 10 be changed to on. thaI is pipelintd using Ihree 
Slages. How should Ihe compOnents be combined into stages.. and whal 
is lhe maximum dock frequency Ihat can be achie,"ed? 

(() Repeat (b) for four pipeline 5tages. 

IO-B. A C(>nlpuler IwI a J2·bit iMI'lIClion .. ord broken into ~dds as foltmr.-s: 
opoode. 6 bilS; 1"-.. regi.te, fields. 6 bits each: and one immediate 
operand/register field. 14 blls.. 

(.) Whal i< Ihe maximum number of ope.ations thai can hi: specified? 
(bl ~I o'" many Tegi,tc~ con be addte<S<'d? 
(t ) Whal i, the range of unsigJ1ed immediate opeT.nds Ihat ca n be 

provided? 



ProbI<m. 0 479 

(d) What is the range of signed immediate operands that can be provided. 
'Wuming that bit 13 i~ the sign bit? 

10-14. 'A digital computer has a memory unit ",ith " 32·l)it instruction and a 
register file ""th 32 ,..,gisters. The instruction ~t consist. of 110 diffe,..,nt 
operation .. There is only OM type of instruction format. with an opcode 
part. a regi.ter file addre ... and an immediate operand pan. Each 
instruction is stored in one word of memory_ 

(a) Ilow man)' bits are needed for the oprode part of the instruction? 

(bI llow many bits are left for the immediate part of the instruction? 

(e) [f the immediate operand is u~d as an unsigned address to memory, 
what is the maximwn number of words that can be addre$S{:d in 
memory? 

(d) What are the laTge.! and the smaUest algebraic value. of signed 2', 
coolplement binary numbers that can be accommodated as an 
immediate operand? 

10-13. A di git al comp ut eT has 32-bil instructions. There are a number of 
di fferem insuuction formats and th e number of bit. in each format u~d 
for opcod~ varies depending Qn the bits needed for other fields. [f . he 
first bit of the opeode is O. then there are 4 oprode bits. If the first bit of 
the opeode is I and the s«ond bit of the Qprode is O. then there aTe 6 
oprod. bits. [f th~ first bit of the opeode is 1 and the second bit of the 
upeode is 1. then there are 8 oprode bits. How many distinct opeodcs are 
availah[e fOT this computcr? 

10-16. The singie-cyc1e computer in Figure HI-15 ex~tes the he instruclions 
described by the regisl<:r transfers in the table that foIlo" '" 

(a) COml'lele the following table. giving the binary inslruction de.oodcr 
outputs fTom Figure 10· 16 during e>ecutiQn of each of thc instructions; 

In.UuelI<><>--Regi~" 

Trans'" ~ AA ~ ., " ., ~ .W ~ " 
R(O) _ R(7)IllR(3) 

R( II ... M(R(4)1 

R(2 1<----1/(5)+2 

RI 31 .... 1 R(6) 

if(R ((41- 0) 
PC+-PC+",PC 

else PC<-PC + I 



480 [] CHAPTER to f COMPIJTEIllJE5tGN lIAStCS 

(b) Complete the following table. giving the instruction in binary for the 
single<','cie wmputer that executes Ih~ regist~r Iransfer (if any field is 
n01 used. gi>-e it the value 0): 

Inllruction--f1"11llter rr.nl ler ""- " 
,. 58 0< Oper.nd 

1110] - ,,1117] 

lI{tl .... ,w{1I{6Jj 

RI2]<-RI5{ + 4 

RI]].-RI4]ffiR(]] 

1114) .... 1/( 21 - 111 11 

11)-17. Using Ihe information in the trulh table in Table lll-JO. >'crify that the 
design for lhe single-bit outputS in the decoder in Figure 1().16 is wrreCl 

(1)-18. Manually si mulate lhe single-q'cle wmpu lcr in Figure 10-15 for the 
following sequence of instruction .. assuming that each register inilially 
contains contents equal to its index (i.e., NO contains O. III wnlains L etc.): 

SUB RO. RI. R2 
SU I'! R). R4. R5 
SUB R6. R7. RO 
SUB RO. RO. RJ 
SUI'! RO. RD. R6 
ST R7. RO 
LD R7.R6 
ADl RO. R6.0 
ADI R3. R6.3 

Give (a) the binary v.lue of the inSlruction on the currcntline of the results 
a nd (h) the contents of any register changed by the in'truction. or the 
location and content, of any memory location ChMged by Ihe in st ruction 
(Kl the nut line of the rC!iults. The results are pasitioned in thi' fa,hion 
because the new v.lues do not appear in • regiSler Or memory. due to the 
e~ecution of an instruction. until .ftu a po5iti>'e clock edge has occurred. 

11)-19. Give an instruction for the single-<:ycle wmputcr that r"setS register R~ to 0 
and update, the Z and N status bits bas.;:d On (he value 0 transferred to R4. 
(H;n~ Try the uclusive·OR.) By ~xamining the detailed ALU logic. 
det~rmine the volues of the V and C statuS bils. 

11)-20. Lisl the wntrol l<.>gic ilat< table entries for Ihe multiple-qde compuler 
(see Table 10-15) that implement the following register transfer Sla lements­
Assume that in all caws the pres.;: nt state is BXO and the opcodc is 001(((11. 

la, R) .... RI-RZ. ----tEXI AssumeDR,.3.SA ~ I.SB _ 2 , 

(b) RS<-sr R8. ----t INf' Assume !)R _ 5. SB _ S 



'~oN<m' 0 481 

(~) if (N - 0) Ih~n (PC ->PC + sc. ->INF) d~ (PC-,>PC + L ->INF) 

(d) R6 ..... R6.C ..... O. ->INF A .. um~ DR .. SA .. 6. 

16-21. Manually simulate the SRM instruction in 1he multiplc-cyde computer f,,, 
ope rand 000 I 001 101111000 for OP ~ 6. 

II}-ZZ. A n~w inslrUClion i. to be <kfined for the multiple~'cle oomputer with 
opc<Jde 0010001 . The in,truction impl~mcnt< Ihe ,egi\ter lransfer 

RjI)RI .... RISBI +MIRISAII 

Find the ASM chart for implcm~nling Ihe instruction. assuming thaI 
0010001 is the opcode. Form the pan of the COfIlrol Slate table that 
implements 1his instruction. 

11)..23. Repeal Problem 1lJ..22 for the two inSlructions: Add and chec~ OY (AO Y), 
described by Ihe r~giSler transf~r 

R1DR1 .... R[SA[ + R[SB1, y'RS .... l. V:RS ..... O 

and BRanch on oVerfl ow (BRYI. described by the register transfer 

RS ..... RS. V:PC ..... PC + se AD, Y,PC ..... PC + 1 

Tlte opcodc for AOV is 1000101 and. for SRV. is 1000110. Note that 
regisler Rg is used as a ~statu' ~ register that Slores the overHow result Y for 
the previo us op'ration. All of lI\e "alues N. Z. C and V could be 'tored in 
R8 to give a complete slatuson Ihe prior arithmetic or logic oper.'ion, 

10--24. +A new instruction is to be defined for 1he muhiple~'de computer. The 
inSlruc1;On compa re5 Iwo un'ligned integers stored in regisler R(SA] and 
RISB]. If the integers are equaL then bit 0 of R(DR] i. set to I. If R(SA] i. 
grealer th an R(Sfl1. Ihen bil I of R(DRj is selto L Otherwise. bils 0 and 1 
are ho1h O. All miter bits of R( D R1 ha"e "alue O. Find 1M AS),! chart for 
implementing the in,truct;oo, assuming that 0010001 is the opc<Jde. Form 
1h( pan of the control SI",,, table that impkments Ihis in,lruction. 





INSTRUCTION SET 
ARCHITECTURE 

U
P to, this poirt1, much of what we have SlL>died has f<x:os.ed "" digital system 
desIO", wfth computer components used as .. xalT1!>les. In this chapt .... t!>9 
mill ..... ' slu<fied _ deci<ledly more o.peeialized, dealing with 

instruction set arch~f)CIur9 for genera~""rp0$8 compu\8tS. We wil ... amine the 
operat""" that the instrucOOos perlofm and focus particulafly on !>ow I!>e ope<llnOs 
are obtained an<l where the ,esults are stored. In "'" SItJdie$, we will """liaS! l'WO 
distinct classes of .. (Chiteci""": reduced l""trlJC~oo set comp!Jters (A ISCs) 800 
complex instruction ... l cornput"", (CISCo). We "';11 classify elementary instru;1'ons 
into th'N categories: data tranSler, data manipuiabOn, and program control. In each 
",the"" cat&gO""',"" will elaborate on typicalel""""""'lY insln.<:tions. 

In Ight '" this change in locus, the geoo",I-,,,,,pose parts 01 the ger>e<ic compu1er at 
It!e beginning 01 Chapter I, including the oomraI proce"",," o.riI (CPU) and the 
a<:<;<>mpanying IIoating.point un~ (FPU), am heaviIy"",,-ded, In OOdilion. sine<! a small 
general-p!Jrpo6<I m;c,DProcessor may be present for controljng keyboard and monito< 
functions. we "">0) lightly .\haded the ... oomf>O'"'nIS. A$ide from a<ldressin<;l used to 
access "",mory and 00 compooonts, lite concepts studied am less to otr.er a reas 
0/ the compuler.l""reasingly. flOweve<, small CPUS are appearing more and mom In 
"'" va corn.,o<>enl$, giving a changing pic1UM 01 the role 0/ geoorali>Urpose 
instruction se1 archi!eC\U(e5 in tM \JOOMOc computer. 

11 - 1 COMPUTER ARCHITECTURE CONCEPTS 

The binary language in wltich instructions are defined and stored in memory is 
referred 10 as machine language. A symbolic language Ihat ""pl"""s binary opcodes 
and addT<:l$CS with '}-mbolic names and that provide. other features helpful to the 
programmer i. referred to as IlSMltlbly "'ngWlge. The logical structure of computers i. 

o 483 



484 0 CIt,\PTER I I {INSTRUCTION SET ARCHITECTUR.I! 

normally described in assembly language refer~nce manual$. Such m"nunls ~xpl "in 
various internal clement. of the ooll1put~r that are of intereSI 10 lhe programme r, 
such as proce~r rcgisteH. The manua l~ list all hardware-implemented instructions, 
:s.po:dfy the symbolic name. and binary rode fonnat of the inslructions, and prm'ide a 
prcci5C definition of each instrlldion. In the past. this informalion repr=nt«l the 
Ilrrhit«"," of lhe computer. A compule, was com~ 01 iLS IU'Chitectul'<:. plus 8 

opecilioc 'mplm~nI/J1ion 01 that architecture.. lbe implem<cntation .... ~parated inlo 
t..-o pans; tM orpnizalion and lhe hard .. ~re.. lbe orgtJIU:1lIion consiliI' oImuaures 
sud! as dat.p.llhs, cootrol unit .. memories. and the buses Ihal interoonncd them. 
1/''''/M"(I1't ,de", to the logic. the electronk Ie<:hnologi .. employed. and the various 
ph)'!;k~1 design asl'""l, 01 the computer. As com puter designers pushed for higher 
and hIgher ~rIOfmance. and as irttl'<:asingly more 01 the compuler r~ided within a 
single Ie. the relationships amons "",hile<;ture, orga nization. a ll d hardware became 
.., intertwined that . more inlegrated viewpoint became 'M":C~lUy. According to this 
new ,·jewpoint. architecture as previouJly defined is more restricrivdy called iml""­
lion HI Ilrchil«'''''' (lSA). and thc lerm Ilrrhil«'''''' i. uiled 10 encompass the .. ·hoIe 
01 the rompu~er .• rttluding ins~ruction set architeo;tull). orpnillliion. and hardware. 
This unilied vie .. enable$ intelligent design I....o.-offs 10 be made Iha~ a~ apparent 
only in a lightly coupled design procea. ~ trade-offs ha,.., Ihe poI~nlial for pr0-

ducing bener computer de!.igno. In this chapler. ".., focus on in"ruction tet architec­
ture. In tile nc.t. we will look at two distinct instruction sct architectures. ""ith a rocu~ 
OIl implemen tation using two very differ~nt organizations. 

A computer usu,111y has a variety of inslnl(.1ions and mult iple in~tructio" lonnats. 
It is the functoon 01 the cootrol uni~ to decode cach instruction and provide the control 
signals needed to proce!l§ il. Simple eXII.mp~ ol i"'tructions Hnd instruction fonna" 
".., .. pre!oenlcd in Section 11).7. We .. il! now expand tim pre>entation by inlroducing 
typical Inslruction, found in commercial gcnmtl-PUIJlOM: computers. We .... ill also 
in'-c5lipte the ¥IIrious instruction formats thai ""'Y be encountered in a 1)".,..1 com­
piller ... ith an emphasis on the aoJdrcMin& 01 "P"rnnds. lbe formal of an instruction .. 
Ikl""'ed in • rc<1angular box s)mbol~ng the bits ol the binary in~truction. The bi .. an: 
divided into groups called ~Iik The fQllowing are 1)".,..1 fields found in instruction 
lonnalO: 

I. An ()I/C("/~ field. which sp"cificJ Ihe opera lion to be perforon ed. 

2_ An ~dd"~ fi~ld. whkh provide' cit"'" a memory addre .. or In address for 
selecting I prOCCS!;()f" register . 

.J. A mod~fir/d. which specifie. lhe way the address field il to be imerpn:ted. 

OIhcr op«ial llelds ue sometimes cmplO)'cd under ccn ain cirrommn<X$-for 
uample .• Held Iha~ gives the number 01 ~ilions to Shift in • shifl-I)l'" in"ruc· 
tion or.n Op"rand field in an immediate opent.nd in>!ruction. 

Basic Computer Operation Cycle 
In order to compre hend Ih~ various addressing oonccJlu to be pr<!Sented in th e 
next tWO sections. w~ need 10 understand the basic operation cycle 01 the 



computer, The control unit of a computer i, designed to ex~'Cute each instruction of 
a program in Ihe following seque""" of Sleps; 

1. Fetch the instruction from ",emory into a control r~gi'tcr. 

2. Decode the instruction, 
3. Locate the operand, used by the instruction. 

4. Fetch opcrJnds from memory (if necessary). 

S. Execute the operation in processor regi'te .... 
6. Sto,e the results in the proper place. 

7. Go back to .Iep Ito felch Ihe next iruaruclioa. 

A, explained in Section 10 .. 7. there is a regi'ler in the com puter called the pro­
gram oounk, (PC) that keeps track of the inSlructions in Ihe program ston:d in 
memory. The PC holds Ihe addre .. of t"" in.uuction 10 be executed next and is 
incremenled by one each lime a word is read from Ihe program in memory. llie 
decoding done in Step 2 determi"." the operalion to be performed and the address­
ing mooe of Ihe inslruction . The oper~nJs in Step 3 arc localed fr"'" the adJrc'SoSing 
mode and Ihe addre .. field of the instruction. The compuler execut", the instruction. 
'Io,ing Ihe result. and returns 10 Step 1 to felch the next inst'uction in sequence. 

Register Set 

The rq;;,ur sel consists of all regislers in Ihe CPU that are accessible 10 the pro­
gra mmer. "Il,ese registers arc I)'pica lly 'hose menlioned in aso;cmbty language pro­
gramming reference manuals. In the simple CPU. we have dcall wil h so far. the 
regisle, sel has consisled o f Ihe programmer_acre",i!>le porlion of the regi'ler me 
and Ihe Pc. The CPUs can atso conlain olher registe .... such as the instruclion reg­
ister. registers in the regisler me Ihal are acce>sible only 10 microprograms, and 
pipeline registe .... These regislers. however. are not directly aCC<!""ibte 10 Ihe pro· 
gram mer and. as a consequence. are nOi a pari of the regi'ler set. which represents 
'h~ 'tored infonnati<.>n in Ihc CPU Ihal inslruclion< ca n "ccc,s. ·llIu<. the regi,lcr 
set I1as a con,ide",bl" influence on inslruction set .rc~itecture. 

"The register set for a realislic CPU can become quile cornplex. ror I"" di'!COSSion 
in this chapter. we add Iwo registers to lhesel ".., ha,'c US<.."d 'h .... far: IhI:: proceuor $Ia_ 

'''S ffgisll'r (PSR) and thl:: SUlCk poutl~r (SP), "The processor status register contains flip-­
!lops Ihal arc set"'li"dy set by SlalUS vat""" c.N. V. and Z from Ihe ALU These stored 
status bilS are use<l to make <k:cision, that determine the program Ilow. based on ALU 
,,"Suit, or Ihe contents of regiMer<. The stored slatus bils in the p,oc<:ssor status regiSier 
are al'iO referred to '" the CtJildilw.. rod", or the flag>. Addilion.,t bils in Ihe PSR will 
be diSCU<SCd "hen ... -e ",,'er associaled conct]llS in this mapler. 

11-2 OPERAND ADDRESSING 

Consider an instruction soch as ADD, ",h>ch specifies the addition of two operands 
I<> protl uce a resulL Su"""", ,hallh" result oIlhc addi,i,>n i< Irealed as juS! am>l he, 
operand. Then the AD D iflStruction has Ihree operand<; the addend. Ihe augend. and 



486 0 CH ... PTER II J INSTfl-UCTION SET ... fl-CHIn;cnJRE 

Ihe result. An operand residing in memory is specified by its address. An operand 
reliding in a processor regis!er is spe<:ified by a regislcr addreM, ~ binary code of n 
bilS that specifies one of 2" registers in the register file. ThUs. a computer with 16 pro­
<:e>$Or regis1ers. say. Rfj lhrough R15. has in il& instruchons ooe 01" more regisler 
address field. of four bilS. The binary code 0101. fOl" example, designate. "'gister R5. 

Some operands. however. are T>OI explicilly addresoed. bec311'le their loca,iQn is 
specified either by the oprodc of the instruction ~ 1»' an addr= =igne<lto one of the 
other operands. In such a case. we say lhm the operand has an implied addr= If lhe 
address is implied. 1I1en tile", is no need for a memory ~ "'gister a.ddre:I:s f1ekl f~ the 
operand in the inslructiort On lhe other hand. if an operand has an address in lhe insITue­
tion. ihe1I we say tllat the operand is e~plicitly addrtW:d ~ lias an Upi;';;1 atMrm. 

'The num~r of operands explicitly addl"eSM'd for a data manipulation operation 
.uch as ADD is an imponam faclor in defining the irunruction set arclUleclure for a 
computer. An additional faclor is the number of such operaDds that can ~ explicitly 
addressed in memory by the instrUCIion. These two faetors are", imponanl in defin­
ing the nalure of inslructions Ihal they acl a meanS of diSlinguishing differcnt inSlruC' 
tion sct architectures. They also go"ern the length of compUier instructions. 

\1,'" begin to)' illustrating simple programs with differe nl num~rs of explicitly 
addressed """rands per instruction. Since each explicitly addre"",d operand has up 
10 thrU memory or regi.ler addresses per instruction. we label the inSITuctions as 
having Ihree. two. one, or ,ero addresses. Note that. of the thrtt operands needed 
[Of an instruction such as ADD. the addre"",s of all operand. not having an 
address in the instruction are implied. 

To illuslrale Ihe influence of the number of operand. on computer programs. 
we ,..ill evaluate the arilhmelic SIMement 

X - {A+B){C+D) 

using Ihree. IWO, one. and zero address in'tructions. We will a",ume Ihat the oper· 
ands are in memory addresses symboliud by the letters A, B. C. and D and must 
not be changed by the program. The result i. to be stored in memory al a localion 
wil h addre", X. Thc arilbmel;C operalions to be used in the instructions are addi . 
tion. subtraction. and mult iplication. denoled by ADD, SUB. and MUL respec­
lively Further. th ree oper."l1ions needed to Iransfer data during the evaluation are 
move. load. and Slore. denoted by MOV E. l.D. and ST. respectively. l.D moves an 
operand from me mOl)' 10 a register and ST from a regi.ter to memory. Depending 
on Ihe addresses pennitted. MOVE ean Iransfcr data ~Iwttn registers.. ~t"'een 

memOl)' locations. or from memory 10 regisler or register to memory. 

Three-Address Instructions 

A program that e"aluales X = (A + B)(C + Dj using Ibrc"·addr.,,, instr uction. is 
as folio", .. (a regiSI", transfer stalemenl is shown for eaeh instruclionj: 

AD D T[.A,B 

ADDTI. c'O 

MUL.X. T I.T2 

M[Tl] .... M[A] + M[B) 

M[Tl] ..... M[C) + MIDI 

MIX)t-MI Til X MI 72) 



t t _2 f Op< .. "d Add.r<o .... ll 0 487 

The symbol MIA ] denO!es the operand stored in memory at the address symbol ­
ized by A, The symbol x design.tes multiplic.tion. TI and T2 arc temporary stor­
age locations in memory. 

Thi!; same progr.m can use r<:giste,-,; as the temporary <1orage locat;ons: 

ADD Rl.A. B 

ADD R2.C.D 

MU l. X. R1. R2 

RI<--MIAI +M[B[ 

R2<--M[C)+MIDI 

M IXI <- Rl X R2 

Use of registe,-,; reduces the memory accesses require<! from nine 10 five. An advan­
tage of the three-addres.s format is that ;t results i~ short programs for evaluating 
e~pressions. A disadvantage is that t~ binary code<! instructions require more bits to 
specify three addresses, particularly if they are memO<}' .ddresses. 

TWo-Address Instructions 

For two-address instructions, each address field can again specify either a possible 
register o. a memory addr~ ... The fi,-,;t operand add.ess listed in the Wmbol;o 
instructi"" .Iso .. ",'eS as the implied address to which the result of the operation i~ 
tran<ferred, The program is as follows: 

MOVE T !.A 

ADDT1.B 

MOVE X. C 

ADDX,D 

M ULX.TI 

MITlI<--MIAI 

MITl) ... M[Tl) + MIB) 

MIX)<-MIC] 

M [X] ... M [X) Hf [D) 

MIXI<-MIX) x MITlI 

If a temporary storage register R I is availat>le. it rnn replace T1. Note that this program 
takes live instruction:< instead of the three used by the throe·3<\dress iostruction program. 

One-Address Instructlon$ 

To perform instrUCtion, such as AD D. a comp uter with one_address ;n\!ruclions 
uses an implied address- ,,,,ch a, a register called an ~cCllm,d"/Qr ACC~for 

obtai~ing One of the operands and ... the locat;on of the result. The program to 
evaluate the arithmetic statement i. a. follow" 

CD A ACC ... MIAI 

ADD " ACC<-- ACC+M(B) 

IT X MIX) <-ACC 

CD C A CC<---MICJ 
A DD 0 ACC .... ACCI M(D) 

MUl. X ACC .... ACCXM(X] 

IT X M(XI<---ACC 



488 0 CHIII'TER 11 f INSTRUCTION SIT "RCHITECTURE 

All operations are done Ixt,,'ecn the ACC regi'1cr and a mcm<Jry operand. In thi. 
case. the numlxr of instructions in the program has increa",d to seven and the 
memory aeee,,~, is a lso s<"'~n 

Zero-Address lostructioos 

'1i) p"rform an ADD in>nuction with lero "ddr~",ses, all Ihrec addresses in the 
instruction must Ix implied. A conventional way of achieving this goal i$ 10 USC a 
. lrUClUre referred to '" a Slack. which is a mc'Chani$m or structure that stores infor­
n>a!ion such lhallhe ilem slored l",t is lh~ first retrieved. Box"use of il:\" I"'1 in. first 
oU{" nat ure. a stack is also called a /(1)'1 ;".[0"/ ""/ (UFO) queue. The operation of a 
oompuler sl"ck is analogous to Ihal of a s,"ck of traY' or plates ill which Ihe la't lray 
placed on lop of the stack is the fi" t to Ix takcn off. Dala manipulalion opcrnlions 
.uch as ADD are performed on the slack.The "-ord at the topoflhe stack is referred 
10 as TOS.llw ,,'oro bciow il in Ill" Slack is rcfcIT~d to ""TOS_1 Wh~n On~ or more 
words arc used as operands for an operat ion. they are removed from the slack, The 
word below lhem then "'--'Comes the new TOS. Whcn a reS Ulting word is ptoduttd. it 
is placed on the stack and becomes the new TOS. ThUs, TOS and a few locations 
below it;lre the implied .ddrcsses for operonds. and TOS is the implied address for 
the result. r-or e"ample. the instruction lbat specifi<>s an addition is si mply 

ADD 

The resu lting register transfer ,clion is TOS<--- TOS -+ T05_1. Thu'<. there are no 
regislcn Or register addresses used for data manipulmion instructions in a stack 
architecture. Memory addre.sing. howelicr. is uS<."<.l in such archilcetures for data 
transfen. For instance. lhc inslruction 

PUSHX 

re,ults in TO!> +- MIX I . a (r"nslcr of the word in .ddress X in memory It) the lOp 
of the stack. A corresponding operation, 

"" X 
resu lts in MIXI<--- T05. a lransfcr of the entry at the top of the Slack to address X 
in memo')'. 

The program for eva l~ating Ihe $artll'l~ arit hmelic statement for the ,.~ro· 
address situation is as follows: 

PUSH A T05<---M IAI 

PUSH " T05<---M IBI 

ADD T05<--- r05 -t 1'OS_1 

PUSH C T05<---M IC] 

PUSH 0 T05<---MID) 

ADD T05<--- 1'05 -t T05_] 

MUL T05<---T05 X T05 _] 
eo, X M IXI<---T05 



Thi. program requires eight instruction'-<lne more Ihan Ihe num\>cr required by 
Ihc prcvious one_address program, Howe,·er. it uses addre<sed memory locations 
o r regist"r< Qnly fm PUSH and I'OP and not 10 execule data m"nipulalinn instruc­
tion, invQlving AD D and MUL 

Addressing Architectures 

The programs just presented change if the number of addresses 10 Ihe memory in 
the instructions is restricted or if the memory add'e'se, are restricted 10 specific 
in,ITU"lion~ These re,t ricti"ns, combined with the n"mher of operands addressed. 
deflnc addressing .rchitectures We can illustrate .uch ~rchitectures with the eva lu­
ati<.>n "f an arithmetic sta lement in a thrtt_"ddre.s .rchiteclure that has all of the 
accesses to memory. Such an addressing ",heme IS called a "'~"'''ry_lU·m''m'''y 
archi,,,Clu,,,, This architecture has only control ,egisters. such as the program 
counter in the CP U. All opera nd!; come d irectly from memory. and all results are 
sent directly to memory. The for mat. of data transfer and manipulation instruc­
tions ronl.in from one 10 three addre .... flclds. a ll of which are used for memory 
addresses. Por Ihe previ<.>u, example. three instruction, arc ",,,uired. but if an c~"a 
word must appear in the instructiOIl fQr "ach memory address. then up to four 
memory read. are required to fetch eaeh instruction. Including the fetching of 
operands and storing of results. the pr<>gram to perfmm the .dditiOIl would re<juire 
21 .CC<:=S 10 memory. If memory "c<:eSSCS ta ke more than one dock cycle. the 
coceulion time would he in cxc<:ss of 21 clock periOd" Tnus. eve n though thc 
instruction count is low. the execution time is polentially high. Al.o. providing Ih~ 
capability for all Qperatio,," to access nlemQfY increases the complexity of the con_ 
trol structures a~d may le~gthe~ the clock cycle. Th~s, thi. memory_to_memory 
architecture is typically not used i~ ~ew designs. 

I~ comrast. the three-address regur~No-regiJu, or loa(V'fore arrhifff'"re. 
which allo", .. o nly on" m"mory address and r<:,,,icl$ it< uSC 1(> load and store I)'I>I."S 
of i~,mlCtio n s. i. typical in m<Xler~ proccsso,," Such an archite<:ture requires a 
sizcab le regislcr file. since all data m,mip"lation inS1ruction, u"" register operands. 
With this architedurc. the pr<.>gr.m to naluate the >amrle 'rithm"ic 'tatcm"n! i. 
a. foIlQ"": 

W RI.A RI .... MIAI 

CD R2 . B R2o- MIHI 

ADD R3.Rl.R2 R3 .... RI + R2 

CD " .c Rl .... MIC! 

CD R2, D R2 .... M [DI 

ADD R I. RI. "' Rl .... RI + N.2 

MUL RJ.RI. '" RI .... RI)( R3 

" X.RI M/Xl .... HI 



490 0 CHAPTER 11 I INS11t.UCTlON S£T ARCHnu;ruRii 

Note Ihal Ihe inSiruelion count incrnscs 10 eight compared to Ihree for Ihe 
Ihree-addreiS, memory-to-memory ca>c. NOle also th, l Ill c operation, arc Ihe 
sa me as IhoJe for Ihe slack case, c~cept for Ihe need for register addresses. By 
using regislers, the number of acceSses 10 m~mory for instruc1ion s. addreiSes. and 
o[l<',ands Is reduced from 21to 18. If add rc=s can be obtained from rcg;stus 
in"ead of memory, "" disclIs>cd in Ihe next """liOll, this number Can be further 
reduced . 

VariltioM OIIlhe pre,ioust"'"O addr_ing archilectures ,ndud!: three-address 
instructions and t",-o-addr"",, inslructions ""th OIIe Or two of the addrcssn to ~m_ 

Ot)'.1lIe progra m kngth. and number of memory accesses tend to be intermediate 
between the pre~ious two architectures. An example of. two-addres& instruction 
with. single memory addre •• all owed i. 

ADD R1. A R l .... RI +M[A1 

This lype of .rchit"",ure is & ~iJrt"'''t",or1 architecture and remains prevalent 
alllong the current inotruction sct architcctures. primarily to provide compatibility 
with older soflware using & specilk &rchit""'urc. 

l be program ""lh one_addreu irutructiom illustrated prevIOusly ti"cs the 
.utg/~-a«u",ut"ror "rchir«rurt:. Since this a rch,tecture has no rc"Sler ~k, ito oingk 
add"", i1 for accessing memory. It requires 21 accesses to memory to evaluate the 
.. mple Arithmetic statement . In more comple. program!, signifl(:ant additional 
memory a=sscs would be needed for temporary storagc locnllo~ s in memory. 
Bc"<:a use of its large nu mber of memory accesses. this archilect ure is inefficient and, 
a. a consequence. is re"ricled 10 use in CPU. for simple. low-cQllt a])plicati""s that 
do 1101 require hit,h pcrforman.cc. 

The ;tCro-addreu instr""tion cuc usi ng a otack 1UppotU lbe concepl of a 
,'a<:k ,,/'Chi/re,..". Data manipuiallon instructions s""h as AD!) use no addreM, 
.i""" they arc performed on the top few clements of lhe slack, Single memory· 
addrcssload and >Iote operations. &1 sho",'n in the program 10 e"aluate the .. m­
pie .rll"melle st aloment, are u§cd for data transfer, Since mOIl of the >lack i. 
located in memory. one or mo,e hidden memory accesses may be required for 
each Slack o!>Cralion , As register-regisler snd load/store architecture' have made 
strong pc,fo,mance advancc'!. the hil!Jt frequency of memory accci$Cs in stack 
a.ehllccl urci ha, made thelll unattractive. However. recent stack architecture. 
have begun to borrow technologK'al advances from th"'" Other u chite<:tures. 
llIcse new architectures store sUMtantlal numbe~ of stact locations in the pro­
cessor chip and har>dle "an.re~ between these locations and the memory lran.­
parently, SIad:: architectures are p.anicularly useful for rapid 'nterpret~tion of 
high-Ic"cllanguage program. in ,,-hich thc intcfTllediate rode represenlation ust$ 

.tack O!Xfations. 
Slack architcctures arc campalible with" very efficient aPfl.oach 10 cxpn)._ 

sion processing ,.,hieh use. poslfi~ nOlaiion r&t her than the 1.:Witional infix nOla­
lion to whi ch we are accustomed. Th~ in tix expression 

(A+B)"C+(D " E) 



11 _2/~dAdd",,,ing 0 491 

o n GU RE lI · ' 
Graph for Example ofConve"ion from lnr", to 

'" 
wit h lhe opemlo" belween the operands can be written as postfix expression 

AB+ C x DEx + 

PoSlfi x notation is called re, 'erse Polish nOlatioll (RPN). named for Poli sh malhe­
maticia n Jan Lukasiewicl-. who proposed prefix ( the reverse of postfix) nOla tion. 

Conversion of (A + B) X C + (D x E) 10 RPN ca n be achieved graphically 
as shown in Figure 11·1- When the pa th shown traversing the graph passes a 
.ariable, that variable is entered im o the RP N expression, When the path 
passe. an ope ration for the final time , the ope ration is e nlered in lO th e RP N 
expression. 

It is "~ry easy to develop a program for an RPN expression. Whenevcr a 
"ariable is encountc red. it is pushed on to t h~ stack, Whenever an ope ration is 
oncountered, it i. execuled on the implicit address TOS, or addresses TOS and 
TOS_1. with Ihe re.ult pla~ed in the new TOS, The program for the e~amp le 
RPN exprc$sion is 

PUSH A 
PUSH B 
A DD 
PUS H C 
MUL 
PUS H D 
PUSH E 
MUL 
A DO 

The execution of the program is illuSlraled by the <uccessive slack states shown 
in Figure 11·2. A, an operand i. pushed on thc stack . the stack con tcn ts are 
pushed down one slack locatio n. When an operation i, performed. Iho operand 
in the TOS is popped off and tcmporarily ,tored in a register , The operal ion is 
applied to the stored operand and the new TOS operand, a nd the result 
replaces the TOS ope rand. 



492 0 CHAPTER I I I INSTRUcriON SET ARCHITECTUflE 

I(A . Bl x e l ~ 
~ 

DxE 
D (A + Il) X C 

(A + B)xC 

o nGUIlE 11-2 
Stack Activi'y for E.o<u,;on nf Exa mple S(a<k Pr<>grom 

11-3 ADDRESSING MODES 

The operalion fi eld of an instruction 'pecifi e, the operation to be pe rformed , 
This operation must be exccutcd On dal" stored in computer registers or memory 
wonk How the operands are selected during program execution is dependcnt on 
the addressing mode of the instruction. The addressing mode specifies a rule for 
interpreting or mod ifying the add ress field of the in \1ruction ""fore Ihc operand 
i. actually rdcr~nccd , The "ddr"" of 'he opera nd produced by the application of 
such a rule is called the effective ad,ire" .~ Comp uters use add ressing·mode (ech· 
niques to accommodate onc or both of the follow in g proYisions: 

I. To give programming ft c.ibility to the user via pointers to me mory. counters 
for loop control. indexing of data. and relocation of programs. 

2. To reduce Ihe numl>cr of bit, in Ihe address fields of tlie instructio n. 

The availab ility of variou. addre .. ing mode.< give~ the e~perienced progrommer 
the ability to write program, Iha t require fewer instruction .. The effect. however. 
on throug hput and execution time must I>c carefully weighed. For example, the 
presence of more complex addressing modes may actuall y result in tower lhTOugh. 
put and longer execution time. Abo. most machine-executable pTOgra ms are pro­
duc"d b)' compilers that often do not usc complex addressing modes elfecti"dy, 

In some computers. the addressing mod~ of the inslruction is specifi ed b)' a 
distinct binary code. Olher comp uters uSC a rommon bInary code that designat es 
bolh the operalion and Ihe addressing mode of the instruction. Instruct ions may I>c 
deFined with a variety of addressing modes. and ,omclimes two or more addr~ssin g 
modes are combined in one instruction . 

An example of an inSlruClion formal wilh a di,tinct addressing-mode field is 
shown in Figure 11 -3. The opcode specifies Ihe operation to t>e performed The 

o F1GUR.: 11 ·3 
[n" ruction Format ", ;,h Mode ~idd 



tt..J I A~ Modo. a 493 

mode field i~ used to locate the operands needed for the operation.1Mre mayor 
may not he an addreloS fi~1d in th~ instruction. If there is an address field. il may 
designate a memory address or a proccS50r register. Moreover. as di~uSMXl in 
thc previou. ~clion. the instruction may have more than one address field . In 
thaI case. each addTl"Ss field is a,§O("ialed ,..ilh il. o"'n particulnr addreosing 
moo" 

Implied Mode 

Although mor.t addressing mode:!! modify t1M: add,ess field o f t1M: inslructlon. Ihere 
is QTle mode Ihat needs no address field al aU: Ihc implied mode. In th~ mode. Ihe 
operand is specified implicitly in the definition of the oprodc. It is Ihe implied 
mode Ihat provides the location for Ihe tWQ·ope rand-plu.· result operations when 
fewer than norte Addresses are contained in the instruction. For example. the 
instruction "complement accum ulator" is an implied·mode instruction hecause the 
operand in the IO<Ctnnulator register i, implied in the definilion of tlte in'truction. 
In facl. any in5lruclion Ihal uses an accumulator without a seoond operand it an 
implied ·mode instruction. For example. data manipulation instruction1 in , .u""k 
computer. suc:h as ADO. are imphed_mode instructiom. since the: operand, are 
implied to be on top of Rack. 

Imme<iiata Mode 

In the immediate mode. the operand IS specific"<l in the inslruction itSC lf. In ot her 
words, an immedinte ·mode instruction hll$ nn operand field rather thn" an oddress 
field. The operand field ronlain, the actual operand to be u~d in conj unction with 
the operation specified in tbe instruc,ion. Immediate-mode in.truction, arc useful. 
for example. for InitialiZIng registers 10 a conl,anl ~.Iue. 

Register and Regisl&r-lndirect Modes 

Earlier . ...., mentioned thBtthe addre .. ~eld of the instruction may specify cith~r 
a memory location or. procc"",r regi.ter. When the address field specifies a pro­
"""",r r~8iSler. th e instruclion is .aid to be in the register mod~. In thIS mode. 
the operand. arc in regISters thaI re,ide within the processor of the eontpu,cr. 
The parlicular register i. selected from a regi~tcr addre .. field in thC instruction 
format. 

In lbe register·indir<:ct mode. lbe in,truct,oo.pccifiC"S a reg"te' in the proces· 
-'<If "·h...., COntent Ii>'"", the address of the operand in memory. In other ""Oflls. the 
sel~ed regiSler cont.jM 'he memory addrcss of U,... O!"'rand. rather than Ihe 
operand it .. lf. Retore using a reg;.ter-indire<:1 mode in"ruction. the provammer 
must ensure that the memory addrns i •• ..."ilabl.- in the procnsor regis,er. A refe, · 
once to the regISter i, then eQui"alcnl '0 specifying a memory addre». 1M advan· 
tage of r.gisle .... indiren mode i, th., 'he address field 01 the instruc,ion n •• " fewer 
bit' 10 se lect a regi.ter than would have been required 10 specify a memory add .... 
dircclly. 



4 9 4 0 CHAI'TER II I INSTRU<:-""IlON SET ARCHITECTURE 

A n a Uloincremcnt or autodecrement mode is simil .. to the register-indirect 
mode. except that the register is incremented or decremented after (or before) 
its address ,'alue is used to access memory. When the address stored in the regis_ 
ter refers to an array of data in memory. it i. convenient to increment the register 
after each access to the array. This can be achi~"cd by using a separate register_ 
increment instruction. However. because it is such a COmmon requirement , some 
computers incorporate an autoincrtment mode that increments the contcnt of 
the r~gister containing the ",Idress after the memor)' data are accessed. 

In the following instruction. an a utoincrement mode is used to add the ron­
stant value 3 to the elements of an array addrcs,;ed by register RI: 

A DD M[RI]<-MI RII + 3, RI ... HI + I 

RI is initiali,ed to the address of the fi"t cle ment in the array, Then the ADD 
instruction is repeated ly c~c<:uted until the addit ion of 3 to all clements of the 
ar,"y has occurred. The register tran,fcr statement accompanying the instruction 
shows the addition "f 3 to the memory location addr""sed by HI and the incre· 
menting of RI in preparation for thc next uecution of the ADD on the next ele· 
ment in the array. 

Direct Addressing Mode 

I" the direcl addressing mode. the address field of the instruction gives the address 
of the operand in memory in ~ data transfer or data ma nipulation instruction. An 
",ampic of a data transfer instruction i~ sh<.>wn in Figure 11-4. The instruction in 
memory co,,~i st~ of two words. Th. first. at address 250. ha, the ol>'-'odo for "load 
10 ACC" and a mode field specifying a direct address. The second word or the 

--lotode: 
ADRS: 
Ope.-.'ion: 

o FIGU IU: 11·4 

t...-l ACC 
0;.-«, add "" 
m 
ACC ... !U) 

, 
, 

M ,.~ 

o,-x I M~ 
ADRS 

SO" i n""""",n 

I 
Prov'"' 

~ , 
0 • • 

Example Demon>tratin& Dired Addre"ing for a I).tl Transfer InstrlK1ion 



instruction. at addr ... 25 1. oontains the address field. symbolized by AORS, and is 
equal to 500. The PC holds the address of the instruction. "hich is brought from 
memory u$ing two memory acee"e'S. Simuhancou$ly with or after the completion 
of the first access. the PC is incremented to 25 1. Then the seoond acce .. for ADRS 
occur5 and the PC is agaia incremented. The execution of (he instruction results in 
the operation 

ACC .... MIAORSl 

Since AORS - 500 and M[500] _ 800. the ACC receives the number 800. Aft"r the 
instruction is execU1ed. Ihe PC holds the number 252, which is the ad,lr." of the 
next instruction in the program, 

Now consider a branch-type inSl ructi on. as shown in figure 11-5. If the 
content, of ACC equal O. control branches 10 AORS; otherwise. the program 
cont inues with the next in struction in sequence. When ACC - 0, the branch to 
address SOO is accomplished by loadi ng the value of the address field AORS into 
the Pc. Control thcn continues with the instruction at addre", 500. Whcn 
ACC"" O. no branch occurs. and the Pc. which was incremented twice d uring th e 
fetch of the instruction. holds the address 302. the address of the aexl instruclion 
In sequence. 

Sometime.; Ihe value given in Ihe address held is the address of the operand. 
but sometimes it is ju,t an address from which the address of the operond is calcu­
lated, To differentiate among the ,'ariou, addressing ",ode~ it is useful to di"in­
gui,n ootween 'he addrco, part of the instruclion. as given in thc address field. and 
Ihe address used by the oontrol when executing the instruction. Recall Ihat we 
rder to the latter as the effective address. 

0,.-
M,~ 

ADR5: 
Opo:"'",,, 

o newt" 11 -S 

" "nch ;, Ace _ 0 
D;f<<lodd,,,, . 
~ 
PC+-~ ifACC · O 

1'C "' J02 j rACC ~ O 

, 

• elOOfY 

0,.- 1 M~ 
ADRS 

~'<" on' ''''''';oo 

I 
P,os.-.m 

I 
t m"',",''''''' 

I 
~,.m 

Example Dcrnon"'.'ing Di....,t AM'''''ng;n. B,aoch In'truct;on 



496 0 CHAI'TEI<. II I INSTRUCTION SET ARCHITEcruFlE 

Indirect Addressing Mode 

In (he indirect addressing mode. (he address field of (he instruction gi,'cs (he 
address a( which (he effective address is stored in memory. The control un it fetc hes 
the in>truct ion from m~mory and uses tht address part to ac<;css memory again in 
order (0 read (he effeCli,'e address. Consider the instruction "load to ACe- given 
in Figure 11-4. If the mooe .pe~ilie, an ind ire"'t address. the effective address is 
stored in M[ADRS] Since ADRS - 50) and MIADRS j - 800. the effecti,'e 
address is 800. This moans that the operand lo.dod into the ACC i, the one found 
in memory at addrcss 800 (nO! shown in the figure) 

Relative Addresaing Mode 

Some addr~ssin g modes require that the address field of the instruction be added 
to (he conte nt of a specified register in the CPU in order 10 evaluate the effecti"e 
addr~ss. Often. the register used is the Pc. In the relative addressing mode. the 
effective address is calculated as follows: 

Effe~ti"e address = AddreSl> p"rt of the instruction + Contents of PC 

The address part of the instruction is considered to be a signed number that can be 
tither positive or negati,·c. When this num ber is added to the contcn(s of the PC, 
the result produces an effc"'tive address whose position in memory is relat ivo to the 
address of th~ ne~t instruction in the program. 

To clarify this with an e~ample. let us assume that the PC contain, the num· 
ber 250 and the address p.rt of the instruction contains thc number SIXl. as in 
Fig ure 11 ·5. wit h the mode field spedf}'ing a relative addres~ The instruction .t 
location 250 is read from memory during the fetch phase of tne operation C)'de, 
and the PC is incrcmcnted by I to 251. Since (he in,(ruc(ion has a ""cond word, the 
cont rol unit reads the address field into a control register, and the PC i. incre ' 
me nted to 252. The computation of the dfecti,'~ address for the relative addre"ing 
mooe is 252 -t SIXl - 752. The result is that the operand associated with the instru~· 
tion is 5«) locatio", away. relative 10 the location of the nex t in struction. 

Relati,'e addressing is often used in branch-type i nstru~t ions when tho branch 
address i. in a location dose to lh~ instruction word . Rc1ati,'c addressing produce, 
more compact instruct ions, since the rclati,'e address can be spe~ified with fewer 
bits than are required to designate the entire memory address. 

Indexed Addressing Mode 

In the ind oxed addre,,;ng mode. the ~ontent of an index regi"t~r is addcd to (he 
addrcss part of the instruct,on to obtain the effective address, The index register 
may be a special CPU register or 'impl}' a regi'ter in • regi'ter file. We illustrate 
the uS<.' of indexed addressi ng by considering an array of data in memory. The 
address fi eld of the instruction defines the beginning .ddr"" of the array. Each 
operand in the arra~' is stored in memory relatIve to the beginning addres~ The dis­
tance between the beginning address and the address of the operand is tne index 



11-3 I Addor"ing Mod<. D 497 

value .tored in the register. Any operand in the array can be accessed with the 
5amC instruclion. provided (h.t (he index register contains the correct index value. 
"The index register can be incremented (0 facililate access 10 consecutive opeTands. 

Some computers ded icate one CPU register to function solely as an index 
register. This regiSlu is addressed implicit ly when an indu·mode instruction i. 
used. In computers with many processor registers. any CPU '""gisler can be used 35 
an index register. In such a case. the index regi".r to be used IllUst be specified 
with a regisler field wil hin the instruclion format. 

A specialiud variation of the index mode is the base-registeT mode. In this 
mode. the contents of a base register aTe added to the address pan of the instruc­
lion to oblain the effective address. Th is is similar to indexed addressing. excep! 
lhat the ,""gister is called" base regisler instead of an indu regi51er. ·Ibe diffeTence 
between the two mode5 is in the way tlley are used rather than in lhe way 
addresses are colllputed: an index register is a"uIlled to hold an index numbe r lhal 
is rdative to lhe address field of the in5truc(ion; a base regi5ter is usum ed to hold 
• base address. and the address field of the instruction gives a displacemenl relalive 
to lhe ba.., address. 

Summary of Addressing Modes 

In order to show thc differences alllong the various modes. we will im"C$tiga te the 
effecl of lhe addressing mode on the inslruClion shown in FiguTe I 1-6. "The in'lrUC­
lion in addr.,...,. 250 and 25 1 is "load to .'ICC: with the address field AO RS (or an 
opera nd NBR) equal 10 500. The PC has the numbeT 2.$0 for fetching this instTUC­
tion . The ront~nts of a PToce&SoT regi'tcr H I are 4((1. and thc .'ICC receives thc result 
after lhe instruction i. cxeculed. In the dire<:1 mode. the effe<:live address is 50). a nd 
lhe operand 10 be loaded inlo the ACC i$ 800. In the immediate modo.lhe operand 
50) is loaded imo the ACe. In the indirect modo. the effective addr= is ROO.and the 
operand is 300. In the retati,·c mode. the Cffeclive address is 500 + 252 _ 752. and 
the opeTand is 6(X). In the index mode. the effective address is 50) + 400 _ 9tXI. 
assu llling thai HI ;s the index register. In lne regiSler mode. llle operand is in HI. 
a nd 4((1 i, loaded into the .'ICC In the ,cgi$teT.indirecI mode. the elfe<:ti'·e address is 
the content. of RI. and the operand loaded into the .'ICC is 700. 

Thble 11 · 1 list' the value of the effeclive addTess and the operand loaded into 
the ACC for seven addre .. ing modes. n.c table al50 sh"", .. Ihe operation with a 
register tran sfer . tatement and a sYlllbolic convention for each addressing mode. 
LOA is lhe symbol for the load· to-accumulator opcode. In the direct mode. we use 
the sYlllbol AORS for the address pari of the inmucliOll. The f sYlllbol precede, 
lhe operand NBR in the immediate mode. The 'ymt,o,1 AORS enclosed in squa ,e 
brad ct. symbol izes a n indirect addTe.s, which 50me colllpile .. or asselllble .. des_ 
ignate Wilh the symbol @. The symbol S befo,"" the address rna"", lhe effective 
address rel.live 10 the l'C. An index-mode inslruction is recognized by the .Ylllbol 
of a regis ter placed in p.remheses after the address symbol. The regi"er mode is 
indicated by giving the name of lhe proces.sor regi"er following LOA. In the regis· 
ter·indirect mode. the name of the regi,ler thai hold. the effeclive address is 
enclosed in pare ntheses. 



498 0 C HAI'rER 11 I INSTRUCTION SH ARCHlTECIVRE 

Memory 

""'"" I M_ 

, "DRS.,. NOR _ .'iOO 

, No" ; .. ",,,,;00 

RI . _ 

~ 

m 

, m 

m 

~ 

o FIGURE 11-6 
Numer;';al E,ample for Addrc";n~ Mode. 

o TAIILE 11 · 1 
Sl'lI~ .. lk C .. n'·~ntion roo Add . ... ,i ng JI.Iod~, 

Ref_ to Figure 11 -11 

AdcI .... olng Symbolic RlOgi~" Ellectl~ Cont .... t. - convention !tan.le. oddre$1 .~ 

Direa WA ADR S ACC<-M(ADRSI '" "" Imm<d ,ate LDAINB R ACC<- NB R '" '"' Ind i.ect LDA IADRSI ACC <-M(M(ADRSIJ ." ;00 

Relat ive LDA$ADRS ACC<-M(ADRS + PC] m .., 
Index LDAADRS(R I) ACC<-M(ADRS + Rl] ~ "" Regi"", LDAll l ACC<-R l ." 
Rcgi"eT.indirfft LDA (R l ) A CC<-M(RI ] ." "" 



" .... I ,''''''''''- So< AtdtK....- C 499 

11_4 INSTRuCTIoN SET ARCHITECTURES 

Computeri provide a ""I of instructions to permil com pUla tional ta~kl to be car­
ried o ut. 11\c instruction sets of diff~rc nt compu ters d,ffer in MOvcra l way! from 
each other. For e~a mple. lhe binary code assigned 10 lhe opcode field varici widely 
for different compule ... Likewise:. although I sland8fd exists (ou Rderencc 7). 
the symbolic nnme Ii'"n 10 instruct,oM varices for differenl compUlu'S.ln compar· 
ison 10 these: minor differences. however. lhe", a", l\' iO major 'rpa of inSlrlK1.ion 
sel archilectures lhal diller markedly in lhe relalionship of hard...,.rc 10 ....... 1 .. ·8"': 

Compk" Uum'(IWn Jet (_rp,,'~n (CISQ;) prOVIde hardware ,upport for hi&h' 
le'·el language opemtlOns and have compan pr"V"ms: Rn/uuil /"'''""'i",, Sel 
CQmp"'e's (RI SCI) cmphasile si mple inl truChon~ and nexibilily Ih al. when com­
bined. provide higher throughput and f,,",er execUlion. These: two archil«turCI 
can he dist,ns uishcd by c,msidcring the properties thai cha raclcri/.!: their tnstruc· 
Uon sct .. 

A RISC "rclri'~c""e ha~ lhe following properti"': 

1. Memory ~'lQ are restrined H> l()jId a nd 1I0re instructiQn, and data 
man 'fI\ILat,oo in.tructions are reg,sler-to-re~er. 

2. Addre!oSinl modo are limiled in number. 
3. In.,ruction formal! . , e all of the .. me "nillh . 
... In.truclion. I'erform elemenlary """rallOn", 

The go.,' of " RiSe arch it eCl ure i. high IllfOUghp ut and f"" cxecullon. To 
achi eve thel-C gua ls. "cresses to memory .... hich typica lly ta ~e longer tht", uther 
ciementary operntions. are 1U be avo ided. exce pt for fetchin g instructions. A 
result of this view i, the need for a relalively luge registe r file. Beeau", of the 
fIXed in.trUClion lengl h. limited addressing mode ... ond eleme nt ary """ralion .. 
the control un,1 of a IUSC is comparat"·e ly •. Ilnple and i. typicaLLy hard .. ·,rcd. In 
addilion, lhe undcr!)'ing organil-"t,on ,s un, .. c .... Uy a ",pelined design as covered 
in Chapler 12. 

A purely e lse drclril«I"'~ h ... the rollo .. ·ing properties: 

I. Memory M'<'C"";" dor""tly available to moot type. or instructioos. 
2. Addrcs,i ng mode. arC . ubstanti.1 in number. 
J. Instruction fur",al' arc of diffcrenl length .. 
4.. Instructions perform both eicmentary and comple .. operati ons. 

TIoc goal of the C ISC udlitCC1 UK is 10 nlatch ~clo"ely the operations \Md in pr0-

gramming languages and to """ide m-.tructiom that fadUlale COIIlpKl prCIgra"'" and 
<:OnSeI"VC memory. In addition. efl"iciencies in pcrformaroo:e may ~t through 11 reduc­
lion in lhe number of instruction relChes from memory. OOIllpared wilh lhe: number of 
cltmentary operatiom po:ri<)l"r'J'lffi. lkuusc of t1>c h;gh memory ~bi"ty. lhe rep. 
ler files in a e lSC are "",aller lhon in a RISe Abo. becauoc of the complexity of the 
instruction< an<! the 'llriabi lity ollhe instruclioo, fonnat.s. microprogr. mnll.'ci rot1trol is 
often uoOO. In the 'l"""t for speed. the m""l>tlfogt"".lln mcd control in newer designs ;' 
likely to he controll ing a pipeli""d dat.palh. c lse in,tru<:tion$ arc con,·crted to a 



500 0 CHAPTER II I IN STRUCfION SET ARCHITEctURE 

sequence of RISC-like operaliOlls that are proce=d by Ihe RISCli ~e pipeline as dis­
cussed in detail in Chapter 12. 

Actual inslrucrion set architectures range between those which are purely 
RISe and those which are purely e lse. Nevenhcle, .. there is a basic sel of ele­
mentary ope"tion, thaI most computers indude among their instruction .. In thi s 
chapter. we "ill focus primarily on e lemenlary instrucrions thaI are included in 
both else and RISe inslruerion sels. Musl elemenlary computer instruction. can 
be classified into three major calegorics: (l) data transfer instructions. (2) data 
manipulation instruerio"" and (3) program control instructions. 

Data transfer instruction. cause transfer of data from one localion to 
another wilhout changing the binary information conlenl. Data manipulation 
inslruerions perform arilhmelic. logic. and shift operations. Program control 
instructions provide decision -making capabilities and change the path taken by 
the program when executed in Ihe com PUler, In addition to the basic in'truclion 
sel, a compuler may have other instructions that provide special operations for 
particular applications. 

11-5 DATA TRANSFER INSTRUCTIONS 

Data transfer instructions move data from one place in Ihe computer to another 
wit hout chnging the data. Typical transfers are between memory and process.or 
regiSlers.. between processor regisl.rs and input and output registers. and among 
the processor registers themselves. 

Table 11-2 give, a lisl of eight typical dala transf .. inSlruclion$ used in many 
computers. Accompanying each instruction is a mnemonic symbol. the asse mbly 
language abbreviation recommended by an IEEE standard (Reference 6). Differ­
en! computers.. however. may use different mnemoniC!< for the same instruerion 
Mme, The load inmuclion is u,ed to designate a transfer from memory to a pro­
cessor register. The store instruction designates a transfer from a process.or register 
imo a memoI)' word , The move instruction is used in computers with multiple pro­
cessor registers to designate a transfer from one register to another, It is als.o used 
for data transfer between registers and memory and \>ctween two memory word~ 

o TARLE 0-2 
Typical Dal.fun, r.r h.stmctloru; 

,- "''''''''onio; 

~" CO 
Store " .\1o,'e MOVE 
Exchange XCH 

~" PUSH 

"'" "" Input <N 
Outpu t OU' 



The excha nge instruction exchanges inlorntnlion Oetw'cen two registers. belween a 
register and a memory word. or between lwo memory word~ The push and pop 
instructions arc for SHIck oper.tions d=ribed nc~t. 

Stack Instructions 

The stad architecture inuoduced earlie r possesses features thai facililale a num­
ber of data-processing and rontrol ta,ks, A slack is used in some ciectronic calcu­
lators and computers lor Ihc evaluation of arithmetic expre ssi"n~ Uolortun"tely. 
because of the negati,·c effects on perform.nce of having the stack reside prima. 
rily in memory. a .tack in a computer typically handle. only stale in form"tion 
rdaled 10 procedure calls and returns an d interrupts. a~ explaine(l in ~ction II-/! 
and ~ctiOfl 11·9. 

The stack instruction. push and pop transfer data belw~n a memory ~tack 
aad a processor regi.ter Or memory. The p".h operation place. a IlcW item onto the 
top of the Slack . The IWI! operalion removes one item from the $tack so that the 
stack pops up. However. nothing is really physic"lIy pushed or popped in the stack. 
Rather. the memory slaek is ess.entially " ponion 01 a memory address sp.ace 
a«eloSCd by an address lhal i. alway, incremenled or de<Tcmenl,d before or after 
the memory access. The register that holds the address for the .tack i. cal led a 
J/ild p(}inl~r (SP) be<:ause ilS value always points lo TOS. the il~m at the top of the 
stack. Push and pop operations ~re implemented by <k.'Crcmcming o r incrementing 
lhe Slack poimer. 

Figure I 1_7 ShO,",1 a portion of a memory organized as a stack th~t groW's fmrn 
highcr 10 lowcr addresses. Thc stack poimcr. Sr. holds the binary address of the item 
that;s ~urren l ly on lop of the stack. Three items are presently siored in the slack,A. 
H. and C. in consecutive addreS<c!i 103. 102. and 101 . resp«li,·cly. Item Cis on top of 
the slock.so SPoomaim 101. To remove the top item.tbe stack i. popped by reading 
the item at address 101 and ir.o::rementing S/~ Item H is nOW on topof the stock. sino: 

I SP _ t01 

I "' I 

o FIGU RE II·' 
Momory Slack 

, 
, 00 

, , 
"' 

" , 
, , 

, • 



S02 0 CHAI'TEII. tt I tNSTII.UCftON SET AII.CHtTECTUII.E 

SPconlains address 102. To insen a new item, the stack is pu:illed by first decrcm~ nt _ 

iog SP and then writ ing the new item on top of the 'tack. Note tbat item C bas been 
read out of the <lad, bUl i, nol physically remm'ed from it. This docs nol malter a, 
far a, the stack operation is concerned. bc<:ause when the ' tack is pushed, a new ite m 
is written over it regard Ie" of what was there before. 

We assu me that the items in the ,tllCk communicate with a data register Rt or a 
memory location X. A new item is placed on to the stack with the push operation as 
follo,,~; 

Sp ..... Sp - 1 

MISP lo-R l 

The stack pointer is decremented SO lhat it points at the address of the next word. 
A memory wrile microoperation inserts the word from RI onto the top of the 
stack. Note that Sf' holds the addre .. of the top of the stack and that M[S?] 
denotes the memory word specified by the address presently in SP. An item is 
del eted from thc stack with a pop operation ", follows' 

RI .... MISpJ 

Sf'o-SP + l 

The top item is read from the stack into R I . The stack pointer is then incremen ted 
to poi nt .t the next item in the slack. ,,'hic h is Ihc new lop of the stack. 

The two mierooperati<J ns nceded for either the push or the pop oper.tion arc 
an acces, to memory through Sf' and an update of SP. Which microoperation is 
done firs t. and whclher Sf' i, updated by incrementing or decreme nt ing it , dopend, 
on the orga ni zation of the stack. In Fig ure 11-7,the 'tack grows by decreasing the 
memory .ddresj;, By contrast, a slack may be constructed to grow by increasing the 
memory add,e,s. In such a case. 51' is incremented for the pu,h operation and dec_ 
remented for the pop operation. A 'tack may also be constructed so that SP points 
to the next empty location alxwe lhc top of the stack. In that case. the scQ uence of 
microopcra tio n, must be interchanged. 

A stack poin1er is loaded with an initial value, which must be the bol1om 
addre .. of an assigned stack in memory. From ttoen On. Sf' is automatically decre ­
mented or incremented with e"cry push or pop operation . The a<.ivantage of a 
memory stack i, that the processor can refer to it without having to specify an 
address. sinee the addre .. is always available and automatically updated in the 
stack pointer. 

The final pair of data tr""sfer instructions. inp ut and oulput, depend on tne 
type of input-<>utput used. a8 described next. 

Independent versus Memory-Mapped 110 

Input and output (110) instructions tra nsfer data between processor r~giste .. and 
in pul and output d~vices. These instruct ions are similar to load and store instruc_ 
tions. except that the transfers are to and from external rcgi'tcrs inslead of 



merno<y words. The computer .. co ... idc red H) have a ""rtain number of input Md 
output ports. ,,·,th one or more ports do!d,ca!ed to communicatio n with a Spc<:itk 
inpu t or OUlput device. A PO" is typica lly a register with input andlor o utput lines 
&113Ched to Ibe device. The particular pon i, chO$Cn by an addr,,", in " milli ner 
.imilar (0 the way ~n addr"" selects a word in memory. Input and OUtput imuuc­
tions indude an address field in their format. fOT spe.:ifying the particular pon 
..,Iec!ed for the tunsfe. of data. 

f'or( add.esse. a.e ,...igned ill t,.-o " "11)'1. III the uulelH!I1denlllQ sy.<l~m. the 
addreg ranges Iwgned \0 mcrno<y and I/O ports a.e independent from each 
other. 1 "hc: computer has distinct inpul and output ilt§l..uctions, a, h,led in 
Table 11 ·2. coolainillg a "'parate add.eM Held that .. inte,preted by the cootrol 
and uICd to ",,"'CI a parl;"ular 110 porI. Ind<:pendcnt tlO add rC$Sing isoIalca 
memory and [/0 selcclion. so thm the memory add.eSll .ange is no' .""..:ted by 
the port add •• ," a,!igll mc nt. For Ihi. 'e.",". the melhod i. also referred 10 ". an 
iso/aled liO .''''Jill,,,,!!i,,,,. 

In contra,tlO indepe ndent 110. "'t",or,..",apf"'d liO. assign' • subrange of 
Ihe memory addresses for addressing 110 ports, There are nO sepa.ale addrCSSC!; 
for handling input and output I.ansfe rs. "IK'C 110 porlS arc treated II memory 
1o<31101l, .n one common addrns range. Each I/O port is regarded u a memory 
Iocation.limilar to I memory .... o.d. Com!'ute .. that adopt the me:mo'Y 'mapl"'d 
scheme: hive no d"I,ncI ,nput or OUIPUI in,lruct,ons. I;oeea us.e lhe ... me "Utruc· 
lions are used for manipUlaling bolh memory a nd 110 d.I~ . for example. the 
load and Slore in'lruction' used for memory transfe r are also used for 110 Ira n,· 
fe r. provided Ih"t Ihe addre" associaled with Ihe in!lruclio n i, anigned to on [/0 
port ;l nd not to I memory word . The advamage of this scho lne i. ,l,e .implidty 
thaI .e.uI15 ,..ilh the san'" set of in.l.utI10". ,;erving for bolh n.emory and [10 
~~ 

11-6 DAT A MANIPUlATION I NSTRUCTIONS 

Data manipul~tion in.<tructions perform Of""ralions on data and provide the """,. 
pu,alionul cupab,li,ic. of the COmpuler. In I typical com pUlet. dala manipul.tion 
inslruclion, ute u$u~lIy divided into th r~e 11;.sic t)'I"''' 

I. Aril hme'ic ;n!!ructions. 
1. Logklol and bit manipulat ion in>lruClions. 

3. Shift in.lructions. 

A lisl of denlent l ry da ta manipula"o n instruel ion. looh "cry much like !he 
list of min'oopcral ,on. gi"en in Chapte r 10. ~Io,..ever. all in.tructlon i, t)'p'cally 
pr<:o«ucd by e ~«u!ing I s~q"~nu of one Of mo.e microinstrUClions, A micro­
operalion i. an elementa.y operation u«uted by the hardware or the com· 
PUlet under Ihe conlro l of II.e conl.ol unit. In conl r .. l. an instruclion may 
invol .. " several elementa ry operalion, that fetch the i"&1'UCtI0'1. bring the 
o perands front app ropria te p.occ .. o. ,clI ,sle.s. and store the re.uh in 'he 'IX": ' 
ifted localion. 



504 0 CHAPTER 11 I INSTR.ucrroN SET ARCHITECTVIUl 

Arithmetic Instructions 
Tile four basic arilhmelic instruclion, are addilion, subtracl;on. muhiplication, and 
division. Masl computers prO"ide inSlruct;on, for all four operations. Some small 
computc~ howe"er, have only addition and sublraclion in'tructions; on suc~ COm· 
pUler:s.. nmlliplicalion and divi.;on must be carried out by means of programs. The 
four basic arilhmelk operalions are su(ficicnl for formUlating solutions to a~y 
numericat pn>btcm when they are used ,..jlh numerical analysis merhods. 

A lisl of typical arithmetic inSiruclions is gi"en in 1"btc 11 · 3. The increment 
inSIrucli0l1 add. one 10 the va lue slored in a regisler or memory word. A common 
eharaclerislic of lhe increment Operalion. when e~ecuted on a compuler word. is 
lh"t a binary number of all 1 's produces a result of all O's when incremcnted. The 
decrement instruction subtracts On e from a value slOred in " regisler or memory 
word, When decremented, a number of all O's producc, a numt>cr of a ll l's. 

The add .• ubtraci. multiply. and divide i~structions may be available for dif· 
ferent l)'peS of dats. The data type a:;,s~mcd 10 be in processor registers during Ihe 
e~ecutio~ of these arilhmelic opera lions is included in Ihe definition of the OpCO(k 

An arilhmetic instruction may specif)' unsigned or Signed integers. bin"r}, or deci· 
mal ",'mber:s.. or Hoating·point dala. The arithmelic operation, with binary integer.! 
were presented in Chapter I and cn~pter 5. The Homing·point representation is 
used for scicnlific calculalions and is presenled in the next :\<."<;tion. 

The numt>cr "f bit. in .n)' ccgister is finile: lherefore, Ihe resuhs of arithmelic 
operation. are of finile precision, Most compute,., provide .""cial in"tructions 10 

facil it ate double· precision ~rilh mctic, A carry Hip·flop is used to slOre the carry 
from an operation, The inslruclion "add with can)''" pcrfotms the addition with 
two opcronds ph,. lhc value of Ihe carry from the previous computation, Similarly, 
lhe "subtract with borrow'" instruction subtracts two operand! and a borrow lhat 
may h'",e r(suUed from a pr.,·ious operation, The sublracl reve ... e in\lr uclion 
re,·.rses the order of the operands- pcrfotmin g Il - A instcad of A - 8. The negate 
inSlruction performs the 2', complement of a signed num lICr.lVhich i$ eq ui valenl to 
muhiplying the numlxr by - \. 

o TABU: 11·3 
TIpi ... 1 Arith ,neli< Inmu<1ion, 

,,~ Mnemonic 

Increment '" IkCfomen' DEC 

'" ADD 
Subtract 'U' 
Multiply MUC 
Divide m, 
Add wi,h caIT)" ADDe 
Subtra<t lVith borrow SUBB 
Suhtract re".roe SUBR 
Nogato t'iEG 



logical and Bit Manipulation Instructions 

Logic,.' inSlrUClions perform bin a!)' oper.uiO<lS on words slored in registers Or 
memory words. They are useful for manipulaling individual bils or a group of bils 
lhal represent binary-<:Oded informalion . Logical inslruclions consider each bit of 
the operand separalely and ueat it as a Boolean vari~ble. By propor application of 
the logical inSlructions.. il is p<l'<ible to change bit "aluf'S, to dcar a group orbits, Or 
to insen lIew bit values into operands slOred in registers or m~mory. 

Some Iypical logical and bit manipul31ion in!lruclions are listed in Table 11 -4. 
The clear instruction cauSC$ Ihe specific op,"and 10 be rcpl;lC~d by O's. The sel 
inlUlloCtioll causes Ihe operand 10 be replaced by I·s. The complemenl instruclioo 
in,·ert •• 11 the bits of the operand. The AND. OR. ~nd XOR ;n.auctions produce 
Ihe corresponding logical operations on individual bils of Ihe operand. Allhough 
logic..1 instructions perform Boolean operations. when used on "'ords they oflen 
are viewed as performing bit manipulation operalions. The", arC Ihree bil m,mipu_ 
lation oper31ions possible: A selected bil can be cle.red 10 O. sel to I. or comple­
menled. The Ihree logieal in"ruclions a", usually applied to do ju.1 Iha!. 

The ,\ND ;nSlruction is used 10 clear a bil or a sele<;led group of bill of an 
operand 10 O. For any Boolean variable X. Ihe ",lalionship X · 0 • 0 diclate, Ihat 
a binary variable ANOcd wilh a 0 produces a 0, and similarly. 'he rclationship 
X' I • X diclales Ih.llh" variable does nol change when ANDed with a I. There­
fore. the AND instruction is used 10 select;v~ly dea, bits of an operand by AND_ 
ing Ihe operand ";Ih a wnrd thai has O's in the bil rosilions Ih.1 musl be cl"a red 
and I', in Ihe bil posilions Ihal must remain tile same. The AND inslruction is also 
call ed a mll,k ~ausc, by inserling O's, it masks a sciccled portion "f an operand. 
AN D is also somelimes referred to"' a bit c/~"r inslruction. 

'11", OR inslruction i< used to SCI a bil or a sd"'lcd group ot bits ol'an operand to L 
R>r any BcoIcan >'llriable X. the relationship X + I ~ 1 dictales lhal a binary variable 
ORcd wilh a I prod""", a I: similarly. II>t relations,h ip X + 0 _ X ilic:tales ,hal lhe variable 
does IIO! change when ORc>J ,,;th a O. Tl>ercforc. the OR instruction can be used 10 selec­
tively sel bils of an operand by ORing lhe operand "'-;111 a word with ] 's in 11>t bil posilions 
thaI must he sel 10 1 The OR instruction is SQnJClirnes called a hi'..,. instruction. 

o TAOU: 11·4 
T) p"",1 L.-.gi<ltl ood Oit Manlpul>oti"n I.st ruot;" n, - Mnemonle 

~" a, 

"' m 
Complement NOT 
AND AND 
0' 0' 
IOx<lu,ive-OR XO' 
Cleo, carry CLRC 
Sel carry me 
Compkment cany COMC 



506 0 CI-IAI'TER II , INSTRUCTION SET ARCHITECTUII£ 

The XOR inslruelion is used 10 selectively oome.lemem biu of an operand. 
This is because of the Boo lean relalionships X e l = X a nd xeo - X. A binary 
va. iable is romplenl~n!ed wh~n XO Red wilh a I. bUI <Ioe$ nol change value wilen 
XORed wilh a O. The XOR inslruelion is somelim.,. called a bit rompl~m~m 
inSlruclion. 

Olhe. bil nla nipulation inslrUClions included in Table 11-4 clear. ""I. o. rom­
plCnl"nl Ihc carry bit Addiliona! instructi<ms dear. SCI. or oompkmenl Olh~r Sla­
Ius bits o. flag bil. in a similar manne •. 

Shift Instructions 

imlr""lions 10 shilt Ihe contenl of an operand are provided in several ,·arieties. 
Shifts are operations in which the bilS of the ope.and a.e nlo"ed to Ihe left or 10 

Ille .ight The incoming bil shifted in allhc end of the won l delCTmines Ihe t)'pe of 
shifl. instead of using jusl a 0, as for ,I and Sf in Chapler 10. here we add further 
possibi lities. The shift instructions may specify either 10gic"1 shifts. arilhmelic shi ft" 
or rotatc-Iype operalion" 

Table 11·5 li,t. four Iype. of shift inmuctions. The logical . hifl ins.:.ts 0 inlO 
Ihe incoming bit posilion afler the shift Arithmetic shifts conform to the Tules for 
shifting t,,"O's complement signed numbers. The a.ithmetic shift .ight in'truclion 
presef>'es Ihe sign bit in lhc IdtmOO;1 position . '''" "alue of th~ sign bil is shifted to 
Ihe righl together with lhe rest of the numbe •. but Ihe sign bit ilself remains 
unchanged. The arilhmcl ic shift kft instrUcl ion inserts 0 into thc incoming hil in 
lhe rightmost position and i, idem ical to the logical shifl left instruelion. The two 
in.tructions may diffe •. howeve •• in Ihat an a.ilhmelic shift leh may sel Ihe ",'CT­
now SlalU, bit V. while a logical sh,fl left dO<cs not affeel V. 

The rolalc instruclions p.od""" a ci.cula. shift: lhe va lues shihed oul of Ihc 
oUlgoing bit of thC wo.d arC not lost, as in a logical shifl. bul are rolaled back inlo 
the incoming bit. The rotale-with-<:aTry instructions l.eallM carry bil as an exten­
, ion of Ihe regisler whose word is !xing rOlaled. 'Ilm$. a rotate left with carry tran.­
fers Ihc carry bit into th. incoming bit in lhe .ightmost bit position of lhe .egi'ler. 
lransfers th e "utgoing bit from Ihe IeftmOSI bit "f the regi'ter in lO the carry. and 

o TA 8LE I1 ·S 
Tl P"",J Shift I""noeli""" 

L.ogk.1 shifi righl 
!.ogi<al 'hifl ldl 
Arilh"",'k "'ilt ri"" 
Arilhmclic,hifllcft 
Rl)1ale righl 
Rot.le kfl 
Rl)1ate ';ghl ""h C3fT}' 
Rolale kfl wilh gny 

SHR 
SHL 
SI-I RA 

'H~ 

'0' '0' 
RORC 
ROLC 



shih. the ~nl irc ,..,gister to Ihe l~ft. Som~ comp utcrs have a multiple-field format 
for the shift instruction. O ne field contains the opcodc. and the ot hers specify the 
typc of shill and the number of posit;'m. that an opcrnnd '$ to be shiflw. A shifl 
inStruct ion m"y include thc f<.>lIo,,·ing fh'c fi~lds' 

0' REG TYPE RL COUNT 

01' i. the opcode field for specifying a .hift. and REG i. a register "ddr~ that 
sf"'cifies the location of the op<'rand. TYPE is a 2·bit field Ihat specifi.-s OM of the 
four tlpes of shifts (logica]. arit hmetic. rotate. and rotate " ;Ih carry). while RL ill It 
I-bil field that specifies " 'hether a shift is to the righ' Or the lefl. COUI\'T is a k·ml 
k id that sp<.."<,ifies sh ifts of up 10 2' - I positions.. """>th such a format. it is pos.sible 
to specify the Iype of shift. the direction of the shift. and the number of posiTion, to 
be ' hif,ed. all in on<: instruction . 

11_7 FLOATING_POINT COMPUTATIONS 

In many scienTific calculaT ions, the ra nge of numbers is "ery large. In "COmput Cf. 
I h~ way 10 •• press such numbers i. in Hooling.point notalion. The Hooting-point 
number has t,.-o pans, one conta ining the sign of the number and It fractio" (some· 
tin,.-s ta iled a "'''ntis''') and Ihe othcr d""ignaling Ihe position of the radi~ point in 
the number and called the u{XJ"ellt. ror eumplc. lite decimal number +6132.189 
is represented in float ing·point notation as 

,,­
+ 6132789 

The value o f the exponent indicate. that the actual posi lion of 'he decim.1 
(>Oint is four posilions to the right of th~ indicated decimal (>Oim in the fraclion . 
Th is re presentation is eq uiva len l 1<, the scie ntific nota,ion + .6i327R9 x 10'" 
Decimal Hoating ·point numbers are interpreted a5 representing a numNr in 
the form 

where Fis Ihe fraction and E the expon~nt . Only the fraction and the exponent are 
physically represented in computer registcrs; radix 10 and the decimal poinl of the 
fraction are a .... umcd and are not sho"'n uplicitly. A floating-point biMry numNr 
is represented in a Similar ma nnCr. uccpt Ihal it uses radi% 2 for the uponent. For 
example. the binary n umber +]001.11 i. represented wi th an g.t>it fraction and (j.. 
bit exponent as 

F" • ..,I_ 
01001110 -"'''00 



508 0 CH"I'TEil II I tNSTII.ucnON SET "II.CHtTI'.CTUiU! 

~e tetL .. has a 6 ,n the lehmOSI position 10 <knote a pl~s. The bin.ry point of 
Ihe fnoction follows Ihe .ign bit. but is not ~hown in the regi .. ter. The ~ ' pon"nt ha, 
the cquivulcnt hinary num ber +4. l'h~ ftO"t ing. point num lICr is "'l"i vnlenl 10 

rx 26 - +(0.1001110), X r' 

A I\oaling.poinl numb,'t is s.aid 10 be no"ntlli~ftl if the mooII sigmflCal'll diS'1 Qllhe 
frll<1ioo is nonzero. ror example.lhe decim,,1 ftaClioo 0J5() is nonn"Ii;(t.'<l. bUlIl.OO.15 is 
not. l'lonnaMed numhers "....ide the IT\aXlmum p<l!'Siblc precision for ,he fJo;"ing­
point nUmb<.T. A ""ro canno! be nonnal~ becaU!ie it docs no! have " nonzero digitc it 
is usually represenled in floating-point hy "II 0', in both the fraction and li>c exponent. 

!-l<:>ating_point "'~nl.ti"" increase> the mng<: .,r numbers that ('an be accom_ 
mod"ted in Q ~"cn register. Consider a computer wilh ,jjj..b;t rcgistc ... Sir.cc one bit 
must be "'scrv~'<l for the sign.lhe !ling" of ligned intege", will be :(2" - I). ,,'hich ;, 
approximately:; 10". The 4S h'''' ",m be USl'<lIO represent a floalins-point number. 
wilh one boil for Ihe sign. 35 boilS lor the (""",ion. and 12 b;IS lor the e~ponent The 
larP-'"l pooillve or negative nun,he. th:1I can be a.a:ommoda1~'<l is thus 

This nu mber is derl.'e(j from a frll<1"'" Ihat oontailt'l1'i I' .. anti ~n C1Cponcnt "'ith a sign 
bit Inti II I'L'The maximum exponent ~ 2" - l.or 2I:»7. 1'hc latgCSl number thai can 
be t"-'OOflmoOO.aled i< approximately equivalent to decimal 10"' ), Allhough a ",uch 
larger r.nge is rcprescmed. there an: '111 11 only 4S hilS in the rep"""ntUlion. As a conse­
'1ucnce. cuctly the same number of numhers Ht<: rcl"'-'scnt~d. 1·le ,><:O.:. the range ;s 
tradt.'<l for the precision of the numbe .... ,,·hich is reduct.'<l from 4!1 boi .. m l5 bil .. 

Arithmetic Operations 

Arithmetic operation, ...-ith floalln&-poim n"mhers are nlOfl: complicated ,han "ith 
inteler numbe .... and th~ir exc<;utiot! lakes longer and ""Iuires more comple~ hard· 
ware. Addin, and .ubtrxting 11"0 nllmhers r(qllir ... that the radi~ points 00 aligned. 
since Ihe c ~ poncnl part. mu,1 00 equ~1 bef"'e adding or .ublrllct,ng Ihe fraCiion'!. 
The alignment is done hy shifti ng one (",ction a nd correspond ingly adjusting iIS 
exponent until it i~ eq ual to the olher expo"enl. Consider Ihe .UII' of Ihe following 
tloating.point numoor:" 

,j372400>t 101 

+ .1S80000>tIO · ' 

It is ~ry Ihal th~ two cxponcnlS be C(Jual before ,he fraCiions.;:an be added. 
We can ellher shifl the first number Ihrce "",ilions to the left or .h,ft Ih<) second 
number three pos,lions 10 the righl. When the fraclions a.c Siored in 'egisters. 
shifting '0 .he left causes" 10M 01 the m()St signiflcal\l digia Shilunllto Ihe right 
causeS a I()S, of lhe lea" . ignifican, digits. The <coo nd method is prcfc'"hle """au"" 
it only reduC'-'. the prl"C;,ion . ...-hereM Ihe fir" melhod may <.uloe nn error. The 



11_7 I FIoa,;,'g_I'oin, Compu" tioo.. 0 SOli 

u,ual alignment procedure i. 10 shift Ihe (r"",ion " ilb !he smaller exponent to Ihe 
right by a number of places equal to the diffuence belween tbe exponen ... Afler 
Ibis is done, Ibe fraclions can be added: 

.5372400 X l()l 
+ .0001580 X l()l 

.5373980 X l()l 

Wh en Iwo normalized fraClion. are added. the , urn rna)' contain an o"erHow 
digil. An overflow can be corrected by shifJing the sum once to the right and inere­
menling Ibe nponent. When two numbers are suhtracled. Ibe result may contain 
most signifieant zerOS in Ihe fraction. as shown in the follo,,;ng eumple: 

.567!K1 X 1()5 
5643(l x 1()5 

.00350 x 10' 

A Hooting·poinl number Ib .. has a 0 in Ihe mos1 signiflcant position of Ihe fraction is 
nOI normalized. To normali~e tbe number. il is necessary to , ],illtbe fraclion to Ihe 
Jell and decremenl Ihe exponenl until a nonzero digit appears in Ihe first position. 
In the preceding example. il is necessary 10 shifllcfllwice 10 oblain .351))) X 10'. In 
mOSI COmpUlers, a normali1..3.tion procMUJ"(: is poorformed afler each operation to 
en.ure Ibal all resulls are in norma lized form. 

Floaling_point multiplication and division do nol ...,quire an alignment of Ihe 
fraction~ Muhipl icalion can be performed by multiplying .he.wo fractions and add· 
ing Ihe uponen's. Di"ision is accomplished by di"iding Ihe [raClions and sub!rac!ing 
the exponen1$. In the . ... mplt'S shown. we used d.ccimal numbers to demons"ate 
arilhrnclic operalion. on Hooting·point numbers. ll>c .. me procedure appl;t'S to 

hiM!)' nUHlbcrs,excepl that the base oflhe exponent is 2 in'tead of 10, 

Biased Exponent 

The .ign and fraction p .• It of a ftooli ng_poin! number is usually" signed. magnitude 
representation. The exponen! representalioo employed in mos! computers is 
kn own as a b;a<~(1 "xpo,,,, ,,_ Tlte bias is an uce" number added to the exponent 
so that. internally. all exponenl! ~mc posili,'e. As a col1Sct[u~nce. Ihc sign of Ihe 
exponent is removed from ~ing a separate enlity. 

Con.ider. [or example. Ihe range of decimal upon.nl. from -99 to ... 99_ 
l "is is represented by 110'0 digits and a sign. If we use an excess 99 bias. then the 
bi"""d cxroncnl e will be eq ual 10 e _ E + 99. where E is Ihe aCl ual exponent. For 
E _ -99. we have ~ - -99 -+- 99 - O;and for E - +99. we have. - 99 ... 99 - 1'18, 
In Ihis way. lhc biased eXJlO""n. is ...,pre'l"nted in a register as a positive number in 
the ronge from 000 to 198, Posi!ive-bia'l"d exponenls ha"e" r.nge of numbeB from 
099 to 198. Sub"aclion of Ihe bias, 99. gi"e. the positi"e val ues from 0 to ... 99, 
Negal ive.biased expon." " ha"e a "'''go from 098 10 000. $ubtractioo of 99 gi"es 
Ihc negative val ues from -I 1<) -99. 



5 1 0 0 CHIII'TEIl II f lNSTIlUCTIQN SET "'1<.CHIT£CTUIlE 

The advanlagc of bi3S<'d exponenl~ i~ Ihal Ihe resul1ing IIoaling-poinl num­
bers comain only posili"e exponcms. II is Ihe~ simpler 10 compare Ihe relali,'e 
magnilude between 1"0 numbel1l ",ithout being concerned ,,;th the signs of Iheir 
expo~ents. Another advanlage i. 1hal the most nega1i"~ exponenl con,'eTts 10 a 
biased exponem wilh all O's. The flo'ling-poim rcpresemalion of lem is Ihen a 
,em fraction and a ze rO biased exponenl, which is Ihe Smalkst possible c~pone n'-

Standard Operand Formal 

Arilhmetic in!1rUC1ion~ that perform operaliom ";lh Homing-poin t dam often use 
the suffix F. ThUs. ADD" i, an add inSlruclion wilh floaling_point numbers. There are 
Iwo standard formats for represe nt ing a floating-poim operand: the .in glc-pr~'Cision 
dala Iype, consisling of 32 bits. and the double-pTccision dala t}'pc. consisting of M 
bits. When boIh tn"" of dats a..., a,'ailable, Ihe s.ingle.prec;'ion in"ruction mne· 
monic uses an fS suffi~, and the double precisioo uses FL (for "Hoating-point loog·"). 

The formal of tM IEEE 'Isndard (see Rcfere""" 7) singJe.prec:i.ion floating. 
poin1 operand is shown in Figure 11-.8. It coo.iSls of 32 bit .. The sign bit. dcsignates 
Ihe sign for the fraction . 'llte biased exponenl e conl.ins 8 bils and US'" an c~ces' 127 
number. The fraction f consists of 23 bits. The binary point is assumed 10 be immedi­
ale1y to 1he left oflhe m~1 s.ignitlcam bit of theff><:ld. [n addilion, an implied I bit is 
insened to the \eft of the binary poim_ which, ill effect_ expands lhe number 10 24 
bits represeming a value from 1.~ 10 1.11 .. ,1,.11.e COfnponcm of the binary n""t _ 
ing_poinl number Ihat con>istsof a leading bit to the left of Ihe implied biMry point, 
logether with the [Tact;"n in lhe field, is called the sjgnijiCQnd, Following arc some 
"""mples of field values and the corresponding signifleands: 

,- SlgnWlclnd Decimal Equt~_ 

[00 ... 0 l.Ioo ... 0 ..,<> 
010 ___ 0 1.010 <> '" 1))) ... 0 1.000 ... O' 1.00· 

Even though Ihe f field by itself may not be normalized, the significant is 
always normalized beca~sc il has 3 nonzero bit in lhe mosl significant positioo. 
Since normalized numl>ers must have a nonzero most significant hil, Ihis I bit i. not 
itlClu ded explicitly in the for mat, but must be insened by the hardware during 
arithmctic computations. "(lte exponent field useS an extt~ 127 bias value for nor_ 
malized numbe .... The range of "a[id exponents i. fron! -126 (represenled a. 

" 1·1 • 
o F1GURf: 11-11 

IEEE Fioating-romt Operan<l Form., 



11_7 f Flo.oring_~' Compo""ion. 0 511 

(X(lO(lOO1) through +] 27 (rE'pre..,nted as II I ] ] ] 10). The tlUl.1imum (I ll ] ] ] ] ]) and 
minimum (OOOIXXIOO) ' -al ues for the ~ field arE' reserved 10 indicate exceplional con­
ditions. Table 11-6 shows Ihe biased and aC1Uai values of some expone"ts. 

Normalized numbers are numbe rs that can be npressed as Hooting.point 
operand, in which the ~ field is neither all O's nor all I 's. The value of the number is 
derived from the IhrE'e fidds in 'he format of FigurE' I] -8 using the form ula 

( _ ]yz, -m X(Lj) 

Thc most positi"c nonnali>.ed number lhat can be obtained has a 0 for the Sign bit 
for a fIOIitive sign, a t>;ased exponent equal to 254. and an / field wilh 23 l-s. This 
give. an exponent E - 254 - ]27 - ]27, The significant is equal to 1 + 1 - 2-" • 
2 - 2-"- The maximum positive number that ctm be a<:e<>mmodaled i$ 

The smaUest fIOIitive normalized number has a biased exponent equal to (X(lO(lOO1 
and 3 f"."tion of all 0',,- The uponent i< t: ~ I - In _ -126, and the ,ignir.cant is 
equal 10 1.0. The .m.llest positive number that can be a<:e<>mmodale<i is +2-'''', 
The corresponding negalive numbers arE' the same. e.cept {hat {he sign bit is nega· 
li,-e. A. m"nlion~d bdoTe. e~ponents wilh all O's or aU I', (de<:imal 255) are 
reserved for the following special condition.: 

1. When ~ - 255 and / - O. the ~umber represents plus or minus infinily, The 
sign is detemt;ned from the sign bit. 

Z, .... 'hen ~ - 2.'55 and /+-0. the representation i, considered to be nor a nI'mkr. 
OT NaN, regardless of the sign value. NaNs are used to signify in~alid opera . 
tions.such as Ihe mulliplic.tion of zero by infinity, 

3, When e ~ 0 and/ _ O. the number denotes plus or minus nro 

4. Wh en ~ - 0, and f-;'O. the number is said to be denmmalized, This is the 
name !i,-en to numbers with a magnitude less {han the minimum value that is 
Tcpres<:nkd in the nonnalittd formal. 

o TAo-RtF. 11-6 
E'-~Iuatin~ Biased E'I>(lIIcnl. 

BI .... d • • poo .... l1 • - E + 127 
EXponent E 
in dO<:nn ... o.<:i"",' "-
- 126 -126+127 - 1 ~, 

-00' -001 + 127 - 126 01111110 

"" (0) + 127 _ 127 Olltltll 

· 00' 001 + 127 - 128 ,~ 

+126 126 + In - ill 11111101 
+127 127 + 127 _ 254 1111 1110 



5 1 2 0 CHAI'TER tt J lNSTII.UcrtON SET ARCHtTECTURE 

11-8 PROGRAM CONTROL INSTRUCTIONS 

The inslrUClions of " program are .tored in successi,,, memory locations. When 
processed by the control. the instructions "rc read from oon""euti,'c memory loca­
tion. and executed oDe by one. Each time an instruction i. fetched from memory, 
thc PC i. incremented w that it rontai ns the address or the next instruction in 
""quene<:. In ronlrast. a program control instruction, when executed. may change 
the address .alue in the PC and cau"" th e flow of control to be .hered. The change 
in the PC as a result of the execution of a program control instruction causes a 
break in the sequence of necution o f instructions. Thi. is an important feature of 
digital computers. since it provides control over the How of program execution and 
" calXlbility of branching to different prouam segments. depending on previous 
computations 

Some typical program control instructions are listed in Table 11-7. The 
branch and jump instructions are often used interchangeably to mcan the Same 
thing. although sometimes they arc u""d to dellote different addressing modes For 
example, the jump may use direct or indirect addressing. ,,'here .. the branch uses 
relative addre$Sing. The branch (or jump) is usually a ,me_address instruction. 
When executed, the branch instruction causes a transfer of th e effecti"e address 
into the Pc. Since the PC conta;n. 'he address of the instruction to b<: executed 
next. the next instruction will be fetched from the location specified by the effec­
ti,'. address. 

Branch and jump instructions may be condit ional or unconditional. An 
unconditional branch instroction cauSCS a branch to the specifled effecl;ve address 
without an~ conditions. The cond;tional branch in'truetion specifics a condition 
,hat mu,t be met in order for the branch to occur. such .. the value in a specified 
register being negati"c' If the ""ndition ;s met, the PC is loaded wilh the effe<:ti,'e 
address. and 'he next instruction is '"ken from this address. 11 the condition i, DOl 

me,. ,he PC i5 not changed,and the next instruction is takcn from the next location 
to sequence, 

The skip instruction does not need an addr~ss held . A condit;onal skip 
instruction will skip the next instruction if the specified condition is mct , Thi' is 

o TARLE 11 _7 
T}·pic:al Pr<>g .. m Control IR" .. <f;"n, 

,,- Mnemonic; 

Bral>Ch " Jump JMI' 
Skip next in'trUC1ion '" Coli p.-o«:durc CALL 
Re,urn hom prO<XduTC ' H 
Compa .. (by l<Ubtrac6on) CMP 
Te<1 (by ANDing) ITIT 



t t-8!I'rognrt>C",,,roI tMUU<tion. 0 51 3 

acoornpli>hed by incremenl ing the PC during the execute phase of the insmlCl ion. in 
addition to incrementing it during the fetch phase. If the condition is nOl met. control 
proceed, to the next instruCTion in sequence. at .. hieh point the programmer may 
msen an unconditional br.meh instruction. Thus. a condilional . l ip inmuCTion fol· 
lowed by an uI>COnditional bTanch inwl>Clion causes a branch if Ihe condition is nOl 
met. This oontra,U wilh a sinsJe condilional branch in>lruction. whkh causes a 
branch if the condition is met. Since Ihe ," ip in"ol,'e, Ihe exc<:ution of two inslruc· 
tions. it i •• Iower and uses more instructi"" memory, 

The call and return inslrUClions are u>cd in conjunction "ith procedures. 
Their performance and implementatiOll are discussed laler in Ihi. section. 

The compare instruction performs a compariwn via a subtraction. "ith the 
difference n01 retained. In'tead. the comparison causes a condilional branch. 
changes Ihe contenu of a regisler. or sets Or reselS Slored staUI> bits. Similarly. lhe 
lesl inslruclion performs the logical AND of Iwo operands wilhout retaining the 
resull and e.ccute. ':me of the acrion. li.ted for tbe compare instruction . 

Based on Iheir three possible aClions. compare and lest insl ructions are viewed 
10 be of Ihree distinct types. depending upon the way in which conditional de(;isions 
are ltandled. The firsl type execule!! the entire decision as a single imtructiOll. For 
example.lhe contenu of two "'gislcn can be compared and a bTanch OT jump taken 
if Ihe contents a", equal . Since Ihe", are t"" regi.ter addressc. and a memory 
address in,'ol>'ed. sueh an instruclion rC<Juires Ihru addre~ The scc<>nd type of 
compare and Ic.t in.tn><:lion also ..ses three addresses. all of ,,-hich are ",gislcr 
addresses. Considuing Ihe same example. if the contents of the first two regislen arc 
equal. a 1 is pl"""d in Ihe Ihird regi.ler_ If Ihe rontcnl. are nol equal. Ihen a 0 is 
placed in the third regisler. These lwo type. of instruction avoid Ihe usc of , tored OIa· 
IUS bils. In Ihe firsl ca>e. no such bil is required. and in Ihe second case, a register i, 
~d 10 simulate the p<cscnce 0( a SlatuS bit. The third type of compare and test. ,,;th 
lhe mosl complex 'trucmre. has COII1pa"' and t .. 1 operalions Ih.t sel or resel slored 
,latus bils. Branch or jump inslruclions are Ihen used 10 condiliona ll y change the 
program "'q""nce. 'This third Iype of compare and lesl insln><:tion is Ihe focus of di,· 
cussion in lhe nell subsection. 

Conditional Branch Instructions 

A condilional bTanch instruction is a brallCh inSlruction Ihat mayor may nol cau", 
a lran,fer of conlrol.depending on the value ofstOTed bits in the f'SR. Each condi· 
lional branch instruclion teSt' a different combinalion of Slatus bits fM" condition_ 
If the condition is true. control is Iransfe rred to the effl'Clive address. 11 the condi· 
tion is false. the program ""nl inue, wilh Ihe nexl instr UClion 

Table 11--8 give. a lisl of condilional branch inslruclions thaI depend dirc<:lly 
on the biu; in Ihe PSR. In mosl cases., thc inSlruction mnemonIc is constructed with 
Ihe leller B (for -branch-) and a IClIer for Ihe name of the .t.lu. bit. The Idler 1'1 
(for ··noC) is included if Ih" Slalu, bil is leSled for a 0 condition . Th Us. BC i, a 
bTanch if carry _ I. and BNC is branch if carry _ O. 

The UrO Slatu. bit Z is used to ekd "'helher Ihe result of an ALU opera· 
t;on is equal 10 lero. The carry bil C is used 10 chec~ the carry after Ihe addilion 



S 14 0 CHAPTER I. I [N~UcnON SIT ARCHITf.CTURE 

Condilioul Branch " " 'rudiolh Relal;n~ I" Sial • • BilS 
In liM' PSR 

Br. nch condillon --< Tnl_ 

BraDeh if""ro ez ,- , 
Branch if _ zero BNZ Z _0 

Branch if c'''y 'C C o , 
Branch ifn,,-..ny BNe C o , 
Branch if minus " N - 1 
Branct>ifplus Hi'll' N-' 
Ilranch if ",'erflo,oo ev I ' _ 1 

llranch if no overflow "" 
, -, 

Or Ihe OO,,-ow afler .he sublraelion of 1"'0 operands in Ihe ALU I. is also us..'(! in 
conjunction with ,hin in$tructions '0 check .he value of the outgoing bi •. The 
.ign bi. N reHecls Ihe slate of the I"hmosl bil of .he OUIpu. from Ihe ALU. N " 0 
denol'" a "",ilive sign and N _ I a negalive sign.",c$<: inSiruction, can be used 
10 check Ihe value of Ihe Ichmos. bil, ,,-hether it repre!<:nts a sign or nOi. The 
overflow bit V is used in CQnjunction wilh arithmelic operalions with ';gned 
numbers. 

A. Slated previously. Ihe cOm pore inslruction performs a sublraClion "f Iw" 
operands. say. A - B. The re.uh of Ihe operalion is nol tran,ferred inlo a de'lina­
lion regis.er. bu. Ihe .,alO. bilS are aff~,<.ed. The ""US bil' pro"ide informalion 
aooul .he relali,-e magnilude between A and B. Some compu.ers provide 'pecial 
branch instruc.ion. Ihal can be applied af.er .he necu,;on of a CQmparc inSl rue_ 
.ion. The specific condition •• o be .eSled depend on "helher Ihe Iwo numbe .. arc 
con'idered '0 be unsigned or 'igned. 

The relalive magnilude between ,,,,0 unsigned binary numbers A and Bean 
be determined by subtracting A - Band checkinglhe C and Z Slaws bilS. Most 
comm~rcial compUl~" ronsideT Ih~ C S131n$ bit," a carry aflu addition and a bur· 
row afler subtracti"". A oorrow oa:urs when A < B because the most significant 
position muSI oorro", a bit 10 complele the subtraction. A borrow does not occur if 
A ;" B, because the difference A - B i. positive. The conditi"" for 00"-0"-in8 is the 
;m'Crse of Ihe condition for carrying when tile sublTaction is done by laking Ihe 2', 
complemenl of H. Compulers thai use Ihe C stalu< bil as a borrow aher a .ub!rae­
lion complemcn. the ou.pu. carry ~her addinglhe 2"s CQmplement of Ihe >ublra_ 
hend and call Ihi' bit a burrow_ The lechnique i< Iypica lly app lied to all inmuctiOl1' 
lha. usc subtraclion within .he functional unil. no. jusl the sub. r"ci in$IruClioo_ For 
example. il appli ... 10 compare in<lructions. 

n.e conditional branch inSiructioo. for unsigned numbers arc li.led in 
Table 11 _9_ II is a<sumed Ihal a pre,';ous instruction has upd aled stalus bilS C and 
Z 3ftor a subtraction A -B or some other similar inslruction. The words -higher:' 
"lower:' and "cqual~ aTC used 10 denOle Ihe Tel3li"e magnitude be.",,,,,n ,,,,0 
unsigned numbers. TIle 1"'0 numbe .. are equal if A - B. This is determined from 



ll-ll J I'rognm Con,roI ["",,,,,.;on, a 515 

D TABU: II·' 
Cnnd;I;n na l Bnmch 'n".u<1;tH" f.,.. Un.iKoed l'iumh<", 

8 11Or1Cl1 condition ",,-,I<: Cond~I"" Slatu. bit.' 

B.anch if highe. '" A>' C + Z - O 
1I •• nch if high., or .quo l '"' ~ > , Co, 
Hranch if lo,",'e' '" ~ <, C o , 
H •• nch if i<),o.t. "" c~u.' '" H' C + Z = I 
B •• ncb if "I"al " ~ - , Z_' 
U •• nch of nO! equal '" ~" 2 - 0 

' N<><, ",,. r ..... ;, . .... _ .... 

I~e 7.<:.0 s,,'us bil Z, ..-~ich i. ~"qu"IIO 1 occause A - IJ .. O. A is lower Ihan IJ and 
Ihe borrow C _ I wheo A <: H r"{)r A 10 b<: lo,,"er than or equal 10 D (A s D). ,,"e 
",usl have C - I or Z - I . The .clOlionsh ip A > D, is the inverse of A S B and is 
detecled from Ihe complemenled condilion of Ihe SlalUS bilS. Similarly. "Z: 8 is 
Ihe invcl'S<' Qf A <: IJ. and A ~ IJ i, Ihe iovel'S<' Qf II _ D. 

The condilion.l branch insiru,;!ion, for .igned numbers a.e li .. cod in Table 11 · 10. 
Again. il is assu med Ihat a previous instruction has updaled Ihe SI"U~ bils N, V . • nd 
Z afler a sublraction A-B. l1Ie W<>Td, ~g.cater:· "less:' and "equar arc used to 

denote lhe relalive magnilude b<:lwcen Iwo signed numbers. If N - O. Ihe sign of Ihe 
d,ffcrenre is ~ilivc. and A mu" be grealer Ih.n or equal 10 D. provided Ihal V .. 0, 
indiCilling Ihal nO Qverflow occurrC<J, A n (:wc.n"w cause. 3 sign reve ..... '. as dio;(: usscd 
in Seclion 54. This means Ihal if N .. 1 and V " I. Ihere was " ,ign reversal. and lhe 
result ~hould ha,'" been posili"t. which "'ak". A grealer Ihan or equal 10 IJ. There· 
fore, lhe condilion A '" D i'lrue if bolh N and V are equallQ 0 0. bulh are c><]u.,1 10 
1_ 1"is i~ Itle complemc"l Qf lhe exciusi .. ,,·OR opera lion. 

For A tQ be greater Ihan bul nOI eq ual 10 IJ (A > H).lhe re.ult mUSI b<: posi . 
Ii,'" and OQnzcro. Since a ,em re,ull gives" posili"" .ign, we muS! en,u", Ihal Ihe 
Z bil is 0 10 c.duJe Ihe possibilily Ihal A _ B. Not" Ihallh" rondilion (Nflj V) + 
Z .. 0 means IhOl holh Ihe exd u,;ve·OR opcralion and Ihe Z bi, must be equal 
10 O. ·n,. Olher I ... " condilions in Ihe labic can be deri"ed in a similar n,allner. The 
condiliom BE (branch Qn equal) a nd IlNE (b ranch On nOI equal) gj .. en for 
unsigned numbers apply 10 signed numbers a, ... ell and can be delermined from 
Z _ 1 and Z _ O. ''''poXli''ely_ 

D TA81.E 11· 10 
Cond;l ioul 8rant h In,,ruct; .. n. r .. r S;~""" Numbe ... 

Branch cOl>d111<>n Mnemonl<: Condillon St.luo bit. 

Brooch if gre., •• '0 ~,. jN6 V}+ z _ o 
llronch if , .e.te< or .q .... 1 M '" NeV _ 0 
II"nch if less " ~ < , NelV _ t 

H •• nch irlc .. or <qu.1 'CO ~ .. (Nfll Vj.Z _ 



516 0 CHAPTER t t I tNSTRUCTtON SET ARCHt TECTURE 

! rocJ ure c all and Return Instructions 
A proc~d"r£ is a self-comained sequence of instructions that pe rform," gi"en com­
putational task. D uring the neeul;on of a program," procedure may be called to 
perform its function many time!! at various points in the program. Each time Ihe 
procedure is called. a branch i. made to the beginning of the proce<lure to stan 
executing il1 5<:t of in,lruclion&- Afler Ihe proe<:dure has been eoeeuled. a branch i. 
made again to return 10 Ihe main program. A procedure is also called a s"broOll;n~. 

The inslruclion thaI Iransfers conlrol 10 a procedure i. kno .... n by different 
names. includin& call procedure. call .ubroutine. jump to subroutine. branch to sub­
routine. and branch and link. We .... ill n:fer 10 Ihe rouline conlaining Ihe pf()Ccdure 
call as the calling procedure. The call procedure instruction has a one -address field 
and perform. two opera lions. First. it stores Ihe ,'~I "e of the PC, .... hich is the 
addre .. follo .... ing Ihe ca ll procedure instruction. in a lemporary location . Thi' 
address is called Ihe relurn addras. and the corre!!ponding inmuCl ion is the colli;· 
nUl1li<)n po;nl in the calling procedun:_ S<econd, lhc address in the call procedure 
instruction_the address of the first instruction in the procedure-is loaded into 
the PC. Wh en the next instruction is fetched. it comes from Ihe called procedure_ 

The final in,t '"'''tion in e,'ery procedure must be a relurn to the call ing proce­
dure. The return inmuction take. the address thaI was stored by Ihe call procedure 
instruction and pla= it in the Pc. This re,uits in a tran.fer of program execution 
back to the COIltinualion point iG Ihe calling procedure. 

D,fferenl comp uters u<e different lemporary locat;on. for stor ing the return 
addre ... Some computers store it in a filled localion in memory. SOme store it in a 
prOCCl$Or regi,ter. and some slore it in a memory stack. The advantage of u,ing a 
stack for the return address is that, " 'hen a succession of procedures are called. the 
sequenlial return address can be pushed onlO Ihe Slack. The return instruction 
cau",", Ihe Slack to pop. and the contents of lhe top of the 'tack arc then tran.­
ferred to the f'C. In Ihi, way. a relurn is alwaY5 to Ihe program thaI lasl ca lled Ihe 
procedure. A procedure call instruction using a stack is implemented .... ith the fol­
lowing microoperation, : 

SP .... SP - l 

M [SPj <----PC 

PC <--- Effe<:li,·c address 

D<.:crcmcnt Slack pointer 

Store return addr." On stack 

nansfer conlrolto proe<:dure 

'!'he retum instruction i. implemented b)' popping Ihe stack and transferrin& 
Ihe return address to the PC: 

PC<---M[SPj 

SP .... SP + 1 

Transfer return address to PC 

Incremen t stack pointer 

By usIng a proced ure stack. all return addresses arc automatically stored by Ihe 
hardw~re in the memory"""k_ Th"" the programm .. d()('$ DOl have to be concerned 
about managing the r.turn addreil5eS for procedures called from "ithin proccdun:s. 



tt _9/l'n:>gnn' tn' .. ",1" 0 S I7 

11-9 PROGRAM INTERRUPT 

A program inlerrupt i. uoed to handle a variety of ,ituations that require a depar­
ture from the normal program sequence. A program interrupt transfers control 
from a program thai is currenlly running 10 anotncr ""rvice program as a result of 
an externally or internally generated request. Control returns 10 the origin.1 pro­
gram after the sc,,'ice program is e.c'Cuted. I n principle. the interrupt procedure is 
similar to a ca ll procedure. e.ccpt in lhree re'p<.'Cts: 

I. The interrupt is u.ually ,nitiated 3t on unpredi~table point in lhe program by 
an external or in1ernal . ;gnal. rather than the eXc<:utiOl1 of an instruction. 

2. 11,e addr= of the service program thai processes the interrupt request tS 
determined by a hard""are procedure. rather than the address field of M 
instruction. 

J. In response to an interrupt. ;t i. necessary to ,tore information that defines 
all or part of tlte contents of the register set. rat her than $tor;n8 only the pro­
gram counter. 

Alter tbe comJltller has been ;n1err~pted and the appropriate ""rvice pro­
gram executed. the comp uter must ret urn to e~aCt ly the ,,'me 'tate that it W", in 
before the interrupt occurred. Only if this happen. w;1I the interrupted program be 
able to resume exactly as if nothing hapP"ned. The state of the computer at the 
end of an uC(;ution of an in'lruelion is determined from tnc contenl5 of the regis. 
ter sci. In addition to contain ing the condition ood~s, the PSII can specify what 
interrupts arc allowed to oe<:~r and wll ether Ill e computer is operat ing in uscr or 
.)'stem mode. Most computers have a reswent operating system that controls and 
,up"rvi",. all other programs, When thc computer is executing a program that is 
part o f the op"rating system. the computer i. placed in system mode, in which cer· 
tain instruction" are privileged and Can he c.ecu tcd in the .)"tcm mode onl y. The 
comp~te r is in u""r mode when i\ exc'Cutes user programs. in which case it cannot 
execute the privileged instruction .. The mode of the computer at any given time is 
determined from I sp"cial statu< bit or bit. in the I'SII 

Some computers .tore only the program counter when responding to an 
interrupt. In such computers, the program that perform. tne data proce$.ing for 
",,"'icing the interrupt mU$t include instruction' to store the esscmial content. of 
the register set. O ther compute .. store the em ire reg;';!e. ""t automatically in 
fespons.: to an interrupt. Some comp utet'> ha,'c twO sel5 of processor regi,ters, SO 
that when the program ,w itches from uscr to .ystem mode in respon"" to an inler· 
rupt . it i, not necc«ary 10 store the COIltent. of p"",,,.,,or registers "'-'CauS/; Caeh 
computer mode employs its own set of registers. 

The hardware procedure for prOC<"<Sing interrupts i. very similar to the COtcu· 
tion of a procedure call instruction. The " mtenlS of the register set of the processor 
arc temporarily stored in memory. typically by being pushed onto a memory slac~. 
and the address of tbe first instroction of the interrupt """ire program is kladed into 
the I'e. The addr"'" of the """'ire program is chosen by lite hardware. Some com· 
puters assign on;: memory locat ion fOf the beginning address of the ""rvice program: 



5 1 8 a CHAI'TEI<. 11 I lNSTII,UCl·10N SIlT AI<.CH1TIC1VR.E 

lL seie program m",1 tLn Jeterm;ne Ihe sou,""" of the inlerrupl and pr"OC<:edt<> 
service it. Other compute ... assign a separale memory localion for each possible 
interrupt sou"",. Somelimes. the inICrrupt 5<.lUm;! hardwa", itself supplies the 
address of the ",nice rOIltillC. In any case. the compuler must ~ some form of 
hardware proct"dure fur .c1e<:ting a bTancb addr .... for se,,"icing lhe interrupt. 

Most computers will nO! respond 10 an interrupt "nlil Ihe instruction Ihat i. 
in Ihe prOtt" "f bein g c~e<:uted i. completed. Then.just before going 10 fetch the 
next instruclion. the control checks for any interrupt 'ignak If an interrupl ha, 
oc<:urred. control goo, 10 a hardware interrupt cyde. During thi' C'ide. the content, 
ofsome part or all of the register sct arc pu,>hed onto Ihe stack. The branch addre$ 
for the particular interrupt is thell Irarr;ferred to the Pc. and the control goes to 
feteh the nut instruction. "hich i. the beginning of the interrupt ..,,,·ice TOutine. 
The I .. t in'truction in the "",,"ice roUline is a return from the interrupt in'lruclion . 
When Ihis ,..,turn i, executed. the stack is popped to reITieYe Ihe return address, 
which is Iranslerred 10 the PC as we ll as any ,Iored con1ents of the rcst of the 
register sct. whi<:h are transferred back to Ihe appropriate regislers. 

Types of Interrupts 

The thre<: major types of interrupls thaI cause a break in Ihe normal eXe<:U1ion of 8 
program are as folio",", 

I. External interrupts. 

2. Internal interrupts. 

3. Soft,.,are interrupts. 

Extem,,/ i",,,,,uplS corne Irom inpul Of output devices. from timing dc,·kes. 
from a circuit monitoring the power supply. Or from any other external source. 
Cond itions tha t cause eXlernal inwrrupts a re an input Dc Qutput de,.i<:e rC'lucsting 
a tran sfer of dat" . "n e.temal device completing a transfer of data. the tim e-<, ul of 
an e'·ent. or an intpending power fai lure. A time·oul in1errupl may resu lt from a 
progrnm that is in an endless loop and thus e" :,,eds its time allocat ion. A power 
failure interrupt rna)· have as its servitt program a few inStructions th.t transfer 
the complete content. of the regi'ter sel of the processor into a nondestructive 
memory such a. a dIsk in the fe,,· ",illiscronds before pow"r ceases. 

III/emil/ iM/Un,plS arise from Ihe invalid or erronwu. usc of an instruction or 
data. Inlernal interrupts Me also called Imp •. Ex~mph:s of interrupts ca ust:d by 
inte rn al conditions arc an arilhmetic o ,·erHow. an a11e"'pt 10 di vide by ,.ero. an 
inva lid opcode. a memory stack o,·erHow. and a protection ,·iolation. A 1"0Iffli(", 
1·;"lm;ol1 is an a11empt to address an arca uf memo,)" that is not supj'>OS"d 10 "" 
accessed by the currently ex"",uting program. The se,,"itt programs that process 
internal interrupt. detennine lhe correelive measure to be laken in each case. 

bternal aad internal interrupts are initiated by the hardware of the com· 
puter. By contra,l. a <"IMII"" ;nlar .. !" is iniliated by execuling an instructio n. The 
SOf1,,·'''' in1errup1 is", special call instruction that behaves like an interru pt "'ther 
lhan a procedure call. It can be used by the programmer to initiale an interrupt 



t t_9 I t'n:>ji;"'" tn«"u!" 0 519 

procedure at any desired poim in the program. Typical use of the soft ,.-are inter· 
rupt is a>S<XiatCd with a system call instruction . This instruction provides a mCanS 
for switching from uscr mode to system mode. Certain operations in the romputer 
may be performed h)" the operating system only in s)"stem mode. For example. a 
romplex in['ut or output procedure is done in system mOOe. In rontrast." program 
written h)· a user rnust run in user mooe. Whcn an input or output tr.nsfer is 
required. thc user program ca us,,. a software interrupt. which stor", Ihe contents 
of the f'SR (wit h the mode bit set to ·· user"). loads new f'SR contents (,,·ilh the 
mode bit set tv ··,)'".'tcm·· ). and in itiatcs the e.ecut;on of a system pTOgram, The 
calling ['rogram must pa" information to the operating s)'Slcm in order to specify 
Ihe particular las~ that is being req uesled. 

An alternative term for an inlerrupl i'l an t:u~pl;(m. which may apply only 10 
imernal inlerrupt. or to all interrupts, dcpending on the particular corn[,uter 
manufacturer. As an illustration of the use of Ihe two lerm$. what one programmer 
calls interrupt·handling routines may be referred 10 as ex~ption ·handling routines 
by anOlher I,rogramrner. 

Processing External Interrupts 

External interrupts may have single or mu lliple interrupt input lines. If Ihere arc 
m'>Te interrupt sour<xs Ihan Ihere 3re inlerrupt inpulS in the computer. t,.·o Or 
more sources are O Red 10 form a common line, An interrupt signal may originate 
al any lime during program exeoution. To en,ure Ihat rI" infor""lion is lost. Ihe 
com puler ... u ~lIy acknowledges Ih~ in terrupl only after Ihe " ,~culion of Ihe cur· 
rent im truct ion;s complcted and only if th e ,tale of Ihe processor ,.·arrants it. 

Figure I 1_9 ShO"''i a si mplified ",le rn.1 interrupt confrguration, Four external 
interrupt sources are O Re<! to form a single interrupt input signa l, Within the CPU 
i, "" enable·interrupt Ilip.HOp (£1) Ihal Can be sel Or rc.., t ,.·ith two program 
instruction.: cnable interrupt (EN!) and disable interrupt (OSI) . ""'hen EI is O. Ihe 
interrupt signal is negle-cled, When f;/ is 1 anJ Ihe CPU is al Ihe end of ex""uting 
an instruction. the romputer acknowledgC'S the intcrrupt by enabling the inlerrupt 
ac~no"le<!ge outputlNTACK.lbe interrupt source responds to INTACK by pro­
viding an interrupt ,'Ulor "ddrc$.~ IVAI) 10 the CPu. The progra m·wntrollcd £f 
fii p·fi op allow, the program mer to decide whether to use the interrupt facility. If a 
DSI ,nstrucI;on to reset Ef has been inserted in the program.;t rncans Ihat thc pro­
grammer doe. nOI wanl the program 10 be interrupted. The necution of an EN I 
instmclion losel Ef indieate< thatlhe ;nlerrupt fadlily will be active "hilc the 1'.0-
gram is running 

.11>" compUler responds to an interrupl request signa l if Ef - I and cxecution 
of the presenl inSlruclion is rompleled. ·Iypical microinstructions thaI implernent 
the imerrupt are a. follows : 

sP ..... sP - I 

M(SPI ..... PC 

SI' .... SI'-I 

Decrement ,t ack poinler 

Store return addr .. s on stack 

Decrement stack poinler 



520 0 CH,l.PTER II I INSTRUCTION SET ARCHlTEClURE 

MISI-' j <-I-'SR 

EI<-O 

INTACKt- 1 

PC<-iVAD 

SlOre processor slatus word on stack 

Reset enabk·inlerrupl flip·flop 

Enable inkrrurt acknowledge 

Transfer interrupl ,'eClor address 10 PC 

Go to felch phase. 

The return address available in the PC is pushed onto Ihe slack. and the PSR 
Wlltenl, are pushed onto the stack. EI is resel 10 disable further interrupts The 
program Ihal ",mce. Ihe interrupl can ",I EI wilh an instruClion ... henever it i, 
appropnate 10 enable olher interrupts. The CPU a"ume. Iha1lhe utemal source 
"'ill provide an iVAD in ''''ponS<' to an INTACK The iVAD is laken as the 
addre" of the first inslrliClion of Ihe program Ihal ",rvices Ihe imerrupt. Obvi · 
ously. a prog,am must be ,,-ri\len for Ihal purpose and ,tored in memory. 

The r.Wrn from an intcrrupl is done wilh an insITuction al the end of Ih. 
sen';ce progr.m Ihal is Simi lar 10 " return from • pro<cdure. The ,];Ick i. 
popped, and Ihe relurn address is Iransferred to the Pc. Since Ihe £1 nip.f1op is 
usually included in the I-'SR.lhe "alu~ of Ef for the original program is rellirned 
10 EI " 'hen the old value of Ih. PSR is r.lurnul. Thu~ the inlcrrUpl system is 
enabled or diS' bled for the original program, as il was before Iho interrupl 
occurred. 

E .... ""I ;"lWUP'" C<n,,.1 J"<"X"I"I UP"~ (CPU) 

f'\- Eml 01 .""""'''''' 
01""1"'" 

IT 
)-

fil-J 

~ 
" 

E""bIe·;nlOmop< 

INTACK 
mr-no,. 

I"'<nul" ... ..... 100 

'"''''UP' "",or IV"O 

I ~'"--~,- ~ sud 

o fiGURE 11·9 
Example of £".rn.1 Interrup. Confogurotoon 



II_IO/Cb,!"",s..""",.y 0 521 

11-10 C HAPTER SUMMARY 

[n Ihis chapler. \"e defined Ihe concept' of in,nuetion set architecture and Ihe 
componenlS of an in'truction anu c<p[ored the dfects On programs of Ihe maxi­
mum address count per instruction. using both memory addresses and regislcT 
addres..,s. This led to Ihe definition, of four type' of addressing archit eclure; 
mcmory·to-memOf)'. Tegi'ter·lO·register .• ingle·aceumu1alor. and 'lack. Address­
ing mode, speci fy how the infonnalion in an instruction IS in(erv,elCd in deter­
mining the effective address of an operand. 

Redu«d in'lruction scI compule", ( RISCs) and complu in,(melion set COOl­

pUlers (CISCs) are two broad categoric, of inSltu."ion SCt architecture, A R!SC 
ha, a, il' goa!. high th,,,,,ghpul and fa.1 execution of in'lruclions. In conlra't . a 
elSC attempt, to closely match Ihe operation. used in progmmming language. 
and faeil;13tes compac1 program~ 

Three calegories of elementary inSiruelion, are dal. transfer. data manipu ­
lalion. and program control. In elaborating data tran,fer instruClions. the con«pt 
of the memury ' tack appears. Transfers bello'cen Ihe CPU and [/0 are addressed 
b )' lwo different methods: independent 110. with a separate address 'pace, and 
memory-mapp<:d 110. ".-hieh US'" part of the memor)' address space.. Dala manipu_ 
lalion in.truction. fall imo three da.se.: arithmetic. logical. and shift . Floating­
point form.t, and ope r.lio"" handle broader range, of operand , 'alue, for arith· 
metie operations. 

Program control irm.uction. include basic u1lCOfldilional and condilional 
tran,fers of control. Ihe lancr of "hien ma~ or may not use condition codes. Proce_ 
dure call. and return. pennit programs to be broken up into proced ures Ihat per­
lonn useful tasks. Interruption of the normal sequence of program execulion is 
based on !hT~e types 01 in.errupts: eX'~rnaL inlemal. and soflware, Also referred 10 
as exceptions. imerruplS require special processing action, upon the inilialion of 
roul;nes to senice them and upon rNums to execulion of the interrupted program .. 

REFERENCES 

I. MASO. M. M. Compllle, Enginuring: Hurd .. '",,, Design. Engle"'OOd Gin .. 
NJ: Pr<;nli"" Hall, 1988. 

2. GOOO"AN, J" AN]) K. MtLLER A Progra",me,'s Vie ... ofComp"'u 
A"h;'ecl"'e. Fort Worth. TX: Saunders College Publi,h;ng. 1993. 

3. H E.."1<ESSY , J. L . AND D . A. PAl'rERSO.~ Compllle, A ",hileclllre: A 
Q""milal;,'e Approacl<, 2nd Ed_ San Francise<>. CA' Morgan Kaufmann. 1996. 

4. MANO. M. M. Compltle, SY'lrm Archll«f",.,., 3rd Ed. Englewood Cliff .. NJ: 
Prenl;';" Hall. 1993, 

5. PATTERSO". D. A" AN]) J. L HENNESSY Co"'pliler D,glmizalion and IN.ign: 
TI.e Hardware/Sof,ware Imerface. 2nd Ed. San Mateo. CA: MOTg"n 
Kaufmann. 1991> 

6. IEE E Slm.dardfor M;croproceuor Auembly IAnK" agr. (IEEE SId 694·1985.) 
Ne'" York, NY: The [U,titule of Electrical and Ele<:lron ic5 Engineers. 



522 0 CHAPTER II I INSTRUcnON SET ARC H ITf:CTURE 

7. IEEE SWl1(ianj fo, Binary FloalillG,POint A , illo m'lic. (ANSI/ IEEE Std 
754-1 985.) New York. NY: The institut e of Electrica l an d Eleclron iCl; 
Engin~ers. 

PROBLEMS 

-~ The pl u, (+) indicale, " more advanced problem and Ihe aslcri,k (*) indicale, a 
~ solut ion is aV3Ilable On lhe Compamon Websile {or lhe lex l. 

11- 1. Based on operations illu,lraled in Seclion 11- 1. wri t~ a progm m 10 evaluulc 
thc arithnlCl ic expression 

x = (A -B)X(A + Cj X (B - D) 

Make cff~cl i v" use of the regiSlers 10 min imize Ihe num bocr of MO V or LD 
inslruction, whcn' possible. 

(M) Assume a regisler.to.r~gist~r architcclUrc wilh three-address 
inslr uct ion" 

(b) Assume a memorY' lo-mcmory arc hi tecturc with lwo·addr~ss 
instructio ns. 

(e ) As.ume a ,inglc-accumulator computeT wilh one-address instruction~ 

11- 2. ' Repeat Problem 11· / for 

Y - (A -t B) X C +- (D - E x F) 

All operand. are inilially in m~mory and DiV reprcsents dividc . 

11- 3. *A program is 10 be "'ritkn for a Slack architect ure lor thc arithmetic 
c ~pre5Sion 

x = (A -H) X(A + Cj X (B - D ) 

(M) Find the ~ofTespondi ng RPN ~xpr"'<ion. 

(b) Wrile the program using PUS H. PO P. ADD. MU L. SUB. and DI V 
in' truct io n" 

(e) Show the eontenlS of the . tack after the exeeu tion of each o f the 
inst ruction ~ 

11--'- Repeat Proble m J J-J for the ar ith meli~ c 'pn:s, ion 

(A + 8 ) X C+(D -(E X F)) 

11-5. A two.word inm uction is stored in memory at an add,." designated by Ihe 
symbol IV. The address field of lhe instrucrion (stored at IV -t I) is 
designaled by the symbol Y The operand used during the exec ution of the 
instruction is \Iored .t an address symbolized by Z_ An index regi slc , 
contains the va lue X. State how Z is calculated lrom the OIher addres.o;es if 
the addressing mode of the instruction is (0) direct: (b ) indirect; (0) rclalivc; 
(d) indexed . 



........ "" 0 523 

11-6. • A 1\1I00.'ord ",Ialive mode branch-Iype ill>1rllClion is Slorcd ,n memory al 
localion 21)7 and 208 (decimal). The branch .. made 10 an addrcM 
equivalent 10 decimal 195. Lellhe addrCls field of Ihe inmllClion (SlOred al 
address 20/l) be de.ignatcd by X. 
1_) !)elern,;ne Ihe value of X in dc<:in ,al. 

Ih) Dclermine Ihe ,·al"" of X in binnry. using 16 biK (NOlo Ihnt Ihe 
number il negalive and mu.1 be in 2·s complemenl nolalion. Why7) 

11-7_ Repeal ' 'foblem 11.(, fot 3 branch ,n, lruclion ,n Iocalions 143 and 1-101 and 
a branch addrCMC<juivalcnllo lOOO.AII .... 1 ..... are in decimal. 

II--S. How mBny limes docs Ihe Cotllrol unn refer 10 memory when il fclche1 and 
exeCUles a two_word ,ndire<:\ addrcning-modc in'lruClion if Ihe 
in'lruellon is (DI a compUla1iu ltul Iype requiriltS o n" operand Irom a 
memory locatiun wilh lhe rC' u'n 01 th" re.uit to ' he <lime memury 
localiun; (h) a branch l)'pe? 

I I ~_ An in>ITlIClioo i. SlOfcd al \ocSlIOfI 300 wilh il5 address field at 10.;.11 ion JOI. 
The address field has the lIalue 211 . A prornsor register H I CQfIlain~ Ihe 
number 1119. Evalua,e lbe effective addr.,., if t ..... addr.,."n, Jnodc of Ihe 
inmUCllOfl is 1_) dircct; (b) immo:<Jiale; Co) relative; (d) resiste, mcl""a; 
te l in(le~e'" with HI as lhe Lnde~ .egi.le,. 

11-10. °A romputer h ... a 32-bit wur'" lenilih. and a]1 instructiun, arc one word in 
lenglh . The registe. fi le of lI,e compuler has 16 regislers. 

(~) 1'0f a lorm.t wit h no mode roclds and I)"ee register addreS¥Cs. ",hat is 
the m"~imum ~"mber of op"oocs pos.ible? 

Ihl For . format with two register addrc5S field .. one memory Rcld_.nd" 
mu,mum of 100 upoodes. " 'hat" the muimum number ur memory 
afJdrcss bits a,·ailab!e? 

11-11. A compuler "·,Ih a register Ric. but "ilhuut PUSH and POI' ,rn;trUCIiom. is 
to be uscd 10 'mplcmenl 3 <lack . -I'he rompulcr docs ha'·e tl>l> following 
regISter mdirc"Ct m<><les, 

ReglSte. indirc<1 + increme nt : 

LD R2 RI 

ST R1 R I 

Decremenl + regosler indir<"CI: 

LD R2 RI 

ST R2 RI 

H2 .... MIRII 

HI .... HI +1 

MIRII ..... Rl 
HI .... RI +] 

HI .... HI-] 

H2 .... MfRI] 

R1<- HI - l 

MIH II ..... R2 



524 0 CHAI'TER I I I INSTRUCTION SJrr ARCHITECTURE 

Show how Ihcse inSltuctions can be used 10 pruvide the equivalent of PUSH 
and pop by using Ihe instructions and register R6 as the stack pointer. 

11- 12. A complex instruction. push regislers (PSHR). pushes the contents of all of 
the registers onto lhe .Iack. There are eight regi'ler .. RO through R7. in lhe 
CPU. A corresponding instruction . POPK pops the $a\'ed contents of the 
regi'le,,; back from Ihe 'tack inlo the registers. 
(a) Write a regi'ter uansfer dcseription for the execution of PSHR. 
(b) Write a register transfer description for the exec ution of POPR. 

11-0. A computcr wilh an independent 110 sy'tem ha, Ihe input and output 

TNR[DRJAORS 

OUT ADRS R[SB] 

where ADRS is the addre<s of an [/0 register port. G ive the equi"alenl 
instruclions for a computer with memory-mapped 110. 

11_ 14. * Assume a computer wilh S-bit words for Ihe mult iple-precision addition of 
two 32-bit unsigncd numbers, 

IFC624 7B + 0057 ED4B 

(~) Write a program to ",ccute the addition. u,ing add and add with carry 
instructions, 

(bI E~ecut e the program for the givcn operands.. Each byte is expressed as 
a 2-digi l hcxadecimal number. 

11-15. Perform the logic AND. OR. and XOR wilh the two bytes 00110101 and 
10111001. 

11_16. Oi,'en the l6-bit value 1010 1001 0111 1100. what operation must be 
performcd,and what opera nd is nccded. in order 10 

I. ) selthe Ica", ,ignilicant 1\ bits to r.? 
fb) complement the bilS in odd positions (The leftmost bit is 15 and Ihe 

rightmosl bil is OJ? 

Ie) dear the bits in odd positions to O's? 

11 _ 17. 'An R_bit registeT contains (he value 01101001. and the carry bit is ~qual 
to 1. Perform the eight shif1 operations given by the insuuctions listed in 
Table 11_5 as a seq uence of operations On this rcgi""r. 

11_111. Show how the following t,,'o noating-point Dumbers are to be added to get 
a normalized result: 

(- .12345 X 10- ') + (+.71234 X 10-') 

11-19. °A 36-bit noating-point number consists of 26 hilS plu$ ,ign {or the traction 
and R bits plu< sign fOT the ~~pon~nt. W".t ar~ Ihe large't and ,mall"'t 
poo;it iYC nonzero quantit ies for normalized numbers? 



Probl.",. 0 S2S 

11_20. *A 4· bit exponent uses an ~",ess 7 number for the bias. List all biased 
binary exponenlS from +8 tbrougb - 7. 

11_21. The IEEE standard double·precision f1ooting·point operand fonnat 
consists of 64 bits. The sign occupies 1 bit. tbe exponent has II hilS- and tbe 
fraClion occupies 52 bits. The exponent bias is 10'..3 and the base is 2. There 
is an implied bit 10 the left of the binary point in the fraction. Infinity is 
represented with a bia$ed exponent equal to 2047 and a fraclion ofO. 

(a) Give the formula for finding the decimal "alue of a nonnalized number. 
(b) List a fe,,' biased exponent' in binary. as is done in Table 11-6. 
(e) Calculate the large't and smallest positive nonnaliled numbers that can 

be accommodated. 

11- 22. Prove that if the equality 2' = 10' hOlds. (hen)" - O.ll. Using this 
relationship. calculate (he largest and smallest normalized floaling.point 
numbers in decimal (hat can be accommodated in (he single-precision 
IEEE fonn"1. 

11-23 • • It is necessary 10 branch (0 ADRS if the bil in (he lea,1 signiflcan( jX\Silion 
of (he operand in a lt1-bit regj,ter is equal (0 I. Show how this can be done 
wilh Ihe TEST (Table 11·7) and BNZ (Table ll ·~) inSlructions. 

11- 24. Consider the (,,'0 8·bi! numbers A m 00101101 and B _ 01101001. 
(.) Give the decimal equivalent of each number. assuming (hat (I) they are 

unsigned and (2) the)" are signed 2's complement. 
(bl Add the two biM,)' numbers and interpret lhe sum. ","uming lha( the 

numbers are (1) unsigned and (2) signed two'S complement, 
(e) Determine the "alue, of tbe C (carry). Z (zero). N (sign). and V 

(o"erHow) Slatus hits after lhe addition. 
(d) List the conditional branch instructions from Table 11·8 (hat will have a 

true condition , 

11- 25. ·The program in " computer compare, two unsigned numbers A and B by 
perlorming a . ubtraelionA - B and updating the 'laty, bits. 
Let A - 01011101 and B = 01011100. 

(8) Eva)u"tc the difference and interpret the binary result. 
(b) Determine the value, of statu. bilS C (borrow) and Z (zero), 
(01 List the conditional branch instructions from Table 11-9 that will h."e a 

true condition 

11-26. The program in a computer compare, two signed 2's complement numbers 
A and B by performing sub(raetion A - B and Updating the Slatus bits. 
LetA = IIO l l11OandB - 11010110, 

(al Evaluate the difference and interpret the binary resulL 
(bl Determine Ihe value of statu, bits N (sign). Z (zero). and V (o"e,flow). 
«) List (he condit ional branch instructions from Table I 1-10 tha t will have 

a tr ue condition, 



526 0 CHAPTER I I I INSTRUCTION SET ... RCHITECTURE 

11- 27. "The top of a memory stack contains 3000. The slack pointer SP cont.ins 
2OJO. A two-word procedure call instruction is located in mcmory at 
addre.;s 2OJO. followed by the address held of 0301 at locat ion 2001. What 
are the contents of Pc. SI'. and the top of the stack 

(~I before the call instruction i, fetched from memory? 

(b) afl~r the call instruction i< cxecuted? 

(el after the return from 1he proced ure? 

11-2!1. A computer has no stack. hut instead uses register!n as a link register (i .e .. 
the computer stores the return addres< in !n). 

(a) Show tho regist~r transfers for a branch and li nk ;nmuct;on, 

(bl Assuming lhut another branch and link is present in the procedure 
called. ,,·hal action must be taken by ooft ,,'orc before the branch and 
link occurs'! 

11 _29. What are thc ha\ic difkrcn~e, between" branch. a procedure call .• nd a 
program interrupt? 

I I_JO. ' G ive fi,'c examples of c,lernai in terrupts "nd five e,"mples of internal 
interrupts. What is the difference between n software intcrrupt and a 
proctdurc ~all ? 

11-31, A comp uter re'ponds to an interrupt request signal by p ushing onto the 
.tack Ihe contcnlS of the PC and thc current PSR, The computer then reads 
new PSR contents from memor)' from the location given by the interrupt 
vector address (/VAD). The fors t addres< of the service program is taken 
from memory at location IVA D + 1. 
(a) List the sequence of microoperations implement ing the inlerrupl. 

(bl List Ihe "'quence of microoperat io ns im plementing the return from 
inte rr upt. 



RISC AND CISC 
CENTRAL PROCESSING 

UNITS 

T he cenlr81 processing Unit (CPU) .. II'Ie key _' ..... 1IIfII 01 a digrtaI CQIIIPO.IIet. "* PU-poM is to IIocode inslJuctionI .-Irom """""'Y and pe<IoIm 
ira ....... arllhmetic. logic. and oontrcl __ 110M willi dala ltored in inlimal 

regos'",,", ~. or 110 "'terlace unns. e ...... MIty, lhe CPU proWIee one 0/ more 
buses 10< ir8.l\IIferrlr.g Instruct""" . data, aM oonl.oIlnfDlmotion 10 and Irom 
compor.enll COIl'*1ed to it. 

In !he generlc~ ... at the beginning 01 Chapl ... I, tile CPU is. per1 oIlhoe 
proce$SOI' and is I>eaWy ~_ CPUS, "--<. may also appear _. in 
compuIe<s. StnaJI, reIaIiveIy simple 00II'Ip<IIe!S called ~ ara UMd in 
compuIefS ...., In _ ~ systeIT-. 10 pe<bm Imiled or spociaIiz9d ...... fot 
example, a " ........ 'b ...... prosenI in 1M ~ and In the ".,.,.... In Ihe ~ 
compuIer; Ihue., _ ~ ar • ...., _.In such " ......... '" ........ "­
CPU may bit QUiIe _ from _ diIcuued In !his ~ lha 'M>fd IoIngIht 

may be _ , (fl. II .. 0'igIl1 bils), the number oIl'8gISIfIn small, and !hoi .... 00Ii0n _ 
limited. p."lonTllmoe ....... bve/)' spGal<ing, • low, Ilut adcqL>ate. MosIlmpo<tam. the 
0051 01 U, .... moc:rooontmIIera i6 very low, """'''9 Iheir use cos! ef!<.l<;live. 

The approach In!!'Hs chapt8<t>uikls upon and pal'll llelS that in Chapter 10. II t>&glnl by 
COI'M'r1ing the datapam ;" Ch&j)!ef 10 to 8 p/gelined datapalh. A popeIjrllld control unit 
is a<1r:WIlO loom a rIOu<:ed irostruction sel comput« (RISC) lllal is ..... 1OgOo1i1O the 
siogIe..:yde oompu\8f. _ I:ha1 ariM _ 10 "" "'"" 01 pipeIiniog ... introduced 
and -.mons .nt oIIenod in tOO comm 01Il>0l RISC <IIIIIql. Next. "'" oontnII unit ;. 
aug_ 10 ptO¥Ide. compIo>: insCrucIion ... compuIeI' (elSC) Il0;01 .. an·'oOO'1I1O 
the ~~. A btiaI_ 01 oome 01 the methodII used 10 
"""" ..... ...,...01<1 JIIoce,SOI ""rIormanoI " PI" 0I0d. FnaIIy. we mIa,- ... cIMign 
KIeas diIco'llitd 10 QOIW8I digilal syslem dIHign. 

o 527 



528 0 CHAI'TE'" 12 f P.JSC AND CISC CENTIlAL P .... OCf.SSING UNITS 

12-1 PIPEUNED DATAPATH 

Figure 10-17 was used 10 illumate Ihe long delay path presenl in Ihe single_cycle 
computer and lhe reSUilanl clock frequency limil . Wilh a narrower focus, 
Figure 12_I(a) Illustrates maximum dela)· ,·alues for each of the components of a 
t)"pical datapath.A maximum of 4 ns (3 ns + I ns) is required to read two operands 
from Ihe register fi le or to read one operand from the register file and ohtain a 
constam from MUX B. A ma~imum of 4 ns is also required to exe<;U{e an opera · 
lion in the functional unit. Finally. a maximum of 4 ns (I ns + 3 ns) is required to 
write the result back into the regisler fIle. including the delay of MUX D. Adding 
these delays. we find that 12 ns arc required (0 perform a single microopera(ion. 
The maximum rate at which the microoperations can be performed is Ihe invel"5e 
of 12 ns (i .e.. 83.3 MHz). Thi' is the maximum frequency at which the clock can be 
operated. since 12 ns is the smallest doc\; period (hat will allow each microopera · 
tion 10 be completed with certainty. As illustrated in Figure 10-17. delay paths that 

j 

R03i"" r,., 

.\tUX B 

F.""""n """ 

MUXI) 

(')O:><1'"<nllOllOl 

3
1
o, , 

'I 
" 

'" -- -". 

I 
,", 

, 

'" --
" 

" "' , 

'"' " -----.. 
, 

o FIGURE 12-1 
D.l.path·fiming 

L 
~, 

- -
RoSi",,, fil< I 

.' n. 

MUXI.l 
I ' co 

- -
,co 

I 
Functioo ,oil ""' 

F-- - . ,,, 
MOXO I , I' 



t2_1/I'irtlin«lIJ.<op>,h 0 529 

pa .. through both the datopath and the cOntrol unit limit the clock fn:<.jucocy to an 
':.cn smaller value. For the dat apath alone and for the combination of the d.tapath 
and COfltrol unit in the single-qcle computer. the execution of a microoperalion 
"o'''l it ulc~ Ihe cXc<:ution of an instruction. Thus. the ratC of ,,"(cutioo of inslrue· 
tions equals the dock frequency. 

Now suppos.e th.t the datapath neeution rate is not adequale for a panicular 
application. and Ihal Ihere .re no faster components available with " 'hieh to 
reduce the 12 os required to complele a mi<TOOJ)Crolion. Sti ll. it may be possible 10 
reduce Ihe dock period and increa", the doc k frequency, This can be done by 
breaking up Ibe 12-n. delay path with regi.te .... The re.ulling datapalh .• kelChed ;n 
Figu re 12·I(b). is referred 10 as" pipdi1led dmGptJlh.or jusl a pjptli"~. 

Three sets of registers break the delay of the original datapath into thle<: 
parts'llIese registers aN; sho,,'n crosshatched in blue. The register (,Ie contains the 
first set of regisle .... Crns,· hatd.ing co"ers only the top half of the register file. 
since the lower half is viewed as the combinational logic that selects the two regis· 
ters to be read , The two registe .. that store Ihe A data from the regiSler file and the 
outpu t of MUX II conSlitute the sccond SCI of regislers. The th irJ sct of rcgister~ 

slores the inputs to MUX D. 
The term "pipeline:' unfortunately. does not pro"ide Ihe he" analogy for the 

corresponding dMapalh Structure, A better analol\Y for Ihe Jalapalh pipeline is. 
producliOfl line. A common illustration of a production line is an automated car 
wash in which ea .. arc pulled through a series of Slat ions at " 'hich a porticolar stcp 
of car washing is performed: 

1, Wash· Flush with hot. soapy water. 

2, R inse · FlllSh wilh pJ ~in warm waler. and 

), Dry . Blow .ir over the • ."face. 

In Ihis ""ample. the proct:s~ing of a "chicle Ihrough the car ",ash cooSiSI. of thre.., 
.teps and requiN:S " c<ortain amounl of time to complele, Using Ihis analogy. Ihe 
processing of 8n irls"uetion by a pipeline con,ists of" > 2 steps and "'Guirn a C<Or· 
tain amounl of time to complete, The length of lime required 10 process an instruc­
tion is call ed the /metley Ii",,,. Using the car wash analogy. the latency time i, the 
lenglh of I;me ;t wkcs for a car 10 pass through 'he three Slations performing Ihe 
three Sleps of the process. This lime remains the same regardless of whether there 
is. single car or there are Ihree ca,.. in the car wash at a given rime. 

Continuing this "nalogy. with the pipeline data path corresponding to the car 
,,·ash . what correspond. to the nonpipelined dalapath? A car wash wilh all of the 
sters available .1 • single Slat ion. wilh the SIers performed serially. We now can 
compare the analogies. thereby comparing the pipelined and nonpipelined datap. 
at h. For the multiple Slation car wash and Ihe single Sialion car wash, the latencies 
are approximalely Ihe ... me. So by going to the multiple station car wash, there i. 
no decrease;n ,he . ime required to wash a car. However, suppos.e Ih.1 We consider 
the frequency at "h;ch. washed car emerge. from the two type' of car washes For 
the single station car ,,'ash. Ihi' frequency is the in"erse of the latency time. In con_ 
trast. for th" multiple stalion car ",a.h with three "ages. a washed car emerg~'$ al a 



530 a CHAPTER 12 II"-ISC AND ClSC CENlRAL PROCESSING UN ITS 

tequ~ncy J tLee IL", IL L"~r'" J IL laloncy Jme. ~m'. IL rc !s • )aotor J 
three improvement in Ihe frequency or rat~ of delivery 01 wa'hed cars. Based on 
the analogy 10 pipeli n~d dMapath' with" slages and nonpipelined datapalhs, Ihe 
former bas a pr""" .. ing rale or th",ug/,plll for insuuctions Ihat is" times I~ a( of 
the laller. 

The desired strllcture, based on Ihc nonp ipdined. conven(ion~1 dat"path 
described in Chapter 10, is sketched in Figure 12-I(b). The opera nd fetch (OF) is 
,'age 1. Ihe execution (EX) is . ,age 2. and the write-back (WB) is . " ge 3. These 
<t.ge< are labeled at their boundarie, with appropriate abbreviation .. At Ihis poinl, 
thc analogy breaks down ~omewha\ because Ihe cars move smoothly through Ihe 
Car wash while Ihe dala " 'ithin the pipeline mo"c, synchmnously wilh a clod COn · 
lrolling Ihe m("'emenl lrom 'Iage 10 slage. Thi, has some interesting implications, 
First of all, Ihe mm'emenl of the d.ta th rough Ihe pipdine i< in di ocret~ steps 
ralher than cOnli nuou~ Second. thc lenglh of lime in e.ch of lho stage, musl be Ihe 
clod period and is Ihe same for all stage .. To pro,'ide Ihe mechanism separating 
Ihe stage, in Ihe pipeline, regi<ters arc placed between Ihe stages of Ihe pipeline. 
These registers pn:)vide lemporary storage for data passing through the pipeline 
and are called p'pe/;II" platf"'m.~ 

Returning to the pipeli" ed datapath example in Figure 12· 1(b), Stage I of the 
pipeline has the delay required for reading the register file followed by selec(ion by 
MUX B. This delay is 3 plus I us, or 4 ns Slage 2 of the pipeline has the 1 ns delay 
of the plalform pl us the 4 ns dclay of Ihe functional unil, gi"ing 5 ns Stagc 3 has 
Ihe I ns delay of the platform . Ihe delay for Ihe selection by MUX D, and the Jday 
for wriling back inlO the regis,er fi le. This delay is I -t I -t 3. for a 1<)tal of 5 n .. 
Th Us. all ftip- ft op---Io---flip-flop delay, are al mos( 5 n~ allowing a mini mum dock 
period of 5 ns (assuming lhat the setup times for the fl ip.flops are wn:») and" max­
imum clock frequency of 200 MHz. compared with the 83.3 MHz for the single 
stale dalap.lh. Tlli, clock frequency correspond, to Ihe ma"imum throughput of 
the pipeli ne which is 200 mi llion inSlructions per second. about 2.4 limes Ihat of 
Ihe nonpipelined dmopath. Even though thue arc three stage~ the improvement 
faclor is not three. This is due 10 two facto,-,;: (1) Ihe delay eonlrihutoo by Ihe pipe· 
line platform, and (2) the differenc", between (he delay of Ihc logic assigned 10 
each stage. The cl ock period is governed by Ihe longesl delay. rather (b,," the ""cr­
age dday assigned to any stage. 

A more detailed diagram of the pipelined datapath appea,-,; in Figure 12·2. In 
,his diagram. rather than shol"ing Ihe path from (he outp ut of MUX D to Ihe regis­
ter file input. Ihe register file is ,hown Mice-<mce in the OFstagc. where il is rcad. 
and once in the WB slage. ,,'here it is written . 

The first stage. OF, is Ihe operand INCh stage. The operand fetch consists of 
reading register values to be used from lho regi'ter file and, for Bus Ii seleCling 
behwen " register value or a conslan l by using MUX B. Rlliowing the OF <lage is 
Ihe firsl pipeline platfonn. The pipeline registers store Ihe operand or ope"mds for 
uSC in Ihe ncxI slage during Ihe next dock cyd~. 

The second .,ag. of the pipeline is the execute 'Iage. denoted EX . In this 
,tage. a function uuil operation occ urs for most microoperations, The resulls pro­
d uced from Ihis stage :Ire captured by Ihe second pipeline platfonn 



0. , 
0,.._ 1'<1<11 ,01') 

0. 

." 

----- - ~'I!IOI<' ". M · , .. B<Io" 

eo...t.ool '" 

NUXB 

----- -

, , - ,--, 
, 
, 

--------.-

.ni, 

, 

I I 
Mll-j 
. , 
MUXD 

I ,. 
() <II" ---6';\ -":":'; "-nlo<_ ... .,.,...) 

C FI GU RE 1102 

-- -- -------
M 

"" 

.----- - . ... 
AIld"".o." 

Do .. O<J L 

0." i" 

---------..... 

------------... 

BkJ<t Diaa:ram <>f Pipchnod In'.path 

The . hird And fin,l "age of lh~ pi"eline is the " Tile-back Slagc. denoted \VEl 
In th is Slage, the resu lt saved from the EX stage. o r the v. lue on Data in. i. 
se lected by MUX 0 and written back Into Ihe register file at Ihe e nd of Ihe stage. 
In ,hi. case, lhe write part of the register ftle is Ihc pipeline plM form . The WB 



53 2 0 C H APTER 12 f Rise AND CISC CENTRAL PROCESSING UNITS 

Slage oomploles the execution of each microopcration that requires writing to a 
regi"er. 

Before leaving the car wash analogy, we examine the cmt of the single ­
stage car w~,h versus that of the three·stage car wash . Firs!. even though thc 
three-Slage car wash wash", ve ll icles three times as fast os the .ingle-stage car 
wash doc •. it cos" three ti mes as mucll in ICrm, of space. Plus. it hM the ovcr­
head of the mcchani~m to mo"e the cars along thro ugh the stages. So it appeo" 
th aI it is not "cry cost effective compared with 11",'ing three single .stage aSSem­
bly stations operating in para ll el, Nevertheless. from a business sta nd point . it has 
proven to be cosl effective. In terms of the car wash, can you figure (lut why? In 
oonlra.c for the pipelinod datapath. pipeline platform, cut a single datapath int(l 
three pieces. ThUs. a first order est imatc of the coSi increase is mainly that of the 
pipeline pla tforms. 

Execution of Pipeline Microoperations 

There are up to three operations", ""me "age of completion in the car wash at 
any given time, By analogy, we should be able to h,,'e three micmop<"ralions at 
some "age of oompiction in the pipc lined data path at any gi\'en time, 

We now e . amine Ihe execution of tllis sequonce of micfoop<"rations with 
respect to the stages of the pipeline in Figure 12·2, [n clock period I. microoperation 
I i. in the OF stage. In dock period 2. microopcration I is in the EX 'tage. and 
mierooperation 2 is in the OF "age, [n clock period 3. microoperation I is in the WB 
stage. microoperation 2 is in the EX stage. and mieroop<"ration 3 is in t h~ OF stage. 
So at the end of the third clock period. microoperation 1 has completed e~ecUlion . 
microoperation 2 is two-thirds finished, and mkrooperatl(ln .3 is one· thi rd fi nished , 
So we have completed 1 + 213+ 1/3 m 1,0 microopcrations in three dock periods,OT 
15 ns. [n the conwntional datap.th. we would have completed execution of micro­
operation I only, So, indeed . the pipelined datapath pe rformance is sUp<"rior in this 
exa mple. 

The procedure we have been ""ing to anal)"le the sequence of microopera· 
tions so far is ~omewhat tedious. So to finish the analysis of the timing of the 
sequence, we will use a pipe/ill< <",e!ll;on p'mern diagram, as shown In Figure 12·3. 
Each vertical posit ion in thi. diagram represents a microoperation to be per­
formed. and each horiwnlal position represents a dock cycle. An entry in the dia­
gram represe",s the stage of processing of the microoperation , So. for example. Ihe 
execution (EX) stage of microoperation 4, which adds the constant 2 to RO. occurs 
in dock cycle 5, 

We c3n .ee from the overall diagram that the sequence of se~en microopera­
lions re<[uires nine dock cycle. to exccute completely, The time required for execu · 
tion is 9 x 5 = 45 ns. oompared to 7 x I 2 ~ S4 nS for the conventional dat.p.th, Th Us. 
the seq uence of microoperations is executed aboul 1.9 times faster, 

Now lot us e,aminc tile pipeli ne execution pal1e rn carefully. In the firs! two 
clock cycles. not a ll of the pipeli ne .tages are active. since the pipeline is filling, In 
the next fi"e clock cycles. all stages of the pipeline are active. as indicated in bl ue, 
and !he pipeline is fully utilized , [n the last two clock cycles. not .11 <tagcs of the 



JI~'11 I" P~l"'l~l ~'u ,~8ul' ""~'lL 't ~~"I i U!"! OI!'" ~IY 'JI'!~~' ~41 PU" 'f ~8ul' 
u! :ua JI!'''' pue pUl ""ow,w UWp 1'''" I!Un UO!I,un) '41 '1. ,SUI" '" ,""U ~'" P"" 
' IY .ull'!ii;)J puu '~I""""P U"!IJn'I'U! ~lU 'JU!lod,d P~U!qwoo '41 JO I ~hlS '~W""""'I 
ii'll '''''<HU~'U ""!I"'I'I'U' pU.:>'/ ~41 """"I'U! 1"41 4'PJ uOlI>n,,,u!.>OJ ,8ul' P"Pl'" 
UI '"'I jOJ,uoo ~'lL 'Z'll ,mild 10 1"41 SO 4111del"p "'U. 'J'IIIdwoo ,ph-OISU!. 
'41 "" p:.seq mlldwoo P,ullod!d , JO wUJ~"'P :POI'! .... 1 ~ .... Zl ;unS!:! 

"JU!I "41 
1l""'P ~,\Ow I'''' .. '" ''II $;>!uoowoo.>t! ·""'PlUI.U! ue 01 <nO!Io!.u, " '1"'4·" 'IJJ4S 
J"Pm OIl!. • .to .... 01 4' ..... "'" "'II jQ ....sUI< "'II UI p,wJOJJod JUOlPlInJ '41 I!uuod 
1"41 '1""pUOn8 uu ~q ponprud "1"4' 'JilJ" ~q p,y':>:><!s 'U" 4'1!." lUO "41 UI 'UOII" 
.• :xIo 34I'~'OW"W UO!PIIl"U! ~41 WO'J '1010J UO!"lIlts,,! '41 OI.noSoIUIIV '''''!I_ 
1"41 "! " "!IU"Sn ll! ,oJ p""n 'Is.,,, Jao ~n0801 "UU '41 01 ,8"1< u ppU 3'" 'P" ,",JXJ se 
113'" ill " ,owow U WOJJ P'4'PJ "'llinw UOl IJn" , U! ' 'II ,,,U!S 'UO!I);>!i I"el ''I I W01J 
4uld.l"p '41 h!"" Aq Od:J U :>:lnpo,d 01 P~Y':>:><!s" Imn IOJIIIO.>. 'UO! I""" '!41 UI 

10ll.LNO:> 03NlT:ldid Z-tl 

"UOII»r""' II~;>U ' 41 UI 
P'":MOO "ll--Spl"'"4 3U!lod!d '11~'" S"!II'P PUI 41oo01"P p.>II!lod,d '''''J I! Un 1011 
-Il00 • 'Ilu!P!Ml,d "81101UOO U~UII;xl!d 4' jJI\ PJI"~ ~I IUUOlIIPPV "t·, jQ 

wnw!x.w '41 "'Ol"'l p,ods ,ull"d!d '4 ' ",,"pJJ ~ ul."dwJ puo lIu !IlY 1~41 ~loN ·~uo 
I~UOI IU"~UOO ~4 1 JO 1"41 S~W !I t·~ 1'! ~ 1"duI~P p~u !l"d!d "41 JO Ind '18no'41 ''I I ,e4\ 
"., ~." 'UU!WRI" IC ~P' " 41 u l '41"du,up I" U OII U~~UOO ~4 1 ,. 'W II II ~,'!S H UI <"O!I 
-e13(lOOJ'iW "UUW ,e ""wil t', " fflO·t ... ~ " .... I~ ~In"~~~ 4,~dulcp P,u!!;)d!d ~4 1 
OS "UOllu,><IooJJlW fliO', _ ZI "'!;l ~In~x' 41udelep !"UOIIU .• "uoo "II '~W!l ~w .. 
~'11 Uj 'Sll !;l UI SUOtI",:odooJJlw ~ _ ( ... (E " ~) <:>In.»n ~UlI><l'd "'II 'L IJSno141 
E ..... ph ~:IOp JAy .... ~41 ':M() '~!I'ln ~lInJ S! ""!Iodld ""I u .... '" 0. ... ' .... 1 ~,oowoo 
"',' '~UQ I."""~"-"to:> "'II ".\0 '1111d¥lfP P3U'lodld 341 JO Iu'w~dwi "I'll""'" 
WnW!XlW 341 puy OljUU." '"' Jl 'ilUJJ"J",~ S! ""'Iodld "'113"'1$ ";MlpO! OJ. ;>Ul lodjd 

."'''>f1~ ",,!llUodowJl~ 'OJ W'''"d """n"",, ><ll l""!.! 

,. " '0 .. " •• 

• • , 

'0 

" 
~ 

• 

~ 

" ••• 

, 
""" ,~ 

((S 0 )OoUO'I>:l~!d Il-n 

'0 
<, 

"' 
, 

N I :Htn~l.~ 0 

~ , .. _",'" , \I .... SII 

• II! .. 0(1 .... t il 

• 01 .... "'0.,0(1 

, l - III1_ I!:I 

~ , I • LII_LII 

" ~ , 9~ I' ..... ~ 

"' " '0 '" ~H_1H , , 



5 3 4 0 CHAPTER 12 I RISC AND CISC CENTRAL 1'1 • .oCESSING UNITS 

, 

Slate , 

.. 

------ '" j 
Add,.,.. 

In""",;",. 
me"",,)' 

In>tru<1;"" 

------ .. ------------- R<~~"r 
fd" 

" Ado .. a~ ... " 
z"rofLIl 

In",""';"" &co.k, j 
MUX ~ M' 

i ,,',.1. j j 
Dot. A ~"" ----- ---------

~ A<I<.I",,,,,,,, 
MW 

~= 
, , 

,~-

0- Fu",,';'" 
0" ,- ""it ,- --ry 

,- , [J, .. 001 

Dot. i" 

I o"H ... ' MW 

o ... F 0." I 
, 

--------- ---------- 1""'- , 
0, .0 " "'" .0 MUXo m,"",> 

( .. m ... 
• bove) 

OW =-----------------------tfA-~ 

fil« .. "", 
CONTROL oATAPATH ... bove) 

o Fle UR!': 12·4 
Block Di.grom of Pipeline<! Compu'e< 



12-2 I l'ipe(i,o.<d c.:...<roI 0 535 

boundaries with appropri.te abbreviatiom .. In the figure.. we have added registers 
to the pipdine pJat fonns belween Siages.. as necessary 10 pass Ihe decoduJ instruc· 
tion information Ihrough Ihe pipeline along wilh the dala being process.e<i. n..se 
addilional registers serye 10 pas$ along the inslruction infonnation. JUSt as order 
information was ~d along in the car wash. 

The added first stage is the instruction felch stage. denoted by IF. which 
lies wholly in the rontrol. In this stage. the instruction is letched Irom Ihe 
inslruction memory. "nd the value in the PC is updated, D ue to additional com­
plexities of handl ing jumps and branches in a pipelined design. PC update is 
restricted here to an incre ment. with a more complete treatment provided in 
the ne~t section. Between the first stage and the !oerond stage is an interstage 
pipeline platform that plays the role of instruction regi"er. so il has been 
labeled IH 

In the second slage. DOF for decode and operand felch. decoding of the IR 
into control signals takes place. Among the decoded signals.. the register file 
addressesAA and BA and the multiplexer control signal MB are u!oed in this stage 
for operand fetch. All other dc~oded control signals arc passed On 10 Ihe nc~t pipe­
line pJatfonn .. lO be used later. Following Ihe DOF stage is the second pipeline plat ­
form. whose registers itore control signals to be used later. The thiro ~Iagc of the 
pipeline is the execu lion stage.denOled EX. In this stage. an ALU operation. a ,hif! 
operalion. or a memory operation is executed for most inslructions. Thus. the ron· 
tn)! signals used in this stage are FS and MWlne rud part of the dala memory M 
is con,idered a part of the 'Iage. For a memory read. the value of the word 
addres>ed is read to Oata out from the data mcmory. All of the results produced 
flom thi, '\;Ig", plus the control .ignal, for tnc la't .tage. are captured by the third 
pipeline platfOf m. The wrile part of dala memory M i. considered a part of this plat . 
form. SO a m~mory write may OCCur here. The control infonnation held in the final 
pipeline platform consists of DA. MD. and RW. which are used in the final write· 
hac~ stage. we. 

The location of the pipeline platforms ha, oolance<! Ihe partitioning of the 
delay<. so that the delays per stage are no more thai 5 ns. This gi~es a potential 
mo> im um clock frequency of 200 MHz. about 3.4 times that of the single-cycle 
computer, NOie. however. tnat an instruction takes 4)( 5 - 20 n. to execule, This 
latency of 20 ns compares to Ihat of 17 ns 1.,,- Ihe single-cyde computer. So if only 
one in,auction al a limc is being executed. c,'en fewer itlStructions are executed 
per se<"Or,d than lor the single -cyde computer. 

Pipeline Programming and Performance 

If our hypot hetical car wash is eXlended to four stages. there are up to four opera· 
tions al ""me stage of completion at any given time. By analog)'. then. we should be 
ahle to ha,'e fou, in'truction , at some siage of completion in Ihc pipeli ne of our 
computCT a t any given time. ~uppose we consider a , imple ukul.tion: Load the 
ronstants I through 7 into Ihe ..,ven registers HI thnmgh R7. respectively.The pr<>­
gram to do this is as folio ..... (the number on the left is a number 10 identify Ihe 
instruction): 



536 a CHAPTER. 12 f IUSC AND elSC CENTR.AL PR.OCIiSSING UNITS 

LDI Rl 1 , LD I R2,2 , LD I R3.3 , LDI R4.4 , LDl RS. 5 

• LDI R6.6 , LDI R7.7 

I.<:t us cx.mine (he execution of (his program with respect (0 the stages of Ihe 
pipeline in Figur~ 12-4. We cmploy Ihe pipeline execulion pallem diagrom shown 
in Figure 12-5. In clock period l. inSlruction I i, in Ihe IF stage of the pipelinc. In 
clock period 2. Instruction I is in Ihc OOF slagc and inSlruClion 2 is the IF . t.ge. In 
clock period 3. in,(rUClion I i. in (he EX 'I.gc. in,truclion 2 is in Ihe DOF slag'" 
and inslruc tion 3 i, in Iho IF stage. In dock period 4, inslruclion I is in Ihe WB 
stage. inslruclion 2 is in Ihe EX "I'ge. inslruclion 3 is in the DO F ,Iage. "nd 
inSlruction 4 is in Iho IF siage , So al Ihc end of the lounh clock period. inmuclion 
I has cOnlpic lcd e,cculion, inmucl ion 2 is Ihree-fourlhs finish~d. in,trUClion J i, 
half finished. and inm ucl ion 4 is one_fo un h finished, So we have OOnlpleled I + 
314 + 112 + 114 = 2,5 inmuclions in four clock peri<.>ds,or 2(1 ns. Wc can..,e from 
the o"erall diagram thai Ihc wmplCIC program of seven instructions requires 10 
clock cycles to ",ccute. ThUs, !he lime required is .SO n S, com pared 10 119 ns for Ihe 
. ingle -cycle comp uter. and Ihe progr"m is executed aoout 2.4 limes faster. 

Now su ppose !hal we exami ne Ihe pipeline ~ ,ccution p"ltern cardu ll y. In the 
firsl three doc~ cycle" nOI all of the pipeline stages are adi'·e. since Ihe pipeline i, 
ji liitlg. In Ihc next four dock cyde>. all slages ofthc pil"'line are active. as ind icated 
in bl ue. and Inc pipeline is full)' u! ilized. In the lasl three dock cydes. not ,,11 "I"g'" 
of Ihc pipeline are aCli"e. since !he pipeline i. empIJi"IJ. If we wan! 10 find the 

, 
, 
• , 
, 
, 

I ""n"'"", 

, 

IF DOF EX WB 

o FIG URE IZ-5 
Pi peline Execution Pattern of Reg" lcr Numbe r I'rogram 



t2_J tThe R<d<>e<d tm'n>eri"" 5<. 0>"'" ...... 0 537 

maximum possible improv~ment of the pipelined computer O\'e< the single<yde 
computer. we oompare th~ two in the situation in "hich the pipeline is fully uti­
li,ed. O"or th""" four dock cycles. or 20 ns. the p'pclin': uccuWs 4 )( 4 + 4 _ 4.0 
instructions. In the same time. the 'ingle.ryclc computer executes 20 + !7. Ll8 
in struct ions. So in the best case. the pipel ined computer eXl'Cute, 4 + U8 .. ),4 
time, a, many imlruction. in a given time as Ihe singlc-cydc computer doc .. In Ihi. 
iddl siluat ion. we say Ihal Ihe throughpul of Ihe pipeiined computer is 3.4 limes 
that of the 'inglc<ydc oomputer. NOle Ihal e"cn though Ih~ pipelin~ ha. four 
stages. th~ pipelincd computer is nol four limes as fast as Ihe .inglc<yek com­
pulcr. because the dda)'" of Ihe lauer cann,,1 he dil'ided exactly inlo four equal 
pieces and Ihe dela)'!' of the added p;pelin~ platforms. AI",. filling and empl}'ing 
the pipeliM reduces its speed eno ugh th ai Ihe .peed of the pipelined computer is 
leS$than Ihe ideal maximum speed of3.4 lime, as fasl as Ihe single-cycle computer. 

The sludy of Ihe pipelined rompuler here, along wilh Ihe single""')'Cle com­
puler and multiple.rycle computer in Chapler 10. complete, our examinalion of 
thr" ... computer ronlroJ organizations. Bolb the pipelined dat.palh~ and Ihe ""n­
lrol, we have studied here arc simplified and missing elemenls. Nexi we prescnt 
Iwu epu designs thaI illuSI",tc ,,,mbin.tiu", of archite"Ctur.1 characleriSlies of Ihe 
instruction SCI. Ih. data path . and the control unit, The designs are lOp down. but 
reuse prinr componenl de,igns. illu'lraling Ihe in/ll1Cnce of Ihe in'I,uclioo sct 
archilecture on Ihe d.tap,uh and rontrol unilS. and the inlluence of !he dalap.lh 
on 1M control unit . The material makes eXlensive use of lables and dia!',Tams. 
Although we reuse and modify componeni designs fmm Chapler 10. background 
informalion from Ihese chapters i, not repeated here , Pointer>.. however. are &i"en 
tu earlier ""elinn< of the Doo~, where delailed informalion Can he found. 

The Iwo CPU, presented are for a RISe using a pipelined dalapath wilb a 
hardwired pipelined ronlrol unit and a c lse based on Ihe RISe using an auxiliary 
microprogrammed control unit. Th""" Iwo design' represenl Iwo di,tinct instruc· 
linn SCI archileclure, with archilecture, using a common pipelined rore Ihat ron ­
tribUle. enhanced performance. 

12~3 THE REDUCED INSTRUCTION SET COMPUT£R 

'll,e firsl design we examine is for a reduced instruction sel computer ,,·ith a pipe ­
lined da"'p.th and conlrol uniL We begin by describing Ihe RISC in"ruclion SCI 
archilect ure. which is characterized by loadislore memory access. four addressing 
mod~.,., a single in'truClioo fnrmat length . • nd in'lruclion. Ihat require only ele­
menlary operations. The opera lions. r<!5Cmbl ing Ihose Ihal C'dn be performed by the 
singlc.ryde computer, can be performed by a single pa" through the pipeline. The 
datapalh for implementing Ihe fSA is based un the single""')"elc dalapalh inilially 
described in Figure 10-11 and converted 10 a pipeline in Figure 12-2, In order to 
impleme nl Ihe RiSe instruct ion SCI ,",chilceluTC, modif,cations arc made 10 lhe 
regi.ter tile and the functiun un iL The"" modifi",lion. repre""n! the effeels of a 
longer inmuctioo .... ord length and Ihe desire to include mulliple poo;itioll mifts 
amung Ihe elemenlary operations. The e<>nIr<>1 unit i. hastod nn Ihe pipelined 



S38 0 CHAffE.JI. 11 1 RISC IIN I) elsc CENTRAL PROCESSING UNITS 

rontrol un it in Figure: 12-4. Mod'1\cati ..... include w pport for the 32-bil Imlruc1ion 
word and a """"" e~.ensivt\ p10Vlm coun.er Siructure for dealln, " ilh branches In 
.he pipeline en,·ironmen t. In response 10 da •• and con.rol hazards U$Ocilled "'ilh 
pipeline<! designs,addilional chan~ will be made 10 both lhe Wnlrol and dal apalh 
10 sustain lhe perfonnan<X &lIln aehie,'cd by using" pipeline. 

Instruction Set Architecture 

Figure 12-6 shows Ihe CPU r~gillers ~ible to Ihe programmer in th is RISe. 
All regiSlcB are 32 bit .. The register file ha. 32 registeT3., RO Ihrough R31. RO is a 
opecial register thatnpplies tile value ZerO when used as a iOUrce a nd discard!! the 
result " 'ben used •• a <kstinaiion. 'The .il.c of lite programmcr-aa:ess,ble replle, 
fi le is comparalively Lar&C in tIM: RISC because of I"" ~dlslore insl'\lClIOn SC t 
arcbitecture. S,,>Ce the dIlta numiputaloon opera. ions can use only , elisler ope'_ 
ands, many acti,.., operands need to be pr5Cnl in the regisl er file. OtlM:",-i'IC. 
numcroU< storcl and Ioa<k ",'Ou ld be needed 10 temporarily saVe opera"'" in t"" 
dIlla memory between dala manipulalion opera lion .. In addition. In many rcal 
pipelin«- 'heK storcs and loads require more than one clQek C)'<'1e fOf lheir ex~­
tion. To prevent these r.."lors from degrading RISC performance, a larger register 
file is required. 

In addition to the register role. only a program oounter. PC. II pr(wid~d. If 
stack poimer-based or p'OU$SOr , tatU!l regiSler-ba,ed opera lions arc relluired.they 
arc simply imp lemented by sequences of in muetions using regiSlers. 

Figure 12·7 giveli the three instruction formats for .he RiSe cpu. Tlte for· 
mats use a single ",ord of 32 bit .. Tltis longer word length is ~d to hold 'enlisl;'; 
add ress ,"1ues. . ince additional instruclion words for holding addresses ar~ diffICult 
10 aooornmodate in tIM: RISC CPU The lirst format specific:s thrt"c ,egistcrs. 'The 
1" '0 regisle", add,<:$$C<I by the S-bit iOUrtt rt"gister 6elds SA and SB cootain .IM: 
t,,"O operand .. The Ih ird reilsler. addressed by a 5· bil dest;nalion resister field DR. 
opecific:r; the rcgi$ter loca'lOn for the rn"h. A 7·bit OPCODE PfO"idC$ for a maxi· 
mum of 128 operalions. 

~-. 

" 
• • • 

'" lIopI.' (,,. 

o }leu",.: IU 
CPU R",,51Cr Set Dial"'" for RISC 



12-' IThe "',du,"'! h""",'ion 5<. Compu"r 0 539 

1 
TWo ",,,,, .. ,_I OI'CODE I "' " Tmmc<li.a'e 

'''~I OI'COl)E "' " T>f!<,offie' 

o FlGURE n·, 
RISC CPU Instruction Form ... 

The remaining two fonnat. replace the second register ,,;th • 15·bit oonstant. 
In the two-regi.ler formal . lhe conslant acl ... an immediale operand and. in lhe 
branch lonnal, Ihe con".nl is a large' "!foel. The mrg.1 address is " nolher name 
for the effective addre ... particularly if the address i. used in a branch instruction. 
The targe, address is fortnc<J by adding lbe target offset to 'he OOn'entS of the PC 
Thu .. branching uses relative addressing based on the updated "alue of the Pc. In 
ord~r to branch bac~ward from the currenT PC location. tile offset . regarded as a 
2', com plemenl number wi lh , ign .,tcn,ion i. added to the Pc. Th~ branch 
instruction . specify source register SA. Wh ether the branch or jump is taken i. 
based on whether the SoOurce .-egister con lain, ,<,:rO. The DR field i, used 10 specify 
the regi'ter in which to store the retum address for the procedure call. FinaUy. tile 
rightmuU 5 bits of the 15-bit constant arc al ... ~d as the 'hift amount SH for 
multiple bit shifts. 

Tab le 12-1 contains lhe 27 "I'crati(ms to he performed by lhe in,tructi"ns. A 
mnemonic. an oprod •. and. register ' m nslcr description arc given for each opera. 
tion. All of the operat ions are elementary and can be described by a .ingle register 
transfcr st.tement. n,e on l)' operations that can nett$! memory are l.<:tad and 
Store. A significant number of immed iate instructions help to reduce data memory 
a=s-~es arid .pee<l up execution when constants are employed. Since the immedi· 
ale field of Ihc instruction i. ooly 15 bi, .. Ihe leftmost 17 bi,s mu.t be filled to fonn 
a 32_bit operand. In addition 10 using zero fill for logical operat ion .. a second 
method used is called sign r-xlemiQll . The mOSt significant bit of the immediate 
operand. bit 14 of the instrunion. is viewed as a sign bit. To form a 32-bit 2·s-<x>m· 
plemcnt operand.thi. bit is copied into Ihc 17 bit~ In Table 12- 1. the sign exten,ioTl 
of Ihe immediate fie ld is dcnOled by se 1M. The same notation. se 1M. also repre· 
senlS Ihe oign extension of the target offset field discussed l,reYio",fy. 

The absence of ''',rcd "e~inn, of statuS bilS i. handled by the"'" of thre<; 
instructions: Branch if Zero (BZ). Branch ir Nonzero (BI'Z). and Set if Less Than 
(St.:1") . HZ and BNZ are si ngl" instructions that determine w1lcther a register oper· 
and i. le,O or nOnzeT<.> and branch accordingly. SLT ,tore$ " "alue in regi'ter 



540 0 CH,\PTEil 12 I RI5C ,\1'11> elSC CENTRAL PROCESSING UNITS 

0 TABU; Il-l 
]IISC ' no.1ruct;"" 0""1111;,,., 

Symbolic 
-,~ NotolJOn ...- --
No Opcratioo NOP ....... ,--
~lo.·c A MOYA ,~ R[DNI .... RISA I 
A~ AI)l) ",",w N[DNI .... RISAI + RISHI 
Sub""", SUB (0))101 II\DRI <- RISA) + R(SBI .. 
AND AND ~,~ II\DR) +-II\SAj" R[SBI 
0' D' (0)1001 R[DRI +- RjSA] v R[SB] 
Exclu,i,..,·OR '0' (0)1010 II\ONI .... RISA] e RISI:II 
Comple""'"t NOT (0.11011 K[ON1 .... 1fiMl 
AM Immediate AO' 011.0010 II [DR] <- II[SA I +"" /,,., 
Sub""'" Immedia'" '" 0100101 II [DR] <- II [SA ] + (>< 1M) .. 
AND Immediat. A<' 0101000 R[DR] .... R[SAI ~ (0 II 1M) 
OR Immediate D" 0101001 II\ONI .... R[SAI v (O nIM) 
Exclu,ive·OR 

'" 0101010 RlDR] ... IIIS,1I$(O Il IM) 'rnn>o«!,.te 
AM Im,ned,.te 

"0 1(0))10 IIIDNI .... IIISAI + (0 ~ 1M) 
Un'igt><:d 
SubtrOC1 Immedial" 

'"0 1000101 K[DNI .... K[SA ] + (01 1M) .. 
Un>igne<l 
Move II .\iOVIl 0001100 R[DNI ... RISIII 
LoVeal Right Shift 

~, 0001101 11\ OR] +- I" IIISA I by 511 by SH IIi" 
l.og;.cal I.e!t Shill 

~, (0)1110 III I)NI +- bl RISA I by SII 
b~ SIt Ilits 
~ CD 00'= IIIONI .... MIRISJlIJ 
Store IT "'- MIK[S,1II+- NISBI 
Jump Register J MR 111(0)) PC +- RISA1 
ScI If I..,,, Than SlT 1100101 If JlISA j < K[SIl ] III<" JlI()Jl j _ I 
a,.""h on Zero "' "..." I(R[SA [ =O,llI<:n I'C+- I'C+ I +"" IM 
a .. ""h on Noo:<ero "" 101(0)) IfR[SAj"o,thcnI'C+-I'C+ I +..,IM 
Jump J MP 1101000 I'C ... PC+I+",IM 
Jump and link IMl 011(0)) PC ... PC+ 1 + ",IM.III0R] +- PC + I 

RIDR] tb.1 'Ct" like" ncgali~c ,Ialus bit. If RISA J is Ie," tban R[SBJ.a I is placed 
in regisler NIDNI; if NISA] is gr~aler Ihan or equal 10 NISH]. a () ; ~ placed in 
RIDR]. The regiSier RIDRI can Ihen be examined by a subseque nl instruction to 
scc whelher;1 is ZerO (0) Or nOnZem (1)_ Thus. using tWQ instructions, Ihe rei.tiw 
~alues of .... " operands or the ,ign of one operand (by lening R[S81 equal IKI) can 
be dclcrm;n~"<J_ 

The Jump and Link (JM L) inslruction provides a mechanism for implement · 
ing proc~"<lure .. The value in the PC after updaling is Slore<! in regisler RION], and 
then Ik sum of the PC and Ihe , ign·extended largel offset from the inslruction is 
placed in Ihe pc, T he re !Urn from a called p""",d ure can use the Jump Regi,!c. 



12_3 IT"" R.Ju,.J h,,"u<1ioo S<, C"mpu " , 0 541 

instruction wilh SA equat to DR for the calling procedure. If a procedure is to be 
called from within a called procedure.lhen each .",,-,=i,·c procedure that is called 
will need iI' own register for sloring thc relurn value. A software slack Ihat moVe, 
return addro, .. ",. from R[DR] to memory at Ihe beginning of a called proced ure 
and reslores Ihcm 10 R[SA I before the return can also be used. 

Addressing Modes 
The four addressing modes in the RiSe arc register. register indirect. immedialC. 
and rdati,·c. The mode is $r>C<'ified by Ihe operalion cod", rather Ih.n by a separate 
mode lield. Al; a consequence. the modc for a given operalioo is fixed and cannOI 
be v"ried. The thrce·operand data m~nipulation instruclions use register mode 
addressing. Regisler indire""l. howe\"er. applies "nly 10 Ihe load and .t"r<: instrue· 
lion$.t" c "nly instruction, that acee" dala memory. Instructions using the two·reg. 
istcr fOrmal have an immediale val ue thaI replace, regiSler addreloS Sa. Relative 
addre",ing applies exclusively 10 branch and jump instructions and so produce< 
addresses only for Ihe instruction memory. 

When programmer< want 10 u>e an addrc",ing mode not provided by the 
instfuction sct archileclure. such as indexed address ing. Ihcy must ure a sequence 
of RiSe instruction>.. For example. for an ind",~d address (or a load opo:ration.thc 
desired traosfer i. 

RI5 .... MIR5 + 0 1l / 1 

Tlti< transfer can be accomplished by execuling Iwo instr",,!ioo", 

AIU R9. R5.1 

LD R15. R9 

·l11e h"l inslr""lion. Add l mmcdiat~ lJn~igned. forms I he addrcss by ap[>Cllding 17 
O·s to the left of I and adding the result to H5 . The resu lting df""li .. e addr~s' is 
then temporarily stoTed in R9. Ne~l. the Load instruction uses lit " COll t"ntS of R9 
as the .ddress al .. hich 10 felch Ihe operand and places Ihe o[>Crand in the deslina· 
tion register RIS. Since. for Indexed addr=ing. I is regarded a.< a poo;ill." offsel in 
memory. the use of unsigned addition is awropriale. Sequences of operalions for 
implementing addressing nloOcs is Ihe primary justificalion for having unSIgned 
immediate addilio" a,·.ilable. 

Dalapath Organization 

The pi,...lined datapalh in FIgure 12·2 serv"" as the basis for th,· dalapath hcre . and 
we dea l only wilh modilications. These modification' affeCI t" " rcgist~r file. the 
function unit. and Ihe bus structu,e.lbe reader should also refer to thc dalapalh in 
Figun; 12·2 and thc neW datapalti shown in Figure t2-11 in order 10 undCI"<Hlnd futty 
Ihe disco",ion thm follows. We treal each modificalion in turn. beginning "ith the 
register file. 

In FIgure 12.2.lhere are 16 16·bil reg"I"", and 311 registe" ar~ idenlical in 
funtlion . In Ihc new d'lap",h. there ,lfe 32 32-bil r"giste,," Also. reading register 



5 .. 2 0 CHAPTER L2 I RISC ANI) CISC CENTRAL PROCFSsING UNITS 

o tlGUKE I!·~ 
Pirelined RISCCI'U 

" 



RO giv~s a wnstant value of zero. If a write is att~mpted into RO. d,e data will be 
loot. The.., changes are implemented in the new register file in Figure ]2-8. All data 
inputs and the dma OUlput arc 32 bits. To corre>pond \0 Ihe 32 regisle~ the 
address inpulS arc five bils- The f,xed va lue of 0 in RU is implemenled by replacing 
Ihe storage elemenls for RO wilh open drcuilS Qn Ihe lines Ihal were Iheir input<. 
and will1 woslanl zero values Qn Ihe line> Ihal were Iheir OUIPUIs. 

A sce<md major [JIQdihcalion \0 the datapnth is the rcptocem~nt of Ihc single­
bit p<>\ition shifter wilh a barrel shifter to permit multiple_p<>\,tion shifling. This 
barrel shifter can perform a logical right or logical left shilt of from 0 to 31 petsi_ 
tions. A block diagram for the bIt"el shifter appea~ in Figure 12-9. The dala input 
is 32_bil operand A. and Ihe OUlput is 32·bit result G. ldl1righl. a wntrol signal 
dc<Vded from OPCODE. selec" a left or right shift. The shift amount field SH .. 
lR(4iJ) specifics the number of bit positions 10 shift the data input and IOkes On 
values from 0 through 31. A logical shift of p bit positions in vol,,"s inserting p uros 
inlo Ihe result. In order 10 provide these leTOS and simplil)' the design of Ihe 
shifter. we will perform bolh the left and right shift by using a righl rotale. The 
input tQ Ihis rotale will be the input dataA w;lh 32 zeros ooncatcnatCd to itS kfL A 
right sIlift is performed by rotating the input p position. to the righl: a left shift is 
performed by rotating 64 - P IlOSitions 10 Ihe right. 11,i, nu mber of p<><iliun' can 
be ohtaincd by taking Ihe 2's complemenl of Ihe 6·b;1 ""Iu~ of 0 II SH. 

The 63 differenl rolates can be obtained by u.ing three le~el. of 4-to-l mulli· 
ple~crs. as shown in Figure 12-8. The firstlcvd shifts by 0.16.32.0< 48 po$ilions. 
Ihe ,""cond level by O. 4. 8. or 12 petsitions. an<! the lhird level by O. I. 2. or 3 p<><i­
lions. The number of positions for A to be ,hilted. 0 Ihrough 63. can be imple_ 
mented by repee..,nt ing 0 II SH a. " !hree·digi' basc-4 integer, From left to right. 
the digits have weights 4' - 16. 4' - 4. and 4" - 1. The digit ~alues in each Qf tfl.c 
posilion<; are O. l. 2. and 3. Each digit oonlrols. Ic~d of the 4-10·1 multiplc~crs, Ih.e 

I 
"I 

.l} "'(>0 \ mU"'pi<x<n (1'0"'< nlll'1I.4.&..- \ l "'! posi';""") I 
"I 

J1 Ho-I ",ul,;"..",<> (rot>(~ ritJo! O. t.2. or 3 "', I""',x-) I 

o n(;UR"; 12·9 
32-M 1I."cl Shine, 



544 0 CHAPTER III R ISC ANI) CISC CENTRAL PROCESSING UNITS 

mool .ignificant digit controlling Ihe first level. the lea" signifICant lhe third level. 
Due 10 the prcsc""e of 32 zerOS i~ lhe 64-bil inpUi. fewer lha~ 64 mUhiplexcrs can 
be used in each le,'~J. A level r"'luir", the number of multiplexen to be 32 ph .. the 
lotal number of position. its oUlput can be shifted by subseque~l le,'ds. The oul pul 
of the first le"cl can be shifled al mool 12 -+- 3 _ 15 position. 10 {he right ThUs. {hi, 
level require. J2 + 15 - 47 multiplexers. The OUipUt of the seco nd lewl ca n be 
shiflcJ at most 3 posilion!;. gi"ing 32 + 3 _ 35 muhiplc~~rs. The final level cannQ! 
be shilled fUrl her and so need, jusl 32 multiplexers. 

In lhe function unit. lhc A LU is expanded 10 32 bilS. and the tmrrd shifter 
replaces the single po:ihion ~hif1~r, The re.lll1ing modified funclion unit use. the 
same function cod~ .. as in Cllapler 10. except thaI the lwo codes for ,hihs are nOw 
labeled as logical shifls-and some oodes are nnl used. The . hift amo unt SII i, a new 
5-bit inpullO the mod ified funClion unit in Figure !2·8. 

The Tcmaining dalapalh chang~ .. are shown in ~Igure 12.g. Beginning at the 
lOp of lhe datapath. zero fill has been replaced by lhe constam unit. The conslant 
unit peTfom'S UTO fill for CS _ 0 and sign cx'en~ion for CS _ I. MUX II i~ added 
to provide a path for the updated PC PC _I _ 10 lhe register file for implementation 
of the Jump and Link (JML) inslruclion , 

One other change in the figure helps implement the Sel if Less Than (S LT) 
instTuClion, Thi. logic providesa I 10 be loaded into HI DA I if RIAA) - HIllA I < 0 
and a 0 to be loaded into RllM) if RIAA) - HIllA) ii: u. It is implemenled by add ­
ing an addilional input 10 MUX D. The IcflmOSl Jl bilS of the input are 0: lhc righ, ' 
mOSt bit is 1 if N is 1 and v i~ 0 (i .e., if the result of lhe sublraction is nCg-'live and 
there is no ove,flow), It is also I if N is 0 and V i, I (i.e .. if lhe resuil of the subtTac, 
lion i. posilive and lhere is a n ovcrftow) . These rcprc$tnl a ll Ca$tS in ",hich RI AA] 
is greater than HIBA) and can be implemented using an exclusive·OR of Nand V. 

A !i~al differ,,""" in the data path i~ lhat 'he regi.,er file is no longer edge 
triggered and is no 10"8<'r a part of a pipeline platform at the end of lhe , ... ite·tmck 
(WB) .tagc, Instend. the rcgister lilc u",$ I, •• he. and i. wrincn much earlier than 
the positive clock cJge. Spceial'iming signals arc provided ,hat permit the fcgi"cr 
lile 10 be wriuen in the firs! half ,md to be read in the last ha lf of the cyck In par· 
ticular, in the serond half of the cycle. i\ is possible 10 read data wrinen inlO the 
regi'ter file during the first half of the same clock cy<:le, This is called a r~",I ... ft~ ... 
"'ri'~ TegistcT file, and i\ OOlh avoids added compluily in the logic u",d for han· 
dling hazard, and .educ,," the cost of lhe register file. 

Control Organization 

The conlrol organillltion in the RISC is modified from lhat in Figure ]2·4, The 
modilicd inOlruction dOXO<kr is (IoSCnti.1 to deal with the ~cw instruction sel. In 
Figure 12--8. SJ.! i; added a. an IH field. a I_bit CS field is added to the inst,uClion 
decoder. and MD is expanded 10 two bit" There is a now pipeline plalfoml f"r SH . 
• nd expanded 2·bit platforms for MD. 

The remaining control signals arc included to handle the new cont",1 logic 
for t~ e PC 'This logic peTmils Ihe 1000ding of addre,"", into 1be I'C for implement­
ing branch", and jumps. MUX C sele<:1S f,om three diffcTcnl sou.-c..-s for the ne xt 



.alue of Pc. The updaled PC is used 10 mo,'e seq uentially through a program, 
The branch larget address BrA is formed from Ihe ' um of Ihe updaled PC value 
for the bran~h in'tr uction and Ihe sign_ex tended larget off",\. The value in R[AA I 
is use<! for Ihe register jump, The ",Icction of th"'" ~.Iues is controlled by the 
field as. The effeds of as are summarized in Table 12-2. If as.::. .. O. Ihen the 
updaled PC is ",1e~1.,.] by BS, .. O. and R[AA I is "'kcted by I:IS, = I. If Ss.::. ~ I 
and BS, .. I. Ihen BrA i. sdected uncondilionally. [f Bs.::. " 1 and BS, .. O. Ihen, 
for PS " O. a branch 10 BrA occuf!l for Z .. I. and for PS .. I. a bra nch 10 BrA 
OCCurS for Z = O. This implements the Iwo condiliona l branch inslruclions HZ 
and BNZ. 

In order 10 have the value of the updated PC for the branch and jump 
instruct;"n. when the)' tt:ach Ihe exCCUlion stage. 'wo pipeline regislers, PC_, and 
PC_I. are added. PC_1 and the ~alue from the constant unit are inpuls 10 the ded­
icated adder Ihat fonns BrA in Ihe e~c<:ulion Slagc. Note thaI MUX C a nd the 
auached conlrol logic are in the EX stage, although shown abo~e the Pc. The 
rel~tcd cI""k cyde difference causes problems wit h instr uClions followin g bTOnehe. 
that we will deal with in later subsection ... 

The heart of the wntrol unit is Ihe instruction decoder, This is combinaliOMI 
circuitry that con,'crt. the operalion code in the IH inlO Ihe COI1ITol ,ignal, necco­
sary for Ihe datapath and CO!llrol nnit. In Table 12-3, each in'lructiOfl ;,. identified 
by its mn~monic. A tt:gi't~r Iran~fer Slatemenl and Ihe opeode are gi~cn fo, the 
instruction. The opcodes are ""Iected such Ihat the lea" significant four of tbe 
""vcn bils ",atch tM bil!S in the conlrol fielt! FS whenever it ;,. u$Cd. This leads 10 
simple' decoding. The regisler file add,e''''' AA. BA. and DA rome directly from 
SA. Sa, and DR, respcctively. in the IR. 

Otherwi",. 10 determine thc ront rol C<)des. the CPU;" viewed much as is the 
single<ycle CPU in Figure 10-15. The pipeline platforms can be ;gnor.,.] in thi' 
delermination; however. it is important 10 examine the tinoing cardully to be ,ure 
that ~arious part" of the , egister transfer st.tcmem for the operation take place in 
the right slage of Ihe pipeline. For example. nOle that Ihe adder for Ihe PC is in stage 
ex. This adder is connulcd to MUX C and its aUached control logic. and to Ih e 
incrementer + I for the PC. ThUs. all of this logic is in the EX stage. and the loading 

o TABLE I2_Z 
\>efin;lion or Control tlekh 8S . ntl PS 

" ~ Regl5te, Tf..,51er Code Code ComlMnll 

f'c .... f'c+ I 00 X I"",."",ot I'C 

Z: f'C .... SrA.?;: PC .... I'C ... I 01 0 Bnlnch "" Zero 

7.: PC .... HFA,Z: I'C .... PC ... 1 

f'C .... HIAAI , lump 10 C""ten" ol HIAA) 

" , Uncun<!,h"".1 Branch 



, .. D C HAI'T'EII. 12 f I<.ISC "Nl) C ISC CFNTIlAL PROCESSING UNITS 

[) TABL E 1103 
C ......... Wonh r ... 111> • .-10 ... 

ConIroIWordV_ 
,~- '" _lion Aclk>n - RWMD8SPSMW " Mil IolA CS 

'0' ' 00' ~, n oo • " = • • • 
MOVA R[DRj <- RlSA1 ,~ 0000 • " 0000 • , • 
ADD R[D R] <- RlSA] + II[S/JI CfflOOW 0000 • " 00" " 

, • 
SUO RID R] .... NISA1 + 1f!rn + 1 0000101 0000 • , OtOl 0 " • "0 R[DRJ <- IIISA ] A NISHI "''''''' 0000 • " 

,,,. 
" 
, • 

0' RID N1 +- R[SA I v R(SlJ j 0011001 00", • " '"" " , • xo, R!DR1 +- R(SA] $ R($Il) (0)1010 0000 • , 1010 , , • 
"" RjDR[ +- m:::n 00]1011 0000 • , 1(1) I • , • 
Am RlDR] +- HlS"j + .. I~ 01100](1 0000 • , 00'" , 
'" RjDR] <- I!\SAI +Coc 1M) of 1 0100101 0000 • , 0101 , 
'" R(DR] <- R(SA] A .flill 0101000 0000 • , , .. , , 
0 ", R(DR] <- I!\SA J v d /111 0101001 00 00 • , "'" 

, , 
'" R\DRJ .... RlSA 1 !II .fllII OIOJOIO 0000 • , 1010 , , 
"u RfDRJ -- R(SA] + diM 1000010 0000 • , 00'" , , 
"u RIDRI <- NlSAr + C;:rn;l + I 1!Ol101 0000 • , 0101 , , , 
MOVII RIDR] <- R{S81 OOlllOO 0000 • , "00 , • • 
'" R\DII] o-Iv R\SA ] bySIi OOlIlOI 0000 • " 1101 • , • m RIO/I l <- 1,1 RlsA 1 by 511 OOl t 110 0000 • , I \ 10 • " • CD R[DR] <- MiR( SA Il 00'0000 m oo • " = • , • 
IT MI IIISA ]] <- Jo([~81 "'""" 

, noo • = , , • JM R PC <- RtSAI 111(0)) " nw • " = • , • m If R[511) < R[SBJ'Oon H[DR) . I 1100101 , ,"00 • " 0101 , " • " If IIISA ] - 0., ... " 1'(" .... I'C.J, j ·hdM 11OOJOO 0 n" " 
, 

"'" 
, 

"" IfRtSA]"O.,hcnPC_I'C + l-+-",IM 1010000 0 n" , 0000 , 
JM P PC<- PC-+- HxlM 1101000 0 n" • , = • 
JML PC <- PC -+- I + ""I,"".R!DRI <- PC+ I 0110000 I 00" • " 0000 , 

of ' he PC .hal begi,," !he IF ,.a,e ,~comrollcd from .It<, EX .. a,.,. Like"'i1c. !he 
in"". RlAA] is m.be sa......, combina.ional bl",,~ of logic and comes nOl from the A 
Data OUt"". of.he regiMer me.btU from BusA in the EX .. agc. '" sho",.n. 

Table 12.) ClIn "" ... l: as.he basil; for the design of the inmuc!;on decoder. It 
coota ins .he values for all control signal .. except the regi<;l<:r addreo5C'i from I H. In 
contra .. to . he imlme.ion decoder ,n $cclion IO-H. . he logic is complex allll i~ n,,,,' 
easily designed by using a .ODlp llIer-base" logic 'ynthesis progralH. 

Data Hazards 

In Secllon 12_1. we examined a pipelIne c~eculion diagram and found .hal filli llK 
and Hushing of the p'pel;ne reduced lhe IhroughpUl b<:low lite mU,mum level 
rl;"vablc. Unfor1unatcly. lIt<,re are OIhcr problems "ith pipeline operation tha, 



lZ-l /TIot ~ In .. ........,.. Sd Compuo .. a 547 

reduce Ihroughput r n Ihis and the nexi subsection. we w,rr examine IWO such prob­
lem<: dala haVlr<.b and conlrol huard$. I ra~ar<h are liming problems Ihal arise 
because Ih~ e.~cUlion of an operalion in a pipeli ne i, dcl"y~d by One Or more 
clock C)'des from Ihe lime at which Ihe j,'Slruclion conlaining the operalion w", 
fetch~d, If a subsequenl instruction tries 10 uli<' Ihe result of th~ op'''alion tIS an 
operand before the ","ull is available. it uses lite old or .. ale v.lue. which i. very 
likely (0 J"'e I ... roog result To deal "'Ih data hanords. "'·c ]>Tesenlt"''J solutions. 
~ that U.."50/h'1I r,, and another Ih81 uses hardware. 

T,,'O dati hazards are illum.ted by exam,ning thoe execution altho folro..ing 
~m; 

MOVA 11.1. R5 

2 ADD 11.2 . 11.1.1{6 

3 AD D 11.3.11.1.1{2 

The execution diugram of th is program appears in Figure \2.IO(a), The MOVA 
inmuclion plK<.'i the content. of irS into R I in the lim balf of Wil on cyde 4. SUI. 

!>tOY" III. Rj 

AUD 112. III. M~ 

ADUIU. III.112 

NI<--Ili IF OOF EX 's r- WrilORl ,~~'~' ~r.-~··~·"~'f' ~. I12<--Rl+ R~ IV E " R 

,"OW,IlI . II' 1<1 _ 11' 

)lOP 

R.l_NI + 1!l EX WH 

1'1 .. , .. 0.1 111-
_", .. 111 -

11 .... 112-

(.)The ..... baI...J pn_ 

112<-111 + 

(b) " I""V'''' ·1>00<4 ""., "'" 

o nGUK F. 1Z· 1~ 
E.,mplc ,,{ 1)aI ~ H",,,~ 



~4 1 S.'FPP '~~~I' 0100 pU~ olJ ~ ql Ul NlOU ~U!IM!d '41 JO ~U!PI04 ~'lL ·AI~~IP.,,]'~J 
"Sa~FI' flM ~41 pu~ X 3 ~4 1 4'.lnOJ41 ..... Fd ~Iqqnq " .~p"" vop ONl) )XJU ~ 41 U! 
'~i1FI' 0100 ~41 pUOA"'I P~lu:>",~Jd. ! UO!IJnJI'U! OOV ISJY ~ql JOJ NlOU ~41 u~q." 
'11'll aJn'ol!ol ul 'uO!lJnJISU! 1"41 JOJ ,~'ol~I' pUB "p.b Vop lU:>nb;>sqnl U! ~N4"'1 
• U,"IUoo 0) pms .1 "UIIMld :>41 ')u!od u,,-, !8 • I~ SU!uMdF4 WOJ) p~lu~.,oJd "J. 
a<hd ~41 q3nOJ41 3U1NlOU UO!IJnJISUI uu 41111\ P")"IX>S'" SUO!PF :>41 u04M 

·pu.J,,,k, UU". pF~J '! I' ~JO)"'I UJlllJNI "'I 01 IlnsJJ "'II IIWJM 
01 4i1nouo '! ~p.b "UO)O '\FPP ~'ll 'I"nsn '" P0 4JI:>J.I uOIpnJ)Su! NlO U ~ PUF '~ lqF 
'I '"~" <:>wo~"'I pUUJMO :> 41 ""4N1 Uo!pn;I'U! a41)0 UOPJldwoo 'IlL." ."wn.:>1 Nlon 
041 uo'lL '~pAJ ~J(}p ~uo JO) 0100 PU" olJ UI II\OU ~U!IM !d :> 4) \l U!II" I''\'1 p~" gPP 
~J" ~'~q '''I!JNI PU" UO!lfl","xa P~I"!X>S'F ~41 'I~'\ V~q U~llWt' u""'1 IOU ""4 1~41 
~'.lFI< 0100 041 I" puno) SI PU"JMO U~ u"4M -AIIUJ!I"WO)n" 'dON ~41 'IJ ... ", JJ~II\ 
'P'"4 ~4 1 'wFJ~oJd ~41 U! 'dON i1ulllnd JOlldwoo JO J:>ww.JlioJd Jql JO P"J IS"I 
'~JUNlPJ"4 P~PP" ~U1.'IO.'UI UOI)"I"" ~-'!I"UJ~I I" UF ,aIF'I'"U! jj -ll aJnilH 

"~Jujd UI 'dON ' 41 'Ill" "p.b JM Uo!pnJ)'U! ~Lf-O 01 op"" 
J<>d UOlpnJ).U! ~·O WOJ) Ind4\lnO'41 a 'l l .""np~' pUB ,,,'olUOI "'P"" ~"" I~ 0"'1 S"~~) 
w""&ud ~ql '<>SIV 'w~4 1 '.lUll,"," I,n( JO P""I'U! IUO!I!sod dON a'll U! ,uolpn'l<ul 
POWI"Jun '1:>410 ~~"Id 01 ~Iq !".od "'I A"W I! 4'.ln0411" ,,"juol "I.nol~qo <! w~,'" 
·o,d ~41 '11")0 ISJH ~ISOJ ~4 1 SL 1"4," Illq 'w"lqoJd "41 '''''1'''' 4JFOJdd" '!'ll 

-qlUUJMO p,,_uo~ uo p~ln~~x~ "'I 01 UlFJJOJd ~41 S)[lllJ<>d UNl0 4! 
'olU!W!1 ~~I'Jm J~I!!'ol~, ~41 '0) uOlldwn,w "11I·"·J~lJU· PU~J ~4 1 JO ~,"~J~ll 'IUU.r1lFIP 
~~I U! .,,(llJU ~oulq F Aq P' I","UUOO pF~J J"ISl~~J IUJnb:>sqns U puu al!-.!," -'JII!S:>.! 
" )0 "i!UpSl.Uoo SJmd ~41 Aq P'W"'PUl '! ' !'ll -3P"" ~>op ~wus ~4 1 ul 'P"~' Iu"nb 
-""lns put i31!J,,, \ro4 4~ooJdd~ ' !41 'ISJOII\ IF 'I" ~I '""0 '1" W"rilu!P UO!ln~~XJ ~'ll 
'~PA~ ~""P ~Uo Aq '" IIINI "41 01 :>A!!UI'" SpF:>.! ~"!I~'~' "41 '\~PP 01 ' UOII~"J )'U ! 
P'!41 PUg puo","" J41 u~a'''I'''I pue '>UO lpn11'U! p uoo:>S pUB ISJY ~41 U ~~'''I'''I 

P"U;>SU I aJ" ,uoll,n'l lu! (dO N) UOPFJWo-0N ' W~lqoJd ~41 '''~ I '''' lU41 WUJ80,d 
~U!I ''''''4 1 ~Idwl' "41)0 UOlleJ!I'pow • '''l"IISnJJ! (q)ol -ll ~JnS!:l 'S~IU'MO ~u LJ 
-MId ~41 NlO~ ~o UO!lUUliOJU! p~j!FIJP O,'"q 01 sro," '''I,dwoo JO lawwu,~o,d a'l l 
'>!41 4'lldwOOJU 0.1 'Ja\Sl"i!aJ ~41 WOJ] p~~J Iu~nb~""ns F U"41 ~p,b ~J(}p Ja Lp"" Ull 
JO "wes :> 41 U! SJnXlO JOI'!S~, F 01 ~Ilu, '.lUlpU:>d Aue W41 os U~Il!JNI S! WFJ80Jd J'll 
"~jqFIluA~ ~,~ .~nl"~ NI~U 1"41 os , uO! )~"'ISU! AFPP 01 ~poJ ~uI4~FW oql 'wJ~u,,8 
J:>wweJ8o;d JO J~I!dwOJ ~41 ~,w4 01" <Pl"Z~ 4 " \Up jO] AP"W,,1 ~Iq !wod ouO 

' J"lSf.l~..I 1"41 JO ~I!.l" ~4 1 01 PM,a, ~llNI uoos 001 ~P"" 
~>op ~ uo ' ,InJ"" 1~I'18~, pOAlo,' UI ' 41)0 pn;u a'll "a\ro~ "'a'l l )0 4~"J uJ '~m8y 
"41 U! 'I U~W:>IUII '~)SUU'I JJI,!30' ~41 U1 pue WUJ;lOJd ~41 U! :>nlq U! PJI4'ol!1118!4 ~,~ 
""nlF~ "'~u 01 palFpdn AIJMOJd IOU O'U 1~41 "'~I<!,"~J ~'lL 'oInily "ql U1 ",,0"" ""1'1 
.,'olJn l 341 ~q P~IU~!PU! 'u "P'"ZF4 ~I"P 0"'1 ,"~18 m u - P"~J S! I! ~W!I ~41 19 ~nl"A 
NI~U J41 01 p~l"pdn U~"'I)OU .~ q W OS -~ ~ph 3upnp UOIPnJISU1 lxau ~4 1 Aq pUJ, 
I! I! J~I)" " ~p"" JO JI"4 \Sly a ql UI "-In"", 'J:>.,:>."oq·W JO ~JFq-alll," a'll ·~nl".' 
"'''u "'II ., ~ ~P"" JO J IU~ pUO~'" ~41 U! pu~, ~n l~~ ' 41 OS 't "PA~ U! 11M JO JIF4 
I"-Iy a'll U! U~llp." SIl," p"a, an l~"' ~41 'I)} JO ;>SUJ 'ql ul 'p ~p,b U! 0100 JO JW4 puo 
-~:>s ~4 1 ill W pu~ I)} 4104 IpFOJ 'J~~~,"04 'uol\Jn'l,ul aav puo~:>s :>'Li, " ap"" U! 
IIM)O JI"4 ISJY ~41 "! Z)} UI P~~~ld" UOIWJ<>dO 1!41 JO Iln'~' ~'ll "j)} Ul ~nl"A '1"1' 
'41 ,:>sn UO!pnJI~U! aav ~41 'S"'ll ' U~IlU'" SIll ~JoJ"'I ~P"" auo '€ op,b U\ 0100 
)0 Jl"4 I'~I ~41 U! I)} ,puaJ UO!IOn'I!U! ao\' my Jql ·M01J. Qnlq a'll Aq u,,,04' 'u 

Sl.l Nn ~N[SS3::)(nld 1v-tllN3':J :JSD {INV :::.sr.I I Zl Wll.dVH:J 0 titS 



IZ-J In.. ~ In"""-' s... C<>mpoo .. 0 549 

.\lOVA IlI , Il' III 

(AOO R2. R lI1.6. 

ADU Ill. RI,Il& 

(AOD I!J. 1l1. 1l2) 

AUUI!J.R I III 

o FIGURE IHI 
Enmplc 0( I)". Ituard Stan 

microopcralion, la king place in lhese ualCt for "ne dock cycle. In Ihe figure. Ihis 
<klay is repr~nlcd by ' ...... diat<>""1 blue arro",. fr(JlJ1 'he initiallocat,oo in which 
lhe romple llOf1 " f the microoperd'ion ill preVCl1led 10 tbe Iocalion ooe dock cyd e 
laic, in which the micrOOfl"'nllion i. pe,f"rmed. When the pipel, ne flow is held in 
IF and DOl' fm an nlra clock cycle. the pipeline is ""id 10 be 'U1I1~,I. and if Ihe 
cou,"" of the ~1811 ill a dal. hazard. Ihen tile .t~ 1I II referred lo .s a dam ""lIT,,1 ,'mil, 

An imple nlCTI.a.i on I1f d~la ha.ard handling for the pipcl ined RISe th". uscs 
dma h"""d . tall, i, presented in Fig'''c ]2·12. The added or modlHcd hu,d"'arc i, 
shown in {he Ire~' ohadc..:! in lighl blue. Fur th is parlicular pipel ine . tage arrange· 
menlo a dal . huard ",ill OlXur for a ,cgillter file read if there i. a de~(ina( loo regi" 
ler a1 {he ueallioo "age {hal i. to he ",rinen bxk in the nex{ clod r)"k: and ,ha l 
is {o be read a' lhe CUrren' OOfsoag<l as cni'lcr Q( lhe 1"'0 operands. So We ha'"e 10 
dete rm ine .. -he IMr such a regisler exis .... 11 ... i. done by evaluating the Boolean 
equati"'" 

,,'" 

• 
1111 • MA ooF ' (Vllu • 1111 '10.)" !lll-'u" L (l)II~x); 

; _0 

• 
1/8 • /IIHooF ([)Au: • HA l>Of' ) ' RWu ' I ( f)A ~x), ... 

OilS · [fA + liB 

l be follo"'ing c,'cn" must all occur for 1111 • .. h",h repr....,nl!i a ILaaIrd fm Ihe A 
data. ' 0 e'lual I: 

1. MA in the 001' 'l"gC must be O. meani ng .hal the II operand i~ oo nling ffU m 
{h e reg;! ICr Hie. 



550 0 CHAI'TE1t. 12 I RIse AND elsc eENTR.A~ PR.OCESSING UNITS 

"" •• 

o FIGU RE U·12 
PiJ>Clined RISC: Data Hazard St.1I 

2. AA in (he OOF stage e<Jual. DA in the EX stage. meaning that there is 
potentially a register being rcad in tho DOF stage thm is to be ",rillen in the 
next clock cycle. 

J. RW in the EX stage is 1. meaning thm register DA in the EX stage wil l defi · 
nitely bc wrinen in WB durin g the next clock qde. 



12-) f Th< R<du=d Inltruot'ion s." Coo"p'"'' 0 55 I 

4. The OR (1) of all bits of DA is L meaning that the register to be wrillen is 
nOt NO and so i, a registe r that must be written before being rcad . (NO has the 
,arne "alue 0 regardless of any wri\ts to it.) 

If all these conditions hold. there is a write pending for the nc.( dock cycle to a 
register that is the same as one being read an d used on Bus A. Th Us, a data hazard 
exists ror the A operand rrom the register file. liB represents the .. me combina ­
tion or c,'ents for the B data, If either of the HA Of fiB terms equals 1. there is a 
data hazard and DlIS is I, mo"ning that a data hazard stall is required , 

The logic implementing (he pre""din g equations is shown in the shaded "rea 
i~ tho center of Figure 12-12. The blocks marked "Comp~ ore equality comparator< 
that have output I if and onl y if the twO S-bit inputs are equal , The OR gate with 
DA entering it O Rs together the five bits of DA and ha. output I a, long a~ [)A i< 
notOCO:O( NO), 

DllS is invcrted and the h,,'erted signal is used to initiate a buhble in the pipe­
line for the instruction currently in the fR. as well as to stop the PC and fR from 
cha nging. The bubble, which prevents actio ns from occurri"s as th~ in struction 
passes through the EX and WB stagCs.;8 pmduced by using AND gates to force RW 
and MW to O. The.., Os prevent the instruction from writing the register fi le and the 
memory, AND gales also force IJS to 0 causing the PC to be incremented instead of 
loaded d uring the EX stage for" jump register or branch instruction affected by a 
data hazard. F,nall y. to prevent the data stall from continuing for thc next and subse­
quent dock cycles, AND gate. fo= DA toO so that it appear.; tha t NO i, being writ­
ten. giving a condit ion which doe. not ca use a stall . The register.; to remain 
unchanged i~ the ' tall are the PC. the PC_1 • PC_" and the f R, These registers are 
rcplared wit h registers with load cont rol signals dri,'''n by DlfS. When DHS goe, 
to O. requesting a stall , the load signals become 0 a nd those pipeline plalfonn regis_ 
ters hold their contenl5 unchanged for the next clock cycle. 

Returning to Figure 12_12. we see that in cycle 3 the data ha7.ard for Rl i< 
dCl~ctcd . so that DffS goe.lO 0 before the nC.t dock edge. RII'. Mil', BS. and DA 
are set to O. and at the clock edge, a bu bble i, la unched into the EX stage for the 
ADD. At the same clod ~dgc. the IF and DOF stage. are ' talled,w the informa _ 
tion in them now is associated with dock C)'de 4 instead of 3, In dock cyclo 4, since 
DAEX i. O,thcre is no sta lL so the execution of the .talled ADD instruction pro­
reeds, The same sequence of events occurs for the next ADD. Note that the exCcu­
tion diag",m is identical to that in Figure 12-IO(b). ~x~ept that the NOPs are 
rcpla""d by stall ed instruct ions, shown in parentheses, ThUs. although it remMe, 
the nced for plOgrammi ng NOPs into the software, the data hazard ' tall solution 
has the same throughput penalt)' as the program with tk NOPs, 

A second hardware solution, dnm forwarding. does not ha"e this penalty. 
Data forwarding is ba",d on the answer to the following ,-! ueSlion: When a data 
ha>.ard i, detceted. is the result ""ailablc somew here else in the pipeli ne, 50 th"t it 
can be used immedi ately in the operation having the data hazard? The answer is 
"a lmost." The result will be on Bus D. but it is not available UTI til the next doc~ 
cycle. The resu lt is \0 be wrilten into 'he destination register during that clock 
cycl~. The information needed to form the res ult. howe,'er. is available on the 



SS2 0 CHAPTER t2 f RtSC AND CtSC CENTlVIL PROCESStNG UNtTS 

inpm. to the pipeline platform thal provides the inputs to MUX D. All that is 
nccJcJ (0 form (he resuh d uring the current clock cycle is a muhiple.er to ""k"<Ot 
from the three val ue<.j usta, MUX D Joc!;. MUX 0' is accordi"gly .Jdcd to pro­
duce the r", uh on Bus D', In Figure 12-13. instead of reaJing the operand from 
the regi'ter fi le, we use data forwarding to replace (he <>pcrand with the v"lue on 
Bus D' . Th is replacement is implemented with an additional input to MUX A and 
to MUX H from Bus V' as shown. Essentially the ",me logic a, before is used to 
deteClth e Jata hazard. except that the separa1e detection signals IIA and fiB arc 

~'""" 

Ow 

o FlGURt: 12-13 
I'ipdi"" RtSC: DM. R>",,,Jing 



MOV,," 11 1. 115 

AODR2.III.R6 

,,"OORl.III.Rl 

I2-J 1 Tb< II ....... "" I ... tnortion Sot~., C 55) 

- Rl <lat. u..atd do:,m«! 
... R,.-.I .. _nkd 

_ RI ~",. ......... 

~-' '~' . KI"' KI I!' 1>01' WI '11 1 "'';1<112 

Rl ... Rl + R6 IP 00 [' "'11 

RJ<-III.Rl If' EX "'" 

Rllb ................. ,«1"" 
• ..t 11;2 ""h .. r.,...-.N«l 

o FIGURt: 11·14 
Example of 0". forward ing 

used directly for A d~la and B data. respecl;"ely.'" thai the replaceme nt OOCun for 
lhe opc:rand thai has the data hazard, 

The da.a.fo"",,,,din~ eXeal.ion diagram for lhe .hra.insllUCIlOfI example 
app"an in Rlllre 12·14, lbe daUl hv.ard f.:. RI i. detected in cycle 3. 111" cau= 
lhe value 10 JO ,nlO RI ,n lhe nnl cycle. 10 be ' ....... ·ardcd hom the EX su.~ of the 
firsl instrUCIion ,n cycle 3. The rorr",,1 val ...... o f RI enlers Ihe DOF/EX plalform al 
Ihe nUl d ock edge 50 thai neculion o( Ihe flrsl AD D can p,ocee<l """m~lIy- The 
dala h"," ,d for In i:< del"'Ie<I in cycle 4. nnd Ihe corre><;I valu~ i. ("rwa,ded flOm 
the EX 'Iage of (l' e ""cond inst ruc1ion in ,hal C)'d~. This gives Ihe c"rrecl ,~Iuc in 
lhe DOF/EX plalform needed for lhe ""cotld AD D 10 pr""eed normall y, In con­
trasl 10 the dais hazard .Iall melhod. dat a (o,,",'arding does not increa~ the num_ 
ber of clock cycles reQuired 10 execute lhe program and hence doe> I\()t offect Ihe 
throtlghpul in lerm1 uf 1M numlltr of clock C)'de> required. It may. h""'e>'er. add 
combinahonal delay. causing the clock period 10 Ilt some"ha. lon~,. 

Dala ha/ar'" can also occur " 'ilh memory """en. a. wdl as .. "h regiMcr 
~ For I~ ST and LD insl""'hO"" il is nor likely Ihal a ojala memory read can 
Ilt perlormed after a ,,'rite in a single d ock cycle. Further, ..,.... memory reads 
may lake more Ih~n Qnc doc k C)'C1e. in conlrast 10 " 'hal we ha.e assumed here. 
Th us. Ihe redutliQ,' in Ihroughput for a daln hal.ard may be increased due t" :l 

longer delay before the data is available. 

Control Haurds 
Conlrol hau.,'" are aMocialed " 'i lh branches in the control flow of .he I'fO&""m. 
lbe 100"""in, prOSram conlaining a rondilional brnl'lCh illUSlralCS a conlrol hauud: 

, "' 
2 MOVA 

3 MOVA 

4 MOVA 

20 MOVA 

RI. 18 
1(2. RJ 

1(1 . R2 

R4. R2 

1(5. R6 



SS4 0 CHAPTER 12 I IUSC AN!) CISC CENTRAL PROCESSING UNITS 

The execul ion diagram for this program is given in Figure t2-15(a). If Rl i, zero, 
then a branch 10 Ihe instruction in location 2() (reca ll that addressing i, PC relative) 
i, 10 occur, skipping the instructions in location, 2 and J. If R I is nOn.Cro. Ihen the 
in.truction, in locations 2 a nd 3 are to be execuled in ..,quence. A5Su me thai the 
branch is laken to location 20 because Rl i, equal to zero. The faci that R1 equal'O 
is not detected un til EX in cycle 3 of the fi rst instruction in Figure 12-15(a). So the 
PC is set to 20 on the clock edge at the end of cycle 3. But the MOVA jnstTuctions 
in locations 2 "nd 3 are into the EX and DOF s!age,,"- respeClh'e!y, after the clock 
edge. Thu""- un less correcti,'e aClion is laken, these instructions will complete e.e­
cution, even though Ihe programmer', intenlion was for them to be skipped. Thi' 
,it uation is One form of a cOIlI",1 ha,Md, 

NOP instr uctions ca n be used to deal with control hazards juSt as they were 
used with data hazards. The in",rtion of NOI's is performed by the programmer or 
compiler generating the machine language program. The program must be wriuen 
w that only operalions intended 10 he performed. regardless of whelher the branch 
is taken. are introduced into the pipeline before the branch e,c.;u(ion actually 
occurs. Figure 12-15(b) illustrat"" a modif'cation of the simple three-lin e program 
thnl satisfl cs this condition , TWo NOPs are inserted after the branch inSlrU";Un az_ 
These two NOPs can be performed regardless of whether lhe branch is take n in the 

lBZR l ,IS 

1 MOV Rt RJ 

l MOVR l. R2 

WMOV RS. R6 

" 

r R I • (> • •• IUII''''' 

r. PC " 'to20 
l 4 I 6 7 

EX WB i o.'"F inRl 

[)OF EX \VB iClu"se", RI 

IF DOF EX 

IF OOF EX 

In''ruction MOV R5. R6 -.J 
fo t<hC<l from "Ill" Wd" ", 

l BZR L IS 

lNOP 

)NOP 

2OMOVRI , R6 

(. j Branch iluard PrOOl<:m 

" 

In''ructlOO MOV RS. R6 -.J 
(,,,Oed fro." ta,te' 1I<l<J , ... 

(0) Pr"S"",.-'-<d Solution 

o FtGURE 12_15 
E .. mpte of Coot,'" H31..-d 



12-3 I The It<doc.d hut....,ti,," Set u>n>pu«r 0 SSS 

EX stage of BZ in cyde 3 wilh nO adve= effects on Ihe correctness of the pro­
gram, When control hazards in the CPU are handled in thi' manner by program­
ming. the branch hazard dealt with by the NaPs i, referred 10 as a delay"! branch , 
Branch execution is delayed by two clock cycles in this CPU 

The Nap solution in Figure 12-15(b) increa<es the time required to process 
the simple program by two clock cyetes, regardless of whether the branch is tak~n. 
Note. however, that the", wasted cycles can sometimes be avoided by rearranging 
the order 01 instruction~ Suppose that those instructions to Ix executed regardless 
of whether tne branch i,; takcn can Ix placed in the two locations following the 
branch instruction. In this situation, the lost throughput is completely recovered. 

Just as in the case of the data hal.rd. a ,tall can be u",d to deal with the con­
trol n.lard, But. also as in the = of the data ha"-"rd. the reduction in th roughput 
will be the same as with the insertion of NaPs- Thi, wlut;on is referred to as a 
bra/'C/o har.ard '101i and will not be pre",nted here. 

A second hardware solution is to lI9! branch predic/;OIL tn il\ simplest form. 
this method predicts thm branch es wi ll ne,'cr be taken, Thu>, instruclions will be 
fetched and decoded and operands fetched on the basis of the addition of I to the 
value of the Pc. The<e actions occur until it is known during the e~cculion cycle 
whether tnc branch in que"ion will be taken. If the branch is not taken. Ihe 
instructions atready in the pipeline due to the prediction wilt be allowed to pro­
ceed. If the branch i, t.ken , the instructions following Ihe branch instruction need 
10 be cancelled. Usually. th e cancell ation i, done by in>ccting bubbles into the exe­
cution and write-back stages for the", in struclions- This is illustrated for Ihe four_ 
instrUClion p'ogram in Figure 12· 16, On thc basi$ of the prediction that the branch 
will not be laken, the two MOVA instructions after BZ are fetched. the first one is 
decoded, and it' operands are fetch~d . These actions take place in cycles 2 and 3, 
In cycte 3. the condition upon which the branch i. based has been evaluated. and it 
is found thot R I = 0, Th us- the branch is to be taken. At Ihe end of cycle 3. Ihe PC 
is set to W. and the instruction fctch in cycle 4 is performed using the new value of 
the Pc. In cycle 3. Ihe fact that the branch is taken has be~n detected. and bubble, 

, BZRt,18 

1 ~1OVA Rl RJ 

J,\' OVA~ ' ~2 

2OH1QVA RI R6 

; 

EX 

I R, . O<v.I ... ",d 

r pc oet to 20 
4 ~ 6 ) 

~- 1<0 chao", 
'HI I ' 

,"Q,h. ng< 

IF DOl' IiX W~ 

~"'n<h "",,,,;led ~~-" 
,od bubt>le, I,.nch«I 

I .. ,roc'"", MOV Rl . R6-
f"'l>«llrom " rg<l add"", 

o rleURI:: 12-16 
Example of Branch Prediction with Bran<h TaKen 



556 0 C HAI-'TEIt 12 I RIse AND CISC CENTRAL PROCESSING UNITS 

" 

o F1CURE I H 7 

M.-.! ; r~ 

ru oclion 
.00 

PipelmeJ RiSe: Branch ProJicHon 

D." 



12-4 In.. Complex !n",oc,;oo s." Comp" '" 0 557 

are i~~rted into the pipeline for inSlrUClions 2 and), I'roe<:eding through Ihe pipe­
line. ' hese bubble. ha"e the same effect as two NOP instructions. H",,·cwr. 
because the NOPs are nol present in Ihc program, Ihcre is no delay or perfor. 
mance penalty when the branch i, nQ\ taken. 

The branch predict ion hardware is shown in Figure 12·17. WhClher a branch 
is talen is determined by looling at Ihe selection "alues on the input< to M UX C­
If Ihe pair of input' i5 01. Ihen a condilional branch i5 being taken. If the pair is 10. 
Ihen an uncondilional JMR is occurring. tf Ihe pair is II. then an uncondilional 
JMP or JM L is laking place. On Ihe Q\her hand. if the pair of in put< is 00. Ihen no 
branch is occurring, ThUs. a branch occur; for all combinations olher than 00 (i .e .. 
for at least one 1) on the pair of lines. Logically. this cor"'spond\ to the OR of the 
line .. as shown in the figure, The output of Ihe OR is inverled and Ihen ANDed 
with the RW and MIV fields. SO Ihat the register fi le and tne data memory cannol 
be wri{lcn for the instruction following the branch inslrUClion if the branch is 
ta lcn. The inverted output i, also AN Dcd with the 8S held, so that a branch in Ihe 
nexl in,lruction i, nol execUied. [n order to cancel the second insuu.l ion following 
the branch, Ihe in,'erled OR output" ANDed with Ihe lR output. This give. an 
instruction of all 0' .. for which the OPCODE field is defined as NOP. [f the branch 
is not taken, however.lhe inverted O R output i. 1. and the lR and the three con · 
trol fields remai n unchanged. giving normal execution of the two instructions fol ­
lowing the branch. 

Branch prediction can also be done on thc assumption Ihal the branch is 
taken, In this ca,,",. the inslructio~s and opcra~ ds must be felched down Ihe palh of 
the branch target. ThUs. the branch target addre .. must be computed and used for 
fetChing the instruction in the branch target loca tion. In caso the branch does not 
tale place. however. the updated "alue of the PC must also be sa"ed , As a conse· 
quence. Ihis <olUlion "ill r~q uire additional h~rdware to compule and store the 
branch target add,es<- Nevertheless. if branch es are more likely to be taken than 
not. Ihe ~bran ch laken~ prediction may yield a mOTe favorable cosl-performance 
trade -off than the "branch not taken" prediction. 

For simplicity of pre,ent ation. "'e have treated the hardware sol ut ions for 
deali ng with hozards one at a time. In an actual CPU. these solutions need to be 
combined. [n addition, other hazards. such as those associated with writing and 
reading memory locations. need to be handled. 

12_4 THE COMPLEX INSTRUCTION SET COMPUTER 

CISC instruction set architecture, are characterized by complex in structi ons that 
arc. at worst, impossible. and, at best. difficult 10 implemenl using a single C)'cie 
computer or a single pass through" pipeline , A ClSC ISA oHen emplo)'s a siz­
able number of addressing modes. Further. the ISA often employs "ariabk 
length instruClions. The .upport for decision m.ling via conditional branchi~g is 
also more sophisticated than the simple concepts of branch on zero register con­
tents and seuing a register bit to I ba,ed on a comparison of two registers. In Ihis 
5ection, a basic archilecture for" clse i, developed with the high -performance 



SS8 0 C HAPTER I~ I RlSC ANI) C ISC C£.NTJt.Al PROCESSING UNITli 

of. RISC for simplc inslruclion. and mosl of IhC characlcrisHc:s of a c lse ISA 
as jusl dcs<:ril>cd. 

SUppO!l<: that we are to imptement " CISC architecture. but we are int~r· 
eSled in apl)roaching a throughpul of onc ,n,uuclion per .hort RI SC clock cycle 
for <lmple. frequently used instrUClions. To accomplish thi, goal. WC UK ~ pipe· 
lined d~t"palh and a combin~tion of pipell ncd and microprogrammed control as 
sllown in Figure 12-IS.An in>lrucllOll is fetched into the IR and cnlen lhe De<x:>de 
and OpeTllnd Felch 'Ia~ If il i$. simple in.truclion thai CICCUI.,. a)mplelely in a 
single pass Ihrough the normal RISC pipeline. il ;. decoded and operand 'eld, oc<:urs 
as u.ual. On the OIher hand. if Ihe inslrlKliOll requi,es multiple Il,icroopc ralion. or 
multiple memOlY accc,""," in .. qucnee. Ihe d~"<:odc slage productS B microcode 
address fm the microcode ROM and replace. the usual derode r outpuls with control 
values f,olll the microcode RO)"1. E~l""Ulio" of microinstrUC1io"'" rrOllllhc ROM. 
selccled by the microprogram counter. cominu ,," um il the c . ecution of the in, lrue· 
I;on is completed. 

Recall Ihal 10 execule a ..,quCott of microinstruclions. il IS often nece .... ry 
10 h.,·c lemporary ..... g;.IC ... ;n whICh 10 Slorc informal ion. An organi .. ahon o f 
Ihi' Iype ,,·,11 frequently supply temporary regiSlers ,,·it h ~ con'cn,em mechanism 
fo, .,,·ilching 1le1"·CCn Icmpor~ry rc:gl$lers and the usual pr<:>gramm""·~S.'iible 
regi'I~' r!!SOurces. 

The pretcding organi~.at,on support . an archilec ture Ihal hat combined 
CISC RI SC IJroperties. It iIIu.tr31e Ih~t pipelines and mkroprosr.m$ co n lie com· 
patible i."d II ccd nol be viewed a, mUl"olly cxclu.i.·c . The "'OSI frequent use of 
,uch a combined archi'e<:lu.e alloWJ existing software designed for a else to 
take ad.·anlage of a RISe architecture while preserving Ihe existing ISA. The 
eISe·RISC archih,eture i$ 8 oom])lnation of con"'-'pts from .he m" ltiplc-cyde 
computer in Chapter 10. the RISC CI'U ,n Ihe previous section. and the micro­
programming roocepl introdue<:d briclly in Chapler 10. Th o< rombmalion of con· 
eel''' n'~kcl sen"". since the CISC CPU execu1es insnuetions using multiple 
J"'SSC' through lite RISC dalapalh pipeline. To seq UCott Ihcsc multiple·p .... 

M,,_ t """"""'" reid> 
Counl.,.. 

Drrodr '" OJ--! _ 

C"",rol ROM 
~ 

I \',,,,..Nd 

o ~·IGURE H · IM 
CombiDC<! e ISC·RISC Organ",,';oll 



12-4! Too Complex 10,,,,,,,,,;,,,, Set C()mput.. 0 SS9 

in ,(ru~tion implementatiOns.. a sequemia ' com rol 01 considerable complexity is 
needed. '0 microprogrammed control i$ chosen 

The development Ollhc architecture begins with some minor modif,cations 
10 thc RISC ISA (0 obtain $(Ime Cllpabililie. de.iTable in lhc Clse ISA. NeXl.lhe 
dalapath i. modified to ,upp<.>r1 the ISA chang~. These include modification Ollhc 
Constani Unil. addition of a Condition Code register Cc. and delction of lhc hord­
ware for supp<.>r(i" g lhe st:r inmuction, Further. thc Regisler f,le addressing logic 
is modified 10 provide addressing for 16 temp<.>rary registers for multiple-pass use 
of (he Jatapath with 16 registers remaining in the storage reSOurces.. 11,;s is in con­
trast (0 thc 32 rcgi.tcrs ;n the sto'"g" resources for the RISe. The next Slep is (0 
adapt the RISC control to work "'ith lhc microprogrammed control in implemcm­
ing (he mult iple pa," inslruClions.. Finally. the microprogra mmed con(r,,1 itself is 
developed and its opcrati<)1' is illustrated by ' he implementat ion of three CISe 
in,tructions that characterile a elSe ISA, 

ISA Modilications 

The lirs' modiliCalion (0 lhc RISC rSA is the addition of a new format for branch 
instruction& In terms of the instructions pro"ided in the erse. it is desiroblc 10 
ha,'e the capabil it y to compare the contenlS of Iwo source regiSl"rs and bra nch. 
indicaling the relalionship between the contents of the two registers To perform 
such a comparison. a formal with t w<J So urce rcgister helds SA ,md SEI and a targct 
offsct are req uired_ Rclcrring to Fi gurc 12-7. add ilion of the SD field to the branch 
format red uces the lenglh of the target offset from 15 bilS to 10 bits.. The resulting 
llratlch 2 rormat addcd ror the e rse ins(ruCti"ns is sh"wn in Figure 12-19. 

" 2S 14 "" 11 14 W, " 
Th'«'r<p'erlypc I O''CODE I p, 

I " '" 

l'o,.Het;',,, ' )1'< I OKODE I D' " ' mmOO;oL" 

Hunch II OI'CUDE I "' " l.o:on£ '" t 110' 011"" 

Sr,,,,," 1] OPCODE I '" " '" I S'>o" '''I<' 0110", ) 

0 FIGURE 12 .. ]9 

CISC CPU I nst'"Clion rwm. IS 



S60 C CHAf'l"ER. III R, ISC AN I) esc CENTIlAL PRDCI'SSING UN ITS 

The..,rond mo,lIficallOll IS to parlllion tlte Regisl",!L to prJi JJrnst, 
for 161emporary feJlSters [or mul!,ple·paM ~ of Ihe dalapath. Wilh lhe panulOtl. 
tltere arc only 16 regi!len rema,n,ng m lite "orage resources. Ralher !han ,lIOdify 
all of Ihe regi!ler address fields on !he ins'rue!ion fonnalS.. we will ~imply ignore lhe 
mOl;! significanl bit of Ihese field\. r"Or example. only Ihe righlmost fo u, bit! of the 
field DR will be u..,d. DR. will he ignored. 

The Ihird modifiealion 10 the RIS C ISA is the addition of condition codes 
(aL<;() called Hags) as dil\Cu$$Cd m Ch.pter I I, The condilion codes provided "re 
designed specifically to be used in combinat,on wilh bmnch on zero and brnnch on 
nonzero in implementing inSlructions lbal will pro"ide a wide SJ'('Clrum of deci­
sion!, such as greale. 'han. less !han.less Ihan '" e<fua] 10. etc. for bolh signed and 
",,'Signed inte~rs. The CQd.e1are ~ero (Z), negati'"C (N). carry (C). over1low (V). 
and L (Jess than). "The first four Ire 'I"'cd '"Crsions of lhe <IalUS O\Il pUts of lbe 
Ful>C'lion Unit. The Jess Ihan (I.) 1)" i. lhe ud",h'c OR of Z and V "hich IS useful 
,n ca'lily implemenling ""nicula, dectsiom.. 'The inclusion of li>e L btl in lhe condo· 
lion CQd.e1 e~m,na[es lhoe need for lhe SLT inst.lKIion. 

To make lhe ",osl df~i,"C "'" of these rondition codes. it is <lsdul,o control 
whether or nOi tMy are mcKhtlcd for • parli<"ular microope.alion cxeculion from 
the instruction<. Examination of 'he RISC instruction CQd.e1 in Tabk= 12-1 shows 
thai bit 4 (third f.om Ihe teft) of the op<:ode is 0 fo. Ihe OJ'('ratiOilI down through 
insCruction LSL This bit C8n be u5<:d fo. tht'lt: instructioM 10 conCrol whether the 
condit ion cod •• are affecled by the in~truc'ion. [f Ch. bil is 1. Ihen the eo" d,tion 
code values are affected by ,he uecuCion of the i,,!!ruction, [f i, is O. Ih en Che COn­
dition codes will nOi be affected. This permits ~e~ible use of Ihe condit ion codes in 
making decisions al bolh Ihe [SA level ~nd in the microcode. 

Oatapath Modifications 

s"vcral chan~ to tM datlpath are re<fulred 10 support Ihe [SA modificalions. 
These changes ... ,11 be CO\'ered beglnn,n, ... ,th lhoe datapalh components in !he 
DOF stage in Figure 12-20. 

Fi .... , modificatiollJ are mack 10 the Conslant unilto handle lhoe .hanse in the 
lengtb of the larKel offsel. Lo&iC added 10 the ConsUlnt unit UlrlCiS • ronstanl. 
lM, = lR_ from cons' ant 1M, Sign e~lension is applied to IMs 10 obtain a 32-bit 
w",d. Also, for u'"' in comparisons with condition code values. 8n 8·bit conS!Snt 
CA is provided from the microi115truction register. MIll., in the microprogra mmed 
control. This constant i. ~ero·fil[ed to form a 32-bit word. The CS con1rol Held for 
th. Constant unit is upandc<.l 10 11010 bits 10 perfonTI seleclion from among the 
four possibl e const8nt $Ourccs. 

Second, lhe Regiller addr~ logic lrom the multipk=<yclc oompu'er in 
a.aptcr 10 is added 10 lbe addreJ5 inpucs of tM Register file. The purfl'Oi'lt: of Ihi' 
change is to supporttl!e [SA modification that provides 16 tempor.ory registers and 
16 registers ,hal are a par'! of !he lI0n0ge rcwurres. An additional mode wppOrt! the 
~ of DX II! a regisler file $OUr« address ""ith BX '" tM ton"espono:iing .egisle. fi le 
des!ina.ion address. This is n~1)' to up''''''' the conten .. for RJD RJ for USC in 
destination IIoddress mode akulanons, 



I ~-< I n.c C<>mpl~x In>tn'''t;oo S<, Compu«r 0 561 

o FIGURE 12·20 
Pipelined CISC CPU 

" 

Third. a number of changes are made to support the modification adding con­
dil ion code~ In the DOF .tage. an additional port i. added on MUX A in order to 
provide acre"" to Cc. the siored condition codes. for siorage in temporary registers 
or comparison 10 constanl values. In the EX stage. Ihe condition code bil L (Ie"" 
lhan) is implemcnled and Ihe condilion code register CC is added to the pipeline 
plalform. The new cont rol signal LC determines whether CC i. loaded for the exe­
cution of a specifi c miCrOOperalion using a function unil operation. In Ihe WB 
. tage. the logic for support of rhe SLT instruction is rcptared by a zero-filled CC 
value. which is p",,,,d to the new porl on MUX A. Since Ihe new condition code 
structure provides support for tne , arne decision making as SLT did and more •• up· 
pori for SL T is no longer needed . 



5 62 0 CHAPTER 12 I RISC AND CISC CENTRAl. PROCESSING UNITS 

Control Unit Modifications 

The addition of a microprogrammed oontrollo Ihc conlrol unillo supporl inSlruc­
tion implementation using multiple pas"," through Ihe pipeline causes significant 
chnge. to Ihe existing control as shown in Figure 12-W. The microprogrammed 
conlrol is a part of the instruction dc"Coding hardware in the OOF stage. bUl il inter­
acts with other parts of the control as well. For convenience. it will be dc&<ribed 
separalely. 

A quick overview of Ihe execution of a multiple·pass instruction provides a 
perspective for Ihe control unit changes. The PC points to the instruction in Ihe 
Instruction memory. The instruclion is felched in Ihe IF stage. and on Ihe next 
clock edge. it is loaded into the f R and the PC is updaled. The instruction is identi­
fied as a multiple-pass instruction from its opoodc. Decoding of the opoode 
changes signal MI to I to indicale that Ihis instruclion is 10 use Ihe micropro_ 
grammed control. The decoder also produces an 8-bit starting address. SA. thaI 
idenlifies the beginning of the microprogram in Ihe Microcode ROM. Since mU!ti­
pie passes through Ihe pipeline are needed to implement Ihe instruction. the load· 
ing of subsequent instruction, into Ihe fR and further updaling of the PC must be 
prevented. A signal MS produced by the microprogrammed control logic becomes 
I and stalls the PC and Ihe fRo This prevents the PC from incr~menting. but per· 
mits PC .. I to continue down the pipeline into PC , and PC., for use in a branch. 
This stall remains unlil the mUltiple pass instruction hos been executed or until 
there is branch or jump action on the Pc. Also. when MI • l. most of Ihe fields of 
the d~coded instruction are replaced with field, of the current microinstruction. 
which is a decoded NOP (no operalion). This 31·bit field rcplaccmenl. performed 
by MUX I. pre,·ent. the instruction itself from causing any direct actions. Some 
changes have bun made 10 the control word 10 control modified datapalh 
re"",urccs. Fiolds CS and MA ha'·e been expanded 10 two bits each. and field LC 
has been added. At Ihi' poinl. thc microprogrammed controt i5 now controlling the 
pipeline and supplies a series of microinstructions (control words) to implement 
the instruction ex~CUlion . The control word format follow> Ihat for the multiple­
cycle computer and includes ficlds such as SH. AX. ax. and OX. OX is modified 
to malch Ihe register address changes described for Ih" da13path. In addition. Ihe 
microprogrammed control ha, to interact wilh the datapalh in order to perform 
decisions. Th is inter.ction includes application of the constant CA. use of th" con· 
dilion code, Cc. and use of the zero detect signal Z. 

To support the oper.tion, just discussed. Ihe following changes are made to 
Ihe control unit: 

I. the addition of the ".11 signal MS to the Pc. PC,. and fRo 

2. ch ang~. in Ihe instruction decoder to producc MI and SA. 

3. e'pansion of the field, CS and MA to two bits. 
4. addition of MUX I. and 

5. addition of control fJelds AX. ax. and OX. and LC 

The dcfinitiornl of new and modified control fields are given in Table 12-4 . 



t2-4 I The Complex In"',",crion 50, C<>mpu .. ' 0 563 

o TA8U; 124 
Added or Modllkd Coo lrol Word (Jl.tI"",in,!r<KIion) Fields f OT CISC 

Control Fields Revis .. ' Field. " •• " 
~ " " • Action ,- '00. ,-,. 

'" 
,. , 

'" 
Ac~on 2b Action 2b Action -

&< Next ~ AX, BX d 1M 00 A Data 00 Hold CC " Table Add,"" Table ",M m I'C, "' LoodCC 
12-3 orCon- '" R[SA j.R[S8j " "" 1M, '" OIiCC '" st. nt ' " '" "CA " 

'" " 
"' 

Source R[DRJ 00 
and!k".R[SH j 
Dest R[DRJ "' with X .. O 

' " '" 
" " 

Except for the addi!i"n of the mic<opr<>grammed control discussed in the 
next section. this completes the changes to the oont,,-,I unit 

Microprogrammed Control 

A block diagra m for the microprogrammed rontrol and the format for microin· 
struction, appear in Figure 12·21. The control i< cCIltered a!>Qut the Microcode 
ROM. w" ich has an !l·bit addres< and stores up to 256 41-bit microinstructions. 
The microprogram counter Me stores the address corresponding 10 th e c urrent 
microinstruction stored in the micronin,t",Clion register. MIR . The address for 
Ihe ROM is provided by MUX E, which selects from the incremented Mc' the 
jump address oblained from Ihe mic roinstruction. CA. Ihe prior va iue of th e 
jump address.. CA. , . and the slarting address from Ihe in,truclion decoder in Ihe 
control unit. SA. Table 12·5 defille, the 2·bit selecl in put ME for MUX E and 
. tall bit. M$. in lernlS of Ihe new control fi eld MZ plus olhcr variables. This fune· 
tion i. implement ed by Ihe Microaddre .. Com rollogic, To SCI the contexi for the 
discussio n. in loca ti on 0 of thc ROM, the IDL E sla le 0 for the microprogrammed 
control contain, a microinstruction thaI is a NO P consisting of all ~eros. Thi, 
microinstruction has MZ ~ 0 and CA _ O. From Table 12-5. wilh MI _ 0, the 
microprogram address i, CA _ O. cau,ing Ihe control 10 re ma in in this slale until 



56 4 0 CHAPTER 12 /11.lSC AND CISC CENTI>..AL I'ROCESSING UNITS 

SA CACA , ., • • • L " 
) " , , , ME Microad<J , ... I== ~ I Mu, E con LroI I:=~ "' , 

• 

"' 

AOdre>. 
MKmmde ROM 

D." 
" 

M1 R , • , MIR _ 

f- " ---i 00' ------------------" , 
MZ .I 1& , ,., 

31 30211 2SlA232121lO19 1 61~141J1211 "" 

o nGUKE 12-11 
Pipe llneJ CISC CPU: MicroprOV"mmeJ Control 

MI = I . With M[ _ l ,starting address SA i, applied 10 f~teh (he first microinstruc­
lion of (he microprogram for the complex instruction being held in JR. [n the 
control uni!, M[ _ 1 also switches MUX f from the nonna[ control word coming 
from the decoder to (he 31-bit MfR portion (ha( is a NOP instruction. In addi­
tion. the output MS from the Microaddrc <s control becomes [. stalling the Pc. 
PC_j, and the IR in the main control. At the next clock edge. th~ microinstruc­
tion fetchod from lhe starting addre<s SA enters the MfR, and the pipeline is 
now controlled hy (he mic roprogram. 

In Figure 12-21, two pipeline registers " re rtquited as a part of the micropro­
grammed control . The stored pipeline values. MZ_1 and CA_1.are r~qui rcd for the 
execulion of a conditional microbranch since the ,·.[ue of Z 10 be tested occurs 
during Ihe execution cycle for the microbranch Instruction, one clock cycle .hcr it 
enlers the MfR. 

During Ihe execution of the microprogra m, (he microaddre<s i. contw[[cd 
by MZ, ML,. MI, PS, and Z. For ML, _ 11, MZ = 01 .ince the microinstruction 



fol lowing a oonditiooal m;O-ob.-anch mUit be a NO P. Under these oonditioos.. tbe 
ME values ar~ control~ by PS and Z with !>IS .. I. For PS and Z having opposite 
val~ a conditional branch to tIM: mlCrOaddress "alue from CA.. t 0ttII1"$. Ot h~r_ 
"'j..,. for ML, = II and ~tZ .. 0 1. the nut microaddress berom~$ the incn­
mcntcd value of Me. 

For MZ., .. II . MZ. MI. and rs control th e microoddress. For MZ .. 00. tbe 
values of ME and MS are coo troll~d by MI. For MI = O. the next microoddress is 
CA and !>IS = O. corr""-<ponding to the id le state for the microprogram med cont ro l. 
For MI .. l. the next microadd,cSI is SA and MS .. I. selecting the next mi"oin_ 
struction from th e Microcode ROM a nd stalling the lim two pipel;n~ platfo.ms. 
For MZ = 01. the next mkruaddress is the incremented val ue of Me. advancing 
U<I<'ution to the next microinstruction in se<jue""". For MZ .. 10. an unconditional 
jump i. perfonned in the microcode control and the value of MS is cont rolled by 
PS.I'S .. I cause< MS .. I.continuilll microprosram execution. I'S = 0 f_ MS .. 
O. fCrn<Wing the 5Iall. and fC turning control to lhe pipeline. ThIS causes MilO 
b«ome 0 (if the new inSlruction is not .1<;<> a complex one). I f CA = O.lhe micro­
rrQgrammed control is locked Ihe tOLE state until MI = I. In oo-de' for Ihis 10 
happen. the final instruction in lhe microproeram must have MZ = IO.I'S .. O. Bnd 
CA : 0. 

o TABLE nos 
Addre;, Cont",1 

tnput. Outpult 

MZ. , ~ ., ~ , . '. •• ., R~iat .. "ftanalet D ... 10 ME 

" " , , , , , PS·Z:MC.-MC + l 

" " 
, , , PJ · Z: .IIC.-CA ., 

" " , , , PS · Z: MC,-CA , 

" " 
, , , , PS · Z: MC.-MC + l 

" " 
, , , , , MC ..... MC + l 

" " 
, , , , , MC ..... MC + l 

~ 00 , , , , , MC .... CA 

~ 00 , , , MC ..... SA 

~ " 
, , , , , PS:MC ..... CA 

~ " , , , PS: .IIC ..... CA 

~ " 
, , , , , /oIC"....MC ... I 



5 6 6 0 CHAPTER 12 I IUSC AND CISC CENTRAL PROCESSING UNITS 

Microprograms for Complex Instruct ions 

Three examples illll5lrate romplc, initru~tions impicmented by using the CISC 
c.pabilitie. pro>'ided by the design jUil rompleted. The resul1 ing microprograms 
are give n in Table 12-6, 

(XAMPLE IZ·1 LO Inslrunion .. ilh Indirect Indned Addressing (UI) 

The U I instrnc1ion add, 1he target offset to lhe contents of a register th.t is being 
used as an index register. In the indireClion slep. the indexed .ddre .. fonned is 
1hen used to fetch the effective address from memory. Finally, the effective address 
is used to felch the op(!rand from memory. The opcode for this instruction is 
OIlI))JI, and the instr uction use, the Immediate fonnat with the SA register foeld 
and a 15·bit target offset. When 1he L11 instruction i, fetched and appears in the 
fRo the instruct ion decoder set, MI equal to I and provides the micT<)Code address 
.ymbolic.lly represented by LlIO in Table 12-6. The first microinstruction to be 
executed is the ODe appearing in 1he IDLE address. This microoperation exeru10s a 
NOP in the datapath and memory. but in the pre,",nce of 1.11 _ 1. the address con­
trol selects SA as the next microinstruction address. thereby loaving the ID LE 
state, The L1lO microinstruc1ion fOnDS the indeMd address and increments tl1e 
address in MC to fetch the next microinstruction L11 1, This cau,"" the NOP micro­
instmctiOT'l in addr .. , L11 1 to be fetc~ cd lOT ~",cution in the pipeline. This NOP 
nas been inserted. since the result of the microinstruction in LlIO is not placed in 
Rl, until the WI3 stage, The nexl mi~roinstr uclion in Ll l2 fetches the cffeclive 
address from memory. A NOP is required next, due the dock cyde delay in writing 
the effe~tive address to R" , The microinstruction in L1I4 applies the cffecrive 
address to the menlOry to obtain the operand and place it in the destination regis_ 
ter RIDR]. Since this complete. the LlI implementation. lno microprogrammed 
control state in MC returns to IDLE and the next instruction fo llowing Ll i is 
fetched from the instruction memory by using the address in the Pc. • 

In Table 12-6. thi' ,",quence of microinstructions is dcscrilxd in the Action 
column by register transfer statements. and symbolic names aro provided for lho 
addresses of the microinstructions in the Microcode RO M. The remainder of the 
columns in 1he table provide the cod ing of the microinstruction fields. These codes 
are selected from Tahles 10-12. 12.2. 12·3. and 12·5. to implemcnt the register 
tr"nsfc~ Of particular noto is tne appearance of MC = 10. PS = 0, and CA = IDLE 
(OO) in microinstruction U 14 causing the microprogram control \0 return to 1 DLE 
and program control to return to the pipeline control. 

EXAMPLE 12_2 B .... nch Gn us., Than n. Eq0811n (DLE) 

The BLE instruction compares the contents of registers RISA] and RISB]. If 
RISA] is Ie" than or equal to RISB]. then Inc PC branches to PC . I plu, the sign· 
extended Short Target Offset (lMs). Otherwise. the incremented PC is used. The 
opcode for the instruction ii 1100101. 



12-< I The Co.nr 1u IP>tno<boa Sd c.-p..,... 0 S67 

o Tt\IIL.E IU 
. :': •• pIe Microp<OV"'" r ... CISC t\rdIollmwt 

R,,_MIR,J 
MC_MC+I(NOP) 

I • I 

CC .... L l z I Nl c l v 
MC ..... MC+I (NOr ) 

R" ..... CC"lICOl 
Mel-MC + I (NOP) 

if (R" "O)M C..- BLE7 

."" Me ..... MC + ! 
MCI-MC+ I (NOP) 

MC .... IDL£ 
f'C .... { f'C~ I) + '" 1M L> 

H,._RrSB I 
MC ..... MC + I (NO P) 

11".- 11 .. -) 
II'l<- RIDIiI 
II " .... II(SII] +11 ,• 
11 ...... 11,, + 11 ,• 
llxo ..... MIR,,] 
M C..- MC +I (NOP) 

MIII" I .... II .. 
Il t ll, . .. O)MC_MMB2 
MC .... MC +I(NOP) 
M C .... IDI.£ 

II M PM L M 
Addrft.II MZ CA W DX D OS S W FS C MA 0 AX IX CS 

" OLEI 00 " BlE2 " " HLE~ 00 " 
"" IllE7 " 

" , 

• • . . 
• t~~~ I 00 , 

'"" 00' 00 , oo~~ MMOI 01 00 , 00 " 00 " " "" 00 , 0000 
M:\lB2 " " 

, 
'" " 00 " " '" 00 

, 00 00 II 
M:\mJ " 00 , 00 " 00 " " C"OO , 00 "00 
MMII4 " 00 , 

" " 00 " " 
, 
" 00 , 001000 

MMIl5 " 00 , 
" " 00 " " 

, 
" 00 " 111000 

MMIl6 "' 00 , ,. , 00 " " " " 00 " 12 00 00 
MMH7 "' 00 " 00 " 00 " " " " 00 

, 000000 
MMIlS " 00 " 00 " 00 " 

, , 
" 00 

, 13 l' 00 
MMIl9 " MMD2 

: ~I: 
00 , " 

, , 00 , woooo 
MMB10 " 00 00 " 

, 
" 
, 00 " 000000 

MMDll '" IDLE , , 00' , " " 00 " 000000 



5 6 8 0 CHAPTER 12 I RISC AND USC CENTRAL PROCESSING UNITS 

The register t,"nsfe~ for the instruction are gi,'en in the Action column of 
Table 12-6. In microinstruction BLEO, RISB] is subtracted from RISA ] and I ~ C 
condil ion codes L through V are captured in register ec Due 10 lhe one-cycle 
delay i~ writi~g to eC,a NOP is required in microinstruction BLEI. RISA] i, less 
lhan or equal to RISB I if (L + Z) _ 1 (+ i, OR in thi' expression). ThUs. of the r,"e 
condilio~ code bits. only Land Z arC of in lerC$L So in microinstruction BLE2_ the 
least 'ignificanl three bits of ee are masked oul using the mask 1I()(() ANDcd 
with Cc. The result is placed in regi.ter R". and. in BLE3. another NOr is 
required waiting for R" to be wnnen. In BLE4, a microbranch on R" non~cro 
occur .. 1f R" is ~ onzoro, then L + Z = 1 giving RISA] less than or equal to RISB]. 
Otherwise. both Land Z arc 0 indicating RISA] is not less than or equo l to HISSI. 
Due to the microbranch, a NO P is required in BLE5. The connection. to MUX E 
require only one NOP aher a microbranch in<1ead of the two NO P. needed for 
tne conditional branch in the main control. If the branch is not taken. the ne xt 
microinstruction BLE6 c.ecutes. returning Me to I DLE and reactivating the pipe­
line control to execut e the next instruction. If the branch i. taken . microinstruction 
BLE7 is executed. placing PC ~ t ~ BrA into the PC for fetching the ne xl instruc­
tion when tho microinstruction rcaches the EX stage. Note that such a branch on 
the PC can take place Ol"Ily after MS becomes 0 and the pipeline is reactivated. In 
this regard. a comrol hazard exists for lhi s instruction in the main control. '0 it 
mu.t be fo tt owed by a NOP. The codes for the microinmuction fields appear in 
Table 12~ • 

EXAMPLE 12-3 Moo'e Memory Block (MMB) 

The MMB instruction copies a block of information from onc sct of contiguou, loca ­
tions in memory to another. It has opcodc 010001 t and uses the three-regi"er type 
format. RegiSler RISA] specifies address A, the beginning l<)Calion of the source 
block in memory. and register RIDR] specifIcs address B. the beginning location of 
the destination block. RISB] gives the number" 01 words in the block . 

The register transfe~ for tho instruction are gi"cn in the Action colu mn of 
Table 12-6. In microinstruction MMBO. RISBI is loaded into R, ... MMBI conlains a 
NOP waiting for RI6 to be wrinon. In MMB2_ R" is decremented. providing an 
index wilh" '·alues." - I down to O. for use in addressing the copying of" words. 
Since HIDR] is a destination register, il is ordinarii)' not available as a sourcc. But 
to do address manipulation for the destination locations. it is necessary for ilS value 
be placed in a regiSlcr that can act as a source. ThUs. in MMB3. tne value of RIDR] 
is copied to register Rn by usi~g the register code DX _ 00000. which treats RIDR] 
as the source and the register specified in the BX field. R". as the destination . In 
microinstructions MMB4 and MMBS. R'6 is added to RISA] and to RISB]to serve 
a, pointe~ to the addresses in the blocks. Duc to these operations. the word, in the 
blocks arc transfen-ed from the highest locat io~ fi rst. In MMB6. the first word is 
transferred from the first source address in memory to temporary regist"r Ry)- In 
MMB7. a NOP appears to permit the writi ng of the valuc in R", hy MMB6 before 
the use of the val ue by MMB8. In MMB8. the fi~t ,,'ord is transfen-~d from R", 1<1 

the lirst de'tinalion address in memory. In MMB9. a branch on '.cm is done on the 



Il-S I MoR on l~ 0 569 

oonlcm. of H,. 10 dClcrm"", if all of .he words in lhe block ha~e b..-cn .un.ferred. 
If 1101. Ihen MM2 i. the nexl microatklress in which Ihe nexi word Ir~n.fer begin .. 
If H" e<jual, ~cn~ the ne , l microinstruction is . he NO P placed in MMll lO due 10 
.he branch. The tin~1 mlcro; nstruc. ion in MMI) II rct um. Ihe MC to ID LE and 
return, e.c.:ution back 1o Ihe pipel ine com rol. 

The rode. for tile microinmuclions appear;n Table 12~. The CQde <"()t)Si>1s of 
.imple reglS'er and m"rooT)' .randus wilh • li ngle branch 10 prO\-·id.l Ihe loopIng 
capobili.y and NOPs.o deal ";Ih dala and <"()'"rol haz.ards. _ 

12-5 M O RE ON D ESIGN 

The .wo dc,ig", oon,idcrc:d in . hii chapler repr"..,m two di/rerenl ISA, a"d Iwo 
differe nt ' UpllO,ting CPU organi1.lIIion .. Thc RI SC . rchilc.:l ure mnlches wcll wi th 
the pipelincd """lTol organi ,ation he<;ause of Ihe simplicity of Ihe inmuctio" .. Due 
to IIIe nc<."<1 for hi&!> performaooe. the modern CISC archileelu,"" present~"<I is built 
upon Ihc RISC founda')()rI. In Ihi. SttIion. ~ .. ·ill deal ... ith ad<.lilional fcalures for 
spuding up the fundamental RISC pipeline. l'inally. we rela.e .he lwo organ"' .... 
lions 10 more seneral dit,ttallyMems de$ign. 

High·Perlonnance CPU Concepti 

Among Ihe various melhod, used 10 design hi&!>..,.peed CPU. are n,"llIple uni" orga· 
ni,-ed a, a pipeline. para llel structure. superpipelines. ami , up<:T"SCalar nrchilc'Cl urcs. 

Con~ider the ca.., in which an operalion la ke. muhiple clock cycle. !o ~xe· 
CUIC. bUI .he in,trucrion felch and "·r;!~·back OVC,." IK)I1S can be handled," a .ingle 
cycle. "Iltcn il is po6Sible 10 ini tiale an in'lnlClion e"ery c10cl cycle. bul nol poai. 
ble 10 complelc Ihe execution 0( an instruclion e~ery cyd~. In suth a ,,'nation. the 
performance of the CPU can be $ulJslanllally impro¥Cd by .... inl multIple execu· 
lion unob In parallel. A higll·level block dl~I'Bn' for Ihis kind 0( ,)">.eln .. -">own 
in figure 12·22. The in'truction felch. dea)dlnJ. ~nd ~rand fetch ar~ carried "". 
in the I·unlt pipeline. In aoJdilion, Ihe l·un;1 handles bra nche .. When dccodin~ of a 
nonbmnch In.tr""Iiol1 h,.. been compklcd.lhc In"ruc.ion and opera nd. am is ... ~tI 
10 Ihe npprol)r""~ E·unit. When execution of Ihe in, lruction is c"' ''pICled by Ihe 
E·un it . Ihe writc·bad to Ihe regi.ler fi le <Xcu,... If a memory a=i is rC<juircd. 
thcn Ihe D·unit if u",oJ 10 exeeute lhe memory wri lc. If Ihe opcralloll is a store, it 
g<>Ct' immcdinldy 10 Ihe D·unil. Note Ihal llIe actual execulion uni .. may be 
microprogrammed and may al'<O have ;nlemal pipeli"""-. 

Suppose Ihat a R<juence 0( Ihrec In .. nlClion ........... y. a muhiplicallon. a l6-bil 
"'ifl. and an addllion-has no dala haz.ards. Suppoooo: fur. her lhal tbere is. lingle 
pip<:li .... "<I E.unll Ihal performs all of Ihe"" opcrllllOns. w hkh .ake 17. 8. and 2 clock 
eyel ...... respec1iYcly. and Ihal both Ihe mullll'lkalion and Ihe shifl re<juire multIple 
passes through porti""" of the E·u ,,;. pipe line. Thi, "tua.ion allOW'S only one c1<.>ek 
C)lde uf ","erlap belween p.i r< of the Ihrcc in~tructio" .. Thus. Ihe r"",CSI . hm the 
seque nce of operll li",,, execute< in Ihe !!' unlt i. 17 + M + 2 - 2 - 25 cloc ~ cycle .. 



570 0 CHAPTER 12 I fUSC AND CISC CENrRAL PROCESStNG UNITS 

Out with an E· tlnit for each operation . these operations can be executed in max( 17. 
I + 8.2 + 2) clock cycles. which equal. 17 cloc~ cycles. The additional I and 2 are 
d ue to the iswing of OM instruction per clock cycle to the E-unit set. The resulting 
execution throughput is improved by a factor of 25/17 - 1.5. 

In all of the methods considered thus far, the peak throughput pos~ibl c is onc 
instruction per cloc~ cycle. With this limitation . it is desirable to maxi mi~e the clock 
r.te by minimizing the m",imum pipeline stagc delay_ If, as a eon""'luence. a large 
number of pipeline stages is used, the CPU is said 10 be '"perpipelinfll. A superpipe­
lined CPU will generally have a very high clock frequency, in the range of a OHz. In 
such an organization. however, handling hazard. effect ively is criti"" I, since a"y 
stalling or reinitialization of the pipeline "'ill degrade the perfonMnce of the CPU 
significantly. A lso, as more pipeline 'ta8es are added. further dividing up the comb;­
natio"allogic. thc setup and propagation delay times of the Hip.nops begin to domi­
note the plat/ono·IO·pl.t/orrn delay and the speed of Ihe clock. The improvement 

]·usrT 

I I 

Il·USrT E·U" 'T I;_UNtT 

D_U~rT 
ROil" .. ". 

o nGURf: 12_22 
Multiple EXe<Outooo Unit Org.nlzation 



t2_5 I MOl'< on De.;&n 0 571 

In",,,,,,",,,I'I< ' 

lo"ruction i .... 

D<C<Id.< .r><! D<oodc ood 
_ 'Or><! f"ch "P"f>r><! fetch 

Eu<u,. E""o" I 

Wfi' •• Ni<' 8="" 2 

'""!O' E·"n;' 

8=u,d 

W,;'o-Ni<k 

o FIGURE I2-D 
Supe<5C, i>r O'g.nia'ion 

achie"ed is Ie<$, and when hazards are l;tkcn into account, the performance may 
actuall y beCOnl~ worse ratncr than be lt er. 

For fast e ~ccution, an a lternative t() . uperpipeli ning is the u"" 01 a s"perscala' 
()rganizati()n. The goal or this kind of organi/,ation is to have a peak rate of initiat· 
ing inSi fLlction< in excess of one in struction pcr dock cycle. A "upers<:alar CI'U that 
ktche. a pair of inS1ructions <intul\aneously by using a d"uble_word wide path 
Ironl ins1ruction menlor)' i< illustrated in FiguTe 12·23. The processor checks for 
hazards am<mg the instructions. as well as a"ailable execution units in the instruc_ 
tion issue stage of the pipeline. If there are hazards or bus)' exec ut ion units corres­
ponding t() the hrst instTuction . then both ins1ructi"n< are held lor later issuing. If 
the first in.tTueti"n has no hazard and its E·unil i, a,ailabl~. but there i. a hazard or 
no available E-un it for the <econd instruction. then onty the first instruction is 
issued. OtheTWi~c. both instructions are issueJ in parallel, Jf a given supers<:alar 
,m:hitccture ha< the ability to issue up to four instruction. sinlul t ~ncously. then its 



572 0 CHAPTER 12 I IUSC AND CISC CENTRAL PROCESSING UNITS 

l I I I I I I l I I ' , , rca ~xccuhon rate," our ,"struct,ons per c oc eye c, [ the dock cyde is 5 ns. 
then . ueh a CPU ha, a pea~ execution rate of 800 MIPS. NO!e lhat the haza rd 
ehcding for instrUClions in Ihc e.ccution ,tage. and those in the issue stage 
become very comple. as the m.,umurn number of in.lruction. issoed ,imuit a­
"eou.ly is increased, The re<ulling hardware conlplexit y has ,he potential te> 
increase the clock cycle length, so the trade-<lff. in .ueh a design need to be examined 
vcry carefull y. 

We close tbi, section with two observation<. First. as the qu<>St for bener per_ 
formance cau.." 0' to design increa.ingly complex Ofganization<. hazards cause 
the order of the inslructions 10 playa more imporla nt role in the throughput tha t 
i~ achicv.ble. Also. improved perform.nce c.n be achieved by reducing Ihe num­
ber of h a~ard_prQd ucing inSlructions, such "" bmnch~,,- As a e<'"""4ucne<:, 10 full}' 
exploit Ihe performance capabil it ies or the hardware, Ihc assembly language pro­
grammer and the cnmpiler writer need to be very kn owleJgeable about the 
beha.ior of not o nly Ihe in.truetion..,t archilecture. but al,o the underl)'ing Olga_ 
nizatio~ of Ihc hardware of the CPu. 

When mulliple execution unilS are invol"ed. "ery ohen Ihe CPU design we have 
been e<msidcring hcre actu.lly becomes Ihe Jesign for Ihe cntire proe<:w:>r. as i, 
sb!)wn for the ge neric "" mputcr. This is appare nt in Ihe , upersca lar "'ga ni",ti"n in 
FIgure 12_23, which contai ns the Hoating_po;nt unit (FPU) .lhe FPI), Ihe MMU. and 
the portion of the internal caehe thaI hand le. data are effectively lype'S of E_unils. The 
portion of Ihe internal cache that handles Ibe instructions can be viewed a, a part of 
the I-Unit Ihal felches inm uclioru;. Tho .. in Ihe quesl for higher and higher Ihrough­
put. the realm of the CPU becom~s tha' of the proe<::ssor, as i~ the generic computer 

Recent An;:hltecturallnnovatlons 

Beyond Il1 e concepts presented in thc previous seChon. two gen~rat Irc nds ha"c 
become apparenl in one of the mOil recent high _performance archi lecture<- 'Il,e 
first trend i$ the development of compi lers and hardware architectures that pennit 
the compiler to explicit ly identify to the hardware in'lruction, that can be execuled 
;n parallel. In this approach. the identification of paralle!;.m typically done in hard­
wo,e in Ihe ,upe,sc.l.r architecture ha. now bee n moved 10 a fair degree imo Ihe 
compiler. Thi, relea,e~ hardware for other use .. notably more e,ecution un its and 
larger register flle<- n" =ond trend is the u,e of techniques that a llow tI, ,, procc<_ 
sor to avoid waiting for branche, to be ta~cn and for dala value. to become ava il­
able. Three lechnique, that .upport Ihi' trend wi ll be disco,sed in Ihe remainder of 
thi. section. 

In'lead of waiting for. branch 10 be l.ken. Ihe processor will execule bo lh 
sides of the branch and prQduce resu ll, for bol h ,ide<. When the res ul ts of the 
branch becomes a,'ailablc, the righl resull is selected and the computat ion pro­
ceed~ Thus, there is no delay waiting for a branch . • ignificant ly impro.ing perfor­
mance for long pipelines. Th is , imple approach i, referred to as I'mlic/llion and 
uses .peciall -bil registe" referred 10., predicate regi'lers lhal determine which 
resull is used ",he~ the branch oulCOme is kn own, 



IW /~_I~ 0 57l 

IMIead of "'3"'ng to load dala from memory unlil it is kno"'n 11la1111e dala i. 
needed. JI>«"IIlI'.~ Iootlmg of data from memory i. performed befOfe It is kno"'n 
for sure whelher Or nOllhe dala is needed, The rcason for uS(: of II". technique is 
10 a"oid Ihe ,datively long delay required to fetch an operand from memory, If the 
data that is spt.'Culatively fetched lurns out to bc the dala necMd.lhen the dala will 
be availaNe 10ld the computation can proceed immediately withOllI having 10 wail 
for a memory ac.:css to gel the dala. 

Ins.ead of ""iling for dala '0 bttornc avaolable.data sp«ulaliOlI uses methods 
'0 predicl dall values and procttds to compute using Ihese values. When IIIe 1ICIual 
,."r ... beoomes krKnoll and malehe'S lhoe prcdieled value. lhoen thoe resull prooucW 
from Ihe pt'ediclcd v.lue can be used to earry f"",,-atd tile computat;on. If tile 
aell",1 value and lhe predicted ,'a lue diller. then Ihe resull based on the prw;etcd 
value i. di~arded und the aClual value ;i used to continue computation. An 
example of datA sperulation is pcrmillina a VAlue to bo loaded from memory bofore 
a store into the SoIOme memory location occurring car~er in the program has been 
exe<;utcd. In this casco it is prcdicwllhat the store will nol change Ihe value of the 
dala in memory. iIO Ihal tbe .'alue loaded belore Ihe .Iore "ill be valid. If. at the 
time the .. ore occurs. the Iooded .-olue is _ ~alid. Ihe reMIlt of computalion ",ing 
il i. discarded. 

All of Ih~se Icchn"lU .... perform openlion. or "'"'l""nctS 01 opent ...... for 
which resuh. are di"",rdcd ";th some frequency. Thu," Ihere .. -wasted" computa­
Iton,1b be able 10 do large amOllnU of u..,lul compulalion. as well allhe wasted 
COmpuI3tIOI\. more p-arallci resource .. a. well as .pecialized hardware 10' imple_ 
menti ng the techniques.. are req uired. The payolf in relurn for Ihe COSt of Ihese 
rcsour"". is polentially higher pe,formnnco:, 

Digital Systems 

n..,.t"o.w.ablc digilal .ystcm desi!:", " .. have examIned ill III .. chapter arc lencrnl­
purpoot CPUs. 1·low doe:s Ihclf desil" ",1~le 10 Ihal of other digital ')'Siems? Firsl of 
all. each di,ual ')'Stem haa an a",hilecture. Ailtlough that archilttlure may not in 
any way deal with i",tructions 10 be exo:cutw.It" likely that il still can be described 
by using regIster tran.fer dc>scriptions and, possibly. one or mOfe algo.hhm;'; Slalc 
machines. On the other hand. il mighl ha,,, instruction .. but they may be quite dif­
fere nt fron, those for a CPU. The s)'Stem mlly hu,'c no dalap-alh al oil or "'.y have 
"" 'eral dalnplltht. There is likely to be some form of control unil. and Ihere may be 
multiple "",ntrol units Ihat Inleract . The .yst"m may or may not include memories. 
Th ..... lhe tOial specltum of digiu>1 systems has a '''''Y ,,-jdc ""'It'! of architectural 
possibililt.r.. 

So. .... hat is the conn .... ;On of lhe genera l digital .yslcm 10 tile conlent of this 
chapter? Simply 'taled. Ihe conne<:tion is desIgn techniques. To illuSlrate. consider 
Ihat we have slt-own in delail how a ')"ilom with inmueloons can be implcmcnlcd 
using a datnp1lth and B """trol unil. From here, it is rdatively eMy 10 implement a 
simpler ')'Slelll withoul instTUClion .. We h.ve shown how high speeds call be 
achieved hy u.ing pipclinL'< or parallcl e~ecut ion unils. Thus.. if the goa l of II .y.tem 



574 0 eHAPT~R- 12 I R-ISe AND else e~NTR.AL PR-OCESSING UNITS 

is high speed, then pipelining or parallel unils are lechniques to consider. For 
example. one of Ihe aUlhors, in an example d."ign of a system for implemcming a 
porlion of a USB lrall5miller (see seclion 13-4). used a pipelined datapath with a 
comrol that involved both pipdine and con,·ontion.l seq uential control, We have 
shown how microprogramming has been used to implemem controls for complex 
functions carried out in a pipeline. If a s)-stem has One Or more very complex func­
tions, whether pipe lined. programmable. or not. Ihen a microprogrammed control 
i. a pos.>ibililY. 

12-6 CHAPTER SUMMARY 

This chapter has covered Ihe design of two processors-one for. reduced 
instruction wt compuler (RiSe) and one for a complex instruction set computer 
else. As a prelude to the design of these processors. the chapter began with an 
illustra tion of " pipe lined datapath. The pipeline concept enables operations to 
k perfonned with clock frequencies and throughput nO! achievable with the 
same processing components in a conventional datapath. The pipeline execution 
panern diagram was inlToduced for visualizing the behavior of " pipeline and 
estimating its peak performance. The problem of the low dock frequency of the 
singJe ·C)'cle compuler wa, addressed by adding a pipelined control unit to the 
datapath, 

N.,t. we examined a RiSe design with a pipelined datapath and control unit. 
Based on the single-cyde computer in Oapter 10. the RiSe ISA i, characterized 
by a single instruction length, a limited number of ;nSlructions with only a few 
addressing modes, and memory aCCe1;S re1;triClcd 10 load and Store operations. Most 
RISC operations are simple in the ",nse that. in a con"entional architecture. they 
can be execuled using a single microoperation, 

The RiSe ISA is implemented by using" modified version of the pipelined 
da!apalh in Figure 12·2, Modifications include an increase of Ihe word lenglh to 32 
bits, do~bling of the number of registers in the register 61e. and replacement of the 
shilter in the function unit with a barrel shifter. LikewiS/\ a modified version of the 
control unit in Figure 11-4 is used . Control changes were performed to accommo­
date the datapath changes and to handle branche, and jumps in a pipeline environ­
menl. After completion of Ihe basic design , consideration was gi"en to data hazard 
and control hazard problems. We ~,ami n.d each Iype of hazard. as well as 50ft· 
ware and hardware solutions for each. 

The ISA of the else has the potential for perfonning many distinct opera . 
tions. with memory access supported by several addressing modes. The clse 
al,o has operations that arc complex in the sense that thc)' require many clock 
cycles for their eucut ion . The else permit' many of the instructions to perform 
memo!)' accesses and is characleriled by complex conditional branching sup · 
ported by condition codes (stalUS bits). Altnough, in general. a Clse ISA per. 
mits multiple instruction lengths. this feature is not provided by the example 
arch it ecture. 



I'robIom. 0 575 

To provide high througnpuk the RISC archit«'ture serves as the core of the 
C ISC ",c~ i tccture. Simpte instruction5 can be ex«,uted at the RISC throughput, 
with complc~ instructions. executed by multiple P'$$('5 through the RISC pipeli n~ 

reducing o"craLI throughput. R ISC datapluh modifICation provided regi5ters for 
temporary operand storage and condition code storage. Changes to the control 
unit were required 10 support Ihese dalapath changes. The primary COI1trol unit 
moditicalioo . however, W ", the add ilion of t~e micropTOgram control for uecution 
of complc~ in.lructions. Added changes to Ihe RISC control unit were req ui red to 
integrate the microprogram control into the control pipeline. E~amples of micro· 
programs for thtee complcx inSItl>Clions were provided. 

After rompleting the CISC and RISC designs. we touched on some advanced 
ooncepls. including parallel execution unit<, superpipclined CPU .. sup<:rs.calar 
CPU .. and prediClive and 'peculati"e t«,hniques for high performa""". Finally. we 
related Ihe design techniques in Ihis chapler 10 more general digital 'Y'lem design. 

I. MA>'O. M, M. CompUier Synem A rchitecture. 3rd Ed. Englewood Cliff .. NY, 
Prentice Hall. 1993. 

2. PATf'ERWS. D. A .. AND J . L H f.I<NUSY CompUiU Organi;:otion and Duign: 
Th~ lIardwarUSo[twar-e Inurfaa. 2nd ed. San Francisco. CA: Morgan 
Kaufmann,I998. 

3. H E..';NUSY. J. L.. ASD D. A. P ATf'EIlWS Compulu A " hilu""e: A Quamilalh'. 
Appr(Jflch. 2nd cd San Francis.co. CA: Morgan Kaufma nn . 1996. 

4. Dn,n.'EYER, D. L.. Logic Dnign of Digital Syst.", ... 3rd ed . BOSlon. MA: 
Altyn.Bacon. ]988. 

5. KANE. G ., A';D J H~INRIC>t MIPS RISC A n:hil«1"U. Englewood Oiffs. Nl: 
Prenlice Hall. 1992 , 

6. SPARe L"f'ER';AT10';AL. Isc. Th~ SPARC A'chilec",re Mamml: Ve,.,-jon 8, 
Englewood Cliff .. NJ: Prentice Hall. 1992. 

1. WEfSS. S .. ANO J. E. S .. IT>t POWER WId Pm.'.rPC San Mateo. CA: Morgan 
Kaufmann. 1994. 

8. WYA~. G .. ANOT. HA"MLRSTRO" /low Mk,oprouiSorJ Work. Emerp-ille. 
CA: Z;f(·D",is Pre .... 199-t. 

9. HE URING. V .. ANI> H. JORDAN Compllle, Syst~ms Design and A n:iljlec""e. 
Upper Saddle Rivet. Nl: Prent ice.Hall.l997. 

Jb. PR08LEMS 

l!E7 '(lie plus (+) indicates a more advanced problem and Ihe aSlerisl: (0) indicales a 
$OlUlion i5 available On I~e C<.>mpanion Websile for t~e lut 



576 0 CHAI'TEFl. 12 I IUSC AND CIS(: CENTRAL PFl.OC~SING UNITS 

tLl. 1 p!pe!L J tapJ 1s , lmlJar 10 lhat ln Fig ure 12· 1(b). but with the delays 
from lhe lOp to the bo{{om replaced by the following ,alues: 1 J) ns, I ,0 ns. 
0.1 ns, 0.2 ns. L3 ns. 0,2 n" and 0.1 ns. Determine (a) the maximu m dock 
frequency, (b) the lalency time. and (e) the maximum throughpUl for lhi' 
datapath. 

12-2. "A program consisting of a sequence of 12 instructions withoUl branch or 
jump insauoions is 10 be e . ecuted in a six-stage pipelined com pUler wi\h 
a clock period of 1.2.'i ns. Determine (a) the late ncy lime for the pipeline. 
(b) the maximum throughpUl for the pipeline. and (c) lho limo required 
for executing the program. 

12-3. The sequence of ..,ven LDI instructions in the register number program 
with the pipeline execution panem given below Figure 12·5 is fetched and 
e,ecuted. Manuall y simulate the ex"'-' ~tion b}' giving, for each dock cycle, 
the ~alues in pipdine registers Pc. I R, Data A. Data B, Data F. Data I, and 
in the register fi le having it" , 'aluo cha nged for each dock cycle. Assume 
thal all file registers i~ i tially contain -I (a lii ',). 

12-4. For oach of the RiSe Op<:rations in Table 12· 1. list the addressing mode or 
modes u..,d. 

12-~. Simulale the operation of the barrel shifler in Figure 12·11 for each 01 the 
follo,,;ng shifts and A _ 7E93C1A1 '6' Lisl the hexadecimal values on the 
47 lines. 35 lines. and 32 li ne, out of the three levels of the ,hifter. 
(a) Leh,5H - ll 

(b) Right, 511 - 13 
(c) Left, 511 - 30 

12-6. "For the RiSe epu in Figur~ 12.9. manually simulme, in hexad",-,imal. the 
processing of the instruction AD! R l R16 2RlI located in pe ~ IO F. 
A"ume tha t R 16 comains OClOOOOIE Show the contentll of each of Ihe 
pipeline pl atforms and of the register file (the lan~r only when a change 
occurs) for each of the clock cycles. 

12-7. Repeat Problem 12---6 for the instruction SLT R31 R10 RI6 with RIO 
comaining((o)l00F and RI6 cont .ining((o)IOll. 

12-& Repeal Problem 12---6 for the instruction LSL R 1 R 16ME 

12----9. +Use a compulcr·based logic minimization program to design the instruction 
decoder for a RISC from Table 12-3, The fie ld I'S need not be done. since it 
ca n be wired directly from OPCODE. 

12-10. 'For the RISe design, draw Ihe exocution diagram for the following RiSe 
program. and indicate any data hazards that are p,..,sent: 

1 MOVA 
2 SUB 
3AND 

R7, R6 
RS. RS, R6 
RS, RS, R7 



_m, a 577 

11-11. For the RISC design, draw the execution diagram for the following RISC 
program (with the conlent. of R7 non~erO aftcr the subtraction). and 
indicale any data or connol hazard. that are present 

ISUB 
211NZ 
3AND 

'0' 

R7.R1.R6 
R7.COlF 
RH,R1.R6 
RS, RR. R5 

11-l2. °Rewrite the RiSe programs in Problem 12- 10 and Problem 12-11 usmg 
NOP>; to avoid all dala and cont rol hazards and draw tM new execulion 
diagrams. 

11-13. Draw Ihe execulion diagram. for the program in Problem 12-IO.a .. uming 
(_) the RISe CPU with data siall given in Figure 12,12. 
(h i the RiSe CPU with data forwarding in Figure 12.13. 

11-14. Simulate the procc .. in g of Ihe program in Problem 11-11 using the RISC 
epu with data hazard stall in Figure \2·12. Give the COOtenlS of each 
pipeline plat form and Ihe regiMer file (the laner only whenever a change 
occurs) for each clock cycle. Initially. R6 contain. (XXXXXlIO". H1 contain. 
<XXXXXl2O j •• R8 contain. OCO:XXlJO, •• and the PC conlain. (((((((II, •. I, the 
data ha~ard avoided? 

12-15. oRepeat Problem 12-14 using the RiSe e p u with data fO''''arding in 
Figure 12· 13. 

11-16. Draw the execution diagram for the program in PrOblem 12- 11, .>suming 
the combination of Ihe RISC CPU wit h branch prediction in Figure 12· 17 
and Ihe RISCCPU ,,;th data forwarding in Figure \2·13. 

l Z-11. Design the Con"anl Unit in Ihe Pipelined clse CPU by using the 
information given in Table 12·5 and multiple ·bil multiplexers. AN D gates. 
OR gates. and inverters. 

1Z-1M. oDesign the Register Addres. Logic in the Pipeline<! CISC CPU by using 
infonnation gi"en in the r"gi~tu fields of Table 12·5 plu. multiple ·bi t 
mulliplexers. AND gates. OR gates. and inverters. 

1Z-19. Design the Addre., Control logic de""';bed by Table 12-4 by u.ing AND 
gales. OR gales. and im·crtcT$. 

1Z-2tl. Wri1e microcode for Ihe e~ecution part of each of the follO"'ing else 
instructions. Give both a register Iransfer deS(:riplion and binary or 
hexadecimal representation. similar 10 those .hown in Table 12.0 for the 
binary code for each microin.truction. 
1_) Compare Greater Than 
(bl Branch if I.,.. Ihan zero (CC bil N _ 1) 
(e) Branch if overflow (CC bit V _ I) 



0578 0 CHAPTER 12 IIUSC ANI) CISC CENTRAL PROCESSING UNITS 

12-21. Repeat problem 12-2() for the following C1SC instructions that arc specified 
by register transfer statements. 

(. ) Push: R[SA I<-R[SA I + 1 followed by M[RISAll <- R1SB j 
(b) Pop, RIDRI <-M[R1SAII followed by RISA I<-RISA 1- I 

12-22. · Repeat problem 12_21 for the following C1SC instructions. 
(~) Add with carry' R(DRJ <- R(SA] + R(S8] + C 
(b) Subtract with borrow: R(DR1 .... R[SA]-R(S8] - 8 

Borrow B is dcr,ned as the complement oflhe carry out. C. 

12-23.. Repeat problem 12·2 1 for the following ClSC instructions. 

(a) Add Memory lndire""l: RI DRI .... RISA [ + M IM[R[S8111 
(b) Add 10 Memory: M[RIDRll .... M[R(SA 11 + R(S81 

12-24.. ' Repeat problem 12·20 for the C1SC inmuction. Memory Scalar Add. This 
insrruction us.es rhe contents of R[SB] as the vectOr lenglh , It add~ the 
elemem, of the "ector with its least signifIcant clement in memory pointed to 
by R[SAI and places rhe res ult in the memory location pointed 10 by R[DR]. 

12-25. Repear problem 12-2{J for rhe C1SC inm-ncrion . Memory Vector Add. This 
insrruction u\t:s the oontenlS of R[SB] as Ihe "eClor lenglh, It add, the vector 
with its leaSl ,ignificant element in ntento!)' poimcd to by R[SA ] to the 
vector with its least significant elemenr in memory poinled to by "' [DR]. The 
result of the add ilion replaces l~e "eel0r wilh its leasl ,ignificant element 
pointed 10 by R[DR]. 



.................... _ .. _ . 

INPUT -OUTPUT 
AND COMMUNICATIO N 

I n - chapMo'. - gIYe ." OWH ,;." col $' Ia:I aspeca; '" """"PU* 1npuI..o.npu! 
(IK») _ COIMU1IcaIion _ !he CPU and IK) _. IJO ~. and 
I/O P' NL Because '" 1M _ VlI'*Y 01 dillerent IK) _ ..-.:I !he ~ 

lot last..- h..-.g at progmms and data. IK) ~ ""'" '" the II'I06t """"""" a'_ 01 
comput..- 0Hign. As a D::IfI!i&q""""". _ a" aI* 10 preset1t ooI)t 591""'-<l ~ '" 
too 110 puzz'-. W.lllust/8!e juS! !h, .... d<Moe. In delaM: 8 l<eyboold. a hard disk. and , 
graphic' diSPIIIY. W, th(j/1 introduoe !oo 110 bull and the I/O In!erface. that conn..:t to 
I/O d<Moes We conslde< _lal comm~nk:atlot1 .nd use too L/O strIJCt~" lot !he 
keyboard as an ~~\IlO1ior1 We !hen k>ok at !he Un.....-s.t Set1al1lu$ (USB). (j/1 
a/t..-M&.ot IIOkIIion 10 the poot""'" 01 !l<XeeeInO 110 dIMce$. FnaJly, we diecuM t:>ur 
~ lot peo1oorr. 00 data 1r8nSIets: p<Ogt'8tYI-oontroIIid transIar. 1nte~.fnItIa1a:l 
trans ... dIrecI mwnory ac<:8S$. and the use of an IK) ptO<»SSOr. 

In *"" of the I/8'"'&'k: ~r , t !he tIegir •• ", '" Chapte< 1. ~ is "I)peI"'" ""'I IK) 
~ 8. very II<ge part of !he oornpo.r\er. Ortt trI8 pniC8SIIOf. fi><\ern,!rI each&. _ 

RAM are no! as h~ inYoOved •• rthOugh they. too, .'. """'" ""lan&IYety In cJirecling 
and perlor"mlrog 110 lransien. E-. the Qeti8tic comput .... whict1 ,... fewer 110 de'¥ic:w 
ttran Il'1061 PC systems. has a diverse sel ot IIUCI1 devices roqumng sognifo:anl <Mgol8l 
.. ectrontC hard .. arfO fOr suppon. 

13-1 COMPUTER UO 
The input and OUtput ...,bsptem of a computer pr<»1des all efficient mode of rom· 
munication botw",,,,1l tM C PU and the outsMJoc en,·ironmenl. Provams and data 
must bo entered into the memory for processORg.and results oblarned from compu' 
talion. mu" bo recorded or displayed. Among th. input "nd output dcvJCC5 Ihat 

o 579 



SSO 0 CHM'TEI<. 13 ItNPlfr_OUT PUT AND COMMUNtCATlON 

arc commonly found in computer systems are keyboards. monitors, printers, mag­
netic di'ks, and compact di,k read-on I}' memory (CD-ROM) dri"es, Other input 
and oulpul device, frC'l ucnll)' enoounlcred ar,; modems or other comm un ication 
interfaces. sca nne rs. and sou nd cards with speakers and microphones. Significant 
numbers of compu te", such as lhose used in ;tulomobiks, ha"c analog-to-digilal 
con"crkrs, digital -to-analog con,erters, and other data acquisition and cont rol 
components. 

The 110 facili ty of n computer i, a funnion of its intended application, This 
resuUs in a wide divcrs it y of aUached device. and corresponding diffcrence, in the 
needs ror inte ractIng "'ith them. Since each device behaves differently. it would be 
time consuming to dwell on the detailed interconnections needed i>ctween the 
computcr and eac h peripheral, W~ will, therdor.;. e~"minc juSl three peripherals 
that appear in mo,n computers; the keyboard . the hard disk. and the graphics dis­
play, These represent typical points in the rangc of d"ta tran,fcr rate, rcquired for 
peripherals. In addition . we present OOm~ of the COmmon characteristics found in 
the 110 subsY't~m of computers.. as well as lhe various tcchniq ucs available for 
tran&ferring data either in parallel. using man)' conducting p"ths. or serially. 
th rough communication lines. 

13-2 SAMPLE PERIPHERALS 

De"ices that the CPU controls directly are said to be connected oll-Ulle. These 
devices com municate directly wit h the CPU or transfer binary information into or 
o ul of th~ memory upon command from the CPU Input or out put device. 
al1ached to the compUler on -line arc called l'eriI'II"",/s. In this section, wc examine 
lhree periphe",1 devices: a kcy\>oard. a hard disk. and a graphics display. We also 
use the keyboard as an example to illustrate 110 concepts in a latcr section. We 
introdu<-.: lhe hard di,k bolh to mOI;"ate the need for direct memory access and to 
pro.ide background for the role of the de.ice in Chapter 14 as a component in a 
memory hierarchy. We include the grapl1 ics display 10 illustrate the very high 
potential transfer rate requirements of contemporary applications. 

Keyboard 

The ke~board is among the simplest of the electromechanical devices attached to 
the typical computcr, Since it is manuall}' controlled, i\ h .. one l>f the , lowell data 
ratc, of any peripheral 

The ke)'board consist' of a collection of key> that can be depressed by Ihe 
user. II is ne<"Wlry 10 deleel which of the keys ha,'o been depressed. To do this. a 
SCII" !>wlri., that lies i>cneat h the keys is used, a, shown in Figure 13·1. This lwo­
dimension,,1 m" lri~ is <onccpl ually similar to the matrix used in RAM. The matrix 
shown in the figure is 8 x 16. giving 1 M intc .... 'C1ions. so it can handle up 10 12S kcys­
A dcrodcr dr;'"c, lhc X line, of lhe matrix. which arc analogous to the word lines of 
a RAM. A muhiplex~r is al1ached to the Y lines of the matrix, which arc analogous 
to Il1 c bit line, of" RAM. The decoder a nd lh" muUiplexer are contro ll ed by a 



M;,;ro-
<o."roller 

IJ-~ 15arnp1< I'nipb<n l! 0 S8 1 

, 
Muh, '" 

J~ Il\l: 

'\' 
o nGlIRt: 1J-1 

Keyboard Soan Mar';. 

-

, 

m- , 

m;,;rocornmller, a tiny computer that contains RAM, ROM. a timer. and simple 110 
interface .. 

The mi~ror:onlroller is programmed to periodicall y scan all imersection. in 
the matri x by manipulating Ihe control inputs of Ihe decoder "nd mult iplexer. If 
tile key i. dcpr~sed al an inl crse~linn, a signal pal" is dosed from an output of the 
X decoder to an input of the Y multiplexer, The exi.lence of Ihis path is sensed at 
an input to Ihe microrontroiJer. 'Ibe 7·b,t rontrol cork applied to the decoder and 
multipluer at the time identifies the key, To allo .... for "rol\o"cr" in lyping. in which 
multiple keys are depressed before any of Ihem is released, the microcootrnller 
actuall)' identifies the depressing a nd release of the key .. Whc thcr a key is 
depressed or released. the control code al the time of Ihe e,'e1\1 is sensed and is 
translated by Ihe micrOC(lnlrolier into a K'Wan clXl~ . Wh en a key is deprC>s<:d, a 
mak~ cO(I~ is produced; ,,'hen a key i. released, a brtak cO(I~ is produced. Th us.. 
lIIere are Iwo codes for cach ~ey. one for when the ~ey ;, depressed and one for 
when the key is released. NOlO that the scanning of the cntire keyboard occurs 
hundred. of times per second. so Ihere i. no danger of missing any depressi"" or 
r~lea$t: of a ~~y, 

After presenting a number of 110 interface concept .. we will revisit Ihe key. 
ooard to see what happens to the K~n code. ""fore Ihey are finaUy translaled to 
ASCli characte .... 

Hard Disk 

l ne hard disk i, tbe primary intermediate-speed. nonvolatile. writable storage 
med ium fnr most computers. The Iypical hard dri,'e ftnres information serially on a 
nonremovable d isk with a few to many planers. as .hown in the upper right of the 
generic computer at the beginning of Chapter 1. Each plaller is magnelizable o n 
One Or both . urfaces, 'There arl: one or more readlwrite h~ads per recording su rface; 
for the remainder of our discussion, "" will assume a single head per surface. Each 
plaller is divided into ronrentrk 'racks, a'l illu.trated in ~Igurc 13-2. lne set of 
tracks that arC at the $<Orne distance Irom the center of the disk on all platter sur· 
faces is referred to a'l a cylinder, Each 1rack is divided into sncWr$ conlaining a fixed 



582 0 CHAPTER lJ I INPUT -OIJfPIJf AND COMMUNICATION 

o nCUKE 1.J..-2 
Hard Di •• Format 

nu mber of byles. The nun,ber of byles per sector I)'picall )' ranges from 256 10 4K. 
The Iypical byle address incl udes Ihe cylinder number, he"d number, seclor num­
ber, and word offsel within Ihe se<:lor, The addressing assu mes Ihal Ihc number of 
seCIOrs pe r lrack is fi,ed . In modem, h igh-<;ap~cil)' disks, morc seCIOrs ~re incl uded 
in Ihe longer o uler Iracks Iha n in Ihe shorter inner Iracks. In addilion. a "umher of 
'pate =1<", IIr. reserved 10 la ke Ihe place of det""tive = 10 .... As a conseq uence 
of Ihese design choices. Ihe actual plo )'Sical add ress of a sect'" on Ihe disk i$ li kely 
10 be different from Ihc address of Ihe sector sent 10 the disk controller. The map­
pi ng from this address 10 Ihe physical address is typica ll y accomplished in Ihe disk 
controller Or dri"e electronics. 

To enable information 10 be accessed. Ihc set of h c~ds is mounled On an aClu, 
~'Ior Ihal can 010". the heads radially over Ihe disk, a, shown in the ge neric com· 
pUler drawing. The time re'luired 10 move thc heads from Ihe currenl cylinder 10 
Ihe d~'"Sired cyli nde r is called Ihe s~ek lime. The time required to rolate the disk 
from ils currerrt position 10 that h"" ing Ihe desired seCIOT under Ihe heads ;s c~lIcd 
the rolalimw/ delay. In addilion . a certain amou nt of lime is req uired b)' the di,k 
corrlTOli er to ac~ss and output infOTmalion. This time is the COn/rolla lim~. The 
time required to locate a word on Ihe di,k is Ihe (iisk "eees< Ii",,,. " 'hiell is Ihe sum 
of Ihe controller lime, the seek time. and the rotalional delay. Average values over 
all pos,ibilities arc used for Ihese four paramet"", Wor<l$ rna)' oc lransferred singly. 
bUI as ..-e will see in Chapler 14. Ihey are ofte n acressed in blocks. The transfer rate 
for a block of word .. once the block has ocen localed. is Ihe disk IramfeT rme, Iypi· 
cally specifi ed in megabyles/second (M Bls). Th~ transfer rate requ ired by Ihe CPU­
memory bLlS to Iransfef a seelor from disk is the nurnocr of bytes in the se<:tor 
d ivided by the lenglh of time take n 10 read a ..,etor from Ihe disk. The lengl h of 
time required to read a seclor is equa l to the proportion of the C)'linder occupied by 
Ihe se~tor divided b)' the rolational ,peed of the disk. For e , ample, wilh 63 seclO .... 



11_2 I Sample l'WirM"lo 0 583 

512 B per sectot,. roIational ~d of S400 rpm, Bnd allowance for the lap bet"..,.,n 
S<:cto .... this lime is ~bout 0_15 m<, gi~ing. transfer rate of 5121O,1~ ,ns - 3.4 MBI .. 
The co ntroller will >lOre Ihe informal ion read from Ihe ..,ctor in ils memory. l11c 
sum of thc disk ac«ss time and thc disk transfer rate limes the num~r of bytes per 
S<:Clor gives un esti m31e of Ihe lime required to tr"nsfer the informalioo in I sector 
to or from Ihe hard di\k. Typical values in Ihe mid.]990s are a "",k lime of 10 m!.. 
roIalional delay of 6 m .. a OCClor tran,fer time: of 0.15 m .. and a negligible controller 
lime. ''''iog an attCSS lime: fot an isolated sector of 16.15 ms. 

Graphlca OJ'play 

TIle graphic> display iSlhe primary outpul device for the inleractive usc of COm" ul. 
ers. Displaya usc I n"mber of differenl technologic!. the m06t preva lent of which is 
currently Ihe cathode·ray tube (CRT). illu,trated in FIgure 13-3. The tom t modern 
versions of the CRT display are ba..,d on analog sigo"t!. which are generated on 
the di>play adapter board. The di>pl.y il defined in terms of piclure den'''''IS 
caned piJ:~Is. '11e color display lIa. IlIr« Iocalions .usocialed ... ·ilh uth pIxel on Ihe 
>ereen. These location! correspond to Ihe pnmary colon red, green. and blue 
(RGB). AI each location. lhere .. Ihe corr""l'Ondin, colored phol;phor. A pboe_ 
phot emilS haM of ilS color ,,-hen ucited by a beam of electron .. In order lOemte 
the Ihree phOllpl>ot$ .imullaneomly. three electron ,uns are used. one for ",d. one 
for g",en, Md one for blue-h~n«, Ihe ROO electron gun. lItown in Ihe ~gu.e. 
The color Ihat resultS for a given pixel is dete.mined by the interuity of tile elee· 
tron beams 'triki n~ Ihe phosphors .... ilhi" Ihe pixel. 

The eleclron be"m. are ..:anned aCrO., Ihe ":rccn to form a":l of horizonta l 
line. called le"n UMJ. This sci of linel i. referred 10 .. a rnnu. '[11c lin~ ore 
scanned from top to boIlOn>. beginnina al Ihe upper left and end ing at Ihe Io""r 
righl. TIle electron aunl remain al zero intemity .. Ihey IIC.lIII from right 10 Idt in 
prepal1ltion for dra"';", lhe nut scan line. The molu1ion of lhe inform.hon dis-­
played i. aiven in Ie" ... of lhe number of pIXels per sean Une .00 lhe number of 

o F1CUKt; lJ·J 
C IO' J)uploy 



584 0 CHAPTER 11 IINPlIT_OlITPUT ANIl COMMUNICATION 

scan line, in Ihe rasler, A high-r~sol ulion sup<:r video graphics array (SVGA) dis· 
play m.y h.w"" many JS 12W pixel, per scan line and 1024 li ne. in Ihe raskr, The 
eleclron beams SC,1n (he entire ,",(or in 1160 of a second. 

Each of the p ixel. is controlled by the display adapte r. A typical adapter uses 
" byte t" define thc <"<)Ior of. pixel. S in~e the byte cont .ins:'; bit .. it can define 256 
~olo", at any given time , TlIe byte does not d"""tly dnve Ih~ display. but instead 
SCkCh lout 0[256 registers in (h" graphi'" adapter to define the color. Each regis­
ler is 20 bits or more, so the 256 colors can be sel""ted from moer I million oolors 
b~' defini ng the contents of the r"giste~ 

TYpically, the di,ploy adapte r has video RAM lh.t , toTe< all of the bytes which 
~on1rol the display pi.cls. For a high -resolution display with 1280 pixels per scan 
line and 1024 scan lines. the number of pixel, i, 1280" 1024 ~ 1.3 10,120. So, for 256 
colors. a si ngle screen of infom,ation requires alleast 1.25 MB of "ideo RAM 

1/0 Transfer Rates 

An indic.kd cartier. th~ thTce periphcT.1 devicc, di,.;u"",d in Ihi s "'><:tion give a 
sense or the range of peak I/O transfer rates. The ~eyboard data transfer rate is less 
lhan to bytcs/s, For lk h.rd di,l;. while lhe di,k cont roller i, ~apturing th" data 
arriving rapidly rrom the disk in the ",."tor b uff~r. the lransfer of data lrom the 
huffer 10 main memor), is imrmsible. Thu,- in Ihe ~a", in whi~h the next sector is to 
be read imme dialely. all 01 tfw data Ir"m the "",tor bulf~r necd, to be ' torcd in 
main momOTY during the time the gap o n the disk between the seclOrs passes 
under th~ disk head . For 63 seetors and a rOfational speed of 5400 rpm. lhis time is 
about 25 flS. ']"hu,- Ihe peak transfer rute required is 512B125 ms - 20 MBIs. For" 
display with 256 colo,,", if" screen is to be ch"nged ent irdy every 1160 of a second. 
1.25 MB of data must be delivered to the video RAM from the CPU in lhot 
"mount of time. This re,!uires a data rate of I ,25 />·IB x 60 ~ 75 M BI .. 

Based on the preceding. we can conclude that the p"ak data rales required by 
th~ panicular I"'ripherals we ha"e considered have a wide range. The rates for the 
hard disk and the display are hig h enough compared to the ma.imum rale of Iran,· 
feT on the computer huses to provide a challenge to designe~ Aue mpls 10 moet 
this cha ll enge use techniques in the disk controller .nd the graphics adapter to 
rcdu~c Ihe peak IransfeT rates fc,!uircd and use fast bus designs belween the 
periphcTal interfa= and memOT),. 

13-3 110 INTERFACES 
Periph~r"ls connected 10 a comp uter need special communicalion linh to interface 
Ihem wit h the CPU. "[lie purpose of these links is 10 resolve the differences in the 
properties of the CPU and memory and the properties of ~ach peripheral. The 
major differences"," "' folio"' ... : 

1. Peripheral< arc often elecITOme"hani<at device, whose m.nner of operation 
is different from thaI or the CPU and memory, which arc elcc1roni~ devices. 
Therefor,,- a <"<) nvcrsion of ,ign"t val u~. may be rC'luircd. 



1.hJ! 110 1_..... 0 S8S 

!. llte data mon,fer rille of ptnp/lerals is ....... lIy diffe",nl from Ih~ clock rale of 
1M CPU C"""''1""nlly. a i}nchront1.o.IK)n mechanism may be needc:<.l. 

1. Data code!; and formalS in ptriphcralJ differ fr<>m Ihe ,,'Ord forma l ,n llIe 
CI'U and memory. 

4. The "P"raling mod.,. of p""pherals dilfer from each other. and each muSI t>c 
controlkd in " way (hat does DOl dis(urh the opcmlion of other re"rhernls 
conn~leJ to th~ CPu. 

To resolve (hese differeD"",," romrUlcr I)"litcms indude ' 1",";31 hH,dwa'c compo­
l1 "nl. be(ween the CPU and the ""ripl' ~ral$ to sur<rvisc and synchroni1.e a ll input 
and output transfers. These components arc call ed itPI~rf(fN ""jl'. b.:causc (iley 
interface between Ihe bu, from It.c CI'U and Ihe ",,'iph~ral device. In addition. 
eoch dc'ice has its ",,-n C"OT1troilcr to sur<,yi.., the operations of the ~rtlCUla, 
mcchaniwl of (hal penpMnoJ. ror eumpk. the oonlrolkr in a prinl~r allacncd 10 ~ 
romputc, controls the m<Mion of Ihe paper. the timing of the prinhng. and the 
scl«l ion of lhe charocu .. to b.: pnnlcd. 

I/O Bus and Interface Unit 

A 1)-pocaI conununic3tion Sl ruetu", t>cl"""n the CPU and ","",al peripherals ,s 
IIhow-n in Figure 13-t Eoch rtriphernl has an inlcrlace unit associ~ted wilh n. 'Ihe 
C(ID1mon bllS from the CPU i. allachcd I() all peripheml interface<. l h communicate 
with a panicui .. <kv~_ Ihe CPU pi""", " dcv"", addr"", on the addr""" hus.. E'lCh 
interface al1ache<i to the comni*, t:>u~ contains an address d=><kr thai ",,,nitors Ihe 
"dJr~", i ine~ When Ihe inle,fac<> delect' ils nwn address. il acti"OIe, Ihe palh bclwe.:n 
Ihe bu. Ii"", and the di:vicc lhat il Ct)<1(rois. All pcriphcr-~Is with adJr~ Ih!'1 .... , "'~ 
curr<:spond to tbe address on Ihe bu, are d,sabkd by their interface. Al (he ""m" (ime 
Ihat the address is mad<: av.,]aille on the addr~"$S bus. 11>0 CPU prov,d.,.-.,. " fUl"o<: lion 

Oa,. "", c,."ot 
~ "-,=, 

lo,,,rt_ 1",,,,_ '"',,'- I"",no« 

I I I I 
K")_'~ 

flIT j',m", M'~o<' " 
J"F" ' Y "" 

1"1'" ' 00,,,,,,, 0..'1"" Inr>U .. n<l ""'1'<" 

o !'IGUM.; 1.104 
C"""Cbon <tI l fO Dc,·",", 10 CPU 



586 0 CHAPTER 13 I INI'VT_OllTPUT AND COMMUNICATION 

code on Ihe conlrol line~ The selecle<:! interfa"" responds !O the lunction code and 
proceeds 10 execute il. II data must be translerred. the interlace communical"" with 
both the device and the CPU dala hus to synchronize the transfer. 

In addit ion to commu nicating with tho 110. devices. the CPU 01 a computer 
must comm un icate with the memory unil thro ugh an address and data bu~ There 
arc three ways that external comp uter buses com mu nicate with memory a nd 110.. 
Qne mdhod use, common data. address. 3nd oontrol buses for both memory and 
1/0. We have referred to this configural;on as memo,y·mappfli //0. The common 
address 'pace is shared between Ihe interface unit, and memor)" words, each hav­
ing di$linct addresses. Computers that adopt the me mory.mapp<:d sche me read 
and write from interface un its as if Ihey were assigned memory addresses by using 
the Same instructions that T~ad from and write to memory. 

The second alternative is 10 share a common address bus and data bus. bUI 
use different com rollines for memory and 110.. Such computers have sepatat~ read 
and wrile lines for memory and l iD. Th read or write from memory. (he CPU ac(i­
' ·alo, (he memory read or memory write control. To perform input to or output 
from an interfa~e. (he CPU activates (he read 110. or wrile 110. control. using spe­
dal instructions. In (his ",a)". the addresses assigned 10 memory and 110. interface 
unit' ore independent from each ot~er and are distingui$hed by separate control 
line<. This me(hod ;s referred (0 as the isolale.i flO conjig',,",lIion. 

The third ai!erna(ive is to have two independent sets of data. addres.'\. and 
control buses. This i, possible in oompulers lha( include an /10 processor in (he sys· 
(em in addition to (he CPU. The memory communicates wit h oolh the CPU and 
1/0. processor through a cOmmOn mcmory b u<. The 110. process.or communica1es 
wilh (he inpm and omput de,·ices Ihrough separate addr""s, da1a. and conlrol ti n~s. 
The purpose of t~e IJQ processor is to provide an independent pathway for (he 
(ransfer of information k(ween eXlernal devices and internal memory. The 1/0. 
proce,sar i, .omelime, called a dm~ chamwi. 

Example of 110 Interface 

A (ypical [/0. interface unil is shown in block diagra m lorm in Figure 13-5. h con· 
. iS1S 01 (wo data registers called pom. a COnlTOt ,egiS(CT. a status register. a bidi,ec· 
(ional dat a bus. and timing and control circui ts, The function 01 the interface i, to 
(ransla(e the signals bet"·oen the CPU buse. and the 110. de,·ice and (0 pro,·ide Ihe 
nccded hardware (0 satisfy (hc two sets of (iming constraint ~ 

The liD data from the de,·ice can be tmn.ferred into ~it her port A or port B. 
The interface may operate with an output device. with an input device. or with a 
device (ha( r~quire, oo(h inp ut and oU!pu!. [f the interlace is C(mnccted to a 
prinler. it will onl)· output data , if i( services a scanner. it will only inpU! data. A 
hard dis~ transfers dala in oo(h directions. but not a( Ihe same time: sa the inter­
face needs only one w( 011/0. bidirec1ional data lines. 

The CO/lfro/ "'!lisler rccei,'Cs oontrol information from the CPU. By loading 
appropriate bits into (his register. tho interface and 1he device can k placed in a vari · 
ety of oper1lting modc~ FoT exampte. port A may be define<:! as an input pon only. A 
magne!k lape unit may be insuUCled (0 rewind the (ape or to stan Ihe tape moving in 



lJ-J I 1/0 In<erf><n 0 587 

BOdi""""",.1 I ~" I 
[IOd ... 

""' , ",&h'" 
~ ... b .. b"no" 

I ~'" I 
, llOdo" , 

Oip><1«t 1 «Vol<" 
~ , 
"" 

, , , 
I I 

Kcwteroelecl 11m,", 
, 

C""roI eonoro] Ii"", 
~" •• "'P'" 

[10 ""d -,~ 
eo 

lIO,,'-.. 

" S,,"" S .. ,", [0"", 
""liter 

- -- T"CPU 
10 Ira <levi« ___ • 

CS RSI Rs(! 

" • 
" " 

• 
" 

"on.: "',. "'" in ~iiJ1 imp<daflC< "" • 
I\;)rt A f<Ji"" 
I\;)rt B rep'"' 

o C""Ofol "' .... ,., 
S,01 .. re~'<> 

o nCUKE l.l-~ 
Exam ple 01 lIO I n1Crhoo Un;' 

Ihe forward direclion.l1>c bit' in Ihe . tat u. register are used for statu, conditions and 
for rerording errors Ihat rna)' """ur during d,a'a tran,fe,. r-or ""''''ple. a status hil may 
indicat~ thal porI A has ttceivcd" new data ilem from lhe device, whilc 'lIlolhcT bit in 
the slatus register may indic.1te Ihal a pariry error has """urrcd during the transfer. 

The inre,faee regisre .. co"'m ~nic"te with Ihe CPU lhrough the bidireclional 
dal. bus. Tho adJrcss bw; selecls lhe inlCrf"ce un it through Ihe chip seleel input 
and the two register seleel inputs. A drcu il (usuall y a dceoder or a gate) deicer, 
lh~ address assigned 10 the interface registers Tnis circuit "nabl", lhe chip sclcel 
(CS) inpul when lhe inlcrface i, selected by rhe adJress bus. The two regis/a select 
;"1"'''' kSI a"d RSf} are us uall)' ronnc"CtcJ to lhe rwo lea't significant lines of the 
addre", bus. These lwo inp u," seleet one of rhe four regi",crs in the inrerface. "' 
'pecified in the table accompanying Ihe J isgra m in Figure 13·5. The conte"ts or the 
selected regi"cr are IT'nsfer",d in'" the CPU via the dala bu, when lhe 1/0 read 
signal i, cnableJ. The CPU "an.fe .. bi nary informa1ion inro the sele<:1ed rcgi'ter 
via the data bus when Ihe JlO write inpur is enabled. 

'm e CPU. inlcdac~, and 1/0 device are likd)' to have dilfeTcnl docks thU I are 
nor synchronized wil h each m her. Th Us. these units are said to be a5ync/,roneJuj' 
with re'peel to each other. Asynchronom data transfer between two indepcndenl 
units Tc<.[uiTes lh", conlrol signal. be Iransmirled berween lhe unil' ro indicale 1he 



588 D CHAI'TEIt. IJ I IN1'IJT.oVTPUT AND COMMUNICATION 

li me 31 ..-hich dala;' being IrallJlltilied. In lhe case of CPU·lo-inlerfa~ communi· 
cation. a>n1rol .ignal. mUSI also indicate the lime 81 ... h;"h 1M add.c:ss is \'lIlid. We 
will i0oi; at 1"-0 mtlh0d5 for performing Ihis liming: S1robing. a. il ;. called. and 
handshaking. Iniliall)·. we ,,-ill oon~ider genene ca5eS in ..-hich no addressca arc 
involved; .ubsequenlly. we .. 'ill add add.eMing. ""'" oommunkaling uniu for lite 
gener;" case .. m be referred 10 '" Ihe SOurce unit and mlination unit. 

Strobing 

Dala transfers using "roblnll a.c shown in Figure 13-6. Thc d,la bu~ be lween Ihe 
IWO unil' is assumed 10 be mftde bid"" clionai by Ihe use of Ihree·,late buflel"!. 

The transfer in ~Igu.e 13-6(,) is initiated by the destin.tion unil. In Ihe 
sbaded 8",a of Ihe dala signal. Ihe d81a ill invalid. Also. a change in Strobe al Ihe 
lail o f each arrow cauSCI. change on Ihe data bus at Ihe head o f lhe "row. The 
dcstinali"" unil changes lhe Strobe from 0 10 ._ When Ihe value . on Suobc: 
",aches lhe 50UfCC unil. lite unll respGnds by placing Ihe data on the data bus. The 
dellin.lion un;' cxpccu the dala 10 be available. al wont •• fi.1Cd am<)UnI of tome 
aIle. Strobe goes to I. At Ihal I1me.lhe deslination unil captu"" Ihe data '". 'e8' 
iote. and changes SI.obe lrom I 10 0, In response 10 Ihe 0 ,."Iue on Str()bc, lhe 
SOlI''''' unil .emoves the data f.om lhe bu .. 

D.,. i>Iu 

Deoti • .,ioo un" Sir, ..... 

r [I 

SolI"", .01' :1 ~-,--, 

(h) Souroc· .. " .. ,«1 u.."I., 

D n GU Il E 1J..6 
A$)"""U-_ fumr« Using Strobo~ 



Il-J I lIO I",<rt.«, 0 589 

Tho Iransfer in Figure 13-«b) is inilialed by Ihe source unil. In Ihi, case.lhe 
SOurce unit placcs the data on Ihe data bu", Afler Ihe 'hon lime required for Ihe data 
tosellle on Ihe bu", the source unil char1 g~s Strobe from 0 to I, In response 10 Strobe 
equal to I. Ihe destinalion unil sels up Ihe transrer to one of ii, regi,(crll. The source 
then ch ~nges Strobe from I to O. which triggers Ihe transfer into the register 01 the 
deslinalion. Fin.lly . • fter a ih"rl (ime required 10 onsure Ihal the register transfer is 
done. the sourcc removes Ihc data from Ihe dala bu,complcling Ihe transfor. 

Although ,imple. Ihe strobe method of Iransferring data h., ,everal dis"d· 
vantages. Firsl. when Ihe sour<:c unil i"itiales (he transfer.lhere i, no indication to 
il tha( the data was e,'er captured hy thc dc,(ill atio" unit. It is possible. due to 8 
h"rdw~ rc failure. thm the destination un it did not rccci,·c lh~ (h''''go in Strobe. 
Second. when Ihc destinatio n unil performs Ihe transfer. there;'; no indica lion 10 il 
Ihal thc source has actually placed the data on Ihe bus. Thus. (he de,tinalion unit 
could be reading arbitrary ,'al ues from the bus ralhor Ihan actual data. Fina lly. Ihe 
speeds a( which Ihe various units respond may vary. If (here arc multiple Unils. (he 
unil iniliating a Iransfer must wail for thc dday of thc slowcs( of the Mtached com­
mu nicating unilS before cha"ging Strobe to O. Th Us. Ihe lim" (akc" for C\'cry (ron.· 
fer is dete.minoo by the sloweS! unit with which ~ given un il in itiates tra nsfers. 

Handshaking 

Thc '"""l5h,,king method u.,,, two control ,ignal" to dc,,1 with Ihc timing of In," ... 
fers. In addilion 10 Ihc sign.1 fcom thc unit initi,,(ing (he transfeLlhere i. a second 
control ,ign,,1 from Ihe other unil invo lved in the t ra n ,r~r_ 

The basic principle of a tw,,"sign.1 h,mdshak ing proced urc for data transfer is 
as follo_ One control line from Ihc initiating unit is used to requ~<t a rc~punsc 
from the other uni t. The second """trol line frum Ih, u(hcr uni t is u",d to reply 10 
Ihc initial in g unit (hat the response is occurring. In this way_ cac h unil inr"rms Ihe 
ol her of ils stalUS. and Ihc res ul t i. a n "rderly tr.n"fcr thT<>ug h (he bus. 

Figure 13·7 ,hOWll dala transfer procedures using ha nd, haking_ In Fig un: 
13·7(a). the Iransfer is in iliated by Ihe de.tination ~niL '11," t"·,, ha n<i, h"king 
lines are ca lled Reque" a nd Reply_ The inilial Sl~(c is when bolh Request and 
Reply arc J isahkd and in Ihe 00 Slnle, The subsequent slales are 10. 11. and OJ. 
In . destinalion unit initiales Ihe transfer by enab li ng Req ue,L -Inc Wurcc unil 
r",pund, by placing (he dat~ ()n (he bu" Aflcr a shon time for sellling of the dala 
on Ihe bus. the source unit aCl i""tes Reply 10 signal the pr"",,,ce uf the dal ~_ In 
rcspon'" 10 Rep ly. the destin"tiun [(nil caplure. Ihe d;lt" in a register and disables 
Request. The source unit lhen disables Reply and the s)'Slem goes to the inili"1 
,late, TI, e de,linalion unit may n<>! m"ke .nother rc<.]ucSl until lhe source un it 
h .. shown it" readi""" 10 pro"ide new data by disab ling Reply_ Fig ure L"l .7(b) 
represents hand, haking ror the wUrec·inilialed (,"n~fe'- In Ihi' case. the source 
con(rois thc i TIt~rv;!1 \>ctwcen when the dala is applied and when Requ~« chang~, 
10 I Md between whon Request chonges to 0 and When the daB' is r~m,,..eJ_ 

The handshak ing scheme provide< a high degree of n~'ihil i(y ;!nd reliabilily. 
beca use thc successful compict ioTI of" daw Iransfer rcli es on aCli,·c participati"n 
hy bol~ unit" If one un il i. faulty. Ihc data lransfer will not II<: wmpkkd_ Such ,In 



590 0 CHAPTER III INPUT-OUTVUT ANll COM."'UNlCATION 

I),,,,,,, 

0<>" .. ,.,. "ni, 
, - s..."", un;' 

" 

.~ 

-, 

~" '*' ~ 
(oj 0. .. , ... """.,"" .. ,«1 " o".r •• 

l> ... """ I 

o FlGU NE 1.1-7 
A'),l>Chronou. T ... ,.fer U.iog Hat>thhakina 

error can be d~ICCled by mean. of" lime·out mechanism, which produces an alarm 
if 'he data .ronsfcr is nol oompleled within a predete.mined ,ime im(.val, The 
time-oul is implcmenled by mcans of a .. internal clock Ihat Slarls counting timc 
whe n Ihe unil enables one of its handshaking control signal>. If 1he return hand­
'hakc does nol oc<:ur within a gi~cn period. Ihe unil assumes thai an e"Of 
oc<:urred, lbe limc-<>uI signal can be used 1o interrupt Ihe CPU and exccutc a ser­
,·icc routine Ihal takes approp.iale e rror rccovery "clion, Also. Ihe ,iming is oon· 
trolled by both units, not j ust Ihe in itiating unit. Wilhin th e liDlC-<>Ut liDlits, thc 
. esponse of each un;tIO" change in Ihe control . ignal of 'he other un;l can lake an 
arbitrary amount of limc. and the transfer will , . ill be mcc."sful, 

The examples of ,ransfe ... in Figure 13-6 aMi Figure 13·7 represent transfe ... 
belwe<cn an interface and an 110 de~ and belween a CPU and an inlerface. In 
lile laUer case. however. an address will be necessary 10 seleel lhe in'erface wjlh 
which the CPU wishes 10 commun;".!e and a r"gi"~r w;lhin the interface. In order 



13_~ I Serial Communic .. i"" 0 591 

10 en,ure thaI the CPU addre,,,,. Ihe correct in lerface. the add,e" must have set­
tled on the address bus before the Slrobe or Request signal changes from 0 10 L 
Furlher, Ihe address muSI remain Mable until Ihe change in the s!robe or request 
from 1 to 0 has se\t led 100 at Ihe interlace logic. If either of the", conditions is vio­
lated. a nolher inlerface may be fa lsely acti"ated. causing an incorrect d.t. transfer. 

13-4 SERIAL C OM MUNICATION 

The Iransfer of data betwee n two units may be parallet Or serial , In parallel data 
Iransfer. each bit of the message has it, own path, and the e ntire me'''''ge is tta ns_ 
milled at one time. Thi. means that an ,, -bit me,sage is tran,mined in parallel 
through" separate conductor paths. In serial data transm ission, each bit in the 
message is sent in "'quencc, One at a ti me, Thi. method require. the use 01 one or 
11'10 signal lin.,.. Para ll el transmission is lastcr. but requites many wires. It i. used 
for short di "ances and when speed is important. Serial transmission is .100"er. but 
less expensive. since it requires only one cond uctor. 

One way that computers and term inals that are remote lrom each other are 
connected is via Ielephone lines. Since telephone lines were originally de.igned for 
voice comm unication . but compulers comm unicate in terms of digital .ignals. some 
form of con"crsion is needed . The device. Ihat do the conversion are called ,Iala 
seJ. or mOilem. (modulator-<iemodulators). A mooem converts digital signal> inlo 
a ud io tones to be tran.milled Mer lelcphone (jnes and al'" convert. audio tones 
from Ihc line to digit al signals for usc by a computer, There are various modulation 
schemes. as well as ",,'eral different grades of COm m ~nicalion media and transmi,­
sion specd!;. Seria t dula can be transmin ed belween two points in three different 
mooes: simplex. half duplex. or full d uplex , A simp/ex line carries information in 
one direction only. This mode is >eldom used in data communication. because the 
recei"er cannot communicate wit h the transminer to indicate ""hether errOr; ha"e 
occurred . Examples of sim plc~ transmi"ion are radio and tele" ision broadcasting. 

A hal/-d"p/ex transmission s)'Stem is a 'ystem that is capable of transmining 
in ooth directions.. but in only one direction at a time. A pair of " 'ires is needed for 
this mode. A common ' it uation is for One modem to act as the transminer and Ihe 
other as the receiver. When transmission in one direction is completed. the roles of 
the modem. are reversed to enahle transmission in the oppoo;ite direction . The 
time requi red to switch a half-duplex line from one direClion to the mher is called 
the wmMo""d lime. 

A /"I/-""p/ex Iransmission .ystem can send and receive data in ooth direc­
tions si mu ltaneously, This ca n be achie,'ed by means of a t",'o-wire plus ground 
link. wit h a different wire dedicated to each direction of transmission. Altern. ­
ti' ·ely. a single -wire circuit can SUppCn1 full-d uplex communication if the frequency 
spectrum is suhdivided into 11'10 nonO"c,lapping f' eq uenC)-' band. to cre",e sepa­
rate rcceiving and transmitt ing channels in the sa me physical pair of wires. 

The serial tran,mission of dat a can be synchronous or asynchronous. In s}'n_ 

chrorw". Iran,,,,i •• ;o,,, the two uni ts share a common ctock frequency. and bits a rc 
transmitted oonlinuou.ly at that frequency, In long-<iistance serial transmission. the 



S9Z 0 CHAPTER U IINPUT-OUTI'UT ANI) COMMUNICATION 

lran,m;ner and receiver un;l$ a«: each driven by oeparate doch o f the &ame fre· 
quency. S)"nchronizatoon signals are transmi tted ~nod""'lI)" between the two un;l$ 
to k«p their dock f"'qucncies in step ,,';th eocb other. In ",,.,,MrotI()U$ tran"",i .. 
.... n. binary information IS !.ent only ,,'hen it i. availatM. and the li~ remain. idle 
when Ihere is no information to be traR$ll1.lncd.lbis is in contra.lt lo.ynchronous 
Iransmission, in which bit' musl be tran.mined continuously to keep lhe clock fre­
quenci.". in both unill $ynchroni~ed. 

Asynchronous Transmlsalon 

One of Ihe mosl commOn applica lion, of ..,rial transmission is Ihe communication 
of one computer wilh anOlher via modems connecled through Ihe lelephone I) .. · 
lem. Each chr""ler consiSIS of an alphanumeric code of eighl bils. ,.ilh additional 
bit. inoened at both ends of the code. In asynchronous ..,rial uansmission. each 
chan"'ter consi", of Ihree pans: lhe Start bit. the ch.racter bits. and lhe Itop bits. 
'Ibc con~ention is for the tnm,miller to re!ll althe I ,laic ... ·hen no eh .. acte" arc 
Il"IIllsmlued. 'Ibc finl bit , called lhe .sta,t bil. is allAlI)" 0 and is used to indicate the 
beginningol a character. An example o f Ihi. lonnat is shown;n Figure 13-8. 

A transmitted character can be dltlecled by Ihe receiver by applying Ihe 
Iransmission rules. When a character is nol being .enl. Ihe hne is kept in the I 
ilale. The iniliation of transmission i. detected from the OIart bit . which i. al"'ays 
0, The characler bit. always follow the &tart bil. Afte r Ihe lasl bil of Ihe cha, acter 
is lranSmilled. a SlOp billS detected when the line relurns 10 the Iltnlc tor at lea!1 
Ihe lime laken 10 Irammit Olle bil. By mesm of Ihese rules. Ihe reeei"er cnn detect 
Ihc slart bit when l h~ line goes from I 10 O. By using a dock. Ihc recei,'er cUm­
ine. Ihe line al appropriale times 10 delermine Ihe bit values. The rc«iver knows 
Ihe Irsnster rale 01 Ihe bill and the number of charaoter bits 10 accepl. 

Arler Ihe character bit. are lran,mined. one or two Slop bits are senl. The 
SlOP bits are alwa)'" in Ihe I stale and frame the end of characler 10 signi fy the Idle 
or wail >late. These bits allow both the tran~mlner and the rea:iwr 10 resync:hro­
niu. The lenglh of lime Ihat lhe lIne Slays in lhe I stale depe ..... on lhe amo<lnt of 
lime required for Ihe eqUIpment to reoynchronlZC.. Some oklcr elcclromcehanical 
lenni""ls ItSC two Slop bita. bul nc,,'er equipment oflcn U!;OS just one. The lin<: 
rem.; .... illlhe I .tale Unhl aoolher character is lran,ntilled. The stop lime cn~urea 
lhal a new character willll()l follow for Ihe lime taken 10 transmit one or lWO bit$. 

As an illuslration. consider se, ial traRml""ion wilh a tra ... fer rate of \0 eha,­
a<lc~ per .eoond. Suppoo$C I~at ca.;h tran,milled character consists of a start bil. 

o FIGU RE Il-li 
Fonno. of 1\.synehr(M>OUl S<rial Transf01 of O .. a 



8 character bits, and 2 stop bits. for a total of 11 bit<- [f the bits are transmitted at a 
rate of 10 bits per second. then each bit tak"" 0.1 second for transfer. Since tkre 
are 11 bits to be transmitted. it follows that the bir rime is 9.09 rnsec. The buud ml< 
is defined as the maximum number of changes per second in the signal being trans­
mined. This is often, but not a[ways.. equivalent to the rate of data transfer in bit, 
per second. Thn characters per second wi1h an [I -bit formal has a transfer rate of 
110 baud. 

Synchronous Transmission 

Synchronous transmi"ion doe, not use sian or stop bits to frame characters. The 
modems employed in synch ronous transm;"ion have internal docks that are set to 
the frequency at which bits are being transmined. For proper operation. it is 
required that the docks of the transmitter and reee;,·.r modems remain synchro­
nized at an times. The communication line. howe'·er. carrie, only the data bits, 
from which information on the dock frequency muSt be extracted. Frequency syn­
chronization is achieved by the receiving modem from the signal transitions that 
<}("Cur in the data that is received . Any frequency shift that may oc<:ur between the 
transmitter and receiver dock~ is continuously adjusted by maintain ing the 
re<:eivcr ctod: at the frequ~ncy of the incoming bit .tream. [n Ihis way. tl1 e sa me 
rate is maintain~d in both the transminer and Ihe reeeiver. 

Contrary to asynch ronous transmissio". in which each character can be sent 
separately with its own stan and stop bits, synchronous Iransmission must send a 
continuous mo""se in order to maintain synchronism. The message consi, ts of a 
group of bits that form a block of data. The entire block is transmitted with spedal 
control bit' at the beginning and the end, in order to frame the block into one unit 
of inform.tion . 

The Keyboard Revisited 

To this point. we ha,'e covered the ba,ic nature of the [/0 interface and serial 
Iransmission. With these twO oonccpts available. we are "OW ready to continuo wit h 
the exampk of the keyboard and its interface. as shown in Figure 13-9. The K_scan 
code produced by the keyboard microcontro ll er is to be transferred serially from 
the ke)'board through the keyboard cable to the keyboard controller in the COm­
puter.11,e serial transler on tho Keyboard serial data line uses a format just like 
that shown for asynchronous transfer in Rg~re 13-8. In this case. however. a signal 
Keyboard clock i, also sent through the cable. ThUs, the transmission is synchro­
"ous with a transmitted clock signal. rather than asynchronous. These same signa!. 
arc u,ed to transmit cont rol commands to the keyboard. In tho hyboard control_ 
ler. the microcontrolle r convert' the K-scan code to a more slandard scan em/e. 
which it then ptaces in !he tnput register. at the same time sending an interrupt ,ig­
nal to the CPU indicating th.t a key has been pressed and a code is available. The 
in terrupt_handling routine reads the scan code from the input register into a spe­
cial area in memory. This area is manipulated by software stored in the Basic 



594 0 CHAPTER III INPUT-OUTI'UT AND COMMUNICATION 

" 
" 

o FlG tJRE 13_9 
Keyboard Controller and Interfore 

Input/Output System (BIOS) tha t can translate the ""an code into an ASCll char_ 
acter code for use by apptications-

The Output register in the int~rface receiv", data from the CPU. The data 
can be passed on to control the keyboard-for example. setting the repetition rate 
when a key is held down . The Control register is used lor commaa'" to the key­
board controller. Finally. the Status register report" spe<:ific information On the sta_ 
tus of the keyboard and the keyboard cont roller. 

Perhaps one of the most imoresting aspects of keyboard 110 is its hi gh com _ 
plexity, It involves two microcontrollen; executing different programs. plus the 
main processor executing BIOS soflware (i .e._ three different computen; e~ecul ing 

three distinct programs). 

A Packet-Based SerialIJO Bus 

Serial 1/0. as described lor the keyboard. u,e. a serial c"bl~ specifical ly dedicated 
to communicating between the computer and the ~eyboard. Whether parallel or 
serial. e~lernal 1/0 connection, arc typically dedicated. The u.sc of these dedicated 
paths often req uires that the comp uter case be opened and card, inserted wi1h 
electronics and connectors spe<:ific 10 1he panicular 110 standard used lor a given 
[/0 device. 

In cont rast. packet -based serial 110 permits mo ny differ~nt e~tcmal 110 
dovice. to usc a s~ared communication SlrUClure that is attached 10 the compoter 
through just one or two connec10rs. The lypeS of de,ices supporled include key­
board" mice, joystich, primers. seanners. and "p"a<ers. The particular packet­
based serial 1/0 we wilt dC$Crihe here is the Uni,'ersal Serial Bu, (USB). which is 
becoming commonplace a, the connection approach of choic.: for slow_ to 
medium-speed [/0 dcvic~s-

The interconnection of 110 devic.:s by using USB is .hown in figure 13_tO 
The computer and al1ached de"i""" c,m be classified as hubs. devices. or compou nd 
de,·ires. A hu b pro, ides a1tachme nt points for USB de"ices and other hubs. A hub 



B_. I Seri.1 Communic .. ion 0 S9S 

Computer 

Roo' Hub 

y y 
/, /, 

M",, ;,o< Prin'" 

"". I"ii'UN 

>;<)t",.,d 

tl ub Sc> , ,,,,, 

~~ 
I tl"~ I 

Moo,", }O)'>'''' 

IM""<."""'" I Spo.k" Spe.,« 

o FIGUR" IJ. HI 
110 J)<v"", Conn<X1ion U.ing 'he Uni,'c""l Se,iol [Ju, (USIl) 

conl~in l a USB interface for control and status handling and a repeat er for IranS­
ferring information through Ihe hub. 

The computer coutains a USD controller and Ihe rool hub. Addilional huhs 
may be a part of Ihe USB 110 ,Iructure, If a hub i, combined wilh a device such "' 
'he keyboard ,hown ;n Figure 13·10. then Ihe keyboard i, referred to a, a com· 
poomd <levie<. A$ide from such compound devices. a USB device conwins only on" 
USD port 10 serve i1' funclion alone. The SCanner i. an example of a regular USB 
device. Without usn. 1hc monilOr. keyboard. mouse. joystick, microphone .• pea~_ 
ers, primer. and SCanner shown would all hav~ separale 110 conne<:liom direcdy on 
'he computer, The mouilOr. printer. scanncr. micr"phone. and speake .. migh1 a ll 
require ,pecial card. 10 be inserted as discussed pre\'iously, Witb usn. only Iwo 
connections arc required. 

The USB cahle. cont .ins four wires: ground. power. and Iwo d~t~ lines (D+ 
and 0-) used for differemial , ;gnali ng. The power wire i. used 10 provide .mall 
"mounls of power to devices .uch as kcyboards so 1hal the)' do not need to have 
their own power ,upplie'- To provide immunit y to signal ,'ariation and noise. 0", 
and 1'. are 1ran.mitted by u,ing the difference in voltage l>et,,'een 0+ and D-, If 
Ihe vO lt age o n 0+ exceed, the vohage on D- by 200 millivolts or mote, then the 
logic v"luc is a I. If thc \'oltag. on 0- exceeds 1he vol1age on D+ by 200 millivolts 



596 0 CHAPTER 13 IINPUT-OUTPUT AND COMMUNICATION 

o fiGURE 13-11 
Non·Re ,um·lo_Zcro lowned Dala R.pr • ..,"oalion 

or more. the logic value is a 0, Othor "oitage retationships between 0+ and 0- are 
used", spc<:ial signal states as u'ell. 

The logic values used for signalling are not the actual logic valuc$ of lhe 
information being transmitted. InSlead. " Non-Rotum-t<>-Zcro Inverted (NRZI) 
signalling convemion is used, A zero in lhe data being transmilled is rcpresemed 
by a transition from 1 to 0 Or 0 to I and" 1 is represented by a fixed val ue of I or O. 
The relationship between the data being transmiucd and lhe NRZI reprc>cntation 
is illustrated in Fig ure 13·11 , A. i. typic.1 for I10 devices, there is no common doct 
serving both lhe computer and the device. NRZI encoding of the data pro"ide, 
edges that can be used to maint" in synchronization between the arri"ing data and 
lhe time al which each bit is <ampled al lhe receiver. If lhere are a large number of 
I's in series in the dOl •. lhere will be no lran.ilions for some lime in lhe NRZI 
encoding. To prevenl loss of synchroni,alion." 0 is ",tuffed" in before e"ery sev­
enth bit posil ion in a s1Iing of I's prior to NRZI encoding 00 thal no rnor~ Ihan si, 
J"s appear in series. The receiver must be able to remove these extra zeros when 
converting NRZI data 10 normal data. 

USB information i, transmitled in packets. Each paetet contains a 'peelfic 
sel of fields depending on the pactet lype. Logical Wings of packels are used to 
compose USB Iransactions. fur example. an outpul1ransaction consists of an Out 
packet followed by a Data pactet and a Handshake packel. The Oul packet comes 
from the USB controller in the computer and notifies the device that it is 10 receive 
data. The computer Ihen sends the Data packel. If the Data packet is received 
without error. then the device responds wilh the Actno,,1edge Hand.hate packet. 
Nexl. we detail lhc infonnation contained in each of these packet .. 

Figure 13-12(a) shows a general format for USB packets and the formals for 
each of Ihe lhree packets involved in an ompul transaction, Note that each packet 
begins with a synehroni,.ation panern SYNC This pal1~m is 000:11))")]. Because of 
lhe sequence of zeros. lhe corTe.ponding NRZI pattern contains seven edges. 
which pro-ides a pattern to which the rcceiving clock can be synchronized . Since 
lhi. pattern is preceded by a specific signal voltage state referred 10 as Idle.lhe pal_ 
lcrn aloo sill-".Is Ihe beginning of a n"W packet. 

Following the SYNC each of the pactet formats contains 8 bils called Ihe 
padel identifier (PI D). In lhe Pfo. the packetlype i. spc<:ified by 4 bits. with an 
additional 4 bits lhat are complements of the fIrst 4 to provide an errOr check on I~ e 

t)'l",. A vet)' IJrge class 01 type errors will be detected by the repetition of the 1)1'<' as 
its complement. The lype is oplionally followed by information spc<:ific to the packet. 



SYNC "" 

"" 
0 

SYNC 
• (,0" 

0 

g(,o" 0 ,00, 0 
0 

"'" 0 
SYI"C 0 

8l>i .. 
4M. 0 

"00 0 
0 

lJ-I f S<ri>J Communication 0 597 

Pack., Sp«'['" D.o. 

( . ) (;< .... 1 p.""e' lorma, 

~, [)e,;c" 0 End"",", 
4(,0 .. Add,.., 0 

Atldre .. 0 

OliO 7 .... 0 ~ .... 
0 

(0) O",pUl podot 

~,' 0 •• 
Hi" (Up '0 HJ.!P.,. ... ) 
00" 

«) 0. .. ~.'" (1)" .0 'n"') 

''" 0 ,~, 

SYNC 0 

~ .. " '''''' 0 • (,0" 

"'00 0 1011 
0 

o f iGURE H-12 
USB rocket '-""Mt. 

r.OP 

ce, '0' 

'"' '0' 

which ,'aries depe nding upon 'he p.,ekc l t)'l>C. Optionally, a eRe field appears next. 
The CRC patlem ~onsiSling of 5 or 16 bit' i, " C)'eli(; Redundancy Check pattern. 
Th is pattern is calculated "1 tr~n sm issi< m of the packet from the packet-specif,c d~,". 
The ""me ~alculali"n is performed when the d."~ is ttceived. Ir Ihe CRC pattern 
docs nOI match the newly cakulOied paltern. then an errOr ha, been delected. In 
response 1<> lhe error. 'he packet CIOn be ignored ~nd rc!r'n,ntilted. In 1he las1 field of 
the packet. an End of Packet (EOP) appears. Thi. consiSI< of 1)+ and 0---. both low 
for two bit tim"" foll owed by 1he Idle Slale for a bit time. As il< name indicales. thi, 
seq uence of signal <lates idenlifies the end of the t urttnt packet. It should be nOled 
ll, at all fields are presented least significant bit firs!. 

Reftrring 10 Figure 13-12(b). for the Output pac ket, the Type and Check 
fields are followed by a Device Add res .. an Endpoint Addre..., and a CRC panern. 
The De"ice Addre," consi,,, of seven hit< and defi".s the device thal is to input 
data, The Endpoin' Add"", consi'ts of four bi ts and defin es which pon of the 
device is to receive the inrormation in the Data packet 10 follow. For ex.mple. 
there may be a port for data and one for COO1wl <m a give n device. 

For the Data packe t. lhc packet_specific da1a consi' ts of 0 to 1024 data byte .. 
D ue to th~ lengt h of the packet. complex errors art more likely, 50 the eRC pal ­
tern is increa,ed in length \0 16 bits to improve its " rror delcction capability. 

In the Handsha ke packet_ the packet-specific dala is empty. The response to 
the receipt of Ihe data packe1 i, carried by the Pl i). PID 01001011 is an Acknowl­
edge (ACK) indicaling that the packet was recei"ed without any crrors detected. 



598 0 CHAPTER lJ I !NPUT_OUTPUT AND COMMUN!CAT!ON 

Absence of any HANDSHAKE packet when one would norm ally appear is an 
indication of an error. PID 01 (11 1010 is a No Acknowledge. indicating that the tar. 
get is temporarily unable to accept or return data. PID OIII I()OCl is a Sta li 
(STALL). indicating that the target is unable to complete the transfer and that 
software intervention is req uired to recover flOm the 'tall condition. 

The preceding concepts illustrate the general principles underlying a packct. 
ba",d "'rial 110 bus and arc specific 10 USB. USB supports other pac~et types a nd 
many diflercm kind, of tra nsactions. In addition. the al1achment and detachme nt 
of devices is sensed and can trigger various software reactions. In general, Ihere is 
substantial sollware in the computer to suppon the details of the con trol and oper­
ation 01 the Universal ~rial Bus. 

13-5 MODFS OF TRANSFER 

Binary information received from an e~tcrn al device i, usuall y slored in memory 
for lal~r processing. Information transferred from the central computer into an 
external device originates in the memory. The CPU merely executes the 110 
instructions and may accept the data temporaril y. but the ultimatc SOurce or desti ­
nalion is the memory. Data tran,fer between the cent ral comp uter and [10 device, 
may be handled in a variely of modes. some of whiCh use the CPU as an interme­
diate path, white othc," tra",fer the data dire<:tly 10 and from the memory. Data 
transfer 10 and from peripherals may be handled in One of four possible modes: 

I. Data transfer under program control . 

2. [nterrupt.initiated data transfer. 

3. Direct memory access transfer. 

4. Transfer through an [/0 processor. 

Program..;ontrotted operations are the result of 110 instructions written in 
the computer program. Each transfer of data ,s initiated by an instruction in the 
program. Usually. the transfer is 10 and from a CPU register and peripheral. Olher 
instructio", are needed 10 transfer the data to and from the CPU and memory. 
Transferring data und er program conlfol require, constant monitoring of the 
peripheral by the CPU Once a data trans!er is initiated . the CPU is required 10 
monitor the interface 10 sec when a tran,fer can again be made. It is up to Ihc pro· 
grammed inStructions e~ecut cd in the CPU 10 keep close tabs on everyth ing that is 
taking place in the interface unit and the external de,·ice. 

[n the program-controlled transfer. the CPU sla),s in a program loop called a 
b"sy-waif I=p until the I/O unit indicates that it is ready for data transfer. Th i. i. a 
time-consuming proce ... ,ince it keers the processor busy needlessly. The loop can 
be avoided by using the interrupt facility and special commands to inform the 
interface to issue an interrupt request signal when the data i, available from lhe 
de,',cc. This allows the CPU to proceed to execute another program. The interface . 
meanwhile. kcers monitoring the device. When the inlerfa"" d~termincs that lhc 
de",ce IS rcady for data tran,fer. it generates an interrupt request to the computer. 



13_S I Moxie. of T" ruk. 0 599 

Upon detecting the external interrupt . ignal. tne CPU momentarily stops the task 
it is performing. branches to a servie<: program to proce .. tnc data transfer. and 
then re turns to the original tas~. Thi$ interrupt-initiated tra nsfer is the type u",d 
for the keyboard cont roller ,hown in Figure 13-9. 

Transferring of data unde r program control is performed through the 110 
hus and between the CPU and a pe ripheral interface unit. [n direct m.,.wry 
acc«3S (DMA), Ihe interlace unil transfers data into and OUI of the memory unit 
through the m~mory bus. The CPU initiates the transfer by supp lying tne inter­
face with the start ing address and the number of words needi ng to be transferred 
and then proceeds 10 execute other tasks. When the transfer is made. Ihe inter­
face requeSls memory cycles thro ugh the memory bu~ v,'hen the requesl is 
gran led by the memory cont roller, Ihe in lerface transfers the data directly into 
memory. The CPU merdy delays memory operations to allow the direct memory 
110 Iransfer. Since the speed of a peri pheral is usually slower than thai of a pro· 
cessor. 110 memory transfers are infrequent compared with processor acccs> 10 

memory. DMA transfer is discussed in more delail in s..oclion 13·7. 
Ma ny eom puters eombi ne the int erface logic wil h Ihe requiremems for DMA 

into one unit called an //0 pn><:t!,.or (JOP). The lOP can handle many peripherals 
through a DMA-and -interrupt facili ty. In such a syslem. the computer is di_idcd 
into thrt~ separale mod ules : the memory unit. Ih~ CPU. and the lOP. 1/0 proces­
sors are presented in Section 13-8. 

EKample of Program-Controlled Transfer 

A simple exam ple of data Iransfer from an lIO dc_ice through an inlerface into Ihe 
CPU is shown in Figure 13-13. The device Iransfers byte, of data one at a time as 
they are a_ailablc. When a byte is a,·ailable. the device places it on the 1/0 bu. and 
enables Ready. The interface accepts the byte into its data register and enables 
Acknowledge. The interface sets a bit in thc status register. which we will refer to 
as a Jlag. The device ca n noW disable Ready. but it will not Iran,f"r another byte 
unlil Acknowledge is disabled by the inlerface. accordi ng 10 the handshaking pro­
cedure established in Section 13-3. 

DOl, "'" tn" rI""" ,~ ~ 

Add", .. bu. 

CPU t/O "" .... I Dol, "'g~'" I ,~, "0 
,,",vi« 

110 wri" I S[~("' . I .I A,knowl<dt ' 

"'g~'" 

I 
''-

o ~'IGUKE 1}. 13 
Oat .. Tran.rer from 110 Device 10 CPU 



600 0 CHAPTER 13 I INPlIT_OlITPUT AND COMMUNICATION 

Under program control, the CPU mUM chec~ the flag to delermine whether 
there is a new bYle in the interface data register. This is done by reading the contents 
of 1he Mat us register into a CPU regiMer and check ing lhe value of (he Oag. [f (he 
flag is equal to L the CPU read, the data from the data register, The flag is then 
cleared to 0 ei1her by lhe CPU or 1he interface, depending on how the interface cir­
cuits an! designed. Once (he flag is cleared, lhe interface disables Ac~no"-Iedge, a nd 
the device can transfer 1he next da1a byte. 

A Oo,,'char( of (he 8 program wri({en for (he preceding transfer is shown in 
Rgure 13-14. The flowchart ass umes lhat the device is ""nding a ""qucnce of bytes 
that must be stored in mcmor)'. The program contin uall y examines (he 51atus of the 
interface until the Hag is ""t to I. Each byte is brought into the CPU and trans­
ferred to memory until "II of the data have been transferred. 

The program-eontrolled data transfer is u""d only in s)'Stems that are dedi ­
cated to monitor" de" ice continuously. The difference i~ information tran.fer 
rate between lhe CPU and the 110 device makes this type of transfer inefficient. 

Read .. ,," " ,," er 

Check filii bn 

R,ad d". "&i>'" 

o FIGURE 13 .. 1J 
Fk>v.-ch." for CPU Program to IO PUl D.ta 



tH I Priority 1__ 0 601 

To see "hy, consider a Iypical compuler Ihal un execUle Ihe inslrutiions to rud 
Ihe slatUS regi~ter a nd ch« l the Hag in 100 nS. A .. ume Ihallhc input device Iran ... 
f~rs its data at an average rate of tOO b}'l cs/s. Thi. i. eq uivalent to o ne byle e"e ry 
10.000 1'"" me"ning that the CPU wi11 check Inc Aag 100.000 times be lwee n ea ch 
tramfe r. Thu .. Ihe CPU i. wasting lime checking Ihe flag instead of doing a uscful 
processing task. 

Interrupt-Initiated Tranafe, 

An alternallve 10 Ihe CPU con.tandy monitorin, lhe nag is 10 le\ the in lcrfatt 
inform 1M compuler when il is ready 10 lransfer dala. This n,ode of lran,fe r uses 
Ihe interrupt fllCili ty. While the CPU is running a plOgram. il d""" not check Ihe 
Aag. Ho,,·ever, wh en lhe flag is sel. the comp uter i. mome",",ily interrupled flOm 
proceedi ng wit h Ih e curte nt program . IlJ is informed of the faetlhat Ihe Hag h., 
been ..,1. The C I' U drops what;t i. doinllo la<c Ca' C of the inpul or o Ulpul Ir~ns· 
fer. After Ihe transfer", completed, Ihe com!'uler returns 10 lhe !'reviou, progra m 
10 conlinue ,,·hal it " 'lOS doing before Ihe imetrupt . Tlte CPU resJ>OOd. 10 lhe inler· 
rupt: .. gna] by $lOnng Ihe rei urn addrCSII from lhe: progrmn counler InlO a memory 
>tack Of register. and lhen conllOl branches 10 . len-ice rouline Ihal proceues lhe 
r,""uired IJO transfer. ·1"'" '1>"1 Ihat the prOC<'W>r chooses lhe: branch addrt15 of 
lhe service routine vane, from one unit 10 another. [n principle. the:re arc: t .... Q 

methods for a.ccomplishing Ihis: ' ·e<:wmi illl~""pl and nonvec:wui/ illlur"I'/' In 8 
nOI,,'ectored interrupl . the bra ndt address ;s aS5igned to ~ hed location in mem­
ory, In n "~"Iorcd interrupt. the source tit "1 inte rrupts supplies the hranch address 
to Ihe compuler. '111;, informa tion is ";o Il ed Ihe .... ,'/ur ai/i/reu. I n some com puIN" 
li>e ,'eclor address is the firsl .ddreu of Ih~ service rouI;n,,; in Olher co "'pUiers. the 
vector address is an add ress Ihat poInts to. location ;n mtm<M)' " 'here: the first 
address of the ~TV1CC rouline is . tored. l l1e veclored interrupt procedure: ",as pre­
scn led in Section 13-9 in conjunction " ' Ih Figure: ] 3-9. 

13-6 PRIO RITY INTERRUPT 

A Iypic" t c""'puler h.s 8 num ber of 1/0 devices a ll.ched to it th'lI ~re ab le 10 orig· 
inate an int"rrUp1 request . ·The fi rst ",k of Ihe intorrupt system is t<.> identify Ihe 
oourCC of Ihe int errupl . ·1'l1erc: is also lite possibility thaI several S/Jurces ",i ll request 
service simultaneously. In this case, the: '~Iem mu.1 decide ,,·hich de,'ice to sorvk<: 
first. 

A priorily inlerrupl .)"Stem e!olablisheJ a priority over Ihe ' ·ariow; ,nlerrupl 
ooul'CeS 10 delemtine ,,·hicb inlerrupt request 10 servk<: first ,,·hen tWO or more 
arri,'e .imultat>«)u.ly.l"hc .y<tem may also determine which requests are permit_ 
ted 10 inle . rupl Ihe computer ,,'hi]e . nOlhcr inlerrupt is being scrviced. I Hghcr lev­
e ls of priority "re assigned 10 requests th31. if ddayed or interrupted, OO\Ild h.ve 
..,riou. conseq uence .. Devices wilh high •• peed tronsfers such a, magnelic disks are 
given high priority. and slow devices .uch as keyboards Iccei ,'c I he 10",.,,1 priority, 



602 0 CHAPTER Il/tNPUT_OUTPUT ANI) COMMUNICATION 

When two devices intcrruptt hc computcr at the .3mc time. the CompuTcr services 
the device with the higher priority fi~t, 

Establi shing the priority of simuit.1ncous interr upts can be done by software 
or hardware. Software uws a potJing procedurc to ident ify the interrupt source of 
highest priority. In this met hod. there is one common hraneh address for all inter_ 
rupts. The program at the branch address takes care of interrupt' by polling the 
interrupt sources in .. quence. The priori ty of eacl1 interrupt so urce determine, t h~ 
ord~r in wl1ich it i. po ll ed. The source wilh the highe.t priority is tested tirJ\. and if 
ils inlerrupt signal is on. control branches to a m ut ine which wrviees Ihal source, 
Olherwise. Ihe source wilh Ihe nexi lower priority is leslcd, and so on. ThUs. Ihe 
init ial service routine for all interrupts consists of a program Ihat tests the interrupt 
sources in sequence and branche, to one of many other possible service routines. 
The particular service rout ine Ihat is reached belong' 10 the highe't priority device 
among a ll device. that interrupted the computer. The disad"ant age of the softw.re 
method i. that if there arc many interrupts. tl1 c time required to poll "li the Wurce, 
<an c"<'(:cd the time available to service Ihe [/0 device . [n thi s , itualion. a hard· 
ware priorily inlerrupl unit can be used 10 speed up the operation of the syslem, 

A hardware priority interrupt unil functions as an overall manager in an 
interrupt ,~'stem environment. The unit accept. interrupt request. from many 
o;<, ur<...,s, de1crmine. which of tl1 c incoming requests has the high C$1 pri<Jrity. and 
issues an interrupt "'q uc~t t" the computer based " " this determination . To sp<:~d 
up Ihe opcratiOll. e.ch interrupt source has ii, own interrupt vector address to 
aecess its own service roul ine direclly. ·l1m'>. no polling is re<:[uired, because all the 
decisions arc made by the hardware priority interrupt unit , The hardware priorily 
func1ion can be established eit her by a serial or parallel conneclion of interrupt 
tine!.. The serial connection is a[so known as the daisy chai n met hod 

Daisy Chain Priority 

The daisy chain method of estab[i,hing prior it y consists of a serial COnnection of aU 
device. that request an inlCrru pl . The device with the highest priority is placed in 
the fi rsl positio". followed by de"icc, of priority in descending order. dOl"n to Ihe 
device with the lowest priority, which is placed last in the chain. This method of 
connection between three device, and Ihe CPU i •• hown in Figurc 13·15. [merrupt 
reque.! tines from all devices are O Red !O form the inturupt line 10 the CPu. [f 
any device has its Inlerrupl re'l ueSI at 1. the in,errurt [inc goes to I and enable. 
the interrupt input of the CPu. When no inierrUplS are pending, the interrupt line 
stays al 0, and no int errupls are recognized by the CPU. The CPU responds to an 
interrupt requesl b)' enabling Interrupl acknowledge. The . igna[ that is produced is 
received by device 0 at its PI (priorit y in) input. The signal Ihen pas",. on to the 
next device through the PO (priority out) output only if de"ice 0 is nOi requesting 
an interr upl. [f device 0 has a pending interrupl. it blocks Ihe acknowledge .igna[ 
from the nCxt device by placing a 0 On the PO outp ul and proceeds 10 inserl ils 
0"'1'1 inlerrupl veelor . ddress (VAD) onto Ihe data bu, for Ihe CPU to use during 
Ihe interrupt cycle, 



B_~ I Pr;"'i'l' In«<",p' 0 603 

CPU ~ "" ... , 
IlADO VAol VAol 

De...uo 0._1 0...,.1 

r " ~ " ~ M ~ _~u .... Om 

In,.rrup' ""I""" ---L/ 
cru 

In"mIf" od"""i<dF 

o ~lGURE 13· 15 
D.;.y Otain Priority Interrupt 

A device with a 0 on i" PI inpm genera tes" 0 on it" PO OUiPUi to inform the 
device ",ilh n~xt lower priority thaI the acknowledge signal has been blocked. A 
device that i. requeSting an interrupl and h"" a I On ito PI inpul will inlcrcept the 
acknowledge signal by placing a 0 on ilS 1'0 OUtpUi. If the devke does not have 
pending interrupl,", it transmi15 the acknowledge .ignallo the ncd de,·ice by plac_ 
ing a I on ito 1'0 OUtpUI. Thu,", the de"ice with PI - I and 1'0 - 0 i. Ihe one \\;Ih 
Ihe highest priority that i. requesting an interrupt, and thi' device places its VAD 
on Ihc data bu,", The d;li,y cha in arrangement give. the highe.t pTiority to Ihe 
device lhat reeeiv"" the Interrupt acknowledge signal from the CPU. The farther 
the device is from the r".,t position.lhc I"wer is it< priority. 

Figure \3· 16 sho"", Ihe imemal logic that muSl be included within each 
de,'ice connected in thc dais)' chain scheme. The dc.i«, sets its RFlatch when il is 
aboUltO interrupllhe CPU. The outpul of the I.leh functionallyemers the OR Ihat 
dri,'''' the interrupt line. If PI _ O. both PO and the enable line 10 VA/) are "'Jual 
to 0, iHe"pecti\'e 01 the val ue "f RF. 11 PI _ I and RF ~ O. then PO ~ 1. the vector 
address i, disabled, and the acknowledge .ignal passes 10 Ihe next devic~ Ihrough 
PO. The dcvi«, is acti"e when PI _ I and RF ~ l. which place, a 0 on 1'0 and 
~n.bles the vector address onlo the data bus. It is assumed that uch device has it! 
'''' "1'1 distillct ,'eClor address. The RF lalch is reset afler a sufticknl delay 10 ensure 
thaI the CPU has rI!«,ived the H..;tOT addtc>S. 

Parallel Priority Hardware 

The pa,allel priority interrupt method use. a register with bits ""t separately by the 
inlerrupl signal from eaeh device. Priority is e<1ablished ac<oording to the position 
of lhe bits in the regisler, In addition 10 the interrUpl register. the circuit may 
incluoc a mask registeT to """lrol the slatus of each inlerrupt request. The mask 
regi'ter can be programmed to disable lower priority interruplS while a higher pri_ 
ority device i. being serviced , II can also allow a high · priority device to inlerrupl 
the C PU ""hite a lower priority devi«, is being serviced , 



604 D C H AI'TE1t 13 I I N I'UT-OUTPUT A N ]) COMMUNICATION 

" 

In"',,"p' 
=I"e" 
from <Ie.ice 

Priotit in 

" , - , 

," V 

~" 

Intm"pt ''''' .... , 
IQCPlJ 

o n GUR[ 1.1-16 

~ Eo.b" 

" 
0 

, 
Ve<to<.J.h """ I 

l'rio<i'. oul 

" ~ En. 

0 0 " , , , 
" 

Ooe Slage of the D,isy Chain Pr;""'y Arr.ngement 

The priority logie fvr " sl.tem with fvur interrupl sources i. shown in 
Figure 13·17. The logic consists of an int errupt regiS1"r with individual bits set by 
CXlemal oonditions and cleared by prog.ram i nstru~tion s. Int "rrupt input 3 has the 
highest priority. inpul 0 the lowest. The mask regi.lcr has the Same number of bit" 
as the interrupt regi~t cr. Oy me"ns of program instructio ns. it ;s possible to sel ur 
resel any bit in the mask register. Each interrupt bit and its corresponding m"sk hit 
are app lied to an A ND gate 10 produce the four input' to a priority encoder. In 
this way. an interrupt is recognized only if its corresponding mask bit i. set to 1 by 
t h~ progra m. The priority encoder genera les lWO bil& of the "ector addre,s. which 
is lransferre(1 10 the CPU via the data bu., Outpul V of the ene'oder is set 10 I if an 
interrupt req ~"'t Ih.1 is nOI masked has occurnxl. This pro,;de, t h~ inlerm pl sig­
nal for the CPu. 

The priority encoder is " <;reuil Ihat implements the pr iority function. The 
logic of the priorily encoder is such thai. if 1,,·0 or more in puts are 1 at the same 
li me. Ihe inp ut having the highesl prior it )" takes pr"""dcnce. The circuit of a four· 
;np ~t priori ly encoder can be fou nd in Section 4-4. and ilS tr~t h lable is lisled in 
Table 4·5 , In put D, has the highest priority so. regardless of lhe ,a l ~c. of other 
inputs.. when Ihis inpul is I. the outp ut isA, Ao - 11.0, has the n~xt lower priorily. 
The output is 10 if 0, _ 1. provided that 0 , ~ O. regardless of the val ue. of Ihe 
OIh"r two lower p riority inp ut~ 111e o ut put is 01 when 0 , = 1. provided Ihat Ihe 
IWO higher priority inputs are equa l to O. and $(l on do,,·n lhe priority le"els. The 
int errupt OUlpul labeled V is equal to 1 when one or more ;npulS are equal to I , If 
a ll inpUis are O. V is O. and Ihe o1her two output, of the encoder arc not """d , 11,i. 
i. beca use the "ector add ress is not Iransferred 10 the CPU when V ~ 0, 



13_7 I Uiftc, M<"""'Y Ace'" 0 605 

To'or",,,, 
«P<'" 

- r;-
-I-;-
-I-;-e-, 
-1-;-, 

== _r;-
J;-
-I-;-
-I-;;-
~ 

uP'er 

o FIG URE lJ. .. 17 

)- D, 

D, 

-" )- .-. D, 
Hi"« 4_12 

)- ~ 

Parallel Priorily In'crrurlltard,,'.rc 

l.reffUp' 
.d"""i<dF 
f CI'U ~ 

"'I-
~ 
I-f-

"I- f-
I-;-f-

, 
1-;--
I-;;- f-I-;;- 0-I-;- f-I-;;- -
LyAD 

I.renu 

" toCI'U 

The oulpul of the priority enooder is used 10 fonn pari of lhe veclor .ddrc>s 
of the intermpt source. The Glher bits of the ,'eelor address can "" assigned any 
value$. For example. the ¥cclOr address can "" found by appending ,ix ,oro. to Ihe 
OUlput. of Ihe encoder. Wilh Ihi' choice. Ihe imerrupl "colOrs for Ihe foor 110 
dc";= 3rt assigned the 8-bit binary' num"" .. e<.juiv.lenll0 de<:imal 0 .. 1. 2. and 3. 

13-7 DIRECT MEMORY A CCESS 

The Iransfer of bloch of information Det",een a fa.1 . Iorage deviu: such as mag .. 
netic disk and Ihe CPU can preoccupy the CPU and pcrmillink. if any. Olher pro­
cessing to be accompli,hed. Removing Ihe CPU from the path and lett;ng Ihe 
peripheral dc¥ice manage the memory buses dire<:tly will relieve Ihe CPU from 
many 1/0 operation. and allow il to proceed with other proce>Sing. In th;.lran.fer 
tech nique. called direci memory access (DMA). Ihe DMA conlroll .. ta~e. over 
the bu"," to manage tj,e lransfer direcily betwccn the 110 device and memory,As. 
ennsequence .. Ihe CPU i. lemporarily deprived of access 10 menlory and control of 
lhc memory buses. 

DMA may caplure ll>e bu.es in a number of ways. One common melhod 
exten.i.ely used in microprocessors;. to disable Ihe bust:. Ihrough <pttiaJ ennlrol 
signal .. Figure 13 .. ll' shoW!' Iwo control signals in a CPU Ih31 focilitalC the DMA 
transfer. The bus request (BR) inpuI;. used by the DMA controller 10 requcsllhe 



606 0 CHAPTER 13 IINJ>UT-OlITPlIT AND COMMUNICATION 

'" ,.,-". ) B", '"'I .... , "' "' 0". bu. 1I;~h Unp«Lonce 
ITO ("i",t>,,~) 

0", V'"'eO ." ." Re><l il BG _ I 

we Wlit< 

o nGURE 1J- IH 
CPU Du, Control Signa" 

CPU to reli nquish conlTOI of the buses. When BR input is acti,·c. Ihc CPU places 
the address bus. the data bus. and the read ;rnd wrile lines int o a high-impedanee 
state, Aftcr 'his is donc. the CPU activates the bus granted (HO) o utput to inform 
Ihc eXlernal OMA that it can take control of lhe buses. As long 8S the GO line is 
active, thc CPU i. unable 10 proceed with any opcrali,,"s requiring access to lhe 
buses. When the bus r"'luest ill put is di .. ,bled by the OMA. the CPU returns to its 
""rmal operation. disables the GO OUlput. and takes control of the buses. 

Whon the nG line i. enabled, the e~ternal OMA controller lakes ConlTOI of 
the bu. system in order to communicate diTcctly wilh memory. The transfer ean be 
made for a rt entire block of memory words. suspending operatioll of the CPU unli l 
the entire block is transferred. a process refC!T~d to as bl/rs/lra/lSler. Or the trans· 
fer call b<; made one wOTd at a time belwe<:n executions of CPU instructions." pro­
cess called silillle_cycle "liMIer or cyc/~ sl~"Ii"g. The CPU merely dela)'s its bus 
operations fOT One momory cycle to allow tht dired memory_liO transfer to Slo"1 
one memory qde. 

OMA Controller 

The DM" oontroller needs the usual cireuits of an inlcrf"ce 10 commu nicate ""ith 
the CPU and the I/O d""ice. In addition. it needs an address register. a ,,'ord_count 
register. and a set of address line<. The .ddrcss regisler and address line. arc used 
for dir""t oommu nication ""ith memory. The word-count register 'p"ci fie~ the num­
ber of words that must be transfcrTcd . The d.,w transfer may b<; done directly 
hoct"'ecn the device "nd memo,)' under oontrol of the DMA. 

Figure 13-19shows the hlock diagram of a lypical OMA controller, The uni t 
comm unicates wilh the CPU via the data bus and controllincs The regiSlers in the 
DMA are selecled by the CPU thro ugh Iho address bus by enab li ng lhe DS (DMA 
sdee!) a nd RS (register select) inputs. The RD (read) and WR (wrile) inputs ore 
bidirectional, When the BG (bus granted) input is O. the CPU ean communieate 
with the OMA Tegisters lhrough the d.ta bus to rcad from Or write to those regis­
lers. When EG _ 1. the CPU has relinquished the buses. and thc DMA Can COm­
municate d irectly Wilh memo')' by spe<:if}'ing an address on lhe address bus and 
activating lhe RD or WR control. The DMA communkates with the eXlerna l 
peripheral through the DMA roque't and OMA ack nowledge lines by a prescrihocd 
hnndshak ing proced ure. 



1l_1 J 1.>Urtt M<mo<1 A<~, 0 607 

DMAoel<d 

I\<F>o<f""_ ,,-
Write 

lot"'u", 

,- ~. ~ 

I AdO_ 00. I buff ... buff ... 

- "< 1 AdO,ou rqioIe' 

- " • ~ = '" , \¥oId",.nt r,,""or 

WI\ (;00,,01 

.- "' "" (;00",,1 ' 01;''' ' 

- "' OMA ""'_ - OM'" o<kOO'O'k>dt< r. 110 de,';'" 

o ne vlu: 13·19 
Block Diagram of a DM'" Controller 

Th~ OMA rontroll~r ha, three rcgist~l'S: an addrr:.s Tegi.ter. " word-rount 
regiSieT. and a control regiSier. The address register contain, an addr"'" to specify 
the desired location of a word in memory. n,e address bils go lhrough bus buffers 
onlO the addT""" bus. The addce .. register is incremented after each word is tran.­
ferred 10 memory. The word-rount register holds the number of word, 10 be Iran,· 
!cTled. This register is decremented by One afler each word mmsfer and internally 
teSied for zero. The cooHoJ regi,'er specifics the mode of lransf~r, All r~giSl~rs in 
the DMA "ppear 10 lhe CI'U as 110 imerf;>ec regi"e,,- ThUs. Ihe CPU can read 
from or write 10 the DMA registers under program control .ia the data bu~ 

Aflcr initia lization by the CPu. lhe DMA ,Inrls and ronlinucs 10 Iran,fer 
daw between memo,)' .nd lhe peripheral un;1 unhl an emire block is aansferred, 
The iniliali:ullion process is essentially a program ronsisling of JIO ;nstruclions Ihal 
include the address for sel«:ling particular OMA rcgiS!crs. The CPU iniliali>.es lhe 
Dl>IA by sending lbe following informal ion Ihrough Ihe dala bus: 

1. The Slarling address of Ihe memory block in "hieh dala is ~.ailablc (for read-
ing) or data i. to be . tored (for wriling) , 

Z. The word eoum. which i. the number of "'ords in Ihe memory block, 
3. A control bit 10 'pe<:; fy Ihe mode of Iran,fer. such as Tead or write 

4. A conlrol bil 10 .~art lhe OMA Iransfer. 

The staning address i. Slored ;n the address regiSler. Ihe word CO UrU in Ihe word­
counl register. and Ihe control informalion in Ihe ronlrol register. Once the OMA 
is inilial ized. Ihe CI'U SlopS cOmmunicaling ,,;lb il unk$$ Ihe CPU ",cei,'os an 
interrupt .ignal or needs to checllH>w many " 'ord. ha"e been Illinsferred. 



608 0 CHAPTF.Jt 13 I INPVT -OIJTPVT ANI) COMMUNICATION 

~Ult",L, 
The "",ilion of Ihe DMA conlroller among Ihe olher componenlS in a compuler 
syslem is illUSlraled in Figure 13·20. The CPU <communicaies wilh Ihe OMA 
Ihrough Ihe address and dala buses, as "';Ih any inlerface unil. Lhe DMA has ilS 
Own address, wh",h ;lelival", Ihe I)S and RS lines. Tile CPU in;li .. li>n I~ DMA 
through Ihe data bus. Once Ihe DMA r"""i,'es the SIan control bit, ;t can begin 
tran sferri ng data between Ihc peripheral dc _icc and memory. When Ihe peripheral 
device sends a DMA request . Ihe DMA controller activate. the BR line. informing 
the CPU Ihat it is to relinquish lhe buses. The CPU responds wilh in BG line. 
infonning Ihc DMA that Ihc buses are disabled. The DMA then puts Ihc current 
value of its address regiSier onto Ihe addre .. bus. initiales tile RD or WR signal . 
and send, a I)MA acknowledge 10 the peripheral device. 

When the peripheral device receives a DMA acknowle<lge. il pUIS a word on 
the data bus (for writing) or receives a word from Ih. dala bus (for reading). ThUs. 
Ihe DMA controls the read or write operation and ,upplies the address for ",em· 
ory. The peripheral unit can then communicate wilh memory through the data bus 
for a direcllransferof dala belween Ihe IWO units while Ihe CPU access 10 Ihe dala 
bu. i. momenlarily disabled, 

l""""f'< 
W C~ M, ,,,,,,y 

"' 
'" WR Add"", [).a" eo WM Addreu 1),0" 

M."" "",,(roI T 

Wn«wn(roI 

A<klrc .. bu. 

Addfe:: I ~"~ -, 
L "' WR A~ 0". 

~ 

" OM'" T<~",," ,~ 
DMA pe,;I" .... 1 "' roo(,oI." 

DM" ""~""""J~, .,-
00 

In«,,,,p' 

o n GU RE 1.1-20 
OMA'Ir.n,fe,;n. Compuler S),,'em 



B-1! 1 1/0 f'ro«."", a 609 

For each word Ihat i, Iran,ferred. Ihe DMA increments ils .ddre," register 
anJ decre mcn1. i(s word-<:ou nt register. If the word co un1 has not reached zem.the 
l)MA checks Ihe r<:'1"csl line coming fmm the peripheral. In a high·speed de,·i"". 
the hne ,,-ill be activaled as soon as the previous transfer i. complC1ed. A second 
Iransfer is Ihen inilialed. an<llhe prOC<:!II continu<'S unlillhe entire block i. Irans· 
ferred. If Ihe 'p""d of the peripheral i •• Iower. the D.\IA requ,,"1 line may be acli­
valed !IOII1ewhal laler. In Ihi' ca,!", Ihe DMA di .. bl~s the bus roqueS! line so Ih.1 
Ihe C PU can continue lu c~ccutc its progr.m, Whcn the peripheral requests a 
transfer. Ihe D.\IA req uests the buses again. 

If the word count reaches tero. the DMA slops any further transfer and 
remo"e. ils bu. request. It also informs thc C PU of the lerminalion of the Iransfer 
by mean. of an in1errupl. When Ihe CPU responds to thc inlerrupt, i( reads (he 
contents of the word-<:ounl register_ A ,'aluc of zeT<) indicat~ .. Ih.1 all the word, 
werc suCttssfully tr:ln.fcrre<J, The C PU can rcad the word-<:oun1 register at any 
lime. as well. to check the number of words already Iran,ferred. 

A DMA controller may hO"e more Ihan one channel, Inlhi. casc, each ~han. 
nel ha. a req uest and acknowledge poir of cont rol signals that lITe ",.,n o:<:led 10 
",parate peripheral de,ices. Eoch channel also ha~ its OWn addr" .. register and 
word-<:ounl register SO Ihat channcl~ wilh high priority Me serviced before chan­
nels with lower priorily, 

DMA transfer;' "cry u..,ful in many applications, iTlCluding the fast transfer 
of in formation belween magnelic disk!; and memory and ocl",'een graph;- displays 
and memory. 

13-8 110 PROCESSORS 

Instead of having each interface communicate w,th Ihe CPU, • rompuler may 
inCO<pOrate one Or more external processon and a!»ign them Ihc lask of communi­
caling direclly with aJi llO de.ices, An input-nutput processor ([01') rnay be dassi. 
fied as a processor with direct memory aCtt'" c"pability that communicates wilh 
l i D de"iccs, In this configuralion. Ihe computer system can bt: divi<.led into II rnem­
ory unit and a nu mbc . of processoTS composed of Ihe CPU and o ne or more 101':<. 
Each 10 1' I"kes carc of inpul and output task .. rclic.ing Ihe CPU of the "hou",· 
keeping" chores involvl'<l in 1/0 transfers. A prOCCSSOf thai communical~' wilh 
remOle units over lekphone and olher wmmuni,,"lion media in a '!"rial fashion i> 
called a dar" communication pmUSJOT (DCP)."The benefil deriv~'<l from using 1/0 
prores.sors is improved syslcm ""rfonna""", achie,'cd Ihrough r<:lieving Ihc CPU of 
delailed lask' rdating 10 1/0 and assigning them 10 Ihc aPrr"!'.i.le [/0 proc.:ssors. 

An 101' is similar to a C p u, ex<cplthat it is designed to handle the del ails of 
110 processing. Unlike Ihc DMA controller. whkh mu,t bc ",t up enlirely by the 
CPU, Ihe 101' can fetch and e~ecutc its own instructions, 101' in<lfuctions arc spe­
cifically designed 10 facililate 110 Iransfers. In addilion. Ihc lOP can perform olhor 
processing task" such as arilhmet;-. logic. branching. and translalion of code. 

The block diagram of a compuler with 1""0 processors i, shown in Figure 1],,21. 
"The mcnlOry "'-"'upies a ""nlral posilion and ~an communicale wilh each prOC<.·..,"" 
by meanS of DMA The CPU is re>fl'O'lsible for processing data Ileeded in Ihe 



610 0 CHAI'TER 13 I lNPUT-OUTPVf ANI) COMMUNICATION 

M,"""1' "n;t 

Mo""",y tKl. f><~I"I<" 1 <Ie"""". 

1 1 (PD )(PD )(PD )(PD) 

iT Cont ... 1 Pfoce>. irl£ loput-ootput 
"";t (CPU) Pf''''''''''' (lOP) 110 bu. 

o FIGURE IH I 
Block Diagram of . Comp" ter with 110 f'roce..." 

solution of computational 1asks. The lOP provides a path for the transfer of data 
bet" 'een various peripheTal devices and the memory. The CPU is usuall y assigned 
the task of in itiating the I/O program, FTOm then on. the lOP operates indepen. 
dently of the CPU and continue'S to tTansfer data between external devices and 
memory. The data formalS of peripheral de,';""s often differ from thoo;e of memory 
and the CPu. The lOP must structure data words from man)' d ifferent sources. For 
example. it rna)' be neceo;sary 10 take four byt~s from an input device and pack them 
into one 32-bit word before the transfer 10 memory. Oala are gathered in the lOP at 
the device bit rate and bit ""racity while the CPU is eXe<;uting its own program. 
After assembly into a m~mory word. the data is transferred from the lO P directly 
into memory by stealing one memory cyde from the CPU. Similarly. an output word 
transf~rred from memory to the lOP is directed from the lOP to the output device 
at the device bit rate and bil capacity. 

The communication between the lOP and the dc~iecs attached 10 it is similar 
(0 the program-<:ontrolled method of transfer. Communication with memory i, 
similar to the OMA method. The way (he CPU and lOP wmmunicate with each 
other depends on the le"cl of sophistication of the system. In very large-scale com­
puter", each processor is independent of "11 the others. and anyone processor can 
ini tiale an operation. In most computer syst~ms. the CPU is the master. whil e the 
lOP is a slave proce.sor. The CPU is assigned the task of initiating all operations. 
but 110 in<tructions are e .• ecuted in the 101' CPU instruction! pm_ide operations 
to slar! an 1/0 transfer and a lso to test 1/0 status w nd itions needed for making 
decision< on "arious 110 activities- The lOP, in tum. typically asks for atlention 
from lhe CPU by means of an interrupt. It also responds to CPU req uesls by plac­
ing a statu< "'ord in a prescribed loca(ion in memory. to ~ e,amineJ later by a 
CPU program. When an 110 operation is de,ired, the CPU informs the lOP where 
to find the [/0 progr~m and then le"ve. the details of the transfer to the 101'. 

Instructions tha t are read from memory by an lOP are sometimes called 
<'1)1",,,,,,,,/,. to distinguish them from instructions that are read by the CPU. An 
instruction and a command have similar functions. Commands arc prepared by 
programme", and are stored in memory. The command words constitute Ihe 



U-II , 1' 0 ...... ..-. 0 611 

program ror Ihe lOP. The CPU infonns Ihe lOP where to 6nd oomm~nds in 
memo ry when It i. time to execule Ihe 110 program. 

ComnlUnk~tion botween the CPU and the lOP may take d,rferent rorms, 
depending on Ihe p.'tieular comp ut ~r "s<:d . In most cases, the memory aCts"' a 
message cenler. where each prQa5S<lr leaves infonn"lion for the other. To appreci· 
ate lhe operalio" of a I)'pical lOp, woo iIIustrale the method by .... hkh Ihe CI'U and 
lOP communicate .... ith each "'her. 'l'lIit simplified eltam]>1e omits many operating 
details in order to prowide an 0\'("'''''''' 0( bas", ooncepU. 

The ~<jl>C'n.;e of operations may be earned out Il'l shown in the fto • .-chart 
or Figure 13-22. The CPU ~nd. an initroctoon to test the lOP path. The 10 1' 

--- '0' "P"""-' 

ScM im"","ion 
", "''' lOP p.olll 

l'r.I>Ner ""~' ""'" to _MOl)' _,ion 

"",.0.K.., _ ... nt;Q 
"" ___ 10 lor A ...... ...-..yio< 

torPfOlT·m 

CPt) run,;,,,,, ~';'h 
(''''''''''" I/O' ......... ....,.h<, p«JVom 

"';n,DMA. 
p~"""tq>Oo"I 

~u I"",,", ."..,pI<l«I: 

/ .. , .. """ CPU 

I ~«t""" 101''''' ", -K 
n.""", ... ".,....,..,. 

/ 
IQ _"""l' 1"",,_ 

a-k ....... _ 
"",_,.-1' ... 

I 
C""ti .... 

o FlGU ME 13-Zl 
CPU- lOP Cumm""","hon 



612 0 CHAPTER ll/lNPIJT_OIJTI'UT AND COMMUNICATION 

responds by inserting a status word in memory for the CPU to check. The bits of 
the stalUs word indicate Ihe condition of the TOP and I/O de,·;ce. such as "TOP 
overload condi t ion.~ "device bu,y wit h another tran'fer." or "device ready for 
110 transfer.MThe CPU refers to Ihe s(alUS word in memory to decide what to do 
nexL (f al l i. in order. the CPU sends the instruction to start (he lIO transfer. 
The memory address received with thi~ instruction tells the 101' where to find it' 
program 

The CPU can now continue with another program while the 101' is busy with 
the 1/0 program. Both programs ref'" to memory by meanS of DMA transfer. 
When the 101' terminates the execution of its program. it sends an interrupt 
request to the CPU The CPU responds by issuing an instruction to reod the status 
from the lOP. The 101' then responds by placing the contents of ils status report 
into a sp<.><:ified memory location. The status word indicates whether the transfer 
has been completed or whether any errors occurred during the transfer. By 
inspecting (he bits in the statu, word. the CPU determines whether the I/O opera_ 
1ion was completed satisfactorily. withoul ,rro",-

The 101' takes care of all data transfers betw"""n several 110 units and mem_ 
ory while the CPU is processing another program, The 101' and CPU compete for 
the use of memory. so the number of devices that can be in operation is lim i(ed by 
the access tim~ of the memo!)'. It is not possible for 110 devices 10 sat urate the 
memory in most systems. as the speed of most devices is much slower than that of 
the CPU. However. mu ltiple fast units. .uch os magnetic disks or graphics displays. 
can use an appreciable number of the available memory C)'etes. In that case, the 
speed of the CPU may deteriorate beca use the CPU often has to wait for the lOP 
to conduct memory transfers. 

13-9 CHAPTER SUMMARY 

In 1his chapler. we introduced 1/0 devices. typically called peripherals. and their 
associated digital support structures. including 110 buses. interfaces. and control ­
lors. We studied the structure of a keyboard . a hard disk. and a graphics display. 
We looked at an ex.mple of a generic 110 interface and examined the interface 
and 110 controller fot the keyboard. We introduced USB as ~n aiternati,'c solu­
tion to the attachment of many 110 devices. We considered timing problems 
bet,,'een sy'tems with different clocks and th~ paraUel and serialuan,mi"ion of 
informat ion. 

We also l<Xlked at mode, of {[an,fening information and saw how the more 
complex modes cam~ about. principally to rdieve th~ CPU from e. ten!i"e, per­
formance-robbing handling of 110 transfers. Interrupt-initiated transfers with 
multiple 110 interfaces lead to means of establishing priority between inltrrupt 
So urces. Priority can be handled by software. serial daisy chain logic. or parallel 
interrupt-priority logic. Direct memory access accomplishes the transfer of data 
direc11y be1ween an 110 interlace and memory. wit h little CPU involvement. 
Finally. the 110 processor provides even greater independence of the CPU in 
handling 110. 



REFERENCES 

I. P"'TIEKSO~. D. A .• and J. L. H~NNE~Y C""'I'III~r OTg~"i,"'i('" ,,,,d O"'iXn: 
The /lim/"'Ilrr/SO/lw"", IlIla/aer. Sa" Fra ncisco. CA: Morgan KIIU/"H,nn, 

"'" 2. VA" GII.I,.UW~. F. 71r~ U"d<KUmml~" PC Reading. MA:Addu;on-Wc:slcy. , "" 
1. Mas"(R. II. P. Th~ l"dl.f~tu/lbI~ PC I/,,,,I • ..,,~ Book. 2nd ed. Readln&- MA: 

AddilOn·Wes.Icy.I995. 

4. MindShare. Inc. (Don AndeTSOfl). Un"'"",,,' Sl'NtI/ B,,, S)"um lI~hllf'Ch''''. 
ReadIng. MA: Addison·W~lcy Dcvelop.:rs l'rc .... 1997. 

PROBLEMS 

~ The plus (+) indicate." more .<lv."",," pfoblem and the "tcri,k (0) indi"ates" 
~ wlutlon [s available On Ihe Companion Website r"r lhe {ext. 

1J. ... I. ·Find Ihe loonatled capacily of II>e hard dish d .. ""rib«! in tbe follo .. ;ng 
table: - ""w 

~. -. Cy_. "K' -. 
A "'" ~ '" , , 8191 ~ 512 
C ,. ,,,,, 

" '" 
U-L E,n;m.'" the lime "'quired 10 lransle •• blod:. of 1MB (2'" II) from di.k 10 

memory I,ven ll1e /ollov.ing dl<k p.onomelers: =k Ii"",. 8.5 m~ rotallonal 
delay. 4.17 m.; comrollcr lim~. nc,li"bIe; .rall5fcr "lie. 100 MIl'" 

U -J. The addressc. _igned 10 It>(: f()ur reps'."" Qf Ihe 110 inlcrf""" or .. i,ure 
U·S Ire equal 10 lhe binary equi~alcn! of 2.w. 241. 142. and 243. Show Ihe 
(Klcrnal circui!!h'I mu", be connccH.~ bcl",een an 8-bil 110 .ddr~ .. from 
Ihe CPU and Ihe CS. RSO. and RSI ;"pU!! of Ihe inlerface. 

13--4. · How many 1/0 imcrface units of !he type .hown in Figure 1)·5 ellll be 
add"'n"d by u,ing a 16-bit addr."" assuming 

t_1 .ha. each of.he chip select (CS) lin'" is "Uached t() a different add,,~ 
line1 

(b) .hll add ..... bill arc fully decoded 10 fOllll.hc <:blp ""kct inpulS? 

1l-5. Six in,crface unIts <>flhe .ype .hown in Figure n -s are connccled 10 a CPU 
th31 u9<!5 an 110 add.",. ()r eigh. hils. Each Qne of the six ehip ""k.." (CS) 
inpu •• is conneclcd 10 a dlffeTeR! addreM line. Specifically. addrcu line 0 is 
connc.."cd 10 Ihe CS input ()f Ihe nfSt ",Ie.face unil. lmd addre .. line 5 i. 
conn«lcd to lh ~ CS in puI ()f . he .iXIII in.erface unit. Add.e" li n"" 7 a1ld 6 



614 [) CUAl'fER 13 ' INIVf.ovrlVf ANI) CO.\IMUNICATION 

are COOnttled 10 Ihe HSI and RSO inpul.\., respectl~cl)·. of all six interface 
unit'" i)elermine the 8·bil pddress of each regi'ter in each inlerface (a tOial 
of 24 addre ..... ). 

13-4. ' A (hff~rcnt Iype of 110 interface docs not ha'·c the RSI ~nd RSO inputS-. Up 
Iu IWO regi<le" can be adJr~"$$4:d by u,ing a ""parale 110 read ,ignal and 
110 wril~ ,ignal for each address ava ilable. AMume Ihal SO% of the regislers 
at the inlerla"" wilh the CPU .. e read only. 25% of I ..... regj.lefll are .... rite 
only. and 25% of lhe regislct$ are both read and .... rite (bM:hrecliORllI). How 
many reg.stelS can be addressed if Ihe addreu COlll.ai", foor hots1 

U -7. A commercial interface Un;1 uses names different from Ihose appearing in 
Ihi. Ic,t for Ihe handshak e lines al$OCialed .. ith Ihe Iransfer of dala from 
Ihe I/O device 10 thc interface unit. The InlCrfa<:e input hand,ha~e line is 
h,bele.j STlJ (strobe). and Ihe interface output handshnkc linc is labeled 
/!J~·( lnput buffer full). A low-le,·el signal On ST8 load' data from the 110 
bUI into tM interf""" dala register. A high ·level .ignal on 181' indicate. 
Ihat lite dala has been """"pted by the int~rface. IB,.· g0<:5 luw alter an 110 
read signal from the CPU .... hen it re&lh the cootentsof Ihc d3ta register. 
(a l Dntw a blod diazram .hOOlllnllhe CPU 'he interface. and ,he I/O 

de,·ice. alonl " .. ith the .,..Minent interconnectiom betw"~n the three 
unit'" 

(b, [)ntW a timiDg diagram for the handshaking tran.fer. 

IJ-II. • Assume that the transk,." wil h IIrobing sho .... n in Figurc jJ·6 are betwcen 
a CPU on the lo ft and all 110 in,erface o n the 'igh!. There is an addre<s 
coming from the CPU for each of the transfer" both of which ~re initiated 
by the CPU 
(. ) Dr ..... block diagram. show;1II the intcTCOIIDCCt;o". for , he tran~fcf1. 
(b) Ora .... the timing d.agnllll$ for ,he t""O tra""(e,,,"HUminllhallhe 

address mus, be applied some time helOTt: the Strobe becomn I and 
removed some time aft", the Jlrobe becomes O. 

U-9. Assume th", the Iran_fen "·lIh handshaking .hown in Figure 13·1 are 
between a CPU on the Ielt ~nd an 1/0 interface on the right. ll,"re i •• n 
addr"» coming from the CPU for each of the t,.n.fer" bolh of "hich are 
initinted by the CPU. 
(.) Draw block diagram" oho"·ing that interconnections for lite transfer<. 
(b l Dr.w 1M timing diazramt. UIluming that the addreM mu~t be applied 

some tllnc ""Ion: 1M requesl becomes I and removed some lime af,er 
lhe request becomes O. 

l.l- IO. 'liow many eharnetefll .,... s.eoond can be transmitted ovcr • S1.600-baud 
line in each of ,he follo",ing modes? (Assume a maracter tXKIe of eighl bi.s.) 
(a ) A.ynchrOflOus ""rial tranmJisslon \./ilh I wo .top tHU. 
(h ) Asynchronous ..,rial transmission with One Slop bit. 
(~l Repeat a and b for a 115.2(X)·baud line. 



Probl<m' 0 61 5 

13--11. Sketch the timing diagram oflhe II bits (simila, 10 Figure 13-8) Ihal are 
tran,mined over an ",)'ncbronous seri.1 communi cation line wh~n the 
ASCII letter E is transmined with e,'en parity. Assume that the ASCII 
character codc i~ trommitte<:! Icast sign;ticant bit first, with the parity bit 
following the character code, 

13- 12. What is the difkrence betweell the synchronous and the asynchronous 
serial transfer of inform ation? 

13- 13. 'Sh tch the waveforms for the SYNC pattern used for USB and the 
corresponding NRZ t wavcform, Explain why the pattern selected is. good 
choke for achieving synchroni1.ation. 

13--1<1. ·t1, e following stream of data is 10 be transmined by USB: 
01 ll ll ll OO IOOXlOlllll1OIIl I I I 101 

(a) Assu ming bit stuffing is not used, sketch the NRZI waYeform. 
(bl Mod ify the stre'm by app lying bit stufting. 
(e) Sketch the NRZI waveform for the result in b. 

13--15. ' The 8·bit ASClI word "Oye" is to be transmined tu a device addr,-"Ss 39 
"lid endpoint 2, List the OU'put and Dala 0 pac~et s and the H" nd, h"k e 
p"ckct for a Sla li for this transmission prior I" NRZI e llcoding. 

13--16. Repeat problem !J·15 for Ihc word "1'110" and . Handshake packet of Iype 
No Ack nowledge. 

13-17. What is the basic advantage "r usin g interrupt. init iated dala transfer ,,,"er 
transfer un der proWam control without an interrupt? 

13-111. ·Whal happens in the daisy cha in primily in(crrupt shown in Figure 13·15 
when device 0 requesls an interrupt after device 2 h"s senl an inlerrupt 
requeSI to the CPU. but before Ihc CPU responds with the interru pt 
ac~no"'Ic,lgc '! 

1.1-19. Consider a comp ut er wilhoUI priority interrupt hardware. Anyone or ma llY 
""urCC~ Can in terrupt Ihe computer. and any in terr upt request results in 
storing the return address and branchi ng to a common inlerr upt routi ne. 
E'plain how. priorit y can be ""t"bli~hed in (he interrupt service progn,m 

13--20. ·What changes me needed in Figure 13-17 to make the f" ur \lA/) values 
C'Iua1 (0 (he binary eq uivalent of 02~ , 02.S. 026. and 027? 

1.1-21. Re peat problem I3·W f"r VAD values 224,225,226 and 227. 

13- 22. "Design p'"allcl priority imerr upt hardware I,,, a s)'Stem with , ix interrupt 
so urces. 

13--23. A priority ,trucIUTe is to be designed thot provides ,'ector addresses. 
(~) Obtain the condensed Irulh lable of a 16 x 4 priority encodcr 
(b) 'The fo ur outputs w.x,y. Z fcom ,he priority encoder are used 10 provide 

an S·bil yector address in the form IOwxYlOl. Li<t (he 16 addresses. 
"arting from the one with the highest priority. 



6 16 0 CHAPTER II I INPUT-Ol1TI'UT AND COMMUNICATION 

B - 24. - Why are lite read and wrile conlrol lines in a DMA conlro ller 
bidireclional? Under whal condilion and for whal purpose are Ihey used a, 
inp uts? Under what condition and for what puTJ".'8C are they used as 
outputs? 

U -25. II is necessary to transfer 1024 words from a magnel;c disk to a seclion of 
mentory ,Iarling from address 2(148. lbe lran,fer is by meanS of DMA as 
shown ;n Figure 1]·20. 
(. ) Give the initial "alues Ihal the CPU must lransfer to the DMA 

controller. 
(b) Give the Slep·by·stcp accounl of Il1 e action, taken during Il1c inpul of 

Il1c firs! 1"'0 words. 



M EMORY SYSTEMS 

I
n Chapler 9, we d iscussed basic RA M lechrKMogy kI' Implementir>g memo.ry 
systems. il'iduding SRilM. afld DRAM._ In the current Chapler. _ probe more 
OOeMt into wIla! malty constitutes a compute< memory syst&m . We begin with the 

prom ise that a tast. iafll" memory is desirable and <lemonslrat"lhat a straightf<:>rward 
implementation otsoch a memory for the typical computer;' 100 C05tty a nd 100 slctw. As 
a conseql.'OOCe. WI! study a more el9gam saM"", in w hich most a=9.lo memory 
are last (but soma a re sklwl and the memory appears to be la rge. This sol ution ernp"'Ys 
two concepts: cache memory and virtual memary. II cach<l memory i. a smaK, fast 
memory with speOal control hardwara 1M! permils it to harldle a sijjnificam proportion 
01 all ~ses required by the CPU with an access time of II'te OfOer 01 the CPU ck><:k 
period_ Virtual memory, Implemented in softwaro and hardware. usi"!j an intermediate· 
sil:ed main memo<y (typically. DRAM), gi\le. lhe appea ra""" 01 a lafl/O ma in memory 
with _s tome similar to 1M main memory lor too va" majority 01 3000SS6&. Tho 
actual storage medium lor most 01 the code and dala In the vinual memory is a hard 
d is!< Because the re is a progression 01 components In the mem"'~ system having 
large; alld larger st""'ge capability, but slower alld slower <>OCeSS (cao"", main 
memo<y, and ha rd disk), I"" lerm me"""}' hierarchy is 8pphed. 

In the goneric compute r at the begiM ing 01 Chapter t, a number 0/ components are 
heavily involved In too memory hierarchy. W,thin 1118 processor, there Is lI1e memory 
management untt (MMU) , w!1icn Os hardware ~ovidOO to suppr>rt virtual memory. AI.., 
In lI1e processo<, tm. internal cach<l awears. Sir>ee this cae"" i. too smal to fully 
support the cad1e fUr>C1ion, tllere is aloo a n exte rnal caChe attached 10 the CPU bus 
01 course, tile RAM is involved, and due to the presence 01 virtua l memory, the hard 
dI",,-, the bu~ Inte~ace, and lt1e disk cootroll<>, a ll haw a role as partS 01 the n'I$ITM)fy 
syst~m 

o 617 



618 0 CHAPTER 1< ' MEMORY SYSTEMS 

14-1 MEMORY HIERARCHY 

Figure 14·1 shows a gener;'; block diagram for a mcmory hierarchy. The lowes( level 
of the hierarchy is a small. fast memory called a cache. For the hierarchy to function 
well. a very large proponion of the CPU in,tr""tion and operand fetches arc 
expected to b<: from the cache, At the next level up,,'ard in the hierarchy i, the mlli" 
",emQry, The main memory serves directly most of the CPU instruction and operand 
fetches not <ati.tied by the cache. 111 addition , the cache fetches a ll of it' data , somc 
ponion of which is passed on to the CPU. from the main memory, At the top level of 
the hierarchy is the 1o~,,1 disk . which is accessed only in the very infr"'luent cases in 
which a CPU instruction or opera nd fetch is not found in main memory, 

Wi(h this memory hierarchy. sincc the CPU fetches mos( of (he instructiOI1 S 
and operands from the cache. it "sees" a fast memory, most of the time. Occasion­
ally. wh~n a word must come f,om ma in memory. a felch takes somewhat longcr. 
Very infrequently. when a word must be fetched from the hard dis~. the fetch takes 
" very long time, [n thi s last care, the CPU is like[y to experience an interrupt lhat 
passes execulion (Q a program which brings in a block of words from (he hard disk_ 
On balance, the situation is usually satisfactory. providing an average felch lime 
d oo;e to tha t of the cache. Moreowr.lhe CPU ""eS a memory address spacc consid. 
erably larger than that of main memory. 

With lh;,; general notion of a memory hierarchy kept in mind. wt will pro­
ceed to consider an example lhat ill ustrates the potential power of such a hi erar­
cny. However. there;'; one issue 10 be clarified fiTll t. [n moot instruction sct 
architectures. (he sma llcst of thc objects that are addressed is a byte rather than a 
word. For a si,'en load or store operation. whether a byte or word is affected is typ­
ically determined b)' (he opcodc. Addrcs.ing to byles brings with it ,omc assump­
tions and hardware details that are important, but. if used up to this poi nt in lhe 
text, would have unnecessarily complicated mucn of (he material cO"cred_ Conse. 
quenlly. for simplicity. ,,'e have assumed up to now that an addressed location OOn­
tains a word. By cont raSl. in lhi' chapter we will a",ume lhat addresses are defined 

"" ~" 
M.m --

o FlGUME 14-1 
Memory Itier.rchy 

H.n! 
ui>l 



14_1 I Mom",)" Hkro",by 0 619 

for byt"'" to match current praclicc , Ncverlhelcss. we will still assume that data i, 
moved around outside of the CPU as words or sets of word" 10 .void messy expla . 
nations relMing 10 the m.nipul ation of bytes. This assumption simpl)' hides some 
hardware details that would dimacI from thc main focus of our disc ussion, but 
nevcrtheless must ~ handled by thc hardware designor. To accomplish the simpli. 
ficalion, if tkrc arc 2' bytc, per w'ord. we will ignor~ t~c I"Sl I> bilS of the address. 
Since these bits are not needed 10 address a word . we show their value, as O·s. For 
the exa mples we will present-b is always equal to 2, so two 0', are shown. 

In Section 12-3. the pipeljncd CPU had a memory address with 32 bits and 
waS ~ble to access an inmuction and data. if necessary. in each of the l _ns dock 
cycles. A lso. we ass um~d lhat lbe inmuclion and the data were. in effect. fClched 
from two different memorie .. To suppon Ihis a""umption in this chapter, w'e will 
suppose initially thut the memory is divided in half----<)ne ·half for instruct ions and 
one-h.lf for dala. Each half of the memory must ha"e an acce,s time of I ns. In 
addition. if We ut ilize all lhe bi ll; in Ihe 32-bit address. Ih ~n the memo!)' ~an comain 
up 10 232 bylcs. or 4 gigabylcs (GB). of informal ion. So the goal i, 10 have two 2-GB 
memories. ca~h with an a= time of I ns. 

I. suc~ a mcmory reali'lie in lerms of current (200J) ~ompU1er lechnology? 
The typical memory is cons\rUClcd of DRAM module, ranging in size from 16 to 
64 Mbytes. The typical access li me i, abo ut 10 n .. Th~ our [WO 2·GB memories 
would ha,'e an acress lime of somewhat more Ihan 10 n, per word. This kind of 
mcmory both i, 100 cOlllly and operate, al only one-tenth the desired speed . So our 
goal muM be a~hieved anoth~r way. leadjng US 10 explore a memory hierarchy. 

We begin b}' assuming a hierarchy wi1h 1"'0 cachc" one for inslructions and 
one for dala, "' . hown in Figure 14-2, The use of these two cache, permils one 
inmucI;on and one operand to be fetched. or one inslruclion 10 be felched and one 
result to Ix; s1t>red. in a 'ingle clock cycle if Ihe cache, are fast enough. In term, of 
the generic comp ute r. we assume that tnt ~a~hc, arc inlemal. so thaI they ~an 
operate .t 'peeds comp.rable 10 that of the CPU, Thus. felches from the instruc· 
tion cache a nd fctches from and ,tore. to the data cache can be accomplished in 

1' ''",,1100 
c><~. M,., Jb,d e," 

"~ ""'m",y 
I)". , .. 

o FlG Uk£ 14·2 
Exam pl e 01 Memory Hierarchy 



620 0 C HAPTER U I MEMORY SYSTEMS 

2 ns. Hence, most of the fetches and stores for 'he CPU are from or to these cache. 
and will lake 2 CPU clock cycles. Suppose. then. thaI we are satisfied with most_ 
say. 95%-of Ihe memol)' (IoOCC~ laking 2 ns. Suppose funller that most of tile 
remaining 5% of the memory accesses lake \0 ns. Then Ihe average access lime is 

0.'15 X 2 + 0.05 X \0 - 2.4 ns 

This means that, on 19 o ul of every 20 memory a<XCss.::s. Ihe CPU Op,,"leI; al full 
speed. while Ihc CPU will ha,'e to v,ait for 10 clock cycles for l out of e"cry 20 
memory a<xc .. ,.,>. This wail can Ix ".;complished by stalling the CPU pipeline. 
11ms. we ha,', a<xompli,ned our goal of "mosl" memory acce=. taking 2 ns. /:luI 
Incre i. ,lin the problem of the cosl of the large memory. 

Now suppose thai. in add ilion to infr"'lucnUy acc<:pling a wail foo- a word 
from main Tn<mory that will take more Ihan \0 ns. we are also willing to accept a 
,'cry infrequent wail for a hard di,k a<xcsS taking )3 ms K \.3" 10' ns. Suppose 
Ihal we have data indicating that about 95% of Ihe fetches wmlx from a cache a nd 
about 4_999W5% of the fetChes " ill he from main mcmo')'. Wilh Ihis information. 
we can eslimale the average access time a, 

0,95 "2 +OJ)';999995 X 10 + 5 X 10 • X 1.3 X 10' _ 3_05 n$ 

ThuS-lhc ""cragc a<xcss time is about 3 limes the 1 n, CPU dock period. bUI i. about 
one·third of Ihe 10 n. ac<;css lime fm main mem0l)'. again wilh 19 o ut of 20 of the 
accesses taki ng place in 2 n~ So wc have achic,'cd an average access time of about 
3.05 ns for " memory slructure wilh a capacily of2)' byles. nOi far from the origina l 
goaL Funher, the cost of this memory hierarchy is tens of times ,mailer Ihan Ihe 
large. f""t memory appro.,ch_ 

It Iherefore appears that Ihc orig,nal goal of the appearance of a fasl. large 
memory has hecn approa<;hcd by lhe memory hierarchy at a reasonable cost. But 
along Ihe way. we made some a<sunlption<- namcl)'. Ihal 95% of the lime the word 
desired would romc from what we arc now calling Ihe cache aad that 99.999995% 
of Ihe lime the word, would come from eilhcr ca<'he or mai n memory. wilh Ihe 
remainder from hard disk . In the rest of thi' chapte r. we will explore why as,ump­
lions similar 10 lhe"" usually hold. and we will examine the h.rdware and associ· 
aled "",ftwarc components neede<! 10 achieve the goal. of 'he memory hierarchy. 

14_2 LoCALITY OF REFERENCE 

In the prevK>l>S ",-'Clion. we indicrolcd thaI the ,,,<xc'" of Ihc memory hicra",h)' is 
based on assumptions Ihal are critical to achieving the appearance of a la rge, fast 
mcmo')', We now deal with the foundalion for making these .ssum p1 ions. whiel1 i, 
ca lled locality u/ ",/eTMu_ Here "rderence" means reference to memory for acre<S-­

ing instfUC1ions and for reading or wriling operands. The term ~locality" refers to the 
relalive limes at which inSlmc1ions and operand. arc ~d (r"tnp<Jmlloc{Jlily) 
and the relati,'e locations at which they reside in lIIain memory (sp",j;,lloca!ity) , 

l..el uS "onsider firslthe nalure of Illc typical pn>gram. A program frequently 
cOlllai n, many loop<. In a loop. a seq uence of in'tmetion. i, executed many times 
before Ihe program ex its the loop and move, on to another loop Or , traigl1\ · lin c 



code not in a loop. In addit ion. loops arc often nested in a hi crarch~ in which loops 
are contained in loops. and so on. Suppose we ha,'e a loop of eig.hl instruction. that 
is to be executed 100 times. Then for 800 exccutions. all instruction felche. will 
occur from just eig.h t addresses in memory, 1110<' each of the eight addresses is vis· 
ited 100 limes during the lime Ihe loop is executed. This is an example of lCmpoml 
locality in the sense thm an address which is a"""ssed is likely to be accessed m"n~' 
lime. in the no", fulure. Also. it is likely that the addresses of the inSlructions will 
be in sequent ial order. Th Us. if an address is accessed for an instruction. ncarby 
addresses are goi ng to be addressed dur ing the execution of the loop. This is an 
example of spatial locality. 

In terms of accessing operands. sim ilar temporal and spatial loca lit ie. also 
occur. R>r example. in a comput,tion on an array of number .. there are multiple 
visits to the location, of many of Ihe oper;>nds. giving temporal locali ty. Also. as the 
comp ut ation proceed .. when a particular address is accessed for a nu mber. "'quen­
ti"1 addresses near to it are likely 10 be a""",sed for other nUlTI beri in the arra)'. 
giving spatiaIIOC.,li ty. 

From the prior disc ussion, we c~n conjecture that there is significant locality 
of reference in computer program .. To .. crify th is decisi,'cly. il is necess",)' to 

study the patte rn s of execut ion of real program .. Such studies ha"e dc"",,,strated 
the presence of sig nificant temporal an J spatial locality of reference and play an 
importa nt role in the design of caches ,nd .. irtu,1 memory <~stems. 

The nul 'Iue.tion to an,wer;s: What is the relation of locali ty of reference 10 
the memory hierarch)"? To c~n1l1ine this iS$uc. we consider again the instruction 
fetch within a loop an d look at the relationship I.>etwccn the cache a nd mni" mem­
ory. Initiall y. we assume that instructions arc present only in mai n memory and 
that tl,e e.che is empty. When the CPU fetches the fim instruction in a loop. it 
obtains the instruction from main mcmory. Hul Ihe inStruction and a portion of its 
address called the od,iress lag are also placed in the cache. What thcn h"ppen, for 
Ihe nul '19 e xecution, of this instruction? The answer i, that the instructiOl' can I.>e 
fe tched from the cache. which provides a much faster aC(;ess. This is temrorallocal­
ity at work:The instruction that was fetched once willtcnd to be uscJ .gain and i, 
now present in the cache for fasl ,,= .. 

Add itionally. when the CPU fetche. the instruction from main mcmor),. the 
cache fetches nearby instructions into its SRAM Now suppose that Ihe nearby 
in 'tructions include th e entire loop of eight instructions presented in our exam· 
pIc. Then all of the instructions arc in Ihe cache, By bringing in such a block of 
in structions, the cache is able to exploit ,patial locality: Jt t'Kes .d".ntage of the 
fact that the execution of the first instruction implies the execut ion of instruc· 
tions with ncarby addTl),"" by m"king the latter insnuctions available for fast 
acees .. 

In our example. each of the instructions is fetched from main memory 
exactly <lnce f<lr the 100 e,eeutions of the loop. All othor instruction fetches come 
from the cache. Thu .. in this particul ar e.ample. at least 99% of the instructions 
being e , ecuted arC fetched from the cache. so that the rate of execution of ;nstruc· 
tions is governed alIllnst completely b}' the cache acc""s t;01 e and CPU speed. and 



622 0 CHAF'THt 141 MEMOII.Y SYSTEMS 

very hule by the main memory acees, lime. Wilhoullcmpo' allocalily. many mOre 
acressel to main mcmQry would O<>OU" slowing down Ihe system. 

A rdation,hip similar to thai between cache and the main memory can 
niSI between main memory and the hard disk. Again. both temporal and spatial 
loc81ity of rderence are of interest. nceptthis time on " much larger scale. Pr<>­
grams and dala arc felched from the hard disk. and data is written to Ihe hard 
di,k in block, Ihal range from kilowords to mega words Ideally, Once the code 
and initi~1 data for a program reside in main memory. Ihe hard disk need nol be 
acressed e~""pl for storing final results or Ihe program,Out thi. ca n bappen only 
if all of Ihe code and data. induding inlermediate data used by the program. 
reside fully in main memory. If nOI. then il will be necessary 10 bring in code 
from the hard disk and 10 read and wrile dala (rom and to the hard disk during 
program execution. Word, are read ffOm and wriucn to the disk in blocks 
referred to as poge" If the movement of page. between main memory and hard 
disk is transparent to the programmer. then it will appear as if main memory is 
large enough to bold the entire program and all of the dat •. Hence. Ihi. auto­
mated arrangement is referred 10 a, ' -;11",,1 "''''''''y. D~ring Ihe eucution of the 
pr<.>gram, if an instruction to be cxeculed is nol in main memory. the CPU pro­
gram now i$ diverted [(> bring Ihe page ront.ining the instruction into m.in 
memory. Then Ihe instruction can be read from main memory and executed. The 
detai ls of tbis operation and Ihe hardware and software actions required for it 
will be co~ercd in Section 14_4_ 

In summary. locality of referen"" i, absolutely key to the ,u= of Ihe con_ 
cepti of cache memory and "ir1ual memory. In the case of mOSt programs. locality 
of referen"" is prescnt 10 a fairly high dcgree. But oceasionally. onc doe. encounler 
a prugr.>m tha1- for uampie. requir .. frequent acre .. 10 a large body of data Ihat 
cannot be accommodaled in main memory_ In . uch a case. the computer spends 
almost an of il' lime mO" ing information bet""cen main memory and the hard disk 
and doe, little Olher computation_ Continuous sounds emanating from the hard 
disk as the head, moye from Irack to Irack is a lelltale ,ig" of Ihi. phenomenon. 
whioh i. referred \0 as Ihr~,h;"g. 

14-3 CACHE MEMORY 

To illustrale Ihe concepl of cache memory . .,·e a .. ame a very ,mall cache of dght 
n ·bil word. and a small main memory wilh I KB (256 words). a, .hown in 
Figure 14-3_ (loth of these are 100 small to be realistic, but their site makes illuS_ 
tration of the concepls ea.ier. The cache addre .. contains 3 bits. the memory 
address 10_ Out o( the 256 words in main memory. only Ii at • time may lie in the 
cache. In order for the CPU to address a word in the cache. Ihere mu,1 be infor_ 
mation in Ihe cache to identify the addr~ .. of Ihe word in main memory. If ""e 
consider the example of the loop in the la'l section. dearly. we find it desirable 
IQ contain Ihe entire loop within the cache. so thaI all of the instructions can be 
felched from the cache while Ihe program is executing most of the passes 
Ihrough the loop_ The instructions in the IOQP li e in e<>nsecutive word addresses. 



9~76j4J210 

,. 
'" "" 
'" 

TlIg I lod<, By'" I 

o FIGURE 14·3 

1<-3 f Cad,. M<mory 

Acklre .. 

OOOOOOOOOO 

~,. 

OOOOOO,~ 

OOXXJl1I00 

~'OOOO 

oo:oJlO1 OO 

OOX(lIIOOO 

OOWl l lOO 

1111100100 

111 11001 00 

111 110100) 

111 111 0000 

1111 11 0100 

1111ll100J 

1111111100 

Dot, 

• • • 

Moo. m<1IlOf)' 

(b) C""he m'pp;ng 

Direct Mapped Cocho 

0 '" 

Thus. il is desirable for the cache 10 ha"e words fn)m consecutive addresses in 
main memory pre<enl sim ullaneously. A simple way to facili!a!e this feature is!o 
make bits 2 through 4 of the main memory address be t h~ cache address' We 
refer w these bits as the index. as shown in Figure 14·3. No!e that the dala from 
address 000(0)1100 in m.in memory must be slored in cache address OIl. Th~ 
upper 5 bits of the main memory addrcs"" called the lag. are swrcd in the cache 
along with [he data. Con(i nuin g (he u.mple. we fmd Ihat for main memory 
address OOOOOC! 1100.1 he lag is 00000. The tag combined with [he index (or cache 
address) and 00 byle field identify an addr~ss in main memory. 

Suppo>e that the CPU i. (0 fotch a n instruction from location 000001100 in 
main memory. This in muction may actually come from either the cache or m.i~ 
memory. The cache "'paratcs the tag «()IJO (rom the cache addre," 011. internally 
fetches the (ag and the .wred word from location 011 in the cache memory. a nd 
compare, tho tag fetched with the tag porti<>n of Ihc addr"", from the CPU If the 
tag {etched is 00000. then the wgs match. and the stored word fetched from cache 



624 a CHAI-'TEJ\. 1~ ! MEMORY SYSTEMS 

memory i. the de.ired instruclion, ThUs. the cache comrol places Ihi. word on Ihe 
b us In Illc CPU. romplcling Ihe klch opera lion. Thi. case in ""hicll tile memory 
word i, felclled from cache i, called a cuche hil. If Ihe lag felched from cache mem_ 
"I)' i< nOl 00000. Ihen tllere i. a tag mi,malch. and Ihe cache control nOlifies main 
memory Ihal il muM providc Ihe memory word. which is nOI available in Ihe each'"­
Thi, Siluation is caTied a roch~ mw. For a cache 10 be effective. Ihe slower relches 
from main memory must IIC avoided"" much a'S possihle. making considerably 
more c,"ohe hilS than cache mis.scs nccessarJ. 

When a cache miss occurs on a felch . Ihe word from main memory is nol 
pl.CC<.1 just On Ih. bus for Ihe CPu. The cach~ also caplme. Ihe word and illl tag 
and slores Ihcm for fUlure access. In our e.ample.lhc I.g 00000 and Ihe word from 
memory will be writlen in cache localion OIl in anticipalion of fUlure accesses 10 
the <ame memory addrcM. The hondli ng of wriles 10 memory will be dcal! wilh 
laler in the chapler, 

Cache Mappings 

The exaluple we ju" comidered uscs a particular ""social ion or mapping belween 
lhe main memory addreSll and Ihe cac"" addreSll; namely. the last three bils of the 
main memory ",-ord address arc Ihe cache add,~M. Additionally. Iher~ is only one 
localion in the cache for lhe 2' local ion. in main memory Ihat have their last Ihree 
hi" in common.Thi. mapping in Figure 14-3 in which only One specifi c location in 
lhe cache can contain Ihe word from a parlicular main memory localion is called 
airIT' moppinG. 

Direct mapping for a cache. ho""ewr. does not al""a)'S produce Ihe IllO'lI 
desir.hle <llu'lion. In our I"op inSlruClion felCh c.ample .• uppose lhal instrUClions 
and dala ar~ in Ihe same cache and that data from location 1111101100 i. fre­
qucnl ly <lS<'d. Then when Ihe instruction in l»XUJ 11 OU is felched. local ion 011 in 
Ihe cache i, li~ely 10 contain the dala from 1111101100 and tag 11111.A cache miSll 
<.><Xu ... and Cause, lag III11 I" be replaced in the cache wilh tagOOOOO and lhc dala 
10 be replaced ",ilh the inslruction. BUI Ihe nexl lime Ihe data is needed. another 
cache mi., occu"," . ince the location in Ihe cache is nOw occupied by the instr""­
tion. Throughout lhe execulion of the loop. bolh instruction fetch and data felch 
cause manJ cache misses. . ignificanlly slowing CI'U processing. To sol"e Ihi' prot.. 
lem. we e xplore altern.live "ache mappings. 

In direct mapping.2l addre...,. in main memory map to Ihe single address in 
Ihe cache Ihal matche, Ihcir lasl Ihrce bils. These localions are highlighled in gray 
in Figure 14-3 for index 001. As is ill ustrated. only one of the 2l address.cs can 
h.,·" ils word in cache address (t)] .t any lime. In oonlra<1. suppose thai we let 
location. in main memory map inlo an arbitrary location in lhe cache. Then any 
localion in n,emory can be mapped 10 anyone of lhe eighl addresses in Ihe cache. 
This means thai Ihe lag will now be the full main memory "'ord addreM. We 
examine Ihc operation "r such 0 cac he havins a 1"lIy 1I,<>'ocillli"e mapping in 
Figure 14-4, NOle Ihat in this case tllere arc two main memory addres.scs. 
lO)(lUlOOOO and 111111lOJO. wilh hils 2 through 4 equal to 100 among Ihe cache 



, " , 

M 

'". 
000 

011 I 1 

.'" 
m 

"" ." 

. " Byt.1 

a n GURE 14-4 

1 .. _3 I Cache MenlO£y 

,~-

~ 

OOOOM.," _.-
00:«:(11100 _ .0000 
OODIl0100 

00)))11(00 

000l1l100 

1I11l0C0Xl 

1111 100100 

1ll1lOI())) 

1I11110c00 

1111110100 

1111111000 

1111111)00 

~" 

• • • 

M,;o m,",,,"l' 

(b) C.d .. m.ppin, 

Futly Associative Coche 

0 62S 

tags. These (wo addresses ca nn ot be pre""n{ sim ultaneously in the direct-m,pp"d 
cache. as they would both occupy the cache address 100. Thus, a suoxes:sion of 
cache m;=s due to ahernate fetching 01 an instruction a~d dal. with the ,arne 
index is a"oided here. since both can be in the cache. 

Now suppo«: {hat the CPU is to fetch an instruction from location (((o)lcox) 
in main memory. This instruction may aetuall y be returned from either the cache OT 
main memory. Sin"" (he inSITuclion mis./11 lie in the cache, {he cache must compare 
OOO:XllOO to ~ach of its eigh t tag~ One way to do (his is 10 successj"ely read each tag 
and lhc associated word from the cache memory and compare the tag to ()))))IOO. 
If a match occurs. as il will for the &i,·en address and cache location OCO in 
Figure 14-4. a cache hit occur .. The cache control then pIa""" the word on the bus to 
the CPu. completing the fetch ope ration. If the tag fetched from the cache i, not 
()))))IOO. then there is a tag mismatch. and the cache control fetches the next suc­
cessive tag and word. In the worst case. a match on the lag in cache address I ll. 
eight fetches from the cache are required before the cache hit occu ..... At 2 tIS a 



6 26 0 CHAPTER I' I MEMOli. 't' SYSTEMS 

fetch. this require. at loa't 16 " " about half the time it would take to obtain the" 
instruction f,om "'ain memol)'. So sI"",c,.;i,-" rcad. of tags and word. from the 
cache memol)' to find a match i. nOl 8 vel)' de.irable approach. Instead. a slruclure 
called iJl:wcial;'-': mm,,,,y implement. the tag ponion of the """he memol)'. 

Figure 14·5 shows an associative memory fN a cache with 4-bit tags. '[loe 
mo.ochani.m for writing tags into the mcmol)' u ..... a conventional "'rite. Like",ise. 
the tags can be read from the memory using the oom'ent,u nal mtmot)' rcad. ·[lous. 
l h~ ;tssociat ivc memol)' can use the bit .Iice model for RAM presented on 

w~ 

,~, , 

, 
• 

" ", " ", " ", " ~ 

~ Q ~ ~" 
" " " " 

""'.\I«n """tool! MAM cell RAM ",II 

I M>ld1 tOl'" ., 
RAM",t ItAM«lI RA~t ""lI RAM ",U 

r =,op: =.l -L!= =!.L 

, , , , 
RAM "U 1<".'-1 «II RAM ",II RAM «II 

, 
MoL<!> l<>si< ~ ~ ='l 

I 
Itc_,i •• Me.d,w';1< R<_,;Ie ",..u..,it< 

"" .... .~ "" D ... i. -' [)". in - ' 
[):O,. in 

r ' I) ... in 
D.,., .. , Du. ",n D . .. "'" D,,, uut r R.odI IIi, K<odI II" Iteodl II" R<WI Rn 

w,,'e ,de" w,,'e .~ ""t. "'" ~nl. .~ 

I 
o nGURE 1.1-5 

Associ.llve Memory lor 4-bil -nos:> 



14-31 C.d", Men.o.-y 0 627 

Chapler 9. In addi lion. each tag storage row has match logic. The implement ation 
of this logic and ils conn~clion 10 Ihe RAM cell s are , hown in the figure. The match 
logic does an equality CQmpari&on or malch between the tag T and the applied 
addre"A from the CPU, The match logic for each lag is coml"""'d of an exclusive­
OR gale for each bit and a NOR gate that combines the outputs of the exclusive­
ORs. If a ll of the bits of the tag and Ihe address match. then the outp uts of all the 
exc!u,i"c-ORs are 0 and the NOR output is a I, indicaling a match. If there i, a mi,­
malch belween any of the bits in the tag and the address. then a\ leasl one exclu ­
sive·OR has a I outpUI. which cau",. the output of the NOR gate to be O. indicating 
a mismatch, 

Since all lags arc unique. only two situalions can ari", in the associmive mem­
"ry, lhere will be a malch, wilh a I on Ihe output of the match logic for one match · 
ing lag and a 0 o n the remaini ng match logic outp uts; or there will be no match. 
and all of the match logic outputs wil l be O. Wit h an associative memory holdi ng 
the cache tags. the OUlpUIS of the match logic drive the word lines for the dala 
memory words 10 be read. A signal must indicate whelher a hil or a miss has 
occurred. If this signal is 1 for a hit and 0 for a mils, lhen it can ~nerated by 
uSIng the O R of the match OUlputS. In Ihe case of a hil. a I o n Hit/m~ace, the 
,,"ord on lhe memory bus 10 lhe CPU; in the case of a miss, a 0 on Hi1/miss tdls the 
main memory that it i, to provide Ihe "",,rd addressed. 

As in Ihe caw of the direct-mapped cache discussed earlier. the full)' as\(\Cia­
li"e cache must capt ure the dat a word and ;ts address tag ~nd slOre them for fut ure 
accesses. BUl now a new problem arise,; Wh ere in the cache are the tag and data to 
be placed? In addit ion to sel~'Cting a cache mapping. the cache dcsigner musl select 
a replacement approach that detcrmines the location in Ihe cache to be used for 
the incoming lag and data. One possibility is to select a ,,,»do,,, repltKe",eIU loca­
tion , The 3-bit address can he read from a simple hardware struclure thai generales 
a number which salislies certain properties of random numbers. A some,,-hal mOrC 
lhoughtful approach is 10 use a lirst in. fiTS! OUI ("1"0) locati"n , In this caw. the 
location sctcctcd fM replacemenl i. the one thm has occupied the cache for the 
longe,t time. based on Ihe notion that lhe use of this oldest ent ry is li kel y to he ~ n· 
ished. An approach that appears to attack Ihe rcrlac~mcnt problem even more 
direclly i. Ihe lean ,"emily "sell (LRU) location approach . The goal of this 
approach is 10 replace 1he entry that has been unu<ed for the longest 1imc-------hence 
the le"'t recently u"",,d tnlr),- The rca&on is thm a cache entry Ihat has not been 
used for the longest time is least likely to be used in the fut ure , Th Us. it can be 
replaced by a ncw cache entr),- Although the LRU "pproach yields betler results 
lor cache" the difference betwoen it and the other approaches is not large. and full 
implementation i, eoslly, A, a con""lucnce. if u",d at a ll , the LRU approach is 
ohcn onl y approximated. 

There arc also performance and cO'<t issues surro un ding the fully a$\(\Ciali.-e 
cache. Although l uch a cache provides maxim um fl exibili1y and good perfor­
ma nce. it is not cl ear that the COllt is jusl ified. In fact. an alternalh'c mapping thai 
has bener performance and cHminates the COllt of mO'<t of Ihe matching logic is" 
compromise between a direct .mapped cache a nd a fully "ssociative cacnc. For 
such a mapping. lower order address bilS act much as Ihey do in direct mappi ng, 



618 C CHM'nR 14 I MIiMOJtV SVSTf.MS 

however. for each comblnalion of 100" .. e. order address bits, instead of havin, one 
10<31;011. itl(rc is a _ of s Ioclolions. As wilh direct mapping. Ihe lap and word. 
are rcad from lhe cache me mory localions odd.eMed by lhe lowcr order add.,,", 
bi .... For example. if Ihe J~r siu s equal. IWo, lhen Iwo lag> and the IWO aa:om",,· 
nying dala words are read simult aneously. The lags are then simu haneously oom· 
pared In Ihe CPU-supplied address using just Iwn mal~hing logic SlrUCl ure$. If nne 
nf the lags malehes Ihe address. Ihcn lhe associated word i, returned In Ihe CPU 
on the memory bu .. If neilhe. lag malche. Ihe address. Ihen Ihe IWO 0 malchi ng 
value. a re used 10 send a miss lignal 10 Ihe CPU and main m~mory. Since the. e 
are 5<'IS of local ion, oDd aSSOCialivity is used 00 5<'ts. Ih is iu hn ique i. called UI· 
=ocwlive mapping. Such a mapping with a 5<'1 size J is an ,·way set.8StoCial ive 
mapping. 

Figure 14-6 sIlows a I"''O-''''y 5<'I·usociative cacbe. There are ei&hl cache 
l0<3tiorul arrao&w in four rows of lWO locations eoch. 1be rows are add.essed by a 
2·bil inde~ and contain lags made up of the remaining six biuof lhe main memOf}' 
addre .... 1lIe cache enlry for. main m~mory address mUM ~e in a !ipecitlc row of 
lhe cache. hut can be in eitber of lhe two column .. In the figure. Ihe addresses are 
lhe &ame as they are in the fully IS$Ociativc cache in Filllre 14-4. Note tha.I no 

, • , • , • ,1 1: I 0 . ~- ", . 
I '" Iln,l .. 1 8)10 I -(.) 1ot0"""1 odd", .. ~'oo 

-,~ 
,~. oo:m:>l 'oo 

00 

"' 0000010100 

'" mnlHOOO 

" 
• • • 

1I1IllnlOO 

11l11ooloo 

'"HOlOOO 
1IlllOiloo 

11111 10100 

IlllillOOO 

11111111 00 

Moo .... ....,. 

(10)~ ... ~ 

[] H(;UKE 141 
1\00-.... 1 So:t·->O,,,.., Cach< 



, '_M 

" 
,_. 

" '" 0,. 0,. 
m<"""1 1 mcm"'lO -~, -~" 

1.",1 .'1>1<h 
" 

r 
;r -, 

o FIGURE 14·' 
Partial Hardware Block Diagnm for Set_ •• sociative C.che 

M. dI _MOo)' 
1M .. ; .. 

mapping i. shown for mai n memory address 1111100000. ,ince Ihe {U'O cache cell' 
in ... 1 00 arc al":ady occupied by addre,,,,, 0000010000 and 1111110000. In order 
to accommooate 111 1100000. lhe set size would need to \>e at leas! l hT~~_ Thi, 
exam ple illu strates a case in which the ,educed lIexibility of a sel-associative 
cache. compared 10 a fully associative cache, ha, an impact. The impact declines as 
{he sel size increases 

Figure 14-7 is a ""'tion of a hardware bloc~ diagram for (he ",{-associat;ve 
cache of Figure 14-6. The index i. used 10 address each row of lhe cache memory. 
The two (ags read from (he tag memories are compared to the tag pari of the 
address on the addtes< bus from the CPU If a match occ urs. then the thcee·stale 
buffer on the corresponding dala memory OUlpU1 is aClivated. placing the dat a 
onlO lhe dala bus to lhe CPU In addi tion. the match signal causes the OUlput of 
the Hit/miss O R gale to l>eeome 1. indicating a hil. If a match does not occur. then 
Hit/m iss;' 0, informing the main memory lhat it mus{ supply the word to the CPU 
and informing the CPU that the won! witt be deta)'ed. 

Line Size 

To this point. we have assumed that each cache entry con$ists of a tag and a sinsJe 
memory word. In real caches, spatial locaiity is to be exploited , so additional words 
clnse to the one add,es<ed are included in the cache enlry. Then. rather th an a sin· 
gle word being fctched from main memory when a cache mi" occurs. a block of I 
word. call ed a line is fe tched. The number of words in a line is a power of two, a nd 
the words are aligned on address boundaries. For e xa mple. if fout words a re 
inCluded in a line. then the addresses of the words in the lioe differ only in bit. 2 
and 3. The use of a block of words change. the makeup of the fields into which the 



630 0 CHAfYITR U I MI;MOI<.Y SYSTEMS 

cache di>-Kle. the address. 'I'be new ficld ~ruclurt is sh",' .. n in Figure 14-Sf.). lIu. 2 
and 3. the Wortllkld. are used to a<.k/r<'$S th~ , ... om .. ;thin the line. In ttus case. I"" 
boIS ar~ used, so there .re four words pcr line. "The next roeid. Indu. iUcnllfics 11lc 
.. I. Here there arc IWo h,ti used. so thcre are four ..,ts of tap "nd lines. 1l>c 
remainder of t h~ addrciI/i word is the Tag field, .. hieh conlains Ihe remaining four 
hil.5 of the IO-bit memory address. 

The ,", ulting cache ~t n,ct ur~ is i hown in Figure 14-S(b). The tag mClnory has 
eight cmric", two in each of !he four ..,1 .. Corre'pvnding to eac h of Ihe I"g ctlt rie. 
is a line of fou r dala ,,'ortis. To enSure r"SI operation. Index is appl i~d 10 the lag 
memory to rc ad Iwo tags. one for each of Inc ..,1 enlries. Slmullaneously. Al Ihe 
. ame lime. Inde~ and lhe Word addrciI/i .rc applied to read oullwo wordl from Ihe 
cache data ~",ory Ihat corr"'iJ'O"d to Ihe I"" lags. Malehin, logic provided for 
each or the two sel ek~nlS rompllrcs each lag 10 II\<: CPU.,;uppticd a<ldl'CSl. If a 
malch occurs. .hen lhe asso<:i~led cache dala word already relMl is ploced 00 Ihc 
memory bus 10 II\<: C PU Othe.",isoo. 8 cache miss is SIgnaled. ano.l Ihc: word 
addr""""d is relUmcd from nulin memory 10 lhe C PU "The line COIII.inln, lhe: "",Ii 

• • , • , • , , , , I '. [tool<.[_[ 8)'1< 1 

10) M<"""Y >IloJr<>o --lU.OJIl OIOO ,-, ~. ' ()" . I -, 'lOll' D",n ~o.'''') I OI.)j 
00 00 ,.. 

~ 00000o "" " K; 
1 lOl.Ol OOlJ 

" 
(<lOOIOI(ll.) 

" w.nll 101.10 .. - 00 !lDlI1 I L(lI 

" " " " • • 
" " • 

" L 111 00 

'"110 OC(IU 

1I111~ 01(_1 

111110 1(),oJ 

" 00 111111111<0) .. .. 111I1 11XUJ 

<0 <0 11111 1 01<>:1 

" " 11I1I 1 1(\XJ 

\ 11111 1100 

c.. M ... """"~~ 
I~I t ..... "'"1'1"-' 

o ncUWF. loW! 
5<,-..",,, Cadle wilh 4·"""''''nes 



14_3 I Cache M<mmy 0 6 3 1 

and its tag arc al:lO loaded into the cache. To fadlitate loading the entire line of 
word" the width of the memory bw; between main memory and the cache, as well 
as the cache load path. is made more than One word wide, Ideally,lor our example 
the path is 4 x 32 ~ 1211 bits wide, This allows the entire line to be placed in the 
cache in a single main memory read cycle, If the path is narrower. then a sequence 
of severa l reads from main memory is required, 

A n additional decision that the cache designer has to make is to detennine 
the line size, A wide path 10 memory can aflect both cost and performance. and a 
naHOI"er path can slo",' tran,fer of the line to the cache, These features encourage 
a smaller cache line size. while spatial locality of reference enoourages a larger line. 
In currem 'ystems. howe"er. use of synchronous DRAM hcilitate. reading or writ, 
ing large cache lines ""ithout the cost and performance issues associated with wide 
path. The rapid writing to and reading from memor)' of consecuti"e words 
achieved by using s}'nchronous DRAM motches well the needs for transferring 
cache lines. 

Cache Loading 

Before any word. and tag>; have been loaded into the cache, all l(JC3tions contain 
invalid information, If a hit occurs on the cache at this time, then the word fetched 
and sen t to the CPU cannot ha,'e Wme from main memory and is inva lid . As lines 
are fetc hed from m"i" memory into the cache. cache ~ntrie. '""'Orne valid, but 
Ihcre is no way to distinguish vali d front in ,'alid e" tries. To deal with thi' problem. 
in addition to the tag. a hil i, "dded to each cache entry, This \'aIM bil indicates lhat 
the a,,,,,,,iated cache line i, valid (I) or im'alid to}. It is read out of the cache along 
wit h the tag, If the valid bit is (), Ihen a c"che miss occurs e,'en if the tag malches 
the .ddress frum the CPU, req uiring the addressed ",'ord to be taken from main 
memof)'. 

Write Methods 

We have focused", far on reading instructions and operands from the cache. What 
happens when a write occurs"! Recall that, up to no"" the w()rd, in " cache hu,'c 
been viewed simply as copie, of ",'or<ls from main memory that are read from the 
cache 10 provide faster access. Now that we are considering writing results. thi. 
"iewpoint changes somewhat. Fo ll owing .re three I"-""ible wrile actio"" from 
which we can select : 

I, Write the resull into ma in memory. 
2. Write the result into the cache. 

3. Write the resu lt into both main m"mof)' and the cache. 

Various reali Slie cache write methods employ one or more of these action<- Such 
mel hods fall into two main categori"., write-through and wrile_back 

In wrife-rl".,mgh. the result is alwa}'. writlen to main memory. Th is ~",s the 
main memory wrioe time and c"n slow do"'n processing. The slowdown Can be 



632 D CHAJ"TER U I MU-t QR Y SY~S 

partially a ,oided by using ",.ile bujjuing, a t..:hnique in .... hich the address and 
word to be wrinen are .tored in special registers caUed write buffers by the CPU 
so that it can wnlinue processing during the ,,·,ite to main memory. In m",,;t caehe 
designs. the resuit is also ",rinen into the cache il the word is pr.,.,m therc----that 
is. if th.re i5 a each. hit. 

In the w'il~·b~ck m.lhod. also calle<.! copy·b~ck. Ihe CPU pe. fonn5 a 
write only 10 the each. in Ihe case o f a eache hi!. If lhere i, ami,s, Ih. CPU 
performs a write to main memory. There are two po<.S ible design choices for 
when a cache miss occurs. One i~ to read the line containing Ihe word 10 be 
wrinen from main memory inlO Ihe eache ..... ilh Ihe n.w w(ltd .... rin.n inlO bolh 
Ihe cache and main memQry. Thi. is referred IQ as "',iu·(Jllo€(Ju. It is d""e wilh 
the hope lhal lhere will be addilional "·rile. 10 lh • .arne block which will resuh 
in .... rite hilS and Ih us a,'oid wriles to main mcrnQry. The other choice on a "'Tile 
miss is simply to writ e tQ main memory, In what fQIIQ_ we will assume Ihat 
wrile· allocal e i~ used, 

The go.1 of a write· back cache is to be able to write at the writing speed of 
Ihe cache whtne~.T theTe is a cache bit. This a,'oids Ita,ing all wri les pe rfonned at 
lhe slo .... er wriling speed of main menIQry. In addition, il red,"",o the number of 
accesses to main mem<W)'. making it more acce"ible to DMA. an UO process.or. (It 
another CPU in lhe sYSlem. /\ di .. dvant"ge of ",Tite-back is lhat main memory 
entrie$ co.-responding to .... ords in Ihe c;>che thai have h«n wrillen are invalid. 
lJnfortunately. thi! can cau"" a problem wilh reopect to I/O pr~ '" anolher 
CPlJ in the syste m accessing the .. me main memory. due to MslaleM dala in the 
memory. 

The implemen'.tio" of Ihe ",'r;le-oock oon~pt requires" ""rite-b;>ck opera. 
Ii"" from the cache location to be uled IQ store a new line being brought from 
main mem<W)' Qn a read mi .... If the location in Ihe cache containo a word thaI h. 
been .... riU.1I into. then Ihe enlire line from lilt cache mu .. be "Tinen back into 
main memory in order 10 release Ihe Iocalion for Ihe new line. Thi ...... ile· back 
requires additional lime whenever " read miss occurs. To a'Qid a write·back Qn 
e'ery read mi, ... n additiona l bit i. added to ".ch cache entry, This bit. called Ihe 
'/;"y b;,. is • I if Ihe line in the cache ha. been wrinen and a 0 if il has nol been 
written. Write·back must be performed Qnly if the dirty bit is a I. Wilh wri te·allo­
cate used in a write·back caclie. a write-back operation may also be required on a 
.... rite miss. 

Many olher issues affeel lhe clloie<! of cache design parameters. particularly 
in Ihe <ale of caches in a system in which the main ""'mory may be read", wrincn 
by" device other than the CPU for which the cache is pro'ided. 

Integration 01 Concepts 

We now PUI together Ihe basic w'''''pts we ha,'e examined 10 delermine the block 
diagram ,'" a 256 KB. tv.-o-way set-associati,.., cache with write-Ihrough. The memo 
ory address Show" in Figure 14.9{a) conlain5 32 bits using by\e addressing "" ilh line 
oize I - 16 byles. The index wntains 13 bit .. Since 4 bits arc uled for addressing 



l4_l I C.d,. M • ......-y 0 633 

words and bytes. and 13 bits are used for the indc~. the tag contains the remaining 
15 bits of the 32-bil address. The cache contains 16.384 emries consisting of 2'3 -
8192 sets. Each cache entry contains 16 byles of data." 15-bil tag. and a "alid bil. 
The replacement strategy is random replacement. 

Figure 14·9(b) giws the block diagram for Ihe cache. There are lwo dala 
memories and two lag memories. since the cache is two-wa)' sel associalive. Each 
of these memories contains 2'3 _ 8192 enlTies. Each enlry in the data memory con_ 
sist. 0116 bytes. Since 32·bil words are a,"umed. there are four word, in each dala 
memory cntry. Thus, each of the data memories COru;;i,l, of lour 8192 ~ 32 memO· 
ries in parallel with the index as their common address. In order 10 read a ,ingle 
word from Ihese four memories on a cache hit. a 4-to-l selector using three.,;t.te 
memory out puts selects the word , based on the Iwo bits in Ihe Word field of Ihe 
address. The two tag menlOrie, are 8192 X 15: in addition to them, a "alid bit i, 
associated wilh each cache entry. These bits are slored in an 81 92 ~ 2 memory and 
read oUl during" cache ae<:eSS with the data and tags. NOle that (he path Detween 
lhe cache and main memory is 121> bilS wide. This allows us 10 assume (hat an 
emire cache line C,In De read from main memory in" , ingle main memory cycle, an 
ass umplion that docs nol neceos,uily hold in practice. To understond (he tiement, 

". 
( . ) Memo<)'_= 

(b) c..t .. di.!tllJn 

o FIGURE 14·9 
Detailed BIoc~ Oi'gJ'01 for 2S6K Cache 



634 0 CHAPTER H I MEl'>IOIt Y SYSTEMS 

o j the cache a~d how they work together. we will loo~ m three possible case. of 
reading and writing. For each of these cases. we assume that the address from the 
CPU is 0F3F4024,., Thi. give, Tag = 00J01111001111 t l = 079F, •. Index = 
IOt0000000010, ~ 1402 j • • and Word ~ 01, 

First we assu me a read hit- a read operation in which the da ta word lie, in 
a cache entry. as in Figure 14- 10. The cache uses (he Inde .• fi eld to rcad Out (wo 
tag entries from location 1402,. in Tag memory I and Tag memory O. The match 
logic compares the (ag' "f (he entries. and in Ihi, ~aw we .'Sume that Tag 0 
matches. cau.ing Match 0 to be L Thi' doe. not neccssarily mean lhat we have a 
hit . sin ce the ca~he entry may be in va li d. ThU s. the Vali d 0 from location 1402,. 
bi t is ANDcd with Match O. Also. the data can Ix placed on the CPU data bus 
only if the operation is a read. Thus. Read is ANDed with the Match 0 bit and 
the V.lid 0 bit 10 form the control ,ign.1 for thrce·.tate buffer O. l~ (hi , ca,c. the 
cont rol signal for the buffer 0 is l. The data memories have used the Index field 
to read out eight words from location 140210 at the . ame ti me, t he tags were 
read . The Word fidd select' the two of the eight ,,'ord, wi th word ~ 01, to place 
on the data buses going into the three-'tale buffers I and 0, Finally. wilh three­
stale buffer 0 (urned on. the word addressed is placed on the CPU data bus. Also. 
Ihe Hit/miss signal .end , a 1 10 t he CPU and the main memory. notifyin g them of 
(he hit. 

In the serond case. also shown in Figure 14-10. we assume a rcad miss----a 
r"ad operation in which tho d.ta word is nol in a cache emry. As before. I~~ lndc, 
fie ld address rcads o ut the taS and valid entries. two tag comparison< arc made. 
a nd two .'alid bits are chec~ed. For both em ries. a mi ss has occ urred and is signaled 

M, i. 

o ~'IGUR£ 14·10 
Z~K C • .,h< : R •• d and Writ. Operatio"< 



14..J ((Ache Mem<><y 0 635 

by Hit/mis. al 0, This means Ihat the word muS! be fClc~ ed from main memory, 
Accordingly. Ih~ cache cont rol selects Ihc cac he e nt ry 10 be replaccd. and four 
word, read from main m~mOT)' arc "pplied . imultaneously b)' Ihe memory data 
bus to the cache inputs and are wrillen into the cache entr)" At the same time. the 
4· to-l multiplexer seiccts the word addressed by the Word field and place. it on the 
CPU data bus using the three-stat" buffer J. 

In the third case in Fig ure 14- lU. we assume a write operation . The word 
from Ihc CPU is fanned out to appear in all four of the word posit ion, of the 128-
bit mcmory data bu" The address to which the word is to be wrinen is provided by 
t~c addrcss bu. to main mcmory for lhe wrile operation into the addressed word 
on ly. If the addre" causes a hit on Ihc oac~e. Ihc word addressed i. also wrincn 
into the cache. 

InSlrtJctlon and Data Caches 

In mosl of Ihe designs in previous chaplers, we ass umed that it was possible to 
fC!c~ an in struclion find to read an operand "r wrile a re,ult in the same clocl 
cycle . To Jo l~i " however. we need a cache that can provide acce" to two distinct 
addresses in a s ingle clocl c)'de , In response to this need . we diseussed in a prior 
subsect ion an i".>tr!lcti,," cache a nd. rima mclle. In addition 10 easily providing 
multiple acce,ses per clock. the usc of Iwo cache, pt"rmits caches that have differ­
ent design paramele1"'- The design paramclc,-,; for each cache can be selec1ed to fi t 
I~~ differe nt characteristics of access for fetching inslrudions or reading and writ_ 
ing data. Because the demands on eac~ of these cache, are typically Ie," than those 
on a single caehc, a ,impler de.ign can be used. fur e~ampl e. a single cac he may 
require a four-way set-association Slrudure. ,,·hereas an instruction cache need, 
only direct mappin~ and. dala cach ~ may need only a two-way ""t -associ.ti,'e 
muclurc. 

In other in,t'nce,,- a single "ache for ooth instructio n, and data rn a)" be u ... "<I. 
Such" ""ifierl cliche is t)'picall )" as large as the instruction and data caches com· 
bined. The unified cache all ows cache entries to be shared by in'truetion, a nd dat" 
freely. Thu,- alone lime more enlries "m bc occupied by instructions. and at 
another lime more cn1ries can be occ upied by data. This ftexibility has the poten_ 
tial for incrc". ing lhe number of cache hil'- Thi, hi ghcr hil rate may be misleading. 
howev"r. ,ince the unifi ed cache su pport. onl)' one access at a lime. a nd separate 
caches supporl lwo simultaneous accesses as long as one is for in'truetion, 'lO J one 
i, for dala , 

Multiple-level Caches 

It is possible 10 extend Ihe dept h of the memory hie rarch)' b)' adding addilional 
Ie"ds of cache. Two leve" of cachc. oflcn rderred to as II and Ll. wilh II closesl 
10 Ihc CPU, arc ofte n used. I n order to satisf)" thc demand of the CP U for instrue· 
lion and operands, a very fast U c"c h ~ is nceded. To nchie,'" the necc,,"ry 'p"ed. 
the delay t ~ 'l occurs "hen crossing Ie oou ndaries is in1olerablc. ThU s, the U 
cache i, placed in Ihc processor IC together with the CPU a nd is referred to as the 



636 0 CHAI'TER U I MI~""O'" Y SYSTEMS 

L I J ~ ,. L .. J ~","'" p~' L L " .. I. L I~ l 1m 
iled, 101M U cacIM: is typically ,mall and inadequate if il is the only cache. Thus,. 
larger 1.2 cache is added outside of the PfoceOSOf Ie 

The design of B two-leve l cacIM: is more complex than Ihat of a 5ingle- le~el 

"ache. Two SCIS of parameters ale Jpeclfied. ' llIe U cache can be designed to spe­
cific CPU access needs including the possibility of separate instruction and dala 
caches. Als<>. the constraint of exte rnnl pin. between Ihe CPU and U cache i~ 

"""o.ed. In addilion 10 permitting fastcr reads.lhe palh belween Ihe CI'U and the 
LI cache can be quite wide. " lIo,,·ing. for e .. mplc. multiple in>truction. 10 be 
fetchc<.l simultaneou,ly. On Ihe Olher hand .lhe 1.2 cacl>e occupies the lypk"1 exler­
nal cache environment. It differl, hOVo·e'"r. from Ihe Iyp;c,.l Ulemsl ClChe in (hat. 
ralher (han prO>'iding inJl rllC1ions Ind OJ>('nnds to a CPU. il Pfimarily pro>'ide:s 
inSlruclions and operands 10 11M: ~1"$I .level cacIM: U . Since lhe 1.2 cache is acassed 
only on U mi ..... lhe access pa1tem is ron!io:Ienbly differenl than thaI for . cpu. 
and the dtsign parameters are ~ingly differtnl. 

14-4 V IRTIJAL MEMORY 

In our quesl for a la.ge. rail n",nlory. we have achieved the appearance of a fasl. 
medium·sized memory through Ihe use of a cache. In onler 10 have Ihe Bppeur~ncc 
of a large memory. we now explore Ihe relalion,hip belween main memory "nd 
nard disk. Be<:ause of (he complexity of managing transfers belween thele twO 
media. Ihe oontrol of sueh Iransfe" involv"~ Ihe use of data Slroclure. "nd pro­
gram .. InitiaUy. we will di$C\l$.S (he m.,.1 basic data structure used and (he neeess.ary 
hardware and software aelions. 1Mn we "'ill dul " 'ilh special hardware u!;e<i 10 
imple_nl lime-crilical hard,,-are action .. 

W'lh resp«1 10 larse memory. not only do we ... ·anl the entire virtuallKldr .... 
~pace 10 appear 10 be main memory. bUI in "","I cnes .. ·c "'"Quld al50 like this rom­
plete "pace 10 appear 10 be avaIlable to each program Ihal iI neculin&- Thu .. each 
program will""$CC~ a memory the lac of Ihe vinnal address s.pace. Equally impor· 
lant to tbe programmer i! the fact that rtal address space in main memory and real 
disk ad.tressn arc .. placed by. -"nJlc address .pace that has nO restrictions on it. 
usc. \Vitl> Ih;' arrangemenl ... irlUlI memory can be u.sed not only to prO>'ide tM 
a ppearance of large main memory. but also to free up Ihe programmer from ha.ing 
to ronsider Ihe actual location' of Ihe program and data in main ,,,emory an d on 
tne hard disk. The job of tlte soft wa re and hardware Ihat implement virtual m"m­
ory i! 10 map each l"imml addr~S$ for each program imo" phyJ;ral ",/d,ClS in (he 
main memory. In addilion. with" virtual address space for each program. it is pos. 
sible fOT a virtual address from one program and a viAnal addre" from allolher 
program to map 10 (he ",me phy!lcal add.e ... This aUo" .. code and dalu 10 be 
shar'" by multiple programs,lbcrcby reducing Ihe size of Ihe main memory splICe 
and disk space requir .... 

To permillhc ..,ft .. 'are 10 map vinUlI oddrCS!lCS to physicallKldresses..nd (0 
facililate lhe transfer of information bel"'e<!n main memory and hard di!k. the ,'ir­
tual address space i. divided into bloch of I<klrCMCI. Iypically of a flJ;ed -":teo 1lIese 



144 I V ....... 1>1..-,. 0 637 

bloch. called p<Jga. arc larger Ihan. bul analosou> 10.. lines in a cache. The physic:al 
addr~1li >pace in memory i> divided inlO blocks called JHlge fr~"'d Ihal afe Ihe 
same Silt as Ille pageL When a page is pfQCtI1 in Ihe ph)"ical address space. il 
occupies a page fmmc. For purposes of illuSlrAlion. " 'e assume Ibn! " page co" , isIS 
of 4K b)'le. ( I K word, of 32 bil$). Furlher. We assume Ih"t Ihe re arc 32 Address bils 
in t~ vinu.1 "dd,~ .pace. 'Jkre u e 2110 pagM. muimum. in the virwal addres. 
sp;oce, and usumin, B main m<:mory of 16M bytes. there arc 211 page fr.,,," in 
main memory. Figure 14-11 !bows Ihe fields of virtual and ph ysical Iddresses. The 
portion of the virtual address ~ 10 addrcss .... o.-ds or byles ... ·i lhin a page is lhe 
fNJ~ o/fm, ,,'hieh is lhe only pan of lhe address lhal the "irt ual and physical 
addresses Mare. NOIe Ibat word. arc wumed 10 be aligned in lerm, of lheir Ioca· 
tion with respect 10 their b)'te addr«scs • ...,h Ihat tach .... ord addrcss ends in 

11 11 

21 U II 

• • • • • • 
I'Fe 

11'0 

r flt 

,» 

o n GURE IHI 

.,....-

• • • 

FFrFA 

~ 

"~ 
>~ ,-
~ 

Von",,'pop 

• • • 

Vinu. 1 .nd Physical Add, ... ~leldl and Mappilli 

" 

, 



638 0 CHAI-'TER 14 I ME1>IOR Y SYSTEMS 

U nar)' U. tlLJ"" pages are ass umeJ 10 be al:gned wilh respeel 10 Ihe hyle 
"ddre"", such that the page off scI of Ihe firsl byte in Ihe page is 1)))" and Ihe 
page offsct of Ihe last h)"le in Ihe palle is FFF". The 2])·bil porI ion of Ihe virtua l 
addre .. "sed 10 sel""l pages from Ihe virtual address space is Ihe vir/""I pag~ ,,,,m­
hn The 12.l>il porlion of Ihe physical addre", u",d 10 selecl p"ge. in main memory 
is Ihe p"ge fram~ ",,,,,btr. The figure shows a hypolhelical mapping from Ihe vir­
lua l address 'pace iolo the physical addre", 'pace , The virtu"1 and ph)',ic"1 page 
num~rs arc given in hc . adecimal. A virlual page can be ma pped 10 any physic.1 
pa lle frame. Six mappings of pages from vin ua l memory 10 physical memory a rc 
shown. TI, e", page.. conSlilule a lolal of 24 K byle,. Nole Ihal Ihe re .re no virlu.1 
pages mapped 10 physical page frames FFC and FFE. Th Us. any dala present in 
Ihese page, is inval id 

Page Tubles 

In genera l, lhc," may be a "cry large number of virtual pages. cach of which must 
be mapped In eilher ",.in memory or hard disk The ",appins' are W>T, J in a dala 
strucl ure calied a page /llble. There are many ways to slructure p.lge la bles and 
aCCeSS Ihem; we a.sume Ihal page lableS Ihe mselves arc .Iso kept in p"ge," A.sum_ 
iog Ihat Ihe representat ion of each mapping R"qu ires one word. 2'°. or 1 K. map­
pings Can he <onlained in a 4 KH p;lSC. Thus. Ihe m" ppings for Ihe enl irc addrc</; 
space for a pfOgram of 2" byles (4 M B) can be conta in ed in o ne 4 K B page. A ' pe­
eial lable for c,,~h prog, am c~lIcd ~ i/;r<,<,""y 1"'8" provides the mappings used to 

locale the 4 KB program page I"hles. 
A S;lmpic form~1 for 3 p.'ge lable cntry is given in Figure 14· 12. TI,iel .. c bilS 

are used for Ihe page frame numb"r in whi ch Ihe page is locaied in main memo 
ory, [n addition. Ihere are Ihree single bil field" V"lid. Diny, and Used. If Valid 
i, 1. Ihen Ihe p.ge ft" me in memory is valid , if Va lid is 11, Ihe page frame in 
memory is invalid. meaning Ihal it does nol correspond 10 correcl code or dala. 
If Dirly is I.l hcn th ere has been a wrile 10 al teast One byle in th e P"gc since it 
was p laced in main memory. [f Dirty i; 0, Ihere h.,'c been no ,..rites to Ihe page 
sine.: il e nl ered main memory. NOle Ihal Ihe Valid a nd Diny bils correspond 
exact ly 10 Ihose in a cache which uses ,..rile-hack, When il is necessary for a page 
to he removed from main memo,y and Ihc Dir l)' bil is I . Ihe n Ihe P"gc i, copied 
back 10 Ihe hard d isk. If Ihe Dirty bit i, O. indi cati ng thai Ihe page in main mem· 
ory has nol been wrillen into, then the page coming into Ihe same page frame is 

I 

\~ I Od", t>; L 

r- Ilifly t>;, 

U""d to, 

Ph»;cal~, I"",,, "umber 

o FIGURE 14·[2 
Rlrm. t for P.ge T.hle En,,",. 

I 



simply wrinen m'er the present pag", This can be done because the disk yersion 
of the pr"",nl page is slill correci. In order to use this feal ure, the software 
keep' a record of the location of the page On Ihe disk eh;cwhc re when il places 
the page in main memory. The Used bit is " sim ple mechanism for implemenl ing 
a crude appro,imalion 10 an LRU replacement seheme. Some additional bi t 
position< in a p.1gC enlry may be rescH'cd for nags used b )' the computer operat· 
ing syslem. For example. a few Hag' might represent the read and wrile prolec­
tion stalUs of • page and whet her the page can be accessed in user mode or 
supervisor mode, 

The p<Ogc wbk . Iructure we ha"c jusl dc:scribed is show~ in Figure 14-13. 
The d"~Cl(!TJ pagc fW'''k' i, a register that point s to the location of Ihe directory 
page in main memory. The directory page contains the locations of up to I K page 
lables associated wilh Ih~ pr,,!:"'m lhal i. cxcculi~ g. These page lable. may be in 
main memory or on Ih~ hard disk. The page table 10 be accessed is deriyed fro m 
lhe most significa nt 10 bilS of the Vlflu.lpa!:c num ber. which we call1hc (/j , t't"ro,y 
ofl'n. Assuming that the page table ,dect~d is in main memory, it can be accessed 
by the I"'lie ",Me I"'lie ""ml,,'" lllC lea'i ,ignifica rll 10 bitS of lhe virlual p"ge 
numhcr. which we c"lIthe 1"'l?e loMe offSN. Cil" be "scd to ,"cce" the emry for the 
page to be accessed. 11 the pfige is in main memory. the p.ge offset is used 10 

" 

• • • 

o FIGURE 14-13 

• • • 

• • • 

D 
Example uf I'.~< T. hk Stroclure 



640 0 C H APTER 14 I MEMORY SYSTEMS 

locate tle p~)'SLallocat !on 01 l~e lyte or worJ to L "ccesseJ n ei t~er t~e page 
table or lhe desired page i. nol in main memory, it must fi rst be fetched by soft ­
ware from the hard disk to main memory before the word within it is a<xcssed. 
Note that combining the offsets wilh regiSler or table entrie$ is done by simply 
se{l ing the offset to the righ t of the page frame number, ra th er tha n adding the 
two loget her. This app,oach ,equires no delay, whereas addition wo uld cause sig­
nificant delay. 

Translation Lookaslde Buffer 

From tbe preceding discus.ion. we note thaI virtuat memory has a considerable 
perfor mance penally even in the beSI ~aw. when the directory, the page labl •. and 
Ihe page 10 be acce.sed are in mai n memory. For our as.umed page table 
appro.'Ch , th rce $ucressi .. e accesses to main memory occur in order 10 felch a sin. 
gte operand or inSlruction : 

I. Access for the direelory ent ry. 

2. Access for Ihe page I.bte cnl ry. 

J. Acce&s for Ihe operand Or inSlruction . 

Note tha I these aC«SSl:S are performed automalically by hardware thaI is parI of 
the MM U in the generic computer. Thus, to make virtua l memory fea,ijM. we 
need t" draSlically reduce aecesses to main memory. If We h ~ve a ~ac he. and if all 
of the e nt ries are in the cache. then tj, e time for each access is reduced. Nevenhe­
less.. Ihree acceSses are nceded 10 ,he cac he. To red uce the number of accesses, We 
will employ yet anOlher c~che for the p urpose of translaling tj,e virtuat addrc'S 
direelly into a ph}'$ic"1 .ddress- This new cache is called a Imm/ali"I! llH)ka,'ide 
buffer ("I'La) , ]{ hold$ the localions of re<;e nt ly addressed pages 10 speed access 10 
cache Or main memory. Figure 14- 14 gives an example of a T LB. which is typ ically 
full y associali,·c or set associal i"e. since it is nere$."ry to compare Ihe virtual page 
number from Ihe CPU wilh a number ,,( "irtual page number lags. In addilion to 
the laner, a cache enlry includes Ihe ph}'sic"1 page number for those pages in main 
memory and a Vatid bit. If the page i$ in main me mory. the Dirly bit al,o appears. 
The Dirty bil serveslhe ."",e funclion for a page in main memory 8$ discussed pre_ 
viously for a line in a cache. 

We now brieHy look at a memory access using the TLIl in F'gure 14· 14. The 
virlual page number is applied to the page number input to the cache. Within the 
cache. this page number i5 ~ompared <imu llaneously wil h aU of the vi rtual page 
number tags. If a mal ch occur< and the Valid bit is a 1. lhen a TLII hit ha5 occurred, 
and the physical page frame num ber appears on the page numbe, output of Ihe 
cache. Thi s operation ca n be performed very quiCkly and produces Ihe physical 
add ress required to access memory or a cache. On the OIher hand, if Ihere is aTLB 
mi'" the n il i. necessary 10 acceSS main memory for the directory lable entry and 
Ihe page lable emry. If Ihere i5 a physical page in main memory. Ihen the page 
lable entry is brought into Ihe TLB cache and repla"". One of the entries Ihere. 



14-4 I Virtual Momory 0 641 

Vi,,"., AdO" .. I,om CPU 

VIn.,I!"g< numl><, Pag< ~tr" L 

I 

Pate nwnber inp"' 
Val id bit Folly ....", .. '1'" '" "'41""''';'''' ".,,),< 

/ o;nybiO 

r-"' .,-0.,. 

v;nu.' ~ numl><r Ph,,,,,.1 PO&< r"m< "om"" 

p,,,,, I,.,,,,, numb<, ou' "' 
Pa~e frame number I'a£e orr .. t 

o FlGU Rf: 1 .... 14 
Example 01 Translation Loo ... ide Buffer 

OY~rall. thr~~ memory acce"", are required, i~cl ud ing Ihe one for Ihe operand, If 
(he physical page does not exist in main memory, Ihen a f'~ge laodl occu .... In Ihis 
case, a software-implement ed aClion fc(ches Ihc page from its hard dis~ location (0 
mai~ m~mory_ During Ihe lime requlfeJ to complete this aClion, tho CPU mayexe­
cute a different program rather than waili ng unlillne page has l>een placed in main 
memo')'. 

Noting Ihe prior hierarchy of actions based on Ihe presentation of a vinual 
add ress. we see that Ihe dfecli ' ·cnes.s of virtual memory depends on temporal and 
spatial locali(y. The fastest response i, possible whon Ihe virtual p~ge nu mber is 
presenl i~ (he TLR If (he hord"'are is fast enough and a hit also occurs on the 
cache. the operand can be available in as lillIe a, one or lwo CPU dock cycles. 
Such an c,'ent i~ likely to happen frequently if the same virlual pagcs tend to get 
a=s<ed m'er lime. Because of Ihe size of lhe pag~s. if one operand is accessed 
from. page, l" en, d ue to spa(ial locality. il is likely that another operand will be 
a=ssed on Ihe same p.ge. Wilh Ihe limi ted capacily of Ihe TLR the next fastest 
aClion requir~ (hree acce...,,; to main memory and slows processing considerabl)'. 
In Ihe worst of all situations, th~ page table and the page to be a=ssed are not in 
main memory. Then, length)' transfers ()f tw() pages-------the page table and the page 
from hard disk-are required. 



642 0 C H APTER 14 I MeMOli. Y SYSTEMS 

Nme ,,,,,,11 .. basic hard"llre f(W implememilll': .-inual memory. the 1tl). anJ 
miter optional features for memOf)' access are in<luded in the MM U in the CC!lCt.c 
compuler. Among Ihe OIher fcalurn" hard", ... rc support for an addilional layer of 
vi rt ual addresoing called HK'"rmmw.. and lor prOleClion mcchalllSll>S 10 permit 
appropriate isolation and sharing of progrDIt\'I and data. 

Virtual Memory and Cache 

Allhough we have con,idered I h~ cache and virtual memory ..,,,,,r~lcly, tn "" 
aClual system they ar~ OOlh ,'ery likely 10 be present. In Ihal case, Ihe virlual 
.ddress is oo.wcrted 10 lhe ph~ical oddreso. and then Ihe physic,,1 addrc>'5 is 
applied 10 Ihe cache. Msuming Ihal Ihe TLB takes one clock cycle and lhe cache 
tak"" ODe clock cycle. in lhe besl of co"", felching an in$UuClion or operand 
re<jull'<::S I",,, CPU clock cycles. At a consequence. in mallY pipeline<! CJ>U dcsogns. 
lwo or more clock C)des arc allo ... "ed lor an operand fdel., Since ,nsh'\IClion felch 
addTC$lC$ are"",", prediClabk. ,I IS po6$ibk 10 modify Ihe CPU pipeli"" and COIl' 
.ider Ihe TLB and cache 10 be a 1"'(Hlage pipeline segment. II<> tha, an in~lruction 
felch appea~ 10 re<juire only ODe dock cycle. 

14-5 CHAPTER SUMMARY 

I n this chaplet. we examined Ih~ componen" of a memory hierarchy. Two coneeplS 
fundamental to the hierarchy nrc cnc he memory and virlual memory, 

Bascd on Ihe concepl of k.cahty of reference. a cache i. " sm.II, faS! memo 
ory th3l, holds Ihe operands and tn~truction. mrnU likely'" "" ~sed by Ihe CI'U. 
lYpically. a cache gives Ihe appearance of a memory Ibe .ize of main memory 
... ·ilh a speed clO5C to Iha. of the eache. A cache operales hy malchin8 the lal': 
porlion of ,m, CPU addrns wllh Ihe I'g portion. of Ihe addreS$CS of the dala m 
Ihe ..... he. If a match OCCIII'$ 'nd olher .pecilic condition. are sa,,~Hcd, a cache 
hit 0CCII01. and Ihc data can he oto.aincd from thc eachc. If a OId.e mISS OCC'1I01. 
Ihe data m ... 1 be oIIlained from the ,lower main memory.1be OIchc designer 
m"", delennine Ihe values of a nllmber of parameter$. including Ihe mapptng of 
main memory addresses 10 cache addresses. the selection of the line of Ihe c/IoChe 
10 be replaced when a new lone is added, the .ize of th~ cache, Ihe .il.e of Ihe 
cache line. and Ihe method for perfo""ing memol)' wflles. There may he mure 
than onc cache in a memory hierarchy, and instructions and dala may have scp., · 
ralc cach~s. 

Virtual memory is u>cd tu give th" appearance of a large mcmory- mucll 
larger than the main mcmory-al "'p<-",d that is. on a,wage, dose 10 Ihnt of Ihe 
main memory. Most of the virtual adJr~"$S space is aCluall y on hard di,k. To (""ill · 
tale Ihe movemcnl of inform31ion ""Iween Ihe memory "nd the hard disk . bolh.re 
di"ided up in fixed size addtC$ll blocks called pa~ frames and pages. fQpccl1vdy. 
When a ""ge is placed in ",ain memory. its "inual addr....,. ",ust be lranslaled 10. 
physical address. n.e .ranJ;1.alion is done u.ing on<: 0.- n><>rC page lable<. In order to 



1'1'ObI«n, 0 643 

perform the t,"n,lation On each memor), atte", without" sewre performance pen­
ally. special hardware is employed. Thi' hardware. called a Iranslalion loohsidc 
buffer (TLB). is a special cache Ihal is a part of Ihe memory managemenl unil 
(MMU) of the computer. 

Toget her with main memory. Ihe cache and Ihe TLB give the ill usion of a 
large, faSI memory Ihal is. ;n faci. a hierarchy of memories of differcnl capaCilies. 
speeds. and lechnologics. wilh hardware and sofiware performing a Ulomalic trans­
fers ootwccn levels. 

REFERENCES 

t. MANU. M. M Computpr tllg;nfPri"lI-' /I"'d .... Mf Desig", Engk wood Cliffs. 
NJ: Prenlice Hall. 19M. 

Z. HJ:NNF.SSY. J. L.. A:<D D. A. PA n l ;RWS Compute. Im-,I,ita;"'r~: A Q""nti""i\'~ 

Approach. San Francisco. CA: Morgan Kaufmann. 1996, 
3, BAKON. R. J.. AND L HLGI5!E Cotttpmer Arr:hilerl"ff, Reading. MA: Addison­

We'19'. I992. 
4. HANDY. J. Cad" Mp",o.y Bo<)k. S,," I)ieg<>: Academic Press. 1'19."\ 
5, MA~·O. M, M. Complltfr S)'.'I~'" ,bc/';f(-",,,,rp. 3rd Ed. Engkw,x,d Cliffs. NJ. 

Prenlice 1·lall. 1993. 
6.. P Arn:Ro;()N . D. A .. A"f) J. L H .:,,~ ,~"w C,m'Jmlu Org"",'z",;,," "',,) Desi!!". 

Thf H"rdwll.pISofi ... .".e I"'crfiwp. $,," Francisc(~ CA Morgn n Ka <Jfma~ n. 

1998. 
7. WYANT. G" ANI) T II AM"':R'TROM /low Miaopmce.<s()r" Wurk. Emeryville. 

CA: Ziff·D,,,,i, Press. 19<14. 

Il M':'\SMER. H. p" TI,e /IIfUspmsabie PC l/uf(lw<tre Book. 2nd cd. W"kin gh" m. 
UK.: Addiwn.Westey. 1<l95 

PROBLEMS 

JiIll::,. The pl us (+) indicale, a more advanced problem and Ihe a"erisk (O) ind icat"" a 
~ solu'ion i •• v.itahlc on Ihe Companion Websi", for ,he lexl. 

14-1. 0 A CPU prod uce, Lhe folt"" 'ing ""quen"" ohead addresses in he.adecimal: 
54.58. 104.Se 108.60. FO. 64.54.51\. lOC.5e. 110.60, FO. 64 
$upposin g Ihnt Ihe cnchc is Cmpl)' 10 ~gin wilh. and a"u ming an LRU 
replacement. delermine whelher each address produee, " hil or • mi,s for 
each of Ihe following caches: (_I direC1 mapped in Figure 14-3. (b) fully 
associali>'c in Figure 14·4. and (c) \wo·wa)' SCI 3,,,,,,i'live in Figure 14,6. 

14-2. Repeal Problem 14·1 for 'he following sequence of rcad addrc~<c, 
U.4.II. 12. 14. t A. Ie 26. 2tI. 2E. 30. 3(,. 38, 3E. 40. 46. 48. 4E. 5(1, 56. 5~. 5E 

14--3, Repeal problem 14-1 for the following "'quence <>r rc"d addre"C' 10 

hexadecimal:20. 04. 28. 60. 20,04.2K4C. 10.6C. 70.10.60.70 



644 0 CHAI'lT.Jt .. I MEMOli. Y SY~'n:MS 

14-4. */\ romput~r 11M a )2·bil addrns and a dirttt.msp~ cache..Addrnsins b 
10 Ihe b)'le level. ·1lIe cache has a capacity of IK byles and uses lines lhal 
are 32 bytes. II uses ... rilNhrOU3h and 50 does no! rfiluire a dillY bit 

(a) How many bils ue in lhe i"du for Ihe cache? 
(h) Ho ... many bil5 uc in Ihe lag for.he cache? 
(e) Whal is the l~al numher of bilS of .torage in the cache. inciudinllille 

"slid bil .. the lag .. ud lhe c""he lin~'$? 

14-5. A two· ... ay ..,t·",,~iali'·e c~che in a sy,ten, wit h 24-bi l addreS3-C1 hItS IWO 
4· byte word, per linc ~nd a capacity of SI2K byle .. Addressin8 i$ 10 Ihe 
byle k,·cl. 

(I) How many bi" "re Ihere in Ihe index and the tag? 
(b) Indicale Ihe value: of lhe i"dex in hexadecimal for cache cnlrie$ from 

Ihe follo"';nll main _mory addresses in heudecimal: 82A1-112. 
14AOI9. 48CF0F andJi\Cl-l.l]. 

(e) Can all of the cache cnlrits from pall (b) he in the cache 
simul.a~y? 

1....... · Discuss.he "",·an.age!- and disadvamagcs of: 

(a) "'parate inslnlClion and dill caches versus a unified cache for both. 
( b) a , ... ile-back cache ver> us a w.ite·lhrougb cache. 

]4-7. Give an naJnple of a setJu"n"" of program and data memory rcad 
addrcs.scs th"l "'in ha.c a higb hit rale for "'p.r1l\C instruc.1on nnd dnt~ 
,",ehes and a low hil rale for n unified cache. Assume direct mapped cac hel 
with Ihe p","mlliers in 1"'8ure 14· 3. Bolh the inslrucl;Qn~ a nd dala are 32·bil 
wMds and the addrcllS resolUlion i510 by'C$. 

14-& ·Give an example of a sequence of program and dala memot)' r~.d 

addre....,. l h~1 "ill hi ve a high hit rale for a unified cacl>c .nd I 10 .... hi. rale 
for separate in~ .. UC1ion and data caches. A>Wlne Iha. e..,h of the 
instruction and data caches is I ..... way sel associati,.., .. i.h I"",mclen IS in 
Figure 14·6. Assume Illat Ihe unified cache is four." ... y set associa'i"" "llh 
para_luo ... in Fill"'''' 14--6. BoIh the instrnctiom and lhe dati are 32·bil 
words and . he address resolulion is to bytes.. 

IH. ElIplain "'hy ,,·me·allocale is .ypically 001 used in a ,,·rite·lhtoush cache. 

I4-Hl. A high·.peed workst3.lon ha. 6I--bit .... onl!; and 64· bil addresses wi.h 
address resolution 10 Ihe byle 1evc:1. 

(M) How many " 'ords can be in the address 'pace of Ihc " 'Ofksta lion7 
(b) Assuming a dire<:' . m"pped cache with 8192 32·byle lines, how 'nnny bits 

are in each of thc fo llowing address field, for Ihe cache: (I) Bylc, 
(2) Index . and (3) Til87 

]4-11. ·A cache memory has an 3CceS!i lime from the C PU of 4 ns. and the main 
memQr)' ha. an acccu I,me from the C PU of 40 no. What i, Ihe effecTi~e 

aca:ss lime for the cache-main memory hierarchy ,f lhe hi ..... 110 is: 
(_) 0.91. (b) Oit2. and If) 0.961 



Pu;.bl<m, 0 645 

14-I.Z. Redesign Ihe cache in Figure 14-7 so that it is the .ame size. bUi is four-way 
set associative ralher Ihan two·way sel associative. 

14-13. + The cache in Figure 14-9 i. to be redesigned 10 use write-bacl wilh write· 
allocale ralher Ihan wrile-through . Respond 10 the following requests, 
ma~ing sure to deal with all of Ihe address and data issue, invol-'cd in the 
wrile-baeloperation. 

4~) Draw Ihe new blocl diagram_ 
(b) E~plain the sequen~ of actions you propose for a write miss and for a 

read miss. 

14-14. 'A vinual memory system u,""s 4K byte pages, 64--bit words. and a 48-bit 
"itlual addre,s, A particular program and it' data require 4263 pages. 

(~) What is the minimum number of page tables required? 
(b) What is the minimum number of emries requi red in the directory page? 
(e) Based on your answers to (0) and (b). how many entries are Ihere in Ihe 

la" page table? 

1 4-1~ A small TLB has the follow'ing enlrie, for a "irlual page number of lenglh 
20 bits. a physical page number of 12 bits. and a page oflsct of 12 bits. 

~.- 0;"1 , .. 0 •• 
~ ", I~'lrtwol ~. ('h".io::oj ~ 

1'_1 l'omb<,1 

, , OlAf' m , " OE~F ~, 

" " O! lFF 'ffi , " 0lA31 ,. , 
" ()2BII' ,~ , , ~M "' 

The page numbers and offsel arc given in hexadecimal. For each of Ihe 
vinu"1 addTe,"', lisled. indicale "helher a hil occurs and if it docs. gi, -e 
Ihe physical addre", : (a) 02BB4A65. (b) 0E45 FB32. (0) OD34E9DC. and 
(d) 03CA0777. 

14-16. A compuler can aceommodale a maximum of3&4)"! bytes of main memory. 
It has a 32·M word and a 32-bil virtual addreM and use. 4K byte pages. The 
TLB conlains only entries Ih.1 include the Valid. Dirty. and Used bits.. Ihe 
virtual page nu mber. and thC phy1;ical page numbeLAssuming thaI (he TLB 
is fully associative and has 32 entries, determine the foll owing: 

(~) How many bils of associalive memory are required for the TLB? 
(b) How many bits of SRAM are required for the TLB? 

14-17. Four pTOsram, are concurrently " xeculing in a multilasking computer with 
virtual memory pages ha'·ing 4K bytes. Each page lable entry is 32 bils. 



646 0 CHAPT!;Il U I Mt:",OI<.Y SYSTEMS 

Whal is 1M m,n,mum numbers of byles 01 main memol}' occupIed by Ihe 
dlfeclory ~ and pa", lables ror Ihe rour program~ ir lhe numlx:nI of 
pages per program. In decimal. are a. fol\oWs: 6321. 7711. 9602. and )&5). 

14-18. °In rnche:s. we u~ both ",'rue'lhrough and "Tile·back .. poIenli.a1 wntin~ 
approaches. lI ut for virtual memol}'. only an approach that resemhles ",'rue­
back is u",d. Give a sound ."planation of why Ihi> i. 10. 

14-19. Explain clcarly "lIy bolh lhe cache memory concept and lhe .inual 
memory concept would be Indfcc!i." if locality of rekronec of memol}" 
addrc .. ing pallcrn$ did nul hold. 



Nu meriC! 

I' , """' plemo:n' 212 
2', oomplement 211. 213 
2_1 AOI. 74 
3-2-2 AOI. 7~ 

, 
A<e-e., time 403. S82 ,-
c"' 'Y 1<>."'01><:><1206--209 
npple COllY 205 
Adtkr·Sublr..clOr 21 ~22 1 
Add,t"",: 

BCD 19-20 
biMI)' 13 
tle,O<l<c;m.1 14.-15 

""n,1350-352 
'i;ln«i t>;nary 2 1 S 

Add"",4OO--\()1 
off""t;,. 492 
cxplidt486 
implied ~S6 
on"" 4~3 
'0lI61 J 
' '''2<1339 

Addre",nf, '0 byte, 618 
Add",.«i n~ _ 492--491l 

bas< rc~i"cr497 

" i""'t 494-195 
imme.!;.,e493 
impli<J 493 
,00.",04%--197 
i"";""'t 4% 
regis«r 493-494 
f<l i"",·iooJr<"Ct 493--494 
rel.t ','e 496 
!lIse 541 

M j ... n, >q!I"'" Sl _34 
AI~ebnuc factoring 67 
Altelnk "" n'pulation 37--41 
A lgoril hmi, " atc m>c hine 
W-~ 

ch,N 36~368 
.. , mple, )69---37S 

implo"",",,",,,,,, 37S 
ti ming """ide"'t""" 36~ 

AI~"meri<; ."<Xl<, 23---25 
AlU. S« Arithmetldlogk unil 
Amerie'n Standard Code for 

I"fonnatioo I"te"hange 
S" ASCII 

AND opcratioo 3{1. 112 
A:-rD;ymbol30-31 
AND-OR ·INVI'RT (AOI) 74 
AO, Su AN D·OR 
AOI, Su AND·OR_I~'-IVEII.T 

Arch itC<ture 484 
oddre"ing 489---19, 
elsc 49\1 
in<1,,",I,"" -'<14~, 484 , 

,-~ 
1oaJi .. "", 462. 4lI9 
men""}' _ to- "><""-")' 

489--190 
mu l'iple O>e<utioo " nit -"""nl ilUlO;,ot ioo, 

S72-S73 
re~i"er-mcmory 490 
"' ~;'l<:r -,,~ "'Ii >!or 

~89--190 
RISC 499, S38 
, i"; Ie.lICCumu l"", 490 
>!.>Ck 490 

AIi ,hme'", cir<u '14J.1---437 
Ali thmetk logic un;t 430. 

003-439 

Anlhme,,,, opera""", 13--- 1 S. ,. 
"""<I>ioo from ded""'l 

to otbe, """" 
If>--- I ~ 

ASCII."<Xl< 24-25. 26 
ront",1 olla,"', .... 24--25 

ASM Nod 367 
ASM. 5#, Algon '~m;.; ,tat< 

mach;"" 
A'li<mbkr 4S-1 
A,,,,mbly langu.ge 483 
"""", ioti", I."" 36 
",,,,,,iali,,, memo.y 626 
A.')"" """",-" ~l'C otia l 

<i" uit 242 

" 
B,n-el shiller ->40---44 1. 343 
D,,,, S 
H,w .. ,< 593 
BCD 18.-20.26 

oddition 19-20 
coon«, 337_]3~ 

IICD '0 eu«<_J 00<1< 
COOle.10, IOS_ 11JJ 

8CD to ",,,n·"'iment 
<i«O<I<r 11JJ_ I 10 

B .. ",d oXF"'""n' S()9-~ 10 
H;g-<,o>Ji'n 315 
Birwy 4 

oddi,ion 1.1. 202-209 
multlplkodoo 14 
'<1M""";..., 14, 2 10-215 

DiMI)' odde" 202_209 
Bi n:>ryoO<le 18 
Binary ood«i de""",1 .~, 

,eo 

o 647 



81-,.'-:' JlI-JJ8 
8 .....,.",,", 3(\-ll 

mWl1IJlIr 
1',oom"",_111 
2', C<lo'IpIom<fll 211. 213 
.. I ..... 216-218 

,;' ..... ~211 
.. ,..... _"~od< 216 
_a-I211.21J...21$ 

8.-y ~ a..,. COISe 2.l 

B-r "f'PIe """1-

-~ 81-,. nrioblo JO 

II" ~ 
Bit ..,~0106 
BIoxIu 89 
EIoQIo. ~ .10 
Boobn .I¢n..IO. lH I 

bo.<oc _It !CO of Jj..JJ 

1IY&I1t~ I"'lI<lple of JII 
Boo/t.on ~"'" 3J. 40 
Book.f...,...,.)) 

1 .......... .,ly op«if>Od 6) 

""'klple-GuopollJ .".,Ie ""'poll] 
BoI"",,"~p de .. ", <n 
IIrooch II>'M~ ... 11 ~S~ 

B.....,n pr«Iicl"", '" 
11,.,01, «><Ie $Ill 
BubNe71 .548 .... " _·_71_7\1 
0... ),lj...14 

",u~~."""", 

~~'" 
1_· ..... ),l7-.l-I8 

Bin illlt1f ... 7 
II., I"""r ... :loI'!--:loI~ 
B".~ .... oi! k>or m 
8 )'1< 24. 0100 

8)'1<~1 ... 1>18 

c 

Codlt622-6J6 
C<IPr'bo.c~ 6J2 
dol.l»$ 
dl"yb!I6J2 
........ 1617.6:1f> 

'48 [J ""Iu 

i ....... 16.16 
LI 6Js-(llo6 
U 6)s-(ij(; 
11 ... 629 
II ..... ". 629-6JI 
1ooISi", 6J I 
'"'"WI"I' 6JoI-{o19 
... 624 
-"'pie Ieod fill....6J6 

~-'" ... ~, 
unlfltd 6.1$ 
.. ,hd b" 611 
... ,.;,.· .. IoxMe 632 
"'Ii", bu/fori". 6J2 
........ ""'_ 6)1-632 
.""~k6)l 

.. "-......&116.11-632 ""' ........ ~ 
dittcI 6l-I-6l.'S 
I\IU~ -...... ... 6.:14-6:!.!1 
"'--,"".<6:18 

C.d", ""'MOlY 622. Su diM> 
C •• 

C",,~ rq>1><""m<fII: 
I'1F0 627 
lu .. _ly·_ (I.RU) 

~, 

-~, 
C"D$ .. ~_ 
~p 

C>rry i0oi t "",_201>-20'1 
Cdl hlnly 111_112 
C_ral pru<e>oi.., WId (CfUl 

6, 7. S21-,78 
ChIp. Su Inl<,...,«1 CI""'~' 
Ci",ul' ~i.....,., J4 
Cmi«. """,rakd 29. 92. 
,,-" 

CISC ""'~ "'l9. '21 

""'''' Ood. ........,'" 
...... m.ll2 
,.,..,.,,,,243 
~riod 261 
fl'Jli< 20 

"_157_251 
.<I.:ew :!J6. 266 
, .... "'inn 2.SJ 

Clooke.l ~ioI ci"",i, 
~~>M 

CMOS cimoiu (SuppIern<nO 74 
Cnd< coo_ 10'1 

eoo"""""' '''_ 409 
c..ua,.,..,67 
CMor.. .. loa <IIO\l 
<'_ .................. SI. 

141 _142 
tbippro<e<lun: 101-1 10 

i"'"","",.,"""'1: 
u;ln, <I<wde1o 162-1601 
u,"" Ioo:>t'up'-' 

(LUTa) 17.!--176 

.... ".~ 164-166 

...... _-Iop: 
_(I'lAo) 
1690-171 -.pt""-=_ .... y 
Iop:(PALo) 
tIe.ices 171-174 

II"'" .. 0<1..",ly "It"""" 
(NO).. .. ) 166-169 

Combi .. ionoIlop: ciru;;" ,.... 
.,-~ 

C- Ii. .. lop: ........ 
117_1«1 

C_ICOl>QII. 
f~lIedup1u S91 
1ulI"-<IupIe. S91 
oetioIS9I _$911 
"mpluS91 
'''''' .......... It_ S91 

CornmunicalOon """'''''' 
,~~ 

c-mu"", ... bwo 306 
~ ...... of._ .... , 
C .t, .... ".,.....JO 
C"""","_ 212-211 
~Oon ....... 2 tJ...2 1~ 

COIIlf>Ie.k ..... 71. 73 
C<>rnpIe1 i ... "",,,,,, ~ 

"""'put .. 4<19. !$7_569 



Corn"""it. tegiSler 372 
Cornl'"!er: 

""hit.eM<: 430. 492 
"'sic cycle 484-485 
CISe. Su Compu" r, 

rom.,.., 

in'''''''t"''' set 
rompl<x i""rtlCtioo .. t 

499,55 7-~ 

<Ie,illn J, 429-482 
mk"'l"">&tammed 563 
multip!e-<y<1e 464-475 

ril'Olit>eJ 5J3-537 
' ingle cyck 4S6-464 

WOf" c",," del.y 
~ 

,tructure 6 
COOl jl<Oter ",~ .. intion 4114 
COOlputer-oidod d<3i!n 92-93 
C_ ... n .. ion 372 
Condit"", «>do 485 
CoDditioo.l ""tjl<Ot 1><" 366 
Conditioo.1 "ate....,nt: 

if-then form 316 
if-then·':! .. form 324 

Con""""" theOlom 39 __ 10 
Cootr>ction of logic 223. 

224-229 
Control: 

Clse 557-S69 
hanlwired 375---334 

multiple <yd. 46-1---475 
single <yd. 456--464 

mi<roproa:ramrned 
J90---392. S63-~ 

pipoiined SH_517 
Rise 544_546 

Con["" 0<1<1= r<~'ter 390 
Con",,' <lato <egister 390 
COIIINI hazan!. 553-557 
Control itlljllementat""" 

one f1ir-flop P'"' ,ute 
J80---3S4 

""[""'''''. <egister.nd 
decoder 378-380 

Control mc:tnOrY 390 
writ.ble 390 

Control ,;gnol 31 4 

Control unit 6. 309. 314. 

-~ Coo[roI wOld 444-449 

Controlk"i"", 582 
Conv.mon· 

_ ,todec;maI9--IO 

binary to decimal 10 
bioary (0 i>e"decimal 11 
binary to oc .. 1 I 1-12 
decimal froction. to 

binary 17 
decln,,1 f.-..ou"", to octal 

17-18 
decimal to ...... 16 
decimal to t"n.ry 16--17 
decimal to octo! 16 
octal Of i>e.O<I«im.1 to 

binary 12 
"""iti v~ Iogi< to .. giUi", 

logic 101- 102 
Copy-b;o;k 632 
Countm 310_ )J 1- 339 

orbi trary """",nee 
338-339 

BCO 337-3J8 
t"n"'l' 33 1_336 

wi'" ra, . IIe]1o;ocI 
335--337 

"r-OOwn 335 
dividb-by_N 337 
moduJo.N 337 
p.> .... I1.1 333 
npple33 1_333 
",ria l 333 
",rlal' p.>r.lIe1333 
')'l'ICh""""", 33 3-]39 
w ith parallel gating 3H 
with .. ri. I I"i n~ J33 

CPU orchit«tu",: 

pipeliroed 533-569 
,uper-fHpeliroed 570 
,upe[-",.I .. 569, 571 

C~U. Su C"" [,,,I pr<x:e>,;ng 
uni, (CPIJ) 

CRC. &. Cyeli< redundar>oy 
check (CRe) 

Cyeli< red"ndar>oy check 
(eRC) 597 

Cylit>Jer581 

" 
o n ir-flop 253-2S4 

wi,h enaJ:>[e ) 12 
D I, ,,h 248-249 
D ... coci>e 635 
O, .. dw",,,158ti 
OatacOOlmuni< .. ion proceswr 
~ 

0." fo[" .... diOj! 55 1-5S3 
Oa/a hazard ".11 549 
0. .. h.zords l-I6-553 
Dato ..,kctor 15S 
0. ..... 591 
0 " . >pCCIt 1.tI", sn 
O, ," p>th 6, 309. 314, 430-133 

pipeltoe<l528_5J7 
R1SC54I_544 
simUlation 448 

Dec im.al: 
arithmetic 229 
<:Odes 18-21 

Decremen[in!! 226---227 
Deci,ion Ix" 366 
De<:oo:;IoT 147 

.. ,..",ion 148-IS l 
Dewdi"ll147-1S2 

rombinatooml 01":",, 
im~kme """ion I('() 

Decomposition 67 
DeOicat«J Iogi< 324 
Del.y: 

inetl ial W 
tr,n'l'O'"I99 

Del.y reduc[;on, 
t"n,fortruot;oo (Of. 70 

J:.Ielay<d OOooch 555 
J:.IeM"'l!""" the<i<e,n J6--J7. 

40-41_74 

&"""",137 
Demultip!e>er 151 
De'ign hierat1;hy 89-92 
De." """;'" r<.o 4 16 
Dev"",, : 

1011< ",.1< in",!",te<] 
(LSI) 97 

medium ",.Ie ;n[eg"'''''' 
(MS I)92.97 

,m,lI""ol< i""gta[.'<l 
(SSI) 97 

I"""~ 0 649 



''Of}' 1orp-oaltiRqr-.J f.d~ .... ,"","" n .... 1Iop 230. F .. Id....,.........-Ioc;,; 
(VUI)9J m "'"'Y' (I'I'L\.) lJO 

~ '1 
<lInOob JJ ffi.J, • .Ll..JJl Ilmr,;;l.".n, r;Jl 

Do,;..r compuICI> )4. 6 [ [ PROM r.l<Wiaorr, r.N-ouI rq>Io<cmrno 
boIU.I.Y"C .... ~ "",>ObI<. PfUplOmmobl< F,rl. u'" 227-2lY 

r< I" "'" Iv CPU ""'''I>'' 11. 0.\\1 12'1 h<>I·,n. fi ,,,·,,,,, (FIFO) 
,1}.'1( EIt""", IU')' '>p<nI""" 314 rtpl>«"",,,, 621 

1) . .. ,",>1I00I raol .. """'PI<m<" Elimo"",,,,,, 61 1'10&:', ~ C"",,iuon rod<> 
m Eaob), ... ).1(>...1(7 ~ __ """""*'Ir I:!(, 

1Nm __ .256 ~ 1'2-156 Ha'" ........... I:!(, 
Dorm .......... 624-I>2S u-"'" 1ll-156 ~~_' .. 67 
Do""'......;.ry_ (DMA) pn<>rioy UJ 135 Fbp-llop U;l. 144. 2-19-2$8, 
m.~ s... .... DIoIA F-..., 152-156 !II1 _2J.I 

I<t_lodJo<_ I::nd.~ <WI)' 214 <hone"'''''><' 
bw>I ...... re. _ EPROM(...-. 0<jUI0I'" :!.12 M,"""_ proJ<1Im ... bIc ROM) Iabk 1.112 
bu. ,~ ... ,~ 1"l-I:!9 <10", 256 
COI\IMr... Il06-601 Equ;,"I<nc<. S« G<I.,i,·. " ',.," ""," 256 
<y<1o .... r; ... _ "'" d,rm .... 256 -- &rot <Ioc,.,,, ... , ~ in<lico&o< 255 
"",10 <yolo u-f ... _ --- ~2Xl.ill 

..... re. 608..(J()II (So.,,1 ''''.)'27 hold ,,_ ~1 

--~ 
1"'"'1 .!(I.21 oK, ...... Iabk l:82 

-~~ ""-.aI pn_ i ..... "'- inpuI......,... 2S3-m 
~otrJod(>J9 

~, )K2I2-~ 

o.moooy _1>J8-.I>J9 E ... fOlOC' _ ~n ..-...·.r."'2XI-~3 

0."""00)' P>I< p ....... f>J<1 G«'l" .... '19 "'" "",_no 2.50 
DI,k "",urulle. 7. S~2 E. oe...J code I~ P""')lI>II«l,."I'"' 
o.,~ ''''"'f« .... S8! 

G<:1",i",_NOR JS illd"'."" HS 

DI~ ''''<>. __ of ....... 16 G<:1"~,,,.o)l. 74, u_n ,....", 
Do"';I>00"", lSI ;.x",~ ... 7_ ~ <!cloy Irnlt 

0.""""'" ....... )6 1Qm.rn, ...... --- '" 0.,';_ by """,,-. 2..'7 "..., ""'-"'.,ued ~2 
I>MA. StY INm motDOf}' ~-'" JodUfl 'III •• lS7 

0CC'<li/0 (OMA) r......,j09-SI0 ~.nop/'W<')-

o..',~.-JiI,...6J..QS 
EJ._...,. :27 "..'" 

DIIAM s,.,. RAM. dy ...... ic 
up 2..'9 ,"'-~ 

D)l.AM ....... rolle, ( 26 
fu......rcao ... l.I>)6 If'ncr2-19 

Duol 
I!",,,,ion 67 ~l;I"f1"p in",,' '-'<I""';'''''' lS8 

of ' It<Mo'" "I"fi'''''' )5 
FI'p -fi,,,, 'un in. 257_258 ,. Pioooin, 11'"'" 507_SI I 

of «fUIOI""" ~ 
.... 'hnocooc ."... .. ""'" Iluolny pnnc,pIc )'I F-...,,67 "'-"" 

" 
_.", _ .. p:-.309-510 

fan,.n 911 ......toot. 507 • .501 
Fan __ 911. 100-101 ..-.... __ f"".. 

ElPROM (.Icanooa)ly ·f,..,CIIW" 111 SIO-SII - ............. poo ... 121 ~",,,,,"" ___ 7,.501 
ROM) 129 Ficld·prupoommotolc: .... floooI1nl 11'"'" .. ,,,' (f PU) 6.. 7. 

F..d,. 99-100 ..... y. (I'l'(JA.) 132, 17, '" 
650 0 Index 



~ E 2 .. 

~ - - '.'" . "-_. i' - . _ ~ .... ~ _ ~ - ~"i'l :i! _ ... ;-
• ~"J l~ "',' !/_ i ,I •• - al.' ; ;< I_~. D ~ I~~-- :8 ~!I.~~l~~ ~ .~Ijl!~ i ~ ~~~ ~~ i.~~ 1~2~1 " i~i·~IH_~~I '! ·!'i,!;,,~,IH-i.Hi~jt~II~~1tWi ]OiH 1 I.. ~·.i,-. 1'lil~M '" .• ,_. .- .]i- , •• . ~~ ~ tjl~~Jiwt~~~ !~'li~8 I ~~. ~ i~ ~a111B .,: 

~ ~== !!- - ~~=~ j 

'. • j 
~ i ~ ~ "i:! I I >, ~ !,~, l;~' ~ r 
l}'i; i ±, ! ,,~. ~ fo 
!II] .!hi I'd j il 
11!~I.~III~II!I~ilj' 

~~ ::::::_0:: 

• "- ::!to Q ;.'; 1 O • j" " _ 
"'!l ~~ ..... ~ ~=~a .J .~~ ~ ~:ii 1i ,~ 

, "~"'~j'!]! "i_~"~"lf ~ ~;~~~l!ll U'~!:~~j!_J;'j~~~ ~''''~' ipl!rtHi~"H~ ~lt~~_I! ~ ~1!JjJr~.Bff 

~ -~.~ 

J
' I .~.i 

" .. ~ 
, 

'"1' ~ 1. I. -i 
.i~!;1~;lllil~~.~1 

" . 
...,;;!~ "' J: 

j;1 ..... S ~ ~ 
~6- -~ .!!c. ;J.J _ 1...; ~ .1 .. ,.1j • ,".' nl l

-" 19~iiJ=i~j~ _ ,," ... :f:f;f"~ :;.. ~ 

".1--1 ,··i- I '-"· ;"IH &n'~';';;'! ~! '- - 8 ~ ~!r'"·- g.! 
.-"'i"'"' 'Ii "fth'I1''I] t ~~~ "-'e ~ " 1 .... In,!!. 

~~ "I ~3 = === = == 



j" .. m.I~ 1 8 

""",worcd W I 

""",it), 601--60S 
<la;,y ch.a,n 602--ffl) 
parall<] 6O.J..-603 

pro<n>inll of e.1<m01 
"9-~2O 

soft ..... e518.-SI9 
-roocru601 

In'-one< Jl Su ai", NOT ,ot< 
In,'.,,;nl 143 
1>01>«<1 i.QCQolr.gODl;'" ~n. 
,~ 

1t< ... li,.lot:ic '''''Y 202. 3~1 

J 

, 
K (Kilo) 10 
K_Ih """. S« ~bp 
Key_l,~IlO-S81, 

59}-'94 
K_m",p, S« Mop 

K .<on """'" ~81 

,. 
LarJ!e-"" '" mt<lIntt«l (LSl) 

"" .. I«$, 91 
u.t·in. r. .... -oot qu<"" (UFO) 

." 
I .. tcl>eo 244--249 

D 248--249 
j) ... ith t.u,ml»ion 11",00 

24~ 

"',.. ItaI< 245 

"" OW< 24S 
JR24}-LC6 

with ' ''''tm! input 241 
_ ,"I"'''' symbol. 

~.= 
~OIl49 

Lat<ncy tim< 529 
Lu dlnll ",roo 13 
Le." 'ipif",", Ji,git (hd) 9 

652 0 Indu 

Le.,t -r=ntiy_us& (LR V) 
"'pl""""",nt 621 

till 
UFO. s<. La,,-in, r,r>' ""' 

qoeuo (UFO) 

~." 
l,j"" sUe 629-(,J I 

I..ilel'al 38--39 
LiICnlI 00<148 
Linl<..,ndi". ]15 

L<>adin1!310 
Lot.Ii,y of ",f<RnCC: 62G-622 

'f'IilW 620 
t<"'fIOC"1 62(l 

l"i'" ei",oi" 8g. H7 
u'lic lOt<' 29, ]2-33. 7U--14 

.ymbol.12 
Loai< .. moJattO<l: 

..... ",_.10\'. fi ip- flop 25 I 
SR ut<h 246 

LoVe ,imoJator 93 
Loa'" .ynth<si. <;5-96 
Loa", .yn,l>eoiun 93 
Loaical "",,=00' JO 
Lcd_opUbl< (l UT) 125. 115 
l-","".t<}-high """"galion li m< 

W 
LRU. Sn Le."-n=ntiy .• ood 

(LRU) rcpl.o<x""'nl 
LSI. Sn o..ices.1arJ< 1<01< 

int<a:ru<d 
LUT. s< .. l<>,.-op "hI< (lUn .. 
M (Moso) iO 
Mochinel.ng"'lc 48) 
M".oodc:3S1 
M""'i .... Su FflOClion 01 

.i""f",.m 
Map41--65 

four-'· ..... bl< ,~S~ 
manipulation S8-6! 
th-.,violll< 50_53 
''''O)-I'",i",1< 49-5() 

Map opIimiZOlion 47--65 
MOW'",: 

di=t t.24--625 
fully ... , ,,,iati,.., 6l4---62' 
.. ... oy'" ."""i.,h-e 628 

U, 
MOO, un>-..,.1< in'oi"',<d 

(MS!) "",'ices '17 
M<mOI)' 1, J99-42!1 

....,.,LIIli", 616 
dofinition. )99-100 

dp .. ",iC 40S 
non-vul .. il< 40S 
>tatk40S 
",,, .. 1 6:ll>---642 
""""il< 40S 

Memory ...... t<m<'" uni, 
(MMU)6.7.6-IO 

M<mory .y"o ..... 617-646 
Memory ,i ",;nl oIO.l--4OI, 4 I ~ 
Memory <ypeS 40S 
Memory. mappcd 1/0.\.86 
M ",roiflStlllCUon 390 
Mic"""""",,ion. J 1 4--3 1 ~. 

318-324 
oritlun<tlc J 18. 3 19-321 
Iot:'" 318. 321 _32) 
.hiA JIIJ, 32J.-124 
""",f.", J 18 

MK:~ 390 • .5(6...568 

MIC~"""lrOI 
390.56J.-W) 

orpn'UI;'" )'il 

Mi",orm4~--4~ 

MMU. Su M<mory 
tnarlai'm«I' onlt (MMU) 

Mod<m~1 

Moon: """",,I-""'I"""'iol .mu" 

'" M"" 'ilnifK:"'" dili' (m<d) 9 
MSI. Su 0.,,,,,,,,. modium 

>cal< ", .. ""ted 
Mul'iplb--l>il f."",;oo, 14}-14$ 
Mul'ipl<--I<'-~I ei",oi, 

opIlmiU1ion 65-70 
Mw ltipl< ['If.ll<l execulion 

onilS W) 
Mul'ipl<>er ..... 34~348 
Mulu" ... « I S6---1S5 

"""",ion 158-1~ 
thr.e-.... e 1/00 
Inlnsmi .. ion PI< 160-- 1~1 



M, ......... _· 
oIpi ..... :l69-170 
bNrf14.22 1-ID 
by """'"'" 227 
o<uI IS 

Mul';pli .... 221-223. ).69..384 
datal'"'h 370 
one Hip.1lop ptr ""Ie 

<QIIUoI 380-384 
iftJ"'IKC rqo_ ond -­,n-", 
v"'Iot ........... .,., "'_m 
VHDI..~ 

lU-317 
MUX IS8 

N 

_'biuryOO<l< 18. 147 
....... 1II·~ .. _ 147 
NaN. ~ NQI 0 noombo< 
N"N!)_ 71. 701. 112 

""''"'''''' indico<or 71 ""'PO;"" loti< IOI-I0l 
poi"';'y indi< ..... 103 

N"'I; .. ~l 

N." " " . 260 
Noi .. "'"'lin 98 
Noo~"1 poi .... impli<:_ 

" No<¥ ....... ..- .r....., --Nooo·"""", ....... in.oncd 
(NRZI).s96 

NonI'<dQ«d i .......... 601 
NOR,,«71 
Norrnal,ud no. " ",.pOOn ' 

numb<, j(lIj 
N,. onumb<, SII 
NOT op<n<iooo XI 

i..a1<d 
S..-.., 

biowy9-11 
ooonnaIi~ fIooI.,. poont 
~ 

.;g-.lbi~216118 

"umbel """"m.iooo. SH 
~,-Nu __ ll 

Numb« JYS1<""'" $-13 

o 

OA S« OIe ·"NO 
OAI Sn OR·"N1).INVER7 
Oruol n ......... 11 _ 12.26 

muIt,p.,..,. 15 
Odd f'*"1iooo 16-n 
0... lbi>-Ilop.,... _ JIO-J8.I 

0... •• """""' ....... 212 
Op ooo.Ie. Sn Opero,.,. 00<1< 
()pmuId odd,c.,in. 4~92 
Op""n,,,,,· 

00<1<4" 
m""""''''~$-I 

OIe·MID (0") 7~ 
OIe·M(1).INVUT (0"' ' 74 
OR.,.,.... ..... JO.71 
OR'1_11 
0. ... ., billl.l 
o..p..voI,.. 
o."rl1tw< 22()..211 

, 
Pad ... Odrntir .... (PIO) _m 
Po&< 622. 6JJ 

r .. ~6011 
-~, 
r .......... _6:1t 
off ... 637 

-~ oIf ... 639 
pag<numb<,6l9 

PAL de.ice Su 

~>bI< .... ·yloJ'" 
~m 

Parity bit 20-21. 26 
1'ffi<ornIanc<. 1"1"'1_ SlS-S38 
I'by&i<aI ~ 6J6 
..... 1;.,. «WId 513-517 
"'-""~S51 
emptyon& Sll 
~«."U,_ 1*"'" diajnot 

'" 

fill .... 5114'l 
p~SJO 

~~'" 
«:>otroI lla>"MW H3-SS7 

f'VI l29-IJO. Sna/", 
Provmn~. k,,", """Y 

1'1...0 Pf"OV" nmi", 
.nti·f_ 125 
,1tctri<.1Iy-ent....t>le 126 
CQ>ObIt 126 
f_l14 

-'" Pui .... f_lll 
Pobnty indi<ooo< 10) 
F\Jo,,, •• ,,,,;c 101 10l 
I'w;fi , 00Ia1~"" Su R •• '<oc 

PuI,>-I1 r><Ut""' 
I'w;poocd ""tput inJi<:otOf 2SS 
Pow..r di .. ,poo:;.,n <;l! 

I""' ..... or I,,'" 10 
Prtdo:fine<l bIocb 90_91 
Prediao_ SJ2 
_".«2(1(1 
-~ "" ... UnpI., .. " 59-61 

COO<fttlaI J9-61 
non~io.l61 
.. l«1~", ,ul< 61 

Primitive b~"'k, 90. 9) 
I'r;mo'", ..... 71 _72 
Pn", .. ",,6 

... """ ..... ..,..tm 609 
OO~ 

IUIlIo rqo .... 48!1 
I'ro.Iu<1 or ...... _« 
I'rodu<1 or ....... 46-47 
l'roduc1-d ........ <.opt ,miLooioot 

62-6) 

f'roduct """ 41 
!'roW"" 4j() 
I'ro>sr"'" , ..... nte' 11>(:) 31>1. 449 
Pmanm ;n«n\lJl1 St7-S:!() 
Proznm ............. y. 

(PAL) 12(0 

romt. .. tionol ."""" 
ut ..... " ........ 

169-171 
_';u, 1)()..11l 

F'rop'ammabIo: lo4i<: ...... y 
(PL.A) 121. 129-1)Q 

Ind..: C 60S) 



I'ru&r>m""bk «od-ooly 
1TlCnJOf)' (PROM ) J26_ 12~ 

Programm,.bk .ystem J6.I 
P1!O\I. S<. Programn""bio 

R:ad..,..\y memory (PROM) 

f'Tupaj:at" fU""H'" N1 
gtoo ~ 209 
~ .. ioo "'I.oy 98-101. 103 

~"'""" ""I.y ,i""",: 
nip-,.,.,. us 
' .... 98-101 

Protec' "", ,'lelat"'" S I ~ 

Rodi. M 

IUd" «>mpk .... n, 21 2 
Rodi. pol n' 9 
RAM. S<. Rondo"" """"'" 

memo<y (RA M) 

RAM Ie. . ."..y 01' 411-4". 
,~ 

RA.\I in"'gr>'«i c,,,," i,,, 
0105---41 1. 4 1 s--42 1 

R>ndo<n ><=>. rnenJOf)' 
(RAM)1.m,~ 

boI.I"",: 

dynamk4 11-421 
".,;';41)5 

cell: 
dynO/l1k415 
-;';.IOj 

column oddIess 418 
""",,,,,,,,>," ~ 4 1 ~ 

dynam;'; 4 1 ~26 

,yoclironou> 421-42-0 
dwblo <Iaia ....., 424-4~ 

RA~tBUS (RDRAM) 
421 . 4~·_n~ 

",store 416 
row~418 

... ';c 0105---4 14 

';"''"1 41 &-420 
'yp:s421-426 

R.ndom "'pi""""'"' 627 
R.,,<, 58) 
Road op<1'>I;"" 400. 402 
Read·only memo<y (ROM) 

127-1;:9. 4O:'l 

654 0 'ndex 

"""bm'''OIIal mruit 
,mpk me"""ion 
167_169 

d<"tricolly-<r> .. bk. 

""",,",,,,' 
(EJ:f'ROM) 129 

"",<.obk. I'f'.'irammablc: 
(EPROM) 12S-129 

pn.op>omm..bi< (PROM) 
126-128 

Rect,nll<. ~ I-SJ 
Rodoccd ,""rurtiotl "', 

corup<uo, 49\1 
R<ftc>lr 420-421 

""",011<'1 42(1 
"""nI<t420 
im"at>On 420-421 
"I'=" ioo 420 
lim'ng 420 
')'pes 420 

R<f<e<h,nl DRAM 405. 420 
Ret"1<r ) 10 

«II 339 
«II o.!e<'in 3)"-34~ 
Ioad'"l 310 
~11<1_311 
,MIJ2(>-))1 

Roli>! .. file 442 

RCii"" "'" "llS 
R<i'''''' ><1«' '''I''''' S81 
Rogi ........... ,rer 1U_115 

o.Ie>ti .. ,iooo 316 

""""'" J 16 
R<ii"" tran,fc, ope"'''''''' 

JI4.)1S-31 ~ 

Rd.,i ... ompli"""" 102 
Roj<ctioo ' im< 9\l 

R<SIor<416 
R"" .. ble block 9 1 
R .~e,,", Poli ,.to """"<l" ( R PN) 

'" R,ppI< c=y _ ~ 

R,ppIe counter> 131 _133 

RISC ''''hi 'oc,",~ 499. S21 
ROUIionol "'I. y 582 
RO~1. S<. R<"""",,ly "..,mory 
Rov.' sti<ct-lll9 
Rudml<n''''Y Io!:oc [unet""'" 

142_147 

! 1i Lali;h !45--Wo 
J Ii I..-.:h H6---248 
Sui., d/:(;,,,,,, "'" AA 
SU" rode S91 
Scan Ii"", 583 
Scan matri. 580 
Scho:mati< 89 
Scho:matic c"",un: 9l--'J3 
S«1"" S31 - S8Z 
s.;,k Ii".., S82 

S<s""'n ......... M" 
S<1ec,;ng 156-161 

$electiooo rule 61 

~ ~,0SI<r on<! <Ierod<r 
37S-380 

Xq",,",,<f 390 
Xqoeoc;"1 on<! """,ro) 
~m 

Xq""">! ciretl,' 241_3OIl 
..wy.i. pro«<lUl<O 

25S-261 
"'l'ochronoo,242 
<Iu<:kcd 2-OJ 
",ro,,""- 242-H4 
dt:>,pt 267_284 

"'s'gn pro«<l .... 268 
""'ign wi,h D fl,p-flops 

275 
Mealy mod<l 261 
1.1""", mod<I261 

""''' ""0 260 
pte"..., ...... 2fl(j 

... '" ""ignme"" 27$_277 
,~d''<lrnll 262_263, 

263-275 
..... tabl< 260-262 
<ynchronoo,242 
limint2~266 

""">0<1 ""'0, 271_219 
Seri.I' 

oddi,iooo l:lO-lS2 
ro<rnt~ 33J 
~~ 
~k<l-N>alI/OS94--m 

'r,n.for 348-352 
Sct,;«",g 
S<!_."""";>1i,,, "'"PP'"i 62~ 
S<!up ci...,. ~tnurood 

fl,p-flop 2n 



.sc,-<n-"'I;""'"' di<play I()I! 

Shared logic 32~ 
Shift 323 

i ... -ominl [);I of 323 
O<IlfOI"l! [);I of 323 

Shift "gl.I,,,, 326-331 
t>idi=tiooal329--331 
unldireclKIIUI 329 
wilh "",,,lIel lo><I 327-329 

Shift<" 439-441 
Nn'tl +lCl-4Il. ~3 

""",""""",,,,1439 
Silln <>1<"""" 229.453. H9 
SiX .. I, 4 . 229 

SiX""" l>in.,,. "U",I>< .. 
216-21 % 

SiJlnjfl<and 5 10 
SImplex 5'11 
$im.I .. ;o., YJh--Y>1 

fu""'i ..... 1 266 
IImi"ll266 

S' "w. cloc' 2~. 266 
Small·""ole '"t<~r.'cd (SSt) 

..tc.""".91 
SPK,,",I"'" In<loo(f 35 I 
Spoti.llocallly b20 
51'«'01"i'''' loading sn 
So.!u,,",49-$O 

SRAM. Su S .. ,", '""'"""" 

"""'" It><'"'-""Ji 
SSI. Sn De,-i<a.. ...... 1I>el1e 

Int<gmcd 
Stoo'488 

...,hllec/U", 490 
in"tIl",i,,,,, -®I. 492 
I"',",or (SP) 48S 

SI:>tI<Ltd, 

(""'1'1;41---41 

~"'" 100 
Sta<c 201~ 260 

box .16.'1 
diqram 21>2_263 
m.eI",,", 365 
.. hie 2W-262 

in"",2(11) 

""" "III< 2(11) 
'"""P'-" 260 
p<=:nl 51"" 260 

Sw,."" 
",y""h~,..)U. 243 

ele""'"" 243 
"",,,,,,,<.450----45 I 

Slrobin~ 588_589 
SlrUctu"" dc>cnplion 93 
SubsttlulKJ<l61 
SubirxtKJ<l: 

[);nary 14 ,i,,,,,,, ".in~ 
CO!Dpkmc:nl> 2 18 

"""i~n<d ",ins 
oomplem<nI>2!4 

Sum of m,,,,,,",,,, 43 
Sum of [><Odoct< 4}---46 

O{I<imi<-Olio" 45, 48. ~. 
SR. 61--(03. 61. 80 

$uml<'m41---42 
Supet_pipeti""", CPU S70 
Super",:ol'" '''P"it>I;o., -'69. 

'" S.P!"'" IH 
SyoclvooiUlion pan ..... 

(SYNC) S96 
Synch ronou. """",nl i.1 ci teuil 

"' 
T 

l ' ftlP-no,. 282-284 
Tar.,,, odd",,, 539 
T"'l!"1 off .. 1 539 

T«h""""-'!;y ""'I'\';'I'lI 95. 
110-120 

Temponlloc>lily620 
Tern" of on "PUS""" 33 
T.<lbench94 
Thr.o,hi ng 612 
Th~",c' 

buffcn 71-79 
bu< J.l7_.l48 

Throo~hl"" no 
Tim,nsdi'iram 32 
11.B. s., T ,..o,latiQn 

looh.i..tc huff", (fIJI) 
Top--down ..Ic>ij;n 87. 88. 92 
IpJo· s.~ ~ .. IOII tld.y 
1f'JIL Sh lIi"'_I<>-""'" 

fI"OI"Pl"'" lin>< 
IPIJI Sh I.(>lol-l<>-hiJ.h 

1"'-'1'..,.11'''' " It>< 
TI"oCk581 

T,..il;nl'.eros 13 
Trnmfer: 

i"t.<rup' _i nit .. ,0<1 60 I 
-~, 

..... Iliple "'t'''''' J.l5-348 
mullipl<=._ 

~~~ 

rrogram-<OMlroIled ,-,
.moll4%-352
''''''''-...... -b.oscd J.I 7-.l48

Tmcl<rrinJ: 143
T~"""4

T""'>il~'" 32
Tnu"i,ioo rcl;ioo< 32
Traru l"ton iook .. i..tc buff.".

(TI.B) fi..\O--{,42
T,..,,;mi,,;oo:

aIoyncbronou. m
""'-'I 593
.ynchronou. 591. 5'13

T"""mi,,;oo S 79--$0
c>c]u,ive-OR W

T~n1249

T~..tcI.y99

T~518

Tri"", 2019
Truth .. 1>1< 31

AND31
co .. d.n«<l 146-147. 15)
f.nction JJ--34
NOT 31
ope",;oo31
OR31

Tu""""",,,d lime 5'1 1
Two' , complen""1 211. 213
Two--le,·.1 <i","il4<\

u

()pIlmi""",," 47_5N

""" <ti1Ct'" 48--W
[""r-..n.ble mop

55-58
,hru-.oriable m. p

SO-55
,w,,",.n.ble map

,~~

UnifO<d <""he 615
Uni,',,<ll t ate n

Indo:x D 6SS

Uni-..l Serial So> (USB) S'Jo.I
Un'=Je (S"Wl<mrntl14

u"J """ Hum
USB. Su Un,,,,,rsa) .m" bus

V.I;dbi,631
Vol",,-f,,;nI143
Vect<J< deo;is;o., bo • .l66
V«_~,;,ol

VectoI'ed intemJpl6(l1
Verifocotion 121 _124
Veriloi 93. 1S4---19O. 23}"23S.

19I - l'I&, 3S4--lSS,
JS7-390,427

~ """""'" 292
-'8" ISS
bclIavionl dcocllption

D~~

bl<>cking ... ill""""192
c'>e29S
clocli >tid r<>d 192
oomm<nts 184
C<:<np;kT di=i",. llef",c

~,

".,"',.' ;00 LJ.I.--235
coon"" "'l""=n'OI;oo

3S-I-3SS
Ja .. fIo", dcocriptlOO ISS
",1",,1,198
<1'<0' ooo'R)l 293
if", 'se293
,npu' 185
<mduk: 19j
_-bIoolinl ... ignmcn<

m
""'PU' 1115-186
~

...... y.292
;"i,i.1 292

"'g"1eI" 292
"'IV'1eI" trot,(.,,- .ymbol.

'" "'1""=",>1"", of
m"I'i~ic:r 387

",,,,,,,,,,,,",;00 of
.... ",,"'iol <i",u'l'

""

656 0 lnlle~

, I .
.... ""nl .. o,re".1.

291-198

..,ift "'S'>l" <"<"P"",na-
, ion 352_353

''',",'"'''' 1Ie","!"i"" 1116
"« 187

,."'" 1116
Very.~ . .w. '111<~

(VLSI) Il<vi=. 97. IJ2
VHDl. 93. 176-184. 229-233.

2!5-291. 3S2_3S4.
)84.-)g7.4?"/

....,hi,.."u", <)(an .nli'y ,,.
anri ""te 291
I>ogin 179
I>e"",v;.,,.nl lIe","ption

231_233

c.o"" W . 239-290
pi,f.U 290

OOO' n>on' 177
rom""""n' 179
roocatroation 23 1-231

coo"'" "'pteS<flUtion 352
da,.fIow<ieJ<ription 181

llel .. "me 179
.0<1179
""i'y decl ion 175
lIate; 111-6

F"''''ion of >bJnie 2&4
if·II>< I", 28S-187

pitfall 290
librnry 178
",hen 183.290
p..::k>.£< 118 ...

declon"ion 178

-'" procc .. 284-2&S

>CII'i'ivi'y Ii" 2gj
",¥i, .. , ''''",feTS 'y mbol>

'" ~n"'l011 of binary
mul'ipl)84.-351

",,,,,,,,,.Uh,,,, of -
IiaI .;i""i, 181

~,m f;~J~r;m~mj
,;.,., 3S I

,iVW' 179
"ondard logic 178
".'e ... il\nm<n, 29 1
~'ocOOi"l!291
SId_loP< 178
stdJolOc_,-.ctors

180-1 81
"""",ural drscript;oo 179
'ypcW
"'" 178
, ·ari.ablc 2&4
,.-hen-clse "atclD<Jl1 182
",ill 1«1 1&2

Vin .. 1 ..s.Jre;o 636
Vi" ... 1 """)' 622, 636----6-12
Vi,,".1 page oo<nbef 638
VLSI. s.. Dc,,'us. very lOll<
"".lc'."'~

VLSI design'

w

full c.,1Om 110

,""''''''y III
>WId>N cell III

WonioIOO

Woni "'~' 4Of,
Wri'e cy<lc ,ime 403
Wrif<' """""ion 400, 402
W,i'o-bod 632
Wrile-""lkrin8632
Wri'o-,h""'gfl631-6J2

,
XOR. S" ExcI",i,,·OR

,
Zcro-oJd=s in"roo'ion.
~

Zero fill 227- 229

	Mano,Kime - Logic and Computer Design Fundamentals 3e - part I.pdf
	Mano,Kime - Logic and Computer Design Fundamentals 3e - part II

