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Preface

Algorithmic jdeas are pervasive, and their reach is apparent in examples both
within computer science and beyond. Some of the major shifts in Internet
routing standards can be viewed as debates over the deficiencies of one
shortest-path algorithm and the relative advantages of another. The basic
notions used by biologists to express similarities among genes and genomes
have algorithmic definitions. The concerns voiced by economists over the
feasibility of combinatorial auctions in practice are rooted partly in the fact that
these auctions contain computationally intractable search problems as special
cases. And algorithmic notions aren’t just restricted to well-known and long-
standing problems; one sees the reflections of these ideas on a regular basis,
in novel issues arising across a wide range of areas. The scientist from Yahoo!
who told us over lunch one day about their system for serving ads to users was
describing a set of issues that, deep down, could be modeled as a network flow
problem. So was the former student, now a management consultant working
on staffing protocols for large hospitals, whom we happened to meet on a trip
to New York City.

The point is not simply that algorithms have many applications. The
deeper issue is that the subject of algorithms is a powerful lens through which
to view the field of computer science in general. Algorithmic problems form
the heart of computer science, but they rarely arrive as cleanly packaged,
mathematically precise questions. Rather, they tend to come bundled together
with lots of messy, application-specific detail, some of it essential, some of it
extraneous. As a result, the algorithmic enterprise consists of two fundamental
components: the task of getting to the mathematically clean core of a problem,
and then the task of identifying the appropriate algorithm design techniques,
based on the structure of the problem. These two components interact: the
more comfortable one is with the full array of possible design techniques,
the more one starts to recognize the clean formulations that lie within messy
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problems out in the world. At their most effective, then, algorithmic ideas do
not just provide solutions to well-posed problems; they form the language that
lets you cleanly express the underlying questions.

The goal of our book is to convey this approach to algorithms, as a design
process that begins with problems arising across the full range of computing
applications, builds on an understanding of algorithm design techniques, and
results in the development of efficient solutions to these problems. We seek
to explore the role of algorithmic ideas in computer science generally, and
relate these ideas to the range of precisely formulated problems for which we
cari design and analyze algorithms. In other words, what are the underlying
issues that motivate these problems, and how did we choose these particular
ways of formulating them? How did we recognize which design principles were
appropriate in different situations?

In keeping with this, our goal is to offer advice on how to identify clean
algorithmic problem formulations in complex issues from different areas of
computing and, from this, how to design efficient algorithms for the resulting

problems. Sophisticated algorithms are ofien best understood by reconstruct- -

ing the sequence of ideas—including false starts and dead ends—that led from
simpler initial approaches to the eventual solution. The result is a style of ex-
position that does not take the most direct route from problem statement to
algorithm, but we feel it better reflects the way that we and our colleagues
genuinely think about these questions.

Overview

The book is intended for students who have completed a programming-
based two-semester introductory computer science sequence (the standard
“CS1/CS2” courses) in which they have written programs that implement
basic algorithms, manipulate discrete structures such as trees and graphs, and
apply basic data structures such as arrays, lists, queues, and stacks. Since
the interface between CS1/CS2 and a first algorithms course is not entirely
standard, we begin the book with self-contained coverage of topics that at
some institutions are familiar to students from CS1/CS2, but which at other
institutions are included in the syllabi of the first algorithms course. This
material can thus be treated either as a review or as new material; by including
it, we hope the book can be used in a broader array of courses, and with more
flexibility in the prerequisite knowledge that is assumed.

In keeping with the approach outlined above, we develop the basic algo-
rithm design techniques by drawing on problems from across many areas of
computer science and related fields. To mention a few representative examples
here, we include fairly detailed discussions of applications from systems and
networks (caching, switching, interdomain routing on the Internet), artificial
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intelligence (planning, game playing, Hopfield networks), computer vision
(image segmentation), data mining (change-point detection, clustering), op-
erations research (airline scheduling}, and computational biology (sequence
alignment, RNA secondary structure).

The notion of computational intractability, and NP-completeness in par-
ticular, plays a large role in the book. This is consistent with how we think
about the overall process of algorithm design. Some of the time, an interest-
ing problem arising in an application area will be amenable to an efficient
solution, and some of the time it will be provably NP-complete; in order to
fully address a new algorithmic problem, one should be able to explore both
of these options with equal familiarity. Since so many natural problems in
computer science are NP-complete, the development of methods to deal with
intractable problems has become a crucial issue in the study of algorithms,
and our book heavily reflects this theme. The discovery that a problem is NP-
complete should not be taken as the end of the story, but as an invitation to
begin looking for approximation algorithms, heuristic local search techniques,
or tractable special cases. We include extensive coverage of each of these three
approaches.

Problems and Solved Exercises

An important feature of the book is the collection of problems. Across all
chapters, the book includes over 200 problems, almost all of them developed
and class-tested in homework or exams as part of our teaching of the course
at Cornell. We view the problems as a crucial component of the book, and
they are structured in keeping with our overall approach to the material. Most
of them consist of extended verbal descriptions of a problem arising in an
application area in computer science or elsewhere out in the world, and part of
the problem is to practice what we discuss in the text: setting up the necessary
notation and formalization, designing an algorithm, and then analyzing it and
proving it correct. (We view a complete answer to one of these problems as
consisting of all these components: a fully explained algorithm, an analysis of
the running time, and a proof of correctness.) The ideas for these problems
come in large part from discussions we have had over the years with people
working in different areas, and in some cases they serve the dual purpose of
recording an interesting (though manageable) application of algorithms that
we haven’t seen written down anywhere else.

To help with the process of working on these problems, we include in
each chapter a section entitled “Solved Exercises,” where we take one or more
problems and describe how to go about formulating a solution. The discussion
devoted to each solved exercise is therefore significantly longer than what
would be needed simply to write a complete, correct solution (in other words,

XV
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significantly longer than what it would take to receive full credit if these were
being assigned as homework problems). Rather, as with the rest of the text,
the discussions in these sections should be viewed as trying to give a sense
of the larger process by which one might think about problems of this type,
culminating in the specification of a precise solution.

It is worth mentioning two points concerning the use of these problems
as homework in a course. First, the problems are sequenced roughly in order
of increasing difficulty, but this is only an approximate guide and we advise
against placing too much weight on it: since the bulk of the problems were
designed as homework for our undergraduate class, large subsets of the
problems in each chapter are really closely comparable in terms of difficulty.
Second, aside from the lowest-numbered ones, the problems are designed to
involve some investment of time, both to relate the problem description to the
algorithmic techniques in the chapter, and then to actually design the necessary
algorithm. In our undergraduate class, we have tended to assign roughly three
of these problems per week.

Pedagogical Features and Supplements

In addition to the problems and solved exercises, the book has a number of
further pedagogical features, as well as additional supplements to facilitate its
use for teaching.

As noted earlier, a large number of the sections in the book are devoted
to the formulation of an algorithmic problem—including its background and
underlying motivation—and the design and analysis of an algorithm for this
problem. To reflect this style, these sections are consistently structured around
a sequence of subsections: “The Problem,” where the problem is described
and a precise formulation is worked out; “Designing the Algorithm,” where
the appropriate design technique is employed to develop an algorithm; and
“Analyzing the Algorithm,” which proves properties of the algorithm and
analyzes its efficiency. These subsections are highlighted in the text with an
icon depicting a feather. In cases where extensions to the problem or further
analysis of the algorithm is pursued, there are additional subsections devoted
to these issues. The goal of this structure is to offer a relatively uniform style
of presentation that moves from the initial discussion of a problem arising in a
computing application through to the detailed analysis of a method to solve it.

A number of supplements are available in support of the book itself. An
instructor’s manual works through all the problems, providing full solutions to
each. A set of lecture slides, developed by Kevin Wayne of Princeton University,
is also available; these slides follow the order of the book’s sections and can
thus be used as the foundation for lectures in a course based on the book. These
files are available at www.aw.com. For instructions on obtaining a professor
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login and password, search the site for either “Kleinberg” or “Tardos” or
contact your local Addison-Wesley representative.

Finally, we would appreciate receiving feedback on the book. In particular,
as in any book of this length, there are undoubtedly errors that have remained
in the final version. Comments and reports of errors can be sent to us by e-mail,
at the address algbook@cs.cornell.edu; please include the word “feedback”
in the subject line of the message.

Chapter-by-Chapter Synopsis

Chapter 1 starts by introducing some representative algorithmic problems. We
begin immediately with the Stable Matching Problem, since we feel it sets
up the basic issues in algorithm design more concretely and more elegantly
than any abstract discussion could: stable matching is motivated by a natural
though complex real-world issue, from which one can abstract an interesting
problem statement and a surprisingly effective algorithm to solve this problem.
The remainder of Chapter 1 discusses a list of five “representative problems”
that foreshadow topics from the remainder of the course. These five problems
are interrelated in the sense that they are all variations and/or special cases
of the Independent Set Problem; but one is solvable by a greedy algorithm,
one by dynamic programming, one by network flow, one (the Independent
Set Problem itself) is NP-complete, and one is PSPACE-complete. The fact that
closely related problems can vary greatly in complexity is an important theme
of the book, and these five problems serve as milestones that reappear as the
bock progresses.

Chapters 2 and 3 cover the interface to the CS1/CS2 course sequence
mentioned earlier. Chapter 2 introduces the key mathematical definitions and
notations used for analyzing algorithms, as well as the motivating principles
behind them. It begins with an informal overview of what it means for a prob-
lem to be computationally tractable, together with the concept of polynomial
time as a formal notion of efficiency. It then discusses growth rates of func-
tions and asymptotic analysis more formally, and offers a guide to commonly
occurring functions in algorithm analysis, together with standard applications
in which they arise. Chapter 3 covers the basic definitions and algorithmic
primitives needed for working with graphs, which are central to so many of
the problems in the book. A number of basic graph algorithms are often im-
plemented by students late in the CS1/CS2 course sequence, but it is valuable
to present the material here in a broader algorithm design context. In par-
ticular, we discuss basic graph definitions, graph traversal techniques such
as breadth-first search and depth-first search, and directed graph concepts
including strong connectivity and topological ordering.

xvii
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Chapters 2 and 3 also present many of the basic data structures that will
be used for implementing algorithms throughout the book; more advanced
data structures are presented in subsequent chapters. Our approach to data
structures is to introduce them as they are needed for the implementation of
the algorithms being developed in the book. Thus, although many of the data
structures covered here will be familiar to students from the CS1 /CS2 sequence,
our focus is on these data structures in the broader context of algorithm design
and analysis.

Chapters 4 through 7 cover four major algorithm design techniques: greedy
algorithms, divide and conquer, dynamic programming, and network flow.
With greedy algorithms, the challenge is to recognize when they work and
when they don’t; our coverage of this topic is centered around a way of clas-
sifying the kinds of arguments used to prove greedy algorithms correct. This
chapter concludes with some of the main applications of greedy algorithms,
for shortest paths, undirected and directed spanning trees, clustering, and
compression. For divide and conquer, we begin with a discussion of strategies

for solving recurrence relations as bounds on running times; we then show -

how familiarity with these recurrences can guide the design of algorithms that
improve over straightforward approaches to a number of basic problems, in-
cluding the comparison of rankings, the computation of closest pairs of points
in the plane, and the Fast Fourier Transform. Next we develop dynamic pro-
gramming by starting with the recursive intuition behind it, and subsequently
building up more and more expressive recurrence formulations through appli-
cations in which they naturally arise. This chapter concludes with extended
discussions of the dynamic programming approach to two fundamental prob-
lems: sequence alignment, with applications in computational biology; and
shortest paths in graphs, with connections to Internet routing protocols. Fi-
nally, we cover algorithms for network flow problems, devoting much of our
focus in this chapter to discussing a large array of different flow applications.
To the extent that network flow is covered in algorithms courses, students are
often left without an appreciation for the wide range of problems to which it
can be applied; we try to do justice to its versatility by presenting applications
to load balancing, scheduling, image segmentation, and a number of other
problems.

Chapters 8 and 9 cover computational intractability. We devote most of
our attention to NP-completeness, organizing the basic NP-complete problems
thematically to help students recognize candidates for reductions when they
encounter new problems. We build up to some fairly complex proofs of NP-
completeness, with guidance on how one goes about constructing a difficult

Teduction. We also comsider types of computational hardness beyond NP-

completeness, particularly through the topic of PSPACE-completeness. We
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find this is a valuable way to emphasize that intractability doesn’t end at
NP-completeness, and PSPACE-completeness also forms the underpinning for
some central notions from artificial intelligence—planning and game playing—
that would otherwise not find a place in the algorithmic landscape we are
surveying.

Chapters 10 through 12 cover three major techniques for dealing with com-
putationally intractable problems: identification of structured special cases,
approximation algorithms, and local search heuristics. Qur chapter on tractable
special cases emphasizes that instances of NP-complete problems arising in
practice may not be nearly as hard as worst-case instances, because they often
contain some structure that can be exploited in the design of an efficient algo-

. rithm. We illustrate how NP-complete problems are often efficiently solvable

when restricted to tree-structured inputs, and we conclude with an extended
discussion of tree decompositions of graphs. While this topic is more suit-
able for a graduate course than for an undergraduate one, it is a technique
with considerable practical utility for which it is hard to find an existing
accessible reference for students. Our chapter on approximation algorithms
discusses both the process of designing effective algorithms and the task of
understanding the optimal solution well enough to obtain good bounds on it.
As design techniques for approximation algorithms, we focus on greedy algo-
rithms, linear programming, and a third method we refer to as “pricing,” which
incorporates ideas from each of the first two. Finally, we discuss local search
heuristics, including the Metropolis algorithm and simulated annealing. This
topic is often missing from undergraduate algorithms courses, because very
little is known in the way of provable guarantees for these algorithms; how-
ever, given their widespread use in practice, we feel it is valuable for students
to know something about them, and we also include some cases in which
guarantees can be proved.

Chapter 13 covers the use of randomization in the design of algorithms.
This is a topic on which several nice graduate-level books have been written.
Our goal here is to provide a more compact introduction to some of the
ways in which students can apply randomized techniques using the kind of
background in probability one typically gains from an undergraduate discrete
math course.

Use of the Book

The book is primarily designed for use in a first undergraduate course on
algorithms, but it can also be used as the basis for an introductory graduate
course.

When we use the book at the undergraduate level, we spend roughly
one lecture per numbered section; in cases where there is more than one
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lecture’s worth of material in a section (for example, when a section provides
further applications as additional examples), we treat this extra material as a
supplement that students can read about outside of lecture. We skip the starred
sections; while these sections contain important topics, they are less central
to the development of the subject, and in some cases they are harder as well.
We also tend to skip one or two other sections per chapter in the first half of
the book (for example, we tend to skip Sections 4.3, 4.7-4.8, 5.5-5.6, 6.5, 7.6,
and 7.11). We cover roughly half of each of Chapters 11-13.

This last point is worth emphasizing: rather than viewing the later chapters
as “advanced.” and hence off-limits to undergraduate algorithms courses, we
have designed them with the goal that the first few sections of each should
be accessible to an undergraduate audience. Our own undergraduate course
involves material from all these chapters, as we feel that all of these topics
have an important place at the undergraduate level.

Finally, we treat Chapters 2 and 3 primarily as a review of material from
earlier courses; but, as discussed above, the use of these two chapters depends
heavily on the relationship of each specific course to its prerequisites.

The resulting syllabus looks roughly as follows: Chapter 1; Chapters 4-8
(excluding 4.3, 4.7-4.9, 5.5-5.6, 6.5, 6.10, 7.4, 7.6, 7.11, and 7.13); Chapter 9
(briefly); Chapter 10, Sections.10.1 and 10.2; Chapter 11, Sections 11.1, 11.2,
11.6, and 11.8; Chapter 12, Sections 12.1-12.3; and Chapter 13, Sections 13.1-
13.5.

The book also naturally supports an introductory graduate course on
algorithms. Our view of such a course is that it should introduce students
destined for research in all different areas to the important current themes in
algorithm design. Here we find the emphasis on formulating problems to be
useful as well, since students will soon be trying to define their own research
problems in many different subfields. For this type of course, we cover the
later topics in Chapters 4 and 6 (Sections 4.5-4.9 and 6.5-6.10), cover all of
Chapter 7 (moving more rapidly through the early sections), quickly cover NP-
completeness in Chapter 8 (since many beginning graduate students will have
seen this topic as undergraduates), and then spend the remainder of the time
on Chapters 10-13. Although our focus in an introductory graduate course is
on the more advanced sections, we find it useful for the students to have the
full book to consult for reviewing or filling in background knowledge, given
the range of different undergraduate backgrounds among the students in such
a course.

Finally, the book can be used to support self-study by graduate students,
researchers, or computer professionals who want to get a sense for how they
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might be able to use particular algorithm design techniques in the context of
their own work. A number of graduate students and colleagues have used
portions of the book in this way.
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the reach of computing continues to extend into new disciplines. And so to
all students of the subject, drawn to it for so many different reasons, we hope
you find this book an enjoyable and useful guide wherever your computational
pursuits may take you.
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Introduction: Some
Representative Problems

1.1 A First Problem: Stable Matching

As an opening topic, we look at an algorithmic problem that nicely illustrates
many of the themes we will be emphasizing. It is motivated by some very
natural and practical concerns, and from these we formulate a clean and
simple statement of a problem. The algorithm to solve the problem is very
clean as well, and most of our work will be spent in proving that it is correct
and giving an acceptable bound on the amount of time it takes to terminate
with an answer. The problem itself—the Stable Matching Problem—has several
origins.

/ﬁ The Problem

The Stable Matching Problem originated, in part, in 1962, when David Gale
and Lloyd Shapley, two mathematical economists, asked the question: Could
one design a college admissions process, or a job recruiting process, that was
self-enforcing? What did they mean by this?

To set up the question, let’s first think informally about the kind of situation
that might arise as a group of friends, all juniors in college majoring in
computer science, begin applying to companies for summer internships. The
crux of the application process is the interplay between two different types
of parties: companies (the employers) and students (the applicants). Each
applicant has a preference ordering on companies, and each company—once
the applications come in—forms a preference ordering on its applicants. Based
on these preferences, companies extend offers to some of their applicants,
applicants choose which of their offers to accept, and people begin heading
off to their summer internships.
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Gale and Shapley considered the sorts of things that could start going
wrong with this process, in the absence of any mechanism to enforce the status
quo. Suppose, for example, that your friend Raj has just accepted a summer job
at the large telecommunications company CluNet. A few days later, the small
start-up company WebExodus, which had been dragging its feet on making a
few final decisions, calls up Raj and offers him a summer job as well. Now, Raj
actually prefers WebExodus to CluNet—won over perhaps by the laid-back,
anything-can-happen atmosphere—and so this new development may well
cause him to retract his acceptance of the CluNet offer and go to WebExodus
instead. Suddenly down one sumimer intern, CluNet offers a job to one of its
wait-listed applicants, who promptly retracts his previous acceptance of an
offer from the software giant Babelsoft, and the situation begins to spiral out
of control.

Things look just as bad, if not worse, from the other direction. Suppose

that Raj’s friend Chelsea, destined to go to Babelsoft but having just heard Raj’s
story, calls up the people at WebExodus and says, “You know, I'd really rather

spend the summer with you guys than at Babelsoft.” They find this very easy"

to believe; and furthermore, on looking at Chelsea’s application, they realize
that they would have rather hired her than some other student who actually
is scheduled to spend the summer at WebExodus. In this case, if WebExodus
were a slightly less scrupulous company, it might well find some way to retract
its offer to this other student and hire Chelsea instead.

Situations like this can rapidly generate a lot of chaos, and many people—
both applicants and employers—can end up unhappy with the process as well
as the outcome. What has gone wrong? One basic problem is that the process
is not self-enforcing—if people are allowed to act in their self-interest, then it
risks breaking down.

We might well prefer the following, more stable situation, in which self-

interest itself prevents offers from being retracted and redirected. Consider

another student, who has arranged to spend the summer at CluNet but calls
up WebExodus and reveals that he, too, would rather work for them. But in
this case, based on the offers already accepted, they are able to reply, “No, it
turns out that we prefer each of the students we’ve accepted to you, so we're
afraid there’s nothing we can do.” Or consider an employer, earnestly following
up with its top applicants who went elsewhere, being told by each of them,
“No, I’'m happy where I am.” In such a case, all the outcomes are stable—there
are no further outside deals that can be made.

So this is the question Gale and Shapley asked: Given a set of preferences
among employers and applicants, can we assign applicants to employers so
that for every employer E, and every applicant A who is not scheduled to work
for E, at least one of the following two things is the case?

1.1 A First Problem: Stable Matching

(i) E prefers every one of its accepted applicants to A; or
(if) A prefers her current situation over working for employer E.

If this holds, the outcome is stable: individual self-interest will prevent any
applicant/employer deal from being made behind the scenes.

Gale and Shapley proceeded to develop a striking algorithmic solution to
this problem, which we will discuss presently. Before doing this, let’s note that
this is not the only origin of the Stable Matching Problem. It turns out that for
a decade before the work of Gale and Shapley, unbeknownst to them, the
National Resident Matching Program had been using a very similar procedure,
with the same underlying motivation, to match residents to hospitals. Indeed,
this system, with relatively little change, is still in use today.

This is one testament to the problem’s fundamental appeal. And from the
point of view of this book, it provides us with a nice first domain in which

to reason about some basic combinatorial definitions and the algorithms that
build on them.

Formulating the Problem To get at the essence of this concept, it helps to
make the problem as clean as possible. The world of companies and applicants
contains some distracting asymmetries. Each applicant is looking for a single
company, but each company is looking for many applicants; moreover, there
may be more (or, as is sometimes the case, fewer) applicants than there are

available slots for summer jobs. Finally, each applicant does not typically apply
to every company.

Itis useful, at least initially, to eliminate these complications and arrive at a
more “bare-bones” version of the problem: each of n applicants applies to each
of n companies, and each company wants to accept a single applicant. We will
see that doing this preserves the fundamental issues inherent in the problem;
in particular, our solution to this simplified version will extend directly to the
more general case as well.

Following Gale and Shapley, we observe that this special case can be
viewed as the problem of devising a system by which each of n men and
n women can end up getting married: our problem naturally has the analogue
of two “genders”—the applicants and the companies—and in the case we are

considering, everyone is seeking to be paired with exactly one individual of
the opposite gender.!

! Gale and Shapley considered the same-sex Stable Matching Problem as well, where there is only a
single gender. This is motivated by related applications, but it turns out to be fairly different at a

technical level. Given the applicant-employer application we're considering here, we’ll be focusing
on the version with two genders.
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So consider a set M = {my, ..., m,} of n men, and a set W= {w,, ..., wg}
of n women. Let M x W denaote the set of all possible ordered pairs of the form
(m,w), where m e M and w € W. A matching S is a set of ordered pairs, each
from M x W, with the property that each member of M and each member of
W appears in at most one pair in S. A perfect matching 5’ is a matching with
the property that each member of M and each member of W appears in exactly
one pair in §'.

Matchings and perfect matchings are objects that will recur frequently
throughout the book; they arise naturally in modeling a wide range of algo-
rithmic problems. In the present situation, a perfect matching corresponds
simply to a way of pairing off the men with the women, in such a way that
everyone ends up married to somebody, and nobody is married to more than
one person—there is neither singlehood nor polygamy.

‘Now we can add the notion of preferences to this setting. Each manm e M
ranks all the women; we will say that m prefers w to w' if m ranks w higher
than w’. We will refer to the ordered ranking of m as his preference list. We will
not allow ties in the ranking. Each woman, analogously, ranks all the men.

Given a perfect matching S, what can go wrong? Guided by our initial
motivation in terms of employers and applicants, we should be worried about
the following situation: There are two pairs (m,w) and (m',w’) in S (as
depicted in Figure 1.1) with the property that m prefers w’ to w, and w' prefers
m to m’. In this case, there’s nothing to stop m and w' from abandoning their
current partners and heading off together; the set of marriages is not self-
enforcing. We’ll say that such a pair (m, w') is an instability with respect to S:
(m,w') does not belong to S, but each of m and w’ prefers the other to their
partner in S.

Our goal, then, is a set of marriages with no instabilities. We’ll say that
a matching S is stable if (i) it is perfect, and (ii) there is no instability with
respect to S. Two questions spring immediately to mind: :

o Does there exist a stable matching for every set of preference lists?

o Given a set of preference lists, can we efficiently construct a stable
matching if there is one?

Some Examples To illustrate these definitions, consider the following two
very simple instances of the Stable Matching Problem.

First, suppose we have a set of two men, {m, m'}, and a set of two women,
{w, w'}. The preference lists are as follows:

m prefers w to w'.

m' prefers w to w'.
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w prefers m to m’.

w' prefers m to m’.

If we think about this set of preference lists intuitively, it represents complete
agreement: the men agree on the order of the women, and the women agree
on the order of the men. There is a unique stable matching here, consisting
of the pairs (m, w) and (m’, w'). The other perfect matching, consisting of the
pairs (', w) and (m, w'), would not be a stable matching, because the pair
(m, w) would form an instability with respect to this matching. (Both m and
w would want to leave their respective partners and pair up.)

Next, here’s an example where things are a bit more intricate. Suppose
the preferences are

m prefers w to w'.
m' prefers w' to w.
w prefers m’ to m.

w' prefers m to m’.

What’s going on in this case? The two men’s preferences mesh perfectly with
each other (they rank different women first), and the two women’s preferences
likewise mesh perfectly with each other. But the men’s preferences clash
completely with the women’s preferences.

In this second example, there are two different stable matchings. The
matching consisting of the pairs (m, w) and (m’, w') is stable, because both
men are as happy as possible, so neither would leave their matched partner.
But the matching consisting of the pairs (m’, w) and (m, w’) is also stable, for
the complementary reason that both women are as happy as possible. This is
an important point to remember as we go forward—it’s possible for an instance
to have more than one stable matching.

/A Designing the Algorithm

We now show that there exists a stable matching for every set of preference
lists among the men and women. Moreover, our means of showing this will
also answer the second question that we asked above: we will give an efficient
algorithm that takes the preference lists and constructs a stable matching.

Let us consider some of the basic ideas that.motivate the algorithm.

o Initially, everyone is unmarried. Suppose an unmarried man m chooses
the woman w who ranks highest on his preference list and proposes to
her. Can we declare immediately that (m, w) will be one of the pairs in our
final stable matching? Not necessarily: at some point in the future, a man
m’ whom w prefers may propose to her. On the other hand, it would be
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dangerous for w to reject m right away; she may never receive a proposal
Woman w will become from someone she ranks as highly as m. So a natural idea would be to

engaged fo m if she have the pair (m, w) enter an intermediate state—engagement.
prefers him to m’.

o Suppose we are now at a state in which some men and women are free—

Q not engaged—and some are engaged. The next step could look like this.

An arbitrary free man m chooses the highest-ranked woman w to whom

Q he has not yet proposéd, and he proposes to her. If w is also free, then m

(7 ) ( ) and w become engaged. Otherwise, w is already engaged to some other

man m’. In this case, she determines which of m or m’ ranks higher

Q-—————-O on her preference list; this man becomes engaged to w and the other
becomes free.

o Finally, the algorithm will terminate when no one is free; at this morgen?,

all engagements are declared final, and the resulting perfect matching is

returned.

: Here is a concrete description of the Gale-Shapley algorithm, with Fig-

Figure 1.2 An intermediate  ure 1.2 depicting a state of the algorithm.

state of the G-S algorithm

when a free man m is propos-
ing to a woman w. Tnitially all meM and weW are free

While there is a man m who is free and hasn't proposed to

every woman
Choose such a man m
Let w be the highest-ranked woman in m's preference list
to whom m has not yet proposed
If w is free then
(m,w) become engaged
Else w is currently engaged to m’
If w prefers m’ to m then
m remains free
Else w prefers m to m’
(m, w) become engaged
m’ becomes free
Endif
Endif
Endwhile
Return the set § of engaged pairs

An intriguing thing is that, although the G-S algorithm is quite simple
to state, it is not immediately obvious that it returns a stable matching, or
even a perfect matching. We proceed to prove this now, through a sequence

of intermediate facts.
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/A% Analyzing the Algorithm

First consider the view of a woman w during the execution of the algorithm.
For a while, no one has proposed to her, and she is free. Then a man m may
propose to her, and she becomes engaged. As time goes on, she may receive
additional proposals, accepting those that increase the rank of her partner. So
we discover the following.

(1.1) w remains engaged from the point at which she receives her first
proposal; and the sequence of partners to which she is engaged gets better and
better (in terms of her preference list).

The view of a man m during the execution of the algorithm is rather
different. He is free until he proposes to the highest-ranked woman on his
list; at this point he may or may not become engaged. As time goes on, he
may alternate between being free and being engaged; however, the following
property does hold.

(1.2)  The sequence of women to whom m proposes gets worse and worse (in
terms of his preference list).

Now we show that the algorithm terminates, and give a bound on the
maximum number of iterations needed for termination.

(1.3) TheGS algoriihm terminates after at most n? iterations of the While
loop. :

Proof. A useful strategy for upper-bounding the running time of an algorithm,
as we are trying to do here, is to find a measure of progress. Namely, we seek
some precise way of saying that each step taken by the algorithm brings it
closer to termination.

In the case of the present algorithm, each iteration consists of some man
proposing (for the only time) to a woman he has never proposed to before. So
if we let P(t) denote the set of pairs (m, w) such that m has proposed to w by
the end of iteration ¢, we see that for all ¢, the size of P(t + 1) is strictly greater
than the size of P(t). But there are only n? possible pairs of men and women
in total, so the value of P(-) can increase at most n? times over the course of
the algorithm. It follows that there can be at most n? itetations. m

Two points are worth noting about the previous fact and its proof. First,
there are executions of the algorithm (with certain preference lists) that can
involve close to n? iterations, so this analysis is not far from the best possible.
Second, there are many quantities that would not have worked well as a
progress measure for the algorithm, since they need not strictly increase in each
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iteration. For example, the number of free individuals could remain constant
from one iteration to the next, as could the number of engaged pairs. Thus,
these quantities could not be used directly in giving an upper bound on the
maximum possible number of iterations, in the style of the previous paragraph.
Let us now establish that the set S returned at the termination of the
algorithm is in fact a perfect matching. Why is this not immediately obvious?
Essentially, we have to show that no man can “fall off” the end of his preference
list; the only way for the While loop to exit is for there to be no free man. In
this case, the set of engaged couples would indeed be a perfect matching.

So the main thing we need to show is the following.

(1.4) If mis free at some point in the execution of the algorithm, then there
is a wornan to whom he has not yet proposed.

Proof. Suppose there comes a point when m is free but has already proposed
to every woman. Then by (1.1), each of the n women is engaged at this point
in time. Since the set of engaged pairs forms a matching, there must also be
n engaged men at this point in time. But there are only n men total, and m is
not engaged, so this is a contradiction. =

(1.5) The set S returned at termination is a perfect matching.

Proof. The set of engaged pairs always forms a matching. Let us suppose that
the algorithm terminates with a free man m. At termination, it must be the
case that m had already proposed to every woman, for otherwise the While
loop would not have exited. But this contradicts (1.4), which says that there
cannot be a free man who has proposed to every woman. =

Finally, we prove the main property of the algorithm—namely, that it
results in a stable matching.

(1.6) Consider an execution of the G-S algorithm that returns a set of pairs
S. The set S is a stable matching.

Proof. We have already seen, in (1.5), that S is a perfect matching. Thus, to
prove S is a stable matching, we will assume that there is an instability with
respect to S and obtain a contradiction. As defined earlier, such an instability
would involve two pairs, (m, w) and (m’, w’), in S with the properties that

o m prefers w' to w, and

e w' prefers m to m’.

In the execution of the algorithm that produced S, m’s last proposal was, by
definition, to w. Now we ask: Did m propose to w' at some earlier point in
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this execution? If he didn’t, then w must occur higher on m’s preference list
than w', contradicting our assumption that m prefers w’ to w. If he did, then
he was rejected by w' in favor of some other man m”, whom w' prefers to m.
m’ is the final partner of w’, so either m” = m’ or, by (1.1), w’ prefers her final
partner mm’ to m”; either way this contradicts our assumption that w' prefers
mtom'.

It follows that S is a stable matching. =

Extensions

We began by defining the notion of a stable matching; we have just proven
that the G-S algorithm actually constructs one. We now consider some further
questions about the behavior of the G-S algorithm and its relation to the
properties of different stable matchings.

To begin with, recall that we saw an example earlier in which there could
be multiple stable matchings. To recap, the preference lists in this example
were as follows:

m prefers w to w'.
m’ prefers w’ to w.
w prefers m’ to m.

w' prefers m to m'.

Now, in any execution of the Gale-Shapley algorithm, m will become engaged
to w, m’ will become engaged to w’ (perhaps in the other order), and things
will stop there. Thus, the other stable matching, consisting of the pairs (m’, w)
and (m, w'), is not attainable from an execution of the G-S algorithm in which
the men propose. On the other hand, it would be reached if we ran a version of
the algorithm in which the women propose. And in larger examples, with more
than two people on each side, we can have an even larger collection of possible
stable matchings, many of them not achievable by any natural algorithm.

This example shows a certain “unfairness” in the G-S algorithm, favoring
men. If the men’s preferences mesh perfectly (they all list different women as
their first choice), then in all runs of the G-S algorithm all men end up matched
with their first choice, independent of the preferences of the women. If the
women’s preferences clash completely with the men’s preferences (as was the
case in this example), then the resulting stable matching is as bad as possible
for the women. So this simple set of preference lists compactly summarizes a
world in which someone is destined to end up unhappy: women are unhappy
if men propose, and men are unhappy if women propose.

Let’s now analyze the G-S algorithm in more detail and try to understand
how general this “unfairness” phenomenon is.
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To begin with, our example reinforces the point that the G-S algorithm
is actually underspecified: as long as there is a free man, we are allowed to
choose any free man to make the next proposal. Different choices specify
different executions of the algorithm; this is why, to be careful, we stated (1.6)
as “Consider an execution of the G-S algorithm that returns a set of pairs S,”
instead of “Consider the set S returned by the G-S algorithm.”

Thus, we encounter another very natural question: Do all executions of
the G-S algorithm yield the same matching? This is a genre of question that
arises in many settings in computer science: we have an algorithm that runs
asynchronously, with different independent components performing actions
that can be interleaved in complex ways, and we want o know how much
variability this asynchrony causes in the final outcome. To consider a very
different kind of example, the independent components may not be men and
women but electronic components activating parts of an airplane wing; the
effect of asynchrony in their behavior can be a big deal.

In the present context, we will see that the answer to our question is
surprisingly clean: all executions of the G-S algorithm yield the same matching.
We proceed to prove this now.

All Executions Yield the Same Matching There are a number of possible
ways to prove a statement such as this, many of which would result in quite
complicated arguments. It turns out that the easiest and most informative ap-
proach for us will be to uniquely characterize the matching that is obtained and
then show that all executions result in the matching with this characterization.

What is the characterization? We’ll show that each man ends up with the
“best possible partner” in a concrete sense. (Recall that this is true if all men
prefer different women.) First, we will say that a woman w is a valid partner
of a man m if there is a stable matching that contains the pair (m, w). We will
say that w is the best valid partner of m if w is a valid partner of m, and no
woman whom m ranks higher than w is a valid partner of his. We will use
best(m) to denote the best valid partner of m. '

Now, let §* denote the set of pairs {(mm, best(mm)) : m € M}. We will prove
the following fact.

(1.7)  Every execution of the G-S algorithm results in the set S*. o

This statement is surprising at a number of levels. First of all, as defined,
there is no reason to believe that S* is a matching at all, let alone a stable
matching. After all, why couldn’t it happen that two men have the same best
valid partner? Second, the result shows that the G-S algorithm gives the best

- possible outcome for every man simultaneously; there is no stable matching

in which any of the men could have hoped to do better. And finally, it answers
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our question above by showing that the order of proposals in the G-S algorithm
has absolutely no effect on the final outcome.

Despite all this, the proof is not so difficult.

Proof. Let us suppose, by way of contradiction, that some execution & of the
G-S algorithm results in a matching S in which some man is paired with a
woman who is not his best valid partner. Since men propose in decreasing
order of preference, this means that some man is rejected by a valid partner
during the execution € of the algorithm. So consider the first moment during
the execution € in which some man, say m, is rejected by a valid partner w.
Again, since men propose in decreasing order of preference, and since this is
the first time such a rejection has occurred, it must be that w is m’s best valid
partner best(m).

The rejection of m by w may have happened either because m proposed
and was turned down in favor of w’s existing engagement, or because w broke
her engagement to m in favor of a better proposal. But either way, at this
moment w forms or continues an engagement with a man m’ whom she prefers
to m.

Since w is a valid partner of m, there exists a stable matching S’ containing
the pair (m, w). Now we ask: Who is m’ paired with in this matching? Suppose
it is a woman w' # w.

Since the rejection of m by w was the first rejection of a man by a valid
partner in the execution &, it must be that i’ had not been rejected by any valid
partner at the point in € when he became engaged to w. Since he proposed in
decreasing order of preference, and since w' is clearly a valid partner of v/, it
must be that m’ prefers w to w'. But we have already seen that w prefers m’
to m, for in execution & she rejected m in favor of m’. Since (m’, w) ¢, it
follows that (7n’, w) is an instability in S'.

This contradicts our claim that § is stable and hence contradicts our initial
assumption. m

So for the men, the G-S algorithm is ideal. Unfortunately, the same cannot
be said for the women. For a woman w, we say that m is a valid partner if
there is a stable matching that contains the pair (;m, w). We say that m is the
worst valid partner of w if m is a valid partner of w, and no man whom w
ranks lower than m is a valid partner of hers.

(1.8) In the stable matching S*, each woman is paired with her worst valid
partner.

Proof. Suppose there were a pair (m, w) in S* such that m is not the worst
valid partner of w. Then there is a stable matching S’ in which w is paired

11
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with a man m’ whom she likes less than m. In §’, m is paired with a woman
w' # w; since w is the best valid partner of m, and w' is a valid partner of m,
we see that m prefers w to w'.

But from this it follows that (m, w) is an instability in S, contradicting the
claim that S’ is stable and hence contradicting our initial assumption. =

Thus, we find that our simple example above, in which the men’s pref-
erences clashed with the women’s, hinted at a very general phenomenon: for
any input, the side that does the proposing in the G-5 algorithm ends up with
the best possible stable matching (from their perspective), while the side that
does not do the proposing correspondingly ends up with the worst possible
stable matching.

1.2 Five Representative Problems

The Stable Matching Problem provides us with a rich example of the process of
algorithm design. For many problems, this process involves a few significant
steps: formulating the problem with enough mathematical precision that we
can ask a concrete question and start thinking about algorithms to solve
it; designing an algorithm for the problem; and analyzing the algorithm by
proving it is correct and giving a bound on the running time so as to establish
the algorithm’s efficiency.

This high-level strategy is carried out in practice with the help of a few
fundamental design techniques, which are very useful in assessing the inherent
complexity of a problem and in formulating an algorithm to solve it. As in any
area, becoming familiar with these design techniques is a gradual process; but
with experience one can start recognizing problems as belonging to identifiable
genres and appreciating how subtle changes in the statement of a problem can
have an enormous effect on its computational difficulty.

To get this discussion started, then, it helps to pick out a few representa-
tive milestones that we’ll be encountering in our study of algorithms: cleanly
formulated problems, all resembling one another at a general level, but differ-
ing greatly in their difficulty and in the kinds of approaches that one brings
to bear on them. The first three will be solvable efficiently by a sequence of
increasingly subtle algorithmic techniques; the fourth marks a major turning
point in our discussion, serving as an example of a problem believed to be un-
solvable by any efficient algorithm; and the fifth hints at a class of problems
believed to be harder still.

The problems are self-contained and are all motivated by computing

applications. To talk about some of them, though, it will help to use the
terminology of graphs. While graphs are a common topic in earlier computer
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science courses, we’ll be introducing them in a fair amount of depth in
Chapter 3; due to their enormous expressive power, we’ll also be using them
extensively thronghout the book. For the discussion here, it’s enough to think
of a graph G as simply a way of encoding pairwise relationships among a set
of objects. Thus, G consists of a pair of sets (V, E)—a collection V of nodes
and a collection E of edges, each of which “joins” two of the nodes. We thus
represent an edge e € E as a two-element subset of V: e = {u, v} for some
u,v €V, where we call u and v the ends of e. We typically draw graphs as in
Figure 1.3, with each node as a small circle and each edge as a line segment
joining its two ends.

Let’s now turn to a discussion of the five representative problems.

Interval Scheduling

Consider the following very simple scheduling problem. You have a resource—
it may be a lecture room, a supercomputer, or an electron microscope—and
many people request to use the resource for periods of time. A request takes
the form: Can I reserve the resource starting at time s, until time f2 We will
assume that the resource can be used by at most one person at a time. A
scheduler wants to accept a subset of these requests, rejecting all others, so
that the accepted requests do not overlap in time. The goal is to maximize the
number of requests accepted.

More formally, there will be n requests labeled 1, . . ., n, with each request
i specifying a start time s; and a finish time f;. Naturally, we have s; < f; for all
i. Two requests  and j are compatible if the requested intervals do not overlap:
that is, either request i is for an earlier time interval than request j (f; < 5i)s
or request { is for a later time than request j (f; < s;). We’ll say more generally
that a subset A of requests is compatible if all pairs of requests i,j € A, i #j are

compatible. The goal is to select a compatible subset of requests of maximum
possible size.

We illustrate an instance of this Interval Scheduling Problem in Figure 1.4.
Note that there is a single compatible set of size 4, and this is the largest
compatible set.

Y

Figure 1.4 An instance of the Interval Scheduling Problem.
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We will see shortly that this problem can be solved by a very natural
algorithm that orders the set of requests according to a certain heuristic and
then “greedily” processes them in one pass, selecting as large a compatible
subset as it can. This will be typical of a class of greedy algorithms that we
will consider for various problems——myopic rules that process the input one
piece at a time with no apparent look-ahead. When a greedy algorithm can be
shown to find an optimal solution for all instances of a problem, it’s often fairly
surprising. We typically learn something about the structure of the underlying
problem from the fact that such a simple approach can be optimal.

Weighted Interval Scheduling

In the Interval Scheduling Problem, we sought to maximize the number of
requests that could be accommodated simultanecusly. Now, suppose more
generally that each request interval i has an associated value, or weight,
v; > 0; we could picture this as the amount of money we will make from
the it individual if we schedule his or her request. Our goal will be to find a
compatible subset of intervals of maximum total value. ‘

The case in which v; = 1 for each { is simply the basic Interval Scheduling
Problem; but the appearance of arbitrary values changes the nature of the
maximization problem quite a bit. Consider, for example, that if v; exceeds
the sum of all other v;, then the optimal solution must include interval 1
regardless of the configuration of the full set of intervals. So any algorithm
for this problem must be very sensitive to the values, and yet degenerate to a
method for solving (unweighted) interval scheduling when all the values are
equal to 1. ‘

There appears to be no simple greedy rule that walks through the intervals
one at a time, making the correct decision in the presence of arbitrary values.
Instead, we employ a technique, dynamic programming, that builds up the
optimal value over all possible solutions in a compact, tabular way that leads
to a very efficient algorithm.

Bipartite Matching

When we considered the Stable Matching Problem, we defined a matching to
be a set of ordered pairs of men and women with the property that each man
and each woman belong to at most one of the ordered pairs. We then defined
a perfect matching to be a matching in which every man and every woman
belong to some pair.

We can express these concepts more generally in terms of graphs, and in

* order to do this it is useful to define the notion of a bipartite graph. We say that

a graph G = (V, E) is bipartite if its node set V can be partitioned into sets X
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and Y in such a way that every edge has one end in X and the othef end in Y.
A bipartite graph is pictured in Figure 1.5; often, when we want to emphasize
a graph’s “bipartiteness,” we will draw it this way, with the nodes in X and
Y in two parallel columns. But notice, for example, that the two graphs in

Figure 1.3 are also bipartite.

Now, in the problem of finding a stable matching, matchings were built
from pairs of men and women. In the case of bipartite graphs, the edges are
pairs of nodes, so we say that a matching in a graph G = (V, E) is a set of edges
M C E with the property that each node appears in at most one edge of M.
M is a perfect matching if every node appears in exactly one edge of M.

To see that this does capture the same notion we encountered in the Stable
Matching Problem, consider a bipartite graph G’ with a set X of n men, aset Y
of n women, and an edge from every node in X to every node in Y. Then the
matchings and perfect matchings in G’ are precisely the matchings and perfect
matchings among the set of men and women.

In the Stable Matching Problem, we added preferences to this picture. Here,
we do not consider preferences; but the nature of the problem in arbitrary
bipartite graphs adds a different source of complexity: there is not necessarily
an edge from every x € X to every y € Y, so the set of possible matchings has
quite a complicated structure. In other words, it is as though only certain pairs
of men and women are willing to be paired off, and we want to figure out
how to pair off many people in a way that is consistent with this. Consider,
for example, the bipartite graph G in Figure 1.5: there are many matchings in
G, but there is only one perfect matching. (Do you see it?)

Matchings in bipartite graphs can model situations in which objects are
being assigned to other objects. Thus, the nodes in X can represent jobs, the
nodes in Y can represent machines, and an edge (x;, ¥ can indicate that
machine y; is capable of processing job x;. A perfect matching is then a way
of assigning each job to a machine that can process it, with the property that
each machine is assigned exactly one job. In the spring, computer science
departments across the country are often seen pondering a bipartite graph in
which X is the set of professors in the department, Y is the set of offered
courses, and an edge (x;, y;) indicates that professor x; is capable of teaching
course y;. A perfect matching in this graph consists of an assignment of each
professor to a course that he or she can teach, in such a way that every course
is covered.

Thus the Bipartite Matching Problem is the following: Given an arbitrary
bipartite graph G, find a matching of maximum size. If |X| = | Y| = n, then there
is a perfect matching if and only if the maximum matching has size n. We will
find that the algorithmic techniques discussed earlier do not seem adequate
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Figure 1.6 A graph whose
largest independent set has
size 4.
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for providing an efficient algorithm for this problem. There is, however, a very
elegant and efficient algorithm to find a maximum matching; it inductively
builds up larger and larger matchings, selectively backtracking along the way.
This process is called augmentation, and it forms the central component in a
large class of efficiently solvable problems called nefwork flow problems.

Independent Set

Now let’s talk about an extremely general problem, which includes most of
these earlier problems as special cases. Given a graph G=(V,E), we say
a set of nodes S C V is independent if no two nodes-in S are joined by an
edge. The Independent Set Problem is, then, the following: Given G, find an
independent set that is as large as possible. For example, the maximum size of
an independent set in the graph in Figure 1.6 is four, achieved by the.four-node
independent set {1, 4, 5, 6}.

The Independent Set Problem encodes any situation in which you are
trying to choose from among a collection of objects and there are pairwise
conflicts among some of the objects. Say you have n friends, and some pairs
of them don’t get along. How large a group of your friends can you invite to
dinner if you don’t want any interpersonal tensions? This is simply the largest
independent set in the graph whose nodes are your friends, with an edge
between each conflicting pair.

Interval Scheduling and Bipartite Matching can both be encoded as special
cases of the Independent Set Problem. For Interval Scheduling, define a graph
G = (V,E) in which the nodes are the intervals and there is an edge between
each pair of them that overlap; the independent sets in G are then just the
compatible subsets of intervals. Encoding Bipartite Matching as a special case
of Independent Set is a little trickier to see. Given a bipartite graph G’ = (V', E),
the objects being chosen are edges, and the conflicts arise between two edges
that share an end. (These, indeed, are the pairs of edges that cannot belong
to a common matching.) So we define a graph G = (V,E) in which the node
set V is equal to the edge set E' of G'. We define an edge between each pair
of elements in V that correspond to edges of G’ with a common end. We can
now check that the independent sets of G are precisely the matchings of G'.
While it is not complicated to check this, it takes a little concentration to deal
with this type of “edges-to-nodes, nodes-to-edges” transformation.?

2 ror those who are curious, we note that not every instance of the Independent Set Problem can arise

_in this way from Interval Scheduling or from Bipartite Matching; the full independent Set Problem

really is more general. The graph in Figure 1.3(a) cannot arise as the “conflict graph” in an instance of
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© Given the generality of the Independent Set Problem, an efficient algorithm
to solve it would be quite impressive. It would have to implicitly contain
algorithms for Interval Scheduling, Bipartite Matching, and a host of other
natural optimization problems.

The current status of Independent Set is this: no efficient algorithm is
known for the problem, and it is conjectured that no such algorithm exists.
The obvious brute-force algorithm would try all subsets of the nodes, checking
each to seeifitis independent, and then recording the largest one encountered.
1t is possible that this is close to the best we can do on this problem. We will
see later in the book that Independent Set is one of a large class of problems
that are termed NP-complete. No efficient algorithm is known for any of them;
but they are all equivalent in the seunse that a solution to any one of them
would imply, in a precise sense, a solution to all of them.

Here’s a natural question: Is there anything good we can say about the
complexity of the Independent Set Problem? One positive thing is the following:
If we have a graph G on 1,000 nodes, and we want to convince you that it
contains an independent set S of size 100, then it’s quite easy. We simply
show you the graph G, circle the nodes of S in red, and let you check that
no two of them are joined by an edge. So there really seems to be a great
difference in difficulty between checking that something is a large independent
set and actually finding a large independent set. This may look like a very basic
observation—and it is—but it turns out to be crucial in understanding this class
of problems. Furthermore, as we’ll see next, it's possible for a problem to be
so hard that there isn’t even an easy way to “check” solutions in this sense.

Competitive Facility Location

Finally, we come to our fifth problem, which is based on the following two-
player game. Consider two large companies that operate café franchises across
the country—let’s call them JavaPlanet and Queequeg’s Coffee—and they are
currently competing for market share in a geographic area. First JavaPlanet
opens a franchise; then Queequeg’s Coffee opens a franchise; then JavaPlanet;
then Queequeg’s; and so on. Suppose they must deal with zoning regulations
that require no two franchises be located too close together, and each is trying
to make its locations as convenient as possible. Who will win?

Let’s make the rules of this “game” more concrete. The geographic region
in question is divided into n zones, labeled 1,2, ..., n. Each zone i has a

Interval Scheduling, and the graph in Figure 1.3(b) cannot arise as the “conflict graph” in an instance
of Bipartite Matching.
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Figure 1.7 An instance of the Competitive Facility Location Problem.

value b;, which is the revenue obtained by either of the companies if it opens
a franchise there. Finally, certain pairs of zones (i, j) are adjacent, and local
zoning laws prevent two adjacent zones from each containing a franchise,
regardless of which company owns them. (They also prevent two franchises
from being opened in the same zone.) We model these conflicts via a graph
G = (V,E), where V is the set of zones, and (i,j) is an edge in E if the
zomes i and j are adjacent. The zoning requirement then says that the full
set of franchises opened must form an independent set in G.

Thus our game consists of two players, P, and P,, alternately selecting
nodes in G, with P; moving first. At all times, the set of all selected nodes
must form an independent set in G. Suppose that player P, has a target bound
B, and we want to know: is there a strategy for P, so that no matter how P;
plays, P, will be able to select a set of nodes with a total value of at least B?
We will call this an instance of the Competitive Facility Location Problemn.

Consider, for example, the instance pictured in Figure 1.7, and suppose
that P,’s target bound is B = 20. Then P, does have a winning strategy. On the
other hand, if B = 25, then P, does not.

One can work this out by looking at the figure for a while; but it requires
some amount of case-checking of the form, “If P, goes here, then P, will go
there; but if P, goes over there, then P, will go here. . . . ” And this appears to
be intrinsic to the problem: not only is it computationally difficult to determine
whether P, has a winning strategy; on a reasonably sized graph, it would even
be hard for us to convince you that P, has a winning strategy. There does not
seem 1o be a short proof we could present; rather, we'd have o lead you on a
lengthy case-by-case analysis of the set of possible moves.

This is in contrast to the Independent Set Problem, where we believe that
finding a large solution is hard but checking a proposed large solution is easy.
This contrast can be formalized in the class of PSPACE-complete problems, of
which Competitive Facility Location is an example. PSPACE-complete prob-
lems are believed to be strictly harder than NP-complete problems, and this
conjectured lack of short “proofs” for their solutions is one indication of this
greater hardness. The notion of PSPACE-completeness turns out {o capture a
large collection of problems involving game-playing and planning; many of

* these are fundamental issues in the area of artificial intelligence.

Solved Exercises

Solved Exercises

Solved Exercise 1

Consider a town with n men and n women seeking to get married to one
another. Each man has a preference list that ranks all the women, and each
woman has a preference list that ranks all the men.

The set of all 2n people is divided into two categories: good people and
bad people. Suppose that for some number k, 1 <k <n — 1, there are k good
men and & good women; thus there are n — k bad men and nn — k bad women.

Everyone would rather marry any good person than any bad person.
Formally, each preference list has the property that it ranks each good person
of the opposite gender higher than each bad person of the opposite gender: its
first k entries are the good people (of the opposite gender) in some order, and
its next n — k are the bad people (of the opposite gender) in some order.

Show that in every stable matching, every good man is married to a good
womarn.

Solution A natural way to get started thinking about this problem is to
assume the claim is false and try to work toward obtaining a contradiction.
What would it mean for the claim to be false? There would exist some stable
matching M in which a good man m was married to a bad woman w.

Now, let’s consider what the other pairs in M look like. There are k good
men and k good women. Could it be the case that every good woman is married
to a good man in this matching M? No: one of the good men (namely, m) is
already married to a bad woman, and that leaves only k - 1 other good men.
So even if all of them were married to good women, that would still leave some
good woman who is married to a bad man.

Let w’ be such a good woman, who is married to a bad man. It is now
easy to identify an instability in M: consider the pair (m, w'). Each is good,
but is married to a bad partner. Thus, each of m and w’ prefers the other to
their current partner, and hence (m, w') is an instability. This contradicts our
assumption that M is stable, and hence concludes the proof.

Solved Exercise 2

We can think about a generalization of the Stable Matching Problem in which
certain man-woman pairs are explicitly forbidden. In the case of employers and
applicants, we could imagine that certain applicants simply lack the necessary
qualifications or certifications, and so they cannot be emploved at certain
companies, however desirable they may seem. Using the analogy to marriage
between men and women, we have a set M of n men, a set W of n women,
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and a set F € M x W of pairs who are simply not allowed to get married. Each
man m ranks all the women w for which (m, w) ¢ F, and each woman w’ ranks
all the men m’ for which (m/, w’) €F.

In this more general setting, we say that a matching S is stable if it does
not exhibit any of the following types of instability.

(i) There are two pairs (m,w) and (', w’) in S with the property that

(m,w') ¢ F, m prefers w’ to w, and w’ prefers m to m'. (The usual kind
_ of instability.)

(ii) There is a pair (m,w) € S, and a man 7/, so that m’ is not part of any
pair in the matching, (', w) ¢ F, and w prefers m’ to m. (A single man
is more desirable and not forbidden.) _

(iii) There is a pair (m, w) € S, and a woman w’, so that w’ is not part of
any pair in the matching, (m, w') ¢ F, and m prefers w' to w. (A single
woman is more desirable and not forbidden.)

(iv) There is a man m and a woman w, neither of whom is part of any pair

in the matching, so that (m,w) ¢ F. (There are two single people with’

nothing preventing them from getting married to each other.)

Note that under these more general definitions, a stable matching need not be
a perfect matching.

Now we can ask: For every set of preference lists and every set of forbidden
pairs, is there always a stable matching? Resolve this question by doing one of
the following two things: (a) give an algorithm that, for any set of preference
lists and forbidden pairs, produces a stable matching; or (b) give an example
of a set of preference lists and forbidden pairs for which there is no stable
matching.

Solution The Gale-Shapley algorithm is remarkably robust to variations on
the Stable Matching Problem. So, if you’re faced with a new variation of the
problem and can’t find a counterexample to stability, it’s often a good idea to
check whether a direct adaptation of the G-S algorithm will in fact produce
stable matchings.

That turns out to be the case here. We will show that there is always a
stable matching, even in this more general model with forbidden pairs, and
we will do this by adapting the G-S algorithm. To do this, let’s consider why
the original G-S algorithm can’t be used directly. The difficulty, of course, is
that the G-S algorithm doesn’t know anything about forbidden pairs, and so
the condition in the While loop,

While there is a man m who is free and hasn't proposed to
every woman,

Solved Exercises

won’t work: we don’t want m to propose to a woman w for which the pair
(m,w) is forbidden. :

Thus, let’s consider a variation of the G-S algorithm in which we make
only one change: we modify the While loop to say,

While there is a man m who is free and hasn't proposed to
every woman w for which (m,w) ¢F.

Here is the algorithm in full.

Initially all meM and we W are free
While there is a man m who is free and hasn't proposed to
every woman w for which (m,w)¢F
Choose such a man m
Let w be the highest-ranked woman in m's preference list
to which m has not yet proposed
If w is free then
(m, w) become engaged
Else w is currently engaged to m’
If w prefers m' to m then
m remains free
Else w prefers m to m'
(m, w) become engaged
m’ becomes free
Endif
Endif
Endwhile

Return the set S of engaged pairs

We now prove that this yields a stable matching, under our new definition
of stability.

To begin with, facts (1.1), (1.2), and (1.3) from the text remain true (in
particular, the algorithm will terminate in at most n? iterations). Also, we
don’t have to worry abont establishing that the resulting matching S is perfect
(indeed, it may not be). We also notice an additional pairs'of facts. If m is
a man who is not part of a pair in S, then m must have proposed to every
nonforbidden woman; and if w is a woman who is not part of a pair in S, then
it must be that no man ever proposed to w.

Finally, we need only show

(1.9)  There is no instability with respect to the returned matching S.
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Proof. Our general definition of instability has four parts: This means that we
have to make sure that none of the four bad things happens.

First, suppose there is an instability of type (i), consisting of pairs (m, w)
and (', w') in S with the property that (m, w') ¢ F, m prefers w' to w, and w’
prefers m to m’. It follows that /. must have proposed to w'; so w' rejected m,
and thus she prefers her final partner to m—a contradiction.

Next, suppose there is an instability of type (ii), consisting of a pair
(m,w) € S, and a man m’, so that m’ is not part of any pair in the matching,
(', w) ¢ F, and w prefers m’ to m. Then m’ must have proposed to w and
been rejected; again, it follows that w prefers her final partner to m’'—a
contradiction.

Third, suppose there is an instability of type (iii), consisting of a pair
(m,w) € S, and a woman w/, so that w’ is not part of any. pair in the matching,
(m,w) ¢ F, and m prefers w’ to w. Then no man proposed to w' at all;
in particular, m never proposed to w/, and so he must prefer w to w'—a
contradiction.

Finally, suppose there is an instability of type (iv), consisting of a man

m and a woman w, neither of which is part of any pair in the matching,
so that (m, w) ¢ F. But for m to be single, he must have proposed to every
nonforbidden woman; in particular, he must have proposed to w, which means
she would no longer be single—a contradiction. =

Exercises

1. Decide whether you think the following statement is true or false. If it is
true, give a short explanation. If it is false, give a counterexample.

True or false? In every instance of the Stable Matching Problem, there is a
stable matching containing a pair (m,w) such that m is ranked first on the
preference list of w and w is ranked first on the preference list of m.

2. Decide whether you think the following statement is true or false. If it is
true, give a short explanation. If it is false, give a counterexample.

True or false? Consider an instance of the Stable Matching Problem in which
there exists a man m and a woman w such that m is ranked first on the
preference list of w and w is ranked first on the preference list of m. Then in
every stable matching S for this instance, the pair (m, w) belongs to S.

3. There are many other settings in which we can ask questions related
to some type of “stability” principle. Here's one, involving competition
between two enterprises.

Exercises

Suppose we have two television networks, whom we'll call A and B.
There are n prime-time programming slots, and each network has n TV
shows. Each network wants to devise a schedule—an assignment of each
show to a distinct slot—so as to attract as much market share as possible.

Here is the way we determine how well the two networks perform
relative to each other, given their schedules. Each show has a fixed rating,
which is based on the number of people who watched it last year; we'll
assume that no two shows have exactly the same rating. A network wins a
given time slot if the show that it schedules for the time slot has a larger
rating than the show the other network schedules for that time slot. The
goal of each network is to win as many time slots as possible.

Suppose in the opening week of the fall season, Network A reveals a
schedule $ and Network B reveals a schedule T. On the basis of this pair
of schedules, each network wins certain time slots, according to the rule
above. We'll say that the pair of schedules (S, T) is stable if neither network
can unilaterally change its own schedule and win more time slots. That
is, there is no schedule §’ such that Network A wins more slots with the
pair (5, T) than it did with the pair (S, T); and symmetrically, there is no
schedule T’ such that Network B wins more slots with the pair (S, T') than
it did with the pair (S, T).

The analogue of Gale and Shapley’s question for this kind of stability
is the following: For every set of TV shows and ratings, is there always
a stable pair of schedules? Resolve this question by doing one of the
following two things:

{a) give an algorithm that, for any set of TV shows and associated
ratings, produces a stable pair of schedules; or

(b) give an example of a set of TV shows and associated ratings for
which there is no stable pair of schedules.

. Gale and Shapley published their paper on the Stable Matching Problem

in 1962; but a version of their algorithm had already been in use for
ten years by the National Resident Matching Program, for the problem of
assigning medical residents to hospitals.

Basically, the situation was the following. There were m hospitals,
each with a certain number of available positions for hiring residents. |
There were n medical students graduating in a given year, each interested
in joining one of the hospitals. Each hospital had a ranking of the students
in order of preference, and each student had a ranking of the hospitals
in order of preference. We will assume that there were more students
graduating than there were slots available in the m hospitals.
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The interest, naturally, was in finding a way of assigning each stu‘dent
to at most one hospital, in such a way that all available positions in all
hospitals were filled. (Since we are assuming a surplus of studt.ants, there
would be some students who do not get assigned to any hospital.)

We say that an assignment of students t0 hospitals is stable if neither
of the following situations arises.

e First type of instability: There are students s and s, and a hospital &,
so that
- sis assigned to h, and
- ¢ is assigned to no hospital, and
- hprefers s’ tos.
e Second type of instability: There are students s and §, and hospitals
h and I/, so that
- sis assigned to h, and
s is assigned to i/, and
h prefers s’ to s, and
' prefers h to k', 7

So we basically have the Stable Matching Problem, except that ()
hospitals generally wantmore than one resident, and (ii) there is a surplus
of medical students.

Show that there is always a stable assignment of students to hospi-
tals, and give an algorithm to find one.

1

t

{

. The Stable Matching Problem, as discussed in the text, assumes that all

men and women have a fully ordered list of preferences. In this problem
we will consider a version of the problemin which men and women can be
indifferent between certain options. As before we have a set M of n men
and a set W of n women. Assume each man and each woman ranks .the
members of the opposite gender, but now we allow ties in the re.mlq.ng.
For example (with n=4), a woman could say that m is ranked in first
place; second place is a tie between m, and ms (she has no preferencel
between them); and m, is in last place. We will say that w prefers m to m
if m is ranked higher than m’ on her preference list (they are not tied).

With indifferences in the rankings, there could be two natural notions
for stability. And for each, we can ask about the existence of stable
matchings, as follows.

(@) A strong instability in a perfect matching S consists of amanm an‘d
a woman w, such that each of m and w prefers the other tq their
partner in S. Does there always exist a perfect matching with no

Exercises

strong instability? Either give an example of a set of men and women
with preference lists for which every perfect matching has a strong
instability; or give an algorithim that is guaranteed to find a perfect
matching with no strong instability.

(b) A weak instability in a perfect matching S consists of a man m and
a woman w, such that their partners in S are w’ and m’, respectively,
and one of the following holds:

- m prefers w to v/, and w either prefers m to m’ or is indifferent
between these two choices; or
- w prefers m to m’, and m either prefers w to w' or is indifferent
between these two choices.
In other words, the pairing hetween m and w is either preferred
by both, or preferred by one while the other is indifferent. Does
there always exist a perfect matching with no weak instability? Either
give an example of a set of men and women with preference lists
for which every perfect matching has a weak instability; or give an

algorithm that is guaranteed to find a perfect matching with no weak
instability.

6. Peripatetic Shipping Lines, Inc., is a shipping company that owns n ships

and provides service to n ports. Each of its ships has a schedule that says,
for each day of the month, which of the ports it's currently visiting, or
whether it’s out at sea. (You can assume the “month” here has m days,
for some m > n.) Each ship visits each port for exactly one day during the
month. For safety reasons, PSL Inc. has the following strict requirement:

(1) No two ships can be in the same port on the same day.

The company wants to perform maintenance on all the ships this
month, via the following scheme. They want to truncate each ship’s
schedule: for each ship §;, there will be some day when it arrives in its
scheduled port and simply remains there for the rest of the month (for
maintenance). This means that S; will not visit the remaining ports on
its schedule (if any) that month, but this is okay. So the truncation of
S;i's schedule will simply consist of its original schedule up to a certain
specified day on which it is in a port P; the remainder of the truncated
schedule simply has it remain in port P. ‘

Now the company’s question to you is the following: Given the sched-
ule for each ship, find a truncation of each so that condition () continues
to hold: no two ships are ever in the same port on the same day.

Show that such a set of truncations can always be found, and give an
algorithm to find them.
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Example. Suppose we have two ships and two ports, and the “month” has
four days. Suppose the first ship’s schedule is

port Py; at sea; port P,; at sea
and the second ship’s schedule is
at sea; port Py; at sea; port P,

Then the (only) way to choose truncations would be to have the first ship
remain in port P, starting on day 3, and have the second ship remain in
port P, starting on day 2.

. Some of your friends are working for CluNet, a builder of large commu-

nication networks, and they are looking at algorithms for switching in a
particular type of input/output crossbar.

Here is the setup. There are n input wires and n output wires, each
directed from a source to a terminus. Each input wire meets each output
wire in exactly one distinct point, at a special piece of hardware called

a junction box. Points on the wire are naturally ordered in the direction :

from source to terminus; for two distinct points x and y on the same
wire, we say that x is upstream from y if x is closer to the source than
y, and otherwise we say x is downstrean from y. The order in which one
input wire meets the output wires is not necessarily the same as the order
in which another input wire meets the output wires. (And similarly for
the orders in which output wires meet input wires.) Figure 1.8 gives an
example of such a collection of input and output wires.

Now, here’s the switching component of this situation. Each input
wire is carrying a distinct data stream, and this data stream must be
switched onto one of the output wires. If the stream of Input i is switched
onto Output j, at junction box B, then this stream passes through all
junction boxes upstream from B on Input i, then through B, then through
all junction boxes downstream from B on Output j. It does not matier
which input data stream gets switched onto which output wire, but
each input data stream must be switched onto a different output wire.
Furthermore—and this is the tricky constraint—no two data streams can
pass through the same junction box following the switching operation.

Finally, here’s the problem. Show that for any specified pattern in
which the input wires and output wires meet each other (each pair meet-
ing exactly once), a valid switching of the data streams can always be
found—one in which each input data stream is switched onto a different
output, and no two of the resulting streams pass through the same junc-
tion box. Additionally, give an algorithm to find such a valid switching.

. Exercises

Output 1
> (meets Input 2
before Input 1)

Output 2
(meets Input 2
before Input 1)

O Junction Junction
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Input 1 Input 2
(meets Output 2 (meets Output 1
before Output 1) before Output 2)

flglng 1.8 .An example with two input wires and two output wires. Input 1 has its
J.uncqon W}th Output 2 upstream from its junction with Output 1; Input 2 has its
Junctl.on with Output 1 upstream from its junction with Qutput 2. A valid solution is
to switch the data stream of Input 1 onto Output 2, and the data stream of Input 2
onto Qutput 1. On the other hand, if the stream of Input 1 were switched onto Qutput
1, and the stream of Input 2 were switched onto Output 2, then both streams would

gﬁss ﬂzlrough the junction box at the meeting of Input 1 and Qutput 2—and this is not
owed.

8. For this problem, we will explore the issue of truthfulness in the Stable
Matching Problem and specifically in the Gale-Shapley algorithm. The
. basic question is: Can a man or a woman end up better off by lying about
his or her preferences? More concretely, we suppose each participant has
a true preference order. Now consider a woman w. Suppose w prefers man
m to m’, but both m and m' are low on her list of preferences. Can it be the
case that by switching the order of m and m’ on her list of preferences (i.e.,
by falsely claiming that she prefers m’ to m) and running the algorithm
with this false preference list, w will end up with a man m” that she truly
prefers to both m and m'? (We can ask the same question for men, but
will focus on the case of women for purposes of this question.)

Resolve this question by doing one of the following two things:

(a) Give a proof that, for any set of preference lists, switching the

order of a pair on the list cannot improve a woman’s partner in the Gale-
Shapley algorithm; or
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(b) Give an example of a set of preference lists for which there is
a switch that would improve the partner of a woman who switched

preferences.

Notes and Further Reading

The Stable Matching Problem was first defined and analyzed by Gale and
Shapley (1962); according to David Gale, their motivation for th? pr.obh?m
came from a story they had recently read in the New Yorker about‘ the intricacies
of the college admissions process (Gale, 2001). Stable matcmng has groyvn
into an area of study in its own right, covered in books by Gusﬁem and Irving
(1989) and Knuth (1997c). Gusfield and Irving also provide a I}ICE S}lrvey of
the “parallel” history of the Stable Matching Problem as a technique m.vented
for matching applicants with employers in medicine and other professions.

As discussed in the chapter, our five representative problems will b.e
central o the book’s discussions, respectively, of greedy algorithms, dynamic

programming, network flow, NP-completeness, and PSPACE-completeness. -

We will discuss the problems in these contexts later in the book.

2

Basics of Algorithm Analysis

Analyzing algorithms involves thinking about how their resource require-
ments—the amount of time and space they use—will scale with increasing
input size. We begin this chapter by talking about how to put this notion on a
concrete footing, as making it concrete opens the door to a rich understanding
of computational tractability. Having done this, we develop the mathematical
machinery needed to talk about the way in which different functions scale
with increasing input size, making precise what it means for one function to
grow faster than another.

We then develop running-time bounds for some basic algorithms, begin-
ning with an implementation of the Gale-Shapley algorithm from Chapter 1
and continuing to a survey of many different running times and certain char-
acteristic types of algorithms that achieve these running times. In some cases,
obtaining a good running-time bound relies on the use of more sophisticated
data structures, and we conclude this chapter with a very useful example of
such a data structure: priority queues and their implementation using heaps.

2.1 Computational Tractability

A major focus of this book is to find efficient algorithms for computational
problems. At this level of generality, our topic seems to .encompass the whole
of computer science; so what is specific to our approach here?

First, we will try to identify broad themes and design principles in the
development of algorithms. We will look for paradigmatic problems and ap-
proaches that illustrate, with a minimum of irrelevant detail, the basic ap-
proaches to designing efficient algorithms. At the same time, it would be
pointless to pursue these design principles in a vacuum, so the problems and
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approaches we consider are drawn from fundamental issues that arise through-
out computer science, and a general study of algorithms turns out to serve as
a nice survey of computational ideas that arise in many areas.

Another property shared by many of the problems we study is their
fundamentally discrete nature. That is, like the Stable Matching Problem, .t}‘1ey
will involve an implicit search over a large set of combinatorial possibilities;
and the goal will be to efficiently find a solution that satisfies certain clearly
delineated conditions.

As we seek to understand the general notion of computational efficiency,
we will focus primarily on efficiency in running time: we want algorithms that
run quickly. But it is important that algorithms be efficient in their use of other
resources as well. In particular, the amount of space (or memory) used by an
algorithm is an issue that will also arise at a number of points in the book, and
we will see techniques for reducing the amount of space needed to perform a
computation.

Some Initial Attempts at Defining Efficiency

The first major question we need to answer is the following: How should we
turn the fuzzy notion of an “efficient” algorithm into something more concrete?

A first attempt at a working definition of efficiency is the following.

Proposed Definition of Efficiency (1): An algorithm is efficient if, when
implemented, it runs quickly on real input instances.

Let’s spend a little time considering this definition. At a certain level, i‘t’s haI'd
to argue with: one of the goals at the bedrock of our study of algorithms is
solving real problems quickly. And indeed, thereis a significant area of research
devoted to the careful implementation and profiling of different algorithms for
discrete computational problems. :

But there are some crucial things missing from this definition, even if our
main goal is to solve real problem instances quickly on real computers. The
first is the omission of where, and how well, we implement an algorithm. Even
bad algorithms can run quickly when applied to small test cases on extremely
fast processors; even good algorithms can run slowly when they are coded
sloppily. Also, what is a “real” input instance? We don’t know the ful% range of
input instances that will be encountered in practice, and some input instances
can be much harder than others. Finally, this proposed definition above does
not consider how well, or badly, an algorithm may scale as problem sizes grow
to unexpected levels. A common situation is that two very different algorithms
will perform comparably on inputs of size 100; multiply the input size tenf'old,
and one will still run quickly while the other consumes a huge amount of time.

2.1 Computational Tractability

So what we could ask for is a concrete definition of efficiency that is
platform-independent, instance-independent, and of predictive value with
respect to increasing input sizes. Before focusing on any specific consequences
of this claim, we can at least explore its implicit, high-level suggestion: that
we need to take a more mathematical view of the situation.

We can use the Stable Matching Problem as an example to guide us. The
input has a natural “size” parameter N; we could take this to be the total size of
the representation of all preference lists, since this is what any algorithm for the
problem will receive as input. N is closely related to the other natural parameter
in this problem: n, the number of men and the number of women. Since there
are 2n preference lists, each of length n, we can view N = 2n?, suppressing
more fine-grained details of how the data is represented. In considering the
problem, we will seek to describe an algorithm at a high level, and then analyze
its running time mathematically as a function of this input size N.

Worst-Case Running Times and Brute-Force Search

To begin with, we will focus on analyzing the worst-case running time: we will
look for a bound on the largest possible running time the algorithm could have
over all inputs of a given size N, and see how this scales with N. The focus on
worst-case performance initially seems quite draconian: what if an algorithm
performs well on most instances and just has a few pathological inputs on
which it is very slow? This certainly is an issue in some cases, but in general
the worst-case analysis of an algorithm has been found to do a reasonable job
of capturing its efficiency in practice. Moreover, once we have decided to go
the route of mathematical analysis, it is hard to find an effective alternative to
worst-case analysis. Average-case analysis—the obvious appealing alternative,
in which one studies the performance of an algorithm averaged over “random”
instances—can sometimes provide considerable insight, but very often it can
also become a quagmire. As we observed earlier, it’s very hard to express the
full range of input instances that arise in practice, and so attempts to study an
algorithm’s performance on “random” input instances can quickly devolve into
debates over how a random input should be generated: the same algorithm
can perform very well on one class of random inputs and very poorly on
another. After all, real inputs to an algorithm are generally not being produced
from a random distribution, and so average-case analysis risks telling us more
about the means by which the random inputs were generated than about the
algorithm itself.

So in general we will think about the worst-case analysis of an algorithm’s
running time. But what is a reasonable analytical benchmark that can tell us
whether a running-time bound is impressive or weak? A first simple guide
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is by comparison with brute-force search over the search space of possible
solutions.

Let’s return to the example of the Stable Matching Problem. Even when
the size of a Stable Matching input instance is relatively small, the search
space it defines is enormous (there are 7! possible perfect matchings between
n men and n women), and we need to find a matching that is stable. The
natural “brute-force” algorithm for this problemn would plow through all pe‘rf‘ect
matchings by enumeration, checking each to see if it is stable. The s'urpnsmg
punchline, in a sense, to our solution of the Stable Matching Problem 1§ that we
needed to spend time proportional only to N in finding a stable matchmg from
among this stupendously large space of possibilities. This was a conclusion w.e
reaéhed at an analytical level. We did not implement the algorithm and try it
out on sample preference lists; we reasoned about it mathematically. Yet, at tl}e
same time, our analysis indicated how the algorithm could be implemented in
practice and gave fairly conclusive evidence that it would be a big improvement
over exhaustive enumeration.

This will be a common theme in most of the problems we study: a compact "
representation, implicitly specifying a giant search space. For most qf j[l‘1e‘se
problems, there will be an obvious brute-force solution: try all possibilities
and see if any one of them works. Not only is this approach almost always too
slow to be useful, it is an intellectual cop-out; it provides us with absolutely
no insight into the structure of the problem we are studying. And. so if there
is a common thread in the algorithms we emphasize in this book, it would be
the following alternative definition of efficiency.

Proposed Definition of Efficiency (2): An algorithm is efficient if it achieves
qualitatively better worst-case performance, at an analytical level, than
brute-force search.

This will turn out to be a very useful working definition for us. Algorithms
that improve substantially on brute-force search nearly always contair.l a
valuable heuristic idea that makes them work; and they tell us something
about the intrinsic structure, and computational tractability, of the underlying
problem itself.

But if there is a problem with our second working definition, it is vague-
ness. What do we mean by “qualitatively better performance?” This suggests
that we consider the actual running time of algorithms more carefully, and try
to quantify what a reasonable running time would be.

Polynomial Time as a Definition of Efficiency

When people first began analyzing discrete algorithms mathematically—a
thread of research that began gathering momentum through the 1960s—

2.1 Computational Tractability

a consensus began to emerge on how to quantify the notion of a “reasonable”
running time. Search spaces for natural combinatorial problems tend to grow
exponentially in the size N of the input; if the input size increases by one, the
number of possibilities increases multiplicatively. We’d like a good algorithm
for such a problem to have a better scaling property: when the input size
increases by a constant factor—say, a factor of 2—the algorithm should only
slow down by some constant factor C.

Arithmetically, we can formulate this scaling behavior as follows. Suppose
an algorithm has the following property: There are absolute constants ¢ > 0
and d > 0 so that on every input instance of size N, its running time is
bounded by cN? primitive computational steps. (In other words, its running
time is at most proportional to N9.) For now, we will remain deliberately
vague on what we mean by the notion of a “primitive computational step”—
but it can be easily formalized in a model where each step corresponds to
a single assembly-langnage instruction on a standard processor, or one line
of a standard programming language such as C or Java. In any case, if this
running-time bound holds, for some ¢ and d, then we say that the algorithm
has a polynomial running time, or that it is a polynomial-time algorithm. Note
that any polynomial-time bound has the scaling property we’re looking for. If
the input size increases from N to 2N, the bound on the running time increases
from cNY to c(2N)4 = ¢ - 24N, which is a slow-down by a factor of 24. Since d is
a constant, so is 29; of course, as one might expect, lower-degree polynomials
exhibit better scaling behavior than higher-degree polynomials.

From this notion, and the intuition expressed above, emerges our third
attempt at a working definition of efficiency.

Proposed Definition of Efficiency (3): An algorithm is efficient if it has a
polynomial running time.

Where our previous definition seemed overly vague, this one seems much

~ too prescriptive. Wouldn’t an algorithm with running time proportional to

n'®—and hence polynomial—be hopelessly inefficient? Wouldn’t we be rel-

~ atively pleased with a nonpolynomial running time of n!*+-020%¢™2 The an-

swers are, of course, “yes” and “yes.” And indeed, however much one may
try to abstractly motivate the definition of efficiency in'terms of polynomial
time, a primary justification for it is this: It really works. Problems for which
polynomial-time algorithms exist almost invariably turn out to have algorithms
with running times proportional to very moderately growing polynomials like
n, nlogn, n?, or n3. Conversely, problems for which no polynomial-time al-
gorithm is known tend to be very difficult in practice. There are certainly

-exceptions to this principle in both directions: there are cases, for example, in
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i i ifferent algorithms on inputs of
i'l;li];]e(:;s?ﬁlg gikzlz, mgocuemsse:r gggg;?ngging)iﬁhﬁfgigk{—levg instructions per §econd.
In cases where the running time exceeds 10% years, we simply record the algorithm as
taking a very long time.
n nlogyn . n? no 15" oo n!

n=10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 4 sec
n =30 <lsec <lsec <1sec < 1sec <1 sec 18 min  10% years
n=>50 < 1 sec < 1 sec < 1 sec < 1 sec 11 min 36 years very long
n =100 < 1 sec < 1 sec < 1 sec 1 sec 12,892 years 107 years very long
n ==1,000 < 1 sec < 1 sec 1 sec 18 min very long very long very long
n = 10,000 < 1sec < 1 sec 2 min 12 days very long very long very long
n = 100,000 < 1 sec 2 sec 3 hours 32 years very long very long very long
n = 1,000,000 1 sec 20 sec ~ 12 days 31,710 years very long very long very-long

which an algorithm with exponential worst-case behavior generally runs well
on the kinds of instances that arise in practice; and there are also cases Wh'ere
the best polynomial-time algorithm for a problem is comgletely impracnccjﬂ
due to large constants or a high exponent on the polynomial bound. 'All @s
serves to reinforce the point that our emphasis on worst-case, ponnognaLUme
bounds is only an abstraction of practical situations. But overwhelmingly, the
concrete mathematical definition of polynomial time has turned out to corre-
spond surprisingly well in practice to what we obser\'fe about the efficiency of
algorithms, and the tractability of problems, in real life.

One further reason why the mathematical formalism and the empirical
evidence seem to line up well in the case of polynomial-time solvability is 'that
the gulf between the growth rates of polynomial and exponential fiinctions
is enormous. Suppose, for example, that we have a processor th%lt execut'es
a million high-level instructions per secongl, and we have algorithms with
running-time bounds of n, nlog, 1, n?, n3, 1.5%, 2", and nl I'n Table 2.1,
we show the running times of these algorithms (in seconds, minutes, days,
or years) for inputs of size n = 10, 30, 50, 100, 1,000, 10,000, 100,000, and
1,000,000.

There is a final, fundamental benefit to making our definition of efficiency
so specific: it becomes negatable. It becomes possible to express the noti'on
that there is no efficient algorithm for a particular problem. In a sense, bgmg
able to do this is a prerequisite for turning our study of algorithn'ls into
good science, for it allows us to ask about the existence or nonexistence
of efficient algorithms as a well-defined question. In contrast, both of our

2.2 Asymptotic Order of Growth

previous definitions were completely subjective, and hence limited the extent
to which we could discuss certain issues in concrete terms.

In particular, the first of our definitions, which was tied to the specific
implementation of an algorithm, turned efficiency into a moving target: as
processor speeds increase, more and more algorithms fall under this notion of
efficiency. Our definition in terms of polynomial time is much more an absolute
notion; it is closely connected with the idea that each problem has an intrinsic

level of computational tractability: some admit efficient solutions, and others
do not.

2.2 Asymptotic Order of Growth

Our discussion of computational tractability has turned out to be intrinsically
based on our ability to express the notion that an algorithm’s worst-case
running time on inputs of size n grows at a rate that is at most proportional to
some function f(n). The function f(n) then becomes a bound on the running

time of the algorithm. We now discuss a framework for talking about this
concept.

We will mainly express algorithms in the pseudo-code style that we used
for the Gale-Shapley algorithm. At times we will need to become more formal,
but this style of specifying algorithms will be completely adequate for most
purposes. When we provide a bound on the running time of an algorithm,
we will generally be counting the number of such pseudo-code steps that
are executed; in this context, one step will consist of assigning a value o a
variable, looking up an entry in an array, following a pointer, or performing
an arithmetic operation on a fixed-size integer.

When we seek to say something about the running time of an algorithm on
inputs of size n, one thing we could aim for would be a very concrete statement
such as, “On any input of size n, the algorithm runs for at most 1.62n2 +
3.5n + 8 steps.” This may be an interesting statement in some contexts, but as
a general goal there are several things wrong with it. First, getting such a precise
bound may be an exhausting activity, and more detail than we wanted anyway.
Second, because our ultimate goal is to identify broad classes of algorithms that
have similar behavior, we’d actually like to classify running times at a coarser
level of granularity so that similarities among different algorithms, and among
different problems, show up more clearly. And finally, extremely detailed
statements about the number of steps an algorithm executes are often—in
a strong sense—meaningless. As just discussed, we will generally be counting
steps in a pseudo-code specification of an algorithm that resembles a high-
level programming language. Each one of these steps will typically unfold
into some fixed number of primitive steps when the program is compiled into
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an intermediate representation, and then into some further number of steps
depending on the particular architecture being used to do the computing. So
the most we can safely say is that as we look at different levels of computational
abstraction, the notion of a “step” may grow or shrink by a constant factor—
for example, if it takes 25 low-level machine instructions to perform one
operation in our high-level language, then our algorithm that took at most
1.6212 + 3.51 + 8 steps can also be viewed as taking 40.5n% + 87.5n + 200 steps
when we analyze it at a level that is closer to the actual hardware.

0, 2, and ©

For all these Teasons, we want to express the growth rate of running times
and other functions in a way that is insensitive to constant factors and low-
order terms. In other words, we’d like to be able to take a running time like
the one we discussed above, 1.62n% + 3.5n + 8, and say that it grows like n?,
up to constant factors. We now discuss a precise way to do this.

Asymptotic Upper Bounds Let T(n) be a function—say, the worst-case run-

ning time of a certain algorithm on an input of size n. (We will assume that '

all the functions we talk about here take nonnegative values.) Given another
function f(n), we say that T(n) is O(f(1)) (read as “T(n) is order f(n)”) if, for
sufficiently large n, the function T'(n) is bounded above by a constant multiple
of f(1). We will also sometimes write this as T(n) = O(f(n)). More precisely,
T(n) is O(f(n)) if there exist constants ¢ > 0 and ng > 0 so that for all n > ny,
we have T(n) < c - f(n). In this case, we will say that T is asymptotically upper-
bounded by f. It is important to note that this definition requires a constant ¢
to exist that works for all n; in particular, ¢ cannot depend on 7.

As an example of how this definition lets us express upper bounds on
running times, consider an algorithm whose running time (as in the earlier
discussion) has the form T(n) = pn? + gn + r for positive constants p, g, and
r. We'd like to claim that any such function is 0O(n?). To see why, wé notice
that for all n > 1, we have gn < gn?, and r < rn2. So we can write

T(n)=pnz—|—qn—|—rspnzqtqnzqtmzz(p—l—q+r)n2

for all n > 1. This inequality is exactly what the definition of O(-) requires:
T(n) <cn?, where c=p+q-+T7.

Note that O(:) expresses only an upper bound, not the exact growth rate
of the function. For example, just as we claimed that the function T(n) =
pr? +qn + 1 is O(n?), it’s also correct to say that it's 0(13). Indeed, we just
argued that T(M) < (@ +4q+ rn?, and since we also have n? < n3, we can

. conclude that T(n) < (p+ g+ )n® as the definition of O(n3) requires. The

fact that a function can have many upper bounds is not just a trick of the
notation; it shows up in the analysis of running times as well. There are cases

2.2 Asymptotic Order of Growth

where an algorithm has been proved to have running time O(n3);’ some years
Pass, geople apalyze the same algorithm more carefully, and they show that
in fact its running time is O(n?). There was nothing wrong with the first result;

it Wa§ a cgrrect upper bound. It’s simply that it wasn’t the “tightest” possible
running time. -

Asymptotic Lower Bounds There is a complementary notation for lower
pounds. Often when we analyze an algorithm—say we have just proven that
its worst-case running time T(n) is O(n?)—we want to show that this upper
bou'nd is the best one possible. To do this, we want to express the notion that for
arbitrarily large input sizes n, the function T(n) is at least a constant multiple of
some specific function f(n). (In this example, f () happens to be n2.) Thus, we
say that T(n) is Q(f(n)) (also written T(n) = Q (f(n))) if there exist const;mts
€ > 0and ny > 0 so that for all n > n, we have T(n) > € - f(n). By analogy with
O(-) notation, we will refer to T in this case as being asymptotically lower-

bfounded by f. Again, note that the constant ¢ must be fixed, independent
of n. '

'I:hlS definition works just like O(-), except that we are bounding the
function T'(n) from below, rather than from above. For example, returning
to the function T(n) = pn® 4+ gn + r, where p, g, and r are positive’constants
lgt’s claim that T(n) = Q(n2). Whereas establishing the upper bound involveci
“inflating” the terms in T(n) until it looked like a constant times n2, now we
need to do the opposite: we need to reduce the size of T(n) until it fooks like
a constant times n?. It is not hard to do this; for all n > 0, we have

T(n) =pn®+qn+r > pn?,

which meets what is required by the definition of €2 (-) with € = p>0.

Just as we discussed the notion of “tighter” and “weaker” upper bounds
the same'lssue arises for lower bounds. For example, it is correct to say that
our function T(n) = pn®+ gn +r is Q(n), since T(n) > pn® > pn.

Asymptotically Tight Bounds If we can show that a running time T(n) is
both O(f(n)) and also Q(f(n)), then in a natural sense we’ve found the “right”
bound: T(n) grows exactly like f(n) to within a constant factor. This, for

example, is the conclusion we can draw from the fact tha
: t T(n) = pn?
is both O(n?) and Qn?). W

There is a notation to express this: if a function T'(n) is both O(f(n)) and
Q(f(n)), we say that T(n) is ©(f(n)). In this case, we say that f(n) is an
asymptotically tight bound for T(n). So, for example, our analysis above shows
that T(n) = pn? + qn +r is O (n?).

'Asymptotically tight bounds on worst-case running times are nice things
to find, since they characterize the worst-case performance of an algorithm
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precisely up to constant factors. And as the definition of ©(-) shc;)vvsél (;nlemi’a:lr
obtain such bounds by closing the gap between an'upper'boun an o
bound. For example, sometimes you will read a (slightly informally p Esase
sentence such as “An upper bound of O(n®) has been shown on the W(inr's hcthe
running time of the algorithm, but there is no 'ex.'an'lple @own on vx'rt tgcn e
algorithm runs for more than Q(n?) steps.” This is gnph’mﬂy an invita 1nn !
search for an asymptotically tight bound on the algorithm’s worst-case ru g
" i i ight bound directly by

Sometimes one can also obtain an asymptopcally' tight 01:111 recty o
computing a limit as n goes to infinity. Essentially, if the ratlo' oﬁmtyc ons
f(n) and g(n) converges to a positive constant as 1. goes to in g

f(n) = B M)
(2.1) Let f and g be two functions that

L f®
A2 g(n)

exists and is equal to some number ¢ > 0. Then f(n) = ©(g)).

Proof. We will use the fact that the limit exists and is po'siFiye to show that
f(n) =0(g(n)) and f(n) = Q(g(n)), as rgqm'xed by the definition of ®(").

Since

lim f(n) =c>0,

n—»00 g(n)

it follows from the definition of a limit that there is some g beyond Whlchh;h}e;
ratio is always between %c and 2c. Thus, f(n) < 2cg(n) for all n z ?’-W h(; :
implies that f(n) = 0(g(M)); and f(n) > %cg(n) for all n > ny, which imp
that f(n) = Q(gm). =

Properties of Asymptotic Growth Rates .
Having seen the definitions of O, €2, and @, it is useful to explore some ol their
basic properties. '
TITansftiv?ty A first property is transitivity: if a funf:tion fis as'yrrilptotlcalelz
upper-bounded by a function g, and if g in .turn is asymptotlgadybupi -
bounded by a function A, then f is asyrnptotlcally upger—boun e 'ye ; .as
similar property holds for lower bounds. We write this more precisely

follows.

(2.2)
(a) Iff=0(g) and g = O(h), then f = O(h).
(b) Iff=9(g) and g§= Q(h), then f = Q(h).

2.2 Asymptotic Order of Growth

Proof. We’ll prove part (a) of this claim; the proof of part (b) is very similar.

For (a), we’re given that for some constants ¢ and ng, we have f(n) < cg(n)
for all n > ny. Also, for some (potentially different) constants ¢’ and n,, we
have g(n) < c’h(n) for all n > ng. So consider any number n that is at least as
large as both n and ny. We have f(n) < cg(n) < cc’h(n), and so f(n) < cc’h(n)

for all n > max(ng, ng). This latter inequality is exactly what is required for
showing that f =O(h). =

Combining parts (a) and (b) of (2.2), we can obtain a similar result
for asymptotically tight bounds. Suppose we know that f = 0©(g) and that
8 = ©(h). Then since f = 0(g) and g = O(h), we know from part (a) that
f =O(h); since f = Q(g) and g = Q (h), we know from part (b) that f = Q(h).
It follows that f = ®(h). Thus we have shown

(2.3) Iff=0() and g =O(h), then f = Oh).

Sums of Functions 1t is also useful to have results that quantify the effect of
adding two functions. First, if we have an asymptotic upper bound that applies
to each of two functions f and g, then it applies to their sum.

(2.4) Supposethat f and g are two functions such that for some other function
h, we have f = O(h) and g = O(h). Then f + g = O(h).

Proof. We’re given that for some constants ¢ and ng, we have f(n) < ¢h(n)
for all n>ny. Also, for some (potentially different) constants ¢’ and g,
we have g(n) <c’h(n) for all n > ng. So consider any number n that is at
least as large as both ny and ng. We have f(n) + g(n) < ch(n) + ¢’h(n). Thus
f() +8) < (c+ cHh(n) for all n > max(ng, ng), which is exactly what is
required for showing that f +g=0(h). =

There is a generalization of this to sums of a fixed constant number of
functions k, where k may be larger than two. The result can be stated precisely
as follows; we omit the proof, since it is essentially the same as the proof of
(2.4), adapted to sums consisting of k terms rather than just two.

(2.5) Let k be a fixed constant, and let f;,f5, . . ., fr and h be functions such
that f;= O(h) for all i. Then fi+f,+ - -+ f, = O(h).

There is also a consequence of (2.4) that covers the following kind ‘of
sitnation. It frequently happens that we’re analyzing an algorithm with two
high-level parts, and it is easy to show that one of the two parts is slower
than the other. We’d like to be able to say that the running time of the whole
algorithm is asymptotically comparable to the running time of the slow part.
Since the overall running time is a sum of two functions (the running times of
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the two parts), results on asymptotic bounds for sums of functions are directly
relevant.

(2.6) Suppose that f and g are two functions (taking nonnegative va_lues)
such that g = O(f). Then f + g = ©(f). In other words, f is an asymptotically
tight bound for the combined function f + 8.

Proof. Clearly f + g = Q(f), since for all n >0, we have f(n) +g(m) = ().
So to complete the proof, we need to show that f + g = O(f).

But this is a direct consequence of (2.4): we're ‘given the fact that g = O(f),
and also f = O(f) holds for any function, so by (2.4) we have f +g=0(f). =

This result also extends to the sum of any fixed, constant numb'er of
functions: the most rapidly growing among the functions is an asymptotically

tight bound for the sum.

Asymptotic Bounds for Some Common Functions

There are a number of functions that come up repeatedly in the analysis of

algorithms, and it is useful to consider the asymptotic properties of some of
the most basic of these: polynomials, logarithms, and exponentials.

Polynomials Recall that a polynomial is a function that can be written in
the form f(n) = adg + ain + an®+-- -+ azn? for some integer constant d > 0,
where the final coefficient a, is nonzero. This value d is called the degree of the
polynomial. For example, the functions of the form pn? 4+ gn + r (with p # 0)
that we considered earlier are polynomials of degree 2.

A basic fact about polynomials is that their asymptotic rate of growth is
determined by their “high-order term”—the one that determines the degree.
We state this more formally in the following claim. Since we are concerned hfere
only with functions that take nonnegative values, we Wlll restrict our attention
to polynomials for which the high-order term has a positive coefficient az > 0.

(2.7) Letf be a polynomial of degree d, in which the coefficient a4 is positive.
Then f = O(n9).

Proof. We write f =ag+an+ an®+ -+ asn?, where agz > 0. The upper
bound is a direct application of (2.5). First, notice that coefficients g; for j < d
may be negative, but in any case we have ajnj < ]ajlnd for all n > 1. Thus each
term in the polynomial is O(n9). Since f is a sum of a constant number of
functions, each of which is O(n9), it follows from (2.5) that f is om%). =

One can also show that under the conditions of (2.7), we have f=Q (nd),
and hence it follows that in fact f = ©(n%).

2.2 Asymptotic Order of Growth-

This is a good point at which to discuss the relationship between these
types of asymptotic bounds and the notion of polynomial time, which we
arrived at in the previous section as a way to formalize the more elusive concept
of efficiency. Using O(-) notation, it’s easy to formally define polynomial time:
a polynomial-time algorithm is one whose running time T(n) is O(n4) for some
constant d, where d is independent of the input size.

So algorithms with running-time bounds like O(n?) and O(n3) are
polynomial-time algorithms. But it’s important to realize that an algorithm
can be polynomial time even if its running time is not written as n raised
to some integer power. To begin with, a number of algorithms have running
times of the form O(n*) for some number x that is not an integer. For example,
in Chapter 5 we will see an algorithm whose running time is O(n!-*%); we will
also see exponents less than 1, as in bounds like O(/1) = O(n/3).

To take another common kind of example, we will see many algorithms
whose running times have the form O(nlogn). Such algorithms are also
polynomial time: as we will see next, logn <n for all n> 1, and hence
nlogn <n? for all n > 1. In other words, if an algorithm has running time
O(nlog n), then it also has running time O(n%), and so it is a polynomial-time
algorithm.

Logarithms Recall that log, n is the number x such that b* = n. One way
to get an approximate sense of how fast log, n grows is to note that, if we
round it down to the nearest integer, it is one less than the number of digits
in the base-b representation of the number n. (Thus, for example, 1+ log, 7,
rounded down, is the number of bits needed to represent n.)

So logarithms are very slowly growing functions. In particular, for every
base b, the function log;, n is asymptotically bounded by every function of the
form n*, even for (noninteger) values of x arbitrary close to 0.

(2.8) Forevery b > 1and every x > 0, we have log, n = O(n%).

One can directly translate between logarithms of different bases using the
following fundamental identity:

This equation explains why you’ll often notice people writing bounds like
O(log n) without indicating the base of the logarithm. This is not sloppy
usage: the identity above says that log, n = E‘g‘lﬁ -logy, 1, so the point is that
log, n = ®(log, n), and the base of the logarithm is not important when writing
bounds using asymptotic notation.
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Exponentials Exponential functions are functions of the fOl'H.l f(n)‘ =" for
some constant base r. Here we will be concerned with the case in whichr > 1,
which results in a very fast-growing function. )

In particular, where polynomials raise 7 to a fixed exponent, exponential
raise a fixed number to n as a power; this leads to much faster rates of grovs{th.
One way to summarize the relationship between polynomials and exponentials
is as follows.

(2.9) Foreveryr>1andeveryd> 0, we have n? = O(@™).

In particular, every exponential grows faster than every polynoxpial. And e‘ls
we saw in Table 2.1, when you plug in actual values of 1, the differences in
growth rates are really quite impressive.

Just as people write O(log ) without specifying the base, ygu’}’l a1§o see
people write “The running time of this algorithm is ‘exponen‘tlal, Wl.thout
specifying which exponential function they have in mind. U%ﬂlke thfe liberal
use of log n, which is justified by ignoring constant factors, this generic use of

the term “exponential” is somewhat sloppy. In particular, for different bases

r> s> 1, it is never the case that 7 = ©(s™). Indeed, this would require that
for some constant ¢ > 0, we would have ™ < cs™ for all sufficiently large 7.
But rearranging this inequality would give (r/s)" < ¢ for all sufficiently 1arg‘e
1. Since r > s, the expression (r/s)" is tending to infinity with n, and so it

_ cannot possibly remain bounded by a fixed constant c.

So asymptotically speaking, exponential functions are all different. Sﬁll,
it’s usually clear what people intend when they inexactly write “The runm.ng
time of this algorithm is exponential”—they typically mean that the mnn}ng
time grows at least as fast as some exponential function, ar.1d all expon.enuals
grow so fast that we can effectively dismiss this algorithm w1thqut Worlqng out
further details of the exact running time. This is not entirely fair. Occaspnally
there’s more going on with an exponential algorithm than first appea'rs, as
we’ll see, for example, in Chapter 10; but as we argued in the first section of
this chapter, it’s a reasonable rule of thumb.

Taken together, then, logarithms, polynomials, and exponentials serve as
useful landmarks in the range of possible functions that you encounter when
analyzing running times. Logarithms grow more slowly than polynomials, and
polynomials grow more slowly than exponentials.

2.3 Implementing the Stable Matchjng Algorithm
Using Lists and Arrays

We've now seen a general approach for expressing bounds on ﬁ‘le rqnm'ng
time of an algorithm. In order to asymptotically analyze the running time of

2.3 Implementing the Stable Matching Algorithm Using Lists and Arrays

2o

an algorithm expressed in a high-level fashion—as we expressed the Gale-
Shapley Stable Matching algorithm in Chapter 1, for example—one doesn’t
have to actually program, compile, and execute it, but one does have to think
about how the data will be represented and manipulated in an implementation
of the algorithm, so as to bound the number of computational steps it takes.

The implementation of basic algorithms using data structures is something
that you probably have had some experience with. In this book, data structures
will be covered in the context of implementing specific algorithms, and so we
will encounter different data structures based on the needs of the algorithms
we are developing. To get this process started, we consider an implementation
of the Gale-Shapley Stable Matching algorithm; we showed earlier that the
algorithm terminates in at most n? iterations, and our implementation here
provides a corresponding worst-case running time of O(n?), counting actual
computational steps rather than simply the total number of iterations. To get
such a bound for the Stable Matching algorithm, we will only need to use two
of the simplest data structures: lists and arrays. Thus, our implementation also
provides a good chance to review the use of these basic data structures as well.

In the Stable Matching Problem, each man and each woman has a ranking
of all members of the opposite gender. The very first question we need to
discuss is how such a ranking will be represented. Further, the algorithm
maintains a matching and will need to know at each step which men and
women are free, and who is matched with whom. In order to implement the
algorithm, we need to decide which data structures we will use for all these
things.

An important issue to note here is that the choice of data structure is up
to the algorithm designer; for each algorithm we will choose data structures
that make it efficient and easy to implement. In some cases, this may involve
preprocessing the input to convert it from its given input representation into a
data structure that is more appropriate for the problem being solved.

Aljrays and Lists

To start our discussion we will focus on a single list, such as the list of women
in order of preference by a single man. Maybe the simplest way to keep a list
of n elements is to use an array A of length r1, and have A[i] be the i® element
of the list. Such an array is simple to implement in essentially all standard
programming languages, and it has the following properties.

© We can answer a query of the form “What is the i'® element on the list2”
in O(1) time, by a direct access to the value A[i].

o If we want to determine whether a particular element e belongs to the
list (i.e., whether it is equal to A[{] for some i), we need to check the

43



Chapter 2 Basics of Algorithm Analysis

elements one by one in O(n) time, assuming we don’t know anything
about the order in which the elements appear in A.

o If the array elements are sorted in some clear way (either numerically
or alphabetically), then we can determine whether an element e belongs
to the list in O(log i) time using binary search; we will not need to use
binary search for any part of our stable matching implementation, but
we will have more to say about it in the next section.

An array is less good for dynamically maintaining a list of elements that
changes over time, such as the list of free men in the Stable Matching algorithm;
since men go from being free to engaged, and potentially back again, a list of
free men needs to grow and shrink during the execution of the algorithm. It
is generally cumbersome to frequently add or delete elements to a list that is
maintained as an array.

An alternate, and often preferable, way to maintain such a dynamic set
of elements is via a linked list. In a linked list, the elements are sequenced

together by having each element point to the next in the list. Thus, for each -

element v on the list, we need to maintain a pointer to the next element; we
set this pointer to null if 7 is the last element. We also have a pointer First
that points to the first element. By starting at First and repeatedly following
pointers to the next element until we reach null, we can thus traverse the entire
contents of the list in time proportional to its length.

A generic way to implement such a linked list, when the set of possible
elements may not be fixed in advance, is to allocate a record e for each element
that we want to include in the list. Such a record would contain a field e.val
that contains the value of the element, and a field e.Next that contains a
pointer to the next element in the list. We can create a doubly linked list, which
is traversable in both directions, by also having a field e.Prev that contains
a pointer to the previous element in the list. (e.Prev = null if e is the first
element.) We also include a pointer Last, analogous to First, that points to
the last element in the list. A schematic illustration of part of such a list is
shown in the first line of Figure 2.1.

A doubly linked list can be modified as follows.

o Deletion. To delete the element e from a doubly linked list, we can just
“splice it out” by having the previous element, referenced by e.Prev, and
the next element, referenced by e.Next, point directly to each other. The
deletion operation is illustrated in Figure 2.1.

o Insertion. To insert element e between elements d and f in a list, we
“splice it in” by updating d.Next and f.Prev to point to e, and the Next
and Prev pointers of e to point to d and f, respectively. This operation is
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Before deleting e:

Element e
val ‘ val val
1 & e
After deleting e:
Element e
val val | val
=5t | [ T =

\/

Figure 2.1 A schemati i 1 .
an element e. ¢ representation of a doubly linked list, showing the deletion of

essentially the reverse of deletion, and indeed one can see this operation
at work by reading Figure 2.1 from bottom to top.

Insgrting or deleting e at the beginning of the list involves updating the First
pointer, rather than updating the record of the element before e.

Wl'lile lists are good for maintaining a dynamically changing set, they also
have c'hsadvantages. Unlike arrays, we cannot find the it element o£ the list in
O(1) time: to find the i™ element, we have to follow the Next pointers startin,
from the beginning of the list, which takes a total of O(i) time. °

Given the relative advantages and disadvantages of arrays and lists, it may
happen that we receive the input to a problem in one of the two form;lts and
want to convert it into the other. As discussed earlier, such preprocessiﬁg is
qﬁen useful; and in this case, it is easy to convert between the array and
list representations in O(n) time. This allows us to freely choose the data

stmf:ture that suits the algorithm better and not be constrained by the way
the information is given as input.

Implementing the Stable Matching Algorithm

I\'I ext we will use arrays and linked lists to implement the Stable Matching algo-
rithm from Chapter 1. We have already shown that the algorithm terminatef in
a.t most n? iterations, and this provides a type of upper bound on the running
nme.'Ho'wever, if we actually want to implement the G-S algorithm so that it
mns in time proportional to n?, we need to be able to implement each iteration
in constant time. We discuss how to do this now.

For simplicity, assume that the set of men and women are both {1, ..., n}
To ensure this, we can order the men and women (say, alphabetically), and
associate number i with the i man m; or i" women w; in this order. This
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assumption (or notation) allows us to define an array indexed by all men
or all women. We need to have a preference list for each man and for eeflch
woman. To do this we will have two arrays, one for women'’s pref'erence lists
and one for the men’s preference lists; we will use ManPref[m, i] to dex}ote
the i® woman on man m’s preference list, and similarly WomanPref [w, i] to
be the i® man on the preference list of woman w. Note th.?lt the 2amount of
space needed to give the preferences for all 2n individuals is O(n%), as each
person has a list of length 7.

We need to consider each step of the algorithm and understand what data
structure allows us to implement it efficiently. Essentially, we need to be able
to do each of four things in constant time.

1. We need to be able to identify a free man.
2. We need, for a man m, to be able to identify the highest-ranked woman
to whom he has not yet proposed.

3. For a woman w, we need to decide if w is currently engaged, and if she

is, we need to identify her current partner.
4. For a woman w and two men m and m’, we need to be able to decide,
again in constant time, which of m or m’ is preferred by w.

N,

First, consider selecting a free man. We will do this by maintaining the set
of free men as a linked list. When we need 1o select a free man, we take the
first tnan m on this list. We delete m from the list if he becomes engaged, aqd
possibly insert a different man m’, if some other man m’ becomes free. In this
case, m’ can be inserted at the front of the list, again in constant time.

Next, consider a man m. We need to identify the highest-ranked woman
to whom he has not yet proposed. To do this we will need fo maintain an extra
array Next that indicates for each man m the position of the next woman he
will propose to on his list. We initialize Next[m]= 1 for all men m. If amanm
needs to propose to a womat, he’ll propose to w = ManPref [m,Next[m]], and
once he proposes to w, we increment the value of Next[m] by one, regardless
of whethet or not w accepts the proposal. »

Now assume man m proposes to woman w; we need to be able to ide.ntify
the man m’ that w is engaged to (if there is such a man). We c‘an do this by
maintaining an array Current of length 7, where Current[w] is the woman
w’s current partner m’. We set Current [w] to a special null symbol when we
need to indicate that woman w is not currently engaged; at the start of the
algorithm, Current[w] is initialized to this null symbol for all women w.

To sum up, the data structures we have set up thus far can implement the
operations (1)-(3) in O(1) time each.

2.4 A Survey of Common Running Times

Maybe the trickiest question is how to maintain women'’s preferences to
keep step (4) efficient. Consider a step of the algorithm, when man m proposes
to a woman w. Assume w is already engaged, and her current partner is
m’ =Current[w]. We would like to decide in O(1) time if woman w prefers m
or m'. Keeping the women’s preferences in an array WomanPref, analogous to
the one we used for men, does not work, as we would need to walk through
w’s list one by one, taking O(n) time to find m and m’ on the list. While O(n)
is still polynomial, we can do a lot better if we build an auxiliary data structure
at the beginning.

At the start of the algorithm, we create an n x n array Ranking, where
Ranking(w, m] contains the rank of man m in the sorted order of w’s prefer-
ences. By a single pass through w’s preference list, we can create this array in
linear time for each woman, for a total initial time investment proportional to
n?. Then, to decide which of m or m’ is preferred by w, we simply compare
the values Rankingw, m] and Ranking{w, m'].

This allows us to execute step (4) in constant time, and hence we have
everything we need to obtain the desired running time.

(2.10)  The data structures described above allow us to implemenfthe G-S

algorithm in O(n?) time.

2.4 A Survey of Common Running Times

When trying to analyze a new algorithm, it helps to have a rough sense of
the “landscape” of different running times. Indeed, there are styles of analysis
that recur frequently, and so when one sees running-time bounds like O(n),
O(nlog n), and O(n?) appearing over and over, it's often for one of a very
small number of distinct reasons. Learning to recognize these common styles
of analysis is a long-term goal. To get things under way, we offer the following

survey of common running-time bounds and some of the typical approaches
that lead to them.

Earlier we discussed the notion that most problems have a natural “search
space”--the set of all possible solutions—and we noted that a unifying theme
in algorithm design is the search for algorithms whose performance is more
efficient than a brute-force enumeration of this search space. In approaching a
new problem, then, it often helps to think about two kinds of bounds: one on
the running time you hope to achieve, and the other on the size of the problem’s
natural search space (and hence on the running time of a brute-force algorithm
for the problem). The discussion of running times in this section will begin in
many cases with an analysis of the brute-force algorithm, since it is a useful
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way to get one’s bearings with respect to a problem; the task of improving on
such algorithms will be our goal in most of the book. '

Linear Time

An algorithm that runs in O(n), or linear, time has a very natural property:
its running time is at most a constant factor times the size of the input. One
basic way to get an algorithm with this running time is to process the input
in a single pass, spending a constant amount of time on each item of input
encountered. Other algorithms achieve a linear time bound for more subtle
reasons. To illustrate some of the ideas here, we consider two simple linear-
time algorithms as examples.

Computing the Maximum Computing the maximum of n numbers, for ex-
ample, can be performed in the basic “one-pass” style. Suppose the numbers
are provided as input in either a list or an array. We process the numbers
a,,d,, . .. ,d, in order, keeping a running estimate of the maximum as we go.

Each time we encounter a number g;, we check whether g; is larger than our

current estimate, and if so we update the estimate to a;.

max = @,
For i=2 ton
If @g; > max then
set max=q;
Endif
Endfor

In this way, we do constant work per element, for a total running time of O(1).

Sometimes the constraints of an application force this kind of one-pass
algorithm on you—for example, an algorithm running on a high-speed switch
on the Internet may see a stream of packets flying past it, and it can try
computing anything it wants to as this stream passes by, but it can only perform
a constant amount of computational work on each packet, and it can’t save
the stream so as to make subsequent scans through it. Two different subareas
of algorithms, online algorithms and data stream algorithms, have developed
to study this model of computation.

Merging Two Sorted Lists Often, an algorithm has a running time of O(1),
but the reason is more complex. We now describe an algorithm for merging
two sorted lists that stretches the one-pass style of design just a little, but still
has a linear running time.

Suppose we are given two lists of n numbers each, a;,a, ..., dn and
by, by, . .., by, and each is already arranged in ascending order. We’d like to
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merge these into a single list ¢;, ¢, . . . , ¢y, that is also arranged in ascending
order. For example, merging the lists 2, 3, 11,19 and 4, 9, 16, 25 results in the
output 2, 3,4,9, 11, 16, 19, 25.

To do this, we could just throw the two lists together, ignore the fact that
they’re separately arranged in ascending order, and run a sorting algorithm.
But this clearly seems wasteful; we’d like to make use of the existing order in
the input. One way to think about designing a better algorithm is to imagine
performing the merging of the two lists by hand: suppose you’re given two
piles of numbered cards, each arranged in ascending order, and you’d like to
produce a single ordered pile containing all the cards. If you look at the top
card on each stack, you know that the smaller of these two should go first on

the output pile; so you could remove this card, place it on the output, and now
iterate on what’s left.

In other words, we have the following algorithm.

To merge sorted lists A = a,...,a, and B=by,..., by

Maintain a Current pointer into each list, initialized to
point to the front elements

While both lists are nonempty:
Let a; and b; be the elements pointed to by the Current pointer
Append the smaller of these two to the output list
Advance the Current pointer in the list from which the

smaller element was selected
EndWhile

Once one list is empty, append the remainder of the other list
to the output

See Figure 2.2 for a picture of this process.

Append the smaller of
a; and b; to the output.

I Merged result

Figure 2.2 To merge sorted lists A and B, we repeatedly extract the smaller item from
the front of the two lists and append it to the output.
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Now, to show a linear-time bound, one is tempted to describe an argument
like what worked for the maximum-finding algorithm: “We do constant work
per element, for a total running time of O(n)” But it is actually not true that
we do only constant work per element. Suppose that n is an even number, and
consider the lists A=1,3,5,...,2n—1 and B=n,n+2,n+4,...,3n—2.
The number b, at the front of list B will sit at the front of the Yst for n/2
iterations while elements from A are repeatedly being selected, and hence
it will be involved in §(n) comparisons. Now, it is true that each element
can be involved in at most O(n) comparisons (at worst, it is compared with
each element in the other list), and if we sum this over all elements we get
a running-time bound of O(n?). This is a correct bound, but we can show
something much stronger.

The better way to argue is to bound the number of iterations of the While
loop by an “accounting” scheme. Suppose we charge the cost of each iteration
to the element that is selected and added to the outpuf list. An element can
be charged only once, since at the moment it is first charged, it is added

to the output and never seen again by the algorithm. But there are only 2n -

elements total, and the cost of each iteration is accounted for by a charge to
some element, so there can be at most 2n iterations. Each iteration involves a
constant amount of work, so the total running time is O(n), as desired.

While this merging algorithm iterated through its input lists in order, the
“interleaved” way in which it processed the lists necessitated a slightly subtle
running-time analysis. In Chapter 3 we will see linear-time “algorithms for
graphs that have an even more complex flow of control: they spend a constant
amount of time on each node and edge in the underlying graph, but the order
in which they process the nodes and edges depends on the structure of the
graph.

O(n log n) Time

O(n log n) is also a very common running time, and in Chapter 5 we will
see one of the main reasons for its prevalence: it is the running time of any
algorithm that splits its input into two equal-sized pieces, solves each piece
recursively, and then combines the two solutions in linear time.

Sorting is perhaps the most well-known example of a problem that can be
solved this way. Specifically, the Mergesort algorithm divides the set of input
numbers into two equal-sized pieces, sorts each half recursively, and then
merges the two sorted halves into a single sorted output list. We have just
seen that the merging can be done in linear time; and Chapter 5 will discuss
how to analyze the recursion so as to get a bound of O(nlog ) on the overall
running time. '
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One also frequently encounters O(72 log i) as a running time sinfply be-
Fause there are many algorithms whose most expensive step is to sort the
input. For example, suppose we are given a set of n time-stamps x, x5, ..., X
on which copies of a file arrived at a server, and we’d like to find the largesi
interval of time between the first and last of these time-stamps during which
go copy of the file arrived. A simple solution to this problem is to first sort the
time-stamps x;, X, . . . , X, and then process them in sorted order, determining
the sizes of the gaps between each number and-its successor in ascending
qrder. The largest of these gaps is the desired subinterval. Note that this algo-
rithm requires O(rn log ) time to sort the numbers, and then it spends constant
work on each number in ascending order. In other words, the remainder of the

algorithm after sorting follows the basic recipe for linear time that we discussed
earlier.

Quadratic Time

Here’s a basic problem: suppose you are given n points in the plane, each
specified by (x,y) coordinates, and you’d like to find the pair of points that
are closest together. The natural brute-force algorithm for this problem would
enumerate all pairs of points, compute the distance between each pair, and
then choose the pair for which this distance is smallest.

What is the running time of this algorithm? The number of pairs of points
is (3) = M2=D, and since this quantity is bounded by in?, it is O(n?. More
crudely, the number of pairs is O(n?) because we multiply the number of
ways of choosing the first member of the pair (at most 1) by the number
o“f ways of choosing the second member of the pair (also at most n). The
distance between points (x;, y;) and (%, ¥;) can be computed by the formula
\/ (x; — %)% + (¥; — y;)* in constant time, so the overall running time is O(n?).
This example illustrates a very common way in which a running time of O(n?)

gﬂses: performing a search over all pairs of input items and spending constant
time per pair.

' Quadratic time also arises naturally from a pair of nested loops: An algo-
rithm consists of a loop with O(n) iterations, and each iteration of the loop
launches an internal loop that takes O(n) time. Multiplying these two factors
of n together gives the running time. )

' The‘ brute-force algorithm for finding the closest palr of points can be
written in an equivalent way with two nested loops:

For each input point (x;y))
For each other input point (x;,y;)

Compute distance d=\/(xi - X% 4+ O - y)?
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If d is less than the current minimum, update minimum to d
Endfor
Endfor

Note how the “inner” loop, over (x;,y;), has O(n) iterations, each taking
constant time; and the “outer” loop, over (x;, ¥;), has O(n) iterations, each
invoking the inner loop once.

It’s important to notice that the algorithm we’ve been discussing for the
Closest-Pair Problem really is just the brute-force approach: the natural search
space for this problem has size O(n?), and we’re simply enumerating it. At
first, one feels there is a certain inevitability about this quadratic algorithm—
we have to measure all the distances, don’t we?—but in fact this is an illusion.
In Chapter 5 we describe a very clever algorithm that finds the closest pair of
points in the plane in only O(n2log n) time, and in Chapter 13 we show how
randomization can be used to reduce the running time to O(m).

Cubic Time

More elaborate sets of nested loops often lead to algorithms that run in
O@3) time. Consider, for example, the following problem. We are given sets
S1,S3, ..., Sy, each of which is a subset of {1,2,...,n}, and we would like
to know whether some pair of these sets is disjoint—in other words, has no
elements in common.

What is the running time needed to solve this problem? Let’s suppose that
each set S; is represented in such a way that the elements of S; can be listed in
constant time per element, and we can also check in constant time whether a
given number p belongs to S;. The following is a direct way to approach the
problem.

For pair of sets §; and §;
Determine whether §; and §5; have an element in common
Endfor

This is a concrete algorithm, but to reason about its running time it helps to
open it up (at least conceptually) into three nested loops.

For each set §;
For each other set §;
For each element p of §;
Determine whether p also belongs to §;
Endfor
If no element of S; belongs to 5; then
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Report that §; and S; are disjoint
Endif
Endfor
Endfor

Each of the sets has maximum size O(n), so the innermost loop takes time
O(n). Looping over the sets S; involves O(n) iterations around this innermost
loop; and looping over the sets S; involves O(n) iterations around this. Multi-
plying these three factors of n together, we get the running time of O(713).

For this problem, there are algorithms that improve on O(n®) running
time, but they are quite complicated. Furthermore, it is not clear whether

the improved algorithms for this problem are practical on inputs of reasonable
size.

O(n%) Time

In the same way that we obtained a running time of O(n?) by performing brute-
force search over all pairs formed from a set of 7 items, we obtain a running
time of O(n%) for any constant kK when we search over all subsets of size k.

Consider, for example, the problem of finding independent sets in a graph,
which we discussed in Chapter 1. Recall that a set of nodes is independent
if no two are joined by an edge. Suppose, in particular, that for some fixed
constant k, we would like to know if a given n-node input graph G has an
independent set of size k. The natural brute-force algorithm for this problem
would enumerate all subsets of k nodes, and for each subset S it would check
whether there is an edge joining any two members of S. That is,

For each subset S of k nodes
Check whether S constitutes an independent set
If S is an independent set then
Stop and declare success
Endif
Endfor
If no k-node independent set was found then
Declare failure
Endif

To understand the running time of this algorithm, we need to consider two
quantities. First, the total number of k-element subsets in an n-element set is

<n>=n(n—l)(n—Z)-~-(n—-k+1) <£’j
k kk—Dtk~2)---@@Q) ~ k'
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Since we are treating k as a constant, this quantity is O(n%). Thus, the outer
loop in the algorithm above will run for O(n%) iterations as it tries all k-node
subsets of the n nodes of the graph.

Inside this loop, we need to test whether a given set 5 of k nodes constitutes
an independent set. The definition of an independent set tells us that we need
to check, for each pair of nodes, whether there is an edge joining them. Henc'e
this is a search over pairs, like we saw earlier in the discussion of quadratic
time; it requires looking at (S) that is, O(k?), pairs and spending constant time
on each. ~

Thus the total running time is O(k?n¥). Since we are treating k as a constant
here, and since constants can be dropped in O(-) notation, we can write this
running time as O(%).

Independent Set is a principal example of a problem believed to Pe compu-
tationally hard, and in particular it is believed that no algorithm to find k-nodg
independent sets in arbitrary graphs can avoid having some dependence on k
in the exponent. However, as we will discuss in Chapter 10 in the context of

a related problem, even once we’ve conceded that brute-force search over k-

element subsets is necessary, there can be different ways of going about this
that lead to significant differences in the efficiency of the computation.

Beyond Polynomial Time

The previous example of the Independent Set Problem starts us rapidly.down
the path toward running times that grow faster than any polynomial. In
particular, two kinds of bounds that come up very frequently are 2" and nl,
and we now discuss why this is so.

Suppose, for example, that we are given a graph and wa.nt to find an
independent set of maximum size (rather than testing for the emsteflce of one
with a given number of nodes). Again, people don’t know of algorithms that
improve significantly on brute-force search, which in this case would look as
follows.

For each subset S of nodes
Check whether S constitutes an independent set
If S is a larger independent set than the largest seen so far then
Record the size of S as the current maximum
Endif
Endfor

This is very much like the brute-force algorithm for k-node independent sets,
except that now we are iterating over all subsets of the graph. The total number
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of subsets of an n-element set is 27, and so the outer loop in this algorithm
will run for 2" iterations as it tries all these subsets. Inside the loop, we are
checking all pairs from a set S that can be as large as n nodes, so each iteration
of the loop takes at most O(n?) time. Multiplying these two together, we geta
running time of O(n?2").

Thus see that 2" arises naturally as a running time for a search algorithm
that must consider all subsets. In the case of Independent Set, something
at least nearly this inefficient appears to be necessary; but it’s important
to keep in mind that 2" is the size of the search space for many problems,
and for many of them we will be able to find highly efficient polynomial-
time algorithms. For example, a brute-force search algorithm for the Interval
Scheduling Problem that we saw in Chapter 1 would look very similar to the
algorithm above: try all subsets of intervals, and find the largest subset that has
no overlaps. But in the case of the Interval Scheduling Problem, as opposed
to the Independent Set Problem, we will see (in Chapter 4) how to find an
optimal solution in O(nlog n) time. This is a recurring kind of dichotomy in
the study of algorithms: two algorithms can have very similar-looking search
spaces, but in one case you’re able to bypass the brute-force search algorithm,
and in the other you aren’t.

The function n! grows even more rapidly than 2", so it’s even more
menacing as a bound on the performance of an algorithm. Search spaces of
size n! tend to arise for one of two reasons. First, n! is the number of ways to
match up n items with n other items—for example, it is the number of possible
perfect matchings of n men with n women in an instance of the Stable Matching
Problem. To see this, note that there are n choices for how we can match up
the first man; having eliminated this option, there are n — 1 choices for how we
can match up the second man; having eliminated these two options, there are
n — 2 choices for how we can match up the third man; and so forth. Multiplying
all these choices out, we get n(n — H)(n —2) --- 2)(1) =n!

Despite this enormous set of possible solutions, we were able to solve
the Stable Matching Problem in O(n?) iterations of the proposal algorithm.
In Chapter 7, we will see a similar phenomenon for the Bipartite Matching
Problem we discussed earlier; if there are n nodes on each side of the given
bipartite graph, there can be up to n! ways of pairing them up. However, by
a fairly subtle search algorithm, we will be able to find the largest bipartite
matching in O(n®) time.

The function n! also arises in problems where the search space consists
of all ways to arrange n items in order. A basic problem in this genre is the
Traveling Salesman Problem: given a set of n cities, with distances between
all pairs, what is the shortest tour that visits all cities? We assume that the
salesman starts and ends at the first city, so the crux of the problem is the
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implicit search over all orders of the remaining n — 1 cities, leadi.ng to a search
space of size (n — 1)L In Chapter 8, we will see that Traveling Salesman
is another problem that, like Independent Set, belongs to the class of NP-
complete problems and is believed to have no efficient solution.

Sublinear Time
Finally, there are cases where one encounters running times that are a§ymp-
totically smaller than linear. Since it takes linear time just to read the input,
these situations tend to arise in a model of computation where the input can be
“queried” indirectly rather than read completely, and the goal is to minimize
the amount of querying that must be done.

Perhaps the best-known example of this is the binary search algorithm.

Given a sorted array A of n numbers, we’d like to determine Whethe.r a givep
number p belongs to the array. We could do this by reading the entire array,

but we’d like to do it much more efficiently, taking advantage of the fact that .

the array is sorted, by carefully probing particular entries. In particular, we
probe the middle entry of A and get its value—say it is g—and we compare g
to p. If ¢ = p, we’re done. If ¢ > p, then in order for p to belong to the array
A, it must lie in the lower half of A; so we ignore the upper half of A from
now on and recursively apply this search in the lower half. Finally, if g <p,
then we apply the analogous reasoning and recursively search in the upper
half of A.

The point is that in each step, there’s a region of A where p might.possibly
be; and we’re shrinking the size of this region by a factor of two with every
probe. So how large is the “active” region of A after k probes? It starts at size
n, so after k probes it has size at most (3)*n.

Given this, how long will it take for the size of the active region-to be
reduced to a constant? We need k to be large enough so that (%)k =0(1/n),
and to do this we can choose k =log, n. Thus, when k =log, n, the size of
the active region has been reduced to a constant, at which point the recursion
bottoms out and we can search the remainder of the array directly in constant
time.

So the running time of binary search is O(log i), because of this succes§ive
shrinking of the search region. In general, O(log n) arises as a time bound
whenever we’re dealing with an algorithm that does a constant amount of
work in order to throw away a constant fraction of the input. The crucial fact
is that O(log n) such iterations suffice to shrink the input down to constant
size, at which point the problem can generally be solved directly.

2.5 A More Complex Data Structure: Priority Queues

2.5 A More Complex Data Structure:
Priority Queues

Our primary goal in this book was expressed at the outset of the chapter:
we seek algorithms that improve qualitatively on brute-force search, and in
general we use polynomial-time solvability as the concrete formulation of
this. Typically, achieving a polynomial-time solution to a nontrivial problem
is not something that depends on fine-grained implementation details; rather,
the difference between exponential and polynomial is based on overcoming
higher-level obstacles. Once one has an efficient algorithm to solve a problem,
however, it is often possible to achieve further improvements in running time

by being careful with the implementation details, and sometimes by using
more complex data structures.

Some complex data structures are essentially tailored for use in a single
kind of algorithm, while others are more generally applicable. In this section,
we describe one of the most broadly useful sophisticated data structures,
the priority queue. Priority queues will be useful when we describe how to
implement some of the graph algorithms developed later in the book. For our
purposes here, it is a useful illustration of the analysis of a data structure that,

unlike lists and arrays, must perform some nontrivial processing each time it
is invoked.

/4 The Problem

In the implementation of the Stable Matching algorithm in Section 2.3, we
discussed the need to maintain a dynamically changing set S (such as the set
of all free men in that case). In such situations, we want to be able to add
elements to and delete elements from the set S, and we want to be able to
select an element from S when the algorithm calls for it. A priority queue is
designed for applications in which elements have a priority value, or key, and
each time we need to select an element from S, we want to take the one with
highest priority.

A priority queue is a data structure that maintains a set of elements S,
where each element v € S has an associated value key(v) that denotes the
priority of element v; smaller keys represent higher priorities. Priority queues
support the addition and deletion of elements from the set, and also the
selection of the element with smallest key. Our implementation of priority

queues will also support some additional operations that we summarize at the
end of the section.

A motivating application for priority queues, and one that is useful to keep
in mind when considering their general function, is the problem of managing
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real-time events such as the scheduling of processes on a computer. Each
process has a priority, or urgency, but processes do not arrive in order of
their priorities. Rather, we have a current set of active processes, and we want
to be able to extract the one with the currently highest priority and run it.
We can maintain the set of processes in a priority queue, with the key of a
process representing its priority value. Scheduling the highest-priority process
corresponds to selecting the element with minimum key from the priority
queue; concurrent with this, we will also be inserting new processes as they
arrive, according to their priority values.

How efficiently do we hope to be able to execute the operations in a priority
queue? We will show how to implement a priority queue containing at most
n elements at any time so that elements can be added and deleted, and the
element with minimum key selected, in O(log n) time per operation.

Before discussing the implementation, let us point out a very basic appli-
cation of priority queues that highlights why O(log n) time per operation is
essentially the “right” bound to aim for.

(2.11) A sequence of O(n) priority queue operations can be used to sort a set ‘

of n numbers.

Proof. Set up a priority queue H, and insert each number into H with its value
as a key. Then extract the smallest number one by one until all numbers have
been extracted; this way, the numbers will come out of the priority queue in
sorted order. =

Thus, with a priority queue that can perform insertion and the extraction
of minima in O(log n) per operation, we can soIt n numbers in O(n log n)
time. It is known that, in a comparison-based model of computation (when
each operation accesses the input only by comparing a pair of numbers),
the time needed to sort must be at least proportional to nlogn, so. 2.11)
highlights a sense in which O(log n) time per operation is the best we can
hope for. We should note that the situation is a bit more complicated than
this: implementations of priority queues more sophisticated than the one we
present here can improve the running time needed for certain operations, and
add extra functionality. But (2.11) shows that any sequence of priority queue
operations that results in the sorting of n numbers must take time at least
proportional to n log nn in total.

A Data Structure for Implementing a Priority Queue

We will use a data structure called a heap to implement a priority queue.
Before we discuss the structure of heaps, we should consider what happens
with some simpler, more natural approaches to implementing the functions
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of a priority queue. We could just have the elements in a list, and separately
have a pointer labeled Min to the one with minimum key. This makes adding
new elements easy, but extraction of the minimum hard. Specifically, finding
the minimum is quick—we just consult the Min pointer—but after removing
this minimum element, we need to update the Min pointer to be ready for the

next operation, and this would require a scan of all elements in O(n) time to
find the new minimum.

This complication suggests that we should perhaps maintain the elements
in the sorted order of the keys. This makes it easy to extract the element with
smallest key, but now how do we add a new element to our set? Should we
have the elements in an array, or a linked list? Suppose we want to add s
with key value key(s). If the set S is maintained as a sorted array, we can use
binary search to find the array position where s should be inserted in O(log n)
time, but to insert s in the array, we would have to move all later elements
one position to the right. This would take O(n) time. On the other hand, if we
maintain the set as a sorted doubly linked list, we could insert it in O(1) time
into any position, but the doubly linked list would not support binary search,

and hence we may need up to O(n) time to find the position where s should
be inserted.

The Definition of a Heap So in all these simple approaches, at least one of
the operations can take up to O(n) time—much more than the O(log n) per
operation that we’re hoping for. This is where heaps come in. The heap data
structure combines the benefits of a sorted array and list for purposes of this
application. Conceptually, we think of a heap as a balanced binary tree as
shown on the left of Figure 2.3. The tree will have a root, and each node can
have up to two children, a left and a right child. The keys in such a binary tree
are said to be in heap order if the key of any element is at least as large as the
key of the element at its parent node in the tree. In other words,

Heap order: For every element v, at a node i, the element w at i’s parent
satisfies key(w) < key(v).

In Figure 2.3 the numbers in the nodes are the keys of the correspondiﬁg
elements.

Before we discuss how to work with a heap, we need to consider what data
structure should be used to represent it. We can use pointers: each node at the
heap could keep the element it stores, its key, and three pointers pointing to
the two children and the parent of the heap node. We can avoid using pointers,
however, if a bound N is known in advance on the total number of elements
Fhat will ever be in the heap at any one time. Such heaps can be maintained
In an array H indexed by i =1,...,N. We will think of the heap nodes as
corresponding to the positions in this array. H[1] is the root, and for any node
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Each node’s key is at least
as large as its parent’s.

11‘215 l1013l7111‘15|17|20|9 |15\8|16|Xl

Figure 2.3 Values in a heap shown as a binary tree on the left, and represented as an
array on the right. The arrows show the children for the top three nodes in the tree.

at position i, the children are the nodes at positions leftChild(i) = 21 and

rightChild(i) = 2i+ 1. So the two children of the root are at positions 2 and
3, and the parent of a node at position i is at position parent(i) = [i/2]. If
the heap has n < N elements at some time, we will use the first n positions
of the array to store the n heap elements, and use length(H) to denote the
number of elements in H. This representation keeps the heap balanced at all
times. See the right-hand side of Figure 2.3 for the array representation of the
heap on the left-hand side. .

Implementing the Heap Operations

The heap element with smallest key is at the root, so it takes O(1) time to
identify the minimal element. How do we add or delete heap elements? First
consider adding a new heap element v, and assume that our heap H hasn <N
elements so far. Now it will have n -+ 1 elements. To start with, we can add the
new element v to the final position i =n + 1, by setting H[i] = v. Unfortunately,
this does not maintain the heap property, as the key of element v may be
smaller than the key of its parent. So we now have something that is almost-a
heap, except for a small “damaged” part where v was pasted on at the end.

We will use the procedure Heapify-up to fix our heap. Letj = parent(l) =

li/2] be the parent of the node i, and assume H[j]l=w. If key[v] < key[w],
then we will simply swap the positions of v and w. This will fix the heap
_property at position i, but the resulting structure will possibly fail to satisfy
the heap property at position j—in other words, the site of the “damage” has
moved upward from i to j. We thus call the process recursively from position
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The Heapify-up process is moving
element v toward the root.

i}%grrz V%;; ;ﬁe Eeapgfy;luflprt%cess. Key 3 (at position 16) is too small (on the left)
g keys 3 an , the heap violation mo !
the tree (o et p ves one step closer to the root of

j = parent(i) to continue fixing the heap by pushing the damaged part upward.
Figure 2.4 shows the first two steps of the process after an insertion.

Heapify-up(H,i):
If i>1 then
let j=parent(i) = [i/2]
If key[H[il]<key[H[j]] then
swap the array entries H[i] and H[j]
Heapify-up(H,j)
Endif
Endif

To see why Heapify-up works, eventually restoring the heap order, it
helps to understand more fully the structure of our slightly damaged heap in
the 'H‘xiddle of this process. Assume that H is an array, and v is the element in
9051t10n i. We say that H is almost a heap with the key of H[i} too small, if there
is a value « > key(v) such that raising the value of key(v) to @ would make
_the resulting array satisfy the heap property. (In other words, element v in H[{]
Is too small, but raising it to « would fix the problem.) One important point
to note is that if H is almost a heap with the key of the root (i.e., H[1]) too
small, then in fact it is a-heap. To see why this is true, consider that if raising
the value of H[1] to « would make H a heap, then the value of H[1] must
also be smaller than both its children, and hence it already has the heap-order
property.
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(2.12) The procedure Heapify-up(H, i) fixes the heap property in O(log i)
time, assuming that the array H is almost a heap with the key of H[i] too small.
Using Heapify—up we can insert a new element in a heap of n elements in
O(log n) time.

Proof. We prove the statement by induction on . If i = 1 there is nothing to
prove, since we have already argued that in this case H is actually a heap.
Now consider the case in which i > 1: Let v=H [il, j = parent(d), w=H [,
and B = key(w). Swapping elements v and w takes O(1) time. We claim that
after the swap, the array H is either a heap or almost a heap with the key of
HJj] (which now holds v) too small. This is true, as setting the key value at
node j to g would make H a heap.

So by the induction hypothesis, applying Heapify-up(j) recursively will
produce a heap as required. The process follows the tree-path from position i
to the root, so it takes O(log i) time.

To insert a new element in a heap, we first add it as the last element. if the

new element has a very large key value, then the array is a heap. Otherwise,
it is almost a heap with the key value of the new element too small. We use
Heapify-up to fix the heap property. =

Now consider deleting an element. Many applications of priority quenes
don’t require the deletion of arbitrary elements, but only the extraction of
the minimum. In a heap, this corresponds to identifying the key at the root
(which will be the minimuim) and then deleting it; we will refer to this oper-
ation as ExtractMin(H). Here we will implement a more general operation
Delete(H, i), which will delete the element in position i. Assume the heap
currently has n elements. After deleting the element HIi], the heap will have
only n — 1 elements; and not only is the heap-order property violated, there
is actually a “hole” at position 7, since H [i] is now empty. So as a first step,
to patch the hole in H, we move the element w in position n to position i.
After doing this, H at least has the property that its n — 1 elements are in the
first n — 1 positions, as required, but we may well still not have the heap-order
property. :

However, the only place in the heap where the order might be violated is
position i, as the key of element w may be either too small or too big for the
position i. If the key is too small (that is, the violation of the heap property is
between node i and its parent), then we can use Heapify-up(?) to reestablish
the heap order. On the other hand, if key[w] is too big, the heap property
may be violated between i and one or both of its children. In this case, we will
use a procedure called Heapify—down, closely analogous to Heapify-up, that

2.5 A More Complex Data Structure: Priority Queues

The Heépi fy-down pracess
is moving element w down,
toward the leaves.

Figure 2.5 The Heapify~-down process:. Key 21 (at position 3) is too big (on the left).

After swapping keys 21 and 7, the heap violat
o the wes tonshe ) p violation moves one step closer to the bottom

swaps the elerpent at position i with one of its children and proceeds down
the tree recursively. Figure 2.5 shows the first steps of this process.

Heapify-down(H,i):
Let n= length(H)
If 2i>n then
Terminate with H unchanged
Else if 2i<n then
Let left=2i, and right=2i+1
Let j be the index that minimizes key[H[left]] and key[H[rightl]
Else if 2i=n then
Let j=2i
Endif
If key[HI[j1] < key[H[i]] then
swap the array entries HI[i] and HI[j]
Heapify-down(H, j)
Endif

' Assume that H is an array and w is the element in position i. We say that
H is almost a heap with the key of H[i] too big, if there is a-value « < key(w)
sugh that lowering the value of key(w) to « would make the result?ng array
sf'msfy the heap property. Note that if H[i] corresponds to a leaf in the heap
(1@., it has no children), and H is almost a heap with H[{]too big, then in fact
H is a heap. Indeed, if lowering the value in H[{] would make H a heap, then
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H[i] is already larger than its parent and hence it already has the heap-order
property.

(2.13) The procedure Heapify-down(H, i) fixes the heap property in O(log 1)
time, assuming that H is almost a heap with the key value of H[i] too big. Using
Heapify-up or Heapify-down we can delete a new element in a heap of n
elements in O(log n) time.

Proof. We prove that the process fixes the heap by reverse induction on the
value i. Let n be the number of elements in the heap. If 2i > n, then, as we
just argued above, His a heap and hence there is nothing to prove. Otherwise,
let j be the child of i with smaller key value, and let w=HIjl. Swapping the
array elements w and v takes O(1) time. We claim that the resulting array is
either a heap or almost a heap with H[j]=v too big. This is true as setting
key(v) = key(w) would make H a heap. Now j=>2i, sO by the induction
hypothesis, the recursive call to Heapify-down fixes the heap property.

The algorithm repeatedly swaps the element originally at position down,
following a tree-path, so in O(log 1) iterations the process results in a heap.

To use the process to remove arn element v = H[i] from the heap, we replace
H[i] with the last element in the array, H[n]=w. 1f the resulting array is not a
heap, it is almost a heap with the key value of H[{] either too small or too big.
We use Heapify-down or Heapify—-down 10 fix the heap property in O(log 1)
fime. =

Implementing Priority Queues with Heaps

The heap data structure with the Heapify-down and Heapify-up operations
can efficiently implement a priority queue that is constrained to hold at most
N elements at any point in time. Here we summarize the operations we will
use. .

o StartHeap(N) returns an empty heap H that is set up to store at most N
elements. This operation takes O(NV) time, as it involves initializing the
array that will hold the heap.

o Insert(H,v) inserts the item v into heap H. If the heap currently has n
elements, this takes O(log n) time.

e FindMin(H) identifies the minimum element in the heap H but does not
remove it. This takes O(1) time.

o Delete(H, i) deletes the element in heap position i. This is implemented
in O(log n) time for heaps that have n elements.

e ExtractMin(H) identifies and deletes an element with minimum key
value from a heap. This is a combination of the preceding two operations,
and so it takes O(log n) time.

Solved Exercises

There is a second class of operations in which we want to operate on :

Zlemellljts by name, rathe.r than by their position in the heap. For example, in
thnum er of' graph algorithms that use heaps, the heap elements are node; of
e graph with key values that are computed during the algorithm. At various

points in these algorithms, we want to i
. S operate on a particular nod
of where it happens to be in the heap. © regardess

i T10 be 'alble. to acces§ 'given elements of the priority queue efficiently, we
ply maintain an additional array Position that stores the current position

of each element (each node) in the h ;
eap. We .
further operations. p can now implement the following

[2]
Tg delete the elemenF v, we apply Delete(H ,Position[v]). Maintaining
this array does not increase the overall running time, and so we can
delete an element v from a heap with n nodes in O(log n) time.

© An additional operation that is used by some algorithms is ChangeK
'(H » U, ), which changes the key value of element v to key(v) =goz ;Y
%mple'ment this operation in O(log n) time, we first need to be abl' to
identify the position of element v in the array, which we do b u:ino
the array Position. Once we have identified the position of elerient vg

g
p

Solved Exercises

Solved Exercise 1

Take the following list of functions and arrange them in ascending order of

growth rate. That is, if function i i
. : » g(n) immediately follows functi i
your list, then it should be the case that f(n) is O(g(n)). oo

fi(m) = 10"
f(n) =n'3
f3(n) =n"

fa(m) =log, n
fS(n) — Zﬂllogz n
Solution We can deal with functions fi, f;, and fa very easily, since they

belong to the basic families of exponentials, polynomials, and logarithms

In particular, by (2.8), we h _ .
f2(n) = O(fi(n)). we have f;(n) = O(f,()); and by (2.9)," we have
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Now, the function f; isn’t so hard to deal with. It starts out smaller than
10", but once n > 10, then clearly 10" < n™. This is exactly what we need for
the definition of O(-) notation: for all n > 10, we have 10" < cn™, where in this
case ¢ = 1, and so 10" = O(n™).

Finally, we come to function fs, which is admittedly kind of strange-
looking. A useful rule of thumb in such sitnations is to try taking logarithms
to see whether this makes things clearer. In this case, log, f5(n) = {/1og, n =
(log, 1)/2. What do the logarithms of the other functions look like? log fy(n) =
log, log, n, while log f,(n) = % log, n. All of these can be viewed as functions
of log, n, and so using the notation z = log, n, we can write

1
log f(n) = 32

log fa(n) =log, z
log fs(n) =2/

Now it’s easier to see what’s going on. First, for z > 16, we have log, z < ‘
Z1/2. But the condition z > 16 is the same as n > 216 =65, 536; thus once
n > 216 we have log f4(n) < log f5(n), and so fy(m) = fs(m). Thus we can write
f4(n) = O(fs(n)). Similarly we have z/2 < 1z once z > 9—in other words,
once 1 > 22 = 512. For n above this bound we have log fs(n) <log fo(n) and
hence fs(11) <f>(n), and so we can write fs(n) = O(f(n)). Essentially, we
have discovered that 2v1°82™ is a function whose growth rate lies somewhere
between that of logarithms and polynomials.

Since we have sandwiched fs between f; and f,, this finishes the task of
putting the functions in order.

Solved Exercise 2
Let f and g be two functions that take normegative values, and suppose that
f=0(g). Show that g = Q.-

Solution This exercise is a way to formalize the intuition that O(-) and (-
are in a sense opposites. 1t is, in fact, not difficult to prove; it is just a matter
of unwinding the definitions.

We're given that, for some constants ¢ and ny, we have f(n) < cg(n) for
all n > ng. Dividing both sides by ¢, we can conclude that g(n) = -};f(n) for
all n > n,. But this is exactly what is required to show that g = € (f): we have
established that g(n) is at least a constant multiple of f (1) (where the constant
is %), for all sufficiently large n (at least ng)-

Exercises

Exercises

1. Suppose you have algorithms with the five running times listed below
(Assume these are the exact running times.) How much slower do each of

these algorithms get when i i
you (a) double the input size i
the input size by one? ’ o () Tnerease

(@ n?
) »?
(c) 100n?
(d) nlogn
(&) 2"

2. Suppose you have algorithms with the six running times listed below
(Assume these are the exact number of operations performed as a funcl
tion of the input size n.) Suppose you have a computer that can perform
10 operations per second, and you need to compute a result in at most
fm hour of computation. For each of the algorithms, what is the largest
input size n for which you would be able to get the result within an hour?
@ n? |

b) »°
(c) 100n?
(d) nlogn
(e) 27
Hn 2%

3. Take the following list of functions and arrange them in ascending order
9f grow@ rate. T]?at is, if function g(n) immediately follows function f(n)
in your list, then it should be the case that f(n) is O(g(n)).

v h@=n*3
—Fmy=vIn
v i =n+10
) =10"

4 fs(n) = 100"
fs(m) =n?logn
4. Take the following list of functions and arrange them in ascending order

'of gro@ rate. Tl'lat is, if function g(n) immediately follows function f(n)
in your list, then it should be the case that f(n) is O(g(n)).
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[ gy(n) =2V18"

L g(m=2"
| gam) =n*?

g5(n) = n(log )’

& (n) = nlog n
, gem =22
g =2"

Assume you have functions f and g such that f(n) is O(g(n)). For each of

the following statements, decide whether you think it is true or false and

give a proof or counterexample.
(@) log, f(n)is O(log, 8(m)-

) 2f () s o(zg(n))_

© f@?is 0.

Consider the following basic problem. You're given an array A consisting

of n integers A[1], A[2], ..., Aln. You'd like t(.) output a two~dunen511c:)rti1:i
n-by-n array B in which B[, j] (for i < j) contains the sum ()f ar;ay zlue e
A[i] through A[j}l—that is, the sum Alfl+Ali+1] + o 4 f.l[]]. (T e,v e ot
array entry B(i, j] is left unspecified whenever i > j, s0 1t doesn’t m.
what is output for these values.)

Here's a simple algorithm to solve this problem.

For i=1, 2,...,1
For j=i+1, i+2,...,0
Add up array entries Ali] through Alj]
Store the result in BIi,]]
Endfor
Endfor

(a) For some function f that you should choose, give a boun(?l of th(?f
form O(f(n)) on the running time of this algorithm on an input o
size n (i.e., a bound on the number of operations performed by the

‘ algorithm). . -

(b) For this same function f, show that the running time of the algor'rca]l
on an input of size n is also Q(f(m))- (This shows an asymptotically
tight bound of ©(f(m)) on the running time.)

(© Although the algorithm you analyzed in parts (a) and (b) is the most
natural way to solve the problem—after all, it just iterates through

Exercises

the relevant entries of the array B, filling in a value for each—it
contains some highly unnecessary sources of inefficiency. Give a
different algorithm to solve this problem, with an asymptoticaily
better running time. In other words, you should design an algorithm
with running time O(g(n)), where lim,,_, ., g(n)/f (1) = 0.

7. There’s a class of folk songs and holiday songs in which each verse
consists of the previous verse, with one extra line added on. “The Twelve
Days of Christmas” has this property; for example, when you get to the
fifth verse, you sing about the five golden rings and then, reprising the
lines from the fourth verse, also cover the four calling birds, the three
French hens, the two turtle doves, and of course the partridge in the‘pear
tree. The Aramaic song “Had gadya” from the Passover Haggadah works
like this as well, as do many other songs. :

These songs tend to last a long time, despite having relatively short
scripts. In particular, you can convey the words plus instiuctions for one
of these songs by specifying just the new line that is added in each verse,
without having towrite out all the previous lines each time. (So the phrase
“five golden rings” only has to be written once, even though it will appear
in verses five and onward.)

There’s something asymptotic that can be apalyzed here. Suppose,
for concreteness, that each line has a length that is bounded by a constant
¢, and suppose that the song, when sung out loud, runs for n words total.
Show how to encode such a song using a script that has length f(n), for
a function f(n) that grows as slowly as possible.

8. You're doing some stress-testing on various models of glass jars to

determine the height from which they can be dropped and still not break.
The setup for this experiment, on a particular type of jar, is as follows.
You have a ladder with n rungs, and you want to find the highest rung
from which you can drop a copy of the jar and not have it break. We call
this the highest safe rung.

It might be natural to try binary search: drop a jar from the middle
rung, see if it breaks, and then recursively try from rung n/4 or n/4
depending on the outcome. But this has the drawback that you could
break a lot of jars in finding the answer.

If your primary goal were to conserve jars, on the other hand, you
could try the following strategy. Start by dropping a jar from the first
rung, then the second rung, and so forth, climbing one higher each time
until the jar breaks. In this way, you only need a single jar—at the moment
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it breaks, you have the correct answer—but you may have to drop it n
times (rather than logn as in the binary search solution).

So here is the trade-off: it seems you can perform fewer drops if
you're willing to break more jars. To understand better how this trade-
off works at a quantitative level, let’s consider how to run this experiment
given a fixed “budget” of k > 1jars. In other words, you have to determine
the correct answer—the highest safe rung—and can use at most k jars in
doing so.

(@) Suppose you are given a budget of k =2 jars. Describe a strategy for
finding the highest safe rung that requires you to drop a jar at most
f(n) times, for some function f(n) that grows slower than linearly. (In
other words, it should be the case that lim,_. f(m)/n = 0.)

(b) Now suppose you have a budget of k> 2 jars, for some given k.
Describe a strategy for finding the highest safe rung using at most
k jars. If fi(n) denotes the number of times you need to drop a jar
according to your strategy, then the functions fi> 2. fs, - - -.should have
the property thateach grows asymptotically slower than the previous’
one: lim,_, o fi(m)/f—1(m) = 0 for each k.

Notes and Further Reading

Polynomial-time solvability emerged as a formal notion of efficiency by a
gradual process, motivated by the work of a number of researchers includ-
ing Cobham, Rabin, Edmonds, Hartmanis, and Stearns. The survey by Sipser
(1992) provides both a historical and technical perspective on these develop-
ments. Similarly, the use of asymptotic order of growth notation to bound the
running time of algorithms—as opposed to working out exact formulas with
leading coefficients and lower-order terms—is a modeling decision that was
quite non-obvious at the time it was introduced; Tarjan’s Turing Award lecture
(1987) offers an interesting perspective on the early thinking of researchers
including Hopcroft, Tarjan, and others on this issue. Further discussion of
asymptotic notation and the growth of basic functions can be found in Knuth
(1997a).

The implementation of priority queunes using heaps, and the application to
sorting, is generally credited to Williams (1964) and Floyd (1964). The priority
queue is an example of a nontrivial data structure with many applications; in
later chapters we will discuss other data structures as they become useful for
the implementation of particular algorithms. We will consider the Union-Find
data structure in Chapter 4 for implementing an algorithm to find minimum-

SR

Notes and Further Reading

cost spanning trees, and we will discuss randomized hashing in Chapter 13
A number of other data structures are discussed in the book by Tarjan (1983).
The LE.I‘DA library (Library of Efficient Datatypes and Algorithms) of Meh]hon;
and Ndher (1999) offers an extensive library of data structures useful i

combinatorial and geometric applications. "
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Graphs

Our focus in this book is on problems with a discrete flavor. Just as continuous
mathematics is concerned with certain basic structures such as real numbers,
vectors, and matrices, discrete mathematics has developed basic combinatorial
structures that lie at the heart of the subject. One of the most fundamental and
expressive of these is the graph.

The more one works with graphs, the more one tends to see them ev-
erywhere. Thus, we begin by introducing the basic definitions surrounding
graphs, and list a spectrum of different algorithmic settings where graphs arise
naturally. We then discuss some basic algorithmic primitives for graphs, be-
ginning with the problem of connectivity and developing some fundamental
graph search techniques.

3.1 Basic Definitions and Applications

Recall from Chapter 1 that a graph G is simply a way of encoding pairwise
relationships among a set of objects: it consists of a collection V of nodes
and a collection E of edges, each of which “joins” two of the nodes. We thus
represent an edge e € E as a two-element subset of V: e = {u, v} for some
u,v eV, where we call u and v the ends of e.

Edges in a graph indicate a symmetric relationship between their ends.
Often we want to encode asymmetric relationships, and for this we use the
closely related notion of a directed graph. A directed graph G’ consists of a set
of nodes V and a set of directed edges E'. Each €’ € E' is an ordered pair (11, v);
in other words, the roles of u and v are not interchangeable, and we call u the
tail of the edge and v the head. We will also say that edge ¢’ leaves node u and
enters node v.
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When we want to emphasize that the graph we are considering is not
directed, we will call it an undirected graph; by default, however, the term
“graph” will mean an undirected graph. It is also worth mentioning two
warnings in our use of graph terminology. First, although an edge e in an
undirected graph should properly be written as a set of nodes {u, v}, one will
more often see it written (even in this book) in the notation used for ordered
pairs: e = (u, v). Second, a node in a graph is also frequently called a vertex;
in this context, the two words have exactly the same meaning.

Examples of Graphs Graphs are very simple to define: we just take a collec-
tion of things and join some of them by edges. But at this level of abstraction,
it’s hard to appreciate the typical kinds of situations in which they arise. Thus,
we propose the following list of specific contexts in which graphs serve as
important models. The [ist covers a lot of ground, and it’s not important to
remember everything on it; rather, it will provide us with a lot of useful ex-
amples against which to check the basic definitions and algorithmic problems
that we’ll be encountering later in the chapter. Also, in going through the list,
it’s useful to digest the meaning of the nodes and the meaning of the edges in.
the context of the application. In some cases the nodes and edges both corre-
spond to physical objects in the real world, in others the nodes are real objects
while the edges are virtual, and in still others both nodes and edges are pure

abstractions.

1. Transportation networks. The map of Toutes served by an airline carrier
naturally forms a graph: the nodes are airports, and there is an edge from
1 to v if there is a nonstop flight that departs from u and arrives at v.
Described this way, the graph is directed; but in practice when there is an
edge (u, v), there is almost always an edge (v, i), SO We would not lose
much by treating the airline route map as an undirected graph with edges
joining pairs of airports that have nonstop flights each way. Looking at
such a graph (you can generally find them depicted in the backs of in-
flight airline magazines), we’'d quickly notice a few things: there are often
a small number of hubs with a very large number of incident edges; and
it’s possible to get between any two nodes in the graph via a very small
number of intermediate stops.

Other transportation networks can be modeled in a similar way. For
example, we could take a rail network and have a node for each terminal,
and an edge joining u and v if there’s a section of railway track that
goes between them without stopping at any intermediate terminal. The
standard depiction of the subway map in a major city is a drawing of
such a graph.

2. Communication networks. A collection of computers connected via a
communication network can be naturally modeled as a graph in a few
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different ways. First, we could have a node for each computer and
an edge joining u and v if there is a direct physical link connecting
them. Alternatively, for studying the large-scale structure of the Internet
pegple often define a node to be the set of all machines controlled b;
a single Internet service provider, with an edge joining u and v if there
is a direct peering relationship between them-—roughly, an agreement
to exchange data under the standard BGP protocol that governs global
Internet routing. Note that this latter network is more “virtual” than

the for.mer, since the links indicate a formal agreement in addition to
a physical connection.

In studying wireless networks, one typically defines a graph where
the nodes are computing devices situated at locations in physical space
and there is an edge from u to v if v is close enough to u to receive a signai
'from it. Note that it’s often useful to view such a graph as directed, since
1t‘ may be the case that v can hear u’s signal but u cannot hear u’s’signal
'(1f, for example, u has a stronger transmitter). These graphs are also
interesting from a geometric perspective, since they roughly correspond

to putting down points in the plane and then joining pairs that are close
together.

. Information networks. The World Wide Web can be naturally viewed as a

directed graph, in which nodes correspond to Web pages and there is an
fedge from u to v if u has a hyperlink to v. The directedness of the graph
Is crucial here; many pages, for example, link to popular news sites
but these sites clearly do not reciprocate all these links. The structure o%
all these hyperlinks can be used by algorithms to try inferring the most

important pages on the Web, a technique employed by most current
search engines.

' The hypertextual structure of the Web is anticipated by a number of
@formatmn networks that predate the Internet by many decades. These
include the network of cross-references among articles in an encyclopedia

or other ‘reference work, and the network of bibliographic citations
among scientific papers.

- Social networks. Given any collection of people who interact (the em-

ployees of a company, the students in a high school, or the residents of
a small town), we can define a network whose nodes are people, with
an edge joining u and v if they are friends with one another. We could
have the edges mean a number of different things instead of friendship:
tpe undirected edge (u, v) could mean that uz and v have had a roman:
tic relationship or a financial relationship; the directed edge (u, v) could
mean that u seeks advice from v, or that u lists v in his or her e-mail
address book. One can also imagine bipartite social networks based on a
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notion of affiliation: given a set X of people and a set Y of organizations,
we could define an edge betweenu e X andveY if person u belongs to
organization v.

Networks such as this are used extensively by sociologists to study
the dynarmics of interaction among people. They can be used to identify
the most “influential” people in a company or organization, to model
trust relationships in a financial or political setting, and to track the
spread of fads, rumors, jokes, diseases, and e-mail viruses.

5. Dependency networks. It is natural to define directed graphs that capture
the interdependencies among a collection of objects. For example, given
the list of courses offered by a college or university, we could have a
node for each course and an edge from u to v if u is a prerequisite for v.
Given a list of functions or modules in a large software system, we could
have a node for each function and an edge from u to v if u invokes v by a
function call. Or given a set of species in an ecosystem, we could define
a graph—a food web—in which the nodes are the different species and
there is an edge from u to v if u consumes v. :

This is far from a complete list, too far to even begin tabulating its
omissions. It is meant simply to suggest some examples that are useful to
keep in mind when we start thinking about graphs in an algorithmic context.

Paths and Connectivity One of the fundamental operations in a graph is
that of traversing a sequence of nodes connected by edges. In the examples
just listed, such a traversal could correspond to a user browsing Web pages by
following hyperlinks; a rumor passing by word of mouth from you to someone
halfway around the world; or an airline passenger traveling from San Francisco
to Rome on a sequence of flights.

With this notion in mind, we define a path in an undirected graph
G = (V, E) to be a sequence P of nodes vy, V3, - - - » V-1, Uk with the property
that each consecutive pair v;, v, is joined by an edge in G. P is often called

a path from vy to vy, or a vy path. For example, the nodes 4,2,1,7,8 form

a path in Figure 3.1. A path is called simple if all its vertices are distinct from
one another. A cycle is a path vy, v, . . ., Ug—1, Vg I which k > 2, the first k — 1
nodes are all distinct, and v; = v—in other words, the sequence of nodes
“cycles back” to where it began. All of these definitions carry over naturally
to directed graphs, with the following change: in a directed path or cycle,
each pair of consecutive nodes has the property that (v;, v;4) is an edge. In
other words, the sequence of nodes in the path or cycle must respect the
directionality of edges.

We say that an undirected graph is connected if, for every pair of nodes u
and v, there is a path from u to v. Choosing how to define connectivity of a
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Figure 3.1 Two drawings of the same tree. On the right, the tree is rooted at node 1.

direcFed graph is a bit more subtle, since it’s possible for u to have a path to
v while v has no path to u. We say that a directed graph is strongly connected

if, for every two nodes u and v, there is a path from u to v and a path from v
to u.

' In addition to simply knowing about the existence of a path between some
pair of nodes u and v, we may also want to know whether there is a short path
Thus we define the distance between two nodes u and v to be the Immmum
number of edges in a u-v path. (We can designate some symbol like co to
denote the distance between nodes that are not connected by a path.) The
term distance here comes from imagining G as representing a communication
or transportation network; if we want to get from u to v, we may well want a
route with as few “hops” as possible.

Ti“ees' We say that an undirected graph is a tree if it is connected and does not
contain a cycle. For example, the two graphs pictured in Figure 3.1 are trees.

In a strong sense, trees are the simplest kind of connected graph: deleting any
edge from a tree will disconnect it.

For thinking about the structure of a tree T, it is useful to roor it at a
particular node r. Physically, this is the operation of grabbing T at the node r
and letting the rest of it hang downward under the force of gravity, like a
mobile. More precisely, we “orient” each edge of T away from.r; for eac’h other
noc%e v, we declare the parent of v to be the node u that directly precedes v
on its path from r; we declare w to be a child of v if v is the parent of w. More
generally, we say that w is a descendant of v (or v is an ancestor of w) if v lies
on the path from the root to w; and we say that a node x is a leaf if it has no
descendants. Thus, for example, the two pictures in Figure 3.1 correspond to
the same tree T—the same pairs of nodes are joined by edges—but the drawing
on the right represents the result of rooting T at node 1.
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Rooted trees are fundamental objects in computer science, because they
encode the notion of a hierarchy. For example, we can imagine the rooted tree
in Figure 3.1 as corresponding to the organizational structure of a tiny nine-
person company; employees 3 and 4 report to employee 2; employees 2, 5,
and 7 report to employee 1; and so on. Many Web sites are organized according
to a tree-like structure, to facilitate navigation. A typical computer science
department’s Web site will have an entry page as the root; the People page is
a child of this entry page (as is the Courses page); pages entitled Faculty and
Students are children of the People page; individual professors’ home pages
are children of the Faculty page; and so on.

For our purposes here, rooting a tree T can make certain questions about T
conceptually easy to answer. For example, given a tree T on i nodes, how many
edges does it have? Each node other than the root has a single edge leading
“upward” to its parent; and conversely, each edge leads upward from precisely
one non-root node. Thus we have very easily proved the following fact.

(3.1) Every n-node tree has exactly n — 1 edges.

In fact, the following stronger statement is true, although we do not prove
it here.

(3.2) Let G be an undirected graph on n nodes. Any two of the following
statements implies the third.

(i) G is connected.
(ii) G does not contain a cycle.
(iii) G has n — 1 edges.

We now turn to the role of trees in the fundamental algorithmic idea of
graph traversal. ‘

3.2 Graph Connectivity and Graph Traversal

Having built up some fundamental notions regarding graphs, we turn to a very
basic algorithmic question: node-to-node connectivity. Suppose we are given a
graph G = (V, E) and two particular nodes s and t. We’d like to find an efficient
algorithm that answers the question: Is there a path from s to t in G? We will
call this the problem of determining s-t connectivity.

For very small graphs, this question can often be answered easily by visual
inspection. But for large graphs, it can take some work to search for a path.
Indeed, the s-t Connectivity Problem could also be called the Maze-Solving
Problem. If we imagine G as a maze with a room corresponding to each node,
and a hallway corresponding to each edge that joins nodes (rooms) together,

3.2 Graph Connectivity and Graph Traversal
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Figure 3.2 In thi
thrggigh 2 his graph, node 1 has paths to nodes 2 through 8, but not to nodes 9

then the problem is to start in a room s and find your way to another designated
room t. How efficient an algorithm can we design for this task?

. In this section, we describe two natural algorithms for this problem at a
hlgf{ level: breadth-first search (BFS) and depth-first search {DFS). In the next
section we discuss how to implement each of these efficiently, building on a
data structure for representing a graph as the input to an algorithm.

Breadth-First Search

Perhaps the simplest algorithm for determining s-t connectivity is breadth-first
search (BFS), in which we explore outward from s in all possible directions

adding nodes one “layer” at a time. Thus we start with s and include all nodes,
’.Lhat are joined by an edge to s—this is the first layer of the search. We then
include all additional nodes that are joined by an edge to any node in the first

layer—this is the second layer. We continue in this way until no new nodes
are encountered.

In the example of Figure 3.2, starting with node 1 as s, the first layer of
the search would consist of nodes 2 and 3, the second layer would consist of
no@es 4, 5,7, and 8, and the third layer would consist just of node 6. At this
point the search would stop, since there are no further nodes that could be

added (and in particular, note that nodes 9 through 13 are never reached by
the search). ‘

f}s this example reinforces, there is a natural physical interpretation to the
algorithm. Essentially, we start at s and “flood” the graph with an expanding
wave that grows to visit all nodes that it can reach. The layer containing a
node represents the point in time at which the node is reached.

We can define the layers Ly, L,, L3, . . . constructed by the BFS algorithm
more precisely as follows.
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o Layer L, consists of all nodes that are neighbors of s. (For notational
reasons, we will sometimes use layer Lo 10 denote the set consisting just
of s.)

o Assuming that we have defined layers Ly,...,Lj thenlayer L; consists
of all nodes that do not belong to an earlier layer and that have an edge
to a node in layer L;.

Recalling our definition of the distance between two nodes as the minimum
number of edges on a path joining them, we see that layer L, is the set of all
nodes at distance 1 from s, and more generally layer L; is the set of all nodes
at distance exactly j from s. A node fails to appear in any of the layers if and
only if there is no path to it. Thus, BFS is not only determining the nodes that s
can reach, it is also computing shortest paths to them. We sum this up in the
following fact.

(3.3) Foreachj=>1, layerL; produced by BFS consists of all nodes at distance

exactly j from s. There is a path from s to t if and only if t appears in some .

layer.

A further property of breadth-first search is that it produces, in a very
natural way, a tree T rooted at s on the set of nodes reachable from s.
Specifically, for each such node v (other than s), consider the moment when
v is first “discovered” by the BFS algorithm; this happens when some node u
inlayer L; is being examined, and we find that it has an edge to the previously
unseen node v. At this moment, we add the edge (u,v) to the tree T—u
becomes the parent of v, representing the fact that u is “responsible” for
completing the path to v. We call the tree T that is produced in this way a
breadth-first search tree. : ’

Figure 3.3 depicts the construction of a BFS tree rooted at node 1 for the
graph in Figure 3.2. The solid edges are the edges of T; the dotted edges are
edges of G that do not belong to T. The execution of BFS that produces this
tree can be described as follows.

(a) Starting from node 1, layer L, consists of the nodes {2, 3}.

(b) Layer L; is then grown by considering the nodes in layer L; in order (say,
first 2, then 3). Thus we discover nodes 4 and 5 as soon as we look at 2,
s0 2 becomes their parent. When we consider node 2, we also discover
an edge to 3, but this isn’t added to the BFS tree, since we already know
about node 3.

We first discover nodes 7 and 8 when we look at node 3. On the other
hand, the edge from 3 to 5 is another edge of G that does not end up in

3.2 Graph Connectivity and Graph Traversal

(a)

Figure 3.3 The construction of a breadth-fir
i Ctic -first search tree T for the graph in Fi
with (a), (b), and (c) depicting the successive layers that are added. %rnepso]llild éﬁt;reiifé

the edges of T; the dotted edges are i
o e cotted g in t‘he connected component of G containing node

the BFS tree, because by the time we 1 i
, ook at this edge out of node 3
already know about node 5. ° e

(c) We then consider the nodes in layer L, in order, but the only new node
discovered when we look through L, is node 6, which is added to layer

L;. Note that the edges (4, 5) and (7, 8) don’t get added to the BFS tree
because they don’t result in the discovery of new nodes. ’

(d) Nonew nodes are discovered when node 6 is examined, so nothing is put

in layer L,, and the algorithm terminates. Th .
in Figure 3.3(c). ee is depicted

. We nc;)tice the}t as we ran BFS on this graph, the nontree edges all either
ninected nodes 1¥1 t'he same layer, or connected nodes in adjacent layers. We
now prove that this is a property of BFS trees in general.

(3.4) Let T be a breadth-first search tree, let x and y be nodés inT bélonging

to layers L; and L; respectively, and let (x,y) b ; o
by at most 1. ! (x,y) be an edge of G. Then i and j differ

'Proof.'Suppose by way of contradiction that i and j differed by more than 1;
in particular, suppose i <j - 1. Now consider the point in the BFS algorithn;
when the edges incident to x were being examined. Since x belongs to layer
'Ll-, t'he only nodes discovered from x belong to layers L;,, and earlier; hen}(,:e
ity is a neighbor of x, then it should have been discovered by this poir’lt at th :
latest and hence should belong to layer L;, ; or earlier. = )
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Current component
containing

u ¢ (1t is safe to add v.

Figure 3.4 When growing the connected component containing s, we look for nodes
like v that have not yet been visited.

Exploring a Connected Component

The set of nodes discovered by the BFS algorithm is precisely those reachable
from the starting node s. We will refer to this set R as the connected com'pc.)nent
of G containing s; and once we know the connected component contmg s, -
we can simply check whether ¢ belongs to it so as to answer the question of
s-t connectivity.

Now, if one thinks about it, it’s clear that BFS is just one possible way to
produce this component. At a more general level, we can build the ?omponent
R by “exploring” G in any order, starting from s. To start off, we define R = {s}.
Then at any point in time, if we find an edge (u, v) where 1 € R and v ZR, we
can add v to R. Indeed, if there is a path P from s to u, t.hen there is a path
from s to v obtained by first following P and then following the edge (u,v).
Figure 3.4 illustrates this basic step in growing the component R.

Suppose we continue growing the set R untﬂ.there ar.e no more edges
leading out of R; in other words, we run the following algorithm.

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,Vv) where ueR and vER
Add v to R

Endwhile

Here is the key property of this algorithm.

(35) . ThesetR pfbdﬁced aik the é'nd;of’the:algorith'm is preci;ely the connected
’(COfVI'lp'OTLént of’G’c,ontqin‘lings.j EET , I

3.2 Graph Connectivity and Graph Traversal

Proof. We have already argued that for any node v € R, there is a path from s
to v.

Now, consider a node w ¢ R, and suppose by way of contradiction, that
there is an s-w path P in G. Since s € R but w ¢ R, there must be a first node v
on P that does not belong to R; and this:node v is not equal to s. Thus there is
a node u immediately preceding v on P, so (u, v) is an edge. Moreover, since v
is the first node on P that does not belong to R, we must have u € R. It follows
that (u, v) is an edge where u € R and v ¢ R; this contradicts the stopping rule
for the algorithm. = -

For any node ¢ in the component R, observe that it is easy to recover the
actual path from s to t along the lines of the argument above: we simply record,
for each node v, the edge (u, v) that was considered in the iteration in which
v was added to R. Then, by tracing these edges backward from t, we proceed
through a sequence of nodes that were added in earlier and earlier iterations,
eventually reaching s; this defines an s-t path.

To conclude, we notice that the general algorithm we have defined to
grow R is underspecified, so how do we decide which edge to consider next?
The BFS algorithm arises, in particular, as a particular way of ordering the
nodes we visit—in successive layers, based on their distance from s. But
there are other natural ways to grow the component, several of which lead
to efficient algorithms for the connectivity problem while producing search
patterns with different structures. We now go on to discuss a different one of
these algorithms, depth-first search, and develop some of its basic properties.

Depth-First Search

Another natural method to find the nodes reachable from s is the approach you
might take if the graph G were truly a maze of interconnected rooms and you
were walking around in it. You’d start from s and try the first edge leading out
ofit, to a node v. You’d then follow the first edge leading out of v, and continue
in this way until you reached a “dead end”—a node for which you had already
explored all its neighbors. You’d then backtrack until you got to a node with
an unexplored neighbor, and resume from there. We call this algorithm depth-
first search (DFS), since it explores G by going as deeply as possible and only
retreating when necessary.

DFS is also a particular implementation of the generic component-growing
algorithm that we introduced earlier. It is most easily described in recursive
form: we can invoke DFS from any starting point but maintain global knowl-
edge of which nodes have already been explored.
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DFS(u) :
Mark u as "Explored" and add u to R
For each edge (u,v) incident to u
If v is not marked "Explored" then
Recursively invoke DFS(v)
Endif
Endfor

To apply this to s-t connectivity, we simply declare all nodes initially to be not
explored, and invoke DFS(s).

There are some fundamental similarities and some fundamental differ-
ences between DFS and BFS. The similarities are based on the fact that they
both build the connected component containing s, and we will see in the next
section that they achieve qualitatively similar levels of efficiency. )

While DFS ultimately visits exactly the same set of nodes as BFS, it typically -

does so in a very different order; it probes its way down long paths, potentially
getting very far from s, before backing up to try nearer unexplored nodes. We
can see a reflection of this difference in the fact that, like BFS, the DFS algorithm
yields a natural rooted tree T on the component containing s, but the tree will
generally have a very different structure. We make s the root of the tree T,
and make u the parent of v when u is responsible for the discovery of v. That
is, whenever DFS(v) is invoked directly during the call to DFS(12), we add the
edge (u,v) to T. The resulting tree is called a depth-first search tree of the
component K.

Figure 3.5 depicts the construction of a DFS tree rooted at node 1 for the
graph in Figure 3.2. The solid edges are the edges of T; the dotted edges are
edges of G that do not belong to T. The execution of DFS begins by building a
path on nodes 1,2, 3, 5, 4. The execution reaches a dead end at 4, since there
are no new nodes to find, and so it “backs up” to 5, finds node 6, backs up
again to 3, and finds nodes 7 and 8. At this point there are no new nodes to find
in the connected component, so all the pending recursive DFS calls terminate,

.one by one, and the execution comes 10 an end. The full DFS tree is depicted
in Figure 3.5(g).

This example suggests the characteristic way in which DFS trees look
different from BFS trees. Rather than having root-to-leaf paths that are as short
as possible, they tend to be quite narrow and deep. However, as in the case
of BFS, we can say something quite strong about the way in which nontree
edges of G must be arranged relative to the edges of a DFS tree T as in the
figure, nontree edges can only connect ancestors of T to descendants.

3.2 Graph Connectivity and Graph Traversal

Figure 3.5 The construction of a de i

: CHc pth-first search tree T for the graph in Fi

zsgtlz S(a) thgcl)ugh (8) depicting the nodes as they are discovered in seqﬁence. ]g];lé‘esgéi,
ges are the edges of T; the dotted edges are edges of G that do not belong to T.

To establish this, we first observe the followi

' , owing property of th
algorithm and the tree that it produces. 8 propey "o
1(73.6) Fora given r?cursive call DFS(u), all nodes that are marked “Explored”
i :D;Jeen the invocation and end of this recursive call are descendants of u

Using (3.6), we prove

(3.7) Let T be a depth-first search tree, let x and y be nodes vin T, and let
(x,y) be an edge of G that is not an edge of T. Then one of x or y is an ancestor

of the other.
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Proof. Suppose that (x,y) is an edge of G that is not an edge of T, and suppose
without loss of generality that x is reached first by the DFS algorithm. When
the edge (x,y) is examined during the execution of DFS(x), it is not added
to T because y is marked “Explored.” Since y was not marked “Explored”
when DFS(x) was first invoked, it is a node that was discovered between the
invocation and end of the recursive call DFS(x). It follows from (3.6) that y is

a descendant of x. =

The Set of All Connected Components

So far we have been talking about the connected component containing a
particular node s. But there is a connected component associated with each
node in the graph. What is the relationship between these components?

In fact, this relationship is highly structured and is expressed in the
following claim.

(3.8) For any two nodes s and t in a graph, their connected components are
either identical or disjoint. :

This is a statement that is very clear intuitively, if one looks at a graph like
the example in Figure 3.2. The graph is divided into multiple pieces with no
edges between them; the largest piece is the connected component of nodes
1 through 8, the medium piece is the connected component of nodes 11, 12,
and 13, and the smallest piece is the connected component of nodes 9 and 10.
To prove the statement in general, we just need to show how to define these

“pieces” precisely for an arbitrary graph.

Proof. Consider any two nodes s and ¢ in a graph G with the property that
there is a path between s and t. We claim that the connected components
containing s and t are the same set. Indeed, for any node v in the component
of s, the node v must also be reachable from t by a path: we can just walk
from t to s, and then on from s to v. The same reasoning works with the roles
of s and t reversed, and so a node is in the component of one if and only if it
is in the component of the other.

On the other hand, if there is no path between s and t, then there cannot
be a node v that is in the connected component of each. For if there were such
a node v, then we could walk from s to v and then on to f, constructing a
path between s and t. Thus, if there is no path between s and t, then their
connected components are disjoint. =

This proof suggests a natural algorithm for producing all the connected
components of a graph, by growing them one component at a time. We start
with an arbitrary node s, and we use BFS (or DFS) to generate its connected

3.3 Implementing Graph Traversal Using Queues and Stacks

component. We then find a node v (if any) that was not visited by the search
from s, and iterate, using BFS starting from v, to generate its connected
component—which, by (3.8), will be disjoint from the component of s. We
continue in this way until all nodes have been visited.

3.3 Implementing Graph Traversal Using Queues
and Stacks

So far we have been discussing basic algorithmic primitives for working with
graphs without mentioning any implementation details. Here we discuss how
to use lists and arrays to represent graphs, and we discuss the trade-offs
between the different representations. Then we use these data structures to
implement the graph traversal algorithms breadth-first search (BFS) and depth-
first search (DFS) efficiently. We will see that BFS and DFS differ essentially
only in that one uses a queue and the other uses a stack, two simple data
structures that we will describe later in this section.

Representing Graphs

There are two basic ways to represent graphs: by an adjacency matrix and
by an adjacency list representation. Throughout the book we will use the
adjacency list representation. We start, however, by reviewing both of these
representations and discussing the trade-offs between them.

A graph G = (V, E) has two natural input parameters, the number of nodes
|V|, and the number of edges |E|. We will use n=|V| and m = |E| to denote
these, respectively. Running times will be given in terms of both of these two
parameters. As usual, we will aim for polynomial running times, and lower-
degree polynomials are better. However, with two parameters in the runm'ng
time, the comparison is not always so clear. Is O(m?) or O(7%) a better running
time? This depends on what the relation is between n and m. With at most
Oile edge between any pair of nodes, the number of edges m can be at most
(5) < n®. On the other hand, in many applications the graphs of interest are
connected, and by (3.1), connected graphs must have at least m > — 1 edges.
But these comparisons do not always tell us which of two running times (such
as m? and n?) are better, so we will tend to keep the running times in terms
of both of these parameters. In this section we aim to.implément the basic
graph search algorithms in time O(m + n). We will refer to this as linear time,
sil.lce it takes O(m + n) time simply to read the input. Note that when we work
with connected graphs, a running time of O(m + 1) is the same as O(mm), since
m>mn-—1.

. Consider a graph G = (V, E) with n nodes, and assume the set of nodes
is V={1,...,n}. The simplest way to represent a graph is by an adjacency
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matrix, which is an n x n matrix A where Alu, v] is equal to 1 if the graph
contains the edge (i, v) and 0 otherwise. 1f the graphis undirected, the matrix A
is symmetric, with Alu, vl=Alv, u] for all nodes u,v e V. The adjacency
matrix representation allows us to check in O(1) time if a given edge (u, V) is
present in the graph. However, the representation has two basic disadvantages.

o The representation takes ©(n?) space. When the graph has many fewer
edges than n2, more compact representations are possible.

e Many graph algorithms need to examine all edges incident to a given node
v. In the adjacency matrix representation, doing this involves considering
all other nodes w, and checking the matrix entry Alv, w] to see whether
the edge (v, w) is present—and this takes ®(n) time. In the worst case,
v may have ©(n) incident edges, in which case checking all these edges
will take ® () time regardless of the representation. But many graphs in
practice have significantly fewer edges incident to most nodes, and so it
would be good to be able to find all these incident edges more efficiently.

The representation of graphs used throughout the book is the adjacency
list, which works better for sparse graphs—that is, those with many fewer than
n? edges. In the adjacency list representation there is a record for each node v,
containing a list of the nodes to which v has edges. To be precise, we have an
array Adj, where Adj[v] is a record containing a list of all nodes adjacent to
node v. For an undirected graph G = (V, E), each edge e = (v, w) € E occurs on
two adjacency lists: node w appears o1l the list for node v, and node v appears
on the list for node w.

Let’s compare the adjacency matrix and adjacency list representations.
First consider the space required by the representation. An adjacency matrix
requires O(n?) space, since it uses ann x n matrix. In contrast, we claim that
the adjacency list representation requires only O(m + n) space. Here is why.
First, we need an array of pointers of length n to set up the lists in Adj, and
then we need space for all the lists. Now, the lengths of these lists may differ
from node to node, but we argued in the previous paragraph that overall, each
edge e = (v, w) appears in exactly two of the lists: the one for v and the one
for w. Thus the total length of all lists is 2m = o@m).

Another (essentially equivalent) way to justify this bound is as follows.
We define the degree n, of a node v to be the number of incident edges it has.
The length of the list at Adj[v] is list is 72,, 50 the total length over all nodes is
0 (Xvev n,). Now, the sum of the degrees in a graph is a quantity that often
comes up in the analysis of graph algorithms, s0 it is useful to work out what

this sum is.

(3.9) ZveV ny, = 2M.
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Proof. Each edge e = (v, w) contributes exactly twice to this sum: once in the .

quan?ity Ty and once in the quantity n,,. Since the sum is the total of the
contributions of each edge, it is 2m. =

' We sum up the comparison between adjacency matrices and adjacency
lists as follows.

(3.}0) The. adjacency matrix representation of a graph requires O(n?) space,
while the adjacency list representation requires only O(m + n) spdce.

Since we have already argued that m < n?, the bound O(m + n) is never

worse than O(n?); and it is much better when the underlyi i
: ; erlying graph
with m much smaller than n?. VI BEDR B Spane

. Now we consider the ease of accessing the information stored in these two
dlffergnt representations. Recall that in an adjacency matrix we can check in
O(1) time if a particular edge (u, v) is present in the graph. In the adjacency list
representation, this can take time proportional to the degree O(n,): we have to
follow the pointers on u’s adjacency list to see if edge v occurs gn the list. On

the other hand, if the algorithm is currently looking at a node u, it can read .

the list of neighbors in constant time per neighbor.

In view of this, the adjacency list is a natural representation for explorihg
graphs. If the algorithm is currently looking at a node u, it can read this list
of neighbors in constant time per neighbor; move to a neighbor v once it
encox.}nters it on this list in constant time; and then be ready to read the list
a559c1ated with node v. The list representation thus corresponds to a physical
notion of “exploring” the graph, in which you learn the neighbors of a node
u once you arrive at u, and can read them off in constant time per neighbor.

Queues and Stacks

Many algorithms have an inner step in which they need to process a set of
el‘eynents, such the set of all edges adjacent to a node in a graph, the set of
VlSlte.d nodes in BFS and DFS, or the set of all free men in the Stable Matching
algorithm. For this purpose, it is natural to maintain the set of elements to be
considered in a linked list, as we have done for maintaining the set of free men
in the Stable Matching algorithm.

One i@portant issue that arises is the order in which to consider the
elements in such a list. In the Stable Matching algorithm, the order in which
we Fonsidered the free men did not affect the outcome, although this required
a fairly subtle proof to verify. In many other algorithms, such as DFS and BFS
the order in which elements are considered is crucial. ’
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Two of the simplest and most natural options are to maintain a set of
elements as either a queue or a stack. A gueue is a set from which we extract
elements in first-in, first-out (FIFO) order: we select elements in the same order
in which they were added. A stack is a set from which we extract elements
in last-in, first-out (LIFO) order: each time we select an element, we choose
the one that was added most recently. Both queues and stacks can be easily
implemented via a doubly linked list. In both cases, we always select the first
element on our list; the difference is in where we insert a new element. In a
queue a new element is added to the end of the list as the last element, while
in a stack a new element is placed in the first position on the list. Recall that a
doubly linked list has explicit First and Last pointers to the beginning and
end, respectively, so each of these insertions can be done in constant time.

Next we will discuss how to implement the search algorithms of the
previous section in linear time. We will see that BFS can be thought of as
using a queue to select which node to consider next, while DFS is effectively
using a stack. '

Implementing Breadth-First Search

The adjacency list data structure is ideal for implementing breadth-first search.
The algorithm examines the edges leaving a given node one by one. When we
are scanning the edges leaving u and come to an edge (u,v), we need to
know whether or not node v has been previously discovered by the search.
To make this simple, we maintain an array Discovered of length n and set
Discovered[v] = true as soon as our search first sees v. The algorithm, as
described in the previous section, constructs layers of nodes Ly, Ly, . . . , where
L; is the set of nodes at distance i from the source s. To maintain the nodes in
a layer L;, we have a list L[{] for each i=0,1,2, ....

BFS(s):
Set Discovered[s] = true and Discovered[v] = false for all other v
Initialize L[0] to consist of the single element s
Set the layer counter i=0
Set the current BFS tree T=0
While L[i] is not empty
Initialize an empty list L[i+1]
For each node u € L[i]
Consider each edge (u,v) incident to u
If Discovered[v] = false then
Set Discovered{v] = true
Add edge (u,v) to the tree T
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Add v to the list L[i+1]
Endif
Endfor
Increment the layer counter { by one
Endwhile

In this implementation it does not matter whether we manage each list
L[i] as a queue or a stack, since the algorithm is allowed to consider the nodes
in a layer L; in any order. '

(3.11)  The above implementation of the BFS algorithm runs in time O(m + 1)
(i.e., linear in the input size), if the graph is given by the adjacency lis
representation. '

Proof. As a first step, it is easy to bound the running time of the algorithm
by O(n?) (a weaker bound than our claimed O(m + n)). To see this, note that
there are at most n lists L[] that we need to set up, so this takes O(n) time.
Now we need to consider the nodes u on these lists. Each node occurs on at
most one list, so the For loop runs at most n times over all iterations of the
While loop. When we consider a node u, we need to look through all edges
(u, v) incident to u. There can be at most n such edges, and we spend O(1)
time considering each edge. So the total time spent on one iteration of the For
loop is at most O(n). We’ve thus concluded that there are at most n iterations
of the For loop, and that each iteration takes at most O(n) time, so the total
time is at most O(n?).

To get the improved O(m -+ n) time bound, we need to observe that the
For loop processing a node u can take less than O(n) time if u has only a
few neighbors. As before, let n, denote the degree of node u, the number of
edges incident to u. Now, the time spent in the For loop considering edges
incident to node u is O(n,), so the total over all nodes is O _uev y)- Recall
from (3.9) that }°, .y 7, = 2m, and so the total time spent considering edges
over the whole algorithm is O(m). We need O(n) additional time to set up
lists and manage the array Discovered. So the total time spent is O(m + n)
as claimed. =

We described the algorithm using up to n separate lists L[i] for each layer
L;. Instead of all these distinct lists, we can implement the algorithm using a
single list L that we maintain as a queue. In this way, the algorithm processes
nodes in the order they are first discovered: each time a node is discovered,
it is added to the end of the queue, and the algorithm always processes the
edges out of the node that is currently first in the queue.
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If we maintain the discovered nodes in this order, then all nodes in layer L;
will appear in the queue ahead of all nodesinlayerL; ., fori=0,1,2... . Thus,
all nodes in layer L; will be considered in a contiguous sequence, followed
by all nodes in layer L., and so forth. Hence this implementation in terms
of a single queue will produce the same result as the BFS implementation

above.

Implementing Depth-First Search

We now consider the depth-first search algorithm: In the previous section we
presented DFS as a recursive procedure, which is a natural way to specify it.
However, it can also be viewed as almost identical to BFS, with the difference
that it maintains the nodes to be processed in a stack, rather than in a queue.
Essentially, the recursive structure of DFS can be viewed as pushing nodes
onto a stack for later processing, while moving on to more freshly discovered
nodes. We now show how to implement DFS by maintaining this stack of
nodes to be processed explicitly. ‘

In both BES and DFS, there is a distinction between the act of discovering
a node v—the first time it is seen, when the algorithm finds an edge leading
to v—and the act of exploring a node v, when all the incident edges to v are
scanned, resulting in the potential discovery of further nodes. The difference
between BFS and DFS lies in the way in which discovery and exploration are
interleaved.

In BFS, once we started to explore a node u in layer L;, we added all its
newly discovered neighbors to the next layer L;;,, and we deferred actually
exploring these neighbors until we got to the processing of layer Li;. In
contrast, DFS is more impulsive: when it explores a node u, it scans the
neighbors of u until it finds the first not-yet-explored node v (if any), and
then it immediately shifts attention to exploring v. '

To implement the exploration strategy of DFS, we first add all of the nodes
adjacent to u to our list of nodes to be considered, but after doing this we
proceed to explore a new neighbor v of u. As we explore v, in turn, we add
the neighbors of v to the list we're maintaining, but we do so in stack ordet,
so that these neighbors will be explored before we return to explore the other
neighbors of u. We only come back to other nodes adjacent to u when there
are no other nodes left.

In addition, we use an array Explored analogous to the Discovered array
we used for BFS. The difference is that we only set Explored[v] to be true
when we scan v’s incident edges (when the DFS search is at v), while BFS sets
Discovered[v] to true as soon as U is first discovered. The implementation

in full looks as follows.
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DFS(s):
Initialize S to be a stack with one element s
While S is not empty
Take a node u from S
If Explored[u] = false then
Set Explored[u] = true
For each edge (u,v) incident to u
Add v to the stack S
Endfor
Endif
Endwhile

' There is one final wrinkle to mention. Depth-first search is underspecified
since the adjacency list of a node being explored can be processed in any order’
Note that the above algorithm, because it pushes all adjacent nodes onto thé
stack before considering any of them, in fact processes each adjacency list

T S

(3;2). The above algorithm implements DFS, in the sensé that it' visiis fhe
no fes in exactly the same order as the recursive DFS procedure in the previous
‘sect’zoryl (except that each adjacency list is processed in reverse order).

If we want the algorithm to also find the DFS tree, we need to have each
node u on the stack S maintain the node that “caused” u to get added to
the stack. This can be easily done by using an array parent and settin
parent[vli=u when we add node v to the stack due to edge (u,v) Wheﬁ
we mark a node u # s as Explored, we also can add the edge (u I;ar'ent fu])
to the tre? T. Note that a node v may be in the stack S multiple’times as it
can be adjacent to multiple nodes u that we explore, and each such nodé adds
a copy of v to the stack S. However, we will only use one of these copies to
explore node v, the copy that we add last. As a result, it suffices to maintain one
value Earent [v] for each node v by simply overwriting the value parent[v]
every time we add a new copy of v to the stack S.

The main step in the algorithm is to add and delete nodes to and from
the stack S, which takes O(1) time. Thus, to bound the running time, we
need tg bound the number of these operations. To count the number of s’tack
operations, it suffices to count the number of nodes added to S, as each node
needs to be added once for every time it can be deleted from S.’

; How many elements ever get added to S? As before, let n, denote the
egrefe of node v. I'\Iode v will be added to the stack S every time one of its
n, adjacent nodes is explored, so the total number of nodes added to S is at
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most ¥, 1, = 2m. This proves the desired O(m + 1) bound on the running
u
time of DFS.

(3.13) Theabove implementation of the DFS algor{'thm runsin tim'e o@m +Zz.11
(i.e., linear in the input size), if the graph is given by the adjacency lis
representation.

Finding the Set of All Connected Components |
In the previous section we talked about how one c'an use BF'S (or DFZ) to ﬁnil1
all connected components of a graph. We start with an arbitrary node ;1 Zn
we use BFS {or DFS) to generate its connected component. W? then n'na
node v (if any) that was not visited by the search from s and lterati,i 1}1151bg
BFS (or DFS) starting from v to generate its connected co'mporlxent.—w c u,n ti,{
(3.8), will be disjoint from the component of s. We continue in this way 7
all nodes have been visited. v |
Although we earlier expressed the running time of BFS a'nd DFS as hO(tr]n t—;
n), where m and n are the total number of edges and nodes 11'1 the graph, (t) '
BFS and DFS in fact spend work only on edges and nodes in thefc;nne;ee i
component containing the starting node. (They never se.e any o ;:3 ;5 o
nodes or edges.) Thus the above algorithm, although it may run o
DFS a number of times, only spends a constant amount of W9rk on a give'S
edge or node in the iteration when the connecteq compon.ent it bfalong's ot }H
under consideration. Hence the overall running time of this algorithm is sti

Oo(m + n).

3.4 Testing Bipartiteness: An Application of
Breadth-First Search

Recall the definition of a bipartite graph: it is one where the node set V cag
be partitioned into sets X and Y in such a way t'hat evlery edge has one en
in X and the other end in Y. To make the discussion a little smoothe'r, vt\;e cal?[
imagine that the nodes in the set X are colored red, and the. nqdes 1'11 .fe' tse
Y are colored blue. With this imagery, we can say a graph is bipartite if i 1(51
possible to color its nodes red and blue so that every edge has one red en
and one blue end.

/=~ The Problem i
:In the earlier chapters, we saw examples of bipartite' graphs. Here we start by
asking: What are some natural examples of a nonbipartite graph, one where
no such partition of V is possible?

5
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Clearly a triangle is not bipartite, since we can color one node red, another
one blue, and then we can’t do anything with the third node. More generally,
consider a cycle C of odd length, with nodes numbered 1,2, 3, . . ., 2k, 2k + 1.
If we color node 1 red, then we must color node 2 blue, and then we must color
node 3red, and so on—coloring odd-numbered nodes red and even-numbered
nodes blue. But then we must color node 2k + 1 red, and it has an edge to node
1, which is also red. This demonstrates that there’s no way to partition C into
red and blue nodes as required. More generally, if a graph G simply contains

an odd cycle, then we can apply the same argument; thus we have established
the following.

(3.14) Ifa 8raph G is bipah‘ite, ther it cannot contain an odd cycle.

It is easy to recognize that a graph is bipartite when appropriate sets X
and Y (i.e., red and blue nodes) have actually been identified for us; and in
many seftings where bipartite graphs arise, this is natural. But suppose we
encounter a graph G with no annotation provided for us, and we’d like to
determine for ourselves whether it is bipartite—that is, whether there exists a
partition into red and blue nodes, as required. How difficult is this? We see from
(3.14) that an odd cycle is one simple “obstacle” to a graph’s being bipartite.
Are there other, more complex obstacles to bipartitness?

/= Designing the Algorithm

In fact, there is a very simple procedure to test for bipartiteness, and its analysis
can be used to show that odd cycles are the only obstacle. First we assume
the graph G is connected, since otherwise we can first compute its connected
components and analyze each of them separately. Next we pick any node s € V
and color it red; there is no loss in doing this, since s must receive some color.
It follows that all the neighbors of s must be colored blue, so we do this. It
then follows that all the neighbors of these nodes must be colored red, their
neighbors must be colored blue, and so on, until the whole graph is colored. At
this point, either we have a valid red/blue coloring of G, in which every edge
has ends of opposite colors, or there is some edge with ends of the same color.
In this latter case, it seems clear that there’s nothing we ‘could have done: G
simply is not bipartite. We now want to argue this point precisely and also
work out an efficient way to perform the coloring.

The first thing to notice is that the coloring procedure we have just
described is essentially identical to the description of BFS: we move outward
from s, coloring nodes as soon as we first encounter them. Indeed, another
way to describe the coloring algorithm is as follows: we perform BFS, coloring
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s red, all of layer L blue, all of layer L, red, and so on, coloring odd-numbered

layers blue and even-numbered layers red.

We can implement this on fop of BFS, by simply taking the implementation
of BFS and adding an extra array Color OVer the nodes. Whenever we get
to a step in BFS where we are adding a node v to a list L[i + 1], we assign
Color[v] = redifi+ 1lisaneven number, and Color[v] = blueifi+1 is an
odd number. At the end of this procedure, we simply scan all the edges and
determine whether there is any edge for which both ends received the same
color. Thus, the total running time for the coloring algorithm is O(m + 1), just

as it is for BFS.

4 Analyzing the Algorithm
We now prove a claim that shows this algorithm correctly determines whether
G is bipartite, and it also shows that we can find an odd cycle in G whenever

it is not bipartite.
(3.15) LetGbea connected graph, and let Ly, L,, . .. be the layers produced
by BFS starting at node s. Then exactly one of the following two things must

hold.

(i) There is no edge of G joining two nodes of the same layer. In. this case G
is a bipartite graph in which the nodes in even-numbered layers can be
colored red, and the nodes in odd-numbered layers can be colored blue.

The cycle through X, , (ii) There is an edge of G joining two nodes of the same layer. In this case, G
contains an odd-length cycle, and so it cannot be bipartite.

and z has odd length.

Proof. First consider case (i), where we suppose that there is no edge joining

two nodes of the same layer. By (3.4), we know that every edge of G joins nodes
either in the same layer or in adjacent layers. Our assumption for case (i) is
precisely that the first of these two alternatives never happens, so this means
that every edge joins two nodes in adjacent layers. But our coloring procedure
gives nodes in adjacent layers the opposite colors, and so every edge has ends
with opposite colors. Thus this coloring establishes that G is bipartite.

are in case (ii); why must G contain an odd cycle? We

Now suppose we
es of the same layer. Suppose

are told that G contains an edge joining two nod
this is the edge e = (x,¥), with x,y € L;. Also, for notational reasons, recall

Figure 3.6 If twonodes xand  that Lo (“layer 0”) is the set consisting of just s. Now consider the BFS tree T

y in the same layer are joined  produced by our algorithm, and let z be the node whose layer number is as

by an edge, then the cycle . . .. .

through x,y, and their lowest large as possible, subject to the condition that z is an ancestor of both x and y
in T; for obvious reasons, we can call z the lowest common ancestor of xand y.

common ancestor z has odd
length, demonstrating that  Suppose z € L;, where i < j. We now have the situation pictured in Figure 3.6.

the graph cannot be bipartite. - g, consider the cycle C defined by following the z-x path in T, then the edge e,

g
o
g

.
o
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f;ldlthen the )f-z pathin T. The length of this cycleis (j — i) + 1+ (j — i),-addin
e length of its three parts separately; this is equal to 2(j — i) + 1, hi, hi :
odd number. ®m e R

3.5 Connectivity in Directed Graphs

Thus far, we have been looking at problems on undirected graphs; we now

consider the extent to which th i
e .
graphs. se ideas carry over to the case of directed

Recall th.at in a directed graph, the edge (uz, v) has a direction: it goes fr
utov. II.l this way, the relationship between uz and v is asymme.tricg and t?nm
has qualitative effects on the structure of the resulting graph. In Sectio,né 1, f ;
e>.<amp1e, we discussed the World Wide Web as an instance c.>f alarge co' , 1Or
directed graph whose nodes are pages and whose edges are hyperliik’s Trl?p o
of browsing the Web is based on following a sequence of edges in this 'direité:ecc;
lg)lraph; E.ltnd the directionality is crucial, since it’s not generally possible to

rowse “backwards” by following hyperlinks in the reverse direction.

. A;l the same t.ime, a pumber of basic definitions and algorithms have
ural analogues in the directed case. This includes the adjacency list repre-

sentation and graph search algori
entaton and gorithms such as BFS and DFS. We now discuss

Representing Directed Graphs

glleo;cslsrato regreser;t t; directed graph for purposes of designing algorithms
' version of the adjacency list representati ,
undirected graphs. Now, instead ofy each nc?de h;\:ial?goerll siéieﬁiti?ﬁ?yﬁg o
each node has two lists associated with it: one list consists of nodes to lgh' ci)lrs
has e‘dges, and‘a second list consists of nodes from which it has edges Twhli{; ag
glgon.thm that is currently looking at a node u can read off the nodes r.eachable

y going one step forward on a directed edge, as well as the nodes that would
be reachable if one went one step in the reverse direction on an edge froxgl u

The Graph Search Algorithms

Breadth-first searcl.l and depth-first search are almost the same in directed
ia;hs :118 they z'u'e in gndirected graphs. We will focus here on BFS. We start
e él;e edse,ﬁ ;:lleﬁne a first layer of nod.es to consist of all those to which s has
ﬁrst-layér nc)de a Iiecond layer to consist of all additional nodes to which these
| es have an edge, and so forth. In this way, we discover nodes
‘ayer by l.ayer as they are reached in this outward search from s, and the nod
in layer j arfe precisely those for which the shortest path fTOT;L s has ex:ctTS
J edies. As in the undirected case, this algorithm performs at most constanz
work for each node and edge, resulting in a running time of O(mn + n)
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It is important to understand what this directed version of BFS is comput-
ing. In directed graphs, it is possible for a node s to have a path to a node t
even though t has no path to s; and what directed BFS is computing is the set
of all nodes t with the property that s has a path to t. Such nodes may or may
not have paths back to s.

There is a natural analogue of depth-first search as well, which also runs
in linear time and computes the same set of nodes. It is again a recursive
procedure that tries to explore as deeply as possible, in this case only following
edges according to their inherent direction. Thus, when DFS is at a node 1, it
recursively launches -a depth-first search, in order, for each node to which u

has an edge.

Suppose that, for a given node s, we wanted the set of nodes with paths
to s, rather than the set of nodes to which s has paths. An easy way to do this
would be to define a new directed graph, G, that we obtain from G simply
by reversing the direction of every edge. We could then run BFS or DFS in G™;
a node has a path from s in G™ if and only if it has a path to s in G.

Strong Connectivity
Recall that a directed graph is strongly connected if, for every two nodes u and
v, thereis a path fromutov and a path from v to . It’s worth also formulating
some terminology for the property at the heart of this definition; let’s say that
two nodes u and v in a directed graph are mutually reachable if there is a path
from u to v and also a path from v to u. (S0 a graph is strongly connected if
every pair of nodes is mutually reachable.)

Mutual reachability has a number of nice properties, many of them stem-
ming from the following simple fact.

(3.16) Ifuandvaremutually reachable, and v and w are mutually reachable,
then u and w are mutually reachable.

Proof. To construct a path from u to w, we first go from u to v (along the
path guaranteed by the mutual reachability of u and v), and then on from v
to w (along the path guaranteed by the mutual reachability of v and w). To
construct a path from w to u, we just reverse this reasoning: we first go from
w to v (along the path guaranteed by the mutual reachability of v and w), and
then on from v to u (along the path guaranteed by the mutual reachability of

gandv). =m

There is a simple linear-time algorithm to test if a directed graph is strongly
connected, implicitly based on (3.16). We pick any node s and run BFS in G
starting from s. We then also run BFS starting from s in G™. Now, if one of
these two searches fails to reach every node, then clearly G is not strongly
connected. But suppose we find that s has a path to every node, and that

3.6 Directed Acyclic Graphs and Topological Ordering

:;r}sfonicﬁz lllljjv Satia’ih to s. Then s and v are mutually reachable for every v

at every two nodes u and v are mutuall h : |

u are mutually reachable, and s and v are e G e
X mutually reachabl

also have that u and v are mutually reachable. & S0 by (316 we

deﬁfeyt;relajgiy with connected components in an undirected graph, we can
ng componernt containing a node s in a di J
set of all v such that s and v are m e it Soetr b
utually reachable. If one think i
algorithm in the previous i (ing the strong compmno
' paragraph is really computing the str
containing s: we run BFS startin i i o et of nodes
g from s both in G and in G™; th
reached by both searches is the s i i o s o
' : et of nodes with paths to a
hence this set is the strong component containing sp e from & and

- ugldlirei ?rg furthleir similarities between the notion of connected components
ed graphs and strong components in di
irected graphs. Recall th
. DG . at
onnected components naturally partitioned the graph, since any two were

either identical or disjoint. Stron
: . g components have this proper
for essentially the same reason, based on (3.16). property as well, end

(3.17) Forany two nodes s 3 )
. andt in a directed gra [ (
are either identical or disjoint. PR, el Sromg Compgnets

Elrotofl.1 Consider any two nodes s and ¢ that are mutually reachable; we claim
é(lj t e‘strong components containing s and t are identical. Indee’d for an
node v, if s and v are mutually reachable, then by (3.16), t and v are rjnutuaﬂirl

reachable as well. Similarly, i
e . y, if t and v are mutuall i
(3.16), s and v are mutually reachable. v reachable, then 2gain by

. aOIﬁ) ’(Lihe oﬂlller I%ar?d, if s and t are not mutually reachable, then there cannot
bee e tlfl that is in the strong component of each. For if there were such
e v, then s and v would be mutually reachable, and v and ¢t would be

mutually reachable, so fr 3 ;
reachable. m om (3.16) it would follow that s and t were mutually

In fact, although we will not discuss the details of this here, with more

work it is possible to compute th.
time of O(m -+ n). P e strong components for all nodes in a total

3.6 Directed Acyclic Graphs and
Topological Ordering
ifaac?l U?Fllrected graph has no cycles, then it has an extremely simple structure:
ofits connected components is a tree. But it is possible for a directed grapli

:131 h;ve no (directed) .cycles and still have a very rich structure. For example
ch graphs can have a large number of edges: if we start with the nodé
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In a topological ordering,‘ all
edges point from left to right.

i i DAG with a topological ordering,
i . A directed acyclic graph. (b) The same DA A
g;%egaz;?he labels on each node. (c) A different drawing of the same DAG, arrange

s0 as to emphasize the topological ordering.

set {1,2,...,n} and include an edge (i, j) whenever i <j, then the resulting
ed grap les.
directed graph has (3) edges but no cyc .

If a directed graph has no cycles, we call it-—n‘aturapy enough—a dlgect:c;
acyclic graph, or a DAG for short. (The term DAG is typically pronounce Ia :
word, not spelled out as an acronym.) In Figure 3.7(3) we see aln exaj.?peeezﬂ1
a DA&; although it may take some checking to convince oneself that it really

has no directed cycles.

¥ The Problem ‘
/];AGS are a very common structure in computer science, because; many knicls
discussed in Section 3.1 are acyclic.
dependency networks of the type we . ACYC
%fhuspDAGs czn be used to encode precedence relations ot dependencies 21 a
natural way. Suppose we have a set of tasks labeled {1, 2,‘. . T‘L} that nee;t tg
be performed, and there are dependencies among them stipulating, for ce a; ’
pairs i and j, that i must be performed before j. For examplg, the tasks Hrlllllasz e
it isi i tating that certain courses
courses, with prerequisite requirements s ain o
ond to a pipeline of computing
taken before others. Or the tasks may C(.)IIG?LEJ . > 0 .
jobs, with assertions that the output of job 1 is use?d in determining the input
to job j, and hence job i must be done before ]ob j. ‘ ‘

We can represent such an interdependent set of te%sks by mtrodu;mfgrz
node for each task, and a directed edge (i, ) Whenexfllelzlr i ﬂrlnust ‘t:lelz ﬁ(fgnzra; }? .
j ion i t all meaningful, the res

. If the precedence relation is t0 be a
]must be a DAG. Indeed, if it contained a cycle C, there'woulq be no Wg ;ooillcg
any of the tasks in C: since each task in C cannot begin until some othe

completes, no task in C could ever be done, since none could be done first.

T S
‘

3.6 Directed Acyclic Graphs and Topological Ordering

Let’s continue a little further with this picture of DAGs as precedence
relations. Given a set of tasks with dependencies, it would be natural to seek
a valid order in which the tasks could be performed, so that all dependencies
are respected. Specifically, for a directed graph G, we say that a topological
ordering of G is an ordering of its nodes as vy, v,, . . . , v, 50 that for every edge
(v;,vj), we have i < j. In other words, all edges point “forward” in the ordering.
A topological ordering on tasks provides an order in which they can be safely
performed; when we come to the task v, all the tasks that are required to
precede it have already been done. In Figure 3.7(b) we’ve labeled the nodes of
the DAG from part (a) with a topological ordering; note that each edge indeed
goes from a lower-indexed node to a higher-indexed node.

In fact, we can view a topological ordering of G as providing an immediate
“proof” that G has no cycles, via the following.

(3.18) If G has a topological ordering, then G is a DAG.

Proof. Suppose, by way of contradiction, that G has a topological ordering
V), V3, - - .5 Up, and also has a cycle C. Let v; be the lowest-indexed node on C,
and let v; be the node on C just before v;—thus (vj, v;) is an edge. But by our
choice of {, we have j > i, which contradicts the assumption that v, v,, . . ., U,
was a topological ordering. =

The proof of acyclicity that a topological ordering provides can be very
useful, even visually. In Figure 3.7(c), we have drawn the same graph as
in (a) and (b), but with the nodes laid out in the topological ordering. It is

immediately clear that the graph in (c) is a DAG since each edge goes from left
to right.

Computing a Topological Ordering The main question we consider here is
the converse of (3.18): Does every DAG have a topological ordering, and if so,
how do we find one efficiently? A method to do this for every DAG would be
very useful: it would show that for any precedence relation on a set of tasks

without cycles, there is an efficiently computable order in which to perform
the tasks.

/=~ Designing and Analyzing the Algorithm

In fact, the converse of (3.18) does hold, and we establish this via an efficient
algorithm to compute a topological ordering. The key to this lies in finding a
way to get started: which node do we put at the beginning of the topological
ordering? Such a node v; would need to have no incoming edges, since any
such incoming edge would violate the defining property of the topological
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ordering, that all edges point forward. Thus, we need to prove the following
fact. :

(3.19) In every DAG G, there is a node v with no incoming edges.

Proof. Let G be a directed graph in which every node has at least one incoming
edge. We show how to find a cycle in G; this will prove the claim. We pick
any node v, and begin following edges backward from v: since v has at least
one incoming edge (u,v), we can walk backward to u; then, since u has at
least one incoming edge (x, 1), we can walk backward to x; and so on. We
can continue this process indefinitely, since every node we encounter has an
incoming edge. But after n + 1steps, we will have visited some node w twice. If
we let C denote the sequence of nodes encountered between successive visits

to w, then clearly C forms a cycle. ®

In fact, the existence of such anode v is all we need to produce a topological
ordering of G by induction. Specifically, let us claim by induction that every
DAG has a topological ordering. This is clearly true for DAGs on one Or WO
nodes. Now suppose it is true for DAGs with up to some number of nodes 1.
Then, given a DAG G on 7 + 1 nodes, we find a node v with no incoming edges,
as guaranteed by (3.19). We place v first in the topological ordering; this is
safe, since all edges out of v will point forward. Now G—{v} is a DAG, since
deleting v cannot create any cycles that weren’t there previously. Also, G—{v}
has 1 nodes, so we can apply the induction hypothesis to obtain a topological
ordering of G—{v}. We append the nodes of G—{v} in this order after v; this is
an ordering of G in which all edges point forward, and hence it is a topological
ordering.

Thus we have proved the desired converse of (3.18).

(3.20) IfGis a DAG, then G has a topological ordering.

The inductive proof contains the following algorithm to compute a topo-
logical ordering of G.

To compute a topological ordering of G:

Find a node v with mo incoming edges and order it first

Delete v from G

Recursively compute a topological ordering of G—{v}
and append this order after v

In Figure 3.8 we show the sequence of node deletions that occurs when this
algorithm is applied to the graph in Figure 3.7. The shaded nodes in each
iteration are those with no incoming edges; the crucial point, which is what
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At the start, all nodes are active, s0 we call initiatlize ('a) and (‘FJ) Wltfh alsgigée
pass through the nodes and edges. Then, each 1tera't10n consists ct)h se eh algl
a node v from the set S and deleting it. After deleting v, we gob roFgCﬁve
nodes w to which v had an edge, and subtract one frorr} the num ﬂir 0 jmber
incoming edges that we are main;ainirtlg forow.thli nth‘:; 25(111(115?1']5 o ethxé mbe
of active incoming edges to w to drop 1o Zero, ac ' .

‘ne in this way, we keep track of nodes that are eligible for deletion at
zlrlotcif;ijlsv;ﬁlglsl;endi’ng constle)mt work per edge over the course of the whole

algorithm.

Solved Exercises

Solved Exercise 1 -
Consider the directed acyclic graph G in Figure 3.9. How many topologic
orderings does it have? | .
Solution Recall that a topological ordering of G”is an ordering of the;oci;:
as vy, Vy, - .. » Up SO that all edges point “forward”: for every edge (;, Up,
havei <]j.

So one way to answer this question would be to Wﬁte down ?lll 1S . 4d- E;i-nz .
1= 120 possible orderings and check whether each is a topological ordering.
But this would take a while. '

Instead, we think about this as follows. As we saw in'the text (Qr reasontntl)i
directly from the definition), the first node in a topological ordering inl;us b
one that has no edge coming into it. Analogously, the 1ast' node mttls ede ¢
that has no edge leaving it. Thus, in every topological ordering of G, the no
must come first and the node e must come last. .

Now we have to figure how the nodes b, ¢, and d can be arranged in thet
middle of the ordering. The edge (c, d) enforces the requirement that ¢ mus

come before d; but b can be placed anywhere relative to these.t\'zv'oE beforg
both, between ¢ and d, or after both. This exhausts all the possibilities, an

so we conclude that there are three possible topological orderings:
a,b,c,d,e
a,c,b,d,e

a,c,d,b,e

Solved Exercise 2

Some friends of yours are working on techniques for coordinating groups ?f
mobile robots. Each robot has a radio transmitter that it uses to communicate

Solved Exercises

with a base station, and your friends find that if the robots get too close to one
another, then there are problems with interference among the transmitters. So
a natural problem arises: how to plan the motion of the robots in such a way
that each robot gets to its intended destination, but in the process the robots
don’t come close enough together to cause interference problems.

We can model this problem abstractly as follows. Suppose that we have
an undirected graph G = (V, E), representing the floor plan of a building, and
there are two robots initially located at nodes a and b in the graph. The robot
at node a wants to travel to node ¢ along a path in G, and the robot at node b
wants to travel to node d. This is accomplished by means of a schedule: at
each time step, the schedule specifies that one of the robots moves across a
single edge, from one node to a neighboring node; at the end of the schedule,
the robot from node a should be sitting on ¢, and the robot from b should be
sitting on d.

A schedule is interference-free if there is no point at which the two robots
occupy nodes that are at a distance < r from one another in the graph, for a
given parameter r. We’ll assume that the two starting nodes a and b are at a
distance greater than r, and so are the two ending nodes ¢ and d.

Give a polynomial-time algorithm that decides whether there exists an
interference-free schedule by which each robot can get to its destination.

Solution This is a problem of the following general flavor. We have a set
of possible configurations for the robots, where we define a configuration
to be a choice of location for each one. We are trying to get from a given
starting configuration (a, b) to a given ending configuration (c, d), subject to
constraints on how we can move between configurations (we can only change

one robot’s location to a neighboring node), and also subject to constraints on
which configurations are “legal.”

This problem can be tricky to think about if we view things at the level of
the underlying graph G: for a given configuration of the robots—that is, the
current location of each one—it’s not clear what rule we should be using to
decide how to move one of the robots next. So instead we apply an idea that
can be very useful for situations in which we’re trying to perform this type of
search. We observe that our problem looks a lot like a path-finding problem,
not in the original graph G but in the space of all possible configurations.

Let us define the following (larger) graph H. The node set of H is the set
of all possible configurations of the robots; that is, H consists of all possible
pairs of nodes in G. We join two nodes of H by an edge if they represent
configurations that could be consecutive in a schedule; that is, (z,v) and
(', v') will be joined by an edge in H if one of the pairs u, u’ or v, v/ are equal,
and the other pair corresponds to an edge in G.
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We can already observe that paths in H from (a, b) to (¢, d) correspond
to schedules for the robots: such a path consists precisely of a sequence of

tions in which, at each step, one robot crosses a single edge in G.

configura
on that the schedule should be

However, we have not yet encoded the noti
interference-free.

To do this, we simply delete from H all nodes that correspond to configura-
tions in which there would be interference. Thus we define H' to be the graph
obtained from H by deleting all nodes (u, v) for which the distance between
uz and v in G is at most 1.

The full algorithm is then as follows. We construct the graph H’, and then
run the connectivity algorithm from the text to determine whether there is a
path from (a, b) to (¢, d). The correctness of the algorithm follows from the
fact that paths in H' correspond to schedules, and the nodes in H’ correspond
precisely to the configurations in which there is no interference.

Finally, we need to consider the running time. Let n denote the number
of nodes in G, and m denote the number of edges in G. We’ll analyze the
running time by doing three things: (1) bounding the size of H' (which will in
general be larger than G), (2) bounding the time it takes to construct H', and
(3) bounding the time it takes to search for a path from (a, b) to (¢, d) in H.

1. First, then, let’s consider the size of H'. H' has at most n? nodes, since
its nodes correspond to pairs of nodes in G. Now, how many edges does
H’ have? A node (u, v) will have edges to (', v) for each neighbor o’
of u in G, and to (u, V') for each neighbor v of vin G. A simple upper
bound says that there can be at most 71 choices for (', v), and at most nt
choices for (i, '), so there are at most 2n edges incident to each node
of H'. Summing over the (at most) n? nodes of H', we have O(n3) edges.

(We can actually give a better bound of O(¢nn) on the number of
edges in H', by using the bound (3.9) we proved in Section 3.3 on the
sum of the degrees in a graph. We'll leave this as a further exercise.)

). Now we bound the time needed to construct H'. We first build H by
enumerating all pairs of nodes in G in time 0O(n?), and constructing edges
using the definition above in time O(7) per node, for a total of O(m3).
Now we need to figure out which nodes to delete from H so as to produce
H'. We can do this as follows. For each node u in G, we run a breadth-
first search from u and identify all nodes v within distance r of u. We list
all these pairs (u,v) and delete them from H. Each breadth-first search
in G takes time O(m + n), and we're doing one from each node, so the
total time for this part is O(mr + n%).
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3. N j |
ﬁgg zve gave H’, and s? we just need to decide whether there is a path
o tﬁ, ) to Fc, 4). This cf'm be done using the connectivity algorithm
e text In time that is linear in the number of nodes and edges

of H'. Since H' has O(n?) node
S d 3 s g
polynomial time as well. and O(n°) edges, this final step takes

Exercises

1. Consider the directed acycli i
( yclic graph G in Fi
ical orderings does it have? gore 310 Howmany topolog

\/2. Give an algorithm to detect whether a given undirected gra{ph contains

2 ;gc(l;at. i 1(:)1115 dgraph contains a cycle, then your algorithm should output
. not output all cycles in the gra ]
( : ph, just one of them.) Thi
running time of your algorithm sh ith
o oo o g should be O(m + n) for a graph with n

3 T . . . .
inhe a;goDnthm described in Section 3.6 for computing a topological order-
g of a DAG repeatedly finds a node with no incoming edges and deletes

gl g!

e aBBZ sGupégse ;hg;c we're given an arbitrary graph that may or may not
. Exten e topological ordering algorithm i

. . ‘ so that, given

I;Sut.dlrected graph.G, 1t outputs one of two things: (a) a to;?cl)logi(?ali

o t?;lling,‘ thus establishing that G is a DAG; or (b) a cycle in G, thus

]s; ablishing that G is not a DAG. The running time of your algc;rithm

should be O(m + n) for a directed graph with n nodes and m edges

4 .
Esggruerdfby tl:le efl(ample of that great Cornellian, Vladimir Nabokov, some
riends have become amateur lepidopteri ’
ey opiacngs ave .p pterists (they study butter-
y return from a trip with specimens i
flie - W] of butterfli
it is very difficult for them to tell how many distinct species they’(i:

canght—thanks to the fact th i
cousht at many species look very similar to one

bdo](:)lg: tciai) :;eyfrfwmm dl;vith n butterflies, and they believe that each
0 0 different species, which we’ll
> of ‘ , call A and B fi
fxgposes of this discussion. They'd like to divide the n specimens infc)cf
groups—those that belong to A and those that belong to B—but it's

very hard for them to directl
y label an i .
adopt the following approach. Y one specimen. So they decide to
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For each pair of specimens i and j, they study them carefully side by

side. If they're confident enough in their

judgment, then they label the

pair (i,j) either “gsame” (meaning they believe them both to come from
the same species) or «different” (meaning they believe them to come from

different species). They also have the op

tion of rendering no judgment

on a given pair, in which case we'll call the pair ambiguous.

So now they have the collection of n specimens, as well as a collection
of m judgments (either ugame” or “different”) for the pairs that were not
declared to be ambiguous. They'd like to know if this data is consistent

with the idea that each butterfly is from

one of species A or B. So more

concretely, we’'ll declare the m judgments to be consistent if it is possible
to label each specimen either A or B in such a way that for each pair (Z,J)
labeled “same,” it is the case that i and j have the same label; and for each

pair (i, j) labeled “different,” it is the case

that i and j have different lab els.

They're in the middle of tediously working out whether their judgments
are consistent, when one of them realizes that you probably have an
algorithm that would answer this question right away. .

Give an algorithm with running time O(m +n) that determines
whether the m judgments are consistent.

5. Abinary tree is arooted tree in which eac

hnode has at most two children.

Show by induction that in any binary tree the number of nodes with two
children is exactly one less than the number of leaves.

6. We have a connected graph G =(V, E), and a specific vertexu € V. Suppose
we compute a depth-first search tree rooted at u, and obtain a tree T that
includes all nodes of G. Suppose we then compute a breadth-first search
tree rooted at u, and obtain the same tree T. Prove that G=T. (In other
words, if T is both a depth-first gearch tree and a breadth-first search

tree rooted at u, then G cannot confain
T)

any edges that do not belong to

. Some friends of yours work on wireless networks, and they're currently

studying the properties of a network of

n mobile devices. As the devices

move around (actually, as their human owners move around), they define
a graph at any point in time as follows: there is a node representing each
of the n devices, and there is an edge between device i and device j if the
physical locations of i and j are no more than 500 meters apart. (If so, we
say that i and j are “in range” of each other.)

They'd like it to be the case that the network of devicesis connected at

all times, and so they've constrained th

e motion of the devices o satisfy
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Zlfle fcl)]lowing property: at all times, each device i is within 500 meters
at least n/2 of the other devices. (We’ll assume n is an even number.)

What they'd like to know is: D i
: Does this property by itself
the network will remain connected? ’ urantee et

Claim: Let G be a graph on n nodes, where 1 is an even number. If every node
of G has degree at least n/2, then G is connected.

Decide whether you think the claim i
. claim is true or false i
either the claim or its negation. B aproofof

8. A number of stories in the press about the structure of the Internet and
;he Web have fo<‘:used on some version of the following questione' I?cI)lw
Ce;rr e@mj\lr; ?;r;l tﬁlé:aél nodes in these networks? If you read these stories
N ;h . at many of them are confused about the difference

n the diameter of a network and the average distance in a network;

they often jump back and forth b
e satne thine. etween these concepts as though they're

. aAs mhthe text, wg say that the distance between two nodes u and v
themgr::fe’uG; (V;E) t;lsl the minimum number of edges in a path joining
; enote this by dist(u, v). We say that the di
o : . , V). e diameter of G is
e mf'mmum distance between any pair of nodes; and we'll denote thi
quantity by diam(G). i
i Let s.define a related quantity, which we'll call the average pairwise
ance in G (denoted apd(G)). We define apd(G) to be the average, over

all (3) sets of two distinct i
That is, nodes z and v, of the distance between z and v.

apd(G):{ Z dist(u, v) /<n>.
{u,v}cv 2

Here's a simple example to convin
: : ce yourself that there are graphs G
fqr which diam(G) # apd(G). Let G be a graph with three nodes u %ru? aild
with the two edges {u, v} and {v, w}. Then ' o
diam(G) = dist(u, w) = 2,
while

apd(G) = [dist(u, v) + dist(u, w) + dist(v, w)}/3 = 4/3.
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Of course, these two numbers aren’t all that far apart in the case of
this three-node graph, and so it’s natural to ask whether there’s always a
close relation between them. Here’s a claim that tries to make this precise.

Claim: There exists a positive natural number c so that for all connected graphs
G, it is the case that
diam(G) <c
apd(G)

Decide whether you think the claim is true or false, and give a proof of
either the claim or its negation.

VQ/There’s a patural intuition that two nodes that are far apart in a com-
munication network—separated by many hops—have a more tenuous
connection than two nodes that are close together. There are a number
of algorithmic results that are based to some extent on different ways of
making this notion precise. Here's one that involves the susceptibility of
paths to the deletion of nodes.

Suppose that an n-node undirected graph G= (V,E) contains two

nodes s and t such that the distance between s and t is strictly greater

than n/2. Show that there must exist some node v, not equal to either s

or t, such that deleting v from G destroys all st paths. (In other words,

| the graph obtained from G by deleting v contains no path from s to t.)
\ Give an algorithm with running.time O(m +n) 10 find such a node v.
|

10. A number of art museums around the country have been featuring work
by an artist named Mark Lombardi (1951-2000), consisting of a set of
intricately rendered graphs. Building on a great deal of research, these
graphs encode the relationships among people involved in major political
scandals over the past several decades: the nodes correspond to partici-
pants, and each edge indicates some type of relationship between a pair
of participants. And so, if you peer closely enough at the drawings, you
can trace out ominous-looking paths from a high-ranking U.S. govern-
ment official, to a former business partmer, 10 a bank in Switzerland, to
a shadowy arms dealer.

Such pictures form striking examples of social networks, which, as
we discussed in Section 3.1, have nodes representing people and organi-
zations, and edges representing relationships of various kinds. And the
short paths that abound in these networks have attracted considerable
attention recently, as people ponder what they mean. In the case of Mark
Lombardi’s graphs, they hint at the short set of steps that can carry you
from the reputable to the disreputable.

e e e G R e e R R e R
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Of course, a single, spurious short path between nodes v and w in
such a network may be more coincidental than anything else; a large
number of short paths between v and w can be much more convincing.
So in addition to the problem of computing a single shortest v-w path
in a graph G, social networks researchers have looked at the problem of
determining the number of shortest v-w paths.

This turns out to be a problem that can be solved efficiently. Suppose
we are given an undirected graph G = (V, E), and we identify two nodes v
and w in G. Give an algorithm that computes the number of shortest v-w
paths in G. (The algorithm should not list all the paths; just the number
suffices.) The running time of your algorithm should be O(m + n) for a
graph with n nodes and m edges.

You're helping some security analysts monitor a collection of networked
computers, tracking the spread of an online virus. There are n computers
in the system, labeled C}, C,, . .., C,, and as input you're given a collection
of trace data indicating the times at which pairs of computers commu-
nicated. Thus the data is a sequence of ordered triples (C;, G, ty); such a

triple indicates that C; and C; exchanged bits at time t. There are m triples
total.

We’ll assume that the triples are presented to you in sorted order of
time. For purposes of simplicity, we'll assume that each pair of computers
communicates at most once during the interval you're observing.

The security analysts you're working with would like to be able to
answer questions of the following form: If the virus was inserted into
computer C, at time x, could it possibly have infected computer C, by
time y? The mechanics of infection are simple: if an infected computer
C; communicates with an uninfected computer G at time f; (in other
words, if one of the triples (C;, G, ) or (G, G, t) appears in the trace
data), then computer C; becomes infected as well, starting at time te-
Infection can thus spread from one machine to another across a Sequence
of communications, provided that no step in this sequence involves a
move backward in time. Thus, for example, if C; is infected by time tes
and the trace data contains triples (C;, G, tp) and (G;, Gy, t;), where t <t,,
then C, will become infected via C;. (Note that it is okay for t;, to be equal
to ;; this would mean that ¢; had open connections to both C; and Cq at
the same time, and so a virus could move from ¢; to Gy

For example, suppose n =4, the trace data consists of the triples

(Cl’ CZ’ 4)) (CZ) C41 8): (C3y C4, 8), (Cl’ C4, 12),
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and the virus was inserted into computer C, at time 2. Then C; would be
infected at time 8 by a sequence of three steps: first C, becomes infected
at time 4, then C, gets the virus from G, at time 8, and then C; gets the
virus from C, at time 8. On the other hand, if the trace data were

(Cy, Cs,8), (C1,Cs,12), (C1, G, 14D,

and again the virus was inserted into computer C; at time 2, then G,
would not become infected during the period of observation: although
C, becomes infected at time 14, we see that C; only communicates with C,
before C, was infected. There is no sequence of communications moving
forward in time by which the virus could get from C; to C; in this second
example.

Design an algorithm that answers questions of this type: given a
collection of trace data, the algorithm should decide whether a virus
introduced at computer C, at time x could have infected computer C,
by time y. The algorithm should run in time O(m + ).

12. You're helping a group of ethnographers analyze some oral history data
they've collected by interviewing members of a village to learn about the
lives of people who've lived there over the past two hundred years.

From these interviews, they've learned about a set of n people (all
of them now deceased), whom we’ll denote Py, Py, ... ,P,. They've also
collected facts about when these people lived relative to one another.
Each fact has one of the following two forms:

e For some i and j, person P; died before person P; was born; or
o for someiandj, thelife spans of P; and P overlapped at least partially.

Naturally, they're not sure that all these facts are correct; memories
are not so good, and a lot of this was passed down by word of mouth. So
what they'd like you to determine is whether the data they've collected is
at least internally consistent, in the sense that there could have existed a
set of people for which all the facts they've learned simultaneously hold.

Give an efficient algorithm to do this: either it should produce pro-
posed dates of birth and death for each of the n people so that all the facts
hold true, or it should report (correctly) that no such dates can exist—that
is, the facts collected by the ethnographers are not internally consistent.

Notes and Further Reading

The theory of graphs is a large topic, encompassing both algorithmic and non-
algorithmic issues. It is generally considered to have begun with a paper by

T T

sensa

Notes and Further Reading

Euler‘(1736), grown through interest in graph representations of maps and
chemical compounds in the nineteenth century, and emerged as a systzma?i

area of study in the twentieth century, first as a branch of mathematics and lateC
also through its applications to computer science. The books by Berge (1976)r
Bollobas (1998), and Diestel (2000) provide substantial further coverage f
graph theory. Recently, extensive data has become available for studyin %aro

networks .that arise in the physical, biological, and social sciences andg thc§”e
hgs been interest in understanding properties of networks that spa;n all these
dlfferept domains. The books by Barabasi (2002) and Watts (2002) discuss th'e
emerging area of research, with presentations aimed at a general audience :

The pasi‘c graph trafrersal techniques covered in this chapter have numer-
ous applications. We will see a number of these in subsequent chapters, and
we refer the reader to the book by Tarjan (1983) for further results ’

Notes on the Exercises Exercise 12 i
is based o ; .
and Ron Shamir. n a result of Martin Golumbic
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In Wall Street, that iconic movie of the 1980s, Michael Douglas gets up in
front of a room full of stockholders and proclaims, “Greed . . . is good. Greed
is right. Greed works.” In this chapter, we’ll be taking a much more understated
perspective as we investigate the pros and cons of short-sighted greed in the
design of algorithms. Indeed, our aim is to approach a number of different
computational problems with a recurring set of questions: Is greed good? Does
greed work?

It is hard, if not impossible, to define precisely what is meant by a greedy
algorithm. An algorithm is greedy if it builds up a solution in small steps,
choosing a decision at each step myopically to optimize some underlying
criterion. One can often design many different greedy algorithms for the same
problem, each one locally, incrementally optimizing some different measure
on its way to a solution.

When a greedy algorithm succeeds in solving a nontrivial problem opti-
mally, it typically implies something interesting and useful about the structure
of the problem itself; there is a local decision rule that one can use to con-
struct optimal solutions. And as we’ll see later, in Chapter 11, the same is true
of problems in which a greedy algorithm can produce a solution that is guar-
anteed to be close to optimal, even if it does not achieve the precise optimum.
These are the kinds of issues we’ll be dealing with in this chapter. It’s easy to
invent greedy algorithms for almost any problem; finding cases in which they
work well, and proving that they work well, is the interesting challenge.

The first two sections of this chapter will develop two basic methods for
proving that a greedy algorithm produces an optimal solution to a problem.
One can view the first approach as establishing that the greedy algorithm stays
ahead. By this we mean that if one measures the greedy algorithm’s progress
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in a step-by-step fashion, one sees that it does better than any other algorithm
at each step; it then follows that it produces an optimal solution. The second
approach is known as an exchange argument, and it is more general: one
considers any possible solution to the problem and gradually transforms it
into the solution found by the greedy algorithm without hurting its quality.
Again, it will follow that the greedy algorithm must have found a solution that
is at least as good as any other solution.

Following our introduction of these two styles of analysis, we focus on
several of the most well-known applications of greedy algorithms: shortest
paths in a graph, the Minimum Spanning Tree Problem, and the construc-
tion of Huffman codes for performing data compression. They each provide
nice examples of our analysis techniques. We also explore an interesting re-
lationship between minimum spanning trees and the long-studied problem of
clustering. Finally, we consider a more complex application, the Minimum-
Cost Arborescence Problem, which further extends our notion of what a greedy
algorithm is. ’

4.1 Interval Scheduling: The Greedy Algorithm

Stays Ahead

Let’s recall the Interval Scheduling Problem, which was the first of the five
representative problems we considered in Chapter 1. We have a set of requests
{1,2,...,n}; the it request corresponds to an interval of time starting at s(i)
and finishing at f(i). (Note that we are slightly changing the notation from
Section 1.2, where we used s; rather than s(i) and f; rather than f(@). This
change of notation will make things easier to talk about in the proofs.) We’ll
say that a subset of the requests is compatible if no two of them gverlap in time,
and our goal is to accept as large a compatible subset as possible. Compatible
sets of maximum size will be called optimal.

A¥ Designing a Greedy Algorithm
Using the Interval Scheduling Problem, we can make our discussion of greedy
algorithms much more concrete. The basic idea in a greedy algorithm for
interval scheduling is to use a simple rule to select a first request i;. Once
a request i; is accepted, we reject all requests that are not compatible with ;.
We then select the next request i, to be accepted, and again reject all requests
that are not compatible with i,. We continue in this fashion until we run out
of requests. The challenge in designing a good greedy algorithm is in deciding
which simple rule to use for the selection—and there are many natural rules
for this problem that do not give good solutions.

Let’s try to think of some of the most natural rules and see how they work.

4.1 Interval Schedunling: The Greedy Algorithm Stays Ahead

o t’lilhe most obvigus rule might be to always select the available request
at starts earliest—that is, the one with minimal start time s(i). This
way our resource starts being used as quickly as possible.

B This method does not yield an optimal solution. If the earliest request
i 1?, for a very long interval, then by accepting request i we may have to
reject a lot of requests for shorter time intervals. Since our goal is to satisfy
as many requests as possible, we will end up with a suboptimal solution
In a really bad case—say, when the finish time f(i) is the rnaximurr;
among all requests—the accepted request i keeps our resource occupied
for the whole time. In this case our greedy method would accept a single
'request, while the optimal solution could accept many. Such a situatigon
is depicted in Figure 4.1(a).

This 'might suggest that we should start out by accepting the request that
regmres the smallest interval of time—namely, the request for which
f(@) — s(i) is as small as possible. As it turns out, this is a somewhat
better rule than the previous one, but it still can produce a suboptimal
schedule. For example, in Figure 4.1(b), accepting the short interval in

the middle would prevent us from accepti
i pting the other t ;
an optimal solution. 8 wo, which form

(@)
e — l
) -
1 ¥ i
}—“-—i *_—____‘{
()

Sgg;ims ?:ﬂni ig;fjaltllies of .thgl Interval Scheduling Problem on which natural greedy
e optimal solution. Int (a), it does not k i
e oy the opthn? , ot work to select the interval
s , not work to select the shortest i ; i i
does not work to select the interval with the fewest conflicts. ot ntervali and fn ) 1t
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o In the previous greedy rule, our problem was that the second request
competes with both the first and the third—that is, accepting this request
made us reject two other requests. We could design a greedy algorithm
that is based on this idea: for each request, we count the number of
other requests that are not compatible, and accept the request that has
the fewest number of noncompatible requests. (In other words, we select
the interval with the fewest «“conflicts.”) This greedy choice would lead
to the optimum solution in the previous example. In fact, it is quite a
bit harder to design a bad example for this rule; but it can be done, and
we’'ve drawn an example in Figure 4.1(c). The unique optimal solution
in this example is to accept the four requests in the top row. The greedy
method suggested here accepts the middle request in the second row and
thereby ensures a solution of size no greater than three.

A greedy rule that does lead to the optimal solution is based on a fourth
idea: we should accept first the request that finishes first, that is, the request
for which f(i) is as small as possible. This is also quite a natural idea: we ensure
that our resource becomes free as soon as possible while still satisfying one’
request. In this way we can maximize the time left to satisfy other requests.

Let us state the algorithm a bit more formally. We will use R to denote
the set of requests that we have neither accepted nor rejected yet, and use A
to denote the set of accepted requests. For an example of how the algorithm

runs, see Figure 4.2.

Initially let R be the set of all requests, and let A be empty
While R is not yet empty
Choose a request i€R that has the smallest finishing time

Add request i to A
Delete all requests from R that are not compatible with request i

EndWhile
Return the set A as the set of accepted requests

£ Analyzing the Algorithm
While this greedy method is quite natural, it is certainly not obvious that it
returns an optimal set of intervals. Indeed, it would only be sensible to reserve
judgment on its optimality: the ideas that led to the previous nonoptimal
versions of the greedy method also seemed promising at first.

As a start, we can immediately declare that the intervals in the set A
returned by the algorithm are all compatible.

(4.1) A is a compatible set of requests.

4.1 Interval Scheduling: The Greedy Algorithm Stays Ahead

: 6, 8
Intervals numbered in order t ! | } 3, ; 5, . l
} 2 1 1 4 i I 1 ‘ 7 ‘
e o ot e 4 8
Selecting interval 1 ; 1 { } 3, \ 5, .
et TR T 7,
38
Selecting interval 3 } 1 { } 3, ; 5, .
et 7
A 8
Selecting interval 5 I ! i ’ 3, ; S, .
e [
8
1 . —
3 5

Selecting interval 8

E}tg;rvzl A:Zariagnaﬁf e;*ulllln (;1; r_haiz1 cllniﬁrval Scheduling Algorithm. At each step the selected
terva’s are derker | hnéS. e intervals deleted at the corresponding step are

What vs{e need to show is that this solution is optimal. So, for purposes of
;(:mpanson, let O pe.an optimal set of intervals. Ideally one might want to show
eilt A=0, bl'It this is too much to ask: there may be many optimal solutions
?}?at T}q FEStI éﬁl 1s;hequal to a single one of them. So instead we will simply shovs;
=[0], that is, that A contains the same numb i
hence is also an optimal solution. e ofimervals a0 © and

The ‘1dea underlying the proof, as we suggested initially, will be to find
a sense in'which our greedy algorithm “stays ahead” of this’solution 0. W
:s;lglln;:sn;paffe ﬂ1:]he p;u’tial solutions that the greedy algorithm constructs to iI.litiai
nis of the soluti i i
e e by-sten o ltllic;r; (f) and show that the greedy algorithm is doing better
We introduce some notation to help with this proof. Let i ] .
of requests in A in the order they were L.aldded to Al.)Nofe ];Iitlllzl';lik lsjfmt?lzrsia
let the set of requests in O be denoted by j;, . . . , j,. Our goal is to .prove cht
k'= m. Assume that the requests in O are also ordered in the natural left-to-
r}gpt ordgr of the corresponding intervals, that is, in the order of the start and
finish points. Note that the requests in O are compatible, which implies that
the start points have the same order as the finish points. J ’ :

Y

119



120

Chapter 4 Greedy Algorithms

Can the greedy algorithm’s
rthinterval really finish later?

i?
' i 7 .
by 1

Jr Jr

i

T

Figure 4.3 The inductive step in the proof that the greedy algorithm stays ahead.

Our intuition for the greedy method came from wanting our resource to
become free again as soon as possible after satisfying the first request. And
indeed, our greedy rule guarantees that f(i;) < f(j;). This is the sense in which
we want to show that our greedy rule “stays ahead”—that each of its intervals
finishes at least as soon as the corresponding interval in the set O. Thus we now
prove that for each r > 1, the M accepted request in the algorithm’s schedule
finishes no later than the r' request in the optimal schedule. )

fl

(4.2) For all indices r < k we have f@i,) <f(r)-

Proof. We will prove this statement by induction. For r = 1 the statement is
clearly true: the algorithm starts by selecting the request i; with minimum
finish time.

Now let > 1. We will assume as our induction hypothesis that the
statement is true for r — 1, and we will try to prove it for r. As shown in
Figure 4.3, the induction hypothesis lets us assume that fli ) <fGr_1)- In
order for the algorithm’s r® interval not to finish earlier as well, it would
need to “fall behind” as shown. But there’s a simple reason why this could
not happen: rather than choose a later-finishing interval, the greedy algorithm
always has the option (at worst) of choosing j, and thus fulfilling the induction
step. .

We can make this argument precise as follows. We know (since O consists
of compatible intervals) that f(j,_1) < s(j). Combining this with the induction
hypothesis f(i,_1) < f(jr—1), we get f(i,_1) < 5(j)- Thus the interval j, is in the
set R of available intervals at the time when the greedy algorithm selects ;.
The greedy algorithm selects the available interval with smallest finish time;
since interval j, is one of these available intervals, we have f(i;) < f@.). This
completes the indnction step. =

Thus we have formalized the sense in which the greedy algorithm is
remaining ahead of O: for each r, the r interval it selects finishes at least
as soon as the ri' interval in ©. We now see why this implies the optimality
of the greedy algorithm’s set A.

41 . Interval Scheduling: The Greedy Algorithm Stays Ahead

(4.3) The greedy algorithm returns an optimal set A.

Proof. We will prove the statement by contradiction. If A is not optimal, then -

an optimal set O must have more requests, that is, we must have m > k.
Applying (4.2) with r =k, we get that f(i,) <f(y). Since m > k, there is a
request jp.; in O. This request starts after request j, ends, and hence after
iy ends. So after deleting all requests that are not compatible with requests
i1, ..., I the set of possible requests R still contains j.;. But the greedy
algorithm stops with request i, and it is only supposed to stop when R is
empty—a contradiction. =

Implementation and Running Time We can make our algorithm run in time
O(n log n) as follows. We begin by sorting the 2 requests in order of finishing
time and labeling them in this order; that is, we will assume that f(@) < f(j)
when i < j. This takes time O(r log n). In an additional O(n) time, we construct
an array S[1...n] with the property that S[i] contains the value s(i).

We now select requests by processing the intervals in order of increasing
(D). We always select the first interval; we then iterate through the intervals in
order until reaching the first interval j for which s(j) > f(1); we then select this
one as well. More generally, if the most recent interval we’ve selected ends
at time f, we continue iterating through subsequent intervals until we reach
the first j for which s(j) > f. In this way, we implement the greedy algorithm
analyzed above in one pass through the intervals, spending constant time per
interval. Thus this part of the algorithm takes time O(n).

Extensions

The Interval Scheduling Problem we considered here is a quite simple schedul-
ing problem. There are many further complications that could arise in practical
settings. The following point out issues that we will see later in the book in
various forms.

e In defining the problem, we assumed that all requests were known to
the scheduling algorithm when it was choosing the compatible subset.
It would also be natural, of course, to think about the version of the
problem in which the scheduler needs to make decisions about accepting
or rejecting certain requests before knowing about the full set of requests.
Customers (requestors) may well be impatient, and they may give up
and leave if the scheduler waits too long to gather information about all
other requests. An active area of research is concerned with such on-
line algorithms, which must make decisions as time proceeds, without
knowledge of future input.
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e Our goal was to maximize the number of satisfied requests. But we could
picture a situation in which each request has a different value to us. For
example, each request i could also have a value v; (the amount gained
by satisfying request i), and the goal would be to maximize our income:
the sum of the values of all satisfied requests. This leads to the Weighted
Interval Scheduling Problem, the second of the representative problems

we described in Chapter 1.

There are many other variants and combinations that can arise. We now
discuss one of these further variants in more detail, since it forms another case
in which a greedy algorithm can be used to produce an optimal solution.

A Related Problem: Scheduling All Intervals
The Problem In the Interval Scheduling Problem, there is a single resource
and many requests in the form of time intervals, so we must choose which
requests to accept and which to reject. A related problem arises if we have
many identical resources available and we wish to schedule all the requests
using as few resources as possible. Because the goal here is to partition
all intervals across multiple resources, we will refer to this as the Interval
Partitioning Problem.!

For example, suppose that each request corresponds to a lecture that needs

to be scheduled in a classroom for a particular interval of time. We wish to

satisfy all these requests, using as few classrooms as possible. The classrooms
at our disposal are thus the multiple resources, and the basic constraint is that
any two lectures that overlap in time must be scheduled in different classrooms.
Equivalently, the interval requests could be jobs that need to be processed for
a specific period of time, and the resources are machines capable of handling
these jobs. Much later in the book, in Chapter 10, we will see a different
application of this problem in which the intervals are routing requests that
need to be allocated bandwidth on a fiber-optic cable.

As an illustration of the problem, consider the sample instance in Fig-
ure 4.4(a). The requests in this example can all be scheduled using three
resources; this is indicated in Figure 4.4(b), where the requests are rearranged
into three rows, each containing a set of nonoverlapping intervals. In general,
one can imagine a solution using k resources as a rearrangement of the requests
into k rows of nonoverlapping intervals: the first row contains all the intervals

! The problem is also referred to as the Interval Coloring Problem; the terminology arises from
thinking of the different resources as having distinct colors—all the intervals assigned to a particular

resource are given the corresponding color.
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Figure 4.4 (a) An instance of the Interval Partitioni
: ance : 4 titioning Problem with ten interv
grccl)lugh 7. (b) A solution in yvltuch all intervals are scheduled using three resogisce(:'
row represents a set of intervals that can all be scheduled on a single resource .

assigned to the first resource, the second row contains all those assigned to
the second resource, and so forth.

Now, is there any hope of using just two resources in this sample instance?
f:learly the answer is no. We need at least three resources since, for exam le.
intervals a, b, and c all pass over a common point on the ﬁme«li;le and helrjlce’
thgy all need to be scheduled on different resources. In fact, oné can make
this last argument in general for any instance of Interval Partitioning. Suppose
we define the depth of a set of intervals to be the maximum number'ﬂlat ass
over any single point on the time-line. Then we claim ’

(4.4) In any instance of Interval Partitioni
( tioning, the number of resources need
is at least the depth of the set of intervals. ' “

Proof. Suonse a set of intervals has depth d, and let I, . . ., I all pass over a
Commgn point on the time-line. Then each of these intervals must be scheduled
on a different resource, so the whole instance needs at least d resources. =

' We now consider two questions, which turn out to be closely related
First, ‘ce'm we design an efficient algorithm that schedules all intervals using;
thé minimum possible number of resources? Second, is there always a schedule
using a number of resources that is equal to the depth? In effect, a positive
f'mswer to this second question would say that the only obstacles to £)arﬁﬁonin
mtel.'vals are purely local—a set of intervals all piled over the same point It’i
not immediately clear that there couldn’t exist other, “long-range” obste;cles
that push the number of required resources even higher.
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We now design a simple greedy algorithm that sched}ﬂes all int.ervals

using a number of resources equal to the depth. This i‘mmediately implies the
optimality of the algorithm: in view of (4.4), no solution c‘ould use a nuprer
of resources that is smaller than the depth. The analysis of our algonthm
will therefore illustrate another general approach to proving optima‘ht'y: one
finds a simple, “structural” bound asserting that every possible solution must
have at least a certain value, and then one shows that the algorithm under
consideration always achieves this bound.
Designing the Algorithm Let d be the depth of the set of intervals; we show
how to assign a label to each interval, where the labels come from the set' of
numbers {1, 2, ..., d}, and the assignment has the property that overlap;?mg
intervals are labeled with different numbers. This gives the desired solution,
since we can interpret each number as the name of a resource, and the label
of each interval as the name of the resource to which it is assigned.

The algorithm we use for this is a simple one-pass greedy strategy thé‘lt
orders intervals by their starting times. We go through the intervals in this
order, and try to assign to each interval we encounter a label that hasn’t already"
been assigned to any previous interval that overlaps it. Specifically, we have

the following description.

Sort the intervals by their start times, breaking ties arbitrarily
Let Ij,I3,...,I, denote the intervals in this order

For j=1,2,3,...,1

For each interval I; that precedes I in sorted order and overlaps it

Exclude the label of I; from consideration for [
Endfor
If there is any label from {1,2,...,
Assign a nonexcluded label to I
Else
Leave [ unlabeled
Endif
Endfor

d} that has not been excluded then

Analyzing the Algorithm We claim the following.

(4.5) If we use the greedy algorithm above, every interval will be assigned a
label, and no two overlapping intervals will receive the same label.

Proof. First let’s argue that no interval ends up unlabeleq. Consider one of
the intervals [;, and suppose there are t intervals earlier in the sortfad order
that overlap it. These t intervals, together with ;, form a set of t+1 mt‘ervals
that all pass over a common point on the time-line (namely, the start time of

e e
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), and so t +1<d. Thus t <d — 1. It follows that at least one of the d labels
is not excluded by this set of ¢ intervals, and so there is a label that can be
assigned to ;.

Next we claim that no two overlapping intervals are assigned the same
label. Indeed, consider any two intervals I and I’ that overlap, and suppose I
precedes I’ in the sorted order. Then when I’ is considered by the algorithm,
I is in the set of intervals whose labels are excluded from consideration;
consequently, the algorithm will not assign to I’ the label that it used forI. =

The algorithm and its analysis are very simple. Essentially, if you have
d labels at your disposal, then as you sweep through the intervals from left
to right, assigning an available label to each interval you encounter, you can
never reach a point where all the labels are currently in use.

Since our algorithm is using d labels, we can use (4.4) to conclude that it

is, in fact, always using the minimum possible number of labels. We sum this
up as follows.

(4.6) The greedy algorithm above schedules every interval on a resource,
using a number of resources equal to the depth of the set of intervals. This
is the optimal number of resources needed.

4.2 Scheduling to Minimize Lateness: An Exchange
Argument

We now discuss a scheduling problem related to the one with which we began
the chapter. Despite the similarities in the problem formulation and in the
greedy algorithm to solve it, the proof that this algorithm is optimal will require
a more sophisticated kind of analysis.

The Problem

Consider again a situation in which we have a single resource and a set of n
requests to use the resource for an interval of time. Assume that the resource is
available starting at time s. In contrast to the previous problem, however, each’
request is now more flexible. Instead of a start time and finish time, the request
i has a deadline d;, and it requires a contiguous time interval of length t;, but
it is willing to be scheduled at any time before the deadline. Each accepted
request must be assigned an interval of time of length ¢;, and different requests
must be assigned nonoverlapping intervals.

There are many objective functions we might seek to optimize when faced
with this situation, and some are computationally much more difficult than
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Length 1 Deadline 2
Job 1 [::::l |
Length 2 Deadline 4
Job2 [ | ‘
Length 3 Deadline 6

Job3 | l |

Solution: r | _ l - J

Job 1: Job 2: Job 3:
done at done at _ done atq e
time 1 time 1+2=3 timel1+2+3=

Figure 4.5 A sample instance of scheduling to minimize lateness.

others. Here we consider a very natural goal that can be optimized by a ire;cig
algorithm. Suppose that we plan to satisfy gach request, but we arteie a 2 e
to let certain requests run late. Thus, beginning at our gverall startd met ,this
will assign each request i an interval of time‘of length t,-} let us bleno eth o
interval by [s(), f(©], with f@) =s@® +t;. Unhk.e the previous proﬁ EISI;l ﬁme),
the algorithm must actually determine a start time (and hence a finl
for each interval. . o
We say that a request i is late if it misses the dea@me, that is, l-nf(l) >th ét
The lateness of such a request i is defined to be [; = f (z? — dl We ;1 S?;m o
l;= 0 if request i is not late. The goal in our.nev‘v optimization pro ‘e¥n il e
to schedule all requests, using nonoverlapping 1ptervds, so as to munlxlmduhn
maximum lateness, L = max; [;. This problem arises n.aturally when sche : %
jobs that need to use a single machine, and so we will refer to our requests a
jobs. .
] Figure 4.5 shows a sample instance of this problem, consistmrg1 of tth.r_(.e:
jobs: the first has length t; =1 and deadline d; = 2 the second has kzt.h-at
and d, = 4; and the third has 3= 3and d3=6. It Is not hard to ¢ fe(;:
scheduling the jobs in the order 1,2, 3 incurs a maximum lateness ot 0.

7 Designing the Algorithm | |
“What would a greedy algorithm for this problem look like? There are sev'era
natural greedy approaches in which we look at the data (t;, d;) about the jobs
and use this to order them according to some simple rule.

e One approach would beto schedule the jobs in order of in(‘:re.asing 1{3I1g1;h
t;, so as to get the short jobs out of the way quickly. This immediately
1

z
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looks too simplistic, since it completely ignores the deadlines of the jobs.
And indeed, consider a two-job instance where the first job has t; = 1 and
d; = 100, while the second job has t, = 10 and d, = 10. Then the second
job has to be started right away if we want to achieve lateness L. = 0, and
scheduling the second job first is indeed the optimal solution.

e The previous example suggests that we should be concerned about jobs
whose available slack time d; — t; is very small—they’re the ones that
need to be started with minimal delay. So a more natural greedy algorithm
would be to sort jobs in order of increasing slack d; — t;.

Unfortunately, this greedy rule fails as well. Consider a two-job
instance where the first job has t; = 1 and d; = 2, while the second job has
t, =10 and d, = 10. Sorting by increasing slack would place the second
job first in the schedule, and the first job would incur a lateness of 9. (It
finishes at time 11, nine units beyond its deadline.) On the other hand,
if we schedule the first job first, then it finishes on time and the second
job incurs a lateness of only 1.

There is, however, an equally basic greedy algorithm that always produces
an optimal solution. We simply sort the jobs in increasing order of their
deadlines d;, and schedule them in this order. (This rule is often called Earliest
Deadline First.} There is an intuitive basis to this rule: we should make sure
that jobs with earlier deadlines get completed earlier. At the same time, it’s a
little hard to believe that this algorithm always produces optimal solutions—
specifically because it never looks at the lengths of the jobs. Earlier we were
skeptical of the approach that sorted by length on the grounds that it threw
away half the input data (i.e., the deadlines); but now we’re considering a
solution that throws away the other half of the data. Nevertheless, Earliest
Deadline First does produce optimal solutions, and we will now prove this.

First we specify some notation that will be useful in talking about the
algorithm. By renaming the jobs if necessary, we can assume that the jobs are
labeled in the order of their deadlines, that is, we have

di<...<d,.

We will simply schedule all jobs in this order. Again, let s be the start time for
all jobs. Job 1 will start at time s = s(1) and end at time (1) = s(1) + t;; Job 2
will start at time s(2) = f(1) and end at time f(2) = s(2) + t,; and so forth. We

will use f to denote the finishing time of the last scheduled job. We write this
algorithm here.

Order the jobs in order of their deadlines
Assume for simplicity of notation that dj<...<d
Initially, f=s ‘

n
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Consider the jobs i=1,...,n in this order .
Assign job i to the time interval from s(@)=f to f)=f+1
Let f = f + &
End 4 . .
Return the set of scheduled intervals s, f@] for i=1,...,n
/¥ Analyzing the Algorithm

To reason about the optimality of the algorithm, we ﬁrst. ob.serve that Fhe
schedule it produces has no “gaps”—times When' the machmfa is not Worlgclglg
yet there are jobs left. The time that passes during a gap V\{ln pe (':al'led‘z e
time: there is work to be done, yet for some reason the. machine is 51t[t1ng }dle:
Not only does the schedule A produced by our algorithm ha.lve ng idle time;
it is also very easy to see that there is an optimal schedule with this property.

We do not write down a proof for this.
(4.7) There is an optimal schedule with no idle time.

Now, how can we prove that our schedule A is optimal, that is, i'ts
maximum lateness L is as small as possible? As in previous anfjlyses, we will
start by considering an optimal schedule O. Our plan here is to gradu§ﬂy
modify O, preserving its optimality at each step, but eventually transforming
it info a schedule that is identical to the schedule A found by the greedy
algorithm. We refer to this type of analysis as an exchange ar_gumer‘lt, and we
will see that it is a powerful way to think about greedy algorithms in general.

We first try characterizing schedules in the foﬂowing'way. We say that a
schedule A’ has an inversion if a job i with deadline d; is sched‘ulfac.l before
another job j with earlier deadline d; < d;. Not'ice th‘at, by deﬁmuan,‘ﬂ;e
schedule A produced by our algorithm has no inversions. If there are jobs
with identical deadlines then there can be many different schedules with no
inversions. However, we can show that all these schedules have the same

maximuim lateness L.

(4.8) All schedules with no inversions and no idle time have the same
maximum lateness.

Proof. If two different schedules have neither inversions nor idle time, t.hfn
they might not produce exactly the same order of jobs, but they can only dl.f er
in the order in which jobs with identical deadlines are scheduled. Consider
such a deadline d. In both schedules, the jobs with deadline d are all s.chedul'ed
consecutively (after all jobs with earlier deadlines and before all jobs with
later deadlines). Among the jobs with deadline d, the last one he‘ls the greatest
lateness, and this lateness does not depend on the order of the jobs. =

: 1
.
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&If_main step in showing the optimality of our algorithm is to establish
that there is an optimal schedule that has no inversions and no idle timejl‘o do
this, we will start with any optimal schedule having no idle time; we will then
convert it into a schedule with no inversions without increasing its maximum

lateness. Thus the resulting scheduling after this conversion will be optimal
as well.

(4.9) There is an optimal schedule that has no inversions and no idlé time.

Proof. By (4.7), there is an optimal schedule © with no idle time. The proof
will consist of a sequence of statements. The first of these is simple to establish.

(@) If O has an inversion, then there is a pair of jobs i and j such that jis
scheduled immediately after i and has d; < d.

Indeed, consider an inversion in which a job a is scheduled sometime before
ajob b, and d, > dj,. If we advance in the scheduled order of jobs from a to b
one at a time, there has to come a point at which the deadline we see decreases

for the first time. This corresponds to a pair of consecutive jobs that form an
inversion.

Now suppose O has at least one inversion, and by (a), leti andjbea pair of
inverted requests that are consecutive in the scheduled order. We will decrease
the number of inversions in © by swapping the requests 7 and jin the schedule
O. The pair (i, j) formed an inversion in O, this inversion is eliminated by the
swap, and no new inversions are created. Thus we have

(b) After swapping i and J we get a schedule with one less inversion.

The hardest part of this proof is to argue that the inverted schedule is also
optimal.

(c) The new swapped schedule has a maximum lateness no larger than that
of O. '

It ;‘s clear that if we can prove (c), then we are done: The initial schedule ©
can have at most (g) inversions (if all pairs are inverted), and hence after at

most (3) swaps we get an optimal schedule with no inversions.

So we now conclude by proving (c), showing that by swapping a pair of

consecutive, inverted jobs, we do not increase the maximum lateness L of the
schedule. =

Proof of (¢). We invent some notation to describe the schedule O: assume
that each request r is scheduled for the time interval [s(n), f("] and has
lateness I/. Let L' = max, I denote the maximum lateness of this schedule.
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Only the finishing times of i and ]j
are affected by the swap.

Before swapping:

[ .  gebi o | —dobj e [ 7]
|
d; d
J | (@)

After swapping: V

Ir‘ oo Jebj oo po o L Jobi
|
d; d;

(d)

Figure 4.6 The effect of swapping two consecutive, inverted jobs.

Let © denote the swapped schedule; we will use 5(r), f(r), I,, and L to denote
the corresponding quantities in the swapped schedule. o

Now recall our two adjacent, inverted jobs i and j. The 31tue}Uon is roughlayi

as pictured in Figure 4.6. The finishing time ofj before the swa;t>hls e)fagﬂjz' eql.(li j
inishing ti [ . Thus all jobs other than jobs i an

to the finishing time of i after the swap ther tha i

f(i)nish at the sfme time in the two schedules. Moreover, ]{)b j will get finished

earlier in the new schedule, and hence the swap does not increase the lateness

of job j.

Thus the only thing to worry about is job i: its IaFeness may hgve ?iilg
increased, and what if this actually raises the m.axm]u.m Iatene'ssbo' e
whole schedule? After the swap, job i finishes :at time (), WhEI'l ]o1 t] e
finished in the schedule ©. If job i is late in this new §chedu1e, its la enzet
is I, = f(i) — d; = f(j) — d;. But the crucial point is that  cannot be more Fz e
in tlhe schedulle O than j was in the schedule O. Specifically, our assumption
d; > d; implies that

L=f() —di<f()—d;=1.

Since the lateness of the schedule O was L' > Z]’. > I;, this shows that the swap
does not increase the maximum lateness of the schedule. =

The optimality of our greedy algorithm now follows immediately.

|
|
|

4.3 Optimal Caching: A More Complex Exchange Argument

(4.10)  The schedule A produced by the greedy algorithm has optimal maxi-
mum lateness L.

Proof. Statement (4.9) proves that an optimal schedule with no inversions
exists. Now by (4.8) all schedules with no inversions have the same maximum
lateness, and so the schedule obtained by the greedy algorithm is optimal. =

Extensions

There are many possible generalizations of this scheduling problem. For ex-
ample, we assumed that all jobs were available to start at the common start
time s. A natural, but harder, version of this problem would contain requests i
that, in addition to the deadline d; and the requested time t;, would also have
an earliest possible starting time 1;. This earliest possible starting time is usu-
ally referred to as the release time. Problems with release times arise naturally
in scheduling problems where requests can take the form: Can I reserve the
room for a two-hour lecture, sometime between 1 M. and 5 PM.2 Our proof
that the greedy algorithm finds an optimal solution relied crucially on the fact
that all jobs were available at the common start time s. (Do you see where?)
Unfortunately, as we will see later in the book, in Chapter 8, this more general
version of the problem is much more difficult to solve optimally.

4.3 Optimal Caching: A More Complex Exchange
Argument

We now consider a problem that involves processing a sequence of requests
of a different form, and we develop an alzerithm whose analysis requires

a more subtle use of the exchange argument. The problem is that of cache
maintenance.

/~¥ The Problem

To motivate caching, consider the following situation. You’re working on a
long research paper, and your draconian library will only allow you to have
eight books checked out at once. You know that you’ll probably need more
than this over the course of working on the paper, but at any point in time,
you'd like to have ready access to the eight books that are most relevant at
that time. How should you decide which books to check out, and when should

you return some in exchange for others, to minimize the number of times you
have to exchange a book at the library?

This is precisely the problem that arises when dealing with a memory
hierarchy: There is a small amount of data that can be accessed very guickly,
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and a large amount of data that requires more time to access; and you must
decide which pieces of data to have close at hand.

Memory hierarchies have been a ubiquitous feature of computers since
very early in their history. To begin with, data in the main memory of a
processor can be accessed much more quickly than the data on its hard disk;
but the disk has much more storage capacity. Thus, it is important to keep
the most regularly used pieces of data in main memory, and go to disk as
infrequently as possible. The same phenomenon, qualitatively, occurs with
on-chip caches in modern processors. These can be accessed in a few cycles,
and so data can be retrieved from cache much more quickly than it can be
retrieved from main memory. This is another level of hierarchy: small caches
have faster access time than main memory, which in turn is smaller and faster
to access than disk. And one can see extensions of this hierarchy in many
other settings. When one uses a Web browser, the disk often acts as a cache
for frequently visited Web pages, since going to disk is still much faster than
downloading something over the Internet. '

Caching is a general term for the process of storing a small amount of datd
in a fast memory so as to reduce the amount of time spent interacting with a
slow memory. In the previous examples, the on-chip cache reduces the need
to fetch data from main memory, the main memory acts as a cache for the
disk, and the disk acts as a cache for the Internet. (Much as your desk acts as
a cache for the campus library, and the assorted facts you're able to remember
without looking them up constitute a cache for the books on your desk.)

For caching to be as effective as possible, it should generally be the case
that when you go to access a piece of data, it is already in the cache. To achieve
this, a cache maintenance algorithm determines what to keep in the cache and
what to evict from the cache when new data needs to be brought in.

Of course, as the caching problem arises in different settings, it involves
various different considerations based on the underlying technology. For our
purposes here, though, we take an abstract view of the problem that underlies
most of these settings. We consider a set U of n pieces of data stored in main
memory. We also have a faster memory, the cache, that can hold k < n pieces
of data at any one time. We will assume that the cache initially holds some
set of k items. A sequence of data items D =d, dy, ..., dy drawn from U is
presented to us—this is the sequence of memory references we must process—
and in processing them we must decide at all times which k items to keep in the
cache. When item d; is presented, we can access it very quickly if it is already
in the cache; otherwise, we are required to bring it from main memory into
the cache and, if the cache is full, to evict some other piece of data that is
currently in the cache to make room for d;. This is called a cache miss, and we
want to have as few of these as possible.

|

4.3 Optimal Caching: A More Complex Exchange Argument

temThusé,ll on'a particular. sequence of memory references, a cache main-
o Illgeb go1"1thm determines an eviction schedule—specifying which items
ould be evicted from the cache at which points in the sequence—and this

o .
Suppose we have three items {a, b, c}, the cache size is k = 2, and we
are presented with the sequence -

a,b,c,b,c,a,b.

Su'ppo'se that the cache initially contains the items a and b. Then on th

third 1teg1 in the sequence, we could evict a so as to bﬁng in ¢ am(iE
on the sixth item we could evict ¢ so as to bring in a; we thereb ’incur
two cache misses over the whole sequence. After thinking aboutyit one

concludes that any eviction sch i
\ edule for this sequence i
least two cache misses. : et mClUdE i

pmcgsnsd:eigl opiratmg conditions, ca'lche maintenance algorithms must
process mer ;zfltrfe erences d, d,, . .. without knowledge of what’s coming

; or purposes of evaluating the quality of these algorithms
syst'ems researchers very early on sought to understand the nature of th,
optimal solution to the caching problem. Given a full sequence S of mcgmor;

/= Designing and Analyzing the Algorithm

In the 1960s, Les Belady showed th i
] , at the following si i
incur the minimum number of misses: § smple rule will always

When d; needs to be brought into the cache
evict the item that is needed the farthest into the future

:{\)/; Wtﬁl call thi? the Farthest-in-Future Algorithm. When it is time to evict
ething, we look at the next time that e i i ‘

ach item in the cache will be
referenced, and choose the one for which this is as late as possible.

. a;ms isa very'natural algorithm. At the same time, the fact that it is optimal
° tl?eqw.uences Is somewhat more subtle than it first appears. Why evict the
em that is needed farthest in the future, as opposed, for example, to the one

] u

a,b,c,d,a,d,e,a,d,b,c
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with k = 3 and items {a, b, c} initially in the cache. The Farthest-in-Future rule
will produce a schedule S that evicts ¢ on the fourth step and b on the seventh
step. But there are other eviction schedules that are just as good. Consider
the schedule ' that evicts b on the fourth step and ¢ on the seventh step,
incurring the same number of misses. So in fact it’s easy to find cases where
schedules produced by rules other than Farthest-in-Future are also optimal;
and given this flexibility, why might a deviation from Farthest-in-Future early
on not yield an actual savings farther along in the sequence? For example, on
the seventh step in our example, the schednle ' is actually evicting an item
(c) that is needed farther into the fature than the item evicted at this point by
Farthest-in-Future, since Farthest-in-Future gave up ¢ earlier on.

These are some of the kinds of things one should worry about before
concluding that Farthest-in-Future really is optimal. In thinking about the
example above, we quickly appreciate that it doesn’t really matter whether
b or ¢ is evicted at the fourth step, since the other one should be evicted at
the seventh step; so given a schedule where b is evicted first, we can swap
the choices of b and ¢ without changing the cost. This reasoning—swapping:
one decision for another—forms the first outline of an exchange argument that
proves the optimality of Farthest-in-Future.

Before delving into this analysis, let’s clear up one important issue. All
the cache maintenance algorithms we’ve been considering so far produce
schedules that only bring an item d into the cache in a step i if there is a
request to d in step i, and d is not already in the cache. Let us call such a
schedule reduced—it does the minimal amount of work necessary in a given
step. But in general one could imagine an algorithm that produced schedules
that are not reduced, by bringing in items in steps when they are not requested.
We now show that for every nonreduced schedule, there is an equally good
reduced schedule.

Let S be a schedule that may not be reduced. We define a new schedule
S__the reduction of S—as follows. In any step i where S brings in an item d
that has not been requested, our construction of § “pretends” to do this but
actually leaves d in main memory. Tt only really brings d into the cache in
the next step j after this in which d is requested. In this way, the cache miss
incurred by S in step j can be charged to the earlier cache operation performed
by S in step i, when it bronght in d. Hence we have the following fact.

(4.11) S is a reduced schedule that brings in at most as many items as the
schedule S.

Note that for any reduced schedule, the number of items that are brought
in is exactly the number of misses.

R P
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Zgg;ng the Optimalthy of Farthest-in-Future We now proceed with the
nge argument showing that Farthest-in-Fu i i

: -In-Future is optimal. Consid
arbitrary sequence D of memo e sehedule

ry references; let Sg- denote th
produced by Farthest-in-Future, and 1 st e the
od X et S* denote a schedule that inc
. ' urs th

minimum possible number of misses. We will now gradually “transform” thz

FE> n

Here is the basic fact we use to perform one step in the transformation

c(lzsl.slz) " rl(‘;et ’Sl tl;le c;l reduced schedule that makes thé S&me evzctzon de&'&ioﬁs
IF ugh the first j items in the sequence, for a ] ‘

] , number j. Then there is a
r'edzu‘:ed sc'hedule N tl‘.Lat makes the same eviction decisions as S e through the
| first j + ’1 items, and incurs no more misses than S does.

z’roofc.1 Conside:r thg ( + D request, to item d = d;,;. Since S and Sgr have
: Ogrrie ﬂ?p to this p01.nt., they have the same cache contents. If d is in thfcache
o 0 ét‘hEIE no eviction decision is necessary (both schedules are reduced)

SO o In Iact agrees with Sgr through step j ’

nd : p j+ 1, and we can set §' =
Similarly, if d needs to be bronght i it
rly, ght into the cache, but $ and Sy both evi

same item to make room for d, then we can again set §' =S i it the

- ig ghetigl.tegesting case arises when d needs to be brought into the cache

0 this S evicts item f while § icts i ’

Fr €VICts item e # f. Here S and Sz do

S:Ehalr:idy agree through step j + 1 since S has e in cache while Ser ha? fin
€. Hence we must actually do something nontrivial to construct §'

. ;&; a first sip, V\ie should have ' evict e rather than f. Now we need to
ensure that 5’ incurs no more misses than S

. An easy way to do thi

would be to have S’ agree with S f i Henee: bt thic
| or the remainder of the s ; i

is no longer possible, since S and &' h i aches o i
! , ave slightly different caches f i
point onward. So instead we’ll have §' i R
' try to get its cache back to the sam

state as S as quickly as possible, while not incurring unnecessary misses Oncg

the caches are the same, we can fini
’ an fi . . N
bapches o nish the construction of §’ by just having it

Specifically, from request j
Ay, j+ 2 onward, §' behaves exactly i i
of the following things happens for the first time. Y He Suntlone

6] Th'ere Is a request to an item g # e, f that is not in fhe cacheof S, and §
evicts e to.make room for it. Since §" and S only differ on e and f ;tan
be that g is not in the cache of ' either; so we can have §' evic’t f musc;
now the caches of S and S’ are the same. We can then have S’ b ,han
exactly like S for the rest of the sequence. S

(i) Therel isa rgquest to f, and S evicts an item ¢’. If ¢’ = e, then we're all
set: §’ can simply access f from the cache, and after this step the caches
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of S and S’ will be the same. If &’ # e, then we have §' ev/ict e'.as well, and
bring in e from main memory; this too result.s inS ,a‘nd §' having the samg
caches. However, we must be careful here, since S’ is no longer a red}lcje
schedule: it brought in e when it wasn’t immediately rlleed‘ed. Soto ﬁmsélz/
this part of the construction, we further Uansforr.n S’ to its redu.cut())nS/
using (4.11); this doesn’t increase the number of items brought in by &',
and it still agrees with Sgr through step j + 1.

Hence, in both these cases, we have a new reduced sched}lle s thatsacgirees
with Sg through the first j + 1 items and incur's Nno more misses thzlth S?S:
And crucially—here is where we use the deﬁnmg property of thfe F. fes -1ne
Future Algorithm—one of these two cases will arise befqre there Is are eretrlllct
to e. This is because in step j + 1, Farthest-in-Future evicted the item (e) tha
would be needed farthest in the future; so before there could be a request to

. Iv.
e, there would have to be a request to f, and then case (ii) above would app y.

Using this result, it is easy to complete the proof of o;_)timahty.m Wesbzgllali
with an optimal schedule S*, and use (4.12) .to constru'ct a scheq :13 L .
agrees with Sg through the first step. We continue applymg (4.12} induc hvthz
forj=1,2,3,...,m, producing schedules S]-.that agree with SF.F throug. ihe
first j steps. Each schedule incurs no more @sses than the previous one; an
by definition S,; = Sgp, since it agrees with it through the whole sequence.

Thus we have

(4.13) Sgp incurs nb moré misses than any other schedule S* and hence is
optimal.

Extensions: Caching under Real Operating Conditions

As mentioned in the previous subsection, Belady’s opt‘imal algorithm provides
a benchmark for caching performance; but in applications, one generally must
make eviction decisions on the fly without knowl‘edge c?f future reques;s.
Experimentally, the best caching algorithms under this regmrement seem‘to. e
variants of the Least-Recently-Used (LRU) Principle, which proposes evicting
the item from the cache that was referenced longest ago. o

If one thinks about it, this is just Belady’s Algorithm With the dlregnop
of time reversed—longest in the past rather than fa.rthest in the future. It. is
effective because applications generally exhibit lOC(.lllty of.reference: a mmng
program will generally keep accessing the things 1't hasj ]u‘st been a;:esagi
(It is easy to invent pathological exceptions to this principle, but fese e
relatively rare in practice.) Thus one wants to keep the more recently referenc

items in the cache.

4.4 Shortest Paths in a Graph

Long after the adoption of LRU in practice, Sleator and Tarjan showed that
one could actually provide some theoretical analysis of the performance of
LRU, bounding the number of misses it incurs relative to Farthest-in-Future.
We will discuss this analysis, as well as the analysis of a randomized variant
on LRU, when we return to the caching problem in Chapter 13.

4.4 Shortest Paths in a Graph

Some of the basic algorithms for graphs are based on greedy design principles.
Here we apply a greedy algorithm to the problem of finding shortest paths, and
in the next section we look at the construction of minimum-cost spanning trees.

=¥ The Problem

As we’ve seen, graphs are often used to model networks in which one trav-
els from one point to another—traversing a sequence of highways through
interchanges, or traversing a sequence of communication links through inter-
mediate routers. As a result, a basic algorithmic problem is to determine the
shortest path between nodes in a graph. We may ask this as a point-to-point
question: Given nodes u and v, what is the shortest u-v path? Or we may ask

for more information: Given a start node s, what is the shortest path from s to
each other node?

The concrete setup of the shortest paths problem is as follows. We are
given a directed graph G = (V, E), with a designated start node s. We assume
that s has a path to every other node in G. Each edge e has a length £, > 0,
indicating the time (or distance, or cost) it takes to traverse e. For a path P,
the length of P—denoted £(P)—is the sum of the lengths of all edges in P.
Our goal is to determine the shortest path from s to every other node in the
graph. We should mention that although the problem is specified for a directed
graph, we can handle the case of an undirected graph by simply replacing each

undirected edge e = (u, v) of length £, by two directed edges (u, v) and (v, w),
each of length ¢,.

/A~ Designing the Algorithm

In 1959, Edsger Dijkstra proposed a very simple greedy algorithm to solve the
single-source shortest-paths problem. We begin by describing an algorithm that
just determines the length of the shortest path from s to each other node in the
graph; it is then easy to produce the paths as well. The algorithm maintains a
set S of vertices u for which we have determined a shortest-path distance d(u)
from s; this is the “explored” part of the graph. Initially S = {s}, and d(s) = 0.
Now, for each node v € V-, we determine the shortest path that can be
constructed by traveling along a path through the explored part S to some
u €S, followed by the single edge (u, v). That is, we consider the quantity

137



Chapter 4 Greedy Algorithms

'(V) = Mile—(y,vyues AW + Le- We choose the node v € V—S for which this
quantity is minimized, add v to S, and define d(v) to be the value d'(v).

Dijkstra's Algorithm (G, &)
Let S be the set of explored nodes
For each ue$S, we store a distance d(u)
Initially S={s} and d(s)=0
While S#V
Select a node v¢S with at least one edge from S for which
d'(V) = MiNge(y, yymes 4@ + £ 18 a8 small as possible
Add v to S and define d(v)=d'(v)
EndWhile

It is simple to produce the s-u paths corresponding to the distances found
by Dijkstra’s Algorithm. As each node v is added to the set S, we simply record
the edge (u, v) on which it achieved the value millo_(y,vyues A1) + £,. The
path P, is implicitly represented by these edges: if (u, v) is the edge we have
stored for v, then P, is just (recursively) the path Py followed by the single
edge (u,v). In other words, to construct P,, we simply start at v; follow the
edge we have stored for vin the reverse direction to u; then follow the edge we
have stored for u in the reverse direction to its predecessor; and so on until we
reach s. Note that s must be reached, since our backward walk from v visits
nodes that were added to S earlier and earlier.

To get a better sense of what the algorithm is doing, consider the snapshot
of its execution depicted in Figure 4.7. At the point the picture is drawn, two
iterations have been performed: the first added node u, and the second added
node v. In the iteration that is about to be performed, the node x will be added
because it achieves the smallest value of d’(x); thanks to the edge (i, x), we
have d'(x) = d(u) + [, = 2. Note that attempting to add y or z to the set S at
this point would lead to an incorrect value for their shortest-path distances;
ultimately, they will be added because of their edges from x.

/=~ Analyzing the Algorithm
We see in this example that Dijkstra’s Algorithm is doing the right thing and
avoiding recurring pitfalls: growing the set S by the wrong node can lead to an
overestimate of the shortest-path distance to that node. The question becomes:
Is it always true that when Dijkstra’s Algorithm adds a node v, we get the true
shortest-path distance to v?
We now answer this by proving the correctness of the algorithm, showing
that the paths P, really are shortest paths. Dijkstra’s Algorithm is greedy in

4.4 Shortest Paths in a Graph

Set S:
.. nodes already
. explored

Figure 4.7 A snapshot of the executi ij
cution of D ! i
be added to the set S is x, due to the path thllj'l;ztgrl'? 2 Algorithm. The next node that will

It)l:lihsirllsseftlﬁat W((Ei a;lways form the shortest new s-v path we can make from a
ollowed by a single edge. We prove its corr i

‘ . . tness using a vari

our first style of analysis: we show it “ ec B colutions

: that it “stays ahead” of all oth i
style of ¢ ‘ er solution

by tl(—is‘tabhshmg, inductively, that each time it selects a path to a node v thai
path is shorter than every other possible path to v. ,

(4.14) Cbnsidef ’thke set S’ at int i ’ -
, any point in the algorithm’s [
u €S, the path Py is a shortest s-u path. ® ' ex?fUth’”- for eact

Note that this fact immediately establishes the correctness of Dijkstra’s

>
g m 2

;’i;(;(éfﬁlWe prove this by induction on the size of S. The case |S] =1 is easy.
en we have S = {s} and d(s) = 0. Suppose the claim holds when [S| = k

for some value of k > 1; we n i
> 1 OW grow S to size k+1Db i
Let (u, v) be the final edge on our s-v path P,. M add‘mg themode

Cons}iérelrnilllcﬁ?gl hypothesis, P, is the shortest s-u path)for each u € S. Now

y other s-v path P; we wish to show that it i .

1 I ; at it is at least as long as P,,.

ﬁr;si)rge(ri to reach v, .thls pgth P must leave the set S somewhere; let ygbe thve
ode on P that is not in S, and let x € S be the node just before y

. v:‘he §imaﬁon is now as depicted in Figure 4.8, and the crux of the proof
ry simple: P canmnot be shorter than P, because it is already at least as

139




The alternate s-v path P through
x and y is already too long by

the time it has left the set S.

8 The shortest path P, and an alternate sv path P through the node y.

Figure 4.

long as P, by the time it has left the set S. Indeed, in iteration‘ k t-; 1, glﬁ(ifa j
Algorithm must have considered adding node y Fo the set S v1ah e g g ) ;fh
and rejected this option in favor of adding v. This means that t (?frleJ is ntop_ -
from s to y through x that is shorter than P,. But the subpa‘th 0 j up1en ythé
such a path, and so this subpath is at least as long as P, Slncle edge leng
are nonnegative, the full path P is at least as long as P, as well.

This is a complete proof; one can also spe‘ll‘ out the /argument 1;1 tht;
previous paragraph using the following ineguahtlgs. Let P’ be 'mti stup pfas "
of P from s to x. Since x € S, we know by the induction hypothesis tha bx i A
shortest s-x path (of length d(x)), and so £(P") = £L(Py) = d(x). Thus/ the su dpih "
of P out to node y has length £(P") + £(x, V) z dx) + £(x, y) >d (yi\lan e
full path P is at least as long as this subpath. Finally, since Dijkstra s‘ 'gm;lh w
selected v in this iteration, we know thatd'(y) = d'(v) = £(P,). Combining
inequalities shows that £(P) = 2P+ L(x, ) = LPy). -

Here are two observations about Dijkstra’s Algoritk'lm and its analgsw.
First, the algorithm does not always find shortest paths if some of t};e (IEVI i(les
can have negative lengths. (Do you see where the proof breaks?) e sz
shortest-path applications involve negative ‘edge 1(.engths, anfi a mm;;, com
plex algorithm—due to Bellman and FOI'd——*l‘S required f.or this case. '
see this algorithm when we consider the topic of dynamic programiming.

The second observation is that Dijkstra’s Algori'thm i‘s, in a sens“e, e\t/.en
simpler than we’ve described here. Dijkstra’s Algonthrr.l is really a co.n ma
nous” version of the standard breadth-first se‘arch algc.mth.m fL:JI: travsersmgse
graph, and it can be motivated by the follovvlng'physmal 19t}11t1011. u;pf "
the edges of G formed a system of pipes ﬁlled' with water, ]o‘med toge ; o
the nodes; each edge e has length £, and a fixed cross-sectional afiea. v
suppose an extra droplet of water falls at node s and starts a WaV((ejjn om ﬁere
the wave expands out of node s at a constant speed, the expanding sp
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of wavefront reaches nodes in increasing order of their distance from s. It is
easy to believe (and also true) that the path taken by the wavefront to get to
any node v is a shortest path. Indeed, it is easy to see that this is exactly the
path to v found by Dijkstra’s Algorithm, and that the nodes are discovered by

the expanding water in the same order that they are discovered by Dijkstra’s
Algorithm.

Implementation and Running Time To conclude our discussion of Dijkstra’s
Algorithm, we consider its running time. There are n — 1 iterations of the
While loop for a graph with n nodes, as each iteration adds a new node v
to S. Selecting the correct node v efficiently is a more subtle issue. One’s first
impression is that each iteration would have to consider each node v ¢,
and go through all the edges between S and v to determine the minimum
Mine_(y, yyues A(W) + £, so that we can select the node v for which this
minimum is smallest. For a graph with m edges, computing all these minima

can take O(m) time, so this would lead to an implementation that runs in
O(mn) time.

We can do considerably better if we use the right data structures. First, we
will explicitly maintain the values of the minima d'(v) = mine_, y)ues d(@) +
£, for each node v e V — S, rather than recomputing them in each iteration.
We can further improve the efficiency by keeping the nodes V — S in a priority
queue with d'(v) as their keys. Priority queues were discussed in Chapter 2;
they are data structures designed to maintain a set of n elements, each with a
key. A priority queue can efficiently insert elements, delete elements, change
an element’s key, and extract the element with the minimum key. We will need
the third and fourth of the above operations: ChangeKey and ExtractMin.

How do we implement Dijkstra’s Algorithm using a priority queue? We put
the nodes V in a priority queue with d’(v) as the key for v € V. To select the node
v that should be added to the set S, we need the ExtractMin operation. To see
how to update the keys, consider an iteration in which node vis added to S, and
let w ¢ S be a node that remains in the priority queue. What do we have to do
to update the value of d’'(w)? If (v, w) is not an edge, then we don’t have to do
anything: the set of edges considered in the minimum MiNe_y, wymes A1) + £e
is exactly the same before and after adding v to S. If ¢’ = (v, w) € E, on
the other hand, then the new value for the key is min(d'(w), d(v) + ). If
d'(w) > d(v) + £, then we need to use the ChangeKey operation to decrease
the key of node w appropriately. This ChangeKey operation can occur at most

once per edge, when the tail of the edge e’ is added to S. In summary, we have
the following result.
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(4.15) Using a priority quere, Dijkstra’s Algorithm .can be implem.ented OZ

a :fraph with 1. nodes and m edges to run in O(m) time, plus the time for
D .

ExtractMin and m ChangeKey operations.

Using the heap-based priority queue implementation discussed. in C'Il‘l;p-
ter 2, each priority queue operation can be made to run in O(log n) time. Thus
the overall time for the implementation is O(n log n).

4.5 The Minimum Spanning Tree Problem )
We now apply an exchange argument in the context of a second fundament
problem on graphs: the Minimum Spanning Tree Problem.

= The Problem _—

’Suppose we have a set of locations V = {v1, V3, - - -» v,}, and xlxxéebwa; m(zected__
communication network on top of them. Thg network should be g
there should be a path between every palr of nqdes—-but subjec
requirement, we wish to build it as cheaply as possfF)le. o

For certain pairs (v;, v;), We may build a direct link betweer.lblii ?I;k :jthc;

a certain cost c(v;, vj) > 0. Thus we can represent t‘h‘e set of possi e‘ 1ted o
may be built using a graph G = (V,E), wit.h a positive cost ¢, ailsocslaT gt
each edge e = (v;, V). The problem is to find a subset of the e 'ge : sr}l_au 0
that the graph (V, T) is connected, and the total‘ cost Y et é:e is t;ersze o
possible. (We will assume that the full graph G is connected; o ,
solution is possible.)

Here is a basic observation.

(4.16) Let T be a minimum-cost solution to the network design problem
defined above. Then (V,T) is a tree.

Proof. By definition, (V,T) must be connected; we show thczlatlit alio wﬂ;

'. , i ined a cycle C, and let e be an
tain no cycles. Indeed, suppose It conte.ime ;

Zzgealon C \zfe claim that (V, T — {e}) is still connected, since ;ny path' tgat

i ' ~“the long way” around the remainder
reviously used the edge e can now go ' : '
if the cycle C instead. It follows that (V, T — {e}) is also a valid solution to the
problem, and it is cheaper—a contradiction. =

If we allow some edges to have 0 cost (that is, we assume only that @e
costs ¢, are nonnegative), then a minimum-cost solution to the network des;lgln
: ’ uld optionally
—edges that have 0 cost and co
roblem may have extra edges—e : co .
ge deleted. But even in this case, there is always a minimum-cost isolut;on thag
is a tree. Starting from any optimal solution, we could keep deleting edges o
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cycles until we had a tree; with nonnegative edges, the cost would not increase
during this process.

We will call a subset T C E a spanning tree of G if (V, T) is a tree. Statement
(4.16) says that the goal of our network design problem can be rephrased as
that of finding the cheapest spanning tree of the graph; for this reason, it
is generally called the Minimum Spanning Tree Problem. Unless G is a very
simple graph, it will have exponentially many different spanning trees, whose
structures may look very different from one another. So it is not at all clear
how to efficiently find the cheapest tree from among all these options.

¥ Designing Algorithms

As with the previous problems we’ve seen, it is easy to come up with a number
of natural greedy algorithms for the problem. But curiously, and fortunately,
this is a case where many of the first greedy algorithms one tries turn out to be
correct: they each solve the problem optimally. We will review a few of these
algorithms now and then discover, via a nice pair of exchange arguments, some
of the underlying reasons for this plethora of simple, optimal algorithms.

Here are three greedy algorithms, each of which correctly finds a minimum
spanning tree.

© One simple algorithm starts without any edges at all and builds a span-
ning tree by successively inserting edges from E in order of increasing
cost. As we move through the edges in this order, we insert each edge
e as long as it does not create a cycle when added to the edges we’ve
already inserted. If, on the other hand, inserting e would result in a cycle,

then we simply discard e and continue. This approach is called Kruskal’s
Algorithm.

@ Another simple greedy algorithm can be designed by analogy with Dijk-
stra’s Algorithm for paths, although, in fact, it is even simpler to specify
than Dijkstra’s Algorithm. We start with a root node s and try to greedily
grow a tree from s outward. At each step, we simply add the node that
can be attached as cheaply as possibly to the partial tree we already have.

More concretely, we maintain a set S C V on which a spanning tree
has been constructed so far. Initially, S = {s}. In each iteration, we grow
S by one node, adding the node v that minimizes the “attachment cost”
MiNe_; yyyes G- and including the edge e = (u, v) that achieves this
minimum in the spanning tree. This approach is called Prim’s Algorithm.
Finally, we can design a greedy algorithm by running sort of a “back-
ward” version of Kruskal’s Algorithm. Specifically, we start with the full
graph (V, E) and begin deleting edges in order of decreasing cost. As we
get to each edge e (starting from the most expensive), we delete it as
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O—" % o ©

0 o O
b o0

@ ) ™)

ini i ithms of (a) Prim and
i . le run of the Minimum Spanning Tree Algorit : im
?g)ggrrﬁsllisl i?fl}ge same input. The first 4 edges added .to the spanning tree are indicated '
by solid lines; the next edge to be added is a dashed line.

long as doing sorwould not actually disconnect the graph we currently
have. For want of a better name, this approach .1s generally called th(c:e1
Reverse-Delete Algorithm (as far as we can tell, it’s never been name

after a specific person).

For example, Figure 4.9 shows the first four e'dg'es added by Pg\ldms anI;i1
Kruskal’s Algorithms respectively, on a geometric 1nsta'nce of thc.e alﬂmtmlsh "
Spanning Tree Problem in which the cost of each edge is proportional to
geometric distance in the plane. .
The fact that each of these algorithms is guaIante'ed. to produce flIl opti-
mal solution suggests a certain “robustness”™ t0 the Minimum Spanning Treef
Problem—there are many ways to get to the answer. Next we explore'sc')me 0
the underlying reasons why so many different algorithms produce minimum

cost spanning trees.

/¥ Analyzing the Algorithms |
T/All these algorithms work by repeatedly inserting or deleting fadges Cfirom a
partial solution. So, to analyze them, it would be use'ful to hgvle in han so%ne
basic facts saying when it is “safe” to include an ed'ge in the minimum spanmrég
tree, and, correspondingly, when it is safe to ehrmnat'e an edge on the groun sf
that it couldn’t possibly be in the minimum spamg tree. For purposes o
the analysis, we will make the simplifying assmnptlon' that all e@ge co:;;s al-i
distinct from one another (i.e., no two are equal). This assumption makxes 1
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easier to express the arguments that follow, and we will show later in this
section how this assumption can be easily eliminated.

When Is It Safe to Include an Edge in the Minimum Spanning Tree? The
crucial fact about edge insertion is the following statement, which we will
refer to as the Cut Property.

(4.17)  Assumethat all edge costs are distinct. Let S be any subset of nodes that
is neither empty nor equal to all of V, and let edge e = (v, w) be the minimum-
cost edge with one end in S and the other in V —S. Then every minimum
spanning tree contains the edge e.

Proof. Let T be a spanning tree that does not contain e; we need to show that T
does not have the minimum possible cost. We’ll do this using an exchange
argument: we’ll identify an edge e’ in T that is more expensive than e, and
with the property exchanging e for e’ results in another spanning tree. This
resulting spanning tree will then be cheaper than T, as desired.

The crux is therefore to find an edge that can be successfully exchanged
with e. Recall that the ends of e are v and w. T is a spanning tree, so there
must be a path P in T from v to w. Starting at v, suppose we follow the nodes
of P in sequence; there is a first node w’ on P thatis in V — S. Let v’ € S be the
node just before w’ on P, and let ¢’ = (/, w') be the edge joining them. Thus,
€' is an edge of T with one end in S and the other in V — S. See Figure 4.10 for
the situation at this stage in the proof.

If we exchange e for e/, we get a set of edges T"=T — {'} U {e}. We
claim that T” is a spanning tree. Clearly (V, T”) is connected, since Vv, T)
is connected, and any path in (V, T) that used the edge ¢’ = (v, w') can now
be “rerouted” in (V, T") to follow the portion of P from v’ to v, then the edge
e, and then the portion of P from w to w'. To see that (V, T') is also acyclic,
note that the only cycle in (V, T U {¢'}) is the one composed of e and the path
P, and this cycle is not present in (V, T) due to the deletion of ¢'.

We noted above that the edge e’ has one end in S and the other in V — S.
But e is the cheapest edge with this property, and so Co < Cr. (The inequality
is strict since no two edges have the same cost.) Thus the total cost of T is
less than that of T, as desired. =

The proof of (4.17) is a bit more subtle than it may first appear. To
appreciate this subtlety, consider the following shorter but incorrect argument
for (4.17). Let T be a spanning tree that does not contain e. Since T is a
spanning tree, it must contain an edge f with one end in S and the other in
V —S. Since e is the cheapest edge with.this property, we have Ce < 5, and
hence T — {f} U {e} is a spanning tree that is cheaper than T.
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Figure 4.10 Swapping the edge e for the edge ¢’ in the spanning tree T, as described in

the proof of (4.17).

The problem with this argument is not in‘the claim that [ exists, c;fo'ihsé
T — {f} U {e} is cheaper than T. The difficulty is that T — {f} L;‘{e} mzym e
a spanning tree, as shown by the example of me edge f in '1g;I§1 {CI.O Ihe
point is that we can’t prove (4.17) by simply plt?klng an)‘z edgein a
from S to V — S; some care must be taken to find the right one.

The Optimality of Kruskal’s and Prim’s Algorithms 'We can n.ow easi}lly
prove the optimality of both Kruskal’s Algorithm and Pru'n.s ['\lgqr.lthm. Tthe
point is that both algorithms only include an edge when it 1s justified by the

Cut Property (4.17).
(4 18) MKmskal”"s‘Algorithm produces a minimum spanning treeofG &

(v, w) added by Kruskal’s Algorith.m, and let
S be the set of all nodes to which v has a path at the moment just befolre
¢ is added. Clearly v € S, but w ¢ S, since adding e does not c'reate a cycet.l
Moreover, no edge from S to V — S has been encountered yet, since aurll?jr ;l;(‘:] "
edge could have been added without creatir}g a cycle, and hence th ave
been added by Kruskal’s Algorithm. Thus e is th‘e cheapest edge wi c')n'e m
in S and the other in V — S, and so by (4.17) it belongs to every minimu

spanning tree.

Proof. Consider any edge e =

4.5 The Minimum Spanning Tree Problem

So if we can show that the output (V, T) of Kruskal’s Algorithm is in fact
a spanning tree of G, then we will be done. Clearly (V, T) contains no cycles,
since the algorithm is explicitly designed to avoid creating cycles. Further, if
(V, T) were not connected, then there would exist a nonempty subset of nodes
S (not equal to all of V) such that there is no edge from S to V — S. But this
contradicts the behavior of the algorithm: we know that since G is connected,
there is at least one edge between S and V — S, and the algorithm will add the
first of these that it encounters. =

(4.19) Prim’s Algorithm produces a minimum spanning tree of G.

Proof. For Prim’s Algorithm, it is also very easy to show that it only adds
edges belonging to every minimum spanning tree. Indeed, in each iteration of
the algorithm, there is a set S € V on which a partial spanning tree has been
constructed, and a node v and edge e are added that minimize the quantity
MiN,_(, y)ues Ce- BY definition, e is the cheapest edge with one end in S and the
other end in V — S, and so by the Cut Property (4.17) it is in every minimum
spanning tree.

It is also straightforward to show that Prim’s Algorithm produces a span-
ning tree of G, and hence it produces a minimum spanning tree. =

When Can We Guarantee an Edge Is Not in the Minimum Spanning
Tree? The crucial fact about edge deletion is the following statement, which
we will refer to as the Cycle Property.

(4.20) Assume that all edge costs are distinct. Let C be any cycle in G, and
let edge e = (v, w) be the most expensive edge belonging to C. Then e does not
belong to any minimum spanning tree of G.

Proof. Let T be a spanning tree that contains e; we need to show that T does
not have the minimum possible cost. By analogy with the proof of the Cut
Property (4.17), we’ll do this with an exchange argument, swapping e for a
cheaper edge in such a way that we still have a spanning tree.

So again the question is: How do we find a cheaper edge that can be
exchanged in this way with e? Let’s begin by deleting e from T; this partitions
the nodes into two components: S, containing node v; and V — S, containing
node w. Now, the edge we use in place of e should have one end in S and the
other in V — S, so as to stitch the tree back together.

We can find such an edge by following the cycle C. The edges of C other
than e form, by definition, a path P with one end at v and the other at w. If
we follow P from v to w, we begin in S and end up in V — S, so there is some
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(e'fcan be swapped for_eJ

Figure 4.11 Swapping the edge ¢ for the edge e In the spanning tree T, as descnb.ed in

the proof of (4.20).

i illustration of.
edge €' on P that crosses from S to V — S. See Figure 4.11 for an

this. . '

Now consider the set of edges T'=T — {eyu {ei}. Arguing just gs hln th(e;
proof of the Cut Property (4.17), the graph (V, f{"’) is ijnﬂected and has il\l,e
cycles, so T' is a spanning tree of G. Moreover, SINCE € 15 tlh'e most expte;lI:;1 )
edge on the cycle C, and ¢ belongs to C, it must be that e’ is cheaper ,

and hence T’ is cheaper than T, as desired. =

The Optimality of the Reverse-Delete Algorithm Now that we .Iilalve tk;z gzccie;
Property (4.20), it is easy to prove that the Reverse-Delete Algon‘ Izh p uees
a minimum spanning tree. The basic idea is analogous to the optém Z ;gn 0
for the previous two algorithms: Reverse-Delete only adds an edge W

justified by (4.20). o
4 721) The Reﬁefse—Déléte Algorithm produces a minimum spanning tree
of G.

(v, w) removed by Reverse-Delete. At the time
that e is removed, it lies on a cycle C; and since it is the f:ust edge enct(;lunt;rsi
by the algorithm in decreasing order of edge costs, 1t must be m;lim ot
expensive edge on C. Thus by (4.20), e does not belong to any
ing tree. .

Span;; ifg we show that the output (V, T) of Reverse—?elete isa spmg tree
of G, we will be done. Clearly (V, T)is connected, since the algonﬂ};m nevirf
removes an edge when this will disconnect the graph. Now, suppose by way

Proof. Consider any edge e=

R B S A SR T
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contradiction that (V, T) contains a cycle C. Consider the most expensive edge
e on C, which would be the first one encountered by the algorithm. This edge
should have been removed, since its removal would not have disconnected
the graph, and this contradicts the behavior of Reverse-Delete. =

While we will not explore this further here, the combination of the Cut
Property (4.17) and the Cycle Property (4.20) implies that something even
more general is going on. Any algorithm that builds a spanning tree by
repeatedly including edges when justified by the Cut Property and deleting
edges when justified by the Cycle Property—in any order at all—will end up
with a minimum spanning tree. This principle allows one to design natural
greedy algorithms for this problem beyond the three we have considered here,

and it provides an explanation for why so many greedy algorithms produce
optimal solutions for this problem.

Eliminating the Assumption that All Edge Costs Are Distinct Thus far, we
have assumed that all edge costs are distinct, and this assumption has made the
analysis cleaner in a number of places. Now, suppose we are given an instance
of the Minimum Spanning Tree Problem in which certain edges have the same
cost - how can we conclude that the algorithms we have been discussing still
provide optimal solutions?

There turns out to be an easy way to do this: we simply take the instance
and perturb all edge costs by different, extremely small numbers, so that they
all become distinct. Now, any two costs that differed originally will still have
the same relative order, since the perturbations are so small; and since all
of our algorithms are based on just comparing edge costs, the perturbations
effectively serve simply as “tie-breakers” to resolve comparisons among costs
that used to be equal.

Moreover, we claim that any minimum spanning tree T for the new,
perturbed instance must have also been a minimum spanning tree for the
original instance. To see this, we note that if T cost more than some tree T* in
the original instance, then for small enough perturbations, the change in the
cost of T cannot be enough to make it better than T* under the new costs. Thus,
if we run any of our minimum spanning tree algorithms, using the perturbed
costs for comparing edges, we will produce a minimum spanning tree T that
is also optimal for the original instance.

Implementing Prim’s Algorithm

We next discuss how to implement the algorithms we have been considering
S0 as to obtain good running-time bounds. We will see that both Prim’s and
Kruskal’s Algorithms can be implemented, with the right choice of data struc-
tures, to runin O(m log n) time. We will see how to do this for Prim’s Algorithm
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here, and defer discussing the implementation of K@skal’s Algorithm to 1ﬂie
next’ section. Obtaining a running time close to this for tl}é Rgvgse—De‘e e
Algorithm is difficult, so we do not focus on Reverse-Delete in this discussion.

For Prim’s Algorithm, while the proof of correctness was quite‘ t(illfrfler;?;
from the proof for Dijkstra’s Algorithm for the ShprtesF-Path Algorio ,Wl ¢
implementations of Prim and Dijkstra are alrgost 1de:nncal. By anac‘[c‘[gzEXt o
Dijkstra’s Algorithm, we need to be able to decide which node v 'to a ‘
the growing set S, by maintaining the attachment costs‘a(v) = m‘me=(u,v)éu§:i ﬂi
for each node v € V — S. As before, we keep the nodes in a Pnonty queu e
these attachment costs a(v) as the keys; we select ta node with an Extracﬁo ;S
operation, and update the attachment costs using Chaz?geKey opera fom;
There are 1 — 1 iterations in which we perform ExtractMin, and we per
ChangeKey at most once for each edge. Thus we have

(4.22) Using a priority queue, Prim’s Algorithm cqn be implc;tmer.lted fc;rrl Ic;
graph with n nodes and m edges to ru'n in O@m) time, plus the tlme’
ExtractMin, and m ChangeKey operations. | ]

As with Dijkstra’s Algorithm, if we use a hea‘p-based prigrity qugue wi
can implement both ExtractMin and ChangeKey in O(log n) time, and so ge
an overall running time of O(m log 1).

Extensions ‘ »
The minimum spanning tree problem emerged as a particular formu a‘?mi
of a broader network design goal—finding a good way to' connect aﬁse‘zgs
sites by installing edges between them. A rmmmum spanmns1 trge OSOSI:an
a particular goal, achieving connectedness with n}lmmum total edge .
there are a range of further goals one might consider as well. N
We may, for example, be concerned about point-to-point c'listances 11I1n 2112
spanning tree we build, and be willing to red1‘_1ce tpe'se even if we pay nore
for the set of edges. This raises new issues, since It 1s pgt l}ard tf’ cons e
examples where the minimum spanning tree does not minimize point-to-p
distances, suggesting some tension between these goals. ‘
Alternately, we may care more about the congestion on the edgzs. Gl\lr(ez
traffic that needs to be routed between Qairs of nodes, one (.:oul se; :
spanning tree in which no single edge carne's mor‘e than a (':e?tam amou -
this traffic. Here too, it is easy to find cases in vsrhmh the minimum spanning
tree ends up concentrating a lot of traffic on a single edge. ‘
More generally, it is reasonable to ask whether a spanning tree hls e:sne?;
right kind of solution to our network design prqblem. A tree has the p I?Ot v
that destroying any one edge disconnects it, which means that trees are

4.6 Implementing Kruskal’s Algorithm: The Union-Find Data Structure

all robust against failures. One could instead make resilience an expiicit goal,
for example seeking the cheapest connected network on the set of sites that
remains connected after the deletion of any one edge.

All of these extensions lead to problems that are computationally much
harder than the basic Minimum Spanning Tree problem, though dne to their
importance in practice there has been research on good heuristics for them.

4.6 Implementing Kruskal’s Algorithm:
The Union-Find Data Structure

One of the most basic graph problems is to find the set of connected compo-
nents. In Chapter 3 we discussed linear-time algorithms using BFS or DFS for
finding the connected components of a graph.

In this section, we consider the scenario in which a graph evolves through
the addition of edges. That is, the graph has a fixed population of nodes, but it
grows over time by having edges appear between certain pairs of nodes. Qur
goal is to maintain the set of connected components of such a graph throughout
this evolution process. When an edge is added to the graph, we don’t want
to have to recompute the connected components from scratch. Rather, we
will develop a data structure that we call the Union-Find structure, which

will store a representation of the components in a way that supports rapid
searching and updating.

This is exactly the data structure needed to implement Kruskal’s Algorithm
efficiently. As each edge e = (v, w) is considered, we need to efficlently find
the identities of the connected components containing v and w. If these
components are different, then there is no path from v and w, and hence
edge e should be included; but if the components are the same, then there is
a v-w path on the edges already included, and so e should be omitted. In the
event that e is included, the data structure should also support the efficient
merging of the components of v and w into a single new component.

A The Problem

The Union-Find data structure allows us to maintain disjoint sets (such as the
components of a graph) in the following sense. Given a node 1, the operation
Find(u) will return the name of the set containing u. This operation can be
used to test if two nodes u and v are in the same set, by simply checking
if Find(u) = Find(v). The data structure will also implement an operation
Union(A, B) to take two sets A and B and merge them to a single set.

These operations can be used to maintain connected components of an
evolving graph G = (V, E) as edges are added. The sets will be the connected
components of the graph. For a node u, the operation Find(u) will return the
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name of the component containing u. If we add an edge (u, v) to the graph,
then we first test if z and v are already in the same comilected. compon.en; [b3)7
testing if Find(w) = Find(v)). If they are not, then Unlgn(Flnd(u),Fln (vi
can be used to merge the two components into one. It is .1mportant to note
that the Union-Find data structure can only be used to maintain compc;neclllts
of a graph as we add edges; it is not designed to ha}ndlf thfe ”e.ffects of edge
deletion, which may result in a single component being “split” into two.

To summarize, the Union-Find data structure will support three oper-
ations.

o MakeUnionFind(S) for a set S will return a Union~F.ind data structure
on set S where all elements are in separate sets. ThlS. corresponds, for
example, to the connected componeits of .a gl:‘aph with no edges. %‘H
goal will be to implement MakeUnionFind in time O(n) where 1. = 1S1.

o For an element u € S, the operation Find(u) will return .the name of. the
set containing u. Our goal will be to implemegt Find(u) in O(ogn) nme.
Some implementations that we discuss will in fact take only O(l)v’ame'
for this operation. : .

o For two sets A and B, the operation Union(A,B) will change the.daga
structure by merging the sets A and B into a single set. Our goal will e-
to implement Union in O(log n) time.

Let’s briefly discuss what we mean by the name of a set—for example,

as returned by the Find operation. There ig a fair amom.lt of ﬂexti)mw 11;
defining the names of the sets; they should simply be cor}s1stent in : ? senio
that Find(v) and Find(w) should return the same ngrne ifv and'w elong o
the same set, and different names otherwise. In 0}1I implementations, we w
name each set using one of the elements it contains.

A Simple Data Structure for Union-Find
Maybe the simplest possible way to implement a Union-Find data structuée
is to maintain an array Component that contains the .name of the set cx;;rrent Z
containing each element. Let S be a set, and assume it has n elements en([) ]e.s
{1,...,n}. We will set up an array Component of size 11, Yvhen? Component[s]1
the name of the set containing s. To implement MakeUnlonF.u%d(S), we set.up
the array and initialize it to Component[s]=s forall s € S. This 1rpplementat10n
makes Find(v) easy: itis a simple lookup and takes only O(.l). time. How;ver,
Union(A, B) for two sets A and B can take as long as Q(n) time, e(lstwe ave
to update the values of Component [s] for all elements in sets A an -
To improve this bound, we will do a few simple optimizations. I:‘lrlslt, it t1s
useful to explicitly maintain the list of elements in each set, sowe C!on tF a\&e1 ;)
look through the whole array to find the elements that need updating. Further,

%
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we save some time by choosing the name for the union to be the name of oné of
the sets, say, set A: this way we only have to update the values Component[s]
for s € B, but not for any s € A. Of course, if set B is large, this idea by itself
doesn’t help very much. Thus we add one further optimization. When set B
is big, we may want to keep its name and change Component|s] for all se A
instead. More generally, we can maintain an additional array size of length
n, where size[A] is the size of set A, and when a Union(A, B) operation is
performed, we use the name of the larger set for the union. This way, fewer
elements need to have their Component values updated.

Even with these optimizations, the worst case for a Union operation is
still O(n) time; this happens if we take the union of two large sets A and B,
each containing a constant fraction of all the elements. However, such bad
cases for Union cannot happen very often, as the resulting set AU B is even
bigger. How can we make this statement more precise? Instead of bounding
the worst-case running time of a single Union operation, we can bound the
total (or average) running time of a sequence of k Union operations.

(4.23) Consider the array implementation of the Union-Find data structure
“for some set S of size n, where unions keep the name of the larger set. The
Find operation takes O(1) time, MakeUnionFind(S) takes O(n) time, and any
sequence of k Union operations takes at most O(k log k) time.

Proof. The claims about the MakeUnionFind and Find operations are easy
to verify. Now consider a sequence of k Union operations. The only part
of a Union operation that takes more than O(1) time is updating the array
Component. Instead of bounding the time spent on one Union operation,
we will bound the total time spent updating Component[v] for an element
v throughout the sequence of k operations.

Recall that we start the data structure from a state when all n elements are
in their own separate sets. A single Union operation can consider at most two
of these original one-element sets, so after any sequence of k Union operations,
all but at most 2k elements of S have been completely untouched. Now
consider a particular element v. As v’s set is involved in a sequence of Union
operations, its size grows. It may be that in some of these Unions, the value
of Component[v] is updated, and in others it is not. But our convention is that
the union uses the name of the larger set, so in every update to Component [v]
the size of the set containing v at least doubles. The size of v’s set starts out at
1, and the maximum possible size it can reach is 2k (since we argued above
that all but at most 2k elements are untouched by Union operations). Thus
Component[v] gets updated at most log,(2k) times throughout the process.
Moreover, at most 2k elements are involved in any Union operations at all, so
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we get a bound of O(k log k) for the time spent updating Component values
in a sequence of k Union operations. =

While this bound on the average running time for a sequence of k opera-
tions is good enough in many applications, including implementing Kruskal’s
Algorithm, we will try to do better and reduce the worst-case time required.
We’ll do this at the expense of raising the time required for the Find operation-

to O(log n).

A Better Data Structure for Union-Find

The data structure for this alternate implementation uses pointers. Each node
ve S will be contained in a record with an associated pointer to the name
of the set that contains v. As before, we will use the elements of the set S
as possible set names, naming each set after one of its elements. For the
MakeUnionFind(S) operation, we initialize a record for each element veS
with a pointer that points to itself (or is defined as a null pointer), to indicate
that v is in its own set.

Consider a Union operation for two sets A and B, and assume that the
name we used for set A is a node v € A, while set B is named after node u € B.
The idea is to have either u or v be the name of the combined set; assume we
select v as the name. To indicate that we took the union of the two sets, and
that the name of the union set is v, we simply update u’s pointer to point to v.
We do not update the pointers at the other nodes of set B.

As a result, for elements w € B other than u, the name of the set they
belong to must be computed by following a sequence of pointers, first leading
them to the “old name” u and then via the pointer from z to the “new name” v.
See Figure 4.12 for what such a representation looks like. For example, the two
sets in Figure 4.12 could be the outcome of the following sequence of Union
operations: Union(w, 1), Union(s, 1), Union(t,v), Union(z, v), Union(i, X),
Union(y, j), Union(x, j), and Union(u, V). '

This pointer-based data structure implements Union in O(1) time: all we
have to do is to update one pointer. But a Find operation is no longer constant
time, as we have to follow a sequence of pointers through a history of old
names the set had, in order to get to the current name. How long can a Find(u)
operation take? The number of steps needed is exactly the number of times
the set containing node u had to change its name, that is, the number of times
the Component[u] array position would have been updated in our previous
érray representation. This can be as large as O(n) if we are not careful with
choosing set names. To reduce the time required for a Find operation, we will
use the same optimization we used before: keep the name of the larger set
as the name of the union. The sequence of Unions that produced the data

H
H
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(The set {s, u, w} was merged into {t, v, z}.)

n | prommmmmmees) > v j

[N AN AN

Figure 4.12 A Union-Find data structure using pointers. The d

two sets at the moment, named after nodes v an%l? The dashed a?;c?vi?rlécrguzrlic? isiso géy
result of the last Union operation. To answer a Find query, we follow the arrows unn'(i
we get _to anode that has no outgoing arrow. For example, answering the query Find(/
would involve following the arrows i to x, and then x to j.’ auery Fnd®

structure in Figure 4.12 followed this convention. To implement this choice

efficiently, we will maintain an additional field wi :
’ with the nodes:
corresponding set. nodes: the size of the

(4.24) - Consider the above pointer-based implementaiion of tﬁé Uni on—-/i;“ixyl&
data structure for some set S of size n, where unions keep the name of the larger
set. A Union operation takes O(1) time, MakeUnionFind(S) takes O(n) time
and a Find operation takes O(log n) time. : ’

I’roof'. The statements about Union and MakeUnionFind are easy to verify.
The t.1rr‘1e to evaluate Find(v) for a node v is the number of times the se£
containing node v changes its name during the process. By the convention
that the union keeps the name of the larger set, it follows that every time the
Dame of the set containing node v changes, the size of this set at least doubles

Since the set containing v starts at size 1 and is never larger than n, its size caI;
double at most log, n times, and so there can be at most log, n naz’ne changes.

Further Improvements

Next we will briefly discuss a natural optimization in the pointer-based Union~
Figd data structure that has the effect of speeding up the Find operations
Stgcﬂy speaking, this improvement will not be necessary for our purposes m
tl‘ns book: for all the applications of Union-Find data structures that we con-
§1der, the O(log n) time per operation is good enough in the sense that further
improvement in the time for operations would not translate to improvements
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in the overall running time of the algorithms where we use them.. (The Uniqnv
Find operations will not be the only computational bottleneck in the running

time of these algorithms.) . .
To motivate the improved version of the data structure, l‘et us first dlscﬁi ea

bad case for the running time of the pointer-based Unlon‘-Flnd data strutc1 n
First we build up a structure where one of the Find operanqns takes about log
time. To do this, we can repeatedly take Unions of equal-smgd sets. Assume v
is a node for which the Find(v) operation takes about log Zu UI}I;E. Nov:oxilrsuc;x

i i i log n for each such call. Having

issue Find(v) repeatedly, and it takes suct o

i time for finding the name of the

the same sequence of log n pointers every ' .

containing v is quite redundant: after the first request for Find(v), we alallre;ldz
“know” the name x of the set containing v, and we also know that1 oé :u
nodes that we touched during our path from v to the cqrent nan;}eﬂell z(c)) na; e

i i i i d implementation, we
contained in the set x. So in the improve . : '
the path we followed after every Find operation by resetn?g all gomt‘erioz;lto;g[
i f the set. No information is

the path to point to the current name o : .

doin% this, and it makes subsequent Find operations run more ‘qmckly. See,
Figure 4.13 for a Union~Find data structure and the result of Find(v) using

ath compression. o
’ Now 1Zonsider the running time of the operations i.n the resulnngulrr.lpile—:
mentation. As before, a Union operation takes O(1) time zfmd Make;{ Cl,lv:;odid
Find(S) takes O(n) time to set up a data structure for a set.o d51ze rrzé.mons ae
the time required for a Find(v) operation change? S?me Fin op;e1 aions can
still take up to log nn time; and for some Find operations we actually

[Everything on the path from v to x}

now points directly to x.

()

(b)

Figure 4.13 (a) An instance of a Union-Find data structpre; and (b) the result of the
operation Find(v) on this structure, using path compression.

4.7 Clustering

the time, since after finding the name x of the set containing v, we have to go
back through the same path of pointers from v to x, and reset each of these
pointers to point to x directly. But this additional work can at most double
the time required, and so does not change the fact that a Find takes at most
O(log n) time. The real gain from compression is in making subsequent calls to
Find cheaper, and this can be made precise by the same type of argument we
used in (4.23): bounding the total time for a sequence of n Find operations,
rather than the worst-case time for any one of them. Although we do not go
into the details here, a sequence of n Find operations employing compression
requires an amount of time that is extremely close to linear in n; the actual
upper bound is O(n«(n)), where «(n) is an extremely slow-growing function
of n called the inverse Ackermann function. (In particular, a(n) <4 for any
value of n that could be encountered in practice.)

Implementing Kruskal’s Algorithm

Now we’ll use the Union~Find data structure to implement Kruskal’s Algo-
rithm. First we need to sort the edges by cost. This takes time O(m log m).
Since we have at most one edge between any pair of nodes, we have m <n?
and hence this running time is also O(m log n).

After the sorting operation, we use the Union-Find data structure to
maintain the connected components of (V, T) as edges are added. As each
edge e = (v, w) is considered, we compute Find(u) and Find(v) and test
if they are equal to see if v and w belong to different components. We
use Union(Find(uz),Find(v)) to merge the two components, if the algorithm
decides to include edge e in the tree T.

We are doing a total of at most 2m Find and 71 — 1 Union operations
over the course of Kruskal’s Algorithm. We can use either (4.23) for the
array-based implementation of Union-Find, or (4.24) for the pointer-based
implementation, to conclude that this is a total of O(m log n) time. (While
more efficient implementations of the Union-Find data structure are possible,
this would not help the running time of Kruskal’s Algorithm, which has an
unavoidable O(m log n) term due to the injtial sorting of the edges by cost.)

To sum up, we have

(4.25) FKruskal’s Algorithm can be implemented on a graph with n nodes and
‘m edges to run in O@m log n) time.

4.7 Clustering

We motivated the construction of minimum spanning trees through the prob-
lem of finding a low-cost network connecting a set of sites. But minimum

N
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sparmning trees arise in a range of different settings, several of W.hiCh appear
on the surface to be quite different from one another. An appeahqg example
is the role that minimum spanning trees play in the area of clustering.

,ﬁ The Problem

Clustering arises whenever one has a collection of obj.ects-‘—say, a set ‘of
photographs, documents, or microorganisms—that one: is trymg tf’ classify
or organize into coherent groups. Faced with such a 51tuat10f1, it is ‘natur‘al
to look first for measures of how similar or dissimilar each pair of.ob]ects .1s.
One common approach is to define a distance function on the objects, with
the interpretation that objects at a larger distance from one another are less
similar to each other. For points in the physical world, distance may actually
be related to their physical distance; but in many applicatioms, distanc? takes
on a much more abstract meaning. For example, we could define the dls'tance
between two species to be the number of years since they divgrged 1n.r11e‘
course of evolution; we could define the distance between two 1mages ina
video stream as the number of corresponding pixels at which their intensity
values differ by at least some threshold.

Now, given a distance function on the objects, the clusteriflg problem
seeks to divide them into groups so that, intuitively, objects within t‘he same
group are “close,” and objects in different groups are far apart.” Starting from
this vague set of goals, the field of clustering branches into a vast number' of
technically different approaches, each seeking to formalize this general niotion
of what a good set of groups might look like.

Clusterings of Maximum Spacing Minimum spanning trees play arole in.one
of the most basic formalizations, which we describe here. Suppose we are given
aset U of n objects, labeled py, 3, - - . Py FoOI each pair, p; and p;, we have a
numerical distance d(p;, p;). We require only that d(p;, .pi) = 0; that d(p;, pj) > 0
for distinct p; and py; and that distances are symmetric: d(p;, pj) = d(D;> Pp)-
Suppose we are seeking to divide the objects in U into' k groups,. for a
given parameter k. We say that a k-clustering of U is a partmon' of U into k
nonempty sets Cy, Cs, . . . , C. We define the spacing of a k-clustering to bg the
minimum distance between any pair of points lying in different clusters. Given
that we want points in different clusters to be far apart from o_ne anotl}er, a
natural goal is to seek the k-clustering with the maximum possible spacing.

The question now becomes the following. There are exponentially many
different k-clusterings of a set U; how can we efficiently find the one that has
maximum spacing?

4.7 Clustering

¥ Designing the Algorithm

To find a clustering of maximum spacing, we consider growing a graph on the
vertex set U. The connected components will be the clusters, and we will try
to bring nearby points together into the same cluster as rapidly as possible.
(This way, they don’t end up as points in different clusters that are very close
together.) Thus we start by drawing an edge between the closest pair of points.
We then draw an edge between the next closest pair of points. We continue
adding edges between pairs of points, in order of increasing distance d(p;, -
In this way, we are growing a graph H on U edge by edge, with connected
components corresponding fo clusters. Notice that we are only interested in
the connected components of the graph H, not the full set of edges; so if we
are about to add the edge (p;, pj) and find that p; and pj already belong to the
same cluster, we will refrain from adding the edge—it’s not necessary, because
it won’t change the set of components. In this way, our graph-growing process
will never create a cycle; so H will actually be a union of trees. Each time
we add an edge that spans two distinct components, it is as though we have
merged the two corresponding clusters. In the clustering literature, the iterative
merging of clusters in this way is often termed single-link clustering, a special
case of hierarchical agglomerative clustering. (Agglomerative here means that
we combine clusters; single-link means that we do so as soon as a single link
joins them together.) See Figure 4.14 for an example of an instance with k = 3
clusters where this algorithm partitions the points into an intuitively natural
grouping. -

What is the connection to minimum spanning trees? It's very simple:
although our graph-growing procedure was motivated by this cluster-merging
idea, our procedure is precisely Kruskal’s Minimum Spanning Tree Algorithm.
We are doing exactly what Kruskal’s Algorithm would do if given a graph G
on U in which there was an edge of cost d(p;, pj) between each pair of nodes
(i> py)- The only difference is that we seek a k-clustering, so we stop the
procedure once we obtain k connected components.

In other words, we are running Kruskal’s Algorithm but stopping it just
before it adds its last k — 1 edges. This is equivalent to taking the full minimum
spanning tree T (as Kruskal’s Algorithm would have produced it), deleting the
k — 1 most expensive edges (the ones that we never actually added), and defin-
ing the k-clustering to be the resulting connected components Cy, Gy, .. . , Cg.
Thus, iteratively merging clusters is equivalent to computing a minimum span-
ning tree and deleting the most expensive edges.

/;ﬂ@ Analyzing the Algorithm

Have we achieved our goal of producing clusters that are as spaced apart as
possible? The following claim shows that we have.
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- ”C‘Zluster i

Cluster2 .

" Cluster 3

i i i ith k = 3 clusters. The clusters
i le of single-linkage clustering wit . t .
giuf];é‘el; bélégxdigidges between points in order of increasing distance

A ng

maximum spacing.

. . isely
i C,. The spacing of C is precise
. Let @ denote the clustering C;, C, - - - » G : 1g \
It;m(l):n I;li d* of the (k — 1)* most expensive edge in the minimum spanélélgg
tr:e' thigs is the length of the edge that Kruskal’s Algorithm would have a
’ d it.
next, at the moment we stoppe . N ‘ _
Now consider some other k-clustering €', which pa{tmons [/J.lntct) nc:;t
ty sets C, C, C;- We must show that the spacing of €' is at m
emp .G G
a*. ‘
Since the two clusterings € and €’ are not the same,llt. mu,st;—fIJentCI;att;);:
of our clusters C, is not a subset of any of th;: kt sets‘ Cse}n s(‘la.y ; ce there
i i» Di belong to different clusters in €'—say, p; € g
_are points p;, pj € C; that
e i d p; belong to the same
Now consider the picture in Figure 4.15. Sln.ce p; and p; jong o e sarte
component C,, it must be that Kruskal’s Algonth.m added Eih : 2 « idge '
p;~p; path P before we stopped it. In particular, this means that e
e
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Cluster C,

/ ! Clusterc;
. Cluster ¢} / \

Figure 4.15 An illustration of the proof of (4.26), showing that the spacing of any

other clustering can be no larger than that of the clustering found by the single-linkage
algorithm.

P has length at most d*. Now, we know that p; € C] but P €C;; so let p’ be
the first node on P that does not belong to C,» and let p be the node on P that
comes just before p’. We have just argued that d(p, Py <d*, since the edge
(p,p") was added by Kruskal’s Algorithm. But p and p/ belong to different sets

in the clustering €', and hence the spacing of € is at most d(p, p') < d*. This
completes the proof.

4.8 Huffman Codes and Data Compression

In the Shortest-Path and Minimum Spanning Tree Problems, we’ve seen how
greedy algorithms can be used to commit to certain parts of a solution (edges
in a graph, in these cases), based entirely on relatively short-sighted consid-
erations. We now consider a problem in which this style of “committing” is
carried out in an even looser sense: a greedy rule is used, essentially, to shrink
the size of the problem instance, so that an equivalent smaller problem can
then be solved by recursion. The greedy operation here is proved to be “safe,”
in the sense that solving the smaller instance still leads to an optimal solu-
tion for the original instance, but the global consequences of the initial greedy
decision do not become fully apparent until the full Tecursion is complete.

The problem itself is one of the basic questions in the area of data com-
pression, an area that forms part of the foundations for digital communication.

T
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£ The Problem
Encoding Symbols Using Bits Since computers ultimately operate on se-
quences of bits (i.e., sequences consisting only of the symbols 0 and 1), one
needs encoding schemes that take text written in richer alphabets (such as the
alphabets underpinning human languages) and converts this text into long

strings of bits.

The simplest way to do this would be to use a fixed number of bits for
each symbol in the alphabet, and then just concatenate the bit strings for
each symbol to form the text. To take a basic example, suppose we wanted to
encode the 26 letters of English, plus the space (to separate words) and five
punctuation characters: comma, period, question mark, exclamation point,
and apostrophe. This would give us 32 symbols in total to be encoded.
Now, you can form b different sequences out of b bits, and so if we use 5
bits per symbol, then we can encode 2° = 32 symbols—just enough for our
purposes. So, for example, we could let the bit string 00000 represent a, the
bit string 00001 represent b, and so forth up to 11111, which could represent the
apostrophe. Note that the mapping of bit strings t0 symbols is arbitrary; the’
point is simply that five bits per symbol is sufficient. In fact, encoding schemes
like ASCII work precisely this way, except that they use a larger number of
bits per symbol so as to handle larger character sets, including capital letters,
parentheses, and all those other special symbols you see on a typewriter or
computer keyboard. ;

Let’s think about our bare-bones example with just 32 symbols. Is there
anything more we could ask for from an encoding scheme? We couldn’t ask
to encode each symbol using just four bits, since 2% is only 16—not enough
for the number of symbols we have. Nevertheless, it’s not clear that over large
stretches of text, we really need to be spending an average of five bits per
symbol. If we think about it, the letters in most human alphabets do not
get used equally frequently. In English, for example, the letters e, t, a, 0, i
and n get used much more frequently than g, j, X, and z (by more than an
order of magnitude). So it’s really a tremendous waste 10 translate them all
into the same number of bits; instead we could use a small number of bits for
the frequent letters, and a larger number of bits for the less frequent ones, and
hope to end up using fewer than five bits per letter when we average over a
long string of typical text.

This issue of reducing the average number of bits per letter is a funda-
mental problem in the area of data compression. When large files need to be
shipped across communication networks, or stored on hard disks, it’s impor-
tant to represent them as compactly as possible, subject t0 the requirement
that a subsequent reader of the file should be able to correctly reconstruct it.
A huge amount of research is devoted to the design of compression algorithims

4.8 Huffman Codes and Data Compression

bu‘k';?ye now describe ope of the fundamental ways of formulating this issue,
adl ing up to the questl‘on of how we might construct the optimal way to take
Op;ar;l;g; ﬁfﬁt?e I‘IOHHDIfOI‘m frquencies of the letters. In one sense, such an
optime Sqneezersl Sl ih very e'lppeahng answer to the problem of compressing
Qarai o e ava;qable gains out of nonuniformities in the frequen-

. e end of the section, we will discuss how one can make further

g t Ilta e Cf featul €5 0 [h' €l th'all IlOIlLlIllfOIIIl
F][ OBIEss 1n :CIH‘PI ESSICIl’ al'JIlg ad a g

Z}lggziz?in?th Egcodlgllg Schemes Before the Internet, before the digital
, before the radio and telephone, there was th

— : e telegraph. Commu-

Elcr.jlctllréglpy t‘elegraph was a lot faster than the contemporary alternatives of
-delivering messages by railroad or on horseback

ge . But telegraphs were

only capable of transmitting pulses down a wire, and so if yon waitef‘l to send

a message, you needed a way to encod
of pulses. y e the text of your message as a sequence

o To (.;Ijeal with this issue, the pioneer of telegraphic communication, Samuel
1se, developed Morse code, translating each letter into a sequence of dot:
(short pulses) and dashes (long pulses). For our purposes, we can thinkoi
f:lots a¥1d dashes as zeros and ones, and so this is simply a me’lppin of symb Cl)
into bit s‘trings, just as in ASCIIL. Morse understood the point thagt OHZI?OISIC?
;gﬁ;f;uﬂrize;tsetio;; ;fgicizn;lly by Enz:oding frequent letters with short strings
ach he took. (He consult inti ’
frequency estimates for the letters in Englisii.) "f‘fnics),cal\l/lgrr;:tgclfif ﬁ?;: ;Otge(;

(a single dot), t to 1 (a sin
s gle dash), a to 01 (dot-dash i
more frequent letters to shorter bit strings. s in generel maps

y WI;lr éascgell/loorse code uses such short strings for the letters that the encoding
o ! mes ambiguous. For example, just using what we know about
encoding of e, ¢, and a, we see that the string 0101 could correspond to
iny .of the seqm.ences of letters eta, aa, etet, or aet. (There are other possi-
1](th1es as erll,‘ involving other letters.) To deal with this ambiguity. 1\3[0rse
(CIC; :, ;ralrcllsnnssmns involve short pauses between letters (so the encc;ding of
Soluﬁo?l__ Iil;tllllally be dot~dasjh~papse—dot-dash-pause). This is a reasonable
Soluton—ush ghvery ’short bit strings and then introducing panses—but it
el s da.ven t actually encoded the letters using just 0 and 1; we’ve
Sy encod ed it using a three~1§tter alphabet of 0, 1, and “pause” Thus, if
me e 3{) ed to encode eve.ryth.mg using only the bits 0 and 1, there would
0 be some further encoding in which the pause got mapped to bits.
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Prefix Codes The ambiguity problem in Morse code arises because there exist
pairs of letters where the bit string that encodes one letter is a prefix of the bit
string that encodes another. To eliminate this problem, and hence to obtain an
encoding scheme that has a well-defined interpretation for every sequence of
bits, it is enough to map letters to bit strings in such a way that no encoding
is a prefix of any other.

we say that a prefix code for a set S of letters is a function y
that maps each letter x € S to some sequence of zeros and ones, in such a way
that for distinct x, y € S, the sequence y (x) is not a prefix of the sequence y ().

Now suppose we have a text consisting of a sequence of letters xyx,X3 - - -
Xp. We can convert this to a sequence of bits by simply encoding each letter as
a bit sequence using y and then concatenating all these bit sequences together:
y Dy () - - ¥ (xp)- 1f we then hand this messageto a recipient who knows the
function y, they will be able to reconstruct the text according to the following

rule.

Concretely,

o Scan the bit sequence from left to right.

o As soon as you’ve seen enough bits to match the encoding of some letter,
output this as the first letter of the text. This must be the correct first letter,
since no shorter or longer prefix of the bit sequence could encode any

other letter.

e Now delete the corr
and iterate.

esponding set of bits from the front of the message

duce the correct set of letters without our
like pauses to separate the letters.
e set of five letters

In this way, the recipient can pro

having to resort to artificial devices
For example, suppose we are trying to encode th

S={a,b,c,d,e}. The encoding v specified by

yl(a) = 11
yi(b) =01
'}/I(C) =001
y1(d) =10
yi(e) = 000

isa prefix code, since we can chec
Now, for example, the string ceca
recipient of this message, knowing y,
Neither 0 nor 00 encodes a letter, but 001 does,
the first letter is c. This is a safe decision, since n

beginning with 00

k that no encoding is a prefix of any other.
b would be encoded as 0010000011101. A
would begin reading from left to right.
so the recipient concludes that
o longer sequence of bits

1 could encode a different letter. The recipient now iterates
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on the rest of the message, 00000 !
X 11101; ;
letter is e, encoded as 000, next they will conclude that the second

Opti ] ’ i
m;())r :lff:qﬁzthwde;l We’ve been doing all this because some letters are
an others, and we want to take ad
Foquont osnan ofh : vantage of the fact that more
e shorter encodings. To make this objecti
‘ . this objective i
n ) recise, w
ow introduce some notation to express the frequencies of letters.p )

fracguppc;sle that fgr each letter x € S, thereis a frequency f,, representing the
thereoaI; 0 1etttters in the text that are equal to x. In other words assuming
e 1 letters total, nf, of these letters ar ’
. s e equal i
frequencies sum to 1; that is, Yoxesfr=1 Aue fo.x- e otice that the

N i :
lengthozvf’ cl)fu\;/'z Illlcsed{i prze?}(u code y to encode the given text, what is the total
oding? This is simply the sum, over all 1
number of times x occurs times the | - Over &t letters x €5, of the

: ength of the bit string v (x
x. Using [y (x)| to denote the length y (x), we can write ‘gn ?/s(a; used to encode

encoding length =) " nf,ly (x)| = n D hlv@l.

xes xe$

Igopping the leading coefficient of n from the final expression gives us
. fxly(x)l, the average number of bits required per letter. We d i
A . lenote this
To continue the earlier exam
- ple, suppose we have a text with th
S={a,b,c,d, e}, and their frequencies are as follows: ¢ letter

fa=32, fy=25 f=.20, f;=.18, f,=.05.

g

32-2+4.25-24.20-3+.18-2+.05-3=2.25.

Itis i ) _
) encoding. (Note that a fixed-length ding i .

if all letters have encodin gL encoding Is a prefix code:
gs of the same length, then clea .

be a prefix of any other.) Wi i » then clearly no encoding can

.) With a set S of five letters, w ul :
per letter for a fixed-length encoding, si , we would need three bits
. ; < s two bits could onl
letters. Thus, usin 8 simoe only encode four
5 g the code y; red :
savings of 25 percent. 1 educes the bits per letter from 3 to 2.25, a

And, in fact, y; is not the bes .
. : t we c i .
prefix code y, given by an do in this example. Consider the
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way=11
ya(b) =10
ya(c) =01
ya(d) = 001
y2(e) = 000

The average number of bits per letter using y; 1S

.32-2+‘25-2+20-2-}-.18-3-}—.05-3:2.23.

So now it is natural to state the underlying quest'lon‘ leczr; ileaipgra:;}t(
and a set of frequencies for the letters, we Woulq hkz tc;h I;It e e
code that is as efficient as possible——namely, a prefix code
average number of bits per letter ABL(Y) = 2 xes [xl
prefix code optimal.

y (). We will call such a

ﬁ«? Designing the Algorithm B possible'
‘,The search space for this problem is faiﬂy.comphcatedf,ﬁllti inc ioperty e
ways of mapping letters to bit strings, subject to the c:;fl r;gl t;per e
codes. For alphabets consisting of an extremely 'sm ‘ driu e O maiblc
feasible to search this space by brute force, but this rapidly ‘ e
We now describe a greedy method to construct an opnrélaiegr; x coce
very efficiently. As a first step, it is use@ to develop a tref~ a:l e
representing prefix codes that exposes their stru'cture more i; Y
the lists of function values we used in our previous examples.

Representing Prefix Codes Using Binary Trees Suppose We take: a reog;;dstisg
T in which each node that is not a leaf has at mosi) two fclhlldgesni,s v;fqual oot
i the number of leav
binary tree. Further suppose that : i ]
:i;ree zfa the alrghabet s, and we label each leaf with a distinct letter in S.
Such a labeled binary tree T naturally describes a prefix co;ie,fals tf)c;lll:;v;..

For each letter x € S, we follow the path from thf.e root to @e dea Ilaa . ané

ach time the path goes from a node to its left chﬂ'd, we ert.e oW 1 d
2ach time the path goes from a node to its right child, we write down al
take the resulting string of bits as the encoding of x.

Now we observe

(4 27)Theencodmg vo% S vconstmcted from Tzs chl ?reﬁx code

. . the
Proof. In order for the encoding of x to be a pre'ﬁx of the en&o?rmri c;fl Z’mot
path from the root to X would have to be a prefix of the pa 0
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to y. But this is the same as saying that x would lie on the path from the
root to y, which isn’t possible if x is a leaf. =

This relationship between binary trees and prefix codes works in the other
direction as well. Given a prefix code y, we can build a binary tree recursively
as follows. We start with a root; all letters x € S whose encodings begin with
a 0 will be leaves in the left subtree of the root, and all letters y € S whose
encodings begin with a 1 will be leaves in the right subtree of the root. We
now build these two subtrees recursively using this rule.

For example, the labeled tree in Figure 4.16(a) corresponds to the prefix
code y, specified by

vo@ =1

vo(b) =011
yo(c) =010
Yo(d) = 001
Yo(e) = 000

To see this, note that the leaf labeled a is obtained by simply taking the right-
hand edge out of the root (resulting in an encoding of 1); the leaf labeled e is
obtained by taking three successive left-hand edges starting from the root; and
analogous explanations apply for b, ¢, and d. By similar reasoning, one can
see that the labeled tree in Figure 4.16(b) corresponds to the prefix code y;
defined earlier, and the labeled tree in Figure 4.16(c) corresponds to the prefix
code y; defined earlier. Note also that the binary trees for the two prefix codes
1 and y, are identical in structure; only the labeling of the leaves is different.
The tree for yy, on the other hand, has a different structure.

Thus the search for an optimal prefix code can be viewed as the search for
a binary tree T, together with a labeling of the leaves of T, that minimizes the
average number of bits per letter. Moreover, this average quantity has a natural
interpretation in the terms of the structure of T: the length of the encoding of
a letter x € S is simply the length of the path from the root to the leaf labeled
x. We will refer to the length of this path as the depth of the leaf, and we will
denote the depth of a leaf vin T simply by depth(v). (As two bits of notational
convenience, we will drop the subscript T when it is clear from context, and
we will often use a letter x € S to also denote the leaf that is labeled by it.)
Thus we are seeking the labeled tree that minimizes the weighted average
of the depths of all leaves, where the average is weighted by the frequencies

of the letters that label the leaves: Y xes [x - depthp(x). We will use ABL(T) to
denote this quantity.
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Figure 4.16 Parts (a), (b), and (c) of the figure depict three different prefix codes for

the alphabet S={a, b, c, d, e}.

i ’ imple
i : derine aleorithms for this problem, let’s note a simp
e i need a definition: we say that a

leaf has two children. (In other
hild.) Note that all three binary

As afirst step '
fact about the optimal tree. For this fact, we

binary tree is full if each node that is not a
words, there are no nodes with exactly one ¢

trees in Figure 4.16 are full. |
(4.28) The binary tree corresponding to the optimal prefix code is full.

ange argument. Let T denote the

is i ove using an exch : :
o ennoarin ; fix code, and suppose it contains

binary tree corresponding to the optimal pre

|
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a node u with exactly one child v. Now convert 7T into a tree T" by replacing
node u with v.

To be precise, we need to distinguish two cases. If u was the root of the
tree, we simply delete node u and use v as the root. If u is not the root, let w
be the parent of u in T. Now we delete node 1z and make v be a child of w
in place of u. This change decreases the number of bits needed to encode any
leaf in the subtree rooted at node u, and it does not affect other leaves. So the
prefix code corresponding to T” has a smaller average number of bits per letter
than the prefix code for T, contradicting the optimality of T. m

A First Attempt: The Top-Down Approach Intuitively, our goal is to produce
a labeled binary tree in which the leaves are as close to the root as possible.
This is what will give us a small average leaf depth.

A natural way to do this would be to try building a tree from the top down
by “packing” the leaves as tightly as possible. So suppose we try to split the
alphabet S into two sets S; and S,, such that the total frequency of the letters
in each set is exactly % If such a perfect split is not possible, then we can try
for a split that is as nearly balanced as possible. We then recursively construct
prefix codes for S; and S, independently, and make these the two subtrees of
the root. (In terms of bit strings, this would mean sticking a 0 in front of the
encodings we produce for S;, and sticking a 1 in front of the encodings we
produce for S,.)

It is not entirely clear how we should concretely define this “nearly
balanced” split of the alphabet, but there are ways to make this precise.
The resulting encoding schemes are called Shannon-Fano codes, named after
Claude Shannon and Robert Fano, two of the major early figures in the area
of information theory, which deals with representing and encoding digital
information. These types of prefix codes can be fairly good in practice, but
for our present purposes they represent a kind of dead end: no version of this
top-down splitting strategy is guaranteed to always produce an optimal prefix
code. Consider again our example with the five-letter alphabetS={a, b,c,d, e}
and frequencies

fo=32, fy=25 f.=20, f;=18, f.,=.05

There is a unique way to split the alphabet into two sets of equal frequency:
{a,d} and {b,c,e}. For {a,d}, we can use a single bit to encode each. For
{b,c, e}, we need to continue recursively, and again there is a unique way
to split the set into two subsets of equal frequency. The resulting code corre-
sponds to the code yy, given by the labeled tree in Figure 4.16(b); and we’ve
already seen that y; is not as efficient as the prefix code ¥, corresponding to
the labeled tree in Figure 4.16(c).
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Shannon and Fano knew that their approach did not always.yield tl(;e

optimal prefix code, but they didn’t see how to compute the Ioptlr]rjlacho 'Z
: lved a few years later by Davl
ithout brute-force search. The problem was s0 yDa

r{rilffmaﬂ at the time a graduate student who learned about the question in a
class taught by Fano.

We now describe the ideas leading up to the greedy approach that Huffman
discovered for producing optimal prefix codes.

What If We Knew the Tree Structure of the Optimal a117reﬁx hI(ngiet.? a;f;g
i i i hing for an efficient algorithm 15 10 ime,
nique that is often helpful in searc : Ot S 0 e
i knows something partial abou p
as a thought experiment, that one : e O e
i 1d make use of this parti 0 g
solution, and then to see how one wou . now e
indi i in Chapter 6, we will see in fac
in finding the complete solution. (Later, in : .
g]lis techﬁique is a main underpinning of the dynamic Programiming approach
to designing algorithms.) ' ‘
For the current problem, it is useful to ask: What if so\r)neonet tg;v;e E;?;Z
i timal prefix code, but not the la
binary tree T* that corresponded to an op : -
i uld need to figure out w
of the leaves? To complete the solution, we WO ’ e
letter should label which leaf of T%, and then we’d have our code. How
is this? ' .
In fact, this is quite easy. We begin by formulating the following basic fact.

(4.29) Suppose that u and v are leaves of T*, such ﬂ.lat depth(u) < delpth(el]g).C
Further, suppose that in a labeling of T* correspondmg to an opt;lma p; ;
code, leaf u is labeled with y € S and leaf v is labeled with z € S. Then fy = fz.

Proof. This has a quick proof using an exchange argument. If fyd< fz;lﬂ;lelg
consider the code obtained by exchanging the Iab'els at the no eBsL(T*) 4
v. In the expression for the average numb.er of bits p‘etrh letteéiﬁAher o
3 ces [x depth(x), the effect of this exchange is as fOHfJW'S. em ! freases b}};
ingreeases (from depth(u) to depth(v)), and the multiplier on f, de
the same amount (from depth(v) to depth(uw)).
Thus the change to the overall sum is (deptl'](v) - depth(u)é(fy ; IQZ;MI;
f, < f,, this changeisa negative number, contradicting the supposed 0p
) oyf the prefix code that we had before the exchange. =

We can see the idea behind (4.29) in Figure 4.16(b?: a quick way to see ﬂ?.at
the code here is not optimal is to notice that it can be improved by exchanglillg
the positions of the labels ¢ and d. Having a Iower-freql'lency %etter ata stz; 93)7
smaller depth than some other higher-frequency letter is precisely what (4.
rules out for an optimal solution.

4.8 Huffman Codes and Data Compression

Statement (4.29) gives us the following intuitively natural, and optimal,
way to label the tree T* if someone should give it to us. We first take all leaves
of depth 1 (if there are any) and label them with the highest-frequency letters
in any order. We then take all leaves of depth 2 (if there are any) and label them
with the next-highest-frequency letters in any order. We continue through the
leaves in order of increasing depth, assigning letters in order of decreasing
frequency. The point is that this can’t lead to a suboptimal labeling of T*,
since any supposedly better labeling would be susceptible to the exchange in
(4.29). It is also crucial to note that, among the labels we assign to a block of
leaves all at the same depth, it doesn’t matter which label we assign to which
leaf. Since the depths are all the same, the corresponding multipliers in the
expression ) ,..s fx|y (x)| are the same, and so the choice of assignment among
leaves of the same depth doesn’t affect the average number of bits per letter.

But how is all this helping us? We don’t have the structure of the optimal
tree T*, and since there are exponentially many possible trees (in the size of

the alphabet), we aren’t going to be able to perform a brute-force search over
all of them.

In fact, our reasoning about T* becomes very useful if we think not about
the very beginning of this labeling process, with the leaves of minimum depth,
but about the very end, with the leaves of maximum depth—the ones that
receive the letters with lowest frequency. Specifically, consider a leaf v in T*
whose depth is as large as possible. Leaf v has a parent u, and by (4.28) T* is
a full binary tree, so u has another child w. We refer to v and w as siblings,
since they have a common parent. Now, we have

(4.30) wis aleaf of T*.

Proof. If w were not a leaf, there would be some leaf w/ in the subtree below

it. But then w’ would have a depth greater than that of v, contradicting our
assumption that v is a leaf of maximum depth in T*. =

So v and w are sibling leaves that are as deep as possible in T*. Thus our
level-by-level process of labeling T*, as justified by (4.29), will get to the level
containing v and w last. The leaves at this level will get the lowest-frequency
letters. Since we have already argued that the order in which we assign these
letters to the leaves within this level doesn’t matter, there is an optimal labeling
in which v and w get the two lowest-frequency letters of all.

We sum this up in the following claim.

{4.31) Therey is an optimal prefix code, with corresponding tree T*, in which

the two lowest-frequency letters are assigned to leaves that are siblings in T*.
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New merged letter
with sum of frequencies

1 A
! \
! \
Q O «(ﬂvo lowest-frequency lettersj

i i ion i ich the two lowest-frequency letters
i 4.17 There is an optimal solution in WhIC.h 1 ;
f:;geulr:ibling leaves; deleting them and labeling their parent with a new letter having the
combined frequency yields an instance with a smaller alphabet.

An Algorithm to Construct an Optimal Prefix Code Su'ppgse that y* and‘z*
are the two lowest-frequency letters in S. (We can break ties in the frequencies

arbitrarily.) Statement (4.31) is important bt.ecause it tel.ls‘us sometilllngkat;oﬁ
where y* and z* go in the optimal solution; it says that it is safe to oc(:i eaS
together” in thinking about the solution, because.we know they en ?phke
sibling leaves below a common parent. In effect, this commqn pareI:t acds i
2 “meta-letter” whose frequency is the sum of the frequencies of y* and z*.
This direcﬂy suggests an algorithm: we replace y* and z* Wltl} this frine;&
letter, obtaining an alphabet that is one letter smaller. YVe recursively 1; ;
prefix code for the smaller alphabet, and then “open up the meta-.letter : acd
into y* and z* to obtain a prefix code for S. This recursive strategy 15 erlcte
in Figure 4.17.
A concrete description of the algorithm is as follows.

To construct a prefix code for an alpbabet S, with given frequencies:
Tf S has two letters then -
Encode one letter using 0 and the other letter using 1
Else
Let y* and z* be the two lowest—frequency letters
Form a new alphabet §' by deleting y* and z* and
replacing them with a new letter w of frequency fy+fz
: /
Recursively comstruct a prefix code y' for §, with tree T
Define a prefix code for S as follows:

Start with T’

4.8 Huffman Codes and Data Compression

Take the leaf labeled w and add two children below it
labeled y* and z*
Endif

We refer to this as Huffman’s Algorithm, and the prefix code that it
produces for a given alphabet is accordingly referred to as a Huffman code.
In general, it is clear that this algorithm always terminates, since it simply
invokes a recursive call on an alphabet that is one letter smaller. Moreover,
using (4.31), it will not be difficult to prove that the algorithm in fact produces
an optimal prefix code. Before doing this, however, we pause to note some
further observations about the algorithm.

First let’s consider the behavior of the algorithm on our sample instance
with S={a, b, ¢, d, e} and frequencies

fo=232, fy=25 f.=20, f;=.8, f,=.05.

The algorithm would first merge d and e into a single letter—Iet’s denote it
(de)—of frequency .18 + .05 = .23. We now have an instance of the problem
on the four letters S’ = {a, b, c, (de)}. The two lowest-frequency letters in §’ are
¢ and (de), so in the next step we merge these into the single letter (cde) of
frequency .20 + .23 = 43. This gives us the three-letter alphabet {a, b, (cde)}.
Next we merge a and b, and this gives us a two-letter alphabet, at which point
we invoke the base case of the recursion. If we unfold the resuit back through
the recursive calls, we get the tree pictured in Figure 4.16(c).

It is interesting to note how the greedy rule underlying Huffman’s
Algorithm—the merging of the two lowest-frequency letters—fits into the
structure of the algorithm as a whole. Essentially, at the time we merge these
two letters, we don’t know exactly how they will fit into the overall code.
Rather, we simply commit to having them be children of the same parent, and
this is enough to produce a new, equivalent problem with one less letter.

Moreover, the algorithm forms a natural contrast with the earlier approach
that led to suboptimal Shannon-Fano codes. That approach was based on a
top-down strategy that worried first and foremost about the top-level split in
the binary tree—namely, the two subtrees directly below the root. Huffman’s
Algorithm, on the other hand, follows a bottom-up approach: it focuses on

the leaves representing the two lowest-frequency letters; and then continues
by recursion.

A= Analyzing the Algorithm

The Optimality of the Algorithm We first prove the optimality of Huffman’s
Algorithm. Since the algorithm operates recursively, invoking itself on smaller
and smaller alphabets, it is natural to try establishing optimality by induction
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on the size of the alphabet. Clearly it is optimal for all t‘wo-lette.r filpha})ets
(since it uses only one bit per letter). So suppose by iqducﬁon that 1F 1sf opninal
for all alphabets of size k — 1, and consider an input instance consisting of an
alphabet S of size k. .

Let’s quickly recap the behavior of the algoﬁthm*on @s mst‘anfe.1 The
algorithm merges the two lowest-frequency letters y"‘,z. €S 1pto a*smg e ftter
w, calls itself recursively on the smaller alphabet §' (in which y and z* are

replaced by w), and by induction produces an optimal prefix code for §,
beled binary tree T”. It then extends this into a tree T for S,

represented by a la e ibeled u

by attaching leaves labeled y* and z* as children of the no

There is a close relationship between ABL(T) and ABL(T"). (No"[e that tl‘ie
former quantity is the average number of bits used to encode letters in S ,‘WI; e
the latter quantity is the average number of bits used to encode letters in J

(4.32) ABL(T") = ABL(T) — fu-

Proof. The depth of each lefter x other than y*, z* is the same in both T and
T'. Also, the depths of y* and z* in T are each one greater than the depth of

w in T’. Using this, plus the fact that fo="fy + e, WE have

ABL(T) = Y _ f, - depthr(x)

xeS

— f,- - depthy (") + f,» - depthr () + ) fi- depthy(®)

XFEy*,z*

= (fp + f) - (L+ depthp(@) + ) fr-depthp()

xEY*,2*
—f,- (1+depthp(@) + Y, fc-depthy(x)
xEy*,zt
=f, +f, - depthp(w) + Z f, - depthp ()
XFEY*,z*
= fw -+ Z fx . depthT/(x)
xe§

=f,+ABL(T). =

Using this, we now prove optimality as follows.

(433) Thé Huffman code fdr a giuen alphabet achieves the minimum average

number of bits per letter of any prefix code.

Proof. Suppose by way of contradiction that the tree T produced b3.7 our greedy
algorithm is not optimal. This means that there is some labeled binary tree Z
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such that ABL(Z) < aBL(T); and by (4.31), there is such a tree Z in which the
leaves representing y* and z* are siblings.

It is now easy to get a contradiction, as follows. If we delete the leaves
labeled y* and z* from Z, and label their former parent with w, we get a tree
Z’ that defines a prefix code for S'. In the same way that T is obtained from
T’, the tree Z is obtained from Z’ by adding leaves for y* and z* below w; thus
the identity in (4.32) applies to Z and Z’ as well: ABL(Z") = ABL(Z) — fo-

But we have assumed that ABL(Z) < ABL(T); subtracting f,, from both sides
of this inequality we get ABL(Z") < ABL(T"), which contradicts the optimality
of T" as a prefix code for §’. =

Implementation and Running Time It is clear that Huffman’s Algorithm can
be made to run in polynomial time in &, the number of letters in the alphabet.
The recursive calls of the algorithm define a sequence of k — 1 iterations over
smaller and smaller alphabets, and each iteration except the last consists
simply of identifying the two lowest-frequency letters and merging them into
a single letter that has the combined frequency. Even without being careful
about the implementation, identifying the lowest-frequency letters can be done
in a single scan of the alphabet, in time O(k), and so summing this over the
k — 1 iterations gives O(k?) time.

But in fact Huffman’s Algorithm is an ideal setting in which to use a
priority queue. Recall that a priority quene maintains a set of k elements,
each with a numerical key, and it allows for the insertion of new elements and
the extraction of the element with the minimum key. Thus we can maintain
the alphabet S in a priority queue, using each letter’s frequency as its key.
In each iteration we just extract the minimum twice (this gives us the two
lowest-frequency letters), and then we insert a new letter whose key is the
sum of these two minimum frequencies. Our priority queue now contains a
representation of the alphabet that we need for the next iteration.

Using an implementation of priority queues via heaps, as in Chapter 2, we
can make each insertion and extraction of the minimum run in time O(log k);
hence, each iteration—which performs just three of these operations—takes
time O(log k). Summing over all k iterations, we get a total running time of
O(k log k).

Extensions

The structure of optimal prefix codes, which has been our focus here, stands
as a fundamental result in the area of data compression. But it is important to
understand that this optimality result does not by any means imply that we
have found the best way to compress data under all circumstances.
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What more could we want beyond an optimal prefix code? First, consider
an application in which we are transmitting black-and-white images: each
image is a 1,000-by-1,000 array of pixels, and each pixel takes one of the two
values black or white. Further, suppose that a typical image is almost entirely
white: roughly 1,000 of the million pixels are black, and the restare white. Now,
if we wanted to compress such an image, the whole approach of prefix codes
has very little to say: we have a text of length one million over the two-letter
alphabet {black, white}. As a result, the text is already encoded using one bit
per letter—the lowest possible in our framework.

It is clear, though, that such images should be highly compressible.
Intuitively, one ought to be able to use a «fraction of a bit” for each white pixel,
since they are s0 overwhelmingly frequent, at the cost of using multiple bits
for each black pixel. (In an extreme version, sending a list of (x, y) coordinates
for each black pixel would be an improvement over sending the image as a
text with a million bits.) The challenge here is to define an encoding scheme
where the notion of using fractions of bits is well-defined. There are results
in the area of data compression, however, that do just this; arithmetic coding'
and a range of other techniques have been developed to handle settings like
this. .

A second drawback of prefix codes, as defined here, is that they cannot
adapt to changes in the text. Again let’s consider a simple example. Suppose we
are trying to encode the output of a program that produces a long sequence
of letters from the set {a,b,c,d}. Further suppose that for the first half of
this sequence, the letters a and b occur equally frequently, while c and d do
not occur at all; but in the second half of this sequence, the letters ¢ and d
occur equally frequently, while a and b do not occur at all. In the framework
developed in this section, we are trying to compress a text over the four-letter
alphabet {a, b, c,d}, and all letters are equally frequent. Thus each would be
encoded with two bits. ‘

But what’s really happening in this example is that the frequency remains
stable for half the text, and then it changes radically. So one could get away
with just one bit per letter, plus a bit of extra overhead, as follows.

o Begin with an encoding in which the bit 0 represents a and the bit 1
represents b.

o Halfway into the sequence, insert some kind of instruction that says,
“We’re changing the encoding now. From now on, the bit 0 represents ¢
and the bit 1 represents d.”

o Use this new encoding for the rest of the sequence.

The point is that investing a smnall amount of space to describe a new encoding
can pay off many times over if it reduces the average number of bits per

4.9 Minimum-Cost Arborescences: A Multi-Phase Greedy Algorithm

litter over a lgng run of text that follows. Such approaches, which change
the encoding in midstream, are called adaptive compression schemes, and

for many kinds of data they lead to significant improvements over the static

method we’ve considered here.

T'hese issues suggest some of the directions in which work on data com-
pression has proceeded. In many of these cases, there is a trade-off betwe
the power of the compression technique and its computational cost. In arteé1
ular, many of the improvements to Huffman codes just described éomﬁ Wllth
a corresponding increase in the computational effort needed both to prod
the compressed version of the data and also to decompress it and resIt)ore ngi

original text. Finding the right balance am i i
origial text. ¥ ong these trade-offs is a topic of

* - -
4.9 Minimum-Cost Arborescences: A Multi-Phase

Greedy Algorithm

As we’.ve seen more and more examples of greedy algorithms, we’ve come t
appreciate that there can be considerable diversity in the We;y they ope to
Many greedy algorithms make some sort of an initial “ordering” dzcisli)o;a -
the 1n‘put, and then process everything in a one-pass fashion. Others ma?(n
inore }nf:remental decisions—still local and opportunistic, but w.ithout a 1oba?
‘pla_n.’ in advance. In this section, we consider a problem that stressfs
intuitive view of greedy algorithms still further. o

ﬁ The Problem

glﬁe problem 1§ to compute a minimum-cost arborescence of a directed graph.
his is essentially an analogue of the Minimum Spanning Tree Problem for
dlrecteq, rather than undirected, graphs; we will see that the move to directed
graphs introduces significant new complications. At the same time, the styele

of the algorithm has a stron ince it sti
' gly greedy flavor, since it still constru i
according to a local, myopic rule. fle s sotuton

.We begin with the basic definitions. Let G = (V, E) be a directed graph i
which we’ve distinguished one node r € V as a root. An arborescenfe ?W$
Fespect to r) is essentially a directed spanning tree rooted at r. Specificall : it
1§ a sgbgraph T =(V,F) such that T is a spanning tree‘of G i‘f we | noreyt’h1
direction of edges; and there is a path in T from r to each other nodge veV '(‘ef
we take the direction of edges into account. Figure 4.18 gives an ex El 1f
two different arborescences in the same directed graph. e

There is a useful equivalent way to characterize arborescences, and this

is as follows.
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O

(@) () ©

i 7 di horescences. Parts (b) and (¢)
i 4.18 A directed graph can have many different ar :
filfe_g;;]c“ta two different aborescences, both rooted at node r, for the graph in part (.

(4.34) A subgraph T =(V,F) of G is an arborescernce with respect to root T if
and only if T has no cycles, and for each node v #T, there is exactly one edge
in F that enters v.

Proof. If T is an arborescence with root 7, then indeed every other'node v
has exactly one edge entering it: this is simply the last edge on the unique 7-v
path. ;

Conversely, suppose T has no cycles, and faach node v # r has exac z
one entering edge. In order to establish that T is an arborescence, W;I neeis
only show that there is a directed path from r to each other node v. ! ere ]
how to construct such a path. We start at v and repeatedly follow edges (11n
the backward direction. Since T has no cycles, we can neve.r return o a‘nc;h e
we’ve previously visited, and thus this process must terrmn.ate. Butr 1§ tz
only node without incoming edges, and so the procfess must in f'actﬂiermmase
by reaching r; the sequence of nodes thus visited yields a path (in the rever
direction) fromrtov. =&

It is easy to see that, just as every connected graph has a spanning tree, a
directed graph has an arborescence rooted at r provided that r can reach every
node. Indeed, in this case, the edges in a breadth-first search tree rooted at r
will form an arborescence.

(4 35) A dirécied graph G h'kas"’an ’arborescenté‘ rooted at T if an’d’ only if thefe
is a directed path from T to each other nodet . , :

~

4.9 Minimum-Cost Arborescences: A Multi-Phase Greedy Algorithm

The basic problem we consider here is the following. We are given a

directed graph G = (V, E), with a distinguished root node r and with a non-

negative cost ¢, > 0 on each-edge, and we wish to compute an arborescence
rooted at r of minimum total cost. (We will refer to this as an optimal arbores-
cence.) We will assume throughout that G at least has an arborescence rooted
at r; by (4.35), this can be easily checked at the outset.

A Designing the Algorithm
Given the relationship between arborescences and trees, the minimum-cost
arborescence problem certainly has a strong initial resemblance to the Mini-
mum Spanning Tree Problem for undirected graphs. Thus it’s natural to start
by asking whether the ideas we developed for that problem can be carried
over directly to this setting. For example, must the minimum-cost arbores-
cence contain the cheapest edge in the whole graph? Can we safely delete the

most expensive edge on a cycle, confident that it cannot be in the optimal
arborescence?

Clearly the cheapest edge e in G will not belong to the optimal arborescence
if e enters the root, since the arborescence we’re seeking is not supposed to
have any edges entering the root. But even if the cheapest edge in G belongs
to some arborescence rooted at r, it need not belong to the optimal one, as
the example of Figure 4.19 shows. Indeed, including the edge of cost 1 in
Figure 4.19 would prevent us from including the edge of cost 2 out of the
root r (since there can only be one entering edge per node); and this in turn
would force us to incur an unacceptable cost of 10 when we included one of

(a) (b)

Figure 4.19 (a) A directed graph with costs on its edges, and (b) an optimal arborescence
rooted at r for this graph.
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the other edges out of 7. This kind of argument never clouded our thinking in
the Minimum Spanning Tree Problem, where it was always safe to plunge
ahead and include the cheapest edge; it suggests that finding the optimal
arborescence may bea significantly more complicated task. (It's worth noticing
that the optimal arborescence in Figure 4.19 also includes the most expensive
edge on a cycle; with a different construction, one can even cause the optimal
arborescence to include the most expensive edge in the whole graph.)

Despite this, it is possible to design a greedy type of algorithm for this
problem; it’s just that our myopic rule for choosing edges has to be a little
more sophisticated. First let’s consider a little more carefully what goes wrong
with the general strategy of including the cheapest edges. Here’s a particular
version of this strategy: for each node v # T, select the cheapest edge entering
v (breaking ties arbitrarily), and let F* be this set of n — 1 edges. Now consider
the subgraph (V, F¥). Since we know that the optimal arborescence needs to
have exactly one edge entering each node v #T, and (V, F¥) represents the
cheapest possible way of making these choices, we have the following fact.

(a.36) If(V,Fhisan arborescence, then it is a minimum-cost arborescence.

So the difficulty is that (V, F*) may not be an arborescence. In this case,
(4.34) implies that (V, F *) must contain a cycle C, which does not include the
root. We now must decide how to proceed in this situation.

To make matters somewhat clearer, we begin with the following observa-
tion. Every arborescence contains exactly one edge entering each node v #7;
so if we pick some node v and subtract a nniform quantity from the cost of
every edge entering v, then the total cost of every arborescence changes by
exactly the same amount. This means, essentially, that the actual cost of the
cheapest edge entering v is not important; what matters is the cost of all other
edges entering v relative t0 this. Thus let y, denote the minimum cost of any
edge entering v. For each edge e = (., v), with cost ¢ = 0, we define its modi-
fied cost c,, to be Ce — Yy- Note that since ¢, > ¥y, all the modified costs are still
nonnegative. More crucially, our discussion motivates the following fact.

(4.37) T isan optimal arborescence in G subject to costs {Ce} if and only if it
is an optimal arborescence subject to the modified costs {c}- '

Proof. Consider an arbitrary arborescence T. The difference between its cost
with costs {¢.} and {c/} is exactly 3y y,—that is,

ZCG-ZC'E=ZW-

eeT eeT \ vFET

4.9 Minimum-Cost Arborescences: A Multi-Phase Greedy Algorithm

iTI‘ltnt; els becagse anﬁlarborescence has exactly one edge entering each node v
sum. Since the difference between th is i
: e two costs is independent of th
e
choice of the arborescence T, we see that T has minimum cost subject to {c,}
(]

if and only if it has minimum cost subject to {c,}. =

We nfw consider the problem in terms of the costs {c’}. All the edges in
guCI sft IC? have cost 0 under these modified costs; and soeif (V, F*) contains
aﬁgf det , we know that all edges in C have cost 0. This suggests that we can

rd to use as many edges from C as we want (consistent with producing an

arborescence), since including edges from C doesn’t raise the cost

Thus our algorithm continues
lgc as follows. We contract C into a singl
szf1;&em0de, obtmpmg a smaller graph G’ = (V’, E’). Here, V' contains the nodge:
0 ;C, ;,)lus ,a single nqde c* representing C. We transform each edge e € E to
Z}f ?1‘ hge e'eE' by r.eplacmg each end of e that belongs to C with the new node
an-chlsi ca;in resslt in G’ having parallel edges (i.e., edges with the same ends)
s fine; however, we delete seif-loops from E’ ,
. . —edges that have both
;il;i;hegjla:utg‘ c*t. tV\lehrecurswely find an optimal arborescence in this smaller
, subject to the costs {c’}. The arborescence returned by thi i
call can be converted into an eu?bor i o e e
escenc i
ey e of G by including all but one edge

In summary, here is the full algorithm.

For each node v#r

Let y, be the minimum cost of an edge entering node v
Modify the costs of all edges e entering v to c,=c,—Y
Choose one O~cost edge entering each v#r, obtainieng : se: F*
If F* forms an arborescence, then return it
Else there is a directed cycle CCF*
Contract C to a single supernode, yielding a graph G'=(V',E)
Recursively find an optimal arborescence (V/,F') in G’ ’
with costs {c}
Extend (V/,F’) to an arborescence (V,F) in G
by adding all but one edge of C

/A~ Analyzing the Algorithm

Ztolsseitafgragotlmplem?nt this algorithm so that it runs in polynomial time. But
- abOc])_1 fltlh ?apfmﬁlal élrboretscence? Before concluding that it does, we need
o wor e following point: not every arborescence in G corresponds to
arborescence in the contracted graph G'. Could we perhaps “miss” the tru
optimal arborescence in G by focusing on G'? What is true is the follo:vinge
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The arborescences of G’ are in one-to-one correspondence with arborescences
of G that have exactly one edge entering the cycle C; and these corresponding
arborescences have the same cost with respect to {c}, since C consists of 0-
cost edges. (We say that an edge e = (u, v) enters C if vbelongs to C but u does
not.) So to prove that our algorithm finds an optimal arborescence in G, we
must prove that G has an optimal arborescence with exactly one edge entering
C. We do this now.

(4.38) Let Cbeacyclein G consisting of edges of cost 0, such that T ¢ C.
Then there is an optimal arborescence rooted at T that has exactly one edge

entering C.

Proof. Consider an optimal arborescence T in G. Since r has a pathin T to
every node, there is at least one edge of T that enters C. If T enters C exactly
once, then we are done. Otherwise, suppose that T enters C more than once.
We show how to modify it to obtain an arborescence of no greater cost that
enters C exactly once.

Let e = (a, b) be an edge entering C that lies on as short a path as possible
from r; this means in particular that no edges on the path from r to a can enter
C. We delete all edges of T that enter C, except for the edge e. We add in all
edges of C except for the one edge that enters b, the head of edge e. Let T
denote the resulting subgraph of G.

We claim that T’ is also an arborescence. This will establish the result,
since the cost of T’ is clearly no greater than that of T: the only edges of
T’ that do not also belong to T have cost 0. S0 why is T’ an arborescence?
Observe that T’ has exactly one edge entering each node v #r, and no edge
entering r. So T’ has exactly n — 1 edges; hence if we can show there is an r-v
path in T’ for each v, then T’ must be connected in an undirected sense, and
hence a tree. Thus it would satisfy our initial definition of an arborescence.

So consider any node v # r; we must show there is an r-v path in T". If
v e C, we can use the fact that the pathin T fromr to e has been preserved
in the construction of T'; thus we can reach v by first reaching e and then
following the edges of the cycle C. Now suppose that v ¢ C, and let P denote
the r-v path in T. If P did not touch C, then it still exists in T'. Otherwise,
let w be the last node in PN C, and let P' be the subpath of P from w to v.
Observe that all the edges in P’ still exist in T". We have already argued that
w is reachable from r in T’, since it belongs to C. Concatenating this path
to w with the subpath P’ gives us a path to v as well. =

We can now put all the pieces together to argue that our algorithm is
correct.

N

Solved Exercises

. (439) ,/,,The algorithm finds an optimal arborescence rooted atrinG
Proof. The proof is by induction on the number of nodes in G. If the edges
of F form an arborescence, then the algorithm returns an optimal 'arboresceice
by '(4.3.6). Otherwise, we consider the problem with the modified costs {c’}
which is equivalent by (4.37). After contracting a 0-cost cycle C to obtaine a;
‘smallef: graph G, the algorithm produces an optimal arborescence in G’ by the
inductive hypothesis. Finally, by (4.38), there is an optimal arborescence in G
that corresponds to the optimal arborescence computed for G'. =

Solved Exercises

Solved Exercise 1

Suppose that three of your friends, inspired by repeated viewings of the
horror'mc.)vie phenomenon The Blair Witch Project, have decided to hike the
Appalachian Trail this summer. They want to hike as much as possible per
day but, for obvious reasons, not after dark. On a map they’ve identified a
large S:et of good stopping points for camping, and they’re considering the
following system for deciding when to stop for the day. Each time they come
to a potential stopping point, they determine whether they can make it to the

next one before nightfall. If they can make it, th Teimg- .
they stop. , then they keep hiking; otherwise,

Despite many significant drawbacks, they claim this system does have
Spe gogd .feature. “Given that we’re only hiking in the daylight,” they claim
it minimizes the number of camping stops we have to make.” ,

Is t.his true? The proposed system is a greedy algorithm, and we wish to
determine whether it minimizes the number of stops needed.

To II.1ake this question precise, let’s make the following set of simplifying
assumptions. We’ll model the Appalachian Trail as a long line segment of
length L and assume that your friends can hike d miles per day (independent
of ter@m, weather conditions, and so forth). We’ll assume that the potential
stoppmg points are located at distances xj, X, ..., X, from the start of the
trail. We’ll also assume (very generously) that your friends are always correct

when they estimate whether they can make it to th i i
el e next stopping point before

' We’ll say that a set of stopping points is valid if the distance between each
adjacent pair is at most d, the first is at distance at most d from the start of
the trail, and the last is at distance at most d from the end of the trail. Thus
a set of stopping points is valid if one could camp only at these place;.s and
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still make it across the whole trail. We’ll assume, naturally, that the full set of
n stopping points is valid; otherwise, there would be no way to make it the
whole way.

We can now state the question as follows. Is your friends’ greedy
algorithm—nhiking as long as possible each day—optimal, in the sense that it
finds a valid set whose size is as small as possible?

Solution Often a greedy algorithm looks correct when you first encounter it,
so before succumbing too deeply 1o its intuitive appeal, it’s useful to ask: why
might it not work? What should we be worried about?

There’s a natural concern with this algorithm: Might it not help to stop
early on some day, so as to get better synchronized with camping opportunities
on future days? But if you think about it, you start to wonder whether this could
really happen. Could there really be an alternate solution that intentionally lags
behind the greedy solution, and then puts on a burst of speed and passes the
greedy solution? How could it pass it, given that the greedy solution travels as
far as possible each day? )

This last consideration starts to look like the outline of an argument based
on the “staying ahead” principle from Section 4.1. Perhaps we can show that as
long as the greedy camping strategy is ahead on a given day, no other solution
can catch up and overtake it the next day.

We now turn this into a proof showing the algorithm is indeed optimal,
identifying a natural sense in which the stopping points it chooses “stay ahead”
of any other legal set of stopping points. Although we are following the style
of proof from Section 4.1, it's worth noting an interesting contrast with the
Interval Scheduling Problem: there we needed to prove that a greedy algorithm
maximized a quantity of interest, whereas here we seek to minimize a certain
quantity.

Let R={xp,-.- , Xp,} denote the set of stopping points chosen by the
greedy algorithm, and suppose by way of contradiction that there is a smaller
valid set of stopping points; let’s call this smaller set S = {Xg,, - - - » Xg,}s with

m < k.

To obtain a contradiction, we first show that the stopping point reached by
the greedy algorithm on each day j is farther than the stopping point reached
under the alternate solution. That is, '

(4.40) Foreachj=1,2,...,m, we have Xp, = Xg;-

Proof. We prove this by induction on j. The case j = 1 follows directly from.

the definition of the greedy algorithm: your friends travel as long as possible

N

Solved Exercises

on the first day before stopping. Now let j
: j > 1 and assume T
true for all { <] Then . that the claim is

ij — Xy <d,

since S is a valid set of stopping points, and

x — . o

g; xpj—l = xq]' ij——l

since x, . >x, by the inducti i ini

s1 1 = Xg;_, DY the induction hypothesis. Combining these two inequal-
ities, we have ; el

Xg, — X

gj Pj-1 = d.

This mgans that your friends have the option of hiking all the way from
Xp;_, 10 Xg; in one day; and hence the location xp. at which they finally stop
can only be farther along than Xg;- (Note the simﬂe{rity with the correspondin
proof for the Interval Scheduling Problem: here too the greedy algorithm i§

staying ahead because, at each ste i
_ A D, the choice made by the alternate i
is one of its valid options.) = ’ solution

Statement (4.40) implies in particular th i

. i
o cment (4.40) Imli p . a .xqm <X .Now, if m <k, then
) <L , for otherwise your friends would never have needed
0 stlop at the location Xp,.,r Combining these two inequalities, we have
cogc uded that Xg, <L —d; but this contradicts the assumption that S is a
valid set of stopping points.

Consequently, we cannot have m < k, and so we have proved that the

g.reedy algorithm produces a valid set of stopping points of minimum possible
size.

Solved Exercise 2

Yodﬁfﬁ'lends.are starting a security company that needs to obtain licenses for
n .erent pl(?:CGS of cryptographic software. Due to regulations, they can only
obtain these licenses at the rate of at most one per month.

o Each l.icense is currently selling for a price of $100. However, they are
l?econung more expensive according to exponential growth curves: in
pe%mcul.ar, the cost of license j increases by a factor of 1; > 1 each month, where
rjisa g“;:;ll parameter. This means that if license j is purchased ¢t months from
now, it wi -1t i i

cost 100 - r;. We will assume that all the price growth rates are
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The question is: Given that the company can only buy at most one license
a month, in which order should it buy the licenses so that the total amount of
money it spends is as small as possible?

Give an algorithm that takes the n rates of price growth 1y, 7y, . . ., T, and

computes an order in which to buy the licenses so that the total amount of
money spent is minimized. The running time of your algorithm should be
polynomial in 7.
Solution Two natural guesses for a good sequence would be to sort the r; in
decreasing order, or to sort them in increasing order. Faced with alternatives
like this, it’s perfectly reasonable to work out a small example and see if the
example eliminates at least one of them. Here we could try r; =2, 1, =3, and
r; = 4. Buying the licenses in increasing order results in a total cost of

1002 + 3% + 4% = 7,500,
while buying them in decreasing order results in a total cost of
100(4 + 3% + 2%) = 2,100.

This tells us that increasing order is not the way to go. (On the other hand, it
doesn’t tell us immediately that decreasing order is the right answer, but our
goal was just to eliminate one of the two options.)

Let’s try proving that sorting the r; in decreasing order in fact always gives
the optimal solution. When a greedy algorithm works for problems like this,
in which we put a set of things in an optimal order, we’'ve seen in the text that
it’s often effective to try proving correctness using an exchange argument.

To do this here, let's suppose that there is an optimal solution O that
differs from our solution S. (In other words, S consists of the licenses sorted in
decreasing order.) So this optimal solution O must contain an inversion—that
is, there must exist two neighboring months ¢ and t + 1 such that the price
increase rate of the license bought in month ¢ (let us denote it by r,) is less
than that bought in month ¢ + 1 (similarly, we use Iy, to denote this). That
is, we have ry < Tpq3- :

We claim that by exchanging these two purchases, we can strictly improve
our optimal solution, which contradicts the assumption that O was optimal.

Therefore if we succeed in showing this, we will successfully show that ‘our

algorithm is indeed the correct one. v

Notice that if we swap these two purchases, the rest of the purchases
are identically priced. In O, the amount paid during the two months involved
in the swap is 100(rf + ri+]l). On the other hand, if we swapped these two

purchases, we would pay 100(r;,; + ri*1). Since the constant 100 is common

\
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tg both expressions, we want to show that the second term is less than the
first one. So we want to show that

- t+1 t t+1
T 1 <1 +T

t+1
tHl ottt
Ty Ty <Typy — T

i —1) < T£+1(Tl+1 -1).

But this last inequality is true simply because r; > 1 for all  and since r, < ;1.

' This concludes the proof of correctness. The running time of the algorithm
Is C?(n log n), since the sorting takes that much time and the rest (outputting)
is linear. So the overall running time is O(n log ).

' Note: It’s interesting to note that things become much less straightiorward
if we varj this question even a little. Suppose that instead of buying licenses
whose. pl'*lces increase, you're trying to sell off equipment whose cost is
depreciating. Item i depreciates at a factor of r; < 1 per month, starting from
$100, so if you sell it t months from now you will receive 100 - rf. (In other
words, the exponential rates are now less than 1, instead of greatelr than 1.) If
you can only sell one item per month, what is the optimal order in which to
sell them? Here, it turns out that there are cases in which the optimal solution

42 27 100

Solved Exercise 3

Suppose you are given a connected graph G, with edge costs that you may
assume are all distinct. G has n vertices and m edges. A particular edge e of G
is .speciﬁed. Give an algorithm with running time O(m + n) to decide whether
e is contained in a minimum spanning tree of G.

Solution From the text, we know of two rules by which we can conclude
whether an edge e belongs to a minimum spanning tree: the Cut Property
(4.17) says that e is in every minimum spanning tree when it is the cheapest
edge crossing from some set S to the complement V — S; and the Cycle Property
(4.20) says that e is in no minimum spanning tree if it is the most expensive
edge on some cycle C. Let’s see if we can make use of these two rules as part
of an algorithm that solves this problem in linear time. .

Both the Cut and Cycle Properties are essentially talking about how e
rglates to the set of edges that are cheaper than e. The Cut Property can be
Vlféwed as asking: Is there some set S C V so that in order to get fromSto V —§
Wlthout using e, we need to use an edge that is more expensive than e? And
if we think about the cycle C in the statement of the Cycle Property, going the
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“long way” around C (avoiding e) can be viewed as an alternate route between
the endpoints of e that only uses cheaper edges. ‘

Putting these two observations together suggests that we should try prov-
ing the following statement.

(4.41) Edge e = (v, w) does not belong to a minimum spanning tree of G if
and only if v and w can be joined by a path consisting entirely of edges that

are cheaper than e.

Proof. First suppose that P is a v-w path consisting entirely of edges cheaper
than e. If we add e to P, we get a cycle on which e is the most expensive edge.
Thus, by the Cycle Property, e does not belong to a minimum spanning tree
of G. :

On the other hand, suppose that v and w cannot be joined by a path
consisting entirely of edges cheaper than e. We will now identify a set S for
which e is the cheapest edge with oneend in S and the otherin V — S; if we can
do this, the Cut Property will imply that e belongs to every minimum spanning
tree. Our set S will be the set of all nodes that are reachable from v using a path
consisting only of edges that are cheaper than e. By our assumption, we have
we V —S. Also, by the definition of S, there cannot be an edge f = (x,y) that
is cheaper than e, and for which one end x lies in S and the other end y lies in
V — S. Indeed, if there were such an edge f, then since the node x is reachable
from v using only edges cheaper than e, the node y would be reachable as
well. Hence e is the cheapest edge with one end in S and the otherin V — S,
as desired, and so we are done. =

Given this fact, our algorithm is now simply the following. We form a graph
G' by deleting from G all edges of weight greater than c, (as well as deleting
e itself). We then use one of the connectivity algorithms from Chapter 3 to
determine whether there is a path from v to w in G'. Statement (4.41) says that
e belongs to a minimum spanning tree if and only if there is no such path.

The running time of this algorithm is O(m + n) to build G/, and O(m +n)
to test for a path from v to w.

Exercises

1. Decide whether you think the following statement is true or false. If it is
true, give a short explanation. If it is false, give a counterexample.

Let G be an arbitrary connected, undirected graph with a distinct cost c(e) on
every edge e. Suppose e* is the cheapest edgein G; that is, c(e*) < c(e) for every

Exercises

edge e s e*. Then there is a minimum spanning tree T of G that contains the

edge e*.

2. Po‘r ej.ach of the following two statements, decide whether it is true or false.
If it is true, give a short explanation. If it is false, give a counterexample.

(a) Suppose we are given an instance of the Minimum Spanning Tree
PFoblem on a graph G, with edge costs that are all positive and
d,lstinct. Let T be a minimmum spanning tree for this instance. Now
suppose we replace each edge cost ¢, by its square, cZ, thereby

creating a new instance of the problem with the same graph but
different costs.

True or false? T must still be a minimum spanning tree for this
new instance. A

(b) Suppose we are given an instance of the Shortest s-t Path Problem
on a directed graph G. We assume that all edge costs are positive
and distinct. Let P be a minimum-cost s-t path for this instance.
Now suppose we replace each edge cost c, by its square, c?, thereby

creating a new instance of the problem with the same graph but
different costs.

True or false? P must still be a minimum-cost s-t path for this
new instance.

3. You are consulting for a trucking company that does a large amount of
business shipping packages between New York and Boston. The volume is
high enough that they have to send a number of trucks each day between
the two locations. Trucks have a fixed limit W on the maximum amount
of weight they are allowed to carry. Boxes arrive at the New York station
.one by one, and each package i has a weight w;. The trucking station
is quite small, so at most one truck can be at the station at any time.
Company policy requires that boxes are shipped in the order they arrive;
otherwise, a customer might get upset upon seeing a box that arrived,
after his make it to Boston faster. At the moment, the company is using
a simple greedy algorithm for packing: they pack boxes in the order they

arrive, and whenever the next box does not fit, they send the truck on its
way.

But they wonder if they might be using too many trucks, and they
want your opinion on whether the situation can be improved. Here is
how they are thinking. Maybe one could decrease the number of trucks

needed by sometimes sending off a truck that was less full, and in this
way allow the next few trucks to be better packed.
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Prove that, for a given set of boxes with specified weights, the greedy
algorithm currently in use actually minimizes the number of trucks that
are needed. Your proof should follow the type of analysis we used f(?r
the Interval Scheduling Problem: it should establish the optimality of this
greedy packing algorithm by identifying a measure under which it “stays
ahead” of all other solutions.

4. Some of your friends have gotten into the burgeoning field of time-series

data mining, in which one looks for patterns in sequences of events that
occur over time. Purchases at stock exchanges—what's being bought—
are one source of data with a natural ordering in time. Given a long
sequence S of such events, your friends want an efficient way to d.etect
certain “patterns” in them—for example, they may want to know if the

four events
buy Yahoo, buy eBay, buy Yahoo, buy Oracle

. . . - velv.
occur in this sequence S, in order but not necessarily consecutively

They begin with a collection of possible events (e.g., the possible
transactions) and a sequence S of n of these events. A given event may
occur multiple times in S {(e.g., Yahoo stock may be bought many times
in a single sequence S). We will say that a sequence S’ is a subsequernce
of S if there is a way to delete certain of the events from S so that the
remaining events, in order, are equal to the sequence S'. So, for example,
the sequence of four events above is a subsequence of the sequence

buy Amazon, buy Yahoo, buy eBay, buy Yahoo, buy Yahoo,
buy Oracle

Their goal is to be able to dream up short sequences and quickly
detect whether they are subsequences of S. So this is the problgm they
pose to you: Give an algorithm that takes two sequences of events—S' of
length m and S of length n, each possibly containing an event more than
once—and decides in time O@n + n) whether ' is a subsequence of S.

5. Let's consider a long, quiet country road with hous.es scattered verﬂz
‘/{ sparsely along it. (We can picture the road as a long line segment, wi

an eastern endpoint and a western endpoint.) Further, let's suppose that
despite the bucolic setting, the residents of all these houses are avid cell
phone users. You want to place cell phone base stations at certain points
along the road, so that every house is within four miles of one of the base
stations.

Give an efficient algorithm that achieves this goal, using as few base
stations as possible.

Exercises

6. Your friend is working as a camp counselor, and he is in charge of

organizing activities for a set of junior-high-school-age campers. One of
his plans is the following mini-triathalon exercise: each contestant must
swim 20 laps of a pool, then bike 10 miles, then run 3 miles. The plan is
to send the contestants out in a staggered fashion, via the following rule:
the contestants must use the pool one at a time. In other words, first one
contestant swims the 20 laps, gets out, and starts biking. As soon as this
first person is out of the pool, a second contestant begins swimming the
20 laps; as soon as he or she is out and starts biking, a third contestant
begins swimming . . . and so on.)

Each contestant has a projected swimming time (the expected time it
will take him or her to complete the 20 laps), a projected biking time (the

~ expected time it will take him or her to complete the 10 miles of bicycling),

and a projected running time (the time it will take him or her to complete
the 3 miles of running). Your friend wants to decide on a schedule for the
triathalon: an order in which to sequence the starts of the contestants.
Let's say that the completion time of a schedule is the earliest time at
which all contestants will be finished with all three legs of the triathalon,
assuming they each spend exactly their projected swimming, biking, and
running times on the three parts. (Again, note that participants can bike
and run simultaneously, but at most one person can be in the pool at
any time.) What's the best order for sending people out, if one wants the
whole competition to be over as early as possible? More precisely, give
an efficient algorithm that produces a schedule whose completion time
is as small as possible.

. The wildly popular Spanish-language search engine El Goog needs to do

a serious amount of computation every time it recompiles its index. For-
tunately, the company has at its disposal a single large supercomputer,
together with an essentially unlimited supply of high-end PCs.

They’ve broken the overall computation into n distinct jobs, labeled
Ji. s ..., Jy, which can be performed completely independently of one
another. Each job consists of two stages: first it needs to be preprocessed
on the supercomputer, and then it needs to be finished on one of the
PCs. Let’s say that job J; needs p; seconds of time on, the supercomputer,
followed by f; seconds of time on a PC.

Since there are at least n PCs available on the premises, the finishing
of the jobs can be performed fully in parallel—all the jobs can be pro-
cessed at the same time. However, the supercomputer can only work on
a single job at a time, so the system managers need to work out an order
in which to feed the jobs to the supercomputer. As soon as the first job
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in order is done on the supercomputer, it can be handed off to a PC for
finishing; at that point in time a second job can be fed to t.he supercom-
puter; when the second job is done on the supercomputer, it .can proceed
to a PC regardless of whether or not the first job is done (since the PCs
work in parallel); and so on. .

Let's say that a schedule is an ordering of the jobs for.the §uper-
computer, and the completion time of the schedule is the e.arpest me at
which all jobs will have finished processing on the PCs. Thls is an impor-
tant quantity to minimize, since it determines how rapidly El Goog can
generate a new index. | .

. Give a polynomial-titne algorithm that finds a schedule with as sm
a completion time as possible. '

8. Suppose you are given a connected graph G, with ec.lge costs that are all
distinct. Prove that G has a unique minimum spanning free.

9. One of the basic motivations behind the Minimum Spanning Tree Problgi
is the goal of designing a spanning network for a set of node§ Wl
minimum total cost. Here we explore another type of ob;]ec.nve: de$1gnmg
a spanning network for which the most expensive edge is as cheap as
possible. . ‘

Specifically, let G=(V,E) be a connected graph with n \{er.uces, m
edges, and positive edge costs that you may assume are all distinct. Let
T = (V, E) be a spanning iree of G; we define the bottleneck edge of T 10
be the edge of T with the greatest cost. .

A spanning tree Tof Gisa minimum-bottleneck spanning tree if there
is no spanning tree T’ of G with a cheaper bottleneck edge.

(a) Isevery minimum-bottleneck tree of G a minimum spanming tree of
G? Prove or give a counterexample.

(b) Is every minimum spanning tree of G a minimum-bottleneck tree of
G? Prove or give a counterexample.

10. LetG=(V,E)bean (undirected) graph with co.sts ce>0 gn the edgesee Ee.
Assume you are given a minimum-cost spanning tree Tin G. Nox'v assu1:1
that a new edge is added to G, connecting two nodes v, w e V with cost .
(a) Give an efficient algorithm fo test if T remains the mamﬂl;num-cc?)t

spanning tree with the new edge added to G (but ngt .to e tre.e ?
Make your algorithm run in time O(|E}). Can you do it in O(}V]) tnng.
Please note any assumptions you make about what data structure 18
used to represent the tree T and the graph G.

Exercises

(b) Suppose T is'no longer the minimum-cost spanning tree. Give a

linear-time algorithm (time O(|E|)) to update the tree T to the new
minimum-cost spanning tree.

11. Suppose you are given a connected graph G = (V, E), with a cost ¢, on
each edge e. In an earlier problem, we saw that when all edge costs are
distinct, G has a unique minimum spanning tree. However, G may have
many minimum spanning trees when the edge costs are not all distinct.

Here we formulate the question: Can Kruskal's Algorithm be made to find
all the minimum spanning trees of G?

Recall that Kruskal's Algorithm sorted the edges in order of increas-
ing cost, then greedily processed edges one by one, adding an edge e as
long as it did not form a cycle. When some edges have the same cost, the
phrase “in order of increasing cost” has to be specified a little more care-
fully: we'll say that an ordering of the edges is valid if the corresponding
sequence of edge costs is nondecreasing. We'll say that a valid execution

of Kruskal’s Algorithm is one that begins with a valid ordering of the
edges of G.

For any graph G, and any minimum spanning tree T of G, is there a
valid execution of Kruskal's Algorithm on G that produces T as output?
Givg a proof or a counterexample.

12. Suppose you have n video streams that need to be sent, one after another,
over a communication link. Stream i consists of a total of b; bits that need
to be sent, at a constant rate, over a period of t; seconds. You cannot send
two streams at the same time, so you need to determine a schedule for the
streams: an order in which to send them. Whichever order you choose,
there cannot be any delays between the end of one stream and the start
of the next. Suppose your schedule starts at time 0 (and therefore ends at
time }°7 t;, whichever order you choose). We assume that all the values
b; and ¢; are positive integers.

Now, because you're just one user, the link does not want you taking

up too much bandwidth, so it imposes the following constraint, using a
fixed parameter r:

(%) For each natural number t > 0, the total number of bits you send over the
time interval from 0 to t cannot exceed rt.

Note that this constraint is only imposed for time intervals that start at
0, not for time intervals that start at any other value.

We say that a schedule is valid if it satisfies the constraint (x) imposed
by the link.
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13.

The Problem. Given a set of n streams, each specified by its number. of
bits b; and its time duration t;, as well as the link parameter r, determine

whether there exists a valid schedule.
Example. Suppose we have n =3 streams, with

(by, ty) = (2000, 1), (by,t) =(6000,2), (b3, 13) = (2000, 1),

and suppose the link's parameterisr = 5000. Then the s?hedul.e tha.t @s
the streams in the order 1, 2, 3, is valid, since the constraint () is satisfied:

t = 1: the whole first stream has been sent, and 2000 < 5000-1
t = 2: half of the second stream has also been sent,

and 2000 + 3000 < 5000 - 2
Similar calculations hold fort =3 and t =4.

(@) Consider the following claim:
Claim: There exists a valid schedule if and only if each stream i satisfies
b; <. . '
Décide whether you think the claim is true or false, and give a proof
of either the claim or its negation.
(b) Give an algorithm that takes a set of n streams, each sPecﬁied by its
number of bits b; and its time duration t;, as well as the lmkparame‘ter
r, and determines whether there exists a valid schedule. The running
time of your algorithm should be polynomial in 7.

A small business—say, a photocopying service with a single large
machine—faces the following scheduling problem. E.ach morm.ng ‘they
get a set of jobs from customers. They want to do the qus on their smg}e
machine in an order that keeps their customers happiest. Cus.tomer i's
job will take t; time to complete. Given a schedule (i.e., an orfie.nng. ?f ‘gie
jobs), let C; denote the finishing time of job i. For e.zxample, .1f jobjis ‘ e
first to be done, we would have C;=t;; and if jobjis done ‘nght afjcer job
i, we would have (= C;+ 1. Fach customer i als? has a given ngght w%r
Wsents his or her importance to ﬂqe busmgss.‘ The. happlp’es§ 0
customer i is expected to be dependent on the finishing unm.e ?f z s job.
So the company decides that they want to order the jobs to minimize the
weighted sum of the completion times, Y ‘

Design an efficient algorithm to solve this problem. .That is, you a;i
given a set of n jobs with a processing time t; and a welg‘ht w; for ea .
job. You want to order the jobs so as to minimize the weighted sum o
the completion times, Y 1, wiC;.

Example. Suppose there are two jobs: the firs‘t takes time t; =1 and ‘has;
weight w; = 10, while the second job takes time t, =3 and has weigh

14.

Exercises

w, =2. Then doing job 1 first would yield a weighted completion time
of 10- 1+ 2 -4 =18, while doing the second job first would yield the larger
weighted completion time of 10-4 +2 - 3= 46.

You're working with a group of security consultants who are helping to
monitor a large computer system. There’s particular interest in keeping
track of processes that are labeled “sensitive.” Each such process has a
designated start time and finish time, and it runs continuously between
these times; the consultants have a list of the planned start and finish
times of all sensitive processes that will be run that day.

As a simple first step, they've written a program called status_check
that, when invoked, runs for a few seconds and records various pieces
of logging information about all the sensitive processes rununing on the
system at that moment. (We’ll model each invocation of status_check
as lasting for only this single point in time.) What they'd like to do is to
run status_check as few times as possible during the day, but enough
that for each sensitive process P, status_check is invoked at least once
during the execution of process P.

(@ Give an efficient algorithm that, given the start and finish times of
all the sensitive processes, finds as small a set of dmes as possi-
ble at which to invoke status_check, subject to the requirement

that status_check is invoked at least once during each sensitive
process P.

(b) While you were designing your algorithm, the security consultants
were engaging in a little back-of-the-envelope reasoning. “Suppose
we can find a set of k sensitive processes with the property that no
two are ever running at the same time. Then clearly your algorithm
will need to invoke status_check at least k times: no one invocation
of status_check can handle more than one of these processes.”

This is true, of course, and after some further discussion, you all
begin wondering whether something stronger is true as well, a kind
of converse to the above argument. Suppose that k* is the largest
value of k such that one can find a set of k sensitive processes with
no two ever running at the same time. Is it the case that there must
be a set of k* times at which you can run status_check so that some
invocation occurs during the execution of each sensitive process? (In
other words, the kind of argument in the previous paragraph is really
the only thing forcing you to need a lot of invocations of status_
check.) Decide whether you think this claim is true or false, and give
a proof or a counterexample.
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15. The manager of a large student union on
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campus comes to you with the

following problem. She’s in charge of a group of n students, each of whom
is scheduled to work one shift during the week. There are different jobs
associated with these shifts (tending the main desk, helping with package
delivery, rebooting cranky information kiosks, etc.), but we can view each
shift as a single contiguous interval of time. There can be multiple shifts

going on at once.
She’s trying to choose a subset of these n students to form a super-

hat she can meet with once a week. She considers such

vising committee t
a committee to be complete if, for every student not on the committee,

that student’s shift overlaps (at least partially) the shift of some student
who is on the committee. In this way, each student’s performance can be
observed by at least one person who’s serving on the committee.

Give an efficient algorithm that takes the schedule of n shifts and
produces a complete supervising committee containing as few students

as possible.

Example. Suppose n =3, and the shifts are

Monday 4 pm~Monday 8 pm.,
Monday 6 pm~Monday 10 pM,
Monday 9 pm~Monday 11 PM.

Then the smallest complete supervising committee would consist of just
the second student, since the second shift overlaps both the first and the

third.

. Some security consultants working in the financial domain are cur-

rently advising a client who is investigating a potential money-laundering
scheme. The investigation thus far has indicated that n suspicious trans-
actions took place in recent days, each involving money transferred into a
single account. Unfortunately, the sketchy nature of the evidence to date
means that they don’t know the idenfity of the account, the amounts of
the fransactions, or the exact times at which the transactions took place.
What they do have is an approximate time-stamp for each transaction; the
evidence indicates that transaction i took place at time t; + e;, for some
“margin of error” e;. (In other words, it took place sometime betweent; —e;
and t; + ;) Note that different fransactions may have different margins

of error.

In the last day or so, they've come across a bank account that (for
other reasons we don’t need to go into here) they suspect might be the
one involved in the crime. There are n recent events involving the account,
which took place at times Xy, X3, -- - X To see whether it's plausible
that this really is the account they're looking for, they're wondering

Exercises

Wh.eth.er it’s possible to associate each of the account’s n events with
a distinct one of the n suspicious transactions in such a way that Sif“:h
account event at time x; is associated with the suspicious transacti(;n th ?c
occurred approximately at time tj, then |t; — x;| <e;. (In other words tha
want to @ow if the activity on the account lines ilp with the sus i‘ciosy
transactions to within the margin of error; the tricky part herepis thai

. tC}}live an efficient algorithm that takes the given data and decides
whe . er §uch an association exists. If possible, you should make th
running time be at most O(n?). )

17. Consider the following variation on the Interval Scheduling Problem. You

have .a processor that can operate 24 hours a day, every day. Peopl

sgbmlt requests to run daily jobs on the processor. Each such jo‘.b conf :
with a start time and an end time; if the job is accepted to run on tgs
Processor, it must run continuously, every day, for the period betw ;
its start and end times. (Note that certain jobs can begin before midnie(}zn
and end after midnight; this makes for a type of situation different f -
what we saw in the Interval Scheduling Problem.) o

] C.};\l/en a list of n such jobs, your goal is to accept as many jobs as
possible (regardless of their length), subject to the constraint that the
{:lroce.ssor can run at most one job at any given point in time. Provide an
asi?;ltbmf to .do thlS with a running time that is polynomial in . You may
e for simplicity that no two jobs have the same start or end times

Example. Consider the f i ; .
ttme) padrs, ollowing four jobs, specified by (start-time, end-

(6 PM, 6 AM), (9 PM, 4 aM), (3 AM, 2 pm), (1 pM, 7 ).

The (—)ptimal sc_i.lution would be to pick the two jobs (9 p.M, 4 AM) and (1
PM., 7 PM), which can be scheduled without overlapping.

18. Your friends are planning an expedition to a small town deep in the Cana-

;d;?hnort};r next winte%' break. They've researched all the travel options
e avc? awn up a directed graph whose nodes represent intermediate
estinations and edges represent the roads between them.

In .the course of this, they've alsolearned that extreme weather cause
roads in this part of the world to become quite slow in the winter ang
may cause large travel delays. They've found an excellent travel Web sit
that can accurately predict how fast they’ll be able to travel alon the
road§; however, the speed of travel depends on the time of year ?\/I .
precisely, the Web site answers queries of the following fomz]' gi\./enogri
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19.

edge e = (v, w) connecting two sites v and w, and given a proptgsed stgirgrelg
time ¢t from location v, the site will return a value f,(t), the aﬁred <
arrival time at w. The Web site guarantees that' f.(t) =t for e gg :
and all times ¢ (you can't travel backward in time), and @at fe(ltj) 1sb
monotone increasing function of ¢ (that is, you do not arrlvi .ear erFoyrf
starting later). Other than that, the functions f,(t) may bg tir ﬂlltraszison
example, in areas where the travel time dqes not vary wi elef mthe,
we would have f,(t) =t + £e, Where £, 18 the time needed to travel iro
beginning to the end of edge e.

Your friends want to use the Web site to dfetermiL}e the fastest t;lva;
to travel through the directed graph from their starting pmgt to0 aJeJ :
intended destination. (You should assume that they start at Umi éive !
that all predictions made by the Web site are completely cprrlect. 2
polynomial-time algorithm to do this, where wg treat a smg e quq];fgle
the Web site (based on a specific edge e and a time t) as taking a sin,
computational step.

.

A group of network designers at the communications company Cil;]:;
find themselves facing the following problem. ';hey have a conn cred
graph G=(V,E), In which the nodes represegt Slte.S that ?vant t(;jl o
municate. Each edge e is a communication link, with a given av
bandwidth b,. ' .

For each pair of nodes u,ve V, they want to select a single u-}z pathp
on which this pair will communicate. The botrle?qeck rate% b)) of thlS pa !
is the minimum bandwidth of any edge it contan:}s; that }s, b({?) ='mlnle€p thfe
The best achievable bottleneck rate for the pair u,v in G is simply
maximum, over all u-v paths Pin G, of the value b(P).

It's getting to be very complicated to keep track of a path for each é)if.
of nodes, and so one of the network designers makes a bold syggi?es _des.
Maybe one can find a spanning tree T of G so that jfor every palrcc]):ﬂno i~
u, v, the unique u-v path in the tree actually attams.the best ad e};faose
bottleneck rate for u,v in G. (In other words, even if you cc‘);ll C oath
any u-v path in the whole graph, you couldn’t do better than the u-v p
inT.)

This idea is roundly heckled in the offices of CluNet for.a few dz;ys,
and there’s a natural reason for the skepﬁci.sm': eéch pair of drcloatees.
might want a very different-looking pa@ to maximize its bo‘ftlem(e2 SOd{]
why should there be a single tree that smultaneously-makes ev 12Ybegm
happy? But after some failed attempts to rule out the idea, peop
to suspect it could be possible.

e

Exercises

Show that such a tree exists, and give an efficient algorithm to find
one. That is, give an algorithm constructing a spanning tree T in which,
for each u, v € V, the bottleneck rate of the u-v pathin T is equal to the
best achievable bottleneck rate for the pair u, v in G.

20. Every September, somewhere in a far-away mountainous part of the
’ world, the county highway crews get together and decide which roads to
keep clear through the'coming winter. There are n towns in this county,
and the road system can be viewed as a (connected) graph G=(V,E) on
this set of towns, each edge representing a road joining two of them.
In the winter, people are high enough up in the mountains that they
stop worrying about the length of roads and start worrying about their
altitude—this is really what determines how difficult the trip will be.

So each road—each edge ¢ in the graph—is annotated with a number
a, that gives the altitude of the highest point on the road. We'll assume
that no two edges have exactly the same altitude value a,. The height of
a path P in the graph is then the maximum of a, over all edges e on P.
Finally, a path between towns i and j is declared to be winter-optimal if it
achieves the minimum possible height over all paths from i to j-

The highway crews are going to select a set E C E of the roads to keep
clear through the winter; the rest will be left unmaintained and kept off
limits to travelers. They all agree that whichever subset of roads E’ they
decide to keep clear, it should have the property that (v, E"yis a connected
subgraph; and more strongly, for every pair of towns i and J, the height
of the winter-optimal path in (V, E') should be no greater than it is in the
full graph G = (V, E). We'll say that (V, E) is a minimum-altitude connected
subgraph if it has this property.

Given that they’re going to maintain this key property, however, they

otherwise want to keep as few roads clear as possible. One year, they hit
upon the following conjecture:

The minimum spanning tree of G, with respect to the edge weights a,, is a
minimum-altitude connected subgraph.

(In an earlier problem, we claimed that there is a unique minimum span-
ning tree when the edge weights are distinct. Thus, thanks to the assump-
tion that all a, are distinct, it is okay for us to speak of the minimum
spanning tree.)

Initially, this conjecture is somewhat counterintuitive, since the min-
Imum spanning tree is trying to minimize the sun1 of the values a,, while
the goal of minimizing altitude seems to be asking for a fairly different

thing. But lacking an argument to the contrary, they begin considering an
even bolder second conjecture:
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A subgraph (V,E) isa minimum-altitude connected subgraph if and only if
it contains the edges of the minimum spanning tree.

Note that this second conjecture would immediately imply the first one,
since a minimum spanning tree contains its own edges.

So here’s the question.
(@) Is the first conjecture true, for all choices of G and distinct altitudes
a,? Give a proof or a counterexample with explanation.

(b) Is the second conjecture true, for all choices of G and distinct altd-
tudes a,? Give a proof or a counterexample with explanation.

21. Letus say that a graph G = (V,E) is a near-tree if it is connected and has at
most n + 8 edges, wheren=|V|. Give an algorithm with running time O(n)
that takes a near-tree G with costs on its edges, and returns a minimum
spanning tree of G. You may assume that all the edge costs are distinct.

22, Consider the Minimum Spanning Tree Problem on an undirected graph
G = (V,E), with a cost ¢, >0 on each edge, where the costs may not all
be different. If the costs are not all distinct, there can in general be
many distinct minimum-cost solutions. Suppose we are given a spanning
tree T C E with the guarantee that for every ee T, e belongs to some
minimum-cost spanning tree in G. Can we conclude that T itself must
be a minimum-cost spanning tree in G? Give aproof or a counterexample

with explanation.

23. Recall the problem of computing a minimum-cost arborescence in a
directed graph G=(V,E), with a cost ¢, > 0 on each edge. Here we will

consider the case inwhichGisa directed acyclic graph—thatis, it contains
no directed cycles.

As in general directed graphs, there can be many distinct minimum-
cost solutions. Suppose we are given a directed acyclic graph G = (V, E),
and an arborescence ACE with the guarantee that for every ec€ A, e
belongs to sonie minimum-cost arborescence in G. Can we conclude that
A itself must be a minimum-cost arborescence in G? Give a proof or a

counterexample with explanation.

24. Timing circuits are a crucial component of VLSI chips. Here’s a simple
model of such a timing circuit. Consider a complete balanced binary tree
with n leaves, where 1 is a pOWer of two. Each edge e of the tree has an
associated length ¢,, which is a positive number. The distance from the
root to a given leaf is the sum of the lengths of all the edges on the path

from the root to the leaf.

- Suppose we are given a set of points P = (p,, p,

Exercises

Fi i
gure 4.20 An instance of the zero-skew problem, described in Exercise 23

T .

, thek;z :)Ot gen’erates a clock signal which is propagated along the edges

o Ieafv‘es. Wwe'll a§sume that the time it takes for the signal to reaci
is proportional to the distance from the root to the leaf. :

he g;:;llf “:111 Irtle_a:es do not have the same distance from the root, then
o il o} tr;:_ach the leaves at the same time, and this is a big
prob tﬁe ¢ 2111‘( e leaves Fo be completely synchronized, and all to
e thes lg; t;t the same: time. To make this happen, we will have to
e ease the th;(g s’, of certain edges, so that all root-to-leaf paths have
e same e g .we.re not able to shrink edge lengths). If we achieve this
ee (with its new edge lengths) will be said to have zero Skew,

Our goal is to achieve zer i
o skew in a way th
edge lengths as small as possible. y that keeps the sum of all the

Giv i i
e an algorithm that increases the lengths of certain edges so that

the resulting tree has ze
10 ske .
possible. w and the total edge length is as small as

Example. Consider the tree in Fi
einFigure 4.20, in whi
and numbers indicate the edge lengths. chletters name the nodes

thre;flll:n un]:ilque optimal solution for this instance would be to take th
e gth-1 edges and increase each of their lengths to 2. The resultine
zero skew, and the total edge length is 12, the smallest possiblég

distan ; . .. > Py}, together with
ce function d on the set P; d is simply a function ‘o?: pairs of points i]i

P with the properdes that d(p;, p.) = i
e ®:, pj) =d(p;, pp) > 0if i # j, and that d(p;, p;) = 0
We define a hiefarchical i
melric on P to be any distan i
. ce funct
Wa;:: cogstruc.ted as follows. We build arooted tree T with n lea(zfrésr thac;
b :Zﬂf}tﬁ with feach node v of T (both leaves and internal nod’e:;la
v- These heights must satisfy the properties that h(v) =0for each
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202

leaf v, and if u is the parent of vin T, then h(u) = h(). We place each ptohm‘t
in P at a distinct leaf in T. Now, for any pair of pomts p; and pjl,nm?;;
distance t(p;, p)) 1s defined as follows. We determine thg least .co. me
ancestor vin T of the leaves containing p; and p;, and define z(p;, 1?]) = Hy-
We say that a hierarchical metric t is consistent with our distance
function d if, for all pairs i, j, we have (D, py) < d@i> Dy)- .
Give a polynomial-time algorithm that takes the .dlstance fu.ncuon d
and produces a hierarchical metric v with the following properties.
(i) <« is consistent with d, and . , _
(i) if ¢’ is any other hierarchical metric consistent with 4, then v'(p, Py <
©(p;, py) for each pair of points p; and p;.

26. One of the first things you learn 1;1 cz;lcilus v\l,; ilr(:/\; 'i)omehJemMmmW i
i ction such as y=ax*+bx+¢, g
g;r:nn;l;lbgl?frf:: Problem, on the other hand, i§ a. minimizauofn proliaécia]??j (e)£

a very different flavor: there are now just a finite number o pqss um S

for how the minimum might be achieved—rather than a contmut "o

possibilities—and we are interested in how to perform the c‘o?r.xp‘u a
without having to exhaust this (huge) finite number of possmﬂme.s.

One éan ask what happens when these ‘two.minimization l;?;;:
are brought together, and the following question is an exa\n:tpéeelsoa ﬁme:
Supposewehavea connected graph G = (V, E). Eachedge (.z novtv hesa fme
yarying edge cost given by a function f? ;R—>R. Thu§, ‘at time i(helr scost

f.(). We'll assume that all these funCUOn§ arc.a posmve. oyer —
range. Observe that the set of edges constituting the mimmum p oot
tree of G may change over time. Also, of CO;It;e’ tél]; :ot.st V\(I)‘f’]tiag ;ﬁms

i ecomes a function ol the ; ;
;Enazgigcz: /zfngt}zral problem then becomes: find a value of ¢ at which
cc(t) is minimized. ) . o
Suppose each function f is a polynomial of degree 2 ]fj(é) ;nc;e o
| bt + c,, where a, > 0. Give an algorithm that takes th‘e grap na e
5 values {(ae, be, o) : € € E} and returns a value of the me t at Lv ieh e
minimum spanning tree has minimum cost. Your algorithm s oh e
\ in time polynomial in the number of nodes and edges of the grz;p ).} fou
| may assume that arithmetic operatif)ns on the numbers {(de, De; Ce
| be done in constant time per operation.

27. In trying to understand the combinatorial structure of spam‘ling tree;,
we can consider the space of all possible spanning irees of a given g;ap
and study the properties of this space. This is a strategy that has been

applied to many similar problems as well.
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Here is one way to do this. Let G be a connected graph, and T and T’
two different spanning trees of G. We say that T and T’ are neighbors if
T contains exactly one edge that is not in 7, and T’ contains exactly one
edge that is not in 7.

Now, from any graph G, we can build a (large) graph % as follows.
The nodes of H are the spanning trees of G, and there is an edge between
two nodes of J if the corresponding spanning trees are neighbors.

Is it true that, for any connected graph G, the resulting graph
is connected? Give a proof that H is always connected, or provide an

example (with explanation) of a connected graph G for which H is not
connected. ' '

28. Suppose you're a consultant for the networking company CluNet, and
they have the following problem. The network that they're currently
working on is modeled by a connected graph G = (V, E) with n nodes.
Each edge e is a fiber-optic cable that is owned by one of two companies—
creatively named X and Y—and leased to CluNet.

Their plan is to choose a spanning tree T of G and upgrade the links
corresponding to the edges of T. Their business relations people have
already concluded an agreement with companies X and ¥ stipulating a
number k so that in the tree T thatis chosen, k of the edges will be owned
by X and n — k — 1 of the edges will be owned by Y.

CluNet management now faces the following problem. It is not at all
clear to them whether there even exists a spanning tree T meeting these
conditions, or how to find one if it exists. So this is the problem they put
to you: Give a polynomial-time algorithm that takes G, with each edge
labeled X or Y, and either (i) returns a spanning tree with exactly k edges
labeled X, or (ii) reports correctly that no such tree exists.

29. Given a list of n natural numbers d,, d,, ..., d,, show how to decide
" in polynomial time whether there exists an undirected graph G = (V, E)
whose node degrees are precisely the numbers d;, d,, .. ., d,. (That is, if
V={v,v,, ..., vy}, then the degree of v; should be exactly d;.) G should not
contain multiple edges between the same pair of nodes, or “loop” edges
with both endpoints equal to the same node.

30. Let G=(V,E) be a graph with n nodes in which each pair of nodes is
joined by an edge. There is a positive weight wy on each edge (i, /); and
we will assume these weights satisfy the triangle inequality wy, < W + W
For a subset V' C V, we will use G[V’] to denote the subgraph (with edge
weights) induced on the nodes in V'.
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31.

We are given aset XV of k terminals that must be connecte(i;y
edges. We say that a Steiner treeon X is a se‘F 7 so that X g;.Z cV, toge t;r
with a spanning subtree T of G[Z). The weight of the Steiner tree 1s the
weight of the tree T.

Show that the problem of finding a minimum-weight Steiner tree on
X can be solved in time O(n9®).

Let’s go back to the original motivation for the Minimum Spanning Tr:kc;
Problem. We are given a connected, undirected graph‘ G=(V,E) wi ;
positive edge lengths {£.}, and we want to find a spanning subgraph (?
it. Now suppose we are willing to settle for a subgraph H = (V,F) thatis
“denser” than a tree, and we are interested in guaranteeing thgt, fOIj each
pair of vertices u,veV, the length of the shortest u-?; path in H is no;l
much longer than the length of the shortest u-v path in G By the lengt
of a path P here, we mean the sum of ¢, over all edges e in P.

Here’s a variant of Kruskal’s Algorithm designed to produce such a
subgraph. - .

e First we sort all the edges in order of increasing length. (You may
assume all edge lengths are distinct.) .

o We then construct a subgraph H= (V. F) by considering each edge in
order. .

o When we come to edge e = (u, v), we add e to the subgrap].:l H if there
is currently no u-v path in H. (This is what Kruskal’s Al.gorxthm would
do as well.) On the other hand, if there is a u-v path in H, we.let 4uv
denote the length of the shortest such path; again, length is with
respect to the values {£,}. We add e to H if 3¢, < dy,.

In other words, we add an edge even when u and v are already in the same

connected component, provided that the addition of the edge reduces

their shortest-path distance by a sufficient amount.
Let H = (V, F) be the subgraph of G returned by the algorithm.

(a) Prove that for everSr pair of nodes u,vev, the length of the shortest
u-v path in H is at most three times the length of the shortest u-v
pathinG. .

(b) Despite its ability to approximately preserve shortest-path distances,
the subgraph H produced by the algorithm cannot be too de1.1$e.
Let f(n) denote the maximum number of edges that can po§31bly
be produced as the output of this algorithm, over all n-node input
graphs with edge lengths. Prove that

lim i(-@- =0.

n—o00 112

Notes and Further Reading

32. Consider a directed graph G = (V, E) with a root r € V and nonuegative
costs on the edges. In this problem we consider variants of the minimum-
cost arhorescence algorithm.

(@ The algorithm discussed in Section 4.9 works as follows. We modify
the costs, consider the subgraph of zero-cost edges, look for a
directed cycle in this subgraph, and contract it (if one exists). Argue
briefly that instead of looking for cycles, we can instead identify and
contract strong components of this subgraph.

(b) In the course of the algorithm, we defined y, to he the minimum
cost of an edge entering v, and we modified the costs of all edges e
entering node v to be ¢, =, — y,. Suppose we instead use the follow-
ing modified cost: ¢ = max(0, ¢, — 2y,). This new change is likely to
turn more edges to 0 cost. Suppose now we find an arborescence T
of 0 cost. Prove that this T has cost at most twice the cost of the
minimum-cost arborescence in the original graph.

(c) Assume you do not find an arborescence of 0 cost. Contract all 0-
cost strong components and recursively apply the same procedure
on the resulting graph until an arhorescence is found. Prove that this
T has cost at most twice the cost of the minimum-cost arborescence
in the original graph.

33. Suppose you are given a directed graph G = (V, E) in which each edge has
a cost of either 0 or 1. Also suppose that G has a node r such that there is a
path fromr to every other node in G. You are also given an integer k. Give a
polynomial-time algorithm that either constructs an arborescence rooted

at r of cost exactly k, or reports (correctly) that no such arborescence
exists.

Notes and Further Reading

Due to their conceptual cleanness and intuitive appeal, greedy algorithms have
a long history and many applications throughout computer science. In this
chapter we focused on cases in which greedy algorithms find the optimal
solution. Greedy algorithms are also often used as simple heuristics even when
they are not guaranteed to find the optimal solution. In Chapter 11 we will
discuss greedy algorithms that find near-optimal approximate solutions.

As discussed in Chapter 1, Interval Scheduling can be viewed as a special
case of the Independent Set Problem on a graph that represents the overlaps
among a collection of intervals. Graphs arising this way are called interval
graphs, and they have been extensively studied; see, for example, the hook
by Golumbic (1980). Not just Independent Set but many hard computational
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problems become much more tractable when restricted to the special case of
interval graphs.

Interval Scheduling and the problem of scheduling to minimize the max-
imum lateness are two of a range of basic scheduling problems for which
a simple greedy algorithm can be shown to produce an optimal solution. A
wealth of related problems can be found in the survey by Lawler, Lenstra,
Rinnooy Kan, and Shmoys (1993).

The optimal algorithm for caching and its analysis are due to Belady
(1966). As we mentioned in the text, under real operating conditions caching

algorithms must make eviction decisions in real time without knowledge of

future requests. We will discuss such caching strategies in Chapter 13.

The algorithm for shortest paths in a graph with nonnegative edge lengths
is due to Dijkstra (1959). Surveys of approaches to the Minimum Spanning Tree
Problem, together with historical background, can be found in the reviews by
Graham and Hell (1985) and Nesetril (1997).

The single-link algorithm is one of the most.widely used approaches to,
the general problem of clustering; the books by Anderberg (1973), Duda, Hart,

- and Stork (2001), and Jain and Dubes (1981) survey a variety of clustering

techniques.

The algorithm for optimal prefix codes is due to Huffman (1952); the ear-
lier approaches mentioned in the text appear in the books by Fano (1949) and
Shannon and Weaver (1949). General overviews of the area of data compres-
sion can be found in the book by Bell, Cleary, and Witten (1990) and the
survey by Lelewer and Hirschberg (1987). More generally, this topic belongs
to the area of information theory, which is concerned with the representation
and encoding of digital information. One of the founding works in this field
is the book by Shannon and Weaver (1949), and the more recent textbook by
Cover and Thomas (1991) provides detailed coverage of the subject. |

The algorithm for finding minimum-cost arborescences is generally cred-
ited to Chu and Lin (1965) and to Edmonds (1967) independently. As discussed
in the chapter, this multi-phase approach stretches our notion of what consti-
tutes a greedy algorithm. It is also important from the perspective of linear
programming, since in that context it can be viewed as a fundamental ap-
plication of the pricing method, or the primal-dual technique, for designing
algorithms. The book by Nemhauser and Wolsey (1988) develops these con-
nections to linear programming. We will discuss this method in Chapter 11 in
the context of approximation algorithms.

More generally, as we discussed at the outset of the chapter, it is hard to
find a precise definition of what constitutes a greedy algorithm. In the search
for such a definition, it is not even clear that one can apply the analogue

'.ITIotes and Further Reading

of U.S. Supreme Court Justice Potter Stewart’s famous test for obscenity—
“I know it when I see it”—since one finds disagreements within the research
community on what constitutes the boundary, even intuitively, between greedy
and nongreedy algorithms. There has been research aimed at formalizing
classes of greedy algorithms: the theory of matroids is one very influential
example (Edmonds 1971; Lawler 2001); and the paper of Borodiﬁ, Nielsen, and
Rackoff (2002) formalizes notions of greedy and “greedy-type” algorithm’s as
well as providing a comparison to other formal work on this question. ’

Note; on the Exercises Exercise 24 is based on results of M. Edahiro, T. Chao
Y. Hsu, J. Ho, K. Boese, and A. Kahng; Exercise 31 is based on a result of Ingo
Alihofer, Gautam Das, David Dobkin, and Deborah Joseph.
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Divide and Conquer

Divide and conguer refers to a class of algorithmic techniques in which one
breaks the input into several parts, solves the problem in each part recursively,
and then combines the solutions to these subproblems into an overall solution.
In many cases, it can be a simple and powerful method.

Analyzing the running time of a divide and conquer algorithm generally
involves solving a recurrence relation that bounds the running time recursively
in terms of the running time on smaller instances. We begin the chapter with
a general discussion of recurrence relations, illustrating how they arise in the
analysis and describing methods for working out upper bounds from them.

We then illustrate the use of divide and conquer with applications to
a number of different domains: computing a distance function on different
rankings of a set of objects; finding the closest pair of points in the plane;
multiplying two integers; and smoothing a noisy signal. Divide and conquer
will also come up in subsequent chapters, since it is a method that often works
well when combined with other algorithm design techniques. For example, in
Chapter 6 we will see it combined with dynamic programming to produce a
space-efficient solution to a fundamental sequence comparison problem, and
in Chapter 13 we will see it combined with randomization to yield a simple
and efficient algorithm for computing the median of a set of numbers.

One thing to note about many settings in which divide and conquer
is applied, including these, is that the natural brute-force algorithm may
already be polynomial time, and the divide and conguer strategy is serving
to reduce the running time to a lower polynomial. This is in contrast to most
of the problems in the previous chapters, for example, where brute force was
exponential and the goal in designing a more sophisticated algorithm was to
achieve any kind of polynomial running time. For example, we discussed in
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Chapter 2 that the natural brute-force algorithm for finding the closest pair
among n points in the plane would simply measure all ©(n?) distances, for
a (polynomial) running time of ®(n?). Using divide and conquer, we will
improve the running time to O(n log n). Ata high level, then, the overall theme
of this chapter is the same as what we’ve been seeing earlier: that improving on
brute-force search is a fundamental conceptual hurdle in solving a problem
efficiently, and the design of sophisticated algorithms can achieve this. The
difference is simply that the distinction between brute-force search and an
improved solution here will not always be the distinction between exponential

and polynomial.

5.1 A First Recurrence: The Mergesort Algorithm

To motivate the general approach to analyzing divide-and-conguer algorithms,
we begin with the Mergesort Algorithm. We discussed the Mergesort Algorithm
briefly in Chapter 2, when we surveyed common running times for algorithns.
Mergesort sorts a given list of numbers by first dividing them into two equal
halves, sorting each half separately by recursion, and then combining the
results of these recursive calls—in the form of the two sorted halves—using
the linear-time algorithm for merging sorted lists that we saw in Chapter 2.

To analyze the running time of Mergesort, we will abstract its behavior into
the following template, which describes many common divide-and-conguer
algorithms.

(1) Divide the input into two pieces of equal size; solve the two subproblems
on these pieces separately by recursion; and then combine the two results
into an overall solution, spending only linear time for the initial division
and final recombining.

In Mergesort, as in any algorithm that fits this style, we also need a base case
for the recursion, typically having it “bottom out” on inputs of some constant
size. In the case of Mergesort, we will assume that once the input has been
reduced to size 2, we stop the recursion and sort the two elements by simply
comparing them to each other.

Consider any algorithm that fits the pattern in (1), and let T(n) denote its
worst-case running time on input instances of size n.. Supposing that 2 is even,
the algorithm spends O(n) time to divide the input into two pieces of size /2
each; it then spends time T(11/2) to solve each one (since T(n/2) is the worst-
case running time for an input of size n/2); and finally it spends O(n) time
to combine the solutions from the two recursive calls. Thus the running time
T(n) satisfies the following recurrence relation. '

|

5.1 A First Recurrence: The Mergesort Algorithm

(5.1) For some constant c,

T() <2T(m/2)+cn

when n > 2, and
TQ2) <c.

tl"he structure of (5.1) is typical of what recurrences will look like: there’s an
inequality or equation that bounds T'(n) in terms of an expression involving
T(k) for smaller values k; and there is a base case that generally says that
T(n) is equal to a constant when n is a constani. Note that one can also write
(5.1) more informally as T(n) < 2T(n1/2) + O(n), suppressing the constant

c. However, it is generally useful to make c explicit when analyzing the
recurrence.

' To keep the exposition simpler, we will generally assume that parameters
like nn are even when needed. This is somewhat imprecise usage; without this
assumption, the two recursive calls would be on problems of size [r/2] and
[n/2], and the recurrence relation would say that

T(m) <T(n/2D) + T(n/2]) +cn

forn z 2. Nevertheless, for all the recurrences we consider here (and for most
that arise in practice), the asymptotic bounds are not affected by the decision

to ignore all the floors and ceilings, and it makes the symbolic manipulation
much cleaner.

Now (5.1) d.oes not explicitly provide an asymptotic bound on the growth
rate of the ‘functmn T; rather, it specifies T(n) implicitly in terms of its values
on smaller inputs. To obtain an explicit bound, we need to solve the recurrence

relation so that T appears only on the left-hand side of the i i
i inequality,
right-hand side as well. quality, not the

Recurrence solving is a task that has been incorporated into a number
of standard computer algebra systems, and the solution to many standard
recurrences can now be found by automated means. It is still useful, however,
to understand the process of solving recurrences and to recognize Whin;
recurrences lead to good running times, since the design of an efficient divide-
and-conquer algorithm is heavily intertwined with an understanding of how
a recurrence relation determines a running time. '

Approaches to Solving Recurrences

There are. two basic ways one can go about solving a recurrence, each of which
we describe in more detail below.
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o The most intuitively natural way to search for a solutionto a recurrencg is
to “unroll” the recursion, accounting for the running time across the f{ISt
few levels, and identify a pattern that can be continued as the recursTon
expands. One then sums the running times over all levels.of the recursion
(i.e., until it “bottoms out” on subproblems of constant size) and thereby
arrives at a total running time.

o A second way is to start with a guess for the solution, substitutf.e it .il'.ltO
the recurrence relation, and check that it works. Formally, on.e justifies
this plugging-in using an argument by induction on . There is a usgful
variant of this method in which one has a general form for the solution,
but does not have exact values for all the parameters. By leaving these
parameters unspecified in the substitution, one can often work them out

as needed.

We now discuss each of these approaches, using the recurrence in (5.1) as an
example. .
Unrolling the Mergesort Recurrence

Let’s start with the first approach to solving the recurrence in (5.1). The basic
argument is depicted in Figure 5.1. '

o Analyzing the first few levels: At the first level of recursion, vye have a
single problem of size 7, which takes time at most ¢z plus the time spent
in all subsequent recursive calls. At the next level, we have two problems
each of size nn/2. Each of these takes time at most cn/2, for a total of. at
most ¢71, again plus the time in subsequent recursive calls. At the third
level, we have four problems each of size n/4, each taking time at most
cn/4, for a total of at most cn.

Level 0: cn -

Level 1: cn/2 + cn/2 = cntotal

@ Level 2: 4{cn/4) = cn total

Figure 5.1 Unrolling the recurrence T'(n) = 2T(/2) + O@).

5.1 A First Recurrence: The Mergesort Algorithm

© Identifying a pattern: What’s going on in general? At level j of the
recursion, the number of subproblems has doubled j times, s0 there are
now a total of 2/. Each has correspondingly shrunk in size by a factor
of two j times, and so each has size n/2/, and hence each takes time at
most cr1/2. Thus level j contributes a total of at most 2(cn/2) = cn to
the total running time.

o Summing over all levels of recursion: We've found that the recurrence
in (5.1) has the property that the same upper bound of cn applies to
total amount of work performed at each level. The number of times the
input must be halved in order to reduce its size from n to 2 is log, n.
So summing the ¢n work over log n levels of recursion, we get a total
running time of O(n log n).

We summarize this in the following claim.

(5.2) Any function T(-) satisfying (5.1) is bounded by O(nlog n), when
n>1L

Substituting a Solution into the Mergesort Recurrence

The argument establishing (5.2) can be used to determine that the function
T(n) is bounded by O(nlog n). If, on the other hand, we have a guess for

the running time that we want to verify, we can do so by plugging it into the
recurrence as follows.

Suppose we believe that T'(n) <cnlog, n for all n > 2, and we want to
check whether this is indeed true. This clearly holds for n = 2, since in this
case cnlog, n = 2c, and (5.1) explicitly tells us that T(2) < c. Now suppose,
by induction, that T'(m) < cm log, m for all values of m less than n, and we
want to establish this for T'(r). We do this by writing the recurrence for T'()
and plugging in the inequality T'(n/2) < c(n/2) log,(n/2). We then simplify the
resulting expression by noticing that log,(12/2) = (log, n) — 1. Here is the full
calculation.

T(n)y <2T(n/2) +cn
< 2c(n/2)logy(n/2) +cn
=cn[(og, n) — 1]+cn
=(cnlog,n) —cn+cn
=c1log, ni.

This establishes the bound we want for T(1), assuming it holds for smaller
values m < 1, and thus it completes the induction argument.
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An Approach Using Partial Substitution

There is a somewhat weaker kind of substitution one can do, in which one
guesses the overall form of the solution without pinning down the exact values
of all the constants and other parameters at the outset.

Specifically, suppose we believe that T(n) = O(n log n), but we’re not
sure of the constant inside the O(-) notation. We can use the substitution
method even without being sure of this constant, as follows. We first write
T(n) < kn log, n for some constant k and base b that we’ll determine later.

(Actually, the base and the constant we’ll end up needing are related to each .

other, since we saw in Chapter 2 that one can change the base of the logarithm
by simply changing the multiplicative constant in front.)

Now we’d like to know whether there is any choice of k and b that will
work in an inductive argument. So we try out one level of the induction as
follows.

T(n) < 2T(n/2) + cn < 2k(1/2) logy(n/2) + cn.

It’s now very tempting to choose the base b = 2 for the logarithm, since we see’
that this will let us apply the simplification log,(n/2) = (log, n) — 1. Proceeding
with this choice, we have
T(n) < 2k(n/2)log,(n/2) +cn

= 2k(n/2)[(log, n) — 1]+ cn

=kn[(log, n) — 1]4+cn

= (kn log, n) — kn + cn.
Finally, we ask: Is there a choice of k that will cause this last expression to be

bounded by kn log, n? The answer is cleatly yes; we just need to choose any
k that is at least as large as ¢, and we get

T(n) < (knlog,n) — kn+cn <knlog, n,

which completes the induction.

Thus the substitntion method can actually be useful in working out the
exact constants when one has some guess of the general form of the solution.

5.2 Further Recurrence Relations

We’ve just worked out the solution to a recurrence relation, (5.1), that will
come up in the design of several divide-and-conquer algorithms later in this
chapter. As a way to explore this issue further, we now consider a class
of recurrence relations that generalizes (5.1), and show how to solve the
recurrences in this class. Other members of this class will arise in the design
of algorithms both in this and in later chapters.

5.2 Further Recurrence Relations

This more general class of algorithms is obtained by considering divide-
and-conquer algorithms that create recursive calls on g subproblems of size
n/2 each and then combine the results in O(n) time. This corresponds to
the Mergesort recurrence (5.1) when g = 2 recursive calls are used, but other
algorithms find it useful to spawn g > 2 recursive calls, or just a single (g = 1)
recursive call. In fact, we will see the case g > 2 later in this chapter when we
design algorithms for integer multiplication; and we will see a variant on the
case ¢ =1 much later in the book, when we design a randomized algorithm
for median finding in Chapter 13.

If T(n) denotes the running time of an algorithm designed in this style,
then T(n) obeys the following recurrence relation, which directly generalizes
(5.1) by replacing 2 with g:

(5.3) For some constant c,

T(n) <qT(n/2) +cn

when n > 2, and

T2)=<c.

We now describe how to solve (5.3) by the methods we’ve seen above:
unrolling, substitution, and partial substitution. We treat the cases g > 2 and

q =1 separately, since they are qualitatively different from each other—and
different from the case g = 2 as well.

The Case of g > 2 Subproblems

We .begin by unrolling (5.3) in the case g > 2, following the style we used
earlier for (5.1). We will see that the punch line ends up being quite different.

® Analyzing the first few levels: We show an example of this for the case
g=3 in Figure 5.2. At the first level of recursion, we have a single
problem of size n, which takes time at most cn plus the time spent in all
subsequent recursive calls. At the next level, we have g problems, each
of size /2. Each of these takes time at most cn/2, for a total of at most
(g/2)cn, again plus the time in subsequent recursive calls. The next level
yields ¢* problems of size n/4 each, for a total time of (g%/4)cn. Since

g > 2, we see that the total work per level is increasing as we proceed
through the recursion.

© Identifying a pattern: At an arbitrary level j, we have ¢/ distinct instances,

each of size n/2/. Thus the total work performed at level j is g/(cn/2) =
(q/2Ycn.
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Level 0: cn total

Level 1: cn/2 + cn/2 + cn/2 = (3/2)cn total

@ Level 2: 9(cn/4) = (9/4)cn total

Figure 5.2 Unrolling the recurrence T(n) <3T(1/2) + O(m).

o Summing over all levels of recursion: As before, there are log, 1 levels of
recursion, and the total amount of work performed is the sum over -all

these:
logy n—1 j log; n—1 j
q _ q _
T(n) < };; (-2—> n=cn ]-}_:(; <2>
]:: ol

This is a geometric sum, consisting of powers of r = g/2. We can use the
formula for a geometric snm when 7 > 1, which gives us the formula

rlogan —en rlogz
Tz \ =0 )=\

Since we’re aiming for an asymptotic upper bonnd, it is useful to figure
out what’s simply a constant; we can pull out the factor of r — 1 from
the denominator, and write the last expression as

T(n) < (—-—9——1-) nriogn,

Finally, we need to figure out what rlog2m is. Here we use alvebry heiglday
identity, which says that, for any a > 1 and b > 1, we have a'8° = b8 4.

Thus
Flogan — ploga™ — n108204/2) — nlog @1

Thus we have

' - ¢ 1 1
T(n) < (.._.C__l.) n-nlesd-1 < <_I:_:.i> nlo824 — O(n'°829).

We sum this up as follows.

5.2 Further Recurrence Relations

(5.4) Any function T(-) satisfying (5.3) with q > 2 is bounded by O(n'°829).

So we find that the running time is more than linear, since log, q > 1,
but still polynomial in n. Plugging in specific values of g, the running time
is O(n'°823) = O(n!*%) when ¢ = 3; and the running time is O('%824) = O(n?)
when g =4. This increase in running time as g increases makes sense, of
course, since the recursive calls generate more work for larger values of g.

Applying Partial Substitution The appearance of log, g in the exponent
followed naturally from our solution to (5.3), but it’s not necessarily an
expression one would have guessed at the outset. We now consider how an
approach based on partial substitution into the recurrence yields a different
way of discovering this exponent.

Suppose we guess that the solution to (5.3), when g > 2, has the form
T(n) < kn? for some constants k > 0 and d > 1. This is quite a general guess,
since we haven’t even tried specifying the exponent d of the polynomial. Now
let’s try starting the inductive argument and seeing what constraints we need
on k and d. We have

T(n) <qT(n/2) + cn,

and applying the inductive hypothesis to T(11/2), this expands to

n\4
T(m) < gk (5) +en
_ g, 4
—i‘zkn =+ cn.

This is remarkably close to something that works: if we choose d so that
g/2% =1, then we have T(n) < kn® + cn, which is almost right except for the
extra term cni. So let’s deal with these two issues: first, how to choose d so we
get /24 = 1; and second, how to get rid of the cn term.

Choosing d is easy: we want 2¢ =g, and so d = log, g. Thus we see that
the exponent log, g appears very naturally once we decide to discover which
value of d works when substituted into the recurrence.

But we still have to get rid of the cn term. To do this, we change the
form of our guess for T(n) so as to explicitly subtract it off. Suppose we try
the form T'(n) < kn? — £n, where we’ve now decided that d = log, g but we
haven’t fixed the constants k or £. Applying the new formula to T(11/2), this
expands to
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d
n n
T(n) < gk (E) —qt (5) +cn

q, q gt
=Ll Lpntcen
2d 2

:knd—- %€n+cn
=knd — (%‘3 —o)n.

This now works completely, if we simply choose £ so that (%_ﬁ —¢) == £: in other
words, £ = 2¢/(q — 2). This completes the inductive step for n. We also need
to handle the base case i = 2, and this we do using the fact that the value of
k has not yet been fixed: we choose k large enough so that the formula is a
valid upper bound for the case n = 2.

The Case of One Subproblem

We now consider the case of g = 1in (5.3), since this illustrates an outcome ‘

of yet another flavor. While we won’t see a direct application of the recurrence
for ¢=1 in this chapter, a variation on it comes up in Chapter 13, as we
mentioned earlier.

We begin by unrolling the recurrence to try constructing a solution.

o Analyzing the first few levels: We show the first few levels of the recursion
in Figure 5.3. At the first level of recursion, we have a single problem of
size n, which takes time at most cn plus the time spent in all subsequent
recursive calls. The next level has one problem of size n/2, which
contributes cn/2, and the level after that has one problem of size n/4,
which contributes cni/4. So we see that, unlike the previous case, the total
work per level when ¢ = 1is actually decreasing as we proceed through
the recursion.

e Identifying a pattern: At an arbitrary level j, we still have just one
instance; it has size /2 and contributes cn/2 to the running time.

e Summing over all levels of recursion: There are log, n levels of recursion,
and the total amount of work performed is the sum over all these:

log, n—1 o log; n~1 1
T(n) < — =L -1
(= Jg 5] ];, <2J>

This geometric sum is very easy to work out; even if we continued it to
infinity, it would converge to 2. Thus we have

T(n) <2cn=0m).

5.2 Further Recurrence Relations
cn time, plus
recursive calls O Level 0: cn total

@@ Level 1: cn/2 total

@ Level 2: cn/4 total

Figure 5.3 Unrolling the recurrence T(n) < T(1/2) + O(n).

We sum this up as follows.

(5.8) Any function T(-) satisfying (5.3) with g =41,i§;“bounde’d, by O(n): :

This is counterintuitive when you first see it. The algorithm is performing
log nn levels of recursion, but the overall running time is still linear in n. The
point is that a geometric series with a decaying exponent is a powerful thing:
fully half the work performed by the algorithm is being done at the top level
of the recursion.

It is also useful to see how partial substitution into the recurrence works
very well in this case. Suppose we guess, as before, that the form of the solution

is T(n) < kn®. We now try to establish this by induction using (5.3), assuming
that the solution holds for the smaller value r/2:

T(n)y<T{n/2)+cn

d
5k<§-) -+cn

k 4
_ﬁn -+ cn.

If we now simply choose d =1 and k = 2¢, we have

k
T(n) < 5n+cn=(§-+c)n=kn,

which completes the induction.

The Effect of the Parameter q. It is worth reflecting briefly on the role of the
parameter g in the class of recurrences T(n) < gT(1/2) + O(n) defined by (5.3).
When g = 1, the resulting running time is linear; when q =2, it’s O(n log n);
and when g > 2, it’s a polynomial bound with an exponent larger than 1 that
grows with g. The reason for this range of different running times lies in where
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most of the work is spent in the recursion: when g =1, the total running time
is dominated by the top level, whereas when g > 2 it’s dominated by the work
done on constant-size subproblems at the bottom of the recursion. Viewed this
way, we can appreciate that the recurrence for g = 2 really represents a “knife-
edge”—the amount of work done at each level is exactly the same, which is

what yields the O(n log n) running time.

A Related Recurrence: T(n) <2T(n/2) + on?)

We conclude our discussion with one final recurrence relation; it is illustrative

both as another application of a decaying geometric sum and as an interesting
contrast with the recurrence (5.1) that characterized Mergesort. Moreover, we
will see a close variant of it in Chapter 6, when we analyze a divide-and-
conquer algorithm for solving the Sequence Alignment Problem using a small
amount of working memory.
The recurrence is based on the following divide-and-conquer structure.
Divide the input into two pieces of equal size; solve the two subproblems,
on these pieces separately by recursion; and then combine the two results
into an overall solution, spending quadratic time for the initial division
and final recombining.
For our purposes here, we note that this style of algorithm has a running time
T(n) that satisfies the following recurrence.

(5.6) For some constarnt c,

T(n) < 2T(n/2) + e’

when n. > 2, and

TR)<c.

One’s first reaction is to guess that the solution will be T(n) = O(n?log 1),
since it looks almost identical to (5.1) except that the amount of work per level
is larger by a factor equal to the input size. In fact, this upper bound is correct
(it would need a more careful argument than what’s in the previous sentence),
but it will turn out that we can also show a stronger upper bound.

We’ll do this by unrolling the recurrence, following the standard template
for doing this.

o Analyzing the first few levels: At the first level of recursion, we have a
single problem of size 1, which takes time at most cn? plus the time spent
in all subsequent recursive calls. At the next level, we have two problems,
each of size n/2. Each of these takes time at most c(n/2)* = cn? /4, for a

5.3 Counting Inversions

total of at most cn?/2, again plus the time in subsequent recursive calls
zfxt the third level, we have four problems each of size n/4, each taking,;
time at most c(11/4)% = cn?/16, for a total of at most cn?/4. Already we see
that something is different from our solution to the analogous recurrence
(5.1); whereas the total amount of work per level remained the same in
that case, here it’s decreasing.

o Identifying a pattern: At an arbitrary level j of the recursion, there are %
subproblems, .each of size n/2/, and hence the total work at this level is
bounded by 2¢(2)? = cn?/2.

o Summing over all levels of recursion: Having gotten this far in the calcu-
lation, we’ve arrived at almost exactly the same sum that we had for the
case ¢ = 1 in the previous recurrence. We have

log, n—1 on? logy n—~1 1
T < — =cn? = 2= om?
; 5 ]z}_; 5 ) <2 =0m?,

where the second inequality follows from the fact that we have a con-
vergent geometric sum.

In retrospect, our initial guess of T(n) = O(n?log n), based on the analogy
to (5.1), was an overestimate because of how quickly n? decreases as we
reglace it with (5)2, ($)?, (%)% and so forth in the unrolling of the recurrence
This means that we get a geometric sum, rather than one that grows by a ﬁxeci
amount over all n levels (as in the solution to (5.1)).

5.3 Counting Inversions

We’ve spent some time discussing approaches to solving a number of common
rgcgrrences. The remainder of the chapter will illustrate the application of
divide-and-conquer to problems from a number of different domains; we will
use what we’ve seen in the previous sections to bound the runnh’lg' times
of these algorithms. We begin by showing how a variant of the Mergesort

technique can be used to solve a problem that is not directly related to sorting
numbers.

The Problem

We will consider a problem that arises in the analysis of rankings, which
are becoming important to a number of current applications. For exa’mple a
n.urnl')er of sites on the Web make use of a technique known as collaboranfve
filtering, in which they try to match your preferences (for books, movies
resta.mrants) with those of other people out on the Internet. Once the Web sité
has identified people with “similar” tastes to yours—based on a comparison
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Figure 5.4 Counting the
number of inversions in the
sequence 2,4,1,3,5. Each
crossing pair of line segments
corresponds to one pair that
is in the opposite order in
the input list and the ascend-
ing list—in other words, an
inversion.
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of how you and they rate varions things—it can recommend new things that
these other people have liked. Another application arises in meta-search tools
on the Web, which execute the same query on many different search engines
and then try to synthesize the results by looking for similarities and differences
among the various rankings that the search engines return.

A core issue in applications like this is the problem of comparing two
rankings. You rank a set of n movies, and then a collaborative filtering system
consults its database to look for other people who had “similar” rankings. But
what’s a good way to measure, numerically, how similar two people’s rankings
are? Clearly an identical ranking is very similar, and a completely reversed
ranking is very different; we want something that interpolates throngh the

middle region.

Let’s consider comparing your ranking and a stranger’s ranking of the
same set of n movies. A natural method would be to label the movies from
1 to n according to your ranking, then order these labels according to the
stranger’s ranking, and see how many pairs are “out of order.” More concretely,
we will consider the following problem. We are given a sequence of n numbers
ay, . . . » y; we will assume that all the nnmbers are distinct. We want to define
a measure that tells ns how far this list is from being in ascending order; the
value of the measure should be 0if a; < @, < . . . < ap, and should increase as
the numbers become more scrambled.

A natural way to quantify this notion is by connting the number of

inversions. We say that two indices i < j form an inversion if a; > a;, that is,

if the two elements a; and a; are “ont of order” We will seek to determine the
number of inversions in the sequence ay, . . ., an-

Just to pin down this definition, consider an example in which the se-
guenceis 2,4, 1, 3, 5. There are three inversions in this sequence: (2, 1), (4, 1),
and (4, 3). There is also an appealing geometric way to visualize the inver-
sions, pictured in Figure 5.4: we draw the sequence of input numbers in the
order they’re provided, and below that in ascending order. We then draw a
line segment between each number in the top list and its copy in the lower
list. Each crossing pair of line segments corresponds to one pair that is in the
opposite order in the two lists—in other words, an inversion.

Note how the number of inversions is a measure that smoothly interpolates
between complete agreement (when the sequence is in ascending order, then
there are no inversions) and complete disagreement (if the sequence is in
descending order, then every pair forms an inversion, and so there are () of

them).

5.3 Counting Invetsions

/= Designing and Analyzing the Algorithm
What is the simplest algorithm to count inversions? Clearly, we could look

fat eve}"y pair of numbers (q;, a;) and determine whether they constitute an
inversion; this would take O(n?) time.

. We now show how to count the number of inversions much more quickl

11‘1 O(nlog n) time. Note that since there can be a quadratic number of 1'nve§j
sions, such an algorithm must be able to compute the total number without
ever looking at each inversion individnally. The basic idea is to follow the
strategy (T.) defined in Section 5.1. We set m = [1/27 and divide the list into
"the tvs{o pleces aj, ..., an and @y, ..., a,. We first count the number of
mv.ersmn‘s in each of these two halves separately. Then we count the number
of‘ mx@rsmns (a;, a;), where the two numbers belong to different halves; the
trick is that we must do this part in O(n) time, if we want to apply (5.2) E\Iote
that thes'e first-half/second-half inversions have a particularly nice fo‘rm" they
f;gizésiy:zj_ pairs (a;, a;), where g; is in the first half, a; is in the second

TQ help with counting the number of inversions between the two hélves
we will make the algorithm recursively sort the numbers in the two halves a;
Well. Having the recursive step do a bit more work (sorting as well as countin
inversions) will make the “combining” portion of the algorithm easier. i

So the crucial routine in this process is Merge—and—Count. Suppose we
pave r‘ecurs.ively sorted the first and second halves of the list and counted the
Inversions in each. We now have two sorted lists A and B, containing the first
anq secqnd halves, respectively. We want to produce a single sorted list C from
their nnion, while also counting the number of pairs (a, b) with a € A, b € B
and a > b. By our previous discussion, this is precisely what we Wﬂl neeci

g
p

‘This is closely related to the simpler problem we discussed in Chapter 2
which formed the corresponding “combining” step for Mergesort: there we haci
Two sorted lists A and B, and we wanted to merge them into a single sorted list
in O(n) time. The difference here is that we want to do something extra: not
only should we produce a single sorted list from A and B, but we should.also
count the number of “inverted pairs” (a, b) where a € A, b e B,anda>b

It turns ont that we will be able to do this in very much the same style
that we used for merging. Our Merge-and-Count routine will walk through
the sorted lists A and B, removing elements from the front and appendii
t.hem to the sorted list C. In a given step, we have a Current pointer into eacg
list, showing our current position. Suppose that these pointers are currently
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Elements inverted
with b] < {;

Merged result

Figure 5.5 Merging two sorted lists while also counting the number of inversions
between them.

at elements. ag; and b;. In one step, we compare the elements a; and b; being
pointed to in each list, remove the smaller one from its list, and append it to
the end of list C.

This takes care of merging. How do we also count the number of inver-
sions? Because A and B are sorted, it is actually very easy to keep track of the
number of inversions we encounter. Every time the element a; is appended to
C, no new inversions are encountered, since a; is smaller than everything left
in list B, and it comes before all of them. On the other hand, if b; is appended
to list C, then it is smaller than all the remaining items in A, and it comes
after all of them, so we increase our count of the number of inversions by the
number of elements remaining in A. This is the crucial idea: in constant time,
we have accounted for a potentially large number of inversions. See Figure 5.5
for an illustration of this process.

To summarize, we have the following algorithm.

Merge-and-Count (A, B)
Maintain a Current pointer into each list, initialized to
point to the fromt elements ’
Maintain a variable Count for the number of inversions,
initialized to 0
While both lists are nonempty:
Let g; and b; be the elements pointed to by the Current pointer
Append the smaller of these two to the output list
If b; is the smaller element then -
Increment Count by the number of elements remaining in A
Endif
Advance the Current pointer in the list from which the
smaller element was selected.
EndWhile

5.4 Finding the Closest Pair of Points

Once onme list is empty, append the remainder of the other list
to the output

Return Count and the merged list

The running time of Merge-and-Count can be bounded by the analogue
of the argument we used for the original merging algorithm at the heart of
Merggsort: each iteration of the While loop takes constant time, and in each
lteration we add some element to the output that will never be seen again
Thus the number of iterations can be at most the sum of the initial lengths of
A and B, and so the total running time is O(n).

‘ We use this Merge-and-Count routine in a recursive procedure that
simultaneously sorts and counts the number of inversions in a list L.

Sort-and-Count (L)
If the list has one element then
there are no inversions
Else
Divide the list into two halves:
A contains the first [n/2] elements
"B contains the remaining [n/2] elements
(r4, A) = Sort-and-Count(A)
(rg, B) = Sort-and-Count(B)
(r,L) = Merge-and-Count (A, B)
Endif
Return r=r4+r5+r, and the sorted list L

Since our Merge-and-Count procedure takes O(n) time, the running time

T(n) of the full Sort-and-Count procedure satisfies the recurrence (5.1) By
(5.2), we have '

(Z.?) The Soa':t-an'd-Count algorithm correctly sorts the input Zi’si and courts
t ’e number of inversions; it runs in O(n log n) time for a list with n elements.

5.4 Finding the Closest Pair of Points

We now describe another problem that can be solved by an algorithm in the
style we’ve been discussing; but finding the right way to “merge” the solutions

to the two subproblems it generates requires quite a bit of ingenuity.
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/ﬁ The Problem

The problem we consider is very simple to state: Given n points in the plane,
find the pair that is closest together.

The problem was considered by M. 1. Shamos and D. Hoey in the early
1970s, as part of their project to work out efficient algorithms for basic com-
putational primitives in geometry. These algorithms formed the foundations
of the then-fledgling field of computational geometry, and they have found
their way into areas such as graphics, computer vision, geographic informa-
tion systems, and molecular modeling. And although the closest-pair problem
is one of the most natural algorithmic problems in geometry, it is surprisingly
hard to find an efficient algorithm for it. It is immediately clear that thereis an
O(n?) solution—compute the distance between each pair of points and take
the minimum—and so Shamos and Hoey asked whether an algorithm asymp-
totically faster than quadratic conld be found. It took quite a long time before
they resolved this question, and the O(n log ) algorithm we give below is
essentially the one they discovered. In fact, when we return to this problem in
Chapter 13, we will see that it is possible to further improve the running timé
to O(r1) using randomization.

¥ Designing the Algorithm
We begin with a bit of notation. Let us denote the set of points by P=
{p1> ... Dn), Where p; has coordinates (x;, y;); and for two points p;, p; € P,
we use d(p;, p;) to denote the standard Fuclidean distance between them. Our
goal is to find a pair of points p;, p; that minimizes d(p;, p))-

We will assume that no two points in P have the same x-coordinate or
the same y-coordinate. This makes the discussion cleaner; and it’s easy to
eliminate this assumption either by initially applying a rotation to the points
that makes it true, or by slightly extending the algorithm we develop here.

It’s instructive to consider the one-dimensional version of this problem for
a minute, since it is much simpler and the contrasts are revealing. How would
we find the closest pair of points on a line? We’d first sort them, in O(nz log n)
time, and then we’d walk through the sorted list, computing the distance from
each point to the one that comes after it. It is easy to see that one of these
distances mmuist be the minimum one.

In two dimensions, we could try sorting the points by their y-coordinate
(or x-coordinate) and hoping that the two closest points were near one another
in the order of this sorted list. But it is easy to construct examples in which they
are very far apart, preventing us from adapting our one-dimensional approach.

Instead, our plan will be to apply the style of divide and conquer used
in Mergesort: we find the closest pair among the points in the “left half” of

5.4 Finding the Closest Pair of Points

P and ‘the closest pair among the points in the “right half” of P; and then we
use tI.us information to get the overall solution in linear time. If \:ve develop an
algorithm with this structure, then the solution of our basic recurrence f?om
(5.1) will give us an O(n log n) running time.

Itis the last, “combining” phase of the algorithm that’s tricky: the distances
that have not been considered by either of our recursive calls are precisely those
that occur between a point in the left half and a point in the right half; there
are Q(n?) such distances, yet we need to find the smallest one in O(n’) time
after the recursive calls return. If we can do this, our solution will be complete:

it w111 be the smallest of the values computed in the recursive calls and this
minimum “left-to-right” distance.

Sett?'ng Up the Recursion Let’s get a few easy things out of the way first.
I.t will bg VEI,’Y‘ useful if every recursive call, on a set P’ C P, begins with two
hsts.d§1 list P, in which all the points in P’ have been sorted by increasing x-
o s . -

ordinate, and a list Py in which all the points in P’ have been sorted by

increasing y-coordinate. We can ensure that this remai
: ’ mains true throu
algorithm as follows. ghout the

Fi.rst, before any of the recursion begins, we sort all the points in P by x-
coordinate .and agalp by y-coordinate, producing lists P, and P,. Attached to
each entry in each list is a record of the position of that point in both lists

T.he ﬁrst level of recursion will work as follows, with all further levels
Yvorkmg In a completely analogous way. We define Q to be the set of points
in .the first [1/2] positions of the list P, (the “left half”) and R to be the set of
points ‘in the final [r/2] positions of the list P, (the “right half”). See Figure 5.6
By a single pass through each of P, and P,, in O(n) time, we can create fhei

Q Line L R

o o

Figure 5.6 The first level of recursion: Thi i is di
I ec : The point set P is divided evenly int
the line L, and the closest pair is found on each side recursively. yinto Qand Kby
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following four lists: Q,, consisting of the points in Q‘sorted'by increasi‘ng xt
coordinate; Q,, consisting of the points in Q sorted by 1ncreasmg y-coordn;ate,
and analogous lists R, and R,. For each entry of each of these lists, as before,
we record the position of the point in both lists it belongs to.

We now recursively determine a closest pair of points in Q (with access

to the lists Q, and Q,). Suppose that ¢ and q’l"'are (correctly) ‘returne.d as'a
closest pair of points in Q. Similarly, we determine a closest pair of points in
R, obtaining 7} and 77.
Combining the Solutions The general machinery of' divide and conquer has
gotten us this far, without our really having delved into the structure of the
closest-pair problem. But it still leaves us with the problem that we saw
looming originally: How do we use the solutions to the two subproblems as
part of a linear-time “combining” operation? o

Let 8 be the minimum of d(qg.q7) and d(rg,r7). The real question is: Are
there points g € Q and r € R for which d(g, 1) < 6? If not, t'hen we have already
found the closest pair in one of our recursive calls. But if there are, then the
closest such g and r form the closest pair in P.

Let x* denote the x-coordinate of the rightmost point in Q, and let L denf)te

the vertical line described by the equation x = x*. This line L “separates” Q
from R. Here is a simple fact.

(5.8) If there exists g € Q and r € R for which d(q,1) <, then each of g and

r lies within a distance 8 of L.

Proof. Suppose such ¢ and r exist; we write g = (Gx, gy) and 7 = (7y, 1y). By
the definition of x*, we know that g, < x* <. Then we have

X =gy STy — gy <d(g, 1) <8

and
=% <1y — g =d(g.7) <8,

so each of g and r has an x-coordinate within § of x* and hence lies within
distance § of theline L. =m

So if we want to find a close g and r, we can restrict our search to th‘e
narrow band consisting only of points in P within é of L.LetSCP d'enote t.hJS
set, and let S, denote the list consisting of the points in S sorted by 1nc‘reasmg
y-coordinate. By a single pass through the list P,,, we can construct Sy in O(m)

time.
We can restate (5.8) as follows, in terms of the set S.

5.4 Finding the Closest Pair of Points

(5.9) Thereexistqe Q and r eR for which d(q,t) < if and only if there
exist s, s’ € S for which d(s, s') < $.

It’s worth noticing at this point that $ might in fact be the whole set P,in
which case (5.8) and (5.9) really seem to buy us nothing. But this is actually
far from true, as the following amazing fact shows.

(5.10) Ifs,s" € S have the property that d(s, s") <8, then s and s’ are within

15 positions of each other in the sorted list Sy

Proof. Consider the subset Z of the plane consisting of all points within
distance § of L. We partition Z into boxes: squares with horizontal and vertical
sides of length §/2. One row of Z will consist of four boxes whose horizontal

sides have the same y-coordinates. This collection of boxes is depicted in
Figure 5.7.

Suppose two points of S lie in the same box. Since all points in this box lie
on the same side of L, these two points either both belong to Q or both belong
to R. But any two points in the same box are within distance § - V22 <8,
which contradicts our definition of § as the minimum distance between any
pair of points in Q or in R. Thus each box contains at most one point of S.

Now suppose that s, s’ € S have the property that d(s, ') <8, and that they
are at least 16 positions apart in Sy. Assume without loss of generality that s
has the smaller y-coordinate. Then, since there can be at most one point per
box, there are at least three rows of Z lying between s and s’. But any two

‘points in Z separated by at least three rows must be a distance of at least 35/2

apart-—a contradiction. =

We note that the value of 15 can be reduced; but for our purposes at the
moment, the important thing is that it is an absolute constant.

In view of (5.10), we can conclude the algorithm as follows. We make one
pass through Sy, and for each s € Sy, we compute its distance to each of the
next 15 points in S,. Statement (5.10) implies that in doing so, we will have
computed the distance of each pair of points in S (if any) that are at distance
less than § from each other. So having done this, we can compare the smallest
such distance to §, and we can report one of two things: (i) the closest pair
of points in S, if their distance is less than 8; or (ii) the (correct) conclusion
that no pairs of points in S are within 8§ of each other. In case (i), this pair is
the closest pair in P; in case (ii), the closest pair found by our recursive calls
is the closest pair in P.

Note the resemblance between this p}ocedure and the algorithm we re-
jected at the very beginning, which tried to make one pass through P in order
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of y-coordinate. The reason such an approach works now %s due to the fhx~
tra knowledge (the value of §) we've gained from the recursive calls, and the
special structure of the set S. .

This concludes the description of the “combining” part 'of' the algqnthm,
since by (5.9) we have now determined whether the mlmmum distance
between a point in Q and a point in R is less than §, and if so, we have
found the closest such pair.

A complete description of the algorithm and its proof of correctness are
implicitly contained in the discussion so far, but for the sake of concreteness,
we now summarize both. ' '
Summary of the Algorithm A high-level description of the algorithm is the
following, using the notation we have developed above.

Closest-Pair(P)
Construct P, and P, (O(n log m) time)
@5, ) = Closest-Pair-Rec(Py,P)) ‘

Closest-Pair-Rec(Px, Py)
If |Pl < 3 then '
find closest pair by measuring all pairwise distances

Endif

Construct Q, Qy, Ry, Ry (O(n) time)
(a5.q97) = Closest-Pair-Rec(Qy, Q)
(g, = Closest-Pair-Rec(Ry, R)

8 = min(d(g}.q}), d(g.n))

+* = maximum x-coordinate of a point in set Q
L = {(x,y) : x = x¥}

$ = points in P within distance 8 of L.

Construct §, (O(n) time)
For each point s € §,, compute distance from s
to each of mext 15 points in Sy
Let s, s be pair achieving minimum of these distances

(O(m) time)

If d(s,s’) < & them
Return (s,s")

Else if d(g},q}) < d(g,7)) then
Return (g5,4q})

5.5 Integer Multiplication

Else
Return (r7,7))
Endif

/A~ Analyzing the Algorithm

We first prove that the algorithm produces a correct answer, using the facts
we’ve established in the process of designing it.

(5.11) The algorithm correctly outputs a closest pair of points in P.

Proof. As we’ve noted, all the components of the proof have already been
worked out, so here we just summarize how they fit together.

We prove the correctness by induction on the size of P, the case of [P]<3
being clear. For a given P, the closest pair in the recursive calls is computed
correctly by induction. By (5.10) and (5.9), the remainder of the algorithm
correctly determines whether any pair of points in S is at distance less than
8, and if so returns the closest such pair. Now the closest pair in P either has
both elements in one of Q or R, or it has one element in each. In the former
case, the closest pair is correctly found by the recursive call; in the latter case,
this pair is at distance less than 8, and it is correctly found by the remainder
of the algorithm. =

We now bound the running time as well, using (5.2).

; (5.12) The running ’time of thé algorithm is O(n log nn).

Proof. The initial sorting of P by x- and y-coordinate takes time O(n log n).
The running time of the remainder of the algorithm satisfies the recugence
(5.1), and hence is O(nlog n) by (5.2). = ’

5.5 Integer Multiplication

We now discuss a different application of divide and conquer, in which the
“default” quadratic algorithm is improved by means of a different recurrence.
The analysis of the faster algorithm will exploit one of the recurrences con-

sidered in Section 5.2, in which more than two recursive calls are spawned at
each level.

/¥ The Problem

The problem we consider is an extremely basic one: the multiplication of two

integers. In a sense, this problem is so basic that one may not initially think of it
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1100
x 1101
12 1100
?_(_E 0000
36 1100
-lg- 1100
156 10011100
(a) (b)

Figure 5.8 The elementary-school algorithm for multiplying two integers, in (a) decimal
and (b) binary representation.

even as an algorithmic question. But, in fact, elementary schoolers are taught a
concrete (and quite efficient) algorithm to multiply two n-digit numbers x and
y. You first compute a “partial product” by multiplying each digit of y separately
by x, and then you add up all the partial products. (Figure 5.8 should help you
recall this algorithm. In elementary school we always see this done in base-
10, but it works exactly the same way in base-2 as well.) Counting a single
operation on a pair of bits as one primitive step in this computation, it takes
O(n) time to compute each partial product, and O(n) time to combine it in
with the running sum of all partial products so far. Since there are 7z partial
products, this is a total running time of O(n?).

If you haven’t thought about this much since elementary school, there’s
something initially striking about the prospect of improving on this algorithm.
‘Aren’t all those partial products “necessary” in some way? But, in fact, it
is possible to improve on O(n?) time using a different, recursive way of
performing the multiplication.

= Designing the Algorithm
The improved algorithm is based on a more clever way to break up the product
into partial sums. Let’s assume we’re in base-2 (it doesn’t really matter), and
start by writing x as x; - 22 4 x,. In other words, x; corresponds to the “high-
order” 1/2 bits, and x, corresponds to the “low-order” n/2 bits. Similarly, we
write y = y; - 22 + y,. Thus, we have

xy=(q - 22+ )01 - 22 +0)
=x; - 2"+ (Yo + Xo¥1) - 22 + xgyp- (5.1)
Equation (5.1) reduces the problem of solving a single n-bit instance
(multiplying the two n-bit numbers x and y) to the problem of solving four n/2-
bit instances (computing the products x1yy, X1Y0, XoY1» and xgyg)- So we have

a first candidate for a divide-and-conquer solution: recursively compute the
results for these four r1/2-bit instances, and then combine them using Equation

5.5 Integer Multiplication

(5.1). The combining of the solution requires a constant number of additions

of O(n)-bit numbers, so it takes time O(n); thus, the running time T(n) is -

bounded by the recurrence
T(n)<4T(n/2) +cn

for a constant c. Is this good enough to give us a subquadratic running time?

" '\iVe carfl work out the answer by observing that this is just the case g = 4 of
e class of recurrences in (5.3). As we saw earlier in the ch i
o i 8 T 2 Oty s chapter, the solution
S.o, in fact, o.ur divide-and-conquer algorithm with four-way branching
was just ‘a complicated way to get back to quadratic time! If we want to do
better using a strategy that reduces the problem to instances on n/2 bits, we
should try to get a\‘zvay with only three recursive calls. This will lead to the case
g =3 of (5.3), which we saw had the solution T(n) < O(n!°8:9) = O(n!"%9).

” Recall tpat our gpal is to compute the expression x;y; - 2 + (XY + XV -
2Me g %Yo in Equation (5.1). It turns out there is a simple trick that lets us
dgten.:mne all of the terms in this expression using just three recursive calls. The
trick is to consider the result of the single multiplication (X +x) (v + y ) =
X1+ x1Yg + Xy + XgYo. This has the four products above added toéetheg at
the cost of a single recursive multiplication. If we now also determine x,y e’md
x0.yO by recursion, then we get the outermost terms explicitly, and we ;;elt the
middle term by subtracting x,y; and x,y, away from (x; + x0)(¥; + Vo)-

Thus, in full, our algorithm is

Recursive-Multiply(x,y):
Write x=ux;-2"2 +x,
y=y1-2"2+y,
Compute x|+ Xy and y;+yg
P = Recursive-Multiply(x;+xp, ¥;-+Yo)
x1y; = Recursive-Multiply(x;,y;)
XpYo = Recursive-Multiply(xg, yo)
Return xy; - 2" + (p — X1y, — Xa¥o) - 2% + xg¥g

A~ Analyzing the Algorithm

We can determine the running time of this algorithm as follows. Given two n-
plt numbers, it performs a constant number of additions on O(n)-bit numbers
in addition to the three recursive calls. Ignoring for now the issue that x; + x’
and y; + yp may have /2 + 1 bits (rather than just n/2), which turns 0111t no(i
to a.ffect the asymptotic results, each of these recursive calls is on an instance
of size n/2. Thus, in place of our four-way branching recursion, we now have
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(5.13)  The running time of Recursive-Multiply on two n-bit factors is
:.'.o‘(nlogz”s‘);_rfo(nlv.sg)' T L ‘ ; ’
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a three-way branching one, with a running time that satisfies

T(n) <3T(n/2)+cn

for a constant c. ‘ ‘
This is the case g = 3 of (5.3) that we were aiming for. Using the solution
to that recurrence from earlier in the chapter, we have

5.6 Convolutions and the Fast Fourier Transform

As a final topic in this chapter, we show how our basic recu‘rrence ﬁom (5‘.1)
is used in the design of the Fast Fourier Transform, an algorithm with a wide

range of applications.

£¥ The Problem

;Given two vectors @ = (dg, dy, - - - » dp1) and b= (bg, by, ..., b,_1), there are
a number of common ways of combining them. For example, one can compute‘
the sum, producing the vector a +b=(ap + bg, a1+ by, ... Q1+ bp_1);
or one can compute the inner product, producing the real numb‘er‘ a- bf:l
aghg + ayby + « - - + ap_1bp—1. (FoOI TEasons that will emerge shortly, it Is use

to write vectors in this section with coordinates that are indexed starting from
0 rather than 1.) ‘

A means of combining vectors that is very important in applicatlons,‘ even
if it doesn’t always show up in introductory linear algebra courses, is the
convolution a = b. The convolution of two vectors of length n (as a and b are)
is a vector with 2n — 1 coordinates, where coordinate k is equal to

Z aibj.

(i, J):i+ij=k
i,j<n

iy

In other words,
axb= (Clobg, (Iobl + albo, Cl.obz + Cl.]bl -+ Cl.zbo, v
an——zbnwl + an—lbn~2’ an—lbn—1)~

This definition is a bit hard to absorb when you first see it. Anoichgr way t‘o
think about the convolution is to picture an n x 1 table whose (i,j) entry is

aibj, like this,

5.6 Convolntions and the Fast Fourier Transform

apby  agby ... @by,  agb,,

atby @by ... aby, @b,

azb() azbl S azbn_z azbn——l
Gnaby ap1by ... ap_ibp_; an_1bn_;

and then to compute the coordinates in the convolution vector by summing
along the diagonals.

It’s worth mentioning that, unlike the vector sum and inner product,
the convolution can be easily generalized to vectors of different lengths,
a=(ap,ay,...,0n_1) and b= (by, by, ..., b,_y). In this more general case,
we define a % b to be a vector with m + n — 1 coordinates, where coordinate
k is equal to

Z Cl.l'bj.

@ itk

i<m,j<n
We can picture this using the table of products a;b; as before; the table is now
rectangular, but we still compute coordinates by summing along the diagonals.
(From here on, we’ll drop explicit mention of the condition i < m, j<ninthe
summations for convolutions, since it will be clear from the context that we
only compute the sum over terms that are defined.)

It’s not just the definition of a convolution that is a bit hard 