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This book has been written to present the algorithmic, programming, and

structuring techniques of a traditional data structures course in an object-
oriented context. You'll find that all of the familiar topics of lists, stacks, queues,
trees, graphs, sorting, searching, Big-O complexity analysis, and recursion are still
here, but covered from an object-oriented point of view using Java. Thus, our struc-
tures are defined with Java interfaces and encapsulated as Java classes. We use
abstract classes and inheritance, as appropriate, to take advantage of the relation-
ships among various versions of the data structures. We use design aids, such as
Class-Responsibility-Collaborator (CRC) Cards and Universal Modeling Language
(UML) diagrams, to help us model and visualize our classes and their interrelation-
ships. We hope that you enjoy this modern and up-to-date approach to the tradi-
tional data structures course.

Welcome to the first edition of Object-Oriented Data Structures using Java.

Abstract Data Types

Over the last 16 years, the focus of the data structures course has broadened consid-
erably. The topic of data structures now has been subsumed under the broader topic
of abstract data types (ADTs)—the study of classes of objects whose logical behavior
is defined by a set of values and a set of operations.

The term abstract data type describes a domain of values and set of operations
that are specified independently of any particular implementation. The shift in
emphasis is representative of the move towards more abstraction in computer science
education. We now are interested in the study of the abstract properties of classes of
data objects in addition to how the objects might be represented in a program.

The data abstraction approach leads us, throughout the book, to view our data
structures from three different perspectives: their specification, their application, and
their implementation. The specification describes the logical or abstract level. This
level is concerned with what the operations are and what they do. The application
level, sometimes called the user level, is concerned with how the data type might be
used to solve a problem. This level is concerned with why the operations do what
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they do. The implementation level is where the operations are actually coded. This
level is concerned with the how questions.

Using this approach, we stress computer science theory and software engineering
principles, including modularization, data encapsulation, information hiding, data
abstraction, stepwise refinement, visual aids, the analysis of algorithms, and software
verification methods. We feel strongly that these principles should be introduced to
computer science students early in their education so that they learn to practice good
software techniques from the beginning.

An understanding of theoretical concepts helps students put the new ideas they
encounter into place, and practical advice allows them to apply what they have learned.
To teach these concepts we consistently use intuitive explanations, even for topics that
have a basis in mathematics, like the analysis of algorithms. In all cases, our highest
goal has been to make our explanations as readable and as easily understandable as
possible.

Prerequisite Assumptions
In this book, we assume that readers are familiar with the following Java constructs.

¢ Built-in simple data types

¢ Control structures while, do, for, if, and switch

¢ C(reating and instantiating objects

e Basic user-defined classes
e variables and methods
e constructors, method parameters, and the refurn statement
e visibility modifiers

e Built-in array types

e Basic string operations

We have included a review within the text to refresh the student’s memory concerning
some of the details of these topics (for example, defining/using classes and using
strings).

Input/Output

It is difficult to know what background the students using a data structures textbook
will have in Java I/0. Some may have learned Java in an environment where the Java
input/output statements were “hidden” behind a package provided with their introduc-
tory textbook. Others may have learned graphical input/output techniques, but never
learned how to do file input/output. Some have learned how to create graphical inter-
faces using the Java AWT; others have learned Swing; others have learned neither.
Therefore, we have taken the following approach to 1/0:

We assume the student has very little background.

We establish our “standard” I/O approach early—in the test driver developed at the
end of the first chapter. The test driver uses command line parameters for input, basic
text file input and output, and simple screen output based on Java’s Swing classes.
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Except for the case studies, we restrict our use of I/0O throughout the text to the set of
techniques used in the test driver.

We explain the I/0 techniques used in the test driver in the Java Input/Output I fea-
ture section at the end of Chapter 1.

The only places in the text where more advanced I/O approaches are used are in the
case studies. Beginning with Chapter 3, we develop case studies as examples of “real”
programs that use the data structures we are studying. These case studies use progres-
sively more advanced graphical interfaces, and are accompanied by additional feature
sections as needed to explain any new constructs. Therefore, the case studies not only
provide examples of object-oriented design and uses of data structures, they progres-
sively introduce the student to user interface design techniques.

Content and Organization

We like to think that the material in Chapters 1 and 2 is a review for most students.
However, the concepts in these two chapters are so crucial to the future of any and all
students that we cannot rely on their having seen the material before. Even students
who are familiar with the topics in these chapters can benefit from a review of the
material since it is usually beneficial to see things from more than one perspective.

Here is a chapter-by-chapter overview of the textbook contents:

Chapter 1 outlines the basic goals of high-quality software and the basic principles of
software engineering for designing and implementing programs to meet these goals.
Abstraction, stepwise refinement, and object-oriented design are discussed. Some princi-
ples of object-oriented programming—encapsulation and inheritance—are introduced
here. The UML class diagram is used as a tool for visualizing class characteristics and
relationships. CRC cards are used in an introductory design example. This chapter also
addresses what we see as a critical need in software education: the ability to design and
implement correct programs and to verify that they are actually correct. Topics covered
include the concept of “life-cycle” verification; designing for correctness using precon-
ditions and postconditions; the use of deskchecking and design/code walk-throughs and
inspections to identify errors before testing; debugging techniques, data coverage (black
box), and code coverage (clear or white box) approaches; and test plans. As we develop
ADTs in subsequent chapters, we discuss the construction of an appropriate test plan for
each. The chapter culminates with the development of a test driver to aid in the testing
of a simple programmer-defined class. The test driver has the additional benefit of
introducing the basic I/0 techniques used throughout the rest of the text.

Chapter 2 presents data abstraction and encapsulation, the software engineering con-
cepts that relate to the design of the data structures used in programs. Three perspec-
tives of data are discussed: abstraction, implementation, and application. These
perspectives are illustrated using a real-world example (a library), and then are applied
to built-in data structures that Java supports: primitive types, classes, interfaces, and
arrays. The Java class type is presented as the way to represent the abstract data types
we examine in subsequent chapters. We also look at several useful Java library classes,
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including exceptions, wrappers, and strings. A feature section warns of the pitfalls of
using references, which are the only means available to us for manipulating objects in
Java.

Chapter 3 introduces a fundamental abstract data type: the list. The chapter begins
with a general discussion of lists and then presents lists using the framework with
which all of the other data structures are examined: a presentation and discussion of the
specification, a brief application using the operations, and the design and coding of the
operations. Both the unsorted and the sorted lists are presented with an array-based
implementation. The binary search is introduced as a way to improve the performance
of the search operation in the sorted list. Because there is more than one way to solve a
problem, we discuss how competing solutions can be compared through the analysis of
algorithms, using Big-0 notation. This notation is then used to compare the operations
in the unsorted list and the sorted list. The chapter begins with the presentation of an
unsorted string list ADT. However, by the end of the chapter we have introduced
abstract classes to allow us to take advantage of the common features of sorted and
unsorted lists, and interfaces to enable us to implement generic lists. The chapter case
study takes a simple real estate database, demonstrates the object-oriented design
process, and concludes with the actual coding of a problem in which the sorted list is
the principal data object. The development of the code for the case study introduces the
use of interactive frame-based input.

Chapter 4 presents the stack and the queue data types. Each data type is first considered
from its abstract perspective, and the idea of recording the logical abstraction in an ADT
specification as a Java interface is stressed. The Stack ADT is implemented in Java using
both an array-based approach and an array-list based approach. The Queue ADT is
implemented using the array-based approach. A feature section discusses the options of
implementing data structures “by copy” or “by reference.” Example applications using
both stacks (checking for balanced parenthesis) and queues (checking for palindromes),
plus a case study using stacks (postfix expression evaluator) are presented. The chapter
also includes a section devoted to the Java library’s collection framework; that is, the
lists, stacks, queues and so on that are available in the standard Java library.

Chapter 5 reimplements the ADTs from Chapters 3 and 4 as linked structures. The tech-
nique used to link the elements in dynamically allocated storage is described in detail
and illustrated with figures. The array-based implementations and the linked imple-
mentations are then compared using Big-O notation. The chapter culminates with a
review of our list framework, as it evolved in Chapters 3, 4, and 5, to use two interfaces,
two abstract classes, and four concrete classes.

Chapter 6 looks at some alternate approaches for lists: circular linked lists, doubly
linked lists, and lists with headers and trailers. An alternative representation of a linked
structure, using static allocation (an array of nodes), is designed. The case study uses a
list ADT developed specifically to support the implementation of large integers.

Chapter 7 discusses recursion, first providing an intuitive view of the concept, and then
showing how recursion can be used to solve programming problems. Guidelines for
writing recursive methods are illustrated with many examples. After demonstrating that
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a by-hand simulation of a recursive routine can be very tedious, a simple three-question
technique is introduced for verifying the correctness of recursive methods. Because
many students are wary of recursion, the introduction to this material is deliberately
intuitive and nonmathematical. A more detailed discussion of how recursion works
leads to an understanding of how recursion can be replaced with iteration and stacks.

Chapter 8 introduces binary search trees as a way to arrange data, giving the flexibility
of a linked structure with O(log,N) insertion and deletion time. We build on the previous
chapter and exploit the inherent recursive nature of binary trees, by presenting recursive
algorithms for many of the operations. We also address the problem of balancing binary
search trees and implementing them with an array. The case study discusses the process
of building an index for a manuscript and implements the first phase.

Chapter 9 presents a collection of other ADTs: priority queues, heaps, and graphs. The
graph algorithms make use of stacks, queues, and priority queues, thus both reinforcing
earlier material and demonstrating how general these structures are. The chapter ends
with a section discussing how we can store objects (that could represent data structures)
in files for later use.

Chapter 10 presents a number of sorting and searching algorithms and asks the ques-
tion: which are better? The sorting algorithms that are illustrated, implemented, and
compared include straight selection sort, two versions of bubble sort, insertion sort,
quick sort, heap sort, and merge sort. The sorting algorithms are compared using Big-0
notation. The discussion of algorithm analysis continues in the context of searching.
Previously presented searching algorithms are reviewed and new ones are described.
Hashing techniques are discussed in some detail.

Additional Features

Chapter Goals A set of goals presented at the beginning of each chapter helps the
students assess what they have learned. These goals are tested in the exercises at the
end of each chapter.

Chapter Exercises Most chapters have 30 or more exercises, organized by chapter
sections to make it easy to assign the exercises. They vary in levels of difficulty,
including short and long programming problems, the analysis of algorithms, and
problems to test the student’s understanding of concepts. Approximately one-third of
the exercises are answered in the back of the book.

Chapter Summaries Each chapter concludes with a summary section that reviews the
most important topics of the chapter and ties together related topics.

Chapter Summary of Classes and Support Files The end of each chapter also includes
a table showing the set of author-defined classes/interfaces and support files introduced
in the chapter and another table showing the set of Java library classes/interfaces/
methods used in the chapter for the first time.
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Sample Programs There are many sample programs and program segments illustrating
the abstract concepts throughout the text.

Case Studies There are four major case studies. Each includes a problem description,
an analysis of the problem input and required output, and a discussion of the
appropriate data structures to use. The case studies are completely coded and tested.

Appendices The appendices summarize the Java reserved word set, operator
precedence, primitive data types, and the ASCII subset of Unicode.

Web Site Jones and Bartlett has designed a web site to support this text. At
http://oodatastructures.jbpub.com, students will find a glossary and most of the source
code presented in the text. Instructors will find teaching notes, in-class activity
suggestions, answers to those questions that are not in the back of the book, and
PowerPoint presentations for each chapter. To obtain a password for this site, please
contact Jones and Bartlett at 1-800-832-0034. Please contact the authors if you have
material related to the text that you would like to share with others.
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Software Engineering

Measurable goals for this chapter include that you should be able to

describe software life cycle activities
describe the goals for "quality” software

explain the following terms: software requirements, software specifications, algorithm, infor-
mation hiding, abstraction, stepwise refinement

describe four variations of stepwise refinement
explain the fundamental ideas of object-oriented design

explain the relationships among classes, objects, and inheritance and show how they are imple-
mented in Java

explain how CRC cards are used to help with software design

interpret a basic UML state diagram

identify sources of software errors

describe strategies to avoid software errors

specify the preconditions and postconditions of a program segment or method

show how deskchecking, code walk-throughs, and design and code inspections can improve soft-
ware quality and reduce effort

explain the following terms: acceptance tests, regression testing, verification, validation, functional
domain, black box testing, white box testing

W state several testing goals and indicate when each would be appropriate

describe several integration-testing strategies and indicate when each would be appropriate

explain how program verification techniques can be applied throughout the software develop-
ment process

create a Java test driver program to test a simple class
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1]

At this point you have completed at least one semester of computer science course
work. You can take a problem of medium complexity, design a set of objects that work
together to solve the problem, code the method algorithms needed to make the objects
work, and demonstrate the correctness of your solution.

In this chapter, we review the software process, object-oriented design, and the ver-
ification of software correctness.

The Software Process

When we consider computer programming, we immediately think of writing code in
some computer language. As a beginning student of computer science, you wrote pro-
grams that solved relatively simple problems. Much of your effort went into learning
the syntax of a programming language such as Java or C++: the language’s reserved
words, its data types, its constructs for selection and looping, and its input/output
mechanisms.

You learned a programming methodology that takes you from a problem descrip-
tion all the way through to the delivery of a software solution. There are many design
techniques, coding standards, and testing methods that programmers use to develop
high-quality software. Why bother with all that methodology? Why not just sit down at
a computer and enter code? Aren’t we wasting a lot of time and effort, when we could
just get started on the “real” job?

If the degree of our programming sophistication never had to rise above the level of
trivial programs (like summing a list of prices or averaging grades), we might get away
with such a code-first technique (or, rather, a lack of technique). Some new program-
mers work this way, hacking away at the code until the program works more or less
correctly—usually less!

As your programs grow larger and more complex, you must pay attention to other
software issues in addition to coding. If you become a software professional, you may
work as part of a team that develops a system containing tens of thousands, or even
millions, of lines of code. The activities involved in such a software project’s whole “life
cycle” clearly go beyond just sitting down at a computer and writing programs. These
activities include:

e Problem analysis Understanding the nature of the problem to be solved

e Requirements elicitation Determining exactly what the program must do

e Software specification Specifying what the program must do (the functional
requirements) and the constraints on the solution approach (nonfunctional
requirements, such as what language to use)

e High- and low-level design Recording how the program meets the require-
ments, from the “big picture” overview to the detailed design

e [Implementation of the design Coding a program in a computer language

e Testing and verification Detecting and fixing errors and demonstrating the
correctness of the program

e Delivery Turning over the tested program to the customer or user (or instructor)

'l"cmn-FIy :



e Operation
® Maintenance
the function of the program

Actually using the program
Making changes to fix operational errors and to add or modify

1.1 The Software Process 3

Software development is not simply a matter of going through these steps sequen-
tially. Many activities take place concurrently. We may be coding one part of the solu-
tion while we're designing another part, or defining requirements for a new version of a
program while we're still testing the current version. Often a number of people work on
different parts of the same program simultaneously. Keeping track of all these activities

requires planning.

We use the term software engineering to
refer to the discipline concerned with all
aspects of the development of high-quality
software systems. It encompasses all varia-
tions of techniques used during the software
life cycle plus supporting activities such as
documentation and teamwork. A software
process is a specific set of inter-related soft-
ware engineering techniques used by a person
or organization to create a system.

What makes our jobs as programmers or

Software engineering The discipline devoted to the
design, production, and maintenance of computer pro-
grams that are developed on time and within cost esti-
mates, using tools that help to manage the size and
complexity of the resulting software products

Software process A standard, integrated set of soft-
ware engineering tools and techniques used on a proj-
ect or by an organization

software engineers challenging is the tendency of software to grow in size and com-
plexity and to change at every stage of its development. Part of a good software process
is the use of tools to manage this size and complexity. Usually a programmer has sev-
eral toolboxes, each containing tools that help to build and shape a software product.

Hardware

One toolbox contains the hardware itself: the computers and their peripheral devices
(such as monitors, terminals, storage devices, and printers), on which and for which we

develop software.

Software

A second toolbox contains various software tools: operating systems, editors, compilers,
interpreters, debugging programs, test-data generators, and so on. You've used some of

these tools already.

Ideaware

A third toolbox is filled with the knowledge that software engineers have collected over
time. This box contains the algorithms that we use to solve common programming prob-

lems, as well as data structures for modeling
the information processed by our programs.
Recall that an algorithm is a step-by-step
description of the solution to a problem.
Ideaware contains programming method-
ologies, such as object-oriented design, and

Algorithm A logical sequence of discrete steps that
describes a complete solution to a given problem com-

putable in a finite amount of time and space
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Requirements

Software specification A detailed description of the
function, inputs, processing, outputs, and special
requirements of a software product. It provides the
information needed to design and implement the

product.

A statement of what is to be provided
by a computer system or software product

Chapter 1: Software Engineering

software concepts, including information hiding, data encapsulation, and abstraction. It
includes aids for creating designs such as CRC (Classes, Responsibilities, and Collabora-
tions) cards and methods for describing designs such as the UML (Unified Modeling Lan-
guage). It also contains tools for measuring, evaluating, and proving the correctness of our
programs. We devote most of this book to exploring the contents of this third toolbox.

Some might argue that using these tools takes the creativity out of programming,
but we don’t believe that to be true. Artists and composers are creative, yet their inno-
vations are grounded in the basic principles of their crafts. Similarly, the most creative
programmers build high-quality software through the disciplined use of basic program-
ming tools.

Goals of Quality Software

Quality software is much more than a program that accomplishes its task. A good pro-
gram achieves the following goals:

1. Tt works.

2. It can be modified without excessive time and effort.
3. It is reusable.
4.

It is completed on time and within budget.

It’s not easy to meet these goals, but they are all important.

Goal 1: Quality Software Works

A program must accomplish its task, and it must do it correctly and completely. Thus,
the first step is to determine exactly what the program is required to do. You need to
have a definition of the program’s requirements. For
students, the requirements often are included in the
instructor’s problem description. For programmers on
a government contract, the requirements document
may be hundreds of pages long.

We develop programs that meet the requirements
by fulfilling software specifications. The specifications
indicate the format of the input and output, details
about processing, performance measures (how fast?
how big? how accurate?), what to do in case of errors,
and so on. The specifications tell what the program does, but not how it is done. Some-
times your instructor provides detailed specifications; other times you have to write
them yourself, based on a problem description, conversations with your instructor, or
intuition.

How do you know when the program is right? A program has to be

complete: it should “do everything” specified

correct: it should “do it right”

usable: its user interface should be easy to work with
efficient: at least as efficient as “it needs to be”
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For example, if a desktop-publishing program cannot update the screen as rapidly as the
user can type, the program is not as efficient as it needs to be. If the software isn’t effi-
cient enough, it doesn’t meet its requirements, and thus, according to our definition, it
doesn’t work correctly.

Goal 2: Quality Software Can Be Modified
When does software need to be modified? Changes occur in every phase of its existence.

Software is changed in the design phase. When your instructor or employer gives you
a programming assignment, you begin to think of how to solve the problem. The next
time you meet, however, you may be notified of a change in the problem description.

Software is changed in the coding phase. You make changes in your program
because of compilation errors. Sometimes you see a better solution to a part of the
problem after the program has been coded, so you make changes.

Software is changed in the testing phase. If the program crashes or yields wrong
results, you must make corrections.

In an academic environment, the life of the software typically ends when a program
is turned in for grading. When software is developed for actual use, however, many
changes can be required during the maintenance phase. Someone may discover an error
that wasn’t uncovered in testing, someone else may want to include additional func-
tionality, a third party may want to change the input format, and a fourth party may
want to run the program on another system.

The point is that software changes often and in all phases of its life cycle. Knowing
this, software engineers try to develop programs that are easy to modify. Modifications
to programs often are not even made by the original authors but by subsequent mainte-
nance programmers. Someday you may be the one making the modifications to some-
one else’s program.

What makes a program easy to modify? First, it should be readable and understand-
able to humans. Before it can be changed, it must be understood. A well-designed,
clearly written, well-documented program is certainly easier for human readers to
understand. The number of pages of documentation required for “real-world” programs
usually exceeds the number of pages of code. Almost every organization has its own
policy for documentation.

Second, it should be able to withstand small changes easily. The key idea is to par-
tition your programs into manageable pieces that work together to solve the problem,
yet are relatively independent. The design methodologies reviewed later in this chapter
should help you write programs that meet this goal.

Goal 3: Quality Software Is Reusable
It takes time and effort to create quality software. Therefore, it is important to receive as
much value from the software as possible.

One way to save time and effort when building a software solution is to reuse pro-
grams, classes, methods, and so on from previous projects. By using previously designed
and tested code, you arrive at your solution sooner and with less effort. Alternatively,
when you create software to solve a problem, it is sometimes possible to structure that
software so it can help solve future, related problems. By doing this, you are gaining
more value from the software created.
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Creating reusable software does not happen automatically. It requires extra effort
during the specification and design of the software. Reusable software is well docu-
mented and easy to read, so that it is easy to tell if it can be used for a new project. It
usually has a simple interface so that it can easily be plugged into another system. It is
modifiable (Goal 2), in case a small change is needed to adapt it to the new system.

When creating software to fulfill a narrow, specific function, you can sometimes
make the software more generally useable with a minimal amount of extra effort. There-
fore, you increase the chances that you will reuse the software later. For example, if you
are creating a routine that sorts a list of integers into increasing order, you might general-
ize the routine so that it can also sort other types of data. Furthermore, you could design
the routine to accept the desired sort order, increasing or decreasing, as a parameter.

One of the main reasons for the rise in popularity of object-oriented approaches is
that they lend themselves to reuse. Previous reuse approaches were hindered by inap-
propriate units of reuse. If the unit of reuse is too small, then the work saved is not
worth the effort. If the unit of reuse is too large, then it is difficult to combine it with
other system elements. Object-oriented classes, when designed properly, can be very
appropriate units of reuse. Furthermore, object-oriented approaches simplify reuse
through class inheritance, which is described later in this chapter.

Goal 4: Quality Software Is Completed on Time and within Budget

You know what happens in school when you turn your program in late. You probably
have grieved over an otherwise perfect program that received only half credit—or no
credit at all-because you turned it in one day late. “But the network was down for five
hours last night!” you protest.

Although the consequences of tardiness may seem arbitrary in the academic world,
they are significant in the business world. The software for controlling a space launch
must be developed and tested before the launch can take place. A patient database sys-
tem for a new hospital must be installed before the hospital can open. In such cases, the
program doesn’t meet its requirements if it isn’t ready when needed.

“Time is money” may sound trite but failure to meet deadlines is expensive. A com-
pany generally budgets a certain amount of time and money for the development of a
piece of software. If part of a project is only 80% complete when the deadline arrives,
the company must pay extra to finish the work. If the program is part of a contract with
a customer, there may be monetary penalties for missed deadlines. If it is being devel-
oped for commercial sales, the company may be beaten to the market by a competitor
and be forced out of business.

Once you know what your goals are, what can you do to meet them? Where should
you start? There are many tools and techniques that software engineers use. In the next
few sections of this chapter, we focus on a review of techniques to help you understand,
design, and code programs.

Specification: Understanding the Problem

No matter what programming design technique you use, the first steps are the same.
Imagine the following situation. On the third day of class, you are given a 12-page
description of Programming Assignment 1, which must be running perfectly and turned
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in by noon, a week from yesterday. You read the assignment and realize that this pro-
gram is three times larger than any program you have ever written. Now, what is your
first step?

The responses listed here are typical of those given by a class of students in such a
situation:

1. Panic and do nothing 39%
2. Panic and drop the course 300%
3. Sit down at the computer and begin typing  27%
4. Stop and think 4%

Response 1 is a predictable reaction from students who have not learned good pro-
gramming techniques. Students who adopt Response 2 find their education progressing
rather slowly. Response 3 may seem to be a good idea, especially considering the dead-
line looming. Resist the temptation, though, to immediately begin coding; the first step
is to think. Before you can come up with a program solution, you must understand the
problem. Read the assignment, and then read it again. Ask questions of your instructor
to clarify the assignment. Starting early affords you many opportunities to ask ques-
tions; starting the night before the program is due leaves you no opportunity at all.

One problem with coding first and thinking later is that it tends to lock you into the
first solution you think of, which may not be the best approach. We have a natural ten-
dency to believe that once we've put something in writing, we have invested too much
in the idea to toss it out and start over.

Writing Detailed Specifications

Many writers experience a moment of terror when faced with a blank piece of paper—
where to begin? As a programmer, however, you should always have a place to start.
Using the assignment description, first write a complete definition of the problem,
including the details of the expected inputs and outputs, the processing and error han-
dling, and all the assumptions about the problem. When you finish this task, you have a
specification—a definition of the problem that tells you what the program should do. In
addition, the process of writing the specification brings to light any holes in the require-
ments. For instance, are embedded blanks in the input significant or can they be
ignored? Do you need to check for errors in the input? On what computer system(s) is
your program to run? If you get the answers to these questions at this stage, you can
design and code your program correctly from the start.

Many software engineers make use of operational scenarios to understand require-
ments. A scenario is a sequence of events for one execution of the program. Here, for
example, is a scenario that a designer might consider when developing software for a
bank’s automated teller machine (ATM).

The customer inserts a bankcard.

The ATM reads the account number on the card.

The ATM requests a PIN (personal identification number) from the customer.
The customer enters 5683.

O W N =

The ATM successfully verifies the account number and PIN combination.
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6. The ATM asks the customer to select a transaction type (deposit, show balance,
withdrawal, or quit).

7. The customer selects show balance.
8. The ATM obtains the current account balance ($1,204.35) and displays it.

9. The ATM asks the customer to select a transaction type (deposit, show balance,
withdrawal, or quit).

10. The customer selects quit.
11. The ATM returns the customer’s bankcard.

Scenarios allow us to get a feel for the behavior expected from the system. A single
scenario cannot show all possible behaviors, however, so software engineers typically
prepare many different scenarios to gain a full understanding of the requirements.

Sometimes details that are not explicitly stated in the requirements may be handled
according to the programmer’s preference. In some cases you have only a vague
description of a problem, and it is up to you to define the entire software specification;
these projects are sometimes called open problems. In any case, you should always doc-
ument assumptions that you make about unstated or ambiguous details.

The specification clarifies the problem to be solved. However, it also serves as an
important piece of program documentation. Sometimes it acts as a contract between a
customer and a programmer. There are many ways in which specifications may be
expressed and a number of different sections that may be included. Our recommended
program specification includes the following sections:

e processing requirements
e sample inputs with expected outputs
e assumptions

If special processing is needed for unusual or error conditions, it too should be specified.
Sometimes it is helpful to include a section containing definitions of terms used. It is
also useful to list any testing requirements so that verifying the program is considered
early in the development process. In fact, a test plan can be an important part of a spec-
ification; test plans are discussed later in this chapter in the section on verification of
software correctness.

Program Design

Remember, the specification of the program tells what the program must do, but not
how it does it. Once you have clarified the goals of the program, you can begin the
design phase of the software life cycle. In this section, we review some ideaware tools
that are used for software design and present a review of object-oriented design con-
structs and methods.
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Tools

Abstraction

The universe is filled with complex systems. We learn about such systems through mod-
els. A model may be mathematical, like equations describing the motion of satellites
around the earth. A physical object such as a model airplane used in wind-tunnel tests
is another form of model. Only the characteristics of the system that are essential to the
problem being studied are modeled; minor or irrelevant details are ignored. For exam-
ple, although the earth is an oblate ellipsoid, globes (models of the earth) are spheres.
The small difference in shape is not important to us in studying the political divisions
and physical landmarks on the earth. Similarly, in-flight movies are not included in the
model airplanes used to study aerodynamics.

An abstraction is a model of a complex
system that includes only the essential details.
Abstractions are the fundamental way that we
manage complexity. Different viewers use dif-
ferent abstractions of a particular system.
Thus, while we see a car as a means of transportation, the automotive engineer may see
it as a large mass with a small contact area between it and the road (Figure 1.1).

What does abstraction have to do with software development? The programs we
write are abstractions. A spreadsheet program used by an accountant models the books
used to record debits and credits. An educational computer game about wildlife models
an ecosystem. Writing software is difficult because both the systems we model and the
processes we use to develop the software are complex. One of our major goals is to con-
vince you to use abstractions to manage the complexity of developing software. In
nearly every chapter, we make use of abstractions to simplify our work.

Abstraction A model of a complex system that
includes only the details essential to the perspective of
the viewer of the system

Figure 1.1 Anabstraction includes the essential details relative to the perspective of the viewer
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Information Hiding

Many design methods are based on decomposing a problem’s solution into modules. By
“module” we mean a cohesive system subunit that performs a share of the work. In
Java, the primary module mechanism is the class. Decomposing a system into modules
helps us manage complexity. Additionally, the modules can form the basis of assign-
ments for different programming teams working separately on a large system.

Modules act as an abstraction tool. The complexity of their internal structure can be
hidden from the rest of the system. This means that the details involved in implement-
ing a module are isolated from the details of the rest
of the system. Why is hiding the details desirable?
Shouldn’t the programmer know everything? No!
Information hiding helps manage the complexity of a
system since a programmer can concentrate on one
module at a time.

Of course, a program’s modules are interrelated, since they work together to solve
the problem. Modules provide services to each other through a carefully defined inter-
face. The interface in Java is usually provided by the public methods of a class. Program-
mers of one module do not need to know the internal details of the modules it interacts
with, but they do need to know the interfaces. Consider a driving analogy—you can start
a car without knowing how many cylinders are in the engine. You don’t need to know
these lower-level details of the car’s power subsystem in order to start it. You just have to
understand the interface; that is, you only need to know how to turn the key.

Similarly, you don’t have to know the details of other modules as you design a spe-
cific module. Such a requirement would introduce a greater risk of confusion and error
throughout the whole system. For example, imagine what it would be like if every time
we wanted to start our car, we had to think, “The key makes a connection in the igni-
tion switch that, when the transmission safety interlock is in “park,” engages the starter
motor and powers up the electronic ignition system, which adjusts the spark and the
fuel-to-air ratio of the injectors to compensate for...".

Besides helping us manage the complexity of a large system, abstraction and infor-
mation hiding support our quality goals of modifiability and reusability. In a well-
designed system, most modifications can be localized to just a few modules. Such
changes are much easier to make than changes that permeate the entire system. Addi-
tionally, a good system design results in the creation of generic modules that can be
used in other systems.

To achieve these goals, modules should be good abstractions with strong cohesion;
that is, each module should have a single purpose or identity and the module should
stick together well. A cohesive module can usually be described by a simple sentence. If
you have to use several sentences or one very convoluted sentence to describe your
module, it is probably not cohesive. Each module should also exhibit information hiding
so that changes within it do not result in changes in the modules that use it. This inde-
pendent quality of modules is known as loose coupling. If your module depends on the
internal details of other modules, it is not loosely coupled.

But what should these modules be and how do we identify them? That question is
addressed in the subsection on object-oriented design later in this chapter.
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Stepwise Refinement

In addition to concepts such as abstraction and information hiding, software developers
need practical approaches to conquer complexity. Stepwise refinement is a widely appli-
cable approach. It has many variations such as top-down, bottom-up, functional
decomposition and even “round-trip gestalt design.” Undoubtedly, you have learned a
variation of stepwise refinement in your studies, since it is a standard method for
organizing and writing essays, term papers, and books. For example, to write a book an
author first determines the main theme and the major subthemes. Next, the chapter top-
ics can be identified, followed by section and subsection topics. Outlines can be pro-
duced and further refined for each subsection. At some point the author is ready to add
detail—to actually begin writing sentences.

In general, with stepwise refinement, a problem is approached in stages. Similar
steps are followed during each stage, with the only difference being the level of detail
involved. The completion of each stage brings us closer to solving our problem. Let’s
look at some variations of stepwise refinement:

e Top-down: First the problem is broken into several large parts. Each of these
parts is in turn divided into sections, then the sections are subdivided, and so on.
The important feature is that details are deferred as long as possible as we move
from a general to a specific solution. The outline approach to writing a book is a
form of top-down stepwise refinement.

e Bottom-up: As you might guess, with this approach the details come first. It is
the opposite of the top-down approach. After the detailed components are identi-
fied and designed, they are brought together into increasingly higher-level com-
ponents. This could be used, for example, by the author of a cookbook who first
writes all the recipes and then decides how to organize them into sections and
chapters.

e Functional decomposition: This is a program design approach that encourages
programming in logical action units, called functions. The main module of the
design becomes the main program (also called the main function), and subsec-
tions develop into functions. This hierarchy of tasks forms the basis for func-
tional decomposition, with the main program or function controlling the
processing. Functional decomposition is not used for overall system design in the
object-oriented world. However, it can be used to design the algorithms that
implement object methods. The general function of the method is continually
divided into sub-functions until the level of detail is fine enough to code. Func-
tional decomposition is top-down stepwise refinement with an emphasis on
functionality.

e Round-trip gestalt design: This confusing term is used to define the stepwise
refinement approach to object-oriented design suggested by Grady Booch,! one
of the leaders of the object movement. First, the tangible items and events in the
problem domain are identified and assigned to candidate classes and objects.

!Grady Booch, Object Oriented Design with Applications (Redwood City, CA: Benjamin Cummings, 1991).
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Next the external properties and relationships of these classes and objects are
defined. Finally, the internal details are addressed, and unless these are trivial,
the designer must return to the first step for another round of design. This
approach is top-down stepwise refinement with an emphasis on objects and data.

Good designers typically use a combination of the stepwise refinement techniques
described here.

Visual Aids

Abstraction, information hiding, and stepwise refinement are inter-related methods for
controlling complexity during the design of a system. We will now look at some tools
that we can use to help us visualize our designs. Diagrams are used in many profes-
sions. For example, architects use blueprints, investors use market trend graphs, and
truck drivers use maps.

Software engineers use different types of diagrams and tables. Here, we introduce the
Unified Modeling Language (UML) and Class, Responsibility, and Collaboration (CRC)
cards, both of which are used throughout this text.

The UML is used to specify, visualize, construct, and document the components of a
software system. It combines the best practices that have evolved over the past several
decades for modeling systems, and is particularly well-suited to modeling object-ori-
ented designs. UML diagrams are another form of abstraction. They hide implementa-
tion details and allow us to concentrate only on the major design components. UML
includes a large variety of interrelated diagram types, each with its own set of icons and
connectors. It is a very powerful development and modeling tool.

Covering all of UML is beyond the scope of this text.? We use only one UML dia-
gram type, detailed class diagrams, to describe some of our designs. Examples are

The official definition of the UML is maintained by the Object Management Group. Detailed information can
be found at http://www.omg.org/uml/ .

Team-Fly®
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Class Name: Superclass:

Subclassess:

Primary Responsibility

Responsibilities

Collaborations

Figure 1.2 A blank CRC card

shown beginning on page 16. The notation of the class diagrams is introduced as
needed throughout the text.

UML class diagrams are good for modeling our designs after we have developed
them. In contrast, CRC cards help us determine our designs in the first place. CRC cards
were first described by Beck and Cunningham? in 1989 as a means of allowing object-
oriented programmers to identify a set of cooperating classes to solve a problem.

A programmer uses a physical 4” X 6” index card to represent each class that has
been identified as part of a problem solution. Figure 1.2 shows a blank CRC card. It con-
tains room for the following information about a class:

1. Class name

2. Responsibilities of the class—usually represented by verbs and implemented by pub-
lic methods

3. Collaborations—other classes/objects that are used in fulfilling the responsibilities

Thus the name CRC card. We have added fields to the original design of the card for the
programmer to record superclass and subclass information, and the primary responsibil-
ity of the class.

3Beck and Cunningham: http://c2.com/doc/oopsla89/paper.html.
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CRC cards are a great tool for refining an object-oriented design, especially in a
team programming environment. They provide a physical manifestation of the building
blocks of a system, allowing programmers to walk through user scenarios, identifying
and assigning responsibilities and collaborations. The example in the next subsection
demonstrates the use of CRC cards for design.

Object-Oriented Design

Review
Before describing approaches to object-oriented design, we present a short review of
object-oriented programming. We use Java code to support this review.

The object-oriented paradigm is founded on three inter-related constructs: classes,
objects, and inheritance. The inter-relationship among these constructs is so tight that it
is nearly impossible to describe them separately. Objects are the basic run-time entities
in an object-oriented system. An object is an instantiation of a class; or alternately, a
class defines the structure of its objects. Classes are organized in an “is-a” hierarchy
defined by inheritance. The definition of an object’s behavior often depends on its posi-
tion within this hierarchy. Let’s look more closely at each of these constructs, using
Java code to provide a concrete representation of the concepts. Java reserved words
(when used as such), user-defined identifiers, class and method names, and so on appear
in this font throughout the entire textbook.

Classes A class defines the structure of an object or a set of objects. A class definition
includes variables (data) and methods (actions) that determine the behavior of an object.
The following Java code defines a Date class that can be used to manipulate Date
objects, for example, in a course scheduling system. The Date class can be used to
create Date objects and to learn about the year, month, or day of any particular Date
object.* Within the comments the word “this” is used to represent the current object.

public class Date
{
protected int year;
protected int month;
protected int day;
protected static final int MINYEAR = 1583;

public Date(int newMonth, int newDay, int newYear)
// Initializes this Date with the parameter values

4The Java library includes a Date class, java.util.Date. However, the familiar properties of dates
make them a natural example to use in explaining object-oriented concepts. So we ignore the existence of the
library class, as if we must design our own Date class.
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month = newMonth;
day = newDay;
year = newYear;

}

public int yearIs()
// Returns the year value of this Date
{

return year;

public int monthIs()
// Returns the month value of this Date
{

return month;

public int dayIs()
// Returns the day value of this Date
{

return day;

The Date class demonstrates two kinds of variables: instance variables and class
variables. The instance variables of this class are year, month, and day. Their values
vary for each different instance of an object of the class. Instance variables represent the
attributes of an object. MINYEAR is a class variable because it is defined to be static. It is
associated directly with the Date class, instead of with objects of the class. A single copy
of a static variable is maintained for all the objects of the class.

Remember that the final modifier states that a variable is in its final form and
cannot be modified; thus MINYEAR is a constant. By convention, we use only capital let-
ters when naming constants. It is standard procedure to declare constants as static vari-
ables. Since the value of the variable cannot change, there is no need to force every
object of a class to carry around its own version of the value. In addition to holding
shared constants, static variables can also be used to maintain information that is com-
mon to an entire class. For example, a Bank Account class may have a static variable
that holds the number of current accounts.

In the above example, the MINYEAR constant represents the first full year that the
widely used Gregorian calendar was in effect. The idea here is that programmers should
not use the class to represent dates that predate that year. We look at ways to enforce
this rule in Chapter 2.

The methods of the class are Date, yearIs, monthIs, and dayIs. Note that the
Date method has the same name as the class. Recall that this means it is a special type
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of method, called a class constructor. Constructors are

Observer A method that returns an observation on used to create new instances of a class—to instantiate

the state of an object.

objects of a class. The other three methods are classi-

fied as observer methods since they “observe” and

return instance variable values. Another name for
observer methods is “accessor” methods.

Once a class such as Date has been defined, a program can create and use objects
of that class. The effect is similar to expanding the language’s set of standard types to
include a Date type—we discuss this idea further in Chapter 2. The UML class diagram
for the Date class is shown in Figure 1.3. Note that the name of the class appears in the
top section of the diagram, the variables appear in the next section, and the methods
appear in the final section. The diagram includes information about the nature of the
variables and method parameters; for example, we can see at a glance that year,
month, and day are all of type int. Note that the variable MINYEAR is underlined,
which indicates that it is a class variable rather than an instance variable. The diagram
also indicates the visibility or protection associated with each part of the class (+ is pub-
lic, # = protected)—we discuss visibility and protection in Chapter 2.

Objects  Objects are created from classes at run-time. They can contain and manipulate
data. You should view an object-oriented system as a set of objects, working together
by sending each other messages to solve a problem.

To create an object in Java we use the new operator, along with the class construc-
tor as follows:

Date myDate = new Date(6, 24, 1951);
Date yourDate = new Date(10, 11, 1953);
Date ourDate = new Date(6, 15, 1985);

We say that the variables myDate, yourDate, and ourDate reference “objects of the
class Date” or simply “objects of type Date.” We could also refer to them as “Date
objects.”

Date

ffyear:int
Jfmonth:int

Jfday:int
#IMINYEAR:int = 1583

+Date(in newMonth:int, in newDay:int, in newYear:int)
tyearIs():int

+monthIs () :int

+dayIs () :int

Figure 1.3 UML class diagram for the Date class
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Date

ffyear:int

myDate #mont}} int
fiday:int

J#MINYEAR:int = 1583

+Date(in newMonth:int, in newDay:int, in newYear:int)

tyearIs():int
myDate:Date +monthIs () :int

+dayIs():int

year:int = 1951
month:int = 6
day:int = 24

l ourDate I ourDate:Date

year:int = 1985

month:int = 6
yourDate yourDate:Date day:int = 15

year:int = 1953
month:int = 10
day:int = 11

Figure 1.4  Extended UML class diagram showing Date objects

In Figure 1.4 we have extended the standard UML class diagram to show the rela-
tionship between the instantiated Date objects and the Date class.

As you can see, the objects are concrete instantiations of the class. Notice that the
myDate, yourDate, and ourDate variables are not objects, but actually hold references to
the objects. The references are shown by the pointers from the variable boxes to the
objects. In reality, references are memory addresses. The memory address of the instanti-
ated object is stored in the memory location assigned to the variable. If no object has been
instantiated for a particular variable, then its memory location holds a nul1 reference.

Object methods are invoked through the object upon which they are to act. For
example, to assign the value of the year variable of ourDate to the integer variable
theYear, a programmer would code

theYear = ourDate.yearIs();

Inheritance The object-oriented paradigm provides a powerful reuse tool called
inheritance, which allows programmers to create a new class that is a specialization of
an existing class. In this case, the new class is called a subclass of the existing class,
which in turn is the superclass of the new class.

A subclass “inherits” features from its superclass. It adds new features, as needed,
related to its specialization. It can also redefine inherited features as necessary. Contrary
to the intuitive meaning of super and sub, a subclass usually has more variables and
methods than its superclass. Super and sub refer to the relative positions of the classes
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in a hierarchy. A subclass is below its superclass, and a superclass is above its sub-
classes.

Suppose we already have a Date class as defined above, and we are creating a new
application to manipulate Date objects. Suppose also that in the new application we are
often required to “increment” a Date variable—to change a Date variable so that it rep-
resents the next day. For example, if the Date object represents 7/31/2001, it would
represent 8/1/2001 after being incremented. The algorithm for incrementing the date is
not trivial, especially when you consider leap-year rules. But in addition to developing
the algorithm, we must address another question: where to implement the algorithm.
There are several options:

e Implement the algorithm within the new application. The code would need to
obtain the month, day, and year from the Date object using the observer meth-
ods, calculate the new month, day, and year, instantiate a new Date object to
hold the updated month, day, and year, and assign it to the same variable. This
might appear to be a good approach, since it is the new application that requires
the new functionality. However, if future applications also need this functional-
ity, their programmers have to reimplement the solution for themselves. This
approach does not support our goal of reusability.

e Add a new method, called increment, to the Date class. The code would use
the incrementing algorithm to update the month, year, and day values of the
current object. This approach is better than the previous approach because it
allows any future programs that use the Date class to use the new functionality.
However, this also means that every application that uses the Date class can use
this method. In some cases, a programmer may have chosen to use the Date
class because of its built-in protection against changes to the object variables.
Such objects are said to be immutable. Adding an increment method to the
Date class undermines this protection, since it allows the variables to be
changed.

e Use inheritance. Create a new class, called IncDate, that inherits all the features
of the current Date class, but that also provides the increment method. This
approach resolves the drawbacks of the previous two approaches. We now look
at how to implement this third approach.

We often call the inheritance relationship an is a relationship. In this case we would say
that an object of the class IncDate is also a Date object, since it can do anything that
a Date object can do—and more. This idea can be clarified by remembering that inheri-
tance typically means specialization. IncDate is a special case of Date, but not the
other way around.

To create IncDate in Java we would code:

public class IncDate extends Date
{
public IncDate(int newMonth, int newDay, int newYear)

// Initializes this IncDate with the parameter values
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super (newMonth, newDay, newYear) ;
}

public void increment()

// Increments this IncDate to represent the next day, i.e.,
// this = (day after this)

// For example if this = 6/30/2003 then this becomes 7/1/2003
{

// Increment algorithm goes here

Note: sometimes in code listings we emphasize the sections of code most pertinent to
the current discussion by underlining them.

Inheritance is indicated by the keyword extends, which shows that IncDate
inherits from Date. It is not possible in Java to inherit constructors, so IncDate must
supply its own. In this case, the IncDate constructor simply takes the month, day, and
year parameters and passes them to the constructor of its superclass; it passes them to
the Date class constructor using the super reserved word.

The other part of the IncDate class is the new increment method, which is classi-
fied as a transformer method, because it
changes the internal state of the object.
increment changes the object’s day and
possibly the month and year values. The
increment transformer method is invoked
through the object that it is to transform. For example, the statement

Transformer A method that changes the internal
state of an object

ourDate.increment () ;

transforms the ourDate object.

Note that we have left out the details of the increment method since they are not
crucial to our current discussion.

A program with access to both of the date classes can now declare and use both
Date and IncDate objects. Consider the following program segment. (Assume output
is one of Java's PrintWriter file objects.)

Date myDate = new Date(6, 24, 1951);
IncDate aDate = new IncDate(l, 11, 2001);

output.println("mydate day is: " 4+ myDate.dayIs());
output.println("aDate day is: " 4+ aDate.dayIs());

aDate.increment () ;
output.println("the day after is: " + aDate.dayIs());
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Object
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year:int = 2001
month:int = 1
day:int = 12

+IncDate(in newMonth:int, in newDay:int, in newYear:int)
+increment () :void

Figure 1.5 Extended UML class diagram showing inheritance

This program segment instantiates and initializes myDate and aDate, outputs the values
of their days, increments aDate and finally outputs the new day value of aDate. You
might ask, “How does the system resolve the use of the dayIs method by an IncDate
object when dayIs is defined in the Date class?” Understanding how inheritance is sup-
ported by Java provides the answer to this question. The extended UML diagram in Fig-
ure 1.5 shows the inheritance relationships and captures the state of the system after the
aDate object has been incremented. This figure helps us investigate the situation.

The compiler has available to it all the declaration information captured in the
extended UML diagram. Consider the dayIs method call in the statement:

output.println("aDate day is: " 4+ aDate.dayIs());

To resolve this method call, the compiler follows the reference from the aDate variable
to the IncDate class. Since it does not find a definition for a dayIs method in the
IncDate class, it follows the inheritance link to the superclass Date, where it finds, and
links to, the dayIs method. In this case, the dayIs method returns an int value that
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represents the day value of the aDate object. During execution, the system changes the
int value to a String, concatenates it to the string “aDate day is: ” and prints it to
output.

Note that because of the way method calls are resolved, by searching up the inheri-
tance tree, only objects of the class TncDate can use the increment method. If you tried
to use the increment method on an object of the class Date, such as the myDate object,
there would be no definition available in either the Date class or any of the classes above
Date in the inheritance tree. The compiler would report a syntax error in this situation.

Notice the Object class in the diagram. Where did it come from? In Java, any class
that does not explicitly extend another class implicitly extends the predefined Object
class. Since Date does not explicitly extend any other class, it inherits directly from
Object. The Date class is a subclass of Object. The solid arrows with the hollow
arrowheads indicate inheritance in a UML diagram.

All Java classes can trace their roots back to the Object class, which is so general
that it does almost nothing; objects of the class Object are nearly useless by them-
selves. But Object does define several basic methods: comparison for equality
(equals), conversion to a string (toString), and so on. Therefore, for example, any
object in any Java program supports the method toString, since it is inherited from
the Object class.

Just as Java automatically changes an integer value to a string in a statement like

output.println("aDate day is: " 4+ aDate.daylIs());
it automatically changes an object to a string in a statement like
output.println("tomorrow: " + aDate);

If you use an object as a string anywhere in a Java program, then the Java compiler
automatically looks for a toString method for that object. In this case, the toString
method is not found in the IncDate class, nor is it found in its superclass, the Date
class. However, the compiler continues looking up the inheritance hierarchy, and finds
the toString method in the Object class. Since all classes trace their roots back to
Object, the compiler is always guaranteed to find a toString method eventually.

But, wait a minute. What does it mean to “change an object to a string”? Well, that
depends on the definition of the toString method that is associated with the object.
The toString method of the Object class returns a string representing some of the
internal system implementation details about the object. This information is somewhat
cryptic and generally not useful to us. This is an example of where it is useful to rede-
fine an inherited method. We generally override the default toString method when
creating our own classes, to return a more relevant string. For example, the following
toString method could be added to the definition of the Date class:

public String toString()
{
return(month + "/" + day + "/" + year);
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Now, when the compiler needs a toString method for a Date object (or an
IncDate object), it finds the method in the Date class and returns a more useful string.
Figure 1.6 shows the output from the following program segment.

Date myDate = new Date(6, 24, 1951);
IncDate currDate = new IncDate(l, 11, 2001);

output.println("mydate: " 4+ myDate) ;
output.println("today: " 4+ currDate);

currDate.increment () ;
output.println("tomorrow: " + currDate);

The results on the left show the output generated if the toString method of the
Object class is used by default; and on the right if the toString method above is
added to the Date class:

Object class toString Used Date class toString Used

mydate: Date@256a7c mydate: 6/24/1951
today: IncDate@720eeb today: 1/11/2001
tomorrow: IncDate@720eeb tomorrow: 1/12/2001

Figure 1.6  Output from program segment

One last note: Remember that subclasses are assignment compatible with the superclasses
above them in the inheritance hierarchy. Therefore, in our example, the statement

myDate = currDate;

would be legal, but the statement

currDate = myDate;

would cause an “incompatible type” syntax error.

Design

The object-oriented design (00D) methodology originated with the development of pro-
grams to simulate physical objects and processes in the real world. For example, to sim-
ulate an electronic circuit, you could develop a class for simulating each kind of
component in the circuit and then “wire-up” the simulation by having the modules pass

information among themselves in the same pattern that wires connect the electronic
components.

Team-Fly®
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Identifying Classes The key task in designing object-oriented systems is identification
of classes. Successful class identification and organization draws upon many of the
tools that we discussed earlier in this chapter. Top-down stepwise refinement
encourages us to start by identifying the major classes and gradually refine our system
definition to identify all the classes we need. We should use abstraction and practice
information hiding by keeping the interfaces to our classes narrow and hiding
important design decisions and requirements likely to change within our classes. CRC
cards can help us identify the responsibilities and collaborations of our classes, and
expose holes in our design. UML diagrams let us record our designs in a form that is
easy to understand.

When possible, we should organize our classes in an inheritance hierarchy, to bene-
fit from reuse. Another form of reuse is to find prewritten classes, possibly in the stan-
dard Java library, that can be used in a solution.

There is no foolproof technique for identifying classes; we just have to start brain-
storming ideas and see where they lead us. A large program is typically written by a
team of programmers, so the brainstorming process often occurs in a team setting. Team
members identify whatever objects they see in the problem and then propose classes to
represent them. The proposed classes are all written on a board. None of the ideas for
classes are discussed or rejected in this first stage.

After the brainstorming, the team goes through a process of filtering the classes.
First they eliminate duplicates. Then they discuss whether each class really represents an
object in the problem. (It's easy to get carried away and include classes, such as “the
user,” that are beyond the scope of the problem.) The team then looks for classes that
seem to be related. Perhaps they aren’t duplicates, but they have much in common, and
so they are grouped together on the board. At the same time, the discussion may reveal
some classes that were overlooked.

Usually it is not difficult to identify an initial set of classes. In most large problems
we naturally find entities that we wish to represent as classes. For example, in designing
a program that manages a checking account, we might identify checks, deposits, an
account balance, and account statements as entities. These entities interact with each
other through messages. For example, a check could send a message to the balance
entity that tells it to deduct an amount from itself. We didn’t list the amount in our ini-
tial set of objects, but it may be another entity that we need to represent.

Our example illustrates a common approach to O0D. We begin by identifying a set
of objects that we think are important in a problem. Then we consider some scenarios in
which the objects interact to accomplish a task. In the process of envisioning how a sce-
nario plays out, we identify additional objects and messages. We keep trying new sce-
narios until we find that our set of objects and messages is sufficient to accomplish any
task that the problem requires. CRC cards help us enact such scenarios.

A standard technique for identifying classes and their methods is to look for objects
and operations in the problem statement. Objects are usually nouns and operations are
usually verbs. For example, suppose the problem statement includes the sentence: “The
student grades must be sorted from best to worst before being output.” Potential objects
are “student” and “grade,” and potential operations are “sort” and “output.” We propose
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that on a printed copy of your requirements you circle the nouns and underline the verbs.
The set of nouns are your candidate objects, and the verbs are your candidate methods. Of
course, you have to filter this list, but at least it provides a good starting point for design.

Recall that in our discussion of abstraction and information hiding we stated that
program modules should display strong cohesion. A good way to validate the cohesive-
ness of an identified class is to try to describe its main responsibility in a single coher-
ent phrase. If you cannot do this, then you should reconsider your design. Some
examples of cohesive responsibilities are:

® maintain a list of integers
¢ handle file interaction
e provide a date type

Some examples of “poor” responsibilities are:

* maintain a list of integers and provide special integer output routines
¢ handle file interaction and draw graphs on the screen

In summation, we have discussed the following approaches to identifying classes:

Start with the major classes and refine the design.

Hide important design decisions and requirements likely to change within a class.
Brainstorm with a group of programmers.

Make sure each class has one main responsibility.

Use CRC cards to organize classes and identify holes in the design.

Walk through user scenarios.

N O Ok W N =

Look for nouns and verbs in the problem description.

Design Choices When working on design, keep in mind that there are many different
correct solutions to most problems. The techniques we use may seem imprecise,
especially in contrast with the precision that is demanded by the computer. But the
computer merely demands that we express (code) a particular solution precisely. The
process of deciding which particular solution to use is far less precise. It is our human
ability to make choices without having complete information that enables us to solve
problems. Different choices naturally lead to different solutions to a problem.

For example, in developing a simulation of an air traffic control system, we might
decide that airplanes and control towers are objects that communicate with each other.
Or we might decide that pilots and controllers are the objects that communicate. This
choice affects how we subsequently view the problem, and the responsibilities that we
assign to the objects. Either choice can lead to a working application. We may simply
prefer the one with which we are most familiar.

Some of our choices lead to designs that are more or less efficient than others. For
example, keeping a list of names in alphabetical rather than random order makes it pos-
sible for the computer to find a particular name much faster. However, choosing to
leave the list randomly ordered still produces a valid (but slower) solution, and may
even be the best solution if you do not need to search the list very often.
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Other choices affect the amount of work that is required to develop the remainder
of a problem solution. In creating a program for choreographing ballet movements, we
might begin by recognizing a dancer as the important object and then create a class for
each dancer. But in doing so, we discover that all of the dancers have certain common
responsibilities. Rather than repeat the definition of those responsibilities for each class
of dancer, we can change our initial choice and define a class for a generic dancer that
includes all the common responsibilities and then develop subclasses that add responsi-
bilities specific to each individual.

The point is, don’t hesitate to begin solving a problem because you are waiting for
some flash of genius that leads you to the perfect solution. There is no such thing. It is
better to jump in and try something, step back, and see if you like the result, and then
either proceed or make changes. In the example below we show how the CRC card tech-
nique helps you explore different design choices and keep track of them.

Design Example
In this subsection we present a sample object-oriented design process that might be fol-
lowed if we were on a small team of software engineers. Our purposes are to show the
classes that might be identified for an object-oriented system, and to demonstrate the
utility of CRC cards. We assume that our team of engineers has been given the task of
automating an address book. A user should be able to enter and retrieve information
from the address book. We have been given a sample physical address book on which to
base their product.

First our team studies the problem, inspects the physical address book, and brain-
storms that the application has the following potential objects:
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Then we enter the filtering stage. Our application doesn’t need to represent the
physical parts of an address book, so we can delete Cover and Pages. However, we
need something analogous to a page that holds all the same sort of information. Let’s
call it an Entry. The different telephone numbers can all be represented by the same
kind of object. So we can combine Home, Work, Fax, Pager, and Cell-phone into a
Phone number class. In consultation with the customer, we find that the electronic
address book doesn’t need the special pages that are often found in a printed address
book, so we delete Calendar, Time-zone map, Owner information, and Emergency
number.

Further thought reveals that the User isn’'t part of the application, although this
does point to the need for a User interface that we did not originally list. A Work
Address is a specific kind of address that has additional information, so we can make it
a subclass of Address. Company names are just Strings, so there is no need to distin-
guish them, but Names have a first, last, and middle part. Our filtered list of classes now
looks like this.

For each of these classes we create a CRC card. In the case of Work Address, we list
Address as its Superclass, and on the Address card we list Work Address in its Sub-
classes space.

In doing coursework, you may be asked to work individually rather than in a col-
laborative team. You can still do your own brainstorming and filtering. However, we
recommend that you take a break after the brainstorming and do the filtering once you
have let your initial ideas rest for a while. An idea that seems brilliant in the middle of
brainstorming may lose some of its attraction after a day or even a few hours.

Initial Responsibilities Once you (or your team) have identified the classes and created
CRC cards for them, go over each card and write down its primary responsibility and an
initial list of resultant responsibilities that are obvious. For example, a Name class
manages a “Name” and has a responsibility to know its first name, its middle name, and
its last name. We would list these three responsibilities in the left column of its card, as
shown in Figure 1.7. In an implementation, they become methods that return the
corresponding part of the name. For many classes, the initial responsibilities include
knowing some value or set of values.
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Responsibilities Collaborations

Know middle

Know last
W -4

Figure 1.7 A CRC card with initial responsibilities

A First Scenario Walk-Through To further expand the responsibilities of the classes
and see how they collaborate, we must pretend to carry out various processing
scenarios by hand. This kind of role-playing is known as a walk-through. We ask a
question such as, “What happens when the user wants to find an address that’s in the
book?” Then we answer the question by telling how each object is involved in
accomplishing this task. In a team setting, the cards are distributed among the team
members. When an object of a class is doing something, its card is held in the air to
visually signify that it is active.

With this particular question, we might pick up the User Interface card and say, “I
have a responsibility to get the person’s name from the user.” That responsibility gets
written down on the card. Once the name is input, the User Interface must collaborate
with other objects to look up the name and get the corresponding address. What object
should it collaborate with? There is no identified object class that represents the entire
set of address book entries.

We've found a hole in our list of classes! The Entry objects should be organized into
a Book object. We quickly write out a Book CRC card. The User Interface card-holder
then says, “I'm going to collaborate with the Book class to get the address.” The collab-
oration is written in the right column of the card, and it remains in the air. The owner
of the Book card holds it up, saying, “I have a responsibility to find an address in the
list of Entry objects that I keep, given a name.” That responsibility gets written on the
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Figure 1.8 A scenario walk-through in progress

Book Card. Then the owner says, “I have to collaborate with each Entry to compare its
name with the name sent to me by the User Interface.” Figure 1.8 shows a team in the
middle of a walk-through.

Now comes a decision. What are the responsibilities of Book and Entry for carrying
out the comparison? Should Book get the name from Entry and do the comparison, or
should it send the name to Entry and receive an answer that indicates whether they are
equal? The team decides that Book should do the comparing, so the Entry card is held in
the air, and its owner says, “I have a responsibility to provide the full name as a string.
To do that I must collaborate with Name.” The responsibility and collaboration are
recorded and the Name card is raised.

Name says, “I have the responsibilities to know my first, middle, and last names.
These are already on my card, so I'm done.” And the Name card is lowered. Entry says,
“I concatenate the three names into a string with spaces between them, and return the
result to Book, so I'm done.” The Entry card is lowered.

Book says, “I keep collaborating with Entry until I find the matching name. Then I
must collaborate with Entry again to get the address.” This collaboration is placed on its
card and the Entry card is held up again, saying “I have a responsibility to provide an
address. I'm not going to collaborate with Address, but am just going to return the
object to Book.” The Entry card has this responsibility added and then goes back on the
table. Its CRC card is shown in Figure 1.9.

The scenario continues until the task of finding an address in the book and report-
ing it to the user is completed. Reading about the scenario makes it seem longer and
more complex than it really is. Once you get used to role playing, the scenarios move
quickly and the walk-through becomes more like a game. However, to keep things mov-
ing, it is important to avoid becoming bogged-down with implementation details. Book
should not be concerned with how the Entry objects are organized on the list. Address
doesn’t need to think about whether the zip code is stored as an integer or a String.
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Figure 1.9  The CRC card for Entry

Only explore each responsibility far enough to decide whether a further collaboration is

needed, or if it can be solved with the available information.

The next step is to brainstorm some additional questions that produce new scenar-

ios. For example, here is list of some further scenarios.
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We walk through each of the scenarios, adding responsibilities and collaborations
to the CRC cards as necessary. After several scenarios have been tried, the number of
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|3

Testing The process

data sets designed to discover errors

additions decreases. When one or more scenarios take place without adding to any of
the cards, then we brainstorm further to see if we can come up with new scenarios
that may not be covered. When all of the scenarios that we can envision seem to be
doable with the existing classes, responsibilities, and collaborations, then the design
is done.

The next step is to implement the responsibilities for each class. The implementa-
tion may reveal details of a collaboration that weren’t obvious in the walk-through. But
knowing the collaborating classes makes it easy to change their corresponding responsi-
bilities. The implementation phase should also include a search of available class
libraries to see if any existing classes can be used. For example, the java.util.Cal-
endar class represents a date that can be used directly to implement Birthday.

Enhancing CRC Cards with Additional Information The CRC card design is informal.
There are many ways that the card can be enhanced. For example, when a responsibility
has obvious steps, we can write them below its name. Each step may have specific
collaborations, and we write these beside the steps in the right column. We often
recognize that certain data must be sent as part of the message that activates a
responsibility, and we can record this in parentheses beside the calling collaboration and
the responding responsibility. Figure 1.10 shows a CRC card that includes design
information in addition to the basic responsibilities and collaborations.

To summarize the CRC card process, we brainstorm the objects in a problem and
abstract them into classes. Then we filter the list of classes to eliminate duplicates. For
each class, we create a CRC card and list any obvious responsibilities that it should sup-
port. We then walk through a common scenario, recording responsibilities and collabo-
rations as they are discovered. After that we walk through additional scenarios, moving
from common cases to special and exceptional cases. When it appears that we have all
of the scenarios covered, we brainstorm additional scenarios that may need more
responsibilities and collaborations. When our ideas for scenarios are exhausted, and all
the scenarios are covered by the existing CRC cards, the design is done.

Verification of Software Correctness

At the beginning of this chapter, we discussed some characteristics of good programs.
The first of these was that a good program works—it accomplishes its intended function.
How do you know when your program meets that goal? The simple answer is, test it.

Let’s look at testing as it relates to the rest of the
software development process. As programmers, we
first make sure that we understand the requirements,
and then we come up with a general solution. Next we
design the solution in terms of a system of classes,
using good design principles, and finally we implement the solution, using well-struc-
tured code, with classes, comments, and so on.

of executing a program with
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Figure 1.10 A CRC card that is enhanced with additional information

Once we have the program coded, we compile it repeatedly until the syntax errors
are gone. Then we run the program, using
carefully selected test data. If the program
doesn’t work, we say that it has a “bug” in it.
We try to pinpoint the error and fix it, a

process called debugging.

Notice the distinction between testing and debugging. Testing is running the pro-
gram with data sets designed to discover errors; debugging is removing errors once they

are discovered.

Debugging The process of removing known errors
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When the debugging is completed, the software is put into use. Before final deliv-
ery, software is sometimes installed on one or more customer sites so that it can be
tested in a real environment with real data. After passing this acceptance test phase, the
software can be installed at all of the customer sites. Is the verification process now fin-
ished? Hardly! More than half of the total life-cycle costs and effort generally occur
after the program becomes operational, in the maintenance phase. Some changes are
made to correct errors in the original program; other changes are introduced to add new
capabilities to the software system. In either case, testing must be done after any pro-
gram modification. This is called regression testing.

Testing is useful for revealing the presence of bugs in a program, but it doesn’t
prove their absence. We can only say for sure that the program worked correctly for the
cases we tested. This approach seems somewhat haphazard. How do we know which
tests or how many of them to run? Debugging a whole program at once isn’t easy. And

fixing the errors found during such testing can some-
times be a messy task. Too bad we couldn’t have

Acceptance tests The process of testing the system detected the errors earlier—while we were designing
in its real environment with real data the program, for instance. They would have been
Regression testing Re-execution of program tests much easier to fix then.

after modifications have been made in order to ensure We know how program design can be improved by
that the program still works correctly using a good design methodology. Is there something
Program verification The process of determining the similar that we can do to improve our program verifica-
degree to which a software product fulfills its specifi- tion activities? Yes, there is. Program verification activ-
cations ities don’t need to start when the program is completely
Program validation The process of determining the coded; they can be incorporated into the whole soft-
degree to which software fulfills its intended purpose ware development process, from the requirements phase

on. Program verification is more than just testing.

In addition to program verification—fulfilling the
requirement specifications—there is another important task for the software engineer:
making sure the specified requirements actually solve the underlying problem. There
have been countless times when a programmer finishes a large project and delivers the
verified software, only to be told, “Well, that’s what I asked for, but it’s not what I need.”

The process of determining that software accomplishes its intended task is called
program validation. Program verification asks, “Are we doing the job right?” Program
validation asks, “Are we doing the right job?">

Can we really “debug” a program before it has ever been run—or even before it has
been written? In this section, we review a number of topics related to satisfying the cri-
terion “quality software works.” The topics include:

designing for correctness

performing code and design walk-throughs and inspections
using debugging methods

choosing test goals and data

writing test plans

structured integration testing

>B. W. Boehm, Software Engineering Economics (Englewood Cliffs, N.J.: Prentice-Hall, 1981).

Team-Fly®
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Origin of Bugs

When Sherlock Holmes goes off to solve a case, he doesn’t start from scratch every
time; he knows from experience all kinds of things that help him find solutions. Sup-
pose Holmes finds a victim in a muddy field. He immediately looks for footprints in the
mud, for he can tell from a footprint what kind of shoe made it. The first print he finds
matches the shoes of the victim, so he keeps looking. Now he finds another, and from
his vast knowledge of footprints, he can tell that it was made by a certain type of boot.
He deduces that such a boot would be worn by a particular type of laborer, and from
the size and depth of the print, he guesses the suspect’s height and weight. Now, know-
ing something about the habits of laborers in this town, he guesses that at 6:30 P.M. the
suspect might be found in Clancy’s Pub.

In software verification we are often expected to play detective. Given certain clues,
we have to find the bugs in programs. If we know what kinds of situations produce pro-
gram errors, we are more likely to be able to detect and correct problems. We may even
be able to step in and prevent many errors entirely, just as Sherlock Holmes sometimes
intervenes in time to prevent a crime that is about to take place.

Let’s look at some types of software errors that show up at various points in pro-
gram development and testing and see how they might be avoided.

Specifications and Design Errors

What would happen if, shortly before you were supposed to turn in a major class
assignment, you discovered that some details in the professor’s program description
were incorrect? To make matters worse, you also found out that the corrections were
discussed at the beginning of class on the day you got there late, and somehow you
never knew about the problem until your tests of the class data set came up with the
wrong answers. What do you do now?

Writing a program to the wrong specifications is probably the worst kind of soft-
ware error. How bad can it be? Most studies indicate that it costs 100 times as much to
correct an error discovered after software delivery then it does if it is discovered early in
the life cycle. Figure 1.11 shows how fast the costs rise in subsequent phases of software
development. The vertical axis represents the relative cost of fixing an error; this cost
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Figure 1.11  Cost of a specification error based on when it is discovered

might be in units of hours, or hundreds of dollars, or “programmer months” (the amount
of work one programmer can do in a month). The horizontal axis represents the stages
in the development of a software product. As you can see, an error that would have
taken one unit to fix when you first started designing might take a hundred units to
correct when the product is actually in operation!

Many specification errors can be prevented by good communication between the
programmers (you) and the party who originated the problem (the professor, manager,
or customer). In general, it pays to ask questions when you don’t understand something
in the program specifications. And the earlier you ask, the better.

A number of questions should come to mind as you first read a programming
assignment. What error checking is necessary? What algorithm or data structure is sup-
posed to be used in the solution? What assumptions are reasonable? If you obtain
answers to these questions when you first begin working on an assignment, you can
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incorporate them into your design and implementation of the program. Later in the pro-
gram’s development, unexpected answers to these questions can cost you time and
effort. In short, in order to write a program that is correct, you must understand pre-
cisely what it is that your program is supposed to do.

Compile-Time Errors

In the process of learning your first programming language, you probably made a num-
ber of syntax errors. These resulted in error messages (for example, “TYPE MISMATCH,”
“ILLEGAL ASSIGNMENT,” “SEMICOLON EXPECTED,” and so on) when you tried to
compile the program. Now that you are more familiar with the programming language,
you can save your debugging skills for tracking down important logical errors. Try fo
get the syntax right the first time. Having your program compile cleanly on the first
attempt is a reasonable goal. A syntax error wastes computing time and money, as well
as programmer time, and it is preventable.

As you progress in your college career or move into a professional computing job,
learning a new programming language is often the easiest part of a new software
assignment. This does not mean, however, that the language is the least important part.
In this book we discuss data structures and algorithms that we believe are language-
independent. This means that they can be implemented in almost any general-purpose
programming language. The success of the implementation, however, depends on a
thorough understanding of the features of the programming language. What is consid-
ered acceptable programming practice in one language may be inadequate in another,
and similar syntactic constructs may be just different enough to cause serious trouble.

It is, therefore, worthwhile to develop an expert knowledge of both the control and
data constructs and the syntax of the language in which you are programming. In gen-
eral, if you have a good knowledge of your programming language—and are careful—
you can avoid syntax errors. The ones you might miss are relatively easy to locate and
correct. Once you have a “clean” compilation, you can execute your program.

Run-Time Errors
Errors that occur during the execution of a program are usually harder to detect than
syntax errors. Some run-time errors stop execution of the program. When this happens,
we say that the program “crashed” or “abnormally terminated.”

Run-time errors often occur when the programmer makes too many assumptions.
For instance,

result = dividend / divisor;:

is a legitimate assignment statement, if we can assume that divisor is never zero. If
divisor is zero, however, a run-time error results.

Run-time errors also occur because of unanticipated user errors. If a user enters the
wrong data type in response to a prompt, or supplies an invalid filename to a routine,
most simple programs report a runtime error and halt; in other words, they crash.

35



36 |  Chapter 1: Software Engineering

Well-written programs should not crash. They should
Robustness The ability of a program to recover fol- catch such errors and stay in control until the user is
lowing an error; the ability of a program to continue to ready to quit.
operate within its environment The ability of a program to recover when an error

occurs is called robustness. If a commercial program

is not robust, people do not buy it. Who wants a word
processor that crashes if the user says “SAVE” when there is no disk in the drive? We
want the program to tell us, “Put your disk in the drive, and press Enter.” For some
types of software, robustness is a critical requirement. An airplane’s automatic pilot sys-
tem or an intensive care unit’s patient-monitoring program just cannot afford to crash.
In such situations, a defensive posture produces good results.

In general, you should actively check for error-creating conditions rather than let
them abort your program. For instance, it is generally unwise to make too many
assumptions about the correctness of input, especially interactive input from a key-
board. A better approach is to check explicitly for the correct type and bounds of such
input. The programmer can then decide how an error should be handled (request new
input, print a message, or go on to the next data) rather than leave the decision to the
system. Even the decision to quit should be made by a program that is in control of its
own execution. If worse comes to worst, let your program die gracefully.

This does not mean that everything that the program inputs must be checked for
errors. Sometimes inputs are known to be correct—for instance, input from a file that
has been verified. The decision to include error checking must be based upon the
requirements of the program.

Some run-time errors do not stop execution but produce the wrong results. You
may have incorrectly implemented an algorithm or initialized a variable to an incorrect
value. You may have inadvertently swapped two parameters of the same type on a
method call or used a less-than sign instead of a greater-than sign. These logical errors
are often the hardest to prevent and locate. Later we talk about debugging techniques to
help pinpoint run-time errors. We also discuss structured testing methods that isolate
the part of the program being tested. But knowing that the earlier we find an error the
easier it is to fix, we turn now to ways of catching run-time errors before run time.

Designing for Correctness

It would be nice if there were some tool that would locate the errors in our design or
code without our even having to run the program. That sounds unlikely, but consider an
analogy from geometry. We wouldn’t try to prove the Pythagorean theorem by proving
that it worked on every triangle; that would only demonstrate that the theorem works
for every triangle we tried. We prove theorems in geometry mathematically. Why can’t
we do the same for computer programs?

The verification of program correctness, independent of data testing, is an impor-
tant area of theoretical computer science research. The goal of this research is to estab-
lish a method for proving programs that is analogous to the method for proving
theorems in geometry. The necessary techniques exist, but the proofs are often more
complicated than the programs themselves. Therefore, a major focus of verification
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research is to attempt to build automated program provers—verifiable programs that
verify other programs. In the meantime, the formal verification techniques can be car-
ried out by hand.®

Preconditions and Postconditions
Suppose we want to design a module (a logical chunk of the program) to perform a spe-
cific operation. To ensure that this module fits into the program as a whole, we must
clarify what happens at its boundaries—what must be true when we enter the module
and what is true when we exit.

To make the task more concrete, picture the design module as it is usually coded, as
a method that is exported from a class. To be able to invoke the method, we must know
its exact interface: the name and the parameter list, which indicates its inputs and out-
puts. But this isn’t enough: We must also
know any assumptions that must be true for

the operation to function correctly. Preconditions Assumptions that must be true on
We call the assumptions that must be entry into an operation or method for the postcondi-
true  when  invoking the  method tions to be guaranteed

preconditions. The preconditions are like a

product disclaimer:
VITIIS
WARNING

If you try to execute this operation
when the preconditions are not true,

the results are not guaranteed.
o

VI ITIIS

For example, the increment method of the IncDate class, described in the previous
section, might have preconditions related to legal date values and the start of the Gre-
gorian calendar. The preconditions should be listed with the method declaration:

public void increment()

// Preconditions: Values of day, month, and year represent a valid date

/7

The represented date is not before minYear

Previously we discussed the quality of program robustness, the ability of a program
to catch and recover from errors. While creating robust programs is an important goal,

5We do not go into this subject in detail here. If you are interested in this topic, you might start with David
Gries’ classic, The Science of Programming (NewYork: Springer-Verlag, (1981)).
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it is sometimes necessary to decide at what level errors are caught and handled. Using
preconditions for a method is similar to a contract between the programmer who creates
the method and the programmers who use the method. The contract says that the pro-
grammer who creates the method is not going to try to catch the error conditions
described by the preconditions, but as long as the preconditions are met, the method
works correctly. It is up to the programmers who use the method to ensure that the
method is never called without meeting the preconditions. In other words, the robust-
ness of the system in terms of the method’s preconditions is the responsibility of the
programmers who use the class, and not the programmer who creates the class. This

approach is sometimes called “programming by con-

tract.” It can save work because trapping the same

Postconditions  Statements that describe what error conditions at multiple levels of a hierarchical
results are to be expected at the exit of an operation or system is redundant and unnecessary.
method, assuming that the preconditions are true We must also know what conditions are true

when the operation is complete. The postconditions

are statements that describe the results of the opera-
tion. The postconditions do not tell us how these results are accomplished; they merely
tell us what the results should be.

Let’s consider what the preconditions and postconditions might be for another sim-
ple operation: a method that deletes the last element from a list. (We are using “list” in
an intuitive sense; we formally define it in Chapter 3.) Assuming the method is defined
within a class with the responsibility of maintaining a list, the specification for
RemoveLast is as follows:

0 void RemoveLast()
. Effect: Removes the last element in this list.

Precondition: This list is not empty.
Postcondition: The last element has been removed from this list.

What do these preconditions and postconditions have to do with program verifica-
tion? By making explicit statements about what is expected at the interfaces between
modules, we can avoid making logical errors based on misunderstandings. For instance,
from the precondition we know that we must check outside of this operation for the
empty condition; this module assumes that there is at least one element.

Experienced software developers know that misunderstandings about interfaces to
someone else’s modules are one of the main sources of program problems. We use
preconditions and postconditions at the method level in this book, because the infor-
mation they provide helps us to design programs in a truly modular fashion. We can
then use the classes we’ve designed in our programs, confident that we are not intro-
ducing errors by making mistakes about assumptions and about what the classes actu-
ally do.
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Design Review Activities

When an individual programmer is designing
and implementing a program, he or she can
find many software errors with pencil and
paper. Deskchecking the design solution is a
very common method of manually verifying a
program. The programmer writes down essential data (variables, input values, parame-
ters, and so on) and walks through the design, marking changes in the data on the
paper. Known trouble spots in the design or code should be double-checked. A checklist
of typical errors (such as loops that do not terminate, variables that are used before they
are initialized, and incorrect order of parameters on method calls) can be used to make
the deskcheck more effective. A sample checklist for deskchecking a Java program
appears in Figure 1.12. A few minutes spent deskchecking your designs can save lots of

Deskchecking Tracing an execution of a design or
program on paper

The Design

Does each class in the design have a clear function or purpose?

2. Can large classes be broken down into smaller pieces?

3. Do multiple classes share common code? Is it possible to write more general classes to
encapsulate the commonalities and then have the individual classes inherit from that gen-
eral class?

4. Are all the assumptions valid? Are they well documented?

5. Are the preconditions and postconditions accurate assertions about what should be happen-
ing in the method they specify?

6. Is the design correct and complete as measured against the program specification? Are there
any missing cases? Is there faulty logic?

7. Is the program designed well for understandability and maintainability?

The Code

1. Has the design been clearly and correctly implemented in the programming language? Are
features of the programming language used appropriately?

2. Are methods coded to be consistent with the interfaces shown in the design?

3. Are the actual parameters on method calls consistent with the parameters declared in the
method definition?

4. |s each data object to be initialized set correctly at the proper time? Is each data object set
correctly before its value is used?

5. Do all loops terminate?

6. Is the design free of "magic” values? (A magic value is one whose meaning is not immediately
evident to the reader. You should use constants in place of such values.)

7. Does each constant, class, variable, and method have a meaningful name? Are comments

included with the declarations to clarify the use of the data objects?

Figure 1.12  Checklist for deskchecking programs
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time and eliminate difficult problems that would otherwise surface later in the life cycle
(or even worse, would not surface until after delivery).

Have you ever been really stuck trying to debug a program and showed it to a class-
mate or colleague who detected the bug right away? It is generally acknowledged that
someone else can detect errors in a program better than the original author can. In an
extension of deskchecking, two programmers can trade code listings and check each other’s
programs. Universities, however, frequently discourage students from examining each
other’s programs for fear that this exchange leads to cheating. Thus, many students become
experienced in writing programs but don’t have much opportunity to practice reading them.

Most sizable computer programs are developed by
teams of programmers. Two extensions of deskcheck-

Walk-through A verification method in which a ing that are effectively used by programming teams
team performs a manual simulation of the program or are design or code walk-throughs and inspections.
design These are formal team activities, the intention of
Inspection A verification method in which one mem- which is to move the responsibility for uncovering
ber of a team reads the program or design line by line bugs from the individual programmer to the group.
and the others point out errors Because testing is time-consuming and errors cost

more the later they are discovered, the goal is to iden-
tify errors before testing begins.

In a walk-through, the team performs a manual simulation of the design or program
with sample test inputs, keeping track of the program’s data by hand on paper or a black-
board. Unlike thorough program testing, the walk-through is not intended to simulate all
possible test cases. Instead, its purpose is to stimulate discussion about the way the pro-
grammer chose to design or implement the program’s requirements.

At an inspection, a reader (never the program’s author) goes through the require-
ments, design, or code line by line. The inspection participants are given the material in
advance and are expected to have reviewed it carefully. During the inspection, the par-
ticipants point out errors, which are recorded on an inspection report. Many of the
errors have been noted by team members during their preinspection preparation. Other
errors are uncovered just by the process of reading aloud. As with the walk-through, the
chief benefit of the team meeting is the discussion that takes place among team mem-
bers. This interaction among programmers, testers, and other team members can
uncover many program errors long before the testing stage begins.

If you look back at Figure 1.11, you see that the cost of fixing an error is relatively
inexpensive up through the coding phase. After that, the cost of fixing an error
increases dramatically. Using the formal inspection process can clearly benefit a project.

Exceptions
Exception Associated with an unusual, often unpre- At the design stage, you should plan how to handle
dictable event, detectable by software or hardware, exceptions in your program. Exceptions are just what
that requires special processing. The event may or may the name implies: exceptional situations. They are situa-

not be erroneous.

tions that alter the flow of control of the program, usu-

ally resulting in a premature end to program execution.

Working with exceptions begins at the design phase:
What are the unusual situations that the program should recognize? Where in the program
can the situations be detected? How should the situations be handled if they occur?
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Where—indeed whether—an exception is detected depends on the language, the soft-
ware package design, the design of the libraries being used, and the platform, that is, on
the operating system and hardware. Where an exception should be detected depends on
the type of exception, on the software package design, and on the platform. Where an
exception is detected should be well documented in the relevant code segments.

An exception may be handled any place in the software hierarchy—from the place
in the program module where the exception is first detected through the top level of the
program. In Java, as in most programming languages, unhandled built-in exceptions
carry the penalty of program termination. Where in an application an exception should
be handled is a design decision; however, exceptions should be handled at a level that
knows what the exception means.

An exception need not be fatal. For non-fatal exceptions, the thread of execution may
continue. Although the thread of execution can continue from any point in the program, the
execution should continue from the lowest level that can recover from the exception. When
an error occurs, the program may fail unexpectedly. Some of the failure conditions may
possibly be anticipated and some may not. All such errors must be detected and managed.

Exceptions can be written in any language. Java (along with some other languages)
provides built-in mechanisms to manage exceptions. All exception mechanisms have
three parts:

e Defining the exception
e Generating (raising) the exception
e Handling the exception

Once your exception plan is determined, Java gives you a clean way of implementing
these three phases using the fry-catch and throw statements. We cover these statements
at the end of Chapter 2 after we have introduced some additional Java constructs.

Program Testing

Eventually, after all the design verification, deskchecking, and inspections have been
completed, it is time to execute the code. At last, we are ready to start testing with the
intention of finding any errors that may still remain.

The testing process is made up of a set of test cases that, taken together, allow us to
assert that a program works correctly. We say “assert” rather than “prove” because test-
ing does not generally provide a proof of program correctness.

The goal of each test case is to verify a particular program feature. For instance, we
may design several test cases to demonstrate that the program correctly handles various
classes of input errors. Or we may design cases to check the processing when a data struc-
ture (such as an array) is empty, or when it contains the maximum number of elements.

Within each test case, we must perform a series of component tasks:

We determine inputs that demonstrate the goal of the test case.

We determine the expected behavior of the program for the given input.

We run the program and observe the resulting behavior.

We compare the expected behavior and the actual behavior of the program. If
they are the same, the test case is successful. If not, an error exists, either in the
test case itself or in the program. In the latter case, we begin debugging.
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For now we are talking about test cases at a class,

Unit testing Testing a class or method by itself or method, level. It’s much easier to test and debug

Functional domain
program or method

modules of a program one at a time, rather than try-
ing to get the whole program solution to work all at
once. Testing at this level is called unit testing.

How do we know what kinds of unit test cases are appropriate, and how many are
needed? Determining the set of test cases that is sufficient to validate a unit of a program
is in itself a difficult task. There are two approaches to specifying test cases: cases based
on testing possible data inputs and cases based on testing aspects of the code itself.

Data Coverage

In those limited cases where the set of valid inputs, or
the functional domain, is extremely small, one can
verify a program unit by testing it against every possi-
ble input element. This approach, known as exhaustive
testing, can prove conclusively that the software meets
its specifications. For instance, the functional domain of the following method consists
of the values true and false.

The set of valid input data for a

public void PrintBoolean(boolean boolValue)
// Prints the Boolean value to the output
{
if (boolValue)
output.println("true");
else
output.println("false");

It makes sense to apply exhaustive testing to this method, because there are only
two possible input values. In most cases, however, the functional domain is very large,
so exhaustive testing is almost always impractical or impossible. What is the functional
domain of the following method?

public void PrintInteger (int intValue)
// Prints the integer value intValue to the output
{

output.println(intValue) ;

It is not practical to test this method by running it with every possible data input; the
number of elements in the set of int values is clearly too large. In such cases, we do
not attempt exhaustive testing. Instead, we pick some other measurement as a testing
goal.

You can attempt program testing in a haphazard way, entering data randomly until
you cause the program to fail. Guessing doesn’t hurt, but it may not help much either. This
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approach is likely to uncover some bugs in a program, but it is very unlikely to find them
all. Fortunately, however, there are strategies for detecting errors in a systematic way.

One goal-oriented approach is to cover general classes of data. You should test at
least one example of each category of inputs, as well as boundaries and other special
cases. For instance, in method PrintInteger there are three basic classes of int data:
negative values, zero, and positive values. So, you should plan three test cases, one for
each of these classes. You could try more than three, of course. For example, you might
want to try Integer.MAX VALUE and Integer.MIN_VALUE, but because all the pro-
gram does is print the value of its input, the additional test cases don’t accomplish much.

There are other cases of data coverage. For example, if the input consists of com-
mands, you must test each command and varying sequences of commands. If the input
is a fixed-sized array containing a variable number of values, you should test the maxi-
mum number of values; this is the boundary condition. A way to test for robustness is
to try one more than the maximum number of values. It is also a good idea to try an
array in which no values have been stored or one that contains a single element. Testing
based on data coverage is called black-box
testing. The tester must know the external
interface to the module—its inputs and
expected outputs—but does not need to con-
sider what is being done inside the module
(the inside of the black box). (See Figure 1.13)

a "black box"

Outputs
B Pull out rabbit.
Inputs
W Put in two
magic coins
B Tap with
magic wand

Black box testing Clear box testing
Does the trick work? How does the trick work?

Figure 1.13  Testing approaches

Black-box testing Testing a program or method
based on the possible input values, treating the code as
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Code Coverage

A number of testing strategies are based on the concept of code coverage, the execution
of statements or groups of statements in the program. This testing approach is called

Clear (white) box testing Testing a program or
method based on covering all of the branches or paths
of the code

Branch A code segment that is not always executed;
for example, a switch statement has as many branches
as there are case labels

clear (or white) box testing. The tester must look
inside the module (through the clear box) to see the
code that is being tested.

One approach, called statement coverage, requires
that every statement in the program be executed at
least once. Another approach requires that the test
cases cause every branch, or code section, in the pro-

Path A combination of branches that might be tra-
versed when a program or method is executed

gram to be executed. A single test case can achieve
statement coverage of an if-then statement, but it
takes two test cases to test both branches of the state-

Path testing A testing technique whereby the tester ment.

tries to execute all possible paths in a program or

method

Test plan

A document showing the test cases
planned for a program or module, their purposes,
inputs, expected outputs, and criteria for success

A similar type of code-coverage goal is to test
program paths. A path is a combination of branches
that might be traveled when the program is executed.
In path testing, we try to execute all the possible pro-
gram paths in different test cases.

Test Plans

Deciding on the goal of the test approach—data coverage, code coverage, or (most often) a
mixture of the two, precedes the development of a test plan. Some test plans are very infor-
mal—the goal and a list of test cases, written by hand on
a piece of paper. Even this type of test plan may be more
than you have ever been required to write for a class
programming project. Other test plans (particularly those
submitted to management or to a customer for approval)
are very formal, containing the details of each test case
in a standardized format.

For program testing to be effective, it must be planned. You must design your test-
ing in an organized way, and you must put your design in writing. You should deter-
mine the required or desired level of testing, and plan your general strategy and test
cases before testing begins. In fact, you should start planning for testing before writing
a single line of code.

Debugging
In the previous section we talked about checking the output from our test and
debugging when errors were detected. We can debug “on the fly” by adding output
statements in suspected trouble spots when problems are found. For example, if you
suspect an error in the IncDate increment method, you could augment the method
as follows:



1.3 Verification of Software Correctness

public void increment ()
{
// For debugging
output.println("IncDate method increment entered.");

output.println("year = " + year);
output.println("month = " + month);
output.println("day = " + day);

// Increment algorithm goes here
// It updates the year, month, and day values

// For debugging
output.println("IncDate method increment exiting.");

output.println("year = " + year);
output.println("month = " + month);
output.println("day = " + day);

output.println("IncDate method increment terminated.");

Note that the new output is only for debugging; these output lines are meant to be
seen only by the tester, not by the user of the program. But it’s annoying for debugging
output to show up mixed with your application’s real output, and it’s difficult to debug
when the debugging output isn’t collected in one place. One way to separate the debug-
ging output from the “real” program output is to declare a separate file to receive these
debugging lines.

Usually the debugging output statements are removed from the program, or “com-
mented out,” before the program is delivered to the customer or turned in to the profes-
sor. (To “comment out” means to turn the statements into comments by preceding them
with // or enclosing them between /* and */.) An advantage of turning the debugging
statements into comments is that you can easily and selectively turn them back on for
later tests. A disadvantage of this technique is that editing is required throughout the
program to change from the testing mode (with debugging) to the operational mode
(without debugging).

Another popular technique is to make the debugging output statements dependent
on a Boolean flag, which can be turned on or off as desired. For instance, a section of
code known to be error-prone may be flagged in various spots for trace output by using
the Boolean value debugFlag:

// Set debugFlag to control debugging mode
static boolean debugFlag = true;

if (debugFlag)
debugOutput.println("method Complex entered.");
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This flag may be turned on or off by assignment, depending on the programmer’s
need. Changing to an operational mode (without debugging output) merely involves
redefining debugFlag as false and then recompiling the program. If a flag is used,
the debugging statements can be left in the program; only the if checks are executed
in an operational run of the program. The disadvantage of this technique is that the
code for the debugging is always there, making the compiled program larger and
slower. If there are a lot of debugging statements, they may waste needed space and
time in a large program. The debugging statements can also clutter up the program,
making it harder to read. (This is another example of the tradeoffs we face in develop-
ing software.)

Some systems have online debugging programs that provide trace outputs, making
the debugging process much simpler. If the system at your school or workplace has a
run-time debugger, use it! Any tool that makes the task easier should be welcome, but
remember that no tool replaces thinking.

A warning about debugging: Beware of the quick fix! Program bugs often travel in
swarms, so when you find a bug, don’t be too quick to fix it and run your program
again. As often as not, fixing one bug generates another. A superficial guess about the
cause of a program error usually does not produce a complete solution. In general, the
time that it takes to consider all the ramifications of the changes you are making is time
well spent.

If you constantly need to debug, there’s a deficiency in your design process. The
time that it takes to consider all the ramifications of the design you are making is time
spent best of all.

Testing Java Data Structures

The major topic of this textbook is data structures: what they are, how we use them, and
how we implement them using Java. This chapter has been an overview of software
engineering. In Chapter 2 we begin our concentration on data and how to structure it. It
seems appropriate to end this section about verification with a look at how we test the
data structures we implement in Java.

In Chapter 2, we implement a data structure using a Java class, so that many differ-
ent application programs can use the structure. When we first create the class that mod-
els the data structure, we do not necessarily have any application programs ready to use
it. We need to test it by itself first, before creating the applications.

Every data structure that we implement supports a set of operations. For each struc-
ture, we would like to create a test driver program that allows us to test the operations
in a variety of sequences. How can we write a single test driver that allows us to test
numerous operation sequences? The solution is to separate the specific set of operations
that we want to test from the test driver program itself. We list the operations, and the
necessary parameters, in a text file. The test driver program reads the operations from
the text file one line at a time, performs the listed operation by invoking the methods of
the class being tested, and reports the results to an output file. The test program also
reports its general results on the screen.
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The testing approach described here allows us to easily change our test case—we
just have to change the contents of the input file. However, it would be even easier if
we could dynamically change the name of the input file, whenever we run the program.
Then we could organize our test cases, one per file, and easily rerun a test case when-
ever we needed. Therefore, we construct our test driver to accept the name of the input

file as a command line parameter; we do the same for the output file. Figure 1.14 dis-
plays a model of our test architecture.

Data Structure

Progress
Test input/output
file names —
=
User/Tester
T N—— '8 T N
Test Test
Input 1 Output 1
S N S N
Test Test
Input 2 Output 2
Test Driver
° °
° °
° °
T N
Test Test
Input N Output N
8 J

Figure 1.14  Model of test architecture
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Our test drivers all follow the same basic algorithm; here is a pseudocode description:

ID

|

Obtain the names of the input and output files from the command line
Open the input file for reading and the output file for writing

Read the first line from
Print “Results " plus the
Print a blank line to the

the input file
first line of the input file to the output file
output file

Read a command line from the input file

Set numCommands to 0
While the command rea

d is not ‘quit’

Execute the command by invoking the public methods of the data structure

Print the results to

the output file

Print the data structure to the output file (if appropriate)
Increment numCommands by 1

Read the next com

mand from the input file

Close the input and output files.
Print "Command " + numCommands + " completed” to the screen
Print “Testing completed” to the screen

This algorithm provides us with maximum flexibility for minimum extra work when we
are testing our data structures. Once we implement the algorithm by creating a test
driver for a specific data structure, we can easily create a test driver for a different data
structure by changing only three steps.

Notice that the third and fourth commands copy a “header line” from the input test
file to the output file. This helps us manage our test cases by allowing us to label each
test case file with an identifying string on its first line; the same string always begins
the corresponding output file.

Suppose we want to test the IncDate class that was defined earlier in this chapter.
We first create a test plan. Let’s use a goal-oriented approach. We first test the construc-
tor and each of the observer methods. Next we test the transformer method increment.
To test increment we identify general categories of dates, with respect to the effect of
the increment method. We test dates that represent each of these categories, with spe-
cial attention given to the boundaries of the categories. Thus, we test some dates in the
middle of months, and at the beginning and end of months. We test the end of years
also. We pay careful attention to testing how the method handles leap years, by includ-
ing tests concentrated at the end of February in many different years. Several more test
cases, besides those listed below, would be needed to ensure that the increment method
works correctly.
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Operation to be Tested
and Description of

Action Input Values Expected Output
Constructor

IncDate 5, 6, 2000

print 5/6/2000
Observers

print monthIs 5

print dayIs 6

print yearIs 2000
Transformer

increment and print 5/7/2000

IncDate 5,30,2000

increment and print 5/31/2000

IncDate 5,31,2000

increment and print 6/1/2000

IncDate 6,30,2000

increment and print 7/1/2000

IncDate 2,28,2002

increment and print 3/1/2002

etc.

After identifying a test plan, we create a test driver using our algorithm. Then we
use the test driver to carry out our plan. The IncDate class supports five operations:
IncDate (the constructor), yearTs, monthIs, dayIs, and increment. We represent
these operations in the test input file simply by using their names. In that file, the word
IncDate is followed by three lines, each containing an integer, to supply the three int
parameters of the constructor. Figure 1.15 shows an example of a test input file, the
resulting output file, and the screen information that would be generated.

Study the test driver program on page 51 to make sure you understand our testing
approach. You should be able to follow the control logic of the program. Note that we
assume the inclusion of a reasonable toString method in the Date class, as described
at the end of the Object-Oriented Design section. (The Date.java file on our web site
includes a toString method.)
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IncDate Test Data A Results IncDate Test Data A
IncDate
5 Constructor invoked with 5 6 2000
6 theDate: 5/6/2000
2000 Month is 5
monthIs theDate: 5/6/2000
dayIs Day is 6
increment theDate: 5/6/2000
dayIs increment invoked
quit theDate: 5/7/2000
Day is 7
theDate: 5/7/2000
File: TestDataA

File: TestOutputA

5 rcstng ncoate ST

5 commanis completed,

Testing completed. Close window to exit program.

Screen

Command: java TDIncDate TestDataA TestOutputA

Figure 1.15 Example of a test input file and resulting output file

We realize that the students using this textbook come from a wide variety of Java
backgrounds, especially with respect to the Java I/O approach. You may have learned
Java in an environment where the Java input/output statements were “hidden” behind
a package provided with your introductory textbook. Or you may have learned graphi-
cal input/output techniques, but never learned how to do file input/output. You may
not be familiar with “command-line parameters;” or you might have been using com-
mand-line parameters since the first week you studied Java. You may have learned how
to use the Java AWT; you may have learned Swing; you may have learned neither. Our
approach to testing requires only simple file input and output, in addition to screen
output. It does not require any direct user input during execution, which can be com-
plicated in Java.

The feature section on Java Input/Output (after the following code) introduces the
input/output techniques used for our test drivers. We use these same techniques in test
drivers and example programs throughout the rest of the text, so it is a good idea for you
to study them carefully now. The only places in the text where more advanced I/O
approaches are used are in the chapter Case Studies. Beginning with Chapter 3, we
develop case studies as examples of real programs that use the data structures you are
studying. These case studies use progressively more advanced graphical interfaces, and
are accompanied by additional feature sections as needed to explain any new constructs.
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Therefore, the case studies not only provide examples of object-oriented design and uses
of data structures, but they also progressively introduce you to user interface techniques.

Within the following test driver code we have emphasized, with underlining, all the
commands related to input/output. As you can see, these statements make up a large
percentage of the program; this is not unusual.

f ]
// TDIncDate.java by Dale/Joyce/Weems Chapter 1
/]

// Test Driver for the IncDate class

f ]

import java.awt.*;
import java.awt.event.*;

import javax.swing.*;

import java.io.*;

import IncDate.*;

// Test Driver for the IncDate class
public class TDIncDate
{
public static void main(String[] args) throws IOException

{

String testName = "IncDate";
String command = null;
int numCommands = 0;

IncDate theDate = new IncDate(0,0,0):;
int month, day, year;

//Get file name arguments from command line as entered by user
String dataFileName = args[0]:

String outFileName = args[1];

//Prepare files
BufferedReader dataFile = new BufferedReader (new FileReader (dataFileName)) ;
PrintWriter outFile = new PrintWriter (new FileWriter (outFileName)) ;

//Get test file header line and echo print to outFile
String testInfo = dataFile.readLine():
outFile.println("Results " + testInfo):
outFile.println():

command = dataFile.readlLine():

//Process commands
while(!command.equals ("quit"))
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if (command.equals("IncDate"))
{

month = Integer.parselnt(dataFile.readlLine()):
day = Integer.parselnt(dataFile.readlLine()):
ear = Integer.parselnt(dataFile.readlLine()):

outFile.println("Constructor invoked with " + month + "

+ day + " " + year);
theDate = new IncDate(month, day, year);
}
else if (command.equals("yearIs"))

outFile.println("Year is " + theDate.yvearIs()):
}

else if (command.equals("monthIs"))

outFile.println("Month is " + theDate.monthIs()):
}
else if (command.equals("dayIs"))

outFile.println("Day is " + theDate.dayIs());
)

else if (command.equals("increment"))

theDate.increment () ;
outFile.println("increment invoked "):

outFile.println("theDate: " + theDate):

numCommands++;

command = dataFile.readLine():

//Close files
dataFile.close():
outFile.close():

//Set up output frame

JFrame outputFrame = new JFrame() :
outputFrame.setTitle("Testing " + testName) :
outputFrame.setSize(300,100) ;
outputFrame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE) ;

Team-F lij v
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// Instantiate content pane and information panel
Container contentPane = outputFrame.getContentPane():

JPanel infoPanel = new JPanel():

// Set layout
infoPanel.setlLayout (new GridLayout(2,1)):

// Create labels
JLabel countInfo = new JLabel (numCommands + " commands completed. "
JLabel finishedInfo = new JLabel ("Testing completed. "

+ "Close window to exit program."):

// Add information
infoPanel.add (countInfo)
infoPanel.add (finishedInfo) :
contentPane.add (infoPanel) ;

// Show information
outputFrame.show() ;

Note that the test driver gets the test data and calls the methods to be tested. It also
provides written output about the effects of the method calls, so that the tester can
check the results. Sometimes test drivers are used to test hundreds or thousands of test
cases. In such situations it is best if the test driver automatically verifies whether or not
the test cases were handled successfully. Exercise 36 asks you to expand this test driver
to include automatic test-case verification.

This test driver does not do any error checking to make sure that the inputs are
valid. For instance, it doesn’t verify that the input command code is really a legal com-
mand. Furthermore, it does not handle possible I/0 exceptions; instead it just throws
them out to the run-time environment (exception handling is discussed in Chapter 2).
Remember that the goal of the test driver is to act as a skeleton of the real program, not
to be the real program. Therefore, the test driver does not need to be as robust as the
program it simulates.

Java Input/Qutput1

The Java class libraries provide varied and robust mechanisms for input and output. Hundreds
of classes related to the user interface provide programmers with a multitude of options. I/0 is
not the topic of this textbook. We use straightforward 1/O approaches that support the study of
data structures.

In this feature section, we examine the 1/0 commands used in the TDIncDate program (we
examine more /0 commands as needed later in the text). The relevant commands are highlighted
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in the program text. As modeled in Figure 1.14, this program uses screen output and file input and
output. The program also uses command-line arguments to obtain the names of the files—this is a
form of input. Figure 1.15 shows an example of an input file, the resultant output file, the screen
output, and the corresponding command line. If you're interested in learning more, you might
begin by studying the documentation provided on the Sun Microsystems Inc. web site of the vari-
ous classes and methods we use.

Command-Line Input

A simple way to pass string information to a Java program is with command-line arguments.
Command-line arguments are read by the program each time it is run; a different set of argu-
ments will invoke different behavior from the program. For example, suppose you want to run
the TDIncDate program using a file called TestDataA as the input file and a file called
TestOutputA as the output file. If you are working from the command line, you invoke the
Java interpreter, asking it to “"execute” the TDIncDate.class file using as arguments the
strings "TestDataA" and "TestOutputA” by entering:

java TDIncDate TestDataA TestOutputA

The program runs; it takes its input from the TestDataA file; a small output window appears
on your screen informing you when the program is finished; and the TestOutputA file holds
the results of the test. You end the program by closing the output window. Now, if you want the
program to run again using different input and output files, say, TestDataB and TestOut-
putB, you simply invoke the interpreter with a different command line:

java TDIncDate TestDataB TestOutputB

Note that if you are using an integrated development environment, instead of working from the
command line, you compile and run your program using a pull-down menu or a shortcut key.
Consult your environment's documentation to learn how to pass command-line arguments in
this situation.

How do you access the command-line arguments within your program? Through the main
method's array of strings parameter. By convention, this parameter is usually called args, to
represent the command-line arguments. In our example, args [0] references the string “Test-
DataA" and args [1] references the string “TestOutputA". We use these string values to initial-
ize string variables that represent the input and output files of the program:

String dataFileName = args[0];
String outFileName = args[1];

With this approach, we can change the test input and output files each time we run the pro-
gram by simply entering a different command on the command line.
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File Output

Java provides a stream output model. As an abstract concept, a stream is just a sequence of
bytes. A Java program can direct an output stream to a file, a network connection, or even a
specific block of memory. We use files.

The Java class library supports more than 60 different stream types. We use classes that
inherit from the abstract class Writer. Abstract classes are discussed in Chapter 3. For now, all
you need to know is that you cannot instantiate objects of abstract classes, but you can extend
the classes. In our program we use the PrintWriter class and the FileWriter class, both of
which are library subclasses of Writer. To make these classes available within our program, we
must include the import statement:

import java.io.*;

The Writer class and its subclasses allow us to perform text output in a standard environment.
You may recall from your previous studies that Java uses the Unicode character set as its base
character set. A Unicode character uses 16 bits; therefore, the Unicode character set can repre-
sent 65,536 unique characters. This large character set helps make Java suitable as a program-
ming language around the world, since there are many languages that do not use the standard
Western alphabet. However, most of our environments do not yet support the Unicode character
set. For example, text files, which we often use to provide input to a program or output from a
program, are based on the much smaller ASCII character set. The Writer class provides meth-
ods to translate the Unicode characters used within a Java program to the ASCII characters
required by text files.

To perform stream output using ASCIl characters, we instantiate an object of the class
PrintWriter. The PrintWriter class provides methods for printing all of Java's primitive
types, strings, generic objects (using the object's toString method), and arrays of characters.
It also provides a method to close the output stream (c1ose), methods to check and set errors
(checkError and setError), and a method to flush the stream (f1ush). The £1ush method
is used to force all of the current output to go immediately to the file. In TDIncDate we only
use PrintWriter, println, and close methods. The println method sends a textual rep-
resentation of its parameter to the output stream, followed by a linefeed. For example, the code:

outFile.println("Month is " + theDate.monthIs());

transforms the int returned by the monthIs method into a string, concatenates that string to
the string "Month is", transforms the entire string into an ASCII representation, appends a line-
feed character, and sends the whole thing to the output stream. You can see many other uses of
the println method throughout the rest of the program. The close method is invoked when
processing is finished:

outFile.close();

Invoking close informs the system that we are finished using the file. It is important for system
efficiency and stability for a program to close files when it is finished using them.
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So far in this discussion, we have referred to sending textual information to the “output
stream.” But how is this output stream associated with the correct file? The answer to this ques-
tion is found by looking at the declaration of the PrintWriter object used in the program:

PrintWriter outFile = new PrintWriter(new FileWriter (outFileName)) ;

Embedded within the PrintWriter declaration is an invocation of a FileWriter con-
structor:

new FileWriter (outFileName)

The FileWriter class is another subclass of Writer. The code invokes the FileWriter con-
structor and instantiates an object of the class Wwriter that is associated with the file repre-
sented by the variable outFileName. Recall that outFileName is the name of the output file
that was passed to the program as a command-line argument. By embedding this code within
the PrintWriter declaration, we associate the PrintWriter object outFile with the text
file represented by outFileName. In our example above this is the outFileA file. Therefore, a
command such as:

outFile.println("Month is " + theDate.monthIs());

sends its output to the OutFileA file.

File Input

Most of the previous discussion about file output can be applied to file input. Instead of using the
abstract class Writer we use the abstract class Reader; instead of PrintWriter we use
BufferedReader; instead of the println method we use the readlLine method; instead of
the FileWriter class we use the FileReader class. We leave it to the reader to look over the
TDIncDate program to see how the various file reading statements interact with each other. We
do, however, briefly discuss the readLine method.

The BufferedReader readLine method returns a string that holds the next line of char-
acters from the input stream. Therefore, a statement such as:

command = dataFile.readLine() ;
sets the string variable command to reference the next line of characters from the file associ-
ated with the object dataFile. In some cases we need to transform this line of characters into

an integer. To do this we use the parseInt method of the Integer wrapper class:

day = Integer.parselnt(dataFile.readLine());
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An alternate approach is to use the intValue method of the String class, and the valueOf
method of the Integer wrapper class as follows:

day = Integer.valueOf(dataFile.readLine()).intValue;

Wrapper classes are discussed in Chapter 2.

Frame Output

We really cannot do justice to the topic of graphical user interfaces (GUIs) in this textbook. The
topic is a nontrivial, important area of computing and deserves serious study. Nevertheless,
modern programming approaches demand the use of GUIs and we make moderate use of them
in our programs. So, without trying to explain all of the underlying concepts and supporting
classes, we look at the purpose of each of the statements related to frame output. (Figure 1.15
shows the displayed frame.)

Note that our TDIncDate class includes the following import statements:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

The first statement imports classes from the Java library awt package; the second imports
classes related to event handling, also from the Java library awt package; the third imports the
classes of the Java swing package. The AWT (Abstract Window Toolkit) was the set of graphical
interface tools included with the original version of Java. Developers found that this set of tools
was too limited for professional program development, so the Java designers included a new set
of graphical components, called the “Swing" components, when they released the Java Founda-
tion Classes in 1997. The Swing components are more portable and flexible than their AWT
counterparts. We use Java Swing components throughout the text. Note that Java Swing is built
on top of Java AWT, so we still need to import AWT classes.
The code related to the frame output begins with the comment:

//Set up output frame

and continues to the end of the program listing. First, let's address the set-up of the frame itself.
A frame is a top-level window with a title, a border, a menu bar, a content pane, and more. We
declare our frame with the statement:

JFrame outputFrame = new JFrame();

JFrame is the Java Swing frame component (you can recognize Java Swing components since
they begin with the letter "J" to differentiate them from their AWT counterparts). Therefore, our
outputFrame object is a JFrame, and can be manipulated with the library methods defined
for JFrames.
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We immediately make use of three of these methods to set up our frame:

outputFrame.setTitle("Testing " + testName) ;
outputFrame.setSize(300,100) ;
outputFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE) ;

These statements set the title and size for the instantiated frame, and define how the frame
should react to the user closing the frame's window. Setting the title and size are very straight-
forward. The title of our frame is “Testing IncDate,” since the variable testname was set to
"IncDate” at the beginning of the main method. The size of the frame is set to 300 pixels wide
by 100 pixels tall.

Defining how the frame reacts to the user closing the frame's window is a little more com-
plicated. When the frame is eventually displayed, it appears in its own window. Normally, when
you define a window from within a Java program, you must define how the window reacts to
various events: closing the window, resizing the window, activating the window, and so on. You
must define methods to handle all of these events. However, in our program we want to handle
only one of these events, the window-closing event. Java provides a special method, just for
handling this event; the setDefaultCloseOperation method. This method tells the
JFrame what to do when its window is closed, as long the action is one of a small set of com-
mon choices. The JFrame class provides the following class constants that name these choices:

JFrame .DISPOSE_ON_CLOSE
JFrame.DO_NOTHING_ON_CLOSE
JFrame .HIDE_ON_CLOSE
JFrame.EXIT_ON_CLOSE

In our program we use the EXIT ON_CLOSE option, so the program disposes of the window
and exits when the user closes the window.

The following two lines set up our frame output:

Container contentPane = outputFrame.getContentPane();

JPanel infoPanel new JPanel();

The first line provides us a "handle” for the content pane of the new frame. Remember that
frames have many parts; the part where we display information is called the "content pane." We
now have access to the content pane of our frame through the contentPane variable. This
variable is an object of the class Container, which means we can place other objects into it
for display purposes. What can we place into it? We can place almost anything: buttons, labels,
drawings, text boxes; but to help us organize our interfaces we prefer to place yet another con-
tainer object, called a panel, into content panes. The second line instantiates a JPanel object
(the Swing version of a panel) called infoPanel. It is here where we place the information we
want to display.

We next set a particular layout scheme for the infoPanel panel with the command:

infoPanel.setLayout (new GridLayout(2,1));
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When we add items to the panel, they are organized according to the layout scheme defined in
the above statement. We have chosen to use the grid layout scheme with 2 rows and 1 column.
The Java Library provides many other layout schemes.

Next we create a new "label,” containing information we wish to display on the screen. A
label is a component that can hold one line of text; nothing fancy, just a line of text. That is all
we need here. This is accomplished by the statements:

JLabel countInfo = new JLabel (numCommands + " commands completed. D)
JLabel finishedInfo = new JLabel("Testing completed. "
+ "Close window to exit program.");

Finally, we add our information to the panel and display it with:

infoPanel.add (countInfo) ;
infoPanel.add (finishedInfo) ;
contentPane.add (infoPanel) ;
outputFrame. show() ;

The first two add method invocations add the labels to the infoPanel. The third add method
invocation adds the infoPanel to the contentPane (which is already associated with the
outputFrame). The show method displays the outputFrame on the monitor. That's it.

In summation, to perform frame output, the TDIncDate program does the following:

Imports classes from the awt and swing packages
Instantiates a new JFrame object

Obtains the content pane of the new frame
Creates a panel to hold information

Defines the layout of the panel

Instantiates labels with the information to display
Adds these labels to the panel

Adds the panel to the content pane

Shows the frame

CoNOp WM~

Using this frame output approach allows us to use window output without getting bogged down
in too much detail. When we run our test driver program, it reads data from the input file and
writes results to the output file. It then creates an output frame as a separate program thread
and reports summary information about the test results there. Note that when the main thread
of the program finishes, the frame thread is still running. It will run until the user closes the
frame's window, activating the window-closing event that we defined through the set-
DefaultCloseOperation method.

Practical Considerations

It is obvious from this chapter that program verification techniques are time-consuming
and, in a job environment, expensive. It would take a long time to do all of the things
discussed in this chapter, and a programmer has only so much time to work on any par-
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ticular program. Certainly not every program is worthy of such cost and effort. How can
you tell how much and what kind of verification effort is necessary?

A program’s requirements may provide an indication of the level of verification
needed. In the classroom, your professor may specify the verification requirements as
part of a programming assignment. For instance, you may be required to turn in a writ-
ten, implemented test plan. Part of your grade may be determined by the completeness
of your plan. In the work environment, the verification requirements are often specified
by a customer in the contract for a particular programming job. For instance, a contract
with a customer may specify that formal reviews or inspections of the software product
be held at various times during the development process.

A higher level of verification effort may be indicated for sections of a program that
are particularly complicated or error-prone. In these cases, it is wise to start the verifica-
tion process in the early stages of program development in order to prevent costly errors
in the design.

A program whose correct execution is critical to human life is obviously a candidate
for a high level of verification. For instance, a program that controls the return of astro-
nauts from a space mission would require a higher level of verification than a program
that generates a grocery list. As a more down-to-earth example, consider the potential for
disaster if a hospital’s patient database system had a bug that caused it to lose information
about patients’ allergies to medications. A similar error in a database program that man-
ages a Christmas card mailing list, however, would have much less severe consequences.

Summary

How are our quality software goals met by the strategies of abstraction and information
hiding? When we hide the details at each level, we make the code simpler and more
readable, which makes the program easier to write, modify, and reuse. Object-oriented
design processes produce modular units that are also easier to test, debug, and maintain.

One positive side effect of modular design is that modifications tend to be localized
in a small set of modules, and thus the cost of modifications is reduced. Remember that
whenever we modify a module we must retest it to make sure that it still works correctly
in the program. By localizing the modules affected by changes to the program, we limit
the extent of retesting needed.

Finally, we increase reliability by making the design conform to our logical picture
and delegating confusing details to lower levels of abstraction. By understanding the
wide range of activities involved in software development—from requirements analysis
through the maintenance of the resulting program—we gain an appreciation of a disci-
plined software engineering approach. Everyone knows some programming wizard who
can sit down and hack out a program in an evening, working alone, coding without a
formal design. But we cannot depend on wizardry to control the design, implementa-
tion, verification, and maintenance of large, complex software projects that involve the
efforts of many programmers. As computers grow larger and more powerful, the prob-
lems that people want to solve on them also become larger and more complex. Some



Summary

people refer to this situation as a software crisis. We’d like you to think of it as a soft-
ware challenge.

It should be obvious by now that program verification is not something you begin
the night before your program is due. Design verification and program testing go on
throughout the software life cycle.

Verification activities begin when we develop the software specifications. At this
point, we formulate the overall testing approach and goals. Then, as program design
work begins, we apply these goals. We may use formal verification techniques for parts
of the program, conduct design inspections, and plan test cases. During the implementa-
tion phase, we develop test cases and generate test data to support them. Code inspec-
tions give us extra support in debugging the program before it is ever run. Figure 1.16
shows how the various types of verification activities fit into the software development
cycle. Throughout the life cycle, one thing remains the same: the earlier in this cycle we
can detect program errors, the easier (and less costly in time, effort, and money) they
are to remove. Program verification is a serious subject; a program that doesn’t work
isn’t worth the disk it’s stored on.

Analysis Make sure that requirements are completely understood.
Understand testing requirements.
Specification Verify the identified requirements.

Perform requirements inspections with your client.

Design Design for correctness (using assertions such as preconditions and postconditions).

Perform design inspections.
Plan testing approach.
Code Understand programming language well.
Perform code inspections.
Add debugging output statements to the program.
Write test plan.
Construct test drivers.
Test Unit test according to test plan.
Debug as necessary.
Integrate tested modules.
Retest after corrections.
Delivery Execute acceptance tests of complete product.

Maintenance Execute regression test whenever delivered product is changed to add new function-

ality or to correct detected problems.

Figure 1.16  Life-cycle verification activities
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Summary of Classes and Support Files

In this section at the end of each chapter we summarize, in tabular form, the classes
defined in the chapter. The classes are listed in the order in which they appear in the
text. We also include information about any other files, such as test input files, that
support the material. The summary includes the name of the file, the page on which the
class or support file is first referenced, and a few notes. The notes explain how the class
or support file was used in the text, followed by additional notes if appropriate. The
class and support files are available on our web site. They can be found in the cho1
subdirectory of the bookFiles subdirectory.

Classes and Support Files Defined in Chapter 1

File First Ref. Notes
Date.java page 14 Example of a Java class with instance and class vari-
ables.

Unlike the original code in the text, the code on our
web site includes a toString method.

IncDate. java page 18 Demonstrates inheritance.

The code for the increment command is not included
(see Exercise 34).

TDIncDate.java  page 51 Example of a test driver; test driver for the IncDate
class.

In Exercise 36 we ask the student to enhance the code
to include automated test verification.

TestDataA page 50 Input file for TDIncDate.

We also include in this summary section a list of any Java library classes that were
used for the first time for the classes defined in the chapter. For each library class we
list its name, its package, any of its methods that are explicitly used, and the name of
the program/class where they are first used. The classes are listed in the order in which
they are first used. Note that in some classes the methods listed might not be defined
directly in the class; they might be defined in one of its superclasses. With the classes
we also list constructors, if appropriate. For more information about the library classes
and methods, check the Sun Java documentation.

Team-Fly®



Summary of Classes and Support Files 63

Library Classes Used in Chapter 1 for the First Time

Class Name Package  Overview Methods Used Where Used

JFrame swing Manages a graphical addWindowListener, TDIncDate
window getContentPane, show,

setSize, setTitle

String lang Creates and parses strings equals, String TDIncDate

BufferedReader io Provides a buffered stream BufferedReader, readLine, TDIncDate
of character data close

FileReader io Allows reading of FileReader TDIncDate
characters from a file

PrintWriter io Outputs a buffered stream  PrintWriter, println, close TDIncDate
of character data

FileWriter io Allows reading of FileWriter TDIncDate
characters from a file

Container awt Provides a container that add TDIncDate
can hold other containers

Jpanel swing Provides a container for add, JPanel, setLayout TDIncDate
organizing display
information

GridLayout awt Creates a rectangular grid GridLayout TDIncDate
scheme for output

JLabel swing Holds one line of text for JLabel TDIncDate
display

WindowAdapter awt Provides null methods for WindowAdapter TDIncDate
window events

System lang Various system-related exit TDIncDate
methods

Integer lang Wraps the primitive int parselnt TDIncDate

type
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Exercises

1.1

1.2

The Software Process

. Explain what we mean by “software engineering.”

2. List four goals of quality software.

3. Which of these statements is always true?

a. All of the program requirements must be completely defined before design
begins.

b. All of the program design must be complete before any coding begins.

c. All of the coding must be complete before any testing can begin.

d. Different development activities often take place concurrently, overlapping in
the software life cycle.

Explain why software might need to be modified

a. in the design phase.

b. in the coding phase.

c. in the testing phase.

d. in the maintenance phase.

Goal 4 says, “Quality software is completed on time and within budget.”

a. Explain some of the consequences of not meeting this goal for a student
preparing a class programming assignment.

b. Explain some of the consequences of not meeting this goal for a team devel-
oping a highly competitive new software product.

c. Explain some of the consequences of not meeting this goal for a programmer
who is developing the user interface (the screen input/output) for a spacecraft
launch system.

6. Name three computer hardware tools that you have used.

7. Name two software tools that you have used in developing computer programs.

10.
11.

12.

Explain what we mean by “ideaware.”

Program Design
For each of the following, describe at least two different abstractions for differ-
ent viewers (see Figure 1.1).

a. A dress d. Akey
b. An aspirin e. A saxophone
c. A carrot f. A piece of wood

Describe four different kinds of stepwise refinement.

Explain how to use the nouns and verbs in a problem description to help iden-
tify candidate design classes and methods.

Find a tool that you can use to create UML class diagrams and recreate the dia-
gram of the Date class shown in Figure 1.3.



1.3

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

Exercises

What is the difference between an object and a class? Give some examples.

Describe the concept of inheritance, and explain how the inheritance tree is tra-
versed to bind method calls with method implementations in an object-oriented
system.

Make a list of potential objects from the description of the automated-teller-
machine scenario given in this chapter.

Given the definition of the Date and IncDate classes in this chapter, and the
following declarations:

int temp;

Date datel = new Date(10,2,1989);

Date date2 = new Date(4,2,1992);

IncDate date3 = new IncDate(12,25,2001);

indicate which of the following statements are illegal, and which are legal.
Explain your answers.

a. temp = datel.daylIs();

b. temp = date3.yearIs();

c. datel.increment() ;

d. date3.increment();

e. date2 = datel;

f. date2 = date3;

0. date3 = date2;

Verification of Software Correctness

Have you ever written a programming assignment with an error in the specifica-
tions? If so, at what point did you catch the error? How damaging was the error to
your design and code?

Explain why the cost of fixing an error is increasingly higher the later in the
software cycle the error is detected.

Explain how an expert understanding of your programming language can reduce
the amount of time you spend debugging.

Explain the difference between program verification and program validation.

Give an example of a run-time error that might occur as the result of a program-
mer making too many assumptions.

Define “robustness.” How can programmers make their programs more robust by
taking a defensive approach?

The following program has two separate errors, each of which would cause an
infinite loop. As a member of the inspection team, you could save the programmer
a lot of testing time by finding the errors during the inspection. Can you help?
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import java.io.PrintWriter;
public class TryIncrement
{

static PrintWriter output = new PrintWriter(System.out,true);

public static void main(String[] args) throws Exception

{

int count = 1;

while(count < 10)
output.println(" The number after " + count); /* Now we will
count = count + 1; add 1 to count */
output.println(" is " + count);

24. Is there any way a single programmer (for example, a student working alone on
a programming assignment) can benefit from some of the ideas behind the
inspection process?

25. When is it appropriate to start planning a program’s testing?
a. During design or even earlier
b. While coding
c. As soon as the coding is complete
26. Describe the contents of a typical test plan.
27. Devise a test plan to test the increment method of the IncDate class.

28. A programmer has created a module sameSign that accepts two int parameters
and returns true if they are both the same sign, that is, if they are both positive,
both negative, or both zero. Otherwise, it returns false. Identify a reasonable set
of test cases for this module.

29. Explain the advantages and disadvantages of the following debugging techniques:
a. Inserting output statements that may be turned off by commenting them out
b. Using a Boolean flag to turn debugging output statements on or off
c. Using a system debugger

30. Describe a realistic goal-oriented approach to data-coverage testing of the
method specified below:

q public boolean FindElement(list, targetItem)

Effect: Searches list for targetltem.

Preconditions: Elements of list are in no particular
order; list may be empty.

Postcondition: Returns true if targetltem is in list; oth-
erwise, returns false.




31.

32.

33.
34.

35.

36.

Exercises

A program is to read in a numeric score (0 to 100) and display an appropriate
letter grade (A, B, C, D, or F).

a. What is the functional domain of this program?
b. Is exhaustive data coverage possible for this program?
c. Devise a test plan for this program.

Explain how paths and branches relate to code coverage in testing. Can we
attempt 100% path coverage?

Explain the phrase “life-cycle verification.”

Create a Date class and an IncDate class as described in this chapter (or copy
them from the web site). In the IncDate class you must create the code for the
increment method, since that was left undefined in the chapter. Remember to fol-
low the rules of the Gregorian calendar: A year is a leap year if either (i) it is divisi-
ble by 4 but not by 100 or (ii) it is divisible by 400. Include the preconditions and
postconditions for increment. Use the TDIncDate program to test your program.

You should experiment with the frame output of the TDIncDate program. Fol-
low the directions and record the results:

Create a test input file called MyTest.dat.

b. Run the program using MyTest.dat as the test input file, and MyTest.out as
the output file.

c. Change the TestDriverFrame. java class so that it sets the frame size to
500 X 300, and run the program again.

d. Change the grid layout statement from a grid of 2,1 to a grid of 1,2, and run
the program again.

e. Experiment with other layout managers; use the available resources for infor-
mation about them.

Enhance the TDIncDate program to include automatic test-case verification. For
each of the commands that can be listed in the test-input file, you need to identify
a test-result value, to be used to verify that the command was executed properly.
For example, the constructor command IncDate can be verified by comparing the
resultant value of the IncDate object to the date represented by the parameters of
the command; the observer command monthIs can be verified by checking the
value returned by the monthTs method to the expected month. The values needed
to verify each command should follow the command and its parameters in the test
input file. For example, a test input file could look like this:

IncDate Test Data B
IncDate

10

5

2002

10/5/2002

monthIs

10

quit
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37.

The test driver should read a command, read the command’s parameters if nec-
essary, execute the command by invoking the appropriate method, and then
validate that the command completed successfully by comparing the results of
the command to the test result value from the input file. The results of the test
(pass or fail) should be written to the output file, and a count of the number of
test cases passed and failed should be written to the screen.

Create a new program that uses the same basic architecture as the test driver
program modeled in Figure 1.14, and that uses the same set of Java I/O state-
ments as TDIncDate (readLine, setLayout, and so on). This is an open prob-
lem; your program can do whatever you like. For example, the input file could
contain a list of student names plus three test grades for each student:

Smith
100
90

80
Jones
95

95

95

And the corresponding output file could contain the student’s names and aver-
ages:

Smith
90
Jones
95

Finally, the output frame could contain summary information: for example, the
number of students, the total average, the highest average, and so on. Remember
to design your program so that the user can indicate the input and output file
names through command-line parameters.



Data Design and
Implementation

Measurable goals for this chapter include that you should be able to

describe the benefits of using an abstract data type (ADT)

explain the difference between a primitive type and a composite type

describe an ADT from three perspectives: logical level, application level, and implementation level
explain how a specification can be used to document the design of an ADT

describe, at the logical level, the component selector, and describe appropriate applications for
the Java built-in types: class and array

create code examples that demonstrate the ramifications of using references

describe several hierarchical types, including aggregate objects and multidimensional arrays
use packages to organize Java compilation units

use the Java Library classes String and ArrayList

identify the scope of a Java variable in a program

explain the difference between a deep copy and a shallow copy of an object

identify, define, and use Java exceptions when creating an ADT

list the steps to follow when creating ADTs with the Java class construct
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Data The representation of information in a manner
suitable for communication or analysis by humans or

machines

Data type

Atomic or primitive type A data type whose ele-
ments are single, nondecomposable data items

Chapter 2: Data Design and Implementation

o]

A category of data characterized by the
supported elements of the category and the supported
operations on those elements

This chapter centers on data and the language structures used to organize data. When
problem solving, the way you view the data of your problem domain and how you
structure the data that your programs manipulate greatly influence your success. Here
you learn how to deal with the complexity of your data using abstraction and how to
use the Java language mechanisms that support data abstraction.

In this chapter, we also cover the various data types supported by Java: the primi-
tive types (int, float, and so on), classes, interfaces, and the array. The Java class
mechanism is used to create data types beyond those directly provided by the language.
We review some of the class-based types that are provided in the Java Class Library and
show you how to create your own class-based types. We use the Java class mechanism
to encapsulate the data structures you are studying, as ADTs, throughout the textbook.

Different Views of Data

Data Types

When we talk about the function of a program, we usually use words like add, read,
multiply, write, do, and so on. The function of a program describes what it does in terms
of the verbs in the programming language. The data are the nouns of the programming
world: the objects that are manipulated, the informa-
tion that is processed by a computer program.

Humans have evolved many ways of encoding
information for analysis and communication, for
example letters, words, and numbers. In the context of
a programming language, the term data refers to the
representation of such information, from the problem
domain, by the data types available in the language.

A data type can be used to characterize and
manipulate a certain variety of data. It is formally
defined by describing:

1. the collection of elements that it can represent.

2. the operations that may be performed on those elements.

Most programming languages provide simple data types for representing basic informa-
tion—types like integers, real numbers, and characters. For example, an integer might
represent a person’s age; a real number might represent the amount of money in a bank
account. An integer data type in a language would be formally defined by listing the
range of numbers it can represent and the operations it supports, usually the standard
arithmetic operations.

The simple types are also called atomic types or primitive types, because they can-
not be broken into parts. Languages usually provide ways for a programmer to combine
primitive types into more complex structures, which can capture relationships among
the individual data items. For example, a programmer can combine two primitive inte-
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ger values to represent a point in the x-y
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plane or create a list of real numbers to repre- Composite type A data type whose elements are
sent the scores of a class of students on an composed of multiple data items
assignment. A data type composed of multi- Data abstraction The separation of a data type's log-

ple elements is called a composite type. ical properties from its implementation

Just as primitive types are partially
defined by describing their domain of values,
composite types are partially defined by the relationship among their constituent values.

Composite data types come in two forms: unstructured and structured. An unstruc-
tured composite type is a collection of components that are not organized with respect
to one another. A structured composite type is an organized collection of components in
which the organization determines the means of accessing individual data components
or subsets of the collection. In addition to describing their domain of values, primitive
types are defined by describing permitted operations. With composite types, the main
operation of interest is accessing the elements that make up the collection.

The mechanisms for building composite types in the Java language are called refer-
ence types. (We see why in the next section.) They include arrays and classes, which
you are probably familiar with, and interfaces. We review all of these mechanisms in
the next section.

In a sense, any data processed by a computer, whether it is primitive or composite,
is just a collection of bits that can be turned on or off. The computer itself needs to have
data in this form. Human beings, however, tend to think of information in terms of
somewhat larger units like numbers and lists, and thus we want at least the human-
readable portions of our programs to refer to data in a way that makes sense to us. To
separate the computer’s view of data from our own, we use data abstraction to create
another view.

Data Abstraction

Many people feel more comfortable with things that they perceive as real than with
things that they think of as abstract. Thus, data abstraction may seem more forbidding
than a more concrete entity like integer. Let’s take a closer look, however, at that very
concrete—and very abstract—integer you've been using since you wrote your earliest pro-
grams. Just what is an integer? Integers are physically represented in different ways on
different computers. In the memory of one machine, an integer may be a binary-coded
decimal. In a second machine, it may be a sign-and-magnitude binary. And in a third
one, it may be represented in two’s-complement binary notation. Although you may not
be familiar with these terms, that hasn’t stopped you from using integers. (You can learn
about these terms in an assembly language or computer organization course, so we do
not explain them here.) Figure 2.1 shows some different representations of an integer.

The way that integers are physically represented determines how the computer
manipulates them. As a Java programmer, however, you don’t usually get involved at
this level; you simply use integers. All you need to know is how to declare an int type
variable and what operations are allowed on integers: assignment, addition, subtraction,
multiplication, division, and modulo arithmetic.
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Binary: ' 10011001

Decimal: 153 -25 -102 -103 99
Representation: Unsigned Sl .and s ik Binaryl-coded
magnitude complement complement decimal
Figure 2.1 The decimal equivalents of an 8-bit binary number

Consider the statement

distance = rate * time;

It’s easy to understand the concept behind this statement. The concept of multiplication
doesn’t depend on whether the operands are, say, integers or real numbers, despite the
fact that integer multiplication and floating-point multiplication may be implemented
in very different ways on the same computer. Computers would not be very popular if
every time we wanted to multiply two numbers we had to get down to the machine-rep-
resentation level. But we don’t have to: Java has provided the int data type for us, hid-
ing all the implementation details and giving us just the information we need to create
and manipulate data of this type.

We say that Java has encapsulated integers for us. Think of the capsules surround-
ing the medicine you get from the pharmacist when you're sick. You don’t have to
know anything about the chemical composition of the medicine inside to recognize the
big blue-and-white capsule as your antibiotic or the
little yellow capsule as your decongestant. Data
encapsulation means that the physical representation
of a program’s data is hidden by the language. The
programmer using the data doesn’t see the underlying
implementation, but deals with the data only in terms
of its logical picture—its abstraction.

But if the data are encapsulated, how can the programmer get to them? Operations
must be provided to allow the programmer to create, access, and change the data. Let’s
look at the operations Java provides for the encapsulated data type int. First of all, you
can create variables of type int using declarations in your program. Then you can
assign values to these integer variables by using the assignment operator and perform
arithmetic operations on them using +, -, *, /, and %. Figure 2.2 shows how Java has
encapsulated the type int in a nice neat black box.

Data encapsulation The separation of the represen-
tation of data from the applications that use the data
at a logical level; a programming language feature that
enforces information hiding
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(inside)
Type
Representation of
int
int
Value range: -2147483648 . . +2147483647
) (for example, 32 bits
Operations two's complement)
+ prefix identity
- prefix negation +
+ infix addition
- infix subtraction

*infix

[ infix

% infix

Relational Operators infix

multiplication
division

remainder (modulo)
comparisons

Implementations of
Operations

Figure 2.2 A black box representing an integer

The point of this discussion is that you have been dealing with a logical data
abstraction of integer since the very beginning. The advantages of doing so are clear:
you can think of the data and the operations in a logical sense and can consider their
use without having to worry about implementation details. The lower levels are still
there—they’re just hidden from you.

Remember that the goal in design is to reduce complexity through abstraction. We
extend this goal with another: to protect our data abstraction through encapsulation.
We refer to the set of all possible values (the
domain) of an encapsulated data “object,”
plus the specifications of the operations that
are provided to create and manipulate the
data, as an abstract data type (ADT for short).

In effect, all the Java built-in types are
ADTs. A Java programmer can declare variables of those types without understanding
the underlying implementation. The programmer can initialize, modify, and access the
information held by the variables using the provided operations.

In addition to the built-in ADTs, Java programmers can use the Java class mecha-
nism to build their own ADTs. For example, the Date class defined in Chapter 1 can be
viewed as an ADT. Yes, it is true that the programmers who created it need to know
about its underlying implementation; for example, they need to know that a Date is
composed of three int instance variables, and they need to know the names of the
instance variables. The application programmers who use the Date class, however, do
not need this information. They only need to know how to create a Date object and
how to invoke the exported methods to use the object.

ently of any particular implementation

73

Abstract data type (ADT) A data type whose proper-
ties (domain and operations) are specified independ-
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Data Structures

A single integer can be very useful if we need a counter, a sum, or an index in a pro-
gram. But generally, we must also deal with data that have many parts and complex
interrelationships among those parts. We use a language’s composite type mechanisms
to build structures, called data structures, which mir-
ror those interrelationships. Note that the data ele-

A collection of data elements whose ments that make up a data structure can be any

logical organization reflects a relationship among the combination of primitive types, unstructured compos-

elements. A data structure is characterized by access-
ing operations that are used to store and retrieve the
individual data elements.

ite types, and structured composite types.

When designing our data structures we must con-
sider how the data is used because our decisions about
what structure to impose greatly affect how efficient it
is to use the data. Computer scientists have developed
classic data, such as lists, stacks, queues, trees, and graphs, through the years. They
form the major area of focus for this textbook.

In languages like Java, that provide an encapsulation mechanism, it is best to
design our data structures as ADTs. We can then hide the detail of how we implement
the data structure inside a class that exports methods for using the structure. For exam-
ple, in Chapter 3 we develop a list data structure as an ADT using the Java class and
interface constructs.

As we saw in Chapter 1, the basic operations that are performed on encapsulated
data can be classified into categories. We have already seen three of these: constructor,
transformer, and observer. As we design operations for data structures, a fourth category
becomes important: iterator. Let’s take a closer look at what each category does.

e A constructor is an operation that creates a new instance (object) of the data
type. A constructor that uses the contents of an existing object to create a new
object is called a copy constructor.

e Transformers (sometimes called mutators) are operations that change the state of
one or more of the data values, such as inserting an item into an object, deleting
an item from an object, or making an object empty.

e An observer is an operation that allows us to observe the state of one or more of
the data values without changing them. Observers come in several forms: predi-
cates that ask if a certain property is true, accessor or selector methods that
return a value based on the contents of the object, and summary methods that
return information about the object as a whole. A Boolean method that returns
true if an object is empty and false if it contains any components is an exam-
ple of a predicate. A method that returns a copy of the last item put into a struc-
ture is an example of an accessor method. A method that returns the number of
items in a structure is a summary method.

e An iterator is an operation that allows us to process all the components in a data
structure sequentially. Operations that return successive list items are iterators.

Data structures have a few features worth noting. First, they can be “decomposed”
into their component elements. Second, the organization of the elements is a feature of
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the structure that affects how each element is accessed. Third, both the arrangement of
the elements and the way they are accessed can be encapsulated.

Note that although we design our data structures as ADTs, data structures and ADTs
are not equivalent. We could implement a data structure without using any data encapsu-
lation or information hiding whatsoever (but we won't!). Also, the fact that a construct is
defined as an ADT does not make it a data structure. For example, the Date class defined
in Chapter 1 implements a Date ADT, but that is not considered to be a data structure in
the classical sense. There is no structural relationship among its components.

Data Levels

An ADT specifies the logical properties of a data type. Its implementation provides a spe-
cific representation such as a set of primitive variables, an array, or even another ADT.
A third view of a data type is how it is used in a program to solve a particular problem;
that is, its application. If we were writing a program to keep track of student grades, we
would need a list of students and a way to record the grades for each student. We might
take a by-hand grade book and model it in our program. The operations on the grade
book might include adding a name, adding a grade, averaging a student’s grades, and so
forth. Once we have written a specification for our grade-book data type, we must
choose an appropriate data structure to use to implement it and design the algorithms to
implement the operations on the structure.

In modeling data in a program, we wear many hats. We must determine the abstract
properties of the data, choose the representation of the data, and develop the operations
that encapsulate this arrangement. During this process, we consider data from three dif-
ferent perspectives, or levels:

1. Logical (or abstract) level: An abstract view of the data values (the domain) and the
set of operations to manipulate them. At this level, we define the ADT.

2. Application (or user) level: A way of modeling real-life data in a specific context;
also called the problem domain. Here the application programmer uses the ADT to
solve a problem.

3. Implementation level: A specific representation of the structure to hold the data
items, and the coding of the operations in a programming language. This is how we
actually represent and manipulate the data in memory: the underlying structure and
the algorithms for the operations that manipulate the items on the structure. For the
built-in types, this level is hidden from the programmer.

An Analogy

Let’s look at a real-life example: a library. A library can be decomposed into its compo-
nent elements: books. The collection of individual books can be arranged in a number of
ways, as shown in Figure 2.3. Obviously, the way the books are physically arranged on
the shelves determines how one would go about looking for a specific volume. The partic-
ular library we're concerned with doesn’t let its patrons get their own books, however; if
you want a book, you must give your request to the librarian, who gets the book for you.
The library “data structure” is composed of elements (books) with a particular inter-
relationship; for instance, they might be ordered based on the Dewey decimal system.
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Figure 2.3 A collection of books ordered in different ways

Accessing a particular book requires knowledge of the arrangement of the books. The
library user doesn’t have to know about the structure, though, because it has been
encapsulated: Users access books only through the librarian. The physical structure and
abstract picture of the books in the library are not the same. The online catalog provides
logical views of the library—ordered by subject, author, or title—that are different from
its underlying representation.

We use this same approach to data structures in our programs. A data structure is
defined by (1) the logical arrangement of data elements, combined with (2) the set of
operations we need to access the elements. Let’s see what our different viewpoints mean
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in terms of our library analogy. At the application level, there are entities like the
Library of Congress, the Dimsdale Collection of Rare Books, the Austin City Library, and
the North Amherst branch library.

At the logical level, we deal with the “what” questions. What is a library? What
services (operations) can a library perform? The library may be seen abstractly as “a col-
lection of books” for which the following operations are specified:

e Check out a book.

e Check in a book.

e Reserve a book that is currently checked out.
e Pay a fine for an overdue book.

e Pay for a lost book.

How the books are organized on the shelves is not important at the logical level,
because the patrons don’t actually have direct access to the books. The abstract viewer
of library services is not concerned with how the librarian actually organizes the books
in the library. The library user only needs to know the correct way to invoke the desired
operation. For instance, here is the user’s view of the operation to check in a book: Pre-
sent the book at the check-in window of the library from which the book was checked
out, and receive a fine slip if the book is overdue.

At the implementation level, we deal with the answers to the “how” questions. How
are the books cataloged? How are they organized on the shelf? How does the librarian
process a book when it is checked in? For instance, the implementation information
includes the fact that the books are cataloged according to the Dewey decimal system
and arranged in four levels of stacks, with 14 rows of shelves on each level. The librar-
ian needs such knowledge to be able to locate a book. This information also includes the
details of what happens when each of the operations takes place. For example, when a
book is checked back in, the librarian may use the following algorithm to implement the
check-in operation:
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CheckInBook

Examine due date to see whether the book is late.
if book is late

Calculate fine.
Issue fine slip.

Update library records to show that the book has been returned.
Check reserve list to see if someone is waiting for the book.
if book is on reserve list

else

Put the book on the reserve shelf.

Replace the book on the proper shelf, according to the library's shelf arrangement scheme.
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All this, of course, is invisible to the library user. The goal of our design approach is to

hide the implementation level from the user.

Picture a wall separating the application level from the implementation level, as
shown in Figure 2.4. Imagine yourself on one side and another programmer on the
other side. How do the two of you, with your separate views of the data, communicate
across this wall? Similarly, how do the library user’s view and the librarian’s view of
the library come together? The library user and the librarian communicate through
the data abstraction. The abstract view provides the specification of the accessing
operations without telling how the operations work. It tells what but not how. For
instance, the abstract view of checking in a book can be summarized in the following

specification:
float CheckIn (book)
‘ Effect: Accesses book and checks it into this library.

Returns a fine amount (O if there is no fine).

Preconditions: Book was checked out of this library; book is
presented at the check-in desk.

Postconditions: return value = (amount of fine due); contents of
this library is the original contents + book

Exception: This library is not open

The User
Perspective

cmckmB”"ks The Implementation
Here Perspective

Reserved Shelf

~

Data

Application Abstraction

Implementation
Application
Programmer

Utility
Programmer

N

Figure 2.4 Communication between the application level and implementation level
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The only communication from the user into the implementation level is in terms of
input specifications and allowable assumptions—the preconditions of the accessing rou-
tines. The only output from the implementation level back to the user is the transformed
data structure described by the output specifications, or postconditions, of the routines, or
the possibility of an exception being raised. Remember that exceptions are extraordinary
situations that disrupt the normal processing of the operation. The abstract view hides the
underlying structure but provides functionality through the specified accessing operations.

Although in our example there is a clean separation, provided by the library wall,
between the use of the library and the inside organization of the library, there is one
way that the organization can affect the users—efficiency. For example, how long does a
user have to wait to check out a book? If the library shelves are kept in an organized
fashion, as described above, then it should be relatively easy for a librarian to retrieve a
book for a customer and the waiting time should be reasonable. On the other hand, if
the books are just kept in unordered piles, scattered around the building, shoved into
corners and piled on staircases, the wait time for checking out a book could be very
long. But in such a library it sure would be easy for the librarian to handle checking in
a book—just throw it on the closest pile!

The decisions we make about the way data are structured affect how efficiently we
can implement the various operations on that data. One structure leads to efficient
implementation of some operations, while another structure leads to efficient implemen-
tation of other operations. Efficiency of operations can be important to the users of the
data. As we look at data structures throughout this textbook we discuss the benefits and
drawbacks of various design structure decisions. We often study alternative organiza-
tions, with differing efficiency ramifications.

When you write a program as a class assignment, you often deal with data at each
of our three levels. In a job situation, however, you may not. Sometimes you may pro-
gram an application that uses a data type that has been implemented by another pro-
grammer. Other times you may develop “utilities” that are called by other programs. In
this book we ask you to move back and forth between these levels.

Java's Built-In Types

Java’s classification of built-in data types is shown in Figure 2.5. As you can see, there
are eight primitive types and three composite types; of the composite types, two are
unstructured and one is structured. You are probably somewhat familiar with several of
the primitive types and the composite types class and array.

In this section, we review all of the built-in types. We discuss them from the point of
view of two of the levels defined in the previous section: the logical (or abstract) level and
the application level. We do not look at the implementation level for the built-in types,
since the Java environment hides it and we, as programmers, do not need to understand
this level in order to use the built-in types. (Note, however, that when we begin to build
our own types and structures, the implementation view becomes one of our major con-
cerns.) For the built-in types we can interpret the remaining two levels as follows:

e The logical or abstract level involves understanding the domain of the data type
and the operations that can be performed on data of that type. For the composite
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Java data types

I

primitive composite
integral floating point boolean unstructured structured
byte char short int long float double class interface array

Figure 2.5 Java data types

types, the main operation of concern is how to access the various components of
the type.

e The application level—in other words, the view of how we use the data types—
includes the rules for declaring and using variables of the type, in addition to
considerations of what the type can be used to model.

Primitive Data Types

Java’s primitive types are boolean, byte, char, double, float, int, long, and
short. These primitive types share similar properties. We first look closely at the int
type from our two points of view, and then we give a summary review of all the others.
We understand that you are already familiar with the int type; we are using this oppor-
tunity to show you how we apply our two levels to the built-in types.

Logical Level

In Java, variables of type int can hold an integer value between —2147483648 and
2147483647. Java provides the standard prefix operations of unary plus (+) and unary
minus (-). Also, of course, the infix operations of addition (+), subtraction (-), multipli-
cation (*), division (/), and modulus (%). We are sure you are familiar with all of these
operations; remember that integer division results in an integer, with no fractional part.

Application Level
We declare variables of type int by using the keyword int, followed by the name of
the variable, followed by a semicolon. For example

int numStudents;

You can declare more than one variable of type int, by separating the variable names
with commas, but we prefer one variable per declaration statement. You can also pro-
vide an initial value for an int variable by following the name of the variable with an

“= value” expression. For example

int numStudents = 50;
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If you do not initialize an int variable, the system initializes it to the value O.
However, many compilers refuse to generate Java byte code if they determine that you
could be using an uninitialized variable, so it is always a good idea to ensure that your
variables are assigned values before they are used in your programs.

Variables of type int are handled within a program “by value.” This means the
variable name represents the location in memory of the value of the variable. This infor-
mation may seem to belong in a subsection on implementation. However, it does
directly affect how we use the variables in our programs, which is the concern of the
application level. We treat this topic more completely when we reach Java’s composite
types, which are not handled by value.

For completeness sake, we should mention what an int variable can be used to
model: Essentially anything that can be characterized by an integer value in the range
stated above. Programs that can be modeled with an integer between negative two bil-
lion and positive two billion include the number of students in a class, test grades, city
populations, and so forth.

We could repeat the analysis we made above of the int type for each of the primi-
tive data types, but the discussion would quickly become redundant. Note that byte,
short, and long types are also used to hold integer values, char is used to store Uni-
code characters, float and double are used to store “real” numbers, and the boolean
type represents either true or false. Appendix C contains a table showing, for each
primitive type, the kind of value stored by the type, the default value, the number of
bits used to implement the type, and the possible range of values.

Let’s move on to the composite types.

The Class Type

Primitive data types are the building blocks for composite types. A composite type gath-
ers together a set of component values, sometimes imposing a specific arrangement on
them (see Figure 2.6). If the composite type is a built-in type such as an array, the
accessing mechanism is provided in the syntax of the language. If the composite type is

_ Composite Composite
Atomic Unstructured Structured

Figure 2.6  Atomic (simple) and composite data types
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a user-defined type, such as the Date class defined in Chapter 1, the accessing mecha-
nism is built into the methods provided with the class.

You are already familiar with the Java class construct from your previous courses
and from the review in Chapter 1. The class can be a mechanism for creating composite
data types. A specific class has a name and is composed of named data fields (class and
instance variables—sometimes called attributes) and methods. The data elements and
methods are also known as members of the class. The members of a class can be
accessed individually by name. A class is unstructured because the meaning is not
dependent on the ordering of the members within the source code. That is, the order in
which the members of the class are listed can be changed without changing the function
of the class.

In object-oriented programming, classes are usually defined to hold and hide data
and to provide operations on that data. In that case, we say that the programmer has
used the class construct to build his or her own ADT—and that is the focus of this
textbook. However, in this section on built-in types, we use the class strictly to hold
data. We do not hide the data and we do not define any methods for our classes. The
class variables are public, not private. We use a class strictly to provide unstructured
composite data collections. This type of construct has classically been called a record.
The record is not available in all programming languages. FORTRAN, for instance,
historically has not supported records; newer versions may. However, COBOL, a
business-oriented language, uses records extensively. C and C++ programmers are
able to implement records. Java classes provide the Java programmer with a record
mechanism.

Many textbooks that use Java do not present this use of the Java class construct,
since it is not considered a pure object-oriented construct. We agree that when practic-
ing object-oriented design you should not use classes in the manner presented in this
section. However, we present the approach for several reasons:

1. Other languages support the record mechanism, and you may find yourself working
with those languages at some time.

2. Using this approach allows us to address the declaration, creation, and use of
objects without the added complexity of dealing with class methods.

3. Later, when we discuss using classes to hide data, we can compare the information-
hiding approach to the approach described here. The benefits of information hiding
might not be as obvious if you hadn’t seen any other approach.

In the following discussion, to differentiate the simple use of the class construct used
here, from its later use to create ADTs, we use the generic term record in place of class.

Logical Level
A record is a composite data type made up of a finite collection of not necessarily
homogeneous elements called fields. Accessing is done directly through a set of named
field selectors.

We illustrate the syntax and semantics of the component selector within the con-
text of the following program:

'l"cmn-FIy :



2.2 Java’s Built-in Types

public class TestCircle
{
static class Circle
{
int xValue; // Horizontal position of center
int yValue; // Vertical position of center
float radius;

boolean solid; // True means circle filled

public static void main(Stringl[] args)

Circle cl = new Circle();
cl.xValue = 5;

cl.yValue = 3;

cl.radius = 3.5f;

cl.solid = true;

System.out.println("cl: "+ ocl);
System.out.println("cl x: " + cl.xValue);

The above program declares a record structure called Circle. The main method
instantiates and initializes the fields of the Circle record c1, and then prints the record
and the xvValue field of the record to the output. The output looks like this:

cl: TestCircle$Circlelat]111f71
cl x: 5

The Circle record variable (the circle object) c1 is made up of four components (or
fields, or instance variables). The first two, xValue and yValue, are of type int. The
third, radius, is a float number. The fourth, solid, is a boolean. The names of the
components make up the set of member selectors.

The syntax of the component selector is the record variable name, followed by a
period, followed by the member selector for the component you are interested in:

cl.xValue

il AN

struct period member
variable selector

If this expression is on the left-hand side of an assignment statement, a value is being
stored in that member of the record; for example:

cl.xValue = 5;
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If it is used somewhere else, a value is being extracted from that place; for example:

output.println("cl x: " + cl.xValue);

Application Level
Records are useful for modeling objects that have a number of characteristics. Records
allow us to associate various types of data with each other in the form of a single item.
We can refer to the composite item by a single name. We also can refer to the different
members of the item by name. You probably have seen many examples of records used
in this way to represent items.

We declare and instantiate a record the same way we declare and instantiate any
Java object; we use the new command:

Circle cl = new Circle();

Notice that we did not supply a constructor method in our definition of the Circle
class in the above program. When using the class as a record mechanism it is not neces-
sary to provide a constructor, since the record components are not hidden and can be
initialized directly from the application. Of course, you can provide your own construc-
tor if you like, and that may simplify the use of the record. If no constructor is defined,
Java provides a default constructor that initializes the constituent parts of the record to
their default values.

In the previous section we discussed how primitive types such as ints are handled
“by value.” This is in contrast to how all nonprimitive types, including records or any
objects, are handled. The variable of a primitive type holds the value of the variable,
whereas a variable of a nonprimitive type holds a reference to the value of the variable.
That is, the variable holds the address where the system can find the value of the vari-
able. We say that the nonprimitive types are handled “by reference.” This is why, in
Java, composite types are known officially as reference types. Understanding the ramifi-
cations of handling variables by reference is very important, whether we are dealing with
records, other objects, or arrays.

The differences between the ways “by value” and “by reference” variables are han-
dled is seen most dramatically in the result of a simple assignment statement. Figure 2.7
shows the result of the assignment of one int variable to another int variable, and the
result of the assignment of one Circle object to another Circle object. Actual circles
represent the Circle objects in the figure.

When we assign a variable of a primitive type to another variable of the same type,
the latter becomes a copy of the former. But, as you can see from the figure, this is not
the case with reference types. When we assign object c2 to object c1, c1 does not
become a copy of c2. Instead, the reference associated with c1 becomes a copy of the
reference associated with c2. This means that both c1 and c2 now reference the same
object. The feature section below looks at the ramifications of using references from
four perspectives: aliases, garbage, comparison, and use as parameters.
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4 .
initial state operation final state
- =@ . ®
cl = c2
& "

Figure 2.7  Results of assignment statements

Java includes a reserved word null that indicates an absence of reference. If a ref-
erence variable is declared without being assigned an instantiated object, it is automati-
cally initialized to the value null. You can also assign null to a variable, for example:

cl = null;
And you can use null in a comparison:

if (¢l == null)
output.println("The Circle is not instantiated");

Ramificati  Using Ref

Aliases

The assignment of one object to another object, as shown in Figure 2.7, results in both object
variables referring to the same object. Thus, we have two names for the same object. In this
case we say that we have an "alias" of the object. Good programmers avoid aliases because
they make programs hard to understand. An object's state can change, even though it appears
that the program did not access the object, when the object is accessed through the alias. For
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example, consider the TncDate class that was defined in Chapter 1. If datel and date? are

aliases for the same IncDate object, then the code

output.println(datel);

date?2.increment () ;

output.println(datel) ;

would print out two different dates, even though at first glance it would appear that it should

print out the same date twice. This type of behavior can be very confusing for a maintenance

programmer and lead to hours of frustrating testing and debugging.

Garbage

It would be fair to ask in the situation depicted in the lower half of Figure 2.7, what happens to

the space being used by the larger circle? After the assignment statement, the program has lost

its reference to the large circle, and so it can no longer be accessed. Memory space like this, that

has been allocated to a program but that can no longer be accessed by a program, is called

garbage. There are other ways that garbage can be created in a Java program. For example, the

following code would create 100 objects of class Circle; but only one of them can be accessed

through c1 after the loop is finished executing:

Circle cl;

for (n = 1; n <= 100; nt+t)

{

Circle ¢l = new Circle();
// code to initialize and use cl goes here
}
The other 99 objects cannot be reached by the pro-
gram. They are garbage.

Garbage The set of currently unreachable objects When an object is unreachable, the Java run time
Garbage collection The process of finding all system marks it as garbage., The system regularly per-
unreachable objects and deallocating their storage forms an operation known as garbage collection, in
space which it finds unreachable objects and deallocates
Deallocate To return the storage space for an object their storage space, making it once again available in
to the pool of free memory so that it can be reallo- the free pool for the creation of new objects.
cated to new objects This approach, of creating and destroying objects
Dynamic memory management The allocation and at different points in the application by allocating and
deallocation of storage space as needed while an appli- deallocating space in the free pool is called dynamic
cation is executing memory management. Without it, the computer

would be much more likely to run out of storage space
for data.

Comparing Objects

The fact that nonprimitive types are handled by reference impacts the results returned by the ==
comparison operator. Two variables of a nonprimitive type are considered identical, in terms of
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"intA == intB" evaluates to true

- =0
"cl == c2" evaluates to false
- =30

-0

evaluates to true

Figure 2.8 Comparing primitive and nonprimitive variables

the == operator, only if they are aliases for one another. This makes sense when you consider
that the system compares the contents of the two variables. That is, it compares the two refer-
ences that those variables contain. So even if two variables of type Circle have the same
xValue values, the same yValue values, the same radius values, and the same solid val-
ues, they are not considered equal. Figure 2.8 shows the results of using the comparison opera-
tor in various situations.

Parameter Passing

When methods are invoked, they are often passed information (arguments) through their
parameters. Some programming languages allow the programmer to control whether arguments
are passed by value (a copy of the argument's value is used) or by reference (a copy of the argu-
ment's memory location is used). Java does not allow such control. Whenever a variable is
passed as an argument, the value stored in that variable is copied into the method's correspon-
ding parameter. All Java arguments are passed by value. Therefore, if the variable is of a primi-
tive type, the actual value (int, double, and so on) is passed to the method; and if it is a
reference type, then the reference that it contains is passed to the method.

Notice that passing a reference variable as an argument causes the receiving method to
receive an alias of the object that is referenced by the variable. If it uses the alias to make
changes to the object, then when the method returns, an access via the variable finds the object
in its modified state.

We return many times to these subtle, but important, considerations.
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Interfaces

The word interface means a common boundary shared by two interacting systems. We
use the term in many ways in computer science. For example, the user interface of a
program is the part of the program that interacts with the user, and the interface of an
object’s method is its set of parameters and the return value it provides.

In Java, the word interface has a very specific meaning. In fact, interface is a
Java keyword. We look briefly at interfaces in this subsection. Throughout the textbook
we find places to use the Java interface mechanism, at which times we expand our cov-
erage of the topic.

Logical Level
A Java interface looks very similar to a Java class. It can include data, that is, variable
declarations, and methods. However, all variables declared in an interface must be
final, static variables; in other words, they must be constants. And only the inter-
face descriptions of methods are included; no method
bodies or implementations are allowed. Perhaps this is
why the language designers decided to call this con-
struct an interface. Methods that are declared without
bodies are called abstract methods.

Here is an example of an interface, with one constant, pi, and three abstract meth-
ods, perimeter, area, and weight:

public interface FigureGeometry
{
public static final float Pi = 3.14;

public abstract float perimeter();
// Returns perimeter of current object

public abstract float area();

// Returns area of current object

public abstract int weight(int scale);
// Returns weight of current object

Java provides the keyword abstract that we must use when declaring an abstract
method in a class. But we do not need to use it when defining the methods in an inter-
face. Its use is redundant, since all methods of an interface must be abstract. We could
have omitted it from the above code segment, but chose to show how it may optionally
be used, as added documentation, to remind us that the methods are abstract.

At the logical level we look at the domain of values of a data type and the available
operations to manipulate them. The domain of values for an interface is made up of
classes! Interfaces are used by being “implemented” by classes. For example, a program-
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mer has a Circle class implement the FigureGeometry interface by using the follow-
ing line to begin the Circle class:

public class Circle implements FigureGeometry

When a class implements an interface, it receives access to all of the constants
defined in the interface. It must provide an implementation, that is, a body, for all the
abstract methods declared in the interface. So, the Circle class and any other class that
implements the FigureGeometry interface, would be required to repeat the declarations
of the three methods and also provide code for their bodies. Classes that implement an
interface are not constrained to only implementing the abstract methods; they can also
add data fields and methods of their own.

There are some other issues with interfaces (relationship to abstract classes, use of
subinterfaces) that we address, when needed, later in the text.

Application Level
Interfaces are a versatile and powerful programming construct. They can be used in the
following ways.

As a contract 1If we have an abstract view of a class that can have several different
implementations, we can capture our abstract view in an interface. Then we can have
separate classes implement the interface, with each class providing one of the alternate
implementations. This way we are sure that all of the classes provide the same
abstraction; we should be able to use them interchangeably in our application
programs.

To share constants 1If there is a set of constant values that we want to use in several
different classes, we can define the constants in an interface and have each of the
classes implement the interface. Implementing the interface provides access rights to the
constants.

To replace multiple inheritance Some languages allow classes to inherit from more
than one superclass. This is called multiple inheritance. Java does not support multiple
inheritance because it can lead to obtuse programs and would greatly complicate the
underlying Java environment. However, there are many situations for which we would
like to relate the definition of a new class to more than one previously defined class. In
these cases, in Java, we use interfaces. A class can extend one superclass, but it can
implement many interfaces. So for example, we might see a declaration such as:

class Circle extends Figure implements FigureGeometry, Comparable

Circle inherits methods and data from the Figure class, and must implement any
abstract classes defined in the FigureGeometry and Comparable interfaces. The prime
benefit of this is that objects of type Circle can be used as if they were objects of type
Figure, FigureGeometry, Or Comparable.
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To provide a generic type mechanism We can design and build ADTs to help us organize
data of a specific type. For example, in Chapter 3 we implement an ADT that provides a list
of strings. This ADT, and any ADT, would be more reusable if we did not limit it to a
specific contained type, in this case, strings. It would be better to have an ADT that lets us
manipulate lists of anything. Then, at our discretion, we could use it for lists of letters or
lists of integers or whatever. We call such ADTs generic structures. In the latter part of
Chapter 3 you learn how to use the Java interface construct to provide generic structures.

Arrays

Classes provide programmers a way to collect into one construct several different attrib-

utes of an entity and refer to those attributes by name. Many problems, however, have so

many components that it is difficult to process them if each one must have a unique

name. An array—the last of Java’s built-in types—is the data type that allows us to solve

problems of this kind. We are sure that you have studied and used arrays in your previous

work. Here we revisit arrays, using the terminology and views established in this chapter.
In general terminology, an array differs from a class in three fundamental ways:

1. An array is a homogeneous structure (all components in the structure are of the
same data type), whereas classes are heterogeneous structures (their components
may be of different types).

2. A component of an array is accessed by its position in the structure, whereas a
component of a class is accessed by an identifier (the name).

3. Because array components are accessed by position, an array is a structured com-
posite type.

Logical Level

A one-dimensional array is a structured composite data type made up of a finite, fixed-
size collection of ordered homogeneous elements to which there is direct access. Finite
indicates that there is a last element. Fired size means that the size of the array must be
known at compile time, but it doesn’t mean that all of the slots in the array must con-
tain meaningful values. Ordered means that there is a first element, a second element,
and so on. (It is the relative position of the elements that is ordered, not necessarily the
values stored there.) Because the elements in an array must all be of the same type, they
are physically homogeneous; that is, they are all of the same data type. In general, it is
desirable for the array elements to be logically homogeneous as well—that is, for all of
the elements to have the same purpose. (If we kept a list of numbers in an array of inte-
gers, with the length of the list—an integer—kept in the first array slot, the array ele-
ments would be physically, but not logically, homogeneous.)

The component selection mechanism of an array is direct access, which means we can
access any element directly, without first accessing the preceding elements. The desired
element is specified using an index, which gives its relative position in the collection.

The semantics (meaning) of the component selector is “Locate the element associ-
ated with the index expression in the collection of elements identified by the array
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name.” Suppose, for example, we are using an array of integers, called numbers, with
10 elements. The component selector can be used in two ways:

1. It can be used to specify a place into which a value is to be copied, such as
numbers[2] = 5;
2. It can be used to specify a place from which a value is to be retrieved, such as

value = numbers[4];

If the component selector is used on the left-hand side of the assignment statement, it is
being used as a transformer: the storage structure is changing. If the component selector
is used on the right-hand side of the assignment statement, it is being used as an
observer: It returns the value stored in a place in the array without changing it. Declar-
ing an array and accessing individual array elements are operations predefined in nearly
all high-level programming languages.

In addition to component selection, there is one other “operation” available for our
arrays. In Java, each array that is instantiated has a public instance variable, called
length, associated with it that contains the number of components in the array. You
access the variable using the same syntax you use to invoked object methods: You use
the name of the object followed by a period, followed by the name of the instance vari-
able. For the numbers example, the expression:

numbers.length
would have the value 10.

Application Level
A one-dimensional array is the natural structure for the storage of lists of like data ele-
ments. Some examples are grocery lists, price lists, lists of phone numbers, and lists of
student records. You have probably used one-dimensional arrays in similar ways in
some of your programs.

The declaration of a one-dimensional array is similar to the declaration of a simple
variable (a variable of a primitive data type), with one exception. You must indicate that
it is an array by putting square brackets next to the type:

int[] numbers;

Alternately, the brackets can go next to the name of the array:

int numbers|[];

We prefer the former approach to declaring arrays, since it is more consistent with the
way we declare other variables in Java.

Arrays are handled by reference, just like classes. This means they need to be
treated carefully, just like classes, in terms of aliases, comparison, and their use as
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parameters. And like classes, in addition to being declared, an array must be instanti-
ated. At instantiation you specify how large the array is to be:

numbers = new int[10];
As with objects, you can both declare and instantiate arrays with a single command:
int[] numbers = new int[10];

A few more questions you may have about arrays:

e What are the initial values in an array instantiated by using new? If the array
components are primitive types, they are set to their default value. If the array
components are reference types, the components are set to null.

e Can you provide initial values for an array? An alternate way to create an array
is with an initializer list. For example, the following line of code declares, instan-
tiates, and initializes the array numbers:

int numbers([] = (5, 32, -23, 57, 1, 0, 27, 13, 32, 32};

e What happens if we try to execute the statement

numbers [n] = value;

when n is less than 0 or when n is greater than 9?7 The result is that a memory
location outside the array would be accessed, which causes an error. This error is
called an out-of-bounds error. Some languages, C++ for instance, do not check
for this error, but Java does. If your program attempts to use an index that is not
within the bounds of the array, an ArrayIndexOutOfBoundsException is
thrown. Rather than trying to catch this error, you should write your code to pre-
vent it. Exceptions are covered in more detail later in this chapter.

Type Hierarchies

In all of our examples of composite types, notably with records and arrays, we have
used composite types whose components have been primitive types. We looked at a
record, Circle, that had four primitive type fields, and an array, numbers, of the prim-
itive int type. We used this approach to simplify the discussion; it allowed us to con-
centrate on the structuring mechanism without introducing unnecessary complications.
In practice, however, the components of these types can be any Java type or class:
built-in primitive types like we have used so far, built-in nonprimitive types, or even
user-defined types.

In this subsection we introduce several ways of combining our built-in types and
classes into versatile hierarchies.

Aggregate Objects
The instance variables of our objects can themselves be references to objects. In fact, this
is a very common approach to the organization of objects in our world. For example, a
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page object might be part of a book object that is part of a shelf that is part of a library,

and so on.

Consider the example from the section entitled The Class Type, of a class modeling
a circle that includes variables for horizontal and vertical positions. Instead of these two
instance variables, we could have defined a Point class to model a point in two-dimen-

sional space, as follows:

public class Point

{
public int xValue;
public int yValue;

Then, we could define a new circle class as:

public class NewCircle

{
public Point location;
public float radius;
public boolean solid;

An object of class NewCircle has three
instance variables, one of which is an object
of class Point, which in turn has two
instance  variables. An object, like
NewCircle, made up of other objects is
called an aggregate object. We call the rela-
tionship between the classes NewCircle and

Aggregate object An object whose class definition
includes variables that are themselves references to
classes.

Point a “has a” relationship, as in “a NewCircle object has a Point object” as an
instance variable. The has a relationship is depicted in UML with a diamond on the
composite end of a link between the two classes, as shown in Figure 2.9.

When we instantiate and initialize an object of type NewCircle, we must remember
to also instantiate the composite Point object. For example, to create a solid circle at
position <5, 7> with a radius of 2.5, we would have to code:

NewCircle myNewCircle = new NewCircle() ;
myNewCircle.location = new Point():
myNewCircle.location.xValue = 5;
myNewCircle.location.yValue = 3;
myNewCircle.radius = 2.5f;
myNewCircle.solid = true;

Although this is a syntactically correct approach to structuring data, the use of compos-
ite objects in this fashion quickly becomes tedious for the application programmer. It is
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New Circle Point

+location:Point
+radius:float ‘
+solid:boolean 1 1

+xvalue:int

+yvalue:int

Figure 2.9  UML diagram showing has a relationship

much easier if we define methods, such as a constructor method, to access and manipu-
late our objects. That is the approach we take below in the section on user-defined
types, when we move from using classes as records to using classes to create true ADTs.

Arrays of Objects
Although arrays with atomic components are very common, many applications require
a collection of composite objects. For example, a business may need a list of parts
records or a teacher may need a list of students in a class. Arrays are ideal for these
applications. We simply define an array whose components are objects.

Let’s define an array of NewCircle objects. Declaring and creating the array of
objects is exactly like declaring and creating an array in which the components are
atomic types:

NewCircle[] allCircles = new NewCircle[10];

allCircles is an array that can hold ten references to NewCircle objects. What are
the locations and radii of the circles? We don’t know yet. The array of circles has been
instantiated, but the NewCircle objects themselves have not. Another way of saying
this is that al1Circles is an array of references to NewCircle objects, which are set to
null when the array is instantiated. The objects must be instantiated separately. The
following code segment initializes the first and second circles. It assumes that a New-
Circle object myNewCircle has been instantiated and initialized as described in the
preceding section, Aggregate Objects.

NewCircle[] allCircles = new NewCircle[10];
allCircles[0] = new NewCircle();
allCircles[0] = myNewCircle;

allCircles[1] = new NewCircle();
allCircles[1].location = new Point();
allCircles[1].location.xValue = 6;
allCircles[1].location.yValue = 6;
allCircles[1].radius = 1.3f;

allCircles[1] .solid = false;

Normally an array like this would be initialized using a for loop and a constructor
method, but we used the above approach so that we could demonstrate several of the
subtleties of the construct. Figure 2.10 shows what the array looks like with values in it.
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myNewCircle

allCircles /’

- .

xvalue: 5
location: ®
yvalue: 3
allCircles[0] ® radius: 2.5
allCircles[1] *— solid: true
allCircles([2] null
. . xvalue: 6
location: ®
° ° yvalue: 6
. © radius: 1.3
allCircles[9] null salliak e

Figure 2.10 The allCircles array

Study the code above and Figure 2.10. In particular, notice how we must instantiate
each element in the array with the new command. Also, notice that myNewCircle and
allCircles[0] are aliases.

Keep in mind that an array name with no brackets is the array object. An array
name with brackets is a component. The component can be manipulated just like any
other variable of that type. The following table demonstrates these relationships:

Expression Class/ Type
allCircles An array
allCircles[1] A NewCircle
allCircles[1].location A Point
allCircles[1l].location.xValue An int

Two-Dimensional Arrays

A one-dimensional array is used to represent items in a list or a sequence of values. A
two-dimensional array is used to represent items in a table with rows and columns, pro-
vided each item in the table is of the same type or class. A component in a two-dimen-
sional array is accessed by specifying the row and column indexes of the item in the
array. This is a familiar task. For example, if you want to find a street on a map, you
look up the street name on the back of the map to find the coordinates of the street,
usually a number and a letter. The number specifies a row, and the letter specifies a col-
umn. You find the street where the row and column meet.
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N|lo|lo| sl w|N| =

Figure 2.11 shows a two-dimensional array with 100 rows and 9 columns. The rows
are accessed by an integer ranging from 0 through 99; the columns are accessed by an
integer ranging from O through 8. Each component is accessed by a row-column pair—
for example, [0] [5].

A two-dimensional array variable is declared in exactly the same way as a one-
dimensional array variable, except that there are two pairs of brackets. A two-dimen-
sional array object is instantiated in exactly the same way, except that sizes must be
specified for two dimensions.

alpha

[0] . Row 0, column 5

[98] . Row 98, column 2

[99]

Figure 2.11  alpha array
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The following code fragment would create the array shown in Figure 2.11, where
the data in the table are floating-point numbers.

double[] [] alpha;
alpha = new double[100][9];

The first dimension specifies the number of rows, and the second dimension specifies
the number of columns.

To access an individual component of the alpha array, two expressions (one for
each dimension) are used to specify its position. We place each expression in its own
pair of brackets next to the name of the array:

alpha[0] [5] = 36.4;

Row Column
number number

Note that alpha.length would give the number of rows in the array. To obtain the
number of columns in a row of an array, we access the 1ength attribute for the specific
row. For example, the statement

rowLength = alpha[30].length;

stores the length of row 30 of the array alpha, which is 9, into the int variable
rowLength.

The moral here is that in Java each row of a two-dimensional array is itself a one-
dimensional array. Many programming languages directly support two-dimensional
arrays; Java doesn’t. In Java, a two-dimensional array is an array of references to array
objects. Because of the way that Java handles two-dimensional arrays, the drawing in
Figure 2.11 is not quite accurate. Figure 2.12 shows how Java actually implements the
array alpha. From the Java programmer’s perspective, however, the two views are syn-
onymous in the majority of applications.

Multilevel Hierarchies
We have just looked at various ways of combining Java’s built-in type mechanisms to
create composite objects, arrays of objects, and two-dimensional arrays. We do not have
to stop there. We can continue along these lines to create whatever sort of structure best
matches our data. Classes can have arrays as variables, aggregate objects can be made
from other aggregate objects, and we can create arrays of three, four, or more dimensions.
Consider, for example, how a programmer might structure data that represents stu-
dents for a professor’s grading program. This professor grades each test with both a
numerical grade and a letter grade. Therefore, the programmer decides to represent a
test as a record, called test, with two fields: score of type int and grade of type
char. Each student takes a sequence of tests—these are represented by an array of
test called marks. A student also has a name and an attendance record. So a student
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6.3
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[98]

alpha[98] [2]

[991]

Figure 2.12  Java implementation of the a1pha array

could be represented by a record with three fields: name of type String, marks of
type array of test, and attendance of type int. Since the professor has many stu-
dents in a course, the programmer creates another array, called course, that is an
array of student. Wow! We have an array of records of three fields, one of which is
itself an array of records of two fields. See Figure 2.13 for a logical view of this multi-
level structure.

The idea is to use the built-in typing mechanisms to model the real world structure
of the data. This makes it easier for us to organize our processing of the data.

In the next section we look at how we can extend Java’s built-in types by encapsu-
lating composite types with programmer-defined methods, to simplify their access and
manipulation. When we do this we are creating our own ADTs.

Class-Based Types

The class construct sits at the center of the Java programming world. In the previous
section, you learned how the Java class could be used to structure data into records. As
we stated then, that is not a proper use of the class construct when practicing object-
oriented design. In this section, you learn how to use classes to implement ADTs. This is
the correct way to use the class construct.
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course
name:
score score score
grade grade grade
score score score
grade grade grade
L]
L]
L]
name:
score score score
grade grade grade

Figure 2.13  Logical view of array of student records
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Meaning of "Type"

The Java language specification reserves the word type to mean those abstract data types (ADTs)
that are built into the language, such as int, double, char, array, and class. Every ADT
that we design and implement as a class in Java is considered by the language to be a member
of the same type, which is the Java c1ass type.

More generally, the word type is often used to refer to an ADT and its implementation in what-
ever programming language is being used. Thus, there is a potential for some minor confusion with
respect to Java's use of the term and the use of the term in general. Wherever we use the word
type, and the context of the usage does not clarify the meaning, we modify the term to provide
clarification. Thus, we may use “Java type,” “built-in type,” or "primitive type" to indicate that we
are using the term in the strict Java sense. Elsewhere, we use the term in its more general sense, for
example, to refer to the implementation of a programmer defined ADT. Thus, we may refer to the
Date type or the Circle type.

Using Classes in Our Programs

Once a programmer has defined a class, objects of the class type can be declared,
instantiated, and used in many other classes. For purposes of this discussion, we call the
class being used the tool class, and the class using it
the client class. The client class could be an applica-

A class defined as a member of another tion, that is, a class with a main method that would be

executed when we invoke the Java interpreter. For the

Package A set of related classes, grouped together to client class to use the tool class, the definition of the
provide efficient access and use tool class must be visible to the Java compiler/inter-

preter, when the client class is compiled or inter-
preted. There are several ways you can ensure this:

1. Insert the tool class code directly into the client class file. In this case, we call the
tool class an inner class. There are some situations, especially with respect to
dynamic event handling, where inner classes provide an elegant solution to difficult
problems. Usually, however, their use is too restrictive.

2. Computer systems that support Java have a well-defined set of subdirectories to search
when a Java class is needed. Usually an environment variable called ClassPath
defines this set of subdirectories. Place the tool class file in one of these subdirectories.

3. The Java package construct is used by programmers to collect into a single unit a
group of related classes. Put the tool class in a package and import the package into
the client that uses it. Note that the compiler/interpreter must be able to find the
package, so it must be located in an appropriate subdirectory on the ClassPath.
The feature section below describes the details of using Java packages.
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Java Packages

Java lets us group related classes together into a unit called a package. Packages provide several
advantages:

e They let us organize our files.

e They can be compiled separately and imported into our programs.

e They make it easier for programs to use common class files.

e They help us avoid naming conflicts (two classes can have the same name if they are in different
packages).

Package Syntax

The syntax for a package is extremely simple. All we have to do is to specify the package name
at the start of the file containing the class. The first noncomment nonblank line of the file must
contain the keyword package followed by an identifier and a semicolon. By convention, Java
programmers start a package identifier with a lowercase letter to distinguish package names
from class names:

package someName;

After this we can write import declarations, to make the contents of other packages available to
the classes inside the package we are defining, and then one or more declarations of classes.
Java calls this file a compilation unit. The classes defined in the file are members of the package.
Note that the imported classes are not members of the package.

Although we can declare multiple classes in a compilation unit, only one of them can be
declared public. The others are hidden from the world outside the package. (We investigate visi-
bility topics later in this section.) If a compilation unit can hold at most one public class, how do
we create packages with multiple public classes? We have to use multiple compilation units, as
we describe next.

Packages with Multiple Compilation Units

Each Java compilation unit is stored in its own file. The Java system identifies the file using a
combination of the package name and the name of the public class in the compilation unit. Java
restricts us to having a single public class in a file so that it can use file names to locate all pub-
lic classes. Thus, a package with multiple public classes must be implemented with multiple
compilation units, each in a separate file.

Using multiple compilation units has the further advantage that it provides us with more
flexibility in developing the classes of a package. Team programming projects would be very
cumbersome if Java made multiple programmers share a single package file.

101



102

Chapter 2: Data Design and Implementation

We split a package among multiple files simply by placing its members into separate compi-
lation units with the same package name. For example, we can create one file containing the
following code (the ... between the braces represents the code for each class):

package someName;
public class Onef{ ... }
class Twofl ... }

and a second file containing:

package someName;
class Threef{ ... }
public class Four{ ... }

with the result that the package someName contains four classes. Two of the classes, One and
Four are public, and so are available to be imported by application code. The two file names
must match the two public class names; thus the files must be named One.java and
Four. java.

Many programmers simply place every class in its own compilation unit. Others gather the
nonpublic classes into one unit, separate from the public classes. How you organize your pack-
ages is up to you, but you should be consistent to make it easy to find a specific member of a
package among all of its files.

How does the Java compiler manage to find these pieces and put them together? The
answer is that it requires that all compilation unit files for a package be kept in a single direc-
tory or folder that matches the name of the package. For our preceding example, a Java system
would store the source code in files called One.java and Four. java, both in a directory
called someName.

The import Statement

In order to access the contents of a package from within a program, you must import it into
your program. You can use either of the following forms of import statements:

import packagename.*;
import packagename.Classname;

An import declaration begins with the keyword import, the name of a package and a dot
(period). Following the period you can either write the name of a class in the package, or an
asterisk (*). The declaration ends with a semicolon. If you know that you want to use exactly
one class in a particular package, then you can simply give its name in the import declaration.
More often, however, you want to use more than one of the classes in a package, and the aster-
isk is a shorthand notation to the compiler that says, “Import whatever classes from this pack-
age that this program uses."

'l"cmn-FIy :
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Packages and Subdirectories

Many computer platforms use a hierarchical file system. The Java package rules are defined to
work seamlessly with such systems. Java package names may also be hierarchical; they may
contain periods separating different parts of the name, for example, ch03.stringLists. In
such a case, the package files must be placed underneath a set of subdirectories that match the
separate parts of the package name. Following the same example, the package files should be
placed in a directory named stringLists that is a subdirectory of a directory named cho3.
You can import the entire package into your program with the following statement:

import chO03.stringlists.*;

As long as the directory that contains the ch03 directory is on the ClassPath of your system,
the compiler will be able to find the package you requested. The compiler automatically looks in
all the directories listed in the ClassPath. In this case it will actually look in the ClassPath
directories for a subdirectory named cho03 that contains a subdirectory named stringLists,
and upon finding such a subdirectory, it will import all of the members of the
ch03.stringLists package that it finds there.

Many of the files created to support this textbook are organized into packages. They are
organized exactly as described above and can be found on our web site. All the files are found in
a directory named bookFiles. It contains a separate subdirectory for each chapter of the book:
ch01, ch02, .., ch10. Where packages are used, you will find the corresponding subdirectories
underneath the chapter subdirectories. For example, the ch03 subdirectory does indeed contain
a subdirectory named stringLists that contains four files that define Java classes related to
a string list ADT. Each of the class files begins with the statement

package ch03.stringlLists;

Thus, they are all in the ch03.stringLists package. If you write a program that needs to use
these files you simply need to import the package into your program and make sure the parent
directory of the ch03 directory, i.e., the bookFiles directory, is included in your computer's
ClassPath.

We suggest that you copy the entire bookFiles directory to your computer's hard drive,
ensuring easy access to all the book’s files and maintaining the crucial subdirectory structure
required by the packages. Also, make sure you extend your computer's ClassPath to include
your new bookFiles dirctory. See the Preface for more information.

Sources for Classes

Java programs are built using a combination of the basic language and pre-existing
classes. In effect, the pre-existing classes act as extensions to the basic language; this
extended Java language is large, complex, robust, powerful and ever changing. Java
programmers should never stop learning about the nuances of the extended language—

an exciting prospect for those who like an intellectual challenge.
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When designing a Java-based system to solve a problem, we first determine what
classes are needed. Next we determine if any of these classes already exist; and if not,
we try to discover classes that do exist that can be used to build the needed classes.
Additionally, we often create our own classes, “helper” classes that are used to build the
needed classes.

Where do the classes come from? There are three sources:

1. The Java Class Library—The Java language is bundled with a class library that
includes hundreds of useful classes. We look at the library in a subsection below.

2. Build your own—Suppose you determine that a certain class would be useful to aid
in solving your programming problem, but the class does not exist. Therefore, you
create the needed class, possibly using pre-existing classes in the process. The new
class becomes part of the extended language, and can be used on future projects.
We look at how to build our own classes in a later section, and throughout the rest
of the textbook.

3. Off the shelf—Software components, such as classes or packages of classes, which
are obtained from third party sources, are called off-the-shelf components. When
they are bought, we call them “commercial off-the-shelf” components, or COTS.
Java components can be bought from software shops, or even found free on the
web. When you obtain software, or anything else, from the web for your own use,
you should make sure you are not violating a copyright. You also need to use care
in determining that free components work correctly and do not contain viruses or

other code that could cause problems.

Off the Shelf Components

Programmer

7 N )

0 Java Class Library

e e S
Basic Java Language

As our study of data structures, abstract data types, and Java continues, we some-
times investigate how to build a class that mirrors the functionality of a pre-existing
class, for example a class in the Java Class Library. There are two reasons we may do
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this: convenience and computer science content. It may be that the class provides a
good, convenient example of a language construct or programming approach—for
example, our use of the Date example throughout the first two chapters—even though
the library provides ways of creating and using Date objects. Alternately, it may be that
the study of the class is crucial to the content of this textbook—classic data structures.
For example, in Chapter 4 we study how to implement a Stack ADT, even though a
Stack ADT is provided in the library. Understanding the possible implementations of
stacks, and the ramifications of implementation choices, is considered crucial for serious
students of computing.

There are other reasons that a programmer might want to create his or her own
class that mimic the functionality of a library class: simplicity and control. The Java
developers designed library classes to provide robust functionality. Robustness is an
important quality for library classes. Sometimes, however, the robustness of a class
equates to complexity or inefficiency. Addi-
tionally, you must remember that the Java
Class Library is not a static construct. The
changes to the library are usually in the form

cases where features of the library have been use of deprecated features is discouraged.
deprecated. A deprecated feature is one that

may not be supported in future versions of

the library. Deprecation acts as a warning to programmers—use this construct at your
own risk; it works now, but might not work later!

Consider the history of dates in Java. In the original public release of Java, JDK 1.0
in 1995, the library included a Date class that allowed a programmer to represent dates
and times. This class could be used to specify and manipulate a date/time in two forms:
the number of milliseconds between the date/time and January 1, 1970, midnight, or by
using discrete attributes of the date/time, such as month, day, year, hour. As you can
imagine, for most purposes the latter form was easier to use. Nevertheless, the latter
form of use was deprecated with the release of JDK 1.1 in 1996 because it did not sup-
port Java’s goal of internationalization. Although many countries use the Gregorian cal-
endar that the Date class is based on, there are other calendars in use around the world,
for example the Chinese calendar.

The Calendar class was introduced in Java 1.1 to support all kinds of calendars. It
provided features to replace the deprecated functionality of Date. The Calendar class is
well designed and very useful; but it is not trivial to use. The Calendar class cannot be
directly instantiated; programmers must use its getInstance method to obtain a local
instance of a calendar, and instantiate this local instance as a subclass of Calendar. To
use the “standard” solar calendar, with years numbered from the birth of Christ, a pro-
grammer would use the GregorianCalendar subclass of Calendar. The Gregorian-
Calendar class exports 28 methods and defines 42 constants for use with the methods
of the class.

Considering all of this, it is no wonder that programmers who need a simple date
class—perhaps one that allows a month, day, and year to be passed to the constructor,
provides three simple observer methods, and provides methods to increment a date and
compare two dates—might decide to implement their own class.
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The Java Class Library

Programming with an object-oriented language depends heavily on the use of classes
from the language’s standard library. The Java standard class library includes over 70
packages and subpackages, with hundreds of classes and interfaces, and thousands of
exported methods and constants. It is not our goal in this textbook to teach the stan-
dard library. However, we do encourage the reader to begin to learn about the library,
and to continue studying the library.

Sun Microsystems, Inc., the developers of Java, maintains a public web site! where
they have provided extensive documentation about the class libraries. The list below
briefly describes some of the prominent packages and subpackages found on the Sun
site. Visit their site for more information. In this subsection, we review some of the most
important classes, especially with respect to the goals of this textbook. Throughout the
text, as we reach places where we need to use library constructs in a new way, we
expand on this coverage.

Some Important Library Packages

java.awt (Abstract Windowing Toolkit) Contains tools for creating user
interfaces, graphics, and images.

java.awt.event Provides interfaces and classes for handling the different types of
events created by AWT components.

java.io System input and output through data streams, serialization, and
the file system.

java.lang Provides basic classes for use in creating Java programs.

java.math Provides classes for performing mathematical operations.

java.text Provides classes and interfaces for handling text, dates, numbers,

and messages.

java.util Contains the collections framework, legacy collection classes, event
model, date and time facilities, internationalization, and miscella-
neous utility classes (a string tokenizer, a random-number genera-
tor, and a bit array).

java.util.jar  Provides classes for reading and writing the JAR (Java ARchive)
file format, which is based on the standard ZIP file format.

Some Useful General Library Classes

As we are studying data structures with the Java language, we use various utility classes
that are available in the Java library. In this subsection, we introduce some of these
classes.

'http://java.sun.com/j2se/1.3/docs/api/index.html
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The System class The System class is part of the java.lang package. All of the
System class’s methods and variables are class methods and variables. They are defined
to be static—they are unique to the class, rather than to objects of the class. We simply
use the System class methods and variables directly in our programs; we access them
through the class name rather than through the name of an instantiated object. For
example, in the TestCircle program listed above in Section 2.2, we used the System
variable out as a destination for our output:

System.out.println("cl: "+ cl);

We can also use the System class to obtain current system properties, such as the
amount of available memory.

The Random class The Random class is part of the util package. Programmers use it
to generate a list of random numbers. Random numbers are useful when creating
simulations, or models of real-world situations, with our programs. We use the Random
class in Chapter 10 to generate lists of random numbers for sorting.

The DecimalFormat class The DecimalFormat class is part of the java.text
package. To use it a programmer calls one of its constructors to define a format pattern.
Then this instance can be used to format numbers for output. In Chapter 4 we use the
DecimalFormat class to format numbers so that output columns line up nicely.

The Throwable and Exception Classes We introduced the concept of exceptions in
Chapter 1. Recall that an exception is associated with an unusual, often unpredictable
event, detectable by software or hardware,
that requires special processing. One system
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unit raises or throws an exception, and Throw an exception Interrupt the normal processing

another unit catches the exception and
processes it. Processing an exception is also

of a program to raise an exception that must be han-
dled or rethrown by the surrounding block of code

called handling the exception. Catch an exception Code that is executed to handle

When a part of a Java system determines
that an exception has occurred, it “announces”
the exception using the Java throw statement.
This can occur within the Java interpreter, within a library method, or within our own
code. (We discuss how to define, and how to determine when to throw our own excep-
tions, in the section below about building our own ADTs. For now, we look at predefined
exceptions.) When an exception is thrown, it must either be caught and handled by the
surrounding block of code, or thrown again to the next outer block of code. If an excep-
tion is thrown all the way out of a method, it propagates to the calling method. An excep-
tion that is continually thrown until it makes it all the way up the chain of calling
methods and is thrown by the main method to the Java interpreter, is handled by the
interpreter: An error message is printed along with some system information (a system
stack trace) and the program exits.

a thrown exception is said to catch the exception
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All exceptions in Java are subclasses of the java.lang.Throwable class. Only
objects or instances of this class (or subclasses of this class) are thrown within a Java
system. The Throwable class provides several methods related to exceptions, notably
the getMessage method that returns the error message associated with the Throwable
object, and the printStackTrace method that prints a trace of the sequence of system
calls that led to the throw statement.

The Throwable class has two standard subclasses: java.lang.Error and
java.lang.Exception. The former is used for defining catastrophic exceptional situa-
tions that are best handled by simple program termination. We are concerned with the
latter subclass, the Exception class, which is used for defining exceptional situations
from which we may be able to recover. The Exception class extends the Throwable
class with two methods, both constructors:

Method Name Parameter Type Returns Operation Performed

Exception (none) Exception Constructs an exception with no
specified message.

Exception String Exception Constructs an exception with the
specified message.

Exceptions are defined by extending the Exception class. If you look at the Java
library information you see dozens of predefined subclasses of the Exception class,
each of which might also have many subclasses. The result is that there are hundreds of
exceptions defined in the Java library.

Let’s look at a few examples of throwing and handling predefined exceptions.

Review the IncDate test driver program, IDTestDriver, developed at the end of
Chapter 1. Notice the heading of the program’s main method:

public static void main(String[] args) throws IOException

As you can see, in the declaration of the main method we have told the system that this
method can throw the predefined I0Exception exception. Where would I0Exception
be raised in the program? This program uses the readLine method defined in the
BufferedReader class. A quick look at the documentation of the readLine method
shows that it throws an TOException “if an I/O error occurs.” Since it is possible for
that exception to be thrown by the readlLine method, the surrounding code (the main
method), must either catch and handle the exception, or throw the exception. In this
case, we have decided to just throw the exception out to the interpreter, which would
terminate the program. Note that this is a perfectly valid option; in fact, if there is not
enough information to properly handle an exception at one level of a program, the best
approach is to throw the exception out to the next level, where it may be handled more
properly.

If we decided to handle the exception within the test driver program itself we would
surround the section of the program where the exception can be raised with a try-catch
statement. For example:
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try

{
month = Integer.parselnt(dataFile.readLine());
day = Integer.parselnt(dataFile.readLine());
year = Integer.parselnt(dataFile.readLine());

}

catch (IOException readExcp)

{

outFile.println("There was trouble reading in month, day, year.");
outFile.println("Exception: " + readExcp.getMessage());
System.exit () ;

Now, if the IOException exception is raised by any of the readLine methods
within the fry block, it is handled by the code in the caftch block. Notice the rather
unusual syntax of the catch statement:

catch (ExceptionClassName varName)

If the exception class referenced in the cafch statement is thrown by any of the state-
ments in the try block, the catch statement defines a new object of that exception class,
and that object becomes equated with the thrown exception. So in this example, the
variable readExcp represents the exception that is caught. Because readExp is an
instantiation of a subclass of Throwable, it has a getMessage method. In the catch
block we can use readExcp.getMessage () to print the message associated with the
exception.

In this example, we are handling the exception by printing our own brief error mes-
sage, then printing the error message associated with the exception, and then terminat-
ing the program. Realistically, there is not much more we can do in this situation. Since
this is essentially the same action the interpreter does for us anyway, it is probably bet-
ter to just throw the exception. Besides, as we explained when we developed the test
driver program, it is not important that the test driver be robust, since we are only using
it to test another class; the test driver is not delivered to a customer.

There are some other nuances involved with handling predefined exceptions—for
example, the use of Java’s finally clause, and the option of handling and still
rethrowing the exception. It could quickly become confusing if we tried to cover all of
these topics at once, so we put off a discussion of other options until we reach an exam-
ple that requires their use.

One last note about predefined exceptions. The java.lang.RunTimeException
class is treated uniquely by the Java environment. Exceptions of this class are thrown
during the normal operation of the Java Virtual Machine when a standard run-time pro-
gram error occurs. Examples of run-time errors are division by zero and array-index-
out-of-bounds situations. Since run-time exceptions can happen in virtually any method
or segment of code, we are not required to explicitly handle these exceptions. If it were
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required, our programs would become unreadable because of all the necessary try, catch,
and throw statements. These exceptions are classified as unchecked exceptions.

Wrappers There are situations where a Java programmer wants to use a variable of
class Object to reference many different kinds of objects. This is possible, since
Object is a superclass of all other classes. This
feature provides a powerful tool; however, it does

Unchecked exception An exception of the Run - suffer from one limitation—the variable of class
TimeException class, it does not have to be Object cannot reference primitive type values, since
explicitly handled by the method within which it might the primitive types are not objects. To resolve this
be raised. deficiency, the Java Class Library includes a wrapper
Wrapper class A Java class that wraps a primitive class for each of the primitive types. To store a
type, letting it be manipulated as an object, and pro- primitive value in the Object variable, the
viding some useful utility methods related to the type. programmer first “wraps” it in the appropriate

wrapper class. These classes are known as wrapper

classes since they literally wrap a primitive valued
variable in an object’s structure, as shown in Figure 2.14. The following table lists the
primitive types and the built-in class to which each corresponds.

Primitive Type Object Type

boolean Boolean
byte Byte

char Character
double Double
float Float

int Integer
long Long
short Short

As you can see, the general rule is that the class name is the same as the name of
the built-in type, except that its first letter is capitalized. The two cases that differ are
that the class corresponding to int is called Tnteger and the class corresponding to
char is Character.

The wrapper classes are a part of the java.lang package.

In addition to allowing us to treat a primitive type as an object, the wrapper classes
provide many useful conversion and utility methods related to their associated primitive
type. For example, we used the Integer wrapper class method parseInt in the
IDTestDriver program in Chapter 1:

month = Integer.parselnt(dataFile.readLine());
day = Integer.parselnt(dataFile.readLine());
year = Integer.parselnt(dataFile.readLine());
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value 5 as an int

value

5

value 5 as an Integer

r \
Integer

-hidden value holder:int

value:Integer

hidden value holder:int = 5

+Integer (in num:int)
+intValue () :int
+parseInt(in str:String) :int

“ J

Figure 2.14  The integer value 5 as an int variable value, and an Integer object value

The parseTInt method accepts a string as a parameter and transforms it into the corre-
sponding integer. For example if it is passed the string “27” it returns the int value 27.
Since the BufferedReader datafile we defined in the IDTestDriver program
returns all input in the form of strings, the parseInt method allows us to transform the
input into a more useful form.

Some Class Library ADTs

In addition to the utility classes just described, the Java Class Libraries include some
ADTs that are pertinent to your study. A class provides an ADT if its basic purpose is to
allow the programmer to store data in an abstract structure, hiding the implementation
of the structure from the programmer but allowing the programmer to access the data
through various exported methods.

In some sense the wrapper classes described at the end of the previous section provide
ADTs—but the main way we use those classes is to access their general utility class meth-
ods, such as the parseInt method of ITnteger. Such methods are not really acting on an
object; parseTnt accepts a string parameter and returns a primitive int. It is invoked
through the Tnteger class and not through a specific object of the class.
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Immutable object An object whose state cannot be
changed once it is created

Chapter 2: Data Design and Implementation

In this section we look at the Java Class Library ADTs String and ArrayList from
the logical-level and application-level viewpoints. For array lists we also take a peek at
the implementation level, since it is instructive to do so.

Strings The Java String class is part of the java.lang package. Remember that this
package provides classes that are fundamental to the design of the Java programming
language. In fact, this package is automatically imported into every Java program.

Strings are a fundamental building block for many programs. We have already been
using them extensively in this textbook, for input and output to our programs and to
indicate file names within our test drivers. We assume you have some experience using
strings in your previous programming. Nevertheless, we provide a brief review of the
Java string class here.

Logical Level The first thing we want to remind you about strings is that they are
immutable. If an object doesn’t have any methods that can change its state, it is
immutable. A string is an immutable object; we can
only retrieve its contents. There is no way to change a
string object. We can only assign a new reference to a
String variable. In other words, a String variable
references a String object. Once created, that object
cannot be changed; however, we can change the String variable so that it references a
different String object.

The Java String class provides operations for joining strings, copying portions of
strings, changing the case of letters in strings, converting numbers to strings, and con-
verting strings to numbers. Their use is straightforward and we leave it to you to review
them. Notice that, due to the immutability of strings, any operation that appears to
change a string, for example the toUpperCase method, actually returns a new String
object rather than changing the current string. For example, if the string objectnameB
has an associated value “Adam”, the statement

nameA = nameB.toUpperCasel();

creates a new String object with value “ADAM?”, assigns its reference to the nameA
string variable, but leaves the nameB string variable and object unchanged.

You cannot compare strings using the relational operators. Syntactically, Java lets
you write the comparisons for equality (==) and inequality (!=) between values of class
String, but the comparison that this represents is not what you typically want. Since
String is a reference type, when you compare two strings this way, Java checks to see
that they have the same address. It does not check to see whether they contain the same
sequence of characters.

Rather than using the relational operators, we compare strings with a set of value-
returning instance methods that Java supplies as part of the String class. Because they

'l'cmn-FIy :
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are instance methods, the method name is written following a String object, separated
by a dot. The string that the method name is appended to is one of the strings in the
comparison, and the string in the parameter list is the other. The two most useful com-
parison methods are summarized in the following table.

Method Name Parameter Type Returns Operation Performed
equals String boolean Tests for equality of string contents.
compareTo String int Returns 0 if equal, a positive integer

if the string in the parameter comes
before the string associated with the
method, and a negative integer if the
parameter comes after it.

For example, if 1astName is a String variable, you can use
lastName.equals("Olson")

to test whether 1astName equals “Olson.”

Application Level Since the use of strings in programs is so prevalent, the Java
language provides a few shortcuts for using the String class that differentiate it from
all the other classes in the Java library. We saw one of these in Chapter 1 when we
noted how a toString method is automatically applied to an object that is being used
as a string. Let’s look at two more special conventions for strings, string literals, and the
concatenation operator.

String Literals Just as Java provides literals for all of its primitive types (for example
-154 is a literal of type int and true is a literal of type boolean), it provides a literal
string mechanism. To indicate a literal string, you simply enclose the sequence of
characters between double quotation marks. For example:

"this is a literal string"

A literal string actually represents an object of class String. Enclosing a sequence of
characters in the double quotation marks is equivalent to declaring and instantiating a
new String object. Therefore, the following two code sequences are equivalent:

String myString;
myString = new String ("The Cat in the Hat");

String myString = "The Cat in the Hat";
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The String Concatenation Operator The String class exports a method concat that
allows a programmer to concatenate two strings together to form a third string.
However, this operation is so prevalent in Java programs that the language designers
provide us with a shortcut, the + string operation. The result of concatenating two
strings is a new string containing the characters from both strings. For example, given
the statements

String first = "The Cat in the Hat";
String second = "Comes Back";
String third = first + second;
output.println(third);

the string “The Cat in the HatComes Back” appears in the output stream. Notice that
the system does not automatically insert blanks between two concatenated strings.

Concatenation works only with values of type String. However, if we try to
concatenate a value of one of Java’s built-in types to a string, Java automatically
converts the value into an equivalent string and performs the concatenation. In fact,
we can concatenate an object of any class to a string; the system looks for the
object’s toString operation to transform the object into a string before the concate-
nation.

Array Lists The ArrayList class is part of the java.util package. The functionality
of the ArrayList class is similar to that of the array. In fact, the array is the
underlying implementation structure used in the class. In contrast to an array, however,
an array list can grow and shrink; its size is not fixed for its lifetime.

The ArrayList class was added to the library with the release of Java 1.2. It
provides essentially the same functionality as the original library’s Vector class,
with which you may be familiar from a previous course. However, the Vector class
supports concurrent programming; that is, it supports programs that have more than
one active thread. A thread is a flow of control in a program. Advanced Java pro-
grams can have multiple control flows that execute simultaneously and interact
with each other. The support that is necessary to enable concurrent programming
requires extra processing whenever a Vector method is invoked, even when we
aren’t using multiple threads. The extra processing makes the Vector class a poor
choice for use with single-threaded programs, such as the programs of this text-
book. For single-threaded programs, you should use the ArrayList class instead of
the Vector class.

Logical Level We approach the logical view of array lists by comparing and
contrasting them with arrays. Like an array, an array list is a structured composite data
type, made up of a collection of ordered elements. As with an array, we can access an
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element of an array list directly by specifying an index. However, arrays and array lists

differ in many ways:

1. Arrays can be declared to hold data of a specific type; array lists hold variables of
type Object. Therefore, every array list can hold virtually any type of data, even a
primitive type if it is contained within a wrapper object.

2. An array remains at a fixed capacity throughout its lifetime; the capacities of array
lists grow and shrink, depending on need.

3. An array has a length; an array list has a size, indicating how many objects it is
currently holding, and a capacity, indicating how many elements the underlying
implementation could hold without having to be increased.

The following table describes some of the interesting ArrayList operations.

Method Name

ArrayList

ArrayList

add

add

ensureCapacity

get

isEmpty

remove

size

trimToSize

Parameter Type

(none)

int

int, Object

Object

int

int
(none)

int

(none)
(none)

Returns

void

void

void

Object

boolean

Object

int

void

Operation Performed

Constructs an empty array list of
capacity 10.

Constructs an empty array list of
the capacity indicated by the
parameter.

Inserts the specified Object at the
specified position; shifts all subse-
quent elements to the right one
place.

Inserts the specified Object at the
end.

Increases the capacity of the array
list to at least the specified capac-
ity, if it is currently less than the
specified capacity.

Returns the element at the specified
position.

Returns true if the array list is
empty, false otherwise.

Removes the element at the speci-
fied position, shifts all subsequent
elements to the left one place, and
returns the removed element.
Returns current size.

Trims the capacity of the array list
to its size.
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Implementation Level It is not necessary to peek at the underlying implementation of
array lists in order to use them in our programs. Nevertheless, it is an instructive
exercise, and helps us understand when to choose an array list structure over an array
and vice versa.

We can imagine a Java array list consisting of an array and two integer variables
that hold the capacity (length) and size (number of current elements) of the array. The
underlying array is always “left-justified;” in other words, any empty slots are at higher
indices then the slots being used.

It is easy to see how observer methods, like get, isEmpty, and size are imple-
mented; the appropriate information is simply calculated and returned. But what about
operations that change the contents of the array list; for example, the add operation?
These are more interesting,.

First, we consider a “standard” add operation, one that does not require a change in
the size of an array list. Suppose we have an array list letters that we are using to hold
characters. Suppose its capacity is 8 and it has a current size of 6. (See the “Before” section
of Figure 2.15, which represents this situation. In the figure we follow several simplifying
conventions: we show characters inside the array locations rather than show each of them
as separate objects; we label the underlying array with the name of the array list.)

Now suppose we perform the operation

letters.add (2, 'X'):

To make room for the addition of the character 'X' at index 2, the underlying imple-
mentation would first copy the elements at positions 5 down to 2 into locations 6 down
to 3. That frees location 2 so that the 'X' can be copied into it. Additionally, the size
variable would need to be updated. (See the “Processing” section of Figure 2.15, which
represents the activity taking place during the add operation, and the “After” section,
which represents the state of the array list after the operation is completed.)

Notice that inserting one element into the array list requires many steps; depending
on where the element is inserted, it could require shifting the entire contents of the
underlying array (if inserted at index 0), or it could require no shifting whatsoever (if
inserted at location size).

The processing becomes even more complicated if we try to add an element to an
array list that is already at its capacity. In this case, the underlying implementation cre-
ates a new array to hold the array list information—an array that is larger than the cur-
rent array list. It then copies the contents of the old array into the new array, leaving an
empty slot for the additional element. Finally, it copies the new element into the appro-
priate location of the new array and updates the capacity and size variables. The
new array is now the array list; the old array is garbage and is eventually reclaimed by
the run-time garbage-collection process.

There is actually more that goes on behind the scenes than we have described here;
however, we think we have covered enough for you to get the point. With an array,
memory is reserved ahead of time to hold the array elements; with an array list,
memory can be allocated “on the fly,” as needed. Array lists can be a useful construct
for saving space, but the space savings might be at the expense of extra processing
time. Time/space tradeoffs are common in computer programming,.
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Before
0 1 2 3 4 5 6 7
letters | A B C D E F
size 6
capacity | 8
Operation
letters.add(2, ‘X’);
Processing X
0 1 2 3 4 5 6 7
letters | A B C D E F
A A A/
size 6+1—>7
capacity | 8
After
0 1 2 3 4 5 6 7
letters | A B X C D E F
size | 7
capacity | 8

Figure 2.15  Array list implementation
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Application Level Due to the similarities between arrays and array lists, we can use an
array list in place of an array in virtually any application. However, the differences
between arrays and array lists often mean that for a specific application, one or the
other of these structures is the appropriate choice. It is impossible to list definite rules on
when to choose one approach over the other, since there can be multiple factors to
consider, and since each application has its own requirements. Nevertheless, we offer the
following short set of guidelines:
Use an array when

1. space is not an issue.

2. execution time is an issue.

3. the amount of space required does not change much from one execution of the pro-
gram to the next.

4. the actively used size of the array does not change much during execution.

5. the position of an element in the array has relevance to the application. (For

example, the value in location n represents the profits for day »n of a business
period.)

Use an array list when

1. space is an issue.
2. execution time is not an issue.

3. the amount of space required changes drastically from one execution of the pro-
gram to the next.

4. the actively used size of the array list changes a great deal during execution.
5. the position of an element in the array list has no relevance to the application.

6. most of the insertions and deletions to the array list take place at the size index.
(Therefore, no extra overhead is incurred by these operations.)

We use an array list in Chapter 4 to implement a Stack ADT.

Building Our Own ADTs

In Chapter 1 we emphasized that the central task in the object-oriented design of soft-
ware is the identification of classes. Once we identify the logical properties of the
classes that we use to solve our problem, we must either find pre-existing versions of
the classes or build them ourselves. Designing and building classes as ADTs allows us to
take advantage of the benefits of abstraction and information hiding.

Remember that ADTs can be considered at three levels: The logical level specifies
the interface and functionality, the implementation level is where the coding details
take place, and the application level is where the ADT is used. Sometimes one program-
mer is involved in all three levels of an ADT—the same individual describes it, builds it,
and uses it. At other times the design might come from one programmer, the implemen-
tation from another, and a third might be the one to use it. In the course of our discus-
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sions, we typically assume that the designer and implementer are the same person; we
call this person the programmer. We also assume that the same person, or perhaps other
people, are the ones to use the ADT at the application level; in that role we call them the
application programmers. Finally, there are the people who use the application pro-
grams; we call them the users.

To help us understand what makes a class an ADT, we return to two previous
examples, Circle and Date. Figure 2.16 lists a version of each of these, side by side,
so that you can easily compare their implementations. Circle is an example of a
record structure. It is not an ADT since its instance variables are not hidden. Date is
an ADT. Its instance variables are hidden and cannot be directly accessed from out-
side the class.

the Circle record the Date ADT
public class Circle public class Date
{ {
public int xValue; protected int year;
public int yValue; protected int month;
public float radius; protected int day;
public boolean solid; protected static final int MINYEAR = 1583;

public Date(int newMonth, int newDay, int newYear)
{
month = newMonth;

day = newDay;
year = newYear;

public int yearIs()
{

return year;

public int monthIs ()
{

return month;

public int dayIs()
{
return day;

Figure 2.16  Circle and Date implementations
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Access Modifiers

The difference in visibility of the Circle data and the Date data is due to the access
modifiers used in the declaration of the data. Java allows a wide spectrum of access
control, as summarized in the following table:

Modifier Visibility

public Within the class, subclasses in the same package, subclasses in other
packages, everywhere

protected Within the class, subclasses in the same package, subclasses in other
packages

package Within the class, subclasses in the same package

private Within the class

The public access modifier used in Circle makes its data “publicly” available;
any code that can “see” an object of the class can access and change its data. Addition-
ally, any class derived from the Circle class inherits its public parts.

Public access sits at one end of the access spectrum, allowing open access to the
data. At the other end of the spectrum is private access. When a programmer declares a
class’s variables and methods as private, they can be used only inside the class itself
and they are not inherited by subclasses. We often use private access within our ADTs
to hide their data. However, if we intend to extend our ADTs with subclasses, we may
want to use the protected or package access instead.

The protected access modifier used in Date is similar to private access, only
slightly less rigid. It “protects” its data from outside access, but allows it to be accessed
from within its own class or from any class derived from its class. You may recall that
in Chapter 1 we created a subclass of Date called IncDate that included a transformer
method increment. The increment method required access to the instance variables of
Date, since it would update the represented date to the next day. Therefore, the Date
instance variables were assigned protected access. (An even better approach might have
been to include Date and IncDate in the same package, perhaps a Calendar package,
and use package access as described in the next paragraph.)

The remaining type of access is called package access. A variable or method of a
class defaults to package access if none of the other three modifiers are used. Package
access means that the variable or method is accessible to any other class in the same
package; also the variable or method is inherited by any of its subclasses that are in the
same package.

Note that the same rules for visibility and inheritance described above for instance
variables apply equally well to the methods, constants, and inner classes of a class.

Exported Methods
If we hide the data of our ADTs, then how can other classes use the data? The answer is
through publicly available methods of the class. By restricting access of the data of a
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class to the methods of the class, we reap the benefits of abstraction and information
hiding that were described in Chapter 1.

Consider once again the implementation of the Date ADT in Figure 2.16. The year,
month, and day variables are all protected from outside access. This particular ADT pro-
vides one constructor method, Date, which accepts three integer parameters and initial-
izes the variables of the Date object accordingly. The Date ADT also provides three
observer methods: yearIs, monthIs, and dayIs. Using the constructor and observer
methods, another class can create Date objects and “observe” the constituent data.

It is not hard to imagine creating some more interesting methods for the Date class.
For example, as was suggested before, we could include a transformer method called
increment that would change the value of the Date to the next day. We could also
create a method that operates on more than one Date object—for example, a differ-
ence method that returns the number of days between two dates. The method could
accept one date as a parameter and use the Date instance through which it is invoked
as the other date. Its declaration might look something like this:

public int difference(Date inDate) ;

In that case, the following program segment would assign the value 5 to the variable
daysLeft

Date holiday = new Date (12, 25, 2002);
Date today = new Date (12, 20, 2002);
int daysLeft;

daysLeft = holiday.difference(today);

Copying Objects

In the course of using an ADT, an application programmer might need to make a copy
of the ADT object. Since ADTs are implemented as classes, they are handled by refer-
ence; if you simply use Java’s assignment operator (=) to perform the copy, you end up
with an alias of the copied object. For example, suppose oneDate and twoDate are
both Date objects, representing the dates 10/2/1989 and 4/12/1992, respectively:

oneDate 10/2/1989

twoDate 4/12/1992

I

Then the statement

oneDate = twoDate;
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would create aliases, and garbage, as follows:

oneDate 10/2/1989 ~<——— Garbage
twoDate — > 4/12/1992

To create a true copy, and not just an alias, a programmer could use the Date con-
structor and observer methods as follows:

oneDate = new Date (twoDate.monthIs(), twoDate.dayIs(), twoDate.yearIs());

This approach would create a new Date object with the same variable values as the
twoDate object. The result of the operation would look like this:

.(_ 10/2/1989
e

<«——— Garbage

oneDate ——— > 4/12/1992
twoDate ———» 4/12/1992

This approach eliminates the creation of an alias. Now, oneDate and twoDate are
separate objects, and changes to one do not affect the other.

Since creating a copy of an ADT is a common operation, it is appropriate to include
a special constructor for an ADT, called a copy constructor, which encapsulates the
above operation. We pass the copy constructor an instance of the ADT and it creates a
new instance of the ADT that is a copy of the argument. For the Date class the copy
constructor would be:

public Date (Date inDate)
{
year = inDate.year;
month = inDate.month;
day = inDate.day;

Notice that within the copy constructor the system has direct access to the instance
variables of the Date parameter inDate, even though those variables were declared as
protected. This works because this code resides inside the Date class and therefore has

Team-Fly®
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access to the private and protected members. Using the copy constructor, we can now
create a true copy as follows:

oneDate = new Date (twoDate);

Creating the copy constructor for the Date class was fairly straightforward. We
simply had to copy the variables of the Date parameter to the fields of the new Date
object. This approach works fine for a simple ADT like Date. However, we must be more
careful when working with composite ADTs.

Previously in this chapter, in the section about Aggregate Objects, we listed the fol-
lowing definitions of the Point and NewCircle classes:

public class Point public class NewCircle
{ {

public int xValue; public Point location;
public int yValue; public float radius;

) public boolean solid;

As you can see, an object of the class NewCircle is a composite object, since one of its
instance variables is an object of the class Point. Consider the following code that
implements a copy constructor for NewCircle in the same straightforward manner that
was used for the Date class above:

public NewCircle (NewCircle inNewCircle)
// This code is incorrect
{
location = inNewCircle.location;
radius = inNewCircle.raddius;

solid = inNewCircle.solid;

At first glance this seems as if it would provide a reasonable copy of a Circle
object. However, upon closer scrutiny, we see that there is a hidden alias that has been
created. The line in the constructor that copies the location variable

location = inNewCircle.location;
is using the standard assignment statement on an object. Since all objects are handled

by reference, what is actually copied is the
reference to that object, rather than the con-

tents of the object. We end up with two sepa-
rate Circle objects that are both referencing
the same Point object. The NewCircle copy
constructor above is an example of a shallow
copy. Shallow copying is rarely useful.

Shallow copy An operation that copies a source class
instance to a destination class instance, simply copying
all references so that the destination instance contains
duplicate references to values that are also referred to

by the source.
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Deep copy An operation that copies one class
instance to another, using observer methods as neces-
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To rectify the problems created with a shallow copy, we need to create new
instances of any nonprimitive variables of the object that we are copying. This approach
results in a deep copy. The correct code for the copy constructor for NewCircle is:

public NewCircle (NewCircle inNewCircle)
{

location = new Podint;

location.xValue = inNewCircle.location.xValue;
location.yValue = inNewCircle.location.yValue;
radius = inNewCircle.radius;

solid = inNewCircle.solid;

The key statement in the code above is the first
statement where we use the new command to create a
new instance of a Point object.

sary to eliminate nested references and copy only the Notice that in this example, since the classes we
primitive types that they refer to. The result is that the are using have public instance variables, we were able
two instances do not contain any duplicate references. to just directly access the x and y values of the 1oca-

tion variables of the inNewCircle parameter. If we

were dealing with ADTs we would have to use the
appropriate observer methods. Alternately, if the Point class included its own copy
constructor, we could use it to create the new Point object:

location = new Point(inNewCircle.location);

Figure 2.17 summarizes our discussion of copying objects. It shows the results of all
three approaches to copying a Circle object: using a simple assignment statement,
using a shallow copy, and using a deep copy. In the figure, both oneCircle and
twoCircle are objects of type NewCircle.

Exceptions

When creating our own ADTs it is possible to identify exceptional situations that
require special processing. If it is the case that the special processing cannot be deter-
mined ahead of time. It is application dependent; we should use the Java exception
mechanism to throw the problem out of the ADT and force application programmers to
handle the exceptional situation on their own. On the other hand, if handling the excep-
tional situation can be hidden within the ADT, then there is no need to burden the
application programmers with the task of handling exceptions.

For an example of an exception created to support a programmer-defined ADT, let’s
return to our Date class. As currently defined, a Date constructor could be used to cre-
ate dates with nonexistent months—for example, 15/15/2000 or even —5/15/2000. We
could avoid the creation of such dates by checking the legality of the month argument
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oneCircle

Original Situation

5
location (
7
O—|—> radius 3.7
solid true

twoCircle null

Starting from Original Situation and executing
twoCircle = oneCircle
5
location [
7
oneCircle ‘—|—> radius 3.7
/ solid true
twoCircle /
Starting from Original Situation and executing
a shallow copy
5
location @
7
oneCircle .—|—> radius 3.7
solid true
location ./
twoCircle 0—|—> radius 3.7
solid true
Starting from Original Situation and executing
a deep copy
5
location ®
7
oneCircle 0—|—> radius 3.7
solid true
5
location ®
7
twoCircle .—|—> radius 3.7
solid true

Figure 2.17  Copying objects

125



126 |  Chapter 2: Data Design and Implementation

passed to the constructor. But what should our constructor do if it discovers an illegal
argument? Some options:

e Write a warning message to the output stream. That’s not a very good option
because within the Date ADT we don’t really know what output stream is being
used by the application.

¢ Instantiate the new Date object to some default date, perhaps 0/0/0. The problem
with this approach is that the application program may just continue processing
as if nothing is wrong, and produce erroneous results. In general it is better for a
program to “bomb” then to produce erroneous results that may be used to make
bad decisions.

e Throw an exception. This way, normal processing is interrupted and the construc-
tor does not have to return a new object; instead, the application program is forced
to acknowledge the problem and either handle it or throw it out to the next level.

Once we have decided to handle the situation with an exception, we must decide
whether to use one of the library’s predefined exceptions, or to create one of our own. A
study of the library in this case reveals a candidate exception called DataFormatEx-
ception, to be used to signal data format errors. We could use that exception but we
decide it doesn’t really fit, since its not the format of the data that is the problem in this
case, it is the values of the data.

So, we decided to create our own exception, DateOutOfBounds. We could call it
“MonthoutofBounds” but we decide that we want to use the exception to indicate
other potential problems with dates, and not just problems with the month value. For
example, in the Date class we defined a class variable MINYEAR (set to 1583), repre-
senting the first complete year in which the Gregorian calendar was in use. Applica-
tion programmers should not use our Date class to represent dates earlier than that
year. The idea is that date calculations get very complicated if you allow dates before
1583. For one thing, leap year rules were different; for another, there were 10 days
that were skipped in the middle of 1582. We are imagining that we have added meth-
ods to the class that would be affected by such things, for example a method that
returns the number of days between two dates. Therefore, we wish to disallow such
dates.

We create our DateOutOfBounds exception by extending the library Exception
class. It is customary when creating your own exceptions to define two constructors, mir-
roring the two constructors of the Exception class. In fact, the easiest thing to do is define
the constructors so that they just call the corresponding constructors of the superclass:

public class DateOutOfBoundsException extends Exception
{

public DateOutOfBoundsException()

{

super () ;
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public DateOutOfBoundsException(String message)
{

super (message) ;

The first constructor is used to create an exception without an associated message;
the second constructor creates an exception with a message equal to the string argu-
ment passed to the constructor.

Next we need to consider when, within our Date ADT, we throw the exception.
All places within our ADT where a date value is created or changed should be exam-
ined to see if the resultant value could be an illegal date. If so, we should create an
object of our exception class with an appropriate message, and throw the exception.
Here is how we might write a Date constructor to check for legal months and years.
(Checking for legal days is much more complicated and we leave that as an ex-
ercise.)

public Date(int newMonth, int newDay, int newYear) throws DateOQutOfBound-

sException
{

if ((newMonth <= 0) || (newMonth > 12))

throw new DateOutOfBoundsException("month must be in range 1 to 12");
else

month = newMonth;

day = newDay;

if (newYear < MINYEAR)

throw new DateOutOfBoundsException("year " + newYear +

"

is too early");

else
year = newYear;

Notice that the message defined for each throws clause pertains to the problem dis-
covered at that point in the code. This should help the application program that is han-
dling the exception, or at least provide pertinent information to the user of the program
if the exception is propagated all the way out to the user level.

Finally, let’s see how an application program might now use the Date class. Con-
sider a program called UseDates that prompts the user for a month, day, and year, and
create a Date object based on the user’s responses. In the following code we ignore the
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details of how the prompt and response are handled, to concentrate on the topics of our
current discussion:

public clasgs UseDates
{
public static void main(String[] args) throws DateOutOfBoundsException
{
Date theDate;

// Program prompts user for a date
// M is set equal to user’s month
// D is set equal to user’s day

// Y is set equal to user’s year
theDate = new Date(M, D, Y);

// Program continues

When this program runs, and the user responds with a legal month, day, and
year, there is no problem. However, if the user responds with an illegal value—for
example, a year value of 1051—the DateOutOfBoundsException is thrown by the
Date constructor; since it is not caught within the program, it is thrown out to the
interpreter. The interpreter stops execution of the program after displaying a message
like this:

Exception in thread "main" DateOutOfBoundsException: year 1051 is too early
at Date.<init>(Date.java:18)
at UseDates.main(UseDates.java:57)

The interpreter’s message includes the name and message string of the exception, and a
trace of what calls were made leading up to the exception being thrown.

Alternately, the UseDates class could be defined to catch and handle the exception
itself, rather than throwing it to the interpreter. The application programmer could
reprompt for the date in the case of the exception being raised. Then UseDates might
be written as follows (again we ignore the user interface details):

public class UseDates
{
public static void main(Stringl[] args)
{
Date theDate;
boolean DateOK = false:

while (!DateOK)
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// Program prompts user for a date
// M is set equal to user’s month
// D is set equal to user’s day
// Y is set equal to user’s year
try
{
theDate = new Date(M, D, Y);
DateOK = true;
}
catch(DateOutOfBoundsException OB)
{
output.println(OB.getMessage());

// Program continues

If the new statement executes without any trouble, meaning the Date constructor
did not throw an exception, then the DateOK variable is set to true and the while loop
terminates. On the other hand, if the DateOutOfBounds exception is thrown by the
Date constructor, it is caught by the catch statement. This in turn prints out the message
associated with the exception and the while loop is re-executed, again prompting the
user for a date. The program repeatedly prompts for date information until it is given a
legal date.

Notice that the main method no longer throws DateOutOfBoundsException, since
it handles the exception itself.

There are several factors to consider when determining how to use exceptions when
creating our own ADTs. First of all, we should decide what types of events can trigger
exceptions. Remember that exceptions can be used to signal any out-of-the-ordinary
event that requires special processing—there is no language-based rule that says the
event must be error related. For example, it would be possible to break out of an input
loop in reaction to an exception you raise when you try to read past the end of a file.
Reading the end-of-file marker is not really an error; it is something we expect to hap-
pen eventually when we read files. It is, in a sense, an exceptional condition, and we
can use Java’s exception mechanisms to help us handle its occurrence.

To simplify our ADT definitions, and to support a common approach to the way we
define our ADTs, we throw programmer-defined exceptions from our ADTs only in situ-
ations involving errors. For example, unexpected date values being passed to a method
or illegal sequencing of methods calls are errors. However, this does not mean we
always use exceptions in these cases.
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When dealing with error situations within our ADT methods, we have several options:

1. We can detect and handle the error within the method itself. This is the best
approach if the error can be handled internally and if it does not greatly compli-
cate design.

2. We can throw an exception related to the error and force the calling method to either
handle the exception or to rethrow it. If it is not clear how to handle a particular error
situation, the best approach might be to throw it out to a level where it can be handled.

3. We can ignore the error situation. Recall the “programming by contract” discussion,
related to preconditions, in the Designing for Correctness section of Chapter 1. If the
preconditions of a method are not met, the method is not responsible for the conse-
quences. This approach is best if we are confident that the contract is usually met
by the application classes.

Therefore, when we define our ADTs, we partition potential error situations into
three sets: those to be handled internally to the ADT, those to be thrown as an
exception back to the calling process, and those that are assumed not to occur. We
document this third approach in the preconditions of the appropriate methods. We
attempt to strike a balance between the complexity required to handle all possible
error situations internally, and the lack of safety involved with handling everything
by contract.

As a general rule, an exceptional situation should be handled at the lowest level that
“knows” how to handle it. If the information needed to handle the exception is not avail-
able at a level, then the exception should be thrown. As we create ADTs to be used in
applications we see that quite often it is the application level that can best handle the
exceptions raised within the ADTs. We see examples of this as we proceed through the text.

The feature section below suggests a sequence of steps to follow when designing and
creating ADTs. The steps include many of the techniques introduced in this subsection.

Designing ADTs

When you design and create your own ADTs you can follow these steps:

e

Determine the general purpose of the ADT; determine how the application programmers use
the ADT to help solve their problems in a general sense.

List the specific types of operations the application program performs with the ADT. If possi-
ble, note how often the different operations are used, that is, the expected relative fre-
quency of operation calls.

Identify a set of public methods to be provided by the ADT class that allow the application
program to perform the desired operations. Note that there might not be a one-to-one cor-
respondence between the desired operations and the exported methods. It may be that a
single operation requires several method invocations. For example, in Chapter 3 we define a
list ADT with methods lengthIs, reset, and getNextItem. An application program
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must use all three of these methods to implement a "Print List" operation. In addition, a
specific method might be needed for more than one operation. For example, the lengthIs
list method might be used by a "Print List" operation and by a “Report List Size" operation.

4. ldentify other public methods, based on experience and general guidelines, which help make
the ADT generally usable. For example, the copy constructor described in the earlier section
titled Copying Objects is usually a good method to include. You might organize all your
identified methods into constructors, observers, transformers, and iterators.

5. Identify potential error situations and classify into
a. Those that are handled by throwing an exception
b. Those that are handled by contract
c. Those that are ignored

6. Define the needed exception classes.

7. Decide how to structure the data to best support the needed operations and identified
methods. Remember that alternate organizations may support some operations better than
others. This is where the frequency of operation information may be useful.

8. Decide on a protection level for the identified data. Hide the data as much as possible.

9. ldentify private structures and methods that support the required public methods. Func-
tional decomposition of the required actions of the public methods may help identify com-
mon requirements that can be supported by shared private methods.

10. Implement the ADT, possibly collecting all related files into a single package.
11. Create a test driver like the one at the end of Chapter 1 and test your ADT with a wide vari-
ety of operations.

Note that the classic data structures, modeled as ADTs created in the remainder of this text have
evolved over the last 50 years. Therefore, we can draw from a great deal of previous research
and experience when designing these structures, instead of analyzing specific problem situations
as suggested above.

Summary

We have discussed how data can be viewed from multiple perspectives, and we have
seen how Java encapsulates the implementations of its predefined types and allows us
to encapsulate our own class implementations.

As we create data structures, using built-in data types such as arrays and classes to
implement them, we see that there are actually many levels of data abstraction. The
abstract view of an array might be seen as the implementation level of the program-
mer-defined data structure List, which uses an array to hold its elements. At the log-
ical level, we do not access the elements of List through their array indexes but
through a set of accessing operations defined especially for objects of List type. A
data type that is designed to hold other objects is called a container or collection
type. Moving up a level, we might see the abstract view of List as the implementa-
tion level of another programmer-defined data type, ProductInventory, and so on.
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Perspectives on Data

Application or user view  Logical or abstract view  Implementation view
Product Inventory List Array

List Array Row major access function
Array Row major access function 32-bit words

What do we gain by separating the views of the data? First, we reduce complexity
at the higher levels of the design, making the program easier to understand. Second,
we make the program more easily modifiable: The implementation can be completely
changed without affecting the program that uses the data structure. We use this
advantage in this text, developing various implementations of the same objects in
different chapters. Third, we develop software that is reusable: The structure and its
accessing operations can be used by other programs, for completely different appli-
cations, as long as the correct interfaces are maintained. You saw in the first chapter
of this book that the design, implementation, and verification of high-quality com-
puter software is a very laborious process. Being able to reuse pieces that are already
designed, coded, and tested cuts down on the amount of work we have to do.

In the chapters that follow we extend these ideas to build other container classes:
lists, stacks, queues, priority queues, trees, and graphs. While the Java Class Library
provides many of these data structures (along with generic algorithms and iterator
structures), the techniques for building these structures is so important in computer sci-
ence that we believe you should learn them now.

We consider these data structures from the logical view. What is our abstract picture
of the data, and what accessing operations can we use to create, assign to, and manipu-
late the data elements? We express our logical view as an abstract data type (ADT) and
record its description in a data specification.

Next, we take the application view of the data, using an instance of the ADT in a
short example.

Finally, we change hats and turn to the implementation view of the ADT. We con-
sider the Java type declarations that represent the data structure, as well as the design
of the methods that implement the specifications of the abstract view. Data structures
can be implemented in more than one way, so we often look at alternative representa-
tions and methods for comparing them. In some of the chapters, we include a longer
Case Study in which instances of the ADT are used to solve a problem.

'l'cmn-FIy :



Exercises

Summary of Classes and Support Files

Here are the classes defined in Chapter 2. The classes are listed in the order in which
they appear in the text. The summary includes the name of the class file, the page on
which the file is first referenced, and a few notes. The notes explain how the class was
used in the text, followed by additional notes if appropriate. Note that we do not include
classes defined within other classes (inner classes), such as the Circle class that was
defined within the TestCircle class, in the table. The class files are available on our
web site in the ch02 subdirectory.

Classes Defined in Chapter 2

File First Ref.  Notes

TestCircle. java page 83 [llustrates records and record component selection.

FigureGeometry.java  page 88 An example of an interface.

Point.java page 93 Very small class; it is used to build an example of
an aggregate object.

NewCircle.java page 93 Example of a class that defines aggregate objects.
NewCircle includes an instance variable of the
class Point.

Other than the Exception class, which was discussed in Section 2.3, no Java Library
Classes were used in any examples for the first time in this text within this chapter. Of
course, many library classes were discussed; but they were not used in programs.

Exercises
2.1 Different Views of Data

1. Why are primitive types sometimes called atomic types?
2. Explain what we mean by data abstraction.

3. What is data encapsulation? Explain the programming goal “to protect our data
abstraction through encapsulation.”

4. Describe the four categories of operations that can be performed on encapsulated
data. Give an example of each operation using a Library analogy.

5. Name three different perspectives from which we can view data. Using the logi-
cal data structure “a list of student academic records,” give examples of what
each perspective might tell us about the data.

6. Consider the abstract data type GroceryStore.
a. At the application level, describe GroceryStore.

b. At the logical level, what grocery store operations might be defined for the
customer?
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2.2

c. Specify (at the logical level) the operation CheckOut.
d. Write an algorithm (at the implementation level) for the operation CheckOut.

e. Explain how parts (c) and (d) represent information hiding.

Java’s Built-in Types

7. What primitive types are predefined in the Java language?

8. What composite types are predefined in the Java language?

9. Describe the component selector for classes, when they are used as records.

11.

12.

13.

. Define a toString method for the circle class listed on the following pages:

a. page 83
b. page 93

What is an alias? Show an example of how it is created by a Java program.
Explain the dangers of aliases.

Assume that datel and date?2 are objects of type IncDate as defined in Chap-
ter 1. What would be the output of the following code?

datel = new IncDate(5, 5, 2000);
date2 = datel;
System.out.println(datel) ;
System.out.println(date2) ;
datel.increment () ;
System.out.println(datel) ;
System.out.println(date2) ;

Assume that datel and date?2 are objects of type IncDate as defined in Chap-
ter 1. What would be the output of the following code?

datel = new IncDate(5, 5, 2000);
date2 = new IncDate(5, 5, 2000);
if (datel == date2)
System.out.println("equal");
else
System.out.println("not equal");
datel = date2;
if (datel == date2)
System.out.println("equal");
else
System.out.println("not equal");
datel.increment () ;
if (datel == date2)
System.out.println("equal");
else
System.out.println("not equal");



14.
15.
16.
17.
18.
19.
20.

21.
22,
23.

2.3

24,
25,

26.
27.
28.

29.
30.

Exercises

What is garbage? Show an example of how it is created by a Java program.
What is an abstract method?

What sorts of constructs can be declared in a Java interface?

Briefly describe four uses for Java interfaces.

What are the fundamental differences between classes and arrays?

Describe the component selectors for one-dimensional arrays.

Write a program that declares a ten-element array of int, uses a for loop to ini-
tialize each element to the value of its index squared, and then uses another for
loop to print the contents of the array, one integer per line.

Define a three-dimensional array at the logical level.
Suggest some applications for three-dimensional arrays.

Indicate which Java types would most appropriately model each of the following
(more than one may be appropriate for each):

a. A chessboard

b. Information about a single product in an inventory-control program
c. A list of famous quotations
d

. The casualty figures (number of deaths per year) for highway accidents in
Texas from 1954 to 1974

e. The casualty figures for highway accidents in each of the states from 1954 to
1974

f. The casualty figures for highway accidents in each of the states from 1954 to
1974, subdivided by month

g. An electronic address book (name, address, and phone information for all
your friends)

h. A collection of hourly temperatures for a 24-hour period

Class-Based Types
What Java construct is used to represent abstract data types?

Explain the difference between using a Java class to create a record and to cre-
ate an ADT

Explain how packages are used to organize Java files.

List and briefly describe the contents of five Java library packages.

List the eight Java Library “wrapper” classes that support the objectification of
Java’s primitive types.

List and describe five Java Library classes that are not described in this chapter.
Research the Java Library Random class. Use it in a program to do the following.

a. Generate a sequence of 10,000 random integers between 1 and 100 and out-
put the average value generated
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31.

32.

33.
34.

35.

36.

37.

b. Play the high/low guessing game with the user; the program generates a ran-
dom integer between 1 and 100,000. The user must repeatedly guess the
number until it is correct. After each guess, the program informs the user if
the secret number is higher or lower than the guess.

Be sure to carefully test your program(s).

Write a program that declares a ten-element array of Integer, uses a for loop to
initialize each element to the value of its index squared, and then uses another
for loop to print the contents of the array, one integer per line.

Describe the output of the following code that uses String variables S1, S2, and
S3.

S1 = "Alex";

S2 "Bob";

S3 = S1 + S2;

System.out.println(S3);

S2 = S1.toUpperCase();

System.out.println(S2);

S3 = "Chris".

if (S1l.compareTo(S3) < 0)
System.out.println("less than zero");

else
System.out.println("not less than zero");
Explain the differences between arrays and array lists.

For each of the following situations, state whether it is best to use an array list or
an array.

a. To hold student test grades, where the size of the class of students is always
between 15 and 20

b. To hold student test grades, where the size of classes varies widely
c. To hold the number of miles traveled each day of a month

d. To hold a list of items, where you need to repeatedly insert elements into ran-
dom locations in the list

e. To hold a list of items, where you insert and remove items only from the far
end of the list.

Describe each of the four levels of visibility provided by Java’s visibility modi-
fiers.

Illustrate with a figure the difference between a shallow copy and a deep copy of
an aggregate object.

Consider an ADT SquareMatrix. (A square matrix can be represented by a two-
dimensional array with n rows and n columns.)



38.

39.

40.

Exercises

a. Write the specification for the ADT, assuming a maximum size of 50 rows
and columns. Include the following operations:

MakeEmpty (n), which sets the first n rows and columns to zero

StoreValue(i, j, wvalue), which stores value into the position at row 1,
column j

Add, which adds two matrices together
Subtract, which subtracts one matrix from another

Copy, which copies one matrix into another

b. Convert your specification to a Java class declaration.
c. Implement the member methods.
d. Write a test plan for your class.

Expand your solution to Exercise 34 of Chapter 1, where you implemented
the Date and IncDate classes, to include the appropriate throwing of the
DateOutOfBoundsException, as described in this chapter.

Write a class Array that encapsulates an array and provides bounds
checked access. The private instance variables should be int index and
int array[10]. The public members should be a default constructor and meth-
ods (signatures shown below) to provide read and write access to the array:

void insert(int location, int value);

int retrieve(int location);

If the 1location is within the correct range for the array, the insert method
should set that location of the array to the value. Likewise, if the 1ocation is
within the correct range for the array, the retrieve method should return
the value of that location of the array. In either case, if the 1ocation is not
within the correct range, the method should throw an exception of type
ArrayoutofBoundsException. Write a driver to check the array accesses.
Your driver should assign values to the array by using the insert method,
using the retrieve method to read these values back from the array. It
should also try calling both methods with illegal location values. Catch any
exceptions thrown by placing the calls in a fry block with an appropriate
catch block following.

Describe the steps to follow when designing your own ADTs and implementing
them with the Java class mechanism.
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and Sorted List

Measurable goals for this chapter include that you should be able to

describe the List ADT at a logical level

classify list operations into the categories constructor, iterator, observer, and transformer
identify the pre- and postconditions of a given list operation

use the list operations to implement utility routines such as the following application-level tasks:
m Print the list of elements

m Create a list of elements from a file of element information

m Store a list of elements on a file

implement the following list operations for both unsorted lists and sorted lists:

Create a list

Determine whether the list is full

Determine the size of the list

Insert an element

Retrieve an element

Delete an element

Reset the list and repeatedly return the next item from the list

explain the use of Big-0 notation to describe the amount of work done by an algorithm

compare the unsorted list operations and the sorted list operations in terms of Big-O approximations
describe uses of Java's abstract class and interface constructs with respect to defining ADTs
design and create classes for use with a generic list

use a List ADT as a component of a solution to an application problem
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]

This chapter centers on the List ADT: its definition, its implementation, and its use in
problem solving. In addition to learning about this important data structure, this mate-
rial should help you understand the relationships among the logical, application, and
implementation levels of an ADT. In the course of the exploration of these topics, sev-
eral Java constructs for supporting abstraction are introduced. Seeing how these con-
structs are used should enhance your appreciation for the power of abstraction. We also
introduce in this chapter an analysis tool, Big-O notation, which allows us to compare
the efficiency of different ADT implementations.

Lists

We all know intuitively what a list is; in our everyday lives we use lists all the time—
grocery lists, lists of things to do, lists of addresses, lists of party guests.
In computer programs, lists are very useful abstract data types. They are members of
a general category of abstract data types called containers; containers hold other objects.
There are languages in which the list is a built-in structure. In Lisp, for example, the list
is the main data type provided in the language. Although list classes are provided in the
Java Class Library, the techniques for building lists and other abstract data types are so
important that we show you how to design and write

Linear relationship Each element except the first has
a unique predecessor, and each element except the last
has a unique successor

Length The number of items in a list; the length can
vary over time

Unsorted list A list in which data items are placed in
no particular order; the only relationship between data
elements is the list predecessor and successor relation-
ships

Sorted list A list that is sorted by the value in the
key; there is a semantic relationship among the keys of
the items in the list

your own.

From a programming point of view, a list is a
homogeneous collection of elements, with a linear rela-
tionship between its elements. A linear relationship
means that, at the logical level, each element on the list
except the first one has a unique predecessor and each
element except the last one has a unique successor. (At
the implementation level, there is also a relationship
between the elements, but the physical relationship may
not be the same as the logical one.) The number of
items on the list, which we call the length of the list, is
a property of a list. That is, every list has a length.

Lists can be unsorted—their elements may be placed
into the list in no particular order—or they can be sorted.
For instance, a list of numbers can be sorted by value, a

list of strings can be sorted alphabetically, and a list of grades can be sorted numerically.

When the elements in a sorted list are of composite types, we can define their logi-
cal order in many different ways. For example, suppose we have a list of student infor-
mation, with each student represented by their first name, last name, identification
number, and three test scores. Some of the ways we can sort such a list are:

¢ by last name, alphabetically
e by last name, alphabetically, and then by first name, alphabetically (in other
words, the first name is used to determine relative ordering if two or more last

names are identical)

¢ by identification number
e by average test score
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If the sort order is determined directly by

using the student information, such as in the Key The attributes that are used to determine the

first three approaches, we say that that infor- logical order of the items on a list

mation represents the key for the list element.

In the first approach, the <last name> is the

key; in the second approach, the combination of <last name - first name> is the key;
and in the third approach, the <identification number> is the key. If a list cannot con-
tain items with duplicate keys, it is said to have a unique key. In this example, the best
candidate for use as a unique key is the identification number, since it is likely to have
a unique value for each student in a school.

This chapter deals with many kinds of lists. We make the assumption that our lists
are composed of unique elements. We point out the ramifications of dropping this
assumption on our list abstractions and implementations at various places within the
chapter. When sorted, our lists are sorted from smallest to largest key value, though it is
certainly possible to sort them largest to smallest should your application need this.

There are two basic approaches to implementing container structures such as lists:
the “by copy” approach and the “by reference” approach. For our lists in this chapter,
we use the “by copy” approach. This means that when a client program inserts an item
into our lists, it is actually a copy of the item that is placed on the list. In addition,
when an item is retrieved from our list by a client program, it is a copy of the item on
the list that is returned to the program. We use the alternate approach, storing and
returning references to the items instead of copies of the items, for other container
structures starting in Chapter 4. At that point we discuss more thoroughly the important
differences between the two approaches.

Progressing through the chapter, we develop unsorted and sorted lists of strings,
sorted lists of generic elements, and in the case study, a sorted list of house informa-
tion for a real estate application. As we progress, we introduce both the Java abstract
class mechanism and the Java interface mechanism to help refine our list ADTs and
make them more generally usable. Each time we implement a new form of list, we
include the corresponding UML diagram. Each figure that displays a UML diagram
includes all of the previous diagrams, so that you easily can compare the implementa-
tion approaches.

Abstract Data Type Unsorted List

Logical Level

There are many different operations that programmers can provide for lists. For differ-
ent applications we can imagine all kinds of things users might need to do to a list of
elements. In this chapter we formally define a list and develop a set of general-purpose
operations for creating and manipulating lists. By doing this, we are building an
abstract data type.

To create the definition of a list as an abstract data type, we must identify a set of
operations that allow us to access and manipulate the list. In this section we design the
specifications for a List ADT where the items on the list are unsorted; that is, there is no
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semantic relationship between an item and its predecessor or successor. They simply
appear next to one another on the list.

Abstract Data Type Operations
Designing an ADT to be used by many applications is not the same as designing an
application program to solve a specific problem. In the latter case we can use CRC cards
to enact scenarios of the application’s use, allowing us to identify and fix holes in our
design before turning to implementation. Identifying scenarios for use of a general ADT
is not as straightforward. We must stand back and consider what operations every user
of the data type would want it to provide.

Recall that there are four categories of operations: constructors, transformers,
observers, and iterators. We begin by reviewing each category and considering which
List ADT operations fit into the respective categories.

Constructors A constructor creates a new instance of the data type. In Java, it is a
public method with the same name as the ADT’s class name. There is one piece of
information that our ADT needs from the client to construct an instance of the list
data type: the maximum number of items to be on the list. As this information varies
from application to application, it is logical for the client to have to provide it. We can
also define a default list size to be used in case the client does not provide the
information.

At the end of the previous chapter we suggested that it is a good idea to include a
copy constructor when defining an ADT. A copy constructor accepts an instance of the
ADT as a parameter and creates a copy of it. Copy constructors are most appropriate
when the ADT implements an unstructured composite type, such as the Date and Cir-
cle examples of the previous chapters. Although there can be situations in which a
copy constructor can be helpful for an application programmer who is using a struc-
tured composite type such as a list, these situations are rare. We do not define a copy
constructor for our List ADTs.

Transformers Transformers are operations that change the content of the structure in
some way. A common transformer is one that makes the structure empty. However, in
Java, the constructor methods associate a new, empty structure with the current
instance of the ADT, effectively making it empty. Therefore, we do not need another
method for making the list empty. We do need transformers to put an item into the
structure, or to remove a specific item from the structure. For our Unsorted List ADT,
let’s call these transformers insert and delete.

Note that, since we implement our operations as object methods, the list is the
object through which the method is invoked, and therefore the list itself is available to
the method for manipulation. The insert and delete methods need an additional
parameter: the item to be inserted or deleted. For this Unsorted List ADT, let’s assume

'l"cmn-FIy :
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that the item to be inserted is not currently on the list and the item to be deleted is on
the list.

A transformer that takes two sorted lists and merges them into one sorted list or
appends one list to another is a binary transformer. The specification for such an opera-
tion is given in the exercises, where you are asked to implement it.

Observers Observers also come in several forms. They ask true/false questions' about
the ADT (Is the structure empty?). They select or access a particular item (Give me a
copy of the last item.). Or they return a property of the structure (How many items are
in the structure?). The Unsorted List ADT needs at least two observers: isFull and
lengthIs. The isFull observer method returns true if the list is full, false
otherwise; lengthIs tells us how many items are on the list, as opposed to the
maximum capacity of the list.

If an abstract data type places limits on the component type, we could define other
observers. For example, if we know that our abstract data type is a list of numerical val-
ues, we could define statistical observers such as minimum, maximum, and average.
Here, at the logical level, we are interested in generality; we know nothing about the
type of the items on the list, so we use only general observers.

If we make the client responsible for checking for error conditions, we must make
sure that the ADT gives the user the tools with which to check for the conditions. The
operations that allow the client to determine whether an error condition occurs are
observers. Since we are assuming that our list does not include duplicate elements, we
should provide an observer that searches the list for an item with a particular key and
returns whether or not the item has been found. Let’s call this one isThere. The appli-
cation programmer can use the isThere observer to prevent insertion of a duplicate
item into the list. For example:

if (!list.isThere(item)) list.insert(item) ;

Iterators Iterators are used with composite types to allow the user to process an entire
structure, component by component. To give the user access to each item in sequence,
we provide two operations: one to initialize the iteration process (analogous to Reset or
Open with a file) and one to return a copy of the “next component” each time it is
called. The user can then set up a loop that processes each component. Let’s call these
operations reset and getNextItem. Note that reset is not an iterator, but is an
auxiliary operation that supports the iteration. Another type of iterator is one that takes
an operation and applies it to every element on the list.

Element Types Before we can formalize the specification for the Unsorted List ADT,
we must consider the type of items to be held on the list. Later in the chapter we

'A method that returns a boolean value defined on a set of objects is sometimes called a predicate, with the
term observer used for methods that inquire about an instance variable of an object.
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learn how to define a generic list—a list that can hold elements of many different
types. For now, so that we can concentrate on the definition and implementation of
the list operations, we limit ourselves to working with a list of strings. Therefore, we
call our ADT UnsortedStringList. In order to keep our analysis as generally
applicable as possible, we still refer to list components as “elements” or “items,”
rather than as “strings,” and we call our ADT the Unsorted List ADT in much of our

discussion.
” Unsorted List ADT Specification
Structure:

The list elements are Strings. The list contains unique elements;
i.e., no duplicate elements as defined by the key of the list. The
list has a special property called the current position—the posi-
tion of the next element to be accessed by getNextItem during
an iteration through the list. Only reset and getNextItem
affect the current position.

Definitions (provided by user):
maxltems: An integer specifying the maximum number of
items to be on this list.

Operations (provided by Unsorted List ADT):

void UnsortedStringList (int maxItems)
Effect: Instantiates this list with capacity of maxTItems
and initializes this list to empty state.

Precondition:  maxItems >0
Postcondition:  This list is empty.

void UnsortedStringList ()
Effect: Instantiates this list with capacity of 100 and
initializes this list to empty state.

Postcondition:  This list is empty.

boolean isFull ()
Effect: Determines whether this list is full.

Postcondition: Return value = (this list is full)

int lengthls ()
Effect: Determines the number of elements on this
list.

Postcondition: Return value = number of elements on this list
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boolean isThere (String item)
Effect: Determines whether item is on this list.

Postcondition: Return value = (item is on this list)

void insert (String item)
Effect: Adds copy of item to this list.
Preconditions: This list is not full.
item is not on this list.
Postcondition: item is on this list.

void delete (String item)
Effect: Deletes the element of this list whose key
matches item ’s key.
Precondition: ~ One and only one element on this list has a
key matching item ’s key.
Postcondition: No element on this list has a key matching the
argument item s key.

void reset ()
Effect: Initializes current position for an iteration
through this list.

Postcondition:  Current position is first element on this list.

String getNextltem ()

Effect: Returns a copy of the element at the current
position on this list and advances the value of
the current position.

Preconditions:  Current position is defined.

There exists a list element at current position.

No list transformers have been called since
most recent call to reset.

Postconditions: Return value = (a copy of element at current
position)
If current position is the last element then cur-
rent position is set to the beginning of this list;
otherwise, it is updated to the next position.

In this specification, the responsibility of checking for error conditions is put on the
user through the use of preconditions that prohibit the operation’s call if these condi-
tions exist. Recall that we call this approach programming “by contract.” We have
given the user the tools, such as the isThere operation, with which to check for the
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conditions. Another alternative would be to define an error variable, have each opera-
tion record whether an error occurs, and provide operations that test this variable. A
third alternative would be to let the operations detect error conditions and throw
appropriate exceptions. We use programming by contract in this chapter so that we
can concentrate on the list abstraction and the Java constructs that support it, without
having to address the extra complexity of formally protecting the operations from mis-
use. We use other error-handling techniques in later chapters.

The specification of the list is somewhat arbitrary. For instance, the overall assump-
tion about the uniqueness of list items could be dropped. This is a design choice. If we
were designing a specification for a specific application, then the design choice would
be based on the requirements of the problem. We made an arbitrary decision not to
allow duplicates. Allowing duplicates in this ADT implies changes in several operations.
For example, instead of deleting an element based on its value, we might require a
method that deletes an element based on its position on the list. This, in turn, might
require a method that returns the position of an item on the list based on its key value.

Additionally, assumptions about specific operations could be changed—for example,
we specified in the preconditions of delete that the element to be deleted must exist on
the list. It would be just as legitimate to specify a delete operation that does not require
the element to be on the list and leaves the list unchanged if the item is not there. Per-
haps that version of the delete operation would return a boolean value, indicating
whether or not an element had been deleted. We could even design a list ADT that pro-
vided both kinds of delete operations. In the exercises you are asked to explore and
make some of these changes to the List ADTs.

Application Level

The set of operations that we are providing for the Unsorted List ADT may seem rather
small and primitive. However, this set of operations gives you the tools to create other
special-purpose routines that require knowledge of what the items on the list represent.
For instance, we have not included a print operation. Why? We don’t include it because
in order to write a good print routine, we must know what the data members represent.
The application programmer (who does know what the data members look like) can use
the lengthTs, reset, and getNextItem operations to iterate through the list, printing
each data member in a form that makes sense within the application. In the code that
follows, we assume the desired form is a simple numbered list of the string values. We
have emphasized the lines that use the list operations.

void printList(PrintWriter outFile, UnsortedStringList list)

// Effect: Prints contents of list to outFile

// Pre: List has been instantiated

// outFile is open for writing

// Post: Each component in list has been written to outFile
// outFile is still open

{
int length;
String item;
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list.reset();
length = list.lengthIs();
for (int counter = 1; counter <= length; counter++)

{

item = list.getNextItem();
outFile.println(counter + ". " + item);

For example, if the list contains the strings “Anna Jane,” “Joseph,” and “Elizabeth,” then
the output would be:

1. Anna Jane
2. Joseph
3. Elizabeth

Note that we defined a local variable 1ength, stored the result of 1ist.lengthIs() in
it, and used the local variable in the loop. We could have just used the method call
directly in the loop:

for (int counter = 1; counter <= list.lengthIs(); counter++)

We used the other approach for efficiency reasons. That way the lengthIs method is
called only once, saving the overhead of extra method calls.

In the printList method, we made calls to the list operations specified for the
Unsorted List ADT, printing a list without knowing how the list is implemented. At an
application level, the operations we used (reset, lengthIs, and getNextItem) are
logical operations on a list. At a lower level, these operations are implemented by Java
methods, which manipulate an array or other data-storing medium that holds the list’s
elements. There are many functionally correct ways to implement an abstract data type.
Between the user picture and the eventual representation in the computer’s memory,
there are intermediate levels of abstraction and design decisions. For instance, how is
the logical order of the list elements reflected in their physical ordering? We address
questions like this as we now turn to the implementation level of our ADT.

Implementation Level

There are two standard ways to implement a list. We look at a sequential array-based
list implementation in this chapter. The distinguishing feature of this implementation is
that the elements are stored sequentially, in adjacent slots in an array. The order of the
elements is implicit in their placement in the array.

The second approach, which we introduce in Chapter 5, is a linked-list implementa-
tion. In a linked implementation, the data elements are not constrained to be stored in
physically contiguous, sequential order; rather, the individual elements are stored
“somewhere in memory,” and their order is maintained by explicit links between them.
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Before we go on, let’s establish a design terminology for our list algorithms that’s
independent of the implementation and type of items stored on the list. Doing this
allows us to describe algorithms that are valid no matter which of the standard
approaches we use.

List Design Terminology Assuming that location “accesses” a particular list element,

location.node( ) Refers to all the data at location, including implementation-specific
data.

location.info( ) Refers to the application data at location.

last.info( ) Refers to the application data at the last location on the list.

location.next( ) Gives the location of the node following location.node( ). If location

is the end of the list, it gives the first location of the list.

A few clarifications are needed. What is meant by “all the data” at a location, and “the
application data” at a location? Remember that although we are currently dealing with
lists of strings, we eventually expand the kinds of elements we can use to any kind of
data. The “application data” refers to the data from the application associated with a list
element. In addition to the application data, a list element might have certain informa-
tion associated with it, related to the implementation of the list; for example, a variable
holding the location of the next list element. By “all the data” we mean the application
data plus the implementation data, if there is any.

What then is location? For an array-based implementation, location is an index,
because we access array slots through their indexes. For example, the design state-
ment

Print location.info( )

means “Print the application data in the array slot at index location;” eventually it
might be coded in Java within the array-based implementation as

outFile.println(list.info[location]);

When we look at the linked implementation in Chapter 5, the code implementing the
design statement is quite different, but the design statement itself remains the same.
Thus, using this design notation, we define implementation-independent algorithms for
our Unsorted List ADT. Hopefully, we can design our list algorithms just once using the
design notation and then implement them using either of the implementation
approaches.

What does location.next( ) mean in an array-based sequential implementation? To
answer this question, consider how we access the next list element stored in an array:
We increment the location index. The design statement

Set location to location.next()
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might be coded in Java within the array-based implementation as

if (location == numItems - 1) // Location is an array index
location = 0;

else
locationt+;

We have not introduced this list design terminology just to force you to learn the syn-
tax of another computer language. We simply want to encourage you to think of the
list, and the parts of the list elements, as abstractions. At the design stage, the imple-
mentation details can be hidden. There is a lower level of detail that is encapsulated in
the “methods” node, info, and next. Using this design terminology, we hope to record
algorithms that can be coded for both array-based and linked implementations.

Instance Variables
In our implementation, the elements of a list are stored in an array of String objects.

String[] list;

There are two size-related attributes of the list: capacity and current length. The capac-
ity of the list is the maximum number of elements that can be stored on the list. We do
not need an instance variable to hold the capacity of the list since we can use the array
attribute length to determine the capacity of the list at any point within our implemen-
tation. In other words, the capacity of our list is the length of the underlying array:
list.length

However, we do need an instance variable to keep track of the current number of
items we have stored in the array (also known as the current length of the list). We name
this variable numItems. This variable can also be used to record where the last item was
stored. Because the list items are unsorted, when we put the first item into the list, we place
it into the first slot; the second item goes in the second slot, and so forth. Because our lan-
guage is Java, we must remember that the first slot is indexed by 0, the second slot by 1,
and the last slot by 1ist.length - 1. Now we know where the list begins—in the first
array slot. Where does the list end? The array ends at the slot with index 1ist.length -
1, but the list ends in the slot with index numItems - 1. For example, if the list currently
holds 5 items, they are kept in array locations O through 4; the value of the numItems
instance variable is 5; and the next array location to insert a new item is also 5.

Is there any other information about the list that we must include? Both operations
reset and getNextItem refer to a “current position.” What is this current position? It
is the index of the last element accessed in an iteration through the list. We need an
instance variable to keep track of the current position. Let’s call it currentPos. The
method reset initializes currentPos to 0. The method getNextItem returns the value
in 1ist[currentPos] and increments currentPos. The ADT specification states that
only reset and getNextItem affect the current position. Figure 3.1 illustrates the
instance variables of our class UnsortedStringList. Here is the beginning of the class
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class UnsortedStringlList

numltems[ ]

list

] —<—— Logical List
% items stored in
]

an array

[numItems-1]

[list.length()-1]

\ ¥ ®

Figure 3.1 Instance variables of Unsorted List ADT

file, which includes the variable declarations. Note that it also includes an introductory
comment and a package statement. The UnsortedStringList class is the first of sev-
eral string list classes we develop. We collect all these classes together into a single
package called ch03.stringlLists (the class files can be found in the subdirectory
stringLists or in the subdirectory cho03 of the directory bookFiles on our web site).

// UnsortedStringlist.java by Dale/Joyce/Weems Chapter 3
//

// Defines all constructs for an array-based list of strings that is not

// kept sorted

package chO3.stringlists;

public class UnsortedStringlList

{
protected Stringl[] list; // Array to hold list elements
protected int numltems; // Number of elements on this list
protected int currentPos;: // Current position for iteration
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Notice that we use the protected visibility modifier for each of the variables. Recall
that this means that the variables can be “seen” only by the methods of the
UnsortedStringList class or its subclasses. We use this approach because we create a
subclass later in this chapter that needs access to the variables. This type of visibility
still protects the variables from direct access by the applications that use the class.

A design choice we wish to point out, but choose not to use, is to write an
ArrayList-based class for use here. Since the ArrayList class provides a variable-
sized array, we could allow the underlying implementation to shrink and grow to mirror
the changes in the size of the list. We would not have to deal with a “max items” con-
straint, so we would not need to list preconditions such as “list is not full.” You are
asked to investigate this alternative in the exercises.

Constructors
Now let’s look at the operations that we have specified for the Unsorted List ADT. The
first two operations are constructors that create empty lists. Remember that a class con-
structor is a method having the same name as the class, but having no return type. A
constructor’s purpose is to instantiate an object of the class, to initialize variables and, if
necessary, to allocate resources (usually memory) for the object being constructed. Like
any other method, a constructor has access to all variables and methods of the class. A
new list is created empty; that is, the number of items is 0.

Our first constructor requires a positive integer parameter, which indicates the size
for the underlying array.

public UnsortedStringlList(int maxItems)
// Instantiates and returns a reference to an empty list object with
// room for maxItems elements
{
numItems = 0;
list = new String[maxItems];

The code for this constructor is straightforward and requires no further explanation. We
have decided not to include a restatement of the method preconditions and postcondi-
tions, established in the ADT specification, when listing our code. In some cases we pro-
vide multiple versions of the same method, and we believe repeated listing of these
conditions is redundant and would make for tedious reading. Therefore, we list these
conditions only when we define the logical-level view of our ADTs. Nevertheless, we
encourage you to always include preconditions and postconditions in comments at the
beginning of your methods. Code that is meant to be used needs such documentation,
but in this text, where we're already explaining the code in great detail, the comments
aren’t as necessary.

Our second constructor does not have a parameter. In this case, the default size of
the underlying array is 100.
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public UnsortedStringList()
// Instantiates and returns a reference to an empty list object
// with room for 100 elements
{
numltems = 0;
list = new String[100];

Notice that these two methods have the same name: UnsortedStringList.
How is this possible? Remember that in the case of methods, Java uses more than
just the name to identify them; it also uses the

parameter list. A method’s name, the number and

Signature The distinguishing features of a method type of parameters that are passed to it, and the
heading. The combination of a method name with the arrangement of the different parameter types within
number and type(s) of its parameters in their given the list, combine into what Java calls the signature
order of the method.

Overloading The repeated use of a method name Java allows us to use the name of a method as

with a different signature many times as we wish, as long as each one has a dif-

ferent signature. When we use a method name more

than once, we are overloading its identifier. The Java
compiler needs to be able to look at a method call and determine which version of the
method to invoke. The two constructors in class UnsortedStringList both have dif-
ferent signatures: One takes no arguments, the other takes an int. Java decides which
version to call according to the arguments in the statement that invokes Unsorted-
StringList.

Simple Observers
The first nonconstructor operation, isFull, just checks to see whether the current num-
ber of items on the list is equal to the length of the array.

public boolean isFull()
// Returns whether this list is full
{

return (list.length == numItems) ;

The body of the observer object method lengthlIs is also just one statement.
public int lengthIs()
// Returns the number of elements on this list

{

return numltems;
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So far, we have not used our special design terminology. The algorithms have all been
straightforward. The next operation, isThere, is more complex.

isThere Operation

The isThere operation allows the application programmer to determine whether a list
item with a specified key exists on the list. In the case of the string list, the key is sim-
ply the string value. This string value is input to the method in the parameter item. A
boolean value is returned by the method—if the string item matches a string on the
list, true is returned; otherwise, false is returned.

Because the list items are unsorted, we must use a linear search. We begin at the
first component on the list and loop until either we find a component equal to the
parameter or there are no more strings to examine. Recall from Chapter 2 that we have
two ways to see if two strings are the same; we could use the equals method of the
String class or the compareTo method of the String class. We choose to use the
compareTo method, since we also use it in other parts of the list implementation. Recall
that this method returns a 0 if the strings are equal. Therefore, we can code

if (item.compareTo(list[location]) == 0)
found = true;

But how do we know when to stop searching if we do not find the string? If we have
examined the last element of the list, we can stop. Thus, in our design terminology, we
keep looking as long as we have not examined last.info( ).We summarize these observa-
tions in the algorithm below.
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isThere (item): returns boolean

Initialize location to position of first list element
Set found to false
Set moreToSearch to (have not examined last.info())

while moreToSearch AND NOT found
if item.compareTo(location.info()) ==

Set found to true
else
Set location to location.next()
Set moreToSearch to (have not examined last.info())

return found
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(a) Retrieve Sarah

(b) Retrieve Susan

~ ~
numltems |—4, moreToSearch: true numltems I#, moreToSearch: false
list [0][ Bobby found : true list [0]| Bobby found : false
[1]] Judy location 3% [1]] Judy location : 4
[2] June [2] June
[3]] Sarah [3]| Sarah
logical logical
garbage . garbage
[list.length()-1] [list.length()-1]
. J \ J

Figure 3.2 Retrieving an item in an unsorted list.

Before we code this algorithm, let’s look at the cases where we find the item on the
list and where we examine last.info() without finding it. We represent these cases in Fig-
ure 3.2 in an Honor Roll list. We first retrieve Sarah (see Figure 3.2(a)). Sarah is on the
list, so when the search is completed, moreToSearch is true, found is true, and
location is 3. The loop is exited because found became true when item was equal
to the contents of location 3. Next, we retrieve Susan (see Figure 3.2(b)). Susan is not on
the list, so when the search is completed moreToSearch is false, found is false, and
location is equal to numItems. The loop is exited because moreToSearch became
false after we examined the last information on the list.

Now we are ready to code the algorithm replacing the general design notation with
the equivalent array notation. The substitutions are straightforward except for initializ-
ing location and determining whether we have examined last.info( ). To initialize
location in an array-based implementation in Java, we set it to 0. We know we have
not examined last.info( ) as long as location is less than numItems. Be careful:
Because Java indexes arrays from O, the last item on the list is at index numItems - 1.
Here is the coded algorithm.

public boolean isThere (String item)
// Returns true if item is on this list, otherwise returns false
{

boolean moreToSearch;

int location = 0;

boolean found = false;
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moreToSearch = (location < numItems) ;

while (moreToSearch && !found)
(

if (item.compareTo(list[location]) == 0) // If they match
found = true;

else

(
locationt++;
moreToSearch = (location < numItems) ;

return found;

}

insert Operation

Because the list elements are not sorted by value, we can put the new item anywhere. A
straightforward strategy is to place the item in the numItems position and increment
numlItems.

>

insert (item)

Set numltems.info() to copy of item
Increment numltems

This algorithm is translated easily into Java.

public void dinsert (String ditem)
// Adds a copy of item to this list
{
list[numItems] = new String(item);
numltems++;

delete Operation

The delete method takes an item whose value indicates which item to delete. There are
clearly two parts to this operation: finding the item to delete and removing it. We can
use the isThere algorithm to search the list. When compareTo returns a nonzero
value, we increment location; when compareTo returns O, we exit the loop and
remove the element. Because the preconditions for delete state that an item with the
same key is definitely on the list, we do not need to test for reaching the end of the list.
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How do we remove the element from the list? Let’s look at the example in Figure
3.3. Removing Sarah from the list is easy, for hers is the last element on the list (see
Figures 3.3a and 3.3b). If Bobby is deleted from the original list, however, we need to
move up all the elements that follow to fill in the space—or do we? See Figure 3.3(c). If
the list is sorted by value, we would have to move all the elements up as shown in Fig-
ure 3.3(c), but because the list is unsorted, we can just swap the item in the numItems -
1 position with the item being deleted (see Figure 3.3(d)). In an array-based implementa-
tion, we do not actually remove the element; instead, we cover it up with the elements
that previously followed it (if the list is sorted) or the element in the last position (if the
list is unsorted). Finally, we decrement numTItems.

public void delete (String ditem)
// Deletes the element that matches item from this list

{

int location = 0;

while (item.compareTo(list[location]) != 0)
locationt++;

list[location] = list[numItems - 1];

numltems- - ;

Iterator Operations
The reset method is analogous to the Open operation for a file in which the file pointer
is positioned at the beginning of the file so that the first input operation accesses the first
component of the file. Each successive call to an input operation gets the next item in the
file. Therefore, reset must initialize currentPos to indicate the first item on the list.
The getNextItem operation provides access to the next item on the list by returning
currentPos.info() and incrementing currentPos. To do this, it must first “record” current-
Pos.info( ), then increment currentPos, and finally return the recorded information.

reset

Initialize currentPos to position of first list element

getNextltem: returns String

Set next to currentPos.info()
Set currentPos to currentPos.next()

return copy of next




(a) Original list
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(b) Deleting Sarah
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Figure 3.3  Deleting an item in an unsorted list
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The currentPos value always indicates the next item to be processed in an iteration.
To be safe, we decided to reset it automatically, in the getNextItem method, when the
end of the list is reached. Therefore, there are two places where currentPos can be set
to 0: in the reset method, and in the getNextItem method when the end of the list is
reached. The code for the iteration operations is as follows:

public void reset()
// Initializes current position for an iteration through this list
{

currentPos = 0;

public String getNextItem ()
// Returns copy of the next element on this list

// And advances the current position

{

String next = list[currentPos];
if (currentPos == numltems-1)
currentPos = 0;
else
currentPos++;

return new String(next) ;

The getNextItem method could also be implemented using the modulus operation:
currentPos = (currentPos++) % (numItems - 1);

The getNextItem method returns a String variable. That means that it returns a
reference to a string object. Notice that we have elected to create a new string object
using the string class’s copy constructor, and to return a reference to the new object,
rather than a reference to the string object that is actually on the list. As we stated
before, we implement our lists “by copy.” Why did we do this? The answer is that we
wish to maintain information hiding. If we return a reference into the list, we have
given the application an alias of a hidden list element. So, rather than do that, we create
a copy of the string, and return a reference to the copy. The list user is never allowed to
directly see or manipulate the contents of the list. These details of the list implementa-
tion are encapsulated by the ADT.

In this case we are being overly protective; since strings are immutable objects there
would be no potential harm in returning a reference to the actual string that is on the
list. The application program cannot change the string, so in this case the work of copy-
ing the list object is unnecessary. Nevertheless, we wish to emphasize the need for care
when returning values from within our ADTs. As mentioned previously, in Chapter 4 we
follow the alternate approach, namely, returning references to the objects contained in
our ADTs, and consider the strengths and drawbacks of each approach.
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UnsortedStringList

J#flist:Stringl]
fnumItems:int
JfcurrentPos:int

+UnsortedStringlList (in maxItems:int)
+UnsortedStringList ()
+isFull () :boolean

+lengthls () :int

+isThere(in item:String) :boolean
+insert(in item:String) :void
+delete(in item:String) :void
+reset () :void

+getNextItem() :String

8 "

Figure 3.4 UML diagram of UnsortedStringList

Consider how the application programmer might use the list iteration methods. The
programmer can use the length of the list to control a loop asking to see each item in
turn. What happens if the program inserts or deletes an item in the middle of an itera-
tion? Nothing good, you can be sure! Adding and deleting items changes the length of
the list, making the termination condition of the iteration-counting loop invalid.
Depending on whether an addition or deletion occurs before or after the iteration point,
our iteration loop could end up skipping or repeating items.

We have several choices of how to handle this possibly dangerous situation. The list
can throw an exception, the list can reset the current position when inserting or delet-
ing, or the list can disallow transformer operations while an iteration is taking place.
We choose the latter here by way of a precondition in the documentation.

The UML class diagram in Figure 3.4 represents our UnsortedStringlList
implementation.

Test Plan

To test our Unsorted List ADT, we create a test driver program similar to the one we cre-
ated at the end of Chapter 1 to test the IncDate ADT. That test driver accepted a
sequence of instructions from an input file that indicated which method of IncDate to
invoke next. The test input also included any parameter values required by the IncDate
methods. Results of the method invocations were printed to an output file. Meanwhile, a
final count of the number of test cases was indicated in an output window.

As we planned when we created that test driver, it is not difficult to transform it into a
test driver for a different ADT. To use it to test our Unsorted List ADT, we simply change the
value assigned to the testname variable near the start of the program, change the declara-
tion of the variables to appropriate ones for testing our list ADT, and rewrite the sequence
of if-else statements to invoke and report on the list methods instead of the date methods.

We do not go into all the details of the code for the test driver. Note that since there are
two constructors for the Unsorted List we must assign them two separate “code names” for
our test input file. We simply chose to use “UnsortedStringList1” and “Unsorted-
StringList2”. Here is the beginning of the main processing loop within the test driver:
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// Process commands
while(!command.equals("quit"))
{
if (command.equals("UnsortedStringListl"))

size = Integer.parselnt(dataFile.readLine());
list = new UnsortedStringlList(size);
outFile.println("The list is instantiated with size " + size);
}
else
if (command.equals("UnsortedStringList2"))
{
list = new UnsortedStringList();;
outFile.println("The list is instantiated with default size");
}
else
if (command.equals("isFull"))
{
outFile.println("The list is full is " + list.isFull());

You can study the entire TDUnsortedStringList.java program (it’s on our web site).
What is important for us now is planning how to use the test driver to test our ADT.

The constructors UnsortedStringList (int maxItems) and UnsortedString-
List () can be exercised throughout our tests every time we create an Unsorted
StringList object.

lengthls, insert, and delete can be tested together. That is, we insert several
items and check the length; we delete several items and check the length. How do we
know that insert and delete work correctly? We can make calls to the reset and
getNextItem methods to examine the structure of the list; a good approach would be to
use reset and getNextItem to create a “print list” test method (such as defined in the
application-level subsection), that could be called many times during the testing process.
A PrintList method is included in the TDUnsortedStringList.java program.

To test the isFull operation, we can instantiate a list of size 5, insert four items
and print the result of the test, and then insert the fifth item and print the result of the
test. To test isThere, we must search for items that we know are on the list and for
items that we know are not on the list.

How do we organize our test plan? We should classify our test possibilities. For
example, an item can be in the first position on the list, in the last position on the list,
or somewhere else on the list. So we must be sure that our delete can correctly delete
items in these positions. We must also check that isThere can find items in these same
positions. We should also check the lengthIs method at the boundary cases of an
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empty list and a full list. Notice that this test plan is mostly a black-box strategy. We
are looking at the list as described in the interface, not in the code.

These observations are summarized in the following test plan, which concentrates on
the observer methods and the insert method. To be complete the plan must be expanded
to use both constructors, to test the delete method, to test various combinations of
insert and delete, and, if program robustness is desired, to test how the software
responds to situations precluded by the method preconditions—for example, insertion into
a full list. The tests are shown in the order in which they should be implemented.

Operation to be Tested
and Description of

Action Input Values Expected Output
UnsortedStringList

print lengthls 0

print isFull false

print isThere (“Tom”) false

Print List empty list
UnsortedStringlList 5

insert Tom

print lengthTs 1

print isFull false

print isThere Tom true

Print List Tom

insert Julie

insert Nora

insert Maeve

print lengthIs 4

print isFull false

print isThere Tom true

print isThere Julie true

print isThere Maeve true

print isThere Kevin false

Print List Tom, Julie, Nora, Maeve
insert Kevin

print lengthIs 5

print isFull true

print isThere Tom true

print isThere Julie true

print isThere Kevin true

Print List Tom, Julie, Nora, Maeve, Kevin

ete.

161



162

Chapter 3: ADTs Unsorted List and Sorted List

5.3

The file testlistl.dat, that accompanies the program file on our web site, pro-
vides an example of a set of test data. It is not a complete test. The file testoutl.dat
shows the results of the following program invocation:

java TDUnsortedStringlList testlistl.dat testoutl.dat

The key to properly testing any software is in the plan: It must be carefully thought
out and it must be written. We have discussed the basic approach needed for testing the
Unsorted List ADT, listed a partial test plan, and provided a test driver (in the file
TDUnsortedStringList.java). We leave the creation of the complete written test plan
as an exercise.

Abstract Classes

We have just completed the design and implementation of an Unsorted List ADT. In the
next section we follow the same basic approach to create a Sorted List ADT. However,
before we do that we take a look at Java’s abstract class mechanism. We can use an abstract
class to take advantage of the similarities between the Unsorted and Sorted List ADTS.

Relationship between Unsorted and Sorted Lists

Suppose you are given the task of creating a Sorted List ADT. The first step you might
take is to identify the logical operations that you need to include. As you start to iden-
tify the operations, you might have the feeling that you have done this exercise before.
Let’s see, you'll need constructors to create your list. You’'ll need some way to put things
onto the list, so you need an insert method. Of course, you might want to remove
things from the list, so you need a delete method.

Sound familiar? As you think about it, you realize that all of the logical operations
we defined for the Unsorted List ADT are also needed for your Sorted List ADT. The log-
ical definition of those operations did not rely on whether or not the list was sorted. If
you look at the Unsorted List ADT specification, you can see that the entire specification
may be reused. The only changes that need to be made are to the preconditions and
postconditions of the transformer methods insert and delete: They must specify that
the list is sorted. insert and delete are the only two methods that affect the underly-
ing ordering of the list items. The condition

“The list is sorted.”

can be added to both their preconditions and postconditions, and you are all set.

Since you were able to reuse most of the specification of the Unsorted List ADT to
specify your Sorted List ADT, maybe you can also reuse some of the implementation. In
fact, assuming you again wish to use an array-based implementation, you can reuse the
entire class except the implementations of the insert and delete methods. We look at

'l'cmn-FIy :
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the implementations of these methods in the next subsection. We also look at a variant
of the isThere method. Although you can just reuse the isThere method of the
Unsorted List ADT, we are able to create a more efficient version of the method under
the assumption that the list is sorted.

Reuse Options

There are several ways we could reuse the code of the Unsorted List ADT to create the
code for the Sorted List ADT. Let’s look at three approaches: Cut and Paste, Direct Inher-
itance, and Abstract Classes.

Cut and Paste

We could create a Sorted List class completely independent of the Unsorted List ADT
class. Just create a new file called SortedStringlList.java, “cut and paste” the code
that we are able to reuse into the new file, rename the constructors to match the file
name, and create the new code for the three methods that we want to change. Once we
are finished there is no longer any formal link between the two classes: Cut and paste,
direct inheritance, and abstract classes.

However, this lack of connection between the two classes can be detrimental. Con-
sider, for example, if someone using the Sorted List class discovers an error in the getNex-
Item method. Suppose they fix the method but do not realize that a “copy” of the method
exists in another class? This means that although a bug has been detected, and a solution
devised and implemented, the same bug is still plaguing another class. If we could some-
how formally link the two classes together, so that the code for the common methods only
appears in one place, then both classes would share any updates made to these methods.

Direct Inheritance
Since the Sorted List ADT class can use several of the methods of the Unsorted List
class, maybe we should make the former a subclass of the latter:

public class SortedStringList extends UnsortedStringList

Within the Sorted List class we can redefine the three methods that need to be changed.
With this approach we do create a formal link between the two classes, and changes to
the shared methods would affect both classes.

While this approach is probably better than the previous approach, it still has some
problems. The main problem is that the inheritance relationship just doesn’t make sense.
Recall that in Chapter 1 we stated that the inheritance relationship usually represents an
“is a” relationship. In the example in Chapter 1, an IncDate iS a Date; an IncDate
object was a special kind of Date object. Here, that relationship doesn’t make sense.
Saying that a sorted list is a unsorted list sounds like nonsense.

Just because the is a relationship does not make sense doesn’t mean that you can’t
use inheritance. It does, however, often mean that using inheritance might lead to prob-
lems later. For example, due to Java’s rules for assignment of object variables, it would
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be possible for an application program to include the following code, assuming that the
Sorted List ADT inherited from the Unsorted List ADT:

UnsortedStringlList unsorted;
SortedStringlList sorted = new SortedStringList(10);
unsorted = sorted;

This creates the rather confusing situation in which an Unsorted List variable is refer-
encing a Sorted List object. This is completely legal in the world of Java—and it usually
makes sense if the is a relationship makes sense. But as you can see, in this case it
seems illogical. So, although using inheritance solves the problems identified in the pre-
vious subsection, another approach might be more appropriate.

Abstract Classes
Java offers another construct, called an abstract class, which resolves the deficiencies of
both of the previous approaches.

An abstract method is one that is declared without a method body. For the sake of
this discussion, let’s call a normal method that is declared with a body a concrete method.

We discussed abstract methods in Chapter 2 when we looked at the Java interface
construct. You may recall that a Java interface was not allowed to contain any concrete
methods; it could only contain abstract methods. An abstract class, on the other hand,
can contain both concrete methods and abstract methods. It must contain at least one
abstract method. To indicate that a class is abstract, we use the Java keyword abstract
in its definition. You'll see an example of this syntax in the next subsection. An abstract
class cannot be instantiated. It must be extended by another class, which provides the
missing implementations of the abstract methods.

We previously pointed out that it does not make sense to say that a sorted list is a
unsorted list. Similarly, it doesn’t make sense to reverse that; it does not make sense to
say an unsorted list is a sorted list. What then is the relationship between a sorted list
and an unsorted list? Easy, they are both lists! We can use an abstract class to model
this relationship.

We first create an abstract list class; its concrete methods provide the operations
that our two list ADTs share in common and its abstract methods provide the operations
that are not shared. We can then create two concrete classes that extend the abstract
list class, one that implements an unsorted list and the other that implements a sorted
list. With this approach we maintain the common code for the shared methods and we
create a reasonable is a inheritance structure: an unsorted list is a list and a sorted list
is a list.

An Abstract List Class

Our abstract list class is very straightforward. It is based on the UnsortedStringList
class developed in the previous section. We simply change the name of the class, and the
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constructor, to StringList, add the keyword abstract to the header line, and remove
the method bodies from the insert, delete, and isThere methods. We now declare
these three methods as abstract, and end their declaration lines with a semicolon. You
should also notice that we have only retained one of the constructors, the one which
accepts an integer parameter maxItems. The other constructor is redundant in this
scheme, as you see when we extend this class with the concrete classes in the next sec-
tion. Finally, notice that we place StringlList in the same package as we placed

UnsortedStringList.
f ] m oo
// Stringlist.java by Dale/Joyce/Weems Chapter 3
/]

// Defines all constructs for an array-based list that do not depend
// on whether or not the list is sorted
package chO3.stringlists;

public abstract class StringList
{

protected String[] list; // Array to hold this list’s elements
protected int numltems; // Number of elements on this list
protected int currentPos;: // Current position for iteration

public StringList(int maxItems)
// Instantiates and returns a reference to an empty list object
// with room for maxItems elements
{
numItems = 0;
list = new String[maxItems];

public boolean isFull()
// Returns whether this list is full
{

return (list.length == numltems);

public int lengthIs()

// Returns the number of elements on this list
{

return numltems;
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public abstract boolean isThere (String item);

// Returns true if item is on this list; otherwise, returns false

public abstract void insert (String item);
// Adds a copy of item to this list

public abstract void delete (String item);
// Deletes the element that matches item from this list.

public void reset()
// Initializes current position for an iteration through this list
{

currentPos = 0;

public String getNextItem ()
// Returns copy of the next element on this list
{

String next = list[currentPos];
if (currentPos == numltems-1)
currentPos = 0;
else
currentPost++;

return new String(next) ;

Extending the Abstract Class

Now we can create an Unsorted List ADT class by extending the abstract list class. To
differentiate this Unsorted List class from the one developed in the previous section, we
call it UnsortedStringList2. Since constructors cannot be inherited, we must imple-
ment our own constructors for this class. Notice how our code for the two constructors
both use the single constructor provided in the abstract list class. Additionally, we must
complete the definitions of the three abstract classes. We simply reuse the code from the
previous implementations. The code for the new unsorted string list is shown below.

// UnsortedStringlList2.java by Dale/Joyce/Weems Chapter 3
//

// Completes the definition of the Stringlist class under the assumption
// that the list is not kept sorted

package chO3.stringlists;
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public class UnsortedStringList2 extends StringList

{

public UnsortedStringList2(int maxItems)
// Instantiates and returns a reference to an empty list object
// with room for maxItems elements

{
super (maxItems) ;

public UnsortedStringList2()

// Instantiates and returns a reference to an empty list object
// with room for 100 elements
{

super (100) ;

public boolean isThere (String item)
// Returns true if item is on this list; otherwise, returns false
{

boolean moreToSearch;

int location = 0;

boolean found = false;

moreToSearch = (location < numItems) ;

while (moreToSearch && !found)
{

if (item.compareTo(list[location]) == 0) // if they match
found = true;

else

{
locationt+;
moreToSearch = (location < numlItems);

return found;
}

public void insert (String item)
// Adds a copy of item to this list
{
list[numItems] = new String(item);
numItemst++;
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public void delete (String item)
// Deletes the element that matches item from this list
{

int location = 0;

while (item.compareTo(list[location]) != 0)
locationt+;
11;

list[location] = list[numItems -

numltems- -;

The UML class diagram in Part (b) of Figure 3.5 models both the abstract StringList
class and the UnsortedStringList2 class. Note that the diagram displays the isThere,
insert, and delete methods defined in the StringList class, and the name of the class
itself, in an italic font to indicate that they are abstract classes. Part (a) of the diagram
models our original UnsortedStringList class, to allow comparison.

( .
UnsortedStringList -~ "
StringList
J#flist:Stringl]
fnumItems:int flist:Stringl]
jfcurrentPos:int {fnumItems:int
ffcurrentPos:int
+UnsortedStringlist (in maxItems:int)
+UnsortedStringList () +Stringlist (in maxItems:int)
+isFull() :boolean +isFull() :boolean
+lengthIs () :int +lengthIs() :int
+isThere(in item:String) :boolean +isThere(in item:String) :boolean
+insert(in item:String):String +insert (in item:String):void
+delete(in item:String):void +delete(in item:String):void
+reset():void +reset () :void
t+getNextItem():String +getNextItem() :String
- v . v

(a) UnsortedStringlist

UnsortedStringlList2

+UnsortedStringList2 (in maxItems:int)
+UnsortedStringList2 ()

+isThere(in item:String) :boolean
+insert(in item:String) :void
+delete(in item:String) :void

(b) UnsortedStringList2

Figure 3.5 UML diagrams for our list implementations
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Abstract Data Type Sorted List

At the beginning of this chapter, we said that a list is a linear sequence of items; from
any item (except the last) you can access the next one. We looked at the specifications
and implementation for the operations that manipulate a list and guarantee this property.

We now want to add an additional property: The key member of any item (except
the last) comes before the key member of the next one. We call a list with this property
a sorted list.

Logical Level

When we defined the specifications for the Unsorted List ADT, we made no requirements
with respect to the order in which the list elements are stored and maintained. Now, we
have to change the specifications to guarantee that the list is sorted. As was noted in the
section Relationship between Unsorted and Sorted Lists of Section 3.3, we must add pre-
conditions and postconditions to those operations for which order is relevant. The only
ones that must be changed are insert and delete.

We call our new class the SortedStringlList class. We must define new construc-
tors, since their names are directly related to the name of the class.

9 Sorted List ADT Specification (partial)

Structure:
The list elements are Strings. The list contains unique elements,
i.e., no duplicate elements as defined by the key of the list. The
strings are kept in alphabetical order. The list has a special prop-
erty called the current position—the position of the next element
to be accessed by getNextItem during an iteration through the
list. Only reset and getNextItem affect the current position.

Definitions (provided by user):
maxltems: An integer specifying the maximum number of
items to be on this list.

Operations (provided by Sorted List ADT):

void SortedStringList (int maxItems)
Effect: Instantiates this list with capacity of maxItems
and initializes this list to empty state.

Precondition:  maxItems >0
Postcondition:  This list is empty.

void SortedStringList ()
Effect: Instantiates this list with capacity of 100 and
initializes this list to empty state.

Postcondition:  This list is empty.
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void insert (String item)
Effect: Adds item to list.

Preconditions: List is not full.
item is not on the list.
List is sorted.
Postconditions: item is on the list.
List is still sorted.

void delete (String item)

Effect: Deletes the element whose key matches item’s
key.

Preconditions: One and only one element in list has a key
matching item’s key.
List is sorted.

Postconditions: No element in list has a key matching the
argument item’s key.
List is still sorted.

The remaining operations use the same definitions as the Unsorted
List ADT.

Application Level

The application level for the Sorted List ADT is the same as for the Unsorted List ADT.
As far as the user is concerned, the interfaces are the same. The only functional differ-
ence is that when getNextTtem() is called in the Sorted List ADT, the element returned
is the next one in order by key.

Implementation Level

We continue to use the generic list design terminology, created to describe the algo-
rithms for the Unsorted List ADT operations, to describe the algorithms in this section.

insert Operation

To add an element to a sorted list, we must first find the place where the new element
belongs, which depends on the value of its key. We use an example to illustrate the
insertion operation. Let’s say that Becca has made the Honor Roll. To add the element
Becca to the sorted list pictured in Figure 3.6(a), maintaining the alphabetic ordering,
we must accomplish three tasks:

1. Find the place where the new element belongs.
2. Create space for the new element.
3. Put the new element on the list.

The first task involves traversing the list comparing the new item to each item on the list
until we find an item where the new item (in this case, Becca) is less. Recall from Chapter 2
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that the String method compareTo takes a string as a parameter and returns O if the
parameter string and the object string are equal, returns a positive integer if the parameter
string is “less than” the object string, and returns a negative integer if the parameter string
is “greater than” the object string. Therefore, we set moreToSearch to false when we
reach a point where item.compareTo(location.info()) is negative. At this point,
location is where the new item should go (see Figure 3.6b). If we don’t find a place

(a) Original list (b) Insert Becca
( N S N
numltems numltems[ 4 | moreToSearch: false
list [0]| Anne list [0][ Anne location )
[1]| Bobby [1]| Bobby
[2]] Chris [2]] Chris
[3]] Hilary [3]] Hilary
logical logical
garbage garbage
[list.length()-1] [list.length()-1]
N J \ J
(c) Result
s ™
list [0]| Anne
[1]] Becca
[2]] Bobby
[31] Chris moved down
[4]| Hilary
logical
garbage
[list.length()-1]
« J

Figure 3.6  Inserting into a sorted list
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where item.compareTo(location.info()) is negative, then the item should be put at
the end of the list. This is true when location equals numItems.

Now that we know where the element belongs, we need to create space for it.
Because the list is sequential, Becca must be put into the list at location.info( ). But this
position may be occupied. To “create space for the new element,” we must move down
all the list elements that follow it, from location through numItems - 1. Now we just
assign item to location.info() and increment numItems. Figure 3.6(c) shows the resulting
list.

Let’s summarize these observations in algorithmic form before we write the code.

insert (item)

Initialize location to position of first element
Set moreToSearch to (have not examined last.info())

while moreToSearch

if (item.compareTo(location.info()) < 0)
Set moreToSearch to false

else
Set location to location.next()
Set moreToSearch to (have not examined last.infof))

for index going from numltems DOWNTO location + 1
Set index.info() to (index-1).info()

Set location.info() to copy of item

Increment numltems

Remember that the preconditions on insert state that item does not exist on the list, so
we do not need to check whether the compareTo method returns a zero. Translating the
design notation into the array-based implementation gives us the following method.

public void insert (String ditem)
// Adds a copy of item to this list
{

int location = 0;

boolean moreToSearch = (location < numItems);

while (moreToSearch)
{
if (item.compareTo(list[location]) < 0) // Item is less

moreToSearch = false;

Team-Fly®
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else // Item is more
{
locationt+;
moreToSearch = (location < numItems) ;
}
}
for (int index = numItems; index > location; index--)
list[index] = list[index - 1];
list[location] = new String(item);
numltems++;

}

Does this method work if the new element belongs at the beginning or end of the list?
Draw a picture to see how the method works in each of these cases.

delete Operation

When discussing the method delete for the Unsorted List ADT, we commented that if
the list is sorted, we would have to move the elements up one position to cover the one
being removed. Moving the elements up one position is the mirror image of moving the
elements down one position. The loop control for finding the item to delete is the same
as for the unsorted version.

>
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delete (item)

Initialize location to position of first element
while (item.compareTo(location.info()) != 0)
Set location to location.next()
for index going from location + 1 TO numltems - 1
Set (index-1).info() to index.info()
Decrement numltems

Examine this algorithm carefully and convince yourself that it is correct. Try cases
where you are deleting the first item and the last one.

public void delete (String item)
// Deletes the element that matches item from this list
{

int location = 0;
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(a) Search for Chris
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while (item.compareTo(list[location]) != 0) // while not a match
locationt++;
for (int index = location + 1; index < numItems; index++)

list[index - 1] = list[index];

numltems- -;

Improving the isThere Operation

If the list is not sorted, the only way to search for an item is to start at the beginning
and look at each element on the list, comparing the key member of the item for which
we are searching to the key member of each element on the list in turn. This was the
algorithm used in the isThere operation in the Unsorted List ADT.

If the list is sorted by key value, there are two ways to improve the searching algo-
rithm. The first way is to stop searching when we pass the place where the item would be
if it were there. Look at Figure 3.7(a). If you are searching for Chris, a comparison with
Judy would show that Chris is less, that is, the compareTo method returns a positive inte-
ger. This means that you have passed the place where Chris would be if it were there. At
this point you can stop and return found as false. Figure 3.7(b) shows what happens
when you are searching for Susy: location is equal to 4, moreToSearch is false, and
found is false. In this case the search ends because there is nowhere left to look.

(b) Search for Susy

s s
numltems [ 4 || poreToSearch: true numltems [ 4 | | poreToSearch: false
list [0]| Bobby found : false list [0]| Bobby found : false
[1]] Judy location 1 [1]] Judy location 4
[2]] June [2]] June
[3]] Sarah [3]] Sarah
logical logical
garbage garbage
[1ist.length()-1] [list.length()-1]
AN ) AN J

Figure 3.7  Retrieving in a sorted list
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If the item we are looking for is on the list, the search is the same for the unsorted
list and the sorted list. It is when the item is not there that this algorithm is better. We
do not have to search all of the elements to determine that the one we want is not there.
The second way to improve the algorithm, using a binary search approach, helps in both
the case when the item is on the list and the case when the item is not on the list.

Binary Search Algorithm

Think of how you might go about finding a name in a phone book, and you can get an
idea of a faster way to search. Let’s look for the name “David.” We open the phone book
to the middle and see that the names there begin with M. M is larger than (comes after)
D, so we search the first half of the phone book, the section that contains A to M. We
turn to the middle of the first half and see that the names there begin with G. G is larger
than D, so we search the first half of this section, from A to G. We turn to the middle
page of this section, and find that the names there begin with C. C is smaller than D, so
we search the second half of this section—that is, from C to G—and so on, until we are
down to the single page that contains the name “David.” This algorithm is illustrated in
Figure 3.8.

PHONE
BOOK

A-Z

(D-6)

Figure 3.8 A binary search of the phone book
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The algorithm presented here depends directly on the array-based implementation
of the list. This algorithm cannot be implemented with the linked implementation pre-
sented in Chapter 5. Therefore, in discussing this algorithm we abandon our generic list
design terminology in favor of using array-related terminology.

We begin our search with the whole list to examine; that is, our current search area
goes from 1ist [0] through list[numItems - 1].In each iteration, we split the cur-
rent search area in half at the midpoint, and if the item is not found there, we search the
appropriate half. The part of the list being searched at any time is the current search
area. For instance, in the first iteration of the loop, if a comparison shows that the item
comes before the element at the midpoint, the new current search area goes from index
0 through midpoint - 1. If the item comes after the element at the midpoint, the new
current search area goes from index midpoint + 1 through numItems - 1. Either
way, the current search area has been split in half. It looks as if we can keep track of the
boundaries of the current search area with a pair of indexes, first and last. In each
iteration of the loop, if an element with the same key as item is not found, one of these
indexes is reset to shrink the size of the current search area.

How do we know when to quit searching? There are two possible terminating con-
ditions: item is not on the list and item has been found. The first terminating condition
occurs when there’s no more to search in the current search area. Therefore, we only
continue searching if (first <= 1last). The second terminating condition occurs
when item has been found.

isThere (item): returns boolean

Set first to O

Set last to numltems - 1

Set found to false

Set moreToSearch to (first <= last)
while moreToSearch AND NOT found
Set midPoint to (first + last) [ 2
compareResult = item.compareTo(midPoint.info())

if compareResult ==
Set found = true

else if compareResult < 0
Set last to midPoint - 1
Set moreToSearch to (first <= last)
else
Set first to midPoint + 1
Set moreToSearch to (first <= last)

return found
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Notice that when we look in the lower half or upper half, we can ignore the mid-
point because we know it is not there. Therefore, 1ast is set to midPoint - 1, or
first is set to midPoint + 1. The coded version of our algorithm follows.

public boolean isThere (String item)

// Returns true if item is on this list; otherwise, returns false

{

}

int
int
int
int

compareResult;
midPoint;
first = 0;

last = numItems - 1;

boolean moreToSearch = (first <= last);

boolean found = false;

while (moreToSearch && !found)

{

midPoint = (first + last) / 2;

compareResult = item.compareTo(list[midPoint]);
if (compareResult == 0)
found = true;

else if (compareResult < 0) // Item is less than element at location

{

}

last = midPoint - 1;
moreToSearch = (first <= last);

else // Item is greater than element at location

{

first = midPoint + 1;
moreToSearch = (first <= last);

return found;

Let’s do a walk-through of the binary search algorithm. The item being searched for is
“bat”. Figure 3.9 (a) shows the values of first, last, and midpoint during the first
iteration. In this iteration, “bat” is compared with “dog,” the value in 1ist[midpoint].
Because “bat” is less than (comes before) “dog,” last becomes midpoint - 1 and
first stays the same. Figure 3.9(b) shows the situation during the second iteration. This
time, “bat” is compared with “chicken,” the value in 1ist [midpoint]. Because “bat” is
less than (comes before) “chicken,” last becomes midpoint - 1 and first again
stays the same.
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[0] ant  |<«— first [0] ant  |<— first
[1] cat [1] cat
[2] |chicken [2] |chicken [<«—— midPoint
[3] ] cow [3] | cow
[4] deer [4] deer |<«—— last
[5] dog |<—— midPoint [5] dog
[6] fish (6] fish
[7] | goat [7] | goat bat cannot be
> in this part
[8] | horse (8] | horse of the list
[91 |monkey [9] |monkey
[10] | snake |<— last [10] | shake
First iteration Second iteration
bat < dog bat < chicken
(a) (0)
[0] ant |<— first and midPonint [0] ant
[1] cat [<— last [1] cat  f<«— first, last,
— —  and midPoint
[2] |chicken [2] |chicken
[3] cow [3] cow
[4] deer [4] deer
[5] | dog [5] | dog
bat cannot be bat cannot be
[6] fish in this part (6] | fish in this part
of the list of the list
[71 | goat [7] | goat
[8] | horse [8] | horse
[9] | monkey [9] |monkey
[10] | snake [10] | snake
Third iteration Fourth iteration
bat > ant bat < cat
() (d)

Figure 3.9  Trace of the binary search algorithm
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In the third iteration (Figure 3.9c), midpoint and first are both 0. The item
“bat” is compared with “ant,” the item in 1ist [midpoint]. Because “bat” is greater
than (comes after) “ant,” first becomes midpoint + 1. In the fourth iteration
(Figure 3.9d), first, last, and midpoint are all the same. Again, “bat” is com-
pared with the item in list[midpoint]. Because “bat” is less than “cat,” last
becomes midpoint -1. Now that last is less than first, the process stops; found
is false.

The binary search is the most complex algorithm that we have examined so far. The
following table shows first, last, midpoint, and list[midpoint] for searches of
the items “fish,” “snake,” and “zebra,” using the same data as in the previous example.
Examine the results of Table 3.1 carefully.

Notice that the loop never executes more than four times. It never executes more
than four times in a list of 11 components because the list is being cut in half each time
through the loop. Table 3.2 compares a linear search and a binary search in terms of the
average number of iterations needed to find an item.

If the binary search is so much faster, why not use it all the time? It is certainly
faster in terms of the number of times through the loop, but more computations are exe-
cuted within the binary search loop than in the other search algorithms. So if the num-
ber of components on the list is small (say, under 20), linear search algorithms are faster
because they perform less work at each iteration. As the number of components on the
list increases, the binary search algorithm becomes relatively more efficient. Remember,
however, that the binary search requires the list to be sorted and sorting takes time.

The UML diagram for the SortedStringList class is displayed in Figure 3.10,
along with the diagrams for the previous list implementations for comparison purposes.

Table 3.1  Trace of binary search algorithm
Terminating

Iteration first last midPoint list[midPoint] Condition
item: fish

First 0 10 5 dog

Second 6 10 8 horse

Third 6 7 6 fish found is true
item: snake

First 0 10 5 dog

Second 6 10 8 horse

Third 9 10 9 camel

Fourth 10 10 10 snake found is true
item: zebra

First 0 10 5 dog

Second 6 10 8 horse

Third 9 10 9 camel

Fourth 10 10 10 snake

Fifth 11 10 last < first
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Table 3.2 Comparison of linear and binary search

Average Number of Iterations

Length Linear Search Binary Search
10 55 2.9
100 50.5 5.8
1,000 500.5 9.0
10,000 5000.5 12.0
UnsortedStringList
StringList

#list:String[]
fnumItems:int
JfcurrentPos:int

+UnsortedStringlist(in maxItems:int)

Jlist:Stringl[]
fnumItems:int
JfcurrentPos:int

+UnsortedStringList ()

+isFull() :boolean
+lengthIs() :int

+isThere(in item:String) :boolean
t+insert(in item:String) :void
+delete(in item:String) :void
+reset():void

+getNextItem() :String

+StringList(in maxItems:int)

+isFull() :boolean
+lengthIs():int

+isThere(in item:String):boolean
+insert(in item:String) :void
+delete(in item:String) :void

+reset () :void
+getNextItem():String

UnsortedStringList2

SortedStringList

+UnsortedStringList2()

+UnsortedStringlist2 (in maxItems:int)

+isThere(in item:String) :boolean
+insert(in item:String) :void
+delete(in item:String) :void

+SortedStringlist(in maxItems:int)
+SortedStringList ()

+isThere(in item:String) :boolean
+insert(in item:String) :void
+delete(in item:String) :void

Figure 3.10 UML diagrams for our list implementations
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Test Plan

We can use the same test plan that we used for the unsorted list, with the expected out-
puts changed to reflect the ordering. However, we should add some test cases to explic-
itly address the fact that the list is sorted. For example, we should insert a sequence of
strings in reverse alphabetical order and check if the ADT correctly orders them. Note
that the sorted list implementation described in this section can be found in the file
SortedStringList.java on our web site.

Comparison of Algorithms

As we have shown in this chapter, there is more than one way to solve most problems.
If you were asked for directions to Joe’s Diner (see Figure 3.11), you could give either of
two equally correct answers:

1. "Go east on the big highway to the Y’all Come Inn, and turn left.”

2. "Take the winding country road to Honeysuckle Lodge, and turn right.”
The two answers are not the same, but because following either route gets the traveler
to Joe’s Diner, both answers are functionally correct.

If the request for directions contained special requirements, one solution might be
preferable to the other. For instance, “I'm late for dinner. What'’s the quickest route to
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Figure 3.11  Map to Joe's Diner
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Joe’s Diner?” calls for the first answer, whereas “Is there a scenic road that I can take to
get to Joe’s Diner?” suggests the second. If no special requirements are known, the
choice is a matter of personal preference—which road do you like better?

In this chapter, we have presented many algorithms. How we choose between two
algorithms that do the same task often depends on the requirements of a particular
application. If no relevant requirements exist, the choice may be based on the program-
mer’s own style.

Often the choice between algorithms comes down to a question of efficiency. Which
one takes the least amount of computing time? Which one does the job with the least
amount of work? We are talking here of the amount of work that the computer does.
Later we also compare algorithms in regard to how much work the programmer does.
(One is often minimized at the expense of the other.)

To compare the work done by competing algorithms, we must first define a set of
objective measures that can be applied to each algorithm. The analysis of algorithms is
an important area of theoretical computer science; in advanced courses students
undoubtedly see extensive work in this area. In this text you learn about a small part of
this topic, enough to let you determine which of two algorithms requires less work to
accomplish a particular task.

How do programmers measure the work that two algorithms perform? The first solu-
tion that comes to mind is simply to code the algorithms and then compare the execution
times for running the two programs. The one with the shorter execution time is clearly the
better algorithm. Or is it? Using this technique, we really can determine only that program
A is more efficient than program B on a particular computer at a particular time. Execution
times are specific to a particular computer, since different computers run at different
speeds. Sometimes they are dependent on what else the computer is doing in the back-
ground, for example if the Java run-time engine is performing garbage collection, it can
affect the execution time of the program. Of course, we could test the algorithms on many
possible computers at various times, but that would be unrealistic and too specific (new
computers are becoming available all the time). We want a more general measure.

A second possibility is to count the number of instructions or statements executed. This
measure, however, varies with the programming language used, as well as with the style of
the individual programmer. To standardize this measure somewhat, we could count the
number of passes through a critical loop in the algorithm. If each iteration involves a con-
stant amount of work, this measure gives us a meaningful yardstick of efficiency.

Another idea is to isolate a particular operation fundamental to the algorithm and
count the number of times that this operation is performed. Suppose, for example, that
we are summing the elements in an integer list. To measure the amount of work
required, we could count the integer addition operations. For a list of 100 elements,
there are 99 addition operations. Note, however, that we do not actually have to count
the number of addition operations; it is some function of the number of elements (N) on
the list. Therefore, we can express the number of addition operations in terms of N: For
a list of N elements, there are N — 1 addition operations. Now we can compare the
algorithms for the general case, not just for a specific list size.

Sometimes an operation so dominates an algorithm that the other operations fade
into the background “noise.” If we want to buy elephants and goldfish, for example, and
we are considering two pet suppliers, we only need to compare the prices of elephants;
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the cost of the goldfish is trivial in comparison. Suppose we have two files of integers,
and we want to create a new file of integers based on the sums of pairs of integers from
the existing files. In analyzing an algorithm that solves this problem, we could count
both file accesses and integer additions. However, file accessing is so much more expen-
sive than integer addition in terms of computer time, that the integer additions could be
a trivial factor in the efficiency of the whole algorithm; we might as well count only the
file accesses, ignoring the integer additions. In analyzing algorithms, we often can find
one operation that dominates the algorithm, effectively relegating the others to the
“noise” level.

Big-0

We have been talking about work as a function of the size of the input to the operation
(for instance, the number of elements on the list to be summed). We can express an
approximation of this function using a math-
ematical notation called order of magnitude,
or Big-0 notation. (This is a letter O, not a
zero.) The order of magnitude of a function is
identified with the term in the function that
increases fastest relative to the size of the
problem. For instance, if

fIN) = N* + 100N 2+ 10N + 50

then f(N) is of order N*—or, in Big-0 notation, O(N4). That is, for large values of N,
some multiple of N* dominates the function for sufficiently large values of N.

How is it that we can just drop the low-order terms? Remember the elephants and
goldfish that we talked about earlier? The price of the elephants was so much greater
that we could just ignore the price of the goldfish. Similarly, for large values of N, N* is
so much larger than 50, 10N, or even 100N2 that we can ignore these other terms. This
doesn’t mean that the other terms do not contribute to the computing time; it only
means that they are not significant in our approximation when N is “large.”

What is this value N? N represents the size of the problem. Most of the rest of the
problems in this book involve data structures—lists, stacks, queues, and trees. Each
structure is composed of elements. We develop algorithms to add an element to the
structure and to modify or delete an element from the structure. We can describe
the work done by these operations in terms of N, where N is the number of elements in
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Big-0 notation A notation that expresses computing
time (complexity) as the term in a function that
increases most rapidly relative to the size of a problem
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the structure. Yes, we know. We have called the number of elements in a list the length
of the list. However, mathematicians talk in terms of N, so we use N for the length when
we are comparing algorithms using Big-0 notation.

Suppose that we want to write all the elements in a list into a file. How much
work is that? The answer depends on how many elements are on the list. Our algo-
rithm is

IC [
Write List Elements
Open the file

while more elements in list
Write the next element

If N is the number of elements on the list, the “time” required to do this task is
(N * time-to-write-one-element) + time-to-open-the-file

This algorithm is O(N) because the time required to perform the task is proportional to
the number of elements (N)—plus a little to open the file. How can we ignore the open
time in determining the Big-O approximation? If we assume that the time necessary to
open a file is constant, this part of the algorithm is our goldfish. If the list has only a
few elements, the time needed to open the file may seem significant, but for large val-
ues of N, writing the elements is an elephant in comparison with opening the file.

The order of magnitude of an algorithm does not tell you how long in microseconds
the solution takes to run on your computer. Sometimes we need that kind of informa-
tion. For instance, a word processor’s requirements state that the program must be able
to spell-check a 50-page document (on a particular computer) in less than 120 seconds.
For information like this, we do not use Big-0 analysis; we use other measurements. We
can compare different implementations of a data structure by coding them and then
running a test, recording the time on the computer’s clock before and after. This kind of
“benchmark” test tells us how long the operations take on a particular computer, using
a particular compiler. The Big-O analysis, however, allows us to compare algorithms
without reference to these factors.

Common Orders of Magnitude

0(1) is called bounded time. The amount of work is bounded by a constant and is not
dependent on the size of the problem. Assigning a value to the ith element in an array
of N elements is O(l) because an element in an array can be accessed directly through its
index. Although bounded time is often called constant time, the amount of work is not
necessarily constant. It is, however, bounded by a constant.
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O(log,N) is called logarithmic time. The amount of work depends on the log of the
size of the problem. Algorithms that successively cut the amount of data to be processed
in half at each step typically fall into this category. Finding a value in a list of sorted
elements using the binary search algorithm is O(log,N).

O(NV) is called linear time. The amount of work is some constant times the size of the
problem. Printing all the elements in a list of N elements is O(N). Searching for a partic-
ular value in a list of unsorted elements is also O(N) because you must potentially
search every element on the list to find it.

O(N log,N) is called (for lack of a better term) N log,N time. Algorithms of this type
typically involve applying a logarithmic algorithm N times. The better sorting algo-
rithms, such as Quicksort, Heapsort, and Mergesort discussed in Chapter 10, have N
log,N complexity. That is, these algorithms can transform an unsorted list into a sorted
list in O(N log,N) time.

O(N?) is called quadratic time. Algorithms of this type typically involve applying a
linear algorithm N times. Most simple sorting algorithms are O(N?) algorithms. (See
Chapter 10.)

0(2") is called exponential time. These algorithms are extremely costly. An example
of a problem for which the best known solution is exponential is the traveling salesman
problem—given a set of cities and a set of roads that connect some of them, plus the
lengths of the roads, find a route that visits every city exactly once and minimizes total
travel distance. As you can see in Table 3.3, exponential times increase dramatically in
relation to the size of N. (It also is interesting to note that the values in the last column
grow so quickly that the computation time required for problems of this order may
exceed the estimated life span of the universe!)

Note that throughout this discussion we have been talking about the amount of
work the computer must do to execute an algorithm. This determination does not neces-
sarily relate to the size of the algorithm, say, in lines of code. Consider the following
two algorithms to initialize to zero every element in an N-element array.
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I
Algorithm Init1 Algorithm Init2
items[0] = 0; for (index = 0; index < N; index++)
items[1] = 0; items[index] = 0;
items[2] = 0;
items[3] = 0;
items[N-1] = 0;

Both algorithms are O(N), even though they greatly differ in the number of lines
of code.
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Table 3.3 Comparison of rates of growth

N log,N N log,N N2 N3 2N
1 0 1 1 1 2
2 1 4 8 4
4 2 16 64 16
8 3 24 64 512 256
16 4 64 256 4,096 65,536
32 5 160 1,024 32,768 4,294,967,296
64 6 384 4,096 262,144 About 1 month's worth
of instructions on a
supercomputer
128 7 896 16,384 2,097,152 About 10'? times

greater than the age
of the universe in
nanoseconds (for a 6-billion-
year estimate)

256 8 2,048 65,536 16,777,216 Don't ask!

Now let’s look at two different algorithms that calculate the sum of the integers
from 1 to N. Algorithm Sum1 is a simple for loop that adds successive integers to keep a
running total:

> |

Algorithm Sum1

sum = 0;
for (count = 1; count <= n; count++)
sum = sum + count;

[ D]




>

3.5 Comparison of Algorithms

That seems simple enough. The second algorithm calculates the sum by using a for-
mula. To understand the formula, consider the following calculation when N = 9.

1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9
+9+ 8+ 7+ 6+ 5+ 4+ 3+ 2+ 1

10 + 10 + 10 + 10 + 10 + 10 + 10 + 10 + 10 = 10 * 9 = 90

We pair up each number from 1 to N with another, such that each pair adds up to N + 1.
There are N such pairs, giving us a total of (N + 1)*N. Now, because each number is
included twice, we divide the product by 2. Using this formula, we can solve the prob-
lem: ((9 + 1) *9)/2 = 45. Now we have a second algorithm:
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Algorithm Sum2
sum=(n+1)*n)/2;

Both of the algorithms are short pieces of code. Let’s compare them using Big-O nota-
tion. The work done by Sum1 is a function of the magnitude of N; as N gets larger, the
amount of work grows proportionally. If N is 50, Sum1 works 10 times as hard as when
N is 5. Algorithm Sum1, therefore, is O(N).

To analyze Sum2, consider the cases when N = 5 and N = 50. They should take the
same amount of time. In fact, whatever value we assign to N, the algorithm does the
same amount of work to solve the problem. Algorithm Sum2, therefore, is O(1).

Does this mean that Sum2 is always faster? Is it always a better choice than Sum1?
That depends. Sum2 might seem to do more “work,” because the formula involves multi-
plication and division, whereas Sum1 is a simple running total. In fact, for very small
values of N, Sum2 actually might do more work than Sum1. (Of course, for very large
values of N, Sum1 does a proportionally larger amount of work, whereas Sum2 stays the
same.) So the choice between the algorithms depends in part on how they are used, for
small or large values of N.

Another issue is the fact that Sum2 is not as obvious as Sum1, and thus it is harder for
the programmer (a human) to understand. Sometimes a more efficient solution to a problem
is more complicated; we may save computer time at the expense of the programmer’s time.

So, what’s the verdict? As usual in the design of computer programs, there are
tradeoffs. We must look at our program’s requirements and then decide which solution
is better. Throughout this text we examine different choices of algorithms and data
structures. We compare them using Big-0, but we also examine the program’s require-
ments and the “elegance” of the competing solutions. As programmers, we design soft-
ware solutions with many factors in mind.
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How long does it take to do a family's weekly laundry? We might describe the answer to this
question with the function

f(N)=c*N

where N represents the number of family members and c is the average number of minutes that
each person's laundry takes. We say that this function is O(N) because the total laundry time
depends on the number of people in the family. The "constant” ¢ may vary a little for different
families—depending on the size of their washing machine and how fast they can fold clothes, for
instance. That is, the time to do the laundry for two different families might be represented with
these functions:

F(N) =100 *N
g(N)=90*N

But overall, we describe these functions as O(N).
Now what happens if Grandma and Grandpa come to visit the first family for a week or
two? The laundry time function becomes

f(N)=100*(N +2)

We still say that the function is O(N). How can that be? Doesn't the laundry for two extra people
take any time to wash, dry, and fold? Of course it does! If N is small (the family consists of
Mother, Father, and Baby Sierra), the extra laundry for two people is significant. But as N grows
large (the family consists of Mother, Father, 8 kids, and a dog named Waldo), the extra laundry for
two people doesn't make much difference. (The family's laundry is the elephant; the guest's laun-
dry is the goldfish.) When we compare algorithms using Big-0, we are concerned with what hap-
pens when Nis “large.”

If we are asking the question “Can we finish the laundry in time to make the 7:05 train?" we
want a precise answer. The Big-0 analysis doesn't give us this information. It gives us an approxi-
mation. So, if 100 * N, 90 * N, and 100 * (N + 2) are all O(N), how can we say which is better? We
can't—in Big-0 terms, they are all roughly equivalent for large values of N. Can we find a better
algorithm for getting the laundry done? If the family wins the state lottery, they can drop all their
dirty clothes at a professional laundry 15 minutes' drive from their house (30 minutes round trip).
Now the function is

f(N)=30
This function is 0(1). The answer is not dependent on the number of people in the family. If they
switch to a laundry 5 minutes from their house, the function becomes

f(N)=10
This function is also O(1). In terms of Big-0, the two professional-laundry solutions are equiva-

lent: No matter how many family members or houseguests you have, it takes a constant amount
of the family's time to do the laundry. (We aren't concerned with the professional laundry's time.)
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Comparison of Unsorted and Sorted List ADT Algorithms

In order to determine the Big-O notation for the complexity of these algorithms, we
must first determine the size factor. Here we are considering algorithms to manipu-
late items in a list. Therefore, the size factor is the number of items on the list:
numItems.

Many of our algorithms are identical for the Unsorted List ADT and the Sorted
List ADT. We capitalized on this fact in Section 3.4 when we brought the correspon-
ding methods together in our abstract list class. Let’s examine these first. The
lengthIs and isFull methods each contain only one statement: return numItems
and return (1ist.length == numItems). Since the number of statements executed
in these methods does not depend on the number of items on the list, they have 0(1)
complexity. The reset method contains one assignment statement and getNext-
Item contains an assignment statement, an if-then-else statement, and a return
statement. Neither of these methods is dependent on the number of items on the list,
so they also have O(1) complexity. The other methods are different for the two
implementations.

Unsorted List ADT

The algorithm for isThere requires that the list be searched until an item is found or
the end of the list is reached. We might find the item in any position on the list, or we
might not find it at all. How many places must we examine? At best only one, at worst
numItems. If we took the best case as our measure of complexity, then all of the opera-
tions would have O(1) complexity. But this is a rare case. What we want is the average
case or worst case, which in this instance are the same: O(numItems). True, the average
case would be O(numItems/2), but when we are using order notation, O(numItems) and
O(numTItems/2) are equivalent. In some cases that we discuss later, the average and the
worst cases are not the same.

The insert algorithm has two parts: find the place to insert the item and insert the
item. In the unsorted list, the item is put in the numItems position and numItems is
incremented. Neither of these operations is dependent on the number of items on the
list, so the complexity is O(1).

The delete algorithm has two parts: find the item to delete and delete the item.
Finding the item uses essentially the same algorithm as isThere. The only difference is
that since it is guaranteed that the item is on the list, we do not have to test for the end-
of-list condition. But that difference does not affect the number of times we may have
to traverse the search loop, so the complexity of that part is O(numItems). To delete the
item, we put the value in the numItems - 1 position into the location of the item to be
deleted and decrement numItems. This store and decrement are not dependent on the
number of items on the list, so this part of the operation has complexity O(1). The entire
delete algorithm has complexity O(numItems) because O(numItems) plus O(1) is
O(numItems). (Remember, the O(1) is the goldfish.)
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Sorted List ADT

We looked at three different algorithms for isThere. We said that the Unsorted List
ADT algorithm would work for a sorted list but that there were two more efficient algo-
rithms: a linear search in the sorted list that exits when the place where the item would
be is passed and a binary search.

A linear search in a sorted list is faster than in an unsorted list when searching for
an item that is not on the list, but is the same when searching for an item that is on the
list. Therefore, the complexity of the linear search in a sorted list is the same as the
complexity in an unsorted list: O(numItems). Does that mean that we shouldn’t bother
taking advantage of the ordering in our search? No, it just means that the Big-O com-
plexity measures are the same.

What about the binary search algorithm? We showed a table comparing the number
of items searched in a linear search versus a binary search for certain sizes of lists. How
do we describe this algorithm using Big-O notation? To figure this out, let’s see how
many times we can split a list of N items in half. Assuming that we don’t find the item
we are looking for at one of the earlier midpoints, we have to divide the list log,N times
at the most, before we run out of elements to split. In case you aren’t familiar with logs,

2/09,N _

The definition of log,N is “the number that you raise 2 to, to get N”. So, if we raise 2 to
that number, 2!°%2%, the result is N. Consider, for example, that if N = 1024, log,N = 10,
and 2'° = 1024. How does that apply to our searching algorithms? The sequential search
is O(N); in the worst case, we would have to search all 1024 elements of the list. The
binary search is O(log,N); in the worst case we would have to make log,N + 1, or 11,
search comparisons. A heuristic (a rule of thumb) tells us that a problem that is solved
by successively splitting it in half is an O(log,N) algorithm. Figure 3.12 illustrates the
relative growth of the linear and binary searches, measured in number of comparisons.
The insert algorithm still has the same two parts: finding the place to insert the
item and inserting the item. Because the list must remain sorted, we must search for the
position into which the new item must go. Our algorithm used a linear search to find

Linear
search O(N)

Binary search
0O(log,N)

B

N (Number of elements)

Number of comparisons

Figure 3.12  Comparison of linear and binary searches
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the appropriate location: O(numTtems). Inserting requires that we move all those ele-
ments from the insertion point down one place in the array. How many items must we
move? At most numItems, giving us O(numItems). O(numItems) plus O(numItems) is
O(numItems) because we disregard the constant 2. Note, however, that the constant 2
does not actually occur here. We actually access each item on the list only once except
for the item at the insertion point: We access those to the place of insertion and we
move those items stored from numItems - 1 through that place. Therefore, only the
element in the insertion location is accessed twice: once to find the insertion point and
once to move it.

You may have thought of an even more efficient way to insert the item. You could
start at the end of the list and repeatedly test to see if that is where you need to put the
item. If the item is larger then the element at the end of the list, you just insert it fol-
lowing that element; if it is not you move the list element at the end of the list down
one array position, and check the next to last list element, repeating the same pattern of
compare and move. By the time you find out where to insert the item, you have already
shifted all of the elements that are greater than down one location in the array, and you
can just insert it into the open location. With this approach, on average, you only have
to access half of the elements in the array, instead of all of the elements. However, it is
still the same complexity as the other approach, since O(numItems/2) is equal to
O(numItems).

The delete algorithm also still has the same two parts: finding the item to
delete and deleting the item. The algorithm for finding the item is the mirror image
of finding the insertion point: O(numItems). Deleting the item in a sorted list
requires that all the elements from the deletion location to the end of the list must be
moved forward one position. This shifting algorithm is the reverse of the shifting
algorithm in the insertion and, therefore, has the same complexity: O(numItems).
Hence the complexities of the insertion and deletion algorithms are the same in the
Sorted List ADT.

Table 3.4 summarizes these complexities. We have replaced numItems with N, the
generic name for the size factor.

In the deletion operation, we could improve the efficiency by using the binary
search algorithm to find the item to delete. Would this change the complexity? No, it
would not. The find would be O(log,N), but the removal would still be O(N); since
O(log,N) combined with O(N) is O(N) we have not changed the overall complexity of
the algorithm. (Recall that the term with the largest power of N dominates.) Does this
mean that we should not use the binary search algorithm? No, it just means that as the
length of the list grows, the cost of the removal dominates the cost of the find.

Think of the common orders of complexity as being bins into which we sort algo-
rithms (Figure 3.13). For small values of the size factor, an algorithm in one bin may
actually be faster than the equivalent algorithm in the next-more-efficient bin. As the
size factor increases, the differences among algorithms in the different bins get larger.
When choosing between algorithms within the same bin, you look at the constants to
determine which to use.
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Table 3.4  Big-0 comparison of list operations

Unsorted Sorted
Operation List List
length 0(1) 0(1)
isFull 0(1) 0(1)
reset 0(1) 0(1)
getNextItem 0(1) 0(1)
isThere O(N) O[N)
O(log, N) binary search
insert
Find 0(1) O(N)
Put o(1) 0(N)
Combined o(1) O(N)
delete
Find O(N) O(N)
Put 0(1) 0(N)
Combined 0o(N) 0o(N)
0(1) 0(log,N) 0(N) 0 (Nlog,N) 0 (N*N)
P ———— = £V — -V ————
S S S S S
—_ \ —_ —_ —_ —_
A - - - -

Figure 3.13  Complexity bins
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Generic ADTs

So far in this chapter we have created several variations of list ADTs: a “standalone”
unsorted string list, an unsorted string list that extended an abstract list class, and a
sorted string list, that also extended the abstract list class. These string lists are very
useful to an application programmer who is creating a system that requires lists of
strings. But what if the programmer wanted some other kind of list: a list of integers, a
list of dates, a list of circles, a list of real estate information?

The list ADTs we have constructed so far have all been constrained to holding data
of one specific type, namely strings. While useful, think of how much more useful they
would be if they could hold any kind of
information. A generic data type is one for
which the operations are defined but the
types of the items being manipulated are not.
We can make our lists generic by using Java’s
interface construct. We limited ourselves to
lists of strings up until now, because we wanted to concentrate on the list operations
without dealing with the extra complexity of interfaces. Now, however, we are ready to
see how we can construct more generally usable ADTs.

We use a new package, ch03.genericLists, to organize our files related to
generic lists. As required, the files are placed in a subdirectory genericLists of the
subdirectory ch03 of the directory bookFiles. Additionally, each of the class files must
begin with the line

lated are not

package ch03.genericLists;

Lists of Objects

One approach to creating generic ADTs is to have our ADTs use variables of type Object.
Since all Java classes ultimately inherit from Object, such an ADT should be able to “hold”
a variable of any class. If you try this approach, you soon see that it has severe limitations.

Consider what happens if you redefine our SortedStringList class to hold
objects instead of strings. If you edit the file containing the class, and change every
place where you see “String” with “Object”, you have created a SortedObjectList
class. At first glance this seems to have solved our problem. The list is implemented as
an array of objects. We can insert objects into the list and delete them. Many of the
methods, like isFull and reset, are not even affected by the change. However, when
you try to compile the file you discover a few errors. For example, the following line
from the insert method of the new file is flagged with a “method not found”
message:

if (item.compareTo(list[location]) < 0)

Generic data type A type for which the operations
are defined but the types of the items being manipu-

193



194

Chapter 3: ADTs Unsorted List and Sorted List

Do you see why? Remember that the item referred to in the code is now of class
Object. If you check the definition of the Object class you see that it does not include
a compareTo method. Therefore, this statement, along with several other statements in
the file, is syntactically illegal. The statement was OK when item was a string, since the
String class includes a compareTo method, but it is not a legal statement when item
is an object of the more general Object class.

The String class’s compareTo method returns information about the relative
ordering of two strings. Such a method is not defined for the Object class, since it
might not always make sense to talk about the ordering of two objects. We cannot have
a sorted list of just any type of objects. We can only have a sorted list of objects for
which a relative ordering has been defined.

There is one other kind of statement that is flagged by the compiler. This statement
also appears in the insert method:

list[location] = new Object(item);

You should recall that this statement is executed after the method has shifted the array val-
ues to make room for the new item and set the value of 1ocation to the insertion location.
The previous form of this statement used the String class’s copy constructor,
String(item), to create a new string object, which was then inserted into the list. The new
form of this statement attempts to use a copy constructor from the Object class, but no
such constructor exists. The reason we wish to insert a copy of the item into the list, instead
of just inserting the item itself, is to preserve the information hiding aspect of our ADT.

To solve these problems we create a Java interface with abstract classes for compar-
ing and copying objects.

The Listable Interface

To ensure that the objects that we place on our list support the necessary methods, we
create a Java interface. Recall from Chapter 2 that an interface can only include abstract
methods, that is, methods without bodies. Once the interface is defined we can create
classes that implement the interface by supplying the missing method bodies.

For our lists we create an interface with two abstract methods; one to compare ele-
ments so that we can support sorted lists and the isThere operation, and one to support
copying of list elements, so that we can maintain information hiding. We follow the
Java convention used in the String class by naming the former method compareTo
and by having it return integer values to indicate the result of the comparison. We call
the latter method copy. It does not need any parameters; it simply returns a copy of the
object on which it is invoked. Finally, we need a name for the interface itself. Let’s call it
Listable, since classes that implement this interface provide objects that can be listed.

Here is the code for the interface:

package ch03.genericLists;

public interface Listable
// Objects of classes that implement this interface can be used with lists
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public abstract int compareTo(Listable other):

// Compares this Listable object to "other". If they are equal, 0 is
// returned

// If this is less than the argument, a negative value is returned

// If this is more than the argument, a positive value is returned

public abstract Listable copy():

// Returns a new object with the same contents as this Listable object

Whatever data we intend to store on a list must be contained in a class that implements the
Listable interface. For example, to support a list of circles we might define a ListCircle
class as follows (some of the code that is not pertinent to this discussion has been left out):

package ch03.genericLists;

public class ListCircle implements Listable

{

private int xvalue; // Horizontal position of center

private int yvalue; // Vertical position of center
private float radius;

private boolean solid; // True means circle filled

// Code for Constructors goes here

public int compareTo(Listable otherCircle)

{

ListCircle other = (ListCircle)otherCircle;
return (int) (this.radius - other.radius);

public Listable copy()

{

ListCircle result = new ListCircle(this.xvalue, this.yvalue, this.radius,
this.solid);
return result;

// More ListCircle methods as needed
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Note the use of the cast operation (ListCircle) in the compareTo method:
ListCircle other = (ListCircle)otherCircle;

This is to ensure that the parameter otherCircle is a ListCircle. The method signa-
ture allows it to be any Listable type, yet on the following line we are assuming that
itisa ListCircle, when we access its radius instance variable.

Since ListCircle implements Listable, it can be used anywhere something of
type Listable is expected. In the next section we define a class that provides a list of
Listable objects. This class could therefore be used to provide a list of ListCircle
objects.

A Generic Abstract List Class

Now we can create our generic list ADT by defining a list of Listable elements; not
just strings, not just plain objects, but objects of classes that implement the Listable
interface. We can reuse the code from our previous list definitions, but we must replace
the use of the String class with the Listable interface throughout the code; we also
must replace the use of the String class’s copy constructor with statements that use the
copy method defined in the interface.

We no longer need to use the term “string” when defining our list classes, since
they are no longer constrained to providing only lists of strings. We call our new
abstract list class simply List. Below is the code for the abstract List class. There are
several things to notice about the code. First, note the use of the term Listable, in
place of a class or type name, throughout the code. Wherever Listable is used to rep-
resent a formal parameter, you can pass an object of a class that implements Listable,
as the actual parameter. For example, you could use objects of type ListCircle, which
was defined in the previous subsection. Alternately, if you have defined other classes
that implement the Listable interface, you could use objects of those classes—perhaps
a class of ListStrings or a class of ListStudents.

Also, note the invocation of the copy method on the next object, in the very last
statement of the class. The next object is of “type” Listable, that is, it is an object of
a class that implements Listable. Therefore, we can be assured that the creator of that
class has included a definition of the copy method within the class.

Finally, you should notice the addition of a new list method, retrieve, and some
small but important changes to the comments describing the effects of the methods
isThere and delete. The switch from supporting lists of strings to lists of Listable
objects means that we now can implement and use lists of composite elements. This
raises some interesting questions about how we compare elements, and what it means
for two elements to be “equal.” These questions are discussed following the code listing.

// List.java by Dale/Joyce/Weems Chapter 3

/]

// Defines all constructs for an array based list that do not depend
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// on whether or not the list is sorted.

package ch03.genericLists;

public abstract class List
{

protected Listable[] list; // Array to hold this list’s elements
protected int numltems; // Number of elements on this list
protected int currentPos; // Current position for iteration

public List(int maxItems)
// Instantiates and returns a reference to an empty list object
// with room for maxItems elements
(
numItems = 0;
list = new Listable[maxItems] ;

public boolean isFull()
// Returns whether this list is full
{

return (list.length == numItems) ;

public int lengthIs()
// Returns the number of elements on this list

{
return numltems;

public abstract boolean isThere (Listable item);
// Returns true if an element with the same key as item is on this list;
// otherwise, returns false

public abstract Listable retrieve(Listable item);
// Returns a copy of the list element with the same key as item

public abstract void insert (Listable item);
// Adds a copy of item to this list

public abstract void delete (Listable item);
// Deletes the element with the same key as item from this list

public void reset()

// Initializes current position for an iteration through this list
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currentPos = 0;

public Listable getNextItem ()
// Returns copy of the next element on this list

{

Listable next = list[currentPos];
if (currentPos == numltems-1)

currentPos = 0;

else

currentPos++;

return next.copy();

As mentioned above, the switch from supporting lists of strings to lists of
Listable objects means that we now can implement and use lists of composite ele-
ments. This affects how we can compare elements, and what it means for two elements
to be “equal.” Consider the following ListCircle objects C1, C2, C3, and C4:

C1l C2 C3 Ch
xvalue 3 3 6 3
yvalue 4 4 12 4
radius 10 6 10 3
solid true false false true

Are any of the circles equal to each other? No, not in the strict sense of the word
“equal.” But what about equality as defined by the compareTo method of the ListCir-
cle class? There, ListCircle objects are compared strictly on the basis of their radii.
Based on that definition of equality, circles C1 and C3 are “equal.” Although it might
seem strange, this definition of equality could make perfect sense for a particular appli-
cation, where the only important criteria for comparing circles is their size.

Remember that we are following the convention that our lists consist of unique
objects. Are all of the circles in the table above unique? No, not in the “world” defined
by the ListCircle class, where two circles are considered identical if they have the
same radius. The compareTo method essentially defines the key for the list. In this
case, the key is the radius. We should not insert both c1 and C3 on the same list. That
would violate the precondition of the insert operation. Again, this seems like a strange
restriction but might make sense within a particular application. (Please remember that
the approach used here is not the only approach possible. For example, list ADTs could
be developed that separate the concepts of key values and sort values.)
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Let’s look at another example. Earlier in this chapter we discussed different ways we
might wish to sort a list of student records, with each record containing fields for first
name, last name, identification number, and three test scores. For example, we could
sort the list by name, or we could sort the list by identification number. Here is a table
of values for student objects S1, S2, and S3.

S1 S2 S3
first Jones Jones Adams
last David Mary Mark
IDnum 1234567 7654321 111111
testl 89 92 100
test2 92 95 99
test3 95 89 100

In our approach, the field or fields that we use as a sorting criteria is the key for the
list. If we were to define a ListStudent class—a class that allows us to maintain a list
of students—then the definition of the compareTo operation in the ListStudent class
would effectively define the key for the list elements. What would be the best choice for
the key for a list of students? If we decide the last name is the key, then we are not able
to hold both s1 and S2 on our list. That does not seem reasonable. Perhaps we could
define the key to use the first name field as a tiebreaker when two last names are identi-
cal. That is better, but we could have two students who have identical first and last
names, in which case we would be in trouble again. For this information, assuming a
unique identification number has been assigned to each student, the IDnum field would
be the best key. Therefore, the compareTo method of the ListStudent class should
base its processing on a comparison of IDnum values.

Now it is clear why we changed the comment describing the effects of the isThere and
delete operations. For example, when we were just using a list of strings the effect of
isThere was “returns true if item is on the list ....” Now the effect is “returns true if an ele-
ment with the same key as item is on this list ....” When dealing with lists of noncomposite
elements, like strings, the entire element was in effect the key. That is no longer the case.

This brings us to the new list operation introduced in this section, the retrieve
operation. Its definition in the abstract List class is

public abstract Listable retrieve(Listable item);

// Returns a copy of the list element with the same key as item

The application passes retrieve a Listable object and retrieve searches the list to
find the element on the list that is “equal” (i.e., has the same key) to it. A copy of this
element is returned. The specification of retrieve is as follows.
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Listable retrieve (Listable item)
., Effect: Returns a copy of the list element with the

same key as item.

Preconditions: An element with a key that matches item’s key
is on this list.

Postcondition: Return value = (copy of list element that
matches item)

Therefore, we can store information on a list and retrieve it later based on the item’s
key. For example, to retrieve student information about a student with an IDnum of
7654321, we instantiate a ListStudent object with dummy information for all of the
fields except the IDnum field, which we initialize to 7654321. Then we pass this object
to the retrieve operation, which returns a copy of the matching list element. This
copy contains all the valid information about the student.

A Generic Sorted List ADT

Next we list the code for the generic sorted list class that completes the definition of the
list class for the case of sorted lists. You can see that we use the binary search algorithm
to implement the isThere and retrieve operations (although with the retrieve
operation we do not need the moreToSearch variable because we know the item being
retrieved is on the list). Note the use of the term Listable throughout the class, the use
of the copy method invocation in the insert and retrieve methods, and several uses
of the compareTo method. We call our new sorted list class SortedList.

// SortedList.java by Dale/Joyce/Weems Chapter 3

//

// Completes the definition of the List class under the assumption
// that the list is kept sorted

package ch03.genericLists;

public class SortedList extends List

{

public SortedList(int maxItems)

// Instantiates and returns a reference to an empty list object

// with room for maxItems elements

{

super (maxItems) ;
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public SortedList()
// Instantiates and returns a reference to an empty list object
// with room for 100 elements

{
super (100) ;

public boolean isThere (Listable item)
// Returns true if an element with the same key as item is on this list;
// otherwise, returns false
{
int compareResult;
int midPoint;
int first = 0;
int last = numltems - 1;
boolean moreToSearch = (first <= last);
boolean found = false;

while (moreToSearch && !found)
{
midPoint = (first + last) / 2;
compareResult = item.compareTo(list[midPoint]) ;

if (compareResult == 0)
found = true;
else if (compareResult < 0) // ditem is less than element at location
{
last = midPoint - 1;
moreToSearch = (first <= last);
}

else // item is greater than element at location

{
first = midPoint + 1;
moreToSearch = (first <= last);

return found;
}

public Listable retrieve (Listable item)

// Returns a copy of the list element with the same key as item
{
int compareResult;
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int first = 0;

int last = numItems - 1;

int midPoint = (first + last) / 2;
boolean found = false;

while (!found)
{
midPoint = (first + last) / 2;
compareResult = item.compareTo(list[midPoint]) ;

if (compareResult == 0)
found = true;

else if (compareResult < 0) // ditem is less than element at location
last = midPoint - 1;

else // item is greater than element at location

first = midPoint + 1;

return list[midPoint].copy();
)

public void insert (Listable item)
// Adds a copy of item to this list
(
int location = 0;
boolean moreToSearch = (location < numItems) ;

while (moreToSearch)
{
if (item.compareTo(list[location]) < 0) // ditem is less
moreToSearch = false;
else // item is more

{
locationt+;
moreToSearch = (location < numItems);

for (int index = numItems; index > location; index--)
list[index] = list[index - 17];

list[location] = item.copy();
numIltems++;

Team-F. [ij v



public void delete (Listable item)

3.7 Generic ADTs

// Deletes the element that matches item from this list

{
int location = 0;

while (item.compareTo(list[location])

locationt+;

for (int index = location + 1;
list[index - 1] = list[index];

numltems- - ;

The UML diagrams for the List and SortedList classes, plus the Listable inter-
face, are displayed in Figure 3.14. Note the use of a dashed arrow labeled “uses,” with
an open arrowhead, to indicate the dependency of List and Listable. Although we

index < numltems;

List

J#flist:Listablel]
fnumItems:int
JfcurrentPos:int

+List(in maxItems:int)

+isFull() :boolean

+lengthIs():int

+isThere(in item:Listable) :boolean
+retrieve(in item:Listable):Listable
+insert(in item:Listable) :void
+delete(in item:Listable) :void
+reset () :void

t+getNextItem() :Listable

1= 0)

index++)

<<interface>>
Listable

+compareTo (in other:Listable) :int
t+copy () :Listable

UnsortedList

SortedList

+UnsortedList (in maxItems:int)
+UnsortedList ()

+isThere(in item:Listable) :boolean
+retrieve(in item:Listable) :Listable
+insert(in item:Listable) :void
+delete(in item:Listable) :void

-

+SortedList(in maxItems:int)
+SortedList ()

+isThere(in item:Listable) :boolean
+retrieve(in item:Listable):Listable
+insert(in item:Listable) :void
+delete(in item:Listable) :void

Figure 3.14  UML diagrams for our list framework
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did not develop it, the figure also shows an UnsortedList class that extends List.
This helps remind us that more than one class can extend the abstract list class. The
implementation of the UnsortedList class is left as an exercise.

A Listable Class

Now that we have defined a generic list, a sorted list of Listable elements, we have to
define a class that implements the Listable interface so that we have something to put
on our lists. To keep our example straightforward, we continue to work with a list of
strings. (In the case study of the next section, we provide a more complicated example
of a class that implements Listable.)

We used lists of strings in the early part of this chapter so that we could introduce
the reader gently to the topic of defining and implementing ADTs in Java. Knowing
what we know now, about how to use interfaces to create generic lists, we would not
have created a specific list implementation for lists of strings. Instead, we would use our
generic list. But how do we use our generic list to provide a list of strings? We need to
create a new class that hides a string variable and implements the Listable interface.
We call this class ListString, since it provides strings that can be placed on our
generic list.

Study the code for ListString below. Note that it contains a single object variable
key that holds a string. It provides a constructor, plus the two methods needed to
implement the Listable interface, the copy and compareTo methods. It also contains
one other method, a toString method, which makes it easy for the application pro-
grammer to use objects of the class ListString as strings. When a class implements an
interface, it must provide concrete methods for the abstract methods defined in the
interface. As you can see, it can also include definitions for other methods.

package ch03.genericLists;

public class ListString implements Listable
{
private String key;

public ListString(String inString)
{
key = new String(inString) ;

public Listable copy()
{
ListString result = new ListString(this.key);

return result;
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public int compareTo(Listable otherListString)
{
ListString other = (ListString)otherListString;

return this.key.compareTo(other.key);
}

public String toString()
{
return(key) ;

Since ListString implements Listable, objects of class ListString can be
used anywhere a Listable object is expected. Therefore, an object of class List-
String can be passed to the insert method of the SortedList class. Furthermore, the
same object can be placed on the hidden array within the SortedList class. And so on.
We can use ListString objects with the SortedList class to provide a sorted list of
strings.

If we wished to have a list of something else we would need to create another class
that implements Listable. For example, if we wished to have a list of Circle objects
we could complete our definition of the class ListCircle. This class would also imple-
ment Listable; therefore, it would contain its own versions of the copy and com-
pareTo methods. What does it mean to compare circles? That depends on the intended
use of the list of circles. Perhaps the comparison would be based on the size of the cir-
cles or on their positions. The ListCircle class requires a constructor; but would it
require a toString method? Would it require any other methods? Again, the answers
depend on the intended use of the list of circles. Being able to reuse our generic list
ADT with list elements that have been defined for a specific application provides us
with a powerful programming tool.

Using the Generic List

To create a sorted list of strings in an application program you simply instantiate an
object of the class SortedList, using either of its constructors:

SortedList listl = new SortedList():
SortedList list2 = new SortedList(size);

You also need to declare at least one object of class ListString, so that you have a
variable to use as a parameter with the various SortedList methods:

ListString aString;
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Once these declarations have been made you can instantiate ListString objects and
place them on the list. For example, to place the string “Amy” on the list you might code:

aString = new ListString("Amy");
list.insert(aString);

We are not going to list an entire application program that uses a sorted list of strings.
We did create a test driver (a form of application) that you can study and use; it is in the
TDSortedList. java file of the ch03 subdirectory of the bookFiles directory on our
web site. Notice that it is not part of the genericLists package—instead it uses the
package. So that the package classes are available to the test driver, it includes the fol-
lowing import statement:

import chO03.genericLists.*;

As long as the bookFiles directory is included on your computer’s ClassPath, the
compiler will know where to find the generic list files.

In the test driver you find uses of each of the sorted list methods with a
Listable object:

outFile.println("The 1list is full is " + ldist.isFull()):
outFile.println("Length of the list is " + list.lengthIs());
outFile.println(aString + " is on the ldist: " +
list.isThere(aString));

bString = (ListString)list.retrieve(aString);
list.insert(aString) ;

list.delete(aString) ;

list.reset () ;

aString = (ListString)list.getNextItem()

SortedList.java should be thoroughly tested. This job is left as an exercise.
The case study presented next shows another example of using the sorted list ADT.
In the case study a list of real estate information is manipulated.

Case Study

Real Estate Listings

Problem Write a RealEstate program to keep track of a real estate company's residential
listings. The program needs to input and keep track of all the listing information, which is
currently stored on 3 X 5 cards in a box in their office.

The real estate salespeople must be able to perform a number of tasks using this data: add
or delete a house listing, view the information about a particular house given the lot number,
and look through a sequence of house information sorted by lot number.

We use the same design approach we described in Chapter 1 for this problem.
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Write a program to keep track of a real estate company's residential
listings. The program needs to input and keep track of all the listing
information,which is currently stored on 3 x 5(cards)in albox)in their
office.

The real estate(salespeople>must be able to perform a number of tasks using
this(data: add or delete a house(listing, view thelinformation'about a
particular’house)given thedot numberpand look through a(sequence)of house
information sorted bydot number.

Figure 3.15  Problem statement with nouns circled and verbs underlined

Brainstorming We said that nouns in the problem statement represent objects and that verbs
describe actions. Let's approach this problem by analyzing the problem statement in terms of
nouns and verbs. Let's circle nouns and underline verbs. The relevant nouns in the first paragraph
are listings, information, cards, box, and office: circle them. The verbs that describe possible
program actions are keep track, input, and stored: underline them. In the second paragraph, the
nouns are salespeople, data, listing, information, house, lot number, and sequence: circle them.
Possible action verbs are perform, add, delete, view, look through, and sorted: underline them.
Figure 3.15 shows the problem statement with the nouns circled and the verbs underlined.

We did not circle program or underline write because these are instructions to the pro-
grammer and not part of the problem to be solved. Now, let's examine these nouns and verbs
and see what insights they give us into the solution of this problem.

Filtering The first paragraph describes the current system. The objects are cards that contain
information. These cards are stored in a box. Therefore, there are two objects in the office that
we are going to have to simulate: 3 X 5 cards and a box to put them in. In the second
paragraph, we discover several synonyms for the cards: data, listing, information, and house.
We model these with the same objects that represent the cards. We also see what processing
must be done with the cards and the box in which they are stored. The noun salespeople
represents the outside world interacting with the program, so the rest of the paragraph
describes the processing options that must be provided to the user of the program. In terms of
the box of cards, the user must be able to add a new card, delete a card, view the information
on the card given the lot number, and view a sequence of card information, sorted by lot
number.

We can represent the cards by a class whose data members are the information written
on the 3 X 5 cards. How do we represent the box of cards? We have just written several ver-
sions of the Abstract Data Type List. A list is a good candidate to simulate a box and the
information on the list can be objects that represent the 3 X 5 cards. Since these objects
represent the house information, and they should be kept on a list, let's call the class that
models a card of house information ListHouse. We must make sure that our ListHouse
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class implements the Listable interface, since we wish to maintain a list of ListHouse
objects.

We now know that our program uses a list of ListHouse objects. But which version of a
list shall we use? The unsorted version or the sorted version? Because the user must be allowed
to look through the "house information sorted by lot number,” the sorted version is a better
choice. In the ListHouse class we base the definition of the compareTo method on the
house's lot number. This ensures that the houses are kept sorted by lot number, just the way we
need them.

So far, we have ignored the noun office and the fact that the program should “input and keep
track” of the cards. A box of cards is stored permanently in the office. A list is a structure that
exists only as long as the program in which it is defined is running. But how do we keep track of
the information between runs of the program? That is, how do we simulate the office in which the
box resides? A file is the structure that is used for permanent storage of information. Hence, there
are two representations of the box of cards. When the program is running, the box is represented
as a list. When the program is not running, the box is represented as a file. The program must move
the information on the cards from a file to a list as the first action, and from a list to a file as the
last action. We relegate the responsibility of interacting with the file to a class called HouseFile.

The HouseF1ile class hides the file of house information from the rest of the program. In
this way, if the format of the file needs to be changed at a later time, the only part of the sys-
tem that is affected is the HouseFile class. Limiting the scope of potential future changes is
one of the main reasons we partition our systems into separate classes.

Let's capture the decisions we have made so far on CRC cards. On each card we record the
main purpose of the class it represents, along with an initial set of responsibilities. Our cards
show that our classes are already fairly well defined. The following table captures the informa-
tion we record on the cards at this point (we display the final version of the cards after we fin-
ish the analysis section):

Class Purpose Responsibilities
RealEstate Main program Driver program, uses all the other classes to solve
the problem; provides graphical user interface;
implements actions represented by the interface
buttons
ListHouse Hold the information about a Know all of its information;
specific house. implement Listable; therefore, provide copy
and compareTo methods
SortedList Maintain a list of ListHouse See the List ADT specification.
elements.
HouseFile Manage the file of house Get house information from the file;

information. save house information to the file.
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User Interface Let's assume that the information on the 3 X 5 cards includes the owner's
first and last names, the lot number, price, number of square feet, and number of bedrooms.
The lot numbers are unique and therefore can be used as the key of the list. If an agent
attempts to add a listing that duplicates an existing lot number, an error message is printed to
the screen.

A review of the problem statement reveals that interaction with the user can take place
one "house" at a time. Therefore, we design our graphical interface to display information
about a house, and provide the user with buttons to initiate options related to that house (add,
delete, clear) or to the overall system (reset, next, find). A count of the number of data fields,
labels, and buttons needed, aided by some rough drafts drawn on scrap paper, leads us to a
9 X 2 grid layout for our interface. A sketch of our design is:

Lot Number: 45678
First Name: John
Second Name: Jones
Price: 96000
Square Feet: 1200
Number of Bedrooms: 3
Reset Next
Add Delete
Clear Find

The user continues to manipulate the list of houses until he or she exits by closing the window.

Input  Notice that there are three kinds of input: the file of houses saved from the last run of
the program, the commands, and the data entered from the keyboard into the text fields in
conjunction with the commands.

Output There are two kinds of output: the file of houses saved at the end of the run of the
program, and screen output directed by one or more of the commands.

Data Objects There are house objects, represented in the program as ListHouse class
objects. There are two container objects: the file of house objects retained from one run of the
program to the next and the list into which the house objects are stored when the program is
running (we call this object 1ist). The collection of house listings is called our database.
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Figure 3.16  Data flow of case study

We name the physical file in which we retain the house objects houses.dat.

The diagrams in Figures 3.16 and 3.17 show the general flow of the processing and what
the data objects look like. Note that we know the internal workings of the List ADT because we
have just written the code earlier in the chapter. When we wrote that we were acting as the
ADT programmer, creating a tool for use by application programmers. Now however, we are
changing hats; we are acting as the application programmer. We write the program only using
the interface as represented in the List ADT specification.

Scenario Analysis Where do we go from here? Scenario analysis lets us “test" our design.
Using our CRC cards we can walk through several scenarios that represent the typical expected
use of the system. This allows us to refine the responsibilities of our identified classes and
begin to add detailed information about method names and interfaces. During the course of
this analysis we may uncover holes in our identified classes or user interface.

We begin by working through a scenario in which a real estate salesperson runs the pro-
gram and tries to get information about the house on lot number 45678. We realize that the
first thing the system must do is to build the internal list of houses from the house information
contained in the file. We need to decide which class should have this responsibility. We could
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houses.dat

Program processes
the menu choices

Reset Next
—> Add Delete
Clear Find

Figure 3.17  The high-level processing of the case study

assign this task to the HouseFile class, since it is able to get the house information from the
file. However, we decide that such a task is outside its main purpose, which is to manage the
file of house information. Therefore, we decide that the RealEstate class should perform
this task. We add a notation to this effect to the list of responsibilities on its CRC card and
move ahead.

Now we must decide how the RealEstate class gets the house information from the
HouseFile class. Should the information be sent one field at a time or one house at a time?
We decide to use the latter approach, since we have already defined a class that encapsulates
house data, namely the ListHouse class. The HouseFile class can provide information to
the RealEstate class in the form of ListHouse objects. And vice versa at the end of the
program's execution, the HouseFile class can receive information from the RealEstate
class in the form of ListHouse objects.

211



212

Chapter 3: ADTs Unsorted List and Sorted List

As our scenario continues we imagine the RealEstate class requesting house infor-
mation from the HouseFile class. First it informs the HouseFile class that it wishes to
begin reading house data. A standard name for this method is reset. Next, as long as
there is more house data available, it asks the HouseFile class for data about another
house. Therefore, HouseFile must provide both a moreHouses method that returns a
boolean, and a getNextHouse method that returns an object of type ListHouse. A
similar analysis of how the data can be saved to the file at the end of the program run
leads to the identification of a rewrite method and a putToFile method. We also need
a method to inform the HouseFile class that we are finished with the file and it should
be closed. Finally, we decide to use our standard approach for reading from a file, so we
note that HouseFile must collaborate with Java's BufferedReader, FileReader,
PrintWriter, and FileWriter classes. We update the CRC card for HouseFile, and
move ahead.

As the scenario unfolds we find that most of the operations needed for normal processing
have already been assigned to one of our classes. The user clicks on the Clear button and the
RealEstate class clears the information from the text fields; the user enters the lot number
45678 into the Lot Number text field and clicks on the Find button; the RealEstate class
creates a ListHouse object with 45678 as its lot number, uses the list isThere operation
to see if the house is on the list; if it is on the list then the list retrieve operation is used to
obtain all of the house information, which is subsequently displayed in the text fields.

But what if the house is not found on the list? When doing scenario analysis it is important
to consider all the variations of the scenario. In this case, the program should report to the user
that the house was not found. How does it do that? We have uncovered a hole in our interface
design. We need to include a way to communicate the results of operations to the user. So, we go
back and rework our draft of the interface to include a status box in the upper left corner of the
window. We decide we can use this status box to display a message in response to each option
selected by the user. For example, if the user selects the Add button and the house is successfully
added to the list, we display the message "House added to list." Now our interface is a 10 X 2
grid.

The investigation of other scenarios is left to the reader. The final set of CRC cards, created
strictly for this application, is shown below. We do not include a card for the List ADT since that
was not created for this application. Also, we do not include a card for the RealEstate main
program, since that is the application that uses the classes represented by the other cards.

'l"cmn-FIy :
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~

Class Name: <-foure—ile Superclass: OW Subclasses:

Primary Responsibility: 1lanage the §ile of house infoumation

Responsibilities Collaborations
Set up for weading Bukberedieaden, TUeteader
Rnous th there are mone ouwses to wead, None

wetuwnn, boolean,
et the nbo about the next fouse fuom BuebloredTeader, Tnteger
the file

wetunn Listi-ouse
Set up for wriling Pt Luiter, UL it
Pt vho about a howse to the file Pt it
(house)
Close the file Bubberedeaden, PuntUiter

We now turn our attention to the design, implementation, and testing of the identified
classes. Note that the SortedList class that we use has already been created and tested, so
we can assume that it works properly. This is a prime benefit of creating ADTs—once created
and tested they can be used with confidence in other systems. We create a package,
ch03.houses, to hold the ListHouse and HouseFile classes. We use the package to hold
the "helper” classes only; therefore, we do not include the RealEstate class, which is an
application, as part of the package. You can find the RealEstate. java file in the ch03 sub-
directory of the bookFiles directory and the ListHouse. java and HouseFile. java files
in the houses subdirectory of the ch03 subdirectory. The files are available on our web site.

The ListHouse Class ListHouse must encapsulate house information and it must
implement the Listable interface, since ListHouse objects are placed on a list. Its
implementation is rather straightforward. It follows the same patterns established in the
ListCircle and ListString classes developed earlier in the chapter. We must implement
compareTo and copy, but we must also declare variables for all of the information about the
house. That is, we must have instance variables for the last name, the first name, the lot
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number, the price, the number of square feet, and the number of bedrooms. We also need to

have observer operations for each of these variables.

ListHouse. java by Dale/Joyce/Weems

Provides elements for a list of house information

package ch03.houses;

import ch03.genericLists.*;

public class ListHouse implements Listable

{

// House information
private String lastName;
private String firstName;
private int lotNumber;
private int price;
private int squareFeet;
private int bedRooms;

public ListHouse(String lastName, String firstName, int lotNumber,
int price, int squareFeet, int bedRooms )

this.lastName = lastName;
this.firstName = firstName;
this.lotNumber = lotNumber:;

this.price price;
this.squareFeet = squareFeet;

this.bedRooms = bedRooms;

public Listable copy()
// Returns a copy of this ListHouse
{
ListHouse result = new ListHouse(lastName, firstName, lotNumber,
squareFeet, bedRooms) ;
return result;

public int compareTo(Listable otherListHouse)
// Houses are compared based on their lot numbers

price,
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{
ListHouse other = (ListHouse)otherListHouse;
return (this.lotNumber - other.lotNumber) ;

)

// Observers
public String lastName ()
{

return lastName;

public String firstName ()
{
return firstName;

public int lotNumber ()
{
return lotNumber;

public int price()
{
return price;

public int squareFeet()
{
return squareFeet;

public int bedRooms ()
{
return bedRooms;

We should test the ListHouse class by itself and integrated with the SortedList class.
We can test it by itself by creating a TDListHouse program, similar to the other test driver pro-
grams we have used. Our test cases first invoke the constructor, followed by calls to each of the
observer methods to ensure that they return the correct information. This could be followed by a
test of the copy operation, using it to create a copy of the original ListHouse and then repeat-
ing the observer method tests on the new object. Finally, the compareTo operation must be
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tested in a variety of situations: compare houses with lot numbers that are less than, equal to, or

greater than each other, compare a house to itself, compare a house to a copy of itself, and so on.
ListHouse can be tested with the SortedList class by repeating the sequence of tests

previously used to test our sorted list of strings, replacing the strings with house information.

The HouseFile Class

This class manages the houses . dat file. When requested, it pulls data from the file, encapsulates
the data into ListHouse objects, and returns the Li stHouse objects to its client. Additionally, it
takes ListHouse objects from its client and saves the information to the houses.dat file.

There is no need to create numerous HouseFile objects. Since the class always deals
with the same file, we would not want to have several instances of the class interacting with
the file at the same time. If we allowed that the file could become corrupted and the system
could crash (for example if one instance of the class was trying to read from the file while
another instance of the class was trying to write to the file). Therefore, we do not support
objects of the class HouseFile. We code all of its methods as static methods. Recall that
this means that the methods are invoked directly through the class itself, as opposed to being
invoked through an object of the class. We also declare all of its variables to be static vari-
ables, that is, class variables as opposed to object variables.

A study of the CRC card for HouseFile combined with the analysis of the previous para-
graph leads to the following abstract specification of the HouseFile class:

House File Specification
” Structure:

The house information is kept in a text file called houses.dat.
For each house the following information is kept, in the order
listed, one piece of information per line: last name (String),
first name (String), lot number (int), price (int), square feet
(int), and number of bedrooms (int).

Operations:
static void reset
Effect: Resets the file for reading
Throws: IOException

static void rewrite
Effect: Resets the file for writing

Throws: IOException

static boolean moreHouses
Effect: Determines whether there is still more house
information to be read
Postcondition: Return value = (there is more house informa-
tion)
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static ListHouse getNextHouse
Effect: Reads the next house information from the file

Postcondition: Return value = (a ListHouse object contain-
ing the next house information)

Throws: IOException

static void putToFile (ListHouse house)
Effect: Writes the house information to the file

Throws: IOException

static void close
Effect: Closes the file

Throws: IOException

Reading information from a file and writing information to a file was used in the TDInc -
Date program at the end of Chapter 1. The Java Input/Output feature section that accompa-
nied that program addresses the Java code used to provide those operations. That program
only needs to read and write information of type int. The HouseFile class also performs
input and output of String information. This is straightforward, since the methods provided
by the java.dio class directly support strings:

firstName = inFile.readLine(); // Input of String
outFile.printLn (house.firstName()); // Output of String

The HouseFile class must keep track of whether or not the houses.dat file is closed
or opened, and if open, whether it is open for reading or open for writing. It must not allow
reading from the file when it is open for writing; nor writing to the file when it is open for
reading; nor reading or writing if the file is closed. The boolean class variables inFileOpen
and outFileOpen are used to keep track of the status of the file.

Here is the implementation:

// HouseFile.java by Dale/Joyce/Weems Chapter 3

/1

// Manages file "houses.dat" of real estate information

package ch03.houses;
import java.io.*;

public class HouseFile

// Manages file "houses.dat" of real estate information
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private static BufferedReader inFile;

private static PrintWriter outFile;

private static boolean inFileOpen = false;

private static boolean outFileOpen = false;

private static String inString =""; // Holds "next" line from file
// Equals null if at end of file

public static void reset() throws IOException
// Reset file for reading
(
if (inFileOpen) inFile.close();
if (outFileOpen) outFile.close();
inFile = new BufferedReader (new FileReader ("houses.dat"));
inFileOpen = true;
inString = inFile.readLine();

public static void rewrite() throws IOException
// Reset file for writing
(
if (inFileOpen) inFile.close();
if (outFileOpen) outFile.close();
outFile = new PrintWriter (new FileWriter ("houses.dat"));
outFileOpen = true;

public static boolean moreHouses ()
// Returns true if file open for reading and there is still more house
// information available in it
{
if (!inFileOpen || (inString == null))
return false;
else return true;

public static ListHouse getNextHouse() throws IOException
// Gets and returns house information from the house info file
// Precondition: inFile is open and holds more house information
{

String lastName = "xxxxx";

String firstName = "xxxxx";

int lotNumber = 0;

int price = 0;

int squareFeet = 0;

int bedRooms =0;
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lastName

firstName =

lotNumbe

= inString;

inFile.readLine() ;

r = Integer.parselnt(inFile.readLine());

price = Integer.parselnt(inFile.readLine());

squareFeet = Integer.parselnt(inFile.readLine());

bedRooms

= Integer.parselnt(inFile.readLine());

inString = inFile.readLine();

ListHouse house = new ListHouse(lastName, firstName, lotNumber,

return house;

squareFeet, bedRooms) ;

public static void putToFile(ListHouse house) throws IOException

// Puts parameter house information into the house info file

// Precondition:

{

outFile
outFile.
outFile
outFile
outFile.
outFile.

.println(house.
.firstName()) ;

println(house

.println(house.
.price());
println(house.
.bedRooms ()) ;

.println(house

println(house

outFile is open

lastName()) ;
lotNumber ()) ;

squareFeet ());

public static void close() throws IOException

/!
{

Closes house info file

if (inFileOpen) inFile.close();

if (outFileOpen) outFile.close();

inFileOpen = false;

outFileOpen = false;

RealEstate Program We now look at the main program, the program that uses all of the
other classes to solve the problem. The main program includes the user interface code, in fact
that code makes up the majority of the program. Any input/output mechanisms used here
that have not yet been encountered in this text are addressed in the feature section, Java
Input/Output Il that follows the case study. Here is a screen shot of the running program after

the user has selected the option to display the "next" house:

price,
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al Estate Program

This example shows what happens if the user tries to “add” a house with poorly formatted
information:

221




222 |  Chapter 3: ADTs Unsorted List and Sorted List

el crtte program =T

Number? XYZ

Lot Number: [}yZ

First Name:

Last Hame:

Price:

Square Feet:

Number of Bedrooms:

Biff

Boone

120000

4500

3

Reset

Hext

Add

Delete

Ciear Find

The algorithm for the main program is as follows:

Get the house information from the HouseFile object and build the list of houses.
Present the initial frame
As long as the frame remains open
Listen for and respond to user choices
Reset - reset the list and display the first house from the list
Next - display the next house from the list
Add - if it is not already on the list, add the currently displayed house to the list
Delete - if it is on the list, remove the house that matches the currently displayed
lot number from the list
Clear - clear the text fields
Find - display the house from the list that matches the currently displayed lot
number, if possible
Send the information about the houses from the list to the HouseFile object

Processing begins by using the HouseFile class to obtain the house information from
the file, and using the SortList class to store the house information. This is accomplished
through the following steps:

Create a new list

Reset the house file for reading

while there are still more houses to read
Read the next house and
Insert it into the list

Team-F fy'
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The code that corresponds to this algorithm can be found in the main method, after the vari-
ous interface labels, text fields, and buttons have been set up, and the display frame has been
initialized.

So, that's how we get the information from the file onto the list at the beginning of our
processing. How do we reverse this process? That is, how do we take the information from the
list and save it back to the file? Actually, the save algorithm is very similar:

Reset the house file for writing
Rest the list
for each house on the list
Get the house from the list and
Store it in the file

Where should the code for this algorithm go in the program? We want this code to be one of
the last things that the program does. Remember, this is an event-driven program, so we can-
not just put the code at the end of the main method and expect it to be executed last. Instead,
we define our own WindowClosing event handler and place the corresponding code there. In
this way, when the user is finished and closes the application window, the information is saved.

Now that we have determined how we get the house information from the file to the list,
and vice versa, the only processing that remains is what occurs in response to the user press-
ing buttons in the interface. There are six buttons. The processing required by each button is
fairly well stated in the original algorithm above. Many of them require moving information
from the display (the set of text fields) to the list, or vice versa. This leads us to design three
helper methods

® showHouse - accepts a ListHouse object as a parameter and displays the informa-
tion about the object in the text fields

® getHouse - obtains the information from the textboxes, turns it into a ListHouse
object, and returns the object

e clearHouse - clears the information from the textboxes

The implementation of these methods is straightforward, and with their help we can
implement the button-processing routines without much difficulty. For example, the algorithm
to handle the Reset button is:

Reset the list

if the list is empty
clearHouse

else
Set house to the first house on the list
showHouse(house)

Report “List reset” through the status label
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The code that corresponds to this algorithm is placed in the ActionHandler class, and asso-
ciated with the "Reset” event.

Study the code for the other event handlers to see how they use the helper methods to
perform their tasks. Note that each of the event handlers that depends upon the user entering
information into a text field, use Java's exception handling mechanism to protect the applica-
tion from user input errors. For example, the algorithm for the Add event is:

try
Set house to getHouse
if house is already on the list
Report “Lot number already in use” through the status label
else
Insert house into the list
Report “House added to list" through the status label
catch NumberFormat Exception
Report a problem with the house data through the status label

Since four of the house fields require int data, if the system raises a NumberFormatException
it is because something other than an integer was listed in at least one of those fields. Therefore,
the message displayed through the status label is “Number?”, followed by an echo of the bad data.
The bad data value is available through the exception object's getMessage method. You can see
that similar protection is provided for the Delete and Find event handlers in the code.

Here is the listing for the Real Estate application:

// RealEstate.java by Dale/Joyce/Weems Chapter 3

//

// Helps keep track of a company's real estate listings

import
import
import
import
import
import
import

public
{

java.awt.*;
java.awt.event.*;
javax.swing.*;
javax.swing.border.*;
java.io.*;
ch03.houses. *;
ch03.genericlLists.*;

class RealEstate

// The list of house information

private static SortedList list = new SortedList();

// Text fields
private static JTextField lotText; // Lot number field
private static JTextField firstText; // First name field
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private static JTextField lastText; // Last name field

private static JTextField priceText; // Price field

private static JTextField feetText; // Square feet field
private static JTextField bedText; // Number of bedrooms field

// Status Label
private static JLabel statusLabel; // Label for status info

// Display information about parameter house on screen

private static void showHouse(ListHouse house)

{

lotText.setText (Integer.toString (house.lotNumber()));
firstText.setText (house.firstName()) ;

lastText.setText (house.lastName()) ;

priceText.setText (Integer.toString (house.price()));
feetText.setText (Integer.toString (house.squareFeet()));
bedText.setText (Integer.toString (house.bedRooms())) ;

// Returns current screen information as a ListHouse

private static ListHouse getHouse()

{

String lastName;
String firstName;
int lotNumber;
int price;

int squareFeet;
int bedRooms;

lotNumber = Integer.parselnt(lotText.getText());
firstName = firstText.getText();

lastName = lastText.getText();

price = Integer.parselnt(priceText.getText());
squareFeet = Integer.parselnt(feetText.getText());
bedRooms = Integer.parselnt(bedText.getText());

ListHouse house = new ListHouse(lastName, firstName, lotNumber, price,
squareFeet, bedRooms) ;
return house;

// Clears house information from screen

private static void clearHouse()

{

lotText.setText ("") ;
firstText.setText ("");
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lastText.setText ("");
priceText.setText ("");
feetText.setText ("");
bedText.setText ("") ;

// Define a button listener
private static class ActionHandler implements ActionListener
(

public void actionPerformed (ActionEvent event)

// Listener for the button events

{

ListHouse house;

if (event.getActionCommand () .equals("Reset"))
{ // Handles Reset event
list.reset();
if (list.lengthIs() == 0)
clearHouse () ;
else
{
house = (ListHouse)list.getNextItem() ;
showHouse (house) ;
}
statusLabel.setText ("List reset");
}
else
if (event.getActionCommand () .equals ("Next"))
{ // Handles Next event
if (list.lengthIs() == 0)
statusLabel.setText("list is empty!");
else
{
house = (ListHouse)list.getNextItem() ;
showHouse (house) ;
statusLabel.setText ("Next house displayed");

}
else
if (event.getActionCommand () .equals("Add"))
{ // Handles Add event
try
{
house = getHouse() ;
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if (list.isThere(house))

statusLabel.setText ("Lot number already in use");

else

{
list.insert (house) ;
statusLabel.setText ("House added to list");

}
catch (NumberFormatException badHouseData)

{
// Text field info incorrectly formated

statusLabel.setText ("Number? " + badHouseData.getMessage());

else
if (event.getActionCommand () .equals("Delete"))

{

// Handles Delete event
try
{
house = getHouse() ;
if (list.isThere (house))
{
list.delete(house) ;
statusLabel.setText ("House deleted") ;
}
else
statusLabel.setText ("Lot number not on list");
}
catch (NumberFormatException badHouseData)
{
// Text field info incorrectly formated

statusLabel.setText ("Number? " + badHouseData.getMessage());

}
else
if (event.getActionCommand () .equals("Clear"))

{ // Handles Clear event
clearHouse () ;

statusLabel.setText (list.lengthIs() + " houses on list");

}

else
if (event.getActionCommand () .equals("Find"))

{ // Handles Find event
int lotNumber;
try

227



228 |  Chapter 3: ADTs Unsorted List and Sorted List

lotNumber = Integer.parselnt(lotText.getText());
house = new ListHouse("", "", lotNumber, 0, 0, 0);
if (list.isThere (house))
{
house = (ListHouse)list.retrieve (house) ;
showHouse (house) ;
statusLabel.setText ("House found");
)
else
statusLabel.setText ("House not found");
)
catch (NumberFormatException badHouseData)
(
// Text field info incorrectly formated
statusLabel.setText ("Number? " + badHouseData.getMessage());

public static void main(String args[]) throws IOException

ListHouse house;
char command;
int length;

JLabel blankLabel; // To use up one frame slot

JLabel lotLabel; // Labels for input fields
JLabel firstLabel;

JLabel lastLabel;

JLabel pricelabel;

JLabel feetLabel;

JLabel bedLabel;

JButton reset; // Reset button
JButton next; // Next button
JButton add; // Add button
JButton delete; // Delete button
JButton clear; // Clear button
JButton find; // Find button

ActionHandler action; // Declare listener
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// Declare/Instantiate/Initialize display frame

JFrame displayFrame = new JFrame() ;

displayFrame.setTitle("Real Estate Program");
displayFrame.setSize(350,400) ;

displayFrame.addWindowListener (new WindowAdapter() // handle window

// closing

public void windowClosing(WindowEvent event)
{
ListHouse house;
displayFrame.dispose(); // Close window
try
{
// Store info from list into house file
HouseFile.rewrite();
list.reset();
int length = list.lengthIs();
for (int counter = 1; counter <= length; counter++)
{
house = (ListHouse)list.getNextItem() ;
HouseFile.putToFile (house) ;
}
HouseFile.close();
}
catch (IOException fileCloseProblem)
{

System.out.println("Exception raised concerning the house info file "

+ "upon program termination");
}
System.exit (0); // Quit the program
)
1)

// Instantiate content pane and information panel
Container contentPane = displayFrame.getContentPane() ;
JPanel infoPanel = new JPanel();

// Instantiate/initialize labels, and text fields
statusLabel = new JLabel("", JLabel.CENTER) ;
statusLabel.setBorder (new LineBorder (Color.red));
blankLabel = new JLabel("");

lotLabel = new JLabel("Lot Number: ", JLabel.RIGHT) ;
lotText = new JTextField("", 15);
firstLabel = new JLabel ("First Name: ", JLabel.RIGHT);

firstText = new JTextField("", 15);
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lastLabel = new JLabel("Last Name: ", JLabel.RIGHT) ;
lastText = new JTextField("", 15);

priceLabel = new JLabel ("Price: ", JLabel.RIGHT) ;

priceText = new JTextField("", 15);

feetLabel = new JLabel ("Square Feet: ", JLabel.RIGHT) ;
feetText = new JTextField("", 15);

bedLabel = new JLabel ("Number of Bedrooms: ", JLabel.RIGHT) ;
bedText = new JTextField("", 15);

// Instantiate/register buttons
reset = new JButton("Reset");
next = new JButton("Next");

add = new JButton("Add");
delete = new JButton("Delete");
clear = new JButton("Clear");
find = new JButton("Find");

// Instantiate/register button listeners
action = new ActionHandler () ;
reset.addActionListener (action) ;
next.addActionListener (action) ;
add.addActionListener (action);
delete.addActionListener (action) ;
clear.addActionListener (action) ;
find.addActionListener (action);

// Load info from house file into list
HouseFile.reset () ;
while (HouseFile.moreHouses())
{
house = HouseFile.getNextHouse() ;
list.insert (house) ;

// If possible insert info about first house into text fields
list.reset();
if (list.lengthIs() != 0)
{
house = (ListHouse)list.getNextItem() ;
showHouse (house) ;

// Update status
statusLabel.setText (list.lengthIs() + " houses on list ")
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// Add components to frame
infoPanel.setLayout (new GridLayout(10,2));
infoPanel.add (statusLabel) ;

infoPanel.add (blankLabel) ;
infoPanel.add (lotLabel) ;
infoPanel.add (lotText) ;
infoPanel.add (firstLabel) ;
infoPanel.add (firstText) ;
infoPanel.add (lastLabel) ;
infoPanel.add (lastText) ;
infoPanel.add (priceLabel) ;
infoPanel.add (priceText) ;
infoPanel.add (feetLabel) ;
infoPanel.add (feetText) ;
infoPanel.add (bedLabel) ;
infoPanel.add (bedText) ;
infoPanel.add (reset);
infoPanel.add (next) ;
infoPanel.add (add) ;
infoPanel.add (delete);
infoPanel.add (clear) ;
infoPanel.add (find) ;

// Set up and show the frame
contentPane.add (infoPanel) ;
displayFrame.show() ;

Test Plan We assume classes Listable and SortedList have been thoroughly tested. This
leaves classes ListHouse, HouseFile, and the Real Estate application program to test. To test
the two classes we could create test driver programs to call the various methods and display
results. But recall that these classes were created specifically for the Real Estate application.
Therefore, we can use the main application as the test driver to test them. In other words, we can
test everything together.

The first task is to create a master file of houses by using the Add command to input sev-
eral houses and quit. We then need to input a variety of commands to add more houses, delete
houses, find houses, and look through the list of houses with the Reset and Next buttons. We
should try the operations with good data and with bad data (for example, nonintegral lot num-
bers). We should try the operations in as many different sequences as we can devise. The pro-
gram must be run several times in order to test the access and preservation of the data base
(file houses.dat). We leave the final test plan as an exercise.

In the discussion of object-oriented design in Chapter 1, we said that the code responsible
for coordinating the objects is called a driver. Now, we can see why. A driver program in test-
ing terminology is a program whose role is to call various subprograms and observe their
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behavior. In object-oriented terminology, a program is a collection of collaborating objects.
Therefore, the role of the main application is to invoke operations on certain objects, that is,
get them started collaborating, so the term driver is appropriate. In subsequent chapters, when

we use the term driver, the meaning should be clear from the context.

Java Input/Qutputyy ..~~~ ==~~~

Let's look at the graphical user interface of the Real Estate program. This interface is more com-
plicated than that used by the test driver program we saw in Chapter 1. The test driver displayed
only labels, whereas the Real Estate program displays labels, text fields, and buttons. However,
the biggest difference is in how the frame is used by the user of the program. The test driver
program simply displayed a few lines of information on its frame, and then waited for the user
to close the frame. The frame for the Real Estate program, on the other hand, is changed based
on actions performed by the user. It is truly interactive.

Throughout the following discussion, piease review the code from the Real Estate program
that corresponds to the particular discussion topic.

The Frame

First let's look at how the frame is constructed. The setup of the frame is similar to that per-
formed by the test driver program. However, handling window closing is more complicated here,
since we must perform some special processing (save the information from the list to the
houses.dat file) instead of just exiting the system. We name our frame displayFrame and
set its title and size as we did before.

JFrame displayFrame = new JFrame();
displayFrame.setTitle("Real Estate Program");
displayFrame.setSize(350,400);

Next we define the needed reaction to the window-closing event with the following commands
(see the main method, after a sequence of label and button declarations):

displayFrame.addWindowListener (new WindowAdapter() // Handle window
// closing
1)
The actual code executed when the window is closed is represented by the “..."; it saves the
current list of house information to the data file, and then exits the program. Let's discuss the

addWindowListener method. As you know, when the frame is displayed, it appears in its own
window. Normally, when you define a window listener from within a Java program, you must
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define how the window reacts to various events: closing the window, resizing the window, acti-
vating the window, and so on. You must define methods to handle all of these events. However,
in our program we only want to handle one of these events, the window closing event. The code
above lets us directly handle the window closing event while we accept default “"do nothing”
handlers for all the other window events. In effect, a WindowAdapter object is a window that
has “do nothing" events defined for all window events. We are adding a “window closing lis-
tener" to our frame that tells the program what processing to perform when someone closes the
window, overriding the default "do nothing" event handler in this case.

As was done for the test driver, we next instantiate the content pane, and an information
panel:

Container contentPane = displayFrame.getContentPane();
JPanel infoPanel = new JPanel();

Recall that the content pane is the part of a frame that is used to display information generated
by a program, and a panel is a container, capable of holding other constructs, where the pro-
gram organizes its information for display.

Components

Next we create components that are eventually added to our panel. We create labels, text fields,
and buttons. We look at each in turn, starting with labels. You are familiar with labels from the
Chapter 1 test driver. In the Real Estate program, we exploit a little more of the functionality
provided by the JLabel class. Consider the two statements that set up the status label—the
label used in the interface to display a message describing the result of a user action:

statusLabel = new JLabel("", JLabel.CENTER) ;
statusLabel.setBorder (new LineBorder (Color.red));

In addition to passing the JLabel constructor an initial string, we pass it the constant CENTER,
defined in the JLabel class. This sets the label so that it displays text centered in the area allo-
cated to it. That property persists until we change it with a call to the label's setHorizontal-
Alignment method. We follow the instantiation of statusLabel with a message to it, to set
its border to a line border with the color red. Borders can be set for any Java Swing component
that extends the JComponent class; that is, for most Swing components. Swing supports eight
kinds of borders—we have elected to use the line border in this case. Note that we pass the
LineBorder constructor a constant of the Color class. Also note, that to use borders, we must
import javax.swing.border. * into the program. Finally, note that most of the labels used by
the program are declared at the beginning of the main method, but the statusLabel label is
declared outside the main method, since it needs to be visible to some of the helper methods.

Intermingled with the label instantiations are instantiations of text fields. This is a new
construct for us. A text field is a box that allows the user to enter a single line of text. In the
Real Estate program, we use them to both gather and present information to the user. An exam-
ple of a test field instantiation is:

lotText = new JTextField("", 15);
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The string parameter sets the initial text in the text field (in this case to the empty string); the
integer parameter sets the width of the text field. Since all of our text fields are accessed by
helper methods, they are all declared outside of the main method.

The text displayed in a text field can be changed with the setText method, as is done in
the showHouse helper method to display the information about a house on the interface. Of
course, the user can directly enter text into a text field box and change its contents. The get -
Text method is used by a program to obtain the current information in a text field. See the
getHouse helper method for examples of its use.

The final construct used in our interface is the button. Buttons are used to generate events,
when pressed by the user. Button definition is easy. Just invoke the button constructor, passing
it the string to be displayed on the face of the button, as follows:

reset = new JButton("Resget") ;

Although button-related events are handled by helper methods, the buttons themselves are only
used within the main method, so all button declarations are at the beginning of main. There are
six buttons altogether. The Real Estate program "listens” for its user to press one of the buttons,
performs processing related to the pressed button, updates the frame appropriately, and then
resumes listening. To understand how this works, and how we implement it, we must look at the
Java event model.

The Event Model

In an event-driven Java program, there are two important entities, event sources and event lis-
teners. The sources generate an event, usually due to some action by the user. The listeners are
waiting for certain events to occur, and when they do, they react to the event by performing
some related processing. In our program, the JButton object reset is an event source, and the
ActionHandler object action is an event listener. These objects are declared and instanti-
ated by the statements:

JButton reset;
reset = new JButton("Reset");

ActionHandler action;
action = new ActionHandler();

We have already examined the JButton statements. But, what is an ActionHandler? You
won't find it defined in any Java library documentation because it is a class created just for the
Real Estate program. It is an inner class. You can find its definition in the program listing just
after the helper methods that manage the house information displayed on the screen. It looks
like this (with many lines deleted):

private static class ActionHandler implements ActionListener
{

public void actionPerformed (ActionEvent event)
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// Listener for the button events

{

if (event.getActionCommand () .equals("Reset"))
{ // Handles Reset event

}

else

if (event.getActionCommand().equals ("Next"))
{ // Handles Next event

As you can see, ActionHandler implements the ActionListener interface. Therefore,
action is also an ActionListener. Action listeners are just one of several Java listener
types. Another example is window listeners, which we use to close our frames. We use action
listeners for our user interfaces. We return to the definition of ActionHandler below. First,
let's see how we “connect” the event source and the event listener.

The action listener is registered with the reset button with the command

reset.addActionListener (action);

As you can see in the program code, the action listener is also registered with the other five but-
tons.

The registration of an event listener with an event source means that whenever an event
occurs to the event source, such as a button being pressed, an announcement of the event is
passed to the event listener. There are all sorts of events supported by Java. In our case we are
only interested in "action” events, a subset of the set of all potential events, so we use an
ActionListener listener.

How does the event source send “an announcement” of an event to the listener? Through a
call to one of the listener's methods, of course. In the case of action events, the source calls the
listener's actionPerformed method, and passes it an ActionEvent object that represents
the event that occurred. The ActionListener interface declares an abstract action-
Performed method, so we know that any class that implements ActionListener, like our
ActionHandler class, must provide an implementation of actionPerformed. You do not
see a call to the actionPerformed method anywhere in our program. We do not explicitly
invoke the method in our code; it is automatically called when a button is pressed by the user.
Such a method invocation is sometimes called an implicit invocation.

Let's review. In the Real Estate program, we have six buttons that are event sources. We
have one event listener, action, which has been registered through addActionListener to all
six buttons. When any of the buttons are pressed the actionPerformed method of the
action object is invoked, and passed an event object that represents the button-pressed
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event. At that point, the actionPerformed method must respond to the event. How does it do
that?

Look again at the code listed above for the ActionHandler class. You can see that the
actionPerformed method is implemented as a series of if-else statements.

if (event.getActionCommand().equals("Reset"))
{ // Handles Reset event

}

else

Each if-block handles a different button being pressed. The boolean expressions use the getAc -
tionCommand method of the ActionEvent class to obtain a string signifying the specific real
event that the event object represents. In the case of button pressing events, this string is sim-
ply the string displayed on the face of the button. Therefore, when a button is pressed, the
appropriate if-block is executed. Take a minute to browse the code in the if-blocks to see how
the program handles each of the buttons being pressed.

Presenting the Interface

Now that we have created the frame, the labels, the text fields, the buttons and associated
actions with each of the buttons, we are ready to build and display the interface. We use the
same approach we did for the Chapter 1 test driver program. First, we set up a 10 X 2 grid in
our panel:

infoPanel.setLayout (new GridLayout(10,2));

Next we add all of our components to our panel, in the order we want them to appear (left to
right, top to bottom):

infoPanel.add (statusLabel);
infoPanel.add (blankLabel) ;
infoPanel.add (lotLabel) ;
infoPanel.add (lotText) ;

infoPanel.add (find) ;
Finally, we add the panel to the frame's content pane, and show the frame:

contentPane.add (infoPanel) ;
displayFrame.show() ;
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Summary
In this chapter, we have created two abstract data types that represent lists. The
Unsorted List ADT assumes that the list elements are not sorted by key; the Sorted List
ADT assumes that the list elements are sorted by key. We have viewed each from three
perspectives: the logical level, the application level, and the implementation level. The
extended Case Study uses the Sorted List ADT to help solve a problem. Figure 3.18
shows the relationships among the three views of the list data in the Case Study.

As we progressed through the chapter we expanded our use of Java constructs to
support the list abstractions. In the first part of the chapter, we worked through the fol-
lowing variations of lists:

® UnsortedStringList—an unsorted list of strings

e StringList—an abstract string list specification; valid for both sorted and unsorted
lists

® UnsortedStringList2—an extension of StringList

® SortedStringList—another extension of StringList

In order to make the software as reusable as possible, we learned how to use the Java
interface mechanism to create generic ADTs. The user of the ADT must prepare a class that
defines the objects to be in each container class. In the case of the list abstraction, objects
to be contained on a list must implement the Listable interface; therefore, they must
have an appropriate compareTo and a copy method associated with them. By requiring the
user to meet this standard for the objects on the list, the code of the ADTs is very general.

Application View Logical View Implementation View

A List of Houses ——+— dinsert —+—> public interface Listable
delete {
reset
getNextItem }

public abstract class List
{

}

public class SortedList extends List

-~ -~ {
)
Must guarantee All communication Must guarantee
preconditions is through the logical postconditions
of logical view view: the specification of logical view

Figure 3.18  Relationships among the views of data
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The Unsorted List or Sorted List ADT can process items of any kind; they are completely
context independent. Within the chapter we saw examples of how to create lists of circles,
strings, and houses. The ability to create generic structures led to two more list variations:

e List—an abstract list specification, no longer tied to strings; includes a retrieve
operation
® SortedList—an extension of List

We compared the operations on the two ADTs using Big-0 notation. Insertion into an
unsorted list is O(1); insertion into a sorted list is O(XN). Deletions from both are O(N).
Searching in the unsorted list is O(V); searching in a sorted list is order O(log,N) if a
binary search is used.

We have also seen how to write test plans for ADTs.

Summary of Classes and Support Files

The classes and files are listed in the order in which they appear in the text. Inner
classes are not included. The package a class belongs to, if any, is listed in parentheses
under Notes. The class and support files are available on our web site. They can be
found in the cho03 subdirectory of the bookFiles directory.

Classes, Interfaces, and Support Files Defined in Chapter 3

File

15t Ref. Notes

UnsortedStringList.java page 150  (ch03.stringLists) Array-based implementation

of an unsorted string list ADT

TDUnsortedStringList.java page 160  Testdriver for UnsortedStringList.java

StringList.java page 165 (ch03.stringLists) Abstract class—defines all

the constructs for an array based list of strings that
do not depend on whether or not the list is sorted

UnsortedStringList2.java  page 166 (ch03.stringLists) Extends StringList under

the assumption that the list is not kept sorted

SortedStringlList.java page 181  (ch03.stringLists) Extends StringList under

the assumption that the list is kept sorted

Listable.java page 194  (ch03.genericLists) Interface—objects used

with the following list classes must be derived from
classes that implement this interface

ListCircle.java page 195  (ch03.genericLists) Example of a class that

implements Listable

(continued on next page)



File

List. java

SortedList. java
ListString.java
TDSortedList.java

ListHouse.java

HouseFile. java
RealEstate.java

testlistl.dat

testoutl.dat

testlist2.dat

testout2.dat

15t Ref.

page 197

page 200
page 204
page 206

page 215

page 218
page 224
page 162

page 162

page 206
page 206
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Notes

(ch03.genericLists) Abstract class—defines all
the constructs for an array-based generic list that do
not depend on whether or not the list is sorted; the
list stores objects derived from a class that imple-
ments Listable; includes a retrieve method,
that was not part of the previous lists

(ch03.genericLists) Extends List under the
assumption that the list is kept sorted

(ch03.genericLists) Another example of a class
that implements Listable

Test driver for SortedList.java

(ch03.houses) Implements Listable; provides
information about a house that can be stored on a
list
(chO3.houses]Managesthehouses.datfﬂe
The real estate application

Test data for the TDUnsortedStringlist pro-
gram

Results of using testlist1.dat asinput to the
Unsorted String List test driver

Test data for the TDSortedList program

Results of using testlist2.dat as input to the
Sorted List test driver

The diagrams in Figure 3.19 show the relationships among the classes listed above.
Abstract classes are shown in (Italics) within parentheses, interfaces are shown within
<brackets>, and applications are poxed|. Relationships are shown by arrows using
UML standard representations (solid arrow with hollow arrowhead represents the
inheritance relationship “extends,” dotted arrow with hollow arrowhead represents the
implements relationship between a class and an interface, and dotted arrow with open
arrowhead represents a “uses” relationship—the latter relationships are also labeled
“uses.”) Finally, the package groupings are indicated by “blue rectangles.”
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The stringlLists

<<uses>> (
ListHouse < ------------------------------------------- RealEstate l

. <<uses>>
HouseFile < ----------------------------------------------------

Figure 3.19  Chapter 3 classes and their relationships

Package
8 . . N <<uses>>
UnsortedStringList < --------------------- TDUnsortedStringList
(StringList)
UnsortedStringList2 SortedStringList
“ J
The genericLists
Package
& >
<<uses>>
{Listable> <& -------mmm----g----mmoooooo- (List)
ListCircle i ListString SortedList
“ : . S /:\ /.\
: L <<uses>> <<uses>> : :
| i ! uses
The houses e TDSortedList §------------ voss >
Package ;

On page 241 is a list of the Java Library Classes that were used in this chapter for the
first time in the textbook. The classes are listed in the order in which they are first used.
Note that in some classes the methods listed might not be defined directly in the class;
they might be defined in one of its superclasses. With the methods we also list construc-
tors, if appropriate. For more information about the library classes and methods the

reader can check Sun’s Java documentation.
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Class Name Package Overview Methods Used Where Used

JTextField swing Provides a container getText, RealEstate
for asingle line of user  JTextField,
text setText

ActionListener awt.event An interface for classes RealEstate
that listen for and han-
dle action events

ActionEvent awt.event Provides objects for getActionCommand RealEstate
passing event informa-
tion between event
sources and event lis-
teners

JButton swing Provides a container ActionListener, RealEstate
for an interface button ~ JButton,

LineBorder swing Sets a border for the LineBorder RealEstate
display of a component

Color lang Provides color con- RealEstate
stants

Exercises

3.1 Lists

mit duplicate keys, and lists that do not permit duplicate keys.

. Give examples from the “real world” of unsorted lists, sorted lists, lists that per-

. Describe how the individuals in each of the following groups of people could be

uniquely identified; that is, what would make a good key value for each of the

groups.

Citizens of a country who are eligible to vote

Members of a sports team

Students in a school

Automobile drivers

a
b
c
d. E-mail users
e
f.

Actors/actresses in a play
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3.2

Abstract Data Type Unsorted List

. Classify each of the Unsorted List ADT operations (UnsortedStringList,

isFull, lengthls, isThere, insert, delete, reset, getNextItem) accord-
ing to operation type (Constructor, Iterator, Observer, Transformer).

. The chapter specifies and implements an Unsorted List ADT (for strings).

a. Design an algorithm for an application-level routine printLast that accepts
a list as a parameter and returns a boolean. If the list is empty, the routine
prints “List is empty” and returns false. Otherwise, it prints the last item of
the list and returns true. The signature for the routine should be

boolean printLast(PrintWriter outfile, UnsortedStringList list)

b. Devise a test plan for your algorithm.
c. Implement and test your algorithm.

5. The chapter specifies and implements an Unsorted List ADT (for strings).

a. Design an algorithm for an application level routine that accepts two lists as
parameters, and returns a count of how many items from the first list are also
on the second list. The signature for the routine should be

int comparelLists(UnsortedStringlList listl, UnsortedStringList list2)

b. Devise a test plan for your algorithm.

c. Implement and test your algorithm.

6. What happens if the constructor for UnsortedStringlList is passed a negative

parameter? How could this situation be handled by redesigning the constructor?

. A friend suggests that since the delete operation of the Unsorted List ADT

assumes that the parameter element is already on the list, the designers may as
well assume the same thing for other operations since it would simplify things.
Your friend wants to add the assumption to both the isThere and the insert
operations! What do you think?

. Describe the ramifications of each of the following changes to the chapter’s code

for the indicated UnsortedStringList methods.

a. isFull change “return (list.length == numltems);” to “return (list.length
= numltems);”

b. lengthIs change “return numltems;” to “return list.length;”

c. isThere change the second “moreToSearch = (location < numltems);” to
“moreToSearch = (location <= numltems);”

d. insert remove “numltems++;”

e. delete remove “numltems—;”

9. The test plan on page 161 for the UnsortedStringList class was not complete.

a. Complete the test plan.
b. Create a set of test input files that represents the completed test plan.

'l'cmn-FIy :



10.

11.

12.

13.

14.

15.

Exercises

c. Use the TDUnsortedStringList program, available with the rest of the
textbook’s programs, to run and verify your tests.

The Unsorted List ADT (for UnsortedStringList) is to be extended with a
boolean operation, isEmpty, which determines whether or not the list is empty.

a. Write the specifications for this operation.
b. Write a method to implement the operation.

The Unsorted List ADT (for UnsortedStringList) is to be extended with an
operation, smallest, which returns a copy of the “smallest” list element. It is
assumed that the operation will not be invoked if the list is empty.

a. Write the specifications for this operation.

b. Write a method to implement the operation.

Rather than enhancing the Unsorted List ADT by adding a smallest operation,
you decide to write a client method to do the same task.

a. Write the specifications for this method.

b. Write the code for the method, using the operations provided by the Unsorted
List ADT

c. Write a paragraph comparing the client method and the ADT method (Exer-
cise 11) for the same task.

The specifications for the Unsorted List ADT delete operation state that the
item to be deleted is in the list.

a. Create a specification for a new form of delete, called tryDelete, that leaves
the list unchanged if the item to be deleted is not in the list. The new delete
operation should return a boolean value true if the item was found and
deleted, false if the item was not on the list.

b. Implement tryDelete as specified in (a).

The specifications for the Unsorted List ADT state that the list contains unique
items. Suppose this assumption is dropped, and the list is allowed to contain
duplicate items.

a. How would the specification have to be changed?

b. Create a specification for a new form of delete for this new ADT, called
deleteAll, that deletes all list elements that match the parameter item’s key.
You should still assume that at least one matching item is on the list.

c. Implement deleteAll as specified in (b).

The text’s implementation of the delete operation for the Unsorted List ADT
(UnsortedStringList) does not maintain the order of insertions because the
algorithm swaps the last item into the position of the one being deleted and then
decrements length.

a. Would there be any advantage to having delete maintain the insertion
order? Justify your answer.
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16.

17.

3.3

18.

19.

20.

21.

3.4

22.

23.

b. Modify delete so that the insertion order is maintained. Code your algorithm,
and test it.

Change the specifications for the Unsorted List ADT so that insert throws an
exception if the list is full. Implement the revised specification.

Create a new implementation of the Unsorted List ADT (UnsortedStringList)
using the Java Library’s ArrayList class instead of plain arrays.

Abstract Classes

The abstract class StringList contains both abstract and concrete methods.
a. List the abstract methods.

b. List the concrete methods.

c. Explain the difference between an abstract method and a concrete method.

Suppose you wanted to add the operation isEmpty, as defined in Exercise 10, to
the StringList class. Would you make it an abstract method or a concrete
method? Justify your answer.

Suppose you wanted to add the operation smallest, as defined in Exercise 11,
to the StringList class. Would you make it an abstract method or a concrete
method? Justify your answer.

Consider the UML diagram in Figure 3.5.

a. What does the “+” symbol represent?

b. What does the “#” symbol represent?

c. What does the arrow represent?

d. Why are some of the method names italicized?

e. Why is the variables section of the class diagram for the Unsorted-
StringList2 class empty?

Abstract Data Type Sorted List

The Sorted List ADT (for SortedStringList) is to be extended with an opera-
tion, smallest, which returns a copy of the “smallest” list element. It is
assumed that the operation will not be invoked if the list is empty.

a. Write the specifications for this operation.
b. Write a method to implement the operation.

Rather than enhancing the Sorted List ADT by adding a smallest operation,
you decide to write a client method to do the same task.

a. Write the specifications for this method.

b. Write the code for the method, using the operations provided by the Sorted
List ADT.

c. Write a paragraph comparing the client method and the ADT method (Exer-
cise 22) for the same task.
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24. The algorithm for the Sorted List ADT insert operation starts at the beginning of the
list and looks at each item, to determine where the insertion should take place. Once
the insertion location is determined, the algorithm moves each list item between
that location and the end of the list, starting at the end of the list, over to the next
position. This creates space for the new item to be inserted. Another approach to
this algorithm is just to start at the last location, examine the item there to see if the
new item should be placed before it or after it, and shift the item in that location to
the next location if the answer is “before.” Repeating this procedure with the next
to last item, then the one next to that, and so on, will eventually move all the items
that need to be moved, so that when the answer is finally “after” (or the beginning
of the list is reached) the needed location is available for the new item.

a. Formalize this new algorithm with a pseudocode description, such as the
algorithms presented in the text.

b. Rewrite the insert method of the SortedStringList class to use the new
algorithm.

c. Test the new method.

25. The specifications for the Sorted List ADT delete operation state that the item
to be deleted is on the list.

a. Create a specification for a new form of delete, called tryDelete, that leaves
the list unchanged if the item to be deleted is not in the list. The new delete
operation should return a boolean value true if the item was found and
deleted, false if the item was not on the list.

b. Implement tryDelete as specified in (a).

26. The Sorted List ADT (for SortedStringList) is to be extended with an opera-
tion merge, which adds the contents of a list parameter to the current list.

a. Write the specifications for this operation. The signature for the routine
should be

void merge(SortedStringlList list)

b. Design an algorithm for this operation.
c. Devise a test plan for your algorithm.
d. Implement and test your algorithm.

27. A String List ADT is to be extended by the addition of method trimList, which
has the following specifications:

q trimList(String lower, String upper)
. Effect: Removes all elements from the list that

are less than lower and greater than
upper

Postconditions: This list contains only items that are
between lower and upper inclusive




246 | Chapter 3: ADTs Unsorted List and Sorted List

Implement trimList as a method of UnsortedStringList.
Implement trimList as a member method of SortedStringList.
Compare the algorithms used in (a) and (b).

Implement trimList as a client method of UnsortedStringList.

"o N o o

Implement trimList as a client method of SortedStringlList.

3.5 Comparison of Algorithms

28. Describe the order of magnitude of each of the following functions using Big-0
notation:

a. N2+ 3N

b. 3N2+ N

c. N°® + 100N? + 245

d. 3Nlog,N + N2

e. 1+ N+ N?+ N>+ N*
f. (N*(N—1))/2

29. Give an example of an algorithm (other than the examples discussed in the chap-
ter) that is

a. 0(1)
b. O(N)
c. O(N?)
30. Describe the order of magnitude of each of the following code sections using Big-0
notation:
a. count = 0;
for (i = 1; i <= N; i++)
countt+;

b. count = 0;
for (i = 1; i <= N; i++)
for (3 = 1; j <= N; j++)
counttt;

c. value = N;
count = 0;
while (value > 1)
{
value = value / 2;
count++t;
}

31. Algorithm 1 does a particular task in a “time” of N3, where N is the number of
elements processed. Algorithm 2 does the same task in a “time” of 3N + 1000.

a. What are the Big-0 requirements of each algorithm?
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32.

3.7

33.

34.

35.

Exercises

b. Which algorithm is more efficient by Big-0O standards?

c. Under what conditions, if any, would the “less efficient” algorithm execute
more quickly than the “more efficient” algorithm?

Comparison of Unsorted and Sorted List ADT Algorithms

Assume that for each of the listed exercises an optimal algorithm was written
(optimal means that it is not possible under the circumstances to write a faster
algorithm). Give a Big-O estimate of the run time for the corresponding algo-
rithms. Unless otherwise stated, let N represent the size of the list.

a. Exercise 4a: printList for UnsortedStringlList

b. Exercise ba: comparelLists for UnsortedStringList (N = size of the larger
list)

Exercise 10: isEmpty for UnsortedStringList

e

Exercise 11: smallest for UnsortedStringList
Exercise 12: smallest for UnsortedStringList client
Exercise 13: tryDelete for UnsortedStringList
Exercise 22: smallest for SortedStringList

S Qa —h o

Exercise 23: smallest for SortedStringList client

Generic ADTs
We did not devise a test plan for the SortedList class.

a. Create an appropriate test plan using the ListString class to provide
objects for storing on the list. Remember to include tests of the retrieve
operation.

b. Create a set of test input files that represents the completed test plan.
c. Use the TDSortedList program to run and verify your tests.

Create a new concrete class, UnsortedList, that extends the List class, as dis-
cussed at the end of the section, A Generic Sorted List ADT.

Consider a ListNumber class that implements the Listable interface. The class
defines two instance variables, one of primitive type int and the other of type
String. The former acts as the key. The idea is that objects of the class can hold
an integer value, for example, 5, and the corresponding string, “five”. The class
exports a constructor that accepts two parameters that are used to initialize the
hidden instance variables, two observer methods that return the values of the
hidden instance variables, a toString method that returns value, and of course
the required compareTo and copy methods.

a. Create the ListNumber class.

b. Test your ListNumber class by using it with the SortedList class.
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Case Study: Real Estate Listings

36. Devise and perform a thorough test of the Real Estate application program.

37.

38.

39.

Explain how you would have to change the Real Estate program to handle each
of the following specification changes. For each case, indicate which program
units need to be changed and a general description of how the change could be
implemented.

a. The houses.dat file is redesigned to include the owner’s first name first, and
last name second, instead of vice versa.

b. In the interface “Lot numbers” are to be referred to as “Locations”.

c. The information for each house is augmented by a “Number of bathrooms”
attribute.

d. In a surprising and unconventional move, the company decides that each
house will have a unique price, and that houses should be listed in order of
price instead of lot numbers.

Expand the Real Estate program so that the “blank label” field of the interface is
used to always show the total number of houses on the list.

Expand the Real Estate program to include two more user interface buttons:
largest and smallest. If the list of houses is empty and the user clicks on either of
the new buttons, the message “List is empty” should appear in the status label
area. Otherwise, when the user clicks on the “largest” button, the program should
display the house information for the largest house in terms of square feet; and
when the user clicks on the “smallest” button, the program should display the
house information for the smallest house in terms of square feet.
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Measurable goals for this chapter include that you should be able to

provide a formal specification of an ADT using a Java interface

explain the benefits of using a Java interface for a formal specification

describe a stack and its operations at a logical level

demonstrate the effect of stack operations using a particular implementation of a stack
implement the Stack ADT in an array-based implementation

implement the Stack ADT using the Java Library ArrayList class

use the Java exception mechanism within an ADT

describe the strengths and drawbacks of both the store "by reference” and store "by copy”
approaches to implementing data structures

explain the difference between the Java Library classes Vector and ArrayList.
define stack, queue, concrete class, subinterface

identify the Java Library class that most closely resembles the ADTs List, Stack, and Queue defined
in the textbook

describe a queue and its operations at a logical level

demonstrate the effect of queue operations using a particular implementation of a queue
implement the Queue ADT using an array-based implementation

use a Stack or Queue ADT as a component of a solution to an application problem
evaluate a Postfix expression "by hand"

describe an algorithm for evaluating Postfix expressions using a stack



250

Chapter 4: ADTs Stack and Queue

4]

In this chapter your toolkit of data structures is expanded to include two important new
ones, the stack and the queue. As with lists, we study these data structures as ADTs and
look at them from the logical, application and implementation levels. The case studies,
and several smaller examples, help you learn how to use the stack and the queue to
solve problems.

While learning about the stack and the queue, you continue to build your practical
knowledge of the Java language. You learn how to use the Java interface construct to
specify an ADT and you explore the differences between storing information “by copy”
and “by reference.” Finally, an overview of the Java Class Library’s collections frame-
work introduces you to the wealth of resources available in the library.

Formal ADT Specifications

In Chapter 3 we developed a specification for an Unsorted List ADT. The specification
describes the logical structure and the exported operations of the ADT. For each opera-
tion we listed its interface, plus a description of the effect of the operation and any pre-
conditions and postconditions. The specification acts as a contract created by the
designer of the ADT, relied upon by the application programmer who uses the ADT, and
fulfilled by the programmer who implements the ADT.

The Java language provides a construct, the interface, for formally capturing such a
specification. Recall that an interface may contain only constant values and abstract
methods. An abstract method consists of the method’s interface description only—no
method body.

Our Unsorted List ADT Specification included a description of the interfaces of the
public methods of the ADT. In the specification, these are presented as the method head-
ers of the Java code that is used to implement the operations. The Java interface con-
struct lets us collect together these method interfaces into a syntactic unit. Therefore,
from this point on we formalize the specification of our ADTs by using a Java interface.
The method interfaces of our specification are listed as Java code. All other parts of the
specification are presented as comments. Using the Java inferface construct for our ADT
specifications produces several benefits:

1. We can formally check the syntax of our specification. When we compile the inter-
face, the compiler uncovers any syntactical errors in the method interface definitions.

2. We can formally verify the interface “contract.” As mentioned above, a specifica-
tion acts as a contract between the designer and the implementer of the ADT. The
code for the ADT should begin with the statement that it “implements the interface.”
When we compile the ADT implementation, the compiler enforces the contract, at
least as far as the information about method names, parameters, and return types.

3. We can assume a consistent interface among alternate implementations of the ADT.
We sometimes create alternate implementations for an ADT, perhaps to emphasize
differing design criteria. Some implementations may optimize the use of memory
space; others may emphasize the efficiency of a specific subset of the ADT opera-
tions. If all of the ADT implementations “implement” the same interface, then we
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are assured that they provide a consistent view to the client programs. We can sub-
stitute one implementation for another, without having to be concerned about the
syntax of their interfaces. Of course, syntactic correctness does not imply that the
functionality of an ADT implementation is correct.

For an example, we return to the List ADT developed in Chapter 3. Let’s first review
the way our approach to the List ADT evolved in that chapter:

e We developed the specification of an Unsorted List ADT and created an array based
implementation of a list of strings (Section 3.2, Abstract Data Type Unsorted List).

e We developed an abstract class StringList (concrete methods StringList,
isFull, lengthls, reset, and getNextItem; abstract methods isThere,
insert, delete) and an UnsortedStringList class that extended the abstract
class, providing implementations for the abstract methods under the assumption
that the list was not kept sorted (Section 3.3, Abstract Classes).

e We developed a SortedStringList class that extended the abstract class
StringlList, providing implementations for the abstract methods under the
assumption that the list was kept sorted (Section 3.4, Abstract Data Type Sorted List).

e We developed the Listable interface that defines the kinds of objects we could
henceforth use with our lists, a generic abstract list class, List, that used items of
type Listable instead of type String and that included a retrieve method,
and a SortedList class that extended List (Section 3.7, Generic ADTs).

Below we define an interface that captures our list model as it stood at the end of
Chapter 3. Therefore, our specification does not assume that the list is sorted or
unsorted; the list manipulates items of type Listable; and a retrieve operation is
included. When using an interface to specify an ADT we include the effect, precondi-
tion, postcondition, and exception information. Following the convention established in
Chapter 3, we do not repeat all of this information in each of the classes that implement
the interface, since the repetition would be monotonous in a textbook setting, although,
in a professional programming situation, where the interface and implementation may
be kept separate, it is common to repeat it.

We call the interface ListInterface. Note that it does not include any construc-
tors. This is because, just as for an abstract class, you cannot instantiate objects of an
interface. You implement the interface with a class and instantiate objects of that class.
The class that implements the interface provides appropriate constructors.

ListInterface.java by Dale/Joyce/Weems Chapter 4

Interface for a class that implements a list of unique elements, i.e.,

no duplicate elements as defined by the key of the list.

The list has a special property called the current position -- the position
of the next element to be accessed by getNextItem during an iteration
through the list. Only reset and getNextItem affect the current position.

package chO4.genericlLists;
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public interface ListInterface

{

public boolean isFull();
// Effect: Determines whether this list is full
// Postcondition: Return value = (this list is full)

public int lengthIs();
// Effect: Determines the number of elements on this list

// Postcondition: Return value = number of elements on this list

public boolean isThere (Listable item);

// Effect: Determines if element matching item is on this list
// Postcondition: Return value = (element with the same key as item is on
// this list)

public Listable retrieve(Listable item);

// Effect: Returns a copy of the list element with the same key as
// item

// Preconditions: Item is on this list

// Postcondition: Return value = (list element that matches item)

public void insert (Listable item);

// Effect: Adds a copy of item to this list

// Preconditions: This list is not full

// Element matching item is not on this list
// Postcondition: Copy of item is on this list

public void delete (Listable item);

// Effect: Deletes the element of this list whose key matches item's
// key

// Preconditions: One and only one element on list has a key matching item's
// key

// Postcondition: No element on list has a key matching the argument item's
// key

public void reset();
// Effect: Initializes current position for an iteration through this
// list

// Postcondition: Current position is first element on this list
public Listable getNextItem ();

// Effect: Returns a copy of the element at the current position on
// this list and advances the value of the current position

Team~F[y®



4.1 Formal ADT Specifications

// Preconditions: Current position is defined.

// There exists a list element at current position.

// No list transformers called since most recent call to

// reset

// Postconditions: Return value = (a copy of element at current position)
// If current position is the last element then current

// position is set to the beginning of this list, otherwise
// it is updated to the next position

We have created a new package, ch04.genericLists, that includes all the files from
the ch03.genericLists package, plus the ListInterface. java file. In this package,
the abstract class List (Section 3.7) is redefined so that its header reads

public abstract class List implements ListInterface

That associates the abstract List class with our new List interface, and therefore ties
together all of the files in the package.

The UML diagram in Figure 4.1 captures the relationships among the various code
units that implement our list approach. We say that this diagram models our list frame-
work. In the diagram, we show that the ListInterface interface “uses” the Listable
interface. Actually, the List, UnsortedList, and SortedList classes also all use the
Listable interface, but to keep the diagram from becoming too complicated, we dis-
play only the relationship for the component at the highest level of abstraction.

When client programs use an ADT, it is good practice