MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java
by Robert Lafore

& . . I
Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
gl ISBN: 1571690956 Pub Date: 03/20/98

Table of Content4s

Introduction

This introduction tells you briefly

What this book is about

Why it's different

* Who might want to read it

* What you need to know before you read it

» The software and equipment you need to use it
How this book is organized

What This Book Is About

This book is about data structures and algorithms as used in computer programming. Data structures are wi
in which data is arranged in your computer’'s memory (or stored on disk). Algorithms are the procedures a
software program uses to manipulate the data in these structures.

Almost every computer program, even a simple one, uses data structures and algorithms. For example,
consider a program that prints address labels. The program might use an array containing the addresses to
printed, and a simple for loop to step through the array, printing each address.

The array in this example is a data structure, and the for loop, used for sequential access to the array,
executes a simple algorithm. For uncomplicated programs with small amounts of data, such a simple appro:
might be all you need. However, for programs that handle even moderately large amounts of data, or that
solve problems that are slightly out of the ordinary, more sophisticated techniques are necessary. Simply
knowing the syntax of a computer language such as Java or C++ isn't enough.

This book is about what you need to know after you've learned a programming language. The material we

cover here is typically taught in colleges and universities as a second-year course in computer science, afte
student has mastered the fundamentals of programming.

What's Different About This Book

There are dozens of books on data structures and algorithms. What's different about this one? Three things

» Our primary goal in writing this book is to make the topics we cover easy to understand.

» Demonstration programs called Workshop applets bring to life the topics we cover, showing you
step by step, with “moving pictures,” how data structures and algorithms work.

» The example code is written in Java, which is easier to understand than C, C++, or Pascal, the
languages traditionally used to demonstrate computer science topics.

Let's look at these features in more detail.

Easy to Understand


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

Typical computer science textbooks are full of theory, mathematical formulas, and abstruse examples of
computer code. This book, on the other hand, concentrates on simple explanations of techniques that can b
applied to real-world problems. We avoid complex proofs and heavy math. There are lots of figures to
augment the text.

Many books on data structures and algorithms include considerable material on sofware engineering. Softw
engineering is a body of study concerned with designing and implementing large and complex software
projects.

However, it's our belief that data structures and algorithms are complicated enough without involving this
additional discipline, so we have deliberately de—emphasized software engineering in this book. (We'll
discuss the relationship of data structures and algorithms to software engineering in Chapter 1, “Overview.”)

Of course we do use an object-oriented approach, and we discuss various aspects of object-oriented desig
we go along, including a mini—tutorial on OOP in Chapter 1. Our primary emphasis, however, is on the data
structures and algorithms themselves.

Workshop Applets

The CD-ROM that accompanies this book includes demonstration programs, in the form of Java applets, th
cover the topics we discuss. These applets, which we call Workshop applets, will run on many computer
systems, appletviewers, and Web browsers. (See the readme file on the CD-ROM for more details on
compatibility.) The Workshop applets create graphic images that show you in “slow motion” how an
algorithm works.

For example, in one Workshop applet, each time you push a button, a bar chart shows you one step in the
process of sorting the bars into ascending order. The values of variables used in the sorting algorithm are al
shown, so you can see exactly how the computer code works when executing the algorithm. Text displayed
the picture explains what's happening.

Another applet models a binary tree. Arrows move up and down the tree, so you can follow the steps involve
in inserting or deleting a node from the tree. There are more than 20 Workshop applets—at least one for eve
major topic in the book.

These Workshop applets make it far more obvious what a data structure really looks like, or what an
algorithm is supposed to do, than a text description ever could. Of course, we provide a text description as
well. The combination of Workshop applets, clear text, and illustrations should make things easy.

These Workshop applets are standalone graphics—based programs. You can use them as a learning tool th
augments the material in the book. (Note that they’re not the same as the example code found in the text of
book, which we’'ll discuss next.)

Java Example Code

The Java language is easier to understand (and write) than languages such as C and C++. The biggest rea:
for this is that Java doesn't use pointers. Although it surprises some people, pointers aren’t necessary for th
creation of complex data structures and algorithms. In fact, eliminating pointers makes such code not only
easier to write and to understand, but more secure and less prone to errors as well.

Java is a modern object—oriented language, which means we can use an object-oriented approach for the
programming examples. This is important, because object-oriented programming (OOP) offers compelling
advantages over the old—fashioned procedural approach, and is quickly supplanting it for serious program
development. Don't be alarmed if you aren’t familiar with OOP. It's not that hard to understand, especially in
a pointer—free environment such as Java. We’'ll explain the basics of OOP in Chapter 1.



MWSS: Data Structures and Algorithms in Java:Introduction

Who This Book Is For

This book can be used as a text in a data structures and algorithms course, typically taught in the second ye
of a computer science curriculum. However, it is also designed for professional programmers and for anyon
else who needs to take the next step up from merely knowing a programming language. Because it's easy t
understand, it is also appropriate as a supplemental text to a more formal course.

What You Need to Know Before You Read This Book

The only prerequisite for using this book is a knowledge of some programming language.

Although the example code is written in Java, you don't need to know Java to follow what's happening. Jave
is not hard to understand, and we've tried to keep the syntaxgeneral, avoiding baroque or Java-specific
constructions whenever possible.

Of course it won't hurt if you're already familiar with Java. Knowing C++ is essentially just as good, because
Java syntax is based so closely on C++. The differences are minor as they apply to our example programs
(except for the welcome elimination of pointers), and we’'ll discuss them in Chapter 1.

The Software You Need to Use this Book
All the software you need to use this book is included on the accompanying CD—-ROM.

To run the Workshop applets you need a Web browser or an appletviewer utility such as the one in the Sun
Microsystems Java Development Kit (JDK). Both a browser and the JDK are included on the CD—-ROM. To
compile and run the example programs you'll need the JDK. Microsoft Windows and various other platforms
are supported. See the readme file on the included CD-ROM for details on supported platforms and
equipment requirements.

How This Book Is Organized

This section is intended for teachers and others who want a quick overview of the contents of the book. It
assumes you're already familiar with the topics and terms involved in a study of data structures and
algorithms. (If you can’t wait to get started with the Workshop applets, read Appendix A, “How to Run the
Workshop Applets and Example Programs,” and the readme file on the CD-ROM first.)

The first two chapters are intended to ease the reader into data structures and algorithms as painlessly as
possible.

Chapter 1, “Overview,” presents an overview of the topics to be discussed and introduces a small number o
terms that will be needed later on. For readers unfamiliar with object—oriented programming, it summarizes
those aspects of this discipline that will be needed in the balance of the book, and for programmers who knc
C++ but not Java, the key differences between these languages are reviewed.

Chapter 2, “Arrays,” focuses on arrays. However, there are two subtopics: the use of classes to encapsulate
data storage structures and the class interface. Searching, insertion, and deletion in arrays and ordered arre
are covered. Linear searching and binary searching are explained. Workshop applets demonstrate these
algorithms with unordered and ordered arrays.

In Chapter 3, “Simple Sorting,” we introduce three simple (but slow) sorting techniques: the bubble sort,
selection sort, and insertion sort. Each is demonstrated by a Workshop applet.

Chapter 4, “Stacks and Queues,” covers three data structures that can be thought of as Abstract Data Type:



MWSS: Data Structures and Algorithms in Java:Introduction

(ADTSs): the stack, queue, and priority queue. These structures reappear later in the book, embedded in vari
algorithms. Each is demonstrated by a Workshop applet. The concept of ADTs is discussed.

Chapter 5, “Linked Lists,” introduces linked lists, including doubly linked lists and double—ended lists. The
use of references as “painless pointers” in Java is explained. A Workshop applet shows how insertion,
searching, and deletion are carried out.

In Chapter 6, “Recursion,” we explore recursion, one of the few chapter topics that is not a data structure.
Many examples of recursion are given, including the Towers of Hanoi puzzle and the mergesort, which are
demonstrated by Workshop applets.

Chapter 7, “Advanced Sorting,” delves into some advanced sorting techniques: Shellsort and quicksort.
Workshop applets demonstrate Shellsort, partitioning (the basis of quicksort), and two flavors of quicksort.

In Chapter 8, “Binary Trees,” we begin our exploration of trees. This chapter covers the simplest popular tre
structure: unbalanced binary search trees. A Workshop applet demonstrates insertion, deletion, and travers:
of such trees.

Chapter 9, “Red—-Black Trees,” explains red—black trees, one of the most efficient balanced trees. The
Workshop applet demonstrates the rotations and color switches necessary to balance the tree.

In Chapter 10, “2—-3-4 Trees and External Storage,” we cover 2—-3-4 trees as an example of multiway trees.
Workshop applet shows how they work. We also discuss the relationship of 2-3-4 trees to B-trees, which &
useful in storing external (disk) files.

Chapter 11, “Hash Tables,” moves into a new field, hash tables. Workshop applets demonstrate several
approaches: linear and quadratic probing, double hashing, and separate chaining. The hash-table approact
organizing external files is discussed.

In Chapter 12, “Heaps,” we discuss the heap, a specialized tree used as an efficient implementation of a
priority queue.

Chapters 13, “Graphs,” and 14, “Weighted Graphs,” deal with graphs, the first with unweighted graphs and
simple searching algorithms, and the second with weighted graphs and more complex algorithms involving
the minimum spanning trees and shortest paths.

In Chapter 15, “When to Use What,” we summarize the various data structures described in earlier chapters
with special attention to which structure is appropriate in a given situation.

Appendix A, “How to Run the Workshop Applets and Example Programs,” tells how to use the Java
Development Kit (the JDK) from Sun Microsystems, which can be used to run the Workshop applets and the
example programs. The readme file on the included CD—ROM has additional information on these topics.

Appendix B, “Further Reading,” describes some books appropriate for further reading on data structures an
other related topics.

Enjoy Yourself!

We hope we’ve made the learning process as painless as possible. Ideally, it should even be fun. Let us kn
if you think we've succeeded in reaching this ideal, or if not, where you think improvements might be made.

Table of Content$




MWSS: Data Structures and Algorithms in Java:Introduction

===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pmpm— \\Vaite Group Press, Macmillan Computer Publishing
getteall ISBN: 1571690956 Pub Date: 03/20/98

¥

Introduction
Acclaim for Robert Lafore's Data Structures and Alorithms in Java:

About the Author

Chapter 1—Overview
What Are Data Structures and Algorithms Good For?
REAL-WORLD DATA STORAGE
PROGRAMMER'’S TOOLS
REAL-WORLD MODELING
Overview of Data Structures
Overview of Algorithms
Definitions
DATABASE
RECORD
FIELD
KEY
SEARCH KEY
Object-Oriented Programming
PROBLEMS WITH PROCEDURAL LANGUAGES
Crude Organizational Units
Poor Modeling of the Real World
OBJECTS IN A NUTSHELL
Objects
Classes
Creating Objects
Accessing Object Methods
A RUNNABLE OBJECT-ORIENTED PROGRAM
The BankApp Class
The BankAccount Class
Constructors
Public and Private
INHERITANCE AND POLYMORPHISM
Software Engineering
Java for C++ Programmers
NO POINTERS
References
Assignment
The new Operator
Arguments
Equality and ldentity
OVERLOADED OPERATORS
PRIMITIVE VARIABLE TYPES
INPUT/OUTPUT
Output
Inputting a String
Inputting a Character
Inputting Integers


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

Inputting Floating—Point Numbers
Java Library Data Structures
Summary

Chapter 2—Arrays

The Array Workshop Applet
INSERTION
SEARCHING
DELETION
THE DUPLICATES ISSUE
Searching with Duplicates
Insertion with Duplicates
Deletion with Duplicates
NOT TOO SWIFT
The Basics of Arrays in Java
CREATING AN ARRAY
ACCESSING ARRAY ELEMENTS
INITIALIZATION
AN ARRAY EXAMPLE
Insertion
Searching
Deletion
Display
Program Organization
Dividing a Program into Classes
CLASSES LowArray AND LowArrayApp
Class Interfaces
NOT SO CONVENIENT
WHO’S RESPONSIBLE FOR WHAT?
THE highArray.java EXAMPLE
THE USER'’S LIFE MADE EASIER
ABSTRACTION
The Ordered Workshop Applet
LINEAR SEARCH
BINARY SEARCH
The Guess—a—Number Game
Binary Search in the Ordered Workshop Applet
Java Code for an Ordered Array
BINARY SEARCH WITH THE find() METHOD
THE OrdArray CLASS
ADVANTAGES OF ORDERED ARRAYS
Logarithms
THE EQUATION
THE OPPOSITE OF RAISING TWO TO A POWER
Storing Objects
THE Person CLASS
THE classDataArray.java PROGRAM
Big O Notation
INSERTION IN AN UNORDERED ARRAY: CONSTANT
LINEAR SEARCH: PROPORTIONAL TO N
BINARY SEARCH: PROPORTIONAL TO LOG(N)
DON'T NEED THE CONSTANT
Why Not Use Arrays for Everything?
Summary



MWSS: Data Structures and Algorithms in Java:Introduction

Chapter 3—Simple Sorting
How Would You Do It?
Bubble Sort
BUBBLE-SORTING THE BASEBALL PLAYERS
THE BUBBLESORT WORKSHOP APPLET
The Run Button
The New Button
The Step Button
The Size Button
The Draw Button
JAVA CODE FOR A BUBBLE SORT
INVARIANTS
EFFICIENCY OF THE BUBBLE SORT
Selection Sort
SELECTION SORT ON THE BASEBALL PLAYERS
A Brief Description
A More Detailed Description
THE SELECTSORT WORKSHOP APPLET
INVARIANT
EFFICIENCY OF THE SELECTION SORT
Insertion Sort
INSERTION SORT ON THE BASEBALL PLAYERS
Partial Sorting
The Marked Player
THE INSERTSORT WORKSHOP APPLET
Sorting 100 Bars
Sorting 10 Bars
JAVA CODE FOR INSERTION SORT
INVARIANTS IN THE INSERTION SORT
EFFICIENCY OF THE INSERTION SORT
Sorting Objects
JAVA CODE FOR SORTING OBJECTS
LEXICOGRAPHICAL COMPARISONS
STABILITY
Comparing the Simple Sorts
Summary

Chapter 4—Stacks and Queues
A Different Kind of Structure
PROGRAMMER’S TOOLS
RESTRICTED ACCESS
MORE ABSTRACT
Stacks
THE POSTAL ANALOGY
THE STACK WORKSHOP APPLET
New
Push
Pop
Peek
Stack Size
JAVA CODE FOR A STACK
StackX Class Methods
Error Handling



MWSS: Data Structures and Algorithms in Java:Introduction

STACK EXAMPLE 1: REVERSING A WORD
STACK EXAMPLE 2: DELIMITER MATCHING
Opening Delimiters on the Stack

Java Code for brackets.java
The Stack as a Conceptual Aid
EFFICIENCY OF STACKS

Queues
THE QUEUE WORKSHOP APPLET
Insert
Remove
Peek
New

Empty and Full
A CIRCULAR QUEUE
Wrapping Around
JAVA CODE FOR A QUEUE
The insert() Method
The remove() Method
The peek() Method
The isEmpty(), isFull(), and size() Methods
Implementation Without an Item Count
EFFICIENCY OF QUEUES
DEQUES
Priority Queues
THE PRIORITYQ WORKSHOP APPLET
Insert
Delete
Peek and New
Other Implementation Possibilities
JAVA CODE FOR A PRIORITY QUEUE
EFFICIENCY OF PRIORITY QUEUES
Parsing Arithmetic Expressions
POSTFIX NOTATION
TRANSLATING INFIX TO POSTFIX
How Humans Evaluate Infix
How Humans Translate Infix to Postfix
Saving Operators on a Stack
Translation Rules
Java Code to Convert Infix to Postfix
EVALUATING POSTFIX EXPRESSIONS
How Humans Evaluate Postfix
Rules for Postfix Evaluation
Java Code to Evaluate Postfix Expressions
Summary

Chapter 5—Linked Lists
Links
REFERENCES AND BASIC TYPES
RELATIONSHIP, NOT POSITION
The LinkList Workshop Applet
INSERT
FIND
DELETE
UNSORTED AND SORTED



MWSS: Data Structures and Algorithms in Java:Introduction

A Simple Linked List
THE Link CLASS
THE LinkList CLASS
THE insertFirst() METHOD
THE deleteFirst() METHOD
THE displayList() METHOD
THE linklist.java PROGRAM
Finding and Deleting Specified Links
THE find() METHOD
THE delete() METHOD
OTHER METHODS
Double-Ended Lists
Linked-List Efficiency
Abstract Data Types
A STACK IMPLEMENTED BY A LINKED LIST
A QUEUE IMPLEMENTED BY A LINKED LIST
DATA TYPES AND ABSTRACTION
Data Types
Abstraction
The Interface
ADT LISTS
ADTS AS A DESIGN TOOL
It's ALL RELATIVE
Sorted Lists
THE LINKLIST WORKSHOP APPLET
JAVA CODE TO INSERT AN ITEM IN A SORTED LIST
THE sortedList.Java PROGRAM
EFFICIENCY OF SORTED LINKED LISTS
LIST INSERTION SORT
Doubly Linked Lists
TRAVERSAL
INSERTION
DELETION
THE doublyLinked.Java PROGRAM
DOUBLY LINKED LIST AS BASIS FOR DEQUES
Iterators
A REFERENCE IN THE LIST ITSELF?
AN ITERATOR CLASS
ADDITIONAL ITERATOR FEATURES
ITERATOR METHODS
THE interlterator.Java PROGRAM
WHERE DOES IT POINT?
THE ateEnd() METHOD
ITERATIVE OPERATIONS
OTHER METHODS
Summary

Chapter 6—Recursion
Triangular Numbers
FINDING THE NTH TERM USING A LOOP
FINDING THE NTH TERM USING RECURSION
Finding the Remaining Columns
Passing the Buck
The Buck Stops Here



MWSS: Data Structures and Algorithms in Java:Introduction

THE triangle.java PROGRAM
WHAT'S REALLY HAPPENING?
CHARACTERISTICS OF RECURSIVE METHODS
IS RECURSION EFFICIENT?
MATHEMATICAL INDUCTION
Factorials
Anagrams
A Recursive Binary Search
RECURSION REPLACES THE LOOP
DIVIDE-AND-CONQUER ALGORITHMS
The Towers of Hanoi
THE TOWERS WORKSHOP APPLET
MOVING SUBTREES
THE RECURSIVE ALGORITHM
THE towers.java PROGRAM
Mergesort
MERGING TWO SORTED ARRAYS
SORTING BY MERGING
THE MERGESORT WORKSHOP APPLET
THE mergeSort.java PROGRAM
EFFICIENCY OF THE MERGESORT
Number of Copies
Number of Comparisons
Eliminating Recursion
RECURSION AND STACKS
SIMULATING A RECURSIVE METHOD
WHAT DOES THIS PROVE?
Summary

Chapter 7—Advanced Sorting
Shellsort
INSERTION SORT: TOO MANY COPIES
N-SORTING
DIMINISHING GAPS
THE SHELLSORT WORKSHOP APPLET
JAVA CODE FOR THE SHELLSORT
OTHER INTERVAL SEQUENCES
EFFICIENCY OF THE SHELLSORT
Partitioning
THE PARTITION WORKSHOP APPLET
THE patrtition.java PROGRAM
THE PARTITION ALGORITHM
Stopping and Swapping
Handling Unusual Data
Delicate Code
EFFICIENCY OF THE PARTITION ALGORITHM
Quicksort
THE QUICKSORT ALGORITHM
CHOOSING A PIVOT VALUE
THE QUICKSORT1 WORKSHOP APPLET
The Big Picture
The Details
Things to Notice
DEGENERATES TO O(N2) PERFORMANCE

10



MWSS: Data Structures and Algorithms in Java:Introduction

MEDIAN OF THREE PARTITIONING
The quickSort2.java Program
The quickSort2 Workshop Applet
HANDLING SMALL PARTITIONS
Using an Insertion Sort for Small Partitions
Insertion Sort Following Quicksort
REMOVING RECURSION
EFFICIENCY OF QUICKSORT
Summary

Chapter 8—Binary Trees
Why Use Binary Trees?
SLOW INSERTION IN AN ORDERED ARRAY
SLOW SEARCHING IN A LINKED LIST
Trees to the Rescue
What Is a Tree?
Terminology
PATH
ROOT
PARENT
CHILD
LEAF
SUBTREE
VISITING
TRAVERSING
LEVELS
KEYS
BINARY TREES
An Analogy
How Do Binary Trees Work?
THE TREE WORKSHOP APPLET
Using the Applet
Unbalanced Trees
REPRESENTING THE TREE IN JAVA CODE
The Node Class
The Tree Class
The TreeApp Class
Finding a Node
USING THE WORKSHOP APPLET TO FIND A NODE
JAVA CODE FOR FINDING A NODE
Can't Find It
Found It
EFFICIENCY
Inserting a Node
USING THE WORKSHOP APPLET TO INSERT A NODE
JAVA CODE FOR INSERTING A NODE
Traversing the Tree
INORDER TRAVERSAL
JAVA CODE FOR TRAVERSING
TRAVERSING A 3-NODE TREE
TRAVERSING WITH THE WORKSHOP APPLET
PREORDER AND POSTORDER TRAVERSALS
Finding Maximum and Minimum Values
Deleting a Node

11



MWSS: Data Structures and Algorithms in Java:Introduction

CASE 1: THE NODE TO BE DELETED HAS NO CHILDREN
Using the Workshop Applet to Delete a Node With No Children
Java Code to Delete a Node With No Children
CASE 2: THE NODE TO BE DELETED HAS ONE CHILD
Using the Workshop Applet to Delete a Node with One Child
Java Code to Delete a Node With One Child
CASE 3: THE NODE TO BE DELETED HAS TWO CHILDREN
Finding the Successor
Using the Workshop Applet to Delete a Node with Two Children
Java Code to Find the Successor
successor Is Right Child of deINode
successor Is Left Descendant of Right Child of delNode
Is Deletion Necessary?
The Efficiency of Binary Trees
Trees Represented as Arrays
Duplicate Keys
The Complete tree.java Program
Summary

Chapter 9—Red-Black Trees
Our Approach to the Discussion
CONCEPTUAL
TOP-DOWN INSERTION
Balanced and Unbalanced Trees
DEGENERATES TO O(N)
BALANCE TO THE RESCUE
RED-BLACK TREE CHARACTERISTICS
Colored Nodes
Red-Black Rules
Duplicate Keys
THE ACTIONS
Using the RBTree Workshop Applet
CLICKING ON A NODE
THE START BUTTON
THE INS BUTTON
THE DEL BUTTON
THE FLIP BUTTON
THE ROL BUTTON
THE ROR BUTTON
THE R/B BUTTON
TEXT MESSAGES
WHERE'S THE FIND BUTTON?
Experimenting
EXPERIMENT 1
EXPERIMENT 2
EXPERIMENT 3
EXPERIMENT 4
MORE EXPERIMENTS
THE RED-BLACK RULES AND BALANCED TREES
NULL CHILDREN
Rotations
SIMPLE ROTATIONS
What's Rotating?
Mind the Children

12



MWSS: Data Structures and Algorithms in Java:Introduction

THE WEIRD CROSSOVER NODE
SUBTREES ON THE MOVE
HUMAN BEINGS VERSUS COMPUTERS
Inserting a New Node
PREVIEW
COLOR FLIPS ON THE WAY DOWN
Black Heights Unchanged
Could Be Two Reds
The Root Situation
Finally, Just Insert It
ROTATIONS ONCE THE NODE IS INSERTED
Possibility 1: P Is Black
Possibility 2: P Is Red, X Is Outside
Possibility 3: P Is Red and X Is Inside
What About Other Possibilities?
What the Color Flips Accomplished
ROTATIONS ON THE WAY DOWN
Outside Grandchild
Inside Grandchild
Deletion
The Efficiency of Red-Black Trees
Implementation
Other Balanced Trees
Summary

Chapter 10—2-3-4 Trees and External Storage
Introduction to 2-3-4 Trees
WHAT'S IN A NAME?
2-3-4 TREE ORGANIZATION
SEARCHING
INSERTION
NODE SPLITS
SPLITTING THE ROOT
SPLITTING ON THE WAY DOWN
The Tree234 Workshop Applet
THE FILL BUTTON
THE FIND BUTTON
THE INS BUTTON
THE ZOOM BUTTON
VIEWING DIFFERENT NODES
EXPERIMENTS
Java Code for a 2-3-4 Tree
THE DATAITEM CLASS
THE NODE CLASS
THE TREE234 CLASS
Searching
Inserting
Splitting
THE TREE234APP CLASS
LISTING FOR TREE234.JAVA
2-3-4 Trees and Red-Black Trees
TRANSFORMATION FROM 2-3-4 TO RED-BLACK
OPERATIONAL EQUIVALENCE
4-Node Splits and Color Flips



MWSS: Data Structures and Algorithms in Java:Introduction

3-Node Splits and Rotations
Efficiency of 2-3-4 Trees
SPEED
STORAGE REQUIREMENTS
External Storage
ACCESSING EXTERNAL DATA
Very Slow Access
One Block at a Time
SEQUENTIAL ORDERING
Searching
Insertion
B-TREES
One Block Per Node
Searching
Insertion
Efficiency of B-Trees
INDEXING
Index File in Memory
Searching
Insertion
Multiple Indexes
Index Too Large for Memory
COMPLEX SEARCH CRITERIA
SORTING EXTERNAL FILES
Internal Sort of Blocks
Merging
Internal Arrays
Summary

Chapter 11—Hash Tables
Introduction to Hashing

EMPLOYEE NUMBERS AS KEYS
Keys Are Index Numbers
Not Always So Orderly

A DICTIONARY
Converting Words to Numbers
Add the Digits
Multiply by Powers

HASHING

COLLISIONS

Open Addressing

LINEAR PROBING
The Hash Workshop Applet
Duplicates Allowed?
Clustering

JAVA CODE FOR A LINEAR PROBE HASH TABLE
The find() Method
The insert() Method
The delete() Method
The hash.java Program
Expanding the Array

QUADRATIC PROBING
The Step Is the Square of the Step Number
The HashDouble Applet with Quadratic Probes



MWSS: Data Structures and Algorithms in Java:Introduction

The Problem with Quadratic Probes
DOUBLE HASHING
The HashDouble Applet with Double Hashing
Java Code for Double Hashing
Table Size a Prime Number
Separate Chaining
THE HASHCHAIN WORKSHOP APPLET
Load Factors
Duplicates
Deletion
Table Size
Buckets
JAVA CODE FOR SEPARATE CHAINING
Hash Functions
QUICK COMPUTATION
RANDOM KEYS
NON-RANDOM KEYS
Don’'t Use Non-Data
Use All the Data
Use a Prime Number for the Modulo Base
HASHING STRINGS
Hashing Efficiency
OPEN ADDRESSING
Linear Probing
Quadratic Probing and Double Hashing
SEPARATE CHAINING
Searching
Insertion
OPEN ADDRESSING VERSUS SEPARATE CHAINING
Hashing and External Storage
TABLE OF FILE POINTERS
NON-FULL BLOCKS
FULL BLOCKS
Summary

Chapter 12—Heaps

Introduction to Heaps
PRIORITY QUEUES, HEAPS, AND ADTS
WEAKLY ORDERED
REMOVAL
INSERTION
NOT REALLY SWAPPED

The Heap Workshop Applet
FILL
CHANGE
REMOVE
INSERT

Java Code for Heaps
INSERTION
REMOVAL
KEY CHANGE
THE ARRAY SIZE
THE heap.java PROGRAM
EXPANDING THE HEAP ARRAY

15



MWSS: Data Structures and Algorithms in Java:Introduction

EFFICIENCY OF HEAP OPERATIONS
Heapsort
TRICKLING DOWN IN PLACE
Two Correct Subheaps Make a Correct Heap
A Recursive Approach
USING THE SAME ARRAY
THE heapSort.java PROGRAM
THE EFFICIENCY OF HEAPSORT
Summary

Chapter 13—Graphs
Introduction to Graphs
DEFINITIONS
Adjacency
Paths
Connected Graphs
Directed and Weighted Graphs
HISTORICAL NOTE
REPRESENTING A GRAPH IN A PROGRAM
Vertices
Edges
The Adjacency Matrix
The Adjacency List
ADDING VERTICES AND EDGES TO A GRAPH
THE Graph CLASS

Searches
DEPTH-FIRST SEARCH
An Example
An Analogy
The GraphN Workshop Applet and DFS
Java Code

The dfs.java Program
BREADTH-FIRST SEARCH
An Example
The GraphN Workshop Applet and BFS
Java Code
The bfs.java Program
Minimum Spanning Trees
GRAPHN WORKSHOP APPLET
JAVA CODE FOR THE MINIMUM SPANNING TREE
THE mst.java PROGRAM
Topological Sorting with Directed Graphs
AN EXAMPLE: COURSE PREREQUISITES
DIRECTED GRAPHS
TOPOLOGICAL SORTING
THE GRAPHD WORKSHOP APPLET
CYCLES AND TREES
JAVA CODE
The Complete topo.java Program
Summary

Chapter 14—Weighted Graphs

Minimum Spanning Tree with Weighted Graphs
An Example: Cable TV in the jungle

16



MWSS: Data Structures and Algorithms in Java:Introduction

THE GRAPHW WORKSHOP APPLET
SEND OUT THE SURVEYORS
Starting in Ajo
Building the Ajo—Danza Link
Building the Ajo—Bordo Link
Building the Bordo—Erizo Link
Building the Erizo—Colina Link
And, Finally, the Colina—Flor Link
CREATING THE ALGORITHM
The Priority Queue
Outline of the Algorithm
Extraneous Edges
Looking for Duplicates in the Priority Queue
JAVA CODE
THE mstw.JAVA PROGRAM
The Shortest—Path Problem
THE RAILROAD LINE
Cheapest Fares
A Directed, Weighted Graph
DIJKSTRA’S ALGORITHM
AGENTS AND TRAIN RIDES
The First Agent: In Ajo
The Second Agent: In Bordo
Three Kinds of Town
The Third Agent: In Danza
The Fourth Agent: In Colina
The Last Agent: In Erizo
USING THE WORKSHOP APPLET
The Shortest-Path Array
Minimum Distance
Column by Column in the Shortest—Path Array
New Minimum Distance
Do It Again, and Again
JAVA CODE
The sPath Array and the DistPar Class
The path() Method
Finding the Minimum Distance with getMin()
Updating sPath[] with adjust_sPath()
THE path.java PROGRAM
Efficiency
Summary

Chapter 15—When to use What
General-Purpose Data Structures
SPEED AND ALGORITHMS
Computers Grow Faster Every Year
References Are Faster
LIBRARIES
ARRAYS
LINKED LISTS
BINARY SEARCH TREES
BALANCED TREES
HASH TABLES
COMPARING THE GENERAL-PURPOSE STORAGE STRUCTURES



Appendix A
Appendix B
Index

MWSS: Data Structures and Algorithms in Java:Introduction

Special-Purpose Data Structures
STACK
QUEUE
PRIORITY QUEUE
COMPARISON OF SPECIAL-PURPOSE STRUCTURES
Graphs
Sorting
External Storage
SEQUENTIAL STORAGE
INDEXED FILES
B-TREES
HASHING
VIRTUAL MEMORY
Onward

18



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

Chapter 1
Overview

As you start this book, you may have some questions:

» What are data structures and algorithms?

» What good will it do me to know about them?

» Why can't | just use arrays and for loops to handle my data?
* When does it make sense to apply what | learn here?

This chapter attempts to answer these questions. We’'ll also introduce some terms you'll need to know, and
generally set the stage for the more detailed chapters to follow.

Next, for those of you who haven't yet been exposed to an object-oriented language, we'll briefly explain
enough about OOP to get you started. Finally, for C++ programmers who don’t know Java, we’'ll point out
some of the differences between these languages.

What Are Data Structures and Algorithms Good For?

The subjects of this book are data structures and algorithms. A data structure is an arrangement of data in &
computer’'s memory (or sometimes on a disk). Data structures include linked lists, stacks, binary trees, and
hash tables, among others. Algorithms manipulate the data in these structures in various ways, such as
searching for a particular data item and sorting the data.

What sorts of problems can you solve with a knowledge of these topics? As a rough approximation, we migt
divide the situations in which they’re useful into three categories:

* Real-world data storage
* Programmer’s tools
» Real-world modeling

These are not hard—and-fast categories, but they may help give you a feeling for the usefulness this book’s
subject matter. Let’s look at them in more detail.

REAL-WORLD DATA STORAGE

Many of the structures and technigues we’ll discuss are concerned with how to handle real-world data
storage. By real-world data, we mean data that describes physical entities external to the computer. As son
examples, a personnel record describes an actual human being, an inventory record describes an existing ¢
part or grocery item, and a financial transaction record describes, say, an actual check written to pay the
electric bill.

A non—-computer example of real-world data storage is a stack of index cards. These cards can be used for
variety of purposes. If each card holds a person’s hame, address, and phone number, the result is an addre
book. If each card holds the name, location, and value of a household possession, the result is a home

Chapter 1 Overview 19


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

inventory.

Some operating systems come with a utility program that simulates a box of index cards. Microsoft Windows
for example, includes the Cardfile program as an item on the Accessories menu. Figure 1.1 shows how it
looks with data on the cards that form an address book.

IGURE 1. he Cardfile program

The filing cards are represented by rectangles. Above the double line is the card’s title, called the index line.
Below is the rest of the data. In this example a person’s name is placed above the index line, with the addre
and phone number placed below.

You can find a card with a given name by selecting GoTo from the Search menu and typing the name, as it
appears on the index line, into a text field. Also, by selecting Find from the Search menu you can search for
text other than that on the index line, and thus find a person’s name if you know her phone number or addre

This is all very nice for the program’s user, but suppose you wanted to write a card—file program of your owr
You might have questions like this:

How would you store the data in your computer’'s memory?

» Would your method work for a hundred file cards? A thousand? A million?

» Would your method permit quick insertion of new cards and deletion of old ones?

Would it allow for fast searching for a specified card?

» Suppose you wanted to arrange the cards in alphabetical order. How would you sort them?

In this book, we will be focusing on data structures that might be used to implement the Cardfile program or
solve similar problems.

As we noted, not all data—storage programs are as simple as the Cardfile program. Imagine the database th
Department of Motor Vehicles (or whatever it's called in your state) uses to keep track of drivers’ licenses, o
an airline reservations system that stores passenger and flight information. Such systems may include many
data structures. Designing such complex systems requires the application of software engineering, which w
mention toward the end of this chapter.

PROGRAMMER’S TOOLS

Not all data storage structures are used to store real-world data. Typically, real-world data is accessed mot
or less directly by a program’s user. Some data storage structures, however, are not meant to be accessed
the user, but by the program itself. A programmer uses such structures as tools to facilitate some other
operation. Stacks, queues, and priority queues are often used in this way. We'll see examples as we go alor

REAL-WORLD MODELING

Some data structures directly model a real-world situation. The most important data structure of this type is
the graph. You can use graphs to represent airline routes between cities, connections in an electrical circuit,
tasks in a project. We’'ll cover graphs in Chapters 13, “Graphs,” and 14, “Weighted Graphs.” Other data
structures, such as stacks, queues, and priority queues, may also be used in simulations. A queue, for exan
can model customers waiting in line at a bank.

PROGRAMMER'’S TOOLS 20



MWSS: Data Structures and Algorithms in Java:Introduction

|PreviousiTabIe of Contentk\lext|

PROGRAMMER'’S TOOLS

21



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

Overview of Data Structures

Another way to look at data structures is to focus on their strengths and weaknesses. In this section we’'ll
provide an overview, in the form of a table, of the major data storage structures we’ll be discussing in this
book. This is a bird’s—eye view of a landscape that we’'ll be covering later at ground level, so don't be
alarmed if it looks a bit mysterious. Table 1.1 shows the advantages and disadvantages of the various data
structures described in this book.

TABLE 1.1 Characteristics of Data Structures

Data StructureAdvantagesDisadvantages

ArrayQuick insertion, very fast access if index known.Slow search, slow deletion, fixed size.
Ordered arrayQuicker search than unsorted array.Slow insertion and deletion, fixed size.
StackProvides last—in, first—out access.Slow access to other items.

QueueProvides first—in, first—out access.Slow access to other items.

Linked listQuick insertion, quick deletion.Slow search.

Binary treeQuick search, insertion, deletion (if tree remains balanced).Deletion algorithm is complex.
Red-black treeQuick search, insertion, deletion. Tree always balanced.Complex.

2-3-4 treeQuick search, insertion, deletion. Tree always balanced. Similar trees good for disk
storage.Complex.

Hash tableVery fast access if key known. Fast insertion.Slow deletion, access slow if key not known,
inefficient memory usage.

HeapFast insertion, deletion, access to largest item.Slow access to other items.

GraphModels real-world situations.Some algorithms are slow and complex.

(The data structures shown in this table, except the arrays, can be thought of as Abstract Data Types, or
ADTs. We'll describe what this means in Chapter 5, “Linked Lists.”)

Overview of Algorithms

Many of the algorithms we’'ll discuss apply directly to specific data structures. For most data structures, you
need to know how to

* Insert a new data item.
» Search for a specified item.
» Delete a specified item.

You may also need to know how to iterate through all the items in a data structure, visiting each one in turn
as to display it or perform some other action on it.

One important algorithm category is sorting. There are many ways to sort data, and we devote Chapter 3,
“Simple Sorting,” and Chapter 7, “Advanced Sorting,” to these algorithms.

The concept of recursion is important in designing certain algorithms. Recursion involves a method (a
function) calling itself. We'll look at recursion in Chapter 6, “Recursion.”

Overview of Data Structures 22


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

Definitions
Let's look at a few of the terms that we’ll be using throughout this book.
DATABASE

We'll use the term database to refer to all the data that will be dealt with in a particular situation. We'll
assume that each item in a database has a similar format. As an example, if you create an address book us
the Cardfile program, all the cards you've created constitute a database. The term file is sometimes used in
this sense, but because our database is often stored in the computer’'s memory rather than on a disk, this te
can be misleading.

The term database can also refer to a large program consisting of many data structures and algorithms, whi
relate to each other in complex ways. However, we'll restrict our use of the term to the more modest
definition.

RECORD

Records are the units into which a database is divided. They provide a format for storing information. In the
Cardfile program, each card represents a record. A record includes all the information about some entity, in
situation in which there are many such entities. A record might correspond to a person in a personnel file, a
car part in an auto supply inventory, or a recipe in a cookbook file.

FIELD

A record is usually divided into several fields. A field holds a particular kind of data. In the Cardfile program
there are really only two fields: the index line (above the double line) and the rest of the data (below the line
which both hold text. Generally, each field holds a particular kind of data. Figure 1.1 shows the index line
field as holding a person’s name.

More sophisticated database programs use records with more fields than Cardfile has. Figure 1.2 shows su
record, where each line represents a distinct field.

FIGURE 1.2 A record with multiple fields

In a Java program, records are usually represented by objects of an appropriate class. (In C, records would
probably be represented by structures.) Individual variables within an object represent data fields. Fields
within a class object are called fields in Java (but members in C and C++).

|Previou5iTabIe of Contentb\lext|

Definitions 23



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java
by Robert Lafore

. Waite Group Press, Macmillan Computer Publishing

DATA STRUCTURES

serienll  [SBN: 1571690956 Pub Date: 03/20/98

|Previous*TabIe of Contenth\lext|

KEY

To search for a record within a database you need to designate one of the record’s fields as a key. You'll
search for the record with a specific key. For example, in the Cardfile program you might search in the
index-line field for the key “Brown.” When you find the record with this key, you'll be able to access all its
fields, not just the key. We might say that the key unlocks the entire record.

In Cardfile you can also search for individual words or phrases in the rest of the data on the card, but this is
actually all one field. The program searches through the text in the entire field even if all you're looking for is
the phone number. This kind of text search isn't very efficient, but it's flexible because the user doesn’t neec
to decide how to divide the card into fields.

In a more full-featured database program, you can usually designate any field as the key. In Figure 1.2, for
example, you could search by zip code and the program would find all employees who live in that zip code.

SEARCH KEY

The key value you're looking for in a search is called the search key. The search key is compared with the k
field of each record in turn. If there’s a match, the record can be returned or displayed. If there’s no match, t
user can be informed of this fact.

Object-Oriented Programming

This section is for those of you who haven't been exposed to object—oriented programming. However, cave:
emptor. We cannot, in a few pages, do justice to all the innovative new ideas associated with OOP. Our goa
merely to make it possible for you to understand the example programs in the text. What we say here won't
transform you into an object-oriented Java programmer, but it should make it possible for you to follow the
example programs.

If after reading this section and examining some of the sample code in the following chapters you still find th
whole OOP business as alien as quantum physics, then you may need a more thorough exposure to OOP.
the reading list in Appendix B, “Further Reading,” for suggestions.

PROBLEMS WITH PROCEDURAL LANGUAGES

OOP was invented because procedural languages, such as C, Pascal, and BASIC, were found to be inadeg
for large and complex programs. Why was this?

The problems have to do with the overall organization of the program. Procedural programs are organized b
dividing the code into functions (called procedures or subroutines in some languages). Groups of functions
could form larger units called modules or files.

Crude Organizational Units

One difficulty with this kind of function—based organization was that it focused on functions at the expense o
data. There weren't many options when it came to data. To simplify slightly, data could be local to a particul:

KEY 24


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

function or it could be global—accessible to all functions. There was no way (at least not a flexible way) to
specify that some functions could access a variable and others couldn't.

This caused problems when several functions needed to access the same data. To be available to more tha
one function, such variables had to be global, but global data could be accessed inadvertently by any functic
in the program. This lead to frequent programming errors. What was needed was a way to fine-tune data

accessibility, allowing variables to be available to functions with a need to access it, but hiding it from others

Poor Modeling of the Real World

It is also hard to conceptualize a real-world problem using procedural languages. Functions carry out a task
while data stores information, but most real-world objects do both these things. The thermostat on your
furnace, for example, carries out tasks (turning the furnace on and off) but also stores information (the actuz
current temperature and the desired temperature).

If you wrote a thermostat control program, you might end up with two functions, furnace_on() and
furnace_off(), but also two global variables, currentTemp (supplied by a thermometer) and
desiredTemp (set by the user). However, these functions and variables wouldn’t form any sort of
programming unit; there would be no unit in the program you could call thermostat. The only such unit
would be in the programmer’s mind.

For large programs, which might contain hundreds of entities likethermostats, this procedural approach mac
things chaotic, error—prone, and sometimes impossible to implement at all.

OBJECTS IN A NUTSHELL

The idea of objects arose in the programming community as a solution to the problems with procedural
languages.

Objects

Here’s the amazing breakthrough that is the key to OOP: An object contains both functions and variables. A
thermostat object, for example, would contain not only furnace_on() and furnace_off()

functions, but also currentTemp and desiredTemp. Incidentally, before going further we should note

that in Java, functions are called methods and variables are called fields.

This new entity, the object, solves several problems simultaneously. Not only does a programming object
correspond more accurately to objects in the real world, it also solves the problem engendered by global da
in the procedural model. The furnace_on() and furnace_off() methods can access currentTemp

and desiredTemp. These variables are hidden from methods that are not part of thermostat, however,

so they are less likely to be accidentally changed by a rogue method.

|Previou4TabIe of Contentk\lext|

Poor Modeling of the Real World 25



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java
= by Robert Lafore
Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

|Previous*TabIe of Contenth\lext|

Classes

You might think that the idea of an object would be enough for one programming revolution, but there's
more. Early on, it was realized that you might want to make several objects of the same type. Maybe you're
writing a furnace control program for an entire apartment house, for example, and you need several dozen
thermostat objects in your program. It seems a shame to go to the trouble of specifying each one
separately. Thus, the idea of classes was born.

A class is a specification—a blueprint—for one or more objects. Here's how a thermostat class, for
example, might look in Java:

class thermostat

{

private float currentTemp();
private float desiredTemp();
public void furnace_on()

{
/I method body goes here
}

public void furnace_off()
/I method body goes here

} /I end class thermostat

The Java keyword class introduces the class specification, followed by the name you want to give the class;
here it's thermostat. Enclosed in curly brackets are the fields and methods (variables and functions) that
make up the class. We've left out the body of the methods; normally there would be many lines of program
code for each one.

C programmers will recognize this syntax as similar to a structure, while C++ programmers will notice that
it's very much like a class in C++, except that there’s no semicolon at the end. (Why did we need the
semicolon in C++ anyway?)

Creating Objects
Specifying a class doesn’t create any objects of that class. (In the same way specifying a structure in C doe:
create any variables.) To actually create objects in Java you must use the keyword new. At the same time a
object is created, you need to store a reference to it in a variable of suitable type; that is, the same type as t
class.

What's a reference? We'll discuss references in more detail later. In the meantime, think of it as a name for
object. (It's actually the object’s address, but you don’t need to know that.)

Here’s how we would create two references to type thermostat, create two new thermostat objects,
and store references to them in these variables:

thermostat therm1, therm2; // create two references

Classes 26


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction
therml = new thermostat(); // create two objects and
therm2 = new thermostat(); // store references to them

Incidentally, creating an object is also called instantiating it, and an object is often referred to as an instance
of a class.

Accessing Object Methods

Once you've specified a class and created some objects of that class, other parts of your program need to
interact with these objects. How do they do that?

Typically, other parts of the program interact with an object’'s methods (functions), not with its data (fields).
For example, to tell the therm2 object to turn on the furnace, we would say

therm2.furnace_on();
The dot operator (.) associates an object with one of its methods (or occasionally with one of its fields).

At this point we've covered (rather telegraphically) several of the most important features of OOP. To
summarize:

Objects contain both methods (functions) and fields (data).

» A class is a specification for any number of objects.

» To create an object, you use the keyword new in conjunction with the class name.
To invoke a method for a particular object you use the dot operator.

These concepts are deep and far-reaching. It's almost impossible to assimilate them the first time you see
them, so don't worry if you feel a bit confused. As you see more classes and what they do, the mist should
start to clear.

A RUNNABLE OBJECT-ORIENTED PROGRAM

Let's look at an object—oriented program that runs and generates actual output. It features a class called
BankAccount that models a checking account at a bank. The program creates an account with an opening
balance, displays the balance, makes a deposit and a withdrawal, and then displays the new balance. Here’
the listing for bank.java:

/I bank.java

/I demonstrates basic OOP syntax

/1 to run this program: C>java BankApp
import java.io.*; /I for 1/O
I T
class BankAccount

private double balance; /I account balance

public BankAccount(double openingBalance) // constructor

{

balance = openingBalance;

}

public void deposit(double amount) /I makes deposit

{

balance = balance + amount;

}

public void withdraw(double amount) // makes withdrawal

{

Accessing Object Methods 27



MWSS: Data Structures and Algorithms in Java:Introduction

balance = balance — amount;

}
public void display() /I displays balance
{
System.out.printin(“balance=" + balance);
}

} /I end class BankAccount
W T T
class BankApp

{

public static void main(String[] args)

{

BankAccount bal = new BankAccount(100.00); // create acct

System.out.print(“Before transactions, ”);

bal.display(); /I display balance
bal.deposit(74.35); /l make deposit
bal.withdraw(20.00); /I make withdrawal

System.out.print(“After transactions, ”);
bal.display(); /I display balance
} // end main()

} // end class BankApp

Here’s the output from this program:

Before transactions, balance=100
After transactions, balance=154.35

There are two classes in bank.java. The first one, BankAccount, contains the fields and methods for our
bank account. We'll examine it in detail in a moment. The second class, BankApp, plays a special role.

|PreviousiTabIe of Contentk\lext|

Accessing Object Methods 28



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

The BankApp Class

To execute the program from a DOS box, you type java BankApp following the C: prompt:
C:java BankApp

This tells the java interpreter to look in the BankApp class for the method called main(). Every Java
application must have a main() method; execution of the program starts at the beginning of main(), as you
can see in the bank.java listing. (You don’t need to worry yet about the String[] args argument in

main().)

The main() method creates an object of class BankAccount, initialized to a value of 100.00, which is the
opening balance, with this statement:

BankAccount bal = new BankAccount(100.00); // create acct

The System.out.print() method displays the string used as its argument, Before
transactions,, and the account displays its balance with the following statement:

bal.display();
The program then makes a deposit to, and a withdrawal from, the account:

bal.deposit(74.35);
bal.withdraw(20.00);

Finally, the program displays the new account balance and terminates.
The BankAccount Class

The only data field in the BankAccount class is the amount of money in the account, called balance.
There are three methods. The deposit() method adds an amount to the balance, withdrawal()
subtracts an amount, and display() displays the balance.

Constructors
The BankAccount class also features a constructor. A constructor is a special method that's called
automatically whenever a new object is created. A constructor always has exactly the same name as the cle
so this one is called BankAccount(). This constructor has one argument, which is used to set the opening

balance when the account is created.

A constructor allows a new object to be initialized in a convenient way. Without the constructor in this
program, you would have needed an additional call to deposit() to put the opening balance in the account.

The BankApp Class 29


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

Public and Private

Notice the keywords public and private in the BankAccount class. These keywords are access

modifiers and determine what methods can access a method or field. The balance field is preceded by
private. A field or method that is private can only be accessed by methods that are part of the same class.
Thus, balance cannot be accessed by statements in main(), because main() is not a method in
BankAccount.

However, all the methods in BankAccount have the access modifier public, so they can be accessed by
methods in other classes. That's why statements in main() can call deposit(), withdrawal(), and

display().

Data fields in a class are typically made private and methods are made public. This protects the data; it can’
be accidentally modified by methods of other classes. Any outside entity that needs to access data in a clas
must do so using a method of the same class. Data is like a queen bee, kept hidden in the middle of the hive
fed and cared for by worker—bee methods.

INHERITANCE AND POLYMORPHISM
We'll briefly mention two other key features of object—oriented programming: inheritance and polymorphism

Inheritance is the creation of one class, called the extended or derived class, from another class called the k
class. The extended class has all the features of the base class, plus some additional features. For example
secretary class might be derived from a more general employee class, and include a field called
typingSpeed that the employee class lacked.

In Java, inheritance is also called subclassing. The base class may be called the superclass, and the extenc
class may be called the subclass.

Inheritance makes it easy to add features to an existing class and is an important aid in the design of progra
with many related classes. Inheritance thus makes it easy to reuse classes for a slightly different purpose, a
key benefit of OOP.

Polymorphism involves treating objects of different classes in the same way. For polymorphism to work, the
different classes must be derived from the same base class. In practice, polymorphism usually involves a
method call that actually executes different methods for objects of different classes.

For example, a call to display() for a secretary object would invoke a display method in the
secretary class, while the exact same call for a manager object would invoke a different display method
in the manager class. Polymorphism simplifies and clarifies program design and coding.

For those not familiar with them, inheritance and polymorphism involve significant additional complexity. To
keep the focus on data structures and algorithms, we have avoided these features in our example programs
Inheritance and polymorphism are important and powerful aspects of OOP but are not necessary for the
explanation of data structures and algorithms.

|Previou4TabIe of Contentk\lext|

Public and Private 30



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

Software Engineering

In recent years, it has become fashionable to begin a book on data structures and algorithms with a chapter
software engineering. We don't follow that approach, but let's briefly examine software engineering and see
how it fits into the topics we discuss in this book.

Software engineering is the study of how to create large and complex computer programs, involving many
programmers. It focuses on the overall design of the program and on the creation of that design from the ne
of the end users. Software engineering is concerned with life cycle of a software project, which includes
specification, design, verification, coding, testing, production, and maintenance.

It's not clear that mixing software engineering on one hand, and data structures and algorithms on the other
actually helps the student understand either topic. Software engineering is rather abstract and is difficult to
grasp until you've been involved yourself in a large project. Data structures and algorithms, on the other har
is a huts—and-bolts discipline concerned with the details of coding and data storage.

Accordingly we focus on the nuts—and-bolts aspects of data structures and algorithms. How do they really
work? What structure or algorithm is best in a particular situation? What do they look like translated into Jav
code? As we noted, our intent is to make the material as easy to understand as possible. For further reading
we mention some books on software engineering in Appendix B.

Java for C++ Programmers

If you're a C++ programmer who has not yet encountered Java, you might want to read this section. We’'ll
mention several ways in which Java differs from C++.

This section is not intended to be a primer on Java. We don't even cover all the differences between C++ ar
Java. We're only interested in a few Java features that might make it hard for C++ programmers to figure ou
what’s going on in the example programs.

NO POINTERS

The biggest difference between C++ and Java is that Java doesn’t use pointers. To a C++ programmer this
may at first seem quite amazing. How can you get along without pointers?

Throughout this book we’ll be using pointer—free code to build complex data structures. You'll see that it's
not only possible, but actually easier than using C++ pointers.

Actually Java only does away with explicit pointers. Pointers, in the form of memory addresses, are still ther

under the surface. It's sometimes said that in Java, everything is a pointer. This is not completely true, but it
close. Let’s look at the details.

Software Engineering 31


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

References

Java treats primitive data types (such as int, float, and double) differently than objects. Look at these
two statements:

int intVar; /[ an int variable called intVar
BankAccount bcl; // reference to a BankAccount object

In the first statement, a memory location called intVar actually holds a numerical value such as 127
(assuming such a value has been placed there). However, the memory location bcl does not hold the data |
BankAccount object. Instead, it contains the address of a BankAccount object that is actually stored
elsewhere in memory. The name bcl is a reference to this object; it's not the object itself.

Actually, bcl won't hold a reference if it has not been assigned an object at some prior point in the program.
Before being assigned an object, it holds a reference to a special object called null. In the same way,

intVar won't hold a numerical value if it's never been assigned one. The compiler will complain if you try

to use a variable that has never been assigned a value.

In C++, the statement

BankAccount bcl;

actually creates an object; it sets aside enough memory to hold all the object’s data. In Java, all this stateme
creates is a place to put an object’'s memory address. You can think of a reference as a pointer with the syn
of an ordinary variable. (C++ has reference variables, but they must be explicitly specified with the &
symbol.)

Assignment

It follows that the assignment operator (=) operates differently with Java objects than with C++ objects. In
C++, the statement

bc2 = bcl;

copies all the data from an object called bcl into a different object called bc2. Following this statement are
two objects with the same data. In Java, on the other hand, this same assignment statement copies the mer
address that bcl refers to into bc2. Both bcl and bc2 now refer to exactly the same object; they are
references to it.

This can get you into trouble if you're not clear on what the assignment operator does. Following the
assignment statement shown above, the statement

bcl.withdraw(21.00);

and the statement

bc2.withdraw(21.00);
both withdraw $21 from the same bank account object.

Suppose you actually want to copy data from one object to another. In this case you must make sure you he
two separate objects to begin with, and then copy each field separately. The equal sign won't do the job.

References 32



MWSS: Data Structures and Algorithms in Java:Introduction

The new Operator

Any object in Java must be created using new. However, in Java, hew returns a reference, not a pointer as |
C++. Thus, pointers aren’t necessary to use new. Here’s one way to create an object:

BankAccount bal;
bal = new BankAccount();

Eliminating pointers makes for a more secure system. As a programmer, you can't find out the actual addre:
of bal, so you can't accidentally corrupt it. However, you probably don’'t need to know it unless you're
planning something wicked.

How do you release memory that you've acquired from the system with new and no longer need? In C++, y
use delete. In Java, you don’t need to worry about it. Java periodically looks through each block of

memory that was obtained with new to see if valid references to it still exist. If there are no such references,
the block is returned to the free memory store. This is called garbage collection.

In C++ almost every programmer at one time or another forgets to delete memory blocks, causing “memory
leaks” that consume system resources, leading to bad performance and even crashing the system. Memory
leaks can't happen in Java (or at least hardly ever).

|Previou4TabIe of Contentk\lext|

The new Operator 33



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

DT sTRUCTURSS Waite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

Arguments

In C++, pointers are often used to pass objects to functions to avoid the overhead of copying a large object.
Java, objects are always passed as references. This also avoids copying the object.

void method1()

{
BankAccount bal = new BankAccount(350.00);

method2(bal);
}

void method2(BankAccount acct)

{
}

In this code, the references bal and acct both refer to the same object.

Primitive data types, on the other hand, are always passed by value. That is, a new variable is created in the
function and the value of the argument is copied into it.

Equality and Identity

In Java, if you're talking about primitive types, the equality operator (==) will tell you whether two variables
have the same value:

int intVarl = 27;

int intVar2 = intVarl;

if(intVarl == intVar2)
System.out.printin(*They’re equal”);

This is the same as the syntax in C and C++, but in Java, because they use references, relational operators
work differently with objects. The equality operator, when applied to objects, tells you whether two reference
are identical; that is, whether they refer to the same object:

carPart cpl = new carPart(“fender”);

carPart cp2 = cpl;

if(cpl == cp2)
System.out.printin(“They’re Identical”);

In C++ this operator would tell you if two objects contained the same data. If you want to see whether two
objects contain the same data in Java, you must use the equals() method of the Object class:

carPart cpl = new carPart(“fender”);

carPart cp2 = cpl;

if( cpl.equals(cp2) )
System.out.printin(*They’re equal”);

This works because all objects in Java are implicitly derived from the Object class.

Arguments 34


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

OVERLOADED OPERATORS

This is easy: there are no overloaded operators in Java. In C++, you can redefine +, *, =, and most other
operators so they behave differently for objects of a particular class. No such redefinition is possible in Java
Instead, use a method such as add().

PRIMITIVE VARIABLE TYPES
The primitive or built—in variable types in Java are shown in Table 1.2.

TABLE 1.2 Primitive Data Types

NamesSize in BitsRange of Values

booleanltrue or false

byte8-128 to +127

char16'\u0000’ to \uFFFF’

short16-32,768 to +32,767

int32-2,147,483,648 to +2,147,483,647
long64-9,223,372,036,854,775,808 to +9,223,372,036,854,775,807
float32approximately IG°to 103 7 significant digits
double64approximately I88to 10°3%% 15 significant digits

Unlike C and C++, which use integers for true/false values, boolean is a distinct type in Java.

Type char is unsigned and uses two bytes to accommodate the Unicode character representation scheme,
which can handle international characters.

The int type varies in size in C and C++, depending on the specific computer platform; in Java an int is
always 32 bits.

Literals of type float use the suffix F (for example, 3.14159F); literals of type double need no suffix.
Literals of type long use suffix L (as in 45L); literals of the other integer types need no suffix.

Java is more strongly typed than C and C++; many conversions that were automatic in those languages req
an explicit cast in Java.

All types not shown in Table 1.2, such as String, are classes.

|Previou4TabIe of Contentk\lext|

OVERLOADED OPERATORS 35



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

DT sTRUCTURSS Waite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

INPUT/OUTPUT

For the console—-mode applications we’ll be using for example programs in this book, some clunky-looking
but effective constructions are available for input and output. They're quite different from the workhorse
cout and cin approach in C++ and printf() and scanf() in C.

All the input/output routines we show here require the line
import java.io.*;
at the beginning of your source file.

Output

You can send any primitive type (numbers and characters), and String objects as well, to the display with
these statements:

System.out.print(var); // displays var, no linefeed
System.out.printin(var); // displays var, then starts new line

The first statement leaves the cursor on the same line; the second statement moves it to the beginning of th
next line.

Because output is buffered, you'll need to use a printin() method as the last statement in a series to
actually display everything. It causes the contents of the buffer to be transferred to the display:

System.out.print(varl); // nothing appears
System.out.print(var2); // nothing appears
System.out.printin(var3); // varl, var2, and var3 are all displayed

You can also use System.out.flush() to cause the buffer to be displayed without going to a new line:

System.out.print(“Enter your name: “);
System.out.flush();

Inputting a String

Input is considerably more involved than output. In general, you want to read any input as a String object.
If you're actually inputting something else, such as a character or number, you then convert the String
object to the desired type.

String input is fairly baroque. Here’s how it looks:

public static String getString() throws IOException
{
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);
String s = br.readLine();
return s;

INPUT/OUTPUT 36


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

}

This method returns a String object, which is composed of characters typed on the keyboard and terminatec
with the [Enter] key.

Besides importing java.io.*, you'll also need to add throws IOException to all input methods, as

shown in the preceding code. The details of the InputStreamReader and BufferedReader classes

need not concern us here. This approach was introduced with version 1.1.3 of Sun Microsystems’ Java
Development Kit (JDK).

Earlier versions of the JDK used the System.in. object to read individual characters, which were then
concatenated to form a String object. The termination of the input was signaled by a newline ('\n")
character, generated when the user pressed [Enter].

Here’s the code for this older approach:

public String getString() throws IOException

{
String s ="";
int ch;

while( (ch=System.in.read()) != -1 && (char)ch I="\n")
s += (char)ch;
return s;

}

Here characters are read as integers, which allows the negative value —1 to signal an end-of-file (EOF). Th
while loop reads characters until an end-of-file or a newline occurs. You'll need to use this version of
getString() if you're using older versions of the JDK.

Inputting a Character

Suppose you want your program’s user to enter a character. (By enter we mean typing something and pres:
the [Enter] key.) The user may enter a single character or (incorrectly) more than one. Therefore, the safest
way to read a character involves reading a String and picking off its first character with the charAt()

method:

public static char getChar() throws IOException

{
String s = getString();
return s.charAt(0);

}

The charAt() method of the String class returns a character at the specified position in the String
object; here we get the first one. The approach shown avoids extraneous characters being left in the input
buffer. Such characters can cause problems with subsequent input.

|Previou4TabIe of Contentk\lext|

Inputting a Character 37



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

Inputting Integers

To read numbers, you make a String object as shown before and convert it to the type you want using a
conversion method. Here’s a method, getint(), that converts input into type int and returns it:

public int getint() throws IOException

String s = getString();
return Integer.parselnt(s);

}

The parselnt() method of class Integer converts the string to type int. A similar routine,
parseLong(), can be used to convert type long.

For simplicity, we don’t show any error—checking in the input routines in the example programs. The user
must type appropriate input or an exception will occur. With the code shown here the exception will cause tt
program to terminate. In a serious program you should analyze the input string before attempting to convert
and also catch any exceptions and process them appropriately.

Inputting Floating—Point Numbers

Types float and double can be handled in somewhat the same way as integers, but the conversion process
is more complex. Here’s how you read a number of type double:

public int getDouble() throws IOException

{

String s = getString();

Double aDub = Double.valueOf(s);
return aDub.doubleValue();

}

The String is first converted to an object of type Double (uppercase D), which is a “wrapper” class for
type double. A method of Double called doubleValue() then converts the object to type double.

For type float, there’s an equivalent Float class, which has equivalent valueOf() and
floatValue() methods.

Java Library Data Structures

The Java java.util package contains data structures, such as Vector (an extensible array), Stack,
Dictionary, and Hashtable. In this book we’ll largely ignore these built-in classes. We're interested in
teaching fundamentals, not in the details of a particular data—structure implementation.

However, such class libraries, whether those that come with Java or others available from third—party
developers, can offer a rich source of versatile, debugged storage classes. This book should equip you with
knowledge you'll need to know what sort of data structure you need and the fundamentals of how it works.
Then you can decide whether you should write your own classes or use pre—written library classes. If you us
a class library, you'll know which classes you need and whether a particular implementation works in your

Inputting Integers 38


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

situation.

Summary

A data structure is the organization of data in a computer’s memory or in a disk file.

» The correct choice of data structure allows major improvements in program efficiency.

» Examples of data structures are arrays, stacks, and linked lists.

An algorithm is a procedure for carrying out a particular task.

 In Java, an algorithm is usually implemented by a class method.

» Many of the data structures and algorithms described in this book are most often used to build
databases.

» Some data structures are used as programmer’s tools: they help execute an algorithm.

» Other data structures model real-world situations, such as telephone lines running between cities.
» A database is a unit of data storage comprising many similar records.

» A record often represents a real-world object, such as an employee or a car part.

» Arecord is divided into fields. Each field stores one characteristic of the object described by the
record.

» Akey is afield in a record that’s used to carry out some operation on the data. For example,
personnel records might be sorted by a LastName field.

» A database can be searched for all records whose key field has a certain value. This value is calle
a search key.

|Previou4TabIe of Contentk\lext|

Summary 39



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

Chapter 2
Arrays

The array is the most commonly used data storage structure; it's built into most programming languages.
Because they are so well-known, arrays offer a convenient jumping-off place for introducing data structure:
and for seeing how object-oriented programming and data structures relate to each other. In this chapter we
introduce arrays in Java and demonstrate a homemade array class.

We'll also examine a special kind of array, the ordered array, in which the data is stored in ascending (or
descending) key order. This arrangement makes possible a fast way of searching for a data item: the binary
search.

We’'ll start the chapter with a Java Workshop applet that shows insertion, search, and deletion in an array.
Then we’ll show some sample Java code that carries out these same operations.

Later we'll examine ordered arrays, again starting with a Workshop applet. This applet will demonstrate a
binary search. At the end of the chapter we’'ll talk about “Big O” notation, the most widely used measure of
algorithm efficiency.

The Array Workshop Applet

Suppose that you're coaching a kids—league baseball team and you want to keep track of which players are
present at the practice field. What you need is an attendance—monitoring program for your laptop; a progran
that maintains a database of the players who have shown up for practice. You can use a simple data structL
to hold this data. There are several actions you would like to be able to perform:

* Insert a player into the data structure when the player arrives at the field.
» Check to see if a particular player is present by searching for his or her number in the structure.
» Delete a player from the data structure when the player goes home.

These three operations will be the fundamental ones in most of the data storage structures we'll study in thi:
book.

In this book we’'ll often begin the discussion of a particular data structure by demonstrating it with a
Workshop applet. This will give you a feeling for what the structure and its algorithms do, before we launch
into a detailed discussion and demonstrate actual example code. The Workshop applet called Array shows
how an array can be used to implement insertion, searching, and deletion. Start up this applet, as described
Appendix A, with

C:appletviewer Array.html

Figure 2.1 shows what you'll see. There’s an array with 20 elements, 10 of which have data items in them.
You can think of these items as representing your baseball players. Imagine that each player has been issu
team shirt with the player's number on the back. To make things visually interesting, the shirts come in a wic
variety of colors. You can see each player's number and shirt color in the array.

Chapter 2 Arrays 40


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

FIGURE 2.1 The Array Workshop applet
This applet demonstrates the three fundamental procedures mentioned above:

» The Ins button inserts a new data item.
» The Find button searches for specified data item.
» The Del button deletes a specified data item.

Using the New button, you can create a new array of a size you specify. You can fill this array with as many
data items as you want using the Fill button. Fill creates a set of items and randomly assigns them numbers
and colors. The numbers are in the range 0 to 999. You can’t create an array of more than 60 cells, and you
can'’t, of course, fill more data items than there are array cells.

Also, when you create a new array, you'll need to decide whether duplicate items will be allowed; we’ll retur
to this question in a moment. The default value is no duplicates and the No Dups radio button is selected to
indicate this.

INSERTION

Start with the default arrangement of 20 cells and 10 data items and the No Dups button checked. You insel
baseball player’'s number into the array when the player arrives at the practice field, having been dropped of
by a parent. To insert a new item, press the Ins button once. You'll be prompted to enter the value of the itel

Enter key of item to insert

Type a number, say 678, into the text field in the upper-right corner of the applet. (Yes, it is hard to get three
digits on the back of a kid’s shirt.) Press Ins again and the applet will confirm your choice:

Will insert item with key 678

A final press of the button will cause a data item, consisting of this value and a random color, to appear in th
first empty cell in the array. The prompt will say something like:

Inserted item with key 678 at index 10

Each button press in a Workshop applet corresponds to a step that an algorithm carries out. The more step:
required, the longer the algorithm takes. In the Array Workshop applet the insertion process is very fast,
requiring only a single step. This is because a new item is always inserted in the first vacant cell in the array
and the algorithm knows where this is because it knows how many items are already in the array. The new
item is simply inserted in the next available space. Searching and deletion, however, are not so fast.

In no—duplicates mode you're on your honor not to insert an item with the same key as an existing item. If
you do, the applet displays an error message, but it won’t prevent the insertion. The assumption is that you
won’'t make this mistake.

|Previou§TabIe of Contenti!\lext|

INSERTION 41



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

SEARCHING

Click the Find button. You'll be prompted for the key number of the person you're looking for. Pick a number
that appears on an item somewhere in the middle of the array. Type in the number and repeatedly press the
Find button. At each button press, one step in the algorithm is carried out. You'll see the red arrow start at ¢
0 and move methodically down the cells, examining a new one each time you push the button. The index
number in the message

Checking next cell, index = 2
will change as you go along. When you reach the specified item, you’'ll see the message

Have found item with key 505

or whatever key value you typed in. Assuming duplicates are not allowed, the search will terminate as soon
an item with the specified key value is found.

If you have selected a key number that is not in the array, the applet will examine every occupied cell in the
array before telling you that it can't find that item.

Notice that (again assuming duplicates are not allowed) the search algorithm must look through an average
half the data items to find a specified item. Items close to the beginning of the array will be found sooner, an
those toward the end will be found later. If N is the number of items, then the average number of steps need
to find an item is N/2. In the worst—case scenario, the specified item is in the last occupied cell, and N steps
will be required to find it.

As we noted, the time an algorithm takes to execute is proportional to the number of steps, so searching tak
much longer on the average (N/2 steps) than insertion (one step).

DELETION

To delete an item you must first find it. After you type in the number of the item to be deleted, repeated buttc
presses will cause the arrow to move, step by step, down the array until the item is located. The next button
press deletes the item and the cell becomes empty. (Strictly speaking, this step isn't necessary because we
going to copy over this cell anyway, but deleting the item makes it clearer what's happening.)

Implicit in the deletion algorithm is the assumption that holes are not allowed in the array. A hole is one or
more empty cells that have filled cells above them (at higher index numbers). If holes are allowed, all the
algorithms become more complicated because they must check to see if a cell is empty before examining it:
contents. Also, the algorithms become less efficient because they must waste time looking at unoccupied ce
For these reasons, occupied cells must be arranged contiguously: no holes allowed.

Therefore, after locating the specified item and deleting it, the applet must shift the contents of each
subsequent cell down one space to fill in the hole. Figure 2.2 shows an example.

SEARCHING 42


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

FIGURE 2.2 Deleting an item

If the item in cell 5 (38, in the figure) is deleted, then the item in 6 would shift into 5, the item in 7 would shift
into 6, and so on to the last occupied cell. During the deletion process, once the item is located, the applet v
shift down the contents of the higher—indexed cells as you continue to press the Del button.

A deletion requires (assuming no duplicates are allowed) searching through an average of N/2 elements, ar
then moving the remaining elements (an average of N/2 moves) to fill up the resulting hole. This is N steps i
all.

THE DUPLICATES ISSUE

When you design a data storage structure, you need to decide whether items with duplicate keys will be
allowed. If you're talking about a personnel file and the key is an employee number, then duplicates don't
make much sense; there’s no point in assigning the same number to two employees. On the other hand, if tl
key value is last names, then there’s a distinct possibility several employees will have the same key value, s
duplicates should be allowed.

Of course, for the baseball players, duplicate numbers should not be allowed. It would be hard to keep track
the players if more than one wore the same number.

The Array Workshop applet lets you select either option. When you use New to create a new array, you're
prompted to specify both its size and whether duplicates are permitted. Use the radio buttons Dups OK or N
Dups to make this selection.

If you're writing a data storage program in which duplicates are not allowed, you may need to guard against
human error during an insertion by checking all the data items in the array to ensure that none of them alrea
has the same key value as the item being inserted. This is inefficient, however, and increases the number o
steps required for an insertion from one to N. For this reason, our applet does not perform this check.

Searching with Duplicates

Allowing duplicates complicates the search algorithm, as we noted. Even if it finds a match, it must continue
looking for possible additional matches until the last occupied cell. At least this is one approach; you could
also stop after the first match. It depends on whether the question is “Find me everyone with blue eyes” or
“Find me someone with blue eyes.”

When the Dups OK button is selected, the applet takes the first approach, finding all items matching the
search key. This always requires N steps, because the algorithm must go all the way to the last occupied ce

Insertion with Duplicates
Insertion is the same with duplicates allowed as when they’re not: a single step inserts the new item. But

remember, if duplicates are not allowed, and there’s a possibility the user will attempt to input the same key
twice, you may need to check every existing item before doing an insertion.

|PreviousiTabIe of Contentb\lext|

THE DUPLICATES ISSUE 43



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

Deletion with Duplicates

Deletion may be more complicated when duplicates are allowed, depending on exactly how “deletion” is
defined. If it means to delete only the first item with a specified value, then, on the average, only N/2
comparisons and N/2 moves are necessary. This is the same as when no duplicates are allowed.

But if deletion means to delete every item with a specified key value, then the same operation may require
multiple deletions. This will require checking N cells and (probably) moving more than N/2 cells. The averag
depends on how the duplicates are distributed throughout the array.

The applet assumes this second meaning and deletes multiple items with the same key. This is complicated
because each time an item is deleted, subsequent items must be shifted farther. For example, if three items
deleted, then items beyond the last deletion will need to be shifted three spaces. To see how this works, set
applet to Dups OK and insert three or four items with the same key. Then try deleting them.

Table 2.1 shows the average number of comparisons and moves for the three operations, first where no
duplicates are allowed and then where they are allowed. N is the number of items in the array. Inserting a ne
item counts as one move.

TABLE 2.1 Duplicates OK Versus No Duplicates

No DuplicatesDuplicates OK

SearchN/2 comparisonsN comparisons

InsertionNo comparisons, one moveNo comparisons, one move
DeletionN/2 comparisons, N/2 movesN comparisons, more than N/2 moves

You can explore these possibilities with the Array Workshop applet.

The difference between N and N/2 is not usually considered very significant, except when fine-tuning a
program. Of more importance, as we’'ll discuss toward the end of this chapter, is whether an operation takes
one step, N steps, log(N) steps, Grteps.

NOT TOO SWIFT

One of the significant things to notice when using the Array applet is the slow and methodical nature of the
algorithms. With the exception of insertion, the algorithms involve stepping through some or all of the cells ir

the array. Different data structures offer much faster (but more complex) algorithms. We’'ll see one, the binal
search on an ordered array, later in this chapter, and others throughout this book.

The Basics of Arrays in Java

The preceding section showed graphically the primary algorithms used for arrays. Now we’ll see how to writ
programs to carry out these algorithms, but we first want to cover a few of the fundamentals of arrays in Jav

If you're a Java expert, you can skip ahead to the next section, but even C and C++ programmers should st
around. Arrays in Java use syntax similar to that in C and C++ (and not that different from other languages),
but there are nevertheless some unigue aspects to the Java approach.

Deletion with Duplicates 44


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

CREATING AN ARRAY

As we noted in Chapter 1, there are two kinds of data in Java: primitive types (such as int and double),
and objects. In many programming languages (even object—oriented ones like C++) arrays are a primitive
type, but in Java they’re treated as objects. Accordingly you must use the new operator to create an array:

int[] intArray; /I defines a reference to an array
intArray = new int[100]; // creates the array, and
/I sets intArray to refer to it

or the equivalent single—statement approach:
int[] intArray = new int[100];

The [] operator is the sign to the compiler we're naming an array object and not an ordinary variable. You
can also use an alternative syntax for this operator, placing it after the name instead of the type:

int intArray[] = new int[100]; // alternative syntax
However, placing the [] after the int makes it clear that the [] is part of the type, not the name.

Because an array is an object, its name—intArray in the code above—is a reference to an array; it's not the
array itself. The array is stored at an address elsewhere in memory, and intArray holds only this address.

Arrays have a length field, which you can use to find the size, in bytes, of an array:
int arrayLength = intArray.length; // find array length

Remember that this is the total number of bytes occupied by the array, not the number of data items you ha
placed in it. As in most programming languages, you can’t change the size of an array after it's been createc

ACCESSING ARRAY ELEMENTS

Array elements are accessed using square brackets. This is similar to how other languages work:

temp = intArray[3]; // get contents of fourth element of array
intArray[7] = 66; // insert 66 into the eighth cell

Remember that in Java, as in C and C++, the first element is numbered 0, so that the indices in an array of
elements run from 0 to 9.

If you use an index that's less than 0 or greater than the size of the array less 1, you'll get the “Array Index
Out of Bounds” runtime error. This is an improvement on C and C++, which don’t check for out—of-bounds
indices, thus causing many program bugs.

INITIALIZATION

Unless you specify otherwise, an array of integers is automatically initialized to 0 when it's created. Unlike
C++, this is true even of arrays defined within a method (function). If you create an array of objects, like this:

autoData[] carArray = new autoData[4000];
then, until they’re given explicit values, the array elements contain the special null object. If you attempt to

access an array element that contains null, you'll get the runtime error “Null Pointer Assignment.” The
moral is to make sure you assign something to an element before attempting to access it.

CREATING AN ARRAY 45



MWSS: Data Structures and Algorithms in Java:Introduction

You can initialize an array of a primitive type to something besides 0 using this syntax:

int[] intArray = {0, 3, 6, 9, 12, 15, 18, 21, 24, 27 };

Perhaps surprisingly, this single statement takes the place of both the reference declaration and the use of |
to create the array. The numbers within the curly braces are called the initialization list. The size of the array
is determined by the number of values in this list.

|PreviousiTabIe of Contentk\lext|

CREATING AN ARRAY 46



MWSS: Data Structures and Algorithms in Java:Introduction

[ ===l \\WSS: Data Structures and Algorithms in Java

by Robert Lafore

oA sTRUCTURES Waite Group Press, Macmillan Computer Publishing
getteall ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previou4TabIe of Contenth\lext|

AN ARRAY EXAMPLE

Let's look at some example programs that show how an array can be used. We'll start with an old—fashione
procedural version, and then show the equivalent object-oriented approach. Listing 2.1 shows the
old-fashioned version, called array.java.

Listing 2.1 array.java

/[ array.java
/I demonstrates Java arrays
/I to run this program: C>java ArrayApp

import java.io.*; /I for 1/O
U T
class ArrayApp
public static void main(String[] args) throws IOException

{

int[] arr; Il reference

arr = new int[100]; /l make array

int nElems = 0; /I number of items

int j; /I'loop counter

int searchKey; Il key of item to search for
I

arr[0] = 77, /I insert 10 items

arr[1] = 99;

arr[2] = 44;

arr[3] = 55;

arr[4] = 22;

arr[5] = 88;

arr[6] = 11,

arr[7] = 00;

arr[8] = 66;

arr[9] = 33;

nElems = 10; // now 10 items in array

1
for(j=0; j<nElems; j++)  // display items
System.out.print(arr[j] + “ );
System.out.printin(*”);

I
searchKey = 66; /I find item with key 66
for(j=0; j<nElems; j++) /I for each element,

if(arr[j] == searchKey) /l found item?
break; Il yes, exit before end
if(j == nElems) / at the end?
System.out.printin(“Can’t find “ + searchKey); // yes
else
System.out.printin(*Found “ + searchKey);  // no
I

searchKey = 55; I/l delete item with key 55
for(j=0; j<nElems; j++) I look for it
if(arr[j] == searchKey)
break;

for(int k=j; k<nElems; k++) /I move higher ones down
arr[k] = arr[k+1];
nElems—-; /I decrement size

AN ARRAY EXAMPLE 47


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

I
for(j=0; j<nElems; j++)  // display items
System.out.print( arrfj] + “ *);
System.out.printin(*”);
} 1/ end main()
} // end class ArrayApp

In this program, we create an array called arr, place 10 data items (kids’ numbers) in it, search for the item
with value 66 (the shortstop, Louisa), display all the items, remove the item with value 55 (Freddy, who had
dentist appointment), and then display the remaining nine items. The output of the program looks like this:

77 99 44 55 22 88 11 0 66 33
Found 66
7799 44228811066 33

The data we're storing in this array is type int. We've chosen a primitive type to simplify the coding.
Generally the items stored in a data structure consist of several fields, so they are represented by objects ra
than primitive types. We’'ll see an example of this toward the end of this chapter.
Insertion
Inserting an item into the array is easy; we use the normal array syntax
arr[0] = 77;
We also keep track of how many items we've inserted into the array with the nElems variable.
Searching
The searchKey variable holds the value we're looking for. To search for an item, we step through the array,
comparing searchKey with each element. If the loop variable j reaches the last occupied cell with no

match being found, then the value isn't in the array. Appropriate messages are displayed: “Found 66" or
“Can’t find 27.”

Deletion

Deletion begins with a search for the specified item. For simplicity we assume (perhaps rashly) that the item
present. When we find it, we move all the items with higher index values down one element to fill in the
“hole” left by the deleted element, and we decrement nElems. In a real program, we'd also take appropriate
action if the item to be deleted could not be found.

Display

Displaying all the elements is straightforward: we step through the array, accessing each one with arr]j]
and displaying it.

Program Organization

The organization of array.java leaves something to be desired. There is only one class, ArrayApp, and
this class has only one method, main(). The program is essentially an old—fashioned procedural program.
Let's see if we can make it easier to understand (among other benefits) by making it more object-oriented.

We're going to provide a gradual introduction to an object-oriented approach, using two steps. In the first,
we’ll separate the data storage structure (the array) from the rest of the program. This remaining part of the
program will become a user of the structure. In the second step, we’'ll improve the communication between
the storage structure and its user.

Insertion 48



Insertion

MWSS: Data Structures and Algorithms in Java:Introduction

|PreviousiTabIe of Contentk\lext|

49



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java
= by Robert Lafore
DT sTRUCTURSS Waite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

|Previous*TabIe of Contenth\lext|

Dividing a Program into Classes

The array.java program essentially consisted of one big method. We can reap many benefits by dividing

the program into classes. What classes? The data storage structure itself is one candidate, and the part of t
program that uses this data structure is another. By dividing the program into these two classes we can clari
the functionality of the program, making it easier to design and understand (and in real programs to modify
and maintain).

In array.java we used an array as a data storage structure, but we treated it simply as a language element.
Now we'll encapsulate the array in a class, called LowArray. We'll also provide class methods by which
objects of other classes (the LowArrayApp class in this case) can access the array. These methods allow
communication between LowArray and LowArrayApp.

Our first design of the LowArray class won't be entirely successful, but it will demonstrate the need for a
better approach. The lowArray.java program in Listing 2.2 shows how it looks.

Listing 2.2 The lowArray.java Program

/I lowArray.java

/I demonstrates array class with low-level interface
/I to run this program: C>java LowArrayApp

import java.io.*; /I for I/O
T

class LowArray

private double[] a; Il ref to array a
public LowArray(int size) I/ constructor

a = new double[size];
}
// put element into array
public void setElem(int index, double value)

afindex] = value;

}
public double getElem(int index) // get element from array

return afindex];
}
} // end class LowArray
T T
class LowArrayApp
{
public static void main(String[] args)
{
LowArray arr; Il reference
arr = new LowArray(100);  // create LowArray object
int nElems = 0; / number of items in array
int j; /l'loop variable
arr.setElem(0, 77); /l'insert 10 items

Dividing a Program into Classes 50


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

arr.setElem(1, 99);

arr.setElem(2, 44);

arr.setElem(3, 55);

arr.setElem(4, 22);

arr.setElem(5, 88);

arr.setElem(6, 11);

arr.setElem(7, 00);

arr.setElem(8, 66);

arr.setElem(9, 33);

nElems = 10; // now 10 items in array
Il

for(j=0; j<nElems; j++)  // display items
System.out.print(arr.getElem(j) + “ “);
System.out.printin(*");
I

int searchKey = 26; /I search for data item
for(j=0; j<nElems; j++) /I for each element,
if(arr.getElem(j) == searchKey) // found item?
break;
if(j == nElems) /I no
System.out.printin(“Can't find “ + searchKey);
else Il'yes

System.out.printin(*Found “ + searchKey);

Il
/I delete value 55

for(j=0; j<nElems; j++) I look for it
if(arr.getElem(j) == 55)
break;

for(int k=j; k<nElems; k++) /I move higher ones down
arr.setElem(k, arr.getElem(k+1) );
nElems—-; /I decrement size
I

for(j=0; j<nElems; j++)  // display items
System.out.print( arr.getElem(j) +**);
System.out.printin(*”);
} 1/ end main()
} // end class LowArrayApp

The output from this program is similar to that from array.java, except that we try to find a non—-existent
key value (26) before deleting the item with the key value 55:

77 99 44 5522 88 11 0 66 33
Can't find 26
7799442288 11066 33

CLASSES LowArray AND LowArrayApp

In lowArray.java, we essentially wrap the class LowArray around an ordinary Java array. The array is
hidden from the outside world inside the class; it's private, so only LowArray class methods can access it.
There are three LowArray methods: setElem() and getElem(), which insert and retrieve an element,
respectively; and a constructor, which creates an empty array of a specified size.

Another class, LowArrayApp, creates an object of the LowArray class and uses it to store and manipulate
data. Think of LowArray as a tool, and LowArrayApp as a user of the tool. We've divided the program
into two classes with clearly defined roles. This is a valuable first step in making a program object-oriented.

A class used to store data objects, as is LowArray in the lowArray.java program, is sometimes called a

container class. Typically, a container class not only stores the data but provides methods for accessing the
data, and perhaps also sorting it and performing other complex actions on it.

CLASSES LowArray AND LowArrayApp 51



MWSS: Data Structures and Algorithms in Java:Introduction

|PreviousiTabIe of Contentk\lext|

CLASSES LowArray AND LowArrayApp

52



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

Class Interfaces

We've seen how a program can be divided into separate classes. How do these classes interact with each
other? Communication between classes, and the division of responsibility between them, are important
aspects of object-oriented programming.

This is especially true when a class may have many different users. Typically a class can be used over and
over by different users (or the same user) for different purposes. For example, it's possible that someone
might use the LowArray class in some other program to store the serial numbers of their traveler's checks.
The class can handle this just as well as it can store the numbers of baseball players.

If a class is used by many different programmers, the class should be designed so that it's easy to use. The
way that a class user relates to the class is called the class interface. Because class fields are typically prive
when we talk about the interface we usually mean the class methods: what they do and what their argumen
are. It's by calling these methods that a class user interacts with an object of the class. One of the important
advantages conferred by object-oriented programming is that a class interface can be designed to be as
convenient and efficient as possible. Figure 2.3 is a fanciful interpretation of the LowArray interface.

e
£ g

FIGURE 2.3 The LowArray interface

NOT SO CONVENIENT

The interface to the LowArray class in lowArray.java is not particularly convenient. The methods
setElem() and getElem() operate on a low conceptual level, performing exactly the same tasks as the
[] operator in an ordinary Java array. The class user, represented by the main() method in the
LowArrayApp class, ends up having to carry out the same low-level operations it did in the non—class
version of an array in the array.java program. The only difference was that it related to setElem() and
getElem() instead of the [] operator. It's not clear that this is an improvement.

Also notice that there’s no convenient way to display the contents of the array. Somewhat crudely, the
LowArrayApp class simply uses a for loop and the getElem() method for this purpose. We could avoid
repeated code by writing a separate method for lowArrayApp that it could call to display the array contents,
but is it really the responsibility of the lowArrayApp class to provide this method?

Thus lowArray.java demonstrates how you can divide a program into classes, but it really doesn’t buy us
too much in practical terms. Let’s see how to redistribute responsibilities between the classes to obtain more
of the advantages of OOP.

WHO’S RESPONSIBLE FOR WHAT?

In the lowArray.java program, the main() routine in the LowArrayApp class, the user of the data
storage structure must keep track of the indices to the array. For some users of an array who need random

Class Interfaces 53


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

access to array elements and don’t mind keeping track of the index numbers, this arrangement might make
sense. For example, sorting an array, as we’'ll see in the next chapter, can make efficient use of this direct
“hands-on” approach.

However, in a typical program the user of the data storage device won't find access to the array indices to b
helpful or relevant. In the Cardfile program in Chapter 1, for example, if the card data were stored in an arra;
and you wanted to insert a new card, it would be easier not to have to worry about exactly where in the arra
is going to go.

THE highArray.java EXAMPLE

Our next example program shows an improved interface for the storage structure class, called HighArray.
Using this interface, the class user (the HighArrayApp class) no longer needs to think about index numbers.
The setElem() and getElem() methods are gone, replaced by insert(), find(), and delete().

These new methods don't require an index number as an argument, because the class takes responsibility
handling index numbers. The user of the class (HighArrayApp) is free to concentrate on the what instead of
the how: what's going to be inserted, deleted, and accessed, instead of exactly how these activities are carr
out.

Figure 2.4 shows the HighArray interface and Listing 2.3 shows the highArray.java program.

FIGURE 2.4 The HighArray interface

Listing 2.3 The highArray.java Program

/I highArray.java

/I demonstrates array class with high—level interface
/I to run this program: C>java HighArrayApp

import java.io.*; /I for I/O

HHHT T

class HighArray

{
private double[] a; /I ref to array a
private int nElems; /I number of data items
Il
public HighArray(int max) /I constructor
{
a = new double[max]; Il create the array
nElems = 0; /I no items yet
}

I
public boolean find(double searchKey)
{ /I find specified value
int j;
for(j=0; j<nElems; j++) // for each element,
if(afj] == searchKey) /I found item?

break; /I exit loop before end
if(j == nElems) /I gone to end?
return false; /I 'yes, can’t find it
else
return true; /I no, found it

} 1/ end find()
I
public void insert(double value) // put element into array

{
a[nElems] = value; Il insert it
nElems++; /I increment size

THE highArray.java EXAMPLE 54



MWSS: Data Structures and Algorithms in Java:Introduction

}
I

public boolean delete(double value)
L
int j;
for(j=0; j<nElems; j++)  // look for it
if( value == a[j] )

break;
if((==nElems) /I can't find it
return false;
else /l found it
{

for(int k=j; k<nElems; k++) // move higher ones down
alk] = ak+1];

nElems—-; /l decrement size
return true;
}
} I/ end delete()
I
public void display() /I displays array contents
{

for(int j=0; j<nElems; j++) /I for each element,
System.out.print(a[j] + ““); // display it
System.out.printin(*");

}
I

} // end class HighArray
T
class HighArrayApp

{

public static void main(String[] args)
{
int maxSize = 100; I array size
HighArray arr; /I reference to array

arr = new HighArray(maxSize); // create the array

arr.insert(77); /l insert 10 items
arr.insert(99);
arr.insert(44);
arr.insert(55);
arr.insert(22);
arr.insert(88);
arr.insert(11);
arr.insert(00);
arr.insert(66);
arr.insert(33);

arr.display(); /[ display items

int searchKey = 35; /I search for item
if( arr.find(searchKey) )
System.out.printin(*Found “ + searchKey);
else
System.out.printin(“Can't find “ + searchKey);

arr.delete(00); I delete 3 items
arr.delete(55);

arr.delete(99);

arr.display(); /I display items again

} // end main()
} // end class HighArrayApp

|PreviousiTabIe of Contentk\lext|

THE highArray.java EXAMPLE

55



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

The HighArray class is now wrapped around the array. In main(), we create an array of this class and

carry out almost the same operations as in the lowArray.java program: we insert 10 items, search for an
item—one that isn’t there—and display the array contents. Because it's so easy, we delete three items (0, 5
and 99) instead of one, and finally display the contents again. Here’s the output:

77 99 44 552288 11 0 66 33
Can't find 35
77 44 22 88 11 66 33

Notice how short and simple main() is. The details that had to be handled by main() in
lowArray.java are now handled by HighArray class methods.

In the HighArray class, the find() method looks through the array for the item whose key value was
passed to it as an argument. It returns true or false, depending on whether it finds the item or not.

The insert() method places a hew data item in the next available space in the array. A field called
nElems keeps track of the number of array cells that are actually filled with data items. The main() method
no longer needs to worry about how many items are in the array.

The delete() method searches for the element whose key value was passed to it as an argument, and when
it finds it, shifts all the elements in higher index cells down one cell, thus writing over the deleted value; it
then decrements nElems.

We've also included a display() method, which displays all the values stored in the array.
THE USER'’S LIFE MADE EASIER

In lowArray.java, the code in main() to search for an item took eight lines; in highArray.java, it

takes only one. The class user, the HighArrayApp class, need not worry about index numbers or any other
array details. Amazingly, the class user does not even need to know what kind of data structure the
HighArray class is using to store the data. The structure is hidden behind the interface. In fact, in the next
section, we'll see the same interface used with a somewhat different data structure.

ABSTRACTION
The process of separating the how from the what—how an operation is performed inside a class, as oppose
what'’s visible to the class user—is called abstraction. Abstraction is an important aspect of software

engineering. By abstracting class functionality we make it easier to design a program, because we don’t nee
to think about implementation details at too early a stage in the design process.

The Ordered Workshop Applet

Imagine an array in which the data items are arranged in order of ascending key values; that is, with the
smallest value at index 0, and each cell holding a value larger than the cell below. Such an array is called ar
ordered array.

THE USER'’S LIFE MADE EASIER 56


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

When we insert an item into this array, the correct location must be found for the insertion: just above a
smaller value and just below a larger one. Then all the larger values must be moved up to make room.

Why would we want to arrange data in order? One advantage is that we can speed up search times
dramatically using a binary search.

Start the Ordered Workshop applet. You'll see an array; it's similar to the one in the Array Workshop applet,
but the data is ordered. Figure 2.5 shows how this looks.

FIGURE 2.5 The Ordered Workshop applet

In the ordered array we’ve chosen to not allow duplicates. As we saw earlier, this speeds up searching
somewhat but slows down insertion.

LINEAR SEARCH

Two search algorithms are available for the Ordered Workshop applet: linear and binary. Linear search is th
default. Linear searches operate in much the same way as the searches in the unordered array in the Array
applet: the red arrow steps along, looking for a match. The difference is that in the ordered array, the searct
quits if an item with a larger key is found.

Try this out. Make sure the Linear radio button is selected. Then use the Find button to search for a
non-existent value that, if it were present, would fit somewhere in the middle of the array. In Figure 2.5, this
might be 400. You'll see that the search terminates when the first item larger than 400 is reached, it's 427 in
the figure. The algorithm knows there’s no point looking further.

Try out the Ins and Del buttons as well. Use Ins to insert an item with a key value that will go somewhere in
the middle of the existing items. You'll see that insertion requires moving all the items with larger key values
larger than the item being inserted.

Use the Del button to delete an item from the middle of the array. Deletion works much the same as it did in
the Array applet, shifting items with higher index numbers down to fill in the hole left by the deletion. In the
ordered array, however, the deletion algorithm can quit partway through if it doesn’t find the item, just as the
search routine can.

BINARY SEARCH

The payoff for using an ordered array comes when we use a binary search. This kind of search is much fast
than a linear search, especially for large arrays.

The Guess—a—Number Game

Binary search uses the same approach you did as a kid (if you were smart) to guess a humber in the
well-known children’s guessing game. In this game, a friend asks you to guess a number she’s thinking of
between 1 and 100. When you guess a number, she’ll tell you one of three things: your guess is larger than
number she’s thinking of, it's smaller, or you guessed correctly.

To find the number in the fewest guesses, you should always start by guessing 50. If she says your guess is

too low, you deduce the number is between 51 and 100, so your next guess should be 75 (halfway between
and 100). If she says it's too high, you deduce the number is between 1 and 49, so your next guess should |

LINEAR SEARCH 57



MWSS: Data Structures and Algorithms in Java:Introduction

25.

Each guess allows you to divide the range of possible values in half. Finally, the range is only one number
long, and that's the answer.

Notice how few guesses are required to find the number. If you used a linear search, guessing first 1, then Z
then 3, and so on, it would take you, on the average, 50 guesses to find the number. In a binary search eacl
guess divides the range of possible values in half, so the number of quesses required is far fewer. Table 2.2
shows a game session when the number to be guessed is 33.

TABLE 2.2 Guessing a Number

Step NumberNumber GuessedResultRange of Possible Values
0 1-100

150Too high1-49

225Too low26-49

337Too high26-36

431Too low32-36

534Too high32-33

632Too low33-33

733Correct

The correct number is identified in only seven guesses. This is the maximum. You might get lucky and gues
the number before you've worked your way all the way down to a range of one. This would happen if the
number to be guessed was 50, for example, or 34.

|Previou4TabIe of Contentk\lext|

LINEAR SEARCH 58



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

DT sTRUCTURSS Waite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

Binary Search in the Ordered Workshop Applet

To perform a binary search with the Ordered Workshop applet, you must use the New button to create a ne
array. After the first press you'll be asked to specify the size of the array (maximum 60) and which kind of
searching scheme you want: linear or binary. Choose binary by clicking the Binary radio button. After the
array is created, use the Fill button to fill it with data items. When prompted, type the amount (not more than
the size of the array). A few more presses fills in all the items.

Once the array is filled, pick one of the values in the array and see how the Find button can be used to locat
it. After a few preliminary presses, you'll see the red arrow pointing to the algorithm’s current guess, and
you'll see the range shown by a vertical blue line adjacent to the appropriate cells. Figure 2.6 depicts the
situation when the range is the entire array.

At each press of the Find button the range is halved and a new guess is chosen in the middle of the range.
Figure 2.7 shows the next step in the process.

FIGURE 2.7 Range in step 2 of binary search
Even with a maximum array size of 60 items, a half-dozen button presses suffices to locate any item.

Try using the binary search with different array sizes. Can you figure out how many steps are necessary
before you run the applet? We’'ll return to this question in the last section of this chapter.

Notice that the insertion and deletion operations also employ the binary search (when it's selected). The pla
where an item should be inserted is found with a binary search, as is an item to be deleted. In this applet, ite
with duplicate keys are not permitted.

Java Code for an Ordered Array

Let's examine some Java code that implements an ordered array. We’'ll use the OrdArray class to
encapsulate the array and its algorithms. The heart of this class is the find() method, which uses a binary
search to locate a specified data item. We’'ll examine this method in detail before showing the complete
program.

Binary Search in the Ordered Workshop Applet 59


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

BINARY SEARCH WITH THE find() METHOD

The find() method searches for a specified item by repeatedly dividing in half the range of array elements
to be considered. Here’s how this method looks:

public int find(double searchKey)

{

int lowerBound = 0;

int upperBound = nElems-1;

int curln;

while(true)
{
curln = (lowerBound + upperBound ) / 2;
if(a[curin]==searchKey)

return curln; /[ found it
else if(lowerBound > upperBound)
return nElems; /I can’t find it
else /Il divide range
{

if(a[curln] < searchKey)
lowerBound = curln + 1; // it's in upper half
else
upperBound = curln = 1; // it's in lower half
} /l end else divide range
} I/ end while
} // end find()

The method begins by setting the lowerBound and upperBound variables to the first and last occupied
cells in the array. This specifies the range where the item we’re looking for, searchKey, may be found.
Then, within the while loop, the current index, curln, is set to the middle of this range.

If we're lucky, curln may already be pointing to the desired item, so we first check if this is true. If it is,
we’ve found the item so we return with its index, curln.

Each time through the loop we divide the range in half. Eventually it will get so small it can’t be divided any
more. We check for this in the next statement: If lowerBound is greater than upperBound, the range has
ceased to exist. (When lowerBound equals upperBound the range is one and we need one more pass
through the loop.) We can't continue the search without a valid range, but we haven’t found the desired item
so we return nElems, the total number of items. This isn’t a valid index, because the last filled cell in the
array is nElems—1. The class user interprets this value to mean that the item wasn’t found.

If curln is not pointing at the desired item, and the range is still big enough, then we're ready to divide the
range in half. We compare the value at the current index, a[curln], which is in the middle of the range,
with the value to be found, searchKey.

If searchKey is larger, then we know we should look in the upper half of the range. Accordingly, we move
lowerBound up to curln.

Actually we move it one cell beyond curln, because we've already checked curln itself at the beginning
of the loop.

If searchKey is smaller than afcurln], we know we should look in the lower half of the range. So we
move upperBound down to one cell below curln. Figure 2.8 shows how the range is altered in these two
situations.

BINARY SEARCH WITH THE find() METHOD 60



MWSS: Data Structures and Algorithms in Java:Introduction

FIGURE 2.8 Dividing the range in a binary search

|PreviousiTabIe of Contentk\lext|

BINARY SEARCH WITH THE find() METHOD

61



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java
by Robert Lafore

DAL ST u:,\ Waite Group Press, Macmillan Computer Publishing
el [SBN: 1571690956 Pub Date: 03/20/98

|Previous*TabIe of Contenth\lext|

THE OrdArray CLASS

In general, the orderedArray.java program is similar to highArray.java. The main difference is
that find() uses a binary search, as we’ve seen.

We could have used a binary search to locate the position where a new item will be inserted. This involves ¢
variation on the find() routine, but for simplicity we retain the linear search in insert(). The speed

penalty may not be important because, as we've seen, an average of half the items must be moved anyway
when an insertion is performed, so insertion will not be very fast even if we locate the item with a binary
search. However, for the last ounce of speed, you could change the initial part of insert() to a binary

search (as is done in the Ordered Workshop applet). Similarly, the delete() method could call find() to

figure out the location of the item to be deleted.

The OrdArray class includes a new size() method, which returns the number of data items currently in
the array. This is helpful for the class user, main(), when it calls find(). If find() returns nElems,

which main() can discover with size(), then the search was unsuccessful. Listing 2.4 shows the complete
listing for the orderedArray.java program.

Listing 2.4 The orderedArray.java Program

/I orderedArray.java

/I demonstrates ordered array class

/I to run this program: C>java OrderedApp
import java.io.*; /I for I/O
T T
class OrdArray

private double[] a; I ref to array a
private int nElems; /I number of data items
Il
public OrdArray(int max) Il constructor
a = new double[max]; Il create array
nElems = 0;
}

Il
public int size()
{return nElems; }

Il
public int find(double searchKey)
{
int lowerBound = 0;
int upperBound = nElems-1;
int curln;

while(true)

curln = (lowerBound + upperBound ) / 2;
if(alcurln]==searchKey)

return curln; /l found it
else if(lowerBound > upperBound)
return nElems; /I can’t find it

THE OrdArray CLASS 62


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

else /I divide range
{
if(alcurln] < searchKey)
lowerBound = curln + 1; // it's in upper half
else
upperBound = curln - 1; // it's in lower half
} // end else divide range
} /I end while
} 1/ end find()

Il
public void insert(double value) // put element into array
{
int j;
for(j=0; j<nElems; j++) /I find where it goes
if(afj] > value) /I (linear search)
break;
for(int k=nElems; k>j; k——=) // move higher ones up
a[k] = a[k-1];
a[j] = value; I/l insert it
nElems++; /I increment size
} /l end insert()
Il
public boolean delete(double value)
{
int j = find(value);
if((==nElems) /I can't find it
return false;
else I/ found it
{

for(int k=j; k<nElems; k++) // move higher ones down
alk] = ak+1];

nElems—-; /l decrement size
return true;
}
} // end delete()
I
public void display() /I displays array contents
{

for(int j=0; j<nElems; j++) /I for each element,
System.out.print(a[j] + “ “); // display it
System.out.printin(*");
}
I/
} // end class OrdArray
s

class OrderedApp
{
public static void main(String[] args)
{
int maxSize = 100; I array size
OrdArray arr; Il reference to array

arr = new OrdArray(maxSize); // create the array

arr.insert(77); /l insert 10 items
arr.insert(99);
arr.insert(44);
arr.insert(55);
arr.insert(22);
arr.insert(88);
arr.insert(11);
arr.insert(00);
arr.insert(66);
arr.insert(33);

int searchKey = 55; /I search for item

if( arr.find(searchKey) != arr.size() )
System.out.printin(*Found “ + searchKey);

THE OrdArray CLASS

63



MWSS: Data Structures and Algorithms in Java:Introduction

else
System.out.printin(“Can't find “ + searchKey);

arr.display(); /[ display items
arr.delete(00); Il delete 3 items
arr.delete(55);

arr.delete(99);

arr.display(); /I display items again

} // end main()
} // end class OrderedApp

ADVANTAGES OF ORDERED ARRAYS

What have we gained by using an ordered array? The major advantage is that search times are much fastel
than in an unordered array. The disadvantage is that insertion takes longer, because all the data items with
higher key value must be moved up to make room. Deletions are slow in both ordered and unordered arrays
because items must be moved down to fill the hole left by the deleted item.

Ordered arrays are therefore useful in situations in which searches are frequent, but insertions and deletion:
are not. An ordered array might be appropriate for a database of company employees, for example. Hiring
new employees and laying off existing ones would probably be infrequent occurrences compared with
accessing an existing employee’s record for information or updating it to reflect changes in salary, address,
and so on.

A retail store inventory, on the other hand, would not be a good candidate for an ordered array because the
frequent insertions and deletions, as items arrived in the store and were sold, would run slowly.

|PreviousiTabIe of Contentk\lext|

ADVANTAGES OF ORDERED ARRAYS 64



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java
by Robert Lafore

. Waite Group Press, Macmillan Computer Publishing

DATA STRUCTURES

serienll  [SBN: 1571690956 Pub Date: 03/20/98

|Previous*TabIe of Contenth\lext|

Logarithms

In this section we’ll explain how logarithms are used to calculate the number of steps necessary in a binary
search. If you're a math major, you can probably skip this section. If math makes you break out in a rash, yo
can also skip it, except for taking a long, hard look at Table 2.3.

TABLE 2.3 Comparisons needed in Binary Search
RangeComparisons Needed
104

1007

1,00010

10,00014

100,00017

1,000,00020

10,000,00024
100,000,00027
1,000,000,00030

We've seen that a binary search provides a significant speed increase over a linear search. In the number
guessing game, with a range from 1 to 100, it takes a maximum of seven guesses to identify any number us
a binary search; just as in an array of 100 records, it takes seven comparisons to find a record with a specifi
key value. How about other ranges? Table 2.3 shows some representative ranges and the number of
comparisons needed for a binary search.

Notice the differences between binary search times and linear search times. For very small numbers of item
the difference isn't dramatic. Searching 10 items would take an average of five comparisons with a linear
search (N/2), and a maximum of four comparisons with a binary search. But the more items there are, the
bigger the difference. With 100 items, there are 50 comparisons in a linear search, but only seven in a binar
search. For 1,000 items, the numbers are 500 versus 10, and for 1,000,000 items, they’re 500,000 versus 2
We can conclude that for all but very small arrays, the binary search is greatly superior.

THE EQUATION

You can verify the results of Table 2.3 by repeatedly dividing a range (from the first column) in half until it's
too small to divide further. The number of divisions this process requires is the number of comparisons shov
in the second column.

Repeatedly dividing the range by two is an algorithmic approach to finding the number of comparisons. You
might wonder if you could also find the number using a simple equation. Of course, there is such an equatio
and it's worth exploring here because it pops up from time to time in the study of data structures. This formu
involves logarithms. (Don’t panic yet.)

The numbers in Table 2.3 leave out some interesting data. They don’t answer questions like, “What is the
exact size of the maximum range that can be searched in five steps?” To solve this, we must create a simila
table, but one that starts at the beginning, with a range of one, and works up from there by multiplying the
range by two each time. Table 2.4 shows how this looks for the first ten steps.

Logarithms 65


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

TABLE 2.4 Powers of Two
Step s, Same as loff)Range rRange Expressed as Power of 22
012

122

242

382

4162

5322

6642

71282

82562

95122

1010243°

For our original problem with a range of 100, we can see that six steps doesn’t produce a range quite big
enough (64), while seven steps covers it handily (128). Thus, the seven steps that are shown for 100 items |
Table 2.3 are correct, as are the 10 steps for a range of 1000.

Doubling the range each time creates a series that's the same as raising two to a power, as shown in the th

column of Table 2.4. We can express this as a formula. If s represents steps (the number of times you multi
by two—that is, the power to which two is raised) and r represents the range, then the equation is

r=2s

If you know s, the number of steps, this tells you r, the range. For example, if s is 6, the réngeds.2

|PreviousiTabIe of Contentk\lext|

Logarithms 66



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

THE OPPOSITE OF RAISING TWO TO A POWER

But our original question was the opposite: given the range, we want to know how many comparisons it will
take to complete a search. That is, given r, we want an equation that gives us s.

Raising something to a power is the inverse of a logarithm. Here’s the formula we want, expressed with a
logarithm:

s = log2(

This says that the number of steps (comparisons) is equal to the logarithm to the base 2 of the range. What'
logarithm? The base-2 logarithm of a number r is the number of times you must multiply two by itself to get
r. In Table 2.4, we show that the numbers in the first column, s, are equal(th log

How do you find the logarithm of a number without doing a lot of dividing? Pocket calculators and most
computer languages have a log function. This is usually log to the base 10, but you can convert easily to ba
2 by multiplying by 3.322. For example, lefL00) = 2, so log(100) = 2 times 3.322, or 6.644. Rounded up

to the whole number 7, this is what appears in the column to the right of 100 in Table 2.4.

In any case, the point here isn't to calculate logarithms. It's more important to understand the relationship
between a number and its logarithm. Look again at Table 2.3, which compares the number of items and the
number of steps needed to find a particular item. Every time you multiply the number of items (the range) by
a factor of 10, you add only three or four steps (actually 3.322, before rounding off to whole numbers) to the
number needed to find a particular element. This is because, as a number grows larger, its logarithm doesn'
grow nearly as fast. We'll compare this logarithmic growth rate with that of other mathematical functions
when we talk about Big O notation later in this chapter.

Storing Objects

In the Java examples we've shown so far, we've stored primitive variables of type double in our data
structures. This simplifies the program examples, but it's not representative of how you use data storage
structures in the real world. Usually, the data items (records) you want to store are combinations of many
fields. For a personnel record, you would store last name, first name, age, Social Security number, and so
forth. For a stamp collection, you'd store the name of the country that issued the stamp, its catalog number,
condition, current value, and so on.

In our next Java example, we'll show how objects, rather than variables of primitive types, can be stored.
THE Person CLASS

In Java, a data record is usually represented by a class object. Let's examine a typical class used for storing
personnel data. Here's the code for the Person class:

class Person

{

private String lastName;
private String firstName;

THE OPPOSITE OF RAISING TWO TO A POWER 67


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

private int age;
I
public Person(String last, String first, int a)
{ /I constructor
lastName = last;
firstName = first;
age = a;

}

I
public void displayPerson()
{
System.out.print(* Last name: “ + lastName);
System.out.print(*, First name: “ + firstName);
System.out.printin(*, Age: “ + age);
}

I

public String getLast() /I get last name
{ return lastName; }

} /] end class Person

We show only three variables in this class, for a person’s last name, first name, and age. Of course, records
most applications would contain many additional fields.

A constructor enables a new Person object to be created and its fields initialized. The displayPerson()
method displays a Person object’s data, and the getLast() method returns the Person’s last name; this
is the key field used for searches.

|PreviousiTabIe of Contentk\lext|

THE OPPOSITE OF RAISING TWO TO A POWER 68



MWSS: Data Structures and Algorithms in Java:Introduction

[ ===l \\WSS: Data Structures and Algorithms in Java
by Robert Lafore

- u:,\ Waite Group Press, Macmillan Computer Publishing
il [SBN: 1571690956 Pub Date: 03/20/98

|Previous*TabIe of Contenth\lext|

THE classDataArray.java PROGRAM

The program that makes use of the Person class is similar to the highArray.java program that stored
items of type double. Only a few changes are necessary to adapt that program to handle Person objects.
Here are the major ones:

» The type of the array a is changed to Person.
» The key field (the last name) is now a String object, so comparisons require the equals()
method rather than the == operator. The getLast() method of Person obtains the last name of a

Person object, and equals() does the comparison:
if( a[j].getLast().equals(searchName) ) // found item?

» The insert() method creates a new Person object and inserts it in the array, instead of
inserting a double value.

The main() method has been modified slightly, mostly to handle the increased quantity of output. We still
insert 10 items, display them, search for one, delete three items, and display them all again. Here’s the listin
for classDataArray.java:

Il classDataArray.java
/l data items as class objects
/I to run this program: C>java ClassDataApp
import java.io.*; /I for I/O
T T
class Person
{
private String lastName;
private String firstName;
private int age;
Il
public Person(String last, String first, int a)
{ /I constructor
lastName = last;
firstName = first;
age = a;

}

I
public void displayPerson()
{
System.out.print(“ Last name: “ + lastName);
System.out.print(“, First name: “ + firstName);
System.out.printin(“, Age: “ + age);
}

I
public String getLast() /I get last name
{return lastName; }
} /] end class Person
T
class ClassDataArray

{
private Person[] a; /I reference to array
private int nElems; /I number of data items

THE classDataArray.java PROGRAM 69


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

I
public ClassDataArray(int max) // constructor

{
a = new Person[max]; I create the array
nElems = 0; /l no items yet

}

Il
public Person find(String searchName)
{ /I find specified value
int j;
for(j=0; j<nElems; j++) /I for each element,
if( a[j].getLast().equals(searchName) ) // found item?
break; /I exit loop before end
if(j == nElems) // gone to end?
return null; /I 'yes, can't find it
else
return aljJ; // no, found it
} 1/ end find()

I

// put Person into array
public void insert(String last, String first, int age)
{
a[nElems] = new Person(last, first, age);
nElems++; I/l increment size
}
Il
public boolean delete(String searchName)
{ /I delete Person from array
int j;
for(j=0; j<nElems; j++) /I look for it
if( a[j].getLast().equals(searchName) )
break;
if((==nElems) /I can’'t find it
return false;
else / found it
{
for(int k=j; k<nElems; k++) // shift down
alk] = a[k+1];

nElems—-; // decrement size
return true;
}
} I/ end delete()
I
public void displayA() /I displays array contents
{

for(int j=0; j<nElems; j++) /I for each element,
a[j].displayPerson(); /I display it
}
I
} /l end class ClassDataArray
T T
class ClassDataApp

{

public static void main(String[] args)
{
int maxSize = 100; I array size
ClassDataArray arr; I reference to array

arr = new ClassDataArray(maxSize); // create the array
/l insert 10 items

arr.insert(“Evans”, “Patty”, 24);

arr.insert(“Smith”, “Lorraine”, 37);

arr.insert(“Yee”, “Tom”, 43);

arr.insert(*Adams”, “Henry”, 63);

arr.insert(“Hashimoto”, “Sato”, 21);

arr.insert(“Stimson”, “Henry”, 29);

arr.insert(“Velasquez”, “Jose”, 72);

arr.insert(“Lamarque”, “Henry”, 54);

THE classDataArray.java PROGRAM



MWSS: Data Structures and Algorithms in Java:Introduction

arr.insert(“Vang”, “Minh”, 22);
arr.insert(“Creswell”, “Lucinda”, 18);

arr.displayA(); /l display items

String searchKey = “Stimson”; // search for item
Person found;
found=arr.find(searchKey);
if(found != null)
{
System.out.print(“Found “);
found.displayPerson();
}
else
System.out.printin(“Can't find “ + searchKey);

System.out.printin(“Deleting Smith, Yee, and Creswell”);
arr.delete(“Smith”); Il delete 3 items
arr.delete(“Yee");

arr.delete(“Creswell”);

arr.displayA(); /l display items again
} /I end main()
} // end class ClassDataApp

Here’s the output of this program:

Last name: Evans, First name: Patty, Age: 24
Last name: Smith, First name: Lorraine, Age: 37
Last name: Yee, First name: Tom, Age: 43
Last name: Adams, First name: Henry, Age: 63
Last name: Hashimoto, First name: Sato, Age: 21
Last name: Stimson, First name: Henry, Age: 29
Last name: Velasquez, First name: Jose, Age: 72
Last name: Lamarque, First name: Henry, Age: 54
Last name: Vang, First name: Minh, Age: 22
Last name: Creswell, First name: Lucinda, Age: 18
Found Last name: Stimson, First name: Henry, Age: 29
Deleting Smith, Yee, and Creswell
Last name: Evans, First name: Patty, Age: 24
Last name: Adams, First name: Henry, Age: 63
Last name: Hashimoto, First name: Sato, Age: 21
Last name: Stimson, First name: Henry, Age: 29
Last name: Velasquez, First name: Jose, Age: 72
Last name: Lamarque, First name: Henry, Age: 54
Last name: Vang, First name: Minh, Age: 22

This program shows that class objects can be handled by data storage structures in much the same way as
primitive types. (Note that a serious program using the last name as a key would need to account for duplice
last names, which would complicate the programming as discussed earlier.)

|PreviousiTabIe of Contentk\lext|

THE classDataArray.java PROGRAM 71



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java
by Robert Lafore

& . . I
Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
gl ISBN: 1571690956 Pub Date: 03/20/98

|Previous*TabIe of Contenth\lext|

Big O Notation

Automobiles are divided by size into several categories: subcompacts, compacts, midsize, and so on. Thes
categories provide a quick idea what size car you're talking about, without needing to mention actual
dimensions. Similarly, it's useful to have a shorthand way to say how efficient a computer algorithm is. In
computer science, this rough measure is called Big O notation.

You might think that in comparing algorithms you would say things like “Algorithm A is twice as fast as
algorithm B,” but in fact this sort of statement isn’t too meaningful. Why not? Because the proportion can
change radically as the number of items changes. Perhaps you increase the number of items by 50%, and r
A is three times as fast as B. Or you have half as many items, and A and B are now equal. What you need i
comparison that's related to the number of items. Let’'s see how this looks for the algorithms we've seen so
far.

INSERTION IN AN UNORDERED ARRAY: CONSTANT

Insertion into an unordered array is the only algorithm we’ve seen that doesn’'t depend on how many items ¢
in the array. The new item is always placed in the next available position, at a[nElems], and nElems is

then incremented. This requires the same amount of time no matter how big N—the number of items in the
array—is. We can say that the time, T, to insert an item into an unsorted array is a constant K:

T=K

In a real situation, the actual time (in microseconds or whatever) required by the insertion is related to the
speed of the microprocessor, how efficiently the compiler has generated the program code, and other factor
The constant K in the equation above is used to account for all such factors. To find out what K is in a real
situation, you need to measure how long an insertion took. (Software exists for this very purpose.) K would
then be equal to that time.

LINEAR SEARCH: PROPORTIONAL TO N

We've seen that, in a linear search of items in an array, the number of comparisons that must be made to fir
a specified item is, on the average, half of the total number of items. Thus, if N is the total number of items,
the search time T is proportional to half of N:

T=K*N/2

As with insertions, discovering the value of K in this equation would require timing a search for some
(probably large) value of N, and then using the resulting value of T to calculate K. Once you knew K, then
you could calculate T for any other value of N.

For a handier formula, we could lump the 2 into the K. Our new K is equal to the old K divided by 2. Now we
have

T=K*N

Big O Notation 72


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

This says that average linear search times are proportional to the size of the array. If an array is twice as bic
will take twice as long to search.

BINARY SEARCH: PROPORTIONAL TO LOG(N)

Similarly, we can concoct a formula relating T and N for a binary search:
T =K *log2(N)

As we saw earlier, the time is proportional to the base 2 logarithm of N. Actually, because any logarithm is
related to any other logarithm by a constant (3.322 to go from base 2 to base 10), we can lump this constan
into K as well. Then we don’t need to specify the base:

T =K *log(N)
DON'T NEED THE CONSTANT

Big O notation looks like these formulas, but it dispenses with the constant K. When comparing algorithms
you don’t really care about the particular microprocessor chip or compiler; all you want to compare is how T
changes for different values of N, not what the actual numbers are. Therefore, the constant isn't needed.

Big O notation uses the uppercase letter O, which you can think of as meaning “order of.” In Big O notation,
we would say that a linear search takes O(N) time, and a binary search takes O(log N) time. Insertion into a
unordered array takes O(1), or constant time. (That's the numeral 1 in the parentheses.)

Table 2.5 summarizes the running times of the algorithms we’ve discussed so far.

TABLE 2.5 Running times in Big O Notation
AlgorithmRunning Time in Big O Notation
Linear searchO(N)

Binary searchO(log N)

Insertion in unordered arrayO(1)

Insertion in ordered arrayO(N)

Deletion in unordered arrayO(N)

Deletion in ordered arrayO(N)

Figure 2.9 graphs some Big O relationships between time and number of items. Based on this graph, we mi
rate the various Big O values (very subjectively) like this: O(1) is excellent, O(log N) is good, O(N) is fair,
and O(N) is poor. O(N) occurs in the bubble sort and also in certain graph algorithms that we'll look at later
in this book.

FIGURE 2.9 Graph of Big O times
The idea in Big O notation isn’t to give an actual figure for running time, but to convey how the running times

are affected by the number of items. This is the most meaningful way to compare algorithms, except perhap
actually measuring running times in a real installation.

BINARY SEARCH: PROPORTIONAL TO LOG(N) 73



MWSS: Data Structures and Algorithms in Java:Introduction

|PreviousiTabIe of Contentk\lext|

BINARY SEARCH: PROPORTIONAL TO LOG(N)

74



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

Why Not Use Arrays for Everything?

They seem to get the job done, so why not use arrays for all data storage? We've already seen some of the
disadvantages. In an unordered array you can insert items quickly, in O(1) time, but searching takes slow
O(N) time. In an ordered array you can search quickly, in O(logN) time, but insertion takes O(N) time. For
both kinds of arrays, deletion takes O(N) time, because half the items (on the average) must be moved to fil
in the hole.

It would be nice if there were data structures that could do everything—insertion, deletion, and
searching—quickly, ideally in O(1) time, but if not that, then in O(logN) time. In the chapters ahead, we’'ll see
how closely this ideal can be approached, and the price that must be paid in complexity.

Another problem with arrays is that their size is fixed when the array is first created with new. Usually when
the program first starts, you don’t know exactly how many items will be placed in the array later on, so you
guess how big it should be. If your guess is too large, you'll waste memory by having cells in the array that
are never filled. If your guess is too small, you'll overflow the array, causing at best a message to the
program’s user, and at worst a program crash.

Other data structures are more flexible and can expand to hold the number of items inserted in them. The
linked list, discussed in Chapter 5, “Linked Lists,” is such a structure.

We should mention that Java includes a class called Vector that acts much like an array but is expandable.
This added capability comes at the expense of some loss of efficiency.

You might want to try creating your own vector class. If the class user is about to overflow the internal array
in this class, the insertion algorithm creates a new array of larger size, copies the old array contents to the n
array, and then inserts the new item. All this would be invisible to the class user.

Summary

» Arrays in Java are objects, created with the new operator.

» Unordered arrays offer fast insertion but slow searching and deletion.

» Wrapping an array in a class protects the array from being inadvertently altered.

» A class interface comprises the methods (and occasionally fields) that the class user can access.
» A class interface can be designed to make things simple for the class user.

» A binary search can be applied to an ordered array.

» The logarithm to the base B of a number A is (roughly) the number of times you can divide A by
B before the result is less than 1.

 Linear searches require time proportional to the number of items in an array.

» Binary searches require time proportional to the logarithm of the number of items.

» Big O notation provides a convenient way to compare the speed of algorithms.

« An algorithm that runs in O(1) time is the best, O(log N) is good, O(N) is fair, andid\pretty
bad.

Why Not Use Arrays for Everything? 75


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

|PreviousiTabIe of Contentk\lext|

Why Not Use Arrays for Everything?

76



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

Chapter 3
Simple Sorting

As soon as you create a significant database, you'll probably think of reasons to sort it in various ways. You
need to arrange names in alphabetical order, students by grade, customers by zip code, home sales by pric
cities in order of increasing population, countries by GNP, stars by magnitude, and so on.

Sorting data may also be a preliminary step to searching it. As we saw in the last chapter, a binary search,
which can be applied only to sorted data, is much faster than a linear search.

Because sorting is so important and potentially so time—consuming, it has been the subject of extensive
research in computer science, and some very sophisticated methods have been developed. In this chapter \
look at three of the simpler algorithms: the bubble sort, the selection sort, and the insertion sort. Each is
demonstrated with its own Workshop applet. In Chapter 7, “Advanced Sorting,” we’ll look at more
sophisticated approaches: Shellsort and quicksort.

The techniques described in this chapter, while unsophisticated and comparatively slow, are nevertheless
worth examining. Besides being easier to understand, they are actually better in some circumstances than t
more sophisticated algorithms. The insertion sort, for example, is preferable to quicksort for small files and
for almost—sorted files. In fact, an insertion sort is commonly used as a part of a quicksort implementation.

The example programs in this chapter build on the array classes we developed in the last chapter. The sorti
algorithms are implemented as methods of similar array classes.

Be sure to try out the Workshop applets included in this chapter. They are more effective in explaining how
the sorting algorithms work than prose and static pictures could ever be.

How Would You Do It?

Imagine that your kids—-league baseball team (mentioned in Chapter 1, “Overview,”) is lined up on the field,
as shown in Figure 3.1. The regulation nine players, plus an extra, have shown up for practice. You want to
arrange the players in order of increasing height (with the shortest player on the left), for the team picture.
How would you go about this sorting process?

phitutd

Figure 3.1 The unordered baseball team

As a human being, you have advantages over a computer program. You can see all the kids at once, and yc
can pick out the tallest kid almost instantly; you don’t need to laboriously measure and compare everyone.
Also, the kids don’t need to occupy particular places. They can jostle each other, push each other a little to
make room, and stand behind or in front of each other. After some ad hoc rearranging, you would have no
trouble in lining up all the kids, as shown in Figure 3.2.

Chapter 3 Simple Sorting 77


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

L

Figure 3.2 The ordered baseball team

A computer program isn’t able to glance over the data in this way. It can only compare two players at once,
because that's how the comparison operators work. This tunnel vision on the part of algorithms will be a
recurring theme. Things may seem simple to us humans, but the algorithm can’t see the big picture and mu:
therefore, concentrate on the details and follow some simple rules.

The three algorithms in this chapter all involve two steps, executed over and over until the data is sorted:

1. Compare two items.
2. Swap two items or copy one item.

However, each algorithm handles the details in a different way.

Bubble Sort

The bubble sort is notoriously slow, but it's conceptually the simplest of the sorting algorithms, and for that
reason is a good beginning for our exploration of sorting techniques.

BUBBLE-SORTING THE BASEBALL PLAYERS

Imagine that you're nearsighted (like a computer program) so that you can see only two of the baseball
players at the same time, if they’re next to each other and if you stand very close to them. Given this
impediment, how would you sort them? Let’s assume there are N players, and the positions they’re standing
in are numbered from 0 on the left to N-1 on the right.

The bubble sort routine works like this. You start at the left end of the line and compare the two kids in
positions 0 and 1. If the one on the left (in 0) is taller, you swap them. If the one on the right is taller, you
don’t do anything. Then you move over one position and compare the kids in positions 1 and 2. Again, if the
one on the left is taller, you swap them. This is shown in Figure 3.3.

iuidivt
M_nim?
ot
it

Figure 3.3 Bubble sort: beginning of first pass

Here are the rules you're following:

1. Compare two players.
2. If the one on the left is taller, swap them.
3. Move one position right.

You continue down the line this way until you reach the right end. You have by no means finished sorting th
kids, but you do know that the tallest kid is on the right. This must be true, because as soon as you encount
the tallest kid, you'll end up swapping him every time you compare two kids, until eventually he (or she) will

reach the right end of the line. This is why it's called the bubble sort: as the algorithm progresses, the bigges
items “bubble up” to the top end of the array. Figure 3.4 shows the baseball players at the end of the first pa

Bubble Sort 78



MWSS: Data Structures and Algorithms in Java:Introduction

thit iy

Figure 3.4 Bubble sort: end of first pass

After this first pass through all the data, you've made N-1 comparisons and somewhere between 0 and N-1
swaps, depending on the initial arrangement of the players. The item at the end of the array is sorted and
won't be moved again.

Now you go back and start another pass from the left end of the line. Again you go toward the right,
comparing and swapping when appropriate. However, this time you can stop one player short of the end of

line, at position N-2, because you know the last position, at N-1, already contains the tallest player. This rul
could be stated as:

4. When you reach the first sorted player, start over at the left end of the line.

You continue this process until all the players are in order. This is all much harder to describe than it is to
demonstrate, so let's watch the bubbleSort Workshop applet at work.

THE BUBBLESORT WORKSHOP APPLET

Start the bubbleSort Workshop applet. You'll see something that looks like a bar graph, with the bar heights
randomly arranged, as shown in Figure 3.5.

(=
e

e S S

I Il] il I
- ‘Hul
—

'Figure 3.5 The bubbleSort Workshop applet

|Previou§TabIe of Contenti!\lext|

THE BUBBLESORT WORKSHOP APPLET 79



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

The Run Button

This is a two—-speed graph: you can either let it run by itself or you can single—step through the process. To
get a quick idea of what happens, click the Run button. The algorithm will bubble sort the bars. When it
finishes, in 10 seconds or so, the bars will be sorted, as shown in Figure 3.6.

=
-
=y S S

ol II I

Figure 3.6 After the bubble sort
The New Button

To do another sort, press the New button. New creates a new set of bars and initializes the sorting routine.
Repeated presses of New toggle between two arrangements of bars: a random order as shown in Figure 3.
and an inverse ordering where the bars are sorted backward. This inverse ordering provides an extra challe
for many sorting algorithms.

The Step Button

The real payoff for using the bubbleSort Workshop applet comes when you single-step through a sort. You’
be able to see exactly how the algorithm carries out each step.

Start by creating a new randomly arranged graph with New. You'll see three arrows pointing at different bar:
Two arrows, labeled inner and inner+1, are side—by-side on the left. Another arrow, outer, starts on

the far right. (The names are chosen to correspond to the inner and outer loop variables in the nested loops
used in the algorithm.)

Click once on the Step button. You'll see the inner and the inner+1 arrows move together one position to
the right, swapping the bars if it's appropriate. These arrows correspond to the two players you compared, 8
possibly swapped, in the baseball scenario.

A message under the arrows tells you whether the contents of inner and inner+1 will be swapped, but

you know this just from comparing the bars: if the taller one is on the left, they’ll be swapped. Messages at tl
top of the graph tell you how many swaps and comparisons have been carried out so far. (A complete sort c
10 bars requires 45 comparisons and, on the average, about 22 swaps.)

Continue pressing Step. Each time inner and inner+1 finish going all the way from O to outer, the

outer pointer moves one position to the left. At all times during the sorting process, all the bars to the right
of outer are sorted; those to the left of (and at) outer are not.

The Run Button 80


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

The Size Button

The Size button toggles between 10 bars and 100 bars. Figure 3.7 shows what the 100 random bars look lik

2

]

]\l,nl\nn

Figure 3.7 The bubbleSort applet with 100 bars

You probably don’t want to single—step through the sorting process for 100 bars unless you're unusually
patient. Press Run instead, and watch how the blue inner and inner+1 pointers seem to find the tallest
unsorted bar and carry it down the row to the right, inserting it just to the left of the sorted bars.

Figure 3.8 shows the situation partway through the sorting process. The bars to the right of the red (longest)
arrow are sorted. The bars to the left are beginning to look sorted, but much work remains to be done.

=

s | o | ] ] S|

hl il |

Figure 3.8 100 partly sorted bars

If you started a sort with Run and the arrows are whizzing around, you can freeze the process at any point k
pressing the Step button. You can then single—step to watch the details of the operation, or press Run agair
return to high—speed mode.

The Draw Button
Sometimes while running the sorting algorithm at full speed, the computer takes time off to perform some
other task. This can result in some bars not being drawn. If this happens, you can press the Draw button to
redraw all the bars. Doing so pauses the run, so you'll need to press the Run button again to continue.
You can press Draw at any time there seems to be a glitch in the display.

JAVA CODE FOR A BUBBLE SORT

In the bubbleSort.java program, shown in Listing 3.1, a class called ArrayBub encapsulates an array
a[], which holds variables of type double.

In a more serious program, the data would probably consist of objects, but we use a primitive type for
simplicity. (We’ll see how objects are sorted in the objectSort.java program in the last section of this
chapter.) Also, to reduce the size of the listing, we don’t show find() and delete() methods with the
ArrayBub class, although they would normally be part of a such a class.

|Previous$TabIe of Content@\lext|

The Size Button 81



MWSS: Data Structures and Algorithms in Java:Introduction

[ ===l \\WSS: Data Structures and Algorithms in Java

by Robert Lafore

Pmpm— \\Vaite Group Press, Macmillan Computer Publishing
getteall ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previou4TabIe of Contenth\lext|

Listing 3.1 The bubbleSort.java Program

/I bubbleSort.java

/I demonstrates bubble sort

/I to run this program: C>java BubbleSortApp
I
class ArrayBub

private double[] a; Il ref to array a
private int nElems; /I number of data items
Il
public ArrayBub(int max) /I constructor
a = new double[max]; /I create the array
nElems = 0; I/l no items yet
}
Il
public void insert(double value) // put element into array
a[nElems] = value; Il insert it
nElems++; /I increment size
}
Il
public void display() /I displays array contents
{
for(int j=0; j<nElems; j++) /I for each element,
System.out.print(a[j] + “ “); // display it
System.out.printin(*");
}
Il
public void bubbleSort()
{
int out, in;
for(out=nElems-1; out>1; out——) // outer loop (backward)
for(in=0; in<out; in++) // inner loop (forward)
if( afin] > afin+1] ) /Il out of order?
swap(in, in+1); /l swap them
} // end bubbleSort()
Il

private void swap(int one, int two)
{
double temp = a[one];
ajone] = aftwo];
aftwo] = temp;
}
Il

} // end class ArrayBub
o
class BubbleSortApp

{

public static void main(String[] args)
{
int maxSize = 100; Il array size
ArrayBub arr; Il reference to array

arr = new ArrayBub(maxSize); // create the array

The Size Button

82


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

arr.insert(77); /I insert 10 items
arr.insert(99);
arr.insert(44);
arr.insert(55);
arr.insert(22);
arr.insert(88);
arr.insert(11);
arr.insert(00);
arr.insert(66);
arr.insert(33);

arr.display(); /I display items
arr.bubbleSort(); // bubble sort them
arr.display(); /I display them again

} /I end main()
ny} // end class BubbleSortApp

The constructor and the insert() and display() methods of this class are similar to those we've seen
before. However, there’s a new method: bubbleSort(). When this method is invoked from main(), the
contents of the array are rearranged into sorted order.

The main() routine inserts 10 items into the array in random order, displays the array, calls
bubbleSort() to sort it, and then displays it again. Here’s the output:

7799 44 55 22 88 11 0 66 33
0112233445566 778899

The bubbleSort() method is only four lines long. Here it is, extracted from the listing:

public void bubbleSort()
{

int out, in;
for(out=nElems-1; out>1; out—-) // outer loop (backward)
for(in=0; in<out; in++) // inner loop (forward)
if( alin] > afin+1] ) I/ out of order?
swap(in, in+1); /I swap them
} /] end bubbleSort()

The idea is to put the smallest item at the beginning of the array (index 0) and the largest item at the end
(index nElems—-1). The loop counter out in the outer for loop starts at the end of the array, at nElems-1,

and decrements itself each time through the loop. The items at indices greater than out are always complete
sorted. The out variable moves left after each pass by in so that items that are already sorted are no longer
involved in the algorithm.

The inner loop counter in starts at the beginning of the array and increments itself each cycle of the inner
loop, exiting when it reaches out. Within the inner loop, the two array cells pointed to by in and in+1 are
compared and swapped if the one in in is larger than the one in in+1.

For clarity, we use a separate swap() method to carry out the swap. It simply exchanges the two values in
the two array cells, using a temporary variable to hold the value of the first cell while the first cell takes on th
value in the second, then setting the second cell to the temporary value. Actually, using a separate swap()
method may not be a good idea in practice, because the function call adds a small amount of overhead. If
you're writing your own sorting routine, you may prefer to put the swap instructions in line to gain a slight
increase in speed.

The Size Button 83



MWSS: Data Structures and Algorithms in Java:Introduction

INVARIANTS

In many algorithms there are conditions that remain unchanged as the algorithm proceeds. These condition
are called invariants. Recognizing invariants can be useful in understanding the algorithm. In certain
situations they may also be helpful in debugging; you can repeatedly check that the invariant is true, and
signal an error if it isn't.

In the bubbleSort.java program, the invariant is that the data items to the right of outer are sorted.

This remains true throughout the running of the algorithm. (On the first pass, nothing has been sorted yet, al
there are no items to the right of outer because it starts on the rightmost element.)

EFFICIENCY OF THE BUBBLE SORT

As you can see by watching the Workshop applet with 10 bars, the inner and inner+1 arrows make 9
comparisons on the first pass, 8 on the second, and so on, down to 1 comparison on the last pass. For 10 it
this is

9+8+7+6+5+4+3+2+1=45

In general, where N is the number of items in the array, there are N—1 comparisons on the first pass, N-2 ot
the second, and so on. The formula for the sum of such a series is

(N-1) + (N=-2) + (N=3) + ... + 1 = N*(N-1)/2

N*(N-1)/2 is 45 when N is 10.

|PreviousiTabIe of Contentk\lext|

INVARIANTS 84



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

Thus the algorithm makes about/&lcomparisons (ignoring the —1, which doesn’t make much difference,
especially if N is large).

There are fewer swaps than there are comparisons, because two bars are swapped only if they need to be.
the data is random, a swap is necessary about half the time, so there will be’&bswials. (Although in
the worst case, with the initial data inversely sorted, a swap is necessary with every comparison.)

Both swaps and comparisons are proportionaltd&cause constants don’t count in Big O notation, we can
ignore the 2 and the 4 and say that the bubble sort runs ) @M. This is slow, as you can verify by
running the Workshop applet with 100 bars.

Whenever you see nested loops such as those in the bubble sort and the other sorting algorithms in this
chapter, you can suspect that an algorithm runs irf)QifNe. The outer loop executes N times, and the inner
loop executes N (or perhaps N divided by some constant) times for each cycle of the outer loop. This mean:
you're doing something approximately N*N of Nmes.

Selection Sort

The selection sort improves on the bubble sort by reducing the number of swaps necessaryrom O(N

O(N). Unfortunately, the number of comparisons remains?D#bwever, the selection sort can still offer a
significant improvement for large records that must be physically moved around in memory, causing the swze
time to be much more important than the comparison time. (Typically this isn’t the case in Java, where
references are moved around, not entire objects.)

SELECTION SORT ON THE BASEBALL PLAYERS

Let's consider the baseball players again. In the selection sort, you can no longer compare only players
standing next to each other. Thus you'll need to remember a certain player’s height; you can use a notebool
write it down. A magenta—colored towel will also come in handy.

A Brief Description

What's involved is making a pass through all the players and picking (or selecting, hence the name of the sc
the shortest one. This shortest player is then swapped with the player on the left end of the line, at position
Now the leftmost player is sorted, and won’t need to be moved again. Notice that in this algorithm the sortec
players accumulate on the left (lower indices), while in the bubble sort they accumulated on the right.

The next time you pass down the row of players, you start at position 1, and, finding the minimum, swap witl
position 1. This continues until all the players are sorted.

A More Detailed Description
In more detail, start at the left end of the line of players. Record the leftmost player’s height in your notebool
and throw the magenta towel on the ground in front of this person. Then compare the height of the next play
to the right with the height in your notebook. If this player is shorter, cross out the height of the first player,
and record the second player’s height instead. Also move the towel, placing it in front of this new “shortest”

Selection Sort 85


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

(for the time being) player. Continue down the row, comparing each player with the minimum. Change the
minimum value in your notebook, and move the towel, whenever you find a shorter player. When you're
done, the magenta towel will be in front of the shortest player.

Swap this shortest player with the player on the left end of the line. You've now sorted one player. You've
made N-1 comparisons, but only one swap.

On the next pass, you do exactly the same thing, except that you can completely ignore the player on the le
because this player has already been sorted. Thus the algorithm starts the second pass at position 1 instea

0. With each succeeding pass, one more player is sorted and placed on the left, and one less player needs
considered when finding the new minimum. Figure 3.9 shows how this looks for the first three passes.

ittt

ittt

Figure 3.9 Selection sort on baseball players

THE SELECTSORT WORKSHOP APPLET

To see how the selection sort looks in action, try out the selectSort Workshop applet. The buttons operate tt
same way as those in the bubbleSort applet. Use New to create a new array of 10 randomly arranged bars.
red arrow called outer starts on the left; it points to the leftmost unsorted bar. Gradually it will move right as

more bars are added to the sorted group on its left.

The magenta min arrow also starts out pointing to the leftmost bar; it will move to record the shortest bar
found so far. (The magenta min arrow corresponds to the towel in the baseball analogy.) The blue inner
arrow marks the bar currently being compared with the minimum.

As you repeatedly press Step, inner moves from left to right, examining each bar in turn and comparing it
with the bar pointed to by min. If the inner bar is shorter, min jumps over to this new, shorter bar. When
inner reaches the right end of the graph, min points to the shortest of the unsorted bars. This bar is then
swapped with outer, the leftmost unsorted bar.

Figure 3.10 shows the situation midway through a sort. The bars to the left of outer are sorted, and inner
has scanned from outer to the right end, looking for the shortest bar. The min arrow has recorded the
position of this bar, which will be swapped with outer.

5
LIRS S S S R

Figure 3.10 The selectSort Workshop applet

Use the Size button to switch to 100 bars, and sort a random arrangement. You'll see how the magenta min
arrow hangs out with a perspective minimum value for a while, and then jumps to a new one when the blue
inner arrow finds a smaller candidate. The red outer arrow moves slowly but inexorably to the right, as

the sorted bars accumulate to its left.

THE SELECTSORT WORKSHOP APPLET 86



MWSS: Data Structures and Algorithms in Java:Introduction

JAVA CODE FOR SELECTION SORT

The listing for the selectSort.java program is similar to that for bubbleSort.java, except that the
container class is called ArraySel instead of ArrayBub, and the bubbleSort() method has been
replaced by selectSort(). Here's how this method looks:

public void selectionSort()

{

int out, in, min;

for(out=0; out<nElems-1; out++) // outer loop

{
min = out; /I minimum
for(in=out+1; in<nElems; in++) // inner loop
if(afin] < a[min] ) [/ if min greater,
min = in; // we have a new min
swap(out, min); I/l swap them

} /Il end for(outer)
} // end selectionSort()

|PreviousiTabIe of Contentk\lext|

JAVA CODE FOR SELECTION SORT



MWSS: Data Structures and Algorithms in Java:Introduction

[ ===l \\WSS: Data Structures and Algorithms in Java

by Robert Lafore

oA sTRUCTURES Waite Group Press, Macmillan Computer Publishing
getteall ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previou4TabIe of Contenth\lext|

The outer loop, with loop variable out, starts at the beginning of the array (index 0) and proceeds toward
higher indices. The inner loop, with loop variable in, begins at out and likewise proceeds to the right.

At each new position of in, the elements a[in] and a[min] are compared. If ain] is smaller, then min
is given the value of in. At the end of the inner loop, min points to the minimum value, and the array
elements pointed to by out and min are swapped. Listing 3.2 shows the complete selectSort.java
program.

Listing 3.2 The selectSort.java Program

I selectSort.java

/I demonstrates selection sort

/I to run this program: C>java SelectSortApp
I
class ArraySel

{
private double[] a; Il ref to array a
private int nElems; /I number of data items
I
public ArraySel(int max) I/ constructor
{
a = new double[max]; Il create the array
nElems = 0; /I no items yet
}
I
public void insert(double value) // put element into array
{
a[nElems] = value; Il insert it
nElems++; /I increment size
}
I
public void display() /I displays array contents
{

for(int j=0; j<nElems; j++) /I for each element,
System.out.print(a[j] + “ “); // display it
System.out.printin(*");

}
1

public void selectionSort()

{

int out, in, min;

for(out=0; out<nElems-1; out++) // outer loop

{
min = out; // minimum
for(in=out+1; in<nElems; in++) // inner loop
if(afin] < a[min] ) [l'if min greater,
min =in; /I we have a new min
swap(out, min); /l swap them

} /I end for(outer)
} /] end selectionSort()
I

private void swap(int one, int two)

{

JAVA CODE FOR SELECTION SORT 88


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

double temp = a[one];
ajone] = aftwo];
aftwo] = temp;
}

I

} // end class ArraySel
HHT T
class SelectSortApp
{
public static void main(String[] args)
{
int maxSize = 100; Il array size
ArraySel arr; /I reference to array
arr = new ArraySel(maxSize); // create the array
arr.insert(77); /I insert 10 items
arr.insert(99);
arr.insert(44);
arr.insert(55);
arr.insert(22);
arr.insert(88);
arr.insert(11);
arr.insert(00);
arr.insert(66);
arr.insert(33);

arr.display(); /I display items
arr.selectionSort(); I selection—sort them
arr.display(); /I display them again

} // end main()
} // end class SelectSortApp
I

The output from selectSort.java is identical to that from bubbleSort.java:

7799 44 5522 88 11 0 66 33
0112233445566 778899

INVARIANT

In the selectSort.java program, the data items with indices less than or equal to outer are always
sorted.

EFFICIENCY OF THE SELECTION SORT

The selection sort performs the same number of comparisons as the bubble sort: N*(N-1)/2. For 10 data
items, this is 45 comparisons. However, 10 items require fewer than 10 swaps. With 100 items, 4,950
comparisons are required, but fewer than 100 swaps. For large values of N, the comparison times will
dominate, so we would have to say that the selection sort runs fi) @K, just as the bubble sort did.

However, it is unquestionably faster because there are so few swaps. For smaller values of N, it may in fact
considerably faster, especially if the swap times are much larger than the comparison times.

Insertion Sort

In most cases the insertion sort is the best of the elementary sorts described in this chapter. It still executes
O(N?) time, but it's about twice as fast as the bubble sort and somewhat faster than the selection sort in
normal situations. It's also not too complex, although it's slightly more involved than the bubble and selectiol
sorts. It's often used as the final stage of more sophisticated sorts, such as quicksort.

INVARIANT 89



MWSS: Data Structures and Algorithms in Java:Introduction

INSERTION SORT ON THE BASEBALL PLAYERS

Start with your baseball players lined up in random order. (They wanted to play a game, but clearly there’s r
time for that.) It's easier to think about the insertion sort if we begin in the middle of the process, when the
team is half sorted.

Partial Sorting

At this point there’s an imaginary marker somewhere in the middle of the line. (Maybe you throw a red
T-shirt on the ground in front of a player.) The players to the left of this marker are partially sorted. This
means that they are sorted among themselves; each one is taller than the person to his left. However, they
aren’t necessarily in their final positions, because they may still need to be moved when previously unsortec
players are inserted between them.

Note that partial sorting did not take place in the bubble sort and selection sort. In these algorithms a group
data items was completely sorted at any given time; in the insertion sort a group of items is only partially
sorted.

The Marked Player

The player where the marker is, whom we’ll call the “marked” player, and all the players on her right, are as
yet unsorted. This is shown in Figure 3.11.a.

L |

uﬂ_!! it
uttiifitd

Figure 3.11 The insertion sort on baseball players

|Previou§TabIe of ContentJENext|

INSERTION SORT ON THE BASEBALL PLAYERS 90



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java
by Robert Lafore

. Waite Group Press, Macmillan Computer Publishing

DATA STRUCTURES

serienll  [SBN: 1571690956 Pub Date: 03/20/98

|Previous*TabIe of Contenth\lext|

What we're going to do is insert the marked player in the appropriate place in the (partially) sorted group.
However, to do this, we’ll need to shift some of the sorted players to the right to make room. To provide a
space for this shift, we take the marked player out of line. (In the program this data item is stored in a
temporary variable.) This is shown in Figure 3.11.b.

Now we shift the sorted players to make room. The tallest sorted player moves into the marked player’s spo
the next-tallest player into the tallest player’s spot, and so on.

When does this shifting process stop? Imagine that you and the marked player are walking down the line to
the left. At each position you shift another player to the right, but you also compare the marked player with
the player about to be shifted. The shifting process stops when you've shifted the last player that’s taller tha
the marked player. The last shift opens up the space where the marked player, when inserted, will be in sort
order. This is shown in Figure 3.11.c.

Now the partially sorted group is one player bigger, and the unsorted group is one player smaller. The mark
T-shirt is moved one space to the right, so it's again in front of the leftmost unsorted player. This process is
repeated until all the unsorted players have been inserted (hence the name insertion sort) into the appropria
place in the partially sorted group.

THE INSERTSORT WORKSHOP APPLET

Use the insertSort Workshop applet to demonstrate the insertion sort. Unlike the other sorting applets, it's
probably more instructive to begin with 100 random bars rather than 10.

Sorting 100 Bars

Change to 100 bars with the Size button, and click Run to watch the bars sort themselves before your very
eyes. You'll see that the short red outer arrow marks the dividing line between the partially sorted bars to
the left and the unsorted bars to the right. The blue inner arrow keeps starting from outer and zipping to
the left, looking for the proper place to insert the marked bar. Figure 3.12 shows how this looks when about
half the bars are partially sorted.

5
-

o o] ] ] )

diH[” l ]]n

Figure 3.12 The insertSort Workshop applet with 100 bars

|
il

The marked bar is stored in the temporary variable pointed to by the magenta arrow at the right end of the
graph, but the contents of this variable are replaced so often it's hard to see what's there (unless you slow
down to single—step mode).

THE INSERTSORT WORKSHOP APPLET 91


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

Sorting 10 Bars

To get down to the details, use Size to switch to 10 bars. (If necessary, use New to make sure they're in
random order.)

At the beginning, inner and outer point to the second bar from the left (array index 1), and the first
message is Will copy outer to temp. This will make room for the shift. (There’s no arrow for
inner—1, but of course it's always one bar to the left of inner.)

Click the Step button. The bar at outer will be copied to temp. A copy means that there are now two bars
with the same height and color shown on the graph. This is slightly misleading, because in a real Java
program there are actually two references pointing to the same object, not two identical objects. However,
showing two identical bars is meant to convey the idea of copying the reference.

What happens next depends on whether the first two bars are already in order (smaller on the left). If they a
you'll see Have compared inner-1 and temp, no copy necessary.

If the first two bars are not in order, the message is Have compared inner-1 and temp, will

copy inner-1 to inner. This is the shift that's necessary to make room for the value in temp to be

reinserted. There’s only one such shift on this first pass; more shifts will be necessary on subsequent passe
The situation is shown in Figure 3.13.

4
—

PR I O O S

e et e | ok g
- -

Figure 3.13 The insertSort Workshop applet with 10 bars

On the next click, you'll see the copy take place from inner-1 to inner. Also, the inner arrow moves
one space left. The new message is Now inner is 0, so no copy necessary. The shifting
process is complete.

No matter which of the first two bars was shorter, the next click will show you Will copy temp to

inner. This will happen, but if the first two bars were initially in order, you won't be able to tell a copy was
performed, because temp and inner hold the same bar. Copying data over the top of the same data may
seem inefficient, but the algorithm runs faster if it doesn’t check for this possibility, which happens
comparatively infrequently.

Now the first two bars are partially sorted (sorted with respect to each other), and the outer arrow moves
one space right, to the third bar (index 2). The process repeats, with the Will copy outer to temp

message. On this pass through the sorted data, there may be no shifts, one shift, or two shifts, depending o
where the third bar fits among the first two.

Continue to single-step the sorting process. Again, it's easier to see what’s happening after the process has
run long enough to provide some sorted bars on the left. Then you can see how just enough shifts take plac
make room for the reinsertion of the bar from temp into its proper place.

JAVA CODE FOR INSERTION SORT

Here’s the method that carries out the insertion sort, extracted from the insertSort.java program:

public void insertionSort()

{

int in, out;

Sorting 10 Bars 92



MWSS: Data Structures and Algorithms in Java:Introduction

for(out=1; out<nElems; out++)  // out is dividing line

{
double temp = aout]; /I remove marked item
in = out; /I start shifts at out
while(in>0 && afin—1] >= temp) // until one is smaller,
{
afin] = afin-1]; // shift item right,
—=in; /I go left one position
}
afin] = temp; I/ insert marked item
} /l end for

} // end insertionSort()

In the outer for loop, out starts at 1 and moves right. It marks the leftmost unsorted data. In the inner
while loop, in starts at out and moves left, until either temp is smaller than the array element there, or it
can't go left any further. Each pass through the while loop shifts another sorted element one space right.

|PreviousiTabIe of Contentk\lext|

Sorting 10 Bars 93



MWSS: Data Structures and Algorithms in Java:Introduction

[ ===l \\WSS: Data Structures and Algorithms in Java

by Robert Lafore

oA sTRUCTURES Waite Group Press, Macmillan Computer Publishing
gerteall  |SBN: 1571690956 Pub Date: 03/20/98

¥

|Previou4TabIe of Contenth\lext|

It may be hard to see the relation between the steps in the Workshop applet and the code, so Figure 3.14 is
flow diagram of the insertionSort() method, with the corresponding messages from the insertSort
Workshop applet. Listing 3.3 shows the complete insertSort.java program.

N

NNl

o sl

i

Figure 3.14 Flow diagram for insertSort()

Listing 3.3 The insertSort.java Program

/I insertSort.java

/I demonstrates insertion sort

/I to run this program: C>java InsertSortApp
I
class Arraylns

private double[] a; Il ref to array a
private int nElems; /I number of data items
I
public Arraylns(int max) Il constructor
a = new double[max]; /I create the array
nElems = 0; /I no items yet
}
I
public void insert(double value) // put element into array
{
a[nElems] = value; /] insert it
nElems++; /I increment size
}
I
public void display() /I displays array contents

for(int j=0; j<nElems; j++) Il for each element,
System.out.print(a[j] + “ “); // display it
System.out.printin(*");

}

public void insertionSort()

{

int in, out;

I

for(out=1; out<nElems; out++)  // out is dividing line

{
double temp = afout]; /I remove marked item
in = out; /I start shifts at out

Sorting 10 Bars 94


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

while(in>0 && afin—1] >= temp) // until one is smaller,

{
afin] = afin-1]; /1 shift item right,
—=in; /I go left one position
}
afin] = temp; [l insert marked item
} 1l end for

} /I end insertionSort()

I

} // end class Arraylns
T
class InsertSortApp

{

public static void main(String[] args)
{
int maxSize = 100; Il array size
Arraylns arr; /I reference to array

arr = new Arraylns(maxSize); // create the array

arr.insert(77); /I insert 10 items
arr.insert(99);
arr.insert(44);
arr.insert(55);
arr.insert(22);
arr.insert(88);
arr.insert(11);
arr.insert(00);
arr.insert(66);
arr.insert(33);

arr.display(); /I display items
arr.insertionSort(); Il insertion—sort them
arr.display(); /I display them again

} // end main()
} // end class InsertSortApp

Here’s the output from the insertSort.java program; it's the same as that from the other programs in
this chapter:

7799 44 5522 88 11 0 66 33
0112233445566 77 8899

INVARIANTS IN THE INSERTION SORT

At the end of each pass, following the insertion of the item from temp, the data items with smaller indices
than outer are partially sorted.

EFFICIENCY OF THE INSERTION SORT

How many comparisons and copies does this algorithm require? On the first pass, it compares a maximum
one item. On the second pass, it's a maximum of two items, and so on, up to a maximum of N—1 comparisol
on the last pass. This is

1+2+3+...+N-1=N*N-1)/2

However, because on each pass an average of only half of the maximum number of items are actually
compared before the insertion point is found, we can divide by 2, which gives:

N*(N-1)/4

INVARIANTS IN THE INSERTION SORT 95



MWSS: Data Structures and Algorithms in Java:Introduction

The number of copies is approximately the same as the number of comparisons. However, a copy isn't as
time—consuming as a swap, so for random data this algorithm runs twice as fast as the bubble sort and fast
than the selection sort.

In any case, like the other sort routines in this chapter, the insertion sort runs)ri@&¥or random data.

For data that is already sorted or almost sorted, the insertion sort does much better. When data is in order, t
condition in the while loop is never true, so it becomes a simple statement in the outer loop, which executes
N-1 times. In this case the algorithm runs in O(N) time. If the data is almost sorted, insertion sort runs in
almost O(N) time, which makes it a simple and efficient way to order a file that is only slightly out of order.

However, for data arranged in inverse sorted order, every possible comparison and shift is carried out, so th
insertion sort runs no faster than the bubble sort. You can check this using the reverse-sorted data option
(toggled with New) in the insertSort Workshop applet.

Sorting Objects

For simplicity we've applied the sorting algorithms we've looked at thus far to a primitive data type:
double. However, sorting routines will more likely be applied to objects than primitive types. Accordingly,
we show a Java program, objectSort.java, that sorts an array of Person objects (last seen in the
classDataArray.java program in Chapter 2).

JAVA CODE FOR SORTING OBJECTS

The algorithm used is the insertion sort from the last section. The Person objects are sorted on lastName;
this is the key field. The objectSort.java program is shown in Listing 3.4.

|Previou4TabIe of Contentk\lext|

Sorting Objects 96



MWSS: Data Structures and Algorithms in Java:Introduction

[ ===l \\WSS: Data Structures and Algorithms in Java

by Robert Lafore

Pmpm— \\Vaite Group Press, Macmillan Computer Publishing
getteall ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previou4TabIe of Contenth\lext|

Listing 3.4 The objectSort.java Program

/l objectSort.java
/I demonstrates sorting objects (uses insertion sort)
/I to run this program: C>java ObjectSortApp
T T T
class Person
{
private String lastName;
private String firstName;
private int age;
Il
public Person(String last, String first, int a)
{ /I constructor
lastName = last;
firstName = first;
age = a;

}

I
public void displayPerson()
{
System.out.print(“ Last name: “ + lastName);
System.out.print(“, First name: “ + firstName);
System.out.printin(“, Age: “ + age);
}

I
public String getLast() /Il get last name
{ return lastName; }
} /] end class Person
o
class ArraylnOb

private Person][] a; /l ref to array a
private int nElems; /I number of data items
I
public ArraylnOb(int max) /I constructor
a = new Person[max]; I create the array
nElems = 0; // no items yet
}
I

// put person into array
public void insert(String last, String first, int age)

a[nElems] = new Person(last, first, age);

nElems++; /I increment size
}
I/
public void display() /I displays array contents
{
for(int j=0; j<nElems; j++) /I for each element,
a[j].displayPerson(); /I display it
System.out.printin(*");
}
I/

public void insertionSort()

Sorting Objects

97


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

{

intin, out;

for(out=1; out<nElems; out++) // out is dividing line

{
Person temp = afout]; /I remove marked person
in = out; /I start shifting at out
while(in>0 && /I until smaller one found,
afin—1].getLast().compareTo(temp.getLast())>0)
{
afin] = afin-1]; // shift item to the right
—=in; /I go left one position
}
afin] = temp; I/ insert marked item
} 1/ end for

} /I end insertionSort()
I

} // end class ArraylnOb
T T
class ObjectSortApp

{

public static void main(String[] args)
{
int maxSize = 100; I array size
ArrayInOb arr; /I reference to array

arr = new ArraylnOb(maxSize); // create the array

arr.insert(“Evans”, “Patty”, 24);
arr.insert(“Smith”, “Doc”, 59);
arr.insert(“Smith”, “Lorraine”, 37);
arr.insert(“Smith”, “Paul”, 37);
arr.insert(“Yee”, “Tom”, 43);
arr.insert(“*Hashimoto”, “Sato”, 21);
arr.insert(“Stimson”, “Henry”, 29);
arr.insert(“Velasquez”, “Jose”, 72);
arr.insert(“Vang”, “Minh”, 22);
arr.insert(“Creswell”, “Lucinda”, 18);

System.out.printin(“Before sorting:");
arr.display(); /1 display items

arr.insertionSort(); /l insertion—sort them

System.out.printin(“After sorting:”);
arr.display(); /I display them again
} /I end main()

} // end class ObjectSortApp

Here’s the output of this program:

Before sorting:
Last name: Evans, First name: Patty, Age: 24
Last name: Smith, First name: Doc, Age: 59
Last name: Smith, First name: Lorraine, Age: 37
Last name: Smith, First name: Paul, Age: 37
Last name: Yee, First name: Tom, Age: 43
Last name: Hashimoto, First name: Sato, Age: 21
Last name: Stimson, First name: Henry, Age: 29
Last name: Velasquez, First name: Jose, Age: 72
Last name: Vang, First name: Minh, Age: 22
Last name: Creswell, First name: Lucinda, Age: 18

After sorting:

Last name: Creswell, First name: Lucinda, Age: 18
Last name: Evans, First name: Patty, Age: 24

Sorting Objects

98



MWSS: Data Structures and Algorithms in Java:Introduction

Last name: Hashimoto, First name: Sato, Age: 21
Last name: Smith, First name: Doc, Age: 59

Last name: Smith, First name: Lorraine, Age: 37
Last name: Smith, First name: Paul, Age: 37
Last name: Stimson, First name: Henry, Age: 29
Last name: Vang, First name: Minh, Age: 22

Last name: Velasquez, First name: Jose, Age: 72
Last name: Yee, First name: Tom, Age: 43

LEXICOGRAPHICAL COMPARISONS

The insertionSort() method is similar to that in insertSort.java, but it has been adapted to
compare the lastName key values of records rather than the value of a primitive type.

We use the compareTo() method of the String class to perform the comparisons in the
insertionSort() method. Here’s the expression that uses it:

afin—1].getLast().compareTo(temp.getLast()) > 0

The compareTo() method returns different integer values depending on the lexicographical (that is,
alphabetical) ordering of the String for which it's invoked and the String passed to it as an argument, as
shown in Table 3.1.

TABLE 3.1 OPERATION OF THE compareTo() METHOD
s2.compareTo(sl)Return Value

sl<s2<0

sl equals s20

s1>s2>0

|PreviousiTabIe of Contentk\lext|

LEXICOGRAPHICAL COMPARISONS 99



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

For example, if s1 is “cat” and s2 is “dog”, the function will return a number less than 0. In the program
this method is used to compare the last name of a[in—1] with the last name of temp.

STABILITY

Sometimes it matters what happens to data items that happen to have equal keys. For example, you may h:
employee data arranged alphabetically by last names. (That is, the last names were used as key values in tl
sort.) Now you want to sort the data by zip code, but you want all the items with the same zip code to contin
to be sorted by last names. You want the algorithm to sort only what needs to be sorted, and leave everythir
else in its original order. Some sorting algorithms retain this secondary ordering; they’re said to be stable.

All the algorithms in this chapter are stable. For example, notice the output of the objectSort.java

program. There are three persons with the last name of Smith. Initially the order is Doc Smith, Lorraine
Smith, and Paul Smith. After the sort, this ordering is preserved, despite the fact that the various Smith obje
have been moved to new locations.

Comparing the Simple Sorts

There’s probably no point in using the bubble sort unless you don'’t have your algorithm book handy. The
bubble sort is so simple you can write it from memory. Even so, it's practical only if the amount of data is
small. (For a discussion of what “small” means, see Chapter 15, “When to Use What.”)

The selection sort minimizes the number of swaps, but the number of comparisons is still high. It might be
useful when the amount of data is small and swapping data items is very time—consuming compared with
comparing them.

The insertion sort is the most versatile of the three and is the best bet in most situations, assuming the amot
of data is small or the data is almost sorted. For larger amounts of data, quicksort is generally considered th
fastest approach; we'll examine quicksort in Chapter 7.

We've compared the sorting algorithms in terms of speed. Another consideration for any algorithm is how
much memory space it needs. All three of the algorithms in this chapter carry out their sort in place, meaning
that, beside the initial array, very little extra memory is required. All the sorts require an extra variable to stol
an item temporarily while it's being swapped.

You can recompile the example programs, such as bubbleSort.java, to sort larger amounts of data. By
timing them for larger sorts, you can get an idea of the differences between them and how long it takes to sc
different amounts of data on your particular system.

Summary

» The sorting algorithms in this chapter all assume an array as a data storage structure.
 Sorting involves comparing the keys of data items in the array and moving the items (actually
references to the items) around until they're in sorted order.

« All the algorithms in this chapter execute in O@)\time. Nevertheless, some can be substantially

STABILITY 100


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

faster than others.

» An invariant is a condition that remains unchanged while an algorithm runs.

» The bubble sort is the least efficient, but the simplest, sort.

« The insertion sort is the most commonly used of the G(Norts described in this chapter.
» A sortis stable if the order of elements with the same key is retained.

» None of the sorts in this chapter require more than a single temporary variable in addition to the
original array.

|PreviousiTabIe of Contentk\lext|

STABILITY 101



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

Chapter 4
Stacks and Queues

In this chapter we’ll examine three data storage structures: the stack, the queue, and the priority queue. We
begin by discussing how these structures differ from arrays; then we’ll examine each one in turn. In the last
section, we’'ll look at an operation in which the stack plays a significant role: parsing arithmetic expressions.

A Different Kind of Structure

There are significant differences between the data structures and algorithms we’ve seen in previous chaptel
and those we'll look at now. We'll discuss three of these differences before we examine the new structures i
detail.

PROGRAMMER’S TOOLS

The array—the data storage structure we've been examining thus far—as well as many other structures we’
encounter later in this book (linked lists, trees, and so on), are appropriate for the kind of data you might finc
in a database application. They're typically used for personnel records, inventories, financial data, and so or
data that corresponds to real-world objects or activities. These structures facilitate access to data: they malk
easy to insert, delete, and search for particular items.

The structures and algorithms we’ll examine in this chapter, on the other hand, are more often used as
programmer’s tools. They're primarily conceptual aids rather than full-fledged data storage devices. Their
lifetime is typically shorter than that of the database-type structures. They are created and used to carry out
particular task during the operation of a program; when the task is completed, they’re discarded.

RESTRICTED ACCESS

In an array, any item can be accessed, either immediately—if its index number is known—or by searching
through a sequence of cells until it's found. In the data structures in this chapter, however, access is restrict
only one item can be read or removed at a given time.

The interface of these structures is designed to enforce this restricted access. Access to other items is (in
theory) not allowed.

MORE ABSTRACT

Stacks, queues, and priority queues are more abstract entities than arrays and many other data storage
structures. They're defined primarily by their interface: the permissible operations that can be carried out on
them. The underlying mechanism used to implement them is typically not visible to their user.

For example, the underlying mechanism for a stack can be an array, as shown in this chapter, or it can be a
linked list. The underlying mechanism for a priority queue can be an array or a special kind of tree called a
heap. We'll return to the topic of one data structure being implemented by another when we discuss Abstrac
Data Types (ADTS) in Chapter 5, “Linked Lists.”

Chapter 4 Stacks and Queues 102


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

Stacks

A stack allows access to only one data item: the last item inserted. If you remove this item, then you can
access the next—to-last item inserted, and so on. This is a useful capability in many programming situations
In this section, we’ll see how a stack can be used to check whether parentheses, braces, and brackets are
balanced in a computer program source file. At the end of this chapter, we'll see a stack playing a vital role i
parsing (analyzing) arithmetic expressions such as 3*(4+5).

A stack is also a handy aid for algorithms applied to certain complex data structures. In Chapter 8, “Binary
Trees,” we'll see it used to help traverse the nodes of a tree. In Chapter 13, “Graphs,” we’'ll apply it to
searching the vertices of a graph (a technique that can be used to find your way out of a maze).

Most microprocessors use a stack—based architecture. When a method is called, its return address and
arguments are pushed onto a stack, and when it returns they're popped off. The stack operations are built ir
the microprocessor.

Some older pocket calculators used a stack—based architecture. Instead of entering arithmetic expressions
using parentheses, you pushed intermediate results onto a stack. We'll learn more about this approach whe
we discuss parsing arithmetic expressions in the last section in this chapter.

|Previou4TabIe of Contentk\lext|

Stacks 103



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java
by Robert Lafore

. Waite Group Press, Macmillan Computer Publishing

DATA STRUCTURES

serienll  [SBN: 1571690956 Pub Date: 03/20/98

|Previous*TabIe of Contenth\lext|

THE POSTAL ANALOGY

To understand the idea of a stack, consider an analogy provided by the U. S. Postal Service. Many people,
when they get their mail, toss it onto a stack on the hall table or into an “in” basket at work. Then, when they
have a spare moment, they process the accumulated mail from the top down. First they open the letter on tf
top of the stack and take appropriate action—paying the bill, throwing it away, or whatever. When the first
letter has been disposed of, they examine the next letter down, which is now the top of the stack, and deal v
that. Eventually they work their way down to the letter on the bottom of the stack (which is now the top).
Figure 4.1 shows a stack of mail.

FIGURE 4.1 A stack of letters

This “do the top one first” approach works all right as long as you can easily process all the mail in a
reasonable time. If you can't, there’s the danger that letters on the bottom of the stack won't be examined fo
months, and the bills they contain will become overdue.

Of course, many people don’t rigorously follow this top—to—bottom approach. They may, for example, take
the mail off the bottom of the stack, so as to process the oldest letter first. Or they might shuffle through the
mail before they begin processing it and put higher—priority letters on top. In these cases, their mail system i
no longer a stack in the computer—science sense of the word. If they take letters off the bottom, it's a queue
and if they prioritize it, it's a priority queue. We'll look at these possibilities later.

Another stack analogy is the tasks you perform during a typical workday. You're busy on a long—term projec
(A), but you're interrupted by a coworker asking you for temporary help with another project (B). While
you’re working on B, someone in accounting stops by for a meeting about travel expenses (C), and during t
meeting you get an emergency call from someone in sales and spend a few minutes troubleshooting a bulky
product (D). When you're done with call D, you resume meeting C; when you're done with C, you resume
project B, and when you're done with B you can (finally!) get back to project A. Lower priority projects are
“stacked up” waiting for you to return to them.

Placing a data item on the top of the stack is called pushing it. Removing it from the top of the stack is callec
popping it. These are the primary stack operations. A stack is said to be a Last-In—First-Out (LIFO) storage
mechanism, because the last item inserted is the first one to be removed.

THE STACK WORKSHOP APPLET

Let’s use the Stack Workshop applet to get an idea how stacks work. When you start up the applet, you'll se
four buttons: New, Push, Pop, and Peek, as shown in Figure 4.2.

THE POSTAL ANALOGY 104


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

FIGURE 4.2 The Stack Workshop applet

The Stack Workshop applet is based on an array, so you'll see an array of data items. Although it's based o
an array, a stack restricts access, so you can't access it as you would an array. In fact, the concept of a stac
and the underlying data structure used to implement it are quite separate. As we noted earlier, stacks can al
be implemented by other kinds of storage structures, such as linked lists.

New

The stack in the Workshop applet starts off with four data items already inserted. If you want to start with an
empty stack, the New button creates a new stack with no items. The next three buttons carry out the
significant stack operations.

Push

To insert a data item on the stack, use the button labeled Push. After the first press of this button, you'll be
prompted to enter the key value of the item to be pushed. After typing it into the text field, a few more presse
will insert the item on the top of the stack.

A red arrow always points to the top of the stack; that is, the last item inserted. Notice how, during the
insertion process, one step (button press) increments (moves up) the Top arrow, and the next step actually
inserts the data item into the cell. If you reversed the order, you'd overwrite the existing item at Top. When
writing the code to implement a stack, it's important to keep in mind the order in which these two steps are
executed.

If the stack is full and you try to push another item, you'll get the Can’t insert: stack is full
message. (Theoretically, an ADT stack doesn’t become full, but the array implementing it does.)

Pop

To remove a data item from the top of the stack, use the Pop button. The value popped appears in the Num
text field; this corresponds to a pop() routine returning a value.

Again, notice the two steps involved: first the item is removed from the cell pointed to by Top; then Top is
decremented to point to the highest occupied cell. This is the reverse of the sequence used in the push
operation.

The pop operation shows an item actually being removed from the array, and the cell color becoming gray t
show the item has been removed. This is a bit misleading, in that deleted items actually remain in the array
until written over by new data. However, they cannot be accessed once the Top marker drops below their
position, so conceptually they are gone, as the applet shows.

When you've popped the last item off the stack, the Top arrow points to —1, below the lowest cell. This
indicates that the stack is empty. If the stack is empty and you try to pop an item, you’ll get the Can’t pop:
stack is empty message.

Peek

Push and pop are the two primary stack operations. However, it's sometimes useful to be able to read the
value from the top of the stack without removing it. The peek operation does this. By pushing the Peek buttc

New 105



MWSS: Data Structures and Algorithms in Java:Introduction

a few times, you'll see the value of the item at Top copied to the Number text field, but the item is not
removed from the stack, which remains unchanged.

Notice that you can only peek at the top item. By design, all the other items are invisible to the stack user.

|PreviousiTabIe of Contentk\lext|

New 106



MWSS: Data Structures and Algorithms in Java:Introduction

[ ===l \\WSS: Data Structures and Algorithms in Java
= by Robert Lafore
DNTA STRUCTURES Waite Group Press, Macmillan Computer Publishing
getteall ISBN: 1571690956 Pub Date: 03/20/98

|Previou4TabIe of Contenth\lext|

Stack Size

Stacks are typically small, temporary data structures, which is why we've shown a stack of only 10 cells. Of
course, stacks in real programs may need a bit more room than this, but it's surprising how small a stack ne
to be. A very long arithmetic expression, for example, can be parsed with a stack of only a dozen or so cells

JAVA CODE FOR A STACK

Let's examine a program, Stack.java, that implements a stack using a class called StackX. Listing 4.1
contains this class and a short main() routine to exercise it.

Listing 4.1 The Stack.java Program

/I Stack.java

/I demonstrates stacks

/I to run this program: C>java StackApp
import java.io.*; Il for I/O
I
class StackX

{
private int maxSize; /I size of stack array
private double[] stackArray;
private int top; /I top of stack
I
public StackX(int s) /I constructor
{
maxSize = s; / set array size
stackArray = new double[maxSize]; // create array
top = -1; // no items yet
}
I
public void push(double j)  // put item on top of stack
{
stackArray[++top] =j;  // increment top, insert item
}
I
public double pop() / take item from top of stack
{
return stackArray[top—-]; // access item, decrement top
}
I
public double peek() Il peek at top of stack
{
return stackArray[top];
}
I
public boolean isEmpty() /I true if stack is empty
{
return (top == -1);
}

1

public boolean isFull() I/ true if stack is full

{

Stack Size 107


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

return (top == maxSize-1);

}

} /] end class StackX
T T
class StackApp
{
public static void main(String[] args)
{
StackX theStack = new StackX(10); // make new stack
theStack.push(20); /I push items onto stack
theStack.push(40);
theStack.push(60);
theStack.push(80);

I

while( !theStack.isEmpty() ) [/l until it's empty,
{ /I delete item from stack
double value = theStack.pop();
System.out.print(value); /I display it
System.out.print(* “);
} 1 end while

System.out.printin(*”);

} /I end main()

} // end class StackApp

The main() method in the StackApp class creates a stack that can hold 10 items, pushes 4 items onto the
stack, and then displays all the items by popping them off the stack until it's empty. Here's the output:

80 60 40 20

Notice how the order of the data is reversed. Because the last item pushed is the first one popped; the 80
appears first in the output.

This version of the StackX class holds data elements of type double. As noted in the last chapter, you can
change this to any other type, including object types.

StackX Class Methods
The constructor creates a hew stack of a size specified in its argument. The fields of the stack comprise a
variable to hold its maximum size (the size of the array), the array itself, and a variable top, which stores the
index of the item on the top of the stack. (Note that we need to specify a stack size only because the stack i
implemented using an array. If it had been implemented using a linked list, for example, the size specificatio
would be unnecessary.)

The push() method increments top so it points to the space just above the previous top, and stores a data
item there. Notice that top is incremented before the item is inserted.

The pop() method returns the value at top and then decrements top. This effectively removes the item
from the stack; it's inaccessible, although the value remains in the array (until another item is pushed into th
cell).

The peek() method simply returns the value at top, without changing the stack.

The isEmpty() and isFull() methods return true if the stack is empty or full, respectively. The top
variable is at —1 if the stack is empty and maxSize-1 if the stack is full.

Figure 4.3 shows how the stack class methods work.

StackX Class Methods 108



MWSS: Data Structures and Algorithms in Java:Introduction

FIGURE 4.3 Operation of the StackXclass methods
Error Handling

There are different philosophies about how to handle stack errors. What happens if you try to push an item
onto a stack that's already full, or pop an item from a stack that's empty?

We've left the responsibility for handling such errors up to the class user. The user should always check to t
sure the stack is not full before inserting an item:

if( 'theStack.isFull() )
insert(item);
else
System.out.print(“Can’t insert, stack is full");

In the interest of simplicity, we've left this code out of the main() routine (and anyway, in this simple
program, we know the stack isn't full because it has just been initialized). We do include the check for an
empty stack when main() calls pop().

Many stack classes check for these errors internally, in the push() and pop() methods. This is the
preferred approach. In Java, a good solution for a stack class that discovers such errors is to throw an
exception, which can then be caught and processed by the class user.

|PreviousiTabIe of Contenth\lext|

Error Handling 109



MWSS: Data Structures and Algorithms in Java:Introduction

[ ===l \\WSS: Data Structures and Algorithms in Java

by Robert Lafore

oA sTRUCTURES Waite Group Press, Macmillan Computer Publishing
getteall ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previou4TabIe of Contenth\lext|

STACK EXAMPLE 1: REVERSING A WORD

For our first example of using a stack, we’'ll examine a very simple task: reversing a word. When you run the
program, it asks you to type in a word. When you press Enter, it displays the word with the letters in reverse
order.

A stack is used to reverse the letters. First the characters are extracted one by one from the input string anc
pushed onto the stack. Then they're popped off the stack and displayed. Because of its last-in—first—out
characteristic, the stack reverses the order of the characters. Listing 4.2 shows the code for the
reverse.java program.

Listing 4.2 The reverse.java Program

Il reverse.java
/I stack used to reverse a string
/I to run this program: C>java ReverseApp
import java.io.*; Il for I/O
i
class StackX

{

private int maxSize;

private char[] stackArray;

private int top;
I

public StackX(int max) // constructor

{

maxSize = max;

stackArray = new char[maxSize];
top = -1;

}

public void push(char j) // put item on top of stack

{
stackArray[++top] = j;

}

public char pop() / take item from top of stack

{

return stackArray[top—-];

}

public char peek() I/ peek at top of stack
{

return stackArray[top];

}

public boolean isEmpty() // true if stack is empty
{

return (top == -1);

}

} /] end class StackX
T T

1

1

1

1

1

STACK EXAMPLE 1: REVERSING A WORD 110


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

class Reverser

{
private String input; /l input string
private String output; Il output string
I
public Reverser(String in) Il constructor
{iinput =in; }
I
public String doRev() Il reverse the string
{

int stackSize = input.length(); // get max stack size
StackX theStack = new StackX(stackSize); // make stack

for(int j=0; j<input.length(); j++)

{
char ch = input.charAt(j); // get a char from input
theStack.push(ch); /l push it
}
output =*;
while( 'theStack.isEmpty() )
{
char ch = theStack.pop();  // pop a char,
output = output + ch; /[ append to output
}

return output;
} // end doRev()
I

} // end class Reverser
U T
class ReverseApp

{

public static void main(String[] args) throws IOException

{

String input, output;

while(true)
{
System.out.print(“Enter a string: “);
System.out.flush();

input = getString(); /l read a string from kbd
if( input.equals(*) ) /I quitif [Enter]
break;

/ make a Reverser
Reverser theReverser = new Reverser(input);
output = theReverser.doRev(); // use it
System.out.printin(“Reversed: “ + output);
} /I end while
} /I end main()
I

public static String getString() throws IOException
{
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);
String s = br.readLine();
return s;

}

I
} /l end class ReverseApp

We've created a class Reverser to handle the reversing of the input string. Its key component is the method
doRev(), which carries out the reversal, using a stack. The stack is created within doRev(), which sizes it

according to the length of the input string.

In main() we get a string from the user, create a Reverser object with this string as an argument to the
constructor, call this object’s doRev() method, and display the return value, which is the reversed string.

Here's some sample interaction with the program:

STACK EXAMPLE 1: REVERSING A WORD



MWSS: Data Structures and Algorithms in Java:Introduction

Enter a string: part
Reversed: trap
Enter a string:

STACK EXAMPLE 2: DELIMITER MATCHING

One common use for stacks is to parse certain kinds of text strings. Typically the strings are lines of code in
computer language, and the programs parsing them are compilers.

To give the flavor of what's involved, we’ll show a program that checks the delimiters in a line of text typed
by the user. This text doesn’'t need to be a line of real Java code (although it could be) but it should use
delimiters the same way Java does. The delimiters are the braces '{"and'}, brackets T'and"’, and parenthese
'(and")’. Each opening or left delimiter should be matched by a closing or right delimiter; that is, every '{’
should be followed by a matching '} and so on. Also, opening delimiters that occur later in the string should
be closed before those occurring earlier. Examples:

c[d] I correct

a{b[c]d}e // correct

a{b(c]d}e /I not correct; ] doesn’'t match (
a[b{c}d]e} // not correct; nothing matches final }
a{b(c) /I not correct; Nothing matches opening {

|PreviousiTabIe of Contentk\lext|

STACK EXAMPLE 2: DELIMITER MATCHING 112



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

Opening Delimiters on the Stack

The program works by reading characters from the string one at a time and placing opening delimiters, whel
it finds them, on a stack. When it reads a closing delimiter from the input, it pops the opening delimiter from
the top of the stack and attempts to match it with the closing delimiter. If they’re not the same type (there’s a
opening brace but a closing parenthesis, for example), then an error has occurred. Also, if there is no openil
delimiter on the stack to match a closing one, or if a delimiter has not been matched, an error has occurred.
delimiter that hasn’t been matched is discovered because it remains on the stack after all the characters in t
string have been read.

Let's see what happens on the stack for a typical correct string:
a{b(c[d]e)f}

Table 4.1 shows how the stack looks as each character is read from this string. The stack contents are shov
in the second column. The entries in this column show the stack contents, reading from the bottom of the
stack on the left to the top on the right.

TABLE 4.1 Stack contents in delimiter matching
Character ReadStack Contents
a

{{

b{

((

c{(

[{(

o{([

K(

e{(

i

i

}

As it's read, each opening delimiter is placed on the stack. Each closing delimiter read from the input is
matched with the opening delimiter popped from the top of the stack. If they form a pair, all is well.
Nondelimiter characters are not inserted on the stack; they're ignored.

This approach works because pairs of delimiters that are opened last should be closed first. This matches tt
last—in—first—out property of the stack.

Java Code for brackets.java

The code for the parsing program, brackets.java, is shown in Listing 4.3. We've placed check(), the
method that does the parsing, in a class called BracketChecker.

Listing 4.3 The brackets.java Program

Opening Delimiters on the Stack 113


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

/l brackets.java
/I stacks used to check matching brackets
/I to run this program: C>java BracketsApp
import java.io.*; Il for 1/O
U T
class StackX

{

private int maxSize;

private char[] stackArray;

private int top;
I

public StackX(int s) /I constructor
{
maxSize = s;
stackArray = new char[maxSize];
top = -1;
}
I/

public void push(char j) // put item on top of stack
{
stackArray[++top] = j;

}
I

public char pop() / take item from top of stack
{

return stackArray[top——T;

}
I

public char peek() I/ peek at top of stack
{

return stackArray[top];

}
I

public boolean isEmpty() // true if stack is empty
{

return (top == -1);

}

I/

} /] end class StackX
s
class BracketChecker

{

private String input; I/l input string
I/

public BracketChecker(String in) /Il constructor
{iinput =in; }
I

public void check()
{
int stackSize = input.length();  // get max stack size
StackX theStack = new StackX(stackSize); // make stack

for(int j=0; j<input.length(); j++) // get chars in turn
{
char ch = input.charAt(j); /l get char
switch(ch)
{
case {" /I opening symbols
case -
case ("
theStack.push(ch); /I push them
break;

case '}: /I closing symbols
case :
case'):

if( 'theStack.isEmpty() ) // if stack not empty,

Opening Delimiters on the Stack

114



MWSS: Data Structures and Algorithms in Java:Introduction

{
char chx = theStack.pop(); // pop and check
if( (ch=="} && chx!="{)) ||
(ch=="7 && chx!="[") ||
(ch==")" && chx!="(") )
System.out.printin(“Error: “+ch+” at “+j);
}
else /I prematurely empty
System.out.printin(“Error: “+ch+" at “+j);
break;
default:  // no action on other characters
break;
} /I end switch
} /l end for
/I at this point, all characters have been processed
if( 'theStack.isEmpty() )
System.out.printin(“Error: missing right delimiter”);
} /l end check()
Il

} /] end class BracketChecker
T T
class BracketsApp
{
public static void main(String[] args) throws IOException
{
String input;
while(true)
{
System.out.print(
“Enter string containing delimiters: “);
System.out.flush();
input = getString();  // read a string from kbd
if( input.equals(*”) ) // quitif [Enter]
break;
/I make a BracketChecker
BracketChecker theChecker = new BracketChecker(input);
theChecker.check();  // check brackets
} /I end while
} /I end main()
Il

public static String getString() throws IOException
{
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);
String s = br.readLine();
return s;

}

I
} // end class BracketsApp

|PreviousiTabIe of Contentk\lext|

Opening Delimiters on the Stack

115



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

The check() routine makes use of the StackX class from the last program. Notice how easy it is to reuse
this class. All the code you need is in one place. This is one of the payoffs for object-oriented programming.

The main() routine in the BracketsApp class repeatedly reads a line of text from the user, creates a
BracketChecker object with this text string as an argument, and then calls the check() method for this
BracketChecker object. If it finds any errors, the check() method displays them; otherwise, the syntax
of the delimiters is correct.

If it can, the check() method reports the character number where it discovered the error (starting at 0 on the
left), and the incorrect character it found there. For example, for the input string

a{b(c]d}e
the output from check() will be
Error: ] at5
The Stack as a Conceptual Aid

Notice how convenient the stack is in the brackets.java program. You could have set up an array to do
what the stack does, but you would have had to worry about keeping track of an index to the most recently
added character, as well as other bookkeeping tasks. The stack is conceptually easier to use. By providing
limited access to its contents, using the push() and pop() methods, the stack has made your program
easier to understand and less error prone. (Carpenters will also tell you it's safer to use the right tool for the
job.)

EFFICIENCY OF STACKS

Items can be both pushed and popped from the stack implemented in the StackX class in constant O(1) tim
That is, the time is not dependent on how many items are in the stack, and is therefore very quick. No
comparisons or moves are necessary.

Queues

The word queue is British for line (the kind you wait in). In Britain, to “queue up” means to get in line. In
computer science a queue is a data structure that is similar to a stack, except that in a queue the first item
inserted is the first to be removed (FIFO), while in a stack, as we've seen, the last item inserted is the first tc
be removed (LIFO). A queue works like the line at the movies: the first person to join the rear of the line is tt
first person to reach the front of the line and buy a ticket. The last person to line up is the last person to buy
ticket (or—if the show is sold out—to fail to buy a ticket). Figure 4.4 shows how this looks.

FIGURE 4.4 A queue of people

The Stack as a Conceptual Aid 116


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

Queues are used as a programmer’s tool as stacks are. We'll see an example where a queue helps search
graph in Chapter 13. They're also used to model real-world situations such as people waiting in line at a
bank, airplanes waiting to take off, or data packets waiting to be transmitted over the Internet.

There are various queues quietly doing their job in your computer’s (or the network’s) operating system.
There’s a printer queue where print jobs wait for the printer to be available. A queue also stores keystroke d
as you type at the keyboard. This way, if you're using a word processor but the computer is briefly doing
something else when you hit a key, the keystroke won't be lost; it waits in the queue until the word processo
has time to read it. Using a queue guarantees the keystrokes stay in order until they can be processed.

THE QUEUE WORKSHOP APPLET

Start up the Queue Workshop applet. You'll see a queue with four items preinstalled, as shown in Figure 4.k

FIGURE 4.5 The Queue Workshop applet

This applet demonstrates a queue based on an array. This is a common approach, although linked lists are
commonly used to implement queues.

The two basic queue operations are inserting an item, which is placed at the rear of the queue, and removin
an item, which is taken from the front of the queue. This is similar to a person joining the rear of a line of
movie—goers, and, having arrived at the front of the line and purchased a ticket, removing themselves from
the front of the line.

The terms for insertion and removal in a stack are fairly standard; everyone says push and pop.
Standardization hasn't progressed this far with queues. Insert is also called put or add or enque, while remo
may be called delete or get or deque. The rear of the queue, where items are inserted, is also called the bac
tail or end. The front, where items are removed, may also be called the head. We'll use the terms insert,
remove, front, and rear.

Insert

By repeatedly pressing the Ins button in the Queue Workshop applet, you can insert a new item. After the fit
press, you're prompted to enter a key value for a new item into the Number text field; this should be a numb
from O to 999. Subsequent presses will insert an item with this key at the rear of the queue and increment th
Rear arrow so it points to the new item.

Remove

Similarly, you can remove the item at the front of the queue using the Rem button. The person is removed, t
person’s value is stored in the Number field (corresponding to the remove() method returning a value) and
the Front arrow is incremented. In the applet, the cell that held the deleted item is grayed to show it's gone.
a normal implementation, it would remain in memory but would not be accessible because Front had moved
past it. The insert and remove operations are shown in Figure 4.6.

THE QUEUE WORKSHOP APPLET 117



MWSS: Data Structures and Algorithms in Java:Introduction

FIGURE 4.6 Operation of the Queue class methods

Unlike the situation in a stack, the items in a queue don't always extend all the way down to index O in the
array. Once some items are removed, Front will point at a cell with a higher index, as shown in Figure 4.7.

FIGURE 4.7 A gueue with some items removed

Notice that in this figure Front lies below Rear in the array; that is, Front has a lower index. As we’ll see in a
moment, this isn’t always true.

|Previou4TabIe of Contentb\lext|

THE QUEUE WORKSHOP APPLET 118



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

Peek

We show one other queue operation, peek. This finds the value of the item at the front of the queue without
removing the item. (Like insert and remove, peek when applied to a queue is also called by a variety of othe
names.) If you press the Peek button, you'll see the value at Front transferred to the Number box. The queu
unchanged. This peek() method returns the value at the front of the queue. Some queue implementations
have a rearPeek() and a frontPeek() method, but usually you want to know what you're about to

remove, not what you just inserted.

New
If you want to start with an empty queue, you can use the New button to create one.
Empty and Full

If you try to remove an item when there are no more items in the queue, you'll get the Can'’t remove,
gueue is empty error message. If you try to insert an item when all the cells are already occupied, you'll
get the Can't insert, queue is full message.

A CIRCULAR QUEUE

When you insert a new item in the queue in the Workshop applet, the Front arrow moves upward, toward
higher numbers in the array. When you remove an item, Rear also moves upward. Try these operations witt
the Workshop applet to convince yourself it's true. You may find the arrangement counter—intuitive, because
the people in a line at the movies all move forward, toward the front, when a person leaves the line. We cou
move all the items in a queue whenever we deleted one, but that wouldn’t be very efficient. Instead we keep
all the items in the same place and move the front and rear of the queue.

The trouble with this arrangement is that pretty soon the rear of the queue is at the end of the array (the
highest index). Even if there are empty cells at the beginning of the array, because you've removed them wi
Rem, you still can’t insert a new item because Rear can’t go any further. Or can it? This situation is shown it
Figure 4.8.

FIGURE 4.8 Rear arrow at the end of the array
Wrapping Around
To avoid the problem of not being able to insert more items into the queue even when it's not full, the Front

and Rear arrows wrap around to the beginning of the array. The result is a circular queue (sometimes callec
ring buffer).

Peek 119


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

You can see how wraparound works with the Workshop applet. Insert enough items to bring the Rear arrow
the top of the array (index 9). Remove some items from the front of the array. Now, insert another item.
You'll see the Rear arrow wrap around from index 9 to index 0; the new item will be inserted there. This is
shown in Figure 4.9.

FIGURE 4.9 Rear arrow wraps around

Insert a few more items. The Rear arrow moves upward as you'd expect. Notice that once Rear has wrappe
around, it's now below Front, the reverse of the original arrangement. You can call this a broken sequence:
the items in the queue are in two different sequences in the array.

Delete enough items so that the Front arrow also wraps around. Now you're back to the original arrangemet
with Front below Rear. The items are in a single contiguous sequence.

JAVA CODE FOR A QUEUE

The queue.java program features a Queue class with insert(), remove(), peek(), isFull(),
isEmpty(), and size() methods.

The main() program creates a queue of five cells, inserts four items, removes three items, and inserts four
more. The sixth insertion invokes the wraparound feature. All the items are then removed and displayed. Th
output looks like this:

40 50 60 70 80
Listing 4.4 shows the Queue.java program.

Listing 4.4 The Queue.java Program

/I Queue.java
/I demonstrates queue
/I to run this program: C>java QueueApp
import java.io.*; Il for 1/O
U T
class Queue

{

private int maxSize;

private int[] queArray;

private int front;

private int rear;

private int nltems;
I

public Queue(int s) /I constructor

maxSize = s;

queArray = new intfmaxSize];
front = 0;

rear = -1,

nitems = 0;

}

public void insert(int j) // put item at rear of queue

{

1

JAVA CODE FOR A QUEUE 120



MWSS: Data Structures and Algorithms in Java:Introduction

if(rear == maxSize-1) /I deal with wraparound
rear = -1,
queArray[++rear] = j; /I increment rear and insert
nitems++; /I one more item
}
Il
public int remove() I/ take item from front of queue
{
int temp = queArray[front++]; // get value and incr front
if(front == maxSize) /I deal with wraparound
front = 0;
nitems——; /I one less item
return temp;
}
Il
public int peekFront() /I peek at front of queue
{
return queArray[front];
}
Il
public boolean isEmpty() /I true if queue is empty
{
return (nltems==0);
}
Il
public boolean isFull() /I true if queue is full
{
return (nltems==maxSize);
}
Il
public int size() /l number of items in queue
{
return nitems;
}
Il

} /] end class Queue
T
class QueueApp

{

public static void main(String[] args)

{

Queue theQueue = new Queue(5); // queue holds 5 items

theQueue.insert(10); Il insert 4 items
theQueue.insert(20);
theQueue.insert(30);
theQueue.insert(40);

theQueue.remove(); /I remove 3 items
theQueue.remove(); /I (10, 20, 30)
theQueue.remove();

theQueue.insert(50); Il insert 4 more items
theQueue.insert(60); /I (wraps around)

theQueue.insert(70);
theQueue.insert(80);

while( 'theQueue.isEmpty() ) // remove and display
{ /I all items
int n = theQueue.remove(); // (40, 50, 60, 70, 80)
System.out.print(n);
System.out.print(" ");
}

System.out.printin(");

} /I end main()

} /] end class QueueApp

JAVA CODE FOR A QUEUE

121



MWSS: Data Structures and Algorithms in Java:Introduction

We've chosen an approach in which Queue class fields include not only front and rear, but also the
number of items currently in the queue: nltems. Some queue implementations don't use this field; we'll
show this alternative later.

|PreviousiTabIe of Contentk\lext|

JAVA CODE FOR A QUEUE 122



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

The insert() Method

The insert() method assumes that the queue is not full. We don’t show it in main(), but normally you
should only call insert() after calling isFull() and getting a return value of false. (It's usually

preferable to place the check for fullness in the insert() routine, and cause an exception to be thrown if an
attempt was made to insert into a full queue.)

Normally, insertion involves incrementing rear and inserting at the cell rear now points to. However, if

rear is at the top of the array, at maxSize-1, then it must wrap around to the bottom of the array before the
insertion takes place. This is done by setting rear to —1, so when the increment occurs rear will become 0,
the bottom of the array. Finally nitems is incremented.

The remove() Method

The remove() method assumes that the queue is not empty. You should call isEmpty() to ensure this is
true before calling remove(), or build this error-checking into remove().

Removal always starts by obtaining the value at front and then incrementing front. However, if this puts
front beyond the end of the array, it must then be wrapped around to 0. The return value is stored
temporarily while this possibility is checked. Finally, nitems is decremented.

The peek() Method

The peek() method is straightforward: it returns the value at front. Some implementations allow peeking
at the rear of the array as well; such routines are called something like peekFront() and peekRear() or
just front() and rear().

The isEmpty(), isFull(), and size() Methods

The isEmpty(), isFull(), and size() methods all rely on the nitems field, respectively checking if
it's 0, if it's maxSize, or returning its value.

Implementation Without an Item Count

The inclusion of the field nltems in the Queue class imposes a slight overhead on the insert() and

remove() methods in that they must respectively increment and decrement this variable. This may not seem
like an excessive penalty, but if you're dealing with huge numbers of insertions and deletions, it might
influence performance.

Accordingly, some implementations of queues do without an item count and rely on the front and rear
fields to figure out whether the queue is empty or full and how many items are in it. When this is done, the
isEmpty(), isFull(), and size() routines become surprisingly complicated because the sequence of

items may be either broken or contiguous, as we've seen.

Also, a strange problem arises. The front and rear pointers assume certain positions when the queue is
full, but they can assume these exact same positions when the queue is empty. The queue can then appeat

The insert() Method 123


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

be full and empty at the same time.

This problem can be solved by making the array one cell larger than the maximum number of items that will
be placed in it. Listing 4.5 shows a Queue class that implements this no—count approach. This class uses th
no—count implementation.

Listing 4.5 The Queue Class Without nitems

class Queue
{
private int maxSize;
private int[] queArray;
private int front;
private int rear;

I

public Queue(int s) Il constructor
maxSize = s+1; [l array is 1 cell larger
queArray = new intfmaxSize]; // than requested
front = 0;
rear = -1,
}
Il
public void insert(int j) I/l put item at rear of queue
{
if(rear == maxSize-1)
rear = -1,
queArray[++rear] = j;
}
Il
public int remove() /I take item from front of queue

int temp = queArray[front++];
if(front == maxSize)

front = 0;
return temp;

}
I

public int peek() /I peek at front of queue

return queArray|[front];

}
I
public boolean isEmpty() /I true if queue is empty
{
return ( rear+1==front || (front+maxSize-1==rear) );
}
I
public boolean isFull() /I true if queue is full
{
return ( rear+2==front || (front+maxSize-2==rear) );
}
I
public int size() /I (assumes gqueue not empty)
{
if(rear >= front) /I contiguous sequence
return rear—front+1;
else I/l broken sequence
return (maxSize—front) + (rear+1);
}

I
} /] end class Queue

Notice the complexity of the isFull(), isEmpty(), and size() methods. This no—count approach is

The insert() Method 124



MWSS: Data Structures and Algorithms in Java:Introduction

seldom needed in practice, so we’'ll refrain from discussing it in detail.
EFFICIENCY OF QUEUES

As with a stack, items can be inserted and removed from a queue in O(1) time.
DEQUES

A deque is a double—ended queue. You can insert items at either end and delete them from either end. The
methods might be called insertLeft() and insertRight(), and removeLeft() and
removeRight().

If you restrict yourself to insertLeft() and removeLeft() (or their equivalents on the right), then the
deque acts like a stack. If you restrict yourself to insertLeft() and removeRight() (or the opposite
pair), then it acts like a queue.

A deque provides a more versatile data structure than either a stack or a queue, and is sometimes used in
container class libraries to serve both purposes. However, it's not used as often as stacks and queues, so W
won't explore it further here.

|PreviousiTabIe of Contentk\lext|

EFFICIENCY OF QUEUES 125



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contentb\lext|

Priority Queues

A priority queue is a more specialized data structure than a stack or a queue. However, it's a useful tool in a
surprising number of situations. Like an ordinary queue, a priority queue has a front and a rear, and items al
removed from the front. However, in a priority queue, items are ordered by key value, so that the item with
the lowest key (or in some implementations the highest key) is always at the front. Items are inserted in the
proper position to maintain the order.

Here’s how the mail sorting analogy applies to a priority queue. Every time the postman hands you a letter,
you insert it into your pile of pending letters according to its priority. If it must be answered immediately (the
phone company is about to disconnect your modem line), it goes on top, while if it can wait for a leisurely
answer (a letter from your Aunt Mabel), it goes on the bottom.

When you have time to answer your mail, you start by taking the letter off the top (the front of the queue),
thus ensuring that the most important letters are answered first. This is shown in Figure 4.10.

T\/"‘/‘,Iv j‘
=

FIGURE 4.10 Letters in a priority queue

Like stacks and queues, priority queues are often used as programmer’s tools. We'll see one used in finding
something called a minimum spanning tree for a graph, in Chapter 14, “Weighted Graphs.”

Also, like ordinary queues, priority queues are used in various ways in certain computer systems. In a
preemptive multitasking operating system, for example, programs may be placed in a priority queue so the
highest—priority program is the next one to receive a time-slice that allows it to execute.

In many situations you want access to the item with the lowest key value (which might represent the cheape
or shortest way to do something). Thus the item with the smallest key has the highest priority. Somewhat
arbitrarily, we’ll assume that’s the case in this discussion, although there are other situations in which the
highest key has the highest priority.

Besides providing quick access to the item with the smallest key, you also want a priority queue to provide
fairly quick insertion. For this reason, priority queues are, as we noted earlier, often implemented with a date
structure called a heap. We'll look at heaps in Chapter 12. In this chapter, we’ll show a priority queue
implemented by a simple array. This implementation suffers from slow insertion, but it's simpler and is
appropriate when the number of items isn’t high or insertion speed isn't critical.

THE PRIORITYQ WORKSHOP APPLET
The PriorityQ Workshop applet implements a priority queue with an array, in which the items are kept in

sorted order. It's an ascending—priority queue, in which the item with the smallest key has the highest priorit
and is accessed with remove(). (If the highest—key item were accessed, it would be a descending—priority

Priority Queues 126


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

gueue.)

The minimum-key item is always at the top (highest index) in the array, and the largest item is always at
index 0. Figure 4.11 shows the arrangement when the applet is started. Initially there are five items in the
queue.

FIGURE 4.11 The PriorityQ Workshop applet
Insert

Try inserting an item. You'll be prompted to type the new item’s key value into the Number field. Choose a
number that will be inserted somewhere in the middle of the values already in the queue. For example, in
Figure 4.11 you might choose 300. Then, as you repeatedly press Ins, you'll see that the items with smaller
keys are shifted up to make room. A black arrow shows which item is being shifted. Once the appropriate
position is found, the new item is inserted into the newly created space.

Notice that there’s no wraparound in this implementation of the priority queue. Insertion is slow of necessity
because the proper in—order position must be found, but deletion is fast. A wraparound implementation
wouldn’t improve the situation. Note too that the Rear arrow never moves; it always points to index O at the
bottom of the array.

Delete

The item to be removed is always at the top of the array, so removal is quick and easy; the item is removed
and the Front arrow moves down to point to the new top of the array. No comparisons or shifting are
necessary.

In the PriorityQ Workshop applet, we show Front and Rear arrows to provide a comparison with an ordinary
gueue, but they’re not really necessary. The algorithms know that the front of the queue is always at the top
the array at nltems—1, and they insert items in order, not at the rear. Figure 4.12 shows the operation of the
PriorityQ class methods.

(“

E rS’\'

FIGURE 4.12 Operation of the PriorityQ class methods

Peek and New

You can peek at the minimum item (find its value without removing it) with the Peek button, and you can
create a new, empty, priority queue with the New button.

Other Implementation Possibilities

The implementation shown in the PriorityQ Workshop applet isn’t very efficient for insertion, which involves
moving an average of half the items.

Insert 127



MWSS: Data Structures and Algorithms in Java:Introduction

Another approach, which also uses an array, makes no attempt to keep the items in sorted order. New item:
are simply inserted at the top of the array. This makes insertion very quick, but unfortunately it makes deletit
slow, because the smallest item must be searched for. This requires examining all the items and shifting hal
of them, on the average, down to fill in the hole. Generally, the quick—deletion approach shown in the
Workshop applet is preferred.

For small numbers of items, or situations where speed isn't critical, implementing a priority queue with an
array is satisfactory. For larger numbers of items, or when speed is critical, the heap is a better choice.

|Previou4TabIe of Contentk\lext|

Insert 128



MWSS: Data Structures and Algorithms in Java:Introduction

[ ===l \\WSS: Data Structures and Algorithms in Java
= by Robert Lafore
Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing

» ALGORITHEMS

ST ISBN: 1571690956 Pub Date: 03/20/98

|Previou4TabIe of Contenth\lext|

JAVA CODE FOR A PRIORITY QUEUE
The Java code for a simple array—based priority queue is shown in Listing 4.6.

Listing 4.6 The priorityQ.java Program

/I priorityQ.java
/I demonstrates priority queue
/I to run this program: C>java PriorityQApp
import java.io.*; Il for I/O
s
class PriorityQ
{
/[ array in sorted order, from max at 0 to min at size-1
private int maxSize;
private double[] queArray;
private int nltems;
Il

public PriorityQ(int s) I/ constructor

maxSize = s;
queArray = new double[maxSize];
nitems = 0;

}
1

public void insert(double item) // insert item

{
int j;

if(nltems==0) I if no items,
queArray[nltems++] = item; /I insert at 0
else /I if any items,
{
for(j=nltems-1; j>=0; j—-) // start at end,
{
if(item > queArray[j])  // if new item larger,
queArray[j+1] = queArray[j]; // shift upward
else /I if smaller,
break; /I done shifting
} /I end for
queArray[j+1] = item; /I insert it
nltems++;
} Il end else (nltems > 0)
} I/ end insert()

I
public double remove() /I remove minimum item
{ return queArray[-—nltems]; }
I
public double peekMin() Il peek at minimum item
{ return queArray[nltems-1]; }
I
public boolean isEmpty() /I true if queue is empty
{ return (nltems==0); }
I
public boolean isFull() /I true if queue is full

JAVA CODE FOR A PRIORITY QUEUE

129


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

{ return (nltems == maxSize); }

Il
} /] end class PriorityQ
T T
class PriorityQApp
{
public static void main(String[] args) throws IOException
{
PriorityQ thePQ = new PriorityQ(5);
thePQ.insert(30);
thePQ.insert(50);
thePQ.insert(10);
thePQ.insert(40);
thePQ.insert(20);

while( 'thePQ.isEmpty() )
{
double item = thePQ.remove();
System.out.print(item + “*); // 10, 20, 30, 40, 50
} /I end while

System.out.printin(*”);

} /I end main()

I
} // end class PriorityQApp

In main() we insert five items in random order and then remove and display them. The smallest item is
always removed first, so the output is

10, 20, 30, 40, 50

The insert() method checks if there are any items; if not, it inserts one at index 0. Otherwise, it starts at

the top of the array and shifts existing items upward until it finds the place where the new item should go.
Then it inserts it and increments nitems. Note that if there’s any chance the priority queue is full you should
check for this possibility with isFull() before using insert().

The front and rear fields aren’t necessary as they were in the Queue class, because, as we noted, front
is always at nltems—1 and rear is always at 0.

The remove() method is simplicity itself: it decrements nltems and returns the item from the top of the
array. The peekMin() method is similar, except it doesn’t decrement nitems. The isEmpty() and
isFull() methods check if nitems is 0 or maxSize, respectively.

EFFICIENCY OF PRIORITY QUEUES

In the priority—queue implementation we show here, insertion runs in O(N) time, while deletion takes O(1)
time. We'll see how to improve insertion time with heaps in Chapter 12.

Parsing Arithmetic Expressions

So far in this chapter, we've introduced three different data storage structures. Let’s shift gears now and foc
on an important application for one of these structures. This application is parsing (that is, analyzing)
arithmetic expressions like 2+3 or 2*(3+4) or ((2+4)*7)+3*(9-5), and the storage structure it uses is the stacl
In the brackets.java program, we saw how a stack could be used to check whether delimiters were
formatted correctly. Stacks are used in a similar, although more complicated, way for parsing arithmetic
expressions.

In some sense this section should be considered optional. It's not a prerequisite to the rest of the book, and
writing code to parse arithmetic expressions is probably not something you need to do every day, unless yo
are a compiler writer or are designing pocket calculators. Also, the coding details are more complex than an

EFFICIENCY OF PRIORITY QUEUES 130



MWSS: Data Structures and Algorithms in Java:Introduction

we've seen so far. However, it's educational to see this important use of stacks, and the issues raised are
interesting in their own right.

As it turns out, it's fairly difficult, at least for a computer algorithm, to evaluate an arithmetic expression
directly. It's easier for the algorithm to use a two—step process:

1. Transform the arithmetic expression into a different format, called postfix notation.
2. Evaluate the postfix expression.

Step 1 is a bit involved, but step 2 is easy. In any case, this two—step approach results in a simpler algorithn
than trying to parse the arithmetic expression directly. Of course, for a human it's easier to parse the ordinar
arithmetic expression. We'll return to the difference between the human and computer approaches in a
moment.

Before we delve into the details of steps 1 and 2, we'll introduce postfix notation.

|Previou4TabIe of Contentk\lext|

EFFICIENCY OF PRIORITY QUEUES 131



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java
by Robert Lafore

. Waite Group Press, Macmillan Computer Publishing

DATA STRUCTURES

serienll  [SBN: 1571690956 Pub Date: 03/20/98

|Previous*TabIe of Contenth\lext|

POSTFIX NOTATION

Everyday arithmetic expressions are written with an operator (+, —, *, or /) placed between two operands
(numbers, or symbols that stand for numbers). This is called infix notation, because the operator is written
inside the operands. Thus we say 2+2 and 4/7, or, using letters to stand for numbers, A+B and A/B.

In postfix notation (which is also called Reverse Polish Notation, or RPN, because it was invented by a Polis
mathematician), the operator follows the two operands. Thus A+B becomes AB+, and A/B becomes AB/.
More complex infix expressions can likewise be translated into postfix notation, as shown in Table 4.2. We'l
explain how the postfix expressions are generated in a moment.

TABLE 4.2 Infix and postfix expressions
InfixPostfix

A+B—-CAB+C-

A*B/CAB*C/

A+B*CABC*+

A*B+CAB*C+

A*(B+C)ABC+*
A*B+C*DAB*CD*+
(A+B)*(C-D)AB+CD—*
((A+B)*C)-DAB+C*D—
A+B*(C-D/(E+F))ABCDEF+/—*+

Some computer languages also have an operator for raising a quantity to a power (typically the ” character)
but we’'ll ignore that possibility in this discussion.

Besides infix and postfix, there’s also a prefix notation, in which the operator is written before the operands:
+AB instead of AB+. This is functionally similar to postfix but seldom used.

TRANSLATING INFIX TO POSTFIX

The next several pages are devoted to explaining how to translate an expression from infix notation into
postfix. This is a fairly involved algorithm, so don’t worry if every detail isn't clear at first. If you get bogged
down, you may want to skip ahead to the section, “Evaluating Postfix Expressions.” In understanding how tc
create a postfix expression, it may be helpful to see how a postfix expression is evaluated; for example, how
the value 14 is extracted from the expression 234+*, which is the postfix equivalent of 2*(3+4). (Notice that
in this discussion, for ease of writing, we restrict ourselves to expressions with single—digit numbers, althoug
these expressions may evaluate to multidigit numbers.)

How Humans Evaluate Infix

How do you translate infix to postfix? Let's examine a slightly easier question first: how does a human
evaluate a normal infix expression? Although, as we stated earlier, this is difficult for a computer, we human
do it fairly easily because of countless hours in Mr. Klemmer’s math class. It's not hard for us to find the
answer to 3+4+5, or 3*(4+5). By analyzing how we do this, we can achieve some insight into the translation
of such expressions into postfix.

POSTFIX NOTATION 132


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

Roughly speaking, when you “solve” an arithmetic expression, you follow rules something like this:

1. You read from left to right. (At least we'll assume this is true. Sometimes people skip ahead, but
for purposes of this discussion, you should assume you must read methodically, starting at the left.)
2. When you've read enough to evaluate two operands and an operator, you do the calculation and
substitute the answer for these two operands and operator. (You may also need to solve other pendi
operations on the left, as we’ll see later.)

3. This process is continued—going from left to right and evaluating when possible—until the end
of the expression.

In Tables 4.3, 4.4, and 4.5 we're going to show three examples of how simple infix expressions are evaluate
Later, in Tables 4.6, 4.7, and 4.8, we'll see how closely these evaluations mirror the process of translating
infix to postfix.

TABLE 4.3 Evaluating 3+4-5

Iltem ReadExpression Parsed So FarComments

33

+3+

43+4

—7When you see the —, you can evaluate 3+4.

7—

57-5

End2When you reach the end of the expression, you can evaluate 7-5.

TABLE 4.4 Evaluating 3+4*5

Iltem ReadExpression Parsed So FarComments

33

+3+

43+4

*3+4*Can’'t evaluate 3+4, because * is higher precedence than +.
53+4*5When you see the 5, you can evaluate 4*5.

3+20

End23When you see the end of the expression, you can evaluate 3+20.

TABLE 4.5 Evaluating 3*(4+5)

Iltem ReadExpression Parsed So FarComments

33

*3*

(3*(

43*(4Can't evaluate 3*4 because of parentheses.

+3*(4+

53*(4+5Can't evaluate 4+5 yet.

)3*(4+5)When you see the ')’ you can evaluate 4+5.
3*9When you've evaluated 4+5, you can evaluate 3*9.
27
End Nothing left to evaluate.

TABLE 4.6 Translating A+B-C into postfix

Character Read from Infix Expressioninfix Expression Parsed So FarPostfix Expression Written So
FarComments

AAA

POSTFIX NOTATION 133



MWSS: Data Structures and Algorithms in Java:Introduction

+A+A

BA+BAB

—A+B-AB+When you see the —, you can copy the + to the postfix string.
CA+B-CAB+C

EndA+B-CAB+C-When you reach the end of the expression, you can copy the —.

TABLE 4.7 Translating A+B*C to postfix

Character Read from Infix Expressioninfix Expression Parsed So FarPostfix Expression Written So
FarComments

AAA

+A+A

BA+(BAB

*A+B*ABCan’t copy the +, because * is higher precedence than +.

CA+B*CABCWhen you see the C, you can copy the *.

A+B*CABC*

EndA+B*CABC*+When you see the end of the expression, you can copy the +.

TABLE 4.8 Translating 3*(4+5) into postfix

Character Read from Infix Expressioninfix Expression Parsed So FarPostfix Expression Written So
FarComments

AAA

*A*A

(A*(A

BA*(BABCan't copy * because of parenthesis.

+A*(B+AB

CA*(B+CABCCan't copy the + yet.

)A*(B+C)ABC+When you see the ) you can copy the +.
A*(B+C)ABC+*When you've copied the +, you can copy the*.
EndA*(B+C)ABC+*Nothing left to copy.

|Previou4TabIe of Contentk\lext|

POSTFIX NOTATION 134



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java
by Robert Lafore

& . . I
Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
gl ISBN: 1571690956 Pub Date: 03/20/98

|Previous*TabIe of Contenth\lext|

To evaluate 3+4-5, you would carry out the steps shown in Table 4.3.

You can't evaluate the 3+4 until you see what operator follows the 4. If it's a * or / you need to wait before
applying the + sign until you've evaluated the * or /.

However, in this example the operator following the 4 is a —, which has the same precedence as a +, so whe
you see the — you know you can evaluate 3+4, which is 7. The 7 then replaces the 3+4. You can evaluate tf
7-5 when you arrive at the end of the expression.

Figure 4.13 shows how this looks in more detail. Notice how you go from left to right reading items from the
input, and then, when you have enough information, you go from right to left, recalling previously examined
input and evaluating each operand-operator—operand combination.

FIGURE 4.13 Evaluating 3+4-5
Because of precedence relationships, it's a bit more complicated to evaluate 3+4*5, as shown in Table 4.4.

Here you can’t add the 3 until you know the result of 4*5. Why not? Because multiplication has a higher
precedence than addition. In fact, both * and / have a higher precedence than + and —, so all multiplications
and divisions must be carried out before any additions or subtractions (unless parentheses dictate otherwise
see the next example).

Often you can evaluate as you go from left to right, as in the last example. However, you need to be sure,
when you come to an operand—operator—operand combination like A+B, that the operator on the right side c
the B isn’'t one with a higher precedence than the +. If it does have a higher precedence, as in this example,
you can't do the addition yet. However, once you've read the 5, the multiplication can be carried out becaus
it has the highest priority; it doesn’t matter if a * or / follows the 5. However, you still can’t do the addition
until you've found out what's beyond the 5. When you find there’s nothing beyond the 5 but the end of the
expression, you can go ahead and do the addition. Figure 4.14 shows this process.

FIGURE 4.14 Evaluating 3+4*5

POSTFIX NOTATION 135


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

Parentheses can by used to override the normal precedence of operators. Table 4.5 shows how you would
evaluate 3*(4+5). Without the parentheses you'd do the multiplication first; with them you do the addition
first.

Here we can'’t evaluate anything until we've reached the closing parenthesis. Multiplication has a higher or
equal precedence compared to the other operators, so ordinarily we could carry out 3*4 as soon as we see
4. However, parentheses have an even higher precedence than * and /. Accordingly, we must evaluate
anything in parentheses before using the result as an operand in any other calculation. The closing parenthe
tells us we can go ahead and do the addition. We find that 4+5 is 9, and once we know this, we can evaluat
3*9 to obtain 27. Reaching the end of the expression is an anticlimax because there’s nothing left to evaluat
The process is shown in Figure 4.15.

FIGURE 4.15 Evaluating 3*(4+5)

As we’ve seen, in evaluating an infix arithmetic expression, you go both forward and backward through the
expression. You go forward (left to right) reading operands and operators. When you have enough
information to apply an operator, you go backward, recalling two operands and an operator and carrying out
the arithmetic.

Sometimes you must defer applying operators if they’re followed by higher precedence operators or by
parentheses. When this happens you must apply the later, higher—precedence, operator first; then go backv
(to the left) and apply earlier operators.

We could write an algorithm to carry out this kind of evaluation directly. However, as we noted, it's actually
easier to translate into postfix notation first.

How Humans Translate Infix to Postfix

To translate infix to postfix notation, you follow a similar set of rules to those for evaluating infix. However,
there are a few small changes. You don't do any arithmetic. The idea is not to evaluate the infix expression,
but to rearrange the operators and operands into a different format: postfix notation. The resulting postfix
expression will be evaluated later.

As before, you read the infix from left to right, looking at each character in turn. As you go along, you copy
these operands and operators to the postfix output string. The trick is knowing when to copy what.

If the character in the infix string is an operand, you copy it immediately to the postfix string. That is, if you
see an A in the infix, you write an A to the postfix. There’s never any delay: you copy the operands as you g
to them, no matter how long you must wait to copy their associated operators.

Knowing when to copy an operator is more complicated, but it's the same as the rule for evaluating infix
expressions. Whenever you could have used the operator to evaluate part of the infix expression (if you wer
evaluating instead of translating to postfix), you instead copy it to the postfix string.

Table 4.6 shows how A+B-C is translated into postfix notation.

Notice the similarity of this table to Table 4.3, which showed the evaluation of the infix expression 3+4-5. At

each point where you would have done an evaluation in the earlier table, you instead simply write an operat
to the postfix output.

How Humans Translate Infix to Postfix 136



MWSS: Data Structures and Algorithms in Java:Introduction

Table 4.7 shows the translation of A+B*C to postfix. This is similar to Table 4.4, which covered the
evaluation of 3+4*5,

As the final example, Table 4.8 shows how A*(B+C) is translated to postfix. This is similar to evaluating
3*(4+5) in Table 4.5. You can't write any postfix operators until you see the closing parenthesis in the input.

As in the numerical evaluation process, you go both forward and backward through the infix expression to
complete the translation to postfix. You can’t write an operator to the output (postfix) string if it's followed by
a higher—precedence operator or a left parenthesis. If it is, the higher precedence operator, or the operator i
parentheses, must be written to the postfix before the lower priority operator.

|Previou4TabIe of Contentk\lext|

How Humans Translate Infix to Postfix 137



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java
by Robert Lafore

. Waite Group Press, Macmillan Computer Publishing

DATA STRUCTURES

serienll  [SBN: 1571690956 Pub Date: 03/20/98

|Previous*TabIe of Contenth\lext|

Saving Operators on a Stack

You'll notice in both Table 4.7 and Table 4.8 that the order of the operators is reversed going from infix to
postfix. Because the first operator can’t be copied to the output until the second one has been copied, the
operators were output to the postfix string in the opposite order they were read from the infix string. A longel
example may make this clearer. Table 4.9 shows the translation to postfix of the infix expression A+B*(C-D’
We include a column for stack contents, which we’ll explain in a moment.

TABLE 4.9 Translating A+B*(C—D) to postfix
Character Read from Infix Expressioninfix Expression Parsed So FarPostfix Expression Written So
FarStack Contents

AAA

+A+A+

BA+BAB+

*A+B*AB+*

(A+B*(AB+*(

CA+B*(CABC+*(

—A+B*(C-ABC+*(—

DA+B*(C-DABCD+*(—
)A+B*(C—D)ABCD—+*(
A+B*(C-D)ABCD—+*(

A+B*(C-D)ABCD—+*

A+B*(C-D)ABCD—*+

A+B*(C-D)ABCD—*+

Here we see the order of the operands is +*— in the original infix expression, but the reverse order, —*+, in tf
final postfix expression. This happens because * has higher precedence than +, and —, because it's in
parentheses, has higher precedence than *.

This order reversal suggests a stack might be a good place to store the operators while we're waiting to use
them. The last column in Table 4.9 shows the stack contents at various stages in the translation process.

Popping items from the stack allows you to, in a sense, go backward (right to left) through the input string.
You're not really examining the entire input string, only the operators and parentheses. These were pushed
the stack when reading the input, so now you can recall them in reverse order by popping them off the stack

The operands (A, B, and so on) appear in the same order in infix and postfix, so you can write each one to t
output as soon as you encounter it; they don't need to be stored on a stack.

Translation Rules
Let's make the rules for infix-to—postfix translation more explicit. You read items from the infix input string

and take the actions shown in Table 4.10. These actions are described in pseudocode, a blend of Java and
English.

Saving Operators on a Stack 138


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

TABLE 4.10 Translation rules
Iltem Read from Input (Infix)Action
OperandWrite it to output (postfix)
Open parenthesis (Push it on stack
Close parenthesis )While stack not empty, repeat the following:
Pop an item,
If item is not (, write it to output
Quit loop if item is (
Operator (opThis)If stack empty,
Push opThis
Otherwise,
While stack not empty, repeat:
Pop an item,
If item is (, push it, or
If item is an operator (opTop), and
If opTop < opThis, push opTop, or
If opTop >= opThis, output opTop
Quit loop if opTop < opThis or item is (
Push opThis
No more itemsWhile stack not empty,
Pop item, output it.

|Previou4TabIe of Contentk\lext|

Saving Operators on a Stack

139



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java
by Robert Lafore

. Waite Group Press, Macmillan Computer Publishing

DATA STRUCTURES

serienll  [SBN: 1571690956 Pub Date: 03/20/98

|Previous*TabIe of Contenth\lext|

In this table, the < and >= symbols refer to the operator precedence relationship, not numerical values. The
opThis operator has just been read from the infix input, while the opTop operator has just been popped off

the stack.

It may take some work to convince yourself that these rules work. Tables 4.11, 4.12, and 4.13 show how the
rules apply to three sample infix expressions. These are similar to Tables 4.6, 4.7, and 4.8, except that the
relevant rules for each step have been added. Try creating similar tables by starting with other simple infix

expressions and using the rules to translate some of them to postfix.

TABLE 4.11 Translation Rules Applied to A+B—C

Character Read from InfixInfix Parsed So FarPostfix Written So FarStack ContentsRule
AAA Write operand to output.

+A+A+If stack empty, push opThis.

BA+BAB+Write operand to output.

—A+B—AB Stack not empty, so pop item.

A+B—AB opThis is —, opTop is +, opTop>=0pThis, so output opTop.

A+B—AB+-Then push opThis.

CA+B-CAB+C—Write operand to output.

EndA+B-CAB+C- Pop leftover item, output it.

TABLE 4.12 Translation rules applied to A+B*C

Character Read from InfixInfix Parsed So FarPostfix Written So FarStack ContentsRule
AAA Write operand to postfix.

+A+A+If stack empty, push opThis.

BA+BAB+Write operand to output.

*A+B*AB+Stack not empty, so pop opTop.

A+B*AB+opThis is *, opTop is + opTop<opThis, so push opTop.
A+B*AB+*Then push opThis.

CA+B*CABC+*Write operand to output.

EndA+B*CABC*+Pop leftover item, output it.

A+B*CABC*+ Pop leftover item, output it.

TABLE 4.13 Translation Rules Applied to A*(B+C)
Character Read from InfixInfix Parsed So FarPostfix Written So FarStack ContentsRule
AAA Write operand to postfix.

*A*A*|f stack empty, push opThis.

(A*(A*(Push ( on stack.

BA*(BAB*(Write operand to postfix.
+A*(B+AB*Stack not empty, so pop item.
A*(B+AB*(It's (, so push it.

A*(B+AB*(+Then push opThis.
CA*(B+CABC*(+Write operand to postfix.
)A*(B+C)ABC+*(Pop item, write to output.
A*(B+C)ABC+*Quit popping if (.

Saving Operators on a Stack

140


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

EndA*(B+C)ABC+* Pop leftover item, output it.

|PreviousiTabIe of Contentk\lext|

Saving Operators on a Stack 141



MWSS: Data Structures and Algorithms in Java:Introduction

[ ===l \\WSS: Data Structures and Algorithms in Java

by Robert Lafore

- “:,\ Waite Group Press, Macmillan Computer Publishing
gaertenll ISBN: 1571690956 Pub Date: 03/20/98

|Previou4TabIe of Contenth\lext|

Java Code to Convert Infix to Postfix

Listing 4.7 shows the infix.java program, which uses the rules of Table 4.10 to translate an infix

expression to a postfix expression.

Listing 4.7 The infix.java Program

/I infix.java
/I converts infix arithmetic expressions to postfix
/I to run this program: C>java InfixApp
import java.io.*; Il for I/O
U T
class StackX
{
private int maxSize;
private char[] stackArray;
private int top;
I

public StackX(int s) /I constructor
{
maxSize = s;
stackArray = new char[maxSize];
top = -1;
}
I/

public void push(char j) // put item on top of stack
{ stackArray[++top] =j; }
I

public char pop() / take item from top of stack
{ return stackArray[top—-T]; }
I

public char peek() I/ peek at top of stack
{ return stackArray[top]; }
I

public boolean isEmpty() // true if stack is empty
{return (top == -1); }
I

public int size() / return size
{return top+1; }

I
public char peekN(int n) // return item at index n

{ return stackArray[n]; }
I

public void displayStack(String s)
{
System.out.print(s);
System.out.print(“Stack (bottom—-—>top): “);
for(int j=0; j<size(); j++)
{
System.out.print( peekN()) );
System.out.print(' ");
}

System.out.printin(*");

}
1

Java Code to Convert Infix to Postfix

142


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

} /] end class StackX
T T T
class InToPost /1 infix to postfix conversion
{
private StackX theStack;
private String input;
private String output = “”;
Il

public InToPost(String in) // constructor
{
input = in;
int stackSize = input.length();
theStack = new StackX(stackSize);

}
I

public String doTrans()  // do translation to postfix
{
for(int j=0; j<input.length(); j++)
{
char ch = input.charAt(j);
theStack.displayStack(“For “+ch+" “); // *diagnostic*

switch(ch)
{
case '+ /l'it's + or -
case -
gotOper(ch, 1);  // go pop operators
break; /I (precedence 1)
case " Il'it's *or/
case '
gotOper(ch, 2);  // go pop operators
break; /I (precedence 2)
case '(" /l'it's a left paren
theStack.push(ch); // push it
break;
case'): Il it's a right paren
gotParen(ch); I/l go pop operators
break;
default: /I must be an operand
output = output + ch; // write it to output
break;
} /I end switch
} 1l end for
while( 'theStack.isEmpty() )  // pop remaining opers
{

theStack.displayStack(“While “); // *diagnostic*
output = output + theStack.pop(); // write to output
}
theStack.displayStack(“End “);  // *diagnostic*
return output; /I return postfix
} // end doTrans()
Il

public void gotOper(char opThis, int precl)
{ /I got operator from input
while( 'theStack.isEmpty() )
{
char opTop = theStack.pop();
if(opTop =="'(") /lifitsa'(
{
theStack.push(opTop);  // restore '(’
break;
}
else I it's an operator

{

int prec2; I/l precedence of new op

iflopTop=="+" || opTop=="-") // find new op prec
prec2 =1,

Java Code to Convert Infix to Postfix

143



MWSS: Data Structures and Algorithms in Java:Introduction

else
prec2 = 2,

if(prec2 < precl) /I if prec of new op less
{ /I than prec of old
theStack.push(opTop); // save newly—popped op
break;
}

else I/ prec of new not less

output = output + opTop; // than prec of old
} /I end else (it's an operator)
} /I end while
theStack.push(opThis); Il push new operator
} /] end gotOp()
I

public void gotParen(char ch)
{ /I got right paren from input
while( 'theStack.isEmpty() )
{
char chx = theStack.pop();
if(chx =="(") /1'if popped '('
break; // we're done
else /I if popped operator
output = output + chx; // output it
} 1 end while
} /] end popOps()
Il

} // end class InToPost
T T T
class InfixApp

{

public static void main(String[] args) throws IOException

{

String input, output;

while(true)
{
System.out.print(“Enter infix: “);
System.out.flush();

input = getString(); /I read a string from kbd
if( input.equals(*) ) I quit if [Enter]
break;

/I make a translator
InToPost theTrans = new InToPost(input);
output = theTrans.doTrans(); // do the translation
System.out.printin(“Postfix is “ + output + \n’);
} /I end while
} /I end main()
I

public static String getString() throws IOException
{
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);
String s = br.readLine();
return s;

}
I

} // end class InfixApp

|PreviousiTabIe of Contentk\lext|

Java Code to Convert Infix to Postfix

144



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

The main() routine in the InfixApp class asks the user to enter an infix expression. The input is read with
the readString() utility method. The program creates an InToPost object, initialized with the input

string. Then it calls the doTrans() method for this object to perform the translation. This method returns
the postfix output string, which is displayed.

The doTrans() method uses a switch statement to handle the various translation rules shown in Table

4.10. It calls the gotOper() method when it reads an operator and the gotParen() method when it reads

a closing parenthesis ')'. These methods implement the second two rules in the table, which are more comp
than other rules.

We've included a displayStack() method to display the entire contents of the stack in the StackX

class. In theory, this isn’t playing by the rules; you're only supposed to access the item at the top. However,
a diagnostic aid it's useful to see the contents of the stack at each stage of the translation. Here’'s some san
interaction with infix.java:

Enter infix: Input=A*(B+C)—-D/(E+F)
For A Stack (bottom-->top):

For * Stack (bottom-->top):

For ( Stack (bottom——>top): *

For B Stack (bottom—->top): * (
For + Stack (bottom—->top): * (
For C Stack (bottom—-->top): * ( +
For ) Stack (bottom——>top): * ( +
For — Stack (bottom-->top): *

For D Stack (bottom——>top): —

For / Stack (bottom——>top): —

For ( Stack (bottom——>top): — /
For E Stack (bottom—->top): -/ (
For + Stack (bottom-->top): =/ (
For F Stack (bottom-->top): —/ (+
For ) Stack (bottom——>top): =/ ( +
While Stack (bottom——>top): — /
While Stack (bottom—->top): -
End Stack (bottom-—>top):
Postfix is ABC+*DEF+/-

The output shows where the displayStack() method was called (from the for loop, the while loop, or
at the end of the program) and within the for loop, what character has just been read from the input string.

You can use single—digit numbers like 3 and 7 instead of symbols like A and B. They're all just characters tc
the program. For example:

Enter infix: Input=2+3*4

For 2 Stack (bottom—-—>top):

For + Stack (bottom-->top):
For 3 Stack (bottom—->top): +
For * Stack (bottom-->top): +
For 4 Stack (bottom——>top): + *
While Stack (bottom——>top): + *
While Stack (bottom——>top): +
End Stack (bottom-—>top):

Java Code to Convert Infix to Postfix 145


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

Postfix is 234*+
Of course, in the postfix output, the 234 means the separate numbers 2, 3, and 4.

The infix.java program doesn’t check the input for errors. If you type an incorrect infix expression, the
program will provide erroneous output or crash and burn.

Experiment with this program. Start with some simple infix expressions, and see if you can predict what the
postfix will be. Then run the program to verify your answer. Pretty soon, you'll be a postfix guru, much
sought-after at cocktail parties.

EVALUATING POSTFIX EXPRESSIONS

As you can see, it's not trivial to convert infix expressions to postfix expressions. Is all this trouble really
necessary? Yes, the payoff comes when you evaluate a postfix expression. Before we show how simple the
algorithm is, let's examine how a human might carry out such an evaluation.

How Humans Evaluate Postfix

Figure 4.16 shows how a human can evaluate a postfix expression using visual inspection and a pencil.

FIGURE 4.16 Visual approach to postfix evaluation of 345+*612+/-

Start with the first operator on the left, and draw a circle around it and the two operands to its immediate left
Then apply the operator to these two operands—performing the actual arithmetic—and write down the resul
inside the circle. In the figure, evaluating 4+5 gives 9.

Now go to the next operator to the right, and draw a circle around it, the circle you already drew, and the
operand to the left of that. Apply the operator to the previous circle and the new operand, and write the resu
in the new circle. Here 3*9 gives 27. Continue this process until all the operators have been applied: 1+2 is :
and 6/3 is 2. The answer is the result in the largest circle: 27-2 is 25.

Rules for Postfix Evaluation

How do we write a program to reproduce this evaluation process? As you can see, each time you come to &
operator, you apply it to the last two operands you've seen. This suggests that it might be appropriate to sto
the operands on a stack. (This is the opposite of the infix to postfix translation algorithm, where operators
were stored on the stack.) You can use the rules shown in Table 4.14 to evaluate postfix expressions.

TABLE 4.14 Evaluating a postfix expression

Iltem Read from Postfix ExpressionAction

OperandPush it onto the stack.

OperatorPop the top two operands from the stack, and apply the operator to them. Push the result.

When you're finished, pop the stack to obtain the answer. That's all there is to it. This process is the comput
equivalent of the human circle-drawing approach of Figure 4.16.

|PreviousiTabIe of Contentk\lext|

EVALUATING POSTFIX EXPRESSIONS 146



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

DT sTRUCTURSS Waite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

Java Code to Evaluate Postfix Expressions

In the infix—to—postfix translation, we used symbols (A, B, and so on) to stand for numbers. This worked
because we weren't performing arithmetic operations on the operands, but merely rewriting them in a
different format.

Now we want to evaluate a postfix expression, which means carrying out the arithmetic and obtaining an
answer. Thus the input must consist of actual numbers. To simplify the coding we've restricted the input to
single—digit numbers.

Our program evaluates a postfix expression and outputs the result. Remember numbers are restricted to on
digit. Here’'s some simple interaction:

Enter postfix: 57+

5 Stack (bottom—-—>top):

7 Stack (bottom——>top): 5
+ Stack (bottom-—>top): 5 7
Evaluates to 12

You enter digits and operators, with no spaces. The program finds the numerical equivalent. Although the
input is restricted to single—digit numbers, the results are not; it doesn’t matter if something evaluates to
numbers greater than 9. As in the infix.java program, we use the displayStack() method to show

the stack contents at each step. Listing 4.8 shows the postfix.java program.

Listing 4.8 The postfix.java Program

/I postfix.java
/I parses postfix arithmetic expressions
/I to run this program: C>java PostfixApp
import java.io.*; /I for /10O
T T
class StackX

{

private int maxSize;

private int[] stackArray;

private int top;
I

public StackX(int size)  // constructor
{
maxSize = size;
stackArray = new intf[maxSize];
top = -1;
}

public void push(intj)  // put item on top of stack
{ stackArray[++top] = j; }

1

I
public int pop() / take item from top of stack
{ return stackArray[top—-]; }

I
public int peek() Il peek at top of stack
{ return stackArray[top]; }

Java Code to Evaluate Postfix Expressions 147


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

I

public boolean isEmpty() // true if stack is empty
{return (top == -1); }
I

public boolean isFull()  // true if stack is full
{ return (top == maxSize-1); }
I

public int size() Il return size
{return top+1; }

I
public int peekN(int n)  // peek at index n
{ return stackArray[n]; }

I

public void displayStack(String s)
{
System.out.print(s);
System.out.print(“Stack (bottom—-—>top): “);
for(int j=0; j<size(); j++)
{
System.out.print( peekN()) );
System.out.print(* );
}
System.out.printin(*”);
}

} /] end class StackX
T T T
class ParsePost

{

private StackX theStack;

private String input;

I

I

public ParsePost(String s)
{input=s;}
I

public int doParse()
{
theStack = new StackX(20); /I make new stack
char ch;
int j;
int num1, num2, interAns;
for(j=0; j<input.length(); j++) /I for each char,
{
ch = input.charAt(j); /l read from input
theStack.displayStack(“"+ch+" “); // *diagnostic*
if(ch >='0’ && ch <="'9) I if it's a number
theStack.push( (int)(ch-'0") ); // pushiit
else Il it's an operator
{
num2 = theStack.pop(); /I pop operands
numl = theStack.pop();
switch(ch) /I do arithmetic
{
case '+':
interAns = num1 + num2;
break;
case '-':
interAns = num1 — num2;
break;
case "*':
interAns = num1 * num2;
break;
case '
interAns = num1 / num2;
break;
default:
interAns = 0;

Java Code to Evaluate Postfix Expressions 148



MWSS: Data Structures and Algorithms in Java:Introduction

} /] end switch
theStack.push(interAns); /I push result
} /l'end else
} 1l end for
interAns = theStack.pop(); /I get answer
return interAns;
} // end doParse()
} /] end class ParsePost
T T T
class PostfixApp
{
public static void main(String[] args) throws IOException
{
String input;
int output;

while(true)
{
System.out.print(“Enter postfix: “);
System.out.flush();
input = getString(); /l read a string from kbd
if( input.equals(*) ) I quit if [Enter]
break;
/l make a parser
ParsePost aParser = new ParsePost(input);
output = aParser.doParse(); // do the evaluation
System.out.printin(“Evaluates to “ + output);
} 1 end while
} /I end main()
I

public static String getString() throws IOException
{
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);
String s = br.readLine();
return s;

}
I

} // end class PostfixApp

The main() method in the PostfixApp class gets the postfix string from the user and then creates a
ParsePost object, initialized with this string. It then calls the doParse() method of ParsePost to
carry out the evaluation.

The doParse() method reads through the input string, character by character. If the character is a digit, it's
pushed onto the stack. If it's an operator, it's applied immediately to the two operators on the top of the stacl
(These operators are guaranteed to be on the stack already, because the input string is in postfix notation.)

The result of the arithmetic operation is pushed onto the stack. Once the last character (which must be an
operator) is read and applied, the stack contains only one item, which is the answer to the entire expression

Here’s some interaction with more complex input: the postfix expression 345+*612+/—, which we showed a
human evaluating in Figure 4.16. This corresponds to the infix 3*(4+5)-6/(1+2). (We saw an equivalent
translation using letters instead of numbers in the last section: A*(B+C)-D/(E+F) in infix is ABC+*DEF+/—
in postfix.) Here’'s how the postfix is evaluated by the postfix.java program:

Enter postfix: 345+*612+/—

3 Stack (bottom——>top):

4 Stack (bottom-->top): 3

5 Stack (bottom——>top): 3 4
+ Stack (bottom-->top): 34 5
* Stack (bottom-->top): 39

6 Stack (bottom——>top): 27

Java Code to Evaluate Postfix Expressions 149



MWSS: Data Structures and Algorithms in Java:Introduction

1 Stack (bottom——>top): 27 6

2 Stack (bottom——>top): 27 6 1
+ Stack (bottom—-—>top): 27 6 1 2
/ Stack (bottom—-—>top): 27 6 3

- Stack (bottom-->top): 27 2
Evaluates to 25

As with the last program, postfix.java doesn’t check for input errors. If you type in a postfix expression
that doesn’t make sense, results are unpredictable.

Experiment with the program. Trying different postfix expressions and seeing how they’re evaluated will give
you an understanding of the process faster than reading about it.

Summary

» Stacks, queues, and priority queues are data structures usually used to simplify certain
programming operations.

* In these data structures, only one data item can be accessed.

» A stack allows access to the last item inserted.

» The important stack operations are pushing (inserting) an item onto the top of the stack and
popping (removing) the item that's on the top.

» A gueue allows access to the first item that was inserted.

» The important queue operations are inserting an item at the rear of the queue and removing the
item from the front of the queue.

» A gueue can be implemented as a circular queue, which is based on an array in which the indices
wrap around from the end of the array to the beginning.

A priority queue allows access to the smallest (or sometimes the largest) item.

» The important priority queue operations are inserting an item in sorted order and removing the
item with the smallest key.

» These data structures can be implemented with arrays or with other mechanisms such as linked
lists.

» Ordinary arithmetic expressions are written in infix notation, so—called because the operator is
written between the two operands.

* In postfix notation, the operator follows the two operands.

 Arithmetic expressions are typically evaluated by translating them to postfix notation and then
evaluating the postfix expression.

» A stack is a useful tool both for translating an infix to a postfix expression and for evaluating a
postfix expression.

|Previou4TabIe of Contentk\lext|

Summary 150



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

Chapter 5
Linked Lists

In Chapter 2, “Arrays,” we saw that arrays had certain disadvantages as data storage structures. In an
unordered array, searching is slow, whereas in an ordered array, insertion is slow. In both kinds of arrays
deletion is slow. Also, the size of an array can’t be changed after it's created.

In this chapter we’ll look at a data storage structure that solves some of these problems: the linked list. Linke
lists are probably the second most commonly used general—purpose storage structures after arrays.

The linked list is a versatile mechanism suitable for use in many kinds of general-purpose databases. It can
also replace an array as the basis for other storage structures such as stacks and queues. In fact, you can
linked list in many cases where you use an array (unless you need frequent random access to individual iter
using an index).

Linked lists aren't the solution to all data storage problems, but they are surprisingly versatile and
conceptually simpler than some other popular structures such as trees. We'll investigate their strengths and
weaknesses as we go along.

In this chapter we’ll look at simple linked lists, double—ended lists, sorted lists, doubly linked lists, and lists
with iterators (an approach to random access to list elements). We'll also examine the idea of Abstract Data
Types (ADTs) and see how stacks and queues can be viewed as ADTs and how they can be implemented «
linked lists instead of arrays.

Links

In a linked list, each data item is embedded in a link. A link is an object of a class called something like
Link. Because there are many similar links in a list, it makes sense to use a separate class for them, distinct
from the linked list itself. Each link object contains a reference (usually called next) to the next link in the
list. A field in the list itself contains a reference to the first link. This is shown in Figure 5.1.

SAAaA4A

FIGURE 5.1 Links in a list

Here’s part of the definition of a class Link. It contains some data and a reference to the next link.

class Link

{
public int iData; // data

public double dData; // data
public Link next;  // reference to next link

}

This kind of class definition is sometimes called self-referential because it contains a field—called next in

Chapter 5 Linked Lists 151


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

this case—of the same type as itself.

We show only two data items in the link: an int and a double. In a typical application there would be
many more. A personnel record, for example, might have name, address, Social Security number, title, sala
and many other fields. Often an object of a class that contains this data is used instead of the items:

class Link

{
public inventoryltem il; // object holding data
public Link next; I reference to next link

}

REFERENCES AND BASIC TYPES
It's easy to get confused about references in the context of linked lists, so let’s review how they work.

It may seem odd that you can put a field of type Link inside the class definition of this same type. Wouldn't
the compiler be confused? How can it figure out how big to make a Link object if a link contains a link and
the compiler doesn't already know how big a Link object is?

The answer is that a Link object doesn't really contain another Link object, although it may look like it
does. The next field of type Link is only a reference to another link, not an object.

A reference is a number that refers to an object. It's the object’s address in the computer’'s memory, but you
don’t need to know its value; you just treat it as a magic humber that tells you where the object is. In a given
computer/operating system, all references, no matter what they refer to, are the same size. Thus it's no
problem for the compiler to figure out how big this field should be, and thereby construct an entire Link
object.

Note that in Java, primitive types like int and double are stored quite differently than objects. Fields
containing primitive types do not contain references, but actual numerical values like 7 or 3.14159. A variabl
definition like

double salary = 65000.00;

creates a space in memory a puts the number 65000.00 into this space. However, a reference to an object,
Link aLink = someLink;

puts a reference to an object of type Link, called someLink, into aLink. The someLink object isn't

moved, or even created, by this statement; it must have been created before. To create an object you must

always use new:

Link someLink = new Link();

Even the somelLink field doesn't hold an object, it’s still just a reference. The object is somewhere else in
memory, as shown in Figure 5.2.

REFERENCES AND BASIC TYPES 152



MWSS: Data Structures and Algorithms in Java:Introduction

FIGURE 5.2 Objects and references in memory

Other languages, like C++, handle objects quite differently than Java. In C++ a field like

Link next;

actually contains an object of type Link. You can't write a self-referential class definition in C++ (although
you can put a pointer to a Link in class Link; a pointer is similar to a reference). C++ programmers should
keep in mind how Java handles objects; it may be counter intuitive.

RELATIONSHIP, NOT POSITION

Let's examine one of the major ways in which linked lists differ from arrays. In an array each item occupies :
particular position. This position can be directly accessed using an index number. It's like a row of houses:
you can find a particular house using its address.

In a list the only way to find a particular element is to follow along the chain of elements. It's more like
human relations. Maybe you ask Harry where Bob is. Harry doesn’t know, but he thinks Jane might know, st
you go and ask Jane. Jane saw Bob leave the office with Sally, so you call Sally’s cell phone. She dropped
Bob off at Peter’s office, so...but you get the idea. You can’t access a data item directly; you must use
relationships between the items to locate it. You start with the first item, go to the second, then the third, unt
you find what you're looking for.

|Previous£TabIe of Contentk\lext|

RELATIONSHIP, NOT POSITION 153



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java
by Robert Lafore

. Waite Group Press, Macmillan Computer Publishing

DATA STRUCTURES

serienll  [SBN: 1571690956 Pub Date: 03/20/98

|Previous*TabIe of Contenth\lext|

The LinkList Workshop Applet

The LinkList Workshop applet provides three list operations. You can insert a new data item, search for a de
item with a specified key, and delete a data item with a specified key. These operations are the same ones \
explored in the Array Workshop applet in Chapter 2; they're suitable for a general-purpose database
application.

Figure 5.3 shows how the LinkList Workshop applet looks when it's started up. Initially there are 13 links on
the list.

FIGURE 5.3 The LinkList Workshop applet
INSERT
If you think 13 is an unlucky number, you can insert a new link. Click on the Ins button, and you'll be

prompted to enter a key value between 0 and 999. Subsequent presses will generate a link with this data in
as shown in Figure 5.4.

FIGURE 5.4 A new link being inserted

In this version of a linked list, new links are always inserted at the beginning of the list. This is the simplest
approach, although it's also possible to insert links anywhere in the list, as we’ll see later.

A final press on Ins will redraw the list so the newly inserted link lines up with the other links. This redrawing
doesn’t represent anything happening in the program itself, it just makes the display look neater.

FIND

The Find button allows you find a link with a specified key value. When prompted, type in the value of an
existing link, preferably one somewhere in the middle of the list. As you continue to press the button, you'll
see the red arrow move along the list, looking for the link. A message informs you when it finds it. If you type
a nonexistent key value, the arrow will search all the way to the end of the list before reporting that the item
can’t be found.

The LinkList Workshop Applet 154


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

DELETE

You can also delete a key with a specified value. Type in the value of an existing link, and repeatedly press
Del. Again the arrow will move along the list, looking for the link. When it finds it, it simply removes it and
connects the arrow from the previous link straight across to the following link. This is how links are removed
the reference to the preceding link is changed to point to the following link.

A final keypress redraws the picture, but again this just provides evenly spaced links for aesthetic reasons; t
length of the arrows doesn’t correspond to anything in the program.

UNSORTED AND SORTED

The LinkList Workshop applet can create both unsorted and sorted lists. Unsorted is the default. We'll show
how to use the applet for sorted lists when we discuss them later in this chapter.

A Simple Linked List

Our first example program, linkList.java, demonstrates a simple linked list. The only operations
allowed in this version of a list are

* Inserting an item at the beginning of the list
» Deleting the item at the beginning of the list
« lterating through the list to display its contents

These operations are fairly easy to carry out, so we'll start with them. (As we’ll see later, these operations at
also all you need to use a linked list as the basis for a stack.)

Before we get to the complete linkList.java program, we'll look at some important parts of the Link
and LinkList classes.

THE Link CLASS

You've already seen the data part of the Link class. Here’s the complete class definition:

class Link
public int iData; // data item
public double dData; // data item
public Link next; // next link in list

1

public Link(int id, double dd) // constructor

{

iData = id; [/l initialize data
dData = dd; /I (‘next’ is automatically
} /I set to null)

1
public void displayLink()  // display ourself
{

System.out.print(“{* + iData + “, “ + dData + “} “);

} /l end class Link

In addition to the data, there’s a constructor and a method, displayLink(), that displays the link’s data in
the format {22, 33.9}. Object purists would probably object to naming this method displayLink(),
arguing that it should be simply display(). This would be in the spirit of polymorphism, but it makes the
listing somewhat harder to understand when you see a statement like

DELETE 155



MWSS: Data Structures and Algorithms in Java:Introduction

current.display();
and you've forgotten whether current is a Link object, a LinkList object, or something else.

The constructor initializes the data. There's no need to initialize the next field, because it's automatically set
to null when it's created. (Although it could be set to null explicitly, for clarity.) The null value means it
doesn't refer to anything, which is the situation until the link is connected to other links.

We've made the storage type of the Link fields (iData and so on) public. If they were private we

would need to provide public methods to access them, which would require extra code, thus making the listi
longer and harder to read. Ideally, for security we would probably want to restrict Link—object access to
methods of the LinkList class. However, without an inheritance relationship between these classes, that's
not very convenient. We could use the default access specifier (no keyword) to give the data package acces
(access restricted to classes in the same directory) but that has no effect in these demo programs, which on
occupy one directory anyway. The public specifier at least makes it clear that this data isn't private.

|Previou4TabIe of Contentk\lext|

DELETE 156



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

DT sTRUCTURSS Waite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

THE LinkList CLASS

The LinkList class contains only one data item: a reference to the first link on the list. This reference is
called first. It's the only permanent information the list maintains about the location of any of the links. It
finds the other links by following the chain of references from first, using each link’s next field.

class LinkList

{
private Link first; I/ ref to first link on list
1
public void LinkList() /I constructor
{
first = null; // no items on list yet
}
I
public boolean isEmpty() /I true if list is empty
{
return (first==null);
}

I

/I other methods go here

The constructor for LinkList sets first to null. This isn't really necessary because as we noted,
references are set to null automatically when they’re created. However, the explicit constructor makes it
clear that this is how first begins.

When first has the value null, we know there are no items on the list. If there were any items, first
would contain a reference to the first one. The isEmpty() method uses this fact to determine whether the
list is empty.

THE insertFirst() METHOD

The insertFirst() method of LinkList inserts a new link at the beginning of the list. This is the

easiest place to insert a link, because first already points to the first link. To insert the new link, we need
only set the next field in the newly created link to point to the old first link, and then change first so it
points to the newly created link. This is shown in Figure 5.5.

FIGURE 5.5 Inserting a new link

In insertFirst() we begin by creating the new link using the data passed as arguments. Then we change
the link references as we just noted.

THE LinkList CLASS 157


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

/I insert at start of list
public void insertFirst(int id, double dd)
{ /l make new link
Link newLink = new Link(id, dd);
newLink.next = first; /I newLink ——> old first
first = newLink; /I first =——> newLink

}

The arrows ——> in the comments in the last two statements mean that a link (or the first field) connects to
the next (downstream) link. (In doubly linked lists we’ll see upstream connections as well, symbolized by
<—— arrows.) Compare these two statements with Figure 5.5. Make sure you understand how the statement
cause the links to be changed, as shown in the figure. This kind of reference—-manipulation is the heart of
linked list algorithms.

THE deleteFirst() METHOD

The deleteFirst() method is the reverse of insertFirst(). It disconnects the first link by rerouting
first to point to the second link. This second link is found by looking at the next field in the first link.

public Link deleteFirst()  // delete first item

{ /I (assumes list not empty)

Link temp = first; /I save reference to link
first = first.next; /I delete it: first——>o0ld next
return temp; I/ return deleted link

}

The second statement is all you need to remove the first link from the list. We choose to also return the link,
for the convenience of the user of the linked list, so we save it in temp before deleting it, and return the valu
of temp. Figure 5.6 shows how first is rerouted to delete the object.

B 88

FIGURE 5.6 Deleting a link

In C++ and similar languages, you would need to worry about deleting the link itself after it was disconnecte
from the list. It's in memory somewhere, but now nothing refers to it. What will become of it? In Java, the
garbage collection process will destroy it at some point in the future; it's not your responsibility.

Notice that the deleteFirst() method assumes the list is not empty. Before calling it, your program
should verify this with the isEmpty() method.

THE displayList() METHOD

To display the list, you start at first and follow the chain of references from link to link. A variable
current points to (or technically refers to) each link in turn. It starts off pointing to first, which holds a
reference to the first link. The statement

current = current.next;

changes current to point to the next link, because that's what's in the next field in each link. Here’s the
entire displayList() method:

public void displayList()

{
System.out.print(“List (first-—>last): “);
Link current = first;  // start at beginning of list

THE deleteFirst() METHOD 158



MWSS: Data Structures and Algorithms in Java:Introduction

while(current != null)  // until end of list,

{
current.displayLink(); // print data
current = current.next; // move to next link

}
}

The end of the list is indicated by the next field in the last link pointing to null rather than another link.

How did this field get to be null? It started that way when the link was created and was never given any
other value because it was always at the end of the list. The while loop uses this condition to terminate itself
when it reaches the end of the list. Figure 5.7 shows how current steps along the list.

afi=iEl

FIGURE 5.7 Stepping along the list

At each link, the displayList() method calls the displayLink() method to display the data in the
link.

|Previous£TabIe of Content@\lext|

THE deleteFirst() METHOD 159



MWSS: Data Structures and Algorithms in Java:Introduction

[ ===l \\WSS: Data Structures and Algorithms in Java

by Robert Lafore

oA sTRUCTURES Waite Group Press, Macmillan Computer Publishing
gerteall  |SBN: 1571690956 Pub Date: 03/20/98

¥

|Previou4TabIe of Contenth\lext|

THE linklist.java PROGRAM

Listing 5.1 shows the complete linkList.java program. You've already seen all the components except
the main() routine.

Listing 5.1 The linkList.java Program

Il linkList.java

/I demonstrates linked list

// to run this program: C>java LinkListApp
T T

class Link
{
public int iData; /l data item (key)
public double dData; /l data item
public Link next; /I next link in list
1
public Link(int id, double dd) // constructor
{
iData = id; [/l initialize data
dData = dd; /I (next’ is automatically
} /I set to null)
1
public void displayLink()  // display ourself
{
System.out.print(“{* + iData + “, “ + dData + “} “);
}

} Il end class Link
I o
class LinkList

{
private Link first; /I ref to first link on list
1
public LinkList() /I constructor
{
first = null; /I no items on list yet
}
1
public boolean isEmpty() /I true if list is empty
{
return (first==null);
}

1

/l insert at start of list
public void insertFirst(int id, double dd)
{ /I make new link
Link newLink = new Link(id, dd);
newLink.next = first; /I newLink ——> old first
first = newLink; /I first =——> newLink

}
1

public Link deleteFirst()  // delete first item
{ /I (assumes list not empty)
Link temp = first; I/l save reference to link

THE linklist.java PROGRAM 160


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

first = first.next; /I delete it: first——>o0ld next
return temp; Il return deleted link
}

1

public void displayList()
{
System.out.print(“List (first——>last): “);
Link current = first; /I start at beginning of list
while(current = null)  // until end of list,
{
current.displayLink(); // print data
current = current.next; // move to next link
}

System.out.printin(*”);

}

} /I end class LinkList
o
class LinkListApp

{

public static void main(String[] args)

{

LinkList theList = new LinkList(); // make new list

1

theList.insertFirst(22, 2.99);  // insert four items
theList.insertFirst(44, 4.99);
theList.insertFirst(66, 6.99);
theList.insertFirst(88, 8.99);

theList.displayList(); /I display list

while( !theList.isEmpty() ) Il until it's empty,
{
Link aLink = theList.deleteFirst(); // delete link
System.out.print(“Deleted “); /I display it
aLink.displayLink();
System.out.printin(*”);
}

theList.displayList(); /I display list

} // end main()
} /l end class LinkListApp

In main() we create a new list, insert four new links into it with insertFirst(), and display it. Then, in
the while loop, we remove the items one by one with deleteFirst() until the list is empty. The empty
list is then displayed. Here’s the output from linkList.java:

List (first——>last): {88, 8.99} {66, 6.99} {44, 4.99} {22, 2.99}
Deleted {88, 8.99}
Deleted {66, 6.99}
Deleted {44, 4.99}
Deleted {22, 2.99}
List (first——>last):

Finding and Deleting Specified Links

Our next example program adds methods to search a linked list for a data item with a specified key value, a
to delete an item with a specified key value. These, along with insertion at the start of the list, are the same
operations carried out by the LinkList Workshop applet. The complete linkList2.java program is

shown in Listing 5.2.

|PreviousiTabIe of Contentk\lext|

Finding and Deleting Specified Links 161



MWSS: Data Structures and Algorithms in Java:Introduction

[ ===l \\WSS: Data Structures and Algorithms in Java

by Robert Lafore

Pmpm— \\Vaite Group Press, Macmillan Computer Publishing
getteall ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previou4TabIe of Contenth\lext|

Listing 5.2 The linkList2.java Program

Il linkList2.java

/I demonstrates linked list

I to run this program: C>java LinkList2App
T

class Link
public int iData; /l data item (key)
public double dData; /l data item
public Link next; /I next link in list
1
public Link(int id, double dd) // constructor
{
iData = id;
dData = dd;
}

1

public void displayLink()  // display ourself
{

System.out.print(“{* + iData + “, “ + dData + “} “);

} Il end class Link
I
class LinkList

private Link first; /I ref to first link on list
1
public LinkList() /Il constructor
{
first = null; /I no links on list yet
}
1
public void insertFirst(int id, double dd)
{ /I make new link

Link newLink = new Link(id, dd);
newLink.next = first; /I it points to old first link
first = newLink; /I now first points to this

}

public Link find(int key)  // find link with given key
{ /I (assumes non—-empty list)
Link current = first; /I start at ‘first’
while(current.iData != key) /I while no match,
{
if(current.next == null) /I if end of list,
return null; [/ didn’t find it
else /I not end of list,
current = current.next;  // go to next link
}

return current; /l found it

}

public Link delete(int key) // delete link with given key
{ /I (assumes non—empty list)

1

1

Finding and Deleting Specified Links 162


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

Link current = first; /I search for link
Link previous = first;
while(current.iData != key)

{
if(current.next == null)
return null; [/ didn’t find it
else
{
previous = current; /I go to next link
current = current.next;
}
} / found it
if(current == first) [l 'if first link,
first = first.next; /I change first
else /I otherwise,

previous.next = current.next; // bypass it
return current;

}
1

public void displayList()  // display the list
{
System.out.print(“List (first——>last): “);
Link current = first; /I start at beginning of list
while(current = null)  // until end of list,
{
current.displayLink(); // print data
current = current.next; // move to next link
}

System.out.printin(*”);

}

} /l end class LinkList
T o
class LinkList2App

{

public static void main(String[] args)

{
LinkList theList = new LinkList(); // make list

1

theList.insertFirst(22, 2.99);  // insert 4 items
theList.insertFirst(44, 4.99);
theList.insertFirst(66, 6.99);
theList.insertFirst(88, 8.99);

theList.displayList(); /I display list
Link f = theList.find(44); /I find item
if(f 1= null)
System.out.printin(“Found link with key “ + f.iData);
else

System.out.printin(“Can’t find link”);

Link d = theList.delete(66); I/l delete item

if(d!=null)
System.out.printin(#147;Deleted link with key “ + d.iData);
else

System.out.printin(“Can’t delete link”);
theList.displayList(); /I display list

} // end main()
} // end class LinkList2App

The main() routine makes a list, inserts four items, and displays the resulting list. It then searches for the
item with key 44, deletes the item with key 66, and displays the list again. Here’s the output:

List (first——>last): {88, 8.99} {66, 6.99} {44, 4.99} {22, 2.99}

Finding and Deleting Specified Links 163



MWSS: Data Structures and Algorithms in Java:Introduction

Found link with key 44
Deleted link with key 66
List (first——>last): {88, 8.99} {44, 4.99} {22, 2.99}

THE find() METHOD

The find() method works much like the displayList() method seen in the last program. The reference
current initially points to first, and then steps its way along the links by setting itself repeatedly to
current.next. At each link, find() checks if that link’s key is the one it's looking for. If it is, it returns

with a reference to that link. If it reaches the end of the list without finding the desired link, it returns null.

THE delete() METHOD

The delete() method is similar to find() in the way it searches for the link to be deleted. However, it
needs to maintain a reference not only to the current link (current), but to the link preceding the current
link (previous). This is because, if it deletes the current link, it must connect the preceding link to the
following link, as shown in Figure 5.8. The only way to tell where the preceding link is, is to maintain a
reference to it.

1EEEE]
Elag 8

FIGURE 5.8 Deleting a specified link

|PreviousiTabIe of Contentk\lext|

THE find() METHOD 164



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

At each cycle through the while loop, just before current is set to current.next, previous is set to
current. This keeps it pointing at the link preceding current.

To delete the current link once it's found, the next field of the previous link is set to the next link. A special
case arises if the current link is the first link because the first link is pointed to by the LinkList's first

field and not by another link. In this case the link is deleted by changing first to point to first.next, as

we saw in the last program with the deleteFirst() method. Here’s the code that covers these two
possibilities:

/l found it
if(current == first) I if first link,
first = first.next; /I change first
else Il otherwise,

previous.next = current.next; // bypass link
OTHER METHODS
We've seen methods to insert and delete items at the start of a list and to find a specified item and delete a
specified item. You can imagine other useful list methods. For example, an insertAfter() method could

find a link with a specified key value and insert a new link following it. We'll see such a method when we talk
about list iterators at the end of this chapter.

Double—Ended Lists

A double-ended list is similar to an ordinary linked list, but it has one additional feature: a reference to the
last link as well as to the first. Figure 5.9 shows what this looks like.

EEEEER

FIGURE 5.9 A double—ended list

The reference to the last link permits you to insert a new link directly at the end of the list as well as at the
beginning. Of course you can insert a new link at the end of an ordinary single—ended list by iterating throug
the entire list until you reach the end, but this is inefficient.

Access to the end of the list as well as the beginning makes the double—ended list suitable for certain
situations that a single—ended list can’t handle efficiently. One such situation is implementing a queue; we’'ll
see how this works in the next section.

Listing 5.3 contains the firstLastList.java program, which demonstrates a double—ended list.
(Incidentally, don’t confuse the double—ended list with the doubly linked list, which we’ll explore later in this
chapter.)

Listing 5.3 The firstLastList.java Program

// firstLastList.java
/l demonstrates list with first and last references

OTHER METHODS 165


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

// to run this program: C>java FirstLastApp
o

class Link
{
public double dData; // data item
public Link next; /l next link in list
1
public Link(double d) Il constructor
{dData =d;}
1

public void displayLink() /I display this link
{ System.out.print(dData + “ “); }

1

} /l end class Link
i
class FirstLastList

{
private Link first; /I ref to first link
private Link last; /I ref to last link
1
public FirstLastList() /I constructor
{
first = null; /I no links on list yet
last = null;
}
1
public boolean isEmpty() I/ true if no links

{ return first==null; }
1

public void insertFirst(double dd) // insert at front of list

{
Link newLink = new Link(dd); // make new link
if(iISEmpty() ) I1'if empty list,

last = newLink; /I newLink <—— last
newLink.next = first; /I newLink ——> old first
first = newLink; /I first =——> newLink
}

1

public void insertLast(double dd) // insert at end of list

{

Link newLink = new Link(dd); // make new link

if(iISEmpty() ) Il'if empty list,
first = newLink; /I first =——> newLink
else
last.next = newLink; / old last ——> newLink
last = newLink; /l newLink <—- last
}
1
public double deleteFirst() /I delete first link
{ /I (assumes non—-empty list)
double temp = first.dData; // save the data
if(first.next == null) /I if only one item
last = null; /I null <—— last
first = first.next; /I first ——> old next
return temp;
}
1
public void displayList()
{
System.out.print(“List (first——>last): “);
Link current = first; /I start at beginning
while(current != null) /I until end of list,
{

current.displayLink();  // print data
current = current.next; // move to next link

OTHER METHODS

166



MWSS: Data Structures and Algorithms in Java:Introduction

}

System.out.printin(*”);

}

} /l end class FirstLastList
T T T T
class FirstLastApp

{

public static void main(String[] args)

{ /l make a new list
FirstLastList theList = new FirstLastList();

1

theList.insertFirst(22); Il insert at front
theList.insertFirst(44);
theList.insertFirst(66);

theList.insertLast(11); /I insert at rear
theList.insertLast(33);
theList.insertLast(55);

theList.displayList(); /I display the list

theList.deleteFirst(); /I delete first two items
theList.deleteFirst();

theList.displayList(); /I display again
} // end main()
} /l end class FirstLastApp

|PreviousiTabIe of Contentk\lext|

OTHER METHODS 167



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java
by Robert Lafore

. Waite Group Press, Macmillan Computer Publishing

DATA STRUCTURES

serienll  [SBN: 1571690956 Pub Date: 03/20/98

|Previous*TabIe of Contenth\lext|

For simplicity, in this program we’ve reduced the number of data items in each link from two to one. This
makes it easier to display the link contents. (Remember that in a serious program there would be many mor
data items, or a reference to another object containing many data items.)

This program inserts three items at the front of the list, inserts three more at the end, and displays the result
list. It then deletes the first two items and displays the list again. Here’s the output:

List (first——>last): 66 44 22 11 33 55
List (first-——>last): 22 11 33 55

Notice how repeated insertions at the front of the list reverse the order of the items, while repeated insertion
at the end preserve the order.

The double—ended list class is called the FirstLastList. As discussed, it has two data items, first and
last, which point to the first item and the last item in the list. If there is only one item in the list, then both
first and last point to it, and if there are no items, they are both null.

The class has a new method, insertLast(), that inserts a new item at the end of the list. This involves
modifying last.next to point to the new link, and then changing last to point to the new link, as shown
in Figure 5.10.

EEEE

FIGURE 5.10 Insertion at the end of a list

The insertion and deletion routines are similar to those in a single—ended list. However, both insertion
routines must watch out for the special case when the list is empty prior to the insertion. That is, if
iISEmpty() is true, then insertFirst() must set last to the new link, and insertLast() must set

first to the new link.

If inserting at the beginning with insertFirst(), first is set to point to the new link, although when
inserting at the end with insertLast(), last is set to point to the new link. Deleting from the start of the
list is also a special case if it's the last item on the list: last must be set to point to null in this case.

Unfortunately, making a list double—ended doesn’t help you to delete the last link, because there is still no
reference to the next-to-last link, whose next field would need to be changed to null if the last link were

deleted. To conveniently delete the last link, you would need a doubly linked list, which we’ll look at soon.
(Of course, you could also traverse the entire list to find the last link, but that's not very efficient.)

Linked—-List Efficiency

Insertion and deletion at the beginning of a linked list are very fast. They involve changing only one or two
references, which takes O(1) time.

Linked-List Efficiency 168


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

Finding, deleting, or insertion next to a specific item requires searching through, on the average, half the itet
in the list. This requires O(N) comparisons. An array is also O(N) for these operations, but the linked list is
nevertheless faster because nothing needs to be moved when an item is inserted or deleted. The increased
efficiency can be significant, especially if a copy takes much longer than a comparison.

Of course, another important advantage of linked lists over arrays is that the linked list uses exactly as muct
memory as it needs, and can expand to fill all of the available memory. The size of an array is fixed when it
created; this usually leads to inefficiency because the array is too large, or to running out of room because
array is too small. Vectors, which are expandable arrays, may solve this problem to some extent, but they
usually expand in fixed—sized increments (such as doubling the size of the array whenever it's about to
overflow). This is still not as efficient a use of memory as a linked list.

Abstract Data Types

In this section we’ll shift gears and discuss a topic that's more general than linked lists: Abstract Data Types
(ADTs). What is an ADT? Roughly speaking, it's a way of looking at a data structure: focusing on what it
does, and ignoring how it does it.

Stacks and queues are examples of ADTs. We've already seen that both stacks and queues can be
implemented using arrays. Before we return to a discussion of ADTS, let's see how stacks and queues can |
implemented using linked lists. This will demonstrate the “abstract” nature of stacks and queues: how they
can be considered separately from their implementation.

A STACK IMPLEMENTED BY A LINKED LIST

When we created a stack in the last chapter, we used an ordinary Java array to hold the stack’s data. The
stack’s push() and pop() operations were actually carried out by array operations such as

arr[++top] = data;
and
data = arr[top—];
which insert data into, and take it out of, an array.

We can also use a linked list to hold a stack’s data. In this case the push() and pop() operations would be
carried out by operations like

theList.insertFirst(data)
and
data = thelList.deleteFirst()

The user of the stack class calls push() and pop() to insert and delete items, without knowing, or needing

to know, whether the stack is implemented as an array or as a linked list. Listing 5.4 shows how a stack clas
called LinkStack can be implemented using the LinkList class instead of an array. (Object purists

would argue that the name LinkStack should be simply Stack, because users of this class shouldn’t need

to know that it's implemented as a list.)

|Previou4TabIe of Contentk\lext|

Abstract Data Types 169



MWSS: Data Structures and Algorithms in Java:Introduction

[ ===l \\WSS: Data Structures and Algorithms in Java

by Robert Lafore

Pmpm— \\Vaite Group Press, Macmillan Computer Publishing
getteall ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previou4TabIe of Contenth\lext|

Listing 5.4 The linkStack() Program

Il linkStack.java
/l demonstrates a stack implemented as a list
/ to run this program: C>java LinkStackApp

import java.io.*; /I for 1/O
T T
class Link
public double dData; /l data item
public Link next; /I next link in list
1

public Link(double dd) /I constructor
{dData = dd; }
1

public void displayLink()  // display ourself
{ System.out.print(dData + “ “); }
} Il end class Link
o
class LinkList

private Link first; /I ref to first item on list
1
public LinkList() /I constructor
{first = null; } /I no items on list yet
1

public boolean isEmpty() /I true if list is empty
{ return (first==null); }
1

public void insertFirst(double dd) // insert at start of list
{ /I make new link
Link newLink = new Link(dd);
newLink.next = first; /I newLink ——> old first

first = newLink; /I first =——> newLink
}
1
public double deleteFirst() // delete first item
{ /I (assumes list not empty)
Link temp = first; /I save reference to link
first = first.next; /I delete it: first——>o0ld next
return temp.dData; /I return deleted link
}
1

public void displayList()
{
Link current = first; /I start at beginning of list
while(current = null)  // until end of list,
{
current.displayLink(); // print data
current = current.next; // move to next link
}
System.out.printin(*");
}

} /l end class LinkList
o

1

Abstract Data Types 170


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

class LinkStack

{
private LinkList theList;

I

public LinkStack() /I constructor

{
theList = new LinkList();

}

public void push(double j)  // put item on top of stack

{
theList.insertFirst(j);

}

public double pop() /I take item from top of stack
{

return theList.deleteFirst();

}

public boolean isEmpty() /I true if stack is empty

{
return ( theList.isEmpty() );

}

public void displayStack()
{
System.out.print(“Stack (top——>bottom): “);
theList.displayList();
}

} /l end class LinkStack
o
class LinkStackApp

I

I

I

I

I

{

public static void main(String[] args) throws IOException
{
LinkStack theStack = new LinkStack(); // make stack
theStack.push(20); /I push items
theStack.push(40);
theStack.displayStack(); /I display stack
theStack.push(60); /I push items
theStack.push(80);
theStack.displayStack(); /I display stack
theStack.pop(); /I pop items

theStack.pop();

theStack.displayStack(); /I display stack
} // end main()
} /l end class LinkStackApp

The main() routine creates a stack object, pushes two items on it, displays the stack, pushes two more item:
and displays it again. Finally it pops two items and displays the stack again. Here’s the output:

Stack (top——>bottom): 40 20
Stack (top——>bottom): 80 60 40 20
Stack (top——>bottom): 40 20

Notice the overall organization of this program. The main() routine in the LinkStackApp class relates
only to the LinkStack class. The LinkStack class relates only to the LinkList class. There’s no

Abstract Data Types 171



MWSS: Data Structures and Algorithms in Java:Introduction

communication between main() and the LinkList class.

More specifically, when a statement in main() calls the push() operation in the LinkStack class, this
method in turn calls insertFirst() in the LinkList class to actually insert data. Similarly, pop()

calls deleteFirst() to delete an item, and displayStack() calls displayList() to display the

stack. To the class user, writing code in main(), there is no difference between using the list-based
LinkStack class and using the array—based stack class from the Stack.java program in Chapter 4.

A QUEUE IMPLEMENTED BY A LINKED LIST

Here’s a similar example of an ADT implemented with a linked list. Listing 5.5 shows a queue implemented
as a double—ended linked list.

|PreviousiTabIe of Contentk\lext|

A QUEUE IMPLEMENTED BY A LINKED LIST 172



MWSS: Data Structures and Algorithms in Java:Introduction

[ ===l \\WSS: Data Structures and Algorithms in Java

by Robert Lafore

Pmpm— \\Vaite Group Press, Macmillan Computer Publishing
getteall ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previou4TabIe of Contenth\lext|

Listing 5.5 The linkQueue() Program

/l'linkQueue.java
/I demonstrates queue implemented as double—ended list
I to run this program: C>java LinkQueueApp

import java.io.*; /I for 1/O
T T
class Link
public double dData; // data item
public Link next; /I next link in list
1
public Link(double d) /I constructor
{dData=d;}
1

public void displayLink() /1 display this link
{ System.out.print(dData + * *); }
1

} Il end class Link
MU
class FirstLastList

private Link first; /I ref to first item
private Link last; /I ref to last item
1
public FirstLastList() /I constructor
{
first = null; // no items on list yet
last = null;
}
1
public boolean isEmpty() // true if no links
{ return first==null; }
1
public void insertLast(double dd) // insert at end of list
{
Link newLink = new Link(dd); // make new link
if( iISEmpty() ) I1'if empty list,
first = newLink; /I first =——> newLink
else
last.next = newLink; /I old last ——> newLink
last = newLink; /I newLink <—— last
}
1
public double deleteFirst() /I delete first link
{ /I (assumes non—empty list)
double temp = first.dData;
if(first.next == null) /I if only one item
last = null; // null <— last
first = first.next; /I first ——> old next
return temp;
}
1
public void displayList()
{
Link current = first; // start at beginning

A QUEUE IMPLEMENTED BY A LINKED LIST 173


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

while(current != null) /I until end of list,
{
current.displayLink();  // print data
current = current.next;  // move to next link
}

System.out.printin(*”);

}
1

} /l end class FirstLastList
I L T o
class LinkQueue

{

private FirstLastList theList;

Il

public LinkQueue() /I constructor
{

theList = new FirstLastList(); // make a 2—ended list

}
I

public boolean isEmpty() Il true if queue is empty

{
return theList.isEmpty();

}

Il
public void insert(double j)  // insert, rear of queue
{
theList.insertLast(j);

}
I

public double remove() /I remove, front of queue

{

return theList.deleteFirst();

}

I
public void displayQueue()
{
System.out.print(“Queue (front——>rear): “);
theList.displayList();

}
I

} /l end class LinkQueue
o
class LinkQueueApp

{

public static void main(String[] args) throws IOException
{
LinkQueue theQueue = new LinkQueue();
theQueue.insert(20); /I insert items

theQueue.insert(40);
theQueue.displayQueue(); I display queue

theQueue.insert(60); /I insert items
theQueue.insert(80);

theQueue.displayQueue(); /I display queue

theQueue.remove(); /Il remove items
theQueue.remove();

theQueue.displayQueue(); /I display queue

} /I end main()
} /I end class LinkQueueApp

The program creates a queue, inserts two items, inserts two more items, and removes two items; following
each of these operations the queue is displayed. Here’s the output:

A QUEUE IMPLEMENTED BY A LINKED LIST 174



MWSS: Data Structures and Algorithms in Java:Introduction

Queue (front——>rear): 20 40
Queue (front-—>rear): 20 40 60 80
Queue (front-—>rear): 60 80

Here the methods insert() and remove() in the LinkQueue class are implemented by the
insertLast() and deleteFirst() methods of the FirstLastList class. We've substituted a
linked list for the array used to implement the queue in the Queue program of Chapter 4.

The LinkStack and LinkQueue programs emphasize that stacks and queues are conceptual entities,
separate from their implementations. A stack can be implemented equally well by an array or by a linked list
What's important about a stack is the push() and pop() operations and how they're used; it's not the
underlying mechanism used to implement these operations.

When would you use a linked list as opposed to an array as the implementation of a stack or queue? One
consideration is how accurately you can predict the amount of data the stack or queue will need to hold. If tt
isn't clear, the linked list gives you more flexibility than an array. Both are fast, so that's probably not a majo
consideration.

DATA TYPES AND ABSTRACTION

Where does the term Abstract Data Type come from? Let’s look at the “data type” part of it first, and then
return to “abstract.”

|Previou4TabIe of Contentk\lext|

DATA TYPES AND ABSTRACTION 175



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contentb\lext|

Data Types

The phrase “data type” covers a lot of ground. It was first applied to built—in types such as int and double.
This is probably what you first think of when you hear the term.

When you talk about a primitive type, you're actually referring to two things: a data item with certain
characteristics, and permissible operations on that data. For example, type int variables in Java can have
whole—number values between -2,147,483,648 and +2,147,483,647, and the operators +, —, *, /, and so on
be applied to them. The data type’s permissible operations are an inseparable part of its identity;
understanding the type means understanding what operations can be performed on it.

With the advent of object-oriented programming, it became possible to create your own data types using
classes. Some of these data types represent numerical quantities that are used in ways similar to primitive
types. You can, for example, define a class for time (with fields for hours, minutes, seconds), a class for
fractions (with numerator and denominator fields), and a class for extra—long numbers (characters in a string
represent the digits). All these can be added and subtracted like int and double, except that in Java you
must use methods with functional notation like add() and sub() rather than operators like + and —.

The phrase “data type” seems to fit naturally with such quantity—oriented classes. However, it is also appliec
to classes that don't have this quantitative aspect. In fact, any class represents a data type, in the sense tha
class comprises data (fields) and permissible operations on that data (methods).

By extension, when a data storage structure like a stack or queue is represented by a class, it too can be
referred to as a data type. A stack is different in many ways from an int, but they are both defined as a
certain arrangement of data and a set of operations on that data.

Abstraction

The word abstract means “considered apart from detailed specifications or implementation.” An abstraction
the essence or important characteristics of something. The office of President, for example, is an abstractior
considered apart from the individual who happens to occupy that office. The powers and responsibilities of
the office remain the same, while individual office—holders come and go.

In object-oriented programming, then, an abstract data type is a class considered without regard to its
implementation. It's a description of the data in the class (fields), a list of operations (methods) that can be
carried out on that data, and instructions on how to use these operations. Specifically excluded are the deta
of how the methods carry out their tasks. As a class user, you're told what methods to call, how to call them
and the results you can expect, but not how they work.

The meaning of abstract data type is further extended when it's applied to data structures like stacks and
gueues. As with any class, it means the data and the operations that can be performed on it, but in this cont
even the fundamentals of how the data is stored become invisible to the user. Users not only don’t know ho
the methods work, they also don't know what structure is used to store the data.

For the stack, the user knows that push() and pop() (and perhaps a few other methods) exist and how they
work. The user doesn'’t (at least not usually) need to know how push() and pop() work, or whether data is

Data Types 176


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

stored in an array, a linked list, or some other data structure like a tree.
The Interface

An ADT specification is often called an interface. It's what the class user sees; usually its public methods. In
a stack class, push() and pop() and similar methods form the interface.

ADT LISTS

Now that we know what an abstract data type is, we can mention another one: the list. A list (sometimes
called a linear list) is a group of items arranged in a linear order. That is, they’re lined up in a certain way, lik
beads on a string or houses on a street. Lists support certain fundamental operations. You can insert an iter
delete an item, and usually read an item from a specified location (the third item, say).

Don't confuse the ADT list with the linked list we've been discussing in this chapter. A list is defined by its
interface: the specific methods used to interact with it. This interface can be implemented by various
structures, including arrays and linked lists. The list is an abstraction of such data structures.

ADTS AS A DESIGN TOOL

The ADT concept is a useful aid in the software design process. If you need to store data, start by consideri
the operations that need to be performed on that data. Do you need access to the last item inserted? The fir
one? An item with a specified key? An item in a certain position? Answering such questions leads to the
definition of an ADT. Only after the ADT is completely defined should you worry about the details of how to
represent the data and how to code the methods that access the data.

By decoupling the specification of the ADT from the implementation details, you can simplify the design
process. You also make it easier to change the implementation at some future time. If the users relate only 1
the ADT interface, you should be able to change the implementation without “breaking” the user’s code.

Of course, once the ADT has been designed, the underlying data structure must be carefully chosen to mak
the specified operations as efficient as possible. If you need random access to element N, for example, ther
the linked-list representation isn’t so good because random access isn't an efficient operation for a linked li
You'd be better off with an array.

It's ALL RELATIVE

Remember that the ADT concept is only a conceptual tool. Data storage structures are not divided cleanly ir
some that are ADTs and some that are used to implement ADTs. A linked list, for example, doesn’t need to
wrapped in a list interface to be useful; it can act as an ADT on its own, or it can be used to implement
another data type such as a queue. A linked list can be implemented using an array, and an array—type
structure can be implemented using a linked list. What's an ADT and what's a more basic structure must be
determined in a given context.

|Previou4TabIe of Contentk\lext|

The Interface 177



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

DT sTRUCTURSS Waite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

Sorted Lists

In linked lists we've seen thus far, there was no requirement that data be stored in order. However, for certa
applications it’s useful to maintain the data in sorted order within the list. A list with this characteristic is
called a sorted list.

In a sorted list, the items are arranged in sorted order by key value. Deletion is often limited to the smallest |
the largest) item in the list, which is at the start of the list, although sometimes find() and delete()
methods, which search through the list for specified links, are used as well.

In general you can use a sorted list in most situations where you use a sorted array. The advantages of a sc
list over a sorted array are speed of insertion (because elements don't need to be moved) and the fact that ¢
can expand to fill available memory, while an array is limited to a fixed size. However, a sorted list is
somewhat more difficult to implement than a sorted array.

Later we'll look at one application for sorted lists: sorting data. A sorted list can also be used to implement a
priority queue, although a heap (see Chapter 12) is a more common implementation.

THE LINKLIST WORKSHOP APPLET
The LinkList Workshop applet introduced at the beginning of this chapter demonstrates sorted as well as

unsorted lists. Use the New button to create a new list with about 20 links, and when prompted, click on the
Sorted button. The result is a list with data in sorted order, as shown in Figure 5.11.

) ] ) § 2 e i

ik s
TR )0 TR

o)~ O~

FIGURE 5.11 The LinkList Workshop applet with a sorted list

Use the Ins button to insert a new item. Type in a value that will fall somewhere in the middle of the list.
Watch as the algorithm traverses the links, looking for the appropriate insertion place. When it finds it, it
inserts the new link, as shown in Figure 5.12.

FIGURE 5.12 A newly inserted link

With the next press of Ins, the list will be redrawn to regularize its appearance. You can also find a specified
link using the Find button, and delete a specified link using the Del button.

Sorted Lists 178


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

JAVA CODE TO INSERT AN ITEM IN A SORTED LIST

To insert an item in a sorted list, the algorithm must first search through the list until it finds the appropriate
place to put the item: this is just before the first item that's larger, as shown in Figure 5.12.

Once the algorithm finds where to put it, the item can be inserted in the usual way by changing next in the
new link to point to the next link, and changing next in the previous link to point to the new link. However,
there are some special cases to consider: the link might need to be inserted at the beginning of the list, or it
might need to go at the end. Let’s look at the code:

public void insert(double key) // insert in order
{
Link newLink = new Link(key); // make new link
Link previous = null; /I start at first
Link current = first;
/I until end of list,

while(current != null && key > current.dData)

{ I/ or key > current,

previous = current;

current = current.next; /I go to next item

if(previous==null) /Il at beginning of list
first = newLink; /I first —=—> newLink
else /I not at beginning
previous.next = newLink;  // old prev ——> newLink
newLink.next = current; /I newLink ——> old currnt

} /l end insert()

We need to maintain a previous reference as we move along, so we can modify the previous link’'s next
field to point to the new link. After creating the new link, we prepare to search for the insertion point by
setting current to first in the usual way. We also set previous to null; this is important because

later we'll use this null value to determine whether we're still at the beginning of the list.

The while loop is similar to those we've used before to search for the insertion point, but there’s an added
condition. The loop terminates when the key of the link currently being examined (current.dData) is no
longer smaller than the key of the link being inserted (key); this is the most usual case, where a key is
inserted somewhere in the middle of the list.

However, the while loop also terminates if current is null. This happens at the end of the list (the next
field of the last element is null), or if the list is empty to begin with (first is null).

Once the while loop terminates, we may be at the beginning, the middle, or the end of the list, or the list
may be empty.

If we're at the beginning or the list is empty, previous will be null; so we set first to the new link.
Otherwise, we're in the middle of the list or at the end, and we set previous.next to the new link.

In any case we set the new link’s next field to current. If we're at the end of the list, current is null,
so the new link’s next field is appropriately set to this value.

THE sortedList.Java PROGRAM
The sortedList.java example shown in Listing 5.6 presents a SortedList class with insert(),

remove(), and displayList() methods. Only the insert() routine is different from its counterpart
in nonsorted lists.

JAVA CODE TO INSERT AN ITEM IN A SORTED LIST 179



MWSS: Data Structures and Algorithms in Java:Introduction

|PreviousiTabIe of Contentk\lext|

JAVA CODE TO INSERT AN ITEM IN A SORTED LIST 180



MWSS: Data Structures and Algorithms in Java:Introduction

[ ===l \\WSS: Data Structures and Algorithms in Java

by Robert Lafore

oA sTRUCTURES Waite Group Press, Macmillan Computer Publishing
gerteall  |SBN: 1571690956 Pub Date: 03/20/98

¥

|Previou4TabIe of Contenth\lext|

Listing 5.6 The sortedList.java Program

// sortedList.java
Il demonstrates sorted list
// to run this program: C>java SortedListApp

import java.io.*; /I for 1/1O
T T
class Link
public double dData; /l data item
public Link next; // next link in list
1
public Link(double dd) I/ constructor
{dData = dd; }
1
public void displayLink() /I display this link

{ System.out.print(dData + “ “); }
} Il end class Link
o
class SortedList

private Link first; /I ref to first item on list
1
public SortedList() /I constructor
{first = null; }
1
public boolean isEmpty() /I true if no links
{ return (first==null); }
1
public void insert(double key) // insert in order
{
Link newLink = new Link(key); // make new link
Link previous = null; Il start at first

Link current = first;
/I until end of list,
while(current != null && key > current.dData)
{ Il or key > current,
previous = current;
current = current.next; /I go to next item

if(previous==null) /I at beginning of list
first = newLink; /I first =——> newLink
else /I not at beginning
previous.next = newLink;  // old prev ——> newLink
newLink.next = current; /I newLink ——> old currnt
} /' end insert()
1
public Link remove() Il return & delete first link
{ /I (assumes non—-empty list)
Link temp = first; /I save first
first = first.next; /I delete first
return temp; /I return value
}
1

public void displayList()
{

JAVA CODE TO INSERT AN ITEM IN A SORTED LIST

181


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

System.out.print(“List (first——>last): “);
Link current = first; /I start at beginning of list
while(current = null)  // until end of list,

{
current.displayLink(); // print data

current = current.next; // move to next link

}

System.out.printin(*”);

}
} /I end class SortedList

o
class SortedListApp

{

public static void main(String[] args)
{ /I create new list
SortedList theSortedList = new SortedList();
theSortedList.insert(20); // insert 2 items
theSortedList.insert(40);

theSortedList.displayList(); // display list

theSortedList.insert(10); // insert 3 more items
theSortedList.insert(30);
theSortedList.insert(50);

theSortedList.displayList(); // display list
theSortedList.remove();  // remove an item

theSortedList.displayList(); // display list
} // end main()
} // end class SortedListApp

In main() we insert two items with key values 20 and 40. Then we insert three more items, with values 10,
30, and 50. These are inserted at the beginning of the list, in the middle, and at the end; showing that the
insert() routine correctly handles these special cases. Finally, we remove one item to show removal is
always from the front of the list. After each change the list is displayed. Here’s the output from
sortedList.java:

List (first——>last): 20 40
List (first——>last): 10 20 30 40 50
List (first——>last): 20 30 40 50

EFFICIENCY OF SORTED LINKED LISTS

Insertion and deletion of arbitrary items in the sorted linked list require O(N) comparisons (N/2 on the
average) because the appropriate location must be found by stepping through the list. However, the minimu
value can be found, or deleted, in O(1) time because it's at the beginning of the list. If an application
frequently accesses the minimum item and fast insertion isn’t critical, then a sorted linked list is an effective
choice.

LIST INSERTION SORT

A sorted list can be used as a fairly efficient sorting mechanism. Suppose you have an array of unsorted dat
items. If you take the items from the array and insert them one by one into the sorted list, they'll be placed ir
sorted order automatically. If you then remove them from the list and put them back in the array, they array
will be sorted.

It turns out this is substantially more efficient than the more usual insertion sort within an array, described in

Chapter 3. This is because fewer copies are necessary. It's still AnpBgbess, because inserting each item
into the sorted list involves comparing a hew item with an average of half the items already in the list, and

EFFICIENCY OF SORTED LINKED LISTS 182



MWSS: Data Structures and Algorithms in Java:Introduction

there are N items to insert, resulting in abotfdNomparisons. However, each item is only copied twice:
once from the array to the list, and once from the list to the array. N*2 copies compare favorably with the
insertion sort within an array, where there are abdutdgies.

|PreviousiTabIe of Contentk\lext|

EFFICIENCY OF SORTED LINKED LISTS 183



MWSS: Data Structures and Algorithms in Java:Introduction

[ ===l \\WSS: Data Structures and Algorithms in Java

by Robert Lafore

oA sTRUCTURES Waite Group Press, Macmillan Computer Publishing
getteall ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previou4TabIe of Contenth\lext|

Listing 5.7 shows the listinsertionSort.java program, which starts with an array of unsorted items
of type link, inserts them into a sorted list (using a constructor), and then removes them and places them
back into the array.

Listing 5.7 The listinsertionSort.java Program

/I listInsertionSort.java
/I demonstrates sorted list used for sorting
/I to run this program: C>java ListInsertionSortApp

import java.io.*; /I for 1/1O
T T T
class Link
public double dData; // data item
public Link next; /I next link in list
1
public Link(double dd) Il constructor
{dData = dd; }
1

} Il end class Link
MU
class SortedList

{
private Link first; /I ref to first item on list
1
public SortedList() /I constructor (no args)
{first = null; }
1

public SortedList(Link]] linkArr) // constructor (array as
I/l argument)
first = null;; // initialize list
for(int j=0; j<linkArr.length; j++) // copy array
insert( linkArr[j] ); Il to list

}
1

public void insert(Link k)  // insert, in order
{
Link previous = null; Il start at first
Link current = first;
/I until end of list,
while(current != null && k.dData > current.dData)
{ Il or key > current,
previous = current;
current = current.next; /l go to next item

if(previous==null) /I at beginning of list
first = k; /I first ——> k
else /I not at beginning
previous.next = k; /l old prev ——> k
k.next = current; /I k ==> old current
} /' end insert()
1
public Link remove() Il return & delete first link
{ /I (assumes non—empty list)
Link temp = first; /I save first

EFFICIENCY OF SORTED LINKED LISTS 184


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

first = first.next; /Il delete first
return temp; /I return value
}

1

} /l end class SortedList
e
class ListinsertionSortApp

{

public static void main(String[] args)

{
int size = 10;

/I create array of links
Link[] linkArray = new Link[size];

for(int j=0; j<size; j++) /I fill array with links
{ // random number
int n = (int)(java.lang.Math.random()*99);
Link newLink = new Link(n);  // make link
linkArray[j] = newLink; /I put in array
}

/Il display array contents
System.out.print(“Unsorted array: “);
for(int j=0; j<size; j++)
System.out.print( linkArray[j].dData + “ “);
System.out.printin(*”);

/I create new list,
// initialized with array
SortedList theSortedList = new SortedList(linkArray);

for(int j=0; j<size; j++) // links from list to array
linkArray[j] = theSortedList.remove();

/I display array contents
System.out.print(“Sorted Array: “);
for(int j=0; j<size; j++)
System.out.print(linkArray[j].dData + “  “);
System.out.printin(*”);
} // end main()
} /l end class ListinsertionSortApp

This program displays the values in the array before the sorting operation, and again afterward. Here’'s som
sample output:

Unsorted array: 59 69 41 56 84 15 86 81 37 35
Sorted array: 15 35 37 41 56 59 69 81 84 86

The output will be different each time because the initial values are generated randomly.

A new constructor for SortedList takes an array of Link objects as an argument and inserts the entire
contents of this array into the newly created list. This helps make things easier for the client (the main()
routine).

We've also made a change to the insert() routine in this program. It now accepts a Link object as an
argument, rather than a double. We do this so we can store Link objects in the array and insert them
directly into the list. In the sortedList.java program, it was more convenient to have the insert()
routine create each Link object, using the double value passed as an argument.

The downside of the list insertion sort, compared with an array—based insertion sort, is that it takes somewh
more than twice as much memory: the array and linked list must be in memory at the same time. However, i
you have a sorted linked list class handy, the list insertion sort is a convenient way to sort arrays that aren’t
too large.

EFFICIENCY OF SORTED LINKED LISTS 185



MWSS: Data Structures and Algorithms in Java:Introduction

Doubly Linked Lists

Let's examine another variation on the linked list: the doubly linked list (not to be confused with the
double—ended list). What's the advantage of a doubly linked list? A potential problem with ordinary linked
lists is that it's difficult to traverse backward along the list. A statement like

current=current.next

steps conveniently to the next link, but there’'s no corresponding way to go to the previous link. Depending o
the application, this could pose problems.

|PreviousiTabIe of Contentk\lext|

Doubly Linked Lists 186



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java
by Robert Lafore

& . . I
Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
gl ISBN: 1571690956 Pub Date: 03/20/98

|Previous*TabIe of Contenth\lext|

For example, imagine a text editor in which a linked list is used to store the text. Each text line on the screer
is stored as a String object embedded in a link. When the editor’s user moves the cursor downward on the
screen, the program steps to the next link to manipulate or display the new line. But what happens if the use
moves the cursor upward? In an ordinary linked list, you'd need to return current (or its equivalent) to the
start of the list and then step all the way down again to the new current link. This isn't very efficient. You
want to make a single step upward.

The doubly linked list provides this capability. It allows you to traverse backward as well as forward through
the list. The secret is that each link has two references to other links instead of one. The first is to the next
link, as in ordinary lists. The second is to the previous link. This is shown in Figure 5.13.

FIGURE 5.13 A doubly linked list

The beginning of the specification for the Link class in a doubly linked list looks like this:

class Link
public double dData; /l data item
public Link next; /I next link in list
public link previous; /I previous link in list

The downside of doubly linked lists is that every time you insert or delete a link you must deal with four links
instead of two: two attachments to the previous link and two attachments to the following one. Also, of
course, each link is a little bigger because of the extra reference.

A doubly linked list doesn’t necessarily need to be a double—ended list (keeping a reference to the last
element on the list) but doing so is useful, so we’ll include it in our example.

We’'ll show the complete listing for the doublyLinked.java program soon, but first let's examine some
of the methods in its doublyLinkedList class.

TRAVERSAL

Two display methods demonstrate traversal of a doubly linked list. The displayForward() method is the
same as the displayList() method we’ve seen in ordinary linked lists. The displayBackward()

method is similar, but starts at the last element in the list and proceeds toward the start of the list, going to
each element’s previous field. This code fragment shows how this works:

Link current = last; /I start at end
while(current != null) [/ until start of list,
current = current.previous; // move to previous link

Incidentally, some people take the view that, because you can go either way equally easily on a doubly linke
list, there is no preferred direction and therefore terms like previous and next are inappropriate. If you

TRAVERSAL 187


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

prefer, you can substitute direction—neutral terms such as left and right.

INSERTION

We've included several insertion routines in the DoublyLinkedList class. The insertFirst()

method inserts at the beginning of the list, insertLast() inserts at the end, and insertAfter() inserts
following an element with a specified key.

Unless the list is empty, the insertFirst() routine changes the previous field in the old first link

to point to the new link, and changes the next field in the new link to point to the old first link. Finally it sets
first to point to the new link. This is shown in Figure 5.14.

E 5585

FIGURE 5.14 Insertion at the beginning

If the list is empty, then the last field must be changed instead of the first.previous field. Here’s the
code:

if(iSEmpty() ) Il if empty list,

last = newLink; /I newLink <—— last
else

first.previous = newLink; // newLink <-- old first
newLink.next = first; /l newLink ——> old first
first = newLink; /I first ——> newLink

The insertLast() method is the same process applied to the end of the list; it's a mirror image of
insertFirst().

The insertAfter() method inserts a new link following the link with a specified key value. It's a bit
more complicated because four connections must be made. First the link with the specified key value must |
found. This is handled the same way as the find() routine in the linkList2 program earlier in this
chapter. Then, assuming we're not at the end of the list, two connections must be made between the new lir
and the next link, and two more between current and the new link. This is shown in Figure 5.15.

=i

FIGURE 5.15 Insertion at an arbitrary location

If the new link will be inserted at the end of the list, then its next field must point to null, and last must
point to the new link. Here’s the insertAfter() code that deals with the links:

if(current==last) Il if last link,
{
newLink.next = null; // newLink ——> null
last = newLink; /I newLink <—— last
}

else /I not last link,
{

newLink.next = current.next; // newLink ——> old next
/l newLink <—— old next
current.next.previous = newLink;

}

newLink.previous = current; // old current <—— newLink

INSERTION 188



MWSS: Data Structures and Algorithms in Java:Introduction

current.next = newLink; /l old current ——> newLink

Perhaps you're unfamiliar with the use of two dot operators in the same expression. It's a natural extension
a single dot operator. The expression

current.next.previous
means the previous field of the link referred to by the next field in the link current.
DELETION

There are three deletion routines: deleteFirst(), deleteLast(), and deleteKey(). The first two

are fairly straightforward. In deleteKey(), the key being deleted is current. Assuming the link to be

deleted is neither the first nor the last one in the list, then the next field of current.previous (the link

before the one being deleted) is set to point to current.next (the link following the one being deleted),

and the previous field of current.next is set to point to current.previous. This disconnects the

current link from the list. Figure 5.16 shows how this disconnection looks, and the following two statements
carry it out:

S

FIGURE 5.16 Deleting an arbitrary link

current.previous.next = current.next;
current.next.previous = current.previous;

|Previous¥TabIe of Contentb\lext|

DELETION 189



MWSS: Data Structures and Algorithms in Java:Introduction

[ ===l \\WSS: Data Structures and Algorithms in Java

by Robert Lafore

oA sTRUCTURES Waite Group Press, Macmillan Computer Publishing
getteall ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previou4TabIe of Contenth\lext|

Special cases arise if the link to be deleted is either the first or last in the list, because first or last must
be set to point to the next or the previous link. Here’s the code from deleteKey() for dealing with link
connections:

if(current==first) Il first item?
first = current.next; /I first ——> old next
else /I not first

// old previous ——> old next
current.previous.next = current.next;

if(current==last) I/ last item?
last = current.previous; // old previous <-- last
else /I not last

I/ old previous <—- old next
current.next.previous = current.previous;

THE doublyLinked.Java PROGRAM

Listing 5.8 shows the complete doublyLinked.java program, which includes all the routines just
discussed.

Listing 5.8 The doublyLinked.java Program

// doublyLinked.java

/l demonstrates a doubly-linked list

I to run this program: C>java DoublyLinkedApp
e

class Link
public double dData; /l data item
public Link next; Il next link in list
public Link previous; I/ previous link in list
1
public Link(double d) I/ constructor
{dData =d;}

1

public void displayLink() /1 display this link
{ System.out.print(dData + * *); }
1

} Il end class Link
o
class DoublyLinkedList

{
private Link first; /I ref to first item
private Link last; /I ref to last item

1

public DoublyLinkedList() /I constructor

{
first = null; // no items on list yet
last = null;
}
1
public boolean isEmpty() I/ true if no links

{ return first==null; }

THE doublyLinked.Java PROGRAM 190


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

1
public void insertFirst(double dd) // insert at front of list

{

Link newLink = new Link(dd); // make new link

if( iISEmpty() ) I1'if empty list,
last = newLink; /l newLink <—- last
else
first.previous = newLink; // newLink <—— old first
newLink.next = first; // newLink ——> old first
first = newLink; /I first =——> newLink
}
1
public void insertLast(double dd) // insert at end of list
{
Link newLink = new Link(dd); // make new link
if(iISEmpty() ) I1'if empty list,
first = newLink; /I first =——> newLink
else
{
last.next = newLink; // old last ——> newLink
newLink.previous = last; // old last <—— newLink
}
last = newLink; /l newLink <—- last
}
1
public Link deleteFirst() /I delete first link
{ /I (assumes non—-empty list)
Link temp = first;
if(first.next == null) /I if only one item
last = null; /I null <—— last
else
first.next.previous = null; // null <-- old next
first = first.next; /I first ——> old next
return temp;
}
1
public Link deleteLast() I/ delete last link
{ /I (assumes non—-empty list)
Link temp = last;
if(first.next == null) /I if only one item
first = null; /I first =—> null
else
last.previous.next = null; // old previous ——> null
last = last.previous; /I old previous <—- last
return temp;
}
1

/I insert dd just after key
public boolean insertAfter(double key, double dd)

{ /I (assumes non—-empty list)

Link current = first; /I start at beginning

while(current.dData != key) // until match is found,
{

current = current.next; // move to next link
if(current == null)

return false; /I didn’t find it

}
Link newLink = new Link(dd); // make new link
if(current==last) /I if last link,

{

newLink.next = null; /I newLink ——> null

last = newLink; /I newLink <—— last

}
else /I not last link,

{

newLink.next = current.next; // newLink ——> old next

THE doublyLinked.Java PROGRAM

191



MWSS: Data Structures and Algorithms in Java:Introduction

/I newLink <—— old next
current.next.previous = newLink;
}
newLink.previous = current;  // old current <—- newLink
current.next = newLink; /I old current ——> newLink
return true; /I found it, did insertion

}
1

public Link deleteKey(double key) // delete item w/ given key
{ Il (assumes non—-empty list)
Link current = first; /I start at beginning
while(current.dData != key)  // until match is found,
{
current = current.next;  // move to next link
if(current == null)

return null; [/ didn’t find it
}
if(current==first) Il found it; first item?
first = current.next; /I first ——> old next
else /I not first

// old previous ——> old next
current.previous.next = current.next;

if(current==last) /I last item?
last = current.previous; // old previous <—— last
else // not last

// old previous <—- old next
current.next.previous = current.previous;

return current; I/ return value
}
1
public void displayForward()
{
System.out.print(“List (first——>last): “);
Link current = first; /[ start at beginning
while(current != null) /I until end of list,
{

current.displayLink(); /I display data
current = current.next; /I move to next link
}

System.out.printin(*”);

}
1

public void displayBackward()
{
System.out.print(“List (last——>first): “);
Link current = last; // start at end
while(current != null) /I until start of list,
{
current.displayLink(); /I display data
current = current.previous; // move to previous link
}

System.out.printin(*”);

}

} /l end class DoublyLinkedList
T T
class DoublyLinkedApp
{
public static void main(String[] args)
{ /l make a new list
DoublyLinkedList theList = new DoublyLinkedList();

1

theList.insertFirst(22); Il insert at front

theList.insertFirst(44);
theList.insertFirst(66);

THE doublyLinked.Java PROGRAM

192



MWSS: Data Structures and Algorithms in Java:Introduction

theList.insertLast(11); /I insert at rear

theList.insertLast(33);
theList.insertLast(55);

theList.displayForward();  // display list forward
theList.displayBackward();  // display list backward

theList.deleteFirst(); /I delete first item
theList.deleteLast(); I delete last item
theList.deleteKey(11); I delete item with key 11

theList.displayForward();  // display list forward

theList.insertAfter(22, 77); I/ insert 77 after 22
theList.insertAfter(33, 88); // insert 88 after 33

theList.displayForward();  // display list forward
} /I end main()
} /l end class DoublyLinkedApp

|PreviousiTabIe of Contentk\lext|

THE doublyLinked.Java PROGRAM 193



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

In main() we insert some items at the beginning of the list and at the end, display the items going both
forward and backward, delete the first and last items and the item with key 11, display the list again (forwarc
only), insert two items using the insertAfter() method, and display the list again. Here’s the output:

List (first——>last): 66 44 22 11 33 55
List (last——>first): 55 33 11 22 44 66
List (first——>last): 44 22 33

List (first——>last): 44 22 77 33 88

The deletion methods and the insertAfter() method assume that the list isn't empty. Although for
simplicity we don’t show it in main(), isEmpty() should be used to verify that there’s something in the
list before attempting such insertions and deletions.

DOUBLY LINKED LIST AS BASIS FOR DEQUES

A doubly linked list can be used as the basis for a deque, mentioned in the last chapter. In a deque you can
insert and delete at either end, and the doubly linked list provides this capability.

Iterators

We've seen how it's possible for the user of a list to find a link with a given key using a find() method.

The method starts at the beginning of the list and examines each link until it finds one matching the search
key. Other operations we've looked at, such as deleting a specified link or inserting before or after a specifie
link, also involve searching through the list to find the specified link. However, these methods don't give the
user any control over the traversal to the specified item.

Suppose you wanted to traverse a list, performing some operation on certain links. For example, imagine a
personnel file stored as a linked list. You might want to increase the wages of all employees who were being
paid minimum wage, without affecting employees already above the minimum. Or suppose that in a list of
mail-order customers, you decided to delete all customers who had not ordered anything in six months.

In an array, such operations are easy because you can use an array index to keep track of your position. Yc
can operate on one item, then increment the index to point to the next item, and see if that item is a suitable
candidate for the operation. However, in a linked list, the links don’t have fixed index humbers. How can we
provide a list’'s user with something analogous to an array index? You could repeatedly use find() to look
for appropriate items in a list, but this requires many comparisons to find each link. It's far more efficient to
step from link to link, checking if each one meets certain criteria and performing the appropriate operation if
does.

A REFERENCE IN THE LIST ITSELF?
As users of a list class, what we need is access to a reference that can point to any arbitrary link. This allow
us to examine or modify the link. We should be able to increment the reference so we can traverse along the

list, looking at each link in turn, and we should be able to access the link pointed to by the reference.

Assuming we create such a reference, where will it be installed? One possibility is to use a field in the list

DOUBLY LINKED LIST AS BASIS FOR DEQUES 194


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

itself, called current or something similar. You could access a link using current, and increment
current to move to the next link.

One trouble with this approach is that you might need more than one such reference, just as you often use
several array indices at the same time. How many would be appropriate? There’s no way to know how man
the user might need. Thus it seems easier to allow the user to create as many such references as necessar
make this possible in an object-oriented language, it's natural to embed each reference in a class object. (T
can't be the same as the list class, because there’s only one list object.)

AN ITERATOR CLASS

Objects containing references to items in data structures, used to traverse data structures, are commonly ce
iterators (or sometimes, as in certain Java classes, enumerators). Here's a preliminary idea of how they loo}

class Listlterator()

{

private Link current;
}

The current field contains a reference to the link the iterator currently points to. (The term “points” as used
here doesn't refer to pointers in C++; we're using it in its generic sense.)

To use such an iterator, the user might create a list and then create an iterator object associated with the lis
Actually, as it turns out, it's easier to let the list create the iterator, so it can pass the iterator certain
information, such as a reference to its first field. Thus we add a getlterator() method to the list

class; this method returns a suitable iterator object to the user. Here’s some abbreviated code in main() that
shows how the class user would invoke an iterator:

public static void main(...)

{
LinkList theList = new LinkList(); /I make list

Listlterator iterl = theList.getlterator(); // make iter

Link aLink = iterl.getCurrent(); // access link at iterator
iterl.nextLink(); /I move iter to next link

}
Once we've made the iterator object, we can use it to access the link it points to, or increment it so it points
the next link, as shown in the second two statements. We call the iterator object iterl to emphasize that you
could make more iterators (iter2 and so on) the same way.

The iterator always points to some link in the list. It's associated with the list, but it's not the same as the list.
Figure 5.17 shows two iterators pointing to links in a list.

ZEEE]
._]

=
FIGURE 5.17 List iterators

ADDITIONAL ITERATOR FEATURES

We've seen several programs where the use of a previous field made it simpler to perform certain
operations, such as deleting a link from an arbitrary location. Such a field is also useful in an iterator.

AN ITERATOR CLASS 195



MWSS: Data Structures and Algorithms in Java:Introduction

Also, it may be that the iterator will need to change the value of the list’s first field; for example, if an item
is inserted or deleted at the beginning of the list. If the iterator is an object of a separate class, how can it
access a private field, such as first, in the list? One solution is for the list to pass a reference to itself to the
iterator when it creates it. This reference is stored in a field in the iterator.

|PreviousiTabIe of Contentk\lext|

AN ITERATOR CLASS 196



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java
by Robert Lafore

DAL ST “:,\ Waite Group Press, Macmillan Computer Publishing
el [SBN: 1571690956 Pub Date: 03/20/98

|Previous*TabIe of Contenth\lext|

The list must then provide public methods that allow the iterator to change first. These are LinkList
methods getFirst() and setFirst(). (The weakness of this approach is that these methods allow
anyone to change first, which introduces an element of risk.)

Here’s a revised (although still incomplete) iterator class that incorporates these additional fields, along with
reset() and nextLink() methods:

class Listlterator()
{
private Link current; I reference to current link
private Link previous;  // reference to previous link
private LinkList ourList; // reference to “parent” list

public void reset() /I set to start of list
{
current = ourList.getFirst(); // current ——> first
previous = null; I previous ——> null
}
public void nextLink()  // go to next link
{

previous = current;  // set previous to this
current = current.next; // set this to next

}

We might note, for you old-time C++ programmers, that in C++ the connection between the iterator and the
list is typically provided by making the iterator class a friend of the list class. However, Java has no friend
classes, which are controversial in any case because they are a chink in the armor of data hiding.

ITERATOR METHODS

Additional methods can make the iterator a flexible and powerful class. All operations previously performed
by the class that involve iterating through the list, like insertAfter(), are more naturally performed by
the iterator. In our example the iterator includes the following methods:

» reset() Sets iterator to the start of the list

e nextLink() Moves iterator to next link

e getCurrent() Returns the link at iterator

» tEnd() Returns true if iterator is at end of list

» insertAfter() Inserts a new link after iterator

» insertBefore() Inserts a new link before iterator
» deleteCurrent() Deletes the link at the iterator

The user can position the iterator using reset() and nextLink(), check if it's at the end of the list with
atend(), and perform the other operations shown.

Deciding which tasks should be carried out by an iterator and which by the list itself is not always easy. An
insertBefore() method works best in the iterator, but an insertFirst() routine that always inserts

ITERATOR METHODS 197


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

at the beginning of the list might be more appropriate in the list class. We've kept a displayList()
routine in the list, but this operation could also be handled with getCurrent() and nextLink() calls to
the iterator.

THE interlterator.Java PROGRAM

The interlterator.java program includes an interactive interface that permits the user to control the
iterator directly. Once you've started the program, you can perform the following actions by typing the
appropriate letter:

» s Show the list contents

» r Reset the iterator to the start of the list
* n Go to the next link

» g Get the contents of the current link

b Insert before the current link

* alnsert a new link after the current link
d Delete the current link

Listing 5.9 shows the complete interlterator.java program.

Listing 5.9 The interlterator.java Program

I/ interlterator.java
// demonstrates iterators on a linked list
/ to run this program: C>java InterlterApp

import java.io.*; /I for 1/O
T T T
class Link
public double dData; // data item
public Link next; /I next link in list
1

public Link(double dd) /I constructor
{dData = dd; }
1

public void displayLink()  // display ourself
{ System.out.print(dData + “ “); }
} /l end class Link
o
class LinkList

private Link first; Il ref to first item on list
1
public LinkList() /I constructor
{first = null; } /I no items on list yet
1

public Link getFirst() /I get value of first
{ return first; }
1

public void setFirst(Link f) // set first to new link
{first=";}
1

public boolean isSEmpty() /I true if list is empty
{ return first==null; }

1
public Listlterator getlterator() // return iterator
{
return new Listlterator(this); // initialized with
} /I this list
1

public void displayList()

THE interlterator.Java PROGRAM 198



MWSS: Data Structures and Algorithms in Java:Introduction

{

Link current = first; /I start at beginning of list
while(current = null)  // until end of list,

{

current.displayLink(); // print data

current = current.next; // move to next link

}

System.out.printin(*”);

}

} /l end class LinkList
i
class Listlterator

1

{
private Link current; /I current link
private Link previous; /I previous link
private LinkList ourList;  // our linked list
I
public Listlterator(LinkList list) // constructor
{
ourList = list;
reset();
}
I
public void reset() // start at 'first’
{
current = ourList.getFirst();
previous = null;
}
I
public boolean atEnd() Il true if last link
{ return (current.next==null); }
I
public void nextLink() /I go to next link
{
previous = current;
current = current.next;
}
I

public Link getCurrent() /I get current link
{'return current; }
I

public void insertAfter(double dd) // insert after
{ /I current link
Link newLink = new Link(dd);

if( ourList.isEmpty() ) // empty list
{
ourList.setFirst(newLink);
current = newLink;
}

else // not empty
{
newLink.next = current.next;
current.next = newLink;
nextLink(); // point to new link
}

}

I
public void insertBefore(double dd) // insert before
{ /I current link
Link newLink = new Link(dd);
if(previous == null) /I beginning of list
{ /I (or empty list)
newLink.next = ourList.getFirst();
ourList.setFirst(newLink);
reset();

THE interlterator.Java PROGRAM 199



MWSS: Data Structures and Algorithms in Java:Introduction

}

else // not beginning
{
newLink.next = previous.next;
previous.next = newLink;
current = newLink;
}

}
I

public double deleteCurrent() // delete item at current
{
double value = current.dData;
if(previous == null) // beginning of list
{
ourList.setFirst(current.next);
reset();
}
else // not beginning
{
previous.next = current.next;
if( atEnd() )
reset();
else
current = current.next;
}

return value;

}
I

} /I end class Listlterator
NN
class InterlterApp
{
public static void main(String[] args) throws IOException
{
LinkList theList = new LinkList(); /I new list
Listlterator iterl = theList.getlterator(); // new iter

double value;

iterl.insertAfter(20); Il insert items
iterl.insertAfter(40);

iterl.insertAfter(80);
iterl.insertBefore(60);

while(true)
{
System.out.print(“Enter first letter of show, reset, “);
System.out.print(“next, get, before, after, delete: *);
System.out.flush();

int choice = getChar(); /I get user’ soption
switch(choice)
{
case's’ /I show list
if( 'theList.isEmpty() )
theList.displayList();
else
System.out.printin(“List is empty”);
break;
case '’ /I reset (to first)
iterl.reset();
break;
case 'n”: /I advance to next item

if( 'theList.isEmpty() && literl.atEnd() )
iterl.nextLink();
else
System.out.printin(“Can’t go to next link”);
break;

THE interlterator.Java PROGRAM

200



MWSS: Data Structures and Algorithms in Java:Introduction

case'g" /I get current item
if( ItheList.isEmpty() )
{
value = iterl.getCurrent().dData;
System.out.printin(“Returned “ + value);

}
else
System.out.printin(“List is empty”);
break;
case 'b" /I insert before current

System.out.print(“Enter value to insert: “);
System.out.flush();
value = getint();
iterl.insertBefore(value);
break;

case 'a” /I insert after current
System.out.print(“Enter value to insert: “);
System.out.flush();
value = getint();
iterl.insertAfter(value);

break;
case 'd" /I delete current item
if( 'theList.isEmpty() )
{

value = iterl.deleteCurrent();
System.out.printin(“Deleted “ + value);
}
else
System.out.printin(“Can’t delete”);
break;
default:
System.out.printin(“Invalid entry”);
} /] end switch
} // end while
} /I end main()

I
public static String getString() throws IOException
{
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader((isr);
String s = br.readLine();
return s;

}
I

public static int getChar() throws IOException
{
String s = getString();
return s.charAt(0);

}
I

public static int getint() throws IOException
{
String s = getString();
return Integer.parselnt(s);
} /I end getint()
I

} /l end class InterlterApp

|PreviousiTabIe of Contentk\lext|

THE interlterator.Java PROGRAM

201



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

The main() routine inserts four items into the list, using an iterator and its insertAfter() method. Then

it waits for the user to interact with it. In the following sample interaction, the user displays the list, resets the
iterator to the beginning, goes forward two links, gets the current link’s key value (which is 60), inserts 100
before this, inserts 7 after the 100, and displays the list again.

Enter first letter of

show, reset, next, get, before, after, delete: s
20 40 60 80
Enter first letter of

show, reset, next, get, before, after, delete: r
Enter first letter of

show, reset, next, get, before, after, delete: n
Enter first letter of

show, reset, next, get, before, after, delete: n
Enter first letter of

show, reset, next, get, before, after, delete: g
Returned 60
Enter first letter of

show, reset, next, get, before, after, delete: b
Enter value to insert: 100
Enter first letter of

show, reset, next, get, before, after, delete: a
Enter value to insert: 7
Enter first letter of

show, reset, next, get, before, after, delete: s
20 40 100 7 60 80

Experimenting with the interlterator.java program will give you a feeling for how the iterator moves
along the links and how it can insert and delete links anywhere in the list.

WHERE DOES IT POINT?

One of the design issues in an iterator class is deciding where the iterator should point following various
operations.

When you delete an item with deleteCurrent(), should the iterator end up pointing to the next item, to

the previous item, or back at the beginning of the list? It's convenient to keep it in the vicinity of the deleted
item, because the chances are the class user will be carrying out other operations there. However, you can
move it to the previous item because there’'s no way to reset the list’s previous field to the previous item.
(You'd need a doubly linked list for that.) Our solution is to move the iterator to the link following the deleted
link. If we've just deleted the item at the end of the list, the iterator is set to the beginning of the list.

Following calls to insertBefore() and insertAfter(), we return with current pointing to the
newly inserted item.

THE atEnd() METHOD
There’s another question about the atEnd() method. It could return true when the iterator points to the
last valid link in the list, or it could return true when the iterator points past the last link (and is thus not

pointing to a valid link).

WHERE DOES IT POINT? 202


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

With the first approach, a loop condition used to iterate through the list becomes awkward because you nee
to perform an operation on the last link before checking whether it is the last link (and terminating the loop if
it is).

However, the second approach doesn'’t allow you to find out you're at the end of the list until it's too late to
do anything with the last link. (You couldn’t look for the last link and then delete it, for example.) This is
because when atEnd() became true, the iterator would no longer point to the last link (or indeed any valid
link), and you can't “back up” the iterator in a singly linked list.

We take the first approach. This way the iterator always points to a valid link, although you must be careful
when writing a loop that iterates through the list, as we’ll see next.

ITERATIVE OPERATIONS

As we noted, an iterator allows you to traverse the list, performing operations on certain data items. Here’'s ¢
code fragment that displays the list contents, using an iterator instead of the list’s displayList() method:

iterl.reset(); /l start at first

double value = iterl.getCurrent().dData; // display link
System.out.printin(value + “ *);

while( literl.atEnd() ) I/l until end,

iterl.nextLink(); /I go to next link,
double value = iterl.getCurrent().dData; // display it
System.out.printin(value + “ *);

}

Although not shown here, you should check with isEmpty() to be sure the list is not empty before calling
getCurrent().

The following code shows how you could delete all items with keys that are multiples of 3. We show only the
revised main() routine; everything else is the same as in interlterator.java.

class InterlterApp

{

public static void main(String[] args) throws IOException
{
LinkList theList = new LinkList(); /I new list

Listlterator iterl = theList.getlterator(); // new iter

iterl.insertAfter(21); /l insert links
iterl.insertAfter(40);
iterl.insertAfter(30);

iterl.insertAfter(7);

iterl.insertAfter(45);

theList.displayList(); /I display list
iterl.reset(); /I start at first link

Link aLink = iterl.getCurrent(); // get it
if(aLink.dData % 3 == 0) /1 if divisible by 3,

iterl.deleteCurrent(); I delete it
while( literl.atEnd() ) I/ until end of list,

{

iterl.nextLink(); // go to next link

aLink = iterl.getCurrent(); // get link
if(aLink.dData % 3 == 0) /1'if divisible by 3,
iterl.deleteCurrent();  // delete it

}
theList.displayList(); /I display list

ITERATIVE OPERATIONS 203



MWSS: Data Structures and Algorithms in Java:Introduction

} // end main()
} /I end class InterlterApp

We insert five links and display the list. Then we iterate through the list, deleting those links with keys
divisible by 3, and display the list again. Here’s the output:

214030745
407

Again, although this code doesn’t show it, it's important to check whether the list is empty before calling
deleteCurrent().

OTHER METHODS

One could create other useful methods for the Listlterator class. For example, a find() method would
return an item with a specified key value, as we've seen when find() is a list method. A replace()
method could replace items that had certain key values with other items.

Because it's a singly linked list, you can only iterate along it in the forward direction. If a doubly linked list
were used, you could go either way, allowing operations such as deletion from the end of the list, just as wit
noniterator. This would probably be a convenience in some applications.

|Previou4TabIe of Contentk\lext|

OTHER METHODS 204



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java
by Robert Lafore

DAL ST “:,\ Waite Group Press, Macmillan Computer Publishing
el [SBN: 1571690956 Pub Date: 03/20/98

|Previous*TabIe of Contenth\lext|

Summary

A linked list consists of one linkedList object and a number of link objects.

The linkedList object contains a reference, often called first, to the first link in the list.

» Each link object contains data and a reference, often called next, to the next link in the list.

» A next value of null signals the end of the list.

* Inserting an item at the beginning of a linked list involves changing the new link’s next field to
point to the old first link, and changing first to point to the new item.

» Deleting an item at the beginning of a list involves setting first to point to first.next.

» To traverse a linked list, you start at first; then go from link to link, using each link’s next

field to find the next link.

» Alink with a specified key value can be found by traversing the list. Once found, an item can be
displayed, deleted, or operated on in other ways.

» A new link can be inserted before or after a link with a specified key value, following a traversal
to find this link.

» A double—ended list maintains a pointer to the last link in the list, often called last, as well as to
the first.

» A double-ended list allows insertion at the end of the list.

» An Abstract Data Type (ADT) is a data—storage class considered without reference to its
implementation.

» Stacks and queues are ADTs. They can be implemented using either arrays or linked lists.

 In a sorted linked list, the links are arranged in order of ascending (or sometimes descending) key
value.

« Insertion in a sorted list takes O(N) time because the correct insertion point must be found.
Deletion of the smallest link takes O(1) time.

 In a doubly linked list, each link contains a reference to the previous link as well as the next link.

» A doubly linked list permits backward traversal and deletion from the end of the list.

» An iterator is a reference, encapsulated in a class object, that points to a link in an associated list.
« Iterator methods allow the user to move the iterator along the list and access the link currently
pointed to.

» An iterator can be used to traverse through a list, performing some operation on selected links (or
all links).

|Previou4TabIe of Contenti!\lext|

Summary 205


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

Chapter 6
Recursion

Recursion is a programming technique in which a method (function) calls itself. This may sound like a strang
thing to do, or even a catastrophic mistake. Recursion is, however, one of the most interesting, and one of tl
most surprisingly effective, techniques in programming. Like pulling yourself up by your bootstraps (you do
have bootstraps, don't you?), recursion seems incredible when you first encounter it. However, it not only
works, it also provides a unigue conceptual framework for solving many problems.

In this chapter we’ll examine a variety of examples to show the wide variety of situations to which recursion
can be applied. We will calculate triangular numbers and factorials, generate anagrams, perform a recursive
binary search, solve the Towers of Hanoi puzzle, and investigate a sorting technique called mergesort.
Workshop applets are provided to demonstrate the Towers of Hanoi and mergesort.

We’'ll also discuss the strengths and weaknesses of recursion and show how a recursive approach can be
transformed into a stack—based approach.

Triangular Numbers

It's said that the Pythagorians, a band of mathematicians in ancient Greece who worked under Pythagoras |
Pythagorian theorem fame), felt a mystical connection with the series of numbers 1, 3, 6, 10, 15, 21, ...
(where the ... means the series continues indefinitely). Can you find the next member of this series?

The nth term in the series is obtained by adding n to the previous term. Thus the second term is found by
adding 2 to the first term (which is 1), giving 3. The third term is 3 added to the second term (which is 3),
giving 6, and so on. The numbers in this series are called triangular numbers because they can be visualize
as a triangular arrangements of objects, shown as little squares in Figure 6.1.

FIGURE 6.1 The triangular numbers
FINDING THE NTH TERM USING A LOOP
Suppose you wanted to find the value of some arbitrary nth term in the series; say the fourth term (whose

value is 10). How would you calculate it? Looking at Figure 6.2, you might decide that the value of any term
can be obtained by adding up all the vertical columns of squares.

R

ans
anE
aaag

T

Chapter 6 Recursion 206


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

FIGURE 6.2 Triangular number as columns

In the fourth term, the first column has four little squares, the second column has three, and so on. Adding
4+3+2+1 gives 10.

The following triangle() method uses this column—based technique to find a triangular number. It sums
all the columns, from a height of n to a height of 1.

int triangle(int n)
int total = 0;

while(n > 0) /luntilnis 1

{

total = total + n; // add n (column height) to total
--n; I/l decrement column height

}

return total;

}

The method cycles around the loop n times, adding n to total the first time, n—1 the second time, and so on
down to 1, quitting the loop when n becomes 0.

FINDING THE NTH TERM USING RECURSION

The loop approach may seem straightforward, but there’s another way to look at this problem. The value of
the nth term can be thought of as the sum of only two things, instead of a whole series. These are

1. The first (tallest) column, which has the value n.
2. The sum of all the remaining columns.

This is shown in Figure 6.3.

FIGURE 6.3 Triangular number as column plus triangle
Finding the Remaining Columns

If we knew about a method that found the sum of all the remaining columns, then we could write our
triangle() method, which returns the value of the nth triangular number, like this:

int triangle(int n)

return( n + sumRemainingColumns(n) ); // (incomplete version)

}

But what have we gained here? It looks like it's just as hard to write the sumRemainingColumns()
method as to write the triangle() method in the first place.

Notice in Figure 6.3, however, that the sum of all the remaining columns for term n is the same as the sum ¢

all the columns for term n—1. Thus, if we knew about a method that summed all the columns for term n, we
could call it with an argument of n—1 to find the sum of all the remaining columns for term n:

int triangle(int n)

FINDING THE NTH TERM USING RECURSION 207



MWSS: Data Structures and Algorithms in Java:Introduction

{

return( n + sumAllColumns(n-1) ); // (incomplete version)

}

But when you think about it, the sumAIllColumns() method is doing exactly the same thing the
triangle() method is doing: summing all the columns for some number n passed as an argument. So why
not use the triangle() method itself, instead of some other method? That would look like this:

int triangle(int n)

return( n + triangle(n-1) ); // (incomplete version)

}

It may seem amazing that a method can call itself, but why shouldn’t it be able to? A method call is (among
other things) a transfer of control to the start of the method. This transfer of control can take place from withi
the method as well as from outside.

Passing the Buck

All this may seem like passing the buck. Someone tells me to find the 9th triangular number. | know this is 9
plus the 8th triangular number, so | call Harry and ask him to find the 8th triangular number. When | hear
back from him, I'll add 9 to whatever he tells me, and that will be the answer.

Harry knows the 8th triangular number is 8 plus the 7th triangular number, so he calls Sally and asks her to
find the 7th triangular number. This process continues with each person passing the buck to another one.

Where does this buck—passing end? Someone at some point must be able to figure out an answer that doe:
involve asking another person to help them. If this didn't happen, there would be an infinite chain of people
asking other people questions; a sort of arithmetic Ponzi scheme that would never end. In the case of
triangle(), this would mean the method calling itself over and over in an infinite series that would

paralyze the program.

|Previou4TabIe of Contentk\lext|

Passing the Buck 208



MWSS: Data Structures and Algorithms in Java:Introduction

[ ===l \\WSS: Data Structures and Algorithms in Java

by Robert Lafore

oA sTRUCTURES Waite Group Press, Macmillan Computer Publishing
getteall ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

The Buck Stops Here

To prevent an infinite regress, the person who is asked to find the first triangular number of the series, when
is 1, must know, without asking anyone else, that the answer is 1. There are no smaller numbers to ask any
about, there’s nothing left to add to anything else, so the buck stops there. We can express this by adding a
condition to the triangle() method:

int triangle(int n)
{
if(n==1)
return 1,
else
return( n + triangle(n-1) );

}

The condition that leads to a recursive method returning without making another recursive call is referred to
as the base case. It's critical that every recursive method have a base case to prevent infinite recursion and
consequent demise of the program.

THE triangle.java PROGRAM

Does recursion actually work? If you run the triangle.java program, you'll see that it does. Enter a
value for the term number, n, and the program will display the value of the corresponding triangular number.
Listing 6.1 shows the triangle.java program.

Listing 6.1 The triangle.java Program

/I triangle.java
/I evaluates triangular numbers
/I to run this program: C>java TriangleApp
import java.io.*; /I for 1/O
I T
class TriangleApp

{

static int theNumber;

public static void main(String[] args) throws IOException
{
System.out.print(“Enter a number: “);
System.out.flush();
theNumber = getint();
int theAnswer = triangle(theNumber);
System.out.printin(“Triangle="+theAnswer);
} 1 end main()
Il

public static int triangle(int n)
{
if(n==1)
return 1;
else
return( n + triangle(n-1) );

}

The Buck Stops Here 209


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

I
public static String getString() throws IOException
{
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);
String s = br.readLine();
return s;

}

I/
public static int getint() throws IOException
{
String s = getString();
return Integer.parselnt(s);

}
1

} /l end class TriangleApp

The main() routine prompts the user for a value for n, calls triangle(), and displays the return value.
The triangle() method calls itself repeatedly to do all the work.

Here’'s some sample output:

Enter a number: 1000
Triangle = 500500

Incidentally, if you're skeptical of the results returned from triangle(), you can check them by using the
following formula:

nth triangular number = (n2+n)/2
WHAT'S REALLY HAPPENING?

Let's modify the triangle() method to provide an insight into what's happening when it executes. We'll
insert some output statements to keep track of the arguments and return values:

public static int triangle(int n)

{

System.out.printin(“Entering: n="+ n);

if(n==1)
{
System.out.printin(“Returning 17);
return 1,
}

else
{
int temp = n + triangle(n-1);
System.out.printin(“Returning “ + temp);
return temp;
}

}

Here’s the interaction when this method is substituted for the earlier triangle() method and the user
enters 5:

Enter a number: 5

Entering: n=5
Entering: n=4
Entering: n=3
Entering: n=2
Entering: n=1
Returning 1

WHAT'S REALLY HAPPENING? 210



MWSS: Data Structures and Algorithms in Java:Introduction

Returning 3
Returning 6
Returning 10
Returning 15
Triangle = 15

Each time the triangle() method calls itself, its argument, which starts at 5, is reduced by 1. The method
plunges down into itself again and again until its argument is reduced to 1. Then it returns. This triggers an
entire series of returns. The method rises back up, phoenixlike, out of the discarded versions of itself. Each
time it returns, it adds the value of n it was called with to the return value from the method it called.

The return values recapitulate the series of triangular numbers, until the answer is returned to main(). Figure
6.4 shows how each invocation of the triangle() method can be imagined as being “inside” the previous
one.

<
Y

R

FIGURE 6.4 The recursive triangle() method

Notice that, just before the innermost version returns a 1, there are actually five different incarnations of
triangle() in existence at the same time. The outer one was passed the argument 5; the inner one was
passed the argument 1.

CHARACTERISTICS OF RECURSIVE METHODS
Although it's short, the triangle() method possesses the key features common to all recursive routines:

* It calls itself.

* When it calls itself, it does so to solve a smaller problem.

» There’s some version of the problem that is simple enough that the routine can solve it, and
return, without calling itself.

In each successive call of a recursive method to itself, the argument becomes smaller (or perhaps a range
described by multiple arguments becomes smaller), reflecting the fact that the problem has become “smalle
or easier. When the argument or range reaches a certain minimum size, a condition is triggered and the
method returns without calling itself.

|PreviousiTabIe of Contentb\lext|

CHARACTERISTICS OF RECURSIVE METHODS 211



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java
by Robert Lafore

. Waite Group Press, Macmillan Computer Publishing

DATA STRUCTURES

serienll  [SBN: 1571690956 Pub Date: 03/20/98

|Previous*TabIe of Contenth\lext|

IS RECURSION EFFICIENT?

Calling a method involves certain overhead. Control must be transferred from the location of the call to the
beginning of the method. In addition, the arguments to the method, and the address to which the method
should return, must be pushed onto an internal stack so that the method can access the argument values at
know where to return.

In the case of the triangle() method, it's probable that, as a result of this overhead, the while loop

approach executes more quickly than the recursive approach. The penalty may not be significant, but if ther
are a large number of method calls as a result of a recursive method, it might be desirable to eliminate the
recursion. We'll talk about this more at the end of this chapter.

Another inefficiency is that memory is used to store all the intermediate arguments and return values on the
system’s internal stack. This may cause problems if there is a large amount of data, leading to stack overflo

Recursion is usually used because it simplifies a problem conceptually, not because it's inherently more
efficient.

MATHEMATICAL INDUCTION

Recursion is the programming equivalent of mathematical induction. Mathematical induction is a way of
defining something in terms of itself. (The term is also used to describe a related approach to proving
theorems.) Using induction, we could define the triangular numbers mathematically by saying

tri(n) = 1 ifn=1
tri(n) = n + tri(n-1) ifn>1

Defining something in terms of itself may seem circular, but in fact it's perfectly valid (provided there’s a
base case).

Factorials

Factorials are similar in concept to triangular numbers, except that multiplication is used instead of addition.
The triangular number corresponding to n is found by adding n to the triangular number of n—1, while the
factorial of n is found by multiplying n by the factorial of n—1. That is, the fifth triangular number is
5+4+3+2+1, while the factorial of 5 is 5*4*3*2*1, which equals 120. Table 6.1 shows the factorials of the
first 10 numbers.

TABLE 6.1 Factorials
NumberCalculationFactorial

Oby definition 1
11*1 1
22*1 2
33*2 6
44 * 6 24

55*24 120

IS RECURSION EFFICIENT? 212


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

66 * 120 720
77*720 5,040

88 * 5,040 40,320
99 * 40,320 362,880

The factorial of 0 is defined to be 1. Factorial numbers grow large very rapidly, as you can see.
A recursive method similar to triangle() can be used to calculate factorials. It looks like this:

int factorial(int n)

{
if(n==0)
return 1,
else
return (n * factorial(n—-1) );

}

There are only two differences between factorial() and triangle(). First, factorial() uses an *
instead of a + in the expression

n * factorial(n—-1)

Second, the base condition occurs when n is 0, not 1. Here's some sample interaction when this method is
used in a program similar to triangle.java:

Enter a number: 6
Factorial =720

Figure 6.5 shows how the various incarnations of factorial() call themselves when initially entered with
n=4.

FIGURE 6.5 The recursive factorial() method

Calculating factorials is the classic demonstration of recursion, although factorials aren’t as easy to visualize
as triangular numbers.

Various other numerological entities lend themselves to calculation using recursion in a similar way, such as
finding the greatest common denominator of two numbers (which is used to reduce a fraction to lowest term
raising a number to a power, and so on. Again, while these calculations are interesting for demonstrating
recursion, they probably wouldn’t be used in practice because a loop—based approach is more efficient.

Anagrams

Here’s a different kind of situation in which recursion provides a neat solution to a problem. Suppose you
want to list all the anagrams of a specified word; that is, all possible letter combinations (whether they make
real English word or not) that can be made from the letters of the original word. We'll call this anagramming
a word. Anagramming cat, for example, would produce

Anagrams 213



MWSS: Data Structures and Algorithms in Java:Introduction

e cat
e cta
e atc
e act
 tca
e tac

Try anagramming some words yourself. You'll find that the number of possibilities is the factorial of the
number of letters. For 3 letters there are 6 possible words, for 4 letters there are 24 words, for 5 letters 120
words, and so on. (This assumes that all letters are distinct; if there are multiple instances of the same letter
there will be fewer possible words.)

How would you write a program to anagram a word? Here's one approach. Assume the word has n letters.
1. Anagram the rightmost n—1 letters.
2. Rotate all n letters.

3. Repeat these steps n times.

To rotate the word means to shift all the letters one position left, except for the leftmost letter, which “rotates
back to the right, as shown in Figure 6.6.

0 OIEE

FIGURE 6.6 Rotating a word

|Previous}TabIe of Contentb\lext|

Anagrams 214



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

DT sTRUCTURSS Waite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

Rotating the word n times gives each letter a chance to begin the word. While the selected letter occupies tt
first position, all the other letters are then anagrammed (arranged in every possible position). For cat, which
has only 3 letters, rotating the remaining 2 letters simply switches them. The sequence is shown in Table 6.:

TABLE 6.2 Anagramming the word cat
WordDisplay Word?First LetterRemaining LettersAction
catYescatRotate at

ctaYesctaRotate ta

catNocatRotate cat

atcYesatcRotate tc

actYesactRotate ct

atcNoatcRotate atc

tcaYestcaRotate ca

tacYestacRotate ac

tcaNotcaRotate tca

catNocatDone

Notice that we must rotate back to the starting point with two letters before performing a 3-letter rotation.
This leads to sequences like cat, cta, cat. The redundant combinations aren’t displayed.

How do we anagram the rightmost n—1 letters? By calling ourselves. The recursive doAnagram() method
takes the size of the word to be anagrammed as its only parameter. This word is understood to be the
rightmost n letters of the complete word. Each time doAnagram() calls itself, it does so with a word one
letter smaller than before, as shown in Figure 6.7.

FIGURE 6.7 The recursive doAnagram() method

The base case occurs when the size of the word to be anagrammed is only one letter. There’'s no way to
rearrange one letter, so the method returns immediately. Otherwise, it anagrams all but the first letter of the
word it was given and then rotates the entire word. These two actions are performed n times, where n is the
size of the word. Here’s the recursive routine doAnagram():

public static void doAnagram(int newSize)

{

if(newSize == 1) /I if too small,
return; /I go no further
for(int j=0; j<newsSize; j++) /I for each position,

Anagrams 215


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

doAnagram(newSize-1); /I anagram remaining
if(newSize==2) /I if innermost,
displayWord(); // display it
rotate(newSize); /I rotate word
}
}

Each time the doAnagram() method calls itself, the size of the word is one letter smaller, and the starting
position is one cell further to the right, as shown in Figure 6.8.

FIGURE 6.8 Smaller and smaller words

Listing 6.2 shows the complete anagram.java program. The main() routine gets a word from the user,
inserts it into a character array so it can be dealt with conveniently, and then calls doAnagram().

Listing 6.2 The anagram.java Program

/I anagram.java
/I creates anagrams
/I to run this program: C>java AnagramApp
import java.io.*; Il for 1/1O
T T
class AnagramApp

{

static int size;

static int count;

static char[] arrChar = new char[100];

public static void main(String[] args) throws IOException
{
System.out.print(“Enter a word: “);  // get word
System.out.flush();
String input = getString();

size = input.length(); [/ find its size

count=0;

for(int j=0; j<size; j++) /[ putitin array
arrChar[j] = input.charAt(j);

doAnagram(size); /l anagram it

} /I end main()

1
public static void doAnagram(int newSize)

{

if(newSize == 1) /I if too small,
return; // go no further

for(int j=0; j<newsSize; j++) /I for each position,
{
doAnagram(newSize-1); /I anagram remaining
if(newSize==2) I if innermost,

displayWord(); /I display it

rotate(newSize); // rotate word
}

}

1
// rotate left all chars from position to end
public static void rotate(int newSize)

L

int j;

int position = size — newSize;

char temp = arrChar[position]; Il save first letter

Anagrams 216



MWSS: Data Structures and Algorithms in Java:Introduction

for(j=position+1; j<size; j++) /I shift others left
arrChar[j—1] = arrCharfj];

arrChar[j-1] = temp; I/ put first on right

}

I
public static void displayWord()

{

if(count < 99)

System.out.print(* “);
if(count < 9)

System.out.print(* “);
System.out.print(++count + “ *);
for(int j=0; j<size; j++)

System.out.print( arrCharfj] );
System.out.print(“ “);
System.out.flush();
if(count%6 == 0)

System.out.printin(*”);

}

I
public static String getString() throws IOException

{

InputStreamReader isr = new InputStreamReader(System.in);

BufferedReader br = new BufferedReader(isr);

String s = br.readLine();

return s;

}
I
} // end class AnagramApp

The rotate() method rotates the word one position left as described earlier. The displayWord()
method displays the entire word and adds a count to make it easy to see how many words have been
displayed. Here’'s some sample interaction with the program:

Enter a word: cats
lcats 2cast 3ctsa 4ctas 5csat 6csta
7atsc 8atcs 9asct 1l0astc 11 acts 12 acst
13tsca 1l1l4tsac 15tcas 16tcsa 17tasc 18tacs
19scat 20scta 21satc 22sact 23stca 24 stac

|PreviousiTabIe of Contentk\lext|

Anagrams 217



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

DT sTRUCTURSS Waite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

(Is it only coincidence that scat is an anagram of cats?) You can use the program to anagram 5-letter or eve
6-letter words. However, because the factorial of 6 is 720, this may generate more words than you want to
know about.

A Recursive Binary Search

Remember the binary search we discussed in Chapter 2, “Arrays”? We wanted to find a given cell in an
ordered array using the fewest number of comparisons. The solution was to divide the array in half, see whi
half the desired cell lay in, divide that half in half again, and so on. Here’s what the original find() method
looked like:

I/
public int find(double searchKey)
{
int lowerBound = 0;
int upperBound = nElems-1;
int curln;

while(true)

curln = (lowerBound + upperBound ) / 2;
if(alcurin]==searchKey)

return curln; /l found it
else if(lowerBound > upperBound)
return nElems; /l can't find it
else /I divide range

if(a[curln] < searchKey)
lowerBound = curln + 1; // it's in upper half

else
upperBound = curln - 1; // it's in lower half

} // end else divide range

} I end while
} // end find()
I

You might want to reread the section on binary searches in ordered arrays in Chapter 2, which describes ho
this method works. Also, run the Ordered Workshop applet from that chapter if you want to see a binary
search in action.

We can transform this loop—based method into a recursive method quite easily. In the loop—based method,
change lowerBound or upperBound to specify a new range, then cycle through the loop again. Each time
through the loop we divide the range (roughly) in half.

RECURSION REPLACES THE LOOP

In the recursive approach, instead of changing lowerBound or upperBound, we call find() again with

the new values of lowerBound or upperBound as arguments. The loop disappears, and its place is taken
by the recursive calls. Here's how that looks:

A Recursive Binary Search 218


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

private int recFind(double searchKey, int lowerBound,
int upperBound)
{
int curln;
curln = (lowerBound + upperBound ) / 2;
if(a[curin]==searchKey)

return curln; /l found it
else if(lowerBound > upperBound)
return nElems; /I can’t find it
else /I divide range
{

if(a[curin] < searchKey) //it's in upper half
return recFind(searchKey, curln+1, upperBound);
else /[ it's in lower half
return recFind(searchKey, lowerBound, curin-1);
} /l end else divide range
} /] end recFind()

The class user, represented by main(), may not know how many items are in the array when it calls
find(), and in any case shouldn’t be burdened with having to know what values of upperBound and
lowerBound to set initially. Therefore we supply an intermediate public method, find(), which main()
calls with only one argument, the value of the search key. The find() method supplies the proper initial
values of lowerBound and upperBound (0 and nElems—-1) and then calls the private, recursive method
recFind(). The find() method looks like this:

public int find(double searchKey)
{

return recFind(searchKey, 0, nElems-1);

}
Listing 6.3 The binarySearch.java Program

I/l binarySearch.java

/I demonstrates recursive binary search

/I to run this program: C>java BinarySearchApp
import java.io.*; /I for 1/0O
I T

class ordArray

private double[] a; I ref to array a
private int nElems; /I number of data items
Il
public ordArray(int max) I/ constructor
a = new double[max]; I create array
nElems = 0;
}

I
public int size()
{ return nElems; }

I
public int find(double searchKey)
{
return recFind(searchKey, 0, nElems-1);
}
I
private int recFind(double searchKey, int lowerBound,
int upperBound)

{

int curln;
curln = (lowerBound + upperBound ) / 2;

if(alcurin]==searchKey)
return curln; /I found it

A Recursive Binary Search 219



MWSS: Data Structures and Algorithms in Java:Introduction

else if(lowerBound > upperBound)

return nElems; /I can't find it
else /Il divide range
{

if(alcurin] < searchKey) //it’s in upper half
return recFind(searchKey, curin+1, upperBound);
else /l'it's in lower half
return recFind(searchKey, lowerBound, curin-1);
} // end else divide range
} 1l end recFind()

I
public void insert(double value) // put element into array
{
int j;
for(j=0; j<nElems; j++) /I find where it goes
if(afj] > value) /I (linear search)
break;
for(int k=nElems; k>j; k——) // move bigger ones up
alk] = a[k-1];
a[j] = value; /] insert it
nElems++; /l increment size
} /l end insert()
I
public void display() /I displays array contents
{

for(int j=0; j<nElems; j++) /I for each element,
System.out.print(a[j] + “ “); // display it
System.out.printin(*”);
}
I
} // end class ordArray
I T
class BinarySearchApp

{

public static void main(String[] args)
{
int maxSize = 100; [ array size
ordArray arr; I reference to array

arr = new ordArray(maxSize); // create the array

arr.insert(72); I/l insert items
arr.insert(90);

arr.insert(45);

arr.insert(126);

arr.insert(54);

arr.insert(99);

arr.insert(144);

arr.insert(27);

arr.insert(135);

arr.insert(81);

arr.insert(18);

arr.insert(108);

arr.insert(9);

arr.insert(117);

arr.insert(63);

arr.insert(36);

arr.display(); /I display array

int searchKey = 27; /I search for item
if( arr.find(searchKey) != arr.size() )
System.out.printin(“Found “ + searchKey);
else
System.out.printin(“Can’t find “ + searchKey);
} 1 end main()
} // end class BinarySearchApp

A Recursive Binary Search 220



MWSS: Data Structures and Algorithms in Java:Introduction

|PreviousiTabIe of Contentk\lext|

A Recursive Binary Search 221



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

In main() we insert 16 items into the array. The insert() method arranges them in sorted order; they're
then displayed. Finally we use find() to try to find the item with a key value of 27. Here's some sample
output:

91827364554 6372819099108 117 126 135 144
Found 27

In binarySearch.java there are 16 items in an array. Figure 6.9 shows how the recFind() method in

this program calls itself over and over, each time with a smaller range than before. When the innermost
version of the method finds the desired item, which has the key value 27, it returns with the index value of tf
item, which is 2 (as can be seen in the display of ordered data). This value is then returned from each versic
of recFind() in turn; finally find() returns it to the class user.

FIGURE 6.9 The recursive binarySearch() method

The recursive binary search has the same big O efficiency as the nonrecursive version: O(logN). It is
somewhat more elegant, but may be slightly slower.

DIVIDE-AND-CONQUER ALGORITHMS

The recursive binary search is an example of the divide—and—conquer approach. You divide the big problen
into two smaller problems and solve each one separately. The solution to each smaller problem is the same
you divide it into two even smaller problems and solve them. The process continues until you get to the bast
case, which can be solved easily, with no further division into halves.

The divide—and—-conquer approach is commonly used with recursion, although, as we saw in the binary sea
in Chapter 2, you can also use a nonrecursive approach.

A divide—and—-conquer approach usually involves a method that contains two recursive calls to itself, one fol
each half of the problem. In the binary search, there are two such calls, but only one of them is actually

executed. The mergesort, which we’ll encounter later in this chapter, actually executes both recursive calls (
sort two halves of an array).

The Towers of Hanoi

The Towers of Hanoi is an ancient puzzle consisting of a number of disks placed on three columns, as show
in Figure 6.10.

DIVIDE-AND-CONQUER ALGORITHMS 222


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

FIGURE 6.10 The Towers of Hanoi

The disks all have different diameters and holes in the middle so they will fit over the columns. All the disks
start out on column A. The object of the puzzle is to transfer all the disks from column A to column C. Only
one disk can be moved at a time, and no disk can be placed on a disk that's smaller than itself.

There’s an ancient myth that somewhere in India, in a remote temple, monks labor day and night to transfer
64 golden disks from one of three diamond-studded towers to another. When they are finished, the world w
end. Any alarm you may feel, however, will be dispelled when you see how long it takes to solve the puzzle
for far fewer than 64 disks.

THE TOWERS WORKSHOP APPLET

Start up the Towers Workshop applet. You can attempt to solve the puzzle yourself by using the mouse to
drag the topmost disk to another tower. Figure 6.11 shows how this looks after several moves have been
made.

FIGURE 6.11 The Towers Workshop applet
There are three ways to use the workshop applet.

» You can attempt to solve the puzzle manually, by dragging the disks from tower to tower.

* You can repeatedly press the Step button to watch the algorithm solve the puzzle. At each step in
the solution, a message is displayed, telling you what the algorithm is doing.

* You can press the Run button and watch the algorithm solve the puzzle with no intervention on
your part; the disks zip back and forth between the posts.

To restart the puzzle, type in the number of disks you want to use, from 1 to 10, and press New twice. (After
the first time, you're asked to verify that restarting is what you want to do.) The specified number of disks wi
be arranged on tower A. Once you drag a disk with the mouse, you can’t use Step or Run; you must start ov
with New. However, you can switch to manual in the middle of stepping or running, and you can switch to
Step when you're running, and Run when you’re stepping.

Try solving the puzzle manually with a small number of disks, say 3 or 4. Work up to higher numbers. The
applet gives you the opportunity to learn intuitively how the problem is solved.

MOVING SUBTREES

Let’s call the initial tree—shaped (or pyramid—shaped) arrangement of disks on tower A a tree. As you
experiment with the applet, you'll begin to notice that smaller tree—shaped stacks of disks are generated as
part of the solution process. Let’s call these smaller trees, containing fewer than the total number of disks,
subtrees. For example, if you're trying to transfer 4 disks, you'll find that one of the intermediate steps
involves a subtree of 3 disks on tower B, as shown in Figure 6.12.

THE TOWERS WORKSHOP APPLET 223



MWSS: Data Structures and Algorithms in Java:Introduction

X g

FIGURE 6.12 A subtree on tower B

These subtrees form many times in the solution of the puzzle. This is because the creation of a subtree is th
only way to transfer a larger disk from one tower to another: all the smaller disks must be placed on an
intermediate tower, where they naturally form a subtree.

Here’s a rule of thumb that may help when you try to solve the puzzle manually. If the subtree you're trying t
move has an odd number of disks, start by moving the topmost disk directly to the tower where you want the
subtree to go. If you're trying to move a subtree with an even number of disks, start by moving the topmost
disk to the intermediate tower.

|PreviousiTabIe of Contentk\lext|

THE TOWERS WORKSHOP APPLET 224



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

DT sTRUCTURSS Waite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

THE RECURSIVE ALGORITHM

The solution to the Towers of Hanoi puzzle can be expressed recursively using the notion of subtrees.
Suppose you want to move all the disks from a source tower (call it S) to a destination tower (call it D). You
have an intermediate tower available (call it I). Assume there are n disks on tower S. Here’s the algorithm:

1. Move the subtree consisting of the top n—1 disks from S to .
2. Move the remaining (largest) disk from S to D.
3. Move the subtree from | to D.

When you begin, the source tower is A, the intermediate tower is B, and the destination tower is C. Figure
6.13 shows the three steps for this situation.

FIGURE 6.13 Recursive solution to Towers puzzle

First, the subtree consisting of disks 1, 2, and 3 is moved to the intermediate tower B. Then the largest disk,
is moved to tower C. Then the subtree is moved from B to C.

Of course, this doesn’t solve the problem of how to move the subtree consisting of disks 1, 2, and 3 to towel
B, because you can’'t move a subtree all at once; you must move it one disk at a time. Moving the 3—disk
subtree is not so easy. However, it's easier than moving 4 disks.

As it turns out, moving 3 disks from A to the destination tower B can be done with the same 3 steps as
moving 4 disks. That is, move the subtree consisting of the top 2 disks from tower A to intermediate tower C
then move disk 3 from A to B. Then move the subtree back from C to B.

How do you move a subtree of two disks from A to C? Move the subtree consisting of only one disk (1) from
A to B. This is the base case: when you’'re moving only one disk, you just move it; there’s nothing else to do
Then move the larger disk (2) from A to C, and replace the subtree (disk 1) on it.

THE towers.java PROGRAM

The towers.java program solves the Towers of Hanoi puzzle using this recursive approach. It
communicates the moves by displaying them; this requires much less code than displaying the towers. It's u
to the human reading the list to actually carry out the moves.

The code is simplicity itself. The main() routine makes a single call to the recursive method doTowers().

This method then calls itself recursively until the puzzle is solved. In this version, shown in Listing 6.4, there
are initially only 3 disks, but you can recompile the program with any number.

THE RECURSIVE ALGORITHM 225


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

Listing 6.4 The towers.java Program

/Il towers.java

/I evaluates triangular numbers

/I to run this program: C>java TowersApp
import java.io.*; /I for 1/O
I T
class TowersApp

{

static int nDisks = 3;

public static void main(String[] args)

{
doTowers(nDisks, 'A’, 'B’, 'C’);

}
I
public static void doTowers(int topN,
char from, char inter, char to)

{
if(topN==1)

System.out.printin(“Disk 1 from “ + from + “ to “+ to);
else

{

doTowers(topN-1, from, to, inter); // from——>inter

System.out.printin(“Disk “ + topN +
“from “ + from + “ to “+ to);
doTowers(topN-1, inter, from, to); // inter——>to

}

}
1
} // end class TowersApp

Remember that 3 disks are moved from A to C. Here’s the output from the program:

Disk 1 from Ato C
Disk 2 from Ato B
Disk 1 from C to B
Disk 3 from Ato C
Disk 1 from B to A
Disk 2 from B to C
Disk 1 from Ato C

The arguments to doTowers() are the number of disks to be moved, and the source (from), intermediate
(inter), and destination (to) towers to be used. The number of disks decreases by 1 each time the method
calls itself. The source, intermediate, and destination towers also change.

Here is the output with additional notations that show when the method is entered and when it returns, its
arguments, and whether a disk is moved because it's the base case (a subtree consisting of only one disk)
because it's the remaining bottom disk after a subtree has been moved.

Enter (3 disks): s=A, i=B, d=C
Enter (2 disks): s=A, i=C, d=B
Enter (1 disk): s=A, i=B, d=C
Base case: move disk 1 from Ato C
Return (1 disk)
Move bottom disk 2 from A to B
Enter (1 disk): s=C, i=A, d=B
Base case: move disk 1 from C to B
Return (1 disk)
Return (2 disks)
Move bottom disk 3 from Ato C
Enter (2 disks): s=B, i=A, d=C
Enter (1 disk): s=B, i=C, d=A

THE RECURSIVE ALGORITHM 226



MWSS: Data Structures and Algorithms in Java:Introduction

Base case: move disk 1 from B to A
Return (1 disk)
Move bottom disk 2 from B to C
Enter (1 disk): s=A, i=B, d=C
Base case: move disk 1 from Ato C
Return (1 disk)
Return (2 disks)
Return (3 disks)

If you study this output along with the source code for doTower(), it should become clear exactly how the
method works. It's amazing that such a small amount of code can solve such a seemingly complicated
problem.

Mergesort

Our final example of recursion is the mergesort. This is a much more efficient sorting technique than those v
saw in Chapter 3, “Simple Sorting,” at least in terms of speed. While the bubble, insertion, and selection sor
take O(N) time, the mergesort is O(N*logN). The graph in Figure 2.9 (in Chapter 2) shows how much faster
this is. For example, if N (the number of items to be sorted) is 10,000, £Herl6D,000,000, while N*logN

is only 40,000. If sorting this many items required 40 seconds with the mergesort, it would take almost 28
hours for the insertion sort.

The mergesort is also fairly easy to implement. It's conceptually easier than quicksort and the Shell short,
which we'll encounter in the next chapter.

The downside of the mergesort is that it requires an additional array in memory, equal in size to the one beir
sorted. If your original array barely fits in memory, the mergesort won't work. However, if you have enough
space, it's a good choice.

|Previou4TabIe of Contentk\lext|

Mergesort 227



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java
by Robert Lafore

. Waite Group Press, Macmillan Computer Publishing

DATA STRUCTURES

serienll  [SBN: 1571690956 Pub Date: 03/20/98

|Previous*TabIe of Contenth\lext|

MERGING TWO SORTED ARRAYS

The heart of the mergesort algorithm is the merging of two already sorted arrays. Merging two sorted arrays
and B creates a third array, C, that contains all the elements of A and B, also arranged in sorted order. We’'l
examine the merging process first; later we'll see how it's used in sorting.

Imagine two sorted arrays. They don't need to be the same size. Let’s say array A has 4 elements and array
has 6. They will be merged into an array C that starts with 10 empty cells. Figure 6.14 shows how this looks

FIGURE 6.14 Merging two arrays

In the figure, the circled numbers indicate the order in which elements are transferred from A and B to C.
Table 6.3 shows the comparisons necessary to determine which element will be copied. The steps in the tal
correspond to the steps in the figure. Following each comparison, the smaller element is copied to A.

TABLE 6.3 Merging Operations
StepComparison (If Any)Copy

1Compare 23 and 7Copy 7 from B to C
2Compare 23 and 14Copy 14 from B to C
3Compare 23 and 39Copy 23 from Ato C
4Compare 39 and 47Copy 39 from B to C
5Compare 55 and 47Copy 47 from Ato C
6Compare 55 and 81Copy 55 from B to C
7Compare 62 and 81Copy 62 from B to C
8Compare 74 and 81Copy 74 from B to C
9 Copy 81 fromAtoC

10 Copy 95 from Ato C

Notice that, because B is empty following step 8, no more comparisons are necessary; all the remaining
elements are simply copied from A into C.

Listing 6.5 shows a Java program that carries out the merge shown in Figure 6.14 and Table 6.3.

Listing 6.5 The merge.java Program

/I merge.java

/I demonstrates merging two arrays into a third
/I to run this program: C>java MergeApp
o

class MergeApp

MERGING TWO SORTED ARRAYS 228


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

public static void main(String[] args)
{
int[] arrayA = {23, 47, 81, 95};
int[] arrayB = {7, 14, 39, 55, 62, 74},
int[] arrayC = new int[10];

merge(arrayA, 4, arrayB, 6, arrayC);
display(arrayC, 10);
} 1 end main()

Il

/l merge A and B into C
public static void merge( int[] arrayA, int sizeA,
int[] arrayB, int sizeB,
int[] arrayC )
{
int aDex=0, bDex=0, cDex=0;

while(aDex < sizeA && bDex < sizeB) // neither array empty
if( arrayA[aDex] < arrayB[bDex] )
arrayC[cDex++] = arrayA[aDex++];
else
arrayC[cDex++] = arrayB[bDex++];

while(aDex < sizeA) /I arrayB is empty,
arrayC[cDex++] = arrayA[aDex++]; // but arrayA isn’t

while(bDex < sizeB) Il arrayA is empty,
arrayC[cDex++] = arrayB[bDex++]; // but arrayB isn’t
} 1l end merge()
Il

/I display array
public static void display(int[] theArray, int size)
{
for(int j=0; j<size; j++)
System.out.print(theArray[j] + “ *);
System.out.printin(*");
}
Il
} // end class MergeApp

In main() the arrays arrayA, arrayB, and arrayC are created; then the merge() method is called to
merge arrayA and arrayB into arrayC, and the resulting contents of arrayC are displayed. Here’s the
output:

71423 39475562748195

The merge() method has three while loops. The first steps along both arrayA and arrayB, comparing
elements and copying the smaller of the two into arrayC.

The second while loop deals with the situation when all the elements have been transferred out of arrayB,
but arrayA still has remaining elements. (This is what happens in the example, where 81 and 95 remain in
arrayA.) The loop simply copies the remaining elements from arrayA into arrayC.

The third loop handles the similar situation when all the elements have been transferred out of arrayA but
arrayB still has remaining elements; they are copied to arrayC.

|PreviousiTabIe of Contentk\lext|

MERGING TWO SORTED ARRAYS 229



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java
by Robert Lafore

. Waite Group Press, Macmillan Computer Publishing

DATA STRUCTURES

serienll  [SBN: 1571690956 Pub Date: 03/20/98

|Previous*TabIe of Contenth\lext|

SORTING BY MERGING

The idea in the mergesort is to divide an array in half, sort each half, and then use the merge() method to
merge the two halves into a single sorted array. How do you sort each half? This chapter is about recursion,
you probably already know the answer: You divide the half into two quarters, sort each of the quarters, and
merge them to make a sorted half.

Similarly, each pair of 8ths is merged to make a sorted quarter, each pair of 16ths is merged to make a sort
8th, and so on. You divide the array again and again until you reach a subarray with only one element. This
the base case; it's assumed an array with one element is already sorted.

We've seen that generally something is reduced in size each time a recursive method calls itself, and built
back up again each time the method returns. In mergeSort() the range is divided in half each time this
method calls itself, and each time it returns it merges two smaller ranges into a larger one.

As mergeSort() returns from finding 2 arrays of 1 element each, it merges them into a sorted array of 2
elements. Each pair of resulting 2—element arrays is then merged into a 4-element array. This process
continues with larger and larger arrays until the entire array is sorted. This is easiest to see when the origing
array size is a power of 2, as shown in Figure 6.15.

FIGURE 6.15 Merging larger and larger arrays

First, in the bottom half of the array, range 0-0 and range 1-1 are merged into range 0-1. Of course, 0-0 a
1-1 aren’t really ranges; they're only one element, so they are base cases. Similarly, 2-2 and 3-3 are merg
into 2—-3. Then ranges 0-1 and 2-3 are merged 0-3.

In the top half of the array, 4-4 and 5-5 are merged into 4-5, 6-6 and 7-7 are merged into 6-7, and 4-5 al
6-7 are merged into 4-7. Finally the top half, 0-3, and the bottom half, 4-7, are merged into the complete
array, 0—7, which is now sorted.

When the array size is not a power of 2, arrays of different sizes must be merged. For example, Figure 6.16

shows the situation in which the array size is 12. Here an array of size 2 must be merged with an array of si:
1 to form an array of size 3.

SORTING BY MERGING 230


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

FIGURE 6.16 Array size not a power of 2

First the 1-element ranges 0-0 and 1-1 are merged into the 2—element range 0-1. Then range 0-1 is mer
with the 1-element range 2-2. This creates a 3—element range 0-2. It's merged with the 3—element range
3-5. The process continues until the array is sorted.

Notice that in mergesort we don’t merge two separate arrays into a third one, as we demonstrated in the
merge.java program. Instead, we merge parts of a single array into itself.

You may wonder where all these subarrays are located in memory. In the algorithm, a workspace array of tt
same size as the original array is created. The subarrays are stored in sections of the workspace array. This
means that subarrays in the original array are copied to appropriate places in the workspace array. After eax
merge, the workspace array is copied back into the original array.

THE MERGESORT WORKSHOP APPLET
All this is easier to appreciate when you see it happening before your very eyes. Start up the mergeSort

Workshop applet. Repeatedly pressing the Step button will execute mergeSort step by step. Figure 6.17 she
what it looks like after the first three presses.

=

-

G+

o
’

;_i..gl.lJ..[

s | e | D] | |

VW b 45

et

FIGURE 6.17 The mergeSort Workshop applet

The Lower and Upper arrows show the range currently being considered by the algorithm, and the Mid arro
shows the middle part of the range. The range starts as the entire array and then is halved each time the
mergeSort() method calls itself. When the range is one element, mergeSort() returns immediately;

that's the base case. Otherwise, the two subarrays are merged. The applet provides messages, such as
Entering mergeSort: 0-5, to tell you what it's doing and the range it's operating on.

Many steps involve the mergeSort() method calling itself or returning. Comparisons and copies are
performed only during the merge process, when you'll see messages such as Merged 0-0 and 1-1

into workspace. You can't see the merge happening, because the workspace isn’'t shown. However, you
can see the result when the appropriate section of the workspace is copied back into the original (visible)
array: The bars in the specified range will appear in sorted order.

First, the first 2 bars will be sorted, then the first 3 bars, then the 2 bars in the range 3-4, then the 3 bars in
range 3-5, then the 6 bars in the range 0-5, and so on, corresponding to the sequence shown in Figure 6.1
Eventually all the bars will be sorted.

You can cause the algorithm to run continuously by pressing the Run button. You can stop this process at a
time by pressing Step, single—step as many times as you want, and resume running by pressing Run again.

THE MERGESORT WORKSHOP APPLET 231



MWSS: Data Structures and Algorithms in Java:Introduction

As in the other sorting Workshop applets, pressing New resets the array with a new group of unsorted bars
and toggles between random and inverse arrangements. The Size button toggles between 12 bars and 100

It's especially instructive to watch the algorithm run with 100 inversely sorted bars. The resulting patterns

show clearly how each range is sorted individually and merged with its other half, and how the ranges grow
larger and larger.

|Previou4TabIe of Contentk\lext|

THE MERGESORT WORKSHOP APPLET 232



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

THE mergeSort.java PROGRAM

In a moment we’'ll look at the entire mergeSort.java program. First, let's focus on the method that carries
out the mergesort. Here it is:

private void recMergeSort(double[] workSpace, int lowerBound,
int upperBound)

if(lowerBound == upperBound) /l'if range is 1,
return; // no use sorting
else

/I find midpoint
int mid = (lowerBound+upperBound) / 2;

I sort low half
recMergeSort(workSpace, lowerBound, mid);

/I sort high half
recMergeSort(workSpace, mid+1, upperBound);

/l merge them
merge(workSpace, lowerBound, mid+1, upperBound);
} /' end else

} Il end recMergeSort

As you can see, beside the base case, there are only four statements in this method. One computes the
midpoint, there are two recursive calls to recMergeSort() (one for each half of the array), and finally a
call to merge() to merge the two sorted halves. The base case occurs when the range contains only one
element (lowerBound==upperBound) and results in an immediate return.

In the mergeSort.java program, the mergeSort() method is the one actually seen by the class user. It
creates the array workSpace[], and then calls the recursive routine recMergeSort() to carry out the
sort. The creation of the workspace array is handled in mergeSort() because doing it in
recMergeSort() would cause the array to be created anew with each recursive call, an inefficiency.

The merge() method in the previous merge.java program operated on three separate arrays: two source
arrays and a destination array. The merge() routine in the mergeSort.java program operates on a

single array: the theArray member of the DArray class. The arguments to this merge() method are the
starting point of the low—half subarray, the starting point of the high—half subarray, and the upper bound of
the high—half subarray. The method calculates the sizes of the subarrays based on this information.

Listing 6.6 shows the complete mergeSort.java program. This program uses a variant of the array classes
from Chapter 2, adding the mergeSort() and recMergeSort() methods to the DArray class. The

main() routine creates an array, inserts 12 items, displays the array, sorts the items with mergeSort(),

and displays the array again.

Listing 6.6 The mergeSort.java Program

/I mergeSort.java

/I demonstrates recursive mergesort

/I to run this program: C>java MergeSortApp
import java.io.*; /I for 1/O
I T

THE mergeSort.java PROGRAM 233


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

class DArray

{
private double[] theArray; Il ref to array theArray
private int nElems; /I number of data items
Il
public DArray(int max) /I constructor
{
theArray = new double[max]; // create array
nElems = 0;
}
Il
public void insert(double value) // put element into array
{
theArray[nElems] = value;  //insert it
nElems++; /l increment size
}
Il
public void display() /I displays array contents
{

for(int j=0; j<nElems; j++) /I for each element,
System.out.print(theArray[j] + “ “); // display it
System.out.printin(*”);

}

Il

public void mergeSort() /l called by main()
{ /I provides workspace
double[] workSpace = new double[nElems];
recMergeSort(workSpace, 0, nElems-1);

}

1
private void recMergeSort(double[] workSpace, int lowerBound,
int upperBound)

{

if(lowerBound == upperBound) Il'if range is 1,
return; /I no use sorting

else
{ Il find midpoint

int mid = (lowerBound+upperBound) / 2;
/I sort low half
recMergeSort(workSpace, lowerBound, mid);
/I sort high half
recMergeSort(workSpace, mid+1, upperBound);
/I merge them
merge(workSpace, lowerBound, mid+1, upperBound);
} /' end else
} /I end recMergeSort
I
private void merge(double[] workSpace, int lowPtr,
int highPtr, int upperBound)

{
intj=0; /I workspace index
int lowerBound = lowPtr;
int mid = highPtr-1;
int n = upperBound-lowerBound+1,; I # of items
while(lowPtr <= mid && highPtr <= upperBound)
if( theArray[lowPtr] < theArray[highPtr] )
workSpace[j++] = theArray[lowPtr++];
else
workSpace[j++] = theArray[highPtr++];
while(lowPtr <= mid)
workSpace[j++] = theArray[lowPtr++];
while(highPtr <= upperBound)
workSpacel[j++] = theArray[highPtr++];
for(j=0; j<n; j++)
theArray[lowerBound+j] = workSpace[j];
} 1 end merge()
I

THE mergeSort.java PROGRAM

234



} // end class DArray

MWSS: Data Structures and Algorithms in Java:Introduction

I

class MergeSortApp

{

public static void main(String[] args)

{

int maxSize = 100;

DArray arr;

[ array size
/I reference to array

arr = new DArray(maxSize); /I create the array

arr.insert(64);
arr.insert(21);
arr.insert(33);
arr.insert(70);
arr.insert(12);
arr.insert(85);
arr.insert(44);
arr.insert(3);

arr.insert(99);
arr.insert(0);

arr.insert(108);

arr.insert(36);

arr.display();

arr.mergeSort();

arr.display();

} 1 end main()

/l insert items

/I display items
/I mergesort the array

/I display items again

} // end class MergeSortApp

|PreviousiTabIe of Contentk\lext|

THE mergeSort.java PROGRAM

235



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

The output from the program is simply the display of the unsorted and sorted arrays:

64 21 3370128544399 0 108 36
031221 333644 64 7085 99 108

If we put additional statements in the recMergeSort() method, we could generate a running commentary
on what the program does during a sort. The following output shows how this might look for the 4—item array
{64, 21, 33, 70}. (You can think of this as the lower half of the array in Figure 6.15.)

Entering 0-3
Will sort low half of 0-3
Entering 0-1
Will sort low half of 0-1
Entering 0-0
Base—Case Return 0-0
Will sort high half of 0-1
Entering 1-1
Base—Case Return 1-1
Will merge halves into 0-1
Return 0-1 theArray=21 64 33 70
Will sort high half of 0-3
Entering 2-3
Will sort low half of 2-3
Entering 2-2
Base—Case Return 2-2
Will sort high half of 2-3
Entering 3-3
Base—Case Return 3-3
Will merge halves into 2-3

Return 2-3 theArray=21 64 33 70
Will merge halves into 0-3
Return 0-3 theArray=21 33 64 70

This is roughly the same content as would be generated by the mergeSort Workshop applet if it could sort 4
items. Study of this output, and comparison with the code for recMergeSort() and Figure 6.15, will
reveal the details of the sorting process.

EFFICIENCY OF THE MERGESORT

As we noted, the mergesort runs in O(N*logN) time. How do we know this? Let's see how we can figure out
the number of times a data item must be copied, and the number of times it must be compared with another
data item, during the course of the algorithm. We assume that copying and comparing are the most
time—consuming operations; that the recursive calls and returns don’'t add much overhead.

Number of Copies

Consider Figure 6.15. Each cell below the top line represents an element copied from the array into the
workspace.

Adding up all the cells in Figure 6.15 (the 7 numbered steps) shows there are 24 copies necessary to sort 8
items. Log8 is 3, so 8*log8 equals 24. This shows that, for the case of 8 items, the number of copies is

EFFICIENCY OF THE MERGESORT 236


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

proportional to N*logN.

Another way to look at this is that, to sort 8 items requires 3 levels, each of which involves 8 copies. A level

means all copies into the same size subarray. In the first level, there are 4 2—element subarrays; in the secc
level, there are 2 4—element subarrays; and in the third level, there is 1 8—element subarray. Each level has
elements, so again there are 3*8 or 24 copies.

In Figure 6.15, by considering only half the graph, you can see that 8 copies are necessary for an array of 4
items (steps 1, 2, and 3), and 2 copies are necessary for 2 items. Similar calculations provide the number of
copies necessary for larger arrays. Table 6.4 summarizes this information.

TABLE 6.4 Number of Operations When N is a Power of 2

Nlog,NNumber of Copies into Workspace (N*logN) Total CopiesComparisons Max (Min)
21 2 41 (1)

42 8 165 (4)

83 24 4817 (12)

164 64 12849 (32)

325 160 320129 (80)

646 384 768321 (192)

1287 896 1792769 (448)

Actually, the items are not only copied into the workspace, they're also copied back into the original array.
This doubles the number of copies, as shown in the Total Copies column. The final column of Table 6.4
shows comparisons, which we’ll return to in a moment.

It's harder to calculate the number of copies and comparisons when N is not a multiple of 2, but these
numbers fall between those that are a power of 2. For 12 items, there are 88 total copies, and for 100 items,
1344 total copies.

|Previou4TabIe of Contentk\lext|

EFFICIENCY OF THE MERGESORT 237



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

Number of Comparisons

In the mergesort algorithm, the number of comparisons is always somewhat less than the number of copies
How much less? Assuming the number of items is a power of 2, for each individual merging operation, the
maximum number of comparisons is always one less than the number of items being merged, and the
minimum is half the number of items being merged. You can see why this is true in Figure 6.18, which show
two possibilities when trying to merge 2 arrays of 4 items each.

FIGURE 6.18 Maximum and minimum comparisons

In the first case, the items interleave, and 7 comparisons must be made to merge them. In the second case,
the items in one array are smaller than all the items in the other, so only 4 comparisons must be made.

There are many merges for each sort, so we must add the comparisons for each one. Referring to Figure 6.
you can see that 7 merge operations are required to sort 8 items. The number of items being merged and th
resulting number of comparisons is shown in Table 6.5.

TABLE 6.5 Comparisons Involved in Sorting 8 Items
Step Number1234567Totals

Number of items being merged (N)224224824
Maximum comparisons (N-1)113113717

Minimum comparisons (N/2)112112412

For each merge, the maximum number of comparisons is one less than the number of items. Adding these
figures for all the merges gives us a total of 17.

The minimum number of comparisons is always half the number of items being merged, and adding these
figures for all the merges results in 12 comparisons. Similar arithmetic results in the Comparisons columns f
Table 6.4. The actual number of comparisons to sort a specific array depends on how the data is arranged,;
it will be somewhere between the maximum and minimum values.

Eliminating Recursion

Some algorithms lend themselves to a recursive approach, some don't. As we've seen, the recursive
triangle() and factorial() methods can be implemented more efficiently using a simple loop.

However, various divide—and—conguer algorithms, such as mergesort, work very well as a recursive routine

Often an algorithm is easy to conceptualize as a recursive method, but in practice the recursive approach
proves to be inefficient. In such cases, it's useful to transform the recursive approach into a nonrecursive

Number of Comparisons 238


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

approach. Such a transformation can often make use of a stack.
RECURSION AND STACKS

There is a close relationship between recursion and stacks. In fact, most compilers implement recursion by

using stacks. As we noted, when a method is called, they push the arguments to the method and the return

address (where control will go when the method returns) on the stack, and then transfer control to the methc
When the method returns, they pop these values off the stack. The arguments disappear, and control return
the return address.

SIMULATING A RECURSIVE METHOD

In this section we’ll demonstrate how any recursive solution can be transformed into a stack—based solution
Remember the recursive triangle() method from the first section in this chapter? Here it is again:

int triangle(int n)
{
if(n==1)
return 1,
else
return( n + triangle(n-1) );

}

We're going to break this algorithm down into its individual operations, making each operation one case in a
switch statement. (You can perform a similar decomposition using goto statements in C++ and some other
languages, but Java doesn’t support goto.)

The switch statement is enclosed in a method called step(). Each call to step() causes one case
section within the switch to be executed. Calling step() repeatedly will eventually execute all the code in
the algorithm.

The triangle() method we just saw performs two kinds of operations. First, it carries out the arithmetic
necessary to compute triangular numbers. This involves checking if n is 1, and adding n to the results of
previous recursive calls. However, triangle() also performs the operations necessary to manage the

method itself. These involve transfer of control, argument access, and the return address. These operations
not visible by looking at the code; they're built into all methods. Here, roughly speaking, is what happens
during a call to a method:

» When a method is called, its arguments and the return address are pushed onto a stack.

» A method can access its arguments by peeking at the top of the stack.

» When a method is about to return, it peeks at the stack to obtain the return address, and then pop:
both this address and its arguments off the stack and discards them.

The stackTriangle.java program contains three classes: Params, StackX, and

StackTriangleApp. The Params class encapsulates the return address and the method’s argument, n;
objects of this class are pushed onto the stack. The StackX class is similar to those in other chapters, excer
that it holds objects of class Params. The StackTriangleApp class contains four methods: main(),
recTriangle(), step(), and the usual getint() method for numerical input.

|Previou4TabIe of Contentk\lext|

RECURSION AND STACKS 239



MWSS: Data Structures and Algorithms in Java:Introduction

[ ===l \\WSS: Data Structures and Algorithms in Java

by Robert Lafore

oA sTRUCTURES Waite Group Press, Macmillan Computer Publishing
getteall ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

The main() routine asks the user for a number, calls the recTriangle() method to calculate the
triangular number corresponding to n, and displays the result.

The recTriangle() method creates a StackX object and initializes codePart to 1. It then settles into a
while loop where it repeatedly calls step(). It won't exit from the loop until step() returns true by
reaching case 6, its exit point. The step() method is basically a large switch statement in which each
case corresponds to a section of code in the original triangle() method. Listing 6.7 shows the
stackTriangle.java program.

Listing 6.7 The stackTriangle.java Program

/ stackTriangle.java
/I evaluates triangular numbers, stack replaces recursion
/ to run this program: C>java StackTriangleApp
import java.io.*; /I for 1/O
I T
class Params // parameters to save on stack

{

public int n;

public int codePart;

public Params(int nn, int ra)
{
n=nn;
returnAddress = ra;

} // end class Params
I T
class StackX
{
private int maxSize; /I size of stack array
private Params|[] stackArray;
private int top; /I top of stack
I

public StackX(int s) /I constructor

maxSize = s; I set array size
stackArray = new Params[maxSize]; // create array
top = -1; /I no items yet

}

public void push(Params p) // put item on top of stack

1

stackArray[++top] = p;  // increment top, insert item

}

public Params pop() /I take item from top of stack

1

return stackArray[top—-]; // access item, decrement top

}

public Params peek() /l peek at top of stack
{

return stackArray[top];

1

RECURSION AND STACKS 240


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

}

} // end class StackX
s
class StackTriangleApp

{

static int theNumber;

static int theAnswer;

static StackX theStack;

static int codePart;

static Params theseParams;

1

public static void main(String[] args) throws IOException
{
System.out.print(“Enter a number: “);
System.out.flush();
theNumber = getint();
triangle();
System.out.printin(“Triangle="+theAnswer);
} 1 end main()
I

public static void recTriangle()
{
theStack = new StackX(50);
codePart = 1;
while( step() == false) // call step() until it's true
; /I null statement

}
I/
public static boolean step()
{
switch(codePart)
{
case 1: [/ initial call
theseParams = new Params(theNumber, 6);
theStack.push(theseParams);
codePart = 2;
break;
case 2: /I method entry
theseParams = theStack.peek();
if(theseParams.n == 1) /l test
{
theAnswer = 1;
codePart =5; // exit
}
else
codePart = 3; // recursive call
break;
case 3: /I method call
Params newParams = new Params(theseParams.n - 1, 4);
theStack.push(newParams);
codePart = 2; // go enter method
break;
case 4: /Il calculation
theseParams = theStack.peek();
theAnswer = theAnswer + theseParams.n;
codePart = 5;
break;
case 5: /I method exit
theseParams = theStack.peek();
codePart = theseParams.returnAddress; // (4 or 6)
theStack.pop();
break;
case 6: Il return point

return true;
} /I end switch
return false; /l all but 7

RECURSION AND STACKS 241



MWSS: Data Structures and Algorithms in Java:Introduction

} /l end triangle

I
public static String getString() throws IOException
{
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);
String s = br.readLine();
return s;

}
1

public static int getint() throws IOException
{
String s = getString();
return Integer.parselnt(s);

}
1

} /l end class StackTriangleApp

This program calculates triangular numbers, just as the triangle.java program at the beginning of the
chapter did. Here’s some sample output:

Enter a number: 100
Triangle=5050

Figure 6.19 shows how the sections of code in each case relate to the various parts of the algorithm.

€
@
Q

&
FIGURE 6.19 The cases and the step() method

The program simulates a method, but it has no name in the listing because it isn’'t a real Java method. Let's
call this simulated method simMeth(). The initial call to simMeth() (at case 1) pushes the value entered
by the user and a return value of 6 onto the stack and moves to the entry point of simMeth() (case 2).

At its entry (case 2), simMeth() tests whether its argument is 1. It accesses the argument by peeking at the
top of the stack. If the argument is 1, this is the base case and control goes to simMeth()’s exit (case 5). If

not, it calls itself recursively (case 3). This recursive call consists of pushing n—1 and a return address of 4
onto the stack, and going to the method entry at case 2.

|PreviousiTabIe of Contentk\lext|

RECURSION AND STACKS 242



MWSS: Data Structures and Algorithms in Java:Introduction

== e

MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Waite Group Press, Macmillan Computer Publishing
ISBN: 1571690956 Pub Date: 03/20/98

¥
DATA STRUCTURES

» ALGORITHEMS
x IAYA

|Previous*TabIe of Contenth\lext|

On the return from the recursive call, simMeth() adds its argument n to the value returned from the call.
Finally it exits (case 5). When it exits, it pops the last Params object off the stack; this information is no
longer needed.

The return address given in the initial call was 6, so case 6 is where control goes when the method returns.
This code returns true to let the while loop in recTriangle() know that the loop is over.

Note that in this description of simMeth()'s operation we use terms like argument, recursive call, and
return address to mean simulations of these features, not the normal Java versions.

If you inserted some output statements in each case to see what simMeth() was doing, you could arrange
for output like this:

Enter a number: 4

case 1.
case 2.
case 3.
case 2.
case 3.
case 2.
case 3.
case 2.
case 5.
case 4.
case 5.
case 4.
case 5.
case 4.
case 5.
case 6.

theAnswer=0
theAnswer=0
theAnswer=0
theAnswer=0
theAnswer=0
theAnswer=0
theAnswer=0
theAnswer=0
theAnswer=1
theAnswer=1
theAnswer=3
theAnswer=3
theAnswer=6
theAnswer=6

Stack:

Stack: (4, 6)

Stack: (4, 6)

Stack: (4, 6) (3, 4)

Stack: (4, 6) (3, 4)

Stack: (4, 6) (3, 4) (2, 4)
Stack: (4, 6) (3, 4) (2, 4)
Stack: (4, 6) (3, 4) (2, 4) (1, 4)
Stack: (4, 6) (3, 4) (2, 4) (1, 4)
Stack: (4, 6) (3, 4) (2, 4)
Stack: (4, 6) (3, 4) (2, 4)
Stack: (4, 6) (3, 4)

Stack: (4, 6) (3, 4)

Stack: (4, 6)

theAnswer=10 Stack: (4, 6)
theAnswer=10 Stack:
Triangle=10

The case number shows what section of code is being executed. The contents of the stack (consisting of
Params objects containing n followed by a return address) are also shown. The simMeth() method is
entered 4 times (case 2) and returns 4 times (case 5). It's only when it starts returning that theAnswer

begins to accumulate the results of the calculations.
WHAT DOES THIS PROVE?

In stackTriangle.java we have a program that more or less systematically transforms a program that
uses recursion into a program that uses a stack. This suggests that such a transformation is possible for any
program that uses recursion, and in fact this is the case.

With some additional work, you can systematically refine the code we show here, simplifying it and even
eliminating the switch statement entirely to make the code more efficient.

In practice, however, it's usually more practical to rethink the algorithm from the beginning, using a
stack—based approach instead of a recursive approach. Listing 6.8 shows what happens when we do that w
the triangle() method.

WHAT DOES THIS PROVE? 243


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

Listing 6.8 The stackTriangle2.java Program

/ stackTriangle2.java

/I evaluates triangular numbers, stack replaces recursion
/I to run this program: C>java StackTriangle2App

import java.io.*; /I for 1/O
o

class StackX

{
private int maxSize; /I size of stack array
private int[] stackArray;
private int top; /I top of stack
I
public StackX(int s) /I constructor
maxSize = s;
stackArray = new intfmaxSize];
top = -1;
}
I

public void push(int p)  // put item on top of stack
{ stackArray[++top] = p; }
I

public int pop() // take item from top of stack
{ return stackArray[top——]; }
I

public int peek() /l peek at top of stack
{ return stackArray[top]; }

Il
public boolean isEmpty() // true if stack is empty
{return (top == -1); }

I/

} // end class StackX
Ml
class StackTriangle2App

{

static int theNumber;

static int theAnswer;

static StackX theStack;

public static void main(String[] args) throws IOException
{
System.out.print(“Enter a number: );
System.out.flush();
theNumber = getint();
stackTriangle();
System.out.printin(“Triangle="+theAnswer);
} 1/ end main()
I

public static void stackTriangle()

{
theStack = new StackX(10000); // make a stack

theAnswer = 0; [/l initialize answer
while(theNumber > 0) /luntil nis 1,

theStack.push(theNumber);  // push value
——theNumber; /I decrement value

while( 'theStack.isEmpty() )  // until stack empty,
{
int newN = theStack.pop(); // pop value,
theAnswer += newN; /I add to answer
}

}

WHAT DOES THIS PROVE?

244



MWSS: Data Structures and Algorithms in Java:Introduction

1

public static String getString() throws IOException
{
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);
String s = br.readLine();
return s;

}
1

public static int getint() throws IOException
{
String s = getString();
return Integer.parselnt(s);

}
1

} // end class StackTriangle2App

Here two short while loops in the stackTriangle() method substitute for the entire step() method

of the stackTriangle.java program. Of course, in this program you can see by inspection that you can
eliminate the stack entirely and use a simple loop. However, in more complicated algorithms the stack must
remain.

Often you'll need to experiment to see whether a recursive method, a stack—-based approach, or a simple lo
is the most efficient (or practical) way to handle a particular situation.

|PreviousiTabIe of Contentk\lext|

WHAT DOES THIS PROVE? 245



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

Summary

» A recursive method calls itself repeatedly, with different argument values each time.

» Some value of its arguments causes a recursive method to return without calling itself. This is
called the base case.

* When the innermost instance of a recursive method returns, the process “unwinds” by completing
pending instances of the method, going from the latest back to the original call.

A triangular number is the sum of itself and all numbers smaller than itself. (Number means
integer in this context.) For example, the triangular number of 4 is 10, because 4+3+2+1 = 10.

» The factorial of a number is the product of itself and all numbers smaller than itself. For example,
the factorial of 4 is 4*3*2*1 = 24.

 Both triangular numbers and factorials can be calculated using either a recursive method or a
simple loop.

» The anagram of a word (all possible combinations of its n letters) can be found recursively by
repeatedly rotating all its letters and anagramming the rightmost n—1 of them.

» A binary search can be carried out recursively by checking which half of a sorted range the search
key is in, and then doing the same thing with that half.

» The Towers of Hanoi puzzle consists of three towers and an arbitrary number of rings.

» The Towers of Hanoi puzzle can be solved recursively by moving all but the bottom disk of a
subtree to an intermediate tower, moving the bottom disk to the destination tower, and finally moving
the subtree to the destination.

» Merging two sorted arrays means to create a third array that contains all the elements from both
arrays in sorted order.

* In mergesort, 1-element subarrays of a larger array are merged into 2—element subarrays,
2—-element subarrays are merged into 4—element subarrays, and so on until the entire array is sortec
» Mergesort requires O(N*logN) time.

» Mergesort requires a workspace equal in size to the original array.

 For triangular numbers, factorials, anagrams, and the binary search, the recursive method contain:
only one call to itself. (There are two shown in the code for the binary search, but only one is used ol
any given pass through the method’s code.)

» For the Towers of Hanoi and mergesort, the recursive method contains two calls to itself.

» Any operation that can be carried out with recursion can be carried out with a stack.

» A recursive approach may be inefficient. If so, it can sometimes be replaced with a simple loop or
a stack—based approach.

|Previou4TabIe of Contenti!\lext|

Summary 246


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contentb\lext|

Chapter 7
Advanced Sorting

We discussed simple sorting in Chapter 3. The sorts described there—the bubble, selection, and insertion
sorts—are easy to implement but are rather slow. In Chapter 6 we described the mergesort. It runs much fa
than the simple sorts, but requires twice as much space as the original array; this is often a serious drawbac

This chapter covers two advanced approaches to sorting: Shellsort and quicksort. These sorts both operate
much faster than the simple sorts; the Shellsort in about O(N*(fpge, and quicksort in O(N*logN) time,
which is the fastest time for general-purpose sorts. Neither of these sorts requires a large amount of extra
space, as mergesort does. The Shellsort is almost as easy to implement as mergesort, while quicksort is the
fastest of all the general-purpose sorts.

We’'ll examine the Shellsort first. Quicksort is based on the idea of partitioning, so we'll then examine
partitioning separately, before examining quicksort itself.

Shellsort

The Shellsort is named for Donald L. Shell, the computer scientist who discovered it in 1959. It's based on tl
insertion sort but adds a new feature that dramatically improves the insertion sort’s performance.

The Shellsort is good for medium-sized arrays, perhaps up to a few thousand items, depending on the
particular implementation. (However, see the cautionary notes in Chapter 15 about how much data can be
handled by a particular algorithm.) It's not quite as fast as quicksort and other O(N*logN) sorts, so it's not
optimum for very large files. However, it's much faster than the?Dgbirts like the selection sort and the
insertion sort, and it's very easy to implement: the code is short and simple.

The worst—case performance is not significantly worse than the average performance. (We'll see later in this
chapter that the worst—case performance for quicksort can be much worse unless precautions are taken.) S
experts (see Sedgewick in the bibliography) recommend starting with a Shellsort for almost any sorting
project, and only changing to a more advanced sort, like quicksort, if Shellsort proves too slow in practice.

INSERTION SORT: TOO MANY COPIES

Because Shellsort is based on the insertion sort, you might want to review the relevant section of Chapter 3
Recall that partway through the insertion sort the items to the left of a marker are internally sorted (sorted
among themselves) and items to the right are not. The algorithm removes the item at the marker and stores
in a temporary variable. Then, beginning with the item to the left of the newly vacated cell, it shifts the sortec
items right one cell at a time, until the item in the temporary variable can be reinserted in sorted order.

Here’s the problem with the insertion sort. Suppose a small item is on the far right, where the large items
should be. To move this small item to its proper place on the left, all the intervening items (between where it
is and where it should be) must be shifted one space right. This is close to N copies, just for one item. Not a
the items must be moved a full N spaces, but the average item must be moved N/2 spaces, which takes N
times N/2 shifts for a total of %2 copies. Thus the performance of insertion sort is3D(N

Chapter 7 Advanced Sorting 247


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

This performance could be improved if we could somehow move a smaller item many spaces to the left
without shifting all the intermediate items individually.

N-SORTING

The Shellsort achieves these large shifts by insertion—sorting widely spaced elements. Once these are sorte
sorts somewhat less widely spaced elements, and so on. The spacing between elements for these sorts is ¢
the increment and is traditionally represented by the letter h. Figure 7.1 shows the first step in the process o
sorting a 10—element array with an increment of 4. Here the elements 0, 4, and 8 aresorted.

J I

alelnilily

FIGURE 7.1 4-sorting 0, 4, and 8

Once 0, 4, and 8 are sorted, the algorithm shifts over one cell and sorts 1, 5, and 9. This process continues
until all the elements have been 4-sorted, which means that all items spaced 4 cells apart are sorted among
themselves. The process is shown (using a more compact visual metaphor) in Figure 7.2.

FIGURE 7.2 A complete 4-sort

After the complete 4-sort, the array can be thought of as comprising four subarrays: (0,4,8), (1,5,9), (2,6), a
(3,7), each of which is completely sorted. These subarrays are interleaved, but otherwise independent.

Notice that, in this particular example, at the end of the 4-sort no item is more than 2 cells from where it
would be if the array were completely sorted. This is what is meant by an array being “almost” sorted and is
the secret of the Shellsort. By creating interleaved, internally sorted sets of items, we minimize the amount c
work that must be done to complete the sort.

Now, as we noted in Chapter 3, the insertion sort is very efficient when operating on an array that's almost
sorted. If it only needs to move items one or two cells to sort the file, it can operate in almost O(N) time. Thu
after the array has been 4-sorted, we can 1-sort it using the ordinary insertion sort. The combination of the
4-sort and the 1-sort is much faster than simply applying the ordinary insertion sort without the preliminary
4-sort.

|Previou4TabIe of Contentb\lext|

N-SORTING 248



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java
by Robert Lafore

. Waite Group Press, Macmillan Computer Publishing

DATA STRUCTURES

serienll  [SBN: 1571690956 Pub Date: 03/20/98

|Previous*TabIe of Contenth\lext|

DIMINISHING GAPS

We've shown an initial interval—or gap—of 4 cells for sorting a 10—cell array. For larger arrays the gap
should start out much larger. The interval is then repeatedly reduced until it becomes 1.

For instance, an array of 1,000 items might be 364-sorted, then 121-sorted, then 40-sorted, then 13-sorte
then 4-sorted, and finally 1-sorted. The sequence of numbers used to generate the intervals (in this examp
364, 121, 40, 13, 4, 1) is called the interval sequence or gap sequence. The particular interval sequence she
here, attributed to Knuth (see the bibliography), is a popular one. In reversed form, starting from 1, it's
generated by the recursive expression

h=3*h+1

where the initial value of h is 1. The first two columns of Table 7.1 show how this formula generates the
sequence.

TABLE 7.1 Knuth's Interval Sequence
h3*h + 1(h-1) / 3

14

4131

13404

4012113

12136440

3641093121

10933280364

There are other approaches to generating the interval sequence; we'll return to this issue later. First, we'll
explore how the Shellsort works using Knuth’s sequence.

In the sorting algorithm, the sequence—generating formula is first used in a short loop to figure out the initial
gap. A value of 1 is used for the first value of h, and the h=h*3+1 formula is applied to generate the sequenc
1, 4, 13, 40, 121, 364, and so on. This process ends when the gap is larger than the array. For a 1,000—-eler
array, the 7th number in the sequence, 1093, is too large. Thus we begin the sorting process with the
6th—largest number, creating a 364—sort. Then, each time through the outer loop of the sorting routine, we
reduce the interval using the inverse of the formula previously given:

h=(h-1)/3

This is shown in the third column of Table 7.1. This inverse formula generates the reverse sequence 364, 1:
40, 13, 4, 1. Starting with 364, each of these numbers is used to n—sort the array. When the array has been
1-sorted, the algorithm is done.

THE SHELLSORT WORKSHOP APPLET

You can use the Shellsort Workshop applet to see how this sort works. Figure 7.3 shows the applet after all
the bars have been 4-sorted, just as the 1-sort begins.

DIMINISHING GAPS 249


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

Iz C
1:'-.-‘. ) ST

-—..-——_.3

Ao ot

FIGURE 7.3 The Shellsort Workshop applet

As you single-step through the algorithm, you’'ll notice that the explanation we gave in the last section is
slightly simplified. The sequence for the 4-sort is not actually (0,4,8), (1,5,9), (2,6), and (3,7). Instead the fir:
two elements of each group of three are sorted first, then the first two elements of the second group, and so
Once the first two elements of all the groups are sorted, the algorithm returns and sorts three—element grou
The actual sequence is (0,4), (1,5), (2,6), (3,7), (0,4,8), (1,5,9).

It might seem more obvious for the algorithm to 4-sort each complete subarray first: (0,4), (0,4,8), (1,5),
(1,5,9), (2,6), (3,7), but the algorithm handles the array indices more efficiently using the first scheme.

The Shellsort is actually not very efficient with only 10 items, making almost as many swaps and comparisol
as the insertion sort. However, with 100 bars the improvement becomes significant.

It's instructive to run the Workshop applet starting with 100 inversely sorted bars. (Remember that, as in
Chapter 3, the first press of New creates a random sequence of bars, while the second press creates an
inversely sorted sequence.) Figure 7.4 shows how this looks after the first pass, when the array has been
completely 40-sorted. Figure 7.5 shows the situation after the next pass, when it is 13—-sorted. With each ne
value of h, the array becomes more nearly sorted.

=
i..__.. S| Soe] Sen] So] tap]

nn,,lllnum\!d | |

P

FIGURE 7.4 After the 40-sort

FIGURE 7.5 After the 13—sort

Why is the Shellsort so much faster than the insertion sort, on which it's based? When h is large, the numbe
of items per pass is small, and items move long distances. This is very efficient. As h grows smaller, the
number of items per pass increases, but the items are already closer together, which is more efficient for the
insertion sort. It's the combination of these trends that makes the Shellsort so effective.

Notice that later sorts (small values of h) don’t undo the work of earlier sorts (large values of h). An array the
has been 40-sorted remains 40—sorted after a 13—sort, for example. If this wasn’t so the Shellsort couldn’t
work.

|Previou§TabIe of Contentk\lext|

DIMINISHING GAPS 250



MWSS: Data Structures and Algorithms in Java:Introduction

[ ===l \\WSS: Data Structures and Algorithms in Java
by Robert Lafore

- u:,\ Waite Group Press, Macmillan Computer Publishing
il [SBN: 1571690956 Pub Date: 03/20/98

|Previou4TabIe of Contenth\lext|

JAVA CODE FOR THE SHELLSORT

The Java code for the Shellsort is scarcely more complicated than for the insertion sort. Starting with the
insertion sort, you substitute h for 1 in appropriate places and add the formula to generate the interval
sequence. We've made shellSort() a method in the ArraySh class, a version of the array classes from
Chapter 2. Listing 7.1 shows the complete shellSort.java program.

Listing 7.1 The shellSort.java Program

Il shellSort.java

/I demonstrates shell sort

/I to run this program: C>java ShellSortApp
I
class ArraySh

private double[] theArray; Il ref to array theArray

private int nElems; /I number of data items
I
public ArraySh(int max) Il constructor
theArray = new double[max]; /I create the array
nElems = 0; // no items yet
}

I
public void insert(double value) // put element into array

theArray[nElems] = value; /] insert it
nElems++; I/l increment size
}
I
public void display() /I displays array contents
{

System.out.print(“A=");

for(int j=0; j<nElems; j++) /l for each element,
System.out.print(theArray[j] + ““); // display it

System.out.printin(*");

}

Il
public void shellSort()
{
int inner, outer;
double temp;

inth=1; /I find initial value of h
while(h <= nElems/3)
h=h*3+1; I1(1, 4,13, 40, 121, ..)

while(h>0) I/l decreasing h, until h=1
{
I/l h=sort the file
for(outer=h; outer<nElems; outer++)

{

temp = theArray[outer];
inner = outer;

JAVA CODE FOR THE SHELLSORT 251


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

/I one subpass (eg 0, 4, 8)
while(inner > h-1 && theArray[inner-h]>= temp)

{
theArray[inner] = theArray[inner—h;
inner —= h;
}
theArray[inner] = temp;
} /I end for
h=(h-1)/3; /l decrease h

} /I end while(h>0)
} // end shellSort()

Il
} // end class ArraySh
M T T
class ShellSortApp
{
public static void main(String[] args)
{
int maxSize = 10; /l array size
ArraySh arr;
arr = new ArraySh(maxSize); // create the array

for(int j=0; j<maxSize; j++) // fill array with
{ /I random numbers
double n = (int)(java.lang.Math.random()*99);
arr.insert(n);

}
arr.display(); /I display unsorted array
arr.shellSort(); /Il shell sort the array
arr.display(); /I display sorted array

} // end main()
} // end class ShellSortApp

In main() we create an object of type ArraySh, capable of holding 10 items, fill it with random data,
display it, Shellsort it, and display it again. Here’'s some sample output:

A=20 89 6 42 5559 41 69 75 66
A=6 20 41 42 55 59 66 69 75 89

You can change maxSize to higher numbers, but don't go too high; 10,000 items take a fraction of a minute
to sort.

The Shellsort algorithm, although it's implemented in just a few lines, is not simple to follow. To see the
details of its operation, step through a 10-item sort with the Workshop applet, comparing the messages
generated by the applet with the code in the shellSort() method.

OTHER INTERVAL SEQUENCES

Picking an interval sequence is a bit of a black art. Our discussion so far used the formula h=h*3+1 to
generate the interval sequence, but other interval sequences have been used with varying degrees of succe
The only absolute requirement is that the diminishing sequence ends with 1, so the last pass is a normal
insertion sort.

In Shell's original paper, he suggested an initial gap of N/2, which was simply divided in half for each pass.
Thus the descending sequence for N=100 is 50, 25, 12, 6, 3, 1. This approach has the advantage that you c
need to calculate the sequence before the sort begins to find the initial gap; you just divide N by 2. However
this turns out not to be the best sequence. Although it’s still better than the insertion sort for most data, it
sometimes degenerates to G(Kinning time, which is no better than the insertion sort.

A better approach is to divide each interval by 2.2 instead of 2. For n=100 this leads to 45, 20, 9, 4, 1. This i
considerably better than dividing by 2, as it avoids some worst—case circumstances that ledf to O(N

OTHER INTERVAL SEQUENCES 252



MWSS: Data Structures and Algorithms in Java:Introduction

behavior. Some extra code is needed to ensure that the last value in the sequence is 1, no matter what N is
This gives results comparable to Knuth’'s sequence shown in the listing.

Another possibility for a descending sequence (from Flamig; see Appendix B, “Further Reading”) is

if(h < 5)
h=1;
else
h = (5*h-1)/11;

It's generally considered important that the numbers in the interval sequence are relatively prime; that is, the
have no common divisors except 1. This makes it more likely that each pass will intermingle all the items
sorted on the previous pass. The inefficiency of Shell's original N/2 sequence is due to its failure to adhere t
this rule.

You may be able to invent a gap sequence of your own that does just as well (or possibly even better) than
those shown. Whatever it is, it should be quick to calculate so as not to slow down the algorithm.

|Previou4TabIe of Contentk\lext|

OTHER INTERVAL SEQUENCES 253



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java
by Robert Lafore

. Waite Group Press, Macmillan Computer Publishing

DATA STRUCTURES

serienll  [SBN: 1571690956 Pub Date: 03/20/98

|Previous*TabIe of Contenth\lext|

EFFICIENCY OF THE SHELLSORT

No one so far has been able to analyze the Shellsort’s efficiency theoretically, except in special cases. Base
on experiments, there are various estimates, which range fro#f)@divn to O(N’6).

Table 7.2 shows some of these estimated O() values, compared with the slower insertion sort and the faster
quicksort. The theoretical times corresponding to various values of N are shown. Not& thraads the yth

root of N raised to the x power. Thus if N is 106’26 the square root of 18Qwhich is 1,000. Also, (logN)
means the log of N, squared. This is often writtedNpdput that's easy to confuse with g the logarithm

to the base 2 of N.

TABLE 7.2 Estimates of Shellsort Running Time

O() ValueType of Sort10 Items100 Items1,000 Items10,000 Iltems
N?Insertion, etc.10010,0001,000,000100,000,000
N32Shellsort321,00032,0001,000,000
N*(logN)?Shellsort104009,000160,000
N5Shellsort183165,600100,000
N"/6shellsort142153,20046,000

N*logNQuicksort, etc.102003,00040,000

For most data the higher estimates, such®s &te probably more realistic.

Partitioning

Partitioning is the underlying mechanism of quicksort, which we’ll explore next, but it's also a useful
operation on its own, so we'll cover it here in its own section.

To partition data is to divide it into two groups, so that all the items with a key value higher than a specified
amount are in one group, and all the items with a lower key value are in another.

It's easy to imagine situations in which you would want to partition data. Maybe you want to divide your
personnel records into two groups: employees who live within 15 miles of the office and those who live
farther away. Or a school administrator might want to divide students into those with grade point averages
higher and lower than 3.5, so as to know who deserves to be on the Dean’s list.

THE PARTITION WORKSHOP APPLET

Our Partition Workshop applet demonstrates the partitioning process. Figure 7.6 shows 12 bars before
partitioning, and Figure 7.7 shows them again after partitioning.

=
-

—— e S S

il

Pt st
At oo

EFFICIENCY OF THE SHELLSORT 254


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

FIGURE 7.6 Twelve bars before partitioning

2
-
= ) S

P o

ot e

FIGURE 7.7 Twelve bars after partitioning

The horizontal line represents the pivot value. This is the value used to determine into which of the two grou
an item is placed. Iltems with a key value less than the pivot value go in the left part of the array, and those
with a greater (or equal) key go in the right part. (In the section on quicksort, we’ll see that the pivot value ce
be the key value of an actual data item, called the pivot. For now, it's just a number.)

The arrow labeled partition points to the leftmost item in the right (higher) subarray. This value is returned
from the partitioning method, so it can be used by other methods that need to know where the division is.

For a more vivid display of the partitioning process, set the Partition Workshop applet to 100 bars and press
the Run button. The leftScan and rightScan pointers will zip toward each other, swapping bars as they
go. When they meet, the partition is complete.

You can choose any value you want for the pivot value, depending on why you’re doing the partition (such &
choosing a grade point average of 3.5). For variety, the Workshop applet chooses a random number for the
pivot value (the horizontal black line) each time New or Size is pressed, but the value is never too far from tt
average bar height.

After being partitioned, the data is by no means sorted; it has simply been divided into two groups. However
it's more sorted than it was before. As we’ll see in the next section, it doesn’t take much more trouble to sort
completely.

Notice that partitioning is not stable. That is, each group is not in the same order it was originally. In fact,
partitioning tends to reverse the order of some of the data in each group.

|Previous¥TabIe of Contentk\lext|

EFFICIENCY OF THE SHELLSORT 255



MWSS: Data Structures and Algorithms in Java:Introduction

[ ===l \\WSS: Data Structures and Algorithms in Java

by Robert Lafore

¥

Pmpm— \\Vaite Group Press, Macmillan Computer Publishing

gl ISBN: 1571690956 Pub Date: 03/20/98

|Previou4TabIe of Contenth\lext|

THE patrtition.java PROGRAM

How is the partitioning process carried out? Let’s look at some sample code. Listing 7.2 shows the

partition.java program, which includes the partitionlt() method for partitioning an array.

Listing 7.2 The partition.java Program

/I partition.java

/I demonstrates partitioning an array

/I to run this program: C>java PartitionApp
o
class ArrayPar

{
private double[] theArray; Il ref to array theArray
private int nElems; /I number of data items
I
public ArrayPar(int max) /I constructor
{
theArray = new double[max]; /I create the array
nElems = 0; // no items yet
}

1

public void insert(double value) // put element into array

{

theArray[nElems] = value; Il insert it
nElems++; /I increment size
}
Il
public int size() I/ return number of items
{return nElems; }
Il
public void display() /I displays array contents
{
System.out.print(“A=");
for(int j=0; j<nElems; j++) I for each element,
System.out.print(theArray[j] + “ “); // display it
System.out.printin(*");
}
Il

public int partitionlt(int left, int right, double pivot)
{

int leftPtr = left - 1; // right of first elem
int rightPtr = right + 1; Il left of pivot
while(true)

{

while(leftPtr < right &&  // find bigger item
theArray[++leftPtr] < pivot)
; /I (nop)

while(rightPtr > left &&  // find smaller item
theArray[—--rightPtr] > pivot)

; Il (nop)
if(leftPtr >=rightPtr)  // if pointers cross,
break; /I partition done
else /I not crossed, so

THE partition.java PROGRAM

256


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

swap(leftPtr, rightPtr); // swap elements
} /I end while(true)
return leftPtr; /I return partition
} 1/ end partitionlt()

Il
public void swap(int dex1, int dex2) // swap two elements

{

double temp;

temp = theArray[dex1]; /I A into temp
theArray[dex1] = theArray[dex2]; // Binto A
theArray[dex2] = temp; /[ temp into B

} 1/ end swap(

I

} // end class ArrayPar
T T
class PartitionApp

{

public static void main(String[] args)
{
int maxSize = 16; [ array size
ArrayPar arr; /I reference to array

arr = new ArrayPar(maxSize); // create the array

for(int j=0; j<maxSize; j++) // fill array with
{ /l random numbers
double n = (int)(java.lang.Math.random()*199);
arr.insert(n);

}
arr.display(); /I display unsorted array
double pivot = 99; /I pivot value

System.out.print(“Pivot is “ + pivot);
int size = arr.size();
/I partition array
int partDex = arr.partitionlt(0, size—1, pivot);

System.out.printin(“, Partition is at index “ + partDex);
arr.display(); /I display sorted array
} /I end main()

} // end class PartitionApp

The main() routine creates an ArrayPar object that holds 16 items of type double. The pivot value is
fixed at 99. The routine inserts 16 random values into ArrayPar, displays them, partitions them by calling
the partitionlt() method, and displays them again. Here’s some sample output:

A=149 192 47 152 159 195 61 66 17 167 118 64 27 80 30 105
Pivot is 99, partition is at index 8
A=308047 27 64 17 61 66 195 167 118 159 152 192 149 105

You can see that the partition is successful: The first eight numbers are all smaller than the pivot value of 9¢
the last eight are all larger.

Notice that the partitioning process doesn’t necessarily divide the array in half as it does in this example; the
depends on the pivot value and key values of the data. There may be many more items in one group than ir
the other.

THE PARTITION ALGORITHM
The partitioning algorithm works by starting with two pointers, one at each end of the array. (We use the terr
pointers to mean indices that point to array elements, not C++ pointers.) The pointer on the left, leftPtr,

moves toward the right, and the one of the right, rightPtr, moves toward the left. Notice that leftPtr
and rightPtr in the partition.java program correspond to leftScan and rightScan in the

THE PARTITION ALGORITHM 257



MWSS: Data Structures and Algorithms in Java:Introduction

Partition Workshop applet.

Actually leftPtr is initialized to one position to the left of the first cell, and rightPtr to one position to
the right of the last cell, because they will be incremented and decremented, respectively, before they’re use

|PreviousiTabIe of Contentk\lext|

THE PARTITION ALGORITHM 258



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

Stopping and Swapping

When leftPtr encounters a data item smaller than the pivot value, it keeps going, because that item is in
the right place. However, when it encounters an item larger than the pivot value, it stops. Similarly, when
rightPtr encounters an item larger than the pivot, it keeps going, but when it finds a smaller item, it also
stops. Two inner while loops, the first for leftPtr and the second for rightPtr, control the scanning

process. A pointer stops because its while loop exits. Here's a simplified version of the code that scans for
out—of-place items:

while( theArray[++leftPtr] < pivot) //find bigger item
; /I (nop)

while( theArray[——rightPtr] > pivot ) // find smaller item
; /I (nop)

swap(leftPtr, rightPtr); /I swap elements

The first while loop exits when an item larger than pivot is found; the second loop exits when an item
smaller than pivot is found. When both these loops exit, both leftPtr and rightPtr point to items that
are in the wrong part of the array, so these items are swapped.

After the swap, the two pointers continue on, again stopping at items that are in the wrong part of the array
and swapping them. All this activity is nested in an outer while loop, as can be seen in the

partitionlt() method in Listing 7.2. When the two pointers eventually meet, the partitioning process is
complete and this outer while loop exits.

You can watch the pointers in action when you run the Partition Workshop applet with 100 bars. These
pointers, represented by blue arrows, start at opposite ends of the array and move toward each other, stopp
and swapping as they go. The bars between them are unpartitioned; those they've already passed over are
partitioned. When they meet, the entire array is partitioned.

Handling Unusual Data

If we were sure that there was a data item at the right end of the array that was smaller than the pivot value,
and an item at the left end that was larger, the simplified while loops previously shown would work fine.
Unfortunately, the algorithm may be called upon to partition data that isn’t so well organized.

If all the data is smaller than the pivot value, for example, the leftPtr variable will go all the way across
the array, looking in vain for a larger item, and fall off the right end, creating an array index out of
bounds exception. A similar fate will befall rightPtr if all the data is larger than the pivot value.

To avoid these problems, extra tests must be placed in the while loops to check for the ends of the array:
leftPtr<right in the first loop, and rightPtr>left in the second. This can be seen in context in
Listing 7.2.

In the section on quicksort, we'll see that a clever pivot—selection process can eliminate these end-of-array
tests. Eliminating code from inner loops is always a good idea if you want to make a program run faster.

Stopping and Swapping 259


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MWSS: Data Structures and Algorithms in Java:Introduction

Delicate Code

The code in the while loops is rather delicate. For example, you might be tempted to remove the increment
operators from the inner while loops and use them to replace the nop statements. (Nop refers to a statemen
consisting only of a semicolon, and means no operation.) For example, you might try to change this:

while(leftPtr < right && theArray[++leftPtr] < pivot)
; Il (nop)

to this:

while(leftPtr < right && theArray[leftPtr] < pivot)
++leftPtr;

and similarly for the other inner while loop. This would make it possible for the initial values of the pointers
to be left and right, which is somewhat clearer than left-1 and right+1.

However, these changes result in the pointers being incremented only when the condition is satisfied. The
pointers must move in any case, so two extra statements within the outer while loop would be required to
bump the pointers. The nop version is the most efficient solution.

EFFICIENCY OF THE PARTITION ALGORITHM

The patrtition algorithm runs in O(N) time. It's easy to see this when running the Partition Workshop applet:
the two pointers start at opposite ends of the array and move toward each other at a more or less constant r
stopping and swapping as they go. When they meet, the partition is complete. If there were twice as many
items to partition, the pointers would move at the same rate, but they would have twice as far to go (twice as
many items to compare and swap), so the process would take twice as long. Thus the running time is
proportional to N.

More specifically, for each partition there will be N+1 or N+2 comparisons. Every item will be encountered
and used in a comparison by one or the other of the pointers, leading to N comparisons, but the pointers
overshoot each other before they find out they've “crossed” or gone beyond each other, so there are one or
two extra comparisons before the partition is complete. The number of comparisons is independent of how t
data is arranged (except for the uncertainty between 1 and 2 extra comparisons at the end of the scan).

The number of swaps, however, does depend on how the data is arranged. If it's inversely ordered and the
pivot value divides the items in half, then every pair of values must be swapped, which is N/2 swaps.
(Remember in the Partition Workshop applet that the pivot value is selected randomly, so that the number o
swaps for inversely sorted bars won't always be exactly N/2.)

For random data, there will be fewer than N/2 swaps in a partition, even if the pivot value is such that half th
bars are shorter and half are taller. This is because some bars will already be in the right place (short bars ©
the left, tall bars on the right). If the pivot value is higher (or lower) than most of the bars, there will be even
fewer swaps because only those few bars that are higher (or lower) than the pivot will need to be swapped.
average, for random data, about half the maximum number of swaps take place.

Although there are fewer swaps than comparisons, they are both proportional to N. Thus the partitioning
process runs in O(N) time. Running the Workshop applet, you can see that for 12 random bars there are ab
3 swaps and 14 comparisons, and for 100 random bars there are about 25 swaps and 102 comparisons.

|Previou4TabIe of Contentk\lext|

Delicate Code 260



MWSS: Data Structures and Algorithms in Java:Introduction

[~ ===l MWSS: Data Structures and Algorithms in Java

by Robert Lafore

Pempmmm—— \/\/aite Group Press, Macmillan Computer Publishing
grieall  ISBN: 1571690956 Pub Date: 03/20/98

¥

|Previous*TabIe of Contenth\lext|

Quicksort

Quicksort is undoubtedly the most popular sorting algorithm, and for good reason: in the majority of
situations, it's the fastest, operating in O(N*logN) time. (This is only true for internal or in-memory sorting;
for sorting data in disk files other methods may be better.) Quicksort was discovered by C.A.R. Hoare in
1962.

To understand quicksort, you should be familiar with the partitioning algorithm described in the last section.
Basically the quicksort algorithm operates by partitioning an array into two subarrays, and then calling itself
to quicksort each of these subarrays. However, there are some embellishments we can make to this basic
scheme. These have to do with the selection of the pivot and the sorting of small partitions. We’'ll examine
these refinements after we've looked at a simple version of the main algorithm.

It's difficult to understand what quicksort is doing before you understand how it does it, so we’ll reverse our
usual presentation and show the Java code for quicksort before presenting the quicksort Workshop applet.

THE QUICKSORT ALGORITHM

The code for a basic recursive quicksort method is fairly simple. Here's an example:

public void recQuickSort(int left, int right)

{

if(right-left <= 0) Il'if size is 1,
return; /I it's already sorted

else I size is 2 or larger

{

/[ partition range
int partition = partitionlt(left, right);
recQuickSort(left, partition-1); // sort left side
recQuickSort(partition+1, right); // sort right side

}
}

As you can see, there are three basic steps:

1. Partition the array or subarray into left (smaller keys) and right (larger keys) groups.
2. Call ourselves to sort the left group.
3. Call ourselves again to sort the right group.

After a partition, all the items in the left subarray are smaller than all those on the right. If we then sort the le
subarray and sort the right subarray, the entire array will be sorted. How do we sort these subarrays? By
calling ourself.

The arguments to the recQuickSort() method determine the left and right ends of the array (or subarray)

it's supposed to sort. The method first checks whether this array consists of only one element. If so, the arra
is by definition already sorted, and the method returns immediately. This is the base case in the recursion
process.

Quicksort 261


http://www.digitalguru.com/dgstore/product.asp?isbn=1571690956&ac%5Fid=28

MW