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Introduction

In conventional source coding,a single encoder exploits the redundancy of the source
in order to perform compression. Applications such as wireless sensor and camera
networks, however, involve multiple sources often separated in space that need to
be compressed independently. In such applications, it is not usually feasible to first
transport all the data to a central location and compress (or further process) it there.
The resulting source coding problem is often referred to as distributed source coding
(DSO). Its foundations were laid in the 1970s, but it is only in the current decade
that practical techniques have been developed, along with advances in the theoretical
underpinnings. The practical advances were,in part,due to the rediscovery of the close
connection between distributed source codes and (standard) error-correction codes
for noisy channels. The latter area underwent a dramatic shift in the 1990s, following
the discovery of turbo and low-density parity-check (LDPC) codes. Both constructions
have been used to obtain good distributed source codes.

In a related effort,ideas from distributed coding have also had considerable impact
on video compression, which is basically a centralized compression problem. In
this scenario, one can consider a compression technique under which each video
frame must be compressed separately, thus mimicking a distributed coding problem.
The resulting algorithms are among the best-performing and have many additional
features, including, for example, a shift of complexity from the encoder to the decoder.

This book summarizes the main contributions of the current decade. The chapters
are subdivided into two parts. The first part is devoted to the theoretical foundations,
and the second part to algorithms and applications.

Chapter 1, by Eswaran and Gastpar, summarizes the state of the art of the theory
of distributed source coding, starting with classical results. It emphasizes an impor-
tant distinction between direct source coding and indirect (or noisy) source coding:
In the distributed setting, these two are fundamentally different. This difference is
best appreciated by considering the scaling laws in the number of encoders: In the
indirect case, those scaling laws are dramatically different. Historically, compression
is tightly linked to transforms and thus to transform coding. It is therefore natural
to investigate extensions of the traditional centralized transform coding paradigm to
the distributed case. This is done by Chaisinthop and Dragotti in Chapter 2, which
presents an overview of existing distributed transform coders. Rebollo-Monedero and
Girod, in Chapter 3, address the important question of quantization in a distributed
setting. A new set of tools is necessary to optimize quantizers, and the chapter gives
a partial account of the results available to date. In the standard perspective, efficient
distributed source coding always involves an error probability,even though it vanishes
as the coding block length is increased. In Chapter 4, Tuncel, Nayak, Koulgi, and Rose
take a more restrictive view: The error probability must be exactly zero. This is shown

Distributed Source Coding: Theory, Algorithms, and Applications
Copyright © 2008 by Academic Press, Inc. All rights of reproduction in any form reserved.
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Introduction

to lead to a strict rate penalty for many instances. Chapter 5, by Goyal, Fletcher, and
Rangan, connects ideas from distributed source coding with the sparse signal models
that have recently received considerable attention under the heading of compressed
(or compressive) sensing.

The second part of the book focuses on algorithms and applications, where the
developments of the past decades have been even more pronounced than in the the-
oretical foundations. The first chapter, by Guillemot and Roumy, presents an overview
of practical DSC techniques based on turbo and LDPC codes, along with ample exper-
imental illustration. Chapter 7, by Roy, Ajdler, Konsbruck, and Vetterli, specializes
and applies DSC techniques to a system of multiple microphones, using an explicit
spatial model to derive sampling conditions and source correlation structures. Chap-
ter 8, by Pereira, Brites, and Ascenso, overviews the application of ideas from DSC
to video coding: A single video stream is encoded, frame by frame, and the encoder
treats past and future frames as side information when encoding the current frame.The
chapter starts with an overview of the original distributed video coders from Berkeley
(PRISM) and Stanford, and provides a detailed description of an enhanced video coder
developed by the authors (and referred to as DISCOVER). The case of the multiple
multiview video stream is considered by Nayak, Song, Tuncel, and Roy-Chowdhury
in Chapter 9, where they show how DSC techniques can be applied to the problem of
multiview video compression. Chapter 10, by Cheung and Ortega, applies DSC tech-
niques to the problem of distributed compression of hyperspectral imagery. Finally,
Chapter 11, by Vetro, Draper, Rane, and Yedidia, is an innovative application of DSC
techniques to securing biometric data. The problem is that if a fingerprint, iris scan, or
genetic code is used as a user password, then the password cannot be changed since
users are stuck with their fingers (or irises, or genes). Therefore, biometric information
should not be stored in the clear anywhere. This chapter discusses one approach to
this problematic issue, using ideas from DSC.

One of the main objectives of this book is to provide a comprehensive reference for
engineers, researchers, and students interested in distributed source coding. Results
on this topic have so far appeared in different journals and conferences. We hope
that the book will finally provide an integrated view of this active and ever evolving
research area.

Edited books would not exist without the enthusiasm and hard work of the
contributors. It has been a great pleasure for us to interact with some of the very
best researchers in this area who have enthusiastically embarked in this project
and have contributed these wonderful chapters. We have learned a lot from them.
We would also like to thank the reviewers of the chapters for their time and for
their constructive comments. Finally we would like to thank the staff at Academic
Press—in particular Tim Pitts, Senior Commissioning Editor, and Melanie Benson—for
their continuous help.

Pier Luigi Dragotti, London, UK
Michael Gastpar, Berkeley, California, USA
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CHAPTER 1 Foundations of Distributed Source Coding

1.1 INTRODUCTION

Data compression is one of the oldest and most important signal processing ques-
tions. A famous historical example is the Morse code, created in 1838, which gives
shorter codes to letters that appear more frequently in English (such as “e” and “t”).
A powerful abstraction was introduced by Shannon in 1948 [1]. In his framework,
the original source information is represented by a sequence of bits (or, equivalently,
by one out of a countable set of prespecified messages). Classically, all the informa-
tion to be compressed was available in one place, leading to centralized encoding
problems. However, with the advent of multimedia, sensor, and ad-hoc networks, the
most important compression problems are now distributed: the source information
appears at several separate encoding terminals. Starting with the pioneering work of
Slepian and Wolf in 1973, this chapter provides an overview of the main advances
of the last three and a half decades as they pertain to the fundamental performance
bounds in distributed source coding. A first important distinction is /ossless versus
lossy compression, and the chapter provides closed-form formulas wherever possi-
ble. A second important distinction is direct versus remote compression;in the direct
compression problem, the encoders have direct access to the information that is of
interest to the decoder, while in the remote compression problem, the encoders only
access that information indirectly through a noisy observation process (a famous exam-
ple being the so-called CEO problem). An interesting insight discussed in this chapter
concerns the sometimes dramatic (and perhaps somewhat unexpected) performance
difference between direct and remote compression. The chapter concludes with a
short discussion of the problem of communicating sources across noisy channels, and
thus, Shannon’s separation theorem.

1.2 CENTRALIZED SOURCE CODING
1.2.1 Lossless Source Coding

The most basic scenario of source coding is that of describing source output sequences
with bit strings in such a way that the original source sequence can be recovered
without loss from the corresponding bit string. One can think about this scenario
in two ways. First, one can map source realizations to binary strings of different
lengths and strive to minimize the expected length of these codewords. Compres-
sion is attained whenever some source output sequences are more likely than others:
the likelier sequences will receive shorter bit strings. For centralized source coding
(see Figure 1.1), there is a rich theory of such codes (including Huffman codes,
Lempel-Ziv codes, and arithmetic codes). However, for distributed source coding,
this perspective has not yet been very fruitful. The second approach to lossless source
coding is to map L samples of the source output sequence to the set of bit strings of a
fixed length N, but to allow a “small” error in the reconstruction. Here, “small” means
that the probability of reconstruction error goes to zero as the source sequence length
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FIGURE 1.1
Centralized source coding.

goes to infinity. The main insight is that it is sufficient to assign bit strings to “typical”
source output sequences. One measures the performance of a lossless source code
by considering the ratio N/L of the number of bits NV of this bit string to the num-
ber of source samples L. An achievable rate R=N /L is a ratio that allows for an
asymptotically small reconstruction error.

Formal definitions of a lossless code and an achievable rate can be found in
Appendix A (Definitions A.6 and A.7). The central result of lossless source coding
is the following:

Theorem 1.1. Given a discrete information source {S(n)},>0, the rate R is achievable via
lossless source coding if R > H.(S), where H.(S) is the entropy (or entropy rate) of the
source. Conversely, if R<Hw.(S), R is not achievable via lossless source coding.

A proof of this theorem for the i.i.d. case and Markov sources is due to Shannon
[1]. A proof of the general case can be found, for example, in [2,Theorem 3, p. 757].

Lossy Source Coding

In many source coding problems, the available bit rate is not sufficient to describe
the information source in a lossless fashion. Moreover, for real-valued sources, loss-
less reconstruction is not possible for any finite bit rate. For instance, consider a
source whose samples are i.i.d. and uniform on the interval [0, 1]. Consider the binary
representation of each sample as the sequence. BB .. .; here, each binary digit is
independent and identically distributed (i.i.d.) with probability 1/2 of being O or 1.
Thus, the entropy of any sample is infinite, and Theorem 1.1 implies that no finite rate
can lead to perfect reconstruction.

Instead, we want to use the available rate to describe the source to within the
smallest possible average distortion D, which in turn is determined by a distortion
function d(-, -), a mapping from the source and reconstruction alphabets to the non-
negative reals. The precise shape of the distortion function d(., -) is determined by
the application at hand. A widely studied choice is the mean-squared error, that is,
d(s,§)=1|s—$§|%.

It should be intuitively clear that the larger the available rate R, the smaller the
incurred distortion D. In the context of lossy source coding, the goal is thus to study
the achievable trade-offs between rate and distortion. Formal definitions of a lossless
code and achievable rate can be found in Appendix A (Definitions A.8 and A.9). Per-
haps somewhat surprisingly, the optimal trade-offs between rate and distortion can

5
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be characterized compactly as a “single-letter” optimization problem usually called the
rate-distortion function. More formally, we have the following theorem:

Theorem 1.2. Given a discrete memoryless source {S(n)},>0 and bounded distortion
function d: S XS — R, a rate R is achievable with distortion D for R > Rs(D), where

R¢(D)= min I(S;3) (1.1)
pGls):
E[d(S,8))<D

is the rate distortion function. Conversely, for R< Rs(D), the rate R is not achievable with
distortion D.

A proof of this theorem can be found in [3, pp. 349-356]. Interestingly, it can also
be shown that when D >0, R = Rg¢(D) is achievable [4].

Unlike the situation in the lossless case, determining the rate-distortion func-
tion requires one to solve an optimization problem. The Blahut-Arimoto algorithm
[5,6] and other techniques (e.g., [7]) have been proposed to make this computation
efficient.

While Theorem 1.2 is stated for discrete memoryless sources and a bounded distor-
tion measure, it can be extended to continuous sources under appropriate technical
conditions. Furthermore, one can show that these technical conditions are satisfied
for memoryless Gaussian sources with a mean-squared error distortion. This is some-
times called the quadratic Gaussian case. Thus, one can use Equation (1.1) inTheorem
1.2 to deduce the following.

Proposition 1.1. Given a memoryless Gaussian source {S(n)},~>o with S(n)~
N(0, 0?) and distortion function d(s, 8) = (s — §)?,
1 o?
Rs(D) == log" —. 1.2
s(D) Slog” & (1.2)
For general continuous sources, the rate-distortion function can be difficult to deter-
mine. In lieu of computing the rate-distortion function exactly, an alternative is to
find closed-form upper and lower bounds to it. The idea originates with Shannon’s
work [8],and it has been shown that under appropriate assumptions, Shannon’s lower
bound for difference distortions (d(s,$) =f (s —S§)) becomes tight in the high-rate
regime [9].
For a quadratic distortion and memoryless source {S(#)},,>¢ with variance o-f and
entropy power Qgs, these upper and lower bounds can be expressed as [10, p. 101]
2 °p 2°°D’ (1.3)
where the entropy power is given in Definition A.4. From Table 1.1, one can see that
the bounds in (1.3) are tight for memoryless Gaussian sources.
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Table 1.1 Variance and Entropy Power of Common Distributions
Source Name  Probability Density Function  Variance Entropy Power
' =1 ,~@—w?20? 2 2
Gaussian f(x) Noromeid o o
: — A, Alx— 2 2
Laplacian S(x)=4e Mm & £.2
1
5=, —asx—pusa .
Uniform Fly=1* . % S . ‘f
0, otherwise ;
S, R
—> ENC »
Dec — él
S'Z

FIGURE 1.2

Conditional rate distortion.

The conditional source coding problem (see Figure 1.2) considers the case in which
a correlated source is available to the encoder and decoder to potentially decrease the

encoding rate to achieve the same distortion. Definitions A.10 and A.11 formalize the
problem.

Theorem 1.3. Given a memoryless source S;, memoryless source side information S,
available at the encoder and decoder with the property that (Sl(k),Sg(k)) arei.i.d.in k, and

distortion function d:S; X 8 — %+, the conditional rate-distortion function is

Rss,(D)= min  I(S1; $1152). (1.4)
P(ﬂISl.Sz):
E[d(S1,51)]<D

A proof of Theorem 1.3 can be found in [11,Theorem 6, p. 11].

Because the rate-distortion theorem gives an asymptotic result as the blocklength
gets large, convergence to the rate-distortion function for any finite blocklength has
also been investigated. Pilc [4] as well as Omura [12] considered some initial inves-
tigations in this direction. Work by Marton established the notion of a source coding
error exponent [13],in which she considered upper and lower bounds to the prob-
ability that for memoryless sources, an optimal rate-distortion codebook exceeds
distortion D as a function of the blocklength.
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1.2.3 Lossy Source Coding for Sources with Memory

We start with an example. Consider a Gaussian source S with §(7) ~AN (0, 2) where
pairs Y (k) = (S(2k — 1), S(2k)) have the covariance matrix

(21
2—(1 2), (1.5)

and f/(k) are i.i.d. over k. The discrete Fourier transform (DFT) of each pair can be
written as

SRk—1)= % (S2k—1) +S(2k)) (1.6)
. 1
S2k) = — (S2k—1) — S(2k)), 1.
(2k) ﬁ(( ) —S(2k)) (1.7)

which has the covariance matrix

< (3 O
E—(O 1), (1.8)

and thus the source § is independent, with i.i.d. even and odd entries. For squared error
distortion, if C is the codeword sent to the decoder, we can express the distortion as
nD = Z?:l E[(S(H) —E[S@)|CD?]. By linearity of expectation, it is possible to rewrite
this as

nD=Y_E (50~ E30IC))’] (1.9)
i=1
2 ) N ) ,
= Y E[Bee-1n-E3ee-DIc)’|+ Y B[ (@0 - E5@RIC)’].
k=1 k=1
(1.10)

Thus, this is a rate-distortion problem in which two independent Gaussian sources
of different variances have a constraint on the sum of their mean-squared errors.
Sometimes known as the parallel Gaussian source problem, it turns out there is a well-
known solution to it called reverse water-filling [3, p. 348, Theorem 13.3.3], which in
this case, evaluates to the following:

Re(D) = S 1og ZL + L 1og 22 (1.11)
=—log — + = log —= :
s 2% D, 2%,
v, V<0'l.2,
D=1 ! (1.12)
o;, V=0,

where (rf =3, (r% =1, and v is chosen so that D; + D, =D.
This diagonalization approach allows one to state the following result for stationary
ergodic Gaussian sources.
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Proposition 1.2. Let S be a stationary ergodic Gaussian source with autocorrela-
tion function E[S,S,—r] = ¢ (k) and power spectral density

D)= Y e . (1.13)

kh=—x

Then the rate-distortion function for S under mean-squared error distortion is
given by:

1 (7 D(w)
R(D,))=— max 10, log dw (1.14)
4T J_ - v
1 aw
D,=— f min{v, ®(w)}dw. (1.15)
27w ) »
PROOF. See Berger [10,p. 112]. [ |

While it can be difficult to evaluate this in general, upper and lower bounds can give
abetter sense for its behavior. For instance, let o be the variance of a stationary ergodic
Gaussian source. Then a result of Wyner and Ziv [14] shows that the rate-distortion
function can be bounded as follows:

Liog & — Ay =< Re(D) = - 10g & 1.16
EOgE s <Rs( )\5 OgB’ (1.16)

where Ag is a constant that depends only on the power spectral density of S.

Some Notes on Practical Considerations

The problem formulation considered in this chapter focuses on the existence of codes
for cases in which the encoder has access to the entire source noncausally and knows
its distribution. However,in many situations of practical interest,some of these assump-
tions may not hold. For instance, several problems have considered the effects of delay
and causal access to a source [15-17]. Some work has also considered cases in which
no underlying probabilistic assumptions are made about the source [18-20]. Finally,
the work of Gersho and Gray [21] explores how one might actually go about designing
implementable vector quantizers.

DISTRIBUTED SOURCE CODING

The problem of source coding becomes significantly more interesting and challenging
in a network context. Several new scenarios arise:

m Different parts of the source information may be available to separate encoding
terminals that cannot cooperate.

m Decoders may have access to additional side information about the source infor-
mation; or they may only obtain a part of the description provided by the
encoders.
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We start our discussion by an example illustrating the classical problem of source
coding with side information at the decoder.

L
Example 1.1
Let {S(n)},~0 be a source where source samples S(n) are uniform over an alphabet of size 8,
which we choose to think of as binary vectors of length 3. The decoder has access to a
corrupted version of the source {S(n)}~o where each sample S(n) takes values in a set of
ternary sequences {0, *,1}3 of length 3 with the property that

1 if(cr,ca,63)= (b1, b2, b3)

L 1. if(cr.ca,63) = (%, b2, b3)
pr(Son= (e cz s =@rvatn) =1 ey O

i C1,€2,¢3) = (01, *, 03

1 (e, ca,63)= (01,02, %)

Thus, the decoder has access to at least two of every three bits per source symbol, but the
encoder is unaware of which ones. Consider the partition of the alphabet S into

Sl={(0,0,0), Sz={(1,1,1),
0,1,1), (1,0,0),
. (1.18)
(1,1,0), 0,0, 1),
(1,0, 1)} (0, 1,0)}

If the decoder knows which of these partitions a particular sample S(n) is in, S(n) is sufficient
to determine the exact value of S(n). Thus, for each source output, the encoder can use one
bit to indicate to which of the two partitions the source sample belongs. Thus, at a rate of
1 bit per source sample, the decoder can perfectly reconstruct the output. However, in the
absence of {S(n)};=q at the decoder, Theorem 1.1 implies the best possible rate is H(S;) =3

bits per source sample.
|

Example 1.1 illustrates a simple version of a strategy known as binning. It turns
out that binning can be applied more generally and is used to prove many of the results
in distributed source coding.

Lossless Source Coding

More generally,we now consider the scenario illustrated in Figure 1.3, where two sepa-
rate encoding terminals each observe part of the data. That is, with respect to Figure 1.3,
the source streams $; and $; are dependent on each other. The coding question now
involves two separate source codes that appear at rates Ry and R;, respectively,and a
receiver where the source codes are jointly decoded. Formal definitions are provided
in Appendix A (Definitions A.12 and A.13). Since the sources are dependent, the rates
Rq and R, constrain one another. That is, if more bits are used to describe one of the
sources, typically, the number of bits for the other can be reduced. Specifically, if we
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FIGURE 1.3
Distributed source coding problem.

assume R, >log |Sz|, we can assume that the decoder knows S, without error, and
thus this problem also includes the special case of side information at the decoder.

Theorem 1.4. Given discrete memoryless sources S; and Sy, define R as
R= {(Rl, R2):R1 +R2=H(S1, $2),
Rl?H(Sllsz),R2>H(52|51)}- (1.19)

Furthermore, let RO be the interior of R. Then (R1,R») e R are achievable for the two-
terminal lossless source coding problem, and (R1,R») ¢ R are not.

The proof of this result was shown by Slepian and Wolf [22]; to show achievability
involves a random binning argument reminiscent of Example 1.1. However, by contrast
to that example, the encoders now bin over the entire vector of source symbols, and
they only get probabilistic guarantees that successful decoding is possible.

Variations and extensions of the lossless coding problem have been considered by
Ahlswede and Korner [23], who examine a similar setup case in which the decoder is
only interested in S1; Wyner [24], who considers a setup in which one again wants to
reconstruct sources S; and S, but there is now an additional encoding terminal with
access to another correlated information source S3;and Gel’fand and Pinsker [25],who
consider perfect reconstruction of a source to which each encoding terminal has only
a corrupted version. In all of these cases, a random binning strategy can be used to
establish optimality. However, one notable exception to this is a paper by Korner and
Marton [26], which shows that when one wants to reconstruct the modulo-2 sum of
correlated sources, there exists a strategy that performs better than binning.

Lossy Source Coding

By analogy to the centralized compression problem, it is again natural to study the
problem where instead of perfect recovery, the decoder is only required to provide
estimates of the original source sequences to within some distortions. Reconsidering
Figure 1.3, we now ask that the source §; be recovered at distortion Dy, when assessed
with distortion measure d (-, -), and S, at distortion D,, when assessed with distortion
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measure dz(-, -). The question is again to determine the necessary rates, R; and R;,
respectively, as well as the coding schemes that permit satisfying the distortion con-
straints. Formal definitions are provided in Appendix A (Definitions A.14 and A.15).
For this problem,a natural achievable strategy arises. One can first quantize the sources
at each encoder as in the centralized lossy coding case and then bin the quantized val-
ues as in the distributed lossless case. The work of Berger and Tung [27-29] provides
an elegant way to combine these two techniques that leads to the following result.
The result was independently discovered by Housewright [30].

Theorem 1.5: “Quantize-and-bin.” Given sources S and Sy with distortion functions dy:
Sk XUk— R, ke(l, 2}, the achievable rate-distortion region includes the following set:

R={(R,D):3Uy, Uy s.t. Uy — S1 — S2— Ua,
Eldy(S1, U]=<Dx, Eld2(S2, U2)]< D>, (1.20)

Ry >1(S1; Uh|Uz), R2>1(S2; U2|Un),

R+ R >1(51, 82; Uh U2)}

A proof for the setting of more than two users is given by Han and Kobayashi
[31,Theorem 1, pp. 280-284]. A major open question stems from the optimality of
the “quantize-and-bin” achievable strategy. While work by Servetto [32] suggests it
may be tight for the two-user setting, the only case for which it is known is the

quadratic Gaussian setting, which is based on an outer bound developed by Wagner
and Anantharam [33, 34].

Theorem 1.6: Wagner, Tavildar, and Viswanath [35]. Given sources S; and S, that are
jointly Gaussian and i.i.d. in time, that is, (S1(k),S2(k)) ~A(0,%), with covariance matrix

2
=( 91 POII2 (1.21)
pPo102 g5
for Dy, D> >0 define R(D;,D») as
L (A—p*+p*272)07

1
R(Dy1,Dy)=1(R1,R2):R = —lo R
(D1, D) {( 1, R2) 1Ry 5 108 Dy

1 1— 2+ 22*21?1 2
Ry=—log" A=p"tp )73
2 D
1 1-p?®o?02B(D;, D
Ry +Ry= L logt LZPIO192BDL Do) | (1.22)
2 2D1D;
where
B(D1, D)) =1+ 1+ 4p?D1D (1.23)
1, D> 220202 .

Furthermore, let R° be the interior of R. Then for distortions Dy, D> >0, (R, R>) €
R(D1, D) are achievable for the two-terminal quadratic Gaussian source coding
problem and (Ry, R») ¢ R(D1, D>) are not.
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FIGURE 1.4
The Wyner—Ziv source coding problem.

In some settings, the rates given by the “quantize-and-bin”achievable strategy can be
shown to be optimal. For instance, consider the setting in which the second encoder
has an unconstrained rate link to the decoder, as in Figure 1.4. This configuration is
often referred to as the Wyner-Ziv source coding problem.

Theorem 1.7. Given a discrete memoryless source S;, discrete memoryless side informa-
tion source Sy with the property that (S;(k),Sy(k)) are i.i.d. over k, and bounded distortion
function d: S XU — i, arate Ris achievable with lossy source coding with side information
at the decoder and with distortion Dif R > Rg‘ﬁsz(D). Here

Rfi)= min 15 UIS) (1.24)
U—-81—$2

Eld($1,U)]<D

is the rate distortion function for side information at the decoder. Conversely, for
R < RE';Z‘SZ(D), the rate R is not achievable with distortion D.

Theorem 1.7 was first proved by Wyner and Ziv [30]. An accessible summary of
the proof is given in [3,Theorem 14.9.1, pp. 438-443].

The result can be extended to continuous sources and unbounded distortion mea-
sures under appropriate regularity conditions [37]. It turns out that for the quadratic
Gaussian case, that is, jointly Gaussian source and side information with a mean-
squared error distortion function, these regularity conditions hold, and one can char-
acterize the achievable rates as follows. Note the correspondence between this result
and Theorem 1.6 as Ry — .

Proposition 1.3. Consider a source S1 and side information source S, such that
($1(R), S2(R) ~N(0,2) are iid.in k, with

_ 21 p
=0 ( p 1 (1.25)
Then for distortion function d(sy, u) = (s — u)? and Jfor D>0,

+ (1—pHo?

1
wZz _
Rsl\sz(D)_EIOg D

(1.26)
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Rate Loss

Interestingly, in this Gaussian case, even if the encoder in Figure 1.4 also had access to
the source X3 as in the conditional rate-distortion problem, the rate-distortion function
would still be given by Proposition 1.3. Generally, however, there is a penalty for the
absence of the side information at the encoder. A result of Zamir [38] has shown that
for memoryless sources with finite variance and a mean-squared error distortion, the
rate-distortion function provided in Theorem 1.7 can be no larger than % bit/source
sample than the rate-distortion function given in Theorem 1.3.

It turns out that this principle holds more generally. For centralized source coding
of a length M zero-mean vector Gaussian source {3‘ (n)},>0 with covariance matrix
3¢ having diagonal entries a’§ and eigenvalues /\(IM), ce )\1(,24) with the property that
/\5,11” ) =¢ for some £>0 and all m, and squared error distortion, the rate-distortion
function is given by [10]

1 A
RyD)=>" 5 log D—’”, (1.27)
m=1 m
I R4 <A,
Do = {Am otherwise, (1.28)

where Z%zl D,;, = D. Furthermore, it can be lower bouned by [39]

R0y =" 10g M€ (1.29)

sWI=5 8 D .
Suppose each component {S,,(1)},>0 were at a separate encoding terminal. Then

it is possible to show that by simply quantizing, without binning, an upper bound on

the sum rate for a distortion D is given by [39]

ize M oa 1+ (1.30)
m= log 55 ) :

m=1

Thus, the scaling behavior of (1.27) and (1.30) is the same with respect to both small
D and large M.

Optimality of “Quantize-and-bin” Strategies
In addition to Theorems 1.6 and 1.7,“quantize-and-bin” strategies have been shown to
be optimal for several special cases,some of which are included in the results of Kaspi
and Berger [40]; Berger and Yeung [41]; Gastpar [42];and Oohama [43].

By contrast, “quantize-and-bin” strategies have been shown to be strictly subop-
timal. Analogous to Korner and Marton’s result in the lossless setting [26], work by
Krithivasan and Pradhan [44] has shown that rate points outside those prescribed by
the “quantize-and-bin” achievable strategy are achievable by exploiting the structure
of the sources for multiterminal Gaussian source coding when there are more than
two sources.
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Multiple Descriptions Problem

Most of the problems discussed so far have assumed a centralized decoder with access
to encoded observations from all the encoders. A more general model could also
include multiple decoders, each with access to only some subset of the encoded
observations. While little is known about the general case, considerable effort has been
devoted to studying the multiple descriptions problem. This refers to the specific case
of a centralized encoder that can encode the source more than once, with subsets
of these different encodings available at different encoders. As in the case of the
distributed lossy source coding problem above, results for several special cases have
been established [45-55].

Interaction

Consider Figure 1.5, which illustrates a setting in which the decoder has the ability to
communicate with the encoder and is interested in reconstructing S. Seminal work
by Orlitsky [506,57] suggests that under an appropriate assumption, the benefits of this
kind of interaction can be quite significant. The setup assumes two random variables
S and U with a joint distribution, one available at the encoder and the other at the
decoder. The decoder wants to determine § with zero probability of error, and the
goal is to minimize the total number of bits used over all realizations of § and U with
positive probability. The following example illustrates the potential gain.

L
Example 1.2
(The League Problem [56]) Let S be uniformly distributed among one of 2™ teams in a
softball league. S corresponds to the winner of a particular game and is known to the encoder.
The decoder knows U, which corresponds to the two teams that played in the tournament.
Since the encoder does not know the other competitor in the game, if the decoder cannot
communicate with the encoder, the encoder must send m bits in order for the decoder to
determine the winner with zero probability of error.

Now suppose the decoder has the ability to communicate with the encoder. It can simply
look for the first position at which their binary expansion differs and request that from the
encoder. This request costs log, m bits since the decoder simply needs to send one of the m
different positions. Finally, the encoder simply sends the value of Sat this position, which costs
an additional 1 bit. The upshot is that as m gets larger, the noninteractive strategy requires
exponentially more bits than the interactive one.

|

— ENC DEC —

FIGURE 1.5
Interactive source coding.
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REMOTE SOURCE CODING

In many of the most interesting source coding scenarios, the encoders do not get
to observe directly the information that is of interest to the decoder. Rather, they
may observe a noisy function thereof. This occurs, for example, in camera and sensor
networks. We will refer to such source coding problems as remote source coding. In
this section, we discuss two main insights related to remote source coding:

1. For the centralized setting, direct and remote source coding are the same thing,
except with respect to different distortion measures (see Theorem 1.8).

2. For the distributed setting, how severe is the penalty of distributed coding
versus centralized? For direct source coding, one can show that the penalty is
often small. However, for remote source coding, the penalty can be dramatic
(see Equation (1.47)).

The remote source coding problem was initially studied by Dobrushin and
Tsybakov [58]. Wolf and Ziv explored a version of the problem with a quadratic dis-
tortion, in which the source is corrupted by additive noise, and found an elegant
decoupling between estimating the noisy source and compressing the estimate [59].
The problem was also studied by Witsenhausen [60].

We first consider the centralized version of the problem before moving on to the
distributed setting. For simplicity, we will focus on the case in which the source and
observation processes are memoryless.

Centralized

The remote source coding problem is depicted in Figure 1.6,and Definitions A.16 and
A.17 provide a formal description of the problem.

Consider the case in which the source and observation process are jointly mem-
oryless. In this setting, the remote source coding is equivalent to a standard source
coding problem with a modified distortion function [10]. For instance, given a dis-
tortion function d:S XS — RT, one can construct the distortion function d:U X S,
defined for all u€lf and §€ S as

du,$)=E[d(S,$|U=ul, (1.31)

where (S, U) share the same distribution as (S, Uy). The following result is then
straightforward from Theorem 1.2.

SrC [—* Oss » ENC [/ DEC —* SNK

FIGURE 1.6

In the remote source coding problem, one no longer has direct access to the underlying source S
but can view a corrupted version U of S through a noisy observation process.
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Theorem 1.8: Remote rate-distortion theorem [10]. Given a discrete memoryless source
S, bounded distortion function d:SXS— %™, and observations U such that (S(k), U(k))
are i.i.d. in k, the remote rate-distortion function is

RE™® (D)= min  I(U;39). (1.32)
pGlu)S—-U-S
E[d(S,8)]<D

This theorem extends to continuous sources under suitable regularity conditions,
which are satisfied by finite-variance sources under a squared error distortion.

Theorem 1.9: Additive remote rate-distortion bounds. Foramemoryless source S, bounded
distortion function d: S X S— N, and observations U;=S;+ W,, where W, is a sequence
of i.i.d. random variables,

1 Qv remote 1 0'37
—log ——— <R D)<-1 1.
208 5 p, =Hs D) 218 5= (1.33)
where V= E[S|U], and Dy = E(S— V)2, and where
2 2
OsQw _ py 759w (1.34)
QU UU

This theorem does not seem to appear in the literature, but it follows in a relatively
straightforward fashion by combining the results of Wolf and Ziv [59] with Shannon’s
upper and lower bounds. In addition, for the case of a Gaussian source § and Gaussian
observation noise W, the bounds in both (1.33) and (1.34) are tight. This can be
verified using Table 1.1.

Let us next consider the remote rate-distortion problem in which the encoder
makes M =1 observations of each source sample. The goal is to illustrate the depen-
dence of the remote rate-distortion function on the number of observations M.
To keep things simple, we restrict attention to the scenario shown in Figure 1.7.

. Enc DeC

FIGURE 1.7
An additive remote source coding problem with M observations.
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More precisely, we suppose that § is a memoryless source and that the observation
process is

Unk)=Sk) + Wy, (R), k=1, (1.35)

where W,, (k) are i.i.d. (both in & and in 7)) Gaussian random variables of mean zero
and variance G%Vm. For this special case, it can be shown [61, Lemma 2] that for any
given time &, we can collapse all M observations into a single equivalent observation,
characterized by

M 2

U(Ie)=ﬁi4 3 TV Ull) (1.36)
m=1 VVm
1 M o2
— _ w
St + mZ:l 7 W (R), (1.37)

-1
where U%V = <1ul4 Z% - U%) . This works because U (k) is a sufficient statistic for
Wm

S(k) given Uj(k), ..., Uy (k). However, at this point, we can use Theorem 1.9 to
obtain upper and lower bounds on the remote rate-distortion function. For exam-
ple, using (1.34), we can observe that as long as the source S satisfies 4(S) > —, Dy
scales linearly with 0"2V, and thus, inversely proportional to M.

When the source is Gaussian, a precise characterization exists. In particular, Equa-
tions (1.33) and (1.34) allow one to conclude that the rate-distortion function is given
by the following result.

Proposition 1.4. Given a memoryless Gaussian source S with S(i)~N (0, crsz),
squared error distortion, and the M observations corrupted by an additive
Gaussian noise model and given by Equation (1.35), the remote rate-distortion
Junction is

2

1 o 1 o?
RIEMOtE Dy — ~ |50 25 1 o —57 1.38
& ()ngzgz_M (1.38)
9y~ ~MD
where
1

2
2 _ 24 %w
s

op and oy, = (1.39)

1 M 1
M ZmZI P
Wm

As in the case of direct source coding, there is an analogous result for the case of
jointly stationary ergodic Gaussian sources and observations.

Proposition 1.5. Let S be a stationary ergodic Gaussian source S, U an observation
process that is jointly stationary ergodic Gaussian with S, and Pg(w), Py (w), and
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Dy 7 (w) be their corresponding power and cross spectral densities. Then for mean-
squared error distortion, the remote rate-distortion function is given by

|Ps, 0 (w)|* u()]?
I'Cm()tC DV — / , d 1.40
(Dy) =— { (@) ® (1.40)
B (q)s(w)cbu(w) |Ds, 7 () |2 p
= — w
27 Jm Dy (w)
T [P, (w)]?

+— — :
el min {v, By (@) dw (1.41)
PROOF. See Berger [10, pp. 124-129]. [ |

Observe that zi

- Dy (w)
resulting from applying a Wiener filter on U to estimate S.

N _ . 2
I (q)é @)Pu @)~ s,y @) ) dw is simply the mean-squared error

Distributed: The CEO Probhlem

Let us now turn to the distributed version of the remote source coding problem.
A particularly appealing special case is illustrated in Figure 1.8. This problem is often
motivated with the following scenario. A chief executive officer or chief estimation
officer (CEO) is interested in estimating a random process. M agents observe noisy
versions of the random process and have noiseless bit pipes with finite rate to the
CEO. Under the assumption that the agents cannot communicate with one another,
one wants to analyze the fidelity of the CEO’s estimate of the random process sub-
ject to these rate constraints. Because of the scenario, this is often called the CEO
problem [62].

A formal definition of the CEO problem can be given by a slight variation of
Definition A.15, namely, by adding an additional encoder with direct access to the
underlying source, and considers the rate-distortion region when the rate of this

Wy
U Ry
Enc 1
Wa
2 Ra
S — Enc 2 — S
X e I
L]
Wy, :
RM
Enc M

FIGURE 1.8
The additive CEO problem.
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encoder is set to zero. The formal relationship is established in Definitions A.18
and A.19.

The CEO problem has been used as a model for sensor networks, where the
encoders correspond to the sensors, each with access to a noisy observation of some
state of nature. Unfortunately (and perhaps not too surprisingly), the general CEO
problem remains open. On the positive side, the so-called quadratic Gaussian CEO
problem has been completely solved. Here, with respect to Figure 1.8, the source §
is a memoryless Gaussian source, and the noises W, (k) are i.i.d. (both in & and in
m) Gaussian random variables of mean zero and variance U%Vm. The setting was first
considered by Viswanathan and Berger [63], and later refined (see, e.g. [43, 64, 65] or
[66,67]), leading to the following theorem:

Theorem 1.10. Given a memoryless Gaussian source S with S(/)NN(O,U%), squared error
distortion, and the M observations corrupted by an additive Gaussian noise model and given
by Equation (1.35), and assume that O'ﬁ/l SO'ﬁ/Z <.. ~sUﬁ/M. Then the sum rate-distortion

function for the CEQO problem is given by

K
1. o 1 K 1 1
RgEO(D)ZZIOng_ZIOg(l_[ U‘zvm) —Elog (K—DK—6> (1.42)
m=1

where K'is the largest integer in {1, ...,M} satisfying

11 >_1<—1+K_1 1 (1.43)
D 0'32~ - U‘Z’VK m=1 U%Vm .
and
K
1 1 1
=y (1.44)
Furthermore, if ‘levm =0}, forallm=1,..., M,
1 o2 M o2
REODy=-log > + —log—5 —, 1.45
s D) 2% D7 gaz_(r%w? (145)
MD
where
2 2 U\ZV
o =0¢ + —. 1.46
U5t o, ( )

Alternate strategies for achieving the sum rate have been explored [68] and achievable
strategies for the case of vector-Gaussian sources have been studied [69, 70], but the
rate region for this setting remains open.

We conclude this section by discussing the rate loss between the joint remote
source coding problem (illustrated in Figure 1.7) and the distributed remote source
coding problem (illustrated in Figure 1.8). For the quadratic Gaussian scenario with
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equal noise variances a’%vm = o-fV, this rate loss is exactly characterized by comparing

Proposition 1.4 with Theorem 1.10, leading to

. M—1 2
RSEO (D) — Riemote () = log A (1.47)
2 2, Oy 95
o5t 1=3)
By letting M — %, this becomes
2
1 1
RSP D)~ REmoe () = 2 <5 - p), (1.48)

so the rate loss scales inversely with the target distortion. Note that this behavior is
dramatically different from the one found in Section 1.3.2.1;as we have seen there, for
direct source coding, both centralized and distributed encoding have the same scaling
law behavior with respect to large M and small D (at least under the assumptions
stated in Section 1.3.2.1). By contrast, as the quadratic Gaussian example reveals, for
remote source coding, centralized and distributed encoding can have very different
scaling behaviors.

It turns out that the quadratic Gaussian example has the worst case rate loss
behavior among all problems that involve additive Gaussian observation noise and
mean-squared error distortion (but arbitrary statistics of the source §). More precisely,
we have the following proposition, proved in [61]:

Proposition 1.6. Given a real-valued zero-mean memoryless source S with variance
a'g, squared error distortion, and the M observations corrupted by an additive
Gaussian noise model and given by Equation (1.35) with "%vi = cr%v, the difference
between the sum rate-distortion function for the CEO problem and the remote rate-
distortion function is no more than

M—1 o?
RgEO (D) _Rgemote(D) < log > M >
2 2, O o
o+ E(1—-5)
S M D
1 (M-1)D0o}, +02(M(2D+2,/D0o},) ~MD(D+24/ Do) 4
+ 5 IOg ] D(M(rz-%-o'2 )—0'2 o2 : (1 9)
SToW) WIS

By letting M — =, this becomes

RO — gremorepy <% (L 1Y Ly (0 (L 1N s a2

3 - s> |=—=]+=1o i o) ).

s s 2 \p o2) 2% D o2 v
(1.50)

Thus, the rate loss cannot scale more than inversely with the distortion D even
for non-Gaussian sources. Bounds for the rate loss have been used to give tighter
achievable bounds for the sum rate when the source is non-Gaussian [71].

Although the gap between distributed and centralized source coding of a remote
source can be significant, cooperative interaction among the encoders can potentially
decrease the gap. While this has been studied when the source is Gaussian [72], the
question remains open for general sources.
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JOINT SOURCE-CHANNEL CODING

When information is to be stored on a perfect (error-free) discrete (e.g., binary)
medium, then the source coding problem surveyed in this chapter is automatically
relevant. However, in many tasks, the source information is compressed because it
must be communicated across a noisy channel. There, it is not evident that the formal-
izations discussed in this chapter are relevant. For the stationary ergodic point-to-point
problem, Shannon’s separation theorem proves that,indeed,an optimal architecture is
to first compress the source information down to the capacity of the channel,and then
communicate the resulting encoded bit stream across the noisy channel in a reliable
fashion.

To make this precise, we discuss the scenario illustrated in Figure 1.9. Formally,
consider the following class of noisy channels:

Definition 1.1. Given a random vector X" a discrete memoryless channel (used without
feedback) is characterized by a conditional distribution p (y|x) such that for a given channel
input x”, the channel output Y satisfies

Pr(Y" =y"|X" =x") = [ [ Pr(¥ (1) =y @)X (1) =x(0)), (151)

i=1
where Pr(Y(i) =y|X(i)=X) = p(y|x).
Moreover, by reliable communication, we mean the following:

Definition 1.2. Given asource Sand discrete memoryless channel p(y|x), an (N, «, 8) loss-
less joint source-channel code consists of an encoding function f: SV — x* and decoding
function g: YX— SN such that X* = (") and

Pr(sK #£g(v¥))<s, (1.52)
where aK= N. Thus, « is sometimes called the mismatch of the source to the channel.

Definition 1.3. A source Sis recoverable over a discrete memoryless channel p(y|x) with
mismatch « if for all § > 0, there exists N* such that for all N = N*, there exists an (N, «, §)
lossless joint source-channel code.

Then, the so-called separation theorem can be expressed as follows:

Theorem 1.11: Joint Source-Channel Coding Theorem. A discrete memoryless source
S is recoverable over a discrete memoryless channel p(y|x) with mismatch « if H(S) <
amaxp(y (X Y). Conversely, if H(S)>a maxp [X; V), it is not recoverable.

v
v

PY\X)

v

SRC Enc DecC > SNK

FIGURE 1.9
In many situations, one might need to transmit a source over a noisy channel.




A.1 Notation

A proof of this theorem can be found, for example, in [3]. One should note that The-
orem 1.11 can be stated more generally for both a larger class of sources and for
channels.

The crux, however, is that there is no equivalent of the separation theorem in
communication networks. One of the earliest examples of this fact was given by [73]:
when correlated sources are transmitted in a lossless fashion across a multiple-access
channel, it is not generally optimal to first compress the sources with the Slepian-
Wolf code discussed in Section 1.3, thus obtaining smaller and essentially independent
source descriptions,and sending these descriptions across the multiple-access channel
using a capacity-approaching code. Rather, the source correlation can be exploited to
access dependent input distributions on the multiple-access channels, thus enlarging
the region of attainable performance. A more dramatic example was found in [74-
76]. In that example, modeling a simple “sensor” network, a single underlying source is
observed by M terminals subject to independent noises. These terminals communicate
over an additive multiple-access channel to a “fusion center” whose only goal is to
recover the single underlying source to within the smallest squared error. For this
problem, one may use the CEO source code discussed in Section 1.4.2, followed by a
regular capacity-approaching code for the multiple-access channel. Then, the smallest
squared error distortion D decreases like 1/log M. However, it can be shown that
the optimal performance for a joint source-channel code decreases like 1/M, that
is, exponentially better. For some simple instances of the problem, the optimal joint
source-channel code is simply uncoded transmission of the noisy observations [77].
Nevertheless, for certain classes of networks, one can show that a distributed source
code followed by a regular channel code is good enough, thus establishing partial
and approximate versions of network separation theorems. An account of this can be
found in [78].
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APPENDIX A: Formal Definitions and Notations

This appendix contains technical definitions that will be useful in understanding the
results in this chapter.

A.1 NOTATION

Unless otherwise stated, capital letters X, Y, Z denote random variables, lower-case
letters x, y, z instances of these random variables,and calligraphic letters X', ), Z sets.
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The shorthand p(x, ), p(x), and p(y) will be used for the probability distributions
Pr(X=x,Y=y), Pr(X=x),and Pr(Y =y). XN W111 be used to denote the random
vector X1, X3, ..., Xy.The alternate vector notation Rand D will sometimes be used to
represent achievable rate-distortion regions. Finally,we will use the notationX — Y — Z
to denote that the random variables X, Y, Z form a Markov chain. That is, X and Z are
independent given Y.

‘We start by defining the notion of entropy, which will be useful in the sequel.

Definition A.1. Let XY be discrete random variables with joint distribution p(x, y). Then
the entropy H(X) of Xis a real number given by the expression

H(X)=—E[log p(X)] =~ Y _ p(x) log p(), (A.53)

the joint entropy H(X,Y) of X and Y is a real number given by the expression

H(X,Y)=—E[logp(X,Y)]=— Y p(x,y)logp(x, ), (A.54)
X,y

and the conditional entropy H(X|Y) of X given Y is a real number given by the expression
H(X|Y)=—E[logp(X|Y)]=H(X,Y)—H(Y). (A.55)
With a definition for entropy, we can now define mutual information.

Definition A.2. Let X, Y be discrete random variables with joint distribution p(x, y).
Then the mutual information (X;Y) between X and Y is a real number given by the
expression

IX;Y)=HX)-HX|Y)=H(Y)—-H(Y|X). (A.56)
Similar definitions exist in the continuous setting.

Definition A.3. Let X, Y be continuous random variables with joint density f(x, y). Then
we define the differential entropy h(X)= — Ellog f(X)], joint differential entropy h(X,Y)=
—Ellog f(X, V)1, conditional differential entropy h(X|Y)= —Ellog f(X|Y)], and mutual infor-
mation [(X; Y) = h(X) — h(X|Y)=h(Y)—h(Y|X).

Definition A.4. Let X be a continuous random variable with density f(x). Then its entropy
power Qyx is given by

1
Ox = Y exp{2h(X)}. (A.57)
e

The central concept in this chapter is the information source, which is merely a
discrete-time random process {S(72)},,>0. For the purposes of this chapter, we assume
that all information sources are stationary and ergodic. When the random variables
{S(n)},>0 take values in a discrete set, we will refer to the source as a discrete infor-
mation source. For simplicity,we will refer to a source {S(n)},,~ with the abbreviated
notation §.



A.1 Notation

Definition A.5. The entropy rate of a stationary and ergodic discrete information source
Sis
1
Ho(S) = lim —H(S(1),S82),...,8m) = lim HS®m)|Sn—1),Sm—2),...,S(1).
n—x 71— 0
(A.58)
In many of the concrete examples discussed in this chapter, S will be assumed to be
a sequence of independent and identically distributed (i.i.d.) random variables. This is

usually referred to as a memoryless source, and one can show that H..(S) = H (5(1)).
For notational convenience, we will denote this simply as H(S).

A.1.1 Centralized Source Coding

Definition A.6. Given a source S, an (N, R, 8) lossless source code consists of an encoding
function f: SN— {1, ..., M} and decoding function g: {1, ..., M} — SN such that
Pr(sN #g(f(sV))) =<9, (A.59)

where M=2NFR,

In the above definition, R has units in bits per source sample. Thus, R is often
referred to as the rate of the source code.

Definition A.7. Given a source S, a rate R is achievable via lossless source coding if for
all >0, there exists N* such that for N= N* there exists an (N, R+ §, ) lossless source
code.

Similarly, definitions can be given in the lossy case.

Definition A.8. Given a source S and distortion function d: S X & — %+, an (N, R, D) cen-
tralized lossy source code consists of an encoding function f: SN — {1, ..., M} and decoding

. N
function g:{1,...,M}— 8" such that for S~ = g(f(S"))

N
> Eld(S(i), $(i))] <ND, (A.60)

i=1
where M = 2NR

Definition A.9. Given a source Sand distortion function d: S X S — R¥, a rate R is achiev-
able with distortion Dif for all § >0, there exists a sequence of (N, Ry, Dy) centralized lossy
source codes and N* such that for N=N* Ry=R+8, Dy<D+56.

Definition A.10. Given a source Si, source side information S, available at the encoder
and decoder, and distortion function d: S; X S — R, an (N, R, D) conditional lossy source
code consists of an encoding function f: S{Vx$£V—>{1,...,M} and decoding function

X N
g:{1,...,Myx8)— 8V such that for S = g(f(SY,S),SY),

N
> Eld(S(i), $())]<ND., (A.61)

i=1

where M=2NR.
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Definition A.11. Given a source S;, source side information S, available at the encoder
and decoder, and distortion function d: S; X 81 — R, a rate R is achievable with distortion
Dif for all § >0, there exists a sequence of (N, Ry ,Dp) conditional lossy source codes and
N* such that for N= N* Ry = R+, Dy < D+8. The supremum over all achievable R is
the conditional rate-distortion function, denoted as Rs, s, (D).

A.1.2 Distributed Source Coding

We first consider the lossless case.

Definition A.12. Given discrete sources S; and S, an (N,R;,R», 8) two-terminal loss-
less source code consists of two encoding functions f :S{V—>{1, ...,M;} and f2:S£V—>
{1,...,Mo} as well as a decoding function g:{1,...,Ml}X{l,...,MZ}%S{VXSQI such
that

Pr(sY, %) #g (V). £2(55))) <8, (A.62)

where M/=2NR'.

Definition A.13. Given discrete sources S1 and Sy, a rate pair (R R») is achievable for
the two-terminal lossless source coding problem if for all 6 > 0O, there exists a sequence
of (N,R1 n, Ro, v, 8) lossless source codes and N* such that for N= N* Ry y=FR; +86,
Rony= Ro+6,and 6y < 6.

Analogous definitions can be provided in the lossy setting. Here, we consider the
case of M users with access to side information, as depicted in Figure A.10.

Definition A.14. Given M sources Sy, me{{, ..,M} and K distortion functions

dk:]‘[%ﬂsmxuk—»ﬂt ke{l,...,K}, an (N,R,D) distributed lossy source code

consists of M encoding functions fm:S%—>{1,...,2NRm} and decoding functions g:
M NRm N N _ N N N

l_[m:1{]" Ce ,2 }—>Z/{k such that for Uk —gk(fl(sl ),fz(SQ ), Ce :fM(SM))

N
> E [ ($1(0). $2(0). . ... Sy+1(0), Up(#))] < ND. (A.63)
i=1

Dec

FIGURE A.10
Distributed source coding problem.




A.1 Notation

Definition A.15. Given M sources S, me{l,... ,M} and K distortion functions d:
]‘[%=1 SmXUx—RT, ke{l,... K}, arate-distortion vector (R, D) is achievable with a dis-
tributed lossy source code if for all § >0, there exists a sequence of (N, R’N,b,v) lossy source
codes with side information at the decoder and N* such that forall N = N*, Ry vy = R + 6,
Din<=Dx+8, me{l,... M}, ke{l,... K}

A.1.3 Remote Source Coding

Definition A.16. Given a source S, distortion function d:S X & — %™, and observation pro-
cess U, an (N, R, D) remote source code consists of an encoding function f: uN— {1,...,M}
and decoding function g: {1,....,M}— 8" such that for §¥ = g( f(U"))

N
> " Eld(S(i), 3())]<ND., (A.64)

i=1
where M = 2NR,

Definition A.17. Given a source S, distortion function d: S X S — %™, and observation pro-
cess U, a rate R is achievable with distortion D if for all § >0, there exists a sequence of
(N, Ry, D) remote source codes and N* such that forall N= N* Ry =R+8, Dy <D+36.
The supremum over all achievable R is the remote rate-distortion function, denoted as
Réemote(D).

The CEO problem is a special case of the distributed source coding problem, as
depicted in Figure A.11.

Definition A.18. Given Mi‘l sources, S and Up, me{l,;..,M} and a distortion func-
tion d:SXS— %"+, an (N,R,D) CEO source code—where R is a Ieggth M vector on the
nonnegative reals—is an M+ 1 user, single-distortion function, (N,R,D) distributed lossy
source code, where Ry =0, Rpn=Rp-1 for me{2,... M+ 1} S=S1, Un= Sp+1, with the
distortion function dy : [[¥21 Sy, x §1— %+ having the property that

di(s,uy, ..., uy, 81) =d(s, $1). (A.65)
Sy Q Q
S R, N Uy Ry A
oy s e s
o [ EEEY oy P
L] L]
L) L]
L) ~ L]
Sm+1 Ru U Ru
FIGURE A.11

CEO problem as special case of distributed source coding problem.
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Definitign A.19. Given M+ 1 sources, Sand Uy, me{l,...,M} and a distortion function
d:8XS— R, asum rate-distortion pair (R,D) is achievable with a CEO source code if for
all >0, there exists a sequence of (N, Ry,Dy) CEO source codes and N* such that for all

N=

N* 2%21 Rmn=R+8, Dy<D+6. For a given distortion D, the supremum over R

for all achievable sum rate-distortion pairs (R, D) specifies the sum rate-distortion function
for the CEO problem, denoted by R%EO(D).

REFERENCES

(1]

[2]

(6]
[71
[8]
9]
[10]

[11]
[12]

[13]
[14]
[15]
[16]
[17]
[18]

[19]

C. E. Shannon, “A mathematical theory of communication,” Bell System Technical Journal,
vol. 27, pp. 379-423,623-656,1948.

T. S. Han and S. Verdu, “Approximation theory of output statistics,” I[EEE Transactions on
Information Theory,vol. 39,no. 3, pp. 752-772,May 1993.

T. Cover and J. Thomas, Elements of Information Theory. New York: John Wiley and Sons, 1991.

R. Pilc, “The transmission distortion of a source as a function of the length encoding block
length,” Bell System Technical Journal,vol. 47,no. 6, pp. 827-885, 1968.

S. Arimoto, “An algorithm for calculating the capacity and rate-distortion functions,” IEEE
Transactions on Information Theory,vol. 18, pp. 14-20,1972.

R. Blahut,“Computation of channel capacity and rate-distortion functions,” IEEE Transactions
on Information Theory,vol. 18, pp. 460-473,1972.

K. Rose,“A mapping approach to rate-distortion computation and analysis,” IEEE Transactions
on Information Theory,vol. 40, pp. 1939-1952,1994.

C. Shannon, “Coding theorems for a discrete source with a fidelity criterion,” IRE Convention
Rec,vol. 7,pp. 142-163,1959.

T. Linder and R. Zamir, “On the asymptotic tightness of the Shannon lower bound,” IEEE
Transactions on Information Theory, pp. 2026-2031, November 1994.

T. Berger, Rate Distortion Theory: A Mathematical Basis for Data Compression, ser.
Information and System Sciences Series. Englewood Cliffs, NJ: Prentice-Hall, 1971.

R. Gray, “Conditional rate-distortion theory;” Stanford University,Tech. Rep., October 1972.

J. Omura, “A coding theorem for discrete-time sources,” IEEE Transactions on Information
Theory,vol. 19, pp. 490-498,1973.

K. Marton, “Error exponent for source coding with a fidelity criterion,” IEEE Transactions on
Information Theory,vol. 20,n0. 2, pp. 197-199, March 1974.

A. Wyner and J. Ziv, “Bounds on the rate-distortion function for sources with memory,” IEEE
Transactions on Information Theory,vol. 17,n0. 5, pp. 508-513, September 1971.

R. Gray,“Sliding-block source coding,” IEEE Transactions on Information Theory,vol. 21,n0. 4,
pp- 357-368, July 1975.

H. Witsenhausen, “On the structure of real-time source coders,” Bell System Technical Journal,
vol. 58,n0. 6, pp. 1437-1451,1979.

D. Neuhoff and R. Gilbert, “Causal source codes,” [EEE Transactions on Information Theory,
vol. 28, no. 5, pp. 710-713, September 1982.

A. Lapidoth, “On the role of mismatch in rate distortion theory,” IEEE Transactions on
Information Theory,vol. 43, pp. 38-47, January 1997.

A. Dembo and T. Weissman, “The minimax distortion redundancy in noisy source coding,” IEEE
Transactions on Information Theory,vol. 49, pp. 3020-3030, 2003.



[20]
[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]
[31]
[32]

[33]

[34]

[35]

[36]
[371
[38]

[391

References

T. Weissman, “Universally attainable error-exponents for rate-distortion coding of noisy sources,”
IEEE Transactions on Information Theory,vol. 50, no. 6, pp. 1229-1246, 2004.

A. Gersho and R. Gray, Vector Quantization and Signal Compression. Boston: Kluwer
Academic Publishers, 1992.

D. Slepian and J. Wolf, “Noiseless coding of correlated information sources,” I[EEE Transactions
on Information Theory,vol. 19, pp. 471-480,1973.
R. Ahlswede and J. Korner, “Source coding with side information and a converse for degraded

broadcast channels,” IEEE Transactions on Information Theory, vol. 21, no. 6, pp. 629-637,
November 1975.

A. Wyner, “On source coding with side information at the decoder,” IEEE Transactions on
Information Theory,vol. 21,n0. 3, pp. 294-300, May 1975.

S. Gel'fand and M. Pinsker, “Coding of sources on the basis of observations with incom-
plete information (in Russian),” Problemy Peredachi Informatsii (Problems of Information
Transmission),vol. 25,no. 2, pp. 219-221, April-June 1979.

J. Korner and K. Marton, “How to encode the modulo-two sum of binary sources (Corresp.),”
IEEE Transactions on Information Theory,vol. 25,no. 2, pp. 219-221, March 1979.

T. Berger and S. Tung, “Encoding of correlated analog sources,” in 1975 IEEE-USSR Joint
Workshop on Information Theory. Moscow: IEEE Press, 1975, pp. 7-10.

S. Tung, “Multiterminal source coding,” Ph.D. dissertation, Cornell University, 1977.

T. Berger, “Multiterminal source coding,” in Lecture Notes presented at CISM Summer School
on the Information Theory Approach to Communications,1977.

K. B. Housewright, “Source coding studies for multiterminal systems,” Ph.D. dissertation,
University of California, Los Angeles, 1977.

T. S. Han and K. Kobayashi,“A unified achievable rate region for a general class of multiterminal
source coding systems,” IEEE Transactions on Information Theory, pp. 277-288, May 1980.
S. D. Servetto,“Multiterminal source coding with two encoders—I: A computable outer bound,”
Arxiv, November 2006. [Online]. Available: http://arxiv.org/abs/cs/0604005v3

A. Wagner and V. Anantharam, “An improved outer bound for the multiterminal source cod-
ing problem,” in Proc. IEEE International Symposium on Information Theory, Adelaide,
Australia, 2005.

,“An infeasibility result for the multiterminal source-coding problem,” IEEE Transactions
on Information Theory,2008. [Online]. Available: http://arxiv.org/abs/cs.IT/0511103

A. Wagner, S. Tavildar, and P. Viswanath, “Rate region of the quadratic Gaussian two-encoder
source-coding problem,” IEEE Transactions on Information Theory, vol. 54, no. 5, pp.
1938-1961, May 2008.

A.Wyner and J. Ziv,“The rate-distortion function for source coding with side information at the
decoder;” IEEE Transactions on Information Theory,vol. 22, pp. 1-10, January 1976.
A.Wyner,“The rate-distortion function for source coding with side information at the decoder—
II: General sources,” Information and Control,vol. 38, pp. 60-80, 1978.

R. Zamir,“The rate loss in the Wyner-Ziv problem,” [EEE Transactions on Information Theory,
vol. 42, pp. 2073-2084, November 1996.

K. Eswaran and M. Gastpar, “On the significance of binning in a scaling-law sense,” in
Information Theory Workshop, Punta del Este, Uruguay, March 2006.

[40] A. H. Kaspi and T. Berger, “Rate-distortion for correlated sources with partially separated

encoders,” IEEE Transactions on Information Theory,vol. IT-28, no. 6, pp. 828-840, 1982.

[41] T. Berger and R. Yeung, “Multiterminal source encoding with one distortion criterion,” IEEE

Transactions on Information Theory,vol. IT-35, pp. 228-236, 1989.

29



30

CHAPTER 1 Foundations of Distributed Source Coding

[42]

[43]

[44]

[45]
(461
[47]
[48]
[49]
[501]
[51]
[52]
[53]
[54]
[55]
[50]
[57]
[58]
[59]
[60]
[61]
[62]

[63]

M. Gastpar,“The Wyner-Ziv problem with multiple sources,” IEEE Transactions on Information
Theory,vol. 50,n0. 11, pp. 2762-2768, November 2004.

Y. Oohama, “Rate-distortion theory for Gaussian multiterminal source coding systems with sev-
eral side informations at the decoder,” IEEE Transactions on Information Theory, vol. 51,
pp. 2577-2593, 2005.

D. Krithivasan and S. S. Pradhan, “Lattices for distributed source coding: Jointly Gaus-
sian sources and reconstruction of a linear function,” Arxiv, July 2007. [Online]. Available:
http://arxiv.org/abs/0707.3461

H. Witsenhausen, “On source networks with minimal breakdown degradation,” Bell System
Technical Journal,vol. 59,n0. 6, pp. 1083-1087, July-August 1980.

, “On team guessing with independent informations,” Math. Oper: Res., vol. 6, no. 2,
pp. 293-304, May 1981.

,“Team guessing with lacunary information,” Math. Oper: Res., vol. 8, no. 1, pp. 110-121,
February 1983.

H. Witsenhausen and A. Wyner, “Source coding for multiple descriptions II: A binary source,
Bell System Technical Journal,vol. 60,n0. 10, pp. 2281-2292, December 1981.

A. El Gamal and T. Cover, “Achievable rates for multiple descriptions,” IEEE Transactions on
Information Theory,vol. 28,no. 6, pp. 851-857, November 1982.

J. Wolf, A. Wyner, and J. Ziv, “Source coding for multiple descriptions,” Bell System Technical
Journal,vol. 59,no. 8, pp. 1417-1426, October 1980.

T. Berger and Z. Zhang, “Minimum breakdown degradation in binary source coding,” IEEE
Transactions on Information Theory,vol. 29, no. 6, pp. 807-814, November 1983.

L. Ozarow, “On a source-coding problem with two channels and three receivers,” Bell System
Technical Journal,vol. 59,n0. 10, pp. 1909-1921, 1980.

R. Ahlswede, “The rate-distortion region for multiple descriptions without excess rate,” IEEE
Transactions on Information Theory,vol. 31,n0. 6, pp. 721-726, November 1985.

V. Goyal,“Multiple description coding: Compression meets the network,” IEEE Signal Processing
Magazine,vol. 18,n0. 5, pp. 74-93, September 2001.

R. Venkataramani, G. Kramer, and V. Goyal, “Multiple description coding with many channels,”
IEEE Transactions on Information Theory,vol. 49,n0. 9, pp. 1111-1126, September 2003.

A. Orlitsky, “Worst-case interactive communication I: Two messages are almost optimal,” IEEE
Transactions on Information Theory,vol. 36,n0. 5, pp. 2106-2114, September 1990.

A. Orlitsky, “Worst-case interactive communication II: Two messages are not optimal,” IEEE
Transactions on Information Theory,vol. 37,1n0. 4, pp. 995-1005, July 1991.

R. Dobrushin and B. Tsybakov, “Information transmission with additional noise,” IEEE Transac-
tions on Information Theory,vol. 8, pp. 293-304, September 1962.

J.Wolfand ]. Ziv,“ Transmission of noisy information to a noisy receiver with minimum distortion,”
IEEE Transactions on Information Theory,vol. 16, pp. 406-411,1970.

H. Witsenhausen, “Indirect rate distortion problems,” IEEE Transactions on Information
Theory,vol. 26, pp. 518-521, September 1962.

K. Eswaran and M. Gastpar, “Rate loss in the CEO problem,” in 39th Annual Conference on
Information Sciences and Systems, Baltimore, MD, 2005.

T. Berger, Z. Zhang,and H. Viswanathan,“The CEO problem, IEEE Transactions on Information
Theory,vol. 42, pp. 887-902, May 1996.

H. Viswanathan and T. Berger, “The quadratic Gaussian CEO problem,” IEEE Transactions on
Information Theory,vol. 43, pp. 1549-1559,1997.



[64]

[65]

[66]

(671
[68]
[69]
[70]
[71]

[72]

[73]
[74]
[75]

[76]

[771

[78]

References

Y. Oohama, “The rate-distortion function for the quadratic Gaussian CEO problem,” IEEE
Transactions on Information Theory,vol. 44, pp. 1057-1070, May 1998.

,“Multiterminal source coding for correlated memoryless Gaussian sources with several
side informations at the decoder,” in Information Theory and Communications Workshop,
Proceedings of the 1999 IEEE, South Africa, June 1999.

J. Chen,X. Zhang,T. Berger,and S. B. Wicker,“An upper bound on the sum-rate distortion function
and its corresponding rate allocation schemes for the CEO problem,” IEEE Journal on Selected
Areas in Communications: Special Issue on Sensor Networks, pp. 1-10,2003.

V. Prabhakaran, D. Tse, and K. Ramchandran, “Rate region of the quadratic Gaussian CEO
problem,” in Proceedings of ISIT, pp. 119-,2004.

S. C. Draper and G. W. Wornell, “Successively structured CEO problems,” in Proceedings of ISIT,
pp. 65-,2002.

X. Zhang and S. Wicker, “On the rate region of the vector Gaussian CEO problem,” in 39th
Annual Conference on Information Sciences and Systems, Baltimore, MD, 2005.

S. Tavildar and P. Viswanath, “The sum rate for the vector Gaussian CEO problem,” in 2005
Asilomar Conference, pp. 3-7,2005.

K. Eswaran and M. Gastpar,“On the quadratic AWGN CEO problem and non-Gaussian source,”
in Proceedings of ISIT, pp. 219-223,2005.

V. Prabhakaran, K. Ramchandran, and D. Tse,“On the role of interaction between sensors in the
CEO problem,” in Annual Allerton Conference on Communication, Control, and Computing,
Monticello, IL, October 2004.

T. Cover, A. El Gamal,and M. Salehi,“Multiple access channels with arbitrarily correlated sources,”
IEEE Transactions on Information Theory,vol. 26,n0. 6, pp. 648-657, November 1980.

M. Gastpar and M. Vetterli,“On the capacity of wireless networks:The relay case,”in Proc. IEEE
Infocom 2002, vol. 3, New York, June 2002, pp. 1577-1586.

,“Source-channel communication in sensor networks,” Information Processing in Sensor
Networks, vol. 2, pp. 162-177,2003.

,“Power, spatio-temporal bandwidth, and distortion in large sensor networks,” I[EEE Jour-
nal on Selected Areas in Communications (Special Issue on Self-Organizing Distributive
Collaborative Sensor Networks),vol. 23,n0. 4, pp. 745-754, April 2005.

M. Gastpar, “Uncoded transmission is exactly optimal for a simple Gaussian sensor network,”
in Proc. 2007 Information Theory and Applications Workshop, San Diego, CA, February 2007.
M. Gastpar, M. Vetterli, and P. L. Dragotti, “Sensing reality and communicating bits:A dangerous
liaison,” IEEE Signal Processing Magazine,vol. 23, no. 4, pp. 70-83, July 2006.

31



CHAPTER

Distributed Transform Coding

Varit Chaisinthop and Pier Luigi Dragotti
Department of Electrical and Electronic Engineering,
Imperial College London, UK

CHAPTER CONTENTS

0T T L1 o1 1 o 33
Foundations of Centralized TransformCoding ..........cccviviiiiiiiiiii i i i anennens 35
Transform Coding OVeIVIEW . ....ouirii it 35
L0SSIESS COMPIESSION .« .ttt ettt e et e e et e e e e 36
QUANTIZEIS . ettt e et et 37
Bit AlOCation ... o e 38
AN OIS e e 39
Linear ApPrOXimMatioN ...ttt e e 41
The Distributed Karhunen—Loéve Transform ........ ... ..ot 42
Problem Statement and Notation ....... ... 43
The Two-terminal SCENArio ... ... eu it i 44
The Multiterminal Scenario and the Distributed KLT Algorithm ................... 49
Alternative Transforms ......ccuiii it 49
Practical Distributed Transform Coding with Side Information..................... 50
High-rate Analysis of Source Coding with Side Information at Decoder............ 50
New Approaches to Distributed Compression with FRI ...t 51
Background on Sampling of 2D FRI Signals .........ccooiiiiiiiiii i 52
Detailed Example: Coding Scheme for Translating a Bi-level Polygon ............. 53
{073 Tod 157 o) =3 58
31 1=T (=T o o 58

2.1 INTRODUCTION

Compression or approximation of an observed source is a central problem in signal
processing and communications, and transform coding has over the years emerged as
the dominating compression strategy. This is because transform coders are normally

Distributed Source Coding: Theory, Algorithms, and Applications
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very efficient and computationally simple. Transforms are used in most of the com-
pression standards, including image compression standards such as JPEG and JPEG
2000 ([20, 34]) and video compression standards such as H.26x [31].

Transform coding has been widely studied in recent years, and many important
results and optimality conditions have been derived. For example, it is well known
that, in some particular settings, the Karhunen-Loéve transform (KLT) is the optimal
transform for compression or linear approximation [15, 18]. More recently, the anal-
ysis of popular transform coders has led to new insights into the general problem of
source approximation and to new interesting connections between compression and
nonlinear approximation. This analysis has also clarified why the wavelet transform
(WT) is the best transform in some particular situations [4, 21, 32].

In distributed source coding, however, the source is not available at a single loca-
tion and thus it is not possible to apply a single transform to the entire source. Instead,
the source is partially observed by separate encoders that have to devise a local com-
pression strategy. It is thus natural to study how the classical centralized transform
coding paradigm changes in this new context. For example, if each encoder per-
forms transform coding locally, should the local transform be different from the one
used in a centralized compression? And how are the other modules of a transform
coder going to change? Is quantization, bit allocation, and entropy coding going to be
different?

Distributed transform coding has been analyzed in recent years, and some answers
can be provided. When the source is Gaussian, the KLT emerges again as the best
(and in some cases optimal) transform, even though changes to the classical structure
of the transform have to be implemented. This has been studied in [9-12], and the
asymptotic behavior of the distributed KLT has been considered in [28,29]. A similar
problem has also been studied in [22,37]. In the high bit-rate regime, some optimality
conditions for transforms have also been proved [8, 27].

The problem of distributed transform coding remains widely open, however, when
the Gaussianity of the source and the high bit-rate assumptions are relaxed. The design
of distributed transform coders in this particular case is normally based on heuristics,
and usually the local transform is not different from the one used in the centralized
scenario. Most of the modifications are done in the quantization and entropy coding
stages. For example, in the context of distributed video coding, the structure of the
discrete cosine transform (DCT) is the same as in classical video coding. However,
the DCT coefficients are quantized in a different way in order to exploit the fact that
correlated information is available at the decoder. This strategy, though effective, is not
necessarily optimal.

In the next section, we review the main results on centralized transform coding.
Section 2.3 provides an overview of the main results that appeared in [12] where
extensions of the KLT to the distributed scenario were considered. Sections 2.4
and 2.5 address the case where the input source is not Gaussian. The high bit-rate
regime is discussed, and extensions of DCT and WT are presented. We conclude in
Section 2.6.



2.2 Foundations of Centralized Transform Coding

FOUNDATIONS OF CENTRALIZED TRANSFORM
CODING

Transform Coding Overview

The problem of compression or source coding can be divided into two types: uncon-
strained and constrained. In an unconstrained source coding problem, the encoder
has access to the entire source vector x € RN, It is therefore possible to devise an opti-
mal source code for a particular source vector. In practice, however, it is hardly the
case that the entire source vector can be observed. In addition, even though we can
achieve good compression results, the high complexity of an unconstrained source
coder makes it impractical to implement.

A typical compression scheme is shown in Figure 2.1. A standard compressor con-
sists of three independent blocks: a block implementing linear transform, a quantizer,
and a lossless entropy encoder. This type of structure is called transform coding.
A transform code is an example of a constrained source code. Constrained source
codes are, loosely speaking, suboptimal but low in complexity, which arises from the
modularization of the encoding process. This approach allows “simple coding” to be
used with high efficiency. Simple coding refers to the use of scalar quantizer and scalar
entropy coding. This is one of the main reasons transform code is the most widely used
source code today. Given a random vector x of size IV, the simplicity of the transform
code allows x with a large value of NV to be encoded.

The task of an encoder is to map the source vector x € RN to a bitstream of finite
length. An invertible linear transform produces decorrelated transform coefficients
y =Tx where y € RN. The quantizer then maps RN to a discrete set of indices I, which
produce estimates of the coefficients y € RN This is then followed by a lossless entropy
encoder that performs a reversible mapping from I to a bit stream.

The decoder essentially reverses the operation of the encoder to reconstruct the
approximation X of the source. Since entropy coding is a lossless process, the quantizer
indices can be recovered exactly from the bitstream to give the estimates of transform

Y1 i i Y1

. Ql » » QIl N
X Y2 [ bits i V2 %
e » Q, 2 | Entropy p| Entropy |2 Q1 NIy >
: encoder decoder :
YN in in 1 In
» QN » » QNl N

FIGURE 2.1

Transform coding. A typical compression scheme consists of three elements: linear transform,
quantization, and lossless compression (entropy coding).
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coefficients y. A linear transform, generally denoted as U, is then applied to y to
produce the approximation of the source X = U ¥ where, as often is the case, U =T~ 1.

The quality of a lossy encoder is normally measured by the mean-squared error
(MSE) distortion of the approximation X. The MSE distortion is denoted by D =
E[d(x,X)] where

N
D=E[dx,%)]=E[Ix—x|*]=F [Z (x; —&,-)2}
i=1

and E[-] is the expectation operator. In order to gauge the performance of a source
code, the distortion is normally measured against the rate R, which is the expected
number of bits produced by the encoder divided by the length N of the encoded
source vector X. This is normally termed the distortion-rate performance. Thus the
performance of one source code is said to be better than the other in a rate-distortion
sense if, at the same given rate R, the earlier can achieve a lower distortion than the
latter.
We will now look at each building block of a transform coder in more detail.

Lossless Compression

Entropy code is a form of lossless compression, which is reversible and therefore
can only be applied to discrete sources. Consider a discrete source X that produces
I different values a; and the probability of occurrence of each value is denoted by
pla;). An entropy code assigns a unique binary representation b(a;) or a codeword
to each a;. The goal is to find a codeword b(a;) for each symbol so that the expected
length of the binary representation of X is minimized. That is, we want to minimize:

-1

EL(X)]=)_plak 2.1)

i=0

where /; is the length of the binary codeword associated with the symbol a;.

Since entropy coding is a lossless process, the binary representation has to be inver-
tible. Each codeword also has to be uniquely decodable. This means that no codeword
can be a prefix of another codeword. Therefore, the entire message sequences can be
encoded without adding any “punctuation” to tell the decoder where each codeword
ends and begins.

An entropy code is said to be optimal if it is a prefix code that minimizes E[/(X)].
Huffman codes [19] and arithmetic codes [35] are examples of optimal codes. The
lower bound on the expected length (2.1) of a prefix code is given by the entropy
H (X) of the source where

-1

HX) ==Y pla)log,(a,)

i=0
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and the performance of an optimal code is bounded by

H(X)<L(y)<H(X)+1. (2.2)

Quantizers

The amplitude values of a discrete-time signal are normally continuous. Quantization
is a lossy process that maps the continuous values of the source RY into a finite
set of alphabet or a reproduction codebook C = {X;};er CRN, where I is a discrete
set. Usually, each component or sample of the observed signal xeRN is quantized
individually (V = 1), and the quantizer is called scalar quantizer. A more sophisticated
form of quantization that operates on a group of samples of the source vector (N >1)
is called vector quantization. For a detailed treatment of vector quantization, we refer
the reader to [13].

Most of today’s compressors use a simple uniform scalar quantizer together with
prediction or transforms. In the case of a uniform quantizer, the input is divided into
intervals of equal size. The distance between each interval is the step size A. The
output y is derived from the nearest integer multiple of A that is closest to the input x.
Formally, this can be written as y =round (x/A). If the quantizer has the index i =
{0, 1, ..., I— 1} that outputs / different symbols y;, we would need R = [log,(I)] bits
to represent each symbol with a fixed-length binary code. The quantizer is then said
to have rate R. What we have here is, in fact, a fixed-rate quantizer. However, adding an
entropy code to this quantizer gives a variable-rate quantizer specified by the mapping
where the rate R is given by the expected code length divided by N. Furthermore,
from (2.2), we know that the performance of an optimal entropy code is bounded
by the entropy. Thus, the variable-rate quantizer with an optimal entropy code is also
called entropy constrained.

While the optimal design of a quantizer ([7, 15, 16]) is beyond the scope of this
chapter we can say that an optimal quantizer is the one that minimizes the distortion
for a given rate or minimizes the rate for a target distortion and the rate-distortion
curve of the considered source gives us the performance bound. Unfortunately, in
practice, the rate-distortion function is known only for a few cases. However, one can
obtain a remarkable result for a Gaussian source where the distortion is measured as
the MSE. Assuming that the source produces independent and identically distributed
(i.i.d.) Gaussian random variables with variance o2, the distortion-rate bound of the
source subject to MSE is

D(R) =027 %k, (2.3)
Given the bound in Equation (2.3), we now want to examine how close the perfor-
mance of a scalar quantizer is to this bound. A precise answer has been obtained for
a high bit-rate analysis (i.e., for large R) [15, 16]. For a fixed-rate quantizer, the opti-
mal quantizer for a Gaussian source is nonuniform and achieves the distortion-rate
function of

D(R) =

@022*2’?. (2.4)
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In comparison to the bound in (2.3), the distortion of this nonuniform quantizer is
higher by ~4.35dB, or the rate loss is ~0.72 bits per symbol. This means that this
quantizer needs 0.72 more bits per symbol to achieve the same distortion of the best
possible lossy encoder.

One can improve the performance given in (2.4) by adding the entropy encoder
to obtain a variable-rate quantizer. Interestingly, at high rate, the optimal quantizer is
uniform. In this case, the achieved distortion-rate performance is given by

D(R) = %022*2’?.

The distortion is now ~ 1.53dB higher than the bound, and the redundancy is ~0.255
bits per symbol, which is a significant improvement when compared to (2.4).

Interestingly, at high rate, for non-Gaussian sources, it is still optimal to use a uni-
form quantizer followed by an entropy encoder, and the operational distortion-rate
function is

D(R)~ca?2 2R (2.5)

where ¢ is a constant whose value depends on the probability density function of
the source. In summary, at high bit rates, one can conclude that the best quantization
strategy is to use a uniform quantizer followed by an entropy encoder, which would
result in a fairly simple lossy compression scheme whose performance is very close
to that of the best possible performance bound.

Bit Allocation

Since each transform coefficient is quantized and entropy coded separately, the total
number of bits (or the bit budget) is split among the coefficients in some way. The
question of how these bits should be allocated to each coefficient is referred to as the
bit allocation problem. Given a set of quantizers whose performances are described
by the distortion-rate functions

D,-=g,'(a',-,Ri), R,-eﬁ)’t,-, i=1,2,...,N,

where o; €R and a set of available rates )i; is a subset of nonnegative real numbers,
the problem is then to minimize the average distortion D = Zi\’: 1 D; given a maximum
rate R = Zf;l R;. This is therefore a constrained optimization problem, which can be
solved using Lagrange multipliers. See [23] for a detailed treatment of this topic.

Intuitively, the initial bit allocation is not optimal if the average distortion can be
reduced by taking bits away from one coefficient and giving them to another. Therefore,
we can say that one necessary condition for an optimal bit allocation is that the slope
of each g; at R; must be equal. From the high-resolution analysis of the performance
of a quantizer given in (2.5), we have that

gilon Ry =ciof2 2R, 9;=[0,0), i=1,2,...,N. (2.6)
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Ignoring the fact that all the rates must be nonnegative, an equal-slope condition leads
to an optimal bit allocation as

N 1/N*
(1)
i=1

With the above bit allocation, all the distortions D; are equal and the average

distortion is
N 1N , n 1/N
D= (]_[ c,.) (]_[ af) 272k, (2.7)
i=1 i=1

Each R; must be nonnegative for the above solution to be valid. At lower rates, the

components with smallest c; - o2 are given no bits and the remaining components are

[3
given correspondingly higher allocations. For uniform quantizers, the bit allocation
determines the step size A; for each component. The equal-distortion property means

that optimality can be achieved when all the step sizes are equal.

Transforms

Earlier we said that transform coding allows simple coding of scalar quantization and
entropy code to be used efficiently. Let us now consider the problem of compressing
sources with block memory. Given a source vector x € RN of length NV that consists of
statistically dependent samples, clearly, it would be inefficient to scalar quantize each
element independently since we would not exploit the dependency of the samples.
An alternative is to use a vector quantizer to perform a joint compression. This is
not a practical option, however, as the complexity normally increases exponentially
as N increases. Instead, we want to devise a transform coder as shown in Figure
2.1. We denote with T the transform applied to the source vector x leading to the
transform coefficients y = Tx, where each coefficient y is then scalar quantized. The
reconstructed source vector is X = Uy, where y is the scalar quantized transform
coefficients and usually U =7~ 1. Our goal is then to devise the transform 7' that
minimizes the MSE D = E[||x — X||?] for a given rate R.

Optimal Transforms for Gaussian Sources

We start by assuming that x is a jointly Gaussian zero-mean vector with covariance
matrix 2y =F [XXT] In addition,we assume that 7" is orthogonal. Since T is orthogonal,
the Euclidean lengths are preserved, which gives D = E[|x —X||*] = E[|ly — ¥|*].

A Karhunen-Loeve transform (KLT) is an orthogonal transform that diagonalizes
3x leading to 2y =F [ny] =T3xTT = A. Since the diagonal matrix Sy =T34T T s
the covariance matrix of y =Tx, the KLT transform gives uncorrelated coefficients.
Our Gaussian assumption means that the coefficients yr, k=1, 2, ..., N,are indepen-
dent Gaussian variables with variance A7. Here A7 is the kth diagonal element of Sy.
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Therefore, because of this independence, we can compress each coefficient y, inde-
pendently. From (2.5) and (2.6), we have that the kth component of y contributes a
distortion

Dr(Ry) = cAg2 ™ *Re

where Rp is the rate allocated to yr and c¢= 7= ”e for variable-rate entropy con-

strained quantization or ¢ = f for a fixed-rate quantlzauon The overall distortion-rate
function is

~ Py 1
DR =E [Ix=XII’]=E[lly -¥I?] =EZD;€, (2.8)

with R=7)", R. The goal then is to minimize (2.8) subject to R=)_, Rp. This is then
the problem of bit allocation discussed in the previous section. With these assump-
tions, with any rate and bit allocation, one can show that the KLT is an optimal
transform.

Theorem 2.1. [15] Consider a transform coder with orthogonal analysis transform T and
synthesis transform U= T71=77 If there is a single function g as defined by Equation
(2.6) that describes the quantization of each transform coefficient as

Di(Re) =E [ye —J%°] =gk, Re), k=1,2,...,N

where )\,2( is the variance of y, and Ry is the rate allocated to y;, then for any rate allocation
(R1,Ro,...,Ry) there is a KLT that minimizes the distortion. In the typical case where gis
nonincreasing, a KLT that gives (Az,)\g, . ,)\?V) sorted in the same order as bit allocation
minimizes the distortion.

Recall that from the high-resolution analysis of the performance of the quantizer
described by (2.6), with optimal bit allocation, the average distortion is given by (2.7).
For our independent Gaussian transform coefficients, the distortion simplifies to

1/N
DR)=E[lly-vI?] (HM) 272, (2.9)

Therefore, the optimal orthogonal transform is the one that minimizes the geomet-
1/N
N
ric mean of the transform coefficient variances given by <]_[ )\,26) . Applying
k=1

Hadamard’s inequality to 2y gives

N
(det T)(det Sx)(det T7) = det Sy < ]‘[ AZ.
k=1
Since det I' = 1, the left-hand side of this inequality is invariant to the choice of T.
Equality is achieved when KLT is used. Thus KLT's minimize the distortion.
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One can measure the factor at which the distortion is reduced by the use of trans-
form with a coding gain. Assuming high rate and optimal bit allocation, the coding

gain of a transform is given by
N 1/N
(11 (0,)
7

i=1
N /N
(1)
k=1

which is a function of variance vector, (A\2,A3, ..., A3%), of the transform coefficients
and the variance vector of the diagonal elements of 2. Our previous discussion shows
that the KLTs maximize coding gain.

If the input source is stationary but not Gaussian, we can still use the same scheme.
In this case, the KLT decorrelates the components of X but does not provide indepen-
dent components. We can still perform the same bit allocation analysis as shown
before. Although the approach tends to give good results, we are not guaranteed that
the performance is optimal.

coding gain =

Linear Approximation

Linear approximation is to some extent a “simplified” form of compression where one
stores or transmits only a subset of the coefficients of y and the retained coefficients are
not quantized. More formally, consider a function in a certain space and an orthogonal
basis {g,},,cn. We want to approximate this function using only M elements of {g,},,cn-
In linear approximation problems, the choice of these M elements is fixed a priori and
is independent of the f we are trying to approximate. By choosing the first M elements
of the basis, we have the following linear approximation of f:

M—1

Ju= Z (f>8n) &n-

n=0

Since the basis is orthogonal, the MSE of this approximation is

em = If —full? =Y 1(f.8n)l. (2.10)

n=mM

Therefore, given a class of signals and a choice of possible bases, the best basis in this
context is the one that gives the smallest MSE as given in (2.10). Interestingly enough,
one can show that if the signals are realizations of a jointly Gaussian process, which
generates jointly Gaussian vectors, the best basis to approximate such signals is again
the KLT.

In summary, in this section we have seen that when the source is Gaussian the KLT
is the best transform in both the compression and linear approximation scenarios.
In the case of compression, moreover, a strategy that involves the KLT, uniform scalar
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quantizers,and entropy encoders achieves optimal performance if the rate is allocated
correctly.

In the next sections, we will study how these main building blocks of centralized
transform coding are changed when the compression is performed in a distributed
rather than centralized fashion.

THE DISTRIBUTED KARHUNEN-LOEVE TRANSFORM

The problem we consider now is depicted in Figure 2.2: there are L terminals, each
observing a part of a vector x. If the encoding of x is performed jointly, then we are
back to the centralized transform coding scenario discussed in the previous section.
The situation encountered in this and the following sections is more complicated,
however. Terminals cannot communicate among themselves. Instead, each terminal
individually provides an approximation of its observation to the central decoder. The
decoder receives the different approximations sent by each terminal and performs
a joint reconstruction. The fundamental issue then is to devise the best local trans-
form coding strategy knowing that the encoding is independent but the decoding is
performed jointly.

In this section, we discuss the case when x is a jointly Gaussian vector. In this
scenario, some precise answers can be provided, and extensions of the classical KLT
are presented. Sections 2.4 and 2.5 instead study the case when x is not Gaussian,
and an overview of existing distributed transform coding strategies is provided. In

X1 Encoder 1 »

X2 Encoder 2 >

Decoder

v

X Encoder L

FIGURE 2.2

The distributed transform coding problem. Encoder / has access to the subvector x; and has to
provide the best description j; of such vector knowing that the reconstruction of all the
descriptions is performed jointly.
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particular, other transforms such as the wavelet transform and the discrete cosine
transform are considered.

Problem Statement and Notation

We now assume that the L terminals depicted in Figure 2.2 are observing a part of
an N-dimensional, jointly Gaussian real-valued vector x. We further assume that x has
zero mean and covariance matrix 3. If the encoding of x is performed jointly, the best
transform is the KLT,and this is true in both the linear approximation and compression
scenarios. In the distributed scenario, however, encoders cannot communicate with
each other, and each terminal devises the best local transform coding strategy based
on its partial observation of x and on the knowledge of the global covariance matrix
2.x.To be more specific, we assume that the first terminal observes the first M; compo-
nents of x denoted by x; = (x1, x2, ..., X3, ), the second encoder observes the next
M, components Xz = (Xaf,+1, XM;+2, - - - » XM, +M, ), and so on. Each terminal provides
an approximation of the observed partial vector to the central decoder whose goal is
to produce the best possible estimate of the entire vector x from the received approx-
imations. More precisely, the goal is to find a vector X that minimizes the mean-squared
error (MSE) E[[lx — %|1%].

Let us consider for the time being the linear approximation problem. That is,
each terminal produces a k;-dimensional approximation of the observed components,
which is equivalent to saying that terminal / applies a k; X M; matrix 7; to its local
observation. Hence, stacking all the transforms together, we can say that the central
receiver observes the vector y given by

7: 0 ... O
O I, ... 0

y=Tx= . . . X. (2.11)
0 0o ... T;

The decoder then has to estimate x from y. This situation is clearly more con-
strained than the one encountered in the centralized transform coding scenario since
the transform 7' is block-diagonal in the present distributed scenario, whereas it is
unconstrained in the centralized case.

Under the MSE criterion, the optimal estimate X of x is given by the conditional
expectation of X given y. Moreover, in the Gaussian case, the estimator is linear and is
given by

X =Ex|y]|=E[X|Tx] =3, TT (T3, 17") 'Tx.
The corresponding MSE can be written as
D=E[|x—x|*|=trace(Sx — 3, TT (T3xTT)1T3,). (2.12)

Therefore, for fixed &;’s, the distributed approximation problem can be stated as the
minimization of (2.12) over all block-diagonal matrices 7" as given in (2.11). A simple
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solution to this problem does not seem to exist. However, in some particular settings,
some precise answers can be provided [12]. Moreover, in [12] an iterative algorithm
that finds (locally) optimal solutions is also proposed.

The compression problem is to some extent even more involved since the trans-
formed vectors y; = I;x) need to be quantized and the binary representation of the
quantized version of yj is transmitted to the receiver. The objective now is to obtain
the best possible estimate of x from the quantized versions of the approximations yj,
[=1,2,..., Lunder an overall bit budget R. Thus the problem now is not only to find
the right block-diagonal transform 7' but also the right allocation of the bits among
the encoders and the correct quantization strategy.

In the next subsection, we consider the two-terminal scenario and review the
linear approximation and compression results presented in [12]. One special case
leading to the Conditional KLT is also reviewed,and examples are given. The following
subsection then discusses the multiterminal scenario.

The Two-terminal Scenario

We now consider the two-terminal scenario depicted in Figure 2.3 where Terminal 1
observes the vector x3 given by the first M components of x and the second terminal
observes the vector x, given by the last N —M components of x. The covariance
matrix of x1 (i.e., E [x1x¥]) is denoted with 3. Similarly, we have 3, = E[x>x1] and
312 =E[x1x1].

The transform T3 applied by the second terminal to X3 is assumed to be fixed and
known at both terminals. The decoder, however, does not have access to 75X, but
to the noisy version yz = T2X3 + z, where z; is a zero-mean jointly Gaussian vector

—» .
h
X1 Encoder 1 »
—>
7
N
Decoder —— X
—>
z
X2 T2 k2 y,
o —

FIGURE 2.3

The two-terminals scenario: Encoder 2 applies a transform T, to the observed vector x5. The
transform is fixed and known at both encoders. The decoder receives a noisy version

yo = ToXz +Z; the noise may model the quantization error or is due to noise in the communication
channel. The open issue is to find the best transform coding strategy at Encoder 1 under these
circumstances.
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independent of x,. Notice that 75 has dimension &, X (N — M) and Z; has dimension
k> X 1. The noise might be due to the transmission channel or may model the effect
of the compression of the transformed coefficients T>X;.

In line with the problem statement of the previous section, two perspectives are
considered. In the first one, Terminal 1 has to provide the best 21-dimensional approx-
imation of the observed vector X1 given that y is available at the decoder (but not
at the Encoder 1). In the second scenario, Xy has to be compressed using an available
bit budget R, and the task is again to devise the best compression strategy given that
y2 is available at the decoder. In both scenarios, the goal is the minimization of

Ellx —%*ly2], (2.13)

where X is the reconstructed vector.
Let us focus on the approximation problem first. Because of the assumption that
x and z; are Gaussian, there exist constant matrices A; and A, such that

X2 =A1X1 tA2y2+V, (2.14)

where v is a Gaussian random vector independent of x; and y,. Fundamentally, the

term A1X; + A2y2 represents the linear estimation of X, from x3 and y3,and v is the

uncertainty. Namely, v represents what cannot be estimated of X from x3 and y».
Using the same arguments, we can also write

1
<M>X1:Bzy2 +W, (2.15)
Ay

where Iy, is the M-dimensional identity matrix and w is a Gaussian random vector
independent of y, and with correlation matrix 3,,. It is worth mentioning at this
stage that, because of the peculiar structure of the vector (%)Xl’ the matrix 3, has
rank <M. It is also possible to show that X, is given by [12]:

Iy _
Su= (A > (21 —ElszT(TzzszT +3.) 1T22{2) Iy A{)
1
In the linear approximation problem, we need to find the matrix 77 of dimen-
sion k1 X M that minimizes (2.13). To determine such matrix, we rewrite the
distortion (2.13) as follows [12]:

Elllx —X|?|ly2]1=Ellx1 — X1 |1*y2] + EllIx2 — %2 *|y2]

(a) ~ ~
= E[lIx1 — X1 %y2] + E[|A1x1 + A2y2 + v — %2 | |y2]

®) ~ ~
= Elllx1 — X1 ||*ly2] + E[lA1x1 — A1 %1 |12 |y2] + E[|[v]*]

e[ Gr- G

where in (a) we have used (2.14) and in (b) we have used the fact that the optimal
estimation of X, from (X1,y2) is X2 = A1X3 + A,y2. Also recall that v is independent of

2
m} +E[|[v]*],
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x1 and y2. We now apply an orthogonal transform Q7 to (1;1"1 )x1 so that the components
of the resulting vector y; are conditionally independent given y,. Since we are focusing
on the Gaussian case only, from (2.15) we obtain that QT is the N X N matrix that
diagonalizes 2.,,. Denote the eigendecomposition of 2., as follows:

S =Qdiag\3, A3, ..., A3)0QT, (2.16)
where the eigenvalues )\?,1‘ =1, 2, ..., N are in nonincreasing order. Then denote with
T: the matrix

Iy
=07 ) 2.17
1=0 ( 4 ) (2.17)

By using the fact that Q is unitary and the fact that the components of y; are
conditionally independent, we arrive at this simplified expression for the MSE:

N
Ellx—%1%ly21= Y Ellym —Iml*ly2] + ELIVI1.

m=1

The error E[||¥m — Ym ||2 |y2] is zero if the component y,, is transmitted and is equal to
A2, if y;y, is discarded. We therefore deduce that the best &;-dimensional approximation
of x; is obtained by keeping the &, components of y; related to the largest eigen-
values of 2. Since the eigenvalues in (2.16) are in nonincreasing order, the optimal
k1-dimensional approximation of X; is given by the first 21 components of the vector
y1 = I'1X; and the reconstruction error is

N
E[Ix—%|*ly21= Y Aj,+E[IvI*.

m=k1+1

The matrix T is known as the local KLT [12].

We now provide intuition for the shape of the optimal transform 7. If Terminal
1 were to provide a linear approximation of x; without considering the side infor-
mation and the fact that the entire vector X needs to be recovered, it would simply
compute the eigendecomposition of %; and send the &, components related to the
largest eigenvalues of 21. However, since some information about x; can be estimated
from y, and since the received approximation is also used to estimate x;, the relative
importance of the components of x; may change. This is clearly reflected in Equa-
tion (2.15). The local KLT provides the optimal solution because it takes these issues
into account and shows that the correct covariance matrix to diagonalize is 2.

In the compression scenario, Terminal 1 can use only R bits to encode x7, and
the aim is again the minimization of (2.13). The interesting finding of [12] is that the
optimal encoding strategy consists in applying the local KLT (i.e., the transform 77)
to Xxq, followed by independent compression of the components of y1 = 71xy. The
rate allocation among the components depends on the eigenvalue distribution of %,,.
Namely, the components of y; related to the largest eigenvalues get more rates.
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This optimal encoding strategy is remarkably similar to the compression strategy
used in the classical centralized scenario. However, the similarities terminate here. It
is in fact also important to point out some differences. First, contrary to the central-
ized case, the rate allocation in the distributed case depends on the side information
available at the decoder (indeed, the side information has an effect on the structure
of the matrix X,,). Second, the constructive compression schemes involved in the
distributed case are normally very different from those used in the classical scenario.
More specifically, in the classical scenario the components of y3 can be compressed
using, for example, standard scalar quantizers. In contrast, in the distributed scenario,
a standard scalar quantizer might not be optimal, and sophisticated Wyner-Ziv cod-
ing schemes might be required. For an overview of existing Wyner-Ziv constructive
codes, we refer the reader to [17].

A case of particular interest is the one where y2 =X;. This means that the exact
observation of Terminal 2 is available at the decoder. In this scenario A4; =0 and 3,
becomes:

S=21— 21222_1212T.

Notice that 3,,, now has dimension M X M. The local KLT is the M X M matrix T, that
diagonalizes 3.,,. Such a matrix is called Conditional KLT in [12].

To conclude this section, we consider the following example: Assume a three-
dimensional vector x with covariance matrix

12 0 0
S.=| o 1 o5
0 05 1

Encoder 1 observes the first two components of this vector: (x1, x2), while Encoder
2 has access to the third one. Consider, as usual, the approximation problem first.
We assume Terminal 1 has to provide a one-dimensional approximation. If Encoder 1
were to use the classical centralized strategy, it would transmit x; only. In fact, since
the first two components are uncorrelated, the classical KLT is in this case the identity
matrix and the first component has higher variance. However, this solution is in general
suboptimal since x; is correlated with x3.

Assume, for example, that Encoder 2 is switched off, which means that the compo-
nent X3 is lost. In this case, x> is more important since it is the only component that
can provide some information about x3. In this context, the local KLT is still diagonal;
however, the nonzero eigenvalues of 2., are /\f =1.2 and /\% =1.25,which shows that
x> represents the components that will be transmitted. One can easily see that the MSE
using the classical KLT is D = 2, whereas the local KLT would lead to Dixzy =1.95. If
we were to do compression, then the rate R that Encoder 1 can use is allocated accord-
ing to the eigenvalues /\% and )\g . This means that x, will get more rate than x. Since
x3 is lost, the compression scheme used by Terminal 1 can be, for example, a classical
scalar quantizer, and classical high-rate quantization theory can be used to evaluate
the operational rate-distortion function.
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Consider now the dual situation, namely, assume that x3 is available at the decoder.
The component x; is less important as it can be estimated from x3. In this context,
the local KLT is again diagonal, but the nonzero eigenvalues of 2, are /\f =1.2 and
/\% =0.75. Thus Terminal 1 transmits x;. In the compression scenario, the rate R is
again allocated according to )\f and )\%; however, the compression schemes involved
in this case are different. The component x; is independent of x3 and thus can be
compressed using an independent coder such as a scalar quantizer. The component
x; instead depends on x3; thus the compression scheme that needs to be used is a
Wynez-Ziv encoder. The distributed transform coding strategy of this second case is
shown in Figure 2.4(b) and compared against the independent compression strategy
of Figure 2.4(a).

The more general scenario considered in this section assumes that a noisy version
of x3 is available at the decoder. We now understand that the variance of this noise is
going to determine which component is sent by Encoder 1. Strong noise is equivalent
to assuming that x3 is lost and so x should be sent. On the other hand, weak noise
indicates that x3 is mostly available at the decoder, and that therefore x; should be
transmitted. In the same way, the allocation of the rate R between x; and x; is influ-
enced by the noise. In the case of strong noise, more rate is given to x,. With weak
noise, more rate is allocated to xy.

i .
X1 1
—p SQl ECl )&’ SQl ECl h
T, =KLT of 3 X T,=KLT of S X
X i, | Decoder X, ' i, | Decoder >
SQoHEC, 2
X3 N X3 N
(a) Independent (b) Distributed
FIGURE 2.4

Independent versus distributed transform coding for the example given in Section 2.3.2. In
Figure 2.4(a), Encoder 1 performs an independent encoding of x xo; that is, it does not take into
account the fact that x3 is available at the decoder. In this case, the correct transform is the KLT of
31, and the rate allocated to the first component is Ry ~R/2 +logo o7 — %IogQ o102, Where
(r%,a’% are the eigenvalues of 31 and Ry~ R/2 +logy op — %Iogg o102. Moreover, the transformed
components can be compressed using standard scalar quantizers and entropy encoders as
described in Section 2.2. The optimal distributed transform coding strategy is depicted

in Figure 2.4(b) and is remarkably different from the one shown in part (a). The optimal transform
is the local KLT, namely, the KLT of X,,. This leads to a different bit allocation where
Ri~R/2+logy A1 — 3logy A1z and Ry ~R/2+logy Az — Alogy A1A. Finally, the second
transformed component is correlated with x3; therefore, it has to be compressed using a
Wyner-Ziv encoder, which is normally based on channel coding principles and is very different
from a standard scalar quantizer.



2.4 Alternative Transforms

Finally, we would also like to point out that, because of the very peculiar structure
of the covariance matrix of this example, the local KLT turns out to be always diagonal.
However, in most situations the local KLT is not diagonal and is very different from the
centralized one. We refer the reader to [12] for examples showing these differences.

2.3.3 The Multiterminal Scenario and the Distributed KLT Algorithm

The general situation in which L terminals have to optimize their local transform
simultaneously is more complicated,and,as pointed out previously,an optimal solution
does not appear to exist. However, the local perspective discussed in the previous
section can be used to devise an iterative algorithm to find the best distributed KLT.
The basic intuition is that if all but one terminal have decided their approximation
strategy, the remaining terminal can optimize its local transformation using the local
KLT discussed in the previous section. Then in turn, each encoder can optimize its
local transform given that the other transforms are fixed. This is a sort of round robin
strategy, but it is implemented off-line,and encoders do not need to interact since they
all have access to the global covariance matrix 2,,. The algorithm is not guaranteed to
converge to the global minimum but may get stuck in a local one. The convergence
of such algorithm has been studied in [12].

The distributed KLT algorithm for compression operates along the same principles.
Now we have a total rate R available. At each iteration only a fraction of the rate is
allocated. Let us denote with R(7) the rate used in the 7th iteration. In turn, each
terminal is allowed to use the R(7) bits and optimizes its local compression scheme,
while all other encoders are kept fixed. The encoder that achieves the best overall
reduction of the distortion is allocated the rate R(7). The process is then iterated on a
new rate R(Z + 1), and the process stops when the total bit budget R has been achieved.
Notice that the approach is in spirit very similar to a standard greedy bit allocation
strategy used in traditional compression algorithms.

2.4 ALTERNATIVE TRANSFORMS

In many practical situations, the assumption that the source is Gaussian might not be
correct, and in fact the problem of properly modeling real-life signals such as images
and video remains open. In these cases, the KLT is rarely used and is often replaced
by the DCT or WT.

In this section, we discuss how transform coding is used in existing distributed
compression schemes of sources such as images and video. We briefly describe how
the concept of source coding with side information is combined with the standard
model of transform coding to form a distributed transform coding scheme. The main
results of high bit-rate analysis of such a scheme will also be presented. Lastly, in
Section 2.5, we will look at an alternative approach to distributed coding, which uses
the results of the new sampling theory of signal with finite rate of innovation [33].
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2.4.1 Practical Distributed Transform Coding with Side Information

Existing practical distributed coding schemes are the result of combining transform
coding with Wyner-Ziv coding (also known as source coding with side information at
the decoder). Wyner-Ziv coding is the counterpart of the Slepian and Wolfs theorem
[30], which considers the lossless distributed compression of two correlated discrete
sources X and Y. The Wyner-Ziv theorem [306] is an extension of the lossy distributed
compression of X with the assumption that the lossless version of Y is available at
the decoder as side information. A Slepian-Wolf coder for distributed source coding
with side information employs channel coding techniques. A Wyner-Ziv encoder can
be thought of as a quantizer followed by a Slepian-Wolf encoder.

In cases of images and video, existing distributed coding schemes add the Wyner-
Ziv encoder into the standard transform coding structure. As with the centralized
case, a linear transform is independently applied to each image or video frame. Each
transform coefficient is still treated independently, but it is fed into a Wyner-Ziv coder
instead of a scalar quantizer and an entropy coder. We refer the reader to [24] for an
overview of distributed video coding.

Examples of these coding schemes are the Wyner-Ziv video codec [1, 14], and
PRISM [25] where both schemes employ the block-based discrete cosine transform
(DCT) in the same way as the centralized case. In the Wyner-Ziv video codec,the quan-
tized transform coefficients are grouped into bit-planes and fed into a rate-compatible
punctured turbo coder (RCPT). Syndrome encoding by a trellis channel coder was
used to code the scalar quantized coefficients in [25].

In the work of [8], a distributed coding scheme for multiview video signals was
proposed where each camera observes and encodes a dynamic scene from a differ-
ent viewpoint. Motion-compensated spatiotemporal wavelet transform was used to
explore the dependencies in each video signal. As with other distributed source coding
schemes, the proposed scheme employs the coding structure of Wyner-Ziv coding
with side information. Here, one video signal was encoded with the conventional
source coding principle and was used as side information at the decoder. Syndrome
coding was then applied to encode the transform coefficients of the other video sig-
nals. Interestingly, it was also shown that, at high rates, for such coding structure the
optimal motion-compensated spatiotemporal transform is the Haar wavelet. Another
wavelet-based distributed coding scheme was presented in [3], where the wavelet-
based Slepian-Wolf coding was used to encode hyperspectral images that are highly
correlated within and across neighboring frequency bands. A method to estimate the
correlation statistics of the wavelet coefficients was also presented.

2.4.2 High-rate Analysis of Source Coding with Side Information
at Decoder

In this section we briefly describe some of the main results of applying high-rate
quantization theory to distributed source coding. We refer the reader to [26,27] for a
detailed explanation and derivation of these results.
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Distributed transform coding scheme.

Let us consider a transform coding setting in Figure 2.5. We denote with x=
(x1,...,x,) the continuous random vector of finite dimension n and let the ran-
dom vector y be the side information available at the decoder. We assume that the
linear transform 7 is orthogonal and that U =T~ ' =77 Each component of the
transform coefficients x' = I'x is individually scalar quantized. The quantizer index
is then assumed to be coded with an ideal Slepian-Wolf coder. The decoder uses y to
decode and reconstruct the approximation of the transform coefficients x'. The esti-
mate of the original source vector is then obtained by applying an inverse transform
X =UX'.

The high-rate analysis in [26,27] assumes the following: the expected distortion D;
of each component of x is measured as D; = E[(x;’ —X;')]; the rate required to code
the quantization index Q;’ is the conditional entropy R; = H (Q;'|y);the total expected
distortion per sample is measured as the MSE where D = %E [||x —'}EHZ]; and the total
expected rate per sample is R = % > _; Ri.The goal was then to minimize the Lagrangian
cost function j=D + AR.

With the above assumptions and assuming large R;, it was shown in [27] that the
expected distortion in each component of X is

D; ~ izh(xi'\Y)Z*ZRi’
12
where h(x;'|y) is the differential entropy. The authors then gave four necessary con-
ditions for the minimization of the Lagrangian cost function. In particular, it was
stated that an optimal choice of U is one that diagonalizes the expected conditional
covariance matrix Sy = Ey[Zx|y((y)]- Thus U is the KLT for 2y|y.

NEW APPROACHES TO DISTRIBUTED
COMPRESSION WITH FRI

In [2] anew approach to distributed video compression was proposed. The uniqueness
of this approach lies in the combined use of discrete wavelet transform (DWT) and the
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concept of sampling of signals with finite rate of innovation (FRI), which shifts the task
of disparity compensation or motion estimation to the decoder side. The proposed
scheme does not employ any traditional channel coding technique.

In this section, we will discuss the basic concepts behind this approach and show
the analysis of the rate-distortion bound for a simple example. For simplicity we will
only consider a simplified case of a translating bi-level polygon. We refer to [2] for
results of more general schemes with realistic cases. We start by presenting the main
results of sampling FRI signals before moving on to the actual coding scheme.

Background on Sampling of 2D FRI Signals

The definition and sampling schemes of FRI signals are given in detail in [5, 6, and
33]. We will only discuss the main results that will be used in the sequel. Let a 2D
continuous signal be f(x, y) with x, y € R and let the 2D sampling kernel be ¢(x, y).
In a typical sampling setup, the samples obtained by sampling f (x, y) with ¢(x, y) are
given by

Sman =[x, 9), (x/T —m,y/T —n)),

where (-) denotes the inner product and m, n € Z. Assume that the sampling kernel
satisfies the polynomial reproduction property that is,

SN bl e —m.y—n) =Ly (2.18)

meZ ne’z

with p, g€Z and a proper set of coefficients c,(,f,‘f) It follows that, with 7'=1, the
continuous geometric moment 72, 4 of order (p + g) of the signal f (x, ) is given by

mp.q = Z Z C%#)Sm,n- (2.19)
meZ nel
(p.9)

Therefore, given a set of coefficients ¢,; ;' ,one can retrieve the continuous moments
from an arbitrarily low-resolution set of samples :S:mn provided that f(x, p) lies in the
region where Equation (2.19) is satisfied.

The polynomial reproduction property is satisfied by any valid scaling function
¢;(x,y) of the WT, where j represents the number of levels of the wavelet decomposi-

tion. Thus we can change the resolution of S, , by altering j with the corresponding

sampling period of 7'=2/. It can be shown that the required coefficients c(mp,’,q,) are

given by
DD _ DG 2 (mn _ 2.20
cmn =xPy9, gi(x —m,y —n)) (2.20)
where aj(x, y) is the dual of ¢;(x, ). In the next section, we show that the motion

parameters can be extracted from the set of continuous moments 72, ; obtained using
Equation (2.19).
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Detailed Example: Coding Scheme for Translating
a Bi-level Polygon

In order to gain some intuition, we will consider a simplified example of a sequence
of a bi-level equilateral polygon, moving by translation, in a uniform background.
Let us define a block of N video frames or N multiview images to be f;(x,y),
i=1,2,...,N,x,yeR. We set fi(x, ) to be the reference frame. It then follows that
Jile,y) =fi(x —x;,y—p1),i=2,3,..., N where t;=[x;, ;] is the translation vector.
Using the definition of the moment of the 7th frame, m; . and let x' =x —x;, we
have that

mli,ozf/ﬁ(x',y')(x’+x,')dx’dy’=m%’0+m(l)’0x,'. (2.21)

. (m y—m] )

Therefore t; can be calculated using first and zero-th order moments as x; = %
= 0,0

(mg 7””(1)4 V)

and similarly y; = — T Note that (x,y) = (
0,0

mio Mo\ .
o B! fined as th rycen-
Moo mo.o) s defined as the baryce

ter of the signal. In terms of video coding,the reference frame f1 (x, y) is usually denoted
as the “key frame.” For the rest of this section, we refer to f;(x,y),i=2,3,...,N as
the “nonkey frames.”

The coding scheme for this sequence is as follows: Each corner point of the poly-
gon in the key frame fj(x,y) is quantized and transmitted to the decoder, and the
moments of fi (x, ) are computed directly. The nonkey frames f;(x,y),i=2,3,...,N
are then sampled with a kernel ¢(x, p) that satisfies the condition given in (2.18). The
samples S;(m, n),i =2, 3, ..., N are quantized before being transmitted. The decoder
retrieves the zero-th and first-order moments of each frame using Equations (2.19) and
(2.20), and the translation vectors #;,7 =2, 3, ..., N are retrieved as shown in (2.21).
Nonkey frames are then reconstructed as f;(x, y) = f1(x — x;, ¥ — »;). This scheme is
summarized in Figure 2.6.

Note that the encoder only performs standard, independent, transform coding on
each frame, and since only the samples of the nonkey frames are transmitted along
with the key frame, the overall bit rate is reduced. The dependency between each

Quantized .
i Comer points corner points : fi
» O ! Reconstruct ¢
: Calculate
ENCODER DECODER moments
f..N SN Son | y b..N - h..N
""" ) el ~N+ | Calculate Calculate |2--N | motion |2
> Sampling Q 7| moments transl?non estimation ’
vector

FIGURE 2.6
Distributed coding scheme for a bi-level, translating, polygon sequence based on FRI.
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frame is exploited at the decoder via joint decoding. Thus, this coding scheme has a
low-complexity encoder.

In the following section, we will examine the distortion-rate behavior of this dis-
tributed coding scheme and compare the rate-distortion performance with that of an
ideal joint (interframe) coder and an ideal independent (intraframe) coder.

Rate-distortion Analysis: Joint Encoder and Independent Encoder

Figure 2.7 presents an example of a bi-level polygon in a uniform background and a
visualization of the reconstruction error as a result of a mismatch between the values
of a translation vector at the encoder and the decoder.

For the ideal joint encoder, we assume that the location of each corner point of the
polygon and the frame-by-frame translation vectors #; are quantized and transmitted
to the decoder directly. The independent encoder on the other hand transmits the
quantized corner points of every video frame to the decoder.

Let f;(x,y),i=1,2,..., N be an N-frame video sequence with size A X 4 that con-
tains a bi-level, equilateral polygon of C corner points with amplitude B. First we want
to find the theoretical distortion-rate bound of an ideal joint encoder. The distortion
D is always measured as the mean-squared error (MSE) in the following analysis.

The joint encoder has to quantize two sets of parameters: the corner points and
the translation vectors. Thus we have two types of distortion that are independent
and additive, which can then be analyzed separately. Furthermore, at high bit rate, we
can also assume that, for each parameter, the quantization errors along the x-direction
and y-direction in the Cartesian coordinate are independent and, hence, also additive.
Lastly, we assume that the locations of the corner points are independent.

Let R¢ be the number of bits allocated to represent each corner point and let Ry
denote the number of bits allocated to represent each translation vector. With the
above assumption, one can show that the optimal bit allocation that minimizes D for
this joint encoder is given by

Rc =Rr + R,

L

FIGURE 2.7

(Left) A bi-level square in a uniform background. (Right) A visualization of the reconstruction error
resulting from the mismatch between the values of a translation vector at the encoder and the
decoder.




2.5 New Approaches to Distributed Compression with FRI

where the constant Rg =2log, (ﬁ) At a high rate, the distortion-rate bound

Dinrer(R) is
Rk
DintER(R) < 24%B*CinrEr (2 ACIN-T) )

where R is the total number of bits and Cyyrgr is a constant.

We also want to find the distortion-rate bound of the independent coder. In this
case the total number of bits used to encode the sequence is R = NCR.. With the same
set of assumptions as above, one can also show that, at a high rate, the distortion-rate
Dinrra(R) bound of the independent coder is given by

R
Dinrra(R) <24°B* (2 2(NC)>_

_ R
Note that the decay rate of Dyyrpr(R), which equals 2 2(€*N-1 is greater than that
R

of Diyra(R) given by 27 200 for € > 1. This is as expected since the joint encoder
exploits the interframe dependency of the video sequence and achieves a better com-
pression efficiency. In the next section, we will examine the distortion-rate behavior
of the proposed FRI-based distributed coding scheme.

Rate-distortion Analysis: Distributed Coding Using Sampling
of FRI Signals

In the proposed scheme shown in Figure 2.6, there are still two sets of parameters
to be quantized: the corner points and the samples. The quantization errors in the
samples lead to errors in the retrieved translation vectors. Thus, we have two types of
distortion: the distortion due to the error in the retrieved translation vector as a result
of quantization of the transmitted samples and the distortion due to quantization of
corner points. As with the previous analysis, we assume that the two types of distortion
are independent.

Given the observed samples, Sy, 5, of size L,, X L,, from the sampling scheme of
FRI signals, clearly, the errors introduced by quantizing S, , lead to an error in the
retrieved moment My, 4. In the proposed coding scheme, the frame-to-frame translation

vector can be obtained by calculating the barycenters of the two video frames. The
Mio Mo 1,0 Mo,1
Mo,0* Moo Mo.o
are in fact normalized first- Z(l)lrder moments. Let us denote the normahzed moment
of order (p+q) as My 4= % and let S, , = Sm n + em.n, where Sm » denotes the

quantized samples and e, , represents the quantization error; we have that

barycenter in the Cartesian coordinate is defined as ( ) where % and

L Ly Ly Ly Cpq R

Mpq ZZ mn§mn+22 m"emn Mpyq"‘wp’q,

» are the normalized polynomlal reproduction coefficients.

where Cp o

Let us denote with M p.q M + wp e the normalized moment of the 7/th frame.

It is easy to show that the error m the frame-to-frame translation vector between the
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ith and jth frame is then given by (qfc, qJS,) where qf; = (E’i’o +LT/{’0) represents the
error in the x-component of the translation vector. Similarly, qJS, = (w{;,l + ﬁfé’l) is the
error in the y-component.

Since each sample is independently scalar quantized, one can assume that the
probability density function (PDF) of w), ; is Gaussian whose variance depends on
the set of polynomial reproduction coefficients Ef;(fl We also assume that the errors
in each direction of the retrieved translation vector are independent, that is, qfc and
q;; are independent. With these assumptions, it is possible to show that the distortion
due to the quantization of the samples, as denoted by Dy, is given by

164B2
N2

where 7, is the number of bits allocated to represent each sample and o is a constant.
It can then be shown that the optimal bit allocation is

Dg<

—1,0 —0,1 _
(G0 @) + 0@ ) 27,

R
7C =ngs +R5,

with the constant Rg = log, <A‘1/627T N (0'0 (E:y’:)n) + oot

=) m’n)> 1). Note that R is
the number of bits allocated to represent each corner point. Finally, it follows that
the theoretical distortion-rate bound, Dpsc_rrr(R), of this proposed coding scheme is

given by

_ R
Dpsc_rri(R)<2AB*Cpsc_pri2 """ (2.22)
where Cpsc_prr is a constant.

Equation (2.22) shows us that the decay rate of Dpgsc prr(R) is equal to

R

T o DIl L. R -
2 XPT—"" which is always lower than the rate of 2~ 2¢*¥=1 of the joint encoder.

However, in comparison with the independent encoder whose decay rate equals

2_%, the decay rate of the distortion of the proposed FRI-based coding scheme
can be higher depending on the value of C and L,,L,,. The value of L,,L,, decreases as
the level of wavelet decomposition increases, which results in a better compression
performance. Thus, we ideally want the level of wavelet decomposition to be as high
as possible as there will be fewer coefficients to be transmitted.

Another point to be noted is that as the number of corner points C becomes larger,
our proposed coding method performs relatively better than the independent encoder.
The key point here is that as the complexity of the object in the video frame increases,
this FRI-based distributed coding scheme can achieve better compression efficiency
than the independent encoder. This is because, with this scheme, we only need to
encode the complex object once in the key frame. However, when C is small, we
are better off by just transmitting the simple object in every video frame rather than
transmitting a number of samples.
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Plots of Dinter(R) Dintra(R) and Dpsc rri(R). The complexity, C, of the sequence was set to 10,
100, 1000, and 10,000. A Daubechies db2 filter was used and the parameters were: N=238,
Lm=8, and an 8

Figure 2.8 shows the plots of the distortion-rate bound for the three coding
schemes. A Daubechies db2 filter was used with eight levels of wavelet decompo-
sition. The size of the observed samples was set to 8 X 8. From the plots, at C =10,
the independent (intraframe) coder achieves higher compression efficiency than the
FRI-based distributed coding scheme. However, the proposed scheme outperforms
the independent coder as the number of corner points increases. The performance
gap between the joint (interframe) encoder and the proposed scheme also decreases
as the complexity of the object in the sequence increases.

The plots shown in Figure 2.8 have been validated in [2] with synthesized video
sequences of translating bi-level polygons with a different number of corner points.
The scheme has also been extended to the case of a real object whose motion can be
described by an affine transform (see [2]). Even with a real object and a more complex
motion model, the same intuition remains: it makes sense to encode a complex object
once and then transmit only the samples (i.e., the low-pass coefficients of the WT) of
the object for the rest of the sequence.
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CONCLUSIONS

In this chapter, we started by reviewing the main known results on transform coding
in the centralized compression scenario, we then looked at the distributed transform
coding problem that arises when the source is not available at a single location but is
distributed at multiple sites. Extensions of the KLT to the distributed case were first
presented, and then possible variations of DCT and WT were discussed.

Although there are scenarios where precise answers to the correct design of a dis-
tributed transform coder can be provided,in most situations the solutions are based on
heuristics and optimal distributed transforms are not known yet. This clearly indicates
that the distributed transform coding problem is still widely open and that a vast space
of unexplored solutions remain to be discovered.

REFERENCES

[1] E.Setton, A.Aaron,S. Rane,and B. Girod. Transform-domain Wyner-Ziv codec for video. In Proc.
Visual Communications and Image Processing, VCIP-2004, San Jose, CA, January 2004.

[2] V. Chaisinthop and P. L. Dragotti. A new approach to distributed coding using sampling of signals
with finite rate of innovation. In Proc. Picture Coding Symposium 2007, Lisbon, Portugal,
November 2007.

[3] N.-M. Cheung, C. Tang, A. Ortega, and C. S. Raghavendra. Efficient wavelet-based
predictive Slepian-Wolf coding for hyperspectral imagery. Signal Process., 86(11):
3180-3195, 2006.

[4] A. Cohen, I. Daubechies, O. Guleryuz, and M. T. Orchard. On the importance of combining
wavelet-based non-linear approximation with coding strategies. IEEE Trans. on Information
Theory, 48(7):1895-1921, July 2002.

[5] P. L. Dragotti, M. Vetterli, and T. Blu. Exact sampling results for signals with finite rate of inno-
vation using Strang-Fix conditions and local kernels. In Proc. of IEEE Int. Conf. on Acoustic,
Speech and Signal Processing (ICASSP), Philadelphia, PA, March 2005.

[6] P L. Dragotti, M. Vetterli,and T. Blu. Sampling moments and reconstructing signals of finite rate
of innovation: Shannon meets Strang-Fix. IEEE Trans. on Signal Processing,55(5):1741-1757,
May 2007.

[7]1 N. Farvardin and J. Modestino. Optimum quantizer performance for a class of non-Gaussian
memoryless sources. Information Theory, IEEE Transactions on,30(3):485-497, May 1984.

[8] M. Flierl and P. Vandergheynst. Distributed coding of highly correlated image sequences with
motion-compensated temporal wavelets. Eurasip Journal Applied Signal Processing, 2000,
September 2006.

[91 M. Gastpar, P L. Dragotti, and M. Vetterli. The distributed Karhunen-Loeve transform. In
Multimedia and Signal Processing Workshop,Virgin Islands, December 2002.

[10] M. Gastpar, P. L. Dragotti, and M. Vetterli. The distributed, partial and conditional Karhunen-
Loeve transforms. In Data Compression Conference, Snowbird, Utah, March 2003.

[11] M. Gastpar, P. L. Dragotti, and M. Vetterli. On compression using the distributed Karhunen-
Loeve transform. In Proc. of IEEE Int. Conf. on Acoustic, Speech and Signal Processing, invited
paper, Montreal (CA), May 2004.



[12]
[13]
[14]
[15]
[106]

(17]

[18]
[19]
[20]
[21]
[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]
[31]

[32]

References

M. Gastpar, P. L. Dragotti, and M. Vetterli. The distributed Karhunen-Loeve transform. IEEE
Trans. on Information Theory, 52 (12):5177-5196, December 2006.

A. Gersho and R. M. Gray. Vector Quantization and Signal Compression. Kluwer Academic
Publishers, Norwell, MA, 1991.

B. Girod, A. M. Aaron, S. Rane,and D. Rebollo-Monedero. Distributed video coding. Proceedings
of the IEEE, 93(1):71-83, 2005.

V. K Goyal. Theoretical foundations of transform coding. IEEE Signal Processing Magazine,
18(5):9-21, September 2001.

R. M. Gray and D. L. Neuhoff. Quantization. Information Theory, IEEE Transactions on,
44(6):2325-2383, October 1998.

C. Guillemot and A. Roumy. Towards constructive Slepian-Wolf coding schemes. In Distributed
Source Coding: Theory, Algorithms and Applications, eds. P. L. Dragotti and M. Gastpar,
Academic Press, Elsevier, San Diego, CA, 2009.

J. Huang and P. Schultheiss. Block quantization of correlated Gaussian random variables.
Communications, IEEE Transactions on [legacy, pre-1988],11(3):289-296, September 1963.
D. A. Huffman. A method for the construction of minimum-redundancy codes. Proceedings of
the IRE,40(9):1098-1101, 1952.

D. T. Lee. JPEG2000: Retrospective and new developments. Proceedings of the IEEE, 93(1):
32-41,2005.

S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, Boston, MA, 1998.

H. Nurdin, R. R. Mazumdar,and A. Bagchi. On estimation and compression of distributed corre-
lated signals with incomplete observations. In Proc. Conf. Mathematical Theory of Networks
and Systems, Leuven (Belgium), July 2004.

A. Ortega and K. Ramchandran. Rate-distortion methods for image and video compression.
Signal Processing Magazine, IEEE, 15(6):23-50, 1998.

E Pereira, C. Brites, and J. Ascenso. Distributed video coding: Basics, codecs and performance.
In Distributed Source Coding: Theory, Algorithms and Applications, eds. P. L. Dragotti and
M. Gastpar, Academic Press, Elsevier, San Diego, CA, 2009.

R. Puriand K. Ramchandran. PRISM: A video coding architecture based on distributed compres-
sion principles. In 40th Allerton Conference on Communication, Control and Computing,
Allerton, IL, October 2002.

D. Rebollo-Monedero and B. Girod. Quantization for distributed source coding. In Distributed
Source Coding: Theory, Algoritbms and Applications, eds. P. L. Dragotti and M. Gastpar,
Academic Press, Elsevier, San Diego, CA, 2009.

D. Rebollo-Monedero, S. Rane, A. Aaron, and B. Girod. High-rate quantization and transform
coding with side information at the decoder. Eurasip Signal Processing Journal, 86(11):
3160-3179, November 2006. Special Issue on Distributed Source Coding.

O. Roy and M. Vetterli. On the asymptotic distortion behavior of the distributed Karhunen-
Loeve transform. In Proc. of Allerton Conf Communication, Control and Computing,
Monticello (IL), September 2005.

O. Roy and M. Vetterli. Dimensionality reduction for distributed estimation in the infinite
dimensional regime. IEEE Trans. on Information Theory, 54(4):1655-1669, April 2008.

D. Slepian and J. Wolf. Noiseless coding of correlated information sources. IEEE Transactions
on Information Theory,19(4):471-480,1973.

G. J. Sullivan and T. Wiegand. Video compression—from concepts to the H.264/AVC standard.
Proceedings of the IEEE,93(1):18-31,2005.

M. Vetterli. Wavelets, approximation and compression. [EEE Signal Processing Magazine,
18:59-73, September 2001.

59



60

CHAPTER 2 Distributed Transform Coding

[33]

[34]
[35]

[36]

[371

M. Vetterli, P Marziliano, and T. Blu. Sampling signals with finite rate of innovation. IEEE
Transactions on Signal Processing, 50(6):1417-1428, 2002.

G. K. Wallace. The JPEG still picture compression standard. Commun. ACM,34(4):30-44,1991.
I. H. Witten, R. M. Neal, and J. G Cleary. Arithmetic coding for data compression. Commun.
ACM, 30(6):520-540,1987.

A. Wyner and J. Ziv. The rate-distortion function for source coding with side information at the
decoder. IEEE Transactions on Information Theory,22(1):1-10,1976.

K. S. Zhang,X. R. Li, P Zhang,and H. E Li. Optimal linear estimation fusion part IV: Sensor data
compression. In Proc. of Int. Conf Fusion, Queensland (Australia), July 2003.



CHAPTER

Quantization for Distributed
Source Coding

David Rebollo-Monedero
Department of Telematics Engineering,
Universitat Politécnica de Catalunya,
Barcelona, Spain

Bernd Girod
Department of Electrical Engineering,
Stanford University, Palo Alto, CA

CHAPTER CONTENTS

INtrodUuCtion . . ... e 62
Formulation of the Problem ..........ccoouiiiiii i e 64
(070 1Y =T 1o 4 64
Network Distributed Source Coding .........viiiiiiie e 65
Cost, Distortion, and Rate Measures ..........ooiiiiii i 66
Optimal Quantizers and Reconstruction Functions ...t 67
Example: Quantization of Side Information ... 67
Optimal Quantizer DeSigN . ......vuu ittt ar s ennnees 68
Optimality Conditions .. ..ot 68
Lloyd Algorithm for Distributed Quantization ...t 69
Experimental ReSUIS ......vuiuiniiiii e it e e et e a s e earnananns 70
High-rate Distributed Quantization ... 73
High-rate WZ Quantization of Clean Sources...........coooviiiiiiiiiiininnannn. 74
High-rate WZ Quantization of NoiSy Sources..........c.coovvuiviiiiiiiiiiiiinennn. 76
High-rate Network Distributed Quantization ...t 80
Experimental Results Revisited ..........coiiiiiiiiiii i it 84
00T 4 Tod 113 o) o - 85
R EIENCES .ttt e 86

Distributed Source Coding: Theory, Algorithms, and Applications
Copyright © 2008 by Academic Press, Inc. All rights of reproduction in any form reserved. 6 1



62

CHAPTER 3 Quantization for Distributed Source Coding

INTRODUCTION

Consider the sensor network depicted in Figure 3.1, where sensors obtain noisy
readings of some unseen data of interest that must be transmitted to a central unit.
The central unit has access to side information, for instance, archived data or readings
from local sensors. At each sensor, neither the noisy observations of the other sensors
nor the side information is available. Nevertheless, the statistical dependence among
the unseen data, the noisy readings, and the side information may be exploited in the
design of each individual sensor encoder and the joint decoder at the central unit to
optimize the rate-distortion performance. Clearly, if all the noisy readings and the side
information were available at a single location, traditional joint denoising and encod-
ing techniques could be used to reduce the transmission rate as much as possible,
for a given distortion. However, since each of the noisy readings must be individually
encoded without access to the side information, practical design methods for efficient
distributed coders of noisy sources are needed.

The first attempts to design quantizers for Wyner-Ziv (WZ) coding—that is, lossy
source coding of a single instance of directly observed data with side information at the
decoder—were inspired by the information-theoretic proofs. Zamir and Shamai [50,
51] proved that under certain circumstances,linear codes and high-dimensional nested
lattices approach the WZ rate-distortion function, in particular if the source data and
side information are jointly Gaussian. This idea was further developed and applied
by Pradhan et al. [21, 29, 30] and Servetto [38], who published heuristic designs and

1

Remote Sensor
]

v

Side
Information

Central Unit \ %

Local Sensor

Remote Sensor

x

Remote Sensor

FIGURE 3.1
Distributed source coding in a sensor network.
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performance analysis focusing on the Gaussian case, based on nested lattices, with
either fixed-rate coding or entropy coding of the quantization indices.

A different approach was followed by Fleming and Effros [11], who generalized
the Lloyd algorithm [20] for locally optimal, fixed-rate WZ quantization design. Later,
Fleming, Zhao, and Effros [12] included rate-distortion optimized quantizers in which
the rate measure is a function of the quantization index, for example, a codeword
length. Unfortunately, vector quantizer dimensionality and entropy code blocklength
are identical in their formulation; thus the resulting quantizers either lack in
performance or are prohibitively complex. An efficient algorithm for finding glob-
ally optimal quantizers among those with contiguous code cells was provided in [27],
although, regrettably, it has been shown that code cell contiguity precludes optimal-
ity in general distributed settings [9]. Cardinal and Van Asche [5] considered Lloyd
quantization for ideal symmetric Slepian-Wolf (SW) coding without side information.
Cardinal [3, 4] has also studied the problem of quantization of the side information
itself for lossless distributed coding of discrete source data (which is not quantized).

It may be concluded from the proof of the converse to the WZ rate-distortion the-
orem [42] that there is no asymptotic loss in performance by considering block codes
of sufficiently large length, which may be seen as vector quantizers, followed by fixed-
length coders. This suggests a convenient implementation of WZ coders as quantizers,
possibly preceded by transforms, followed by SW coders, analogous to the implemen-
tation of nondistributed coders. This implementation is represented in Figure 3.2. The
quantizer divides the signal space into cells, which, however, may consist of non-
contiguous subcells mapped into the same quantizer index. Xiong et al. [25, 43]
implemented a WZ coder as a nested lattice quantizer followed by a SW coder, and
in [45], a trellis-coded quantizer was used instead (see also [44]).

An extension of the Lloyd algorithm, more general than Fleming and Effros’s,
appeared in our own work [37], which considered a variety of coding settings in a
unified framework, including the important case of ideal SW distributed coding of one
or several sources with side information, that is, when the rate is the joint conditional
entropy of the quantization indices given the side information.

An upper bound on the rate loss due to the unavailability of the side information
at the encoder was found by Zamir [47], who also proved that for power-difference
distortion measures and smooth source probability distributions, this rate loss vanishes

Wyner-Ziv Encoder Wyner-Ziv Decoder
x| Q | Slepian- i ‘| Slepian— o Minimum- LR
—» Quantizer »  Wolf : »  Wolf > Distortion —>
Encoder |; Decoder Reconstruction |}

FIGURE 3.2
A practical WZ coder obtained by cascading a quantizer and a SW coder.
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in the limit of small distortion. A similar high-resolution result was obtained by Zamir
and Berger [48] for distributed coding of several sources without side information,
also from an information-theoretic perspective, that is, for arbitrarily large dimension.
In [40] Cunpublished), it was shown that tessellating quantizers followed by SW coders
are asymptotically optimal in the limit of small distortion and large dimension. The first
theoretic characterization of high-rate WZ quantizers with SW coding was presented
in our own work [32]. It was inspired by the traditional developments of high-rate
quantization theory, specifically Bennett’s distortion approximation [1, 28], Gish and
Pierce’s rate approximation [17],and Gersho’s conjecture [15].

As for quantization of a noisy observation of an unseen source, the nondistributed
case was studied by Dobrushin, Tsybakov, Wolf, Ziv, Ephraim, Gray, and others [8, 10,
41]. Most of the operational work on distributed coding of noisy sources, that is, for
a fixed dimension, deals with quantizer design for a variety of settings, as in the work
by Lam and Reibman [22, 23], and Gubner [20], but does not consider entropy coding
or the characterization of such quantizers at high rates or transforms. The problem
of optimal noisy WZ quantizer design with side information at the decoder and ideal
SW coding has only been studied under the assumptions of high rates and particular
statistical conditions by our research group [36].

This chapter investigates the design of rate-distortion optimal quantizers for dis-
tributed compression in a network with multiple senders and receivers. In such a
network, several noisy observations of one or more unseen sources are separately
encoded by each sender and the quantization indices transmitted to a number of
receivers, which jointly decode all available transmissions with the help of side infor-
mation locally available. We present a unified framework in which a variety of coding
settings is allowed, including ideal SW coding, along with an extension of the Lloyd
algorithm for “locally” optimal design. In addition, we characterize optimal quantizers
in the limit of high rates and approximate their performance. This work summarizes
part of the research detailed in [31] and a number of papers, mainly [34, 35], where
additional mathematical technicalities and proofs can be found.

Section 3.2 contains the formulation of the problem studied. A theoretic analysis for
optimal quantizer design is presented in Section 3.3. In Section 3.5, optimal quantizers
and their performance are characterized asymptotically at high rates. Experimental
results for distributed coding of jointly Gaussian data are shown in Section 3.4 and
revisited in Section 3.6.

FORMULATION OF THE PROBLEM
Conventions

Throughout the chapter, the measurable space in which a random variable (r.v.) takes
on values will be called an alphabet. All alphabets are assumed to be Polish spaces to
ensure the existence of regular conditional probabilities. We shall follow the conven-
tion of using upper-case letters for r.v.’s,and lower-case letters for particular values they
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take on. Probability density functions (PDFs) and probability mass functions (PMFs)
are denoted by p and subindexed by the corresponding r.v.

Network Distributed Source Coding

We study the design of optimal quantizers for network distributed coding of noisy
sources with side information. Figure 3.3 depicts a network with several lossy encoders
communicating with several lossy decoders. Let m, n€Z" represent the number of
encoders and decoders,respectively. Let X,Y = (Yj);’:1 and Z = (Z;)}~, ber.v.’s defined
on a common probability space, statistically dependent in general, taking values in
arbitrary, possibly different alphabets, respectively, X', ), and Z. Foreachi=1, ..., m,
Z; represents an observation statistically related to some source data X of interest,
available only at encoder 7. For instance, Z; might be an image corrupted by noise, a
feature extracted from the source data such as a projection or a norm, the pair consist-
ing of the source data itself together with some additional encoder side information,
or any type of correlated r.v.,and X might also be of the form (X;)/2,, where X; could
play the role of the source data from which Z; is originated. For each j=1, ..., n,
Y; represents some side information, for example, previously decoded data, or an

additional, local noisy observation, available at decoder j only. For each 7, a quantizer

Z.
= Separate Encoder 1

Joint Decoder 1 —»

T

Joint Decoder j

Separate Encoder i

Noisy H O lossless | : T | ' Esti d
. i1, | Lossless |: Qi i Estimate
Observanon/i Encoder [ s . i Source Data j
z Qjj.[ Lossless |; | Lossless | Qi o X
—* gz ; » (g y) Hlw
; %) : | Encoder [} ; : 1| Decoder | (95 %) ;
Qin,| Lossless |; ; Onmj
Encoder | '
Side
J Information j
%_/ H_J
Quantization Lossless Coding Reconstruction
Zm . )?I‘I
—>»  Separate Encoder m > Joint Decoder n —»
Iy,
FIGURE 3.3

Distributed quantization of noisy sources with side information in a network with m encoders and
n decoders (mand n need not be equal). Xis the reconstruction of a r.v. Xjointly distributed with
Yand Z
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qi.(zi) = (qjf (zi))]’.’zl, which can also be regarded as a family of quantizers, is applied
to the observation Z;, obtaining the quantization indices Q;. = (Q,-j);‘zl. Each quantiza-
tion index Qy; is losslessly encoded at encoder 7 and transmitted to decoder j, where
it is losslessly decoded. We shall see that both encoding and decoding of quantiza-
tion indices may be joint or separate. For each j, all quantization indices received
by decoder j, Q; = (Q;)7~, and the side information ¥; are used jointly to estimate
the unseen source data X. Let )A(] represent this estimate, obtained with a measurable
function X;(q.;, y;), called reconstruction function, in an alphabet /'9] possibly differ-

ent from X. Define Q= (Q,j):.":’fj:l,)}' =(X; i, and X(q, ) = (&;(q;, )}~ Q and
X will denote the alphabets of Q and X, respectively. Partially connected networks
in which encoder 7 does not communicate with decoder j can easily be handled by

redefining Q;., Q; and Q not to include Q.

Cost, Distortion, and Rate Measures

We shall now extend the concept of rate measure presented in [37] by means of a
much more general definition, accompanied by a characteristic property that will play
a major role in the extension of the Lloyd algorithm for optimized quantizer design,
called update property. Even though the definition of rate measure and its update
property may seem rather abstract and complex initially, we shall see that it possesses
great generality and is applicable to a wide range of problems. The terms cost measure,
rate measure,and distortion measure,formally equivalent by definition, will be used
to emphasize different connotations in the context of applications, usually a Lagrangian
cost,a transmission rate,and the distortion introduced by lossy decoding, respectively.

A cost measure is a nonnegative measurable function of the form c(q, x, X, Y, %),
possibly defined in terms of the joint probability distribution of (Q, X, Y, Z).! Its asso-
ciated expected cost is defined as C =Ec(Q, X, X , Y, Z). Furthermore,a cost measure
will be required to satisfy the following update property. For any modification of the
joint probability distribution of (Q, X, Y, Z) preserving the marginal distribution of
(X,Y, Z), there must exist an induced cost measure ¢’, consistent with the original
definition almost surely (a.s.) but expressed in terms of the modified distribution, satis-
fying Ec'(Q, X, Y, Z) > C,where the expectation is taken with respect to the original
distribution.

An important example of rate measure is that corresponding to asymmetric SW
coding of a quantization index Q given side information Y. The achievable rate in this
case has been shown to be H(Q|Y), when the two alphabets of the random variables
involved are finite [39], in the sense that any rate greater than H(Q|Y) would allow
arbitrarily low probability of decoding error, but any rate less than H(Q|Y) would not.

! Rigorously, a cost measure may take as arguments probability distributions (measures) and proba-
bility functions; that is, it is a function of a function. We shall become immediately less formal and call
the evaluation of the cost measure for a particular probability distribution or function, cost measure
as well.
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In [6], the validity of this result was generalized to countable alphabets, but it was
still assumed that H(Y') <. We show in [31, App. A] (also [35]) that the asymmetric
SW result remains true under the assumptions in this chapter, namely, for any Q in a
countable alphabet and any Y in an arbitrary alphabet, possibly continuous, regardless
of the finiteness of H(Y").

Concordantly, we define the rate measure r(¢q,y) = — log po| v (¢|y) to model the
use of an ideal SW coder, in the sense that both the decoding error probability and
the rate redundancy are negligible. Note that the very same rate measure would also
model a conditional coder with access to the side information at the encoder. We
check that the SW rate measure defined satisfies the update property. The rate mea-
sure corresponding to any other PMF pg, y would be #'(q, y) = — log po v (q, y). The
modified associated rate would then be R’ =E7'(Q, Y), where »’ is defined in terms
of the new PMF but the expectation is taken with respect to the original one. Clearly,
R'—=R=D(pg v llpo v)=0.It can be seen that all rate measures defined in [37] satisfy
the update property, thereby making the corresponding coding settings applicable to
this framework.

If the alphabets of X, Y, Z, and X are equal to some common normed vector
space, then an example of a distortion measure is d(x, X, y, z) = a|x —x)? +Bly —
X))+ yllz — x||?, forany a, B, y €[0, ©). An example of a cost measure suitable for dis-
tributed source coding, the main focus of this work,is c(g, x, X, y) =d(x, x) + A r(q, ),
where A is a nonnegative real number determining the rate-distortion trade-off in the
Lagrangian cost C=D +A R.

Optimal Quantizers and Reconstruction Functions

Given a suitable cost measure c(g,x,X,, z), we address the problem of finding
quantizers g;.(z;) and reconstruction functions X;(g., y;) to minimize the associated
expected cost C. The choice of the cost measure leads to a particular noisy distributed
source coding system, including a model for lossless coding.

Example: Quantization of Side Information

Even though the focus of this work is the application represented in Figure 3.3, the
generality of this formulation allows many others. For example, consider the cod-
ing problem represented in Figure 3.4, proposed in [3]. A r.v. Z is quantized. The
quantization index Q is coded at rate Ry =H(Q) and used as side information for
a SW coder of a discrete random vector X. Hence, the additional rate required is
R2=H(X|Q). We wish to find the quantizer g(z) minimizing C =R, + A R;. It can be
shown that 71 (q) = — log po(q) and r2(x, q) = — log px| o (x| q) are well-defined rate
measures, using an argument similar to that for — log po, v (¢|y). Therefore, this prob-
lem is a particular case of our formulation. In fact, this is a noisy WZ, or a statistical
inference problem in which R plays the role of distortion, since minimizing H(X|Q)
is equivalent to minimizing I(Z; X) —I(Q; X), nonnegative by the data processing
inequality, zero if and only if Q is a sufficient statistic.
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Separate Lossless Encoder Joint Lossless Decoder
X ' Slepian—-Wolf I | Slepian-Wolf I X
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Quantization of side information.

Aside from particularizations and variations of distributed coding problems such
as quantization of side information, quantization with side information at the encoder,
broadcast with side information and an extension of the Blahut-Arimoto algorithm
to noisy WZ coding, we find that our theoretical framework also unifies apparently
unrelated problems such as the bottleneck method and Gauss mixture modeling. An
extensive list of examples appears in [31].

3.3 OPTIMAL QUANTIZER DESIGN

In this section we establish necessary conditions for the optimal quantization and
reconstruction functions, analogous to the nearest neighbor and centroid condition
found in conventional, nondistributed quantization. Each necessary condition may be
interpreted as the solution to a Bayesian decision problem. They will be expressed
in terms of conditional cost measures, defined below, which play the role of con-
ditional risks in Bayesian decision theory. These conditions will be used later to
develop an extension of the Lloyd algorithm suitable for distributed quantization. A
detailed, rigorous analysis of these conditions and the derived algorithm is presented
in [31].

3.3.1 Optimality Conditions

The conditional cost measure for encoder i is defined as

Ci(qi, z) =E[[c(Q, X, %(Q, Y), Y, Z)]Qi-ZQi- |zi].

where [expression]supstitution d€notes substitution in an expression, that is, the expres-
sion of the definition is evaluated at g;. and conditioned on the event {Z; = z;}. Observe
that the conditional cost measure is completely determined by the joint distribution
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of X, Y,and Z, the cost measure c(q, x, X, y, z), the quantization at other encoders
Do, 1z, (g, .,Z;), and all the reconstruction functions, grouped as X(g, y). Using the
fact that Q; =q;(Z;) and iterated expectation, it is easy to see that for each sender i,
Ec¢;(Q;., Z;) =C. In terms of Bayesian decision theory, the expectation of conditional
risks gives the overall Bayes risk. This key property leads to the necessary optimality
condition for the quantizer at sender ¢, which may be informally expressed as:

qz (Zz) arg min ¢;(g;., Z;), (3.1
qi-

provided that a minimum exists.
Similarly to the sender cost measures, the conditional cost measure for
decoder j is

G(@4. &5, ) =Ellc(Q. X. X, ¥, 2)Ig _s 1. 01-

Observe that the defining expression is evaluated at X; and conditioned on the joint
event {Q.;=¢q;, Y; =y}, and it is completely determined by the joint distribution
of X, Y ,and Z, the cost measure c(q, x, X, y, z),all quantizers, and the reconstruction
functions at other decoders X;(q.;, y;7). As in the case of the sender cost measures,

it can be shown that for each j,E Ej Q. )A(] Y;) =C. From this key property it follows
that an optimal reconstruction function must satisfy

&7(Q, ;) = argmin §(Qy, &, ¥)), (32)
xXj
provided that a minimum exists, for each pair (g;,y;) satisfying po,v;(q,|y;) >0
(56]’.“ (4, ;) can be arbitrarily defined elsewhere).
Lloyd Algorithm for Distributed Quantization

The necessary optimality conditions (3.1) and (3.2), together with the rate update
property defining rate measures, suggest an alternating optimization algorithm that
extends the Lloyd algorithm to the quantizer design problem considered in this work:

1. Initialization: For each i=1,...,m, j=1,...,n, choose initial quantizers
(q;l)(zl-)),', and initial reconstruction functions (&;1)(%, )i Set k=1 and
C 0) — o0,

2. Cost measure update: Update the cost measure ¢* (g, x, X, ¥, Z), completely
determined by probability distributions involving Q®) X X,Y,and Z.

3. Convergence check: Compute the expected cost C*®) associated with the
current quantizers (q;(e) (z1)):, reconstruction functions fc;k) (q.4,y7), and cost
measure ¢® (q,x,%,y,z). Depending on its value with respect to C*~ D,
continue or stop.
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4. Quantization update: For each 7,0btain the next optimal quantizer (ql(.k’Jr b @),
in terms of the most current quantizers with index 7 # ¢, all reconstruction

functions Q%J(k) (4, ¥;),and the cost measure c® (g, x,%,9,2).

5. Reconstruction update: For each j, obtain the next optimal reconstruction

N . ) )
function &% 1)(qj, ¥j), given the most current version of the reconstruction

J
functions with index j’ #7, all quantizers (q?kﬂ)

; (2:))i, and the cost measure
c®(q,x,%,,2).

6. Increment & and go back to 2.

It can be proved that the sequence of costs C*) in the above algorithm is nonin-
creasing, and since it is nonnegative, it converges. In addition, any quantizer satisfying
the optimality conditions (3.1) and (3.2), without ambiguity in any of the minimiza-
tions involved, is a fixed point of the algorithm. Even though these properties do not
imply per se that the cost converges to a local or global minimum, the experimental
results in the next section show good convergence properties, especially when the
algorithm is combined with genetic search for initialization. Many variations on the
algorithm are possible, such as constraining the reconstruction function, for instance,
imposing linearity in Y for each Q when the distortion is the mean-squared error of
the estimate X ,or any of the variations mentioned in [31,37].

EXPERIMENTAL RESULTS

In the following section we report experimental results obtained by applying the
extension of the Lloyd algorithm for distributed coding described in Section 3.3.2 to
the WZ coding problem. We consider a simple, intuitive case, represented in Figure 3.5.
Let X ~N (0, 1) and Ny ~N (0, 1/yy) be independent, and let Y = X + Ny. We wish
to design scalar WZ quantizers minimizing the Lagrangian cost C =D + A R, where the
distortion is the mean-squared error (MSE) D =E || X — X |2, and the rate is that required
by an ideal SW codec, R =H(Q| Y). The information-theoretic distortion-rate function

Q[ sw | i sw |@Q.J. : X
"| Encoder | | Decoder "1

Source Data tj

X~N(@O,1) —4
Side

S Information

N, ~N(0, 1/yy)

FIGURE 3.5
Experimental setup for clean WZ quantization.




3.4 Experimental Results

for ii.d. pairs drawn according to the statistics of X, Y is Dgglzy (R)= O')Zm, 272R
[42, §I.C](also [33,Theorem 2]).

For the case yy = 10 and several values of A, scalar WZ quantizers and reconstruc-
tion functions were designed using the extension of the Lloyd algorithm developed
in this work. A simple genetic search method was combined with the Lloyd algo-
rithm to select initial quantizers based on their cost after convergence. The algorithm
was applied to a fine discretization of the joint PDF of X, Y, as a PMF with approxi-
mately 2.0-10° points (x, y) contained in a two-dimensional ellipsoid of probability
1—10"4 (according to the reference PDF), producing 919 different values for X and
919 different values for Y.

The corresponding distortion-rate points are shown in Figure 3.6, along with the
information-theoretic distortion-rate function and the distortion bound Dy = a)zm,.
Recall that in nondistributed quantization, at high rates, asymptotically optimal scalar
quantizers introduce a distortion penalty of 10log; % 2~ 1.53 dB with respect to the
information-theoretic bound [16]. Note that the experimental results obtained for this
particular WZ quantization setup exhibit the same behavior.

Two scalar WZ quantizers for R 2~ 0.55 and R =~ 0.98 bit are depicted in Figure 3.7.
Conventional high-rate quantization theory shows that uniform quantizers are asymp-
totically optimal. Note that quantizer (b), corresponding to a higher rate than
quantizer (a),is uniform,and perhaps surprisingly, no quantization index is reused. This
experimental observation, together with the 1.53 dB distortion gap mentioned earlier,

D —10logyg D
0.14 20 -
Clean Wz
B Quantizers
0.12 o 18|
01 :1.53/018/1
L Dg=0.0%09 16| O
N WZ RD T
0.08 |\, Function T{ T
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| weo S of T Cinias
0.02 Function T -
O 1 1 1 1 1 1 8 1 1 1 1 1 1
0 02 04 06 08 1 12 0 02 04 06 08 1 12
R [bif] R [bif]
FIGURE 3.6

Distortion-rate performance of optimized scalar WZ quantizers with SW coding. R = %H(Q 1Y),
X~N(0,1), Ny~A(0,1/10) independent, Y = X+ Ny.
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(@) R ~0.55, D~0.056. (b) R ~0.98, D~0.033.
FIGURE 3.7
WZ quantizers with SW coding obtained by the Lloyd algorithm. R = %H(QI ), X~ N(0,1),
Ny ~ N(0,1/10) independent, Y= X+ Ny.
P, - P(X)
. NENA . . X . ; . : : X
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4
(a) One-bit quantizer without index reuse. (b) One-bit distortion-optimized WZ
D~0.071. quantizer. |2|=2, \=0, D~~0.056.

FIGURE 3.8

Example of distortion reduction in WZ quantization due to index reuse. X ~ A(0,1),
Ny ~ N(0,1/10) independent, Y= X+ Ny.

will be confirmed by the high-rate quantization theory presented in Section 3.5. These
experiments are then revisited in Section 3.6 to explain these facts, show consistency
with the theory developed, and confirm the usefulness of our extension of the Lloyd
algorithm.

We observed that when SW coding is used, as long as the rate was sufficiently high,
hardly any of the quantizers obtained in our experiments reused quantization indices.
On the other hand, it may seem intuitive that disconnected quantization regions may
improve the rate with little distortion impact due to the presence of side information at
the decoder. In order to illustrate the benefit of index reuse in distributed quantization
without SW coding, the extended Lloyd algorithm was run on several initial quantizers
with |Q| =2 quantization indices, setting A =0. This models the situation of fixed-
length coding, where the rate is fixed to one bit,and the distortion is to be minimized.
As shown in Figure 3.8, the quantizer (b) obtained using the Lloyd algorithm leads
to smaller distortion than a simple one-bit quantizer (a) with no index reuse. The
conditional PDF of X given Y is superimposed to show that it is narrow enough for
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(@) Conditional cost measure. (b) Reconstruction function.
FIGURE 3.9

Example of conditional cost and reconstruction function for WZ quantization with fixed-length
coding. X ~ N(0,1), Ny ~ A/(0,1/10) independent, Y= X+ Ny. |Q]=2,1=0, D ~ 0.056.

the index repetition to have negligible impact on the distortion (0')2(|Y =1/1+vyy)x>
0.09D).

Figure 3.9 shows an example of encoder conditional cost measures and recon-
struction functions under the heavy index repetition scenario of fixed-length
coding. Figure 3.9(a) clearly illustrates the quantizer optimality condition g*(x)=
arg mian(q, x),and Figure 3.9(b), the centroid condition X(g, y) = E[X|q, y]. Observe
that it is perfectly possible for the estimated reconstruction to fall on a region corre-
sponding to a different quantization index, just as the best MSE estimate of a uniform
binary r.v. is 0.5, despite being an impossible outcome.

HIGH-RATE DISTRIBUTED QUANTIZATION

In this section we investigate the properties of entropy-constrained optimal quantizers
for distributed source coding at high rates, when MSE is used as a distortion measure.
Increasingly complex settings are considered. We start with WZ quantization of directly
observed data, continue by introducing noisy observations, and conclude with the
general case of network distributed coding of noisy observations, which involves not
only several encoders,but also several decoders with access to side information. Proofs
and technical details are provided in [31,32,35,306].

Our approach is inspired by traditional developments of high-rate quantization
theory, specifically Bennett’s distortion approximation [1, 28], Gish and Pierce’s rate
approximation [17], and Gersho’s conjecture [15]. The reason why a less rigorous
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approach is followed is first and foremost simplicity and readability, but also the fact
that rigorous nondistributed high-rate quantization theory is not without technical
gaps. A comprehensive and detailed discussion of both heuristic and rigorous studies,
along with the challenges still faced by the latter appears in [19] (§IV.H is particularly
relevant). However, we believe that the ideas contained in this section might help to
derive completely rigorous results on high-rate distributed quantization along the lines
of [2,7, 18,24, 46], to cite a few.

High-rate WZ Quantization of Clean Sources

We study the properties of high-rate quantizers for the WZ coding setting in Figure 3.10.
This is a special case of the network of Section 3.2.2 with m =1 encoders and n=1
decoders, when in addition the source data X is directly observed, that is, X =Z.
Suppose that X takes values in the 2-dimensional Euclidean space, R¥. MSE is used as a
distortion measure;thus the expected distortion per sample is D = % E |X — X||2.The
expected rate per sample is defined as R = }e H(Q|Y) [37]. Recall from Section 3.2.3
that this rate models ideal SW coding of the index Q with side information Y, with
negligible decoding error probability and rate redundancy.

We emphasize that the quantizer only has access to the source data, not to the side
information. However, the joint statistics of X and Y are assumed to be known, and
are exploited in the design of g(x) and X(q, ). Consistently with Section 3.2.4, we
consider the problem of characterizing the quantization and reconstruction functions
that minimize the expected Lagrangian cost C=D +A R, with A a nonnegative real
number, for high rate R.

We shall use the term uniform tessellating quantizer in reference to quantizers
whose quantization regions are possibly rotated versions of a common convex poly-
tope, with equal volume. Lattice quantizers are, strictly speaking, a particular case. In
the following results, Gersho’s conjecture for nondistributed quantizers, which allows
rotations, will be shown to imply that optimal WZ quantizers are also tessellating quan-
tizers, and the uniformity of the cell volume will be proved as well. M, denotes the
minimum normalized moment of inertia of the convex polytopes tessellating R¥ (e.g.,
M =1/12) [16].

Encoder without Decoder with
Side \nformation Side \nformation
NOR | — Q[ . 1 A e - S E— L X
] SW ' ] SW '
’ | 1 b ’
g a) "| Encoder | | Decoder ¥ %@.y) -
1 i = T ____________________ e — i
Y
FIGURE 3.10

WZ quantization.
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Suppose that for each value y in the alphabet of Y, the statistics of X given Y =y
are such that the conditional differential entropy h(X|y) exists and is finite. Suppose
further that for each y, there exists an asymptotically optimal entropy-constrained
uniform tessellating quantizer of x, g (x| y), with rate Rx |y () and distortion Dx |y ()),
with no two cells assigned to the same index and with cell volume V() >0, which
satisfies, for large Rx |y (p),

Dxjy (9) =~ My, V ()%, (3.3)
Rxjy () =~ £ (h(X|p) —log, V(3)), (3.4)
Dy () = My, 2 "0 272Rxir ) (3.5)

These hypotheses hold if the Bennett assumptions [1,28] apply to the conditional PDF
Dx|v (x|y) for each value of the side information y, and if Gersho’s conjecture [15] is
true (known to be the case for &= 1), among other technical conditions, mentioned
in [19].

We claim that under these assumptions, there exists an asymptotically optimal
quantizer g(x) for large R, for the WZ coding setting considered such that:

i. gq(x) is a uniform tessellating quantizer with minimum moment of inertia My,
and cell volume V.

ii. No two cells of the partition defined by g(x) need to be mapped into the same
quantization index.

iii. The rate and distortion satisfy

D~ My, V% s (36)
R~ 1 (h(X|Y)~—log, V), (3.7)
D ~ My, 28 hXIY) 2R, (3.8)

This fact can be proven using the quantization setting in Figure 3.11, which we shall
refer to as a conditional quantizer, along with an argument of optimal rate allocation
for q(x|y), where g(x|y) can be regarded as a quantizer on the values x and y taken
by the source data and the side information, or a family of quantizers on x indexed
by y. In this case, the side information Y is available to the sender, and the design of
the quantizer g(x|y) on x, for each value y, is a nondistributed entropy-constrained
quantization problem. More precisely, for all y define

Dxy () = £ E[IX =X ||,
Rxjy (») = 3 H(Ql),
Cxiy () =Dxjy(») +A Rx iy (»).
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FIGURE 3.11
Conditional quantizer.

By iterated expectation, D=EDx|y(Y) and R =ERx|y(Y); thus the overall cost
satisfies C =ECx |y (Y). As a consequence, a family of quantizers g(x|y) minimizing
Cxy () for each y also minimizes C.

Since Cx|y () is a convex function of Rx|y () for all p, it has a global minimum
where its derivative vanishes, or equivalently,at Rxy () such that A ~21n 2 Dxy ().
Suppose that A is small enough for Rx |y (p) to be large and for the approximations
(3.3)-(3.5) to hold, for each y. Then,all quantizers g (x| ) introduce the same distortion
(proportional to A) and consequently have a common cell volume V(y)~V. This,
together with the fact that Ey[h(X|»)],=y =h(X|Y), implies (3.6)-(3.8). Provided
that a translation of the partition defined by ¢g(x|y) affects neither the distortion nor
the rate,all uniform tessellating quantizers g (x| y) may be set to be (approximately) the
same, which we denote by g(x). Since none of the quantizers g(x|y) maps two cells
into the same indices, neither does g(x). Now, since g(x) is asymptotically optimal
for the conditional quantizer and does not depend on y, it is also optimal for the WZ
quantizer in Figure 3.10. This proves our claim.

We would like to remark that Equation (3.8) means that, asymptotically, there is no
loss in performance by not having access to the side information in the quantization.
In addition, since index repetition is not required, the distortion (3.6) would be asymp-
totically the same if the reconstruction X(g, y) were of the form x(q) = E[X| g]. This
means that under the hypotheses of this section,asymptotically, there is a quantizer that
leads to no loss in performance by ignoring the side information in the reconstruction
(but it is still used by the SW decoder).

Finally,let X and Y be jointly Gaussian random vectors. Recall that the conditional
covariance Sx|y does not depend on y, that h(X|Y) = 1 log, ((2me)* det3xy),and

1

that M, — e [49]. Then, on account of the results of this section, for large R,

1 1
D ~ My, 27re (det Sxjy) k2 2R o (et Sxy)k2 2R (3.9)

High-rate WZ Quantization of Noisy Sources

We will now examine the properties of high-rate quantizers of a noisy source with side
information at the decoder, as illustrated in Figure 3.12, which we will refer to as WZ
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FIGURE 3.12
WZ quantization of a noisy source.
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FIGURE 3.13
Quantization of a noisy source without side information.

quantizers of a noisy source. This is precisely the network in Section 3.2.2 with m =1
encoders and 7 =1 decoders. Unlike the problem in Section 3.5.1, this time a noisy
observation Z is quantized in lieu of the unseen source data X. Clearly, this includes
the problem in the previous section as the particular case Z =X.

The hypotheses of the previous section directly carry over to the more general
problem studied here. Assume that X takes values in R¥. The expected distortion per
sample of the unseen source is defined as D= %e E X —X|? Suppose further that
the coding of the index Q is carried out by an ideal SW coder, at a rate per sample
R= % H(Q| Y). We emphasize that the quantizer only has access to the observation,
not to the source data or the side information. However, the joint statistics of X, Y,
and Z can be exploited in the design of g(z) and X(g,y). Consistently with
Section 3.2.4, we consider the problem of characterizing the quantizers and recon-
struction functions that minimize the expected Lagrangian cost C=D +AR,with A a
nonnegative real number, for high-rate R.

Nondistributed Case

We start by considering the simpler case of quantization of a noisy source without side
information, depicted in Figure 3.13. The following extends the main result of [10,41]
to entropy-constrained quantization, valid for any rate R = H(Q), not necessarily high.

Define X(z) = E[X| z], the best MSE estimator of X given Z,and X =X(Z). We show
in [32,35] that for any nonnegative A and any Lagrangian-cost optimal quantizer of a
noisy source without side information (Figure 3.13), there exists an implementation
with the same cost in two steps:
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FIGURE 3.14
Optimal implementation of MSE quantization of a noisy source without side information.

1. Obtain the minimum MSE estimate X.

2. Quantize the estimate X regarded as a clean source, using a quantizer g(x) and
a reconstruction function X (g), minimizing E | X — X || + A H(Q).

This is illustrated in Figure 3.14. Furthermore, the total distortion per sample is
D=4 (Etr Cov[X|Z] +E | X —X|?), (3.10)

where the first term is the MSE of the estimation step.

The following observation is an immediate consequence of the previous, very intui-
tive result,and conventional theory of high-rate quantization of clean sources. Assume
now that h(X) <o and that there exists a uniform tessellating quantizer g(x) of X
with cell volume V that is asymptotically optimal in Lagrangian cost at high rates.
Then, there exists an asymptotically optimal quantizer g(z) of a noisy source in the
setting of Figure 3.13 such that:

i. An asymptotically optimal implementation of ¢g(z) is that represented
in Figure 3.14, with a uniform tessellating quantizer ¢g(x) having cell
volume V.

ii. The rate and distortion per sample satisfy

2
D~LlEtrCov[X|Z]1+ M, VE,
R~ 1 (h(X) —log, V),

2 -
D~ L Etr Cov[X| Z] + My 2% ") 2R

Distributed Case

We are now ready to consider WZ quantization of a noisy source, as shown in
Figure 3.12. Define x(y, z) = E[X|y, 2], the best MSE estimator of X given Y and Z,
X=x(Y,Z),and Dy = % Etr Cov[X| Y, Z]. The following fact is an extension of the
results on high-rate WZ quantization in Section 3.5, to noisy sources.

Suppose that the conditional expectation function x(y, z) is additively separable,
that is,x(y, 2) =Xy () + Xz(z),and define X, = x(Z). Suppose further that for each
value y in the alphabet of Y, h(X|y) <, and that there exists a uniform tessellating
quantizer g(x, y) of X, with no two cells assigned to the same index and cell volume
V(y)>0, with rate R)-(ly(y) and distortion D)-(ly(y), such that, at high rates, it is
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asymptotically optimal in Lagrangian cost and

2
Dy =M V(p)*,
Riy )=~z (h(X]y) —log, V() .
Dle(y) ~ My, 2% h(X|y) »=2Rz )y 0)
It was proved in [35,36] that under these assumptions there exists an asymptotically

optimal quantizer g(z) for large R, for the WZ quantization setting represented in
Figure 3.12, such that:

i. g(z) can be implemented as an estimator Xxz(z) followed by a uniform
tessellating quantizer g(xz) with cell volume V.

ii. No two cells of the partition defined by g(xz) need to be mapped into the
same quantization index.

ifi. The rate and distortion per sample satisfy

2
DD +M, VE, (3.11)
R~ (h(X|Y) ~log, V), (3.12)
2 —
D Do + My, 28 "EIY) 272R (3.13)

iv. h(X|Y)=h&X|Y).

Clearly, this is a generalization of the clean case in Section 3.5.1, since Z = X implies
x(y, z) =Xxz(z) = z,trivially additively separable. Observe that, if the estimator x(y, z)
is additively separable, there is no asymptotic loss in performance by not using the
side information at the encoder.

The proof of this fact is very similar to that for clean sources in Section 3.5.1.
More precisely, it analyzes the case when the side information is available at the
encoder. The main difference is that it applies the separation result obtained for the
noisy, nondistributed case, to the noisy, conditional setting, for each value of the side
information.

The case in which X can be written as X =f(Y) +g(Z) + N, for any (measur-
able) functions f, g and any random variable N with E[/V|y, z] constant with (y, z),
gives an example of an additively separable estimator. This includes the case in
which X, Y, and Z are jointly Gaussian. Furthermore, in the Gaussian case, since
Xz(z) is an affine function and g(xz) is a uniform tessellating quantizer, the over-
all quantizer g(xz(z)) is also a uniform tessellating quantizer, and if ¥ and Z are
uncorrelated, then Xy (y)=E[X|y] and xz(z)=E[X|z], which does not hold in
general.

Similarly to the observation made in the clean case, there is a WZ quantizer g(xz)
that leads to no asymptotic loss in performance if the reconstruction function is
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FIGURE 3.15

Asymptotically optimal implementation of MSE WZ quantization of a noisy source with additively
separable X( y,2).

x(q,») ZJ%Z(q) +Xxy(y), where 5}2 (q) are the centroids of g(xz). Consequently, the
WZ quantization setting of Figure 3.12 can be implemented as depicted in Figure 3.15,
where fcz(q, ») can be made independent from y without asymptotic loss in per-
formance, so that the pair g(xz), Xz (q) form a uniform tessellating quantizer and
reconstructor for X.

High-rate Network Distributed Quantization

Thus far we have characterized optimal WZ quantization for clean and noisy sources
at high rates, which addresses the special case of m =1 encoder and 7 =1 decoder
for the network of Section 3.2.2. Next, we study two more general settings. First, we
consider the clean and noisy cases with an arbitrary number of encoders but a single
decoder,and second, the general case with arbitrary 72 and n represented in Figure 3.3.

Clean, Single-decoder Case

Consider the distributed quantization problem in Figure 3.16,where the data generated
by m sources is observed directly, encoded separately, and decoded jointly with side
information. Foralli =1, ..., m,let X; be a R*¥:-valued r.v., representing source data in
a k;-dimensional Euclidean space, available only at encoder i. Define k1 = Zl. ki, and
X = (X;)7, (hence X is a r.v. in R¥T). All quantization indices Q = (Q;)", are used at
the decoder to jointly estimate the source data. The expected distortion per sample is

= é E|X -X 112 Coding of the quantization indices is carried out by an ideal SW

codec,with expected rate per sample R = % H(QIY). Define M, as Gersho’s constant

corresponding to the dimension &; of X;,and M =] iM,’::.

The following result is proved in [31]. The conceptual summary of the assumptions
is that for each value of the side information Y, a.s., the conditional statistics of X |y
are well behaved, in the sense that one could design a set of quantizers (q;(x;|y));
for each value of the side information, with the usual properties of conventional,
nondistributed high-rate theory. The result in question asserts that in the problem of
distributed quantization with side information, depicted in Figure 3.16, for any rate R
sufficiently high:

i. Each ¢q;(x;) is approximately a uniform tessellating quantizer with cell
volume V; and normalized moment of inertia My, .
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Distributed quantization of m clean sources with side information.

iv.

No two cells of the partition defined by each g;(x;) need to be mapped into
the same quantization index.

i. The distortion D; introduced by each quantizer is approximately constant, that

is, D; D for all £, and it satisfies D; >~ My, y2/ki,

i
The overall distortion and the rate satisfy

2

- . - S h(X|Y) -
D~ M v3kr R~ 7 (h(X|Y) ~log, V), D ~ M 2kt 272R

s

where V =[];V; denotes the overall volume corresponding to the joint
quantizer q(x) = (q:(x:));-

It is important to realize that this confirms that, asymptotically at high rates, there
is no loss in performance by not having access to the side information in the quanti-
zation, and that the loss in performance due to separate encoding of the source data
is completely determined by Gersho’s constant. This implies that the rate-distortion
loss due to distributed quantization with side information vanishes in the limit of high
rates and high dimension.

Noisy, Single-decoder Case

The problem of distributed quantization of noisy sources with side information and
a single decoder, depicted in Figure 3.17, turns out to be significantly more complex
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Distributed quantization of m noisy sources with side information.

when several encoders are involved. In fact, the analysis developed in [31] builds on
the special case when the source data is the sum of the observations,in such a way that
the clean case is no longer a special case of the noisy one, except for the WZ setting,
that is, when =2 = 1. The argument considers transformations of the observations that
preserve optimal performance, conceptually not too distant from the separation result
for noisy,nondistributed quantization,described in Section 3.5.2,albeit mathematically
more sophisticated. Here, we present the main result.

As usual, X is a REvalued r.v. We define Do = % Etr Cov[X| Y, Z]. First, we make
the following assumptions on the statistical dependence of X, Y,and Z:

i. There exist measurable functions Xy :) — R¥ and Xz,:Z;— R*, i=1,...,m,
such t_hat I:Z[X ly, z] = xy(y) + Zz Xz,(z;). Define Xy =xy (Y) and Xz, = xz,(Z;),
thus X =Xy + Y, X7,.

ii. Either m =1, or {Z;}; are conditionally independent given Y, or the maps
{x+— Xz, (x)}; are injective.

Furthermore, it is assumed that for almost every y €}, the conditional statistics of
(Xz,)ily are well-behaved, in the sense of conventional, nondistributed high-rate
quantization theory.
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Under these assumptions, in the problem of noisy distributed quantization with
side information, depicted in Figure 3.17, for any rate R sufficiently high:

i. There exists a collection of asymptotically optimal quantizers (q;(z;));, con-
sisting of the transformations (xz,(z;));, followed by approximately uniform
tessellating quantizers with a common cell volume V'/” and normalized
moment of inertia M, where V represents the volume of the corresponding
joint tessellation.

ii. No two cells of the partition defined by each ¢;(z;) need to be mapped into
the same quantization index.

iii. The overall distortion and the rate satisfy

D=Dx+D,
_ 2
DMy Viem,
R g (W((X2)TL V) —log, V),

DM, 2T NEZ)TL 1Y) 520 R

3=

Network Case

Our final high-rate analysis is concerned with the general problem of network dis-
tributed quantization of noisy sources with side information, presented in Section 3.2.2
and depicted in Figure 3.3. We assume that it is possible to break down the network
into n€Z* subnetworks such that:

i. The overall distortion D is a nonnegative linear combination of the distortions
D; of each subnetwork,and the overall rate R is a positive linear combination of
the rates R; of each subnetwork. Mathematically,D =) ;0/Djand R = Zj piR;,

for some §;, pjeR™.

ii. For each subnetwork j, the distortion and rate are (ap_proximately) related by
an exponential law of the form D; = D-.; + D;, where D; = a; 2~ /P for some
DochR and aj, BJ‘ER+.

The first assumption holds, for example, when the overall distortion for the network
distributed codec is a nonnegative linear combination of distortions corresponding
to reconstructions at each decoder, and ideal SW codecs are used for lossless cod-
ing of the quantization indices. The second assumption holds approximately for each
of the high-rate quantization problems studied in this section, including the compli-
cated exponential law for the rate-distortion performance in the single-decoder noisy
network, which did not obey the 6 dB/bit rule. Simply speaking, these assumptions
mean that we can basically break down a network distributed coding problem into
subproblems that satisfy the hypotheses of the cases considered thus far.
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The next result characterizes the overall rate-distortion performance of the network
distributed codec by means of an optimal rate allocation. Specifically, we consider the
problem of minimizing D subject to a constraint on K. We would like to remark that
although it is possible to incorporate nonnegativity constraints on each of the rates R;
into the problem, and to solve it using the Karush-Kuhn-Tucker (KKT) conditions,
our second assumption makes the result practical only at high rates, which implicitly
introduce nonnegativity.

Define
J J
s Birj
5:\ B
J j \Pifi

It is clear that D =D, + D. It can be shown [31] that the minimum D subject to a
constraint on R is given by

D=a2 ®P, (3.14)
Furthermore, the minimum is achieved if, and only if,

= Bipj

= D, 3.15
B, (3.15)

~|

or equivalently,

Rj _ R Olj,B(Sj

— = — +log, .

Bi B aBjp;
Observe that the overall rate-distortion performance of the network distributed codec
follows the same exponential law of each of the subnetworks, which permits a hier-
archical application, considering networks of networks when convenient. This does
not come as a surprise since a common principle lies behind all of our high-rate

quantization proofs: a rate allocation problem where rate and distortion are related
exponentially.

(3.16)

EXPERIMENTAL RESULTS REVISITED

In this section we proceed to revisit the experimental results of Section 3.4, where the
Lloyd algorithm described in Section 3.3.2 was applied to a scalar, quadratic-Gaussian
WZ coding problem. Precisely, X ~ N (0, 1) and Ny ~AN (0, 1/10) were independent,
and Y =X + Ny.

We saw in Section 3.5.1 that the high-rate approximation to the operational dis-
tortion-rate function is given by (3.9). Figure 3.6, which showed the rate-distortion
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Distortion-rate performance of optimized scalar WZ quantizers with SW coding. R = %H(QI ),
X~N(0,1), Ny ~ N(0,1/10) independent, Y= X+ Ny.

performance of several quantizers obtained with the Lloyd algorithm, can now be
completed by superimposing the high-rate approximation to the optimal performance.
The new plot is shown in Figure 3.18. The close match in distortion at high rates
confirms the theory developed in this chapter and the usefulness of our extension of
the Lloyd algorithm, for the statistics of the example. The distortion gap observed in
the plot is now explained by the theory. Just as in the nondistributed case, 1.53 dB
corresponds to the fact that the scalar moment of inertia M; = 1/12 is greater than its
limit as the quantizer dimension tends to infinity (3.9).

Section 3.5.1 on clean distributed quantization with side information and ideal
SW coding concluded that uniform quantizers with no index reuse are asymptotically
optimal at high rates. This enables us to explain the uniformity and lack of index
repetition observed in quantizer (b) in Figure 3.7. According to the distortion-rate
performance in Figure 3.18, quantizer (a) in Figure 3.7 may be intuitively considered
a low-rate quantizer, and quantizer (b), a high-rate quantizer.

CONCLUSIONS

We have established necessary optimality conditions for network distributed quantiza-
tion of noisy sources and extended the Lloyd algorithm for its design. The concept of
cost measure enables us to model the lossless coding method used for the quantization
indices, particularly ideal SW coding. In addition, cost measures are the key to a very
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general formulation that unifies a number of related problems, such as broadcast with
side information, distributed classification, or quantization of side information.

If ideal SW coders are used, uniform tessellating quantizers without index repe-
tition are asymptotically optimal at high rates. It is known [47] that the rate loss in
the WZ problem for smooth continuous sources and quadratic distortion vanishes as
D — 0. Our work shows that this is also true for the operational rate loss and for each
finite dimension k. These approximations have been applied to develop a theory of
transforms for distributed source coding, which assumes high rates [32, 35], but not
arbitrarily high dimension or Gaussian statistics [13, 14].

Suppose that the conditional expectation of the unseen source data X given the side
information Y and the noisy observation Z is additively separable. Then, at high rates,
optimal WZ quantizers of Z can be decomposed into estimators and uniform tessel-
lating quantizers for clean sources, achieving the same rate-distortion performance
as if the side information were available at the encoder. The additive separability
condition for high-rate WZ quantization of noisy sources, albeit less restrictive, is
similar to the condition required for zero rate loss in the quadratic Gaussian noisy
WZ problem [33], which applies exactly for any rate but requires arbitrarily large
dimension.

Experimental results confirm the high-rate approximation theory for distributed
quantization. In addition, they suggest that the convergence properties of the extended
Lloyd algorithm are similar to those of the classical one and can benefit from a genetic
search algorithm for initialization.
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4.1 INTRODUCTION

This chapter tackles the classical distributed source coding (DSC) problem from a dif-
ferent perspective. As usual,let X” and Y” be a pair of correlated sequences observed
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by two sensors Sy and Sy . Also, let the samples (X;, Y;) € X X ) be i.i.d.~Pxy (x,y),
where without loss of generality, it can be assumed that Px (x) >0 and Py (y) >0 for
all (x,y) e X X ). The sensors are required to convey these sequences to Sz, a third
sensor or a central processing unit, without communicating with each other. What
is the region of achievable rates Rx and Ry if the reconstruction (X", ¥") at Sy is
to be lossless? The answer heavily depends on what is meant by “lossless,” as well as
on whether or not we are allowed to use variable-length codes. More specifically, the
sensors could be operating under three different requirements, which are listed here
in increasing order of strength:

a. Coding with vanishingly small error: This is the original DSC regime as
introduced by Slepian and Wolf [14], and requires only that Pr[(X", ¥") #
(X, Y")]— 0 as n— oo, Fixed- or variable-length codes do not differ in the
achieved rate performance.

b. Variable-length zero-error (VLZE) coding:This regime has the more stringent
requirement that Pr[(X", ¥) # (X", Y")] =0 for all n=1 [2]. Thus, every pos-
sible value of (X", Y") has to be accounted for no matter how small the
probability. As a result, the achieved rate region is smaller [7,8].This is in contrast
to point-to-point communication,where coding with vanishingly small error and
zero-error variable-length coding are known to achieve the same minimum rate,
namely, H (Px), the entropy of the source X.

c. Fixed-length zero-error (FLZE) coding: The zero-error codes are further
required to be fixed-length [16]. Unlike the case in point-to-point coding, where
the achieved rate is simply the logarithm of the size of the source alphabet X ,the
problem continues to be nontrivial because, if sufficiently strong,the correlation
structure between the sequences can still be exploited for compression.

The primary motivation for zero-error coding is that in delay- and/or complexity-
sensitive applications (e.g., most sensor network scenarios) where the blocklength 7
must be very small, the error incurred by the vanishingly small error regime may be
too large to tolerate. Despite the small 7z motivation, even asymptotic results are of
interest as they can be used as benchmarks for practical zero-error schemes. Apart from
its practical significance, zero-error DSC has also been studied owing to its connection
to graph theory, which undoubtedly provides the most suitable tools for the problem.

Here,we discuss VLZE coding in detail. We focus on the case commonly referred to
as asymmetric coding,where Y" is sent in a point-to-point fashion and then treated as
side information available only to Sz . For this case, the parameters of the problem are
completely captured by a properly defined characteristic grapb G and the marginal
probability mass function Px.The problem then reduces to designing codes such that
no vertex can be assigned a codeword that prefixes those of its neighbors.

Unlike the case in the regime of vanishingly small error, there is no known
single-letter asymptotic characterization in general. One possible infinite-letter charac-
terization for the minimum achievable rate is given in terms of chromatic entropy of
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G under the distribution Px [2]. Koulgi et al. [7] showed that another such character-
ization is given by H(G, Px),the complementary graph entropy of G under Px. Even
though neither characterization is computable in general, the latter one provides some
additional insight into the problem. In particular, known single-letter lower and upper
bounds for complementary graph entropy immediately translate to bounds for the
minimum rate. Also, connections with zero-error channel coding is strengthened via
a formula due to Marton [12]. These connections are useful in tackling two “network”
extensions shown in Figures 4.1 and 4.2 and described as follows.

1. Side information may be absent: In the first stage, expending rate R, the
encoder describes X” in sufficient detail to ensure a reconstruction X' with
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Pr[X ' #X"]=0,in the presence of the side information Y”. The complemen-
tary second-stage description of rate R, allows the decoder to reconstruct )A(g
so that Pr[)A(gl # X™] =0, even in the absence of Y.

2. Compound side information:1t is desired to broadcast X” to K receivers, each
equipped with a different side information vector Y}, so that at each receiver &
the reconstruction X . satisfies Pr[X, 7 #X"]=0.An equivalent scenario is that
there is only one receiver that may have access to any one of the side information
vectors Y.

We show that one can further benefit from the connection between VLZE coding
and complementary graph entropy to derive the minimum rates for these extensions.
Although the minimum rates we derive here are still in terms of the complementary
graph entropy,and hence not computable in general, our results imply that there is no
rate loss incurred on the coders in these scenarios. That is, in Extension 1,both R; and
R; + R> can simultaneously be kept at their minimum, that is, H(G, Px) and H(Px),
respectively. Similarly in Extension 2, R = max; H (G, Px) can be achieved, where G,
is the characteristic graph for the joint distribution Pxy, . It should be noted that both
of these results become trivial if we only require vanishingly small error probability, for
simple lower bounds can be shown to be achievable using the techniques introduced
by Slepian and Wolf [14]. However, VLZE coding is considerably more involved.

We then turn to finite z# and discuss difficulties of optimal code design. In con-
trast to point-to-point coding where the optimal design algorithm due to Huffman is
polynomial time (O(|X|log|X|) to be more specific), the optimal VLZE code design
in DSC is NP-hard; that is, an NP-complete problem can be reduced to it in polynomial
time [7]. Thus, if the widely held conjecture that P # NP is true, no polynomial-time
optimal code design algorithm exists. In fact,even the simpler problem of determining
whether a code exists with given codeword lengths for each vertex is NP-complete, as
shown by Yan and Berger [17]. This is again in contrast to point-to-point coding where
the same question can be answered by simply checking whether Kraft’s inequality is
satisfied (which is of complexity O(|X])).

The rest of the chapter is organized as follows. We begin by discussing the con-
nections between VLZE coding and graph theory in the next section. In Section 4.3,
we show that complementary graph entropy is indeed an asymptotic characterization
of the minimum achievable rate. The network extensions in Figures 4.1 and 4.2 are
then discussed in Section 4.4. Section 4.5 tackles optimal code design. The chapter
concludes in Section 4.6.

GRAPH THEORETIC CONNECTIONS
VLZE Coding and Graphs

Although our focus is on the VLZE coding problem, the connections to graph theory
can be most easily seen by considering FLZE coding first and defining a confusability
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relation between the source symbols [16]. Distinct x, x’ € X are said to be confusable
if there is a y € Y such that Pxy (x,y) >0 and Pxy (x’, y) >0. The key observation is
that two confusable letters cannot be assigned the same codeword in any valid FLZE
code with blocklength 7 = 1. This motivated Witsenhausen to define a characteristic
graph G = (X, ) such that {x,x'} €& if x,x' € X are confusable, thereby reducing
FLZE coding for given Pxy to coloring G so that two adjacent vertices are not assigned
the same color. Given y, the decoding is then performed by uniquely identifying the
vertex x, among all vertices with the encoded color, that satisfies Pxy (x, y) >0. Thus,
the minimum achievable FLZE coding rate is given by [log, x(G)], where x(G) is the
minimum number of colors needed for a valid coloring of G and is referred to as the
chromatic number of G.

One can generalize this concept to any blocklength n#>1 by defining the
characteristic graph G, = (X", &,) for the underlying probability mass function

n
Py, y") =[] Pxy . ).

=1

It can be observed that distinct x” and x'” are adjacent in G, if and only if either
x;=x; or {x;,x/} €&, for all 1<¢=<mn. This implies that G,, is in fact the same
as what is commonly referred to in graph theory as the nth AND-power of G,
denoted G”.

As an example, consider X =) ={0, 1, 2, 3, 4} with Px(x) = % for all x € X and

1 - —
_)3 y=xory=x+1mod5
Pyix (%) {0 otherwise

This induces a “pentagon” graph G shown in Figure 4.3. Figure 4.3(a) shows an optimal
coloring scheme that uses x(G) =3 colors, thereby achieving rate |_10g2 X(G)-| =2
bits. Now, consider 7 =2. We can visualize the characteristic graph G? as shown in
Figure 4.4, where the five individual pentagons represent the confusability relation for
x2, each for a fixed x7, and the meta-pentagon represents the confusability relation
for x; alone. There are a total of 100 edges in G?,and for clarity, most are omitted in

FIGURE 4.3

The characteristic graph for the example Pxy in the text. (a) shows the optimal coloring scheme,
and (b) shows the resultant VLZE code obtained by encoding the colors in (a). By instantaneous
coding, a better code can be obtained as shown in (c).
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0,0
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FIGURE 4.4

Partial visualization of the graph G2.

Figure 4.4. Those indicated in bold correspond to the edges that connect (3, 0) to its
adjacent vertices. It can be shown that

c(x1,x2) =2x1 +x2 mod 5

is a valid coloring scheme. This immediately shows the benefit of block-coding even
in the zero-error context since the bit rate per symbol drops to 1 [log, x(G?)] = 1.5
bits.

For VLZE coding, one possible strategy is to color G’ and design an optimal prefix-
free code in the color space. For the pentagon graph with 7z =1, this results in a
code as shown in Figure 4.3(b). However, a strategy that is potentially more general is
instantaneous coding: If x” is adjacent to x'” in G”, then

d)n(xn) #p ‘f’n(x,n)
where
¢y X" —{0, 1}*

is the variable-length encoder, with {0, 1}* and # p indicating all binary sequences of
finite length (including length 0) and prefix-free relation, respectively [2]. That this is
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necessary and sufficient follows from the observation that all vertices in the fan-out set
of any given »", that is, the set of all x” € X" with P¥, (x", ™) >0, must be connected.
It follows by construction that coloring followed by prefix-free coding of colors is itself
an instantaneous coding scheme. However, as Figure 4.3(c) shows with an example,
the latter is indeed a more general class; that is, there are instantaneous codes that
cannot be implemented by prefix-free coding of colors. The bit rate expended by any
VLZE code is determined by

1
R@n)=— 3 PRO")ldu(x™)

xeXn

and therefore, once G is built and Py is known, there is no further dependence of the
minimum rate on Py |x. For this reason, the minimum achievable rate with blocklength
n will henceforth be denoted as R].. (G, Px). Similarly, we denote by Rpin (G, Px) the
asymptotic minimum rate.

Basic Definitions and Notation

Before proceeding further, we need to make several definitions. Let P2 (A) denote the
set of all distinct pairs of vertices in A. We say that G(A) is a subgraph of G induced
by ACX if its vertex set is A and its edge set is ENP,(A). For G; = (X, 1) and
Gy = (X, &), we use the notation G1 C G, to indicate that & C &,. Similarly, G; U G»
is the graph with vertex set X’ and edge set £ U&,. The complement of G= (X, &) is
G = (X, £°,where £ =P,(X)\ £. A graph is called empty (denoted Ex) or complete
(denoted Ky) if £=0 or £="P,(X), respectively. It is obvious that Fy = Ky and
GUG=Ky.

A set X' is called independent in G if G(X') = Ex'. The set of all independent sets
in G is denoted as I'(G). The stability number, a(G), is the cardinality of the largest
independent set in G. Similarly,a set X"’ is called a clique in G if G(X') = Ky and the
set of all cliques is denoted as Q(G). Clearly, A(G) =T'(G).

Let us also formally define the AND- and OR-products and powers. The AND-product
of G1 = (X1, &) and G = (X3, &), denoted by G X G, has the vertex set A} X A5,
and distinct (xq, x2) and (x1, x3) are connected if both x; 'lexi and x; 'szxé, where
a < b stands for “either a = b or a is adjacent to b in G.” The OR-product of G| and G2,
denoted by G - G2, has the same vertex set X; X X,, but distinct (x7, x2) and (x1{, x72)
are connected if either {x1,x1}€&; or {x2, x5} €. We denote by G" = (X", &)
and G = (X", £)) the n-fold AND- and OR-products of G with itself, or in other
words, nth AND- and OR-powers, respectively. Note that G -Gz = G1 X G2, and more
specifically, G™ =G ". Also, G" C G™.

Finally, the strongly typical set of sequences 7}’)’( . is defined in [4] as

<e|

T,

X,€

= {x"eX":

L N - Px(a)
n
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where N (a|x™) denotes the number of occurrences of a in x”. Among the many useful
properties of strong typicality, we particularly use the fact that 7;,")(’8 captures most of
the probability [4, p. 34]:

X

P)'é( 1;;’8)21_41182. (4.1)
Other useful properties will be referred to as needed in the sequel.
Graph Entropies
Definition 4.1. The graph entropy of G under Py is defined as
1
H(G, Px) = lim — log, [ min  y(G™ (A))] (4.2)
n—o" n A: PR (A)>1-¢

In words, H(G, Px) is the normalized logarithm of the minimum number of colors
needed to color any high probability subset of G". Exactly how high the probability,
which is determined by the value of 0 <& <1,is immaterial [9]. Korner also derived a
single-letter characterization of H(G, Px), given by

H(G,Px)= min I(X;Z) (4.3)
Xezel'(G)

where X € Z €I'(G) is a shorthand notation for z € I'(G) and Pzx (z|x) =0 if x ¢z.
Definition 4.2. The complementary graph entropy of G under Py is defined as

H(G,Px)= 1if%ﬁa(G, Px)
where
_ 1
H (G, Px) =lim sup - log, [x(G™ (T3 )] - (4.4)
n—o

This definition was made in [10]. It is very similar to that of graph entropy, except that
AND-powers instead of OR-powers are colored. This difference prohibited a single-
letter formula for H(G, Px). It even remains unknown whether lim,_, ¢ is necessary,
or whether lim sup can be replaced by a regular limit.

Both the graph entropy and the complementary graph entropy were defined in
different contexts than VLZE distributed source coding. The first link between graph
entropies and DSC was built by Alon and Orlitsky [2] through their chromatic entropy.

Definition 4.3. The chromatic entropy of G under Py is given by
H, (G, Px)=min{H (c(X)):c(-) is a valid coloring of G}. 4.5)

Alon and Orlitsky [2] proved the following theorem. We include a sketch of the proof
here, since the proof of Theorem 4.4 in this chapter also uses the same techniques.



4.2 Graph Theoretic Connections

Theorem 4.1.
1
Ryin (G, Px) = ,}I_IEO ;HX(G",P;?)- (4.6)

Remark. That Ry, (G, Px) is upper bounded by the right-hand side of (4.6) follows
using the aforementioned simple strategy of first coloring G” and designing prefix-free
codes for colors. It is somewhat surprising that this simple strategy is asymptotically
optimal.

PROOF. The limit in (4.6) exists because H, (G”, PY) is subadditive in . That is,
Hy (G PP < H, (G™, PY) + Hy(G", PY).
That, in turn, follows from
H,(G1 X G2, Px, Px,) <H,(G1, Px,) + H/ (G2, Px;,)

as ¢1 X ¢z is a valid coloring for G; X G2 if ¢ and ¢, are valid for G and G, respectively.

The preceding Remark implies that we only need to prove a converse. The key observa-
tion is that an arbitrary code ¢,, can be decomposed as ¢,, = 0,, o ¢, where 0,, is a one-to-one
code; that is, it assigns distinct (not necessarily prefix-free) codewords to colors. Utilizing a
lower bound for one-to-one codes derived in [1], one can show

nR($u) = Hy(G", PY) ~log, (Hy(G", P{) +1) ~logy e,
which can be further bounded using the subadditivity as
nR($u) = Hy(G", P) ~10g; (Hy (G, Px) +1) ~log, n—log, e.
This implies for an arbitrary sequence ¢,, of variable-length codes that
lim inf R(¢,,) = lim —H, (G", Py)
n—oe n—-"n
completing the proof. |

Alon and Orlitsky [2] further showed implicitly that the following single-letter
bound for Rnin (G, Px) holds:

Runin (G, Px) <H(G, Px).

They also showed

1
R™. (G, Px)= ;H(G", Py

min
Finally, they defined the clique entropy H, (G, Px), which is intimately related to the
graph entropy:

H,(G,Px)= max HX|Z)
XezZe(G)

=H(Px)—H(G, Px). (4.7)
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The relation between these four graph entropies is well-studied (see, e.g., [2, 5, 10,
11]. It is in particular known that

H,(G,Px)<H(G, Px)<H(G, Px) <Hy(G, Px) (4.8)

for all G and Px. Furthermore, for the important class of perfect graphs (cf. Berge [3],
Chapter 16), Equation (4.8) can be strengthened as

H,(G,Px)=H(G,Px)=H(G, Px) (4.9
for all Px.

Graph Capacity

A closely related concept in zero-error information theory is the graph capacity prob-
lem. Roughly, if we replace coloring, which can be looked at as covering using
independent sets (because vertices that are assigned the same color must form an
independent set), with packing of independent sets such that they do not overlap,
we obtain the graph capacity problem. Similar to the correspondence of coloring to
zero-error DSC, this corresponds to a channel coding problem where the probability
of error is set to zero at all blocklengths 7. Although graph capacity by itself deserves
a detailed discussion, for the purposes of this chapter, we only need to define

C:(G, Px) =lim sup % log, [a(G"(Tp%. )] (4.10)

and
C(G, Px) = lim C.(G, Px).
e—0
The intuitive covering/packing duality between the zero-error DSC and channel coding
is then concretized by the formula
C(G,Px)+H(G, Px)=H(Px) (4.11)

derived by Marton [12]. The relation (4.11) in particular shows that any single-letter
formula for either C(G, Px) or H(G, Px) would immediately yield a formula for the
other. Unfortunately, both are long-standing open problems.

COMPLEMENTARY GRAPH ENTROPY AND VLZE
CODING

In the next theorem from Koulgi et al., [7], H(G, Px) is shown to be an alternative
infinite-letter characterization for Ryin (G, Px ). We include the proof for completeness.

Theorem 4.2.
Ruin(G, Px) =H(G, Px) (4.12)



4.3 Complementary Graph Entropy and VLZE Coding

PROOF. We first show that
_ 1
H(G, Px) Br}im —H, (G", P¥). (4.13)
—©

Toward that end, fix £ >0 and observe from (4.4) that for any 7> n¢ (&) there is a coloring
¢ of G" satisfying:

(TR )| =<2"MHe(GPx) el (4.14)
Define the indicator function ®: X" — {0, 1} as

1 ifx"eT}

") = {0 else. 7;’)(’8

We then have
Hy(G", P")<H(c(X"))
<H(®) +H(c(X™)|P)

<H®)+H(cX")|X"eTp, ,

)+ eH(E(X™MX" €T )

<1+n[Hy(G,Px)+e(l+log|X|)],

where we used (4.14) in the last step. Normalizing by # and taking limits, (4.13) follows.
Now consider the reversed inequality in (4.13). Fix £ >0 and let the coloring function
c on G” achieve H, (G", P¥),so that
Hy(G", P}) =H(c(X™)).

To lower bound H(c(X™)), we use the following elementary lower bound for the entropy
function: if Q is a probability distribution over the set Q,and S € Q, then

HQ)=~ []ZS Q) |tog max 0(.

Thus we have the following estimate for H, (G”, Py):

H(c(X™)=—Px(Tpy o) log |: nm%%( P)’}(c(x")):| . (4.15)
X Px.e

The probability P§(7}"X7 ¢) can be lower bounded as in (4.1). In any coloring of G”, the

maximum cardinality of a single-colored subset of ’7;,’;( . cannot exceed a(G"™( PT;(, 2, the

size of the largest independent set induced by 75 . in G". Thus,

max Py(c(x")<a(G"(Tp, ) max Py(x"). (4.16)
XNETH T aneTy

But using the definition of 7;,'; » and well-known properties of types and typical sequences,
and from uniform continuity of entropy ([4, pp. 32-33]), we have

1
——log max PY(")= min
n x"e'nf’x’g Q:|Q(x)—Px (x)|<e VxeX

{H(Q) +D(QlIPx)}

=

=

H(Q)

min
Q:1Q(x)—Px (x)|<e VxeX

=[H(Px) +¢|X|loge] . (4.17)
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Substituting (4.1), (4.16),and (4.17) in (4.15),

[ X]
4ne?

1 1
;HX(G", PY= (1 — ) {H(PX) - log a(G"(’TIZ’;’g)) +¢&|X|log e}

for any » and & > 0. Taking the lim inf of both sides,
1
lim —H,(G", Py) =H(Px) — C:(G, Px) + ¢|X|loge.
n—-° pn

Since this is true for every ¢, the result follows by letting € — 0 and using (4.11). |

Even though neither (4.6) nor (4.12) provides a single-letter characterization for
Rpnin (G, Px) in general, (4.12) gives additional insight into the problem:

1. Known single-letter lower and upper bounds for complementary graph entropy
given in (4.8) can immediately be translated to bounds for the minimum rate.
Also,(4.9) provides a single-letter expression for Ryin (G, Px) when G is perfect.

2. Rumin(G, Px) =H(G, Px) reveals another asymptotically optimal variable-length
coding scheme: Encode all the vertices in 7}’;,8 using roughly nH (G, Px) bits
and the rest of the vertices with roughly 7 log | X'| bits. This insight will be very
useful when we analyze Extension 1 in the next section.

NETWORK EXTENSIONS
Extension 1: VLZE Coding When Side Information May Be Absent

We now consider the scenario depicted in Figure 4.1. Let q,‘)ill) X" — {0, 1}* and d)ﬁf) :
X" — {0, 1}* be the first- and the second-stage encoders, respectively. Also denote
by 905,1):{0, 1}*XY"*"— X" and 905,2):{0, 1}* X {0, 1}* — X" the decoders at the two
stages. The corresponding rates are

. 1 .
Ri@D =~ 3 PRMIe) ")
xteXn

for i =1, 2. Our goal is to characterize the region of rates achieved by instantaneous
codes that ensure both

PrIX" # @) (¢, (X™), Y] =0
and
Prix” # o2 (¢ (X™), pP (X™))] = 0.

We will focus on a restricted class of instantaneous coding schemes where the
first-stage encoded bitstream can be uniquely parsed even without the help of the
side information, to which the second-stage decoder does not have access. Note that
in contrast to the single-stage problem, this prohibits possible use of codewords that
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prefix each other. Instead, we adopt coloring of G”" followed by prefix-free coding of
colors, that is, d)ﬁ,l) =, o ¢, where i, is a prefix-free code. Both @511) and cp,(f) can then
instantaneously decode the color and must utilize it together with Y” and ¢£,2) x™),
respectively, to successfully decode X”. This in particular implies that ¢§£2) (X™) must
be instantaneously decodable when the color is known.

Although this restriction could potentially result in increased rates, it does not, as
the following theorem implies.

Theorem 4.3. There exists an instantaneous two-step coding strategy (d><1),d>(n2)) that
achieves

lim Ry(¢;,”) =H(G. Px) (4.18)
lim [Ri (") + Ra(d7)] = H(Px) (4.19)

where G is the confusability graph for Pxy.

PROOF. The definitions (4.4) and (4.10) imply, for any £ >0 and 7> ng(g), the existence of a
coloring ¢, ,(-) of G" satisfying

|C€,Vl(7;’nx,s)| < pMH:(G.Px)te]

and

|C—rlz @< 21 Ce(G.Px)+e]
e,

forall i e c&n(’ﬁ,’;’ 2)- The latter follows from the fact that each color class is, by definition,
an independent set. We can then use the following coding strategy: Denote by B(-|A): A—
{0, 13082 A1 the fixed-length canonical representation of elements in A . Set the first-stage
encoder to

0-B(x™|X™) X" ETpy e

1-Beon@™leon(TE, ) X" €TE

1 _
¢y (") = {
where - denotes concatenation. The decoder goﬁ,” can instantaneously recover all x” ¢ P’;{ o
and i = ¢, ,(x™) whenever x" € 7;,';0 - In the latter case, x” is also easily recovered since it
is the unique vertex that is simultaneously in both c,_ ,11 (7) and the clique in G”" induced by
»". The resultant first-stage rate is bounded by

R =< ! +PL(TE ) [He(G. Px) + ]+ [1 = PY(TE )] log, | X
n

— 1 X
$H8(G,PX)+;+8+#log2|X|

for sufficiently large 7. Setting the second-stage encoder to

n n
X" E Tpy e

A
(2) (1) —
by () {ﬁ(x"lc;}a(i)) x"eTp, o and ¢ p(x") =1
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where A is the null codeword, we ensure that x” is instantaneously recovered in the absence
of the side information. Therefore, the second-stage rate is bounded by

R(¢P) <PR(TR, ) [Ce(G. Px) + ]
=C.(G,Px) te.

Letting n— and then &—0 yields an asymptotic rate pair not larger than
(H(G, Px), C(G, Px)). The proof is complete observing (4.11) ]

Extension 2: VLZE Coding with Compound Side Information

We will utilize G = {G1, G2, . . ., Gk },the family of confusability graphs for pairs (X, Yz),
k=1,...,K. For fixed-length coding, it has been observed in [13] that valid block
codes have a one-to-one correspondence to colorings of

K
g2 Gr.
k=1

That is because the encoder cannot send the same message for two different outcomes
of X" if they correspond to adjacent vertices in any G}. On the other hand, a coloring
of Up Gy, is automatically a coloring for all G}, and hence, each receiver can uniquely
decode X" upon knowing its color in UG} and the side information Y}'.

Turning to variable-length coding, an instantaneous code ¢,,: X" — {0, 1}* must
satisfy

¢n(xn) 7p ‘;bn(x,n)

for all {x”,x'"} adjacent in G”. Therefore, similar to the original DSC scenario, the
minimum achievable bit rate is purely characterized by (G, Px), and there is no
further dependence on Px y, ... v,. Denote by Ryin(G, Px) the minimum asymptoti-
cally achievable rate. We now characterize this rate using chromatic entropy, thereby
extending (4.6) to more than one receiver.

Theorem 4.4.
1
Rinin (G, Px) = lim —Hy(G", Py). (4.20)

PROOF. The proof follows the exact same lines as in the proof of Theorem 4.1. The only detail
that needs to be filled in is the proof of subadditivity of the chromatic entropy with respect
to AND-power for families of graphs, that is,

Hy (G™H", PP <H\(G™, PY) + Hy(G", PY). (4.21)

It is clear that the Cartesian product of colorings ¢,,(-) and ¢, (-) for G” and G”, respectively,
constitutes a coloring for G X G". Also observe that

U(Gk XHk)CUGkXUHk

R k 14
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which implies
UercJerxJer
k k k

Hence,any coloring for G X G" is also a coloring for G m¥n 15 particular, if ¢,;, and ¢,, above
achieve H, (G™, PY") and H, (G", P}),respectively,then ¢,, X ¢, is a (potentially suboptimal)
coloring for G"*" proving (4.21). |

Simonyi [13] generalized complementary graph entropy and graph capacity
definitions for a family of graphs as
— 1
H (G, Px) = limsup — log, x(G" (75, ,))
n—w N
1
Ce(G, Px) =lim sup > log, a(G"(Tp;, =)
n—o©
followed by
H(G,Px)= lin})ﬁg(g, Px)
£—
C(G, Px) = lim C,(G, Px).
e—0
It was also proved in [13] that
C(G, Px) +H(G, Px)=H(Px) (4.22)

which is a generalization of Marton’s identity (4.11).

We now state the following theorem, which generalizes Theorem 4.2. We omit the
proof because it is but a repetition of the proof of Theorem 4.2 except that G is to be
replaced with G everywhere. That, in turn, is possible owing to (4.20) and (4.22).

Theorem 4.5.
Rmin(G. Px) =H(G. Px).
The following theorem is our main result.
Theorem 4.6.

Ruin (G, Px) = max Ruin (Gk, Px)

where Rmin(Gg, Px) is the minimum achievable VLZE coding rate in the original DSC problem
for the pair (X, Yy).

PROOF. The proof is trivially similar to that of Theorem 1 in [13]. However, we provide it here
for completeness. We need the key result of [6], stating that for any family of graphs G and
probability distribution P,

C(Q,P):mkin C(Gg, P). (4.23)
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Then, using Theorems 4.2 and 4.5, (4.11), (4.22), and (4.23), we obtain

Ruin (G, Px) ZF(Q, Px)
=H(Px)—C(G, Px)
=H(Px) *mkin C(Gg, Px)

= m]?x[H(Px) — C(Gg, Px)]
:m]?xﬁ(Gk,PX)

:mZXRmin(Gk» Px).

Thus, asymptotically, no rate loss is incurred because of the need to transmit infor-
mation to more than one receiver. In other words, conveying X” to multiple receivers
is no harder than conveying it to the most needy receiver.

VLZE CODE DESIGN
Hardness of Optimal Code Design

In this section we show that optimal VLZE code design in DSC is NP-hard. This essen-
tially means that all NP-complete problems can be transformed to it in polynomial
time. An NP-hard problem is “at least as hard” as all the NP-complete problems, since
it cannot be solved in polynomial time unless P = NP, which is widely believed to be
untrue.

To prove the NP-hardness of optimal VLZE code design, it suffices to prove that the
following version of it is NP-complete:

PROBLEM: VLZE L-codability

INSTANCE: Graph G = (X, £), distribution Px on X, and a positive
real number L.

QUESTION: Is there a VLZE code ¢ for (G, Px) of rate R(¢p) <L?

That, in turn, requires a reduction from an NP-complete problem to this problem.
Toward that end, we pick the problem of Graph N-colorability (GNC) for N = 3:

PROBLEM: GNC
INSTANCE: Graph G = (X, £).
QUESTION: Is G colorable with N colors?

This problem is well known to be NP-complete. Throughout this section, we will
assume, without loss of generality, that the graphs under consideration do not have
isolated vertices.



4.5 VLZE Code Design

Theorem 4.7. [7] The VLZE L-codability problem is NP-complete.

PROOF. Let G= (X, &) be an instance of GNC, with N =4. Defining auxiliary vertex sets
T=\i1, 42,13, 15}, T ={ j1.J2.J3.J4}, and K = {kq, k2, k3, R4}, construct a new graph G’ =
(X', E") as follows:

X' =XUZUJUK
£'= EUPLDUPHI) UPK) U lias o). (s ko) 1< a, b=, a # b
U{{]'mkb}ll$a,b<4}U{{ja,x}:1$a$4,xeX}.
It is in fact easier to describe ?, which has the edge set
£ = Ul Ja). lias k). 1 <a=4) U{ i, x), (a6} 1 <a=4, xe x].

Figure 4.5 visualizes G'. It can be verified that the edge structure of G’ enforces the following
constraints on the codewords ¢(x):

- @lia) #p Plin), d(ja) 7P d(jb), d(Ra) #p p(kp),for 1<a,b<4,a#b.

. d(ja) Fpp(ky) for 1<a,b=<4.

- 0(a) #Fpd(jn), dlia) #p p(ky) for 1<a,b<4,a#b.

4. P(jo) #pd(x) forI<a<4andxeX.

NN =

Also assign the probability distribution P on X'’ such that, for x€ X',

‘i ifxeX
Px(x)=11"

[
&

else.

FIGURE 4.5

The graph G'. Pairs of double lines between two subgraphs indicate that every vertex in one
subgraph is connected to every vertex in the other.
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We claim that the optimal VLZE code ¢* for G’ also minimizes

Rux(@)= Y 16|

xXeX'—X
provided e < 12|X71\+25 That is because for such a choice of g, if
Do @I> Y s
xeX'—X xeX'—X
for some other code ¢, then

Y ex (it @i-6e) =5 Y (1971 16w

xeX' xeX'—-X

o (|¢<x>| ~ 19" @))

1—¢
12
>0

=

— (03 -1) (4.24)

resulting in a contradiction, where (4.24) follows from the (impossible) worst case scenario
where (i) forx e X' — X, ¢*(x) and ¢(x) are identical except for one place where they differ
by 1 bit, and (ii) for x€ X, ¢*(x) =1 and ¢ (x) = |X| + 3. |X| + 3 bits are indeed sufficient
for x € X as one can always choose a code such that

¢b(#1) = 00, p(i2) =01, p(i3) = 10, p(ig) = 11, (4.25)
$(j1) =000, (j2) =010, $(j3) = 100, $(j5) =110, and (4.26)
(k1) =001, p(k2) =011, p(k3) =101 and (k) = 111 (4.27)

together with ¢(x) =001-1, for x€ X, where 1, is a length-|X'| binary indicator vector
assuming the value 1 only at a location corresponding to x.

In fact, it is easy to show that (4.25)-(4.27) minimize R,ux(¢). Using the above argument,
one can therefore assume, without loss of generality, ™ (x) = ¢(x) as given in (4.25)-(4.27)
forallxe X' — X.The Corresponding minimum rate is then given by

R@H =2 |¢* <x>|+—{4 2+8:3)

|X]
xeX

——Zw*( i+ 2

xeX

Now, suppose that G is 4-colorable. Then the four color classes may be assigned the four
3-bit codewords that do not appear in J, namely, 001,011, 101,and 111, so that

8(1—&) 8+e

R(p™)=—-3|X|+
AR
Conversely, suppose G is not 4-colorable. Then [¢p*(x)| >3 for at least one node x € X, so
that
8+te

R(¢™)>
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Thus G is 4-colorable if and only if there exists a VLZE code for (G', Px) of rate 8;‘9 bits.
Setting L = S;ra in the instance of the VLZE L-codability problem completes the reduction.

Hardness of Coding with Length Constraints

Yan and Berger [17] considered an even simpler problem in which the instance is as
follows.

PROBLEM: VLZE Coding with Length Constraints
INSTANCE: Graph G = (X, £) and nonnegative integers I, for each x € X.
QUESTION: Is there a VLZE code ¢ for (G, Px) so that |p(x)| =1y for all x€ X?

The corresponding problem in point-to-point coding is well known to have a simple
solution. That is, it suffices to check whether the Kraft inequality holds, that is,

Y 2k,

xeX

In contrast,Yan and Berger [17] proved the following theorem with a somewhat
involved proof. We provide a very simple alternative proof.

Theorem 4.8. The problem of VLZE Coding with Length Constraints is NP-complete.

PROOF. Consider the GNC problem with N =4. Given G = (X, £), we can set [, =2 for all
x € X and create an instance of the current problem. The straightforward observation that
G is 4-colorable if and only if there exists aVLZE code ¢ with |¢(x)| = 2 for all x € X finishes
the proof. |

In [15],VLZE coding with given |¢(x)| was analyzed from a clique-based Kraft-sum
point of view. The following theorem, whose proof we do not include due to space
constraints, was proven.

Theorem 4.9. If for all graphs G in some family G

Zz*lx <a VzeQ(G) (4.28)

X€EZ

is sufficient for the existence of a VLZE code ¢ with given codeword lengths |p(x)| = Ix, then
for any Ge g, one can construct a code ¢ satisfying

R(¢) — Rnin (G, Px)<1—loga.

Tuncel [15] also showed that Equation (4.28) with « =% and « =% are indeed
sufficient conditions for codes to exist for the classes of graphs with three and four
cliques, respectively. Previously,Yan and Berger [17] had shown the sufficiency of o« = 1
for the class of graphs with only two cliques.
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An Exponential-time Optimal VLZE Code Design Algorithm

In this section, we provide the algorithm proposed by Koulgi et al. [7] for optimal
VLZE code design. The algorithm is inevitably exponential-time. Before describing the
algorithm, we extend the notion of an induced subgraph by also inducing probabilities
of vertices. To that end, for a graph G = (X, £) and Py, define for any subset X"’

P(X)=)" Px(x)

xeX
and
Px (x)
Pyivi(x) = ———2
x| () P

Also define the weighted codeword length of the subgraph G(X') as

LX) = P(X")RLn (G(X"), Px|x7).

Then, for any code ¢ and codeword 7, we have
L(¢ "1 (@%) =L~ ' (i0%)) + L(dp ™~ ' (i1x) + P(¢p~ ' (i%)) — P(¢p~ ' (i) (4.29)

where 7x denotes the set of all codewords that are prefixed by , provided that none
of the sets above are empty. If, on the other hand, ¢ is the optimal code achieving
R}nm (G, Px),Equation (4.29) can be recast as

L )= min | {LD)+LG @) =¢7 ()~ D)
+P(¢(1%) — P (1) (4.30)

Note that the vertices in the set qﬁ_l(z‘) must be isolated in G(¢ (7)), because
otherwise they would violate the prefix condition of VLZE codes. Using this observa-
tion together with (4.30) suggests an iterative algorithm whereby given any X' C X,
isolated vertices Z(X') in G(X") are identified and

LX) = min {L(D) FLX —T(X") D)} +PX) = P(T(X"))
is computed, with the terminating condition that L(X') =0 if Z(X') = X".

In fact, it is not necessary to go over all subsets DC X' —Z(X"). As was argued in
[71, it suffices to consider only those D that induce a dominating 2-partition, that
is, where every vertex in D is connected to some vertex in X' —Z(X') — D and vice
versa. This follows by the observation that (i) if a vertex in ¢~ (0x) — ¢ 1(0) is not
connected to any vertex in ¢~ 1 (1x), then it can instead be assigned the codeword 1,
and (ii) if a vertex in ¢~ 1(0) is not connected to any vertex in ¢~ 1(1%), then it can
instead be assigned the null codeword since it must be isolated. Since both actions
reduce the rate, ¢ cannot be optimal.
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&, b, c, &y
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FIGURE 4.6

The recursive algorithm, which is terminated within two levels for this example. Values indicated
on branches of the tree represent values of L(X") returned for each dominating 2-partition.

In Figure 4.6, this recursive algorithm is demonstrated using a very small per-
fect graph with vertices X = {a, b, ¢, d} and associated probabilities { p,, pp, pc, Pa}-
Considering the simplest case, if p; =pp =pc =pa = 0.25, one obtains

L(X)=RL,.(G,Px)=1.5
achieved by ¢(a) = ¢(c) =0, ¢(b) =10, ¢(d) = 11. In this case, the rate can be shown
to coincide with Ryin (G, Px) =H(G, Px) =H(G, Px). On the other hand, if p, =

$:Db=73.Dc=¢.Pa= 3%, the optimal code ¢(a) =10, $(b) =0, $(c) = 10, p(d) = 11
achieves RL. (G, Px)= % ~1.667, whereas

min

Rpin (G, Px) =log, 3~1.585.

CONCLUSIONS

As we discussed in this chapter, the behavior of distributed source coding with zero
error is significantly different from the better-known vanishingly small error regime.
Unfortunately, it is also considerably less understood. Single-letter characterization of
achievable rates seems impossible because of the connection of zero-error coding to
the notoriously difficult problem of graph capacity. The task of designing optimal VLZE
codes is also difficult in that unless P = NP, optimal VLZE code design takes exponential
time.

‘What is discovered so far is not insignificant,however. In particular,as we argued, the
fact that complementary graph entropy characterizes the asymptotically achievable
minimum rate for VLZE coding is instrumental in proving that there is no rate loss in
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certain network extensions of the main DSC problem. Also, single-letter bounds on
complementary graph entropy, which are known to be tight for perfect graphs, are
directly inherited for the minimum rate. On the code design front, the exponential time
algorithm outlined in Section 4.5.3 is still useful if the size of the graph is small. Koulgi
etal. [7] also proposed approximate polynomial time algorithms. Also,as Theorem 4.9
states, one can upper bound the redundancy of optimal codes for a class of graphs if
the Kraft sum on each clique can be shown to be sufficient for the class.
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5.1 INTRODUCTION

Recent results in compressive sampling [1] have shown that sparse signals can be
recovered from a small number of random measurements. The concept of random
measurement, which we review in this section, is such that the generation of mea-
surements may be considered to be distributed. Thus one is led to the question

Distributed Source Coding: Theory, Algorithms, and Applications
Copyright © 2008 by Academic Press, Inc. All rights of reproduction in any form reserved. 1 1 1



112

CHAPTER 5 Distributed Coding of Sparse Signals

of whether distributed coding of random measurements can provide an efficient
representation of sparse signals in an information-theoretic sense. Through both the-
oretical and experimental results, we show that encoding a sparse signal through
distributed regular quantization of random measurements incurs a significant penalty
relative to centralized encoding of the sparse signal. Information theory provides alter-
native quantization and encoding strategies, but they come at the cost of much greater
estimation complexity.

Sparse Signals

Since the 1990s, modeling signals through sparsity has emerged as an important and
widely applicable technique in signal processing. Its most well-known success is in
image processing, where great advances in compression and estimation have come
from modeling images as sparse in a wavelet domain [2].

In this chapter we use a simple, abstract model for sparse signals. Consider an
N-dimensional vector x that can be represented as x = Vi, where V is some orthogonal
N-by-N matrix and z€R"Y has only K nonzero entries. In this case, we say that u is
K-sparse and that x is K-sparse with respect to V. The set of positions of nonzero
coefficients in u is called the sparsity pattern,and we call « = K /N the sparsity ratio.

Knowing that x is K-sparse with respect to a given basis V can be extremely
valuable for signal processing. For example, in compression,x can be represented by
the K positions and values of the nonzero elements in z,as opposed to the NV elements
of x. When the sparsity ratio a is small, the compression gain can be significant.
Similarly, in estimating x in the presence of noise, one only has to estimate K (as
opposed to N) real parameters.

Another important property of sparse signals has recently been uncovered: they
can be recovered in a computationally tractable manner from a relatively small number
of random samples. The method, known as compressive sampling (sometimes called
compressed sensing or compressive sensing), was developed in [3-5] and is detailed
nicely in several articles in the March 2008 issue of IEEE Signal Processing Magazine.
(This chapter is adapted from [6] with permission of the IEEE.)

A basic model for compressive sampling is shown in Figure 5.1. The N-dimensional
signal x is assumed to be K-sparse with respect to some orthogonal matrix V. The
“sampling” of x is represented as a linear transformation by a matrix ® yielding a
sample vector y = ®x. Let the size of ® be M-by-N, so y has M elements; we call
each element of y a measurement of x. A decoder must recover the signal x from y
knowing V and ®, but not necessarily the sparsity pattern of the unknown signal .

Since u is K-sparse, x must belong to one of (11\(7) subspaces in RV, Similarly, y
must belong to one of (]1\(7) subspaces in RY . For almost all ®s with M=K + 1, an
exhaustive search through the subspaces can determine which subspace x belongs to
and thereby recover the signal’s sparsity pattern and values. Therefore, in principle, a
K-sparse signal can be recovered from as few as M = K + 1 random samples.

Unfortunately, the exhaustive search we have described above is not tractable for
interesting sizes of problems since the number of subspaces to search, (%), can be
enormous; if « is held constant as N is increased, the number of subspaces grows
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L X
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A 4

FIGURE 5.1

Block diagram representation of compressive sampling. The signal x is sparse with respect to V,
meaning that u= V~1xhas only a few nonzero entries. y = ®xis “compressed” in that it is shorter
than x. (White boxes represent zero elements.)

exponentially with N . The remarkable main result of compressive sampling is to exhibit
recovery methods that are computationally feasible, numerically stable, and robust
against noise while requiring a number of measurements not much larger than K.

5.1.2 Signal Recovery with Compressive Sampling

Compressive sampling is based on recovering x via convex optimization. When we
observe y = ®x and x is sparse with respect to V, we are seeking x consistent with y
and such that V'~ Lx has few nonzero entries. To try to minimize the number of nonzero
entries directly yields an intractable problem [7]. Instead, solving the optimization
problem

(LP reconstruction) Xip = argmin ||V !

x:y=0x

x|

often gives exactly the desired signal recovery, and there are simple conditions that
guarantee exact recovery. Following pioneering work by Logan in the 1960s, Donoho
and Stark [8] obtained results that apply, for example, when V is the N-by-N identity
matrix and the rows of ® are taken from the matrix representation of the length-NV
discrete Fourier transform (DFT). Subsequent works considered randomly selected
rows from the DFT matrix [3] and then certain other random matrix ensembles [4, 5].
In this chapter, we will concentrate on the case when ® has independent Gaussian
entries.

A central question is: How many measurements M are needed for LP reconstruction
to be successful? Since ® is random, there is always a chance that reconstruction will
fail. We are interested in how M should scale with signal dimension N and sparsity K
so that the probability of success approaches 1. A result of Donoho andTanner [9] indi-
cates that M ~ 2K log(N /K) is a sharp threshold for successful recovery. Compared to
the intractable exhaustive search through all possible subspaces, LP recovery requires
only a factor 21og(/N/K) more measurements.
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If measurements are subject to additive Gaussian noise so that y=®x + 7 is
observed, with n~ N (0, o%), then the LP reconstruction should be adjusted to allow
slack in the constraint y = ®x. A typical method for reconstruction is the following
convex optimization:

(Lasso reconstruction) Krasso = argmin (|| § — Dx[|3 + A [V " x]y),
X

where the parameter A >0 trades off data fidelity and reconstruction sparsity. The
best choice for A depends on the variance of the noise and problem size parameters.
Wainwright [10] has shown that, when the signal-to-noise ratio (SNR) scales as SNR =
O(N), the scaling M ~ 2K log(N — K) + K is a sharp threshold for V1 RLasso to have
the correct sparsity pattern with high probability. While this A/ may be much smaller
than NV, it is significantly more measurements than required in the noiseless case. The
same scaling with respect to N and K has been shown to be necessary for the success
of any algorithm and sufficient for the success of a very simple algorithm [11]; various
reconstruction algorithms exhibit different dependence only on SNR and relative sizes
of the nonzero components of x.

COMPRESSIVE SAMPLING AS DISTRIBUTED
SOURCE CODING

In the remainder of this chapter, we will be concerned with the trade-off between
quality of approximation and the number of bits of storage for a signal x that is
K-sparse with respect to orthonormal basis V. In contrast to the emphasis on number
of measurements M in Section 5.1, the currency in which we denominate the cost of
a representation is bits rather than real coefficients.

In any compression involving scalar quantization, the choice of coordinates is key.
Traditionally, signals to be compressed are modeled as jointly Gaussian vectors. These
vectors can be visualized as lying in an ellipsoid, since this is the shape of the level
curves of their probability density (see left panel of Figure 5.2). Source coding theory
for jointly Gaussian vectors suggests choosing orthogonal coordinates aligned with
the principal axes of the ellipsoid (the Karhunen-Loéve basis) and then allocating
bits to the dimensions based on their variances. This gives a coding gain relative to
arbitrary coordinates [12]. For high-quality (low-distortion) coding, the coding gain
is a constant number of bits per dimension that depends on the eccentricity of the
ellipse. Geometrically, the results are similar if changes of coordinates can only be
applied separately to disjoint subsets of the coordinates [13].

Sparse signal models are geometrically quite different from jointly Gaussian vector
models. Instead of being visualized as ellipses, they yield unions of subspaces (see right
panel of Figure 5.2). A natural encoding method for a signal x that is K-sparse with
respect to V is to identify the subspace containing x and then quantize within the
subspace, spending a number of bits proportional to K. Note that doing this requires
that the encoder know V and that there is a cost to communicating the subspace
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FIGURE 5.2

Left: Depiction of Gaussian random vectors as an ellipsoid. Classical rate-distortion theory and
transform coding results are for this sort of source, which serves as a good model for discrete
cosine transform (DCT) coefficients of an image or modified discrete cosine transform (MDCT)
coefficients of audio. Right: Depiction of 2-sparse signals in R3, which form a union of three
subspaces. This serves as a good conceptual model for wavelet coefficients of images.

Table 5.1 Performance Summary: Distortions for Several Scenarios When N s Large
with a« = K/N Held Constant. Rate R and Distortion D Are Both Normalized by K.
J Represents the Sparsity Pattern of u = VX, The Boxed Entry Is a Heuristic Analysis
of the Compressive Sampling Case. H(-) Represents the Binary Entropy Function,
and the Rotational Loss R” Satisfies R* = O(logR)

Encoder
Centralized Distributed
(code J and nonzeros of #)  (scalar coding of ®x)
Knows J 272K €27 2R-RY)
a priori
Decoder Istold J €2 2R-H@)/e) €2 2R-H(@)/a—R")

index, denoted J, which will be detailed later. With all the proper accounting, when
K < N, the savings is more dramatic than just a constant number of bits.

Following the compressive sampling framework, one obtains a rather different
way to compress x: quantize the measurements y = ®x, with @ and V known to the
decoder. Since ® spreads the energy of the signal uniformly across the measurements,
each measurement should be allocated the same number of bits. The decoder should
estimate x as well as it can; we will not limit the computational capability of the
decoder.

How well will compressive sampling work? It depends both on how much it matters
to use the best basis (V) rather than a set of random vectors (®) and on how much
the quantization of y affects the decoder’s ability to infer the correct subspace. We
separate these issues, and our results are previewed and summarized in Table 5.1. We
will derive the first three entries and then the boxed result, which requires much more
explanation. But first we will establish the setting more concretely.
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Modeling Assumptions

To reflect the concept that the orthonormal basis V' is not used in the sensor/encoder,
we model V as random and available only at the estimator/decoder. It is chosen uni-
formly at random from the set of orthogonal matrices. The source vector x is also
random; to model it as K-sparse with respect to V, we let x = Vu where u € R has K
nonzero entries in positions chosen uniformly at random. As depicted in Figure 5.3, we
denote the nonzero entries of u by ux € RX and let the discrete random variable J rep-
resent the sparsity pattern. Note that both V and ®@ can be considered side information
available at the decoder but not at the encoder.

Let the components of #g be independent and Gaussian N (0, 1). Observe that
E [||u||2] = K, and since V is orthogonal we also have E [||x||2] =K. For the measure-
ment matrix @, let the entries be independent N (0, 1/K) and independent of V and
u. This normalization makes each entry of y have unit variance.

Let us now establish some notation to describe scalar quantization. When scalar
y; is quantized to yield J;, it is convenient to define the relative quantization error
B=E[lyi —3i*] /E[yi|*] and then further define p=1— g and v; =J; — py;. These
definitions yield a gain-plus-noise notation J; = py; + v;, where

o=k [[o]=pa-pE[pi]. G.1)

to describe the effect of quantization. Quantizers with optimal (centroid) decoders
result in v being uncorrelated with y [14, Lemma 5.1]; other precise justifications are
also possible [15].

\%
J h 4 v
> u X y hits X
Source of u \ > D P Encoder » Decoder [——p
randomness K >
Y Y
[}
y En“op\/ bits
QL) 7| coding

FIGURE 5.3

Block diagram representation of the compressive sampling scenario analyzed information-
theoretically. Vis a random orthogonal matrix; uis a K-sparse vector with A/(0,1) nonzero entries,
and @ is a Gaussian measurement matrix. More specifically, the sparsity pattern of v is
represented by J, and the nonzero entries are denoted uy. In the initial analysis, the encoding of
y =®x s by scalar quantization and scalar entropy coding.
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In subsequent analyses, we will want to relate 8 to the rate (number of bits) of
the quantizer. The exact value of 8 depends not only on the rate R, but also on the
distribution of y; and the particular quantization method. However, the scaling of 3
with R is as 272K under many different scenarios (see the Appendix to this chapter).
We will write

B=c2"2k (5.2)

without repeatedly specifying the constant ¢ = 1.
With the established notation, the overall quantizer output vector can be written as

y=pPVu+v=Au+tv, (5.3)

where A = p®V . The overall source coding and decoding process, with the gain-plus-
noise representation for quantization, is depicted in Figure 5.4. Our use of (5.3) is to
enable easy analysis of linear estimation of x from .

Analyses

Since the sparsity level K is the inherent number of degrees of freedom in the signal,
we will let there be KR bits available for the encoding of x and also normalize the
distortion by K: D = %E [||x - fc||2]. Where applicable, the number of measurements
M is a design parameter that can be optimized to give the best distortion-rate trade-off.
In particular, increasing M gives better conditioning of certain matrices, but it reduces
the number of quantization bits per measurement.

Before analyzing the compressive sampling scenario (Figure 5.3),we consider some
simpler alternatives, yielding the first three entries in Table 5.1.

Signal in a Known Subspace

If the sparsifying basis V' and subspace J are fixed and known to both (centralized)
encoder and decoder, the communication of x can be accomplished by sending quan-
tized versions of the nonzero entries of V'~ !x. Each of the K nonzero entries has unit
variance and is allotted R bits, so D(R) = ¢2~ 2R performance is obtained, as given by
the first entry in Table 5.1.

Adaptive Encoding with Communication of |

Now suppose that V' is known to both encoder and decoder, but the subspace index
J is random, uniformly selected from the ([I\é) possibilities. A natural adaptive (and

x=Wu y=py+v

y=dx
e i :
u—>» e P —— > | Quantization | —————» | Decoding | —» %

FIGURE 5.4
Source coding of x with additive noise representation for quantization.
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centralized) approach is to spend log, (%) bits to communicate J and the remaining
available bits to quantize the nonzero entries of V~lx. Defining Ry = % log, (11\2),
the encoder has KR — KRy bits for the K nonzero entries of V'~ !x and thus attains
performance

Dygaptive (R) = c2 2R R) , R=Ry. (5.4

When K and N are large with the ratio o = K /N held constant,log, (1[\(7) ~ NH () where
H(p)=—plog, p— (1—p)log,(1—p) is the binary entropy function [16, p. 530].
Thus Ry~ H (o) /«, giving a second entry in Table 5.1.

If R does not exceed R, then the derivation above does not make sense,and even if
R exceeds Ry by a small amount, it may not pay to communicate J. A direct approach
is to simply quantize each component of x with KR/N bits. Since the components of x
have variance K /N, performance of E [(xi - 5@)2] <c(K/N )27 2KR/N can be obtained,
yielding overall performance

Dgirect(R) =c2™ ZKR/N- (5.5)

By choosing the better between (5.4) and (5.5) for a given rate, one obtains a simple
baseline for the performance using V at the encoder. A convexification by time sharing
could also be applied, and more sophisticated techniques are presented in [17].

Loss from Random Measurements

Now let us try to understand in isolation the effect of observing x only through ®x.
The encoder sends a quantized version of y = ®x, and the decoder knows V and the
sparsity pattern J.

From Equation (5.3), the decoder has y = p®Vu + v and knows which K elements
of u are nonzero. The performance of a linear estimate of the form &x =F(J)y will
depend on the singular values of the M-by-K matrix formed by the K relevant columns
of ®V.! Using elementary results from random matrix theory, one can find how the
distortion varies with M and R. (The distortion does not depend on N because the
zero components of # are known.) The analysis given in [21] shows that for moderate
to high R, the distortion is minimized when K/M~1— ((2In2)R)"!. Choosing the
number of measurements accordingly gives performance

Dj(R)~2(In2)eR-c2 2R = 2 2R"K) (5.6)

where R* = % log, (2 (In 2)eR), giving the third entry inTable 5.1. Comparing to 2~ 2k,
we see that having access only to separately quantized random measurements induces
a significant performance loss.

One interpretation of this analysis is that the coding rate has effectively been
reduced by R* bits per degree of freedom. Since R* grows sublinearly with R, the

1 One should expect a small improvement—roughly a multiplication of the distortion by K/M—
from the use of a nonlinear estimate that exploits the boundedness of quantization noise [18, 19].
The dependence on ®V is roughly unchanged [20].
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situation is not too bad—at least the performance does not degrade with increasing
K or N.The analysis when J is not known at the decoder—that is, it must be inferred
from y—reveals a much worse situation.

Loss from Sparsity Recovery

As we have mentioned before, compressive sampling is motivated by the idea that
the sparsity pattern / can be detected, through a computationally tractable convex
optimization, with a “small” number of measurements M. However, the number of
measurements required depends on the noise level. We saw M ~ 2K log(N —K) + K
scaling is required by lasso reconstruction; if the noise is from quantization and we
are trying to code with KR total bits, this scaling leads to a vanishing number of bits
per measurement.

Unfortunately, the problem is more fundamental than the suboptimality of lasso
decoding. We will show that trying to code with KR total bits makes reliable recovery
of the sparsity pattern impossible as the signal dimension N increases. In this analysis,
we assume that the sparsity ratio o« = K /N is held constant as the problems scale, and
we see that no number of measurements M can give good performance.

To see why the sparsity pattern cannot be recovered, consider the problem of
estimating the sparsity pattern of # from the noisy measurement y in (5.3). Let Egignal =
E [[[Au|?] and Epoise =E[[lv]?] be the signal and noise energies, respectively, and
define the SNR as SNR = Ejgnai /Enoise- The number of measurements M required to
recover the sparsity pattern of # from y can be bounded below with the following
theorem.

Theorem 5.1. Consider any estimator for recovering the sparsity pattern of a K-sparse
vector u from measurements y of the form (5.3), where vis a white Gaussian vector uncor-
related with y. Let Pgrror be the probability of misdetecting the sparsity pattern, averaged
over the realizations of the random matrix Aand noise v. Suppose M, K, and N — Kapproach
infinity with
2K

M<m [(1—&)log(N —K) +1] (5.7)

for some £>0. Then Peror — 1; that s, the estimator will asymptotically always fail.

PROOF. This result follows from a stronger result [11, Theorem 1]. Define the minimum-to-
average ratio as

mify.; 20 |uj|*

MAR = ’
llell =/ K

Asymptotically in the required sense, according to [11,Theorem 1], a necessary condition
for any algorithm to succeed in recovering the sparsity pattern of # is

2
M= ——— K| N—K)+K-—1.
= MAR.SNR K losV = K)

Since MAR < 1, the theorem follows. [ |
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Under certain assumptions, the quantization error v in our problem will be asymp-
totically Gaussian,so we can apply the bound (see the Appendix). The theorem shows
that to attain any nonvanishing probability of success, we need the scaling

M>£ [(1—&)logV —K) +1]. (5.8)
SNR
Now, using the normalization assumptions described above, the expression p=1—f3,
and 0'12, given in (5.1), it can be shown that the signal and noise energies are given by
Esignat = M (1 — B)? and Epoise = MB(1 — B). Therefore, the SNR is

SNR=(1-8)/B. (5.9)

Now, let 6 = K /M be the “measurement ratio,” that is, the ratio of degrees of freedom
in the unknown signal to number of measurements. From (5.2), BZZ_ZSR for any
quantizer, and therefore, from (5.9), SNR<22°R — 1_ Substituting this bound for the
SNR into (5.8), we see that for the probability of error to vanish (or even become a
value less than 1) will require

228 —1-28
26(1—¢)

Notice that, for any fixed R, the left-hand side of (5.10) is bounded above uniformly
over all 6 € (0, 1]. However, if the sparsity ratio « = K /N is fixed and N — %, then
log(N — K) — «. Consequently, the bound (5.10) is impossible to satisfy. We conclude
that for a fixed rate R and sparsity ratio a, as N — », there is no number of mea-
surements M that can guarantee reliable sparsity recovery. In fact, the probability of
detecting the sparsity pattern correctly approaches zero.This conclusion applies not
just to compressive sampling with basis pursuit, lasso, or matching pursuit detection,
but even to exhaustive search methods.

How bad is this result for distributed coding of the random measurements? We
have shown that exact sparsity recovery is fundamentally impossible when the total
number of bit scales linearly with the degrees of freedom of the signal and the quan-
tization is regular. However, exact sparsity recovery may not be necessary for good
performance. What if the decoder can detect, say, 90 percent of the elements in the
sparsity pattern correctly? One might think that the resulting distortion might still be
small.

Unfortunately, when we translate the best known error bounds for reconstruction
from nonadaptively encoded undersampled data? we do not even obtain distortion
that approaches zero as the rate is increased with K, M, and N fixed. For example,
Candes and Tao [22] prove that an estimator similar to the lasso estimator attains a
distortion

>log(N — K). (5.10)

l||x—fc||2$61£(logN)az (5.11)
K M ’ '

2 Remember that without undersampling, one can at least obtain the performance (5.5).
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with large probability, from M measurements with noise variance -2, provided that the
number of measurements is adequate. There is a constant é € (0, 1) such that M = K /6
is sufficient for (5.11) to hold with probability approaching 1 as N is increased with
K /N held constant; but for any finite NV, there is a nonzero probability of failure.
Spreading RK bits among the measurements and relating the number of bits to the
quantization noise variance gives

1 R _
D=I—(E[||x—x||2]Sc26(logN)2 2R 4 Do, (5.12)

where De is the distortion due to the failure event.? Thus if Dey iS negligible, the
distortion will decrease exponentially in the rate, but with an exponent reduced by a
factor 6. However,as N increases to infinity, the distortion bound increases and is not
useful.

Numerical Simulation

To illustrate possible performance, we performed numerical experiments with low
enough dimensions to allow us to use a near-optimal decoder. We fixed the signal
dimension to N =16 with sparsity K =4, and we quantized y by rounding each
component to the nearest multiple of A to obtain . Rates were computed using
approximations of K ! ZZ’ZI H (9,,) via numerical integration to correspond to opti-
mal entropy coding of 1, P2, ..., yu. Distortions were computed by Monte Carlo
estimation of K~ 'E [||x —5c||2], where the computation of X is described below. We
varied M and A widely, and results for favorable (M, A) pairs are shown in Figure 5.5.
Each data point represents averaging of distortion over 10,000 independent trials, and
curves are labeled by the value of M.

Optimal estimation of x from J is conceptually simple but computationally infea-
sible. The value of P specifies an M-dimensional hypercube that contains y. This
hypercube intersects one or more of the K-dimensional subspaces that contain y;
denote the number of subspaces intersected by P. Each subspace corresponds to
a unique sparsity pattern for x, and the intersection between the subspace and the
hypercube gives a convex set containing the nonzero components of x. The set of
values S; C RY consistent with 7 is thus the union of the P convex sets and is noncon-
vex whenever P> 1. The optimal estimate is the conditional expectation of x given y,
which is the centroid of S; under the Gaussian weighting of the nonzero components
of x.4 Finding the subspace nearest to y is NP-hard [7], and finding the P required
subspaces is even harder.

The results reported here are for reconstructions computed by first projecting J to
the nearest of the K-dimensional subspaces described above and then computing the

3 Haupt and Nowak [23] consider optimal estimators and obtain a bound similar to (5.12) in that it
has a term that is constant with respect to the noise variance. See also [24] for related results.
4 Note that this discussion shows E [x | j/] generally has more nonzero entries than x.
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Rate-distortion performance of compressive sampling using entropy-constrained uniform scalar
quantization of random measurements and reconstruction via maximum likelihood estimation of
the sparsity pattern. In all simulations, N=16 and K= 4. Quantization step size and number of
measurements M are varied. Also plotted are the theoretical distortion curves for direct and
baseline quantization.

least-squares approximation X assuming the sparsity pattern has been determined cor-
rectly. (The first step would be maximum likelihood detection of the sparsity pattern
if y — 9 were white Gaussian, but this is of course not the case.) This reconstruction
procedure generally produces a better estimate than a convex optimization or greedy
algorithm. For our purposes of illustration, it also has the advantage of not requir-
ing additional parameters (such as the A in lasso). We reported results for lasso and
orthogonal matching pursuit in [6].

Optimizing M trades off errors in the sparsity pattern against errors in the estimated
values for the components. The simulation results show that the optimal value of M
decreases as the rate increases. Our interpretation is that, except at a very low rate,
instances in which the sparsity pattern recovery fails dominate the distortion. Thus,
when there is more quantization noise, M must be larger to keep the probability of
sparsity pattern detection failure low. If ignoring the possibility of sparsity detection
failure was justified, then the distortion would decay as ~2T2K/MDR - A¢ high rates,
the simulations show steeper slopes for smaller M, but note that it is not reasonable
to ignore sparsity pattern detection failure; recall the discussion leading to (5.12) and
also see [25] for more extensive simulations consistent with these.



5.3 Information Theory to the Rescue?

The “baseline” curve in Figure 5.5 shows the performance obtained by choosing
judiciously—depending on the rate—between direct coding of x and adaptively cod-
ing the sparsity pattern and nonzero values. Specifically, it is the convexification of
(5.4) with the point (R=0, D =1). The value of ¢ used in (5.4) corresponds to scalar
quantization of the nonzero entries of x. Scalar quantization of random measurements
is not competitive with this baseline, but it provides improvement over simply coding
each element of x independently (see (5.5)).

Let us now more closely compare the baseline method against compressive sam-
pling. From (5.4), the distortion with adaptive quantization decreases exponentially
with the rate R through the multiplicative factor 22K This appears in Figure 5.5 as a
decrease in distortion of approximately 6 dB per bit. The best one could hope for with
compressive sampling is that at a very high rate, M = K + 1 =5 becomes the optimal
choice, and the distortion decays as ~ 2~ 2K/MR = 3=2(4/5R ¢ 4 8 dB per bit. This is a
multiplicative rate penalty that is large by source coding standards, and it applies only
at very high rates; the gap is larger at lower rates.

We see that, in the very high-rate regime (greater than about 15 bits per dimen-
sion), compressive sampling with near-optimal decoding achieves an MSE reduction
of approximately 4 dB per bit. While better than simple direct quantization, this perfor-
mance is significantly worse than the 6 dB per bit achieved with adaptive quantization.
Moreover, this simulation in some sense represents the “best case” for compressive sam-
pling since we are using an exhaustive-search decoder. Any practical decoder such as
orthogonal matching pursuit or lasso will do much worse. Also, based on the analy-
sis above, which suggests that compressive sampling incurs a log N penalty, the gap
between adaptive quantization and compressive sampling will grow as the dimensions
increase.

INFORMATION THEORY TO THE RESCUE?

‘We have thus far used information theory to provide context and analysis tools. It has
shown us that compressing sparse signals by distributed quantization of random mea-
surements incurs a significant penalty. Can information theory also suggest alternatives
to compressive sampling? In fact, it does provide techniques that would give much
better performance for source coding, but the complexity of decoding algorithms
becomes even higher.

Let us return to Figure 5.3 and interpret it as a communication problem where x
is to be reproduced approximately and the number of bits that can be used is limited.
We would like to extract source coding with side information and distributed source
coding problems from this setup. This will lead to results much more positive than
those developed above.

In developing the baseline quantization method, we discussed how an encoder that
knows V can recover J and ug from x and thus send J exactly and ug approximately.
Compressive sampling is to apply when the encoder does not know (or want to
use) the sparsifying basis V. In this case, an information theorist would say that we
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have a problem of lossy source coding of x with side information V available at the
decoder—an instance of the Wyner-Ziv problem [26]. In contrast to the analogous
lossless coding problem [27], the unavailability of the side information at the encoder
does in general hurt the best possible performance. Specifically,let L(D) denote the rate
loss (increased rate because V is unavailable) to achieve distortion D. Then there are
upper bounds to L(D) that depend only on the source alphabet, the way distortion is
measured,and the value of the distortion—not on the distribution of the source or side
information [28]. For the scenario of interest to us (continuous-valued source and MSE
distortion), L(D) < 0.5 bits for all D. The techniques to achieve this are complicated,
but note that the constant additive rate penalty is in dramatic contrast to Figure 5.5.

Compressive sampling not only allows side information V' to be available only at
the decoder, but it also allows the components of the measurement vector y to be
encoded separately. The way to interpret this information theoretically is to consider
Y1, Y2, ---, Yu as distributed sources whose joint distribution depends on side infor-
mation (V, @) available at the decoder. Imposing a constraint of distributed encoding
of y (while allowing joint decoding) generally creates a degradation of the best possi-
ble performance. Let us sketch a particular strategy that is not necessarily optimal but
exhibits only a small additive rate penalty. This is inspired by [28, 29].

Suppose that each of M distributed encoders performs scalar quantization of its
own y; to yield g(y;). Earlier, this seemed to immediately get us in trouble (recall
our interpretation of Theorem 5.1), but now we will do further encoding. The quan-
tized values give us a lossless distributed compression problem with side information
(V, ®) available at the decoder. Using Slepian-Wolf coding, we can achieve a total rate
arbitrarily close to H(q(y)). The remaining question is how the rate and distortion
relate.

For sake of analysis, let us assume that the encoder and decoder share some ran-
domness Z so that the scalar quantization above can be subtractively dithered (see,
e.g., [30]). Then following the analysis in [29, 31], encoding the quantized samples
q(y) atrate H(q(y) |V, Z) is within 0.755 bit of the conditional rate-distortion bound
for source x given V. Thus the combination of universal dithered quantization with
Slepian-Wolf coding gives a method of distributed coding with only a constant additive
rate penalty. These methods inspired by information theory depend on coding across
independent signal acquisition instances, and they generally incur large decoding
complexity.

Let us finally interpret the “quantization plus Slepian-Wolf” approach described
above when limited to a single instance. Suppose the y;s are separately quantized as
described above. The main negative result of this article indicates that ideal separate
entropy coding of each g(y;) is not nearly enough to get to good performance. The
rate must be reduced by replacing an ordinary entropy code with one that collapses
some distinct quantized values to the same index. The hope has to be that in the
joint decoding of g(y), the dependence between components will save the day. This is
equivalent to saying that the quantizers in use are not regular [30], much like multiple
description quantizers [32]. This approach is developed and simulated in [25].



5.5 Quantizer Performance and Quantization Error

5.4 CONCLUSIONS—WHITHER COMPRESSIVE
SAMPLING?

To an information theorist, “compression” is the efficient representation of data with
bits. In this chapter, we have looked at compressive sampling from this perspective,
in order to determine if random measurements of sparse signals provide an efficient
method of representing sparse signals.

The source coding performance depends sharply on how the random measure-
ments are encoded into bits. Using familiar forms of quantization (regular quantizers;
see [30]), even very weak forms of universality are precluded. One would want to
spend a number of bits proportional to the number of degrees of freedom of the
sparse signal, but this does not lead to good performance. In this case, we can con-
clude analytically that recovery of the sparsity pattern is asymptotically impossible.
Furthermore, simulations show that the MSE performance is far from optimal.

Information theory provides alternatives based on universal versions of distributed
lossless coding (Slepian-Wolf coding) and entropy-coded dithered quantization. These
information-theoretic constructions indicate that it is reasonable to ask for good per-
formance with merely linear scaling of the number of bits with the sparsity of the
signal. However, practical implementation of such schemes remains an open prob-
lem. Other chapters of this volume present practical schemes that exploit different
sorts of relationships between the distributed sources.

It is important to keep our mainly negative results in proper context. We have
shown that compressive sampling combined with ordinary quantization is a bad
compression technique, but our results say nothing about whether compressive sam-
pling is an effective initial step in data acquisition. A good analogy within the realm
of signal acquisition is oversampling in analog-to-digital conversion. Since MSE dis-
tortion in oversampled ADC drops only polynomially (not exponentially) with the
oversampling factor, high oversampling alone—without other processing—Ileads to
poor rate-distortion performance. Nevertheless, oversampling is ubiquitous. Similarly,
compressive sampling is useful in contexts where sampling itself is very expensive, but
the subsequent storage and communication of quantized samples is less constricted.

APPENDIX

5.5 QUANTIZER PERFORMANCE AND QUANTIZATION
ERROR

A quantity that takes on uncountably many values—like a real number—cannot have an
exact digital representation. Thus digital processing always involves quantized values.
The relationships between the number of bits in a representation (rate R), the accuracy
of a representation (distortion D), and properties of quantization error are central to
this chapter and are developed in this Appendix.
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The simplest form of quantization—uniform scalar quantization—is to round
x € R to the nearest multiple of some fixed resolution parameter A to obtain quantized
version X. For this type of quantizer, rate and distortion can be easily related through
the step size A. Suppose x has a smooth distribution over an interval of length
C. Then the quantizer produces about C/A intervals, which can be indexed with
R=~log,(C/A) bits. The error x —Xx is approximately uniformly distributed over
[~A/2, A/2],so the mean-squared error is D =E [ (x — &)?]~ {5 A2. Eliminating A, we
obtain D~ %6227213.

The 272K dependence on rate is fundamental for compression with respect to MSE
distortion. For any distribution of x, the best possible distortion as a function of rate
(obtained with high-dimensional vector quantization [30]) satisfies

(2me) 122127 2R < D(R) <g?2 2R

where h and o2 are the differential entropy and variance of x. Also, under high-
resolution assumptions and with entropy coding, D(R)%1—1222h2_2R performance
is obtained with uniform scalar quantization, which for a Gaussian random vari-
able is D(R)~ ¢meo?2” 2R Covering all of these variations together, we write the
performance as D(R) = ca?2~ %R without specifying the constant c.

More subtle is to understand the quantization error e =x — X. With uniform scalar
quantization, e is in the interval [—A/2, A/2], and it is convenient to think of it as a
uniform random variable over this interval, independent of x. This is merely a con-
venient fiction, since X is a deterministic function of x. In fact, as long as quantizers
are regular and estimation procedures use linear combinations of many quantized
values,second-order statistics (which are well understood [15]) are sufficient for under-
standing estimation performance. When x is Gaussian, a rather counterintuitive model
where e is Gaussian and independent of x can be justified precisely: optimal quanti-
zation of a large block of samples is described by the optimal test channel, which is
additive Gaussian [33].
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6.1 INTRODUCTION

This chapter deals with practical solutions for the Slepian-Wolf (SW) coding prob-
lem, which refers to the problem of lossless compression of correlated sources with
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coders that do not communicate. Here, we will consider the case of two binary cor-
related sources X and Y, characterized by their joint distribution. If the two coders
communicate, it is well known from Shannon’s theory that the minimum lossless
rate for X and Y is given by the joint entropy H(X, Y). In 1973 [29] Slepian and
Wolf established that this lossless compression rate bound can be approached with a
vanishing error probability for infinitely long sequences, even if the two sources are
coded separately, provided that they are decoded jointly and that their correlation is
known to both the encoder and the decoder. Hence, the challenge is to construct a
set of encoders that do not communicate and a joint decoder that can achieve the
theoretical limit.

This chapter gives an overview of constructive solutions for both the asymmetric
and nonasymmetric SW coding problems. Asymmetric SW coding refers to the case
where one source, for example Y, is transmitted at its entropy rate and used as side
information to decode the second source X. Nonasymmetric SW coding refers to the
case where both sources are compressed at a rate lower than their respective entropy
rates. Sections 6.2 and 6.3 recall the principles and then describe practical schemes
for asymmetric and symmetric coding, respectively. Practical solutions for which the
compression rate is a priori fixed according to the correlation between the two sources
are first described. In this case, the correlation between the two sources needs to be
known—or estimated—at the transmitter. Rate-adaptive schemes in which the SW
code is incremental are then presented. This chapter ends with Section 6.4 covering
various advanced SW coding topics such as the design of schemes based on source
codes and the generalization to the case of nonbinary sources, and to the case of M
sources.

ASYMMETRIC SW CODING

The SW region for two discrete sources is an unbounded polygon with two corner
points (see points A and B in Figure 6.1(b)). At these points, one source (say Y for
point A) is compressed at its entropy rate and can therefore be reconstructed at the
decoder independently of the information received from the other source X. The
source Y is called the side information (SD (available at the decoder only). X is
compressed at a smaller rate than its entropy. More precisely, X is compressed at the
conditional entropy H(X|Y') and can therefore be reconstructed only if Y is available
at the decoder. The sources X and Y play different roles in this scheme, and therefore
the scheme is usually referred to as asymmetric SW coding.

Principle of Asymmetric SW Coding
The Syndrome Approach

Because of the random code generation in the SW theorem, the SW proof is noncon-
structive. However,some details in the proof do give insights into how to construct SW
bound achieving codes. More precisely, the proof relies on binning—that is,a partition
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Distributed source coding of statistically dependent i.i.d. discrete random sequences X and Y.
Setup (left); achievable rate region (right).
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The partition of the sequences x into four subsets (called bins) such that the sequences in each
bin are as far apart as possible. The set of sequences x jointly typical with a given y are as
“different” as possible: here they are elements of different bins.

of the space of the source sequences into subsets (or bins) such that the vectors in
the bins are as far apart (or as much “jointly nontypical”) as possible (see Figure 6.2).
In 1974 [39], Wyner suggested constructing the bins as cosets of a binary linear code
and showed the optimality of this construction. More precisely, if the linear block
code achieves the capacity of the binary symmetric channel (BSC) that models the
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correlation between the two sources, then this capacity-achieving channel code can
be turned into a SW-achieving source code.

In order to present Wyner’s algebraic binning scheme, we first review some nota-
tions on binary linear codes. A binary (n, k) code C is defined by an (n —k) Xn
parity-check matrix H and contains all the n-length vectors! x such that xH” =0:

C={x:xH" =0}.

Notice that the code C is equivalently defined by a & X n generator matrix G such that
C = {x:x=uG}, where u is a k-bit vector.

If H has full row rank, then the rate of the channel code is &/7n. Moreover, for a
good code, all the vectors of the code (called words or codewords) have maximum
Hamming distance. The code partitions the space containing 2" sequences into 2" ¥
cosets of 2k words with maximum Hamming distance. Each coset is indexed by an
(n — k)length syndrome, defined as s = xH T In other words, all sequences in a coset
share the same syndrome:Cs = {x :xH! =s}. Moreover, as a consequence of the linear-
ity of the code, a coset results from the translation of the code by any representative
of the coset:

Vvels, Cs=CPv. (6.1)

A geometric approach to binary coding visualizes binary sequences of length 7 as
vertices of an n-dimensional cube. In Figure 6.3, the code C (the set of codewords or
the set of vectors of syndrome 0 that is represented with e) is a subspace of {0, 1}3,
whereas the coset with syndrome 1, denoted C; and represented with o, is an affine
subspace parallel to C. Notice that properties of a subspace and the linearity property
(6.1) are satisfied (to verify this, all operations have to be performed over the finite
field of order 2).

If a codeword x is sent over a BSC with crossover probability p and error sequence
z, the received sequence is y =x +z. Maximum likelihood (ML) decoding over the
BSC searches for the closest codeword to y with respect to the Hamming distance
dH(., )

X =arg min dy(Xx,y).
x:xeC

This can be implemented with syndrome decoding.This decoding relies on a function
£:{0,1}""* = {0, 1}, which computes for each syndrome a representative called the
coset leader that has minimum Hamming weight. Thus, a syndrome decoder first com-
putes the syndrome of the received sequence: s =yH', then the coset leader f(s).
This coset leader is the ML estimate of the error pattern z. Finally, the ML estimate of
x is given by X =y D f (yHT).

In order to use such a code for the asymmetric SW problem, Wyner [39] suggests
constructing bins as cosets of a capacity-achieving parity check code. Let x and y

1 All vectors are line vectors,and I denotes transposition. Moreover, @ denotes the addition over the
finite field of order 2 and + the addition over the real field.
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Construction of a binning scheme with a linear block code in 0, 13. The cube and the basis vector
in 0, 13 (left); a code defined by the parity-check matrix H= (111) or equivalently the generator
matrix G= (]0})(right).

be two correlated binary sequences of length 7. These sequences are the realiza-
tions of the sources X and Y. The encoder computes and transmits the syndrome
of x: s=xH" . The sequence x of » input bits is thus mapped into its corresponding
(n — k) syndrome bits, leading to a compression ratio of n: (n — k). The decoder, given
the correlation between the sources X and Y and the received coset index s, searches
for the sequence in the coset that is closest to y. In other words, ML decoding is
performed in order to retrieve the original sequence X:

(6.2)

X =arg min dy(X,y).
x:x€Cq

Note that the maximization is performed in a set of vectors with syndrome that may
not be 0. Therefore, the classical ML channel decoder has to be adapted in order to be
able to enumerate all vectors in a given coset Cs. This adaptation is straightforward if
syndrome decoding is performed. In this case, the decoder can first retrieve the error
pattern (since for each syndrome, the corresponding coset leader is stored) and add
itto the SI'y.

Syndrome decoding is used here as a mental representation rather than an efficient
decoding algorithm, since it has complexity O(n2" *). There exist codes with linear
decoding complexity, and we will detail these constructions in Section 6.2.2. In this
section, we have presented a structured binning scheme for the lossless source coding
problem with SI at the decoder. However, the principle is quite general and can be
applied to a large variety of problems as shown in [40].
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Asymmetric SW coding. The syndrome approach (left); the parity approach (right).

The Parity Approach

The syndrome approach detailed earlier is optimal [39], however, it may be diffi-
cult to construct rate-adaptive codes by puncturing the syndrome. Therefore, another
approach called parity approach has been proposed [9]2 [1].

Let C' be an (n, 2n — k) systematic binary linear code, defined by its (2n — k) Xn
generator matrix G = (I P):

C'= {xG=(xxp):x€{0, 1}""}.

The compression of the source X is achieved by transmitting only the parity bits x,, of
the source sequence x (see Figure 6.4). The systematic bits x are not transmitted. This
leads to a compression ratio 72: (n — k). Here again, the correlation between the source
X and the SI'Y is modeled as a “virtual” channel, where the pair (y X,) is regarded as a
noisy version of (X X,). The channel is therefore a parallel combination of a BSC and
a perfect channel. The decoder corrects the “virtual” channel noise and thus estimates
x given the parity bits X, and the SI y regarded as a noisy version of the original
sequence x. Therefore, the usual ML decoder must be adapted to take into account
that some bits of the received sequence (X;) are perfectly known. We will detail this
in Section 6.2.2.

Interestingly, both approaches (syndrome or parity) are equivalent if the generator
matrix (in the parity approach) is the concatenation of the identity matrix and the
parity-check matrix used in the syndrome approach: G = (I H). However, the two
codes C and C' (defined by H and G, respectively) are not the same. They are not
even defined in the same space (C is a subspace of {0, 1}”*, whereas C’ is a subspace
of {0, 1}>"~*). Figure 6.4 compares the implementation of the syndrome and parity
approaches.

Practical Code Design Based on Channel Codes
The Syndrome Approach

Practical solutions based on the syndrome approach first appeared in a scheme called
DISCUS [20]. For block codes [20],syndrome decoding is performed. For convolutional

2 Note that this paper introduces the principle of the parity approach in the general case of
nonasymmetric coding.
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codes, the authors in [20] propose to apply the Viterbi decoding on a modified trellis.
In order to solve the problem (6.2), the decoder is modified so that it can enumerate
all the codewords in a given coset. The method uses the linearity property (6.1). For
systematic convolutional codes, a representative of the coset is the concatenation of
the k-length zero vector and the n — k-length syndrome s. This representative is then
added to all the codewords labeling the edges of the trellis (see Figure 6.5). Note that
the states of the trellis depend on the information bits, and thus on the systematic bits
only. Thus, there exists one trellis section per syndrome value. The decoder, knowing
the syndrome s, searches for the sequence with that particular syndrome that is closest
to y. First, it builds the complete trellis. Each section of the trellis is determined by
the syndrome. Once the whole trellis is built, the Viterbi algorithm chooses the closest
sequence to the received y.

A variation of the above method is proposed in [35], where the translation by
a coset representative is performed outside the decoder (see Figure 6.6). First, the
representative (0 s) is computed (this step is called inverse syndrome former—ISF)
and added to y. Then the decoding is performed (in the coset of syndrome 0), and
finally the representative is retrieved from the output of the decoder. The advantage
of this method is to use a conventional Viterbi decoder without a need to modify it.
This method can also be applied to turbo codes [35]. In this case, two syndromes
(81, S2) are computed, one for each constituent code. A representative of the coset is
(0 s1 82).

The authors in [24] propose a SW scheme based on convolutional codes and turbo
codes that can be used for any code (not only systematic convolutional code). Rather
than considering the usual trellis based on the generator matrix of the code, the

X1 X2

» D
U

o4(D) a,(D)

@)

FIGURE 6.5

Block diagram (a) and trellises (b, c) for the systematic convolutional code H = [1%].

The diagram (a) defines the states o1 (D) (D) of the trellis, where D is a dummy variable
representing a time offset. The trellis section in (b) corresponds to the syndrome value s =0 and
is called the principal trellis. The complementary trellis corresponds to s=1 and is obtained by
adding (0's) to all the codewords labeling the edges of the principal trellis.
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Implementation of the syndrome approach with a usual channel decoder. ISF stands for inverse
syndrome former and computes a representative of the coset with syndrome s.
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Block diagram (a) and syndrome trellises (b—c) for the rate 1/2 convolutional code H=[5 7].
The states o1 (D) o2(D) are defined in the block diagram (a). Two trellis sections are obtained: one
for the syndrome value s =0 (b) and one for s=1 (c).

decoder is based on a syndrome trellis. This trellis was first proposed for binary linear
block codes [38] and was then generalized to convolutional codes [28]. Such a trellis
can enumerate a set of sequences in any coset. More precisely, a section corresponds
to the reception of 7z bits of x and n — & syndrome bits (see Figure 6.7). Thus, there
exist 2" * possible trellis sections, one for each syndrome value. The decoder, know-
ing the syndrome s, searches for the sequence with that particular syndrome that is
closest to y. First, it builds the complete trellis. Each section of the trellis is determined
by the syndrome. Once the whole trellis is built, the Viterbi algorithm is performed
and chooses the closest sequence to the received y.

For low-density parity-check (LDPC) codes, the belief propagation decoder can be
adapted to take into account the syndrome [16]. More precisely, the syndrome bits
are added to the graph such that each syndrome bit is connected to the parity check
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equation to which it is related. The update rule at a check node is modified in order
to take into account the value of the syndrome bit (known perfectly at the decoder).

The Parity Approach

The parity approach presented in Section 6.2.1.2 has been implemented using various
channel codes, for instance, turbo codes [1, 5]. Consider a turbo encoder formed by
the parallel concatenation of two recursive systematic convolutional (RSC) encoders
of rate (n — 1) /n separated by an interleaver (see Figure 6.8). For each sequence x (of
length 7) to be compressed, two sequences of parity bits X, = (X; le) are computed
and transmitted without any error to the decoder. The turbo code is composed of two
symbol Maximum A Posteriori (MAP) decoders. Each decoder receives the (unaltered)
parity bits together with the SI y, seen as a noisy version of the sequence x. The con-
catenation (y X,) can be seen as a noisy version of the coded sequence (X x,), where
the channel is a parallel combination of a BSC and of a perfect channel. Therefore,
the usual turbo decoder must be matched to this combined channel. More precisely,
the channel transitions in the symbol MAP algorithm which do not correspond to the
parity bits are eliminated. Such a scheme achieves an 72:2 compression rate.

Rate Adaptation

Note that in all methods presented so far, in order to select the proper code and
code rate, the correlation between the sources needs to be known or estimated at
the transmitter before the compression starts. However, for many practical scenarios,
this correlation may vary, and rate-adaptive schemes have to be designed. When the
correlation decreases, the rate bound moves away from the estimate (see Figure 6.9).
The rate of the code can then be controlled via a feedback channel. The decoder
estimates the Bit Error Rate (BER) at the output of the decoder with the help of the

1 P
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RSC encod X2 T l
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FIGURE 6.8

DSC system for two binary-correlated sources using punctured turbo codes.
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log-likelihood ratios computed by the channel decoder. If the BER at the output of
the decoder exceeds a given value, more bits are requested from the encoder. In this
context of feedback-controlled schemes, the code should be incremental such that
the encoder does not need to re-encode the data. The first bits are kept, and additional
bits are only sent upon request. In the following, we present various rate-adaptive
methods and specify whether or not they are incremental.

The Parity Approach

The parity approach was originally proposed to easily construct rate-adaptive schemes
(see Section 6.2.2). At the encoder, the parity bits are punctured (some parity bits
are not transmitted), and the decoder compensates for this puncturing, using stan-
dard techniques coming from channel coding. The source sequence x is compressed
through some punctured parity bits X,, and the decoder retrieves the original
sequence aided by the SI y. The sequence (y X,) can be seen as the output of a
channel, which is a combination of a perfect channel (unpunctured parity bits), an
erasure channel (punctured parity bits), and a BSC channel (correlation between the
sources x and y). The method is by construction incremental.

The Syndrome Approach

Because of the optimality of the syndrome approach [39], a natural design of a rate-
adaptive scheme consists of puncturing the syndrome. However, using puncturing
mechanisms leads to performance degradation as reported in [15, 32, 36]. More pre-
cisely, it is shown in [32] that the syndrome approach is very sensitive to errors

HMY |

Slepian—\Wolf bound
for a given correlation

FIGURE 6.9
Evolution of the SW region, when the correlation between the sources varies.
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or erasures, which indicates that the puncturing of syndromes will lead to perfor-
mance degradation. Therefore, the first contributions avoid or compensate for this
performance degradation.

A first method proposed in [15] punctures the parity bits rather than the syndrome
bits. Each puncturing pattern defines a new code for which a parity check matrix
can be computed. Then, one can construct a syndrome former and inverse syndrome
former for the new punctured code (presented in Section 6.2.1.2). This method can be
implemented using any code, in particular convolutional and turbo codes. However,
the resulting code is not incremental.

A first incremental SW coding scheme based on Serially Concatenated Accumulate
(SCA) codes is proposed in [7]. An inner encoder concatenates the first source bit with
the modulo-2 sum of consecutive pairs of source bits. The output of the accumulator
is interleaved and fed into a so-called base code, which is either an extended Hamming
code or a product of single-parity check codes, which then compute the syndrome
bits. The accumulator code is of rate 1, so that the compression rate is controlled
by the base code. The base code is first decoded using a MAP decoder for extended
Hamming codes or a belief propagation algorithm for product parity-check codes.
The accumulator code is decoded with a symbol MAP decoder, A turbo-like algorithm
iterates between both decoders.

The authors in [306] investigate the puncturing of LDPC (low-density parity-check
code) encoded syndromes. To avoid degrading the performance of the LDPC code, the
syndrome bits are first protected with an accumulator code before being punctured.
Here also the accumulator code is of rate 1, so that the compression rate is not modi-
fied. The combined effect of the puncturing and of the accumulator code is equivalent
to merging some rows of the parity-check matrix by adding them. This defines a set
of parity-check matrices, one for each rate. Then, for each parity-check matrix, decod-
ing is performed according to the modified sum-product algorithm [16] presented in
Section 6.2.1.1. An interesting feature of this method is that it is incremental. If the
merging of rows satisfies a regularity rule (one can only add two rows that have no
“1” at the same column position), then the accumulated syndrome value of the new
(smallest compression rate) matrix can be computed by adding the previous syndrome
value (corresponding to the highest compression rate matrix) to the current one. The
performance of the method is shown in Figure 6.10(a). Another method is proposed
in [14]. Instead of protecting the syndrome bits, the authors combine the syndrome
and the parity approaches. Given an input vector x of length 7, the encoder transmits
m syndrome bits plus / parity bits, defining an (n + [/, n — m) linear error-correcting
code. Rate adaptation is then performed by puncturing the parity bits.

In [24],the optimal decoder for convolutional codes under syndrome puncturing is
designed. It is shown that performance degradation due to syndrome puncturing can
be avoided without a need to encode (or protect) the syndromes. When syndrome bits
are punctured, the optimal decoder should in principle search for the closest sequence
in a union of cosets. This union corresponds to all possible syndromes that equal the
received syndrome in the unpunctured positions. Therefore, the number of cosets
grows exponentially with the number of punctured bits. A brute force decoder consists
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Syndrome puncturing of an LDPC code [36] and of a turbo code [24]: two rate-adaptive schemes.
Performance versus the entropy rate H(X1Y) and comparison with the SW bounds. The 1/2-rate
constituent code of the turbo code is defined by its parity-check matrix H =(23/33, 35/33). The
overall compression rate for both schemes is 1: 1, and puncturing leads to various compression
rates. (a) Comparison of the syndrome punctured LDPC and turbo code for a blocklength of
2046. (b) Performance of the turbo code for an interleaver of size 105.

FIGURE 6.11

Super trellis for the rate 1/2 convolutional code defined by its polynomial parity-check matrix
H(D) = [5 71. This trellis is the union of the two trellis sections of Figure 6.7.

in performing an ML algorithm in each coset,but then the decoding complexity of such
a method would grow exponentially with the number of punctured bits. On the other
hand,if the decoder is not modified, it leads to systematic errors,since the search may be
performed in the wrong coset. The method proposed in [24] is based on the syndrome
trellis presented in Section 6.2.1.1. Whenever some syndrome bits are punctured, a
new trellis section is constructed as the union of the trellis sections compatible with
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the received punctured syndrome. This enumerates the sequences in the union of
cosets. The resulting trellis is called the super trellis (see Figure 6.11),and the Viterbi
algorithm is performed on this new trellis. The complexity of the proposed algorithm
grows only linearly with the code blocklength and with the number of punctured
positions. The authors in [24] also show that this decoder can be applied to turbo
codes. The performance of the method is shown in Figure 6.10.

NONASYMMETRIC SW CODING

For the sake of simplicity, we focus again on the two-user setting,and we now consider
the case where both sources are compressed in order to reach any point of the segment
between A and B in Figure 6.1(b). For some applications, it may be desirable to vary
the rates of each encoder while keeping the total sum rate constant. This setup is
said to be nonasymmetric. It will be said to be symmetric when both sources are

compressed at the same rate (point C in Figure 6.1(b)). Note that both sources can

HX,Y
be compressed at the same rate if and only if max(H(X|Y), H(Y|X)) < ¥ <

min((H (X), H(Y)). Several methods can be used to reach any point of the SW rate
bound. The first approach called time sharing uses two asymmetric coder/decoder
pairs alternatively. Other methods code each input sequence x and y with linear
channel codes. For each source, part of the information bits plus syndrome or parity
bits are transmitted. The decoder then needs to estimate the n-length sequences x and
y knowing the partial information bits, the syndrome or parity bits and the correlation
between x and y.

Time Sharing

Letx and y again denote two random binary correlated sequences of source symbols of
length 7. It is assumed that the correlation is defined by a BSC of crossover probability
p- All points of the segment between A and B of the SW rate bound are achievable
by time sharing. More precisely, a fraction a of samples (a.n samples, where 7 is the
sequence length) is coded at the vertex point A4, that is, at rates (H(Y), H(X|Y)), with
the methods described in Section 6.2,and a fraction (1 — &) of samples is then coded at
rates (H(X), H(Y | X)) corresponding to the corner point B of the SW rate region. This
leads to the rates Ry =aH(X)+ (1 —a)HX|Y) and Ry = (1 —a)H(Y) + aH(Y|X).

The Parity Approach

The sequences x and y of length » are fed into two linear channel coders (turbo
coders [6] or LDPC coders [25]), which produce two subsequences x" = (x1...x7)
andy” = (741 ... y,) of information bits and two sequences xf .. xf and yf e yf of
parity bits, where a= (n —I)H(X|Y) and b=[H(Y|X). The achievable rates for each
source are then Ry = f—1H(X) +o= %H(X) + "771H(X|Y) and Ry = %H(Y) + % =
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"Tle )+ %H (Y'|X). The SW boundary can be approached by varying the ratio %
between 0 and 1. Unlike the time-sharing approach, the parity bits are computed on
the entire input sequences of length 7. The sequence (x"x”) is regarded as a noisy
version of the sequence (y”y"). As in the asymmetric setup, the channel is a parallel
combination of a BSC and of a perfect channel. The decoder then needs to estimate x
and y given (x"x?) and (y?y").

A first practical implementation of the parity approach is proposed in [9] with turbo
codes and considers the particular case of symmetric SW coding. The solution is then
extended to reach any point of the SW boundary in [6,8]. In [8], the two information
sequences of length n are encoded with a systematic punctured turbo code. The
information bits of the second source are interleaved before being fed to the encoder.
All the systematic bits as well as a subset of the parity bits are punctured in order to
leave only a bits for the sequence x and b bits for the sequence y. Each turbo decoder
proceeds in the standard way, with the difference that part of the bits is received via
an ideal channel. After each iteration, the measures obtained as a result of a turbo
decoding on each input bit of one sequence, for example, X, are passed as additional
extrinsic information to the turbo decoder used to estimate the sequence vy, via the
binary symmetric correlation channel (i.e., P(yr = 0) = (1 — p)P(xr = 0) + pP(xr = 1)).

Another implementation of the parity approach is described in [25] with LDPC
codes and later studied in [26] for short to moderate-length codes. The decoder needs
to determine an n-length sequence from the part of information bits and parity bits
received for the sequence x and from the correlated sequence y. For this, a message-
passing algorithm is used by setting the LLR (log-likelihood ratio) of the bits received
via the ideal channel to infinity. The LLR of the bits received via the correlation channel
are set to = log(%).The LLR for the punctured bits are set to zero. Two sets of degree
distributions for the variables nodes are used to account for the fact that information
bits are received via the correlation channel, whereas the parity bits are received via
an ideal channel.

The Syndrome Approach

Let us consider an (7, k) linear channel code C defined by its generator matrix Ggx,
and its parity-check matrix H(,—g)x». A syndrome approach was first proposed in [19],
based on the construction of two independent linear binary codes C! and C? with G;
and G, as generator matrices, obtained from the main code C. More precisely, the
generator matrices G; and G, of the two subcodes are formed by extracting m2; and
my lines, respectively, where m21 + m, = k,from the matrix G of the code C.The parity-
check matrices Hy and H are then of size (n —m1) X n and (n — my) X n,respectively.
A geometric interpretation of the code splitting is shown in Figure 6.12. Each coder
sends a syndrome, defined as s, = XHIT ands), = yHZT ,respectively, to index the cosets
of C! and C? containing x and y. The total rate for encoding the input sequences
of length 7 is then n —m + n —m, = 2n — k bits. The cosets containing x and y are
translated versions of the codes C! and C? (i.e., the cosets having null syndromes)
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Splitting the code of Figure 6.3 into two subcodes: code C! defined by G =(110) or Hy = (319)
(left); code C2 defined by Go=(101) or Hp = (§59)(right).

by vectors t, and t,,. This translation is illustrated in Figure 6.12, where the addition
by the translation vector is performed over the finite field {0, 1}. The codes C! and
C? must be chosen such that all pairs (X, y) can be determined uniquely given the
two coset indexes. We now explain how to determine a pair (x,y) from a usual ML
decoder.

Let uyG; and u;,G; define codewords in Cl and C2. By definition these vectors
have a null syndrome. All possible codewords in a coset of syndrome s can be enumer-
ated by translating a codeword belonging to the coset of null syndrome by a vector t
belonging to the coset of syndrome s (see Equation (6.1)). If the code is systematic,
a candidate for the translating vector is t = (0 s), as explained in Section 6.2.2. Thus,
x and y can be seen as translated versions of codewords belonging to the cosets of
null syndrome of the codes C! and C?, respectively. The vectors x and y can thus be
expressed as X =u,G1 D (0 sy), y =u,G2® (0 s),), where t, = (0 sx) and t, = (0 s),)
are the representatives of the cosets of C! and C? with syndromes s, and sy. The
decoder must search for a pair of codewords, one from each translated coset of C!
and C2. When receiving the syndromes s, and Sy, it first finds a codeword ¢ of the
main code C (which is actually the error pattern between x and y) that is closest to
the vector t =t, ®t, = (0 sx) @ (0 s)). The error pattern X @y is the minimum-weight
codeword having the same syndrome as the vector t. If the code is systematic, the
sequences X and y are reconstructed as X =0,G; @ty and ¥ =10, G2 @y, where U,
and 1, are the systematic bits of the codeword c. This method achieves the optimal
SW compression sum rate if the global code C achieves the capacity of the equiv-
alent correlation channel (between x and y). The number of lines assigned to G;
(and therefore to G3) allows choosing any rate on the dominant face of the SW
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region (between points A and B in Figure 6.1(b)). The above ideas are further devel-
oped in [30, 31], for nonsystematic linear codes. The code construction has been
extended in [27] to the case where the sources X and Y are binary but nonuniformly
distributed.

In a second approach proposed in [10], the vectors x and y belong to the same
coset of a unique code C,which is the translated version of the coset of null syndrome
by a vector t. Each source vector is identified by a syndrome computed with the
parity-check matrix H of the code C plus part of the source information bits [10].
The syndromes s£ =Hx! and s} =HyT , of length (n — k), are thus computed for
both sequences and transmitted to the decoder. In addition, the &’ first bits of x
(denoted x’f ’) and the & — &' next bits for the source y (denoted y’kf, 4p)are transmitted
as systematic bits, where &’ is an integer so that &’ €0, £]. The total rate for the
sequences x and y of length 7 is, respectively,n — k + k' and n — k' bits. The structure
of the coders is depicted in Figure 6.13. Note that k' =% and 2’ =0 correspond to
the two asymmetric setups with rates given by the corner points A and B of the SW
region.

As in the asymmetric case, the representative of the coset is thus the concatenation
of the transmitted information bits (&' bits for the sequence x) and of the (z — k)-length
syndrome vector. As in the first approach, when receiving the syndromes s, and s,
the decoder must find a codeword ¢ of the code C that is closest to the translating
vector t =t, ®t, = (0 s,) B (0 sy). For this, it first computes s, = s, ®s,, which is the
syndrome of the error pattern z between x and y (z=x®Yy). In [10], a modified
LDPC decoder estimates Z = )Ze\y from the syndrome s, and the all-zero word of size
n (see Figure 6.14) [16]. The error pattern z is the smallest weight codeword with
syndrome s,. When convolutional and turbo codes are used, the estimation of the
error pattern can be performed with a conventional Viterbi decoder and an inverse
syndrome former (ISF) [33] or with a syndrome decoder [24] (see Section 6.2.2 for
further details).

K
> Xy
k/
Xy » H . > s,
n Encoder X n-
> yllz’+1
k —k’
A of b
n Encoder Y n

FIGURE 6.13

The nonasymmetric coders in the syndrome approach [10]. A single code C (determined by the
parity check matrix H) is used for each sequence to be compressed.
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Nonasymmetric decoder: estimation of the error pattern z=x@y (left); reconstruction of the
source sequence X (right).

Once the error pattern is found, the subsequences of information bits x’g, 4+ and
y’l"' " can be retrieved from the error pattern z=x @Yy as (see Figure 6.14-right)

%%, =yk, @2k, and y¥=xVo@2¥. (6.3)
Subsequences of n—k bits (i.e., x;!, | and y;/, ), remain to be computed for both
sequences. Let us assume that H = (A B), where B is an invertible square matrix of
dimension (n — k) X (n — k). Note that for a rate 2/n channel code, the parity-check
matrix H has rank n — k. Therefore, one can always find a permutation to be applied
on the columns of H so that the resulting parity-check matrix has the right form.
Thus,s, =Hx=(AB)x=A4 x’f @B x}!, ;,and the remaining » — 2 unknown bits of the
sequence x (and similarly for the sequence y) can be computed as

X0 =B (s, @4 %%, (6.4)

where B! denotes the inverse of the matrix B [10]. The authors in [10] have used
LDPC codes.

If the error pattern is not perfectly estimated, the estimation of the remaining
symbols X}, , in Equation (6.4) may yield error propagation. Note that the unknown
positions in the vector x are design parameters. These positions (or, equivalently, the
columns of the matrix H to be extracted in order to build the matrix B) can be chosen
so that the inverse B! is as sparse as possible. Figure 6.15 shows the BER of the error
pattern z (continuous line) and its effect on the estimation of the source sequence
x. Performance is shown for a convolutional code. The dotted curve represents the
BER, when Equation (6.4) is performed with an arbitrary invertible matrix B. This BER
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Error propagation in the estimation of the source X. The convolutional code is defined by its

parity-check matrix H = (% %g ??)and is punctured over a period of four trellis sections in order to

geta 2:1 compression rate for the source.

can be lowered to the dashed curve, if a matrix B with sparse inverse is chosen. This
limits the error propagation. Finally, the error propagation can be further reduced, if
one applies a modified decoder to solve Equation (6.4). This decoder (Viterbi for a
convolutional code) is matched to a channel which combines a perfect channel (for
x’f '), a BSC (for f(’,:, 4, With crossover probability the BER of z) and an erasure channel
(for x;7, ). Interestingly, with this decoder the BER of x remains almost the same as
that of z.

6.3.4 Source Splitting

Source splitting [21] is another approach to vary the rates between the two encoders.
The approach is asymptotic and involves splitting the source into subsources having a
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lower entropy. More precisely, it transforms the two source problem into a three source
problem where one source, for example, X is split into two i.i.d. discrete sources U
andVasU=XTand V=Y (1—T). T is an i.i.d. binary source (which can be seen as
a time-sharing sequence). By varying P(7 = 1), one can vary H(Y|U) between H(Y)
and H (Y |X).The sum rate becomes Ry + Ry =Ry + Ry + Ry =H(U|T)+H(Y|U) +
H(V|U, Y).Arandom coding argument is used to show that the rate triple is achievable
[21]; however, no constructive codes are proposed.

Rate Adaptation

In practical applications, the correlation between the two sources may not be known
at the time of code design. It may thus be necessary, as in the asymmetric setup,
to have solutions allowing for flexible rate adaptation to any correlation between
the two sources. Nonasymmetric rate-adaptive SW coding/decoding schemes are
direct extensions of their asymmetric counterparts. Rate adaptation is performed by
simply puncturing information, parity, or syndrome bits in the schemes described
above.

In the parity approach, we have seen that for two correlated sequences of length
n, the rate allocation between the two sequences is controlled by the number / of
information bits transmitted for each. The change in the rate allocation between the
two sources is thus performed by puncturing more or less information bits. For a given
rate share between the two sources, rate adaptation to varying correlation is achieved
by simply puncturing the parity bits. Standard decoding of punctured channel codes
can then be applied.

For the syndrome approaches, as explained in Section 6.2.3, the application of
the puncturing is less straightforward. Puncturing the syndrome bits may degrade
the performance of the code. The approach considered in [34], similarly to [36] for
the asymmetric setup, consists of first protecting the syndromes with an accumulator
code. The effect of the accumulator code followed by the puncturing is equivalent to
merging some rows of the parity-check matrix H by adding them, thus constructing a
matrix H; of dimension (n — k;) X n,of rank n — &;. In the matrix H;, with appropriate
permutation, one may exhibit a submatrix B; of dimension (n — &;) X (n — k;), which
is invertible (see Equation (6.4)). The positions of the &' (k' €[0, k;]) and k; — k' infor-
mation bits transmitted for the sequences x and y, respectively, must then be chosen
so that they correspond to the positions of the remaining nonfree k; columns of H;. If
the correlation is not known to the encoder, the rate may be controlled via a feedback
channel. In this case, once the error pattern Z has been estimated, the decoder verifies
if the condition Z H! = s, is satisfied. If this condition is not satisfied, it then requests
for more syndrome bits. Note that, if the error pattern is not perfectly estimated, the
last step of the decoding algorithm represented by Equation (6.4) may yield error prop-
agation. The coding and decoding structures are depicted in Figure 6.16. Figure 6.17
illustrates the rate points achieved with a nonsymmetric SW coding/decoding scheme
based on LDPC codes.

149



150

CHAPTER 6 Toward Constructive Slepian—Wolf Coding Schemes

Feedback

0 —4»

ki
R pary

FIGURE 6.16

Dki—k' s
Punct |: , 7

By
P

Encoder Y

E n—ki

. Decoder
a=arg min dy(a, b)
a.aecy

Feedback

Rate-adaptive coding/decoding scheme.

Ry (bits/source symbol)

FIGURE 6.17

Q0.2

—+—p =0.01, gap =0.0562 bits
---+--- p =0.01, theoretical bound
—O—p =0.05, gap =0.0907 bits
----0--- p =0.05, theoretical bound
—#%—p =0.13, gap =0.0687 bits
- %--- p =0.13, theoretical hound

QA ............

....................................

0.4

Q0.6

Ry (bits/source symbot)

Rate points achieved for different parameters p of the binary symmetric correlation channel.
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6.4 ADVANCED TOPICS

6.4.1 Practical Code Design Based on Source Codes

6.4.1.1 Code Design Based on Source Alphabet Partitioning

The use of source codes for SW coding was first been explored in [2] considering
Huffman codes. The approach relies on partitioning the source alphabet into groups
of symbols. One source Y is coded with a Huffman code designed according to its
stationary probability P(Y). The alphabet of the second source X is partitioned so
that two symbols x; and x; are not grouped together if there exists a symbol y such
that [P(x;, ) >0 and P(x;, y) > 0. The joint probability mass function of (X, Y) may
need to be slightly modified, for example, by thresholding the smallest values and then
renormalizing, so that this condition is verified. In addition, the entropy of the group
index must be minimum and approach at best H(X|Y). Knowing the SI symbol y
and the group index, the decoder can find the transmitted symbol x. The above code
design based on alphabet partitioning has been formalized and generalized in [41] for
arbitrary p.m.f. P(X, Y), assuming memoryless sources. The partition can be coded
with a Huffman or an arithmetic code.

6.4.1.2 Punctured and Overlapped Arithmetic Codes

Different solutions based on overlapped arithmetic [11] and quasi-arithmetic (QA) [3]
codes, as well as punctured (quasi-)arithmetic codes [17] have appeared recently for
the case of binary sources. Arithmetic coding recursively divides the interval [0, 1)
according to the source probabilities. Let us consider a binary memoryless source
with probabilities denoted Py and P;. At each symbol clock instant 7, the current
interval [L,,, H},) is divided into two subintervals whose widths are proportional to Py
and P; =1 — Py, respectively. One of these subintervals is selected according to the
value of the next symbol and becomes the current interval. Once the last symbol is
encoded, the encoder produces a sequence of bits identifying the final subinterval.
Practical implementations of arithmetic coding were first introduced in [18-22],and
further developed in [23, 37].

The encoding and decoding processes can be modeled as state machines. But
with optimal arithmetic coding, the number of states can grow exponentially with the
sequence length. Controlled approximations can reduce the number of possible states
without significantly degrading compression performances [13]. This fast,but reduced
precision,implementation of arithmetic coding is called quasi-arithmetic coding [13].
Instead of using the real interval [0, 1], quasi-arithmetic coding is performed on an
integer interval [0, 7']. The value of T controls the trade-off between complexity, the
number of states, and compression efficiency.

The average code length achieved per input source symbol is very close to the
source entropy. To further reduce the rate down to the conditional entropy of
two correlated sources, two strategies can be considered: puncturing the sequence
of encoded bits [17] or overlapping the symbol probability intervals of the
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arithmetic [11] or quasi-arithmetic coder [3]. For the overlapped (quasi-)arithmetic
codes, at a given instant #, the probability interval [L,, H,) is partitioned into two
subintervals [L,,, Po(H,, — L,;) + pT/2) associated with the symbol 0 and [Py(H,, —
L,)—pT/2, H,) associated with the symbol 1. The parameter p controls the over-
lap between the subintervals. The larger the overlap, the lower the bit rate but the
higher the uncertainty on the decoded sequence. In both cases, overlapped and punc-
tured codes, the resulting code is no longer uniquely decodable. The ambiguity on
the encoded sequence of symbols can be removed with the help of the SI (correlated
source) and of a symbol MAP decoder.

To explain the decoding algorithm, let us first consider the punctured solution. Let
x and y be two correlated sequences of length L(x). The sequence x is coded with
a QA code producing a sequence of bits u of length L(u), which is then punctured.

Given the received QA coded bitstream uf(u) and the correlated sequence yf(x) (D,

the symbol posterior marginals P(X,, =x;, | ui(u), yf(x)) are computed by running a
BCJR algorithm [4] on the state model of the QA automaton. To cope with the fact
that the QA automaton contains transitions corresponding to a varying number of
symbols and a varying number of bits, the state model used in the decoding must keep
track of the number of symbols being coded at a particular bit clock instant k. It is
hence defined by the pairs of random variables Vp = (N, My), where N denotes
the state of the QA automaton and M represents the symbol clock value at the
bit clock instant & [12]. Since the variable M}, corresponds to the symbol clock, it
accounts for the correlation between the encoded sequence and the SI. The transition
probabilities on the state model Vp, = (N, My) are equal to the transition probabil-
ities between states N, of the QA automaton, if the numbers of bits and symbols
associated with this transition match the one defined by the automaton. The transi-
tion probabilities are equal to zero otherwise. The probabilities of transition between
states Vp of the QA automaton depend on the source statistics and can account for
source memory. Thus, for each state v = (n, m), the BCJR algorithm computes the
probabilities g (v) =PV, = v; UX) and Br(v) = P(ULY, | Vi = »). The branch metric
ye(v'|v) used for the transition 7 between two states v= (n, m) and v' = (', m') is
given by v, (v'|v) =P'|v) X P(b;) X P(X; |y;), where b; and x; denote the subse-
quences of bits and symbols associated with given transition 7 on the QA automaton.
The probability P(b;) is computed considering a probability of 0.5 for the punc-
tured positions. The term P(x;|y;) represents the correlation channel between
XandY.

The decoding for the overlapped quasi-arithmetic codes proceeds in the same
manner as for the punctured solution. The only difference is in the automaton, which
in the case of overlapped codes depends not only on the distribution of the source X
but also on the overlap factor p (for details see [17] and [3]). A second difference is
in the branch metric vy, (v'|v) in which the term P(b,) disappears, since, in this case,
all the coded bits are known to the decoder (and not punctured as in the previous
method).



6.5 Conclusions

6.4.2 Generalization to Nonbinary Sources

Thus so far, we have considered only binary correlated sources. Practical applications
often involve nonbinary (e.g., g-ary) sources. In practice, before being encoded, the
g-ary sources are first binarized. Each resulting sequence of bits is then fed to the SW
coder. For example, this is the case in [42] where the authors describe the principle
using turbo codes to compress both sources X and Y. For each source, the sequences
of bits at the output of the “symbol-to-bit” converter are interleaved and input to a
punctured turbo coder. The turbo decoders act at a bit level in a standard fashion, but
information exchange is performed between the two turbo decoders at the symbol
level. The a posteriori probabilities computed by a turbo decoder for each input bit are
converted into a measure on the corresponding g-ary symbol. The resulting symbol
probabilities are then multiplied by the conditional probabilities characterizing the
correlation channel and fed into the second turbo decoder as extrinsic information.

6.4.3 Generalization to M Sources

The asymmetric and nonasymmetric coding schemes presented earlier can be
extended to more than two sources. The practical code design approach proposed
in [19] has been extended in [30] and [31] for M sources (see Section 6.3.3). Each
subcode is constructed by selecting a subset of rows from the generator matrix G
of the starting code C. Examples of design are given for irregular repeat-accumulate
(IRA) codes. However, the method is shown to be suboptimal when the number of
sources is greater (or equal) than three. The parity approach described in [25] has also
been extended to M sources in [26]. The sequences x;,i=1,...M, of length n are
fed into M LDPC coders, which produce subsequences of a; X k information bits and
(1 — a;) X k parity bits. Joint decoding of the M sources is then performed.

6.5 CONCLUSIONS

This chapter has explained how near-capacity achieving channel codes can be used
to approach the SW rate bound. Although the problem is posed as a communication
problem, classical channel decoders need to be modified. This chapter has outlined
the different ways to adapt channel decoding algorithms to the Slepian-Wolf decod-
ing problem. In the approaches presented, it is assumed that syndrome or parity bits
are transmitted over a perfect channel. As explained, the equivalent communication
channel is thus the parallel combination of a BSC and a perfect channel. In some appli-
cations, this may not be the case: syndrome or parity bits may have to be transmitted
on an erroneous communication channel. Distributed joint source-channel coding
schemes, in which the SW code acts as a single code for both source coding and chan-
nel error correction, can be found in the literature to address this particular scenario.
This last problem, however, remains a field of research. Finally, the use of SW codes
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is currently being explored for a number of applications such as low-power sensor
networks, compression of hyperspectral images, monoview and multiview video com-
pression, error-resilient video transmission, and secure fingerprint biometrics. These
applications are presented in other chapters of Part 2.
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INTRODUCTION

Sensor networks have emerged as a powerful tool to acquire data distributed over
a large area by means of self-powered and low-cost sensing units. They allow obser-
vation of physical fields at different time instants and space locations, thus acting as
spatiotemporal sampling devices. Most envisioned deployments of such distributed
infrastructures are tailored to a particular sensing task. Examples are environmental
monitoring (temperature, humidity, or pressure measurements) [1], target tracking [2],
or acoustic beamforming [3]. The design of these networked architectures usually
involves a complex interplay of source and channel coding principles as a means of
reproducing the sensed data within prescribed accuracy. In this context, a thorough
understanding of the physical phenomenon under observation is crucial. It allows
accommodating the design of sensing devices, sampling schemes, and transmission
protocols to the targeted application, hence providing significant gains over blind
communication strategies (e.g., see [4]).

This chapter addresses the problem of distributed coding for recording a spatiotem-
poral sound field using an array of microphones. As a means of designing efficient
compression schemes that account for the physical properties of sound propagation,
a large portion of our exposition is devoted to the study of the spatiotemporal charac-
teristics of the sound field. This analysis is presented in Section 7.2. More precisely,
in Section 7.2.1, we consider the evolution of the sound field in various recording
environments. The spatiotemporal spectrum of the sound field recorded on a line is
investigated in Section 7.2.2, under both the far-field and near-field assumptions. We
then study, in Section 7.2.3, the trade-off that exists between the intermicrophone
spacing and the reconstruction accuracy. Different sampling lattices along with their
corresponding interpolation scheme are also discussed.

Next, we demonstrate how knowledge of the sound field characteristics can be
beneficial for the design of efficient distributed compression schemes. Our analysis
considers two limit configurations of interest. The first one, analyzed in Section 7.3,
consists of an infinite number of sensors recording an acoustic field on a line and
transmitting their observations to a base station. Under some simplifying assumptions,
we show how the optimum rate-distortion trade-off can be achieved by judicious signal
processing at the sensors, hence solving the multiterminal source coding problem for
the considered scenario. As far as applications are concerned, a practical setup where
such data gathering of audio signals could be of interest is a teleconferencing system
made up of multiple cell phones. Typically, such devices are dispersed on a table,
record the sound emitted by users talking around them, and transmit the signals to
a central point by means of a wireless communication medium. This data may, for
example, be conveyed to a remote location to re-create the spatial impression of the
conference room. The second setup, studied in Section 7.4, involves only two sensors,
namely, two digital hearing aids exchanging compressed audio signals over a wireless
communication link in order to provide collaborative noise reduction. For a simple
yet insightful scenario, we characterize the maximum achievable noise reduction as
a function of the communication bit rate and provide optimal policies for the rate
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allocation between the two hearing devices. Numerical results obtained using data
recorded in a realistic acoustic environment are also presented.

One of the main goals of distributed compression in acoustic sensor networks is to
extend the concepts of multichannel audio coding [5,6] to a scenario where the input
channels cannot be encoded jointly. To the best of our knowledge, only a few research
papers have addressed this topic. A practical compression scheme based on the DIS-
CUS framework [7] has been proposed in [8]. More recently,the work in [9] considered
a wavelet-based method in order to address the stringent power constraints of wire-
less sensor nodes. For the case of compression with side information at the decoder,
a scheme capitalizing on perceptual aspects of human hearing was presented in [10].
Although the analysis presented in this chapter is more of a theoretical nature, it pro-
vides useful insights for the design of efficient distributed audio compression schemes.

SPATIOTEMPORAL EVOLUTION OF THE SOUND FIELD

‘We present a study on the spatial evolution of the sound field for different scenarios. In
Section 7.2.1, we first describe a few recording setups that will be of interest through-
out this discussion. Then, in Section 7.2.2, we investigate the spatiotemporal character-
istics of a sound field recorded using a line of microphones. In particular, we show that
the support of its spatiotemporal Fourier transform exhibits a butterfly shape. From this
observation, sampling results are derived in Section 7.2.3. Different sampling lattices,
along with their corresponding interpolation schemes, are also presented.

Recording Setups

The spatiotemporal characteristics of the signals recorded using an array of micro-
phones are directly related to the characteristics of the emitting sources and the type
of recording environment. Generally speaking, the effect of the environment on the
sound emitted by a source can be described by means of the wave equation [11].
Unfortunately, analytical solutions to this equation can only be derived for very simple
scenarios. In most cases, the solution needs to be approximated. This section presents
four recording setups of interest. For the first two, exact solutions can be derived
while, for the remaining ones, we must resort to approximations.

Source Emitting in Free Field and Recorded in One Point

Let us first consider the setup depicted in Figure 7.1(a). A sound z(¢) is emitted in free
field by an omnidirectional source located at position (x,,, y,, 2,). The sound recorded
at a microphone located at position (x,, ¥y, 2,) is denoted by v(¢). Considering the
acoustic channel between the source and the microphone as a linear and time-invarijant
system, we can define an impulse response between these two points. This impulse
response, denoted by h(#), can be expressed as [11]

1 d
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where 8(f) denotes the delta function, ¢ the speed of sound propagation, and
d the distance between the source and the microphone, which is given by
d=/(xy—xu)%+ (Yo —yu)? + (zo —2u)%. In the rest of the chapter, the speed of
sound is set to ¢ =340 m/s. Under these considerations, the sound recorded at the
microphone is obtained as the convolution of the source with the above impulse
response, that is,

v(t) =h(t) * u(t), (7.2)

where * denotes the convolution operator. The signal v(#) is thus simply a delayed and
attenuated version of the source u(t).

Source Emitting in Free Field and Recorded on a Line

We now consider the acoustic channels between a source emitting in free field and
any point on a line at a distance d of the source. This setup is depicted in Figure 7.1(b).
The impulse response now depends on both position and time, and is thus referred to
as a spatiotemporal impulse response. It can be directly obtained by considering the
evolution of (7.1) as a function of x,, and redefining d as d = \/ (Vo —yu)? + (zp — zu)2.

== u(t) =% {

d
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FIGURE 7.1

Setups for the study of the sound field. (a) One source and one microphone in free field. (b) One
source and a line of microphones in free field. (c) One source and a line of microphones in a
room. (d) One source and two microphones at the ears of a listener.
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FIGURE 7.2

Theoretical spatiotemporal impulse response on a line. (a) In free field. (b) Inside a room. The
spatiotemporal impulse response inside a room is obtained using the image method (see
Section 7.2.1.3).

For simplicity, we denote the variable x,, by x such that the spatiotemporal impulse
response can be expressed as

hx,t)=

(7.3)

41/ (x — %) + d? c

The function h(x, t) is plotted in Figure 7.2(a). The signal v(xy, t) recorded at a fixed
position xp on the line can thus be obtained as the (one-dimensional) convolution
of the impulse response at position xg, given by h(xo, £), with the source u(¢). In
this scenario, referred to as nearfield, both the delay and the attenuation depend on
the distance between the source and the microphone. To simplify matters, it is often
assumed [12, 13] that the source is far enough away from the microphones such that
the wave front impinging on the line of microphones appears as a plane wave. This
assumption is known as the farfield assumption. In this case, the delay only depends
on the direction of propagation of the wave. Moreover, the attenuation is assumed
to be constant across microphones and is set to unity. The spatiotemporal impulse
response (7.3) hence reduces to

1 8<t_\/(x—xu)2+d2)

hx, t)=6(t—xcosa),

(7.4)
c

where o denotes the angle of arrival of the plane wave (see Figure 7.3(a)).

Source Emitting in a Room and Recorded on a Line

Let us now turn our attention to the recording setup illustrated in Figure 7.1(c). The
source no longer emits in free field but instead emits inside a rectangular room. In room
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FIGURE 7.3

Far-field assumption for the spatiotemporal study of the sound field. (a) Plane wave impinging on
a line of microphones with angle «. (b) Support of the 2D spectrum of the spatiotemporal impulse
response. (c) If one considers all possible angles of arrival, the spectral support of the
spatiotemporal impulse response has a butterfly shape.

acoustics, the impulse response is referred to as a room impulse response (RIR). It can
be directly measured (e.g.,see [14]) or estimated using a parametric model. The most
common approach for simulating RIRs for simple geometries is the image method [15].
The idea is to model the reflections of the sound on the walls as new virtual sources
located on the far side of these walls. Reverberation in a room is thus modeled by
adding the effect of a large number of virtual free-field sources (theoretically an infinite
number). The RIR is obtained by adding the impulse responses corresponding to each
of these virtual sources. A spatiotemporal RIR on a line simulated using the image
source model is shown in Figure 7.2(b).

Source Emitting in Free Field and Recorded at the Ears of a Listener

We assume now that the source is recorded at the left and right ears of a listener,
as depicted in Figure 7.1(d). The direction-dependent transfer characteristics from a
sound source to the ear is called head-related impulse response (HRIR) in the time-
domain representation and head-related transfer function (HRTF) in the frequency-
domain representation. These functions describe the acoustic filtering, due to the
presence of a listener, of a sound wave propagating in free field. The HRTF is defined
as the ratio between the Fourier transform of the sound pressure at the entrance of
the ear canal and the one in the middle of the head in the absence of the listener [16].
HRTFs are therefore filters quantifying the effect of the shape of the head, body, and
pinnae on the sound arriving at the entrance of the ear canal. A typical situation is
described in Figure 7.1(d). The source emits the sound u(¢) in free field. The HRIRs
describing the filters between the source and the left and right ears are denoted by
h1(¢) and h, (1), respectively. The sound signals recorded at the ears, denoted by v (¢)
and v,(t), are again obtained by convolution. Many models exist for simulating HRTFs
(e.g.,see [17]).These models mostly consider the diffraction effect of the sound around
the head. In this scenario, the head reduces the intensity of the sound arriving at the
contralateral ear,a phenomenon commonly referred to as bhead shadowing.
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Spectral Characteristics

We study the spectral characteristics of the spatiotemporal sound field recorded on
a line. As observed in Section 7.2.1.2, the recorded signals can be obtained by the
convolution of the source signals with the appropriate impulse responses. We will thus
concentrate on the spectral characteristics of the spatiotemporal impulse response.
A description of the spectrum under the far-field assumption is given in Section 7.2.2.1.
This far-field assumption is then relaxed in Section 7.2.2.2,and an analytical expression
of the two-dimensional (2D) Fourier transform of the spatiotemporal impulse response
is derived. We further analyze the spatial frequency decay of the obtained spectrum.

Far-field Assumption

As illustrated in Figure 7.3(a), let us consider a plane wave impinging on a line of
microphones with an angle «. The spatiotemporal impulse response is given by (7.4).
Its 2D Fourier transform can be computed as

H(®, 0) = 2m5(d+ 0 Cosa),

c

with ®@ and () being, respectively, the spatial and temporal frequencies. It is nonzero on
a line with slope —c/ cos a, as shown in Figure 7.3(b). Consider now the case where
plane waves arrive from every possible angle, that is, for a €[0, 27). In this case, the
support of the spectrum has the butterfly shape depicted in Figure 7.3(c). This support
corresponds to the region where

QO
| D] s'c—|. (7.5)

Throughout this discussion, it will be referred to as the butterfly support. Outside
this region, no energy is present. An intuitive explanation for the observed butterfly
support is as follows. At low temporal frequencies, the sound wavelength is very
large, and thus the wave varies slowly across space, which explains the small spatial
support. For higher temporal frequencies, the wavelength is smaller such that the
spatial variations are more significant. The spatial support is thus larger for higher
temporal frequencies.

Near-field Assumption

The evolution of the impulse responses on a line in the nearfield case has been
studied in Section 7.2.1.2. The 2D Fourier transform of the spatiotemporal impulse
response (7.3) can be computed as [18]

. Q 2
H(@,Q)=—JZH2,O d (;) -2 |, (7.6)

where H; o denotes the Hankel function of the second kind of order zero.
The region |®|>|()|/c corresponds to the evanescent mode of the waves. The
waves lose their propagating character to become exponentially fast-decaying waves
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FIGURE 7.4

Magnitude of the spectrum of the spatiotemporal impulse response. (a) Theoretical result for a
distance d =1 m. (b) Experimental result obtained from lab measurements. Due to the finite
length of the microphone array, the spectrum obtained experimentally decays more slowly outside
the butterfly region compared to the theoretical solution.

[19]. Therefore, most of the energy is contained in the butterfly region (7.5). This
observation will be used later in the context of spatial sampling. Note also that for
|D| > |Q|/c,the argument of the Hankel function in Equation (7.6) becomes imaginary,
and the expression can be rewritten as

[ 2
H(®, Q)= % Kol d, P>~ (%) , (7.7)

where K is the modified Bessel function of the second kind of order zero. It can be
shown that, for a fixed (), the spectrum (7.7) asymptotically behaves as [18]

e—dd)

1
27 dd
The decay along the spatial frequency axis is thus faster than exponential. We plot
the magnitude of (7.7) in Figure 7.4(a) for d = 1 m. In Figure 7.4(b), we also plot the
spectrum obtained using 72 RIRs measured in a partially sound-insulated room using
an intermicrophone spacing of 2 cm.

H(®, Q)~

Spatiotemporal Sampling and Reconstruction

In Section 7.2.3.1, we first address the spatiotemporal sampling in the far-field case.
The near-field case is then considered in Section 7.2.3.2. Two sampling strategies are
discussed along with their corresponding ideal interpolation methods.

Far-field Assumption

In the far-field scenario, spatial sampling is rather simple and is usually referred to as
the “half-wavelength rule” [13]. In fact, as mentioned in Section 7.2.2.1, the spectrum
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of the spatiotemporal impulse response is bandlimited to the region satisfying |®| <
|Q}|/c. Hence, the sound field can be spatially sampled and perfectly reconstructed,
provided that the spectral replicas do not overlap. For sampling the sound field on
a line, we consider an infinite number of equally spaced microphones. Call ®g the
spatial sampling frequency defined as 27r/Ax, where Ax is the sampling interval, that
is, an intermicrophone spacing. Besides spatial sampling, the spatiotemporal sound
field also needs to be sampled at a temporal sampling rate that depends on the desired
audio bandwidth. We call ()5 the temporal sampling frequency, such that Q¢ = 27 /At,
where At is the sampling period. The values Ax and Az define a rectangular sampling
grid,as depicted in Figure 7.5(a). To allow perfect reconstruction, the spacing between

.
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FIGURE 7.5

Sampling and interpolation of the sound field. (a) Rectangular sampling grid. (b) Support of the
spectrum with its repetitions for a rectangular sampling grid. The support of the interpolation filter
is given by the shaded area. (c) Quincunx sampling grid. (d) Support of the spectrum with its
repetitions for a quincunx sampling grid. The support of the interpolation filter is given by the
shaded area.
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consecutive microphones must be at most equal to

where ()¢ denotes the maximum temporal frequency. Equivalently, the minimum
spatial sampling frequency is equal to

§=— = —

Ax c

It can be directly observed from Figure 7.5(b) that, under this condition, the spectral
replicas do not overlap. The original sound field can thus be recovered using standard
interpolation techniques (e.g.,see [20]). The interpolation filter, in this case, is an ideal
low-pass filter whose support is shown in bold in Figure 7.5(b).

A tighter packing of the spectrum can be achieved by using quincunx sampling.
In time domain, the grid to be used is shown in Figure 7.5(c). In the corresponding
spectrum,the spectral replicas are placed such that they fill the whole frequency plane
as shown in Figure 7.5(d). With quincunx sampling, the temporal sampling frequency
can be halved, while preserving the perfect reconstruction property. In this case, the
even microphones are sampled at even times while the odd microphones are sampled
at odd times. This leads to a gain factor of two in the processing. However, it does not
reduce the necessary number of microphones. The ideal interpolation filter in this case
is referred to as a “fan filter” [21] whose support is indicated in bold in Figure 7.5(d).

Near-field Assumption

In the near-field scenario, the situation is different. Let us consider the spectrum of the
spatiotemporal impulse response given by (7.6) at a particular temporal frequency ().
It has approximately the shape given in Figure 7.6(a). In particular, it is not bandlim-
ited. When the sound field is sampled, repetitions of the spectrum occur as shown in
Figure 7.6(b). As the spectrum is not perfectly bandlimited, the repetitions will affect
the reconstruction; that is, aliasing will occur. To quantify this effect, we consider the
signal-to-noise ratio (SNR) of the reconstructed sound field. Let SNR(Dyg, ) denote
the SNR of the reconstructed sound field corresponding to a sinusoid emitted at fre-
quency ()y and where the spatial sampling frequency of the microphone array is ®s.
We define this SNR as

7, H(®, Q) dP
4/35/2 |H(P, Q) > dd’

SNR(Pg, Q) = (7.8)

The numerator in Equation (7.8) corresponds to the energy of the spectrum at temporal
frequency ()y. The denominator contains two different kinds of energy: the in-band
energy and the out-of-band energy. The in-band energy corresponds to the energy of all
the spectral replicas that contaminate the domain of interest, that is, [—®$g/2, Dg/2].
The out-of-band energy is the energy present in the original spectrum that is outside
the domain of interest. It can be shown that these two energies are equal in the case of
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FIGURE 7.6

Magnitude of the spectrum of the spatiotemporal impulse response for a particular temporal
frequency Qq. (a) Original spectrum. (b) Replicated spectrum after spatial sampling. We observe
that the replicas overlap with the original spectrum, preventing perfect reconstruction.

an infinite line of microphones. This explains the factor 4 in the denominator of (7.8).
The SNR evaluates as [18]

1
SNR((I)S, Qo) = 2 . (79)

- 2
2d [, |H2o (d (%) —<I>2> dd

The computation of the SNR (7.9) is rather involved. For ®s >2Q/c, however, it can
be lower bounded by [18]

i (a2 (2)')

where E; denotes the exponential integral function defined as E;(x) = f ;c g dr.As a
numerical check of the tightness of the bound, the SNR (7.9) and its lower bound (7.10)
are plotted in Figure 7.7 as a function of the normalized sampling frequency ®g d,
for different normalized temporal frequencies )y d. For a given normalized temporal
frequency;, it can be observed that the SNR increases as the normalized spatial sampling
frequency increases. We also observe that the lower bound tightly follows the exact

SNR(Pg, Qo) = (7.10)
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FIGURE 7.7

Reconstruction SNR and its lower bound as a function of the normalized spatial sampling
frequency ®sd. The different sets of curves correspond to different normalized temporal
frequencies Qqd.

Table 7.1 Minimum Intermicrophone Spacing (in cm) for Different
Temporal Frequencies g and Different SNR Requirements. The Distance
isd=1m
Far Field Near Field
20dB 40dB 60dB 80dB 100dB
2000 rad/s (318 Hz) 53.41 51.30 4531 38.14 31.84 26.86

8000 rad/s (1.3 kHz) 13.35 13.32  13.19 1297 12.65 12.27

15,000 rad/s (2.4 kHz) 7.12 712 710 7.06 7.01 6.94
20,000 rad/s (3.2 kHz) 5.34 5.34 5.33 5.32 5.29 5.27

SNR computed using (7.9). It can be computed from (7.10) that to reconstruct the
sound field at a temporal frequency of 8000 rad/s (1.3 kHz), a spatial distance of
12.35 cm is sufficient to achieve a reconstruction quality of 100 dB when a unit
distance between the source and the line of microphones is considered. Under the
far-field assumption, the required spacing to obtain perfect reconstruction would be
13.35 cm. Further numerical examples are provided in Table 7.1.
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Similarly to the farfield scenario, quincunx sampling may be used to achieve a
tighter packing of the spectrum, and an SNR formula similar to (7.9) may be derived.

HUYGENS’S CONFIGURATION

Let us now turn our attention to the distributed compression problem of audio signals.
The first setup of interest consists of an infinite number of sensors equally spaced on a
line. They record a continuous, stationary, Gaussian sound field that is emitted from a
line parallel to the recording line. This setup is motivated by the following observation.
According to Huygens’s principle [22],a wave front generated by a sound source can
be replaced by an infinite number of point sources placed on the wave front. This
principle is at the basis of wave field synthesis [23]. If this sound source is sufficiently
far away from the recording devices, the far-field assumption allows neglecting the
curvature of the wave front such that it reduces to a line. For this reason, we refer to
the considered setup as Huygens’s configuration. Closed-form rate-distortion formulas
are obtained for various sampling lattices and coding strategies. In particular, we show
that, under a whiteness requirement, the best achievable rate distortion trade-off can
be obtained by judicious signal processing at the sensors. We thus provide, for this
particular example, the solution to the multiterminal source coding problem.

Setup

The recording setup is illustrated in Figure 7.8(a). Sound sources distributed on an
infinite line U/ emit a spatiotemporal acoustic field U (x, t). The sound field U (x, t) is
assumed to be a zero-mean Gaussian random field that is stationary across both space
and time. We denote its power spectral density by Sy (P, 1). Recall that the variables
@ and () refer to the spatial and temporal frequencies, respectively. The field U (x, t)
induces a sound field V(x, ¢) recorded on a line V), parallel to and at a distance d
from the line . The field V(x, t) can be written as the convolution of U (x, t) with

Ux, t) Xe—2 Xk-1 Xk Xk+r Xk+2
u X % X
h(x, d SN S
1% x
V (X, t)
V(x, 1)
@ )

FIGURE 7.8

Huygens'’s configuration. (a) Sound field propagation setup. (b) Spatiotemporal sampling and
distributed coding setup.
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the space and time invariant filter i (x, ¢), which we obtain from (7.3). The process
V(x, t) is thus also a stationary Gaussian random field with mean zero and a power
spectral density given by [24]

Sy (P, Q) = |H(®, Q)|*Sy (P, Q), (7.11)

where H(®, )) is the 2D Fourier transform of h(x, t) derived in (7.6). In particular,
the spatiotemporal bandwidth of Sy (®, () is given by the intersection of the supports
of H(®, ) and Sy (P, Q).

As depicted in Figure 7.8(b), sensors located on the recording line V sample the
sound field V' (x, t),encode their observation at a given rate,and transmit the quantized
samples to a base station. More specifically, the sensor & samples the field V (x, ) at
position x, and time instants #z(n), for k, n€Z. The values x; and #,(n) define the
sampling lattice. In the sequel, we will consider the rectangular and the quincunx
lattices introduced in Section 7.2.3. The samples are then encoded into a bitstream
that is transmitted to the base station. The goal of the base station is to provide, based
on the received data, an estimate I7(x, t) of the recorded sound field V (x, t) for any
position on the recording line and any time instant. The average rate R used by the
sensors is measured in bits per meter per second, and the average distortion D is the
mean-squared error (MSE) between V (x, t) and V(x, t) per meter and per second. Our
interest lies in the determination of rate-distortion functions under various simplifying
assumptions on the spectral characteristics of the sound fields and under different
constraints on the communication allowed between the sensors.

Coding Strategies

We consider the three coding strategies depicted in Figure 7.9. The first one, referred
to as centralized coding (see Figure 7.9(a)), assumes that there is one encoder that
has access to the measurements of all the sensors and can encode them jointly. For
instance,we may assume the existence of a genie informing each sensor about the other
sensors’ measurements or, more realistically, the existence of unconstrained commu-
nication links between the sensors, which can be used without any cost (e.g., wired
microphones). In the second coding strategy, referred to as spatially independent
coding (see Figure 7.9(b)), each sensor encodes its samples, ignoring the correlation
with the data measured by neighboring sensors. Similarly, the base station decodes the
bitstream received from each sensor separately. In the last coding strategy, referred to
as multiterminal coding (see Figure 7.9(c)), each sensor encodes its data separately
but takes into account the intersensor correlation that is assumed to be known. The
base station decodes the received bitstreams jointly. The rate-distortion function in this
case is lower bounded by the rate-distortion function with centralized coding, because
any scheme that works in the former scenario can also be applied in the latter. Sim-
ilarly, it is upper bounded by the rate-distortion function with spatially independent
coding since intersensor correlation is taken into account. The first two strategies thus
provide bounds on the rate-distortion function of the multiterminal scenario whose
general characterization remains unknown to date.
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FIGURE 7.9

The three coding strategies considered for Huygens'’s configuration. (a) Centralized coding.
(b) Spatially independent coding. (c) Multiterminal coding.

The assumption of known intersensor correlation is a strong one, for it may be
difficult to compute such statistics in a practical setting. Coding methods that do not
rely on such prior knowledge are thus of particular interest. In the sequel, we will
show that, under simplifying assumptions, it is possible to achieve the lower bound
given by centralized coding using an appropriate quincunx sampling lattice followed
by independent coding.

Rate-distortion Trade-offs

In order to derive closed-form rate-distortion functions for the different coding strate-
gies considered in Section 7.3.2, we will make two simplifying assumptions. First, we
assume that H(®, (1) is zero outside the butterfly region. This corresponds to the far-
field assumption (see Section 7.2.2.1) and is thus a good approximation of the true
support when d is large. In this case, it follows from (7.11) that for a source U (x, t)
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with maximum temporal frequency {1y, the maximum spatial frequency of V (x, ) is
given by @y = ()y/c, regardless of the actual spatial bandwidth of U (x, ). The second
assumption is that the power spectral density of the recorded sound field V (x, t) is
constant over its support and is given by o‘z,.This assumption is a worst-case scenario
in the sense that, for given bandwidth and total power, the Gaussian random field that
requires the highest bit rate for centralized coding is the one with a constant power
spectral density. Under these assumptions, we obtain the following optimal rate distor-
tion trade-offs in closed form. For centralized coding, the rate-distortion function can
be readily derived from standard results on compression of Gaussian random processes
(e.g.,see [25,26)) as

_ 9% o
RC(D)—47TZC log w2 ) (7.12)

For spatially independent coding and the rectangular sampling lattice, we obtain [27]
02 o202 1 w2cD
R(D)==—2log| 52>~ 1+ [1-2—
2m2¢ em?cD 2 o, Q5

Q(Z) w2cD
+ > 1— /1—2 — |
2m2¢ 0,5

For spatially independent coding and the quincunx sampling lattice, we find [27]

QZ 2 QZ
Ry (D) = Om(wo> (7.14)

(7.13)

4m2¢ 2m2eD

In the above equations, D € (0, (0503)/(2m%¢)). The important point regarding these
rate-distortion functions is that the expressions (7.12) and (7.14) coincide. In other
words, the strategy of sampling with a quincunx lattice followed by spatially indepen-
dent coding achieves the lower bound given by the centralized scenario and hence
determines the multiterminal rate-distortion function for this setup. This can be intui-
tively explained by the fact that the quincunx lattice allows for a perfect tiling of the
frequency plane as shown in Figure 7.5(d). This results in a sampled spatiotemporal
field whose power spectral density is flat. The processes sampled at each sensor are
uncorrelated and can thus be encoded independently without any loss in terms of
the rate-distortion trade-off. It is important to note that the sensor observations can-
not be made independent using, for example, a transform coding approach [28, 29],
because the measurements cannot be processed jointly. Under our assumptions, how-
ever, quincunx sampling achieves the same goal without the need for centralized
processing. We plot the above rate-distortion functions in Figure 7.10. Note that the
sampling lattice in this example is chosen as a function of the temporal and spatial
bandwidth such as to obtain a perfect tiling of the frequency plane. If the sensor
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Rate-distortion functions for different sampling lattices and coding schemes in far field when the
induced field’s power spectral density Sy(®, Q) is constant on its support. The parameters are
of=1and fp = Qo/(2m) = 22.05 kHz.

density is not large enough, the replicas will overlap and independent coding will
be strictly suboptimal. Similarly, if the sensor density is too large, the gap between
consecutive replicas does not generally allow for the independent coding scheme
to be optimal. Optimality can, however, be trivially preserved if the oversampling
ratio is an integer L. In this case, only every other Lth sensor encodes its observa-
tion in order to re-obtain a perfect tiling of the frequency plane. It is important to
mention that, although a desired sampling grid in time may be achieved using some
sort of synchronization mechanism between the sensors, the design of a sampling
pattern in space directly relates to the position of the sensors and is therefore less flex-
ible. Nevertheless, with a uniform spacing of the sensors, the quincunx lattice always
allows for a tighter packing than the rectangular one and is thus more suitable for our
purpose.

To further study the influence of the wave kernel on the rate-distortion behavior of
the sound field V (x, t), we consider a source U (x, t) whose power spectral density is
a constant O'%] on the butterfly region and is zero outside. In this case, the spectrum of
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Rate-distortion functions for different sampling lattices and coding schemes in far field when the
source field’s power spectral density Sy(®, Q) is constant on its support. The parameters are
d=100m, of, =1and fy = Qo/(2m) = 22.05kHz.

the induced field V (x, t) follows from (7.11) and is no longer constant on the butterfly
support. We thus resort to numerical integration to compute the corresponding rate-
distortion functions depicted in Figure 7.11. Unlike the previous case, where Sy (P, ()
is constant on the butterfly support, the spatially independent coding scheme with the
quincunx sampling lattice does not achieve the performance of the centralized coding
scheme, but it still outperforms the scheme with the rectangular sampling lattice by
a significant margin. Hence, by adjusting the sampling lattice to the wave kernel’s
spectral properties, we achieve a good performance even with a coding scheme that
treats the sensor measurements independently. This observation motivates the general
advice that the communication schemes should be tailored to the physical properties
of the problem under consideration.

Another way of getting a tighter packing of the replicas of Sy (P, ), while pre-
serving a rectangular lattice, consists in decomposing the sound field into M spectral
subbands by filtering in the temporal domain, as shown in Figure 7.12. Each of the
subband fields is sampled using a rectangular sampling lattice adjusted to the spatial
and temporal bandwidths of the particular subband. This implementation generally
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Spectral decomposition of the sound field by filtering in the temporal domain. (a) L=1 and M=2.
(b) L=2and M=4.

requires the deployment of additional sensors with appropriate intersensor spacings
for each subband field. A uniform sensor deployment can, however, still be preserved
by considering an L-times higher sensor density, for some integer L. More precisely,
the intersensor spacing is chosen as Ax /L, where Ax = 7r¢ /()}y denotes the spacing at
the Nyquist rate. We then define the subband field V" (x, ¢) as the field obtained by
ideal bandpass filtering V (x, £) on a pass-band given by

LQy LQy LQy LQy
- ,— U , form=1,.... M—1,
L+m—1 L+m L+m L+m—1
LOy LOy
_ , form=M.
L+M—1 L+M-—1

Note that this scheme only requires temporal filtering (recall that spatial filtering is
impossible in practice). Figure 7.12 shows the resulting decompositions for L= 1 and
M =2 (see Figure 7.12(a)) as well as for L =2 and M = 4 (see Figure 7.12(b)). The spa-
tial bandwidth of V" (x, 1) is 2LOo/(c(L +m — 1)), thus, V" (x, 1) can be sampled
with an intersensor spacing of (L +m — 1)Ax/L. This sampling rate is obtained by
having one sensor out of L + m — 1 record the samples of the subband field V™ (x, ).
The sensors apply the spatially independent coding scheme defined in Section 7.3.2
to each sampled subband field. Since the spectral densities of the subband signals
have nonoverlapping supports, these random fields are uncorrelated, and thus, they
may be encoded independently without any penalty in terms of the rate-distortion
trade-off. This is provided that the rate allocation among the subbands is performed
according to the reverse water-pouring principle [25, 26].

To illustrate the performance of the subband coding scheme defined earlier, we first
consider the decomposition of the sound field into two subbands of equal width, as
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FIGURE 7.13

Rate-distortion function for the subband coding scheme with L=1 and M= 2. The spectral
density Sy(®, 1) is chosen constant on its support. The parameters are o, =1 and
fo = Qo/(27) = 22.05kHz.

shown in Figure 7.12(a). The sensors are deployed with an intersensor spacing of Ax,
and the subband field V' (x, £) is sampled by every other sensor. Figure 7.13 shows the
resulting rate-distortion curve in comparison with the ones for centralized coding and
for spatially independent coding with the rectangular sampling lattice. Observe that,
without deploying additional sensors, we can improve the performance of the latter
scheme by combining it with the subband decomposition method. Next, we consider
the spectral subdivision into multiple subbands. For a given value of the parameter L,
we choose M =9L + 1,0 that the temporal bandwidth of the subband field y () (x,1)
is equal to ) /5. Note that increasing the parameter L requires a proportional increase
of the sensor density, whereas an increase of the number of subbands M only adds
to the local processing complexity. Figure 7.14 shows the resulting rate-distortion
curves for L=1, 2, 3. Observe that, with a moderate increase of the sensor density,
the performance of the spatially independent coding scheme with the rectangular
sampling lattice combined with the subband decomposition method approaches the
one of centralized coding.
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Rate-distortion functions for the subband coding scheme with L = 1,2,3and M = 9L+ 1. The
spectral density Sy (P, Q) is chosen constant on its support. The parameters are af, =1and
fo = Qo/(27) = 22.05 kHz.

7.4 BINAURAL HEARING AID CONFIGURATION

The distributed compression scenario considered in this section involves only two sen-
sors, namely, two digital hearing aids (left and right) allowed to exchange compressed
audio signals by means of a wireless link. The setup is referred to as the binaural hear-
ing aid configuration. The study of optimal rate-distortion trade-offs in this context
allows quantifying the noise reduction provided by the availability of a rate-constrained
communication medium between the two hearing instruments. Closed-form rate-
distortion formulas are derived in a simple yet insightful scenario, along with optimal
rate-allocation strategies. More realistic acoustic environments are discussed,for which
numerical results are presented.

7.4.1 Setup

Let us consider the binaural hearing aid configuration depicted in Figure 7.15. A user
carries aleft and a right hearing aid, both comprising a set of microphones,a processing
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FIGURE 7.15

Binaural hearing aid configuration. (a) Recording setup. (b) Collaborative processing using
wireless links.

unit with wireless communication capabilities, and a loudspeaker. For simplicity of
exposure, we will consider that only one microphone is available at each hearing
device, and we will denote the signal recorded at microphone & by Vi(t) for k=1, 2.
We assume that Vz(#) can be decomposed into a speech (or desired) component,
denoted V; (), and an additive noise (or undesired) component, denoted V;}(¢), as

Ve(®)=Va@)+ Vi) fork=1,2. (7.15)

For the sake of mathematical tractability, the speech and noise signals are modeled as
independent, zero-mean, stationary Gaussian random processes.

The goal of each hearing instrument is to recover the speech component of its
microphone with minimum MSE. To make matters clearer,let us adopt the perspective
of hearing aid 1. It aims at estimating the signal V; (#) with minimum MSE based on
its own observation Vi(#) and a compressed version of the signal V,(¢#) recorded
at hearing aid 2. With the above considerations, the setup simply corresponds to a
remote source coding problem with side information at the decoder. This problem,also
referred to as indirect or noisy Wyner-Ziv coding in the literature, has been addressed
by various researchers in the scalar case [30-32]. More generally, Witsenhausen [33]
elegantly demonstrated how certain classes of remote rate-distortion problems can
be reduced to direct ones, unifying earlier results by Dobrushin and Tsybakov [34],
Sakrison [35], and Wolf and Ziv [36]. Extension to vector sources was investigated
by Rebollo-Monedero et al. in the context of high-rate transform coding [37]. In the
continuous-time case, we wish to encode V,(¢) with rate R; such as to minimize
the distortion D; between V7 (¢) and its reconstruction 1715 (¢), assuming the presence
of the side information V7(¢) at the decoder. The rate R; is measured in bits per
second and the distortion D; in MSE per second. This procedure is illustrated for
both devices in Figure 7.16. As in Section 7.3, our goal is to determine rate-distortion
functions under two different coding strategies and various simplifying assumptions
on the acoustic environment. The binaural hearing aid configuration, however, differs
from the problem studied previously in two important points. First, the sound field is



7.4 Binaural Hearing Aid Configuration
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FIGURE 7.16
Collaborative noise reduction using rate-constrained communication links.

sampled only at two positions, namely, at the two microphones. Second, the signals
of interest are not directly measured at the sensors but are recorded in a noisy (or
remote) fashion [35].

In order to quantify the noise reduction provided by the wireless link, we define
the monaural gain achieved at hearing aid & as

Dy (0)
Dy (Rg)

Gr(Rp) = fork=1, 2, (7.16)
where Dy, (Rp) denotes the corresponding optimal rate distortion trade-off, D (0) being
the distortion incurred when there is no collaboration (R, = 0). Note that R, refers
to the rate at which data is delivered to hearing aid k. The quantity G (Ry) actually
corresponds to the signal-to-distortion improvement enabled by the wireless link when
it operates at rate Ry. Similarly, the binaural gain is defined as
D(0)
GR)= ——, 7.17

(R) D®) (7.17)
where D(R) refers to the optimal trade-off between the sum distortion D =D + D,
and the total (bidirectional) transmission rate R = R; + R». The interesting question
here is that of the rate allocation between the two devices.

Coding Strategies

We consider two coding strategies. The first one, referred to as side information aware
(STA), assumes that the correlation between the signals recorded at the hearing aids is
known and can be used at the encoder for coding purposes. For example, hearing aid
2 records the signal V() and encodes it taking into account that the signal Vi (¢) is
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The two coding strategies considered for the binaural hearing aid configuration. (a) Side
information aware coding. (b) Side information unaware coding.

available at the decoder, that is, at hearing aid 1. This coding scheme is schematically
represented in Figure 7.17(a). The second class of coding methods, referred to as side
information unaware (SIU), does not assume that such statistics can be computed
at the encoder. In this case, hearing aid 2 encodes its observation V,(#) for a decoder
(Dec 0) that does not have access to the side information V7 (¢). The transmitted data
is decoded and subsequently used together with V1 (¢) in a second decoder (Dec 1) to
estimate the desired speech component V; (¢). This is depicted in Figure 7.17(b). In
a practical setting, the statistics of the speech and noise components can be typically
learned at the decoder by means of a voice activity detection mechanism [38]. Note
also that, as the statistics between the signals recorded at the two hearing devices are
not known at the encoder, this latter assumes that the process to be estimated at the
other end is V3 (¢) and optimizes its coding strategy accordingly.

Rate-distortion Trade-offs

We first study a simple acoustic environment that allows us to derive optimal
rate-distortion trade-offs and rate-allocation policies in closed form. Though clearly
simplistic, the considered assumptions preserve many of the features observed in
a realistic scenario, in particular for the rate-allocation problem, as observed in the
sequel.

We consider a single speech source surrounded by ambient noise. The recorded
signals (7.15) can be expressed as

Vi) = S(8) % hp(t) + Np(t) fork=1,2,

where §(¢) denotes the source, i () the acoustic impulse response from the source to
microphone &,and Ng () uncorrelated Gaussian noise signals. The desired component
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at hearing aid & is thus V;(¢) =5(¢) xhy(¢). We assume omnidirectional microphones,
neglect the head-shadow effect (see Section 7.2.1.4) and work under the far-field
assumption. In this case, h () reduces to a simple delay proportional to the distance
dp between the source and the microphone, that is,

hie(t) = 8(t — dy ).

We further assume that the speech and noise sources have flat power spectral den-
sities with maximal frequency {)y. The variance of the source is crf, and the SNR at
microphone & is denoted ‘. With these restrictions, the optimal rate-distortion trade-
off at hearing aid 1 with the SIA coding scheme, denoted Dy 4(R), can be expressed
as [39]

Qo aFny: Y2 -2

D 4(R)=— 1+ 2 9 for R; =0. 7.18
1a(R1) 71+71+y2< T+ ) 1 (7.18)

Similarly, the optimal rate-distortion trade-off obtained with the SIU coding scheme,
denoted D; ,(R),is given by

-1

Qoo 1+ 2k \ 71

Dy y(Ry) = S (14— <1+722 QO) for R; =0. (7.19)
Y1 Y1

We observe that, in this scenario, the results depend neither on the position of the
source nor on the geometrical properties of the binaural hearing aid configuration.
This results from the far-field assumption and the fact that the noise is uncorrelated
across microphones. From a more practical point of view, it can be shown [39] that
an optimal encoding architecture with the SIA coding scheme can be broken into
two stages. Call V»(¢) the minimum MSE estimate of V»(¢) given Vi (). An optimal
strategy amounts to (i) filtering V>(¢) by the Wiener filter designed to estimate V7 (¢)
using V»(¢) and (i) encoding this estimate optimally, taking into account the side
information Vi (¢) available at the decoder. Knowledge of the statistics between V7 (¢)
and V() is thus required at the encoder. Similarly, an optimal encoding architec-
ture with the SIU strategy amounts to (i) computing the minimum MSE estimate of
V5 (t) using V2(¢) and (i) encoding this estimate optimally for a decoder that does
not have access to the side information Vi(¢). In this case, however, the required
statistics can be computed at the encoder by means of a voice activity detection
mechanism [38].

To get some insights into the gain provided by the wireless link as a function of
the communication bit rate, let us consider the case of equal SNRs (y; =7y2=7). In
Figure 7.18, we plot the monaural gain rate function (7.16) corresponding to the two
coding schemes for different values of y. At 10 dB (see Figure 7.18(a)), we observe
that the SIU coding strategy may lead to a significant loss in terms of noise reduction
capability in comparison to the SIA scheme. However, as the input SNR decreases
(see Figures 7.18(b) and 7.18(c)), the spatial correlation between the recorded signals
decreases significantly and the gap between the SIA and SIU curves vanishes for all
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Monaural gain rate functions for different input signal-to-noise ratios y and a maximum frequency
fo=Qp/(27w) =5 kHz. (a) y=20dB. (b) y=10dB. (c) y=0 dB. We observe that the gain
achieved by taking the side information into account may be significant at high SNR but vanishes
in very noisy scenarios.

rates. The result suggests that the use of SIA coding strategies is uninteresting in very
Nnoisy scenarios.

Let us now turn our attention to the general binaural system depicted in Figure 7.16.
Without loss of generality, we assume that y; = y,. A natural question that arises in this
context is that of the optimal rate allocation between the two hearing instruments.
More precisely, if you assume that you are given a total bit budget of R bits per second,
how should this be allocated to Ry and R, to minimize the sum distortion D = D + D>,
hence maximizing the binaural gain G(R) given by (7.17)? Under the acoustic model
we have considered, the optimal rate-allocation strategy for the SIA coding scheme
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follows as [39]

1 i} _
SR=R) ifR=Rq,

R = and R,=R-—R;, (7.20)

0 otherwise,
where the threshold rate is given by

_ Q  ynt
2T

R,=R=—log ) (7.21)
¢ 2 ya(y2 +1)

Similarly, the rate-allocation policy with the SIU coding method can be expressed as

. _
G5 (R+R)

Lr-») Do, 1-C2 if R=R
s_ | -(R—R)— —log, ————— ifR=R,, .
Ri=12 2 P oy G RR “  and Ry=R—R},
0 otherwise,

- (7.22)

where R is given by (7.21), the constant C is defined as
_ Y172
yty2+1

and the threshold rate is given by

- = Qo c+1 i€ __mp

R, =max 30, R+ —lo 1+ /1———2 % . 7.2

" T 82T \/ (C+1)2 (7.23)

The rate-allocation strategies (7.22) and (7.23) suggest that the hearing device with
smaller SNR does not transmit any data unless the total available bit rate is larger
than a given threshold. Below this rate, the noisiest device benefits exclusively from
the available bandwidth. At equal SNR (y; = y2 =), the threshold rate R, of the SIA
coding scheme is equal to zero. In other words, the communication medium is evenly
shared between the two hearing aids for all rates. By contrast, the threshold rate with
SIU coding is greater than zero for large enough SNR. The surprising result is that, in
this seemingly symmetric scenario, the communication bandwidth may not be equally
shared. Figure 7.19 depicts the percentage of the total bit rate benefiting hearing aid 1
for different-input SNRs. With SIU coding at equal SNR, we observe a sharp transition
between two policies,namely, unidirectional communication and equal rate allocation.
In the former case, it can be checked that the hearing aid benefiting from the wireless
link can be chosen arbitrarily. We also note that the SIU threshold rate is larger than
that of the SIA coding scheme.

Finally, we compute the optimal rate-allocation strategy using data measured in
a more realistic acoustic environment. To this end, two hearing aids, each equipped
with two omnidirectional microphones at a distance of approximately 1 cm, have
been mounted on a dummy head in a room with reverberation time 74y~ 120 ms.
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Percentage of the total bit rate benefiting hearing aid 1. The maximum frequency is

fo = Qo/(27) = 5 kHz, and the different sets of curves correspond to various SNR pairs
(y1, ¥2). We observe that the threshold rate for SIU coding is larger than that of SIA coding.

The acoustic transfer functions for the four microphones have been measured every
15° in the horizontal plane for a loudspeaker at a distance of 1 m. Here, the angles
are measured clockwise, and the zero angle corresponds to the front. The sampling
frequency is set to 20.48 kHz. The acoustic scene is synthesized using the measured
transfer functions. The speech component in (7.15) is a single speech source at 0°. The
noise component consists of a stationary white Gaussian ambient noise along with an
interfering point source at 90°. The power spectral density of the speech component is
estimated using 3 seconds of a sentence of the HINT database [40]. The power spectral
density of the interferer is computed using a 3-second segment of multitalker babble
noise available in the NOISEX-92 database [41]. The power of the involved sources is
adjusted so as to meet a desired SNR and interference-to-noise ratio of 10dB at the
front microphone of hearing aid 1 that is, the signal-to-interference ratio is equal to
0 dB. The optimal rate allocation is obtained numerically and is plotted in Figure 7.20.
Here, we only consider the front microphone of each hearing aid. Since the interfering
point source is located on the right-hand side of the head, the SNR of hearing aid 1
is higher owing to the head-shadow effect. Up to a threshold bit rate, hearing aid 2
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Percentage of the total bit rate benefiting hearing aid 1 in the presence of an interfering point
source at 90°. Hearing aid 2 has the smallest SNR and thus benefits exclusively from the
communication bandwidth up to a threshold rate that depends on the chosen coding strategy.

thus benefits exclusively from the available communication bandwidth. In this case,
the fraction allocated to hearing aid 1 is zero. We observe that this threshold is higher
with the SIU coding scheme, corroborating the analytical results obtained in the simple
scenario considered previously.

7.5 CONCLUSIONS

The problem of distributed compression has been studied for the specific case of
microphone arrays. A large portion of the exposition has been devoted to the study of
the spatiotemporal characteristics of the sound field. In particular, it has been shown
that the spatiotemporal impulse response is almost bandlimited to a region that has
a butterfly shape. The insights gained from this analysis have been subsequently used
for two distributed coding setups of practical interest. The first one has considered
the gathering of audio signals recorded by remote sensors at a base station. It has been
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shown that, under simplifying assumptions, judicious signal processing at the sensors
can achieve the best rate-distortion trade-off. We have thus provided the solution to the
multiterminal source coding problem for this particular scenario. The second setup
has involved two digital hearing aids allowed to exchange audio signals using a wireless
communication medium as a way to provide collaborative noise reduction. Optimal
gain rate trade-offs have been derived, and optimal rate-allocation strategies have been
discussed.
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INTRODUCTION

Image, audio, and video coding are among the information technologies that have
contributed more to change and improve the everyday life in recent years. Today, often
without knowing, a large percentage of the world population, even in less developed
countries, use image, video, and audio coding technologies on a regular basis. While
users don’t know much about these technologies, they know very well some of the
most popular devices and services they made possible, such as digital cameras, digital
television, DVDs, and MP3 players.

The key objective of digital audiovisual coding technologies is to compress the
original audiovisual information into a much smaller number of bits, without adversely
affecting the decoded signal quality,and following a set of requirements depending on
the target application. Regarding video signals, the current coding paradigm is based
mostly on four types of tools:

1. Motion-compensated temporal prediction between video frames to exploit the
temporal redundancy

2. Transform coding, typically using the discrete cosine transform (DCT),to exploit
the spatial redundancy

3. Quantization of the transform coefficients to exploit the irrelevancy intrinsic
to the limitations of the human visual system limitations

4. Entropy coding to exploit the statistical redundancy of the created symbols

After a certain spatial resolution and frame rate have been adopted, the quality of
the decoded video signal is controlled mainly through the quantization process. This
process has to be adapted to the application needs, defined in terms of minimum
quality or a target bit rate, depending on the network characteristics. Because the cur-
rent video coding paradigm considers both the temporal (prediction) and frequency
(DCT) domains, this type of coding architecture is known as hybrid or predictive
coding.

Since the end of the 1980s, predictive coding schemes have been the solution
adopted in most available video coding standards, notably the ITU-T H.26x and ISO/IEC
MPEG-x families of standards. Today this coding paradigm is used in hundreds of
millions of video encoders and decoders, especially in MPEG-2 Video set-top boxes
and DVDs. In this video coding architecture, the correlation between (temporal) and
within (spatial) the video frames is exploited at the encoder,leading to rather complex
encoders and much simpler decoders. This scenario does not have much flexibility in
terms of codec complexity budget allocation besides making the encoder less com-
plex and thus less efficient; decoders are normative and basically much simpler than
encoders. This approach fits some application scenarios very well, notably those that
have been dominating the video coding developments in the past, such as broadcast-
ing and video storage. These applications follow the so-called down-link model, in
which a few encoders typically provide coded content for millions of decoders; in
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this case, the decoder complexity is the critical issue and thus has to be minimized.
Moreover, the temporal prediction loop used to compute the residues to transmit, after
the motion-compensated prediction of the current frame, requires the decoder to run
the same loop in perfect synchronization with the encoder. This means that, when
channel errors are present, errors may propagate in time, strongly affecting the video
quality, typically until some (Intra) coding refreshment is performed.

The H.264/AVC (Advanced Video Coding) standard is the most efficient video cod-
ing standard available [1], typically spending about 50 percent of the rate for the same
quality regarding previous video coding standards. It is being adopted for a wide range
of applications from mobile videotelephony to HDTV and Blu-ray discs. Besides the
technical novelty adopted in this standard (e.g.,in terms of motion estimation and com-
pensation, spatial transform, and entropy coding), the compression gains very much
rely on additional significant encoder and decoder complexity. To provide coding solu-
tions adapted to a wide range of applications, the standard defines a set of profiles and
levels [1],which constrain the very flexible coding syntax in appropriate ways to allow
successful deployment. Meanwhile, some of the most relevant compression gains are
coming from control of the H.264/AVC codec through adequate encoder tools since,
as usual, H.264/AVC encoders are not normative, thus leaving space for improvements
in rate-distortion (RD) performance while still guaranteeing the same compatibility
with much simpler decoders.

With the recent wide deployment of wireless networks, a growing number of appli-
cations do not fit well the typical down-link model but rather follow an up-link model
in which many senders deliver data to a central receiver. Examples of these appli-
cations are wireless digital video cameras, low-power video sensor networks, and
surveillance systems. Typically, these emerging applications require light encoding or
a flexible distribution of the codec complexity, robustness to packet losses, high com-
pression efficiency, and, often, low latency/delay as well. There is also a growing use of
multiview video content, which means the data to be delivered regards many (corre-
lated) views of the same scene. In many cases, to keep the sensing system simple, the
associated cameras cannot communicate among themselves, preventing the usage of
a predictive approach to exploit the interview redundancy.

In terms of video coding, these emerging applications are asking for a novel video
coding paradigm that is better adapted to the specific characteristics of the new sce-
narios. Ideally, these applications would welcome a new video coding paradigm able
to address all the requirements above with the same coding efficiency as the best
predictive coding schemes available, as well as with an encoder complexity and error
robustness similar to the current best Intra coding solutions, which are the simplest
and most error-robust solutions.

To address these needs, around 2002, some research groups decided to revisit the
video coding problem in light of two information theory results from the 1970s: the
Slepian-Wolf theorem [2] and the Wyner-Ziv theorem [3]. These efforts gave birth to
what is now known as distributed video coding (DVC), and Wyner-Ziv (WZ) video
coding,as a particular case of distributed video coding. This chapter presents the devel-
opments that have been produced in DVC following the early research initiatives.
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To achieve this purpose, this chapter is organized as follows: building on previous
chapters, Section 8.2 will briefly review the basic concepts and theorems underpin-
ning DVC. Next, Section 8.3 will present the first distributed video codecs developed,
while Section 8.4 will review some of the most relevant developments following the
early DVC codecs. To get a more precise understanding of how a DVC codec works,
Section 8.5 will present in detail perhaps the most efficient DVC codec available, the
DISCOVER WZ video codec [4, 5]. Section 8.6 will propose a detailed performance
evaluation of the DISCOVER WZ codec, which may be used as benchmarking. Finally,
Section 8.7 will summarize the past developments and project the future in the DVC
arena.

BASICS ON DISTRIBUTED VIDEO CODING

As mentioned in a previous chapter, the Slepian-Wolf theorem addresses the case
where two statistically dependent discrete random sequences, independently and
identically distributed (.i.d.), X and Y, are independently encoded, and thus not
jointly encoded as in the largely deployed predictive coding solution. The Slepian-
Wolf theorem states that the minimum rate to encode the two (correlated) sources
is the same as the minimum rate for joint encoding, with an arbitrarily small error
probability. This distributed source coding (DSC) paradigm is an important result
in the context of the emerging application challenges presented earlier, since it
opens the doors to new coding solutions where, at least in theory, separate encoding
and joint decoding does not induce any compression efficiency loss when com-
pared to the joint encoding and decoding used in the traditional predictive coding
paradigm. In theory, the rate bounds for a vanishing error probability considering two
sources are

Rx=H(X]|Y)
Ry =H(Y|X) (8.1)
(Rx +Ry)=H(X,Y),

which corresponds to the area identified in Figure 8.1. This basically means that the
minimum coding rate is the same as for joint encoding (i.e.,the joint entropy), provided
that the individual rates for both sources are higher than the respective conditional
entropies.

Slepian-Wolf coding is the term generally used to characterize lossless coding
architectures that follow this independent encoding approach. Slepian-Wolf coding
is also referred to in the literature as lossless distributed source coding since it con-
siders that the two statistically dependent sequences are perfectly reconstructed at
a joint decoder (neglecting the arbitrarily small probability of decoding error), thus
approaching the lossless case.
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FIGURE 8.1

Rate boundaries defined by the Slepian—Wolf theorem for the independent encoding and joint
decoding of two statistically dependent discrete random i.i.d. sources.

Slepian-Wolf coding has a deep relationship with channel coding, although it is
possible to perform Slepian-Wolf coding in other ways, for example, using source
codes [6]. Since the sequence X is correlated with the sequence Y, it can be consid-
ered that a virtual “dependence channel” exists between sequences X and Y. The Y
sequence is, therefore, a “noisy” or “erroneous” version of the original uncorrupted X
sequence, which will be corrected by Slepian-Wolf codes. Thus, the “errors” between
the X and Y sequences can be corrected applying a channel coding technique to
encode X, which will be conditionally (jointly) decoded using Y; this relationship was
studied in the 1970s by Wyner [7]. Thus, channel coding tools typically play a main
role in the novel distributed source coding paradigm.

In 1976, A. Wyner and J. Ziv studied a particular case of distributed source coding
that deals with lossy compression of source X associated with the availability of the Y
source at the decoder but not at the encoder. In these conditions, Y (or a derivation of
Y) is known as side information. This case is well known as asymmetric coding since
Y is independently encoded and decoded, while X is independently encoded but
conditionally decoded. Wyner and Ziv performed a theoretical study for lossy coding
to conclude that, typically, there is a rate loss incurred when the side information
is not available at the encoder. They also derived the so-called Wyner-Ziv theorem
[3], which states that when performing independent encoding with side information
under certain conditions—that is, when X and Y are jointly Gaussian, memoryless
sequences and a mean-squared error distortion measure is considered—there is no
coding efficiency loss with respect to the case when joint encoding is performed,
even if the coding process is lossy (and not “lossless” anymore as for Slepian-Wolf
coding). For general statistics and a mean-squared error-distortion measure, Zamir [8]
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also proved that the rate loss is less than 0.5 bit/sample. Later, it was shown that, for no
rate loss,only the innovation, this means the X — Y difference needs to be Gaussian [9].

Together, the Slepian-Wolf and the Wyner-Ziv theorems suggest that it is possible to
compress two statistically dependent signals in a distributed way (separate encoding,
joint decoding), approaching the coding efficiency of conventional predictive coding
schemes (joint encoding and decoding). Based on these theorems, a new video
coding paradigm, well known as distributed video coding, has emerged having
Wyner-Ziv coding as its lossy particular case.

DVC does not rely on joint encoding, and thus, when applied to video coding,
it typically results in the absence of the temporal prediction loop (always used in
predictive schemes) and lower complexity encoders. DVC-based architectures may
provide the following functional benefits, which are important for many emerging
applications:

1. Flexible allocation of the global video codec complexity
2. Improved error resilience

3. Codecindependent scalability (since upper layers do not have to rely on precise
lower layers)

4. Exploitation of multiview correlation without cameras/encoders communicat-
ing among them

These functional benefits can be relevant for a large range of emerging application
scenarios such as wireless video cameras, low-power surveillance, video conferencing
with mobile devices, disposable video cameras, visual sensor networks, distributed
video streaming, multiview video systems, and wireless capsule endoscopy [10]. While
this chapter will concentrate on monoview video coding, multiview video coding
using a DVC approach is also a very hot research topic;check [11] for a review on this
subject.

Practical design of WZ video codecs started around 2002, following important
advances in channel coding technology,especially error-correction codes with a capac-
ity close to the Shannon limit, for example, turbo and low-density parity-check (LDPC)
codes. While theory suggests that DVC solutions may be as efficient as joint encoding
solutions, practical developments did not yet achieve that performance for all types
of content, especially if low-complexity encoding is also targeted. Part of this gap may
be filled with more research to make the technology more mature, but there are also
some practical limitations that may be difficult to overcome. For example, while the
theory assumes that the encoder knows the statistical correlation between the two
sources, X and Y, and that the innovation X — Y is Gaussian, in practical conditions
this is often not true. Naturally, the better the encoder knows the statistical correla-
tion between X and Y, the higher the compression efficiency. This highlights a main
DVC coding paradox: although encoders may be rather simple, they may also need to
become more complex to increase the compression efficiency and reach the limits
set by the theory. This is one of the DVC research challenges being faced today.
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THE EARLY WYNER-ZIV VIDEO CODING
ARCHITECTURES

The first practical WZ video coding solutions emerged around 2002, notably from
Stanford University [12-14] and the University of California (UC), Berkeley [15, 16].
The Stanford architecture is mainly characterized by frame-based Slepian-Wolf coding,
typically using turbo codes, and a feedback channel to perform rate control at the
decoder;the Berkeley WZ video coding solution is mainly characterized by block-based
coding with decoder motion estimation.

The Stanford architecture was later adopted and improved by many research groups
around the world. However, while there are many papers published with changes and
improvements to this architecture, the precise and detailed evaluation of its perfor-
mance, targeting its deep understanding for later advances, was not presented until
recently. Available performance results were mostly partial (e.g., typically only few
RD performance results), under unclear and incompatible conditions (e.g., different
sequences, different sets of frames for each sequence, different key frames coding),
using vaguely defined and also sometimes architecturally unrealistic codecs (e.g.,
assuming the original frames available at the decoder), using side information at the
encoder, or a vague side information creation process. This chapter will present an
extensive performance evaluation of one of the most representative (and best per-
forming) DVC codecs, the DISCOVER WZ codec. However, considering the impact
they had in the DVC research arena, first this section will review and compare the
early Stanford and Berkeley Wyner-Ziv video coding solutions.

The Stanford WZ Video Codec

The Stanford WZ video coding architecture was first proposed in 2002 for the pixel
domain [12] and later extended to the transform domain [13,14]. In this later approach,
transform coefficients are WZ encoded to exploit,with a rather small encoder complex-
ity, the spatial redundancy. In summary, the more efficient transform domain Stanford
WZ video codec, shown in Figure 8.2, works as follows:

At the encoder:

1. Frame Classification The video sequence is divided into WZ frames and key
frames, corresponding to the X and Y sequences mentioned in Section 8.2;the
key frames are periodically inserted, determining the GOP (Group of Pictures)
size. The key frames are Intra encoded; this means without exploiting temporal
redundancy, notably without performing any motion estimation, for example,
using the H.263+ Intra or H.264/AVC Intra standards.

2. Spatial Transform A block-based transform, typically a DCT, is applied to
each WZ frame. The DCT coefficients of the entire WZ frame are then grouped
together, according to the position occupied by each DCT coefficient within a
block, forming DCT coefficient bands.
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Stanford WZ video coding architecture [13].

3.

4.

At the
5.

Quantization Each DCT band is uniformly quantized with a number of
levels that depend on the target quality [13]. For a given band, bits of the
quantized symbols are grouped together, forming bit-planes, which are then
independently turbo encoded.

Turbo Encoding The turbo encoding of each DCT band starts with the most
significant bit-plane (MSB). The parity information generated for each bit-plane
is then stored in the buffer and sent in chunks/packets upon decoder requests,
made through the feedback channel.

decoder:

Side Information Creation The decoder creates the side information (SD)
for each WZ frame by performing a motion-compensated frame interpolation
(or extrapolation) using the closest already decoded frames. The side informa-
tion for each WZ frame is taken as an estimate (noisy version) of the original
WZ frame. The better the quality of the estimation, the smaller the number of
“errors” the turbo decoder has to correct and thus the number of parity bits
(or bit rate) needed.

Correlation Noise Modeling The residual statistics between correspond-
ing DCT coefficients in the WZ frame and the side information are assumed
to be modeled by a Laplacian distribution whose parameter was initially esti-
mated using an off-line training phase. This is an unrealistic approach because
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it either assumes the original data is available at the decoder or that the
side information is available at the encoder. Recently, solutions have been
developed to overcome this problem (see Section 8.4.1.3).

7. Turbo Decoding Once the side information DCT coefficients and the residual
statistics for a given DCT coefficients band are known, each bit-plane is turbo
decoded (starting from the MSB one). The turbo decoder receives from the
encoder successive chunks of parity bits following the requests made through
the feedback channel. To decide whether or not more parity bits are needed for
successful decoding of a certain bit-plane, the decoder uses a request stopping
criterion. Initially, this criterion assumed the availability of the originals at
the decoder, but once again this unrealistic assumption was overcome (see
Section 8.4.2). After successfully turbo decoding the MSB bit-plane of a DCT
band, the turbo decoder proceeds in an analogous way with the remaining
bit-planes associated with the same band. Once all the bit-planes of a DCT
band are successfully turbo decoded, the turbo decoder starts decoding the
next band.

8. Reconstruction After turbo decoding, all the bit-planes associated with each
DCT band are grouped together to form the decoded quantized symbol stream
associated with each band. Once all decoded quantized symbols are obtained,
it is possible to reconstruct all the DCT coefficients with the help of the
corresponding side information coefficients. The DCT coefficients bands for
which no WZ bits were transmitted are replaced by the corresponding DCT
bands of the side information.

9. Inverse Transform After all DCT bands are reconstructed, an inverse dis-
crete cosine transform (IDCT) is performed and the decoded WZ frame is
obtained.

10. Frame Remixing Finally, to get the decoded video sequence, decoded key
frames and WZ frames are conveniently mixed.

Because, the side information for the WZ frames is here estimated or “guessed,” at the
decoder, based on the independently coded key frames, some authors label this type
of DVC approach as a “Guess” DVC solution.

Over the last few years, many improvements have been proposed for most of the
modules in the initial Stanford WZ video codec (e.g.,new source/channel codes instead
of turbo codes, better side information estimation, dynamic correlation noise model-
ing, enhanced reconstruction, realistic and efficient request stopping criteria). Other
proposed solutions required revisiting the original architecture by introducing major
changes, such as selective Intra coding of blocks in the WZ frame, selective transmis-
sion of hash signatures by the encoder, removal of the feedback channel,and provision
of scalability and error resilience features. Section 8.4 will address these and other
developments that have emerged since the early DVC activities.
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The Berkeley WZ Video Codec

Almost at the same time as the Stanford WZ video coding solution, another WZ video
coding approach was proposed at UC Berkeley, known in the literature as PRISM—
from Power-efficient, Robust, High-compression, Syndrome-based Multimedia coding
[15, 16]. The PRISM codec works at block level and does not require a feedback
channel. In summary, the PRISM codec is shown in Figure 8.3 and works as follows:

At the encoder:

1. Transform Each video frame is divided into 8 X 8 samples blocks, and a DCT
is applied over each block.

2. Quantization A scalar quantizer is applied to the DCT coefficients correspond-
ing to a certain target quality.

3. Block Classification Before encoding, each block is classified into one of sev-
eral predefined classes depending on the correlation between the current block
and the predictor block in the reference frame. Depending on the allowed com-
plexity at the encoder, such a predictor can be either the co-located block, or
a motion-compensated block [16]; in the latter case, a fast motion estimation

Target Hash ,
Distortion Generator
Encoded
Raw Video ) Syndrome Bitstream
Data —| DCT —{Quantizer Coding —
Correlation
Estimate
Classifier
Channel
Information
Estimation,
Encoded Syndrome YES | Reconstruction Decoded
Bitstream — —Hash Check — .
Decoder & Post Bitstream
Processing
Candidate
Predictor NO
Motion
Search

FIGURE 8.3

PRISM encoder and decoder architectures [16].
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technique is suggested. The classification stage decides the coding mode for
each block of the current frame: no coding (skip class), traditional Intraframe
coding (entropy coding class), or syndrome coding (several syndrome coding
classes), depending on the estimated temporal correlation. The blocks classi-
fied in the syndrome coding classes are coded using a WZ coding approach
as described below. The coding modes are then transmitted to the decoder as
header information.

4. Quantization A scalar quantizer is applied to the DCT coefficients correspond-
ing to a certain target quality. For syndrome coded blocks, the quantizer step
size depends on the coding class of the block, that is, on the estimated correla-
tion between the current block and a predictor block (a coarse representation
of the side information).

5. Syndrome Coding For those blocks that fall in the syndrome coding classes,
only the least significant bits of the quantized DCT coefficients in a block are
syndrome encoded, since it is assumed that the most significant bits can be
inferred from the side information. The number of least significant bits to be
sent to the decoder depends on the syndrome class to which the block belongs.
Within the least significant bits, the lower part is encoded using a (run, depth,
path, last) 4-tuple-based entropy codec. The upper part of the least significant
bits is coded using a coset channel code, in this case a Bose, Ray-Chaudhuri,and
Hocquenghem (BCH) code, since it works well for small blocklengths as is the
case here.

6. Hash Generation In addition, for each block, the encoder sends a 16-bit cyclic
redundancy check (CRC) checksum as a signature of the quantized DCT coef-
ficients. This is needed in order to select the best candidate block (SI) at the
decoder, as explained below.

At the decoder:
7. Motion Search The decoder generates side information candidate blocks,
which correspond to all half-pixel displaced blocks in the reference frame, in
a window positioned around the center of the block to decode.

8. Syndrome Decoder Each of the candidate blocks plays the role of side infor-
mation for syndrome decoding, which consists of two steps: one step deals
with the coset channel coded bit-planes and is performed for each candidate
block; the other step deals with the entropy decoding of the least significant
bit-planes and is performed only for the selected block by hash matching.

9. Hash Checking Each candidate block leads to a decoded block, from which a
hash signature is generated. In order to select one of the candidate blocks and
to detect successful decoding @i.e., blocks with a small error probability), the
latter is compared with the CRC hash received from the encoder. Candidate
blocks are visited until decoding leads to hash matching.
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10. Reconstruction and IDCT Once the quantized sequence is recovered, it is
used along with the corresponding side information to get the best recon-
structed block. A minimum mean-squared estimate is computed from the side
information and the quantized block.

Because the side information for the WZ frames is created here, at the decoder, in a
tentative way, based on the previously decoded WZ frames, some authors label this
type of DVC approach as a “Try” DVC solution.

Comparing the Early WZ Video Codecs

From the technical point of view, the following main functional differences between
the two early WZ video codecs may be highlighted (Stanford versus Berkeley):

1. Frame-based versus block-based coding; in the latter approach, it is easier to
accommodate coding adaptability to address the highly nonstationary statistics
of video signals.

2. Decoder rate control versus encoder rate control;in the former case,a feedback
channel is needed, restricting the scope to real-time applications, while making
the rate control problem simpler.

3. Very simple encoder versus smarter and likely more complex encoder;enabling
limited interframe operations at the encoder allows incorporating spatially vary-
ing coding mode decisions—for example, acknowledging that it is useless to
adopt a WZ coding approach when the correlation is too weak or inexistent.

4. More sophisticated channel codes, notably turbo codes and later LDPC codes,
versus simpler channel codes (e.g., BCH codes).

5. No auxiliary data versus hash codes sent by the encoder to help the decoder
in the motion estimation process.

6. Less intrinsically robust to error corruption versus higher resilience to error
corruption due to the PRISM motion search like approach performed at the
decoder, which allows finding less corrupted side information, thus reducing
the residual noise associated to the errors.

With time, some of the differences above between the two early WZ video codecs have
been smoothed: for example, there are nowadays Stanford-based codecs with selective
block-based Intra coding, encoder-transmitted hash signatures, and without feedback
channel. Section 8.4 will address these and other developments that emerged after
the early WZ video coding solutions. However, after a few years, the performance gap
between the two early solutions seems to be rather substantial, at least in terms of
error-free RD performance. In November 2007, the European project DISCOVER pub-
lished error-free RD performance results for a Stanford-based WZ video codec, which
is able to outperform H.264/AVC Intra and, sometimes, even H.264/AVC “no motion”
with a lower encoding complexity [4,5]. In October 2007,the Berkeley team published
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error-free RD performance results that slightly outperform H.263+ coding, with both
encoders performing encoder motion estimation [16]. However, for wireless error-
prone conditions, notably packet errors according to the CDMA2000 1X standard,
PRISM performs better than H.263+ as well as better than H.263+ with Reed-Solomon
forward error correction (FEC) and H.263+ with Intra refreshing, providing graceful
error degradation.

FURTHER DEVELOPMENTS ON WYNER-ZIV
VIDEO CODING

In recent years, a significant number of research groups around the world have been
developing research activities in the distributed video coding field, many of them
building on and improving the previously presented early WZ video codecs. The main
research target has clearly been to improve the RD performance, but other objec-
tives, such as providing error resilience, and scalability or even removing the feedback
channel in the Stanford architecture, have been addressed. This section briefly reviews
some of the main developments; space considerations necessarily limit this review, as
well as the associated list of references.

Improving RD Performance

Because the initial RD performance was rather poor in comparison with the alter-
native solutions provided by the available standards (e.g., H.263+, MPEG-4 Visual and
H.264/AVC), most of the DVC research has focused on improving the coding efficiency,
especially in the context of low-complexity encoding.

Slepian-Wolf Coding

Since Slepian-Wolf coding is the core of WZ coding, and channel coding plays a
central role in Slepian-Wolf coding, channel coding developments play an important
role not only in terms of RD performance but also codec complexity budget. Channel
capacity-achieving codes, such as the block codes used in PRISM [15-17], the turbo
codes used in the Stanford WZ solution [12-14, 18-20], or LDPC codes [21, 22], have
been shown to reach the performance corresponding to the corner points of the
Slepian-Wolf region in Figure 8.1. Beside turbo codes, the most frequently used codes
for WZ video coding are clearly the LDPC codes due to their capacity approaching
performance. The literature states that LDPC codes can better approach the capacity
of a variety of communication channels than turbo codes [22]. This has led naturally
to the consideration of LDPC codes for distributed source coding and, in particular,
for distributed video coding and WZ coding. LDPC codes present a trade-off between
latency,complexity,and system performance. In fact,the complexity of LDPC decoding,
based on a sum-product algorithm, is lower than that of turbo codes. Moreover, similar
encoding complexity can be achieved by a careful LDPC code design. Typically,the per-
formance of these codes also depends on the blocklength. Classes of rate-compatible
LDPC codes for distributed source coding (LDPC Accumulate (LDPCA) codes and Sum
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LDPC Accumulate (SLDPCA) codes) have been introduced in [22]. The performances
of LDPCA and SLDPCA codes are shown to be better than those of turbo codes [20]
for moderate and high rates.

Recent interesting developments regard the use of raptor codes for distributed
source-channel coding, targeting scalable video transmission over wireless networks
[23]. Raptor codes are the latest addition to a family of low-complexity digital fountain
codes [24], capable of achieving near-capacity erasure protection. They may be used as
precoded Luby Transform (LT) codes—the first class of practical fountain codes that
are near optimal erasure correcting codes—in combination with LDPC precoding.
Fountain codes (also known as rateless erasure codes) are a class of erasure codes
with the property that a potentially limitless sequence of encoding symbols can be
generated from a given set of source symbols such that the original source symbols can
be recovered from any subset of the encoding symbols of size equal to or only slightly
larger than the number of source symbols. In [25], a receiver-driven layered multicast
system over the Internet and 3G wireless networks based on layered Wyner-Ziv video
coding and digital fountain codes is proposed.

Advanced Side Information Creation

The quality of the side information plays a central role in the WZ codec’s overall RD per-
formance. Without a powerful side information creation mechanism, no “decent” RD
performance can be achieved. This fact motivated the development of many improve-
ments in the simple and inefficient early side information methods such as computing
the side information as the average of the two nearest key frames for the Stanford WZ
solution. For example, Ascenso et al. developed a largely used solution in the litera-
ture [26,27] where the side information is generated based on block matching using a
modified mean absolute difference (MAD) to regularize the motion vector field; then,
a hierarchical coarse-to-fine bidirectional motion estimation is performed (with half-
pixel precision); spatial motion smoothing based on a weighted vector median filter
is applied afterward to the obtained motion field to remove outliers before motion
compensation is finally performed. If low delay is required, then side information may
be created through extrapolation and not interpolation anymore [13,28]. This type of
solution corresponds to the so-called DVC Guess approach in which side information
is estimated (guessed) based on independently coded key frames. A recent interesting
approach is unsupervised learning; in [29], Varodayan et al. propose an expectation
maximization (EM) algorithm to perform unsupervised learning of disparity at the
decoder for the WZ coding of stereo images. This type of learning approach was also
applied for video coding by exchanging soft information between an LDPC decoder
and a probabilistic motion estimator in an iterative way; the side information is suc-
cessively refined after syndromes are incrementally received by the LDPC decoder.
Because the side information for the WZ frames is created or improved at the decoder,
using some learning tools, some label this type of DVC approach a “Learn” DVC solu-
tion. This DVC approach can be typically combined with the popular Guess approach,
described previously.
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8.4.1.3 Correlation Noise Modeling

Since WZ video coding targets the lossy coding of the difference between the orig-
inal data and its corresponding side information, it is essential for an efficient RD
performance that the encoder and decoder are aware of the statistical correlation
between the original and side information data. For the Stanford architecture with
pure decoder rate control, only the decoder needs to be aware of the correlation noise
model (CNM) between the original and its side information. This CNM has to be esti-
mated in a realistic way, which means at the decoder, of course without having access
to the original data. The correlation noise modeling may be performed at various
levels of granularity (e.g., band or coefficient levels), allowing a dynamic adaptation
of the model to the varying temporal and/or spatial correlation. In [30-32], Brites
et al. propose CNM solutions for the pixel domain and transform domain Stanford-
based WZ codecs, showing there are benefits in modeling this noise with a finer
granularity.

8.4.1.4 Reconstruction

The last module in WZ coding architectures is typically the reconstruction module
whose target is to convert the decoded quantized symbols or bins into a real value,
either luminance value for pixel domain codecs or transform coefficient for transform
domain WZ codecs. The initial solution presented in [12], where the decoded value is
the side information if it falls within the decoded bin, or clips to the bin limit closer to
the side information if it falls outside, has been used for a large number of WZ codecs.
Recently, a novel reconstruction solution has been developed by Kubasov et al. in
which the decoded values are reconstructed using an optimal MSE-based approach
using closed-form expressions derived for a Laplacian correlation model [33]. Since
this solution has been developed and adopted by the DISCOVER WZ codec, further
details will be presented in Section 8.5.5.

8.4.1.5 Selective Block-based Encoding

Somehow inspired by the PRISM approach and its block-based approach, the addi-
tion of a block classification module to a Stanford-based WZ video codec has been
proposed in [34], allowing the selection of one of two coding modes (Intra or
WZ modes), depending on the available temporal correlation. This approach results
from the observation that the correlation noise statistics describing the relation-
ship between the original frame and its corresponding side information available
at the decoder is not spatially stationary. A mode decision scheme (applied either
at the encoder or at the decoder) works in such a way that (i) when the esti-
mated correlation is weak, Intra coding is performed on a block-by-block basis
and (i) when it is strong, the more efficient WZ coding mode is used. Both spa-
tial and temporal criteria are used to determine whether or not a block is better
Intra coded. Large gains are reported in [34]: up to 5 dB with respect to the case
where all the blocks are WZ encoded, for the News sequence coded at QCIE 30 Hz
resolution.
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8.4.1.6 Encoder Auxiliary Data

Another way to overcome the “blind” frame-based approach adopted by the early
Stanford WZ video coding solution, following the observation that the temporal
correlation is not uniform within the frames, consists in incorporating the capabil-
ity for the encoder to send some hash signatures to help the decoder generating
better side information [35, 36]. In [35], the hash code for an image block sim-
ply consists of a small subset of coarsely quantized DCT coefficients of the block.
Since the hash requires fewer bits than the original data, the encoder is allowed to
keep the hash codewords for the previous frame in a small hash store. Strictly speak-
ing, the encoder is no longer Intra frame due to the hash store. In [35], significant
gains over conventional DCT-based Intra frame coding are reported, while having
comparable encoding complexity. In [36], a novel bidirectional hash motion estima-
tion framework is proposed, which enables the decoder to select the best block by
hash matching from candidate blocks obtained from the past and/or future reference
frames. New features include the coding of DCT hashes with zero motion,combination
of the usual trajectory-based motion interpolation (“Guess”) with hash-based motion
estimation, and adaptive selection of the number of DCT bands (starting from the low-
frequency DC band) to be sent to the decoder in order to have reliable estimation of
the side information (using a motion-estimation hash-based procedure). Gains up to
1.2 dB compared to previous traditional motion interpolation approaches [27] may be
reached.

Because the side information for the WZ frames is here created or improved, at
the decoder, using the help of some auxiliary data, or hints, sent by the encoder, this
type of DVC approach is labeled by some authors as a “Hint” DVC solution. A few DVC
solutions are, in practice,a combination of the DVC “Guess” and “Hint” approaches.

8.4.2 Removing the Feedback Channel

The feedback channel is very likely the most controversial architectural element in the
Stanford WZ video coding solution because it implies not only the presence of the feed-
back channel itself but also requires that the application has to work in real time; the
application and the video codec must also be able to accommodate the delay associated
with the feedback channel. On the other hand, usage of the feedback channel simpli-
fies the rate control problem since the decoder equipped with realistic error-detection
criteria and knowing the available side information can easily adjust the necessary bit
rate. To allow the Stanford solution to be applicable to other applications that do not
fulfill the conditions above (e.g., storage applications), a WZ codec with encoder rate
control (without feedback channel) is proposed by Brites and Pereira in [37]. This
paper reports a loss of up to 1.2 dB, especially for the highest bit rates, between the
pure encoder and decoder rate control solutions.

An interesting improvement on decoder rate control without completely giving up
on the feedback channel is hybrid rate control. For this case, rate control processing is
made at both encoder and decoder [38,39]. Although the encoder has to make a con-
servative estimation of the rate needed, the decoder has the task of complementing this
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rate using the feedback channel, if necessary. The main hybrid rate control advantage
regards the reduction of the decoding complexity since Slepian-Wolf decoding will
have to be run a substantially lower number of times. While encoder rate overestima-
tion is paid with losses in RD performance regarding the pure decoder rate control,
encoder rate underestimation is paid with increased decoding complexity and delay
regarding a perfect encoder rate control.

For both decoder and hybrid rate control, it is essential to have efficient request
stopping criteria that allow stopping the parity rate requests after estimating that a
certain error probability (e.g., typically 10~ 2 for each DCT bit-plane) has been reached
[38, 40].

8.4.3 Improving Error Resilience

Since predictive codecs are extremely sensitive to transmission errors, distributed
video coding principles have been extensively applied in the field of robust video
transmission over unreliable channels. To improve the final decoded quality in the
presence of errors, predictive coding schemes have two main solutions: (1) add some
FEC parity bits; and (2) perform postprocessing in the form of error concealment.
The two solutions are not incompatible and can be used together. WZ video codecs
are characterized by in-built error robustness, due to the lack of the prediction loop
that characterizes conventional motion-compensated predictive codecs. When errors
occut, the side information can be corrupted, and thus the WZ coding will operate as
a joint source-channel codec and not only as a source codec.

In [41], the notion of systematic lossy source-channel coding is first introduced;in
systematic transmission, the decoder has access to a noisy version of the original data,
analog or digital. Then a coded version of the same data is used to reduce the average
decoded distortion at the cost of an increase in the rate of information transmission.
Wyner-Ziv coding has a very close relation with systematic lossy source-channel cod-
ing since it may efficiently play the role of the auxiliary coded channel. Most of the WZ
video coding schemes that focus on error resilience try to increase the robustness of
standard encoded video by adding an auxiliary channel with redundant information
encoded according to WZ coding principles. In one of the first works with this focus,
Sehgal et al. [42] use auxiliary WZ encoded data sent only for some frames, to stop
drift propagation at the decoder. The proposed video coding algorithm mitigates the
propagation of errors in predictive video coding by periodically transmitting a small
amount of additional information, termed coset information, to the decoder, instead of
periodically sending Intra coded frames. Following the distributed coding approach,
the coset information is able to correct the errors, without the encoder having precise
knowledge of the packets or information that was lost. In [14], Girod et al. protect an
MPEG-2 Video coded bitstream with an independent WZ bitstream, achieving graceful
degradation with increasing channel error rate without using a scalable representa-
tion. This systematic coding approach is compatible with systems already deployed,
such as MPEG-2 digital TV broadcasting since the WZ bitstreams can be ignored by
legacy systems while they would be processed by the new WZ enabled receivers. By
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protecting the original signal with one or more WZ bitstreams, rather than applying
forward error correction to the standard compressed bitstream, graceful degradation
with deteriorating channel conditions can be achieved without a scalable signal repre-
sentation, overcoming a major limitation of available predictive video coding schemes.
This systematic lossy error protection (SLEP) framework has been extended for the
H.264/AVC standard [43]. In [44], Wang et al. model the correlation noise for the
overall, source correlation plus network loss SI distortion channel; an auxiliary chan-
nel with a subset of the conventional stream transform coefficients is WZ coded to
improve error robustness.

The error resilience performance of the Stanford DISCOVER WZ video codec [4, 5]
has also been studied in [45]. The results confirm the intrinsic error resilience capa-
bility of the WZ codec, due mostly to the usage of turbo coding. The most interesting
result is that, for the adopted test conditions, the DISCOVER WZ codec performs bet-
ter than the H.264/AVC (Inter) standard considering an error-prone channel and small
GOP sizes.

Providing Scalability

Scalability is a very important functionality when video streaming for heterogeneous
environments, for example, in terms of networks, or terminals, has to be provided. In
current scalable codecs, there is typically a predictive approach from lower layers to
upper layers, requiring the encoder to use as reference the decoded frames from the
previous layers in order to create the successive layers (e.g., with SNR or spatial reso-
lution enhancements). However, the WZ prediction loop-free approach between the
scalable layers no longer requires deterministic knowledge of the previous layers (just
a correlation model), which means the layers may be generated by various different
and rather unknown codecs. In this case, only the correlation between one layer and
the side information created from the previous layer has to be known.

In 2004, Sehgal et al. [46] proposed a solution for the scalable predictive video
coding problem using a WZ coding framework. For that, the predictor for each
video frame is modeled as the result of passing the video frame through a hypo-
thetical communication channel. In this way, the coding of a video frame is recast
as the problem of correcting the errors introduced by this hypothetical communi-
cation channel. In conclusion, the authors propose a compression algorithm based
on motion vectors to generate the side information at the decoder based on the pre-
vious decoded frames and employing a bank of LDPC codes applied to the original
frame-quantized DCT coefficients to correct the decoder prediction. The authors claim
results demonstrating that the proposed approach is approximately 4 dB superior to a
H.261-based conventional scalable video coding approach. In [47], Tagliasacchi et al.
study a scalable version of PRISM addressing both spatial and temporal scalability. The
proposed codec inherits the main PRISM codec attributes while also providing scal-
ability. Experiments show that the proposed scalable PRISM codec is more resilient to
packet losses than conventional predictive codecs and even outperforms, by a signifi-
cant margin, predictive coded bitstreams protected with FEC codes under reasonable
latency constraints. In [48], Wang et al. propose a FGS (fine granularity scalability)
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WZ codec where refinement bit-planes are encoded with a hybrid approach, using
either LDPC codes and interlayer prediction or conventional FGS variable-length cod-
ing (VLC) tools. The experimental results show coding efficiency gains of 3-4.5 dB for
the FGSWZ codec over MPEG-4 FGS, for video sequences with high temporal correla-
tion. A layered WZ coding architecture is proposed in [49], achieving both scalability
and error resilience. There, Xu and Xiong propose a layered WZ video codec using as
base layer, a standard scalable video codec (e.g., MPEG-4 FGS or H.263+), and LDPC
coding (with irregular LDPC codes) of the DCT bit-planes of the enhancement layers.
While for error-free conditions, the WZ codec performs worse than conventional FGS
coding, the opposite is true for CDMA2000 1X standard error channel characteristics.
Finally, in [50], Ouaret et al. propose several WZ coding-based scalable architectures
providing different types of scalability, notably temporal, quality, and spatial, on top of
the DISCOVER WZ codec.

THE DISCOVER WYNER-ZIV VIDEO CODEC

The WZ video codec evaluated in this chapter has been improved by the DISCOVER
project team [4] based on a first codec developed and implemented at Instituto Supe-
rior Técnico in Lisbon [26]. The DISCOVER WZ video codec architecture, illustrated
in Figure 8.4, is based on the early Stanford WZ video coding architecture proposed
in [13, 14]; further information may be obtained at [4, 5]. However, the early Stanford
codec has been much improved, for example, the architectural limitations regard-
ing using originals at the decoder have been removed, side information generation
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and reconstruction have been improved, and an LDPCA code has been added for
Slepian-Wolf coding and a CRC code for error detection. In practice, the tools for
most of the WZ architecture modules are different (and globally much more efficient).

The DISCOVER codec is probably the most efficient WZ video codec now available.
Its performance is reported in detail with the corresponding test conditions in [4];
moreover, executable code may be downloaded, allowing all researchers to compare
performances for other sequences and conditions as well.

The DISCOVER WZ video codec works as follows:

At the encoder:

1.

Frame Classification First, a video sequence is divided into WZ frames; this
means the frames that will be coded using a WZ approach, and key frames
that will be coded as Intra frames (e.g., using the H.264/AVC Intra codec
[1]). Typically key frames are periodically inserted with a certain GOP size.
An adaptive GOP size selection process may also be used, meaning that the
key frames are inserted depending on the amount of temporal correlation in
the video sequence [27]. Most results available in the literature use a GOP size
of 2, which means that odd and even frames are key frames and WZ frames,
respectively.

. Discrete Cosine Transform Over each Wyner-Ziv frame, an integer 4 X

4 block-based DCT is applied. The DCT coefficients of the entire WZ
frame are then grouped together, according to the position occupied by
each DCT coefficient within the 4 X 4 blocks, forming the DCT coefficients
bands.

Quantization After the transform coding operation, each DCT coefficients
band by, is uniformly quantized with 2¥ levels (where the number of levels
2Me depends on the DCT coefficients band bg). Over the resulting quantized
symbol stream (associated with the DCT coefficients band bp,), bit-plane extrac-
tion is performed. For a given band, the quantized symbols bits of the same
significance (e.g., the most significant bit) are grouped together, forming the
corresponding bit-plane array, which is then independently LDPC (or turbo)
encoded [22].

LDPCA Encoding The LDPCA (or turbo) encoding procedure for the DCT
coefficients band by, starts with the most significant bit-plane array, which cor-
responds to the most significant bits of the bz band quantized symbols. The
parity information generated by the LDPCA encoder for each bit-plane is then
stored in the buffer and sent in chunks/packets upon decoder request, through
the feedback channel.

. Encoder Rate Estimation In order to limit the number of requests to be

made by the decoder, and thus the decoding complexity and transmission
delay (since each request corresponds to several LDPC decoder iterations),
the encoder estimates for each bit-plane the initial number of bits to be sent
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before any request is made [5]. This number should be an underestimation of
the final number of bits needed if no RD performance losses associated with
this step are welcome (regarding the pure decoder rate control case). If the
rate is underestimated, the decoder will complement it by making one or more
requests.

At the decoder:

6.

10.

11.

Side Information Creation The decoder creates the side information for
each WZ coded frame with a motion-compensated frame interpolation frame-
work, using the previous and next temporally closer reference frames to
generate an estimate of the WZ frame [26, 27]. The side information for each
WZ frame corresponds to an estimation of the original WZ frame. The better
is the quality of this estimation, the smaller are the number of “errors” the
WZ LDPC (or turbo) decoder has to correct and the bit rate necessary for
successful decoding (i.e., with a small error probability).

DCT Estimation A block-based 4 X 4 DCT is then carried out over the side
information in order to obtain the DCT coefficients, which are an estimate of
the WZ frame DCT coefficients.

Correlation Noise Modeling The residual statistics between corresponding
WZ frame DCT coefficients and the side information DCT coefficients are
assumed to be modeled by a Laplacian distribution. The Laplacian parameter
is estimated on-line and at different granularity levels, notably at band and
coefficient levels [31,32].

LDPCA Decoding Once the DCT-transformed side information and the resid-
ual statistics for a given DCT coefficients band by, are known, the decoded
quantized symbol stream associated with the DCT band b, can be obtained
through the LDPCA decoding procedure. The LDPCA (or turbo) decoder
receives from the encoder successive chunks of parity bits following the
requests made through the feedback channel [22].

Request Stopping Criterion To decide whether or not more bits are needed
for the successful decoding of a certain bit-plane, the decoder uses a simple
request stopping criterion, that is, checks that all LDPC code parity-check
equations are fulfilled for the decoded (hard decision) codeword. If no more
bits are needed to decode the bit-plane, the decoding of the next bit-plane or
band can start; otherwise, the bit-plane LDPC decoding task has to proceed
with another request and receive another chunk of parity bits.

Further LDPCA Decoding After successfully LDPCA (or turbo) decoding the
most significant bit-plane array of the b, band, the LDPCA (or turbo) decoder
proceeds in an analogous way to the remaining My bit-planes associated
with that band. Once all the bit-plane arrays of the DCT coefficients band by,
are successfully LDPCA (or turbo) decoded, the LDPCA (or turbo) decoder
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starts decoding the b+ band. This procedure is repeated until all the DCT
coefficients bands for which WZ bits are transmitted are LDPCA (or turbo)
decoded.

12. CRC Checking Because some residual errors are left even when all parity-
check equations are fulfilled (step 10) and may have a rather negative
subjective impact on the decoded frame quality, a CRC checksum is trans-
mitted to help the decoder detect and correct the remaining errors in each
bit-plane. Since this CRC is combined with the developed request stopping
criterion, it does not have to be very strong in order to guarantee a vanishing
error probability (& 0) for each decoded bit-plane. As a consequence, a CRC-8
checksum for each bit-plane was found to be strong enough for this purpose,
which only adds minimal extra rate (8 bits).

13. Symbol Assembling After LDPCA (or turbo) decoding, the M} bit-planes
associated with the DCT band by, the bit-planes are grouped together to form
the decoded quantized symbol stream associated with the b band. This pro-
cedure is performed over all the DCT coefficients bands to which WZ bits are
transmitted. The DCT coefficients bands for which no WZ bits were trans-
mitted are replaced by the corresponding DCT bands from the DCT side
information.

14. Reconstruction Once all quantized symbol streams are obtained, it is possible
to reconstruct the matrix of decoded DCT coefficients for each block.

15. IDCT After a block-based 4 X 4 IDCT is performed, the reconstructed pixel
domain WZ frame is obtained.

16. Frame Remixing To finally get the decoded video sequence, decoded key
frames and WZ frames are mixed conveniently.

It is important to stress that the DISCOVER WZ video codec does not include any
of the limitations that are often still present in WZ video coding papers, notably
those adopting the Stanford WZ architecture. This means, for example, that no original
frames are used at the decoder to create the side information, to estimate the bit-plane
error probability or to estimate the correlation noise model parameters for LDPCA
(or turbo) decoding. The DISCOVER WZ video codec is a fully practical video codec
for which a realistic performance evaluation was made [4]. For a better understand-
ing of the DISCOVER WZ video codec, the next sections will provide some detail for
the main coding tools. For more details, the readers should consult the papers listed
in [4].

Transform and Quantization

In the DISCOVER architecture, illustrated in Figure 8.4, the first stage toward encod-
ing a Wyner-Ziv frame is transform coding (corresponding to the DCT module). The
transform employed in the DISCOVER WZ video codec relies on an integer 4 X 4
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block-based DCT transform,! as defined by the H.264/AVC standard [1]. The DCT
transform is applied to all 4 X 4 nonoverlapping blocks of the WZ frame, from left to
right and top to bottom.

Afterward, quantization is applied to each DCT coefficient band b, to exploit irrel-
evance and achieve the target quality. Two different quantization approaches are used
in the DISCOVER solution.

1. DC Coefficients The DC coefficients band is quantized using a uniform
scalar quantizer without a symmetric quantization interval around the zero
amplitude. Typically, the DC coefficients band is characterized by high-
amplitude positive values since each DC transform coefficient expresses the
average energy of the corresponding 4 X 4 samples block.

2. AC Coefficients The remaining AC coefficients bands are quantized using a
uniform scalar quantizer with quantized bins evenly distributed around zero in
order to reduce the block artifacts effect. The zero bin size is twice the remaining
bins size. Since most of the AC coefficients are concentrated around zero, by
doubling the zero bin size, the matching probability between corresponding
quantized bins of the WZ and SI frames increases, bringing bit rate savings.
Some distortion loss is, however, expected since the larger the quantization
bin, the worset the decoded frame quality is, but overall the RD performance
improves.

Moreover, the DISCOVER codec considers a varying quantization step size for the
AC coefficients. The decoder is informed by the encoder of the dynamic range for
each AC band of each WZ frame. This allows a quantization bin width (step size) to be
adjusted to the dynamic range of each AC band. Since the dynamic range of a given
AC band may be lower than a fixed selected value, a smaller quantization bin width is
used in the DISCOVER codec, for the same number of quantization levels. The smaller
the quantization step size, the lower the distortion is at the decoder. In summary, the
AC coefficients can be more efficiently encoded varying the quantization step size
according to the dynamic range of each AC coefficients band. In the DISCOVER WZ
codec, the quantization step size, W, for the AC bands bp(k=2, ..., 16) is obtained
from W =2|Vi|max/ (2M"" — 1) where |Vp|max stands for the highest absolute value
within by,. For 4 X 4 samples blocks and 8-bit accuracy video data,the DC band dynamic
range is 1024. This value is maintained fixed for all the video frames.

Slepian-Wolf Coding

The DISCOVER WZ video codec has adopted a class of LDPC codes for the Slepian-
Wolf part of the WZ codec after using the popular turbo codes for a long time.
The DISCOVER codec uses an LDPC Accumulate (LDPCA) codec, which consists of

1'To be more precise, a separable integer transform with similar properties as a 4 X 4 DCT is used.
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an LDPC syndrome code concatenated with an accumulator [22] to achieve a rate-
compatible operation. For each bit-plane, syndrome bits are created using the LDPC
syndrome code and accumulated modulo 2 to produce the accumulated syndrome.
Basically,the LDPC syndrome encoder calculates for the input bit-plane x the syndrome
s = Hx,where H corresponds to the parity-check matrix. The parity-check matrix H of
the LDPC code represents the connections (i.e., edges) of a bipartite graph with two
node types:the variable nodes and the check nodes. It also has a sparse representation,
that is, with a low density of 1’s, which guarantees a low encoder complexity. When an
LDPC syndrome code is concatenated with an accumulator, the resulting concatenated
code is rate adaptive and incremental, allowing the use of the request-decode strategy
already employed for the turbo codes. Thus, after the calculation of the accumulated
syndromes, they are stored in a buffer and transmitted to the decoder in chunks, upon
decoder request.

Making use of the side information created at the decoder (see Section 8.5.3), the
LDPC syndrome decoder attempts to reconstruct the original data, with the help of
the correlation noise model, using a soft-bit decoding belief propagation algorithm
that operates in bipartite graph (or equivalently matrix H) with high efficiency. In this
case, the popular log-domain sum-product algorithm (SPA) is used with the adaptations
described in [21] for LDPC syndrome codes with side information available at the
decoder. The SPA algorithm uses an iterative approach and consists of exchanging
messages along the edges, from variable nodes initialized with the correlation noise
model soft-input information, to check nodes, which are affected by the received
syndromes. At each node type, different calculations are performed. Moreover, they
always exchange extrinsic information, that is, outgoing messages at an edge do not
consider incoming information on the same edge.

If the number of syndrome bits is not enough, WZ decoding fails, the encoder is
notified by the feedback channel and more accumulated syndromes are sent from the
encoder buffer. To enable this type of rate control, the LDPCA decoder tests the con-
vergence by computing the syndrome check error—that is, by counting the number
of parity-check equations that are not satisfied, assuming a certain decoded bit-plane
by the SPA. In fact, the syndrome check error is calculated after each LDPC decod-
ing iteration. If the syndrome check error is different from zero and the maximum
number of iterations was not reached, another LDPC decoding iteration will start: in
this case up to 100 iterations are allowed. After 100 iterations, if the syndrome check
error remains different from zero, the decoded bit-plane is assumed to be erroneously
decoded, and the LDPCA decoder requests more accumulated syndromes. If at any
time the syndrome check error is equal to zero, a CRC mechanism is used to detect
if there are remaining errors in the decoded bit-plane. The CRC-8 checksum is com-
puted by the encoder for every encoded bit-plane and transmitted to the decoder. If the
decoded bit-plane has the same CRC checksum that the encoder CRC checksum has,
the decoding is declared to be successful and the decoding of another band/bit-plane
can start. Note also that the inverse of the H matrix is used when all syndrome bits are
received (compression ratio of 1:1),allowing recovery of the source,losslessly, since H
is full rank and the LDPC syndrome code is linear. This is a significant advantage when
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the correlation between the side information and original data is low, especially when
compared to the turbo codes parity solution, which does guarantee compression ratios
lower than 1.

The performance of the LDPC codes depends on several factors, for example, the
irregular or regular nature of the graph, but one of the most important factors is
the length of cycles in the bipartite graph since decoding algorithms such as SPA
can only achieve optimal decoding in cycle-free graphs. In [51],advances were made
with a new LDPC code for DVC, which was designed with powerful graph condi-
tioning techniques and a new check node merging technique to obtain an alternative
rate compatible strategy (i.e., lower rate codes are obtained from a high-rate base
code).

Side Information Creation

This section presents a summary of the side information creation process. This pro-
cess is rather complex and central to the performance of the Wyner-Ziv codec since
it determines how many “errors” have to be corrected through LDPC (or turbo) syn-
drome (parity) bits. Thus, the efficiency of the techniques developed can significantly
influence the rate-distortion performance of the Wyner-Ziv video codec, in the same
way as efficient motion estimation and compensation tools have been establishing
compression advances for block-based hybrid video coding. In the DISCOVER codec,
an advanced motion compensation interpolation (MCID) framework, as proposed in
[26, 27], is used to generate the side information. The techniques used work at the
block level, as in predictive video coding, in order to capture the local motion in a
robust and accurate way. The main objective of the MCI framework is to calculate a
piecewise smooth motion field, that is,a motion field that simultaneously captures the
local motion caused by moving objects, and the global motion of the scene.

The MCI framework generates the side information, an estimate of the WZ frame,
based on two references—one temporally in the past (Xp) and another in the future
(XFp), as follows (see Figure 8.5):

1. For a GOP length of 2, Xp and X are the previous and the next temporally
adjacent decoded key frames to the WZ frame being decoded. For other GOP
lengths, the frame interpolation structure definition algorithm proposed in [27]

oy Y Y
Frame Frame | Forward Bidirectional Spatial Bidirectional | Y,
Buffer [ Structure Motion B Motion =1 Motion [ Motion -
Definition | Estimation Estimation Smoothing Compensation
v 1 I ) f
FIGURE 8.5

Architecture of the frame interpolation framework for side information creation.
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indicates the decoding order and the reference frames to be used by the frame
interpolation algorithm.

2. Both reference frames, Xp and Xp, are first low-pass filtered to improve the
reliability of the motion vectors. Then, a block-matching algorithm is used to
estimate the motion between the Xp and X frames. In this step, full-search
motion estimation with modified matching criteria is performed [26];the crite-
ria include a regularized term that favors motion vectors that are closer to the
origin.

3. The bidirectional motion estimation module refines the motion vectors obtained
in the previous step with an additional constraint: the motion vector selected
for each block has a linear trajectory between the next and previous reference
frames and crosses the interpolated frame at the center of the blocks. This
technique combines a hierarchical block-size technique with a new adaptive
search range strategy in a very efficient way [27]. The hierarchical coarse-to-fine
approach tracks fast motion and handles large GOP sizes in the first iteration
(block size 16 X 16) and then achieves finer detail by using smaller block sizes
(block size 8 X 8).

4. Next,a spatial motion smoothing algorithm based on weighted vector median
filters [26] is used to make the final motion vector field smoother, except at
object boundaries and uncovered regions.

5. Once the final motion vector field is obtained, the interpolated frame can be
filled by simply using bidirectional motion compensation as defined in standard
video coding schemes.

This type of advanced frame interpolation solution has a major contribution to
the good RD performance of the DISCOVER WZ video codec since the quality of the
generated side information has a crucial role in the overall codec RD performance.

Correlation Noise Modeling

To make good usage of the side information obtained through the frame interpolation
framework, the decoder needs to have reliable knowledge of the model that charac-
terizes the correlation noise between corresponding DCT bands of the WZ and side
information frames. The Laplacian distribution is widely used to model the residual
statistics between correspondent coefficients in X@%T and YVLZZCT , for example, [14],
and, thus, it was also adopted by the DISCOVER WZ video codec. The Laplacian dis-
tribution parameter « is estimated on-line at the decoder, for each DCT coefficient,
using (2) below, based on the residual, R, between the reference frames Xp and Xp
used to create the side information after motion compensation [32]. Basically, after
applying the 4 X 4 DCT transform over the R frame, each DCT coefficient is classified
into one of two classes: (1) inlier coefficients corresponding to those whose absolute



8.5 The DISCOVER Wyner-Ziv Video Codec

value (magnitude) is close to the corresponding R frame DCT band magnitude average
value fijp|; and (2) outlier coefficients corresponding to those whose magnitude is far
away from fijp|. To determine how close a certain coefficient is to the corresponding
R frame DCT band magnitude average value, the distance between that coefficient
magnitude and fij,| with the DCT band magnitude variance 6'|2b\ is compared since the
variance is a measure of how spread the coefficient values are regarding its average
value. The a parameter estimation in (2) leads to a finer adaptation of the correlation
noise model,both spatially (within a frame) and temporally (along the video sequence):

[2 2_ a2
g , [le\(u» U)] S0'|b|

ap(u, v) = . (8.2)

2 2 >
[Dp@,0)]* [le\(”» U)] >0’Ib|

In Equation (8.1), & (¢, v) is the @ parameter estimate for the DCT coefficient
located at (u, v) position, &Izbl is the estimate of the variance for the DCT band to
which the DCT coefficient belongs,and Dy (u, v) represents the distance between the
(u, v) coefficient magnitude and the DCT coefficients band b magnitude average value.
The distance D, (1, v) measures how spread the coefficient’s values are regarding its
corresponding DCT band average value [32]. The first branch in (8.2) corresponds
to a block/region well interpolated. Thus, the estimate of the o parameter for the
R frame DCT band is a more reliable estimation in this case. The second branch in
(8.2) corresponds to a block where the residual error is high, which means that the SI
generation process failed for that block. Thus, the a parameter estimate for the R frame
DCT band is not the best approach in this case, since it corresponds to an average value
for all DCT coefficients within the band b. In this case, the solution adopted by the
DISCOVER codec is to estimate &y, (2, v) using [Dyp) (14, v)]? since this enables giving
less confidence to the turbo decoder on the DCT coefficients that belong to blocks
where the frame interpolation algorithm essentially failed.

Reconstruction

The LDPC (or turbo) decoded bit-planes, together with the side information and the
residual statistics for each DCT coefficient band, are used by the reconstruction to
obtain the decoded DCT coefficients matrix, X ’WZD T as in [33]. Consider that the
M, bit-planes associated with each DCT coefficients band, for which WZ bits were
received, are successfully decoded. For each band, the bit-planes are grouped and a
decoded quantization symbol (bin) g’ is obtained for each DCT coefficient, guiding
the decoder about where the original DCT coefficient value lies (an interval). The
decoded quantization bin ¢’ corresponds to the true quantization bin ¢, obtained at
the encoder before bit-plane extraction, if all errors in the decoded bit-planes were
corrected (however, a very small error probability is allowed). The reconstruction
function is optimal in the sense that it minimizes the mean-squared error (MSE)
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of the reconstructed value, for each DCT coefficient, of a given band and is given
by [33]

_ iyl p)dx

m 8.3
f] fXIy(-x|y)d-x 8:3)

x'=E [x|q’,y]

where x’ is the reconstructed DCT coefficient, y is the corresponding DCT coeffi-
cient of YWZDCT , E[.] is the expectation operator, and / and u# represent the lower
and the upper bounds of g', respectively. In (8.3), the conditional probability density
function fx), () models the residual statistics between corresponding coefficients in
XwzPT and YwzPCT. According to Section 8.3, fx|,(.) is typically assumed to be a
Laplacian distribution. After some analytical manipulations in (8.3), the reconstructed
DCT coefficient can be obtained from (8.4) where A corresponds to the quantization
bin size [33]. In (8.4), « is the Laplacian distribution parameter estimated on-line at
the decoder for each DCT coefficient (see Section 8.5.4).

I+0b , y<l
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u—>u , y=2u

(8.4)

As can be seen in (8.4), the reconstruction function shifts the reconstructed DCT
coefficient value towards the center of the decoded quantization bin. The DCT coef-
ficients bands to which no WZ bits are sent are replaced by the corresponding DCT
bands of the side information.

THE DISCOVER CODEC PERFORMANCE

The target of this section is to perform a detailed evaluation of the DISCOVER WZ
video codec. With this purpose, precise test conditions are first defined. Afterward,
the most relevant performance metrics to evaluate a WZ video codec will be assessed,
notably: (i) RD performance; (ii) feedback channel rate performance; and (iii) codec
complexity. For a more detailed performance evaluation, please see [4].

Performance Evaluation Conditions

Considering the main objective of this section, it is essential to meaningfully define
the performance evaluation conditions and the video codec control parameters in
order to set a clear and useful benchmarking. As usual in the DVC literature, only the
luminance component is coded, and thus all metrics in this section refer only to the
luminance. However, there are no reasons preventing use of the DISCOVER WZ codec
for the chrominance components with similar performance.
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8.6.1.1 Test Material

The video test material used and some relevant test conditions are described in the
following:

m Sequences: Foreman (with the Siemens logo), Hall Monitor, Coast Guard, and
Soccer; these sequences represent different types of content, (see Figure 8.6).

m Frames: all frames (this means 299 for Foreman, 329 for Hall Monitor, 299 for
Coast Guard, and 299 for Soccer at 30 Hz).

m Spatial resolution: QCIE

m Temporal resolution: 15 Hz, which means 7.5 Hz for the WZ frames when
GOP =2 is used.

m GOP length: 2 (if not otherwise indicated), 4 and 8.

Although the most frequently used test conditions in the literature employ QCIF at
30 Hz, it was decided to use QCIF at 15 Hz since this combination is more realistic from
a practical point of view. This decision penalizes the WZ video coding results reported
in this chapter in comparison to standard video codecs since the side information
tends to be poorer owing to the longer time gaps between the key frames.

8.6.1.2 Quantization

Different (decoded) quality can be achieved by changing the number of quantization
levels, My, used for each DCT band by, In this section, eight rate-distortion (RD) points
are considered, corresponding to the various 4 X 4 quantization matrices depicted in
Figure 8.7. Within a 4 X 4 quantization matrix, the value at position % in Figure 8.7
(position numbering within the matrix is made in a zigzag scanning order) indicates
the number of quantization levels associated with the DCT coefficients band b,. The
value 0 means that no Wyner-Ziv bits are transmitted for the corresponding band.
In the following, the various matrices will be referred to as Q; with =1, ..., 8; the
higher is Q;, the higher are the bit rate and the quality.

8.6.1.3 Side Information Creation Process

This section presents the most important control parameters related to the side infor-
mation creation process described previously. In the MCI framework, the forward

FIGURE 8.6

Sample frames for test sequences. (a) Foreman (frame 80); (b) Hall Monitor (frame 75); (c) Coast
Guard (frame 60); (d) Soccer (frame 8); remind that only luminance is coded.
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FIGURE 8.7

Eight quantization matrices associated with different RD points.

motion estimation works with 16 X 16 block sizes, and *£32 pixels are used for the
search range. In the second iteration of the bidirectional motion estimation, the motion
vectors are refined using 8 X 8 block sizes, and an adaptive search range is used to
restrict the motion vector trajectory to be close to the neighboring motion vectors
while still leaving room to increase its accuracy and precision. The motion search is
performed using the half-pixel precision, and the reference frames are first low-pass
filtered with the mean filter using a 3 X 3 mask size.

Key Frames Coding

The key frames are always encoded with H.264/AVC Intra (Main profile) because this
is the best performing Intra video coding standard available. The key frames are coded
with constant quantization parameters (QP) as defined in Table 8.1. The key frames
quantization parameters have been found using an iterative process that stops when
the average quality (PSNR) of the WZ frames is similar to the quality of the Intra
frames (H.264/AVC coded). The values in Table 8.1 have been obtained for GOP = 2,
QCIF@15 Hz. The selection of these QP values for the key frames was made with the
target being to have almost constant (on average) decoded video quality for the full
set of frames (key frames and WZ frames).

Investing the same total bit rate in a different way between WZ and key frames may
lead to a better overall RD performance. For example, by investing more bits in the key
frames, the overall RD performance may improve at the cost of a less stable (in time)
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Table 8.1 Key Frames Quantization Parameters for
the Various RD Points for QCIF@15 Hz

Q; 0, 03 @ Q@ Qg 07 Qg
Foreman 40 39 38 34 34 32 29 25

Hall Monitor 37 36 36 33 33 31 29 24

CoastGuard 38 37 37 34 33 31 30 26

Soccer 44 43 41 36 36 34 31 25

video quality. This is a choice to be made by the encoder knowing the consequences
in terms of subjective impact. For comparison purposes, the QP values in Table 8.1
will be used all along this section under the assumption stated above.

8.6.2 RD Performance Evaluation

This section targets RD performance evaluation. This means the assessment of how
the rate for the key frames (H.264/AVC Intra bits) and the rate for the WZ frames
(LDPC syndrome bits + CRC bits) translates into quality. All metrics regard both the
key frames and WZ frames bits since they correspond to the overall decoded quality. In
this section, error-free channels are considered, but it is well acknowledged that DVC
solutions are especially interesting when error resilience is a critical requirement. A
detailed error resilience performance evaluation is available in [45], and a detailed
performance evaluation as a function of the GOP size is available in [52].

8.6.2.1 Measuring the Overall Rate-distortion Performance

Defining the Metrics

Although many metrics are relevant to evaluate the compression efficiency perfor-
mance, it is recognized that the most frequently used quality metric is the average
PSNR (with all the well known limitations it implies) over all the frames of a video
sequence coded for a certain quantization matrix (as defined in Section 8.6.1.2). When
the (luminance) PSNR metric is represented as a function of the used bit rate—in this
case, the overall bit rate for the luminance component—very important performance
charts are obtained since they allow to easily compare the overall RD performance
with other coding solutions, including standard coding solutions largely well known
and used.

In this section, the RD performance of the DISCOVER WZ codec is compared
with the corresponding performance of three standard coding solutions that share
an important property in terms of encoder complexity: the complex and expensive
motion estimation task is not performed by any of them. Section 8.6.3 will present the
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codec complexity evaluation that complements the RD evaluation proposed in this
section.

The three state-of-the-art standard solutions used in this section for comparison
purposes are:

m H.263+ Intra H.263+ video coding without exploiting temporal redundancy;
this “Intra comparison” is still the one that appears most in the DVC literature
but H.263+ Intra is clearly no longer the best standard Intra coding available and
thus “beating” H.263+ Intra is much easier than “beating” H.264/AVC Intra (of
course, their encoding complexity is also rather different).

m H.264/AVC Intra H.264/AVC video coding in Main profile without exploiting
the temporal redundancy; this type of Intra coding is the most efficient Intra
(video) coding standard solution, even more than JPEG2000 for many condi-
tions. However, it is important to notice that H.264/AVC Intra (JM9.5 reference
software) exploits quite efficiently the spatial correlation (at a higher encoding
complexity cost when compared to H.263+ Intra) with several 4 X 4 and 16 X 16
Intra spatial prediction modes, a feature that is (still) missing in the DISCOVER
WZ codec.

= H.264/AVC Inter No Motion Video coding with H.264/AVC in Main profile
(JM9.5 reference software) exploiting temporal redundancy inaIB. . .IB. .. struc-
ture (depending on GOP size) but without performing any motion estimation,
which is the most computationally expensive encoding task. The so-called No
Motion coding mode typically achieves better performance than Intra coding
because it can partly exploit the temporal redundancy by using a DPCM temporal
scheme. Moreover, it requires far less complexity than full-motion compensated
Inter coding because no motion search is performed. This type of comparison
(excluding encoder motion estimation as in WZ coding) is not typically pro-
vided in most DVC published papers because it is still difficult to “beat” the RD
performance of H.264/AVC Inter No Motion with DVC-based solutions.

Results and Analysis

Figures 8.8 and 8.9 show the RD performance,according to the test conditions, for the
four test video sequences selected; also an RD performance comparison for GOP sizes
2,4,and 8 is presented. For these results, the following conclusions can be drawn:

m DISCOVER codec vs. H.263+ Intra Coding For the Coast Guard and Hall Mon-
itor sequences, coding gains exist for all RD points and for all GOP sizes with
average gains up to 9 dB (for the Hall Monitor sequence at GOP = 4) when com-
pared to H.263+ Intra. Therefore, it is possible to conclude that the DISCOVER
codec can exploit (at least partly) the temporal correlation in the video content.
On the other hand, for the Foreman sequence, the gains are not as impressive for
GOP =2 (3 dB) and decrease when the GOP size increases;for GOP = 8,a minor
coding loss is observed. The major reason is that for content with high and
medium motion, when the key frames are separated by a long gap in time, the
side information quality decreases (and thus the overall RD performance) since
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RD performance for GOP = 2: Coast Guard, Hall Monitor, Soccer, and Foreman (QCIF at 15 Hz).
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it is more difficult to predict the frames in between. The worst performance
is achieved for the Soccer sequence, for all GOP sizes, since it is always below
H.263+ Intra. The major reason for this loss is the complex and erratic motion
that normally leads to a significant amount of errors in the side information and
causes a poorer RD performance, especially when the GOP size is quite large
(8 frames at 15 fps correspond to more than half a second in a Soccer game).
It is important to notice that better RD performance results would be obtained
for 30 Hz, which is the most reported condition in the literature.

DISCOVER codec vs. H.264/AVC Intra Coding In this case, the DISCOVER
codec is compared to the best performing (video) Intra encoder available, the
H.264/AVC Intra codec. The Hall Monitor sequence has the best performance,
with consistent gains for all GOP sizes (up to 4 dB). The Coast Guard sequence
at GOP = 2 has gains up to 1 dB,and some RD points for the Foreman sequence
(GOP = 2) show minor gains. The rest of the sequence@GOP size combinations
have a lower performance when compared to H.264/AVC Intra; in these cases,
the difficulty is to obtain good side information for high motion sequences with
large GOP sizes. However, the results are quite encouraging since for a signifi-
cant amount of (sequence@GOP size) scenarios,the DISCOVER RD performance
beats H.264/AVC Intra; notably, for GOP = 2, the DISCOVER codec only loses for
the Soccer sequence, which is a rather difficult sequence to be coded at 15 Hz.
It is also important to note that the H.264/AVC Intra codec includes several spa-
tial prediction modes, RD optimization, and advanced entropy coding tools as
CABAC in order to achieve a higher RD performance (at some encoding com-
plexity cost). So, the conclusion to be confirmed in Section 8.6.3 is that the
DISCOVER codec can, for most cases at GOP = 2, achieve better performance
with lower encoding complexity.

DISCOVER codec vs. H.264/AVC Inter No Motion Coding In this case, the
DISCOVER codec is compared to alow complexity Inter codec (compared to full
H.264/AVC Inter) that is still able to exploit some temporal correlation. An inter-
esting observation is that the H.264/AVC No Motion curve is very close to the
H.264/AVC Intra curve for the Soccer and Coast Guard sequences (for all GOP
sizes) and for the Foreman sequence at GOP = 8. Since for these cases the tempo-
ral correlation is quite low, the H.264/AVC No Motion solution selects the Intra
mode for the majority of the blocks (mode decision Intra/Inter is still allowed).
The DISCOVER codec is quite competitive for the Coast Guard sequence where
some gains (up to 1dB) in comparison to H.264/AVC No Motion are observed.
In such cases, the DISCOVER side information creation framework exploits very
efficiently the temporal correlation. However, for the Hall Monitor sequence,
an RD loss is observed, especially for higher bit rates, where the H.264/AVC
SKIP macroblock mode (no information other than the mode is coded) brings
additional benefits for this low-motion sequence.

DISCOVER codec RD performance for different GOP Sizes For all
sequences but Hall Monitor, GOP =2 wins, showing the difficulty in getting
good side information for longer GOP sizes due to the decreased performance
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of the frame interpolation process. For Hall Monitor, which is a rather stable
sequence, GOP = 4 and GOP = 8 are already more efficient than GOP = 2 since
motion estimation and frame interpolation are more reliable.

8.6.2.2 Comparing the RD Performance of LDPC and Turbo Codes

During most of the DISCOVER project, the Slepian-Wolf codec part of the video codec
was based on turbo codes. Later, turbo codes were substituted by LDPC codes [22],
essentially owing to their better RD performance and low complexity, especially at the
decoder side.

The turbo encoder enclosed a parallel concatenation of two identical constituent
recursive systematic convolutional (RSC) encoders of rate ¥z, and a pseudo-random
L-bit interleaver is employed to decorrelate the L-bit input sequence between the
two RSC encoders. The pseudo-random interleaver length L corresponds to the DCT
coefficients band size, that is, the ratio between the frame size and the number of
different DCT coefficients bands. Each RSC encoder outputs a parity stream and a

systematic stream. For the turbo encoder, each rate }2 RSC encoder is represented by

11£D+D3+D*
1+D3+D4

terminated. The puncturing period P is 48, which allows a fine-grained control of the

bit rate. After turbo encoding a bit-plane of a given DCT coefficients band (starting
with the most significant bit-plane), the systematic part (a copy of the turbo encoder
input) is discarded, and the parity bits are stored in the buffer. Upon decoder request,
the parity bits produced by the turbo encoder are transmitted according to a pseudo-
random puncturing pattern. In each request, the WZ encoder sends one parity bit in
each P parity bit from each RSC encoder parity stream; each parity bit is sent only
once. The location of the parity bits to be sent in each request is pseudo-randomly
generated (it is known at both the encoder and decoder).

The Slepian-Wolf decoder encloses an iterative turbo decoder constituted by two
soft-input soft-output (SISO) decoders. Each SISO decoder is implemented using the
Logarithmic Maximum A Posteriori (Log-MAP) algorithm. Since an iterative turbo
decoding is used, the extrinsic information computed by one SISO decoder becomes
the a priori information of the other SISO decoder. Through this information exchange
procedure between the two SISO decoders, the a posteriori estimates of the data bits
are updated until the maximum number of iterations allowed for iterative decoding is
reached. A confidence measure based on the a posteriori probabilities ratio (check [38]
for more details) is used as an error-detection criterion to determine the current bit-
plane error probability P, of a given DCT band. If P, is higher than 103, the decoder
requests for more parity bits from the encoder via the feedback channel; otherwise,
the bit-plane turbo decoding task is considered successful.

the generator matrix [ ] and the trellis of the second RSC encoder is not

Defining the Metrics

This section compares the RD performances of the turbo codes-based and LDPC
codes-based DISCOVER WZ codecs for equal conditions in terms of all other
modules.



8.6 The DISCOVER Codec Performance

Results and Analysis

Figure 8.10 shows the RD performance comparison between the DISCOVERWZ video
codecs using turbo codes and LDPC codes. Observing the RD performance curves
shown in Figure 8.10, it can be noticed that the LDPC codes always have better perfor-
mance than turbo codes for all GOP sizes and all sequences. The following conclusions
can be drawn:

m For lower bit rates, the performance of the turbo and LDPC codes is quite similar
because when the correlation between the side information and the WZ frames
is high, the turbo codes achieve a good performance and similar results to the
LDPC codes.

m For medium and high bit rates, the LDPC codes have a better performance when
compared to the turbo codes, with coding gains up to 35 kbps for GOP =8.The
LDPC codes show better performance for the bands/bit-planes, which have a
low correlation between the side information and the WZ frame (i.e., for side
information with low quality).

m When the GOP size increases, the performance gap between the turbo codes and
the LDPC codes increases, with a clear advantage for the LDPC codes (for GOP =
2, 4,8 coding gains up to 10, 27,35 kbps occur, respectively). One major reason
for this effect is that the LDPCA codes (as other types of LDPC codes) always have
a maximum rate of 1,that is, the maximum number of syndrome bits sent cannot
exceed the number of bits that represent the original data. This property comes
from the code linear properties, which allow recovering the original source
information when the rate is equal to 1 by solving the parity-check matrix equa-
tions. This property does not exist for the iterative turbo codes (rate expansion
is possible),and it is responsible for the turbo codes loss of efficiency, especially
at larger GOP sizes, where the correlation between WZ and SI is lower and thus
compression rates higher than 1 are necessary to guarantee successful decoding.

Measuring the Bit-plane Compression Factor

Defining the Metrics

The LDPCA syndrome encoder consists of an irregular LDPC encoder concatenated
with an accumulator. The encoder buffers the accumulated syndrome and transmits
it incrementally to the decoder, following the decoder requests. The total number of
parity bits per bit-plane created by the LDPCA encoder is equal to the number of the
input bit-plane bits. This way the compression factor can only be higher than 1 (and
never lower than 1 as can happen for turbo codes); it allows measuring the capability
of the DISCOVERWZ codec to compress the source data (bit-planes). The total average
compression factor at frame, CFg,and bit-plane, CFg;;, levels for a certain quality level,
Q, is given by (8.5) and (8.6):

S|\

Bo M; N
PIPIPI
CFy="— ]_Al]_ (8.5)
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Cijt
il

M=
gt

1

1
N (8.6)

CFoij =

where M; is the number of bit-planes of each band 7, N the total number of WZ
frames, C;; the number of bits in each original coefficient bit-plane j of each band ¢
at frame /, and w;;; is the amount of parity bits sent for each bit-plane j of band 7 at
frame /, Bg is the number of bands considering the quality level, Q. CFg;; given by (8.6)
represents the average compression factor at bit-plane j of band 7 for a certain quality
level Q.

Performing a study of the bit-plane compression factors for the various DCT coef-
ficients bands is extremely useful because it allows detecting where inefficiencies
are located to develop more advanced solutions. For example, it may allow locating
bands for which WZ coding is not efficient due to the lack of temporal correlation;
this approach is followed by the PRISM codec [16].

Results and Analysis

Figure 8.11 shows the average bit-plane compression factor per band for Q; =4
(medium bit rates) and 8 (high bit rates) for GOP =2 and for the four test video
sequences. The following conclusions can be inferred:

m In a general way, the least significant bit-planes (LSBs) have lower compression
factors when compared to the most significant bit-planes (MSB and MSB-1). This
behavior is observed because the correlation between the side information and
the original bit-planes decreases when the bit-plane number index increases,
especially for bands for which syndrome bits are sent for a high number of
bit-planes (e.g., DC and AC1-2). This suggests that more advanced quantization
and/or correlation noise models can further improve the performance in such
cases. Note that the compression factor is always greater than 1 and that bit rate
expansion does not occur for LDPC codes.

m In a general way, for the AC bands, the highest compression factor is achieved
for the MSB-1. In this case, the decoder makes use of the a priori information
about the decoding of the MSB (obtained through the correlation model). Since
the MSB-1 and MSB are quite correlated, it is possible to achieve higher compres-
sion factors. This correlation is lower for other bit-planes, and, therefore, lower
compression ratios are achieved.

m The last AC bands usually have high compression ratios for both bit-planes
because they only have four wide bins (2 bit-planes); therefore, the correlation
between the side information and the WZ frame is high, and large compres-
sion ratios can be achieved. When more bit-planes are considered in each band,
the number of bins increases (and thus they are smaller) and more errors
occur; that is, the mismatch between the side information bin and the WZ
frame bin increases (a low correlation is observed), decreasing the compression
factor.
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Bit-plane compression factor for Q=4 and 8 (GOP = 2).
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Measuring the Feedback Channel Rate

In the DISCOVER WZ video coding architecture, the feedback channel has the role
to adapt the bit rate to the changing statistics between the side information (an esti-
mation of the frame to be encoded) and the WZ frame to be encoded, that is, to the
quality (or accuracy) of the frame interpolation process. Therefore, contrary to con-
ventional codecs, it is the decoder’s responsibility to perform rate control and, in this
way, to guarantee that only a minimum number of parity bits are sent to correct the
mismatches/errors present in each side information bit-plane. The DISCOVER WZ
codec does not use a pure decoder rate control but rather a hybrid rate control-
approach, which means that fewer requests are made, lowering the feedback channel
rate. Still, it is important to be aware of the feedback channel usage and impact in
order to design more efficient and lower complexity WZ video codecs.

Defining the Metrics
In order to measure the feedback channel rate for each DCT band and bit-plane, it is
assumed that only one bit is required by the decoder to inform the encoder if more
parity bits are needed to successfully decode the current bit-plane. If more parity
bits are needed, the decoder sends the bit “1” via the feedback channel; otherwise,
the bit “0” is transmitted, and the encoder, receiving such bit, sends parity bits for the
next bit-plane to be decoded. This is clearly a simplistic solution since more bits are
needed, depending on the transmission protocol used; however, this simple approach
is enough to have an idea on the feedback channel rate.

Since only one bit is transmitted via the feedback channel for each decoder request,
the total feedback channel rate at frame Rg,and bit-plane Rg;; levels for a certain quality
level Q, can be obtained from (8.7) and (8.8), respectively.

BQ M; N
>0 > m
i=1j=11=1
Ry =" X[ (8.7)
N
> g
l:
Roj="2—xr (8.8)

In (8.7) and (8.8), f is the WZ frame rate and 7;; is the number of bits sent via the
feedback channel for jth bit-plane of WZ frame /, DCT band #; N is the total number
of WZ frames, M; is the number of bit-planes for DCT band #,and By is the number of
bands considering a certain quality level, Q. Rpj; is a partial result of (8.7),representing
the average feedback channel rate per frame for bit-plane j of DCT band 7 for a certain
quality level Q.

Results and Analysis

Figure 8.12 shows the average feedback channel rate for Q; =4 and 8, for the four
selected video sequences, and for GOP = 2. As can be observed, the number of bits
sent through the feedback channel, for each band, increases with the bit-plane number
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FIGURE 8.12
Feedback channel rate for Q;=4 and 8 (GOP = 2).

to be decoded; the lower correlation between the side information and the WZ frame
for LSB bit-planes is the main reason for that behavior.

Table 8.2 to Table 8.5 show the total feedback rate for the selected test sequences
for each Q; for GOP =2, 4, and 8, respectively. It can easily be seen that the feedback
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Table 8.2 Feedback Channel Rate (bps) Table 8.3 Feedback Channel Rate
for the Coast Guard Sequence (bps) for the Hall Monitor Sequence

Q; GOP 2 GOP 4 GOP 8 Q; GOP 2 GOP 4 GOP 8

1 132.59 327.36 551.85 1 109.60 222.51 321.82
2 179.94 437.61 697.66 2 146.09 294.29 417.55
3 216.34 525.05 853.44 3 173.04 362.08 574.15
4 377.68 996.63 1634.79 4 263.69 606.95 978.49
5 403.73 1075.75 1757.23 5 289.79 665.22 1104.34
6 593.47 1565.25 2510.35 6 410.73 942.56 1485.84
7 829.51 2150.83 3323.16 7 512.53 1181.35 1761.99
8 1514.88 3917.22 5835.58 8 821.26 1937.46 2804.30

Table 8.4 Feedback Channel Rate (bps) Table 8.5 Feedback Channel Rate
for the Soccer Sequence (bps) for the Foreman Sequence

Q; GOP 2 GOP 4 GOP 8 Q; GOP 2 GOP 4 GOP 8

1 365.68 875.29 1250.50 1 222.49 580.70 889.67
2 430.33 1031.28 1455.37 2 284.64 722.59 1087.97
3 498.08 1207.75 1723.70 3 333.48 850.91 1282.86
4 857.81 2094.51 2974.20 4 590.37 1555.05 2367.78
5 919.06 2238.27 3175.56 5 663.12 1730.02 2629.46
6 1211.20 2925.92 4137.77 6 916.41 2366.74 3553.20
7 1542.28 3720.81 5242.56 7 1181.90 3065.26 4609.26
8 2372.39 5663.22 7951.66 8 1937.21 4935.68  7266.50

channel rate is rather negligible; the maximum feedback channel rate corresponds
to less than 8kbps for Q; =8, for GOP =8, for the sequence Soccer (as expected
since Soccer has the worse side information due to the high motion). Although it
is not shown, the hybrid encoder/decoder rate control plays a central role, low-
ering the feedback channel rate when compared to a pure decoder rate control

solution.
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8.6.3 Complexity Performance Evaluation

Because evaluating the RD performance addresses only one side of the problem, this
section intends to perform an evaluation of the complexity performance for the
DISCOVER WZ video codec. Although it is commonly claimed that DVC “encoding
complexity is low” and “decoding complexity is high,” few complexity evaluation
results are available in the literature.

‘While it is possible to measure the encoding and decoding complexities in many
ways, some of them rather sophisticated, it is also possible to get a rather good esti-
mation of relative complexities using rather simple complexity metrics. Here, the
encoding and decoding complexities will be measured by means of the encoding and
decoding times for the full sequence, in seconds, under controlled conditions. It is
well known that the encoding (and decoding) times are highly dependent on the used
hardware and software platforms. For the present results, the hardware used was an
x86 machine with a dual core Pentium D processor at 3.4 GHz with 2048 MB of RAM.
Regarding the software conditions, the results were obtained with aWindows XP oper-
ating system, with the C++ code written using version 8.0 of the Visual Studio C++
compiler, with optimizations parameters on, such as the release mode and speed opti-
mizations. Besides the operating system, nothing was running in the machine when
gathering the performance results to avoid influencing them. Under these conditions,
the results have a relative and comparative value, in this case allowing comparing the
DISCOVER WZ video codec with alternative solutions, for example, H.264/AVC JM9.5
reference software, running in the same hardware and software conditions. While the
degree of optimization of the software has an impact on the running time, this is a
dimension that was impossible to fully control in this case and thus will have to be
kept in mind when dealing with the provided performance results.

8.6.3.1 Measuring the Encoding Complexity

This section targets the complexity evaluation of the encoding process. The encod-
ing complexity includes two major components: the WZ frames encoding and the
key frames encoding parts. The larger the GOP size, the smaller the number of key
frames coded and, thus, the lower will be the share of the key frames in the overall
complexity.

Defining the Metrics

Although it is possible to measure the encoding complexity in many ways, some of
them rather sophisticated, it is also possible to get a rather good “feeling” of relative
complexities using rather simple complexity metrics. In this section, the encoding
complexity will be measured by the encoding time for the full sequence, in seconds,
under the conditions stated above.

Results and Analysis
Figure 8.13 and Table 8.6 to Table 8.9 show the encoding complexity results for var-
ious GOP sizes measured in terms of encoding time, distinguishing between key
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FIGURE 8.13
Encoding complexity measured in terms of encoding time (GOP = 2).

frames (blue) and WZ frames (red) encoding times. The results allow concluding
that:

m For the DISCOVER WZ codec, the WZ frames encoding complexity is negligi-
ble when compared to the key frames encoding complexity, even for GOP = 2.
The DISCOVER encoding complexity is always much lower than the H.264/AVC
encoding complexity, for both the H.264/AVC Intra and H.264/AVC No Motion
solutions.

m Although the H.264/AVC Intra encoding complexity does not vary with the GOP
size and the H.264/AVC No Motion encoding complexity is also rather stable
with a varying GOP size, the DISCOVER encoding complexity decreases with
the GOP size. For longer GOP sizes, the overall encoding complexity decreases
with the increase of the share of WZ frames regarding the key frames. In this
case, the key frames share decreases, although their encoding complexity is still
the dominating part.

m If encoding complexity is a critical requirement for an application, the results in
this section together with the RD performance results previously shown indicate
that the DISCOVER WZ video codec with GOP =2 is a credible solution since
it has a rather low encoding complexity and beats H.264/AVC Intra in terms of
RD performance for most cases.

m Another important result is that the WZ encoding complexity does not increase
significantly when the Q; increases, that is, when the bit rate increases.

m The encoding complexity is rather similar for the LDPC and turbo coding alter-
natives for all GOP sizes. This shows that the adopted LDPC encoding solution
does not significantly increase the encoding complexity when compared to the
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Table 8.6 Encoding Time (s) Comparison for the Coast Guard Sequence

H.264/AVC DISCOVER Ratios
Intra No Motion Using LDPC Codes Using Turbo Codes Hnﬁgg@ﬁi Tlt;:cvs'
| aP GOP2 GOP4 GOP8 GOP2 GOP4 GOP8 GOP2 GOP4 GOP8 GOP2 GOP4 GOPS8
38 3504 3536 3563 3489 2058 1222 828 2031 11.84 788 1.70 2.87 4.23
37 36.10 3631 3659 3586 21.07 1247 853 2081 1206 809 171 2.90 4.23
37 36.12 3633 3659 358 21.11 1256 863 2081 1216 817 171 2.88 4.18
34 3922 3953 3989 39.02 2274 1352 9.06 2241 13.04 857 172 2.90 4.33
33 4043 4088 41.28 4052 2325 1377 931 2292 1330 879 174 2.94 4.34
31 4335 43.64 43.89 4298 2479 1470 983 2446 1421 931 175 2.95 441
30 4447 4513 4539 4456 2549 1514 1022 2510 1461 9.63 1.74 2.94 4.35
26 5129 51838 5231 51.13 29.09 1731 1152 2872 16.67 1091 1.76 2.96 4.45

vee

90UBLLIOUAd PUE ‘SI8P0Y ‘Slseq :BUIPOY 03PIA PaINGLISId 8 HALAYHI




Table 8.7 Encoding Time (s) Comparison for the Hall Monitor Sequence

H.264/AVC DISCOVER Ratios
Intra No Motion Using LDPC Codes Using Turbo Codes anlgg{]Av\g Il'_llt;:cvs'
| QP GOP2 GOP4 GOP8 GOP2 GOP4 GOP8 GOP2 GOP4 GOP8 GOP2 GOP4 GOPS8
37 3930 39.27 3955 3858 23.05 1371 9.19 2285 1321 862 1.70 2.87 4.28
36 39.70 40.00 40.25 3942 2331 138 941 2315 1337 881 1.70 2.87 4.22
36 39.73 40.08 40.26 3944 2334 1386 942 2317 1338 882 1.70 2.87 4.22
33 4222 4266 43.06 4217 2465 1472 995 2454 1422 939 171 2.87 4.24
33 4229 4277 4316 4220 2473 1472 997 2457 1423 941 171 2.87 4.24
31 4430 4483 4497 4402 2589 1552 1050 2582 1490 983 171 2.85 4.22
29 4622 4691 4741 4638 2696 16.12 1094 2671 1550 1028 1.71 2.87 4.23
24 5258 5350 54.09 53.09 3032 1817 1250 2997 1749 1159 1.73 2.89 421
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Table 8.8 Encoding Time (s) Comparison for the Soccer Sequence

H.264/AVC DISCOVER Ratios
Intra No Motion Using LDPC Codes Using Turbo Codes Hnﬁgg@ﬁi Tlt;:cvs'
| aP GOP2 GOP4 GOP8 GOP2 GOP4 GOP8 GOP2 GOP4 GOP8 GOP2 GOP4 GOPS8
44 30.19 30.38 30.70 30.13 18.17 11.06 7.64 17.84 10.67 731 166 2.73 3.95
43 3053 30.77 31.06 3045 1830 11.16 786 17.98 10.77 742 167 2.74 3.88
41 3094 3131 31.80 3122 1862 11.28 789 1831 1088 744 1.66 2.74 3.92
36 3327 3371 3444 3375 19.83 1205 840 1948 11.62 791 1.68 2.76 3.96
36 3336 3388 3458 3377 19.88 12.08 842 1961 1162 793 1.68 2.76 3.96
34 3494 3531 3569 3505 2069 1267 880 2034 1209 828 169 276 3.97
31 3755 3797 3847 3769 2217 1342 938 21.78 1287 879 1.69 2.80 4.00
25 4533 4570 46.09 45.09 2623 1589 1080 2583 1527 1022 1.73 2.85 4.20
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Tahle 8.9 Encoding Time (s) Comparison for the Foreman Sequence

H.264/AVC DISCOVER Ratios
Intra No Motion Using LDPC Codes Using Turbo Codes anlgg{]Av\g Il'_llt;:cvs'
| QP GOP2 GOP4 GOP8 GOP2 GOP4 GOP8 GOP2 GOP4 GOP8 GOP2 GOP4 GOPS8
40 3267 3314 3364 3297 1944 1158 802 1914 1126 758 1.68 2.82 4.08
39 3330 3381 3441 3372 1975 11.80 809 1947 1142 7.69 1.69 2.82 4.11
38 3378 3434 3488 3415 2005 1195 822 19.73 1157 779 1.69 2.83 4.11
34 3711 3760 3821 3734 2167 1294 879 2139 1248 833 171 2.87 4.22
34 37.13 3761 3829 3734 2168 1300 880 2139 1253 834 171 2.86 4.22
32 3894 3955 40.18 3923 2278 1366 937 2238 1314 879 171 2.85 4.15
29 4233 43.11 4373 4272 2449 1458 994 2413 1407 934 1.73 2.90 4.26
25 4856 48.89 4954 4817 2772 1661 1123 2736 1598 1055 1.75 2.92 4.32
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turbo encoding; the LDPC main benefits in terms of complexity only regard the
decoding phase as it will be shown next.

Measuring the Decoding Complexity

This section targets the complexity evaluation of the decoding process. Again, the
decoding complexity includes two major components,which are the WZ frames decod-
ing and the key frames decoding parts. The larger is the GOP size, the smaller the
number of key frames coded and, thus, the lower the complexity share of the key
frames in the overall decoding complexity.

Defining the Metrics

Following the options taken for the encoding complexity evaluation, the decoding
complexity evaluation will be measured using an equivalent metric for the decoder.
This means the decoding time for the full sequence, in seconds, under the same
conditions and software/hardware platform.

Results and Analysis
Tables 8.10 to 8.13 show the decoder complexity results for GOP =2, 4, and 8,
measured in terms of decoding time. No charts are presented because only the bars
corresponding to the WZ frames decoding times would be visible since the key frames
decoding times are negligible regarding the WZ frames decoding times. The results
allow concluding that:

m For the DISCOVER codec, the key frames decoding complexity is negligible
regarding the WZ frames decoding complexity, even for GOP = 2 (when there

Table 8.10 Decoding Time (s) Comparison for the Coast Guard Sequence
H.264/AVC DISCOVER
Intra No Motion Using LDPC Codes Using Turbo Codes
‘QP GOP2 GOP4 GOP8 GOP2 GOP4 GOP8 GOP2 GOP4 GOP8

38 155 156 156 153 430.27 709.75 986.66 440.89 691.36 890.94

37 158 161 156 156 48589 776.86 1048.20 51261 796.70 994.88

37 161 164 158 157 531.17 894.77 1226.23 579.48 908.95 1150.61

34 164 166 170 166 796.69 1525.11 2168.36 874.58 1463.97 1885.91

33 1.70 1.75 177 169 824.23 1628.22 2329.80 931.80 1564.95 2024.33

31 1.72 1.81 178 1.80 1144.45 2254.47 3193.66 1229.36 2093.36 2708.59

30 1.75 1.88 1.81 1.81 1497.25 2802.48 3856.28 1566.00 2668.41 3375.45

26 1.92 2.05 2.03 194 2461.73 4462.38 5872.11 2500.95 4309.33 5428.16




8.6 The DISCOVER Codec Performance

Table 8.11 Decoding Time (s) Comparison for the Hall Monitor Sequence
H.264/AVC DISCOVER
Intra No Motion Using LDPC Codes Using Turbo Codes
‘QP GOP2 GOP4 GOP8 GOP2 GOP4 GOP8 GOP2 GOP4 GOP8

37 172 163 161 155 36052 524.11 641.33 417.14 607.66 685.36

36 1.75 164 161 156 391.14 55422 69258 469.14 662.31 73891

36 1.77 165 162 157 41450 599.67 739.19 532.13 750.00 849.83

33 1.78 1.69 1.63 158 54575 886.86 117591 711.56 1052.36 1225.17

33 1.83 1.70 166 158 566.70 907.28 1195.64 766.23 1138.89 1319.63

31 1.84 1.75 166 160 732.00 1197.86 1612.94 946.53 1422.38 1639.22

29 1.89 175 1.69 1.63 859.97 1417.86 1863.14 1129.14 1699.98 1988.53

24 208 195 1.83 1.79 1210.47 2011.45 2526.56 1567.86 2407.45 2846.80

Table 8.12 Decoding Time (s) Comparison for the Soccer Sequence
H.264/AVC DISCOVER
Intra No Motion Using LDPC Codes Using Turbo Codes
aP GOP 2 GOP 4 GOP8 GOP2 GOP4 GOP8 GOP2 GOP4 GOP8

44 144 149 146 1.43 1072.96 1673.20 1955.53 824.28 1300.64 1527.80

43 1.44 150 148 1.44 1092.14 1733.53 2015.23 893.97 1411.63 1661.63

41 145 152 152 146 1288.43 2076.72 2436.09 1015.11 1622.06 1917.89

36 1.52 160 1.61 1.53 1981.15 3210.11 3775.03 1601.84 2577.00 3051.41

36 1.53 1.60 1.62 1.53 2140.70 3435.02 4029.86 1708.45 2748.72 3246.23

34 156 160 1.65 1.57 2636.76 4190.78 4882.00 2166.38 3473.70 4088.52

31 164 167 172 1.64 2969.98 4785.70 5559.48 2590.81 4165.30 4920.08

25 1.83 1.87 192 1.83 3874.17 6243.50 7407.88 3704.17 5997.52 7089.14

are more key frames). This confirms the well known WZ coding trade-off where
the encoding complexity benefits are paid in terms of decoding complexity.
Contrary to the encoding complexity, the longer is the GOP size, the higher
is the overall decoding complexity since the higher is the number of WZ
frames.
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Table 8.13 Decoding Time (s) Comparison for the Foreman Sequence
H.264/AVC DISCOVER
Intra No Motion Using LDPC Codes Using Turbo Codes
‘QP GOP2 GOP4 GOP8 GOP2 GOP4 GOP8 GOP2 GOP4 GOP8

40 155 153 153 150 664.06 1150.11 1486.70 590.47 983.92 1237.19

39 155 155 1.53 1.52 729.45 1237.47 1605.34 680.80 1124.59 1402.70

38 1.58 155 158 1.53 848.45 1482.45 1904.23 768.25 1280.75 1606.08

34 164 166 166 164 1362.45 2536.06 3293.84 1219.88 2105.47 2663.94

34 166 1.67 169 1.64 1541.00 2824.58 3641.94 1346.77 2319.48 2930.91

32172 1.73 1.77 1.70 2041.53 3640.48 4586.58 1765.06 3030.48 3808.64

29 183 183 1.84 1.81 235256 4273.28 5551.36 2148.23 3738.67 4728.45

25 192 197 198 1.94 3254.92 5901.63 7640.66 3207.05 5535.03 6974.56

m The DISCOVER decoding complexity is always much higher than the H.264/AVC
decoding complexity, both for the H.264/AVC Intra and H264/AVC No Motion
solutions. While the H.264/AVC Intra decoding complexity does not vary with
the GOP size and the H.264/AVC No Motion decoding complexity is also rather
stable with a varying GOP size, the DISCOVER decoding complexity increases
with the GOP size.

m As can be observed, the WZ decoding complexity increases significantly when
the Q; increases (i.e., when the bit rate increases) since the number of bit-
planes to LDPC decode is higher and the LDPC decoder (and the number
of times that is invoked) is responsible for most of the decoding complexity
share.

m Regarding the decoding complexity comparison between LDPC and turbo codes,
the results seem to say that,while LDPC wins for more quiet sequences, for exam-
ple, Hall Monitor and Coast Guard for GOP = 2, turbo codes win for sequences
with more motion, for example, Soccer and Foreman.

The decoding complexity results also reveal that the most significant complexity
burden is associated with the Slepian-Wolf decoding and the repetitive request-decode
operation; this burden would be even higher if no encoder rate estimation was made.
This fact highlights how important it is to reduce the number of decoder requests,
not only by improving the side information quality, but also by adopting adequate
rate control strategies such as efficient hybrid encoder-decoder rate control where
the encoder estimates the rate and the feedback channel serves only to complement
the estimated rate when the (under)estimation is not good enough. The side informa-
tion creation time share typically decreases when Q; increases since the number of
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bit-planes to LDPC decode is higher; on the contrary, the LDPC decoding time share
increases with Q; when compared to the remaining modules.

8.7 FINAL REMARKS

This chapter has reviewed the state-of-the-art on distributed video coding, going from
the basics and the first WZ video codecs to the more recent developments repre-
sented by the DISCOVER WZ video codec. Although it is difficult to state, at this stage,
if any video coding product will ever use distributed source coding (DSC) princi-
ples, and for what purpose, it is most interesting to study and research toward this
possibility.

In terms of RD performance, the DISCOVER video codec already wins against the
H.264/AVC Intra codec, for most test sequences, and for GOP = 2; for more quiet
sequences, the DISCOVER codec may even win against the H.264/AVC No Motion
codec. For longer GOP sizes, winning against H.264/AVC Intra is more difficult, high-
lighting the importance and difficulty of getting good side information, notably when
key frames are farther away. The feedback channel rate is rather low since a reduced
number of requests are made after the initial encoder rate estimation. However, the
use of a feedback channel adds delay and requires a real-time setup. To address this
limitation, allowing Stanford-based WZ video codecs to be applicable to applications
that do not have a feedback channel, for example, storage applications, a WZ video
codec with encoder rate control (without feedback channel) has also been developed
in the DISCOVER project [37]. This first feedback channel-free WZ video codec pays
a RD performance loss up to 1.2 dB, especially for the highest bit rates, to avoid usage
of the feedback channel by using a pure encoder-based rate control.

The DISCOVER encoding complexity is always much lower than the H.264/AVC
Intra encoding complexity, even for GOP =2 where it performs better in terms of
RD performance. Since the DISCOVER codec performs better than H.264/AVC Intra
for GOP = 2, for most sequences, this highlights that Wyner-Ziv coding is already a
credible solution when encoding complexity is a very critical requirement (even if
at the cost of some additional decoding complexity). Good examples of these appli-
cations may be deep space video transmission, video surveillance, and video sensor
networks.

Further WZ video coding research should address issues such as side information
creation, progressive side information refinement, correlation noise modeling, novel
channel codes, rate control, and spatial and temporal adaptive WZ coding. Recent
developments have shown that WZ video coding is still at a rather immature stage com-
pared with the level of optimization of the alternative solutions, and thus significant
gains can still be obtained for most of the WZ video architecture modules.

Itis presently more and more accepted that DSC principles are leading to a variety of
tools that may help to solve different problems,not only coding but also,authentication,
tampering detection [53], and secure biometrics [54]. The future will tell in which
application domains distributed source coding principles will find success.
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9.1 INTRODUCTION

Transmission of video data from multiple sensors over a wireless network requires
an enormous amount of bandwidth and could easily overwhelm the system. How-
ever, by exploiting the redundancy between the video data collected by different
cameras, in addition to the inherent temporal and spatial redundancy within each

Distributed Source Coding: Theory, Algorithms, and Applications
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video sequence, the required bandwidth can be significantly reduced. Well-established
video compression standards, such as MPEG-1, MPEG-2, MPEG-4, H.261, H.263, and
H.264, all rely on efficient transform coding of motion-compensated frames, using
the discrete cosine transform (DCT) or computationally efficient approximations
to it. However, they can only be used in a protocol that encodes the data of each
sensor independently. Such methods would exploit spatial and temporal redundancy
within each video sequence but would completely ignore the redundancy between the
sequences.

In this chapter, we develop novel multiterminal, model-based video coding algo-
rithms combining distributed source coding (DSC) and computer vision techniques. In
broad terms, our schemes rely on model-based tracking of individual video sequences
captured by cameras (which could be located arbitrarily in space),leading to removal
of spatial, temporal, and inter-camera redundancies. The presence of the three-
dimensional (3D) model provides correspondence between overlapping feature points
in the different views, provided that the tracking of the individual sequences is accu-
rate. The performance of our algorithm depends, most crucially, on the quality of
tracking and the coding efficiency of the distributed quantization scheme. The track-
ing must result in correspondences between pixels that are maximally correlated, and
the distributed coding must optimally exploit this correlation.

Although DSC was introduced more than three decades ago by Slepian and
Wolf [17], and underlying ideas as to how it should be practically implemented were
outlined by Wyner [20], the papers by Zamir and Shamai [25] and Pradhan and
Ramchandran [13] arguably demonstrated the feasibility of implementing distributed
source codes for the first time. Following the publication of these papers, consider-
able effort has been devoted to adapting DSC ideas to application scenarios such as
distributed image and video coding (e.g., [5, 6, 14, 19, 24, 26]), but the results have
been mixed. The reason is that while distributed processing appears to be a natural
choice in many scenarios, the conditions necessary for known DSC schemes to per-
form well are rarely satisfied, and the more mature non-DSC techniques either easily
outperform the DSC schemes or the gains of DSC schemes are relatively small. We
make similar observations in this work. More specifically, the gains we achieve over
separate coding are diminished because it seems that the temporal redundancies are
much larger than the intercamera ones. The exception is at very low rates where even
small gains become significant. In this chapter, we therefore focus on very low bit
rates.

Although early work on distributed video coding focused on the single-view case,
some attention has been given to applying distributed coding for multiview video as
well [1,7, 12, 18]. Most of this work has been on block-based coding, and, as in our
work,a key issue is construction of side information to optimally exploit intrasequence
memory and intersequence correlation.

The rest of the chapter is organized as follows. Section 9.2 outlines the model-based
tracking algorithm; Section 9.3 presents an overview of our approach to distributed
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video coding; Section 9.4 gives some experimental results; and finally, Section 9.5
presents the conclusion and discusses some avenues for future research.

MODEL TRACKING

Numerous methods exist for estimating the motion and shape of an object from video
sequences. Many of these methods can handle significant changes in the illumination
conditions by compensating for the variations [4, 8, 9]. However, few methods can
recover the 3D motion and time-varying global illumination conditions from video
sequences of moving objects. We achieve this goal by building on a recently proposed
framework for combining the effects of motion, illumination, 3D shape, and camera
parameters in a sequence of images obtained by a perspective camera [21, 22]. This
theory allows us to develop a simple method for estimating the rigid 3D motion,
as presented in [21]. However, this algorithm involves the computation of a bilinear
basis (see Section 9.2.1) in each iteration, which is a huge computational burden.
In this chapter, we show that it is possible to efficiently and accurately reconstruct
the 3D motion and global lighting parameters of a rigid and nonrigid object from a
video sequence within the framework of the inverse compositional (IC) algorithm [2].
Details of this approach are available in [23].

A well-known approach for 2D motion estimation and registration in monocular
sequences is Lucas-Kanade tracking, which attempts to match a target image with
a reference image or template. Building on this framework, a very efficient tracking
algorithm was proposed in [8] by inverting the role of the target image and the tem-
plate. However, this algorithm can only be applied to restricted class of warps between
the target and template (for details, see [2]). A forward compositional algorithm was
proposed in [16] by estimating an incremental warp for image alignment. Baker and
Matthews [2] proposed an IC algorithm for efficient implementation of the Lucas-
Kanade algorithm to save computational cost in reevaluation of the derivatives in
each iteration. The IC algorithm was then used for efficiently fitting active appearance
models [11] and the well-known 3D morphable model (3DMM) [15] to face images
under large pose variations. However, none of these schemes estimates the lighting
conditions in the images. A version of 3DMM fitting [3] used a Phong illumination
model, estimation of whose parameters in the presence of extended light sources can
be difficult.

Our lighting estimation can account for extended lighting sources and attached
shadows. Furthermore, our goal is to estimate 3D motion, unlike in [4, 8, 16], works
that perform 2D motion estimation. The warping function in the present work is
different from [2, 15],as we explain in Section 9.2.2. Since our IC approach estimates
3D motion, it allows us to perform the expensive computations only once every few
frames (unlike once for every frame as in the image alignment approaches of Baker
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and Matthews [2]). Specifically, these computations are done only when there is a
significant change of pose.

Image Appearance Model of a Rigid Object

Our goal is to describe the appearance of an image in terms of the 3D rigid motion
and the overall lighting in the scene. For this purpose, we derive a generative image
appearance model that is a function of these parameters. Given a sequence of images,
we can estimate the parameters that lead to the best fit with this model. Details of the
generative model, as well as the estimation framework, are available in [21,22]. A brief
overview is provided here.

In [21], it was proved that if the motion of the object (defined as the translation
of the object centroid AT € R3*! and the rotation vector AQ e R3*! about the cen-
troid in the camera frame) from time #; to new time instance f, =#; + ¢ is small,
then up to a first-order approximation, the reflectance image I(x,y) at ¢ can be
expressed as

9
I, (V)= IPDE V) (9.1)

i=1

where
b7 (v) = b (v) + A(v, n)AT + B(v, n)AQ.

In these equations, v represents the image point projected from the 3D surface with
surface normal n, and b? (v) are the original basis images before motion (precise

format of b} (v) is defined in [21]). L, =[] ... lfvl]T is the vector of illumination param-
eters. A and B contain the structure and camera intrinsic parameters,and are functions
of v and the 3D surface normal n. For each pixel v,both A and B are N; X 3 matrices,
where N; 29 for Lambertian objects with attached shadows. A derivation of (9.1) and
explicit expressions for A and B are presented in [21]. For the purposes of this chapter,
we only need to know the form of the equations.

The left side of Equation (9.1) is the image at time £, which is expressed in terms of
the basis images and the lighting coefficients on the right-hand side. The basis images,
in turn, depend on the motion of the object between two consecutive time instants.
Thus, Equation (9.1) expresses the image appearance in terms of the object’s 3D pose
and the scene lighting.

We can express the result in (9.1) succinctly using tensor notation as

AT
Itz = <Bt1 +Ctl X2 |:AQ:|> X11t27 (92)

where X, is called the mode-n product [10] and 1eRM js the N;-dimensional
vector of I; components. More specifically, the mode-n product of a tensor
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AeRIXEX XX XIN by g yector VeR™* 1 denoted by A X, V,is the Iy X, X...
X 1 X...XlIy tensor

(AXa Vi g Vi1 = D @iy 1inins 1.y Vi
In
Thus, the image at £, can be represented using the parameters computed at £;. For each
pixel (p, g) in the image,Cp, =[A  B] of size N; X 6. Thus for an image of size M X N,
Cis Ny XG6XM XN, By, is a subtensor of dimension N; X 1 XM X N, comprising the
basis images b? (u), and Z;, is a subtensor of dimension 1 X1 XM X N, representing
the image.

Inverse Compositional Estimation of 3D Motion and Illumination

We now present the estimation algorithm for the bilinear model in Equation (9.2). The
detailed proof of convergence and extension to video for the rigid motion case can
be found in [23].

‘We begin by estimating the 3D motion assuming that illumination is constant across
two consecutive frames. We will then estimate variations in illumination. Let p € ROX1
denote the pose of the object. Then the image synthesis process can be considered as a
rendering function of the object at pose p in the camera frame to the pixel coordinates
v in the image plane as f (v, p). Using the bilinear model described above, it can be
implemented with Equation (9.2). Given an input image I(v), we want to align the
synthesized image with it so as to obtain

f)=argmgn2(f(v, p)—I(V))Z, 9.3)

where p denotes the estimated pose for this input image 7 (v). This is the cost function
of Lucas-Kanade tracking in [2] modified for 3D motion estimation.

We will consider the problem of estimating the pose change, my = Ap;, between
two consecutive frames, I;(v) and I; 1 (v). Let us introduce a warp operator W : R? —
R? such that, if we denote the pose of I;(v) as p,the pose of I;(Wp (v, Ap)) is p+ Ap
(see Figure 9.1). Specifically, a 2D point on the image plane is projected onto the 3D
object surface. Then we transform the pose of the object surface by Ap and back-
project the point from the 3D surface onto the image plane. Thus, W, represents the
displacement in the image plane due to a pose transformation of the 3D model. Note
that this warping involves a 3D pose transformation (unlike [2]). In [15], the warp-
ing was from a point on the 3D surface to the image plane and was used for fitting
a 3D model to an image. Our new warping function can be used for the IC estima-
tion of 3D rigid motion and illumination in video sequence, which [2] and [15] do
not address.

A key property of {Wp} is that these warps form a group with respect to function
composition (see [23] for a detailed proof of this and other properties of the set of
warps), which is necessary for applying the IC algorithm. Here we will only show
how the inverse of a warp is another warp. The inverse of the warp W is defined
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3D Model

~ Pose p + Ap

I(We(v, Ap), 1)

Pose p

FIGURE 9.1

Illustration of the warping function W. A point v in image plane is projected onto the surface of the
3D object model. After the pose transformation with Ap, the point on the surface is backprojected
onto the image plane at a new point u. The warping function maps from veR? to ue R2. The red
ellipses show the common part in both frames upon which the warping function W is defined.

to be the R? — R? mapping such that if we denote the pose of I;(v) as p, the pose
of I} (Wp(Wp(V, Ap), Ap)fl) is p itself. As the warp Wy (v, Ap) transforms the pose
from p to p + Ap, the inverse Wy (v, Ap) ! should transform the pose from p + Ap
to p, that is, Wp (v, Ap) ! =Wy ap(V, —Ap).

Using this warp operator, for any frame I;(v), we can write the cost function as

m, = arg min Z (f v, Prey) — L (W, (v, —m)))z. (9.4)

Rewriting the cost function (9.4) in the IC framework [2], we consider minimizing

. R 2
arg min ; (f(Wf,t_1 (v,Am),p, ) —L(Wp, (v, —m))) 9.5)

with the update rule
Wf)’*l (v, —m) <_Wf’t—1 (v, —m) on’t—l v, Am)_l . (9.6)

The compositional operator o in Equation (9.6) means the second warp is com-
posed into the first warp, that is, Wf,tfl(v, —m)EWf,H(Wf,tfl(v, Am)*l, —m).
According to the definition of the warp W, we can replace f(Wp,_ (v, Am), f)tﬂ)
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in (9.5) with f(v, p,_; + Am). This is because f(v, p,_; + Am) is the image synthe-
sized at p;—1 + Am, while f (\"Vf,t_1 (v, Am), ]A)tf 1) is the image synthesized at p;—;
followed with the warp of the pose increments Am. Applying the first-order Taylor
expansion on it, we have

. I (v. P) :
> (f Ve Bpn) 5 ey S (W, (v, —m) )
\4
Taking the derivative of the above expression with respect to Am and setting it to be
zero, we have

> (b + G, Am LW, (v —m) Gy, =0.

where gv‘f,H is the derivative % lp=p,_,- Solving for Am, we get:

Am =Hjc Z Gvip, (I (Wp,_, (v, —m) —f (v, P;—1)) 9.7)

where

-1
Hyc = |:Z gv|f)t—1g3|f’tl:| '

Note that the derivative Gy, Py and Hessian Hyc in (9.7) do not depend on the updating
variable m, which is moved into the warp operator W.The computational complexity
of Wy (v, —m) will be significantly lower than that of recomputing Gy|p, _, +m and
the corresponding Hessian H in every iteration.

Reintroducing the illumination variation, the lighting parameter 1 can be estimated

using
1= (Bl(l)Bgr(l))_lBl(l)I(TI)’

where the subscript (/) indicates the unfolding operation [10] along the illumina-
tion dimension. That is, assuming an Nth-order tensor .AeRN*2X-XIy
the matrix unfolding A, € RI#*UntilnrzINiil2z-In-1)  contains the element
Qi i..iy At the position with row number 7, and column number equal to
(n+1 = Dilps2lpy+s .. INLI .. Dy—1 + (pr2— Dilyi3lyyg. . INLT . Dy +-- - +
n—Dhiy...In 1+ — DRI .. Iy 1+ +ipq.

Following the same derivation as (9.7), we have

Am=Hic Y Cyp,_, 1D (1Wp,_, v, —m) =Byp,_, X11)  ©.8)
v

where

-1
Hic = [Z(cvf,,l X11)(Cypp,_, ><1i>T} :
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9.3 DISTRIBUTED COMPRESSION SCHEMES

The distributed compression schemes discussed in this section can all be represented
by the block diagram of Figure 9.2. The choices we make for the following blocks
result in the various schemes as described later in this section.

m Feature extraction
m Mode decision
m Side information extraction

I Ir
e I
| Estimate ! | Estimate !
I I
| Pose | | Pose |
| Y ! | Y !
! Feature [« T T ; > Feature I
I Extraction |« ! : »| Extraction |
! | ! |
| b !
I I
! Mode I | Mode oA !
: Decision : : Decision 4 :
I
! | ! :
! | ! |
| Y \ | | \ |
! | ! |
Nl De I ! De I
! P |
! | ! |
! | ! |
! | ! |
i L :
: ENCODERL | : ENCODER R |
| DECODER
I
I
I
I
by ¥ ¥
I
A" « Dp Dp
I
I
I e -
. Extract Side .
I .
: >\ Y Predictor e —— Predictor
I
| t Pt f
o ___
I Ir

FIGURE 9.2
Block diagram of coding schemes.
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Feature Extraction and Coding

In order to extract the image features, we need to detect them in the first frame and
track them in subsequent frames. Since we estimate a 3D pose,a 3D mesh model is reg-
istered to the first frame and then tracked using the method in Section 9.2. The mesh
model consists of a set of mesh points V ={V; = (x;,¥;,2;),i=1,..., N} and a set of
triangles 7 = {Tape = (Va, Vi, Vip)} C V3 formed by mesh points. Figure 9.3 depicts the
2D projection of a triangular mesh model on a pair of frames. The model pose param-
eters, namely, the translation and rotation parameters, are computed independently at
each view and transmitted to the decoder at high fidelity. Each encoder also receives
the initial pose parameters of the other encoder.

The visibility of a mesh point V in both views is computed at each encoder by
computing its position relative to each triangle 7' = (V7, V2, V3) of which it is not a
member. Given the estimated pose of a certain view, let (x, y, z) and (x;, y;, 2;) be the
coordinates of V and V;, respectively. The triangle, which is the convex hull of the
three points, occludes V if the segment connecting the origin to V passes through
the triangle. To test occlusion, we project the point onto the basis formed by the
vertices of T":

-1

Cx X1 X2 X3 X
G |=|y1 Y2 3 y (9.9)
Cy Z1 %22 Z3 z

The triangle occludes the point if and only if ¢y, ¢),and ¢, are all positive and ¢y + ¢, +
¢z > 1. Observe that if all coefficients are positive and sum to 1, the point lies in the
convex hull of the three points forming 7', that is, it lies on the triangle. If the mesh
point is visible with respect to every triangle, we declare the point visible.

FIGURE 9.3

Mesh points V and triangles T are overlaid on the two views.

255



256

CHAPTER 9 Model-based Multiview Video Compression

We consider three feature extraction techniques.

m Point Sampled Intensity (PSD): The feature set for an image is the set of intensity
values at the visible mesh points projected onto the image plane.

m Triangles with Constant Intensity (TCD: For all triangles containing at least one
visible vertex, this feature is the average of the intensity values over the visible
pixels in the triangle.

m Triangles with Linearly Varying Intensity (TLI): For triangles with all vertices
visible, we compute a linear least squares fit to the intensity profile. The intensity
values at the vertices according to the estimated planar intensity profile form a
part of the feature set. For those triangles where not all vertices are visible, we
use the average intensity feature as in TCI.

For distributed encoding of the extracted features, we utilized a very simple binning
technique whereby each feature is independently encoded using

C(i)=i mod W

where C(7) is the codeword corresponding to the quantization index 7 of the coded
feature and W is a parameter controlling the rate of the code. Even though the above
binning scheme can be improved by more sophisticated DSC techniques (e.g., LDPC-
or turbo-based codes) in general, the improvement would be marginal at very low bit
rates, which we particularly focus on.

Types of Frames

In the compression schemes that we consider, each frame of each view can belong to
one of three classes:

m Intraframe or Iframe: Each feature is encoded and decoded independently of
both past frames in the same view and all frames in the other view.

m Predictive frame or P-frame: If any feature is common to the current frame and
the previous frame in the same view, we only encode the difference between
the two features. Features that are unique to the current frame are coded as in
an Iframe.

m Distributed frame or D-frame: The features for which side information is available
at the decoder are distributively coded, while the rest of the features are coded
as in an I-frame.

We considered two schemes for coding sequences:

m Scheme 1: We begin with an Iframe in both views. For the subsequent
DRefreshPeriod-1 sampling instants, both views are coded as P-frames. At the fol-
lowing instant, the left view is transmitted as an I-frame and the other view is
transmitted as a D-frame. The next DRefreshPeriod-1 are transmitted as P-frames.
For the next instant, the right view is an I-frame while the left is a D-frame.
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Table 9.1 Frame Types of Right and Left Views in the Two
Schemes and Separate Coding. (DRefreshPeriod =3 and
IRefreshPeriod =9)
Frame Number 1 2 3 4 5 6 7 8 9 10
Scheme 1 Left | P P I P P D P P |
Right I P P D P P | P P |
Scheme 2 Left | P P D DD I P P |
Right I D D I P P D D D |
Separate  Left /| P P I P P I P P |
Right + P P I P P | P P |

This process then repeats. Every |RefreshPeriod instants, both views are coded as
I-frames.

m Scheme 2:As in Scheme 1, we begin with I-frames in both views. For the sub-
sequent DRefreshPeriod-1 sampling instants, the left view is coded as a P-frame,
while the other view is coded as a D-frame. At the next instant, the right view
is coded as an I-frame, and the other view is coded as a D-frame. This process
is repeated in every block of DRefreshPeriod frame pairs with the roles of the
right and left views reversing from block to block. Again, as in Scheme 1, every
IRefreshPeriod instants, both views are coded as I-frames.

Table 9.1 shows some representative code sequences.

Types of Side Information
The side information in a D-frame can be one of three types:

m Other view (OD): The corresponding features between the frame being encoded
and the one that is observed at the current instant at the other view form the
side information. We can only encode features that are common to both views.

m Previous frame (PD): We use the corresponding features in the previous frame
from the same view as side information. We can only encode features that are
present in the previous and current views.

m Previous frame and Other view (POD): The side information is the optimal linear

estimate of the source given the previous frame in the same view and the current
frame in the other view. Only features that are common to the three frames
involved can be distributively encoded by this method.
The estimation coefficients are to be computed at the decoder before recon-
structing a given view. So, if for example, frame R, is distributively coded, we
use the correlations from decoder reconstructions of R,,—1, R;,—2,and L,,—1 to
obtain approximations to the optimal estimation coefficients.
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EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the various schemes in compress-
ing a sequence of a face viewed from two cameras under varying illumination.
The face mesh model is assumed to be known to both encoders as well as the

@) (b)

FIGURE 9.4

(a) Five consecutive frames from the original sequence. (b) Separate coding of the two views
using the PSI technique and Scheme 1. The bit rate is ~20 kbps and the PSNR is ~16.5dB.
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(@) (b)

FIGURE 9.5

Distributed coding of the sequence using the PSI technique for feature extraction and POD-type
side information. (a) Reconstruction using Scheme 1 with bit rate ~22 kbps and PSNR ~21 dB.
(b) Reconstruction using Scheme 2 with bit rate ~ 18 kbps and PSNR ~22.8dB.

decoder. Transmission of the initial model pose parameters forms the sole interencoder
communication.

For both schemes and all feature and side information types, we tested the perfor-
mance on a 15-frame sequence from each view. Five consecutive original frames are
shown in Figure 9.4(a). We fixed DRefreshPeriod =5 and IRefreshPeriod = 15.
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Performance of PSI from frame 1 to frame 15
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FIGURE 9.6
The rate-distortion trade-off using the PSI feature extraction technique.

In Figures 9.4(b), 9.5(a), and 9.5(b), examples of reconstructed sequences are
shown, respectively, for separate coding, Scheme 1, and Scheme 2, all using the PSI
technique for feature extraction, and the latter two using POD-type side informa-
tion. The bit rates are fixed at around 20 kbps. The complete rate-distortion trade-off
obtained by running all methods with various parameters is shown in Figure 9.6, where
it is clearly seen that the gains are more significant at lower bit rates.

We then increase the target bit rate to around 41 kbps by adopting the TCI tech-
nique for feature extraction. The reason for the rate increase even with the same
quantization parameters is that the number of triangles is about twice as large as
the number of mesh points. As apparently seen from the reconstructed sequences
shown in Figures 9.7 and 9.8, this results in a quality increase. That is because the
average of intensity values within a triangle is a much better representative of the
triangle than a reconstruction based on only the three corner values. However, as can
be seen from the complete rate-distortion trade-off shown in Figure 9.9, the increase
in the reconstruction quality comes at the expense of reduced distributed coding
gains.

Using the TLI technique for feature extraction, we further increase the bit rate
approximately by a factor of 3, since most triangles are now represented by three
parameters. The reconstructed sequences are shown in Figures 9.10 and 9.11,and the
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(@) (b)

FIGURE 9.7

Coding using the TCI technique for feature extraction. (a) Separate coding of the two views using
Scheme 1 with bit rate ~41 kbps and PSNR ~23.9dB. (b) Distributed coding using Scheme 2
and PD-type side information with the same bit rate PSNR ~25.5dB.

complete rate-distortion trade-off is depicted in Figure 9.12. The distributed coding
gains are further diminished in this regime.

Even though PD-type side information yields the best performance at low bit
rates as seen from Figures 9.6, 9.9, and 9.12, reconstruction based on POD-type side
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(@) (b)

FIGURE 9.8

Coding using the TCI technique for feature extraction and POD-type side information. (a) Dis-
tributed coding using Scheme 1 with bit rate ~40kbps and PSNR ~24.4 dB. (b) Distributed
coding using Scheme 2 with bit rate ~43 kbps and the same PSNR.

information is more beneficial in scenarios in which the channel carrying the D-frame
is less reliable and can result in a very noisy reference for the future D-frames. On
the other hand, since the temporal correlation is much higher than the correlation
between the views, relying solely on the other view always yields worse performance.
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Performance of TCI from frame 1 to frame 15
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FIGURE 9.9

The rate-distortion trade-off using the TCI feature extraction technique.

CONCLUSIONS

In this article, we have presented a method for distributed compression of two
video sequences by using a combination of 3D model-based motion estimation and
distributed source coding. For the motion estimation, we propose to use a newly
developed inverse compositional estimation technique that is computationally effi-
cient and robust. For the coding method,a binning scheme was used, with each feature
being coded independently. Different methods for rendering the decoded scene were
considered. Detailed experimental results were shown. Analyzing the experiments,
we found that the distributed video compression was more efficient than separate
motion-estimation-based coding at very low bit rates. At higher bit rates, the abil-
ity of the motion estimation methods to remove most of the redundancy in each
video sequence left very little to be exploited by considering the overlap between the
views. We believe that this should be taken into account in the future while designing
distributed coding schemes in video.
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@) (b)

FIGURE 9.10

Coding using the TLI technique for feature extraction. (a) Separate coding of the two views using
Scheme 1 with bit rate ~ 120 kbps and PSNR ~28 dB. (b) Distributed coding using Scheme 1
and OD-type side information with bit rate ~128 kbps and PSNR ~27 dB.
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@ (b)

FIGURE 9.11

Coding using the TLI technique for feature extraction and POD-type side information. (a) Distrib-
uted coding using Scheme 1 with bit rate ~ 128 kbps and PSNR ~28.7 dB. (b) Distributed
coding using Scheme 2 with bit rate ~ 115 kbps and PSNR ~26.5dB.
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Performance of TLI from frame 1 to frame 15
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FIGURE 9.12

The rate-distortion trade-off using the TLI feature extraction technique.
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10.1 INTRODUCTION

Hyperspectral images are volumetric image cubes that consist of hundreds of spa-
tial images. Each spatial image, or spectral band, captures the responses of ground
objects at a particular wavelength (Figure 10.1). For example, the NASA AVIRIS
(Airborne Visible/Infrared Imaging Spectrometer) measures the spectral responses in
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FIGURE 10.1
Hyperspectral image.

Table 10.1  Examples of Research and Commercial Imaging Spectrometers [45]

Sensor Organization Country Number of Bands Wavelength Range (w.m)
AVIRIS NASA United States 224 0.4-25

AISA Spectral Imaging Ltd. Finland 286 0.45-0.9

CASI Itres Research Canada 288 0.43-0.87
PROBE-1 Earth Search Sciences Inc.  United States 128 0.4-2.45

224 contiguous spectral bands acquired at the visible and near-infrared regions [24]
(seeTable 10.1 for some examples of imaging spectrometers). Effectively, pixel values
of spectral bands along the spectral direction represent the spectra of the captured
objects,which can provide useful information to identify the ground objects. For exam-
ple, scientists may use hyperspectral data to determine if a pixel may correspond to
vegetation, soil, or water, which have quite distinct spectral responses [4]. Based on
the frequency locations of specific absorption bands, the wavelength ranges where
the materials selectively absorb the incident energy, it may be possible to infer the
molecular compositions of the objects [4, 45]. Thanks to its rich spatial and spectral
information contents, hyperspectral imagery has become an important tool for a vari-
ety of remote sensing and scanning applications; it is widely used in the sensing and
discovering of ground minerals [4],in monitoring of the Earth’s resources [51],and in
military surveillance [28,43].

The raw data size of hyperspectral images is very large. For example, a single hyper-
spectral image captured by NASA AVIRIS could contain up to 140M bytes of raw data
[25]. Therefore, efficient compression is necessary for practical hyperspectral imagery
applications. In addition, hyperspectral images are usually captured by satellites or
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spacecrafts that use embedded processors with limited resources, so encoding com-
plexity is an important issue in hyperspectral image compression. These are thus
clearly asymmetric applications where reductions in encoding time and cost are desir-
able even if they come at the cost of increases in decoding complexity. Our focus in
this chapter will be on exploring how distributed source coding (DSC) techniques
[14, 16, 34, 44, 59] can facilitate reductions in encoding cost. Encoding cost can be
quantified in different ways depending on the specific implementation platform cho-
sen. For example, in previous works, methods have been proposed to reduce encoder
power consumption in field programmable gate array (FPGA) implementations using
new closed-loop prediction techniques [31], or to speed up encoding using a parallel
implementation [2, 8].

Hyperspectral Imagery Compression: State of the Art

In a hyperspectral dataset many spectral bands tend to be correlated. For example,
Figure 10.2 shows the scenario in which pixel values of the current spectral band
are predicted by the co-located pixel values of the adjacent spectral band after linear
filtering, and the mean-square residuals after prediction are plotted against spectral
band indexes. The figure suggests that neighboring bands tend to be correlated, and
the degree of correlation varies relatively slowly over a broad range of spectral regions.
Therefore,a key element of state-of-the-art lossy-to-lossless hyperspectral compression
has been to develop techniques to exploit interband correlation (see Section 10.2 for

30 ' 1 1 1
—— Cuprite SC01 : ! :

20 | ——cupritesco2 [T | p 1

of A

Mean square residuals (in dB)

50 100 150 200
Spectral band index

FIGURE 10.2
Mean-square residuals after linear prediction.
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a more detailed discussion of the correlation characteristics that motivate the design
of these algorithms):

m In interband predictive approaches [31, 37, 48], a band is predicted using
previously encoded bands. The resulting prediction residuals can then be
encoded using standard image coding techniques (e.g., transformation followed
by quantization and entropy coding). Since, typically, the prediction residual has
a much lower energy than the original band, encoding it usually requires fewer
bits than encoding the original band. Interband prediction approaches are anal-
ogous to predictive video coding (e.g., the standard MPEG/H.26x compression
algorithms), but a key difference is that motion estimation/compensation are
not necessary since co-located pixels in different spectral bands represent the
responses of the same ground object at different wavelengths. However, simple
linear prediction to align the values of co-located pixels of consecutive spectral
bands has been found to be useful to improve the prediction gain [31].

m 3D wavelet methods,including 3D SPIHT [15,21],3D SPECK [47],and 3D ICER
[20, 22], provide alternatives to predictive coding. 3D wavelet methods exploit
interband correlation by performing filtering across spectral bands, with the
expectation that most of the signal energy will be concentrated in low-pass sub-
bands (corresponding to low spatial and “cross-band” frequencies). Similar to
typical 2D wavelet image coding, bit-plane coding is usually applied to the trans-
form coefficients obtained from filtering. The resulting bits can be compressed
with entropy coding schemes such as zero-tree coding [41] or those based on
context modeling [20].

As an example to illustrate 3D wavelet approaches, in 3D ICER [20, 22],a modified
3D Mallat decomposition is first applied to the image cube. Then mean values are
subtracted from the spatial planes of the spatially low-pass subbands to account for
the “systematic difference” in different image bands [22, 23].1 Bit-plane coding is then
applied to the transform coefficients, with each coefficient bit adaptively entropy-
coded based on its estimated probability-of-zero statistics. The probability is estimated
by classifying the current bit to be encoded into one of several contexts according to
the significance status of the current coefficient and its spectral neighbors. A different
probability model is associated with each context.

In addition, a lossy compression scheme using the Karhunen-Loeéve transform
(KLT) and the discrete cosine transform (DCT) was proposed in [40]; several lossless
compression schemes have also been proposed for hyperspectral data, for example,
those based on vector quantization [32,39], and spatial, spectral, or hybrid prediction
[38,52,58].

1 Note that mean subtraction in these 3D wavelet approaches is conceptually similar to using linear
prediction to align the values of co-located pixels in order to account for the global offset in each
spatial image specific to hyperspectral data [22].



10.2 Hyperspectral Image Compression

Outline of This Chapter

Section 10.2 of this chapter discusses the general issues of hyperspectral data com-
pression. Datasets and correlation characteristics of the commonly used NASA AVIRIS
data will be discussed, followed by discussions on some potential problems in apply-
ing interband prediction approaches and 3D wavelet approaches for hyperspectral
data. Motivated by these potential problems in conventional approaches, applica-
tion of distributed coding principles for hyperspectral data compression will then be
discussed in Section 10.3, with a focus on the potential advantages and associated chal-
lenges. Section 10.4 then summarizes several examples of DSC-based hyperspectral
compression algorithms. Section 10.5 concludes the chapter.

HYPERSPECTRAL IMAGE COMPRESSION

Dataset Characteristics

As illustrated in Figure 10.1, hyperspectral images are three-dimensional image cubes,
with two spatial dimensions and one spectral dimension. A well-known example is
the NASA AVIRIS data, which consists of 224 spatial images [2, 24]. Each spatial line
of AVIRIS data has 614 pixels, and datasets with 512 spatial lines are commonly avail-
able, leading to about 140M bytes of information. AVIRIS captures wavelengths from
400 to 2500 nanometers, at a spectral resolution of about 10 nanometers. Spatial res-
olution would depend on how high above the surface the scanning operations are
taking place. For example, at an altitude of 20 kilometers, AVIRIS has a spatial resolu-
tion of 20 meters. In typical operations, spatial resolutions of 2 to 20 meters can be
achieved [2, 45].

Pixel values of hyperspectral images along the spectral dimension provide impor-
tant information regarding the extent of energy absorption and scattering at different
wavelengths of the captured objects. Figure 10.3 shows some examples of spectral
curves of hyperspectral image data. Different materials tend to exhibit different spec-
tral responses [33]. Therefore, these spectral curves can be very useful for classifying
the ground objects. It should be noted that, depending on the spatial resolution and
hence the size of the ground resolution cell, the values of a pixel may include con-
tributions from more than one material; that is, the hyperspectral data may represent
composite or mixed spectrum. The contribution from each material may depend on
its area within a ground resolution cell [45].

Alternatively, spectral information of each pixel may also be represented as a spec-
tral vector in the n-dimensional space, where 7 is the number of spectral bands, and
the response at each wavelength corresponding to the projection of the vector onto
the respective coordinate axis. This vector representation provides a useful mean for
automatic classification of the captured materials. For example, the similarity of two
spectra can be measured by the angle between the corresponding spectral vectors,
such as in the well-known spectral angle mapper (SAM) algorithm [13].
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FIGURE 10.3
Some examples of spectral responses in hyperspectral image dataset: NASA AVIRIS Cuprite.

From the perspective of lossy compression, it is therefore important to preserve
the spectral characteristics of hyperspectral images, in addition to the average recon-
struction fidelity (measured by peak signal-to-noise ratio (PSNR), for example) of
the datasets. Lossy hyperspectral compression algorithms may be compared by the
classification performance of the reconstructed images, in addition to rate-distortion
performance [8,47].

Intraband Redundancy and Cross-band Correlation

Hyperspectral applications may exploit the spatial and/or the spectral redundancy
to achieve compression. The degree of spatial redundancy within each spectral band
would obviously depend on the captured scene. Moreover, while the spatial images
of a hyperspectral dataset represent captured data of the same scene and therefore
the spatial contents of most images would be similar, it is possible that some images
may have different spatial contents and hence different amounts of intraband redun-
dancy, depending on the response characteristics of the ground objects. For example,
Figure 10.4 shows several spatial images in a hyperspectral dataset. Notice that in this
example the image data of the first spectral band is rather noisy. Therefore, correlation
between pixels may not be high,impacting the performance of using intraband coding
schemes to compress the data.
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FIGURE 10.4

Some spatial images from the hyperspectral dataset Cuprite: (a) band 1; (b) band 20; (c) band
220. Notice that the image data in (a) is rather blurred and noisy, which may impact compression
performance even when each image is encoded independently of the others.

Interband correlation in hyperspectral datasets tends to be significant. For exam-
ple, Figure 10.2 in Section 10.1.1 illustrates some examples of cross-band correlation,
and suggests that spectral bands are in general highly correlated. In fact, some 3D
wavelet approaches use context-adaptive entropy coding where the context defini-
tions rely on only the spectral correlation [20]. However, Figure 10.2 also suggests that
significant changes in the degree of correlation may occur occasionally. Furthermore,
interband correlation may not be spatially uniform, which leads to the observation
that in a 3D Mallat decomposition of hyperspectral data, spatial low-pass and spec-
tral high-pass subbands tend to retain a significant amount of structural information,
which resembles that of the original spatial images [22]. Previous work has demon-
strated that modified transforms that further decompose these spatial low-pass and
spectral high-pass subbands may lead to coding gain in hyperspectral compression
[12,20,22,55].

Based on the previous discussions, we can conclude that efficient hyperspectral
compression should aim to exploit both intraband and cross-band redundancy, and
should do so in an adaptive switching and/or combining tools that exploit these dif-
ferent types of redundancies. For example, a (nondistributed) lossless compression
scheme, 3D CALIC, uses local correlation information to switch between intraband
and interband pixel predictors, leading to state-of-the-art coding performance [58].
Note, however, that correlation modeling, estimation, and adaptive encoding in the
context of distributed coding remain challenging, as will be further discussed in
what follows.

10.2.3 Limitations of Existing Hyperspectral Compression Techniques

As discussed in Section 10.1.1 interband prediction approaches and 3D wavelet
approaches have been proposed for hyperspectral image compression. Although
these algorithms can achieve state-of-the-art coding efficiency, they may face poten-
tial problems when applying them to on-board hyperspectral image compression.
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These potential problems serve as motivation to study new hyperspectral compression
techniques based on DSC.

10.2.3.1 Interband Prediction Approaches

In interband prediction approaches, previously encoded bands are used to predict
the current band and the resulting prediction residuals are then further compressed.
Interband prediction approaches can in general achieve a high compression ratio with
moderate memory requirements. There are several drawbacks, however.

First, interband prediction methods need to generate exact copies of the decoded
bands at the encoder, so encoders need to perform both encoding and decoding?
and decoding complexity could be significant, for example, comparable to encoding
complexity. Previous work has proposed to reduce the complexity of this decoding
loop. For example, [31] has proposed using only full bit-planes to form the predic-
tors at the encoder and decoder when using the Set Partitioning in Hierarchial Trees
(SPIHT) algorithm [41] to compress the residue. This avoids bit-plane decoding at the
encoder. However, since this approach does not utilize fractional bit-plane informa-
tion in reconstruction, the predictors in general have worse qualities compared to
that of conventional interband prediction methods, leading to degradation in coding
performance.

Second, interband predictive methods are inherently serial, since each band is
encoded based on a predictor obtained from previously encoded bands. Therefore,
it is difficult to parallelize processing in order to improve the processing speed of an
interband predictive encoder to handle the high data rate generated by hyperspectral
imaging instruments.

Third, it is difficult to achieve efficient rate scalability. This is because, while
interband prediction approaches would stipulate identical predictors to be used in
encoding and decoding, bit-rate scaling by on-the-fly truncation of the embedded bit-
stream may, however, lead to different reconstructions at the decoder, depending on
the truncation points. Therefore, rate scaling could result in mismatches between the
predictors at the encoder and the decoder, leading to drift and degradation of the
reconstruction quality.

10.2.3.2 3D Wavelet Approaches

3D wavelet methods exploit interband correlation by performing filtering across spec-
tral bands, which in general can lead to energy concentration in low-pass subbands.
While 3D wavelet methods can achieve good compression efficiency with excellent
scalability, a main disadvantage is that they lead to complex memory management
issues. A naive implementation would consist of loading several spectral bands in mem-
ory so as to perform cross-band filtering, leading to expensive memory requirements.

2 The exception is the case when compression is lossless since the original images will be available
for decoding and thus can be used for prediction.
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More sophisticated approaches are possible (e.g., loading simultaneously only sub-
bands corresponding to a given spatial frequency in various spectral bands), but these
approaches have the drawback of requiring numerous iterations of memory access.

DSC-BASED HYPERSPECTRAL IMAGE
COMPRESSION

Motivated by these potential drawbacks in existing hyperspectral image compression
algorithms, several techniques based on DSC have been proposed recently [3,5, 8, 26,
30, 46]. In this section, we first discuss the potential advantages of applying DSC for
hyperspectral image compression, in terms of reduced encoding complexity, ease of
parallel encoding, and scalability. The challenges of applying DSC for hyperspectral
compression will also be discussed.

Figure 10.5 shows an example of how DSC may be applied to hyperspectral
compression. To decorrelate the input pixel data, the current spectral band B; may
undergo some transformations. Outputs from the first stage (i.e., transform coeffi-
cients, depicted as X in Figure 10.5) could then be compressed by DSC techniques to
exploit interband correlation, using the corresponding data Y from the neighboring
reconstructed band as side information in joint decoding. The key distinct feature of
DSC systems is that only the correlation information between X and Y (depicted as
P(X,Y) in Figure 10.5) is needed for encoding X. In particular, exact values of Y
would not be required. Therefore, DSC-based encoders could in principle operate in
“open loop,” that is, without requiring that the encoders include decoding loops to
replicate data reconstructed at the decoders, as included in typical (lossy) interband
prediction approaches. Operating in open loop can lead to some system-level advan-
tages,as will be discussed. If the correlation between X and Y is weak, encoders might
switch to use intracoding to compress X . Also intraprediction might be applied before
DSC encoding to exploit spatial redundancy. In practical applications, encoders may
need to estimate the correlation information, which could be nontrivial in a distributed
computing environment.

B;— T X DSC —» —> DSC X - —>§I.
Encoder Decoder T
x x
P(X, V) Y

FIGURE 10.5

An example of DSC-based hyperspectral image compression. “T” and “T~1" denote
transformation and the inverse, respectively.
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10.3.1 Potential Advantages of DSC-based Hyperspectral Compression

10.3.1.1 Asymmetric Compression Framework with a Reduced Complexity
Encoder

Because of the limited available resources in satellites and spacecrafts, on-board encod-
ing complexity is an important issue in hyperspectral compression. DSC may lead
to an asymmetric framework where encoding complexity could be reduced at the
expense of some increases in decoding complexity at the ground station. This is possi-
ble because, with DSC, encoding of the current spectral band would require only the
correlation information. Therefore, computation and buffering storage for replicating
the predictor would not be required in encoding, leading to complexity reduction.
We remark that the complexity for “closing” the prediction loop could be nontrivial in
lossy hyperspectral compression [31]. Note that a similar idea has also been applied
to scalable video coding to reduce the encoding complexity due to closing multiple
prediction loops of different quality layers [53, 54].

In addition, the memory requirements of a DSC-based encoder tend to be mod-
erate because correlation information may be estimated using data from consecutive
spectral bands [6]. This compares favorably to 3D wavelets methods, where pixel data
of multiple spectral bands is needed in cross-band filtering.

10.3.1.2 Parallel Encoding of Datasets

The fact that DSC-based encoders can operate in open loop without being required
to replicate the exact predictors may also lead to encoding algorithms that facilitate
parallel implementation. For example, in encoding systems with multiple processors,
compression of each entire spatial image may be assigned to each processor (see
Figure 10.6 in Section 10.4.2 for an example). As long as the cross-band correlation
information between adjacent spectral bands is available, each processor can proceed
independently without further interaction during the course of encoding, leading to
highly parallel encoding systems. Moreover, information-theoretic results [44] sug-
gest such DSC-based parallel encoding can in principle achieve competitive coding
efficiency, for example, comparable to that of nondistributed schemes, where all the
spectral bands reside at the same processor for centralized encoding.

10.3.1.3 Scalability

DSC can also lead to hyperspectral compression systems that support more efficient
rate scalability. Precisely, bit-rate scaling by on-the-fly truncation of an embedded bit-
stream may result in several different possible predictor candidates available at the
decoder, each corresponding to the reconstruction at a truncation point. The actual
predictor present at the decoder would depend on the specific truncation point
chosen by the system. This uncertainty poses a challenge to interband prediction
approaches, where precise status of the available predictor at the decoder needs to be
maintained during encoding. In contrast, there is no need for a DSC encoder to know
about the precise decoder predictor status. In particular,a DSC system may truncate an
embedded bitstream, and as long as the side information matching (or exceeding) the
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degree of correlation used in encoding can be reconstructed at the decoder, successful
Slepian-Wolf decoding can be achieved, leading to drift-free outputs [60]. In practice,
the truncation points may be restricted by the block sizes used in Slepian-Wolf coding.
Note that applying DSC to address multiple predictor candidates in video applications
has been proposed in [7, 10] and to address scalable video streaming with feedback
in [42].

Challenges in Applying DSC for Hyperspectral Imaging

Information-theoretic results state that distributed encoding can be as efficient as joint
encoding provided that different bitstreams are jointly decoded [14, 44, 59]. How-
ever, achieving coding performance comparable to that of nondistributed approaches
remains challenging for DSC hyperspectral image applications. This could be due to the
difficulties involved in modeling, estimating, and exploiting the correlation in hyper-
spectral data,in a distributed setting (see Section 10.2.2 for a discussion of correlation
characteristics).

First, while the coding efficiency of DSC depends strongly on the accuracy of the
correlation models, real-world hyperspectral image data may exhibit nonstationary
and complex correlation structures. For example, local variations of spatial or spec-
tral correlation may occur in hyperspectral datasets. Also, considerable dependency
between individual (cross-band) correlation noise symbols may exist in hyperspectral
data [22].3 Therefore, i.i.d. noise models commonly used in DSC applications could
be inadequate to capture the statistics of cross-band correlation noise in hyperspec-
tral image compression. While utilizing more sophisticated models that capture these
complicated correlation structures may lead to better coding performance, it may be
challenging to design the coding algorithms and the correlation estimation techniques
for such advanced models.

Second, correlation information in hyperspectral data may need to be estimated
under complexity constraints, so that the potential advantage of applying DSC to
reduce encoder power consumption could be realized. For example, some relatively
computationally intensive estimation techniques (e.g., the expectation-maximization
(EM) algorithm [29]) may not be suitable for on-board correlation estimation in hyper-
spectral applications. Also, in distributed encoding scenarios, only a small number of
samples may be exchanged in order to reduce the communication overheads,but using
low sampling rates may fail to capture the local changes in correlation. These com-
plexity and rate constraints therefore make on-board correlation estimation a difficult
task [9]. While some DSC applications may employ feedback channels to acquire the
correlation information from the decoder [1, 18], in hyperspectral applications, this
information may need to be estimated on-board during encoding, as feedback from
the ground station may incur considerable delay.

3 Previous work has reported that spectral high-pass coefficients can exhibit spatial structure
resembling that of the original spatial images [22].
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Third, to efficiently exploit the correlation in hyperspectral images the compression
algorithms may need to be highly adaptive to the local variations of spatial or spectral
correlation (such as in the case of 3D CALIC as briefly discussed in Section 10.2.2). On
the other hand, achieving such a level of adaptivity using DSC could be challenging.
For example, existing Slepian-Wolf coders usually employ capacity approaching error-
correcting codes to perform data compression, and these codes tend to require large
block sizes, for example,of the order of 10° [27,60];otherwise significant performance
degradation may result. However, large encoding block sizes may not be able to exploit
the changes in correlation in small blocks of hyperspectral data. Recent work has
proposed addressing distributed compression based on arithmetic coding, which may
achieve good coding performance with much smaller block sizes, for example, of the
order of 10% [17],and this code could be more suitable for hyperspectral applications.

In addition, since one of the main applications of hyperspectral data is to identify
the captured objects, it is important for DSC-based lossy compression algorithms to
preserve the spectral characteristics (see Section 10.2.1).

EXAMPLE DESIGNS

In this section we discuss several DSC-based hyperspectral image compression algo-
rithms proposed in the literature. Specifically, we discuss in Section 10.4.1 the two
lossless compression algorithms proposed by Magli et al. [30], in Section 10.4.2 the
wavelet-based lossy-to-lossless algorithm proposed by Tang etal. [46], Cheung et al. [8],
and Cheung and Ortega [5], and in Section 10.4.3 the multispectral compression
algorithm proposed by Li [26]. Both the first lossless algorithm in Section 10.4.1
and the wavelet-based algorithm in Section 10.4.2 exploit intra- and interband redun-
dancy. However, the specific mechanisms are rather different: the first algorithm in
Section 10.4.1 applies intraprediction to pixel data, and then the prediction residue
would be further compressed by DSC exploiting cross-band correlation. The algorithm
in Section 10.4.2, however, uses wavelet transform and bit-plane extraction similar to
SPIHT to generate different types of source bits, each with different marginal and
joint statistics (w.r.t. side information), and based on these statistics the bits are then
adaptively compressed by either intra (zero-tree coding) or inter (DSC) approaches.
In contrast to these algorithms that use capacity-approaching large-block-size error-
correcting codes to compress the binary bits, the second algorithm in Section 10.4.1
uses a simple multilevel coset code to compress individual symbols so that better adap-
tation to local correlation statistics can be achieved. The algorithm in Section 10.4.3
uses different constraints to iteratively refine coarsely encoded spectral band images.

DSC Techniques for Lossless Compression of Hyperspectral
Images

Lossless compression of hyperspectral imagery based on DSC has been proposed
by Magli et al. [30]. In this work, DSC is used to exploit the correlation between
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different spectral bands. This is combined with other techniques, such as the pre-
diction stage of 2D CALIC [57], to exploit intraband correlation. The main purpose
is to shift complexity, in particular computational operations, from the encoder to
the decoder, by relying on the decoder to exploit spatial correlation, similar in spirit
to low-complexity video encoding [1, 16, 35, 36]. Specifically, the work proposed two
algorithms for data compression, one based on powerful binary error-correcting codes
and the other based on simpler multilevel coset codes (to be discussed in more detail
in the subsequent sections).

10.4.1.1 Lossless Hyperspectral Compression Based on Error
Correcting Codes

The first proposed algorithm is based on capacity approaching binary error-correcting
codes such as Slepian-Wolf (SW) codes.

The algorithm operates on pixel data when compressing the current spectral
band and exploits intraband redundancy by applying to each pixel a 2D CALIC pre-
dictor formed by spatially adjacent pixels. Denote the spatial prediction error array by
Ex, and the spatial prediction error array of the previous band after linear filtering by
Ey. Ex are losslessly compressed based on DSC techniques using Ey as side informa-
tion. Specifically, Ex are decomposed into a raw bit-plane representation. Denote the
extracted raw bit-planes by E (’Z) ,where 0 <7 <N, is the significance level of the bit-
plane and N, is the number of extracted bit-planes. Denote also the corresponding
bit-planesin E;, by E)’,E,b). Binary sources E )((l: ) are compressed by a LDPC-based SW coder,

using F )’,E,b) in joint decoding at the decoder. The SW encoding rate of each bit-plane
is derived from the conditional entropy of the input bits given the side information
bits, H(E )(g ) |E }’,E,b)), assuming the bits are i.i.d. binary sources and the correlation can
be modeled by a binary channel. Depending on the conditional entropy and the effi-
ciency of the SW coder,some bit-planes would instead be compressed by an arithmetic
coder.

The encoding rate or the conditional entropy H (E }(g ) |E ;,(l,b)) would depend on the

correlation between bits E )(g ) and E ,’,E,b) . In [30], this correlation information is assumed

to be known, and there is no discussion related to efficient estimation of this infor-
mation. It should be noted that this correlation estimation problem could be non-
trivial and remains to be a challenging issue in practical application of DSC [18]. A
straightforward approach that exchanges all the bit data for direct comparison would
inevitably incur significant communication overhead and may upset the complexity
saving due to DSC techniques (see more discussion in [11]).

The proposed algorithm was compared with several 2D and 3D lossless compres-
sion schemes using NASA AVIRIS datasets, and experimental results reported in [30]
suggest the proposed algorithm can outperform 2D coding techniques (specifically,
JPEG-LS) by about 1 bit per pixel (bpp) on average, while there is still a performance
gap of about 1 bpp compared to 3D CALIC. According to [30], this performance
gap is partly due to the sophisticated context modeling techniques in 3D CALIC
that capture local spatial and spectral correlation (see Section 10.2.2 for correlation
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characteristics), and partly caused by the inefficiency in assuming a binary correlation
model that ignores the correlation between bit-planes of different significances [56].

10.4.1.2 Lossless Hyperspectral Compression Based on Multilevel
Coset Codes

In [30] another lossless hyperspectral compression algorithm based on simpler
multilevel coset codes was proposed.

The algorithm adopts a block-based approach, where the spatial images are split into
nonoverlapping small blocks, and correlation estimation is performed on each block
independently to estimate the coding rate based on direct comparisons of a subset
of pixels of the corresponding block in the adjacent spectral band. Using a block-
based approach allows fine adaption in the estimation of interband dependencies,
which tends to be nonstationary. This, however, complicates application of capacity
approaching error-correcting codes in SW coding, which would in general require
block lengths of several thousands of symbols.

To address this issue, Magli et al. [30] proposed using simple multilevel coset codes
that encode each symbol (corresponding to a pixel in this case), independently using
as side information the corresponding symbol in the neighboring spectral band. Specif-
ically, for each pixel x(7, j) in the current spectral band, Magli et al. [30] propose a
correlation model*

x(i, ) =P(y@.j) +n.j), (10.1)

where 7n(7, ) is the correlation noise, and y(Z, j) is the value of the corresponding
pixel in neighboring spectral band. P is a prediction model to estimate x(Z, j) from
(i, 7). Depending on the statistics of 7(Z, j), only the & least significant bits (LSB) of
x(i,j) would be communicated to the decoder, and the decoder would use the side
information y(7, j) and P to infer the discarded most significant bits (MSB) of x (7, f).
With accurate estimation of n(7, j), the value of & that leads to exact recovery of x(7, j)
can be derived. In [30], & is determined for each block based on the maximum value
of n(Z, j) over the block, estimated based on exchanging some subsets of pixels x(7, j)
and y(Z, 7).

Experimental results reported in [30] suggest that, in this particular application
using NASA AVIRIS datasets,the proposed block-based adaptive coding algorithm using
simple multilevel codes can achieve similar performance to its counterpart based on
powerful error-correcting codes, that is, on average outperforming JPEG-LS by about
1 bpp, while compared to 3D CALIC there is still a 1-bpp performance gap. Regarding
execution time, for simulations running on a workstation, where correlation estima-
tion complexity has been taken into account but the spectral bands were available in
the same location, [30] reported the proposed algorithm is about 10 times faster than
3D CALIC.

4 Note that here cross-band correlation is exploited between pixels data rather than the intraprediction
residues as in the first algorithm.
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10.4.2 Wavelet-based Slepian-Wolf Coding for Lossy-to-lossless
Compression of Hyperspectral Images

Wavelet-based algorithms for lossy-to-lossless compression of hyperspectral images
have been proposed [5, 8, 46]. The proposed algorithm combines set partitioning of
wavelet coefficients such as that introduced in the popular SPIHT algorithm [41] with
DSC techniques, so that sign bits would be compressed by SW coding, while magnitude
bits would be encoded using adaptive combinations of DSC and zero-tree coding. Using
DSC tools allows the encoder to operate in open loop without requiring access to
decoded versions of neighboring spectral bands, and this facilitates parallel encoding
of spectral bands in multiprocessor architectures. The memory requirement of the
proposed algorithm is modest and similar to that of interband prediction approaches.
Note that wavelet-based DSC algorithms have also been subsequently proposed for
distributed video and sensors applications [19, 50].

10.4.2.1 System Overview

Figure 10.6 shows an overview of the proposed encoding system in [5, 8, 46]. The
proposed encoder consists of multiple processors, and each processor compresses
one entire spatial image at a time, using the algorithm to be discussed in detail in the
next section. With a DSC approach, encoding needs only the correlation information
in order to exploit interband redundancy. In particular, as long as the correlation
information is available, each encoding thread compressing one spatial image would
be able to proceed in parallel, and parallel encoding of a hyperspectral dataset can be
achieved.

- -_>
Parallel :

encoding

Spectral
band

Compressed data
L—» e

o | -
FIGURE 10.6

Parallel encoding system based on DSC as proposed in [5, 8, 46]. Each processor compresses
one spatial image at a time.
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One key issue for the proposed system is how to estimate the correlation informa-
tion efficiently during encoding. However, correlation estimation may be nontrivial in
this setting, for the following reasons:

m The spatial images of different spectral bands reside in different processors, and
the communication bandwidth between the processors could be limited.

m Data exchanges between the processors may impact parallel encoding, as the
processors may have to remain idle to wait for the data.

To address these constraints, sampling-based techniques have been proposed to per-
form correlation estimation, with small amounts of interprocessor communication
overhead and minimal dependencies between different encoding threads [8].

Encoding Algorithm

Figure 10.7 depicts the encoding algorithm. To compress the current spectral band B;,
the proposed algorithm applies the wavelet transform and then bit-plane extraction
similar to SPIHT to iteratively extract sign, refinement, significance information or,
alternatively, using raw bit-planes from the wavelet coefficients [41,49]. The extracted
bit-planes are then compressed by SW coding to exploit interband correlation, or
zero-tree coding to exploit intraband redundancy,depending on the correlation charac-
teristics and the coefficients distributions [5]. Bit-planes are progressively transmitted
to the decoder starting from the most significant bit (MSB), and the number of bit-
planes communicated would depend on the data rate or the quality requirements
of the particular application. Lossless compression can be achieved by using integer
wavelets and transmitting all the bit-planes.

In SW coding of bit-planes, the proposed algorithm uses as side information the
corresponding bit-planes of the adjacent spectral band available at another processor.
For example, the refinement bits of the current spectral band would be compressed
using the same magnitude bits extracted from the adjacent spectral band (after linear
prediction) as side information. The bits are assumed to be i.i.d. sources,and the corre-
lation w.r.t. the side information bits is modeled as a binary channel parameterized by
the crossover probability between the bits data,” which needs to be estimated during
encoding to determine the SW encoding rate.

Correlation Estimation

A straightforward approach to estimate the crossover probability could be to explic-
itly generate and extract the side information bits from the adjacent spectral band at
another processor, and exchange and compare the source and side information bits,
to determine the crossover probability. However, information exchange in the middle

5 Crossover probability is basically the probability that input bits are different from the corresponding
bits in the side information. Small crossover probability therefore implies high correlation among the
bits data.
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FIGURE 10.7

Wavelet-based Slepian-Wolf coding of hyperspectral images: encoding algorithm. The current
spectral band B; is compressed using the adjacent spectral band B;—1 as side information.

of processing is required in this direct approach in order to generate the side informa-
tion bits. This information exchange could make parallel encoding inefficient, as the
processors may have to remain idle to wait for the data.

Therefore, [11] proposed a model-based estimation that could be applicable to this
scenario. The model-based estimation of crossover probability is a two-step process. In
the first step, we estimate the joint p.d.f. fxy (x, y),between the transform coefficients
of the current spectral band X and those of the adjacent spectral band Y. Assuming
that the correlation between X and Y can be modeled as Y =X + Z, where Z is the
correlation noise independent of X. Then, it can be shown that the joint p.d.f. can
be derived from estimates of the source model fx (x) and the correlation noise model
fz(z). In particular, [11] proposed estimating the cross-band correlation noise model
(between corresponding wavelet coefficients), fz(2z), by exchanging a small number
of samples of the original pixel-domain data,so that communication overheads and
dependencies between encoding threads can be significantly reduced, thus facilitating
parallel encoding. Some results illustrating how the number of samples may affect the
accuracy of the model-based estimation can also be found in [11].

After the first step and with the estimates of fxy (x,y) available, [11] proposed
estimating the crossover probability analytically by integrating the joint p.d.f. over
some regions of the sample space of X and Y. For example, the crossover probability
of the raw bit-plane data at significance level / (when / is equal to zero this corresponds
to the LSB) can be estimated by integrating fxy (x, y) over all the shaded regions A4;
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FIGURE 10.8

Model-based approach for crossover probability estimation. A; are the events that lead to
occurrence of raw bit-plane crossovers between X and Y at significance level /.

as shown in Figure 10.8. In practice, only a few regions that lead to nonzero integrals
need to be considered. The crossover estimates for sign and refinement bit-planes can
be derived following the same procedure, as discussed in [11].

Adaptive Combination of DSC and Zero-tree Coding

To improve the coding performance, [5] proposed an algorithm to adaptively encode
the magnitude bits using DSC or zero-tree coding. Specifically, magnitude bits may be
extracted as raw bit-planes and compressed using SW coding. Alternatively, magnitude
bits may also be partitioned into refinement bit-planes and significance information
bit-planes, and compressed using SW coding and zero-tree coding, respectively. To
determine the switching strategy between the two schemes, modeling techniques
were proposed in [5] to estimate the relative coding efficiencies of the SW coding
and zero-tree coding approaches, using the marginal distribution fx (x) and the joint
p-d.f. fxy (x,»). Estimates of the number of coded bits using DSC and zero-tree coding
are derived from these p.d.f. at each significance level, and also separately for each
wavelet subband.

Figure 10.9 shows some modeling results of two wavelet subbands, which illustrate
how the number of coded bits (estimated by modeling) changes with the significance
levels. The modeling results suggest that,at high significance levels, it tends to be more
efficient to partition the magnitude bits into refinement bit-planes and significance
information bit-planes, and compress them using SW coding and zero-tree coding,
respectively (labeled “DSC + ZTC” in Figure 10.9). On the other hand, in the middle
significance levels, it may be possible to achieve better coding performance by
switching to another scheme that extracts the magnitude bits as raw bit-planes and
encodes them using SW coding only (labeled “DSC” in Figure 10.9). The figures
show that these switchings should occur at certain significance levels in order to
obtain the optimal compression results. Different wavelet subbands would have
different switching levels, and the optimal switching levels can be determined using
the modeling techniques in [5].
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The amounts of coded bits (estimated by modeling) vs. the significance levels of two wavelet
subbands.
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Coding performance of the DSC algorithm proposed in [5, 8, 46]: NASA AVIRIS Cuprite datasets.
Reconstruction qualities are measured by MPSNR, the average PSNR of multiple spectral bands.
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Coding Performance

Figure 10.10 shows the performance of the wavelet-based DSC algorithm along with
several 3D wavelet algorithms (3D ICER) developed by NASA-JPL [20] for encoding
NASA AVIRIS datasets. As shown in the figure, the DSC algorithm with adaptive cod-
ing is comparable to a simple 3D wavelet system (FY04 3D ICER) in terms of coding
efficiency. The simple 3D wavelet system uses the standard dyadic wavelet decomposi-
tion and a context-adaptive entropy coding scheme to compress transform coefficients
bits. However, there still is a performance gap when comparing the DSC algorithm to a
more recent and sophisticated version of 3D wavelet (latest 3D ICER). The more recent
3D wavelet developed in NASA-JPL exploits the spatial correlation that still exists in
the correlation noise [20]. The results indicate further improvement may be possible
in the DSC algorithm, which currently uses a simple i.i.d. model for correlation noise
and ignores the dependency between correlation noise symbols. Figure 10.10 also
shows that when compared with 2D SPIHT the DSC algorithm can achieve 8 dB gains
at some bit rates.

Distributed Compression of Multispectral Images Using a Set
Theoretic Approach

DSC-based lossy compression of multispectral images was proposed in [26]. The main
purpose of the proposed work is to compress image data corresponding to differ-
ent spectral channels of the same scene, using several spatially separated encoders.
A set-theoretic framework for distributed compression was proposed. Specifically, the
cross-band correlation and observation constraint are assumed to be characterized
by convex sets. Following from the convex set assumptions, joint decoding of multi-
spectral images can be implemented via iterative projection-onto-convex-set (POCS)
operations at the centralized decoder, and the convexity of constraint sets guarantees
the convergence of the decoding algorithm.

In one of the scenarios considered in [26], spatial images X1, X3, ..., Xk are com-
pressed using an asymmetric protocol, where X; shall be intracoded at a relatively
high quality, and the decoded version of X; would serve as side information for
decoding the DSC compressed images X, ..., Xg. Li [26] proposed that the spa-
tial images Xy, 2<k <K could be wavelet transformed and coarsely quantized. The
reconstruction of Xj, can be iteratively refined, at the decoder, using the following
constraints:

m Cross-band correlation structure: co-located wavelet coefficients of X; and Xp
are assumed to be less than some threshold.

m Observation constraint of image source: each of the wavelet coefficients of Xp
can only assume values in its own quantization bin.

Li [26] argues that these constraint sets are convex, and the process of refining X
can be cast as the problem of identifying a point at the intersection of these convex sets,
which can be implemented by alternatively projecting onto the defined convex sets.
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Preliminary results in [26], however, indicate that the proposed algorithm is 2 dB
less efficient compared to JPEG2000 intraband coding when applying it to RGB color
images. This may be partly due to the assumed cross-band correlation model incapable
of exploiting local correlation variations between co-located wavelet coefficients.

CONCLUSIONS

In this chapter we have discussed distributed compression of hyperspectral images.
Motivated by the potential problems in conventional hyperspectral compression
approaches, applications of DSC for hyperspectral data compression have been pro-
posed in the literature. Potentially, DSC can lead to hyperspectral systems with
reduced complexity encoders that facilitate parallel encoding and scalability, suitable
for the specific operating conditions in hyperspectral data acquisition. Several exam-
ples of DSC-based hyperspectral compression algorithms proposed in the literature
were summarized. While some of these DSC systems have demonstrated compet-
itive rate-distortion efficiency, there are still performance gaps w.r.t. sophisticated
nondistributed approaches. Future research direction could be to investigate improved
algorithms with better adaptation to local variations in correlation.
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11.1 INTRODUCTION
11.1.1 Maetivation and Objectives

Securing access to physical locations and to data is of primary concern in many
personal, commercial, governmental, and military contexts. Classic solutions include
carrying an identifying document or remembering a password. Problems with car-
rying a document include forgeries, while problems with a password include poorly
chosen or forgotten passwords. Computer-verifiable biometrics, such as fingerprints
and iris scans, provide an attractive alternative to conventional solutions. Unlike pass-
words, biometrics do not have to be remembered, and, unlike identifying documents,
they are difficult to forge. However, they have characteristics that raise new security
challenges.

The key characteristic differentiating biometrics from passwords is measurement
noise. Each time a biometric is measured, the observation differs, at least slightly. For
example, in the case of fingerprints, the reading might change because of elastic defor-
mations in the skin when placed on the sensor surface, dust or oil between finger and
sensor, or a cut to the finger. Biometric systems must be robust to such variations.
Biometric systems deal with such variability by relying on pattern recognition. To per-
form recognition in current biometric systems, the biometric measured at enrollment
is stored on the device for comparison with the “probe” biometric collected later for
authentication. This creates a security hole: an attacker who gains access to the device
also gains access to the biometric. This is a serious problem since, in contrast to pass-
words or credit card numbers, an individual cannot generate new biometrics if his or
her biometrics are compromised.

The issue of secure storage of biometric data is the central design challenge
addressed in this chapter. Useful insight into desirable solution characteristics can be
gained through consideration of password-based authentication. In order to preserve
the privacy of passwords in the face of a compromised database or personal com-
puter, passwords are not stored “in-the-clear.” Instead, a cryptographic “hash” of one’s
password is stored. The hash is a scrambling function that is effectively impossible to
invert. During authentication, a user types in a password anew. Access is granted only
if the hash of the new password string matches the stored hash of the password string
entered at enrollment. Because of the noninvertibility of the hash, password privacy is
not compromised even if the attacker learns the stored hash. Unfortunately, the vari-
ability inherent to biometric measurement means that this hashing solution cannot
be directly applied to biometric systems—enrollment and probe hashes would hardly
ever match.

The aim of the secure biometric systems detailed in this chapter is to develop a
hashing technology robust to biometric measurement noise. In particular, we focus
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on an approach that uses “syndrome” bits from a Slepian-Wolf code [1] as a “secure”
biometric. The syndrome bits on their own do not contain sufficient information to
deduce the user’s enrollment biometric (or “template”). However, when combined
with a second reading of the user’s biometric, the syndrome bits enable the recovery
and verification of the enrollment biometric. A number of other researchers have
attempted to develop secure biometric systems with similar characteristics, and we
will review some of these proposals in Section 11.2.

Architectures and System Security

There are two fundamental applications for secure biometric technology: access con-
trol and key management. In access control, the system modulates access through
inspection of a candidate user’s biometric. In key management, the system objective
is to extract a stable encryption key from the user’s biometric. While access control and
key management are different goals, the syndrome-encoding and recovery techniques
we discuss apply to both. In an access-control application, the recovered biometric
is verified by comparison with a stored hash of the original in a manner identical
to password-based systems. In a key-management application, the (now recovered)
original serves as a shared secret from which an encryption (decryption) key can be
generated.

Although secure biometric technology addresses one security threat facing bio-
metric systems, it should be kept in mind that a variety of threats exist at various
points in the biometric subsystem chain. For instance, individual modules can be
forged or tampered with by attackers. Examples include a fake feature extraction
module that produces preselected features that allow an intruder to gain access, or
a fake decision-making entity that bypasses the authentication subsystem altogether.
In remote authentication settings, where biometric measurements are collected at a
remote site, not co-located with the stored enrollment data, other weak points exist.
Dishonest entities such as servers that impersonate a user or perform data mining to
gather information could be the source of successful attacks. Furthermore, in remote
settings, the communication channel could also be compromised and biometric data
could be intercepted and modified. Not all these threats are guarded against with
secure biometric templates. Some can be dealt with using standard cryptographic
techniques. But, in general, system designers need to be aware of all possible points
of attack in a particular system.

In view of these threats, a few desirable properties regarding biometric system
security are as follows:

Availability: Legitimate users should not be denied access.
Integrity: Forging fake identity should be infeasible.
Confidentiality: Original biometric data should be kept secret.
Privacy: Database cross-matching should reveal little information.
Revocability: Revocation should be easy.
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11.1.3 Chapter Organization

Section 11.2 of this chapter describes related work in this area to give readers a
sense for alternative approaches to the secure biometrics problem. Section 11.3 for-
mally quantifies the trade-off between security and robustness for the class of secure
biometric systems that we consider, and introduces the syndrome-coding-based app-
roach. In Section 11.4, we describe a prototype system developed for iris biomet-
rics. In Sections 11.5 and 11.6, two different approaches for securing fingerprint data
are described. The first is based on a statistical modeling of the fingerprint data. The
second approach involves transforming the fingerprint data to a representation with
statistical properties that are well suited to off-the-shelf syndrome codes. A summary
of this new application of distributed source coding is given in Section 11.7,including
a discussion on future research opportunities and potential standardization.

11.2 RELATED WORK

One class of methods for securing biometric systems is “transform-based.” Transform-
based approaches essentially extract features from an enrollment biometric using
a complicated transform. Authentication is performed by pattern matching in the
transform domain. Security is assumed to come from the choice of a good trans-
form that masks the original biometric data. In some cases, the transform itself is
assumed to be kept secret, and design considerations must be made to ensure this
secrecy. Particularly when the transform itself is compromised, it is difficult to prove
rigorously the security of such systems. Notable techniques in this category include
cancelable biometrics [2,3],score matching-based techniques [4],and threshold-based
biohashing [5].

This chapter focuses on an alternative class of methods that are based on using some
form of “helper data.” In such schemes, user-specific helper data is computed and
stored from an enrollment biometric. The helper data itself and the method for generat-
ing this data can be known and is not required to be secret. To perform authentication
of a probe biometric, the stored helper data is used to reconstruct the enrollment
biometric from the probe biometric. However, the helper data by itself should not
be sufficient to reconstruct the enrollment biometric. A cryptographic hash of the
enrollment data is stored to verify bitwise exact reconstruction.

Architectural principles underlying helper data-based approaches can be found in
the information-theoretic problem of “common randomness” [6]. In this setting, differ-
ent parties observe dependent random quantities (the enrollment and the probe) and
then through finite-rate discussion (perhaps intercepted by an eavesdropper) attempt
to agree on a shared secret (the enrollment biometric). In this context,error-correction
coding (ECC) has been proposed to deal with the joint problem of providing security
against attackers, while accounting for the inevitable variability between enrollment
and probe biometrics. On the one hand, the error-correction capability of an error-
correcting code can accommodate variations between multiple measurements of the
same biometric. On the other hand, the check bits of the error-correction code
perform much the same function as a cryptographic hash of a password on
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conventional access-control systems. Just as attackers cannot invert the hash and steal
the password, they cannot use the check bits to recover and steal the biometric.

An important advantage of helper data-based approaches relative to transform-
based approaches is that the security and robustness of helper data-based schemes
are generally easier to quantify and prove. The security of transform-based approaches
is difficult to analyze since there is no straightforward way to quantify security when
the transform algorithm itself is compromised. In helper data-based schemes, this
information is known to an attacker, and the security is based on the performance
bounds of error-correcting codes, which have been deeply studied.

To the best of our knowledge, Davida, Frankel, and Matt were the first to consider
the use of ECC in designing a secure biometrics system for access control [7]. Their
approach seems to have been developed without knowledge of the work on common
randomness in the information theory community. They describe a system for securely
storing a biometric and focus on three key aspects: security, privacy, and robustness.
They achieve security by signing all stored data with a digital signature scheme, and
they achieve privacy and robustness by using a systematic algebraic error-correcting
code to store the data. A shortcoming of their scheme is that the codes employed are
only decoded using bounded distance decoding. In addition, the security is hard to
assess rigorously and there is no experimental validation using real biometric data.

The work by Juels and Wattenberg [8] extends the system of Davida et al. [7] by
introducing a different way of using error-correcting codes. Their approach is referred
to as “fuzzy commitment.” In the enrollment stage the initial biometric is measured,
and a random codeword of an error-correcting code is chosen. The hash of this code-
word along with the difference between an enrollment biometric and the codeword
are stored. During authentication, a second measurement of the user’s biometric is
obtained, then the difference between this probe biometric and the stored difference
is determined,and error correction is then carried out to recover the codeword. Finally,
if the hash of the resulting codeword matches the hash of the original codeword, then
access is granted. Since the hash is difficult to invert, the codeword is not revealed. The
value of the initial biometric is hidden by subtracting a random codeword from it,so the
secure biometric hides both codeword and biometric data. This scheme relies heavily
on the linearity/ordering of the encoded space to perform the difference operations.
In reality, however, the feature space may not match such linear operations well.

A practical implementation of a fuzzy commitment scheme for iris data is presented
in [9]. The authors utilize a concatenated-coding scheme in which Reed-Solomon
codes are used to correct errors at the block level of an iris (e.g., burst errors due
to eyelashes), while Hadamard codes are used to correct random errors at the binary
level (e.g., background errors). They report a false reject rate of 0.47 percent at a key
length of 140 bits on a small proprietary database including 70 eyes and 10 samples
for each eye. As the authors note, however, the key length does not directly translate
into security, and they estimate a security of about 44 bits. It is also suggested in [9]
that passwords could be added to the scheme to substantially increase security.

In [10] Juels and Sudan proposed the fuzzy vault scheme. This is a crypto-
graphic construct that is designed to work with unordered sets of data. The “fuzzy
vault” scheme essentially combines the polynomial reconstruction problem with ECC.
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Briefly, a set of ¢ values from the enrollment biometric are extracted, and a length &
vector of secret data (i.e., the encryption key) is encoded using an (#2,&) ECC. For each
element of the enrollment biometric, measurement-codeword pairs would be stored as
part of the vault. Additional random “chaff” points are also stored, with the objective of
obscuring the secret data. In order to unlock the vault, an attacker must be able to sep-
arate the chaff points from the legitimate points in the vault, which becomes increas-
ingly difficult with a larger number of chaff points. To perform authentication, a set of
values from a probe biometric could be used to initialize a codeword, which would
then be subject to erasure and error decoding to attempt recovery of the secret data.

One of the main contributions of the fuzzy vault work was to realize that the set
overlap noise model described in [10] can effectively be transformed into a standard
errors and erasures noise model. This allowed application of Reed-Solomon codes,
which are powerful codes and sufficiently analytically tractable to obtain some privacy
guarantees. The main shortcoming is that the set overlap noise model is not realistic
for most biometrics since feature points typically vary slightly from one biometric
measurement to the next rather than either matching perfectly or not matching at all.

Nonetheless, several fuzzy vault schemes applied to various biometrics have been
proposed. Clancy et al. [11] proposed to use the X — Y location of minutiae points
of a fingerprint to encode the secret polynomial, and they describe a random point-
packing technique to fill in the chaff points. The authors estimate 69 bits of security
and demonstrate a false reject rate of 30 percent. Yang and Verbauwhede [12] also
used the minutiae point location of fingerprints for their fuzzy vault scheme. However,
they convert minutiae points to a polar coordinate system with respect to an origin
that is determined based on a similarity metric of multiple fingerprints. This scheme
was evaluated on a very small database of 10 fingers,and a false reject rate of 17 percent
was reported.

There do exist variants of the fuzzy vault scheme that do not employ ECC. For
instance, the work of Uludag et al. [13] employs cyclic redundancy check (CRC) bits
to identify the actual secret from several candidates. Nandakumar et al. [14] further
extended this scheme in a number of ways to increase the overall robustness of this
approach. On the FVC2002-DB2 database [15], this scheme achieves a 9 percent false
reject rate (FRR) and a 0.13 percent false accept rate (FAR). The authors also estimate
27 to 40 bits of security depending on the assumed distribution of minutiae points.

As is evident from the literature, error-correcting codes indeed provide a powerful
mechanism to cope with variations in biometric data. While the majority of schemes
have been proposed in the context of fingerprint and iris data, there also exist schemes
that target face, signature,and voice data. Some schemes that make use of multibiomet-
rics are also beginning to emerge. Readers are referred to review articles on biometrics
and security for further information on work in this area [16, 17].

In the sections that follow, the secure biometrics problem is formulated in the
context of distributed source coding. We first give a more formal description of the
problem setup, and we then describe solutions using techniques that draw from infor-
mation theory, probabilistic inference, signal processing, and pattern recognition. We
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quantify security and robustness and provide experimental results for a variety of
different systems.

OVERVIEW OF SECURE BIOMETRICS USING
SYNDROMES

In this section, we present the architectural framework and information-theoretic
security analysis for secure biometrics using syndromes. We present notation in
Section 11.3.1, address the prototypical problem in Section 11.3.2, develop measures
of security in Section 11.3.3, quantify security in Section 11.3.4, and discuss a secure
biometrics implementation using error-correcting codes in Section 11.3.5.

Notation

We denote random variables using sans-serif and random vectors using bold sans-
serif, X and X, respectively. The corresponding sample values and vectors are denoted
using serifs x and x, respectively. The length of vectors will be apparent from context
or, when needed, indicated explicitly as, for example, x” for the n-length random vec-
tor X. The 7th element of a random or sample vector is denoted as X; or x;, respectively.
Sets are denoted using caligraphic font; for example, the set of sample values of x
is denoted X, its n-fold product X”?, and |-| applied to a set denotes its cardinality.
We use H(-) to denote entropy; its argument can be either a random variable or its
distribution; we use both interchangeably. For the special case of a Bernoulli-p source
we use Hg(p) to denote its entropy. Along the same lines, we use I(-; -) and I(-; -|-) to
denote mutual and conditional mutual information, respectively.

Enroliment and Authentication

As depicted in Figure 11.1, the secure biometrics problem is realized in the context of
a Slepian-Wolf coding framework. In the following, we describe the system operation
in terms of an access-control application. During enrollment,a user is selected,and raw
biometric b is determined by nature. The biometric is a random vector drawn accord-
ing to some distribution pp(b). A joint sensing, feature extraction, and quantization
function fre,c(-) maps the raw biometric into the length-n enrollment biometric
X = frear (D). Next,a function fiec () maps the enrollment biometric X into the secure bio-
metric S = fiec(X) as well as into a cryptographic hash of the enrollment h = fi,sn (X).
The structure of the encoding function fsec(-) reveals information about X without
leaking too much secrecy. In contrast, the cryptographic hash function fj,sh (+) has no
usable structure and is assumed to leak no information about X. The access-control
point stores s and h, as well as the functions fsec(-) and fhash(-). The access-control
point does not store b or X.

In the authentication phase, a user requests access and provides a second read-
ing of the biometric h’. We model the biometrics of different users as statistically
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FIGURE 11.1

Block diagram of Slepian—Wolf system for secure biometrics.

independent. Therefore, if the user is not the legitimate user py'p(b’, b) = pr,(b")py(b).
On the other hand, if b’ comes from the legitimate user pp'(b’, b) = py'p (b’ [b)pp (b),
where py/p(-|-) models the measurement noise between biometric readings. The fea-
tures extracted from this second reading are Y = freac(h’). Instead of working with
Dup(b’, b), we choose to work with py y(X, y). The feature extraction function ffe ()
induces the distribution py y(x,y) from py (b, b). Per the preceding discussion, if
the user is legitimate py y(X,y) = px(X)pyx(¥1x), and if the user is illegitimate, then
DPry(X,y) =px(X)px(y).!

The decoder ggec (-, -) combines the secure biometric § with the probe y and either
produces an estimate of the enrollment X= Zdec (S, Y) or a special symbol & indicating
decoding failure. Finally, the stored h is compared to fhash (X). If they match, access is
granted. If they do not, access is denied.?

Performance Measures: Security and Robustness
The probability of authentication error (false rejection) is
Prg =Pr [X 7égdec(yafsec(x))]’

where Py x(y, X) = Pyx(y|x)Px(x). As discussed later, we will find it natural to use a
logarithmic performance measure to quantify authentication failure. We use the error
exponent

1
EFR:—flogPFR (11.1)
n

as this measure.

1 Figure 11.1 can be thought of as somewhat specific to a single observation. If one had multiple
observations of the underlying biometric, one could symmetrize the joint distribution by assuming
that each observation of the underlying biometric (including the enrollment) was through a noisy
channel. The current setting simplifies the model and is sufficient for our purposes.

2 In a data encryption application,an encryption key is generated from X and the matching decryption
key from X. A cryptographic hash function fi,sh (+) is not required; if the reconstruction is not exact,
then the generated key will not match the one used to encrypt and decryption will fail.
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It must be assumed that an attacker makes many attempts to guess the desired
secret. Therefore, measuring the probability that a single attack succeeds is not par-
ticularly meaningful. Instead, security should be assessed by measuring how many
attempts an attack algorithm must make to have a reasonable probability of success.
We formalize this notion by defining an attack as the creation of a list of candidate bio-
metrics. If the true biometric is on the list, the attack is successful. The list size required
to produce a successful attack with high probability translates into our measure of
security.

Let £ = Ag,.(-) be a list of 2""Rsc guesses for X produced by the attack algorithm
A() that is parametrized by the rate R of the attack and takes as inputs px(-) pyix(-|),
fsec(), fhash (+), &dec (-, *), S, and h. The attack algorithm does not have access to a
probe generated from the enrollment X according to pyx(-|-) because it does not have
a measurement of the original biometric. From the quantities it does know, a good
attack is to generate a list £ of candidate biometrics that match the secure biometric
S (candidate biometrics that do not match S can be eliminated out of hand). That
is, for each candidate Xcang € L, fsec(Xcand) = S- While the cryptographic hash fi,sn ()
is assumed to be noninvertible, we conservatively assume that the secure biometric
encoding fsec(-) is known to the attacker, and we further assume that the attacker can
invert the encoding. Hence the list £ can be generated.

Once the list £ is created, a natural attack is to test each Xcang €L in turn to
check whether fiash (Xcana) = h. If the hashes match, the attack has succeeded. The
system is secure against attacks if and only if the list of all possible candidate biomet-
rics matching the secure biometric is so enormous that the attacker will only have
computational resources to compute the hashes of a negligible fraction of candidate
biometrics. Security thus results from dimensionality reduction: a high-dimensional X
is mapped to a low-dimensional § by fsec(-). The size of the total number of candidate
biometrics that map onto the secure biometric $ is exponential in the difference in
dimensionality.

The probability that a rate-Rse. attack is successful equals the probability that the
enrollment biometric is on the attacker’s list,

Psa(Rsec) = Pr[XGARSCC (px(')vPY\X('|')afsec(')’fhash(')a &dec(+,), h, S)]

The system is said to be “e-secure” to rate-Rgec attacks if Psp (Rsec) <E€.

Equivalently, we refer to a scheme with Psp (Rsec) = € as having 72 - Rgec bits of secu-
rity with confidence 1 — €. With probability 1 — €, an attacker must search a key space
of - Rsec bits to crack the system security. In other words, the attacker must make
2"Rsec gyesses. The parameter Ry is a logarithmic measure of security, quantifying the
rate of the increase in security as a function of blocklength 7. For instance, 128-bit
security requires nRsec = 128. It is because we quantify security with a logarithmic
measure that we also use the logarithmic measure of error exponents to quantify
robustness in (11.1).

Our objective is to construct an encoder and decoder pair that obtains the
best combination of robustness (as measured by Ppgr) and security (as measured
by Psa (Rsec)) as a function of Rgec. In general, improvement in one necessitates a
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decrease in the other. For example, if Psp(0.5) =€ and Ppg = 2710 at one operat-
ing point, increasing the security to 0.757 might yield another operating point at
Pss(0.75) =€ and Ppg =27 8. With this sense of the fundamental trade-offs involved,

we now define the security-robustness region.

Definition 11.1. For any €>0 and any pyy(x,y) the security-robustness region Re is
defined as the set of pairs (r, ) for which an encoder-decoder pair (fsec(-), 8gec(-,+)) exists
that achieves rate-r security with an authentication failure exponent of y:

1
Re = {(V, V) |Psa(r)<e,y= _Z log Prr }

11.3.4 Quantifying Security

In this section, we quantify an achievable subset of the security-robustness region
Re. This specifies the trade-off between Ppr and Pga () in an idealized setting. Our
derivation assumes that X and Y are jointly ergodic and take values in finite sets, X €
X", yeY". One can derive an outer bound to the security-robustness region by using
upper bounds on the failure exponent (via the sphere-packing bound for Slepian-Wolf
coding). Since our prime purpose in this section is to provide a solid framework for
our approach, we don’t further develop outer bounds here.

We use a rate-Rsyw random “binning” function (a Slepian-Wolf code [1]) to encode
X into the secured biometric S. Specifically, we independently assign each possible
sequence X € X" an integer selected uniformly from {1, 2, ..., 2"Rsw1} The secure bio-
metric is this index S = fsec(X). Each possible index se {1, 2, ..., 2"Rsw 1 indexes a set
or “bin” of enrollment biometrics, {X € X"*|fsec(X) = s}. The secure biometric can be
thought of either as a scalar index S or as its binary expansion, a uniformly distributed
bit sequence s of length 7Rgy .

During authentication, a user provides a probe biometric Yy and claims to be a
particular user. The decoder ggec(Y, S) searches for the most likely vector X € X" given
y according to the joint distribution py y such that X is in bin s, that is, fiec(X) =$. If a
unique X is found, then the decoder outputs this result. Otherwise, an authentication
failure is declared and the decoder returns &.

According to the Slepian-Wolf theorem [1, 18], the decoder will succeed with
probability approaching 1 as »n increases provided that Rsw > (1/n)H (X|y). Thus, Ppr
approaches zero for long blocklengths. The theory of error exponents for Slepian-Wolf
coding [19] tells us that —(1/n) log Prr = Esw (Rsw ), where

1+p
1 0
Fsw (Ryw) = max { pRsw =~ 108 3 py(¥) [prw(XIy) ”p} . 12
v x

If Rew < (1/m)H (X|Y) then Esw (Rsw) = 0. For Rsw > (1/n)H (X|y) the error exponent
Esw (Rsw) increases monotonically in Rgyw. Note that (11.2) holds for any joint distri-
bution, not just independent and identically distributed (i.i.d.) ones. However, if the
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source and channel are memoryless, the joint distribution is i.i.d., and pxy(X,y) =
]_[Z’-l=1 Dx,y(xi,¥:i). As a result, the second term of (11.2) simplifies considerably to

171+
—logZyPy(y)[prxw(xly)W] ’

Next, we consider the probability of successful attack, that is, how well an attacker
can estimate X given the secure biometric S. According to the asymptotic equipartition
property [20], under the fairly mild technical condition of ergodicity, it can be shown
that conditioned on $ = fi.c(X), X is approximately uniformly distributed over the typ-
ical set of size 2 XIS Therefore, with high probability, it will take approximately this
many guesses to identify X. We compute H (X|S) as

HX|S)=HX.s)—H(s) LHX) — H($)Z HX) — nRey. (11.3)

where (a) follows because $ = fs.c(X), that is, S is a deterministic function of X, and
(b) follows from the method of generating the secure biometric, that is, $ is uniformly
distributed over length-nRsw binary sequences (in other words $ is a length-nRgsw
i.i.d. Bernoulli(0.5) sequence).

Using (11.2) and (11.3), we bound the security-robustness region in the following:

Theorem 11.1. Forany e >0 as n — 0, an inner bound to the security-robustness region
‘Re defined in Definition 11.1 is found by taking a union over all possible feature extraction
functions fseat(+) and secure biometric encoding rates Rsy

1
Re> | {7’7 7"’ < HOO) = Rsw, v < ESW(RSW)}
ffeat(‘),RSW

where Esw(Rsw) is given by (11.2) for the py y(-, -) induced by the chosen feat ().

PROOF. The theorem is proved by the random-binning encoding and maximum-likelihood
decoding construction specified above. The same approach holds for any jointly ergodic
sources. The uniform distribution of the true biometric across the conditionally typical
set of size 2 XIs) provides security; cf. Equation (11.3). As long as the rate of the attack
r << %H (X) — Rsw, then Psy () < € forany € > 0 as long as 7 is sufficiently large. Robustness
is quantified by the error exponent of Slepian-Wolf decoding given by (11.2). |

Figure 11.2 plots an example of the security-robustness region for a memoryless
insertion and deletion channel that shares some commonalities with the fingerprint
channel that we discuss in Section 11.5.The enrollment biometric X is an i.i.d. Bernoulli
sequence with py(1) =0.05. The true biometric is observed through the asymmetric
binary channel with deletion probability py|x(0|1) and insertion probability py|x(1|0).
We plot the resulting security-robustness regions for two choices of insertion and
deletion probabilities.

We now contrast Pgy (), the measure of security considered in Theorem 11.1 and
defined in Definition 11.1, with the probability of breaking into the system using the
classic attack used to calculate the FAR. In the FAR attack, Y is chosen independently
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Example security-robustness regions. The horizontal axis represents the maximum security rate
Rsec such that Psa(Rsec) <€, while the vertical axis represents robustness. The security-
robustness region of the system corresponding to the solid curve (all points below the curve)
dominates that of the dashed curve.

of X, that is, py x(y, X) = py(y)px(x). This attack fails unless the y chosen is jointly typ-
ical with x, that is, unless the pair y and (the unobserved) x look likely according
to pyx(-,-). Given that a y is selected that is jointly typical with the enrollment
X, the decoder will then successfully decode to X with high probability, the hash
will match, and access will be granted. To find such a y when picking according
to the marginal py(y) takes approximately 2/ VX = 2H®=HXY) gyesses. We must set
Rsw > (1/n)H (X]Y), else as discussed above, Equation (11.2) tells us that Prg goes to
one. This constraint means that (cf. Equation (11.3)) H(X|S) <H (X) — H(X|y). Thus,
while an FAR-type attack required 27 ®~HXI) gyesses, the smarter attack considered
in the theorem required 2 ®~7Rsw and thus an FAR-type attack will almost always
take many more guesses than an attack that makes its guesses conditioned on S.

We again emphasize that an attack that identifies a biometric X such that fiec(X) =S
is not necessarily a successful attack. Indeed, our security analysis assumes that an
attacker can easily find X that satisfies fsc(X) =S. However, if X # X, then fhash (X) 7#
fhash(X) = h and access will not be granted. Thus, in the bounds on security provided
by Theorem 11.1, it is assumed that the attacker is limited to guesses of X that satisfy

Jsec (i) =Ss.



11.3 Overview of Secure Biometrics Using Syndromes

Implementation Using Syndrome Coding

In our work, the enrollment biometric X is binary, and we use a linear code for the
encoding function,

S = fsec (X) = HX, (11.4)

where H is a & X n binary matrix and addition is mod-2, that is, a b =XOR(a, b).
Using the language of algebra, the secure biometric $ is the “syndrome” of the set
of sequences X € {0, 1}" satisfying HX =s. This set is also referred to as the “coset” or
“equivalence class” of sequences. Note that all cosets are of equal cardinality.’

An attacker should limit his set of guesses Ag,. to a subset of the coset corre-
sponding to the stored s. If all X sequences were equally likely (which is the case since
cosets are of equal size and if X is an i.i.d. Bernoulli(0.5) sequence), then the attacker
would need to check through nearly the entire list to find the true biometric with high
probability. For this case and from (11.3), we calculate the logarithm of the list size
to be H(X) — H(S) =n — k, where n and & are the dimensions of the X and S vectors,
respectively, and are also the dimensions of the H matrix in (11.4). This follows from
the model: H(X) =n since X is i.i.d. Bernoulli(0.5) and H(S) =k since cosets are of
equal size and py(x) =2"" for all x.

If the enrollment biometric X is not a uniformly distributed i.i.d. sequence—which
is going to be the case generally—the attacker need not check through the entire
coset corresponding to S. Instead the attacker should intersect the coset with the set
of sequences in X" that look like biometrics. These are the “typical” sequences [20]
determined by the probability measure px(-). This intersection is taken into account in
Equation (11 .3).4 If the rows of the H matrix in (11.4) are generated in an independent
and identically distributed manner, then step (b) in (11.3) simplifies as follows:

k
H(X|s) =H(X) — H(S) = H(X) — ZH(si) = H(X) — RH(S). (11.5)

i=1

In an actual implementation, we generally do not generate the rows of H in an i.i.d.
manner, but rather use a structured code such as a low-density parity-check (LDPC)
code. In such situations, (11.3) is a lower bound on the security of the system since
H(S)= Zf‘:l H(s;) using the chain rule for entropy and the fact that conditioning
reduces entropy; the third equality still holds as long as the rows of H are identi-
cally distributed (even if not independent). Furthermore, contrast (11.5) with (11.3).
In Equation (11.3), H(S) =nRsw because of the random binning procedure. The

3 1t can be shown that any X in the 8’ coset can be written as X =X @2 for some X in the s coset and
where Z is fixed. Thus, HX=H(X®2z) =s + Hz=s'.The 8’ coset corresponds to all elements of the §
coset (defined by its syndrome $) shifted by z,and thus the cardinalities of the two cosets are equal.
4 We note that calculating the intersection may be difficult computationally. However, the security
level quantified by Theorem 11.1 is conservative in the sense that it assumes that the attacker can
calculate the intersection and produce the resulting list effortlessly.
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assumptions of this procedure no longer hold when using linear codes to implement
binning.

It is informative to consider estimating (11.5). The second term, RH (S) is easy to
estimate since it involves only the entropy of a marginal distribution. An estimation
procedure would be to encode many biometrics using different codes, construct a
marginal distribution for S, and calculate the entropy of the marginal. Particularly, if
the code alphabet is small (say binary), little data is required for a good estimate. The
first term H (X) is harder to estimate. Generally, we would need to collect a very large
number of biometrics (if 7 is large) to have sufficient data to make a reliable estimate of
the entropy of the n-dimensional joint distribution. Thus, the absolute level of security
is difficult to evaluate. However, the analysis provides a firm basis on which to evaluate
the comparative security between two systems. The H (X) term is common to both and
cancels out in a calculation of relative security—the difference between the individual
securities, which is RH (S) —k'H(S").

IRIS SYSTEM

This section describes a prototype implementation of a secure biometrics system
for iris recognition based on syndrome coding techniques. Experimental results on
the Chinese Academy of Sciences Institute of Automation (CASIA) database [21] are
presented.

Enrollment and Authentication

At enrollment, the system performs the following steps. Starting with an image of a
user’s eye, the location of the iris is first detected, and the torus is then unwrapped
into a rectangular region. Next, a bank of Gabor filters are applied to extract a bit
sequence. The Matlab implementation from [22] could be used to perform these steps.
Finally, the extracted feature vector X is produced by discarding bits at certain fixed
positions that were determined to be unreliable.’ The resulting X = freac (b) consists of
the most reliable bits; in our implementation 1806 bits are extracted. Finally, the bit
string X is mapped into the secure biometric $ by computing the syndrome of X with
respect to a LDPC code. Specifically, a random parity-check matrix H is selected from
a good low-rate degree distribution obtained via density evolution [23] and S=H -X is
computed.

To perform authentication,the decoder gqec (-, -) repeats the detection,unwrapping,
filtering,and least-reliable bit dropping processes. The resulting observationy is used as

5 Unreliable positions are those positions at which the bit values (0 or 1) are more likely to flip
due to the noise contributed by eyelids and eyelashes, and due to a slight misalignment in the radial
orientation of the photographed images. The bit positions corresponding to the outer periphery of
the iris tend to be less reliable than those in the interior. These bit positions can be determined from
the training data.
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FIGURE 11.3

Sample bit sequences extracted from iris data. (a) Two sample measurements from one user;
(b) two sample measurements from a second user.

the input to a belief propagation decoder that attempts to find a sequence § satisfying
H-S=s. If the belief propagation decoder succeeds, then the output § = gqec(S, ¥).
Otherwise, an authentication failure (or false rejection) is declared, and the output of
8dec(S,Y) is O.

Sample iris measurements from two different users are shown in Figure 11.3.The bit
correlation between different samples of the same user and differences between sam-
ples of different users are easily seen. It has also been observed that the bit sequences
extracted from the irises contain significant inter-bit correlation. Specifically, let p;, ;
be the probability of an iris bit taking the value 7 followed by another bit with the
value j. If the bits extracted from an iris were independent and identically distributed,
one would expect p; ;=1/4 for all (7, §) € {0, 1}2. Instead, the following probabilities
have been measured from the complete dataset:

DP0.0=0.319, po.1 =0.166, p1,0:0.166, P11 =0.349

Ignoring the inter-bit memory would result in degraded performance. Therefore, the
belief propagation decoder is designed to exploit this source memory. Further details
can be found in [24].

Experimental Results

The system is evaluated using the CASIA iris database [21]. The iris segmentation
algorithm that was implemented was only able to correctly detect the iris in 624
out of 756 images [22, Chapter 2.4]. Since our emphasis is on the secure biometrics
problem and not on iris segmentation, experiments were performed with the 624 iris
that were segmented successfully. Furthermore, half of the iris images were used for
training.
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Performance result of 312 iris images from CASIA database. Horizontal axis represents security,
while vertical axis plots robustness in terms of the probability of false rejection. The original length
of the bit sequence extracted from an iris is n =1806, while the length of the syndrome is

1806 — t bits, where t is plotted along the horizontal axis above. In fact, the actual number of bits
of security is smaller than t because of inter-bit correlation in iris biometrics. A detailed
explanation appears at the end of this section.

Figure 11.4 reports performance results for the 312 image test set from the CASIA
iris database. The horizontal axis represents security, while the vertical axis represents
the probability of false rejection for a legitimate user. Better systems correspond to
points in the lower right, but as Theorem 11.1 shows theoretically and the figure
demonstrates, there is a trade-off between security and robustness. Specifically, if a rate
R LDPC code is used, then S contains 7(1 — R) bits. Under the idealized model where
the iris data consists of i.i.d. Bernoulli (0.5) bits, our approach yields approximately
1806 - R bits of security with confidence approaching 1. Increasing R yields higher
security, but lower robustness, so the security-robustness region can be estimated by
varying this parameter.

Note that if the biometric is stored in the clear,there is a probability of false rejection
equal to 0.0012 (i.e., the leftmost point in the graph). Thus, it is shown that, relative
to an insecure scheme, with essentially no change in the probability of authentication
failure the syndrome-based scheme achieves almost 50 bits of security.

Higher levels of security can be achieved if larger authentication error rates are
allowed. As discussed in Section 11.3, the true level of security is more difficult to
evaluate. Specifically, the original length of the bit sequence extracted from an iris
in the system is 18006, and the length of the syndrome produced by our encoder is
1806 — t, where t is a point on the horizontal axis of Figure 11.4. If the original
biometric is an i.i.d. sequence of Bernoulli(0.5) random bits, then the probability of
guessing the true biometric from the syndrome would be about 27 (i.e., security of ¢
bits). However, as discussed earlier in this section, there is significant inter-bit memory
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in iris biometrics. In particular, if the source was a first-order Markov source with
the measured p; ; statistics, the entropy of an 1806-bit measurement is only 0.9166 X
1806 = 1655 bits, or 90 percent of the true blocklength. Since 1806 — ¢ > 90 percent
of 1806 for all reasonable values of Prg in Figure 11.4,this suggests that an attacker with
unbounded computational resources might be able to determine the true syndrome
more quickly than by randomly searching a key space of size 2‘. That said, we are not
aware of any computationally feasible methods of improving upon random guessing,
and we believe that the estimated security provided here is still reasonable.

FINGERPRINT SYSTEM: MODELING APPROACH

In the previous section, we remarked on the difficulties caused by the correlations
between bits in an iris biometric. These problems were dealt with by explicitly includ-
ing the correlations in a belief propagation decoder. For fingerprint data,such problems
are more severe. Models for fingerprint biometrics do not obviously map onto blocks
of i.i.d. bits as would be ideal for a Slepian-Wolf LDPC code. We present two solutions
to this problem. In this section, a “modeling” solution is discussed, in which the rela-
tionship between the enrollment biometric and the probe biometric is modeled as a
noisy channel. The rest of this section describes a somewhat complex statistical factor
graph model for fingerprint data and corresponding graph-based inference decoding
techniques.

In Section 11.6, a second “transformation” approach is introduced, in which the
fingerprint biometric is transformed, as well as possible, into a block of i.i.d. bits, and
then a standard LDPC code and decoder are used. Although these two approaches
are described in detail for fingerprint biometrics, other biometrics will have a similar
dichotomy of possible approaches. For fingerprints, we have found that the transfor-
mation approach gives better results and makes it easier to quantify the security of
the system, but both approaches are worth understanding.

Minutiae Representation of Fingerprints

A popular method for working with fingerprint data is to extract a set of “minutiae
points” and to perform all subsequent operations on them [25]. Minutiae points have
been observed to be stable over many years. Each minutiae is a discontinuity in the
ridge map of a fingerprint, characterized by a triplet (x, y, ) representing its spatial
location in two dimensions and the angular orientation. In the minutiae map M of a
fingerprint, M(x, ) = 0 if there is a minutiae point at (x, y) and M(x, y) =¥ (empty
set) otherwise. A minutiae map may be considered as a joint quantization and fea-
ture extraction function that operates on the fingerprint image, that is, the output of
the ffear(-) box in Figure 11.1. In Figure 11.5, the minutiae map is visualized using a
matrix as depicted in the right-hand plot, where a 1 simply indicates the presence of a
minutiae at each quantized coordinate. In this figure,as well as in the model described
throughout the rest of this section, the § coordinate of the minutiae is ignored.
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FIGURE 11.5
Fingerprint and extracted feature vector.

It is noted that different fingerprints usually have different numbers of minutiae.
Furthermore, the number and location of minutiae could vary depending on the par-
ticular extraction algorithm that is used. For some applications, it could be important
to account for such factors in addition to typical differences between fingerprint
measurements, which will be discussed further in the next subsection. In the work
described here, the enrollment feature vector X is modeled as a Bernoulli i.i.d.random
vector.

Modeling the Movement of Fingerprint Minutiae

In the following, a model for the statistical relationship pyx(y[|x) between the enroll-
ment biometric and the probe biometric is described. This model captures three main
effects: (1) movement of enrollment minutiae when observed the second time in the
probe, (2) deletions, that is, minutiae observed at enrollment, but not during probe,and
(3) insertions, that is, “spurious” minutiae observed in probe but not during enrollment.

Figure 11.6 depicts these three mechanisms in turn. First, minutiae observed at
enrollment are allowed to jitter slightly around their locations in the enrollment vector
when registered the second time in the probe.This movement is modeled within a local
neighborhood, where up to three pixels in either the horizontal or vertical direction
(or both) could be accounted for. The size of the local neighborhood depends on the
resolution of the minutiae map and how coarsely it is quantized. Second, a minutiae
point may be registered in the enrollment reading but not in the probe. Or a minutiae
point may be displaced beyond the local neighborhood defined by the movement
model. Both count as “deletions.” Finally, minutiae points that are not observed at
enrollment, but may be in the probe vector, are termed insertions.

The statistical model is formalized using a factor graph [26] as shown in Figure 11.7.
The presence of a minutiae point at position £, £€{1, 2, ..., n} in the enrollment
grid is represented by the binary random variable X; that takes on the value x; =1
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FIGURE 11.6
Statistical model of fingerprints corresponding to local movement, deletion, and insertion.

only if a minutiae is present during enrollment.® For simplicity, the figure shows a
one-dimensional movement model. All experimental results use a two-dimensional
movement model.

The decoder observes two vectors: the probe biometric y; forie {1, 2, ..., n} and
sjforje {1, 2, ..., k}.The decoder’s objective is to estimate the hidden x; enrollment
variables.

The factor graph breaks down into three pieces. At the bottom of Figure 11.7 is
the code graph representing the H matrix (cf. (11.4)) that maps X into S. At the top
of Figure 11.7 is the observation Y. In between X and Y is our model of movement,

©® Note that ¢ indexes a position in the two-dimensional field of possible minutiae locations. The
particular indexing used (e.g., raster-scan) is immaterial. The product of the number of rows and the
number of columns equals 7.
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FIGURE 11.7
Factor graph of the minutiae movement model.

deletion, and insertion. Each circle in the figure represents a variable node either
observed (s and ¥) or unobserved (X, h, and 2) that needs to be estimated. The vector
h is a vector of binary variables, each indicating the current belief (at a given point
in the decoding process) whether an enrollment minutiae at position ¢ is deleted.
If a probe minutiae is observed at position ¢ (i.e., y, = 1), then z; indicates the cur-
rent beliefs of what enrollment locations the minutiae might have come from and
Zyn ) = {2Zild €N (¢)} are the set of these variables in the neighborhood of enrollment
position £.

The constraints between the variables and the priors that define the joint proba-
bility function of all system variables are represented by the polygon factor nodes. The
constraints enforced by each are as follows. The prior on X; is prj(x;). The prior on
deletion is pm(h;).The prior on insertion is py (z;). The constraint that each enrollment
minutiae is paired with only a single probe minutiae is enforced by the function node
A.In other words, A says that an enrollment minutiae can move to at most one position
in the probe, or it can be deleted. Finally, in the reverse direction, {) constrains probe
minutiae either to be paired with only a single enrollment minutiae or to be explained
as an insertion. For a more detailed discussion of the statistical model, see [27, 28].
The complete statistical model of the enrollment and probe biometrics is

PxyY) =px®pyx(y1x) =YY [ [po@)pmpy @) A, he, 2pr0) Oz 1)
{hi} {=zi} ¢
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The above statistical model of the biometrics is combined with the code graph. This
yields the complete model used for decoding pxy s(X,y,s) =pxy(X,y) I ; B(sj, x),
where ©(s;, X) indicates that the mod-2 sum of s; and the x; connected to syndrome j
by the edges of the LDPC code is constrained to equal zero. A number of computational
optimizations must be made for inference to be tractable in this graph. See [27, 28]
for details.

Experimental Evaluation of Security and Robustness

We use a proprietary Mitsubishi Electric (MELCO) database to evaluate our techniques.
The database consists of a set of fingerprint measurements with roughly 15 measure-
ments per finger. One measurement is selected as the enrollment, while decoding is
attempted, with the remaining 14 serving as probes. The locations of the minutiae
points were quantized to reside in a 70 X 100 grid, resulting in a blocklength 7 = 7000.

The mean and standard deviation of movement, deletions ( pp),and insertions ( pr)
for the MELCO dataset are plotted in Figure 11.8.The label d = 1 labels the probability
that an enrollment minutiae moved a distance of one pixel in either the vertical or
horizontal direction, or both (i.e., the max- or co-norm). These parameters are used to
set parameter values in the factor graph.

A summary of test results is given in Table 11.1. Results are categorized by the
number of minutiae in the enrollment print. To first order, this is a measure of the
randomness of the enrollment biometric. As an estimate of H(X), we say that if a
fingerprint has, for example, 33 minutiae, its entropy is 7000 X Hg(33/7000) = 7000 X
0.0432 =302. Each row in the table tabulates results for enrollment biometrics, with
the number of minutiae indicated in the first column. The second column indicates
how many users had that number of minutiae in their enrollment biometric.

In the security-robustness trade-off developed in Section 11.3.3, it was found that
holding all other parameters constant (in particular, the rate of the error-correcting
code), security should increase and robustness decrease as the biometric entropy
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FIGURE 11.8
Empirical movement statistics.
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Table 11.1 Test Parameters, FRR and FAR Results for Full-model Decoding Working on
MELCO Data at Encoding Rate R ppc =0.94

Enrollment False Negatives False Positives Security
# Minutiae # Users FRR  # Tested FAR # Tested H(x) H(s) # Bits
31 195 0.11 2736 0.0098 110,000 0.0410 0.682 0.5
32 139 0.13 1944 0.0032 78,000 0.0421 0.693 3.6
33 107 0.15 1506 0.0024 60,000 0.0432 0.701 8.2
34 79 0.20 1101 0.0011 44,000 0.0443 0.711 11.6
35 59 0.32 824 0.0003 33,000 0.0454 0.716 17.2

increases. To test this, we use LDPC codes of rate Ryppc = 0.94 and length-7000 for all
syndrome calculations. The second and third groups of columns, labeled FRR and FAR,
respectively, bear out the theoretic analysis. As the number of enrollment minutiae in
a given fingerprint increases, the FRR goes up while the FAR drops. All nonenrollment
probes of the given user are used to calcuate FRR. Summing the # Tested column
under FRR gives 8111, which is roughly equal to the sum of the number of users (579)
times the number of probes per user (roughly 14). To calculate the FRR, we test the
enrollment biometric uniformly against other users’biometrics. Note that for all results
it is assumed that the fingerprints in the database are prealigned.’

The final group of columns in Table 11.1 is labeled Security. Here, we quantify the
information-theoretic security for the prototype. From (11.5) and recalling that the
length of the biometric is 7 = 7000, the number of bits of security is

H(X|S) =H(X) —kRH(S)
=7000H (x) —7000(1 — Ryppc)H(S). (11.6)
Equation (11.6) follows from our model that the underlying source is i.i.d. so H(X) =
7000H (x) and because we use syndrome codes via (11.4) the number of syndromes
k=7000(1 — Rippc). Using Ry ppc = 0.94 and substituting the values for H (x) and H(S)

from the different rows of Table 11.1 into (11.6) gives the bits of security for this
system, which are tabulated in the last column of the table.

7 We align fingerprints using a simple greedy minutiae-matching approach over a number of vertical
and horizontal shifts (there was no rotational offset in the dataset). More generally, alignment would
have to be done blindly prior to syndrome decoding. This is not as difficult as it may seem at first.
For instance, many fingers have a “core point” and orientation in their pattern that can be used to
define an inertial coordinate system in which to define minutiae locations. Doing this independently
at enrollment and at verification would yield approximate prealignment. The movement part of the
factor graph model is to be able to compensate for small residual alignment errors.
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Remarks on the Modeling Approach

This section describes a secure fingerprint biometrics scheme in which an LDPC code
graph was augmented with a second graph that described the “fingerprint channel”
relating the enrollment to the probe biometric. A number of improvements are pos-
sible. For example, we implement an LDPC code designed for a binary symmetric
channel (BSC). This design is not tuned to the fingerprint channel model. One pos-
sible improvement is to refine the design of the LDPC to match that channel. In
general, however, while the “fingerprint channel” is a reasonable model of the vari-
ations between the enrollment and probe fingerprints, the techniques developed
are specific to the feature set, and the resulting inference problem is complex and
nonstandard. In addition, higher levels of security are desired. For these reasons, we
take a different approach in the next section that aims to redesign the feature extrac-
tion algorithm to yield biometric features that are well matched to a standard problem
of syndrome decoding.

FINGERPRINT SYSTEM: TRANSFORMATION
APPROACH

In this section we aim to revamp the feature extraction algorithm to produce
biometric features with statistics well matched to codes designed for the BSC.
Since the construction of LDPC codes for the BSC is a deeply explored and well-
understood topic, we are immediately able to apply that body of knowledge to the
secure biometrics problem. We believe this is a more promising approach, in part
because the design insights we develop can be applied to building transforms for
other biometric modalities. In contrast, the biometric channel model developed in
Section 11.5.2 is specific to fingerprints and minutiae points. In addition, the system we
describe for fingerprints in this section achieves a higher level of information-theoretic
security.

The transform-based secure fingerprint biometrics scheme is depicted in
Figure 11.9. In Section 11.5, the function ffe,(-) extracted minutiae maps from the
enrollment and probe fingerprints. Here, in addition to minutiae extraction, the fiea(-)
box also encompasses a feature transformation algorithm that converts the 2D minu-
tiae maps to 1D binary feature vectors. The central idea is to generate binary feature
vectors that are i.i.d. Bernoulli(0.5), independent across different users but such that
different measurements of the same user are related by a binary symmetric channel
with crossover probability p (BSC-p), where p is much smaller than 0.5. This is one
of the standard channel models for LDPC codes, and therefore standard LDPC codes
can be used for Slepian-Wolf coding of the feature vectors. We emphasize that the
feature transformation we now present is made public and is not assumed to provide
any security—in contrast to some of the transform-based techniques discussed in
Section 11.2.
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Robust feature extraction is combined with syndrome coding to build a secure fingerprint
biometrics system.

Desired Statistical Properties of Feature Vectors
‘We aim to have a feature vector that possesses the following properties:

1. A bit in a feature vector representation is equally likely to be a 0 or a 1. Thus,
Pr{x;=0}=Pr{x;=1}=1/2 and H(x;)=1 bit for all ieZ={1, 2, ..., n}.

2. Different bits in a given feature vector are independent of each other, so that a
given bit provides no information about any other bit. Thus, the pairwise entropy
H(x;, X;) =H(X;) + H(X;) = 2bitsforall i # j where #, j € Z.This property,along
with the first property, ensures that the feature vector cannot be compressed
further; that is, it presents the maximum possible uncertainty for an attacker
who has to guess a portion of a feature vector given some other portion.

3. Feature vectors X and Y from different fingers are independent of each other, so
that one person’s feature vector provides no information about another person’s
feature vector. Thus, the pairwise entropy H (X;, yj) =H(Xx;)+H( yj) = 2 bits for
alli,jeZ.

4. Feature vectors X and X’ obtained from different readings of the same finger are
statistically related by a BSC-p. If p is small, it means that the feature vectors are
robust to repeated noisy measurements with the same finger. Thus, H (x';|X;) =
H(p) foralli e 7.

The last property ensures that a Slepian-Wolf code with an appropriately chosen
rate makes it possible to estimate the enrollment biometric when provided with
feature vectors from the enrollee. At the same time, the chosen coding rate makes it
extremely difficult (practically impossible) to estimate the enrollment biometric when
provided with feature vectors from an attacker or from a different user. To show that
the resulting biometrics system is information-theoretically secure, proceed just as in
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(11.3) to obtain

HX|s) = H(X, s) — H(S) = H(X) — H(S)
=H(X) —nRsw =n (H(X;) — Rsw) (11.7)

=n(1 — Rsw) =nRippc >0

where the last two equalities follow from properties 1 and 2,and Ryppc is the rate of the
LDPC code used. Thus, the higher the LDPC code rate, the smaller is the probability
of successful attack conditioned on an observation of S. Moreover, H(X|S) >0 and
hence nRsw < H (X) implies that, if properties 1-4 are satisfied, the system has positive
information-theoretic security for any LDPC code rate.

Feature Transformation Algorithm

To extract » bits from a minutiae map, it suffices to ask »n “questions,”each with a binary
answer. A general framework to accomplish this is shown in Figure 11.10. First, n
operations are performed on the biometric to yield a nonbinary feature representation
that is then converted to binary by thresholding. As an example, one can project the
minutiae map onto 7 orthogonal basis vectors and quantize the positive projections
to 1s and negative projections to 0s.

In the implementation we now describe, the n operations count the number of
minutiae points that fall in randomly chosen cuboids in X — Y — 0 space (x-position,
y-position, f-minutiae-orientation),as shown in Figure 11.10(b).To choose a cuboid,an
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1
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FIGURE 11.10

(a) n questions can be asked by performing n operations on the biometric followed by
thresholding. In our scheme, the operation involves counting the minutiae points in a randomly
generated cuboid. (b) To obtain a binary feature vector, the number of minutiae points in a cuboid
is thresholded with respect to the median number of minutiae points in that cuboid calculated
over the entire dataset. Overlapping cuboid pairs will result in correlated bit pairs. For details
about eliminating bit pairs with very high correlation, the reader is referred to [29].
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origin is selected uniformly at random in X — Y — ® space, and the dimensions along
the three axes are also chosen at random.

Next, define the threshold as the median of the number of minutiae points in the
chosen cuboid, measured across the complete training set. A similar method is used
for face recognition in [30]. The threshold value may differ for each cuboid based
on its position and volume. If the number of minutiae points in a randomly generated
cuboid exceeds the threshold, then a 1-bit is appended to the feature vector;otherwise
a 0-bit is appended. We consider the combined operation of (a) generating a cuboid
and (b) thresholding as equivalent to posing a question with a binary answer. With »n
such questions we get an 7-bit feature vector.

The simplest way to generate feature vectors is to use the same questions for all
users. In the sequel, we consider a more advanced approach in which the questions are
user-specific. The rationale behind using user-specific questions is that some questions
are more robust (reliable) than others. In particular,a question is robust if the number
of minutiae points in a cuboid is much greater or much less than the median calculated
over the entire dataset. Thus, even if there is spurious insertion or deletion of minutiae
points when a noisy measurement of the same fingerprint is provided at a later time,
the answer to the question (0 or 1) is less likely to change. On the other hand, if the
number of minutiae points is close to the median, the 0 or 1 answer to that question
is less reliable. Thus, more reliable questions result in a BSC-p intra-user channel with
low p. Different users have a different set of robust questions, and we propose to
use these while constructing the feature vector. We emphasize that for the purposes
of security analysis, the set of questions used in the system is assumed public. An
attacker who steals a set of syndromes and poses falsely as a user will be given the
set of questions appropriate to that user. Our security analysis is not based in any way
on the obscurity of the questions, but rather on the information-theoretic difficulty of
recovering the biometric given only the stolen syndromes.

For a given user 7, the average number of minutiae points 72, ; in a given cuboid
Cj is calculated over repeated noisy measurements of the same fingerprint. Let 72; and
o; be the median and standard deviation of the number of minutiae points in C; over
the dataset of all users. Then, let A; ; = (712; j — m;) /0. The magnitude, |4; ;| is directly
proportional to the robustness of the question posed by cuboid C; for user 7. The sign
of A; ; determines whether the cuboid C; should be placed into Lo ;,a list of questions
with a 0 answer for user Z, or into £ ;, a list of questions with a 1 answer for user 7.
Both of these lists are sorted in the decreasing order of |A; ;|. Now,a fair coin is flipped
to choose between Ly ; and £, ; and the question at the top of the chosen list is stored
on the device. After n coin flips, approximately 72/2 of the most robust questions from
each list will be stored on the device. This process is repeated for each enrolled user 7.

Experimental Evaluation of Security and Robustness

In the following experiments, we use the same Mitsubishi Electric fingerprint database
as described in the previous section, which contains minutiae maps of 1035 fin-
gers with 15 fingerprint samples taken from each finger. The average number of
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minutiae points in a single map is approximately 32. As before, all fingerprints are
prealigned. To measure the extent to which the desired target statistical properties in
Section 11.6.1 are achieved, we examine the feature vectors obtained from the minu-
tiae maps according to the method described in Section 11.6.2. The # most robust
questions were selected to generate the feature vectors, with »# ranging from 50 to
350. Figure 11.11 shows the statistical properties of the feature vectors for n = 150. As
shown in Figure 11.11(a), the histogram of the average number of 1-bits in the feature
vectors is clustered around 7/2 = 75. Figure 11.11(b) shows that the pairwise entropy
measured between bits of different users is very close to 2 bits. Thus, bits are nearly
pairwise independent and nearly uniformly distributed, approximating property 1.

In order to measure the similarity or dissimilarity of two feature vectors, the nor-
malized Hamming distance (NHD) is used. The NHD between two feature vectors x
and y, each having length 7, is calculated as follows:

1 n
NHD(x, y)=; E (x; Dyi)
i=1

where @ is summation modulo 2. The plot of Figure 11.12(a) contains three histo-
grams: (1) the intra-user variation is the distribution of the average NHD measured pair-
wise over 15 samples of the same finger, (2) the inter-user variation is the distribution
of the NHD averaged over all possible pairs of users, each with his own specific set of
questions, and (3) the attacker variation is the NHD for the case in which an attacker
attempts to identify himself as a given user 7, while using a different fingerprintj 7 7 but
using the 150 robust questions of user 7. As seen in the figure, there is a clean separation
between the intra-user and inter-user NHD distributions, and a small overlap between
the intra-user and attacker distributions. One way to ascertain the effectiveness of the
feature vectors is to choose different threshold NHDs in Figure 11.12(a) and plot
the intra-user NHD against the inter-user NHD. This trade-off between intra-user NHD
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FIGURE 11.11

(a) Histogram of the number of ones in the feature vectors for n=150 is clustered around
n/2 = 75. (b) The pairwise entropy measured across all pairs and all users is very close to 2 bits.
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FIGURE 11.12

(a) The normalized Hamming distance (NHD) between feature vectors shows clear separation
within and across users. (b) The trade-off between intra-user NHD and inter-user NHD is plotted
by sweeping a threshold NHD across the histograms in Figure 11.12(a). For n =150, the equal
error rate is 0.027 when the attacker has access to the victim’s questions and is nearly zero when
the attacker is impersonating a victim without knowing his specific questions.

and inter-user NHD is shown in Figure 11.12(b) both for the case in which every
user employs specific questions and for the case in which an attacker uses the ques-
tions stolen from the user being impersonated. A metric for evaluating plots such as
Figure 11.12(b) is the equal error rate (EER), which is defined as the point at which
intra-user NHD equals inter-user NHD. A lower EER indicates a superior trade-off.
Figure 11.13 plots the EER for various values of #. Observe that user-specific ques-
tions provide a significantly lower EER than using the same questions for all users
regardless of the robustness of the questions. Even if the attacker is provided with the
user-specific questions, the resulting EER is lower than the case in which everybody
has the same questions.

Based on the separation of intra-user and inter-user distributions, we expect that
a syndrome code designed for a BSC-p, with appropriate p < 0.5 would authenticate
almost all genuine users while rejecting almost all impostors. Table 11.2 shows the
FRR and FAR® for overall syndrome coding with different values of 7 and p. These FAR
and FRR values are measures of the security-robustness trade-off of the distributed
biometric coding system. The LDPC code rate is chosen so as to provide about 30 bits
of security. This restriction on the LDPC code rate in turn places a restriction on how
large p can be, especially for small 7. Because of this restriction, the FRR is relatively
large for n=100. The lowest FRR is achieved for z# = 150. As n increases, less robust
questions need to be employed, so the statistical properties of the feature vectors

8 While determining the FAR, if an input feature vector a satisfies the syndrome, it is counted as a false
accept. This is a conservative FAR estimate since any a for which fish (2 ) 7 fhash (@) is denied access.
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User-specific questions result in lower EER than common questions, even if the user-specific
questions are given to the attacker.

Table 11.2 Syndrome Coding with an Appropriate LDPC Code Gives an Information-
theoretically Secure Biometrics System with Low FRR and Extremely Low FAR

n  BSC Crossover  Rippc FRR after FAR after No. of Bits

Probability, p Syndrome Coding Syndrome Coding of Security

100 0.1 0.3 0.23 0.0001 30
150 0.13 0.2 0.11 0.0001 30
200 0.2 0.15 0.14 0.0014 30
250 0.2 0.125 0.15 0.0035 31.25

diverge from those in Section 11.6.1. Thus, the FRR increases again when # becomes
too large.

Compare the FRR, FAR, and number of bits of security reported in Table 11.2 with
those reported in Section 11.5. We observe that the FRR and FAR are comparable,
but the transformation approach described in this section provides a higher number
of bits of security compared to the model-based approach of Section 11.5 (see final
column of Table 11.1). The security-robustness trade-off has improved because the
statistical properties of the transformed feature vectors are intentionally matched to
the standard LDPC code for a binary symmetric channel.
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SUMMARY

This chapter demonstrates that the principles of distributed source coding can be
successfully applied to the problem of secure storage of biometrics. A Slepian-Wolf
framework is used to store a secure version of the biometric template data collected
at enrollment and to recover the enrollment template at authentication. The trade-off
between security and robustness in this framework is formally defined and discussed,
and sample implementations based on iris and fingerprint data validate the theory.

Although iris data tends to be relatively well behaved and exhibits easily modeled
sample-to-sample variability (both between samples of the same user and across users),
the same cannot be said of fingerprints. It is shown that the fingerprint noise channel
is far removed from the standard bit-flipping (e.g., BSC) channel model of communi-
cation systems. The design of a secure system for such biometric modalities therefore
requires additional attention. Two approaches are discussed. The first design is based
on using a sparse binary matrix representation of minutiae locations and developing
a model of minutiae movement that can be combined with a graphical representation
of a linear code. Although this approach does not yet yield satisfactory performance
in terms of security and robustness, it does reveal various factors that affect perfor-
mance and provides valuable insight that motivates the transform-based approach of
Section 11.6.

In the latter approach, a transform is designed to convert the fingerprint feature
set into a binary vector with desirable statistical properties, in the sense of being well
matched to well-understood channel coding problems. The resultant design yields
very low false-acceptance and false-rejection rates. Furthermore, it ensures operation
well into the information-theoretically secure region. We believe this to be a powerful
concept that will allow extension of this framework to other biometric data. It may
also prove useful in resolving performance issues with other Slepian-Wolf-inspired
systems.

Besides further improving security and robustness, there are a number of additional
open research issues. As one example, the designs presented in this chapter assumed
that the biometric data is prealigned. In practice, this is not the case,and biometric data
must be aligned blindly, that is, without access to other reference data. One research
trajectory is the design of such algorithms. An alternative to blind alignment is the
design of a translation- and rotation-invariant feature set. A second aspect of the secure
biometrics that has not received much attention concerns multibiometric systems. In
these systems multiple biometrics are collected at enrollment and verification—such
as both iris and fingerprint. The measurements are fused to improve overall robustness
and security. This particular combination and some encouraging results are presented
by Nandakumar in [31]. However, the topic has yet to be studied in the context of a
Slepian-Wolf coding system.

As the use of biometrics becomes more widespread, the incentive to attack bio-
metric systems will grow. Assuming the technology for securing biometric data is
sufficiently mature, it would be natural to standardize the template protection design.
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Such work is within the scope of ISO/IEC JTC1/SC37, which is an international stan-
dardization committee on biometrics. Open issues to be handled by this committee
would range from quantifying the inherent entropy and security limits of biometric
data to remote authentication scenarios.

As a final note, the biometric system described in this chapter is one example where
a noisy version of an original signal is available at the decoder for the purpose of
authentication. This type of setup is extended to the problem of image authentication
following similar principles [32]. We believe that there are many such applications in
which the principles of distributed source coding can be applied.
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