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Preface

This book is intended to survey the most important computer algorithms in use
today and to teach fundamental techniques to the growing number of people in need
of knowing them. It can be used as a textbook for a second, third, or fourth course
in computer science, after students have acquired some programming skills and
familiarity with computer systems, but before they have taken specialized courses
in advanced areas of computer science or computer applications. Additionally,
the book may be useful for self-study or as a reference for those engaged in the
development of computer systems or applications programs, since it contains a
number of implementations of useful algorithms and detailed information on their
performance characteristics. The broad perspective taken in the book makes it an
appropriate introduction to the field.

Scope

The book contains forty-five chapters grouped into eight major parts: fundamen-
tals, sorting, searching, string processing, geometric algorithms, graph algorithms,
mathematical algorithms and advanced topics. A major goal in developing this
book has been to bring together the fundamental methods from these diverse areas,
in order to provide access to the best methods known for solving problems by
computer. Some of the chapters give introductory treatments of advanced mate-
rial. It is hoped that the descriptions here can give readers some understanding of
the basic properties of fundamental algorithms ranging from priority queues and
hashing to simplex and the fast Fourier transform.

One or two previous courses in computer science or equivalent programming
experience are recommended for a reader to be able to appreciate the material in
this book: one course in programming in a high-level language such as C or Pascal,
and perhaps another course which teaches fundamental concepts of programming
systems. This book is thus intended for anyone conversant with a modern program-
ming language and with the basic features of modern computer systems. References
that might help fill in gaps in one’s background are suggested in the text.

Most of the mathematical material supporting the analytic results is self-
contained (or labeled as “beyond the scope™ of this book), so little specific prepa-
ration in mathematics is required for the bulk of the book, though a certain amount
of mathematical maturity is definitely helpful. A number of the later chapters
deal with algorithms related to more advanced mathematical material—these are
intended to place the algorithms in context with other methods throughout the
book, not to teach the mathematical material. Thus the discussion of advanced
mathematical concepts is brief, general, and descriptive.
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Use in the Curriculum

There is a great deal of flexibility in how the material here can be taught. To a
large extent, the individual chapters in the book can be read independently of the
others, though in some cases algorithms in one chapter make use of methods from
a previous chapter. The material can be adapted for use for various courses by
selecting perhaps twenty-five or thirty of the forty-five chapters, according to the
taste of the instructor and the preparation of the students.

The book begins with an introductory section on data structures and the design
and analysis of algorithms. This sets the tone for the rest of the book and provides
a framework within which more advanced algorithms are treated. Some readers
may skip or skim this section; others may learn the basics there.

An elementary course on “data structures and algorithms” might omit some of
the mathematical algorithms and some of the advanced topics, then emphasize how
various data structures are used in the implementations. An intermediate course
on “design and analysis of algorithms” might omit some of the more practically
oriented sections, then emphasize the identification and study of the ways in which
algorithms achieve good asymptotic performance. A course on “software tools”
might omit the mathematical and advanced algorithmic material, then emphasize
how to integrate the implementations given here into large programs or systems. A
course on “algorithms” might take a survey approach and introduce concepts from
all these areas.

" Some instructors may wish to add supplementary material to the courses de-
scribed above to reflect their particular orientation. For “data structures and algo-
rithms,” extra material on basic data structures could be taught; for “design and
analysis of algorithms,” more mathematical analysis could be added; and for “soft-
ware tools,” software engineering techniques could be covered in more depth. In
this book, attention is paid to all these areas, but the emphasis is on the algorithms
themselves.

Earlier versions of this book have been used in recent years at scores of
colleges and universities around the country as a text for the second or third course
in computer science and as supplemental reading for other courses. At Princeton,
our experience has been that the breadth of coverage of material in this book
provides our majors with an introduction to computer science that can later be
expanded upon in later courses on analysis of algorithms, systems programming
and theoretical computer science, while at the same time providing all the students
with a large set of techniques that they can immediately put to good use.

There are 450 exercises, ten following each chapter, that generally divide into
one of two typés. Most are intended to test students’ understanding of material in
the text, and ask students to work through an example or apply concepts described
in the text. A few of them, however, involve implementing and putting together
some of the algorithms, perhaps running empirical studies to compare algorithms
and to learn their properties.
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Algorithms of Practical Use

The orientation of the book is toward algorithms likely to be of practical use. The
emphasis is on teaching students the tools of their trade to the point that they
can confidently implement, run and debug useful algorithms. Full implementations
of the methods discussed are included in the text, along with descriptions of the
operations of these programs on a consistent set of examples. Indeed, as discussed
in the epilog, hundreds of figures are included in the book that have been created
by the algorithms themselves. Many algorithms are brought to light on an intuitive
level through the visnal dimension provided by these figures.

Characteristics of the algorithms and situatjons in which they might be useful
are discussed in detail. Though not emphasized, connections to the analysis of
algorithms and theoretical computer science are not ignored. When appropriate,
empirical and analytic results are discussed to illustrate why certain algorithms
are preferred. When interesting, the relationship of the practlcal algorithms being
discussed to purely theoretical results is described. Specific mformatxon on per-
formance characteristics of algorithms is encapsulated throughout in “properties,”
important facts about the algorithms that deserve further study.

While there is little direct treatment of specific uses of the algorithms in sci-
ence and engineering applications, the potential for such use is mentioned when
appropriate. -Our experience has been that when students learn good algorithms in
a computer science context early in their education, they are able to apply them to
solve problems when warranted later on.

Programining Language

The programming language used throughout the book is C (a Pascal version of the
book is also available). Any particular language has advantages and disadvantages;
we use C because it is. widely available and provides the features needed for our
implementations. The programs can easily be translated to other modern program-
ming languages, since relatively few C constructs are used. Indeed, many of the
programs have been translated from Pascal and other languages, though we try to
use standard C idioms when appropriate.

Some of the programs can be simplified by using more advanced language
features, but this is true less often than one might think. Although language features
are discussed when appropriate, this book is not intended to be a reference work on
C programming. When forced to make a choice, we concentrate on the algorithms,
not implementation details.

A goal of this book is to present the algorithms in as simple and direct a
form\as possible.- The programs are intended to be read not by themselves, but as
part of the surrounding text. This style was chosen as an alternative, for example,
to having inline comments. The style is consistent whenever p0551b1e so that
programs that are similar look similar.
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Epilog

The algorithms in this book have already been used for at least one application:
producing the book itself. In large measure, when the text says “the above program
generates the figure below,” this is literally so. The book was produced on a
computer-driven phototypsetting device, and most of the artwork was generated
automatically by the programs that appear here. The primary reason for organizing
things in this way is that it allows complex artwork to be produced easily; an
important side benefit is that it gives some confidence that the programs will work
as promised for other applications. This approach was made possible by recent
advances in the printing industry, and by judicious use of modern typesetting and
systems software. ' :

The book consists of over two thousand computer files, at least one for each
figure and each program, and one for the text of each chapter. Typesetting the
book involves not only the normal work of positioning the characters in the text,
but also running the programs, under control of the figure files, to produce high-
level descriptions of the figures that can later be printed. This process is briefly
described here. ' , '

Each algorithm is implemented both in C and Pascal. Programs are individual
files, written so that they can be bound into driver programs for debugging or
bound into the text for printing. In the text, a program may be referenced directly
for its text, in which case it is run through a formatting filter; or indirectly (through
a figure file) for its output, in which case it is executed and its output directed to
imaging software that draws a figure. During debugging, the program output was
usually simplified, as described below, though sometimes bugs were easiest to see
in the figures themselves. , '

The interface between the programs and the imaging software is a high-level
one modeled on the method developed by Marc Brown and the author for an inter-
active system to provide dynamic views of algorithms in execution for educational
and other applications. The algorithms are instrumented to produce “interesting
events” at important points during execution that provide information about changes
in underlying data structures. - Associated with each figure is a program called a
“view” that reacts to interesting events and produces descriptions for use by the
imaging software. This arrangement allows each algorithm to be used to produce
several different figures, since different views can react differently to the same set
of interesting events. (In particular, debugging views that trace the progress of an
algorithm are simple to build.) The procedure calls in the algorithms that signal
interesting events do not appear in the text because they are filtered-out in the for-
inatting step. Since the Pascal version of the book was written first, it is the Pascal
versions of the algorithms that do most of the figure drawing—the detailed work



of interfacing to the figure views was not duplicated for the C implementations that
appear here. But our original imaging software was implemented in C, so some of
these Pascal interfaces were translated from original C implementations!

The imaging package that produces the artwork itself was written specifically
for the purpose of producing this book; it again was modeled on many of the visual
designs that we developed for our interactive system, but was redone to exploit
the high resolution available on the phototypeseiting device used to print the book.
This package actually resides on the printing device and takes as input rather high-
level representations of data structures. Thus the printer arranges characters to form
a paragraph at one moment; lines, characters and shading to form a tree, graph or
geometric figure at the next. Typically, a figure file consists of the name of a view
and a small amount of descriptive information about the size of the picture and the
styles of picture elements. A view typically produces direct representations of data
structures (permutations are lists of integers, trees are “parent-link arrays,” efc.).
The imaging software uses all this information to arrange major- picture elements
and attend to details of drawing.

In the first edition of this book, the figures were pen-and- 1nk drawmgs because
at that time it was difficult if not impossible to produce comparable drawings
by computer. Now, it is difficult to imagine proceeding without the aid of the
computer. Creating these figures with pen and ink would be a daunting task; it
would even be difficult to write “by hand” the low-level graphic orders to create the
images (recall that the algorithms in the book did most of that work). However,
the most important contribution of the computer was not the production of the
final images (perhaps that could be done some other way, somehow), but the quick
production of interim versions for the design of the figures. Most of the figures
are the product of a lengthy design cycle including perhaps dozens of versions.

An elusive goal for computer scientists in recent decades has been'the devel-
opment of an “electronic book™ that brings the power of the computer to bear i in
the development of new communications media. On the one hand, this book may
be viewed as a step back from interactive computer-based media into a traditional
form; on the other hand, it perhaps may be viewed as one small step towards that
goal.
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Introduction

The objective of this book is to study a broad varie'ty of important and useful
algorithms: methods for solving problems which are suited for computer im-
plementation. We’ll deal with many different areas of application, always trying to
concentrate on “fundamental” algorithms that are important to know and interesting
to study. Because of the large number of areas and algorithms to be covered, we
won’t be able to study many of the methods in great depth. However, we will try
to spend enough time on each algorithm to understand its essential characteristics
and to respect its subtleties. In short, our goal is to learn a large number of the
most important algorithms used on computers today, well enough to be able to use
and appreciate them.

To learn an algorithm well, one must implement and run it. Accordingly, the
recommended strategy for understanding the programs presented in this book is
to implement and test them, experiment with variants, and try them out on real
problems.. We will use the C programming language to discuss and implement
most of the algorithms; since, however, we use a relatively small subset of the lan-
guage, our programs can easily be translated into many other modern programming
languages.

Readers of this book are expected to have at least a year’s experience in pro-
gramming in high- and low-level languages. Also, some exposure to elementary
algorithms on simple data structures such as arrays, stacks, queues, and trees might
be helpful, though this material is-reviewed in some detail in Chapters 3 and 4.
An elementary acquaintance with machine organization, programming languages,
and other basic computer science concepts is also assumed. (We’ll review such
material briefly when appropriate, but always within the context of solving partic-
ular problems.) A few of the applications areas we deal with require knowledge of
elementary calculus. We’ll also be using some very basic material involving lin-
ear algebra, geometry, and discrete mathematics, but previous knowledge of these
topics is not necessary.
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Algorithms

In writing a computer program, one is generally implementing a method of solving
‘a problem that has been devised previously. This method is often independent of
the particular computer to be used: it’s likely to be equally appropriate for many
computers. In any case, it is the method, not the computer program itself, which
must be studied to learn how the problem is being attacked. The term algorithm
is used in computer science to describe a problem-solving method suitable for
implementation as computer programs. Algorithms are the “stuff” of computer
science: they are central objects of study in many, if not most, areas of the field.

Most algorithms of interest involve complicated methods of organizing the
data involved in the computation. Objects created in this way are called data
structures, and they also are central objects of study in computer science. Thus
algorithms and data structures go hand in hand; in this book we take the view that
data structures exist as the byproducts or endproducts of algorithms, and thus need
to be studied in order to understand the algorithms. Simple algorithms can give
rise to complicated data structures and, conversely, complicated algorithms can use
simple data structures. We will study the properties of many data structures in this
book; indeed, it might well have been called Algorithms and Data Structures in C.

When a very large computer program is to be developed, a great deal of ef-
fort must go into understanding and defining the problem to be solved, anaging
its complexity, and decomposing it into smaller subtasks that can be easily imple-
mented. It is often true that many of the algorithms required after the decomposition
are trivial to implement. However, in most cases there are a few algorithms whose
choice is critical because most of the system resources will be spent running those
algorithms. In this book we will study a variety of fundamental algorithms basic
to large programs in many applications areas.

The sharing of programs in computer systems is becoming more widespread,
so that while serious computer users will use a large fraction of the algorithms in
this book, they may need to implement only a somewhat smaller fraction of them.
However, implementing simple versions of basic algorithms helps us to understand
them better and thus use advanced versions more effectively. Also, mechanisms
for sharing software on many computer systems often make it difficult to tailor
standard programs to perform effectively on specific tasks, so that the opportunity
to reimplement basic algorithms frequently arises.

Computer programs are often over-optimized. It may not be worthwhile to
take pains to ensure that an implementation is the most efficient possible unless
an algorithm is to be used for a very large task or is to be used many times.
Otherwise, a careful, relatively simple implementation will suffice: one can have
some confidence that it will work, and it is likely to run perhaps five or ten times
slower than the best possible version, which means that it may run for an extra few
seconds. By contrast, the*proper choice of algorithm in the first place can make a
difference of a factor of a hundred or a thousand or more, which might translate
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to minutes, hours, or even more in running time. In this book, we concentrate on
the simplest reasonable implementations of the best algorithms.

Often several different algorithms (or implementations) are available to solve
the same problem. The choice of the very best algorithm for a particular task can
be a very complicated process, often involving sophisticated mathematical analysis.
The branch of computer science which studies such questions is called analysis of
algorithms. Many of the algorithms that we will study have been shown through
analysis to have very good performance, while others are simply known to work
well through experience. We will not dwell on comparative performance issues:
our goal is to learn some reasonable algorithms for important tasks. But one should
not use an algorithm without having some idea of what resources it might consume,
so we will be aware of how our algorithms might be expected to perform.

Outline of Topics

Below are brief descriptions of the major parts of the book, giving some of the
specifie topics covered as well as some indication of our general orientation towards
the material. This set of topics is intended to touch on as many fundamental
algorithms as possible. Some of the areas covered are “core” computer science
areas we’ll study in some depth to learn basic algorithms of wide applicability.
Other areas are advanced fields of study within computer science and related fields,
such as numerical analysis, operations research, compiler construction, and the
theory of algorithms—in these cases our treatment will serve as an introduction to
these fields through examination of some basic methods.

FUNDAMENTALS in the context of this book are the tools and methods used
throughout the later chapters. A short discussion of C is included, followed by an
introduction to basic data structures, including arrays, linked lists, stacks, queues,
and trees. We discuss practical uses of recursion, and cover our basic approach
towards analyzing and implementing algorithms.

SORTING methods for rearranging files into order are of fundamental im-
portance and are covered in some depth. A variety of methods are developed,
described, and compared. Algorithms for several related problems are treated, in-
cluding priority queues, selection, and merging. Some of these algorithms are used
as the basis for other algorithms later in the book. _

SEARCHING methods for finding things in files are also of fundamental im-
portance. We discuss basic and advanced methods for searching using trees and
digital key transformations, including binary search trees, balanced trees, hashing,
digital search trees and tries, and methods appropriate for very large files. Rela-
tionships among these methods are discussed, and similarities to sorting methods
are pointed out.

STRING PROCESSING algorithms include a range of methods for dealing with
(long) sequences of characters. String searching leads to pattern matching which
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leads to parsing. File compress1on techniques and cryptology are also considered.
Again, an introduction to' advanced topics is given through treatment of some
elementary. problems that are important in their own right.

GEOMETRIC ALGORITHMS are a collection of methods for solving problems
involving points and lines (and other simple' geometric objects) that have only
recently come into use. We consider algorithms for finding the convex hull of ‘a set
of points, for finding intersections among geometric objects, for solving closest-
point problems, and for multidimensional searching. Many of these methods mcely
complement more elementary sorting and searching methods.

GRAPH ALGORITHMS are useful for a variety of difficult and important prob-
lems. A general strategy for searching in graphs is developed and applied to fun-
damental connectivity problems, including shortest path, minimum spannirg tree,
network flow, and matching. A unified treatment of these algorithms shows that
they are all based on the same procedure, and th1s procedure depends on a basic
data structure developed earlier.

' MATHEMATICAL ALGORITHMS include fundamental methods from arith-
metic and numerical analysis. We study methods for arithmetic with integers,
polynomials, and matrices as well as algorithms for solving a variety of mathemat-
ical problems that arise in many contexts: random number generation, solution of
simultaneous equations, data fitting, and integration. The emphasis is on algorlth-
mic aspects of the methods, not the mathematical basis.

* ADVANCED TOPICS are discussed for the purpose of relating the material in
the book to several other advanced fields of study. Special-purpose hardware, dy-
namic programming, linear programming, exhaustive search, and NP-completeness
are surveyed from an elementary viewpoint to give the reader some appreciation
for the interesting advanced fields of study suggested by the elementary problems
confronted in this book.

The study of algorithms is interesting because it is a new field (almost all of the
algorithms we will study are less than twenty-five years old) with a rich tradition
(a few algorithms have been known for thousands of years). New discoveries are
constantly being made, and few algorithms are completely understood. In this
book we will consider intricate, complicated, and difficult algorithms as well as
elegant, simple, and easy algorithms. Our challenge is to understand the former and
appreciate the latter in the context of many different potential applications. In doing
so, we will explore a variety of useful tools and develop a way of “algorithmic
thinking” that will serve us well in computational challenges to come.




The programming language used throughout this book is C. All langunages
have their good and bad points, and thus the choice of any particular lan-
guage for a book like this has advantages and disadvantages. But many modern
programming languages are similar, so by using relatively few language constructs
and avoiding implementation decisions based on peculiarities of C, we develop
programs that are easily translatable into other languages. Our goal is to present
the algorithms in as simple and direct form as possible; C allows us to do this.

* Algorithms are often described in textbooks and research reports in terms of
imaginary languages—unfortunately, this often allows details to be omitted and
leaves the reader rather far from a useful implementation. In this book we take
the view that the best way to understand an algorithm and to validate its util-
ity is through experience with an actual implementation. Modern languages are
sufficiently expressive that real implementations can be as concise and elegant as
imaginary ones. The reader is encouraged to become conversant with a local C
programming environment, because the implementations in this book are working
programs that are intended to be run, experimented with, modified, and used.

The advantage of using C in this book is that it is widely used and has all
the basic features that we need in our various implementations; the disadvantage is
that it has features not available in some other widely used modern languages, and
we must take care to be cognizant of true language dependencies in our programs.
Some of our programs are simplified because of advanced language features, but
this is true less often than one might think. When appropriate, the discussion of
such programs will cover relevant language issues.

A concise description of the C language is given in the Kernighan and Ritchie
The C Programming Language (second edition) that serves as the definition for the
language. Our purpose in this chapter is not to repeat information from that book
but rather to examine the implementation of a simple (but classic) algorithm that
illustrates some of the basic features of the language and style we’ll be using.
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Example: Euclid’s Algorithm

To begin, we’ll consider a C program to solve a classic elementary problem: “Re-
duce a given fraction to its lowest terms.” We want to write 2/3, not 4/6, 200/300,
or 178468/267702. Solving this problem is equivalent to finding the greatest com-
mon divisor (gcd) of the numerator and the denominator: the largest integer which
divides them both. A fraction is reduced to lowest terms by dividing both numer-
ator and denominator by their greatest common divisor. An efficient method for
finding the greatest common divisor was discovered by the ancient Greeks over
two thousand years ago: it is called Euclid’s algorithm because it is spelled out in
detail in Buclid’s famous treatise Elements.

Euclid’s method is based on the fact that if u is greater than v then the greatest
common divisor of u and v is the same as the greatest common divisor of v and
u — v. This observation leads to the following implementation in C:

#include <stdio.h>
int ged{int u, int v)
{
int t;
while (u > 0)

int x, y;
while (scanf("%d %d", &x, &y) != EOF)
if (x>0 && y>0)
printf ("%d %d %d\n", x, y, gcd(x,y));

First, we consider the properties of the language exhibited by this code. C has a
rigorous high-level syntax that allows easy identification of the main features of the
program. The program consists of a list of functions, one of which is named main,
the body of the program. Functions return a value with the return statement.
The built-in function scanf reads a line from the input and assigns the values
found to the variables given as arguments; printf is similar. The string within
quotes is the “format,” indicating in this case that two decimal integers are to be
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read in and three to be printed out (followed by a \n “newline” character). The
scanf function refers to its arguments “indirectly”; hence the & characters. A
built-in predicate in the standard input-output library, EOF, is set to true when
there is no more input. The include statement enables reference to the library.
We use “ANSI standard C” consistently throughout the book: the most important
difference from earlier versions of C is the way that functions and their arguments
are declared.

The body of the program above is trivial: it reads pairs of numbers from the
input, then, if they are both positive, writes them and their greatest common divisor
on the output. (What would happen if gcd were called with u or v negative or
zero?) The gcd function implements Euclid’s algorithm itself: the program is a
loop that first ensures that u >= v by exchanging them, if necessary, and then
replaces u by u~v. The greatest common divisor of the variables u and v is always
the same as the greatest common divisor of the original values presented to the
procedure: eventually the process terminates with u equal to 0 and v equal to the
greatest common divisor of the original (and all intermediate) values of u and v.

The above example is written as a complete C program that the reader should
use to become familiar with some C programming system. The algorithm of interest
is implemented as a subroutine (gcd), and the main program is a “driver” that
exercises the subroutine. This organization is typical, and the complete example
is included here to underscore the point that the algorithms in this book are best
‘understood when they are implemented and run on some sample input values.
Depending on the quality of the debugging environment available, the reader might
wish to instrument the programs further. For example, the intermediate values taken
on by u and v in the repeat loop may be of interest in the program above,

Though our topic in the present section is the language, not the algorithm, we
must do justice to the classic Euclid’s algorithm: the implementation above can be
improved by noting that, once u > v, we continue to subtract off multiples of v
from u until reaching a number less than v. But this number is exactly the same
as the remainder left after dividing u by v, which is what the modulus operator
(%) computes: the greatest common divisor of u and v is the same as the greatest
common divisor of v and u % v. For example, the greatest common divisor of
461952 and 116298 is 18, as exhibited by the sequence

461952, 116298, 113058, 3240, 2898, 342, 162, 18.

Each item in this sequence is the remainder left after dividing the previous two: the
sequence terminates because 18 divides 162, so 18 is the greatest common divisor
of all the numbers. The reader may wish to modify the above implementation to
use the % operator and to note how much more efficient the modification is when,
for example, finding the greatest common divisor of a very large number and a
very small number. It turns out that this algorithm always uses a relatively small
number of steps.
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Types of Data

Most of the algorithms in this book operate on simple data types: integers, real
numbers, characters, or strings of characters. One of the most important features
of C is its provision for building more complex data types from these elementary
building blocks. This is one of the “advanced” features that we avoid using, to keep
our examples simple and our focus on the dynamics of the algorithms rather than
properties of their data. We strive to do this without loss of generality: indeed,
the very availability of advanced capabilities such as C provides makes it easy
to transform an algorithm from a “toy” that operates on simple data types into a
workhorse that operates on complex structures. When the basic methods are
best described in terms of user-defined types, we do so. For example, the geometric
methods in Chapters 24-28 are based on types for points, lines, polygons, etc.

It is sometimes the case that the proper low-level representation of data is the
key to performance. Ideally, the way that a program works shouldn’t depend on
how numbers are represented or how characters are packed (to pick two examples),
but the price one must pay in performance through pursuit of this ideal is often
too high. Programmers in the past responded to this situation by taking the drastic
step of moving to assembly language or machine language, where there are few
constraints on the representation. Fortunately, modern high-level languages provide
mechanisms for creating sensible representations without going to such extremes.
This allows us to do justice to some important classical algorithms. Of course,
such mechanisms are necessarily machine-dependent, and we will not consider
‘them in much detail, except to point out when they are appropriate. This issue is
discussed in more detail in Chapters 10, 17 and 22, where algorithms based on
binary representations of data are considered.

We also try to avoid dealing with machine-dependent representation issues
when considering algorithms that operate on characters and character strings. Fre-
quently, we simplify our examples by working only with the upper-case letters A
through Z, using a simple code with the ith letter of the alphabet represented by
the integer i. Representation of characters and character strings is such a funda-
mental part of the interface among the programmer, the programming language,
and the machine that one should be sure to understand it fully before implement-
ing algorithms for processing such data—the methods given in this book based on
simplified representations are then easily adapted.

We use integers whenever possible. Programs that process £1oating point
numbers fall in the domain of numerical analysis. Typically, their performance
is intimately tied to mathematical properties of the representation. We return to
this issue in Chapters 37, 38, 39, 41, and 43, where some fundamental numerical
algorithms are discussed. In the meantime, we stick to integers even when real
numbers might seem more appropriate, to avoid the inefficiency and inaccuracy
normally associated with floating point representations.
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Input/Output

Another area of significant machine dependency is the interaction between the
program and its data, normally referred to as input-output. In operating systems,
this term refers to the transfer of data between the computer and physical media
such as magnetic tape or disk: we touch on such matters only in Chapters 13 and

18. Most often, we simply seek a systematic way to get data to and derive resuits
from implementations of algorithms, such as gcd above.

When “reading” and “writing” is called for, we use standard C features but
invoke as few of the extra formatting facilities available as possible: Again, our
goal is to keep the programs concise, portable, and easily translatable: one way in
which the reader might wish to modlfy the programs is to embellish their interface
with the programmer. Few modern C or other programming environments actually
take scanf or printf to refér to an external medium; instead, they normally
refer to “logical devices” or “streams” of data. Thus, the output of one program
can be used as the input to another, without any physical reading or writing. Our
tendency to streamline the input/output in our implementations makes them more
useful in such environments. :

Actually, .in many modern programming environments it is appropriate and
rather easy to use graphical representations such as those used in the figures
throughout the book. (As described in the Epilog, these figures were actually
produced by the programs themselves, with a very srgmﬁcamly embellished inter-
face.) :

Many of the methods we will discuss are intended for use within larger ap-
plications systems, so a more appropriate way for them to get data is through
parameters. This is the method used for the gcd procedure above. Also, several
of the implementations in the later chapters of the book use programs from earlier
chapters. Again, to avoid diverting our attention from the algorithms themselves,
we resist the temptation to “package” the implementations for use as general util-
ity programs. Certainly, many of the implementations that we study are quite
appropriaté as a starting point for such utilities, but a large number of system-
and application-dependent questions that we ignore here must be satisfactorily ad-
dressed in developing such packages.

Often we write algorithms to operate on “global” data, to avoid excessive
parameter passing. For example, the gcd function could operate directly on x and
y, rather than bothering with the parameters u and v. This is not justified in this
case because gcd is a well-defined function in terms of its two inputs. On the other
hand, when several algorithms operate on the same data, or when a large amount
of data is passed, we use global variables for economy in expressing the algorithms
and to avoid moving data unnecessarily. Advanced features are available in C and
other languages and systems to allow this to be done more cleanly, but, again, our
tendency is to avoid such language dependencies when possible.
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Concluding Remarks

Many other examples similar to the program above are given in The C Program-
ming Language and in the chapters that follow. The reader is encouraged to scan
the manual, implement and test some simple programs and then read the manual
carefully to become reasonably comfortable with most of the features of C.

The C programs given in this book are intended to serve as precise descrip-
tions of algorithms, as examples of full implementations, and as starting points
for practical programs. As mentioned above, readers conversant with other lan-
guages should have little difficulty ‘reading the algorithms as presented in C and
then implementing them in another language. For example, the following is an
implementation of Euclid’s algorithm in Pascal:

program euclid (input, output);
var x, y: integer;
function gcd (u, v: integer): integer;

var ¢: integer;

begin

repeat

if u<v then
begin t:=u; u:=v; v:=t end;

u:=u-v
until u=0;
ged:=v
end;
begin
while not eof do
begin

readln (x,y); ’
if (x>0) and (y>0) then writeln(x, y, gcd(x, y))
end;

end.

For this algorithm, there is nearly a one-to-one correspondence between C and
Pascal statements, as intended, although there are more concise implementations

in both languages.
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Exercises

10.

. Implement the classical version of Euclid’s algorithm as described in the text.

. Check what values your C system computes for u % v when u and v are not

necessarily positive.

. Implement a procedure to reduce a given fraction to lowest terms, using a

struct fraction { int numerator; int denominator; }

. Write a function int convert () that reads a decimal number one character

(digit) at a time, terminated by a blank, and returns the value of that number.

. Write a function binary (int x) that prints out the binary equivalent of a

number.

. Give all the values that u and v take on when gcd is invoked with the initial

call gcd (12345, 56789).

. Exactly how many C statements are executed for the call in the previous exer-

cise?

. Write a program to compute the greatest common divisor of three integers u,

v, and w.

. Find the largest pair of numbers representable as integers in your C system

whose greatest common divisor is 1.

Implement Euclid’s algorithm in FORTRAN or BASIC.






Elementary Data Structures

In this chapter, we discuss basic ways of organizing data for processing by
computer programs. For many applications, the choice of the proper data
structure is really the only major decision involved in the implementation: once
the choice has been made, only very simple algorithms are needed. For the same
data, some data structures require more or less space than others; for the same
operations on the data, some data structures lead to more or less efficient algorithms
than others. This theme will recur frequently throughout this book, as the choice of
algorithm and data structure is closely intertwined, and we continually seek ways
of saving time or space by making the choice properly.

A data structure is not a passive object: we also must consider the operations
to be performed on it (and the algorithms used for these operations). This concept
is formalized in the notion of an abstract data type, which we discuss at the end
of this chapter. But our primary interest is in concrete implementations, and we’ll
focus on specific representations and manipulations.

We’re going to be dealing with arrays, linked lists, stacks, queues, and other
simple variants. These are classical data structures with widespread applicabil-
ity: along with trees (see Chapter 4), they form the basis for virtually all of the
algorithms considered in this book. In this chapter, we consider basic represen-
tations and fundamental methods for manipulating these structures, work through
some specific examples of their use, and discuss related issues such as storage
management.

Arrays

Perhaps the most fundamental data structure is the array, which is defined as a
primitive in C and most other programming languages. An array is a fixed number
of data items that are stored contiguously and that are accessible by an index.
We refer to the ith element of an array a as a[i]. It is the responsibility of

15
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the programmer to store something meaningful in an array position a[i] before
referring to it; neglecting this is one of the most common programming mistakes.

A simple example of the use of an array is given by the following program,
which prints out all the prime numbers less than 1000. The method used, which
dates back to the 3rd century B.C., is called the “sieve of Eratosthenes™:

#define N 1000
main ()
{
int i, j, alN+1];
for (a[l) =0, 1 = 2; i <= N; i++) al[i] = 1;
for (i = 2; 1 <= N/2; 1i++)
for (j = 2; J <= N/i; Jj++)
afi*j] = 0;
for (1 = 1; 1 <= N; i++)
if (ali]) printf ("$4d", i);
printf ("\n");

This program uses an array consisting of the very simplest type of elements, boolean
(0-1) values. The goal of the program is to seta [1] to 1 if 1 is prime, O if it is not.
It does so by, for each i, setting the array element corresponding to each multiple
of i to 0, since any number that is a multiple of any other number cannot be prime.
Then it goes through the array once more, printing out the primes. (This program
can be made somewhat more efficient by adding the test 1£ (a[i]) before the
for loop involving 3, since if i is not prime, the array elements corresponding
to all of its multiples must already have been marked.) Note that the array is first
“initialized” to indicate that no numbers are known to be nonprime: the algorithm
sets to 0 array elements corresponding to indices that are known to be nonprime.

The sieve of Eratosthenes is typical of algorithms that exploit the fact that any
item of an array can be efficiently accessed. The algorithm also accesses the items
of the array sequentially, one after the other. In many applications, sequential
ordering is important; in other applications sequential ordering is used because it
is as good as any other. But the primary feature of arrays is that if the index is
krnown, any item can be accessed in constant time.

The size of the array must be known beforehand: to run the above program
for a different value of N, it is necessary to change the constant N, then compile
and execute. In some programming environments, it is possible to declare the size
of an array at execution time (so that one could, for example, have a user type
in the value of N, and then respond with the primesless than N without wasting
memory by declaring an array as large as any value the user is allowed to type). In
C it is possible to achieve this effect through proper use of the storage allocation
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mechanism, but it is still a fundamental property of arrays that their sizes are fixed
and must be known before they are used.

Arrays are fundamental data structures in that they have a direct correspon-
dence with memory systems on virtually all computers. To retrieve the contents of
a word from the memory in machine language, we provide an address. Thus, we
could think of the entire computer memory as an array, with the memory addresses
corresponding to array indices. Most computer language processors translate pro-
grams that involve arrays into rather efficient machine-language programs that
access memory directly.

Another familiar way to structure information is to use a two-dimensional table
of numbers organized into rows and columns. For example, a table of students’
grades in a course might have one row for each student, one column for each
assignment. On a computer, such a table would be represented as a two-dimensional
array with two indices, one for the row and one for the column. Various algorithms
on such structures are straightforward: for example, to compute the average grade
on an assignment, we sum together the elements in a column and divide by the
number of rows; to compute a particular student’s average grade in the course,
we sum together the elements in a row and divide by the number of columns.
Two-dimensional arrays are widely used in applications of this type. Actually, on
a computer, it is often convenient and rather straightforward to use more than two
dimensions: an instructor might use a third index to keep student grade tables for
a sequence of years.

Arrays also correspond directly to vectors, the mathematical term for indexed
lists of objects. Similarly, two-dimensional arrays correspond to matrices. We
study algorithms for processing these mathematical objects in Chapters 36 and 37.

Linked Lists

The second elementary data structure to consider is the linked list, which is defined
as a primitive in some programming languages (notably in Lisp) but not in C.
However, C does provide basic operations that make it easy to use linked lists.

The primary advantage of linked lists over arrays is that linked lists can grow
and shrink in size during their lifetime. In particular, their maximum size need not
be known in advance. In practical applications, this often makes it possible to have
several data structures share the same space, without paying particular attention to
their relative size at any time.

A second advantage of linked lists is that they provide flexibility in allowing
the items to be rearranged efficiently. This flexibility is gained at the expense of
quick access to any arbitrary item in the list. This will become more apparent
below, after we have examined some of the basic properties of linked lists and
some of the fundamental operations we perform on them.

A linked list is a set of items organized sequentially, just like an array. In
an array, the sequential organization is provided implicitly (by the position in the
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Figure 3.1 A linked list.

array); in a linked list, we use an explicit arrangement in which each item is part of
a “node” that also contains a “link” to the next node. Figure 3.1 shows a linked list,
with items represented by letters, nodes by circles and links by lines connecting the
nodes. We look in detail below at how lists are represented within the computer;
for now we’ll talk simply in terms of nodes and links.

Even the simple representation of Figure 3.1 exposes two details we must
consider. First, every node has a link, so the link in the last node of the list must
specify some “next” node. Our convention will be to have a “dummy” node, which
we’ll call z, for this purpose: the last node of the list will point to z, and z will
point to itself. In addition, we normally will have a dummy node at the other end
of the list, again by convention. This node, which we’ll call head, will point to
the first node in the list. The main purpose of the dummy nodes is to make certain
manipulations with the links, especially those involving the first and last nodes
on the list, more convenient. Other conventions are discussed below. Figure 3.2
shows the list structure with these dummy nodes included.

Now, this explicit representation of the ordering allows certain operations to be
performed much more efficiently than would be possible for arrays. For example,
suppose that we want to move the T from the end of the list to the beginning. In
an array, we would have to move every item to make room for the new item at the
beginning; in a linked list, we just change three links, as shown in Figure 3.3. The
two versions shown in Figure 3.3 are equivalent; they’re just drawn differently.
We make the node containing T point to A, the node containing S point to z, and
head point to T. Even if the list was very long, we could make this structural
change by changing just three links.

More important, we can talk of “inserting” an item into a linked list (which
makes it grow by one in length), an operation that is unnatural and inconvenient in
an array. Figure 3.4 shows how to insert X into our example list by putting X in
a node that points to S, then making the node containing I point to the new node.
Only two links need to be changed for this operation, no matter how long the list.

Similarly, we can speak of “deleting” an item from a linked list (which makes
it shrink by one in length). For example, the third list in Figure 3.4 shows how
to delete X from the second list simply by making the node containing I point to

Figure 3.2 A linked list with its dummy nodes.
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Figure 3.3 Rearranging a linked list.

S, skipping X. Now, the node containing X still exists (in fact it still points to S),
and perhaps should be disposed of in some way—the point is that X is no longer
part of this list, and cannot be accessed by following links from head. We will
return to this issue below.

On the other hand, there are other operations for which linked lists are not
well-suited. The most obvious of these is “find the kth item” (find an item given
its index): in an array this is done simply by accessing a [k 1, but in a list we have
to travel through & links.

Another operation that is unnatural on linked lists is “find the item before a
given item.” If all we have is the link to T in our sample list, then the only way

Figure 3.4 Insertion into and deletion from a linked list.



20 . Chapter 3

we can find the link to S is to start at head and travel through the list to find
the node that points to T. As a matter of fact, this operation is necessary if we
want to be able to delete a given node from a linked list: how else do we find the
node whose link must be changed? In many applications, we can get around this
problem by redesigning the fundamental deletion operation to be “delete the next
node”. A similar problem can be avoided for insertion by making the fundamental
insertion operation “insert a given item affer a given node” in the list.

C provides primitive operations that allow linked lists to be implemented di-
rectly. The following code fragment is a sample implementation of the basic
functions that we have discussed so far.

struct node

{ int key; struct node *next; };
struct node *head, *z, *t;
listinitialize ()

{ .
head = (struct node *) malloc(sizeof *head);
z = (struct node *) malloc(sizeof *z);
head->next = z; z->next = z;

}

~ deletenext (struct node *t)
{ t->next = t->next->next; } -
struct node *insertafter(int v, struct node *t)

{
struct node *x; :
X = (struct node *) malloc(sizeof *x);
x->key = v; x->next = t->next;
t->next = x;
return x;

The precise format of the lists is described in the st ruct declaration: the lists are
made up of nodes, each node containing an integer and a pointer to the next node
on the list. The key is an integer here only for simplicity, and could be arbitrarily
complex—the pointer is the key to the list. The variable head is a pointer to
the first node on a list: we can examine the other nodes in order by following
pointers until reaching z, the pointer to the dummy node representing the end of
the list. The “arrow” (minus sign followed by a greater-than sign) notation is used
in C to follow pointers through structures. We write a reference to a link followed
by this symbol to indicate a reference to the node pointed to by that link. For
example, the reference head->next->key refers to the first item on a list, and
head->next->next->key refers to the second.
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The struct declaration merely describes the formats of the nodes; nodes
can be created only when the built-in procedure malloc is called. For example,
thecall z = (struct node *) malloc(sizeof *z) creates a new node,
putting a pointer to it in z. The reader will become accustomed to this some-
what verbose expression of this conceptually simple operation, for we normally
invoke malloc in precisely this way. The purpose of malloc is to relieve the
programmer of the burden of “allocating” storage for the nodes as the list grows.
(We discuss this mechanism in some detail below.) There is a corresponding built-
in procedure free for deletion, which might be used by the calling routine, or
perhaps the node, though deleted from one list, is to be added to another.

The reader is encouraged to check these C implementations against the English-
language descriptions given above. In particular, it is instructive at this stage to
consider why the dummy nodes are useful. First, if the convention were to have
head point to the beginning of the list rather than having a head node, then
the insert procedure would need a special test for insertion at the beginning of
the list. Second, the convention for z protects the delete procedure from (for
example) a call to delete an item from an empty list.

Another common' convention for terminating a list is to make the last node
point to the first, rather than using either of the dummy nodes head or z. This is
called a circular list: it allows a program to go around and around the list. Using
one dummy node to mark the beginning (and the end) of the list and to help handle
the case of an empty list is sometimes convenient.

It is possible to support the operation “find the item before a given item” by
using a doubly linked list in which we maintain two links for each node, one to the
item before, one to the item after. The cost of providing this extra capability is
doubling the number of link manipulations per basic operation, so it is not normally
used unless specifically called for. As mentioned above, however, if a node is to
be deleted and only a link to the node is available (perhaps it is also part of some
other data structure), double linking may be called for.

We’ll see many examples of applications of these and other basic operations on
linked lists in later chapters. Since the operations involve only a few statements, we
normally manipulate the lists directly rather than use the precise procedures above.
As an example, we consider next a program for solving the so-called “Josephus
problem” in the spirit of the sieve of Eratosthenes. We imagine that N people have
decided to commit mass suicide by arranging themselves in a circle and killing
the Mth person around the circle, closing ranks as each person drops out of the
circle. The problem is to find out which person is the last to die (though perhaps
that person would have a change of heart at the end!), or, more generally, to find
the order in which the people are executed. For example, if N =9 and M =5, the
people are killed in the order 517 4 3 6 9 2 8. The following program reads in
N and M and prints out this ordering:
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struct node
{ int key; struct node *next; };
main ()
{
int i, N, M;
struct node *t, *x;
scanf ("%d %d", &N, &M);
t = (struct node *) malloc(sizeof *t);
t->key = 1; x = t;
for (1 = 2; 1 <= N; 1i++)
{
t->next = (struct node *) malloc(sizeof *t);
t = t->next;
t->key = i;
}
t->next = x;
while (t != t->next)
{
for (1 = 1; i < M; i++) t = t->next;
printf ("%d ", t->next->key);
X = t->next;
t->next = t->next->next;
free(x);
}
printf ("$d\n", t->key):

The program uses a circular linked list to simulate the sequence of executions
directly. First, the list is built with keys from 1 to N: the variable x holds onto the
beginning of the list as it is built, then the pointer in the last node in the list is set
to x. Then, the program proceeds through the list, counting through M — 1 items
and deleting the next, until only one is left (which then points to itself). Note the
call to free for the delete, which corresponds to an execution: this is the opposite
of malloc as mentioned above. '

Storage Allocation

C’s pointers provide a convenient way to implement lists, as shown above, but
there are alternatives. In this section we discuss how to use arrays to implement
linked lists and how this is related to the actual representation of the lists in a
C program. As mentioned above, arrays are a rather direct representation of the
memory of the computer, so that analysis of how a data structure is implemented
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as an array will give some insight into how it might be represented at a low level
in the computer. In particular, we’re interested in seeing how several lists might
be represented simultaneously.

In a direct-array representation of linked lists, we use indices instead of links.
One way to proceed would be to define an array of records like those above,
but using integers (for array indices) rather than pointers for the next field.
An alternative, which often turns out to be more convenient, is to use “parallel
arrays”: we keep the items in an array key and the links in an array next. Thus,
key[next [head] ] refers to the information associated with the first item on
the list, key [next [next [head]]] to the second, etc. The advantage of using
parallel arrays is that the structure can be built “on top of” the data: the array key
contains data and only data—all the structure is in the parallel array next. For
example, anothier list can be built using the same data array and a different parallel
“link” array, or more data can be added with more parallel arrays. The following
code implements the basic list operations using parallel arrays:

int key[max+2], next[max+2];
int x, head, z;
listinitialize ()
{
head = 0; z = 1; x = 2;
next [head] = z; next[z] = z;
}
deletenext (int t)
{ next[t] = next[next[t]]; }
int insertafter(int v, int t)
{
key[x] = v; next[x] = next[t];
next{t] = x;
return x++;

Each call on the storage allocation function malloc is replaced by simply incre-
menting the “pointer” x: it keeps track of the next unused position in the array.
Figure 3.5 shows how our sample list might be represented in parallel arrays,
and how this representation relates to the graphical representation that we have
been using. The key and next arrays are shown on the left, as they appear if S
L AIT are inserted into an initially empty list, with S, L, and A inserted after
head; I after L, and T after S. Position 0 is head and position 1 is z (these
are set by listinitialize)—since next [0] is 4, the first item on the list is
key[4] (A); since next [4] is 3, the second item on the list is key [3] (L), etc.
In the second diagram from the left, the indices for the next array are replaced by
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lines—instead of putting a “4” at next [0], we draw a line from node 0 down to
node 4, etc. In the third diagram, we untangle the links to arrange list elements one
after the other; then at the right, we simply draw the nodes in our usual graphical
representation.

The crux of the matter is to consider how the built-in procedures malloc
and free might be implemented. We presume that the only space for nodes and
links are the arrays we’ve been using; this presumption puts us in the situation
the system is in when it has to provide the capability to grow and shrink a data
structure with a fixed data structure (the memory itseif). For example, suppose that
the node containing A is to be deleted from the example in Figure 3.5 and then
disposed of. It is one thing to rearrange the links so that node is no longer hooked
into the list, but what do we do with the space occupied by that node? And how
do we find space for a node when new is called and more space is needed?

On reflection, the reader will see that the solution is clear: a linked list should
be used to keep track of the free space! We refer to this list as the “free list.”
Then, when we delete a node from our list we dispose of it by inserting it onto
the free list, and when we need a new node, we get it by deleting it from the free
list. This mechanism allows several different lists to occupy the same array.

A simple example with two lists (but no free list) is shown in Figure 3.6. There
are two list header nodes hdl = 0 and hd2 = 6, but both lists can share the
same z. (To build multiple lists, the 1istinitialize procedure above would
have to be modified to manage more than one head.) Now, next [0] is 4, so
the first item on the first list is key [4] (O); since next [6] is 7, the first item

Figure 3.5 Array implementation of a linked list.
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hdl

Figure 3.6 Two lists sharing the same space.

on the second list is key [7] (T), etc. The other diagrams in Figure 3.6 show
the result of replacing next values by lines, untangling the nodes, and changing
to our simple graphical representation, just as in Figure 3.5. This same technique
could be used to maintain several lists in the same array, one of which would be
a free list, as described above.

When storage management is provided by the system, as in C, there is no
reason to override it in this way. The description above is intended to indicate
how the storage management is done by the system. (If the reader’s system does
not do storage management, the description above provides a starting point for an
implementation.) The actual problem faced by the system is rather more complex,
as not all nodes are necessarily of the same size. Also, some systems relieve the
user of the need to explicitly £ree nodes by using “garbage-collection” algorithms
to remove any nodes not referenced by any link. A number of rather clever storage
management algorithms have been developed to handle these two situations.

Pushdown Stacks

We have been concentrating on structuring data in order to insert, delete, or access
items arbitrarily. Actually, it turns out that for many applications, it suffices to
consider various (rather stringent) restrictions on how the data structure is accessed.
Such restrictions are beneficial in two ways: first, they can alleviate the need for
the program using the data structure to be concerned with its details (for example,
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keeping track of links to or indices of items); second, they allow simpler and more
flexible implementations, since fewer operations need be supported.

The most important restricted-access data structure is the pushdown stack.
Only two basic operations are involved: one can push an item onto the stack
(insert it at the beginning) and pop an item (remove it from the beginning). A
stack operates somewhat like a busy executive’s “in” box: work piles up in a stack,
and whenever the executive is ready to do some work, he takes it off the top. This
might mean that something gets stuck in the bottom of the stack for some time, but
a good executive would presumably manage to get the stack emptied periodically.
It turns out that sometimes a computer program is naturally organized in this way,
postponing some tasks while doing others, and thus pushdown stacks appear as the
fundamental data structure for many algorithms.

We’ll see a great many applications of stacks in the chapters that follow: for an-
introductory example, let’s look at using stacks in evaluating arithmetic expressions.
Suppose that one wants to find the value of a simple arithmetic expression involving
multiplication and addition of integers, such as

S*(((9+8) *@4*6)) +7).

A stack is the ideal mechanism for saving intermediate results in such a calculation.
The above example might be computed with the calls:

push (5) ;
push (9);
push(8);
push (pop () +pop () ) ;
push (4
6

);
)

push (pop () *pop () ;
push p0p()*p0p())

push (7);

push (pop () +pop () ) ;

push (pop () *pop (}) ;
printf ("%d\n", pop());

(
(
{
(
(
push (
{
(
(
(

The order in which the operations are performed is dictated by the parentheses in
the expression, and by the convention that we proceed from left to right. Other
conventions are possible; for example 4*6 could be computed before 9+8 in the ex-
ample above. And in C, the order in which the two pop () operations is performed
is unspecified, so slightly more complicated code is needed for noncommutative
operators such as subtract and divide.

Some calculators and some computing languages base their method of calcu-
Jation on stack operations explicitly: every operation pops its arguments from the
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stack and returns its results to the stack. As we’ll see in Chapter 3, stacks often
arise implicitly even when not used explicitly.

The basic stack operations are easy to implement usmg linked hsts, as in the
following implementation:

static struct node
{ int key; struct node *next; };
static struct node *head, *z, *t;
stackinit ()
{
head = (struct node *) malloc(sizeof *head);
z = (struct node *) malloc(sizeof *z);
head->next = z; head->key = 0;
z->next = z;
} ,
push (int v)
{
t = (struct node *) malloc(sizeof *t);
t->key = v; t->next = head->next;
head->next = t;

“int pop ()

int x;

t = head->next; head->next = t->next;
x = t->key;

free(t):;

return x;

int stackempty ()
{ return head->next == z; }

(This implementation also includes code to initialize a stack and to test it if is
empty.) In an application in which only one stack is used, we can assume that the
global variable head is the link to the stack; otherwise, the implementations can
be modified to also pass around a link to the stack.

The order of calculation in the arithmetic example above requires that the
operands appear before the operator so that they can be on the stack when the
operator is encountered. Any arithmetic expression can be rewritten in this way—
the example above corresponds to the expression

59 8 + 4 6 % % 7 4 *
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This is called reverse Polish notation (because it was introduced by a Polish lo-
gician), or postfix. The customary way of writing arithmetic expressions is called
infix. One interesting property of postfix is that parentheses are not required;
in infix they are needed to distinguish, for example, 5*(((9+8)*(4*6))+7) from
((5%9)+8)*((4*6)+7). The following program converts a legal fully parenthesized
infix expression into a postfix expression:

char c¢;
for (stackinit(); scanf("%1s", &c) != EOF; )
{
if (¢ == 7)') printf("%lc", (char) pop()):;
if (¢ == "47) push((int) c);
if (¢ == "*7) push((int) c);
while (c>=’0' && c<='9'")

{ prlntf "$1lc",c); scanf ("$1lc",&c); }
if (¢ !'= (") printf(" ");
}
printf ("\n")

Operators are pushed on the stack, and arguments are simply passed through. Note
that arguments appear in the postfix expression in the same order as in the infix
expression. Then each right parenthesis indicates that both arguments for the last
operator have been output, so the operator itself can be popped and written out.
For simplicity, this program does not check for errors in the input and requires
spaces between operators, parentheses and operands. It is amusing to note that,
since we use only operators with exactly two operands, the left parentheses are not
needed in the infix expression (and this program skips them).

The chief reason to use postfix is that evaluation can be done in a very straight-
forward manner with a stack, as in the following program:

char c¢; int x;
for (stackinit(); scanf ("%$1s", &c)!= EOF; )
{

x = 0;
if (¢ == '+') x = pop()+pop();
if (c == ’*’) X = pop () *pop();

{ x O*x + (¢-"0"); scanf("%1lc", &c); }
push (x
}
printf ("$d\n", x);

-while (c>="0' && c<='9")
X);
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This program reads any postfix expression involving multiplication and addition
of integers, then prints the value of the expression. Blanks are ignored, and the
while loop converts integers from character format to numbers for calculation.
Otherwise, the operation of the program is straightforward. Integers (operands) are
pushed onto the stack and multiplication and addition replace the top two items on
the stack by the result of the operation.

If the maximum size of a stack can be predicted in advance, it may be appro-
priate to use an array representation rather than a linked list, as in the following
implementation:

#define max 100
static int stack[max+l],p:;
push (int v)

{ stack[p++] = v; }
int pop ()

{ return stack[--pl; }
stackinit ()

{p=20;1}
int stackempty ()

{ «return !p; }

The ‘variable p is a global variable that keeps track of the location of the top of
the stack. This is a very simple implementation that avoids the use of extra space
for links, at the cost of perhaps wasting space by reserving room for the maximum
size stack. This code does not check whether the user is trying to push onto a full
stack or pop from an empty one, though we do provide a way to check the latter.

Figure 3.7 shows how a sample stack evolves through the series of push and
pop operations represented by the sequence:

A*SA*M*P*L*ES*T***A*(CK?**,

The appearance of a letter in this list means “push” (the letter); the asterisk means
G‘pop?’.
Typically, a large number of operations will require only a small stack. If one

is confident this is the case, then an array representation is called for. Otherwise,

[S]o 1] o
[A] o [M] o [P] o [L] o [E][E][E]
(8] o [sIEIEIEIE EIEIEIEEEEEEE 0 (4] o [CE]e] o

Figure 3.7 Dynamic characteristics of a stack.
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a linked list might allow the stack to grow and shrink gracefully, especially if it is
one of many such data structures.

Queues

Another fundamental restricted-access data structure is called the queue. Again,
only two basic operations are involved: one can insert an item into the queue
at the beginning and remove an item from the end. Perhaps our busy executive’s

in” box should operate like a queue, since then work that arrives first would get
done first. In a stack, something can get buried at the bottom, but in a queue
everything is processed in the order received.

Although stacks are encountered more often than queues because of their fun-
damental relationship with recursion (see Chapter 5), we will encounter algorithms
for which the queue is the natural data structure. Stacks are sometimes referred to
as obeying a “last in, first out” (LIFO) discipline; queues obey a “first in, first out”
(FIFO) discipline. = ‘ '

‘The linked-list implementation of the queue operations is straightforward and
left as an exercise for the reader. As with stacks, an array can also be used if one
can estimate the maximum size, as in the following implementation:

#define max 100
static int queue[max+1],head,tail;

put (int v)
( .
queue [tail++] = v;
if (tail > max) tail = 0;
}
int get ()
{
int t = queuel[head++];
if (head > max) head = 0;

return t;
}
queueinit ()
{ head =10; tail = 0; }
int queueempty ()
{ return head == tail; }

It is necessary to maintain two indices, one to the beginning of the queue (head)
and one to the end (tail). The contents of the queue are all the elements in the
array between head and tail, taking into account the “wraparound” back to 0
when the end of the array is encountered. If head and tail are equal, then the
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=]
o [E
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o [9]
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[el[E]m]
o [E][m]
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[sl[s] o ]G] o
[A] o [E][E] o

Figure 3.8 Dynamic characteristics of a queue.

queue is defined to be empty; but if put would make them equal, then it is defined
to be full (though, again, we do not include this check in the code above).

Figure 3.8 shows how a sample queue evolves through the series of get and
put operations represented by the sequence:

A*SA*M*P*LE*Q***x[*EU**[E*,

The appearance of a letter in this list means “put” (the letter); the asterisk means
“get

In Chapter 20 we encounter a deque (or “double-ended queue”), which is a
combination of a stack and a queue, and in Chapters 4 and 30 we discuss rather
fundamental examples involving the application of a queue as a mechanism to
allow exploration of trees and graphs.

{1

Abstract Data Types

We’ve seen above that it is often convenient to describe algorithms and data struc-
tures in terms of the operations performed, rather than in terms of details of im-
plementation. When a data structure is defined in this way, it is called an abstract
data type. The idea is to separate the “concept” of what the data structure should
do from any particular implementation.

The defining characteristic of an abstract data type is that nothing outside of
the definitions of the data structure and the algorithms operating on it should refer
to anything inside, except through function and procedure calls for the fundamental
operations. The main motivation for the development of abstract data types has
been as a mechanism for organizing large programs. Abstract data types provide
a way to limit the size and complexity of the interface between (potentially com-
plicated) algorithms and associated data structures and (a potentially large number
of) programs that use the algorithms and data structures. This makes it easier
to understand the large program, and more convenient to change or improve the
fundamental algorithms.
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Stacks and queues are classic examples of abstract data types: most programs
need be concerned only about a few well-defined basic operations, not details of
links and indices.

Arrays and linked lists can in turn be thought of as refinements of a basic
abstract data type called the linear list. Each of them can support operations
such as insert, delete, and access on a basic underlying structure of sequentially
ordered items. These operations suffice to describe the algorithms, and the linear
list abstraction can be useful in the initial stages of algorithm development. But as
we’ve seen, it is in the programmer’s interest to define carefully which operations
will be used, for the different implementations can have quite different performance
characteristics. For example, using a linked list instead of an array for the sieve of
Eratosthenes would be costly because the algorithm’s efficiency depends on being
able to get from any array position to any other quickly, and using an array instead
of a linked list for the Josephus problem would be costly because the algorithm’s
efficiency depends on the disappearance of deleted elements.

Many more operations suggest themselves on linear lists that require much,
more sophisticated algorithms and data structures to support efficiently. The two
most important are sorting the items in increasing order of their keys (the subject
of Chapters 8-13), and searching for an item with a particular key (the subject of
Chapters 14-18).

_One abstract data type can be used to define another: we use linked lists
and arrays to define stacks and queues. Indeed, we use the “pointer” and “record”
abstractions provided by C to build linked lists, and the “array” abstraction provided
by C to build arrays. In addition, we saw above that we can build linked lists with
arrays, and we’ll see in Chapter 36 that arrays should sometimes be built with
linked lists! The real power of the abstract data type concept is that it allows us
conveniently to construct large systems on different levels of abstraction, from the
machine-language instructions provided by the computer, to the various capabilities
provided by the programming language, to sorting, searching and other higher-level
capabilities provided by algorithms as discussed in this book, to the even higher
levels of abstraction that the application may suggest.

In this book, we deal with relatively small programs that are rather tightly
integrated with their associated data structures. While it is possible to talk of
abstraction at the interface between our algorithms and their data structures, it
is really more appropriate to focus on higher levels of abstraction (closer to the
application): the concept of abstraction should not distract us from finding the most
efficient solution to a particular problem. We take the view here that performance
does matter! Programs developed with this in mind can then be used with some
confidence in developing higher levels of abstraction for large systems.

Whether or not abstract data types are explicitly used (we do use the static

mechanism provided by C to hide data structure representations when appropriate),
we are not freed from the obligation of stating precisely what our algorithms



Elementary Data Structures . 33

do. Indeed, it is often convenient to define the interfaces to the algorithms and
data structures provided here as abstract data types; examples of this are found
in Chapters 11 and 14. Moreover, the user of the algorithms and data structures
is obliged to state clearly what he expects them to do—proper communication
between the user of an algorithm and the person who implements it (even if they
are the same person) is the key to success in building large systems. Programming
environments that support the development of large systems have facilities that
allow this to be done in a systematic way.

As mentioned above, real data structures rarely consist simply of integers
and links. Nodes often contain a great deal of information and may belong to
multiple independent data structures. For example, a file of personnel data may
contain records with names, addresses, and various other pieces of information
about employees, and each record may need to belong to one data structure for
searching for particular employees, and to another data structure for answering
statistical queries, etc. It is possible to build up quite complex structures even
using just the simple data structures described in this chapter: the records may be
larger and more complex, but the algorithms are the same. Still, we need to be
careful that we do not develop algorithms good for small records only: we return
to this issue at the end of Chapter 8 and at the beginning of Chapter 14.
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Exercises
1. Write a program to fill in a two-dimensional array of boolean values by setting

10.

al[i]1[3] to 1 if the greatest common divisor of i and j is 1 and to 0
otherwise.

. Implement a routine movenexttofront (struct node *t) for a linked

list that moves the node following the node pointed to by t to the beginning
of the list. (Figure 3.3 is an example of this for the special case when t points
to the next-to-last node in the list.)

. Implement a routine exchange (struct node *t, struct node *u)

for a linked list that exchanges the positions of the nodes after the nodes pointed
to by t and u.

. Write a program to solve the Josephus problem, using an array instead of a

linked list.

. Write procedures for insertion and deletion in a doubly linked list.

. Write procedures for a linked list implementation of pushdown stacks, but using

parallel arrays.

. Give the contents of the stack after each operation in the sequence EA S * Y

¥k QUE***§T#* %% [*0QN** Here a letter means “push” (the letter)

66, 9

and “+” means “pop.”

. Give the contents of the queue after each operation in the sequence EA S * Y

¥XQUE***ST***x]* QN ** Here a letter means “put” (the letter)

<6, 9

and “x” means “get.”

. Give a sequence of calls to deletenext and insertafter that could have

produced Figure 3.5 from an initially empty list.

Using a linked list, implement the basic operations for a queue.



Trees

The structures discussed in Chapter 3 are inherently one-dimensional: one
| item follows ‘the other. In this chapter we consider two-dimensional linked
structures called trees, which lie at the heart of many of our most important al-
gorithms. A full discussion of trees could fill an entire book, for they arise in
many applications outside of computer science and have been studied extensively
as mathematical objects. Indeed, it might be said that this book is filled with a
discussion of trees, for they are present, in a fundamental way, in every one of the
book’s sections. In this chapter, we consider the basic definitions and terminol-
ogy associated with trees, examine some important properties, and look at ways
of representing trees within the computer. In later chapters, we shall see many
algorithms that operate on these fundamental data structures.

Trees are encountered frequently in everyday life, and the reader is surely rather
familiar with the basic concept. For example, many people keep track of ancestors
and/or descendants with a family tree: as we’ll see, much of our terminology is
derived from this usage. Another example is found in the organization of sports
tournaments; this usage, which we’ll encounter in Chapter 11, was studied by
Lewis Carroll. A third example is found in the organizational chart of a large
corporation; this usage is suggestive of the “hierarchical decomposition” found
in many computer science applications. A fourth example is a “parse tree” of an
English sentence into its constituent parts; this is intimately related to the processing
of computer languages, as discussed further in Chapter 21. Other examples will
be touched on throughout the book.

Glossary

We begin our discussion of trees here by defining them as abstract objects and
introducing most of the basic associated terminology. There are a number of
equivalent ways to define trees, and a number of mathematical properties that
imply this equivalence; these are discussed in more detail in the next section.

35
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A tree is a nonempty collection of vertices and edges that satisfies certain
requirements. A vertex is a simple object (also referred to as a node) that can
have a name and can carry other associated information; an edge is a connection
between two vertices. A path in a tree is a list of distinct vertices in which
successive vertices are connected by edges in the tree. One node in the tree is
designated as the roor—the defining property of a tree is that there is exactly one
path between the root and each of the other nodes in the tree. If there is more than
one path between the root and some node, or if there is no path between the root
and some node, then what we have is a graph (see Chapter 29), not a tree. Figure
4.1 shows an example of a tree.

Though the definition implies no “direction” on the edges, we normally think
of the edges as all pointing away from the root (down in Figure 4.1) or towards
the root (up in Figure 4.1) depending upon the application. We usually draw trees
with the root at the top (even though this seems unnatural at first), and we speak of
node y as being below node x (and x as above y) if x is on the path from y to the
root (that is, if y is below x as drawn on the page and is connected to x by a path
that does not pass through the root). Each node (except the root) has exactly one
node above it, which is called its parent; the nodes directly below a node are called
its children. We sometimes carry the analogy to family trees further and refer to
the “grandparent” or the “sibling” of a node: in Figure 4.1, P is the grandchild of
R and has three siblings.

Nodes with no children are sometimes called leaves, or terminal nodes. To
correspond to the latter usage, nodes with at least one child are sometimes called
nonterminal nodes. Terminal nodes are often different from nonterminal nodes:
for example, they may have no name or associated information. Especially in such
situations, we refer tc nonterminal nodes as internal nodes and terminal nodes as
external nodes.

Any node is the root of a subtree consisting of it and the nodes below it. In
the tree shown in Figure 4.1, there are seven one-node subtrees, one three-node
subtree, one five-node subtree, and one six-node subtree. A set of trees is called

Figure 4.1 A sample tree.



Trees . 37

a forest. for example, if we remove the root and the edges connecting it from the
tree in Figure 4.1, we are left with a forest consisting of three trees rooted at A,
R, and E. '

Sometimes the way in which the children of each node are ordered is signifi-
cant, sometimes it is not. An ordered tree is one in which the order of the children
at every node is specified. Of course, the children are placed in some order when
we draw a tree, and clearly there dre many different ways to draw trees that are
not ordered. As we will see below, this distinction becomes significant when we
consider representing trees in a computer, since there is much less flexibility in
how to represent ordered trees. It is usually obvious from the application which
type of tree is called for.

The nodes in a tree divide themselves into levels: the level of a node is the
number of nodes on the path from the node to the root (not including itself). Thus,
for example, in Figure 4.1, R is on level 1 and S is on level 2. The height of a
tree is the maximum level among all nodes in the tree (or the maximum distance
to the root from any node). The path length of a tree is the sum of the levels of
all the nodes in the tree (or the sum of the lengths of the paths from each node
to the root). The tree in Figure 4.1 is of height 3 and path length 21. If internal
nodes are distinguished from external nodes, we speak of internal path length and
external path length. .

If each node must have a specific number of children appearing in a specific
order, then we have a multiway tree. In such a tree, it is appropriate to define special
external nodes which have no children (and usuvally no name or other associated
information). Then, external nodes act as “dummy” nodes for reference by nodes
that do not have the specified number of children,

In particular, the simplest type of multiway tree is the binary tree. A binary
tree is an ordered tree consisting of two types of nodes: external nodes with no
children and internal nodes with exactly two children. An example of a binary tree
is shown in Figure 4.2. Since the two children of each internal node are ordered,
we refer to the left child and the right child of internal nodes: every internal node

Figure 4.2 A sample binary tree.
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Figure 4.3 A complete binary tree.

must have both a left and a right child, though one or both of them might be an
external node. ' ,

The purpose of the binary tree is to structure the internal nodes; the external
nodes serve only as placeholders. We include them in the definition because the
most commonly used representations for binary trees must account for each external
node. A binary tree could be “empty,” consisting of no internal nodes and one
external node. ' ' .

A full binary tree is one in which internal nodes completely fill every level,
except possibly the last. A complete binary tree is a full binary tree where the
internal nodes on the boitom level all appear to the left of the external nodes on
that level. Figure 4.3 shows an example of a complete binary tree. As we shall
see, binary trees appear extensively in computer applications, and performance is
best when the binary trees are full (or nearly full). In Chapter 11, we will examine
an important data structure based on complete binary trees.

The reader should note carefully that, while every binary. tree is a tree, not
every tree is a binary tree. Even considering only ordered trees in which every
node has 0, 1, or 2 children, each such tree might correspond to many binary trees,
because nodes with 1 child could be either left or right in a binary tree.

Trees are intimately connected with recursion, as we will see in the next
chapter. In fact, perhaps the simplest way to define trees is recursively, as follows:
“a tree is either a single node or a root node connected to a set of trees” and “a
binary tree is either an external node or a root (internal) node connected to a left
binary tree and a right binary tree.”

Properties

Before considering representations, we continue in a mathematical vein by consid-
ering a number of important properties of trees. Again, there are a vast number
of possible properties to consider—our purpose is to consider those which are
particularly relevant to the algorithms to be considered later in this book.

Property 4.1 There is exactly one path connecting any two nodes in a tree.
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Any two nodes have a least common ancestor: a node that is on the path from
both nodes to the root, but with none of its children having the same property.
For example, O is the least common ancestor of C and L in the tree of Figure
4.3. The least common ancestor must always exist because either the root is the
least common ancestor, or both of the nodes are in the subtree rooted at one of the
children of the root; in the latter case either that node is the least common ancestor,
or both of the nodes are in the subtree rooted at one of its children, etc. There is
a path from each of the nodes to the least common ancestor—patching these two
paths together gives a path connecting the two nodes. =

An important implication of Property 1 is that any node can be the root: each
node in a tree has the property that there is exactly one path connecting that node
with every other node in the tree. Technically, our definition, in which the root is
identified, pertains to a rooted tree or oriented tree; a tree in which the root is not
identified is called a free tree. The reader need not be concerned about making this
distinction: either the root is identified, or it is not.

Property 4.2 A tree with N nodes has N — 1 edges.

This property follows directly from the observations that each node, except the
root, has a unique parent, and every edge connects a node to its parent. We can
also prove this fact by induction from the recursive definition. w

The next two properties that we consider pertain to binary trees. As mentioned
above, these structures occur quite frequently throughout this book, so it is worth-
while to devote some attention to their characteristics, This lays the groundwork
. for understanding the performance characteristics of various algorithms we will
encounter.

Property 4.3 A binary tree with N internal nodes has N + 1 external nodes.

This property can be proven by induction. A binary tree with no internal nodes
‘has one external node, so the property holds for N = 0. For N > 0, any binary
tree with N internal nodes has k internal nodes in its left subtree and N — 1 — &
internal nodes in its right subtree for some k between 0 and N — 1, since the root
is an internal node. By the inductive hypothesis, the left subtree has k + 1 external
nodes and the right subtree has N — & external nodes, for a total of N + 1. =

Property 4.4 The external path length of any binary tree with N internal nodes
is 2N greater than the internal path length.

This property can also be proven by induction, but an alternate proof is also in-
structive. Observe that any binary tree can be constructed by the following process:
start with the binary tree consisting of one external node. Then repeat the following
N times: pick an external node and replace it by a new internal node with two
external nodes as children. If the external node chosen is at level &, the internal
path length is increased by k&, but the external path length is increased by k +2 (one



40 : Chapter 4

external node at level & is removed, but two at level k +1 are added). The process
starts with a tree with internal and external path length both 0 and, for each of N
steps, increases the external path length by 2 more than the internal path length. w

Finally, we consider simple properties of the “best” kind of binary trees—full
trees. These trees are of interest because their height is guaranteed to be low, so
we never have to do much work to get from the root to any node or vice versa.

Property 4.5 The height of a full binary tree with N internal nodes is about
lOgZ N.

Referring to Figure 4.3, if the height is #, then we must have
21N +1<2",

since there are N + 1 external nodes. This implies the property stated. (Actually,
the height is exactly equal to log, N rounded up to the nearest integer, but we will
refrain from being quite so precise, as discussed in Chapter 6.) =

Further mathematical properties of trees will be discussed as needed in the
chapters which follow. At this point, we’re ready to move on to the practical
matter of representing trees in the computer and manipulating them in an efficient
fashion. ‘

Répresenting Binary Trees

The most prevalent representation of binary trees is a straightforward use of records
with two links per node. Normally, we will use the link names 1 and r (abbrevia-
tions for “left” and “right™) to indicate that the ordering chosen for the representa-
tion corresponds to the way the tree is drawn on the page. For some applications,
it may be appropriate to have two different types of records, one for internal nodes,
one for external nodes; for others, it may be appropriate to use just one type of
node and to use the links in external nodes for some other purpose.

As an example in using and constructing binary trees, we’ll continue with
the simple example from the previous chapter, processing arithmetic expressions.
There is a fundamental correspondence between arithmetic expressions and trees,
as shown in Figure 4.4.

We use single-character identifiers rather than numbers for the arguments; the
reason for this will become plain below. The parse tree for an expression is
defined by the simple recursive rule: “put the operator at the root and then put the
tree for the expression corresponding to the first operand on the left and the tree
corresponding to the expression for the second operand on the right.” Figure 4.4 is
also the parse tree for ABC + D E * * F + * (the same expression in postfix)—
infix and postfix are two ways to represent arithmetic expressions, parse trees are
a third.
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Figure 4.4 Parse tree for A*(((B+C)*(D'*E))+F).

Since the operators take exactly (wo operands, a binary tree is appropriate for
this kind of expression. More complicated expressions might require a different
type of tree. We will revisit this issue in greater detail in Chapter 21; our purpose
here is simply to construct a tree representation of an arithmetic expression.

The following code builds a parse tree for an arithmetic expression from a
postfix input representation. It is a simple modification of the program given in
the previous chapter for evaluating postfix expressions using a stack. Rather than
saving the results of intermediate calculations on the stack, we save the expression
trees, as in the following implementation:

struct node
{ char info; struct node *1, *r; };
struct -node *x, *z;

char c; _
z = (struct node *) malloc (sizeof *z);
z->1 = z; 2->r = z;
for (stackinit(); scanf("%ls", &c)!= ECF; )
{
x = (struct node *) malloc (sizeof *x);
x->info = ¢; x~->1 = 2z} X->r = 2;
if (c=="+" || .c=="*")
{ x=>r = pop(); x->1 = pop(); }
push (x) ;

The procedures stackinit, push, and pop here refer to the pushdown stack
code from Chapter 3, modified to put pointers on the stack rather than integers.
The code for these is omitted here. Every node has a character and two links to
other nodes. Each time a new nonblank character is encountered, a node is created
for it using the standard storage allocation function malloc. If it is an operator,
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subtrees for its operands are at the top of the stack, just as for postfix evaluation.
If it is an operand, then its links are null. Rather than using null links, as with lists,
we use a dummy node z whose links point to itself. In Chapter 14, we examine
in detail how this makes certain operations on trees more convenient. Figure 4.5
shows the intermediate stages in the construction of the tree in Figure 4.4,

This rather simple program can be modified to handle more complicated ex-
pressions involving single-argument operators such as exponentiation. But the
mechanism is very general; exactly the same mechanism is used, for example, to
parse and compile C programs. Once the parse tree has been created, then it can
be used for many things, such as evaluating the expression or creating computer
programs to evaluate the expression. Chapter 21 discusses general procedures for
building parse trees. Below we shall see how the tree itself can be used to evaluate
the expression. For the purposes of this chapter, however, we are most interested
in the mechanics of the construction of the tree.

As with linked lists, there is always the alternative of using paralle]l arrays
rather than pointers and records to implement the binary tree data structure. As
before, this is especially useful when the number of nodes is known in advance.
Also as before, the particular special case where the nodes need to occupy an array
for some other purpose calls for this alternative.

The two-link representation for binary trees used above allows going down
the tree but provides no way to move up the tree. The situation is analogous to
singly-linked lists versus doubly-linked lists: one can add another link to each
node to allow more freedom of movement, but at the cost of a more complicated
implementation. Various other options are available in advanced data’ structures
to facilitate moving around in the tree, but for the algorithms in this book, the
two-link representation generally suffices. '

In the program above, we used a “dummy” node in lieu of external nodes.
As with linked lists, this turns out to be convenient in most situations, but is not

Figure 4.5 Building the parse tree for ABC + D E* * F + *,
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always appropriate, and there are two other cominonly used solutions. One option
is to use a different type of node for external nodes, one with no links. Another
option is to mark the links in some way (to distinguish them from other links in
the tree), then have them point elsewhere in the tree; one such method is discussed
below. We will revisit this issue in Chapters 14 and 17.

Representing Forests

Binary trees have two links below each internal node, so the representation used
above for them is immediate. But what do we do for general trees, or forests, in
which each node might require any number of links to the nodes below? It turns
out that there are two relatively simple ways out of this dilemma.

First, in many applications, we don’t need to go down the tree, only up! In
such cases, we only need one link for each node, to its parent. Figure 4.6 shows
this representation for the tree in Figure 4.1: the array a contains the information
associated with each record and the array dad contains the parent links. Thus
the information associated with the parent of a[1] is in a[dad [i]], etc. By
convention, the root is set to point to itself. This is a rather compact representation
that is definitely recommended if working up the tree is appropriate. We’ll see
examples of the use of this representation in Chapters 22 and 30.

To represent a forest for top-down processing, we need a way to handle the
children of each node without preallocating a specific number for any node. But this
is exactly the type of constraint that linked lists are designed to remove. Clearly,
we should use a linked list for the children of each node. Each node then contairnis
two links, one for the linked list connecting it to its siblings, the other for the linked
list of its children. Figure 4.7 shows this representation for the tree of Figure 4.1.
Rather than use a dummy node to términate each list, we simply make the last node
point back to the parent; this gives a way to move up the tree as well as down.
(These links may be marked to distinguish them from “sibling” links; alternatively,
we can scan through the children of a node by marking or saving the name of the
parent so that the scan can be stopped when the parent is revisited.)

But in this representation, each node has exactly two links (one to'its sibling
on the right, the other to its leftmost child) One might then wonder whether there
is a difference between this data structure and a binary tree. The answer is that
there is not, as shown in Figure 4.8 (the binary tree representation of the tree in

k 1 2 3 4 5 6 7 8 910 11

:x1 @OOOEPOEOR®O®®

dad[k] 3 3 10 8 8 8 8 9 10 10 10

Figure 4.6 Parent link representation of a tree.
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Figure 4.7 Leftmost child, right sibling representation of a tree.

Figure 4.1). That is, any forest can be represented as a binary tree by making the
left link of each node point to its leftmost child, and the right link of each node
point to its sibling on the right. (This fact is often surprising to the novice.)

Thus, we may as well use forests whenever convenient in algorithm design.
When working from the bottom up, the parent link representation makes forests
easier to deal with than nearly any other kind of tree, and when working from the
top down, they are essentially equivalent to binary trees.

Traversing Trees

Once a tree has been constructed, the first thing one needs to know is how to
traverse it: how to systematically visit every node. This operation is trivial for
linear lists by their definition, but for trees, there are a number of different ways to
proceed. The methods differ primarily in the order in which they visit the nodes.
As we’ll see, different node orderings are appropriate for different applications.

For the moment, we’ll concentrate on traversing binary trees. Because of the
equivalence between forests and binary trees, the methods are useful for forests as
well, but we also mention later how the methods apply directly to forests.

The first method to consider is preorder traversal, which can be used, for
example, to write out the expression represented by the tree in Figure 4.4 in prefix.

Figure 4.8 Binary tree representation of a tree.
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Figure 4.9 Preorder traversal.

The method is defined by the simple recursive rule: “visit the root, then visit
the left subtree, then visit the right subtree.” The simplest implementation of this
method, a recursive one, is shown in the next chapter to be closely related to the
following stack-based implementation:

traverse (struct node *t)
{
push (t);
while (!stackempty())
{

t = pop(); visit(t);
if (t->r != z) push(t->r);
if (t->1 !'= z) push(t->1);
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(The stack is assumed to be initialized outside this procedure.) Following the rule,
we “visit a subtree” by visiting the root first. Then, since we can’t visit both
subtrees at once, we save the right subtree on a stack and visit the left subtree.
When the left subtree has been visited, the right subtree will be at the top of the
stack; it can then be visited. Figure 4.9 shows this program in operation when
applied to the binary tree in Figure 4.2: the order in which the nodes are visited is
PMSAALERTEE.

To prove that this program actually visits the nodes of the tree in preorder,
one can use induction with the inductive hypothesis that the subtrees are visited
in preorder and that the contents of the stack just before visiting a subtree are the
same as the contents of the stack just after. _ ‘

Second, we consider inorder traversal, which can be used, for example, to
write out arithmetic expressions corresponding to parse trees in infix (with some
extra work to get the parentheses right). In a manner similar to preorder, inorder is
defined with the recursive rule “visit the left subtree, then visit the root, then visit the
right subtree.” This is also sometimes called symmetric order, for obvious reasons.
The implementation of a stack-based program for inorder is almost identical to

Figure 4.10 Inorder traversal.
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the above program; we will omit it here because it is a main topic of the next
chapter. Figure 4.10 shows how the nodes in the tree in Figure 4.2 are visited in
inorder: the nodes are visited in the order AS AMPL E T R E E. This method
of traversal is probably the most widely used: for example, it plays a central role
in the applications of Chapters 14 and 15.

The third type of recursive traversal, called postorder, is defined, of course,
by the recursive rule “visit the left subtree, then visit the right subtree, then visit
the root.” Figure 4.11 shows how the nodes of the tree in Figure 4.2 are vis-
ited in postorder: the nodes are visited in the order AASMTEEREL
P. Visiting the expression tree of Figure 4.4 in postorder gives the expression
ABC +DE**F + * as expected. Implementation of a stack-based program
for postorder is more complicated than for the other two because one must arrange
for the root and the right subtree to be saved while the left subtree is visited and
for the root to be saved while the right subtree is visited. The details of this
implementation are left as an exercise for the reader.

The fourth traversal strategy that we consider is not recursive at all—we simply
visit the nodes as they appear on the page, reading down from top to bottom and

Figure 4.11 Postorder traversal.
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Figure 4.12 Level order traversal.

from left to right. This is called /evel-order traversal because all the nodes on each
level appear together, in order. Figure 4.12 shows how the nodes of the tree in
Figure 4.2 are visited in level order.

Remarkably, level-order traversal can be achieved by using the program above
for preorder, with a queue instead of a stack:

traverse (struct node *t)
{
put (t);
while (!queueempty())
{

t = get(); visit(t);
if (£->1 != z) put(t->1);
if (t->r != z) put (t~->r);
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On the one hand, this program is virtually identical to the one above—the only
difference is its use of a FIFO data structure where the other uses a LIFO data
structure. On the other hand, these programs process trees in fundamentally differ-
ent ways. These programs merit careful study, for they expose the essence of the
difference between stacks and queues. We shall return to this issue in Chapter 30.

Preorder, postorder and level order are well defined for forests as well. To
make the definitions consistent, think of a forest as a tree with an imaginary root.
Then the preorder rule is “visit the root, then visit each of the subtrees,” the
postorder rule is “visit each of the subtrees, then visit the root.” The level-order
rule is the same as for binary trees. Note that preorder for a forest is the same
as preorder for the corresponding binary tree as defined above, and that postorder
for a forest is the same as inorder for the binary tree, but the level orders are
not the same. Direct implementations using stacks and queues are straightforward
generalizations of the programs given above for binary trees.
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Exercises

. Give the order in which the nodes are visited when the tree in Figure 4.3 is

visited in preorder, inorder, postorder, and level order.

. What is the height of a complete 4-way tree with N nodes?
. Draw the parse tree for the expression (A+B)*C+(D+E).

. Consider the tree of Figure 4.2 as a forest that is to be represented as a binary

tree. Draw that representation.

. Give the contents of the stack each time a node is visited during the preorder

traversal depicted in Figure 4.9,

. Give the contents of the queue each time a node is visited during the level

order traversal depicted in Figure 4.12.

. Give an example of a tree for which the stack in a preorder traversal uses more

space than the queue in a level-order traversal.

. Give an example of a tree for which the stack in a preorder traversal uses less

space than the queue in a level-order traversal.

. Give a stack-based implementation of postorder traversal of a binary tree.

10..Write a program to implement level-order traversal of a forest represented as

a binary tree.



Recursion

Recursion is a fundamental concept in mathematics and computer science.
The simple definition is that a recursive program is one that calls itself (and a
recursive function is one that is defined in terms of itself). Yet a recursive program
“can’t call itself always, or it would never stop (and a recursive function can’t
be defined in terms of itself always, or the definition would be circular); another
essential ingredient is that there must be a termination condition when the program
can cease to call itself (and when the function is not defined in terms of itself). All
practical computations can be couched in a recursive framework.

Our primary purpose in this chapter is to examine recursion as a practical tool.
First, we show some examples in which recursion is nor practical, while showing
the relationship between simple mathematical recurrences and simple recursive
programs. Next, we show a prototype example of a “divide-and-conquer” recursive
program of the type that we use to solve fundamental problems in several later
sections of this book. Finally, we discuss how recursion can be removed from
any recursive program, and show a detailed example of removing recursion from a
simple recursive tree traversal algorithm to get a simple nonrecursive stack-based
algorithm, ’

As we shall see, many interesting algorithms are quite simply expressed with
. recursive programs, and many algorithm designers prefer to express methods re-
cursively. But it is also very often the case that an equally interesting algorithm
lies hidden in the details of a(necessarily) nonrecursive implementation—in this
chapter we discuss techniques for finding such algorithms.

Recurrences

Recursive definitions of functions are quite common in mathematics—the simplest
type, involving integer arguments, are called recurrence relations. Perhaps the
most familiar such function is the factorial function, defined by the formula

Nl=N-(N - D!, for N > 1 with 0! =1,

51
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This corresponds directly to the following simple recursive program:

int factorial (int N)
{
if (N == 0) return 1;
return N * factorial (N-1);

On the one hand, this program illustrates the basic features of a recursive program:
it calls itself (with a smaller value of its argument), and it has a termination
condition in which it directly computes its result. On the other hand, there is no
masking the fact that this program is nothing more than a glorified £or loop, so it
is hardly a convincing example of the power of recursion. Also, it is important to
remember that it is a program, not an equation: for example, neither the equation
nor the program above “works” for negative N, but the negative effects of this
oversight are perhaps more noticeable with the program than with the equation.
The call factorial (-1) results in an infinite recursive loop; this is in fact a
common bug that can appear in more subtle forms in more complicated recursive
programs.

A second well-known recurrence relation is the one that defines the Fibonacci
numbers:

) Fy =Fn_1+Fn_2, for N > 2 with Fp=Fy =1.

This defines the sequence

1,1,2,3,5,8,13,21,34,55,89, 144,233,377,610,....

Again, the recurrence corresponds directly to the simple recursive program:

int fibonacci (int N)
{
if (N <= 1) return 1;
return fibonacci (N-1) + fibonacci (N-2);

This is an even less convincing example of the “power” of recursion; indeed, it
is a convincing example that recursion should not be used blindly, or dramatic
inefficiencies can result. The problem here is that the recursive calls indicate that
Fy_; and Fy_, should be computed independently, when, in fact, one certainly
would use Fy_, (and Fy_3) to compute Fy_;. It is actually easy to figure out
the exact number of calls on the procedure fibonacci above that are required
to compute Fy: the number of calls needed to compute Fyy is the number of calls
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needed to compute Fy _; plus the number of calls needed to compute F _, unless
N =0or N =1, when only one call is needed. But this fits the recurrence relation
defining the Fibonacci numbers exactly: the number of calls on fibonacci
to compute Fy is exactly Fy. It is well known that Fy is about ¢V, where
¢ =1.61803... is the “golden ratio”: the awful truth is that the above program is
an exponential-time algorithm for computing the Fibonacci numbers!

By contrast, it is very easy to compute Fy in linear time, as follows:

#define max 25
int fibonacci (int N)
{
int i, F[max];
F[0] = 1; F[1] 1;
for (i'= 2; 1 <= max; i++)
F[i] = F[i-1] + F[i-2];
return F[N];

1

This program computes the first max Fibonacci numbers, using an array of size
max. (Since the numbers grow exponentially, max will be small.)

In fact, this technique of using an array to store previous results is typically the
method of choice for evaluating recurrence relations, for it allows rather complex
equations to be handled in a uniform and efficient manner. Recurrence relations
often arise when we try to determine performance characteristics of recursive pro-
grams, and we’ll see several examples in this book. For example, in Chapter 9 we
encounter the equation

Cy =N - 4+ > (Cr_1+Cn_g). forN > 1 with Co=1.
N
1<k<N

The value of Cy can be rather easily computed using an array, as in the program
above. In Chapter 9, we discuss how this formula can be handled mathematically,
and several other recurrences that arise frequently in the analysis of algorithms are
discussed in Chapter 6.

Thus, the relationship between recursive programs and recursively defined
functions is often more philosophical than practical. Strictly speaking, the prob-
lems pointed out above are associated not with the concept of recursion itself, but
+ with the implementation: a (very smart) compiler might discover that the factorial
function really could be implemented with a loop and that the Fibonacci function
is better handled by storing all precomputed values in an array. Below, we’ll look
in more detail at the mechanics of implementing recursive programs.
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Divide-and-Conquer

Most of the recursive programs we consider in this book use two recursive calls,
each operating on about half the input. This is the so-called “divide and con-
quer” paradigm for algorithm- design, which is often used to achieve significant
economies. Divide-and-conquer programs normally do not reduce to trivial loops
like the factorial program above, because they have two recursive calls; they nor-
mally do not lead to excessive recomputing as in the program for Fibonacci numbers
above, because the input is divided without overlap.

As an example, let us consider the task of drawing the markings for each
inch on a ruler; there is a mark at the 1/2” point, slightly shorter marks at 1/4”
intervals, still shorter marks at 1/8” intervals, etc., as shown (in magnified form)
in Figure 5.1. As we’ll see there are many ways to carry out this task, and it is a
prototype of simple divide-and-conquer computations.

If the desired resolution is 1/2"” we rescale so that our task is to put a mark
at every point between 0 and 2", endpoints not included. We assume that we have
at our disposal a procedure mark (x,h) to make a mark h units high at position
x. The middle mark should be # units high, the marks in the middle of the left and
right halves should be » — 1 units high, etc. The following “divide-and-conquer”
recursive program is a straightforward way to accomplish our objective:

rule(int 1, int r, int h)
{
int m = (1+r)/2;
“if (h > 0)
{

mark (m,h) ;
rule(l,m,h-1);
rule(m,r,h=-1);

}

For example, the call rule (0, 64, 6) will yield Figure 5.1, with appropriate
scaling. The idea behind the method is the following: to make the marks in an

Figure 5.1 A ruler.
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interval, first make the long mark in the middle. This divides the interval into two
equal halves. Make the (shorter) marks in each half, using the same procedure.

It is normally prudent to pay special attention to the termination condition
of a recursive program—otherwise it may not terminate! In the above program,
rule terminates (does not call itself) when the length of the mark to be made is
0. Figure 5.2 shows the process in detail, giving the list of procedure calls and
marks resulting from the call rule (0, 8, 3). We mark the middle and call rule
for the left half, then do the same for the left half, and so forth, until a mark of
length O is called for. Eventually we return from rule and mark right halves in
the same way.

For this problem, the order in which the marks are drawn is not particularly
significant. We could have just as well put the mark call between the two recursive
calls, in which case the points for our example would be simply be plotted in left-
to-right order, as shown in Figure 5.3.

. rule(0,8,3)

mark (4, 3) l I |
rule(0,4,2)
mark (2, 2) L1 | |
rule(0,2,1) I | |
mark(1,1) L

rule(0,1,0)
rule(1,2,0)
rule(2,4,1) . |
mark (3,1)
rule(2,3,0)
rule(3,4,0)
rule(4,8,2) |
mark (6, 2)
rule(4,6,1) |
mark (5, 1)
rule(4,5,0)
rule(5,6,0)
rule(6,8,1) |
mark (7, 1)
rule(6,7,0)

Figure 5.2 Drawing a ruler.
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The collection of marks drawn by these two procedures is the same, but the
ordering is quite different. This difference may be explained by the tree diagram
shown in Figure 5.4. This diagram has a node for each call to rule, labeled
with the parameters used in the call. The children of each node correspond to the
(recursive) calls to rule, along with their parameters, for that invocation. A tree
like this can be drawn to illustrate the dynamic characteristics of any collection of
procedures. Now, Figure 5.2 corresponds to traversing this tree in preorder (where
“visiting” a node corresponds to making the indicated call to mark); Figure 5.3
corresponds to traversing it in inorder.

In general, divide-and-conquer algorithms involve doing some work to split
the input into two pieces, or to merge the results of processing two independent
“solved” portions of the input, or to help things along after half of the input has
been processed. That is, there may be code before, after, or in between the two
recursive calls. We’ll see many examples of such algorithms later, especially in

rule (0,8, 3)
rule (0,4, 2)
rule(0,2,1)
rule(0,1,0)

mark (1, 1) [ }
rule(l,2,0)
mark(2,2) L, L -l

rule(2,4,1)
rule(2,3,0)

mark(3,1) N |
rule(3,4,0)
mark (4, 3) Lot d ]

rule(4,8,2)
rule(4,6,1)
rule(4,5,0)

mark (5,1) Lego by |
rule(5,6,0)
mark (6,2) lJ | | l

rule (6,8,1)
rule(6,7,0)

mark (7, 1) 1 I, | I

Figure 5.3 Drawing a ruler (inorder version).
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Figure 5.4 Recursive call tree for drawing a ruler.

Chapters 9, 12, 27, 28, and 41. We also encounter algorithms in which it is not
possible to follow the divide-and-conquer regimen compietely: perhaps the input
is split into unequal pieces or into more than two pieces, or there is some overlap
among the pieces.

It is also easy to develop nonrecursive algorithms for this task. The most
straightforward method is to simply draw the marks in order, as in Figure 5.3, but
with the direct loop for (i = 1; 1 < N; i++) mark(i,height(i));
The function height (i) needed for this turns out to be not hard to compute: it is
the number of trailing O bits in the binary representation of i. We leave to the reader
the exercise of implementing this function in C. It is actually possible to derive
this method directly from the recursive version, through a laborious “recursion
removal” process that we examine in detail below, for another problem.

Another nonrecursive algorithm, which does not correspond to any recursive
implementation, is to draw the shortest marks first, then the next shortest, etc., as
in the following rather compact program:

rule(int 1, int r, int h)
{
int 1, Jj, t;
for (i = 1,3 = 1; i <= h; i++,3+=73)
for (t = 0; t <= (l+xr)/J; t++)
mark (1+3+t* (J+3),1);

Figure 5.5 shows how this program draws the marks. This process corresponds to
traversing the tree of Figure 5.4 in level order (from the bottom up), but it is not
recursive. '

This corresponds to the general method of algorithm design where we solve
a problem by first solving trivial subproblems, then combining those solutions to
solve slightly bigger subproblems, etc., until the whole problem is solved. This
approach might be called “combine and conquer.” While it is always possible
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Figure 5.5 Drawing a ruler nonrecursively.

to get an equivalent nonrecursive implementation of any recursive program, it is
not always possible to rearrange the computations in this way—many recursive
programs depend on the subproblems being solved in a particular order. This is
a bottom-up approach as contrasted with the rop-down orientation of divide-and-
conquer. We’ll encounter several examples of this: the most important is in Chapter
12. A generalization of the method is discussed in Chapter 42.

We have treated the example of drawing a ruler in some detail because it
illustrates the essential properties of practical algorithms with similar structure that
we’ll be encountering later. With recursion, studying simple examples in detail
is justified because it’s not easy to tell when one has crossed the border from
very simple to very complicated. Figure 5.6 shows a two-dimensional pattern that
illustrates how a simple recursive description can lead to a computation that appears
to be rather complex. The pattern on the left has an easily recognized recursive
structure, while the pattern on the right would seem much more mysterious if it
were to appear alone. The program that produces the pattern on the left is actually
just a slight generalization of rule:
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star (int x, int y, int r)
{
if (r > 0)
{
star(x-r,y+r,r/2);
star (x+r,y+r,r/2);
( )
)

star (x-r,y-r,r/2);
star (x+r,y-r,r/2

box(x,y,r):

7

The drawing primitive used is simply a program which draws a square of size 2r
centered at (x,y). Thus the pattern on the left in Figure 5.6 is simple to generate
with a recursive program—the reader may be amused to try to find a recursive
method for drawing the outline of the pattern shown on the right. -The pattern on
the left is also easy to generate with a bottom-up method like the one represented
by Figure 5.5: draw the smallest squares, then the second smallest, etc. The reader
may also be amused to try to find a nonrecursive method for drawing the outline.

Recursively defined geometric patterns like Figure 5.6 are sometimes called
fractals. If more complicated drawing primitives are used, and more complicated
recursive invocations (especially including recursively-defined functions on reals
and in the complex plane), patterns of remarkable diversity and complexity can be
developed.

Figure 5.6 A fractal star, drawn with boxes (left) and outline only (right).
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Recursive Tree Traversal

As indicated in Chapter 4, perhaps the simplest way to traverse the nodes of a tree
is with a recursive implementation. For example, the following program visits the
nodes of a binary tree in inorder.

traverse (struct node *t)
{
if (¢t != 2z2)
{
traverse (t~->1);
visit (t);
traverse (t->r);

}

The implementation precisely mirrors the definition of inorder: “if the tree is
nonempty, first traverse the left subtree, then visit the root, then traverse the right
subtree.” Obviously, preorder can be implemented by putting the call to visit
before the two recursive calls, and postorder can be implemented by putting the
call to visit after the two recursive calls.

This recursive implementation of tree traversal is more natural than a stack-
based implementation both because trees are recursively defined structures and
because preorder, inorder, and postorder are recursively defined processes. By
contrast, note that there is no convenient way to implement a recursive procedure
for level-order traversal: the very nature of recursion dictates that subtrees be
processed as independent units, and level order requires that nodes in different
subtrees be mixed together. We will return to this issue in Chapters 29 and 30 when
we consider traversal algorithms for graphs, which are much more complicated
structures than trees.

Simple modifications to the recursive program above and appropriate imple-
mentation of visit can lead to programs that compute various properties of trees
in a straightforward manner. For example, the following program shows how the
coordinates for placing the binary tree nodes in the figures in this book might be
computed. Suppose that the record for nodes includes two integer fields for the x
and y coordinates of the node on the page. (To avoid details of scaling and trans-
lation, these are assumed to be relative coordinates: if the tree has N nodes and is
of height 4, the x coordinate runs left-to-right from 1 to N and the y coordinate
runs top-to-bottom from 1 to 4.) The following program fills in these fields with
appropriate values for each node:



Recursion 61

visit (struct node *t)
{ t-2>x = ++x; t->y = y; }
traverse (struct node *t)
{
yt++;
if (¢ !'= 2)
{
traverse (t->1);
visit (t);
traverse (t->r)

Yy——i
}

The program uses two global variables, x and y, both assumed to be initialized to
0. The variable x keeps track of the number of nodes that have been visited in
inorder; the variable y keeps the height of the tree. Each time traverse goes
down in the tree it is incremented by one, and each time it goes up in the tree it
is decremented by one.

In a similar manner, one could implement recursive programs to compute the
path length of a tree, to implement another way to draw a tree, or to evaluate an
expression represented by an expression tree, etc.

Removing Recursion

But what is the relationship between the implementation above (recursive) and the
implementation in Chapter 4 (nonrecursive) for tree traversal? Certainly these two
programs are strongly related, since, given any tree, they produce precisely the
same sequence of calls to visit. In this section, we study this question in detail
by “mechanically” removing the recursion from the preorder traversal program
given above to get a nonrecursive implementation.

This is the same task that a compiler is faced with when given the task of
translating a recursive program into machine language. Our purpose is not primarily
to study compilation techniques (though we do gain some insight into the problems
faced by a compiler), but rather to study the relationship between recursive and
nonrecursive implementations of algorithms. This theme arises again throughout
the book.

To begin, we start with a recursive implementation of preorder traversal, ex-
actly as described above:
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traverse (struct node *t)

{

if (£t != z)
{
visit (t);
traverse (t->1);
traverse (t->r);

First, the second recursive call can be easily removed because there is no code
following it. Whenever the second call is to be executed, traverse is to be
called (with the argument t->r); then, when that call is complete, the current
invocation of traverse is also complete. But this same sequence of events can
be implemented with a goto rather than a recursive call, as follows:

traverse (struct node *t)
{
1: if (t == z) goto x;
visit(t):
traverse (t->1);
t = t->r;
goto 1;
X o7

}

This is a well-known technique called end-recursion removal, which is implemented
on many . compilers. Recursive programs are less viable on systems without this
capability, because dramatic and unnecessary inefficiencies such as those arising
with factorial and fibonacci above can arise. In Chapter 9, we shall study
an important practical example.

Removing the other recursive call requires more work. In general, most com-
pilers produce code that goes through the same sequence of actions for any proce-
dure call: “push the values of local variables and the address of the next instruction
on a stack, set the values of parameters to the procedure and goto the beginning
of the procedure.” Then, when a procedure completes, it must “pop the return
address and values of local variables from the stack, reset the variables, and goto
the return address.” Of course, things are more complex for the general situation
that must be faced by a real compiler; nevertheless, in this spirit, we can remove
the second recursive call from our program as follows:
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traverse (struct node *t)

{

1l: if (t == z) goto s;
visit(t);
push(t); t = t->1; goto 1;

r: t = t->r; goto 1;

s: i1f (stackempty()) goto x;
t = pop(); goto r;

x: g

}

There is only one local variable, t, so we push that on the stack and goto the
beginning. There is only one return address, r, which is fixed, so we don’t put
it on the stack. At the end of the procedure, we set t from the stack and goto
the return address r. When the stack is empty, we return from the first call to
traverse.

Now, the recursion is removed, but we are left with a morass of gotos that
comprise a rather opaque program. But these, too, can be “mechanically” removed
to yield a more structured piece of code. First, the piece of code between the label
r and the second goto x is surrounded by gotos and can simply be moved,
eliminating the label r and associated goto. Next, note that we set t to t->r
when popping the stack; we may as well just push that value. Now, the code
between the label x and the first goto = is nothing more than a while loop.
This leaves us with:

traverse (struct node *t)
{
1l: while (t != z)
{
visit(t):
push(t->r); t = t->1;
}

if (stackempty()) goto x;
t = pop(); goto 1;
x: 7

}

Now we have another loop, which can be transformed into a while loop by adding
an extra stack push (of the initial argument t on entry to traverse), leaving us with
a goto-less program:
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traverse (struct node *t)

{
push (t) ;
while (!stackempty())

t = pop();
while (t !'= z)
{
visit (t);
push(t->r);
t = t£t->1;

This version is the “standard” nonrecursive tree traversal method. It is a worthwhile
exercise to forget for the moment how this program was derived and directly
convince oneself that this program does preorder tree traversal as advertised.

Actually, the loop-within-a-loop structure of this program can be simplified (at
the cost of some stack pushes):

traverse (struct node *t)
{
push(t);
while (!stackempty())
{
t = popl();
if (¢t != z)
{
visit (t);
push(t->r);
push (t->1);
}

This program is strikingly similar to our original recursive preorder algorithm, but
the two programs really are quite différent. One primary difference is that this
program can be run in virtually any programming environment, while the recursive
implementation obviously requires one that supports recursion. Even in such an
environment, this stack-based method is likely to be rather more efficient.
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Finally, we note that this program puts null subtrees on the stack, a direct
result of the decision in the original implementation to test whether the subtree is
null as the first act of the recursive procedure. The recursive implementation could
make the recursive call only for non-null subtrees by testing t->1 and t->r.
Reflecting this change in the above program leads to the stack-based preorder
traversal algorithm of Chapter 4. ’

traverse (struct node *t)
{
push (t);
while (!stackempty())
{ .

t = pop(); visit(t);
if (t->r != z) push(t->r);
if (t->1 != z) push(t->1);

Any recursive algorithm can be manipulated as above to remove the recursion;
indeed, this is a primary task of the compiler. “Manual” recursion removal as
described here, though complicated, often leads to both an efficient nonrecursive
implementation and a better understanding of the nature of the computation.

Perspective

It is certainly impossible to do justice to a topic as fundamental as recursion in
so brief a discussion. Many of the best examples of recursive programs appear
throughout the book—divide-and-conquer algorithms have been devised for a wide
variety of problems. For many applications, there is no reason to go beyond a
simple, direct recursive implementation; for others, we will consider the result
of recursion removal as described in this chapter or derive alternate nonrecursive
implementations directly.

Recursion lies at the heart of early theoretical studies into the very nature of
computation. Recursive functions and programs play a central role in mathematical -
studies that attempt to separate problems that can be solved by a computer from
problems which cannot.

In Chapter 44, we look at the use of recursive programs (and other techniques)
for solving difficult problems in which a large number of possible solutions must
be examined. As we shall see, recursive programming can be a quite effective
means of organizing a complicated search through the set of possibilities.
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Exercises

9.

. Write a recursive program to draw a binary tree so that the root appears at the

center of the page, the root of the left subtree is at the center of the left half
of the page, etc.

. Write a recursive program to compute the external path length of a binary tree.

. Write a recursive program to compute the external path length of a tree repre-

sented as a binary tree.

. Give the coordinates produced when the recursive tree-drawing procedure given

in the text is applied to the binary tree in Figure 4.2,

. Mechanically remove the recursion from the fibonacci program given in

the text to get a nonrecursive implementation.

. Mechanically remove the recursion from the recursive inorder tree traversal

algorithm to get a nonrecursive implementation.

. Mechanically remove the recursion from the recursive postorder tree traversal

algorithm to get a nonrecursive implementation.

. Write a recursive “divide-and-conquer” program to draw an approximation to

the line segment connecting two points (x1, y1) and (x, y2) by drawing points
using only integer coordinates. (Hint: first draw a point close to the middle.)

Write a recursive program for solving the Josephus problem (see Chapter 3).

10. Write a recursive implementation of Euclid’s algorithm (see Chapter 1).



Ahalysis of Algorithms

For most problems, many different algorithms are available. How is one
to choose the: best implementation? This is actually a well-developed area
of study in computer science. We’ll frequently have occasion to call on research
results describing the performance of fundamental algorithms. However, comparing
algorithms can be challenging indeed, and certain general guidelines will be useful.

Usually the problems we solve have a natural “size” (typically the amount of
data to be processed), which we’ll normally call N. We would like to describe the
resources used {most often the amount of time taken) as a function of N. We’re
interested in the average case, the amount of time a program might be expected to
take on “typical” input data, and in the worst case, the amount of time a program
would take on the worst possible input configuration.

Some of the algorithms in this book are very well understood, to the point
that accurate mathematical formulas are known for the average- and worst-case
running time. Such formulas are developed by carefully studying the program, to
find the running time in terms of fundamental mathematical quantities, and then
doing a mathematical analysis of the quantities involved. On the other hand, the
performance properties of other algorithms in this book are not understood at all—
perhaps their analysis leads to unsolved mathematical questions, or perhaps known
implementations are too complex for a detailed analysis to be reasonable, or (most
likely) perhaps the types of input they encounter cannot be adequately characterized.
Most algorithms fall somewhere in between these extremes: some facts are known
about their performance, but they have really not been fully analyzed.

Several important factors go into this analysis that are usually outside a given
programmer’s domain of influence. First, C programs are translated into machine
code for a given computer, and it can be a challenging task to figure out exactly
how long even one C statement might take to execute (especially in an environment
where resources are being shared, so that even the same program can have varying
performance characteristics). Second, many programs are extremely sensitive to
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their input data, and performance might fluctuate wildly depending on the input.
The average case might be a mathematical fiction that is not representative of the
actual data on which the program is being used, and the worst case might be a
bizarre construction that would never occur in practice. Third, many programs
of interest are not well understood, and specific mathematical results may not be
available. Finally, it is often the case that programs are not comparable at all: one
runs much more efficiently on one particular kind of input, the other runs efficiently
under other circumstances.

The above comments notwithstanding, it is often possible to predict precisely
how long a particular program will take, or to know that one program will do
better than another in particular situations. It is the task of the algorithm analyst to
discover as much information as possible about the performance of algorithms; it
is the task of the programmer to apply such information in selecting algorithms for
particular applications. In this chapter we concentrate on the rather idealized world
of the analyst; in the next we discuss practical considerations of implementation.

Framework

The first step in the analysis of an algorithm is to characterize the data that is to be
used as input to the algorithm and to decide what type of analysis is appropriate.
Ideally, we would like to be able to derive, for any given distribution of the
probability of occurrence of the possible inputs, the corresponding distribution of
possible running times of the algorithm. We’re not able to achieve this ideal for
any nontrivial algorithm, so we normally concentrate on bounding the performance
statistic by trying to prove that the running time is always less than some “upper
bound” no matter what the input, and on trying to derive the average running time
for a “random” input. '

The second step in the analysis of an algorithm is to identify abstract opera-
tions upon which the algorithm is based, in order to separate the analysis from the
implementation. Thus, for example, we separate the study of how many compar-
isons a sorting algorithm makes from the determination of how many microseconds
a particular computer takes to execute whatever machine code a particular com-
piler produces for the code fragment if (a[i] < v).... Both these elements
are required to determine the actual running time of a program on a particular
computer. The former is determined by properties of the algorithm; the latter by
properties of the computer. This separation often allows us to make comparisons
of algorithms that are at least somewhat independent of particular implementations
or particular computers.

While the number of abstract operations involved can be in principle large,
it is usually the case that the performance of the algorithms we consider depends
on only a few quantities. In general, it is rather straightforward to identify the
relevant quantities for a particular program—one way to do so is to use a “profiling”
option (available in many C implementations) to give instruction frequency counts
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for some sample runs. In this book, we concentrate on the most important such
quantities for each program.

In the third step in the analysis of an algorithm, we proceed to the mathematical
analysis itself, with the goal of finding average- and worst-case values for each of
the fundamental quantities. It is not difficult to find an upper bound on the running
time of a program—the challenge is to find the best upper bound, one which
could actually be achieved if the worst input were encountered. This gives the
worst case: the average case normally requires a rather sophisticated mathematical
analysis. Once such analyses have been successfully performed on the fundamental
quantities, the time associated with each quantity can be determined and expressions
for the total running time obtained.

In principle, the performance of an algorithm often can be analyzed to an ex-
tremely precise level of detail, limited only by uncertainty about the performance
of the computer or by the difficulty of determining the mathematical properties of
some of the abstract quantities. However, it is rarely worthwhile to do a complete
detailed analysis, so we are always interested in estimating in order to suppress
detail. (Actually, estimates that seem very rough often turn out to be rather accu-
rate.) Such rough estimates are quite often easy to obtain via the old programming
saw “90% of the time is spent in 10% of the code.” (This has been quoted in the
past for many different values of “90%.”)

Analysis of an algorithm is a cyclic process of analyzing, estimating and refin-
ing the analysis until an answer to the desired level of detail is reached. Actually,
as discussed in the next chapter, the process should also include improvements
in the implementation, and indeed such improvements are often suggested by the
analysis.

With these caveats in mind, our modus operandi will be to look for rough
estimates for the running time of our programs for purposes of classification, secure
in the knowledge that a fuller analysis can be done for important programs when
necessary.

Classification of Algorithms

As mentioned above, most algorithms have a primary parameter N, usually the
number of data items to be processed, which affects the running time most signif-
icantly. The parameter N might be the degree of a polynomial, the size of a file
to be sorted or searched, or the number of nodes in a graph, etc. Virtually all of
the algorithms in this book have running time proportional to one of the following
functions:

1 Most instructions of most programs are executed once or at most only a
few times. If all the instructions of a program have this property, we say
that its running time is constant. This is obviously the situation to strive
for in algorithm design.
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N logN

N3

Chapter 6

When the running time of a program is logarithmic, the program gets
slightly slower as N grows. This running time commonly occurs in pro-
grams that solve a big problem by transforming it into a smaller problem,
cutting the size by some constant fraction. For our range of interest, the
running time can be. considered to be less than a “large” constant. The
base of the logarithm changes the constant, but not by much: when N is
a thousand, logN is 3 if the base is 10, about 10 if the base is 2; when
N is a million, log N is doubled. Whenever N doubles, log N increases
by a constant, but log N doesn’t double until N increases to N2.

When the running time of a program is linear, it is generally the case that
a small amount of processing is done on each input element. When N is
a million, then so is the running time. Whenever N doubles, then so does
the running time. This is the optimal situation for an algorithm that must
process N inputs (or produce N outputs).

This running time arises for algorithms that solve a problem by breaking
it up into smaller subproblems, solving them independently, and then
combining the solutions. For lack of a better adjective (linearithmic?),
we’ll say that the running time of such an algorithm is “N log N.” When
N is a million, N logN is perhaps twenty million. When N doubles, the
ruhning time more than doubles (but not much more).

When the running time of an algorithm is quadratic, it is practical for use
only on relatively small problems. Quadratic running times typically arise
in algorithms that process all pairs of data items (perhaps in a double
nested loop). When N is a thousand, the running time is a million.
Whenever N doubles, the running time increases fourfold.

Similarly, an algorithm that processes triples of data items (perhaps in a
triple-nested loop) has a cubic running time and is practical for use only
on small problems. When N is a hundred, the running time is a million.
Whenever' N doubles, the running time increases eightfold.

Few algorithms with exponential running time are likely to be appropriate
for practical use, though such algorithms arise naturally as “brute-force”
solutions to problems. When N is twenty, the running time is a million.
Whenever N doubles, the running time squares!

The running time of a particular program is likely to be some constant mul-
tiplied by one of these terms (the “leading term™) plus some smaller terms. The
values of the constant coefficient and the terms included depend on the results of
the analysis and on implementation details. Roughly, the coefficient of the leading
term has to do with the number of instructions in the. inner loop: at any level of
algorithm design it’s prudent to limit the number of such instructions. For large N
the effect of the leading term dominates; for small N or for carefully engineered
algorithms, more terms may contribute and comparisons of algorithms are more



Analysis of Algorithms . 7

IgN 1g°N N N NIgN NIgN N3/2 N2
39 3 10 30 90 30 100
6 36 10 100 600 3,600 1,000 10,000
9 81 31 1,000 9,000 81,000 31,000 1,000,000

13 169 100 10,000 130,000 1,690,000 1,000,000 100,000,000
16 256 316 100,000 1,600,000 25,600,000 31,600,000 ter billion
19 361 1,000 1,000,000 19,000,000 361,000,000 one billion one trillion

Figure 6.1 Approximate relative values of functions.

difficult. In most cases, we’ll simply refer to the running time of programs as
“linear,” “N log N,” “cubic,” etc., with the implicit understanding that more de-
tailed analysis or empirical studies must be done in cases where efficiency is very
important.

A few other functions do arise. For example, an algorithm with N2 inputs that
has a running time cubic in N is more properly classed as an N 3/2 algorithm. Also,
some algorithms have two stages of subproblem decomposition, which leads to a
running time proportional to N log? N. Both these functions should be considered
to be much closer to N logN than to N2 for large N.

One further note on the “log” function. As mentioned above, the base of
the logarithm changes things only by a constant factor. Since we often deal with
analjltic results only to within a constant factor, it doesn’t matter much what the
base is, so we refer to “log/N,” etc. On the other hand, it is sometimes the case
that concepts can be explained more clearly when some specific base is used. In
mathematics, the natural logarithm (base e = 2.718281828.. . .) arises so frequently
that a special abbreviation is commonly used: log, N = InN . In computer science,
the binary logarithm (base 2) arises so frequently that the abbreviation log, N =
lgN is commonly used. For example, 1g/N rounded up to the nearest integer is the
number of bits required to represent N in binary.

Figure 6.1 indicates the relative size of some of these functions: approximate
values of IgN, 1g> N, v/N, N, N 1gN, N 1g> N, N3/2, N2 are given for various N.
The quadratic function- clearly dominates, especially for large N, and differences
among smaller functions may not be as expected for smail N. For example, N 3/
should be greater than N 1g? N for very large N, but not for the smaller values which
might occur in practice. This table is not intended to give a literal comparison of
the functions for all N—numbers, tables and graphs relating to specific algorithms
can do that. But it does give a realistic first impression.

Computational Complexity

One approach to studying the performance of algorithms is to study the worst-
case performance, ignoring constant factors, in order to determine the functional



72 ' Chapter 6

dependence of the running time (or some other measure) on the number of inputs
(or some other variable). This approach is attractive because it allows one to prove
precise mathematical statements about the running time of programs: for example,
one can say that the running time of Mergesort (see Chapter 11) is guaranteed to
be proportional to N logN.

The first step in the process is to make the notion of “proportional to” math-
ematically precise, while at the same time separating the analysis of an algorithm
from any particular implementation. The idea is to ignore constant factors in the
analysis: in most cases, if we want to know whether the running time of an al-
gorithm is proportional to N or proportional to log N, it does not matter whether
the algorithm is to be run on a microcomputer or on a supercomputer, and it does
not matter whether the inner loop has been carefully implemented with only a few
instructions or badly implemented with many instructions. From a mathematical
point of view, these two factors are equivalent.

The mathematical artifact for making this notion precise is called the O-
notation, or “big-Oh notation,” defined as follows:

Notation. A function g(N) is said to be O(f(N)) if there exist constants cp and Ny
* such that g(N ) is less than cof (N) for all N > Ny.

Informally, this encapsulates the notion of “is proportional to” and frees the analyst
from considering the details of particular machine characteristics. Furthermore, the
statement that the running time of an algorithm is O(f(V)) is independent of the
algorithm’s input. Since we’re interested in studying the algorithm, not the input
or the implementation, the O-notation is a useful way to state upper bounds on
running time that are independent of both inputs and implementation details.

The O-notation has been extremely useful in helping analysts to classify al-
gorithms by performance and in guiding algorithm designers in the search for the
“best” algorithms for important problems. The goal of the study of the computa-
tional complexity of an algorithm is to show that its running time is O(f(N)) for
some function f, and that there can be no algorithm with a running time of O (g(N))
for any “smaller” function g(N) (a function with limy_, ., gN)/f (N ) = 0). We try
to provide both an “upper bound” and a “lower bound” on the worst-case running
time. Proving upper bounds is often a matter of counting and analyzing state-
ment frequencies (we will see many examples in the chapters that follow); proving
lower bounds is a difficult matter of carefully constructing a machine model and
determining which fundamental operations must be performed by any algorithm to
solve a problem (we rarely touch upon this). When computational studies show
that the upper bound of an algorithm matches its lower bound, then we have some
confidence that it’s fruitless to try to design an algorithm that is fundamentally
faster and we can start to concentrate on the implementation. This point of view
has proven very helpful to algorithm designers in recent years.

However, one must be extremely careful of interpreting results expressed using
the O-notation, for at least four reasons: first, it is an “upper bound” and the quantity
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in question might be much lower; second, the input that causes the worst case may
be unlikely to occur in practice; third, the constant cg is unknown and need not be
small; and fourth, the constant Ny is unknown and need not be small. We consider
each of these in turn.

The statement that the running time of an algorithm is O (f (N )) does not imply
that the algorithm ever takes that long: it says only that the analyst has been able
to prove that it never takes longer. The actual running time might always be much
lower. Better notation has been developed to cover the situation where it is also
known that there exists some input for which the running time is O(f(NV)), but
there are many algorithms for which it is rather difficult to construct a worst-case
input,

Even if the worst-case input is known, it can be the case that the inputs
actually encountered in practice lead to much lower running times. Many extremely *
useful algorithms have a bad worst case. For example, perhaps the most widely
used sorting algorithm, Quicksort, has a running time of O(N?2), but it is possible
to arrange things so that the running time for inputs encountered in practice is
proportional to N logN.

The constants ¢ and Ny implicit in the O-notation often hide implementation
details that are important in practice. Obviously, to say that an algorithm has
running time O(f(N)) says nothing about the running time if N happens to be
less than Ny, and co might be hiding a large amount of “overhead” designed to
avoid a bad worst case. We would prefer an algorithm using N ? nanoseconds over
one using logN centuries, but we couldn’t make this choice on the basis of the
O-notation. Figure 6.2 shows the situation for two typical functions, with more
realistic values of the constants, in the range 0 < N < 1,000,000. The N3/2
function, which might have been mistakenly assumed to be the largest of the four
since it is asymptotically the largest, is actually among the smallest for small N, and
is less than N 1g> N until N' runs well into the tens of thousands. Programs whose

N iNIg’N  INIg?N  NIg’N N3/2

10 22 45 90 30

100 900 1,800 3,600 1,000
1,000 20,250 40,500 81,000 31,000
10,000 422,500 845,000 1,690,000 1,000,000
100,000 6,400,000 12,800,000 25,600,000 31,600,000

1,000,000 - 90,250,000 180,500,000 361,000,000  1,000,000,000

Figure 6.2 Significance of constant factors in comparing functions.
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running times depend on functions such as these can’t be intelligently compared
without careful attention to constant factors and implementation details,

One should definitely think twice before, for example, using an algorithm with
running time O (N 2y in favor of one with running time O (N), but neither should
one blindly follow the complexity result expressed in O-notation. For practical im-
plementations of algorithms of the type considered in this book, complexity proofs
often are too general and the O-notation is too imprecise to be helpful. Computa-
tional complexity must be considered the very first step in a progressive process
of refining the analysis of an algorithm to reveal more details about its properties.
In this book we concentrate on later steps, closer to actual implementations.

Average-Case Analysis

Another approach to studying the performance of algorithms is to examine the
average case. In the simplest situation, we can precisely characterize the inputs
to the algorithm: for example, a sorting algorithm might operate on an array of N
random integess, or a geometric algorithm might process a set of N random points
in the plane with coordinates between O and 1. Then, we calculate the average
number of times each instruction is executed, and calculate the average running
time of the program by multiplying each instruction frequency by the time required
for-the instruction and adding them all together. There are, however, at least three
difficulties with this approach, which we consider in turn.

First, on some computers, it may be rather difficult to determine precisely the
amount of time required for each instruction. Worse, this is subject to change, and
a great deal of detailed analysis for one computer may not be relevant at all to the
running time of the same algorithm on another computer. This is exactly the type
of problem that computational complexity studies are designed to avoid.

Second, the average-case analysis itself often is a difficult mathematical chal-
lenge requiring intricate and detailed arguments. By its nature, the mathematics -
involved in proving upper bounds is normally less complex, because it need not
be as precise. The average-case performance of many algorithms is unknown.

Third, and most serious, in average-case analysis the input model may not
accurately characterize the inputs encountered in practice, or there may be no
natural input model at all. How should one characterize the input to a program
that processes English-language text? On the other hand, few would argue against
the use of input models such as “randomly ordered file” for a sorting algorithm, or
“random point set” for a geometric algorithm, and for such models it is possible to
derive mathematical results that can accurately predict the performance of programs
running on actual applications. Though the derivation of such results is normally
beyond the scope of this book, we will give a few examples (see Chapter 9), and
cite relevant results when appropriate.
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Approximate and Asymptotic Results

Often, the results of a mathematical anaIysis are not exact but are approximate
in' a precise technical sense: the result might be an expression consisting of a
sequence of decreasing terms. Just as we are most concerned with the inner loop
of a program, we are most concerned with the leading term (the largest term) of a
mathematical expression. It was for this type of application that the O-notation was
originally developed, and, properly used, it allows one to make concise statements
that give good approximations to mathematical results. ,

For example, suppose (after some mathematical analysis) we determme that a
particular algorithm has an inner loop that is iterated N 1gN times on the average
(say), an outer section that is iterated N ti'més,‘ and some initialization code that
is executed once. Suppose further that we determine (after careful scrutiny of the
implementation) that each iteration of the inner loop requires ag microsecends, the
outer section requires a; microseconds, and the initialization part a; microseconds.
Then we know that the average running time of the program (in microseconds) is

agN lgN +aiN +a;.
But it is also true that the running time is
agN lgN‘+ ONN).

(The reader may wish to check this from the definition of O (¥).) This is significant
because, if we’re interested in an approximate answer, it says that, for large N,
we may not need to find the values of a; or @,. More important, there could well
be other terms in the exact running time that may be difficult to analyze: the O-
notation provides us with a way to get an approximate answer for large N without
bothering with such terms. o

Technically, we have no real assurance that small terms can be ignored in
this way, because the definition of the O-notation says nothing whatever about
the size of the constant co: it could be very large. But (though we don’t usually
bother) there are usually ways in such cases to put bounds on the constants that
are small when compared to N, so we normally are justified in 1gnor1ng quantities
represented by the O-notation when there is a well-specified leading (larger) term.
When we do this, we are secure in the knowledge that we could carry out such a
proof, if absolutely necessary, though we rarely do so. -

In fact, when a function f(N) is asymptotically large compared to another
function g(N), we use in this book the (decidedly nontechnical) terminology “about
FV)” to mean f(N) + O(g(N)). What we lose in mathematical precision we gain
in clarity, for we’re more interested in the performance of algorithms than in
mathematical details. In such cases, the reader can rest aSsured that, for large N (if
not for all N), the quantity in question will be rather close to f (V). For example,
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even if we know that a quantity is N (N — 1)/2, we may refer to it as being “about”
N 2/ 2. This is more quickly understood and, for example, deviates from the truth
only by a tenth of a percent for N = 1000. The precision lost in such cases pales by
comparison with the precision lost in the more common usage O (f(N)). Our goal
is to be both precise and concise when describing the performance of algorithms.

Basic Recurrences

As we’ll see in the chapters that follow, a great many algorithms are based on the
principle of recursively decomposing a large problem into smaller ones, using so-
lutions to the subproblems to solve the original problem. The running time of such
algorithms is determined by the size and number of the subproblems and the cost
of the decomposition. In this section we look at basic methods for analyzing such
algorithms and derive solutions to a few standard formulas that arise in the analy-
-sis of many of the algorithms we’ll be studying. Understanding the mathematical
properties of the formulas in this section will give insight into the performance
properties of algorithms throughout the book.

The very nature of a recursive program dictates that its running time for input
of size N will depend on its running time for smaller inputs: this brings us back
to recurrence relations, which we encountered at the beginning of the previous
chapter. Such formulas precisely describe the performance of the corresponding
algorithms: to derive the running time, we solve the recurrences. More rigorous ar-
"guments related to specific algorithms will come up when we get to the algorithms:
here we’re interested in the formulas, not the algorithms.

Formula 1. This recurrence arises for a recursive program that loops through the
input to eliminate one item:

Cny=CN_1+N, for N > 2 with Cy = 1.

Solution: Cy is about N?/2. To solve such a recurrence, we “telescope” it by
applying it to itself, as follows:
| Cy =Cy_1+N
=Cn_g+ N — D+N
=Cn_3+WN —-2+(N -1 +N

=C1+2+ - +(N -2)+(N - D+N
=142+ +(N-2)+(N - 1)+N
_ NN+
=—

Evaluating the sum 1+2+.--+(N —2)+ (N — 1)+ N is elementary: the result
given above can be established by adding the same sum, but in reverse order, term
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by term. This result, twice the value sought, consists of N terms, each of which
sums to N + 1.

Formula 2. This recurrence arises for a recursive program that halves the input in
one step:
Cy =Cyp+1, forN >2with C; =0.

Solution: Cy is about lgN. As written, this equation is meaningless unless N is
even or we assume that N /2 is an integer division: for now, assume that N = 2",
so that the recurrence is always well-defined. (Note that n = ig/N.) But then the
recurrence telescopes even more easily than our first recurrence:
Cpr =Con-1+1
=Cp-—2+1+1
= C2n -3+ 3

= C20 +n

=n.
It turns out that the precise solution for general N depends on properties of the
binary representation of N, but Cyy is about igN for all N.

Formula 3. This recurrence arises for a recursive program that halves the input,
but perhaps must examine every item in the input.
Cn =Cnjpp+N, forN > 2 with C; =0.

Solution: Cy is about 2N . This telescopes to the sum N +N /2+N /4+N /8 +. ..
(as above, this is only precisely defined when N is a power of two). If the sequence
were infinite, this is a simple geometric series that evaluates to exactly 2N. For
general N, the precise solution again involves the binary representation of N .

Formula 4. This recurrence arises for a recursive program that has to make a
linear pass through the input, before, during, or after it is split into two halves:
Cy =2Cnpp+N, for N > 2 with C; =0,
Solution: Cy is about N IgN. This is our most widely cited solution, because it
is prototypical of many standard divide-and-conquer algorithms.
Cor = 2C2n—l + 27
Con _ Czn—l
on ~ pn-1

+1
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The solution is developed very much as in Formula 2, but with the additional trick
of dividing both sides of the recurrence by 2" at the second step to make the
recuirence telescope.

Formula 5. This recurrence arises for a recursive program that splits the input into
two halves with one step, such as our ruler-drawing program in Chapter 5.

Cn =2CN/2+1, for N > 2 with C; = 0.

Solution: Cy is about 2N . This is derived in the same manner as Formula 4.

. Minor variants of these formulas, involving different initial conditions or slight

differences in the additive term, can be handled using the same solution techniques,
though the reader is warned that some recurrences that seem similar actually may
be rather difficult to solve. (There are a variety of advanced general techniques
for dealing with such equations with mathematical rigor.) We will encounter a few
more complicated recurrences in later chapters, but we defer discussion of their
solution until they arise.

Perspective

Many of the algorithms in this book have been subjected to detailed mathematical
analyses anid performance studies far too complex to be discussed here. Indeed,
it is on the basis of such studies that we are able to recommend many of the
algorithms we discuss.

- Not all algorithms are worthy of such intense scrutiny; indeed, during the
design process, it is preferable to work with approximate performance indicators
to guide the design process without extraneous detail. As the design becomes
more refined, so must the analysis, and more sophisticated mathematical tools
need to be applied. Often, the design process leads to detailed complexity studies
that lead to “theoretical” algorithms rather far from any particular application.
It is a common mistake to assume that rough analyses from complexity studies
will translate immediately into efficient practical algorithms: this often leads to
unpleasant surprises. On the other hand, computational complexity is a powerful
tool for suggesting departures in design upon which important new methods can
be based.

One should not use an algorithm without some indication of how it will per-
form: the approaches described in this chapter will help provide some indication
of performance for a wide variety of algorithms, as we will see in the chapters that
follow. In the next chapter we discuss other important factors that come into play
when choosing an-algorithm.
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Exercises

. Suppose it is known that the running time of one algorithm is O (N logN) and

that the running time of another algorithm is O (NV3). What does this say about
the relative performance of the algorithms?

. Suppose it is known that the running time of one algorithm is always about

N logN and that the running time of another algorithm is O(N3). What does
this say about the relative performance of the algorithms?

. Suppose it is known that the running time of one algorithm is always about

NlogN and that the running time of another algorithm is always about N3.
What does this say about the relative performance of the algorithms?

. Explain the difference between O (1) and O(2).

5. Solve the recurrence

10.

Cn =Cnjp+N?  forN >2withC; =0

when N is a power of two.

. For what values of N is 10N IgN > 2N?2?

. Write a program to compute the exact value of Cy in Formula 2, as discussed

in Chapter 5. Compare the results to 1gN .

. Prove that the precise solution to Formula 2 is 1lgN + O (1).

- Write a recursive program to compute the largest integer less than log, N.

(Hint: for N > 1, the value of this function for N/2 is one greater than for
N.)

Write an iterative program for the problem in the previous exercise. Then write
a program that does the computation using C library subroutines. If possible
on your computer system, compare the performance of these three programs.






Implementation of Algorithms

As mentioned in Chapter 1, our focus in this book is on the algorithms
themselves—when discussing each algorithm, we treat it as if its performance
is the crucial factor in the successful completion of some larger task. This point
of view is justified both because such situations do arise for each algorithm and
because the careful attention we give to finding an efficient way to solve a problem
also often leads to a more elegant (and more efficient) algorithm. Of course, this
narrow focus is rather unrealistic, since there are many other very real factors
that must be taken into consideration when solving a complicated problem with a
computer. In this chapter, we discuss issues related to making the rather idealized
algorithms that we describe useful in practical applications.

The properties of the algorithm, after all, are only one side of the coin—a
computer can be used to solve a problem effectively only if the problem itself
is well understood. Careful consideration of properties of applications is beyond
the scope of this book; our intention is to provide enough information about basic
algorithms that one may make intelligent decisions about their use. Most of the
algorithms we consider have proven useful for a variety of applications. The range
of algorithms available to solve various problems owes to the range of needs of
various applications. There is no “best” searching algorithm (to pick one example),
but one method might be quite suitable for application in an airlines reservation
system and another might be quite useful for use in the inner loop of a code-
breaking program.

Algorithms rarely exist in a vacuum, except possibly in the minds of theo-
retical algorithm designers who invent methods without regard to any eventual
implementation, or applications systems programmers who “hack in” ad hoc meth-
ods to solve problems that are otherwise well understood. Proper algorithm design
involves putting some thought into the potential impact of design decisions on im-
plementations, and proper applications programming involves putting some thought
into performance properties of the basic methods used.

81
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Selecting an Algorithm

As we’ll see in the chapters that follow, there usually are a number of algorithms
available to solve each problem, all with differing performance characteristics,
ranging from a simple “brute-force” (but probably inefficient) solution to a complex
“well-tuned” (and maybe even optimal) solution. (In general, it is not true that the
more efficient an algorithm is, the more complicated the implementation must
be, since some of our best algorithms are rather elegant and concise, but for the
purposes of this discussion, let’s assume that this rule holds.) As argued above,
one cannot decide what algorithm to use for a problem without analyzing the
needs of the problem. How often is the program to be run? What are the general
characteristics of the computer system to be used? Is the algorithm a small part of
a large application, or vice versa?

The first rule of implementation is that one should first implement the simplest
algorithm to solve a given problem. If the particular problem instance that is
encountered turns out to be easy, then the simple algorithm may solve the problem
and nothing more need be done; if a more sophisticated algorithm is called for,
then the simple implementation provides a correctness check for small cases and
a baseline for evaluating performance characteristics.

If an algorithm is to be run only a few times on cases that are not too large,
then it is certainly preferable to have the computer take a little extra time running
a slightly less efficient algorithm than to have the programmer take a significant
amount of extra time developing a sophisticated implementation. Of course, there is
the danger that one could end up using the program more than originally envisioned,
so one should always be prepared to start over and implement a better algorithm.

If the algorithm is to be implemented as part of a large system, the “brute-
force” implementation provides the required functionality in a reliable manner, and
performance can be upgraded in a controlled way by substituting a better algorithm
later. Of course, one should take care not to foreclose options by implementing
the algorithm in such a way that it is difficult to upgrade later, and one should
take a very careful look at which algorithms are creating performance bottlenecks
when studying the performance of the system as a whole. Also, in large systems
it is often the case that design requirements of the system dictate from the start
which algorithm is best. For example, perhaps a system-wide data structure is a
particular form of linked list or tree, so that algorithms based on that particular
structure are preferable. On the other hand, one should pay some attention to the
algorithms to be used when making such system-wide decisions, because, in the
end, it very often does turn out that performance of the whole system depends on
the performance of some basic algorithm such as those discussed in this book.

If the algorithm is to be run only a few times, but on very large problems,
then one would like to have some confidence that it produces meaningful output
and some estimate of how long it will take. Again, a simple implementation can
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often be quite useful in setting up for a long run, including the development of
instrumentation for checking the output. v »

The most common mistake made in selecting an algorithm is to ignore perfor-
mance characteristics. Faster algorithms are often more complicated, and imple-
mentors are often willing to accept a slower algorithm to avoid having to deal with
added complexity. But a faster algorithm is often not much more complicated, and
dealing with slight added complexity is a small price to pay to avoid dealing with
a slow algorithm. Users of a surprising number of computer systems lose substan-
tial time waiting for simple quadratic algorithms to finish when only slightly more
complicated N log N algorithms are available that could run in a fraction the time,

The second most common mistake made in selecting an algorithm is to pay too
much attention to performance characteristics. An N logN algorithm might be only
slightly more complicated than a quadratic algorithm for the same problem, but a
better N log N algorithm might give rise to a substantial increase in complexity (and
might actually be faster only for very large values of N). Also, many programs
are really run only a few times: the time required to implement and debug an
optimized algorithm might be substantially more than the time required simply to
run a slightly slower one.

Empirical Analysis

As mentioned in Chapter 6, it is unfortunately all too often the case that mathemati-
cal analysis can shed very little light on how well a given algorithm can be expected
to perform in a given situation. In such cases, we need to rely on empirical anal-
ysis, where we carefully implement an algorithm and monitor its performance on
“typical” input. In fact, this should be done even when full mathematical results
are available, in order to check their validity. '

Given two algorithms to solve the same problem, there’s no mystery in the
method: run them both to see which one takes longer! This might seem too obvious
to mention, but it is probably the most common omission in the comparative study
of algorithms. The fact that one algorithm is ten times faster than another is very
unlikely to escape the notice of someone who waits three seconds for one to finish
and thirty seconds for the other to finish, but it is very easy to overlook as a small
constant overhead factor in a mathematical analysis.

However, it is also easy to make mistakes when comparing implementations,
especially if different machines, compilers, or systems are involved, or if very large
programs with ill-specified inputs are being compared. Indeed, a factor that led to
the development of the mathematical analysis of algorithms has been the tendency
to rely on “benchmarks” whose performance is perhaps better understood through
careful analysis.

The principal danger in comparing programs empirically is that one implemen-
tation may be more “optimized” than the other. The inventor of a proposed new
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algorithm is likely to pay very careful attention to every aspect of its implementa-
tion, and not to the details of implementing a classical competing algorithm. To be
confident of the accuracy of an empirical study comparing algorithms, one must be
sure that the same amount of attention is given to the implementations. Fortunately,
this is often the case: many excellent algorithms are derived from relatively minor
modifications to other algorithms for the same problem, and comparative studies
really are valid.

An important special case arises when an algorithm is to be compared to an-
other version of itself, or different implementation approaches are to be compared.
An excellent way to check the efficacy of a particular modification or implementa-
tion idea is to run both versions on some “typical” input, then pay more attention
to the faster one. Again, this seems almost too obvious to mention, but a surprising
number of researchers involved in algorithm design never implement their designs,
so let the user beware!

As outlined above and at the beginning of Chapter 6, the view taken here
is that design, implementation, mathematical analysis, and empirical analysis all
contribute in important ways to the development of good implementations of good
algorithms. We want to use whatever tools are available to gain information about
the properties of our programs, then modify or develop new programs on the basis
of that information. On the other hand, one is not always justified in making large
numbers of small changes in hopes of slight performance improvements. Next, we
discuss this issue in more detail.

Program Optimization

The general process of making incremental changes to a program to produce another
version that runs faster, is called program optimization. This is a misnomer because
we’re unlikely to see a “best” implementation—we can’t optimize a program, but
we can hope to improve it. Normally, program optimization refers to automatic
techniques applied as part of the compilation process to improve the performance of
compiled code. Here we use the term to refer to algorithm-specific improvements.
Of course, the process is also rather dependent on the programming environment
and machine used, so we consider only general issues here, not specific techniques.

This type of activity is justified only if one is sure that the program will be
used many times or for a large input and if experimentation proves that effort
put into improving the implementation will be rewarded with better performance.
The best way to improve the performance of an algorithm is through a gradual
process of transforming the program into better and better implementations. The
recursion-removal example in Chapter 5 is an example of such a process, though
preformance improvement was not our goal in that case.

The first step in implementing an algorithm is to develop a working version
of the algorithm in its simplest form. This provides a baseline for refinements
and improvements and, as mentioned above, is very often all that is needed. Any
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mathematical results available should be checked against the implementation; for
example, if the analysis seems to say that the running time is O(logN) but the
actual running time starts to run into seconds, then something is wrong with either
the implementation or the analysis, and both should be studied more carefully.

The next step is to identify the “inner loop” and to try to minimize the number
of instructions involved. Perhaps the easiest way to find the inner loop is to run
the program and then check which instructions are executed most often. Normally,
this is an extremely good indication of where the program should be improved.
Every instruction in the inner loop should be scrutinized. Is it really necessary? Is
there a more efficient way to accomplish the same task? For example, it usually
pays to remove procedure calls from the inner loop. There are a number of other
“automatic” techniques for doing this, many of which are implemented in standard
compilers. Ultimately, the best performance is achieved by moving the inner loop
into machine or assembly language, but this is usually the last resort.

Not all “improvements” actually result in performance gains, so it is extremely
important to check the extent of the savings realized at each step. Moreover, as the
implementation becomes more and more refined, it is wise to re-examine whether
such careful attention to the details of the code is justified. In the past, computer
time was so expensive that spending programmer time to save computing cycles
was almost always justified, but the table has turned in recent years.

For example, consider the preorder tree traversal algorithm discussed in Chap-
ter 5..Actually, recursion removal is the first step in “optimizing” this algorithm,
because it focuses on the inner loop. The nonrecursive version given is actually
likely to be slower than the recursive version on many systems (the reader might
wish to test this) because the inner loop is longer and includes four (albeit non-
recursive) procedure calls (to pop, push, push and stackempty) instead of
two. If the calls to the stack procedures are replaced with the code for directly
accessing the stack (using, say, an array implementation), this program is likely to
be significantly faster than the recursive version. (One of the push operations is
overhead from the algorithm, so the standard loop-within-a-loop program should
probably be the basis for an optimized version.) Then it is plain that the inner
loop involves incrementing the stack pointer, storing a pointer ( t->r) in the stack
array, resetting the t pointer (to t->1), and comparing it to z. On many ma-
chines, this could be implemented in four machine-language instructions, though
a typical compiler is likely to produce twice as many or more. This program can
be made to run perhaps four or five times faster than the straightforward recursive
implementation without too much work.

Obviously, the issues under discussion here are extremely system- and machine-
dependent. One cannot embark on a serious attempt to speed up a program without
rather detailed knowledge of the operating system and the programming environ-
ment. The optimized version of a program can become rather fragile and difficult
to change, and a new compiler or a new operating system (not to mention a new
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computer) might completely ruin a carefully optimized implementation. On the
other hand, we do focus on efficiency in our implementations by paying attention
to the inner loop at a high level and by ensuring that overhead from the algo-
rithm is minimized. The programs in this book are tightly coded and amenable to
further improvement in a straightforward manner for any particular programmmg
environment.

Implementation of an algorithm is a cyclic process of developing a program,
debugging it, and learning its properties, then refining the implementation until a
desired level of performance is reached. As discussed in Chapter 6, mathematical
analysis can usually help in the process: first, to suggest which algorithms are
promising candidates to perform well in a careful implementation; second, to help
verify that the implementation is performing as expected. In some cases, this
process can lead to the discovery of facts about the problem that suggest a new
algorithm or substantial improvements in an old one. ‘

Algorithms and Systems

Implementations of the algorithms in this book may be found in a wide variety of
large programs, operating systems, and applications systems. Our intention is to
describe the algorithms and to encourage to the reader to focus on their dynamic
properties through experimentation with the implementations given. For some
applications, the implementations may be qulte useful exactly as given, but for
other applications more work may be required.

First, as mentioned in Chapter 2, the programs in this book use only bas1c
features of C, rather than taking advantage of more advanced capabilities that are
available in C and other programming environments. Our purpose is to study algo-
rithms, not systems programming or advanced features of programming languages.
It is hoped that the essential features of the algorithms are best exposed through
simple, direct implementations in a near-universal language. .

The programming style we use is somewhat terse, with short varlable names
and few comments, so that the control structures stand out. The “documentation”
of the algorithms is the accompanying text. It is expected that readers who use
these programs in actual applications will flesh them out somewhat in adapting
them for a particular use. A more “defensive” programming style is justified in
building real systems: the programs must be implemented so that they can be
changed easily, quickly read and understood by other programmers and interface
well with other parts of the system. .

In particular, the data structures required for appllcatlons normally contam
rather more information than those used in this book, though the algorithms that
we consider are appropriate for more.complex data structures. For example, we
speak of searching through files containing integers or short character strings, while
an application typically would require considering long character strings that are
part of large records.. But the basic methods available in both cases are the same,
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In such cases, we will discuss salient features of each algorithm and how they
might relate to various application requirements.

Many of the comments above concerning improving the performance of a
particular algorithm apply to improving performance in a large system as well.
However, on this larger scale, a technique for improving the performance of the
system might be to replace a module implementing one algorithm with a module
implementing another. A basic principle of building large systems is that such
changes should be possible. Typically, as a system evolves into being, more
precise knowledge is gained about the specific requirements for particular modules.
This more specific knowledge makes it possible to more carefully select the best
algorithm for use to satisfy those needs; then one can concentrate on improving
the performance of that algorithm, as described above. It is certainly the case that
the vast majority of system code is only executed a few times (or not at all)—
the primary concern of the system builder is to create a coherent whole. On the
other hand, it also is very likely that when a system comes into use, many of its
resources will be devoted to solving fundamental problems of the type discussed
in this book, so that it is appropriate for the system builder to be cognizant of the
basic algorithms that we discuss.




88

Chapter 7

Exercises

10.

. How long does it take to count to 100,000? Estimate how long the pro-

gram j =0; for (i = 1; i < 100000; i++) J++; shouid take -
on your programming environment, then run the program to test your esti-
mate.

. Answer the previous question using repeat and while.

. By running on small values, estimate how long it would take the sieve of

Eratosthenes implementation in Chapter 3 to run with N = 1,000,000 (if enough
memory were available).

. “Optimize” the sieve of Eratosthenes implementation in Chapter 3 to find the

largest prime you can in ten seconds of computing.

. Test the assertion in the text that removing recursion from the preorder tree

traversal algorithm from Chapter 5 (with procedure calls for stack operations)
makes the program slower.

. Test the assertion in the text that removing recursion from the preorder tree

traversal algorithm from Chapter 5 (and implementing stack operations inline)
makes the program faster.

- Examine the assembly-language program produced by the C compiler in your

local programming environment for the recursive preorder tree traversal algo-
rithm for Chapter 5.

. Design an experiment to test which of the linked list or array implementation

of a pushdown stack is more efficient in your programming environment.

. Which is more efficient, the nonrecursive or the recursive method for drawing

a ruler given in Chapter 5?7

Exactly how many extraneous stack pushes are used by the nonrecursive im-
plementation given in Chapter 5 when traversing a complete tree of 2" — 1
nodes in preorder?
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SOURCES for Fundamentals

There are a large number of introductory textbooks on programming and elementary
data structures. Still, the best source for specific facts about C and examples of C
programs, in the same spirit as those found in this book, is Kernighan and Ritchie’s
book on the language. The most comprehensive collection of information about
properties of elementary data structures and trees is Knuth’s Volume 1: Chapters
3 and 4 cover only a small fraction of the information there.

The classic reference on the analysis of algorithms based on asymptotic worst-
case performance measures is Aho, Hopcroft, and Ullman’s book. Knuth’s books
cover average-case analysis more fully and are the authoritative source on specific
properties of various algorithms (for example, nearly fifty pages in Volume 2 are
devoted to Euclid’s algorithm.) Gonnet’s book does both worst- and average-case
analysis, and covers many recently-developed algorithms.

The book by Graham, Knuth and Patashnik covers the type of mathematics that
commonly arises in the analysis of algorithms. For example, this book describes
many techniques for solving recurrence relations like those given in Chapter 6 and
the many more difficult ones that we encounter later on. Such material is also
sprinkled liberally throughout Knuth’s books.

The book by Roberts covers material related to Chapter 6, and Bentley’s
books take much the same point of view as Chapter 7 and later sections of this
book. Bentley describes in detail a number of complete case studies on evaluating
various approaches to developing algorithms and implementations for solving some
interesting problems.
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Elementary Sorting Methods

As our first excursion into the area of sorting algorithms, we’ll study some
“elementary” methods that are appropriate for small files or files with some
special structure. There are several reasons for studying these simple sorting al-
gorithms in some detail. First, they provide a relatively painless way to learn
terminology and basic mechanisms for sorting algorithms so that we get an ad-
equate background for studying the more sophisticated algorithms. Second, in a
great many applications of sorting it’s better to use these simple methods than
the more powerful general-purpose methods. Finally, some of the simple methods
extend to better general-purpose methods or can be used to improve the efficiency
of more powerful methods.

As mentioned above, there are several sorting applications in which a relatively
simple algorithm may be the method of choice. Sorting programs are often used
only once (or only a few times). If the number of items to be sorted is not too large
(say, less than five hundred elements), it may well be more efficient just to run a
simple method than to implement and debug a complicated method. Elementary
methods are always suitable for small files (say, less than fifty elements); it is
unlikely that a sophisticated algorithm would be justified for a small file, unless
a very large number of such files are to be sorted. Other types of files that are
relatively easy to sort are ones that are already almost sorted (or already sorted!)
or ones that contain large numbers of equal keys. Simple methods can do much
better on such well-structured files than general-purpose methods.

As a rule, the elementary methods that we’ll be discussing take about N2
steps to sort N randomly arranged items. If N is small enough, this may not be
a problem, and if the items are not randomly arranged, some of the methods may
run much faster than more sophisticated ones. However, it must be emphasized
that these methods should #ot be used for large, randomly arranged files, with the
notable exception of Shellsort, which is actually the sorting method of choice for
a great many applications.
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Rules of the Game

Before considering some specific algorithms, it will be useful to discuss some gen-
eral terminology and basic assumptions for sorting algofithms. We’ll be considering
methods of sorting files of records containing keys. The keys, which are only part
of the records (often a small part), are used to control the sort. The objective of the
sorting method is to rearrange the records so that their keys are ordered accordlng
to some well-defined ordering rule (usually numerical or alphabetical order).

- If the file to be sorted will fit into memory (or, in our context, if it will fit
into a C array), then the sorting method is called internal. Sorting files from tape
or disk is called external sorting. The main difference between the two is that any
record can easily be accessed in an internal sort, while an external sort must access
records sequentially, or at least in large blocks. We’ll look at a few external sorts
in Chapter 13, but most of the algorithms that we’ll consider are internal sorts. ‘

As usual, the main performance parameter that we’ll be interested in is the
running time of our sorting algorithms. The first four methods that we’ll examine in
this chapter require time proportional to N2 to sort N items, while more advanced
methods can sort N items in time proportional to N logN. (It can be shown that
no sorting algorithm can use less than N log N comparisons between keys.) After
examining the simple methods, we’ll look at a more advanced method that can run
in time proportional to N3/2 or less, and we’ll see that there are methods that use
digital properties of keys to get a total running time proportional to N.

The amount of extra memory used by a sorting algorithm is the second im-
portant factor we’ll be considering. Basically, the methods divide into three types:
those that sort in place and use no extra memory except perhaps for a small stack
or table; those that use a linked-list representation and so use N extra words of
memory for list pointers; and those that need enough extra memory to hold another
copy of the array to be sorted.

A characteristic of sorting methods which is sometimes important in practlce
is stability. A sorting method is called stable if it preserves the relative order of
equal keys in the file. For example, if an alphabetized class list is sorted by grade,
then a stable method produces a list in which students with the same grade are still
in alphabetical order, but a non-stable method is likely .to produce a list with no
vestige of the or1g1nal alphabetic order. Most of the simple methods are stable, buit
most of the well-known sophisticated algorithms are not. If stability is vital, it can
be forced by appending a small index to each key before sorting or by lengthening
the sort key in some other way. It is easy to take stability for granted: people often
react to the unpleasant effects of instability with disbelief. Actually, few methods
achieve stability without using significant extra time or space.

The following program is intended to illustrate the general conventions that
we’ll be using. It consists of a main program that reads in N numbers and then
calls a subroutine to sort them. In this instance, the routine sorts only the first
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three numbers read: the point is that any sorting program could be substituted for
sort3 and called by this “driver” program.

#include <stdio.h>
sort3(int all, int N)
{
int t;
if (a[l] > a[2])

{ t =alll; all] = a[2]; a[2] = t; }
if (afll > al3])

{ t = afl]l; all] = a[3]; al3] = t; }
if (af[2] > al3])

{ t =al2]; al2] = al[3]; al3] = t; }

}
#define maxN 100
main ()
{
int N, i, a[maxN+1];
N = 0; while (scanf("%d", &a[N+1])!=EOF) N++;
al0] = 0; sort3(a, N);
for (i = 1; i <= N; i++) printf("sd ", alil);
printf ("\n");

The three assignment statements following each if in sort3 actually implement
an “exchange” operation. We’ll write out the code for such exchanges rather than
use a procedure call because they’re fundamental to many sorting programs and
often fall in the inner loop. The program actually uses an even more constrained
access to the file: it is three instructions of the form “compare two records and
exchange them if necessary to put the one with the smaller key first.” Programs
restricted to such instructions are interesting because they are well-suited for hard-
ware implementation. We’ll study this issue in more detail in Chapter 40.

In order to concentrate on algorithmic issues, we’ll work with algorithms that
simply sort arrays of integers into numerical order. It is generally straightforward
to adapt such algorithms for use in a practical application involving large keys or
records. Basically, sorting programs access records in one of two ways: either keys
are accessed for comparison, or entire records are accessed to be moved. Most
of the algorithms we will study can be recast in terms of these two operations on
arbitrary records. If the records to be sorted are large, it is normally wise to avoid
shuffling them around by doing an “indirect sort”: here the records themselves are
not necessarily rearranged, but rather an array of pointers (or indices) is rearranged
so that the first pointer points to the smallest record, etc. The keys can be kept
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either with the records (if they are large) or with the pointers (if they are small).
If necessary, the records can then be rearranged after the sort, as described later in
this chapter.

We will not dwell on “packaging problems” that can be troublesome in some
programming environments. For example, it is reasonable to pass the array to
the sorting routine as a parameter in C, but it might not be in some other lan-
guages. Should the program operate on a global array instead? Can the same
sorting routine be used to sort arrays of integers and arrays of reals (and arrays of
arbitrarily complex records)? We avoid dealing with such concerns even though
C is particularly well-suited to packaging programs together into large systems,
and future programming environments are likely to have even better tools for such
tasks. Small programs that work directly on global arrays have many uses, and
some operating systems make it quite easy to put together simple programs, like
the one above, that serve as “filters” between their input and their output. On the
other hand, such mechanisms are not really required for many applications. Obvi-
ously, these comments apply to many of the other algorithms that we will examine,
though the effects mentioned are perhaps felt most acutely for sorting algorithms.

We also do not include much “error-checking” code, though it is normally
prudent to do so in applications. For example, the driver routine should probably
check that N does not exceed maxN (and sort 3 should check that N=3). Another
useful check would be for the driver to make sure that the array is sorted. This is
no -guarantee that the sort program works (why?) but it can help expose bugs.

Some of the programs use a few other global variables. Declarations that
are not obvious will be included with the program code. Also, we’ll usually
reserve a [0] (and sometimes a [N+1]) to hold special keys used by some of the
algorithms. We’ll frequently use letters from the alphabet rather than numbers for
examples: these are handled in the obvious way using C’s standard type conversion
functions between integers and characters.

Selection Sort

One of the simplest sorting algorithms works as follows: first find the smallest
element in the array and exchange it with the element in the first position, then
find the second smallest element and exchange it with the element in the second
position, and continue in this way until the entire array is sorted. This method
is called selection sort because it works by repeatedly “selecting” the smallest
remaining element, as shown in Figure 8.1. The first pass has no effect because
there is no element in the array smaller than the A at the left. On the second pass,
the second A is the smallest remaining element, so it is exchanged with the S in
the second position. Then the first E is exchanged with the O in the third position
on the third pass, then the second E is exchanged with the R in the fourth position
on the fourth pass, etc.
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The following program is an implementation of this process. For each i from
1 to N-1, it exchanges a [1] with the minimum element in a[1i], ..., a [N]:

selection(int a[], int N)
{
int i, j, min, t;
for (i = 1; 1 < N; i++)
{
min = i;
for (J = i+1l; j <= N; j++)
if (alj] < alminl) min = j;

t = alminl; a[min] = a[i]; a[i] = t;

As the index i travels from left to right through the file, the elements to the left
of the index are in their final position in the array (and will not be touched again),
so that the array is fully sorted when the index reaches the right end.

This is among the simplest of sorting methods, and it will work very well for
small files. The “inner loop” is the comparison a [ j]<a[min] (plus the code
necessary to increment j and check that it does not exceed N), which could hardly
be’simpler. Below we discuss the number of times these instructions are likely to
be executed.

Furthermore, despite its evident “brute-force” approach, selection sort actuaily
has a quite important application: because each item is actually moved at most
once, selection sort is the method of choice for sorting files with very large records
and small keys. This is discussed in detail below.

Insertion Sort

An algorithm almost as simple as selection sort but perhaps more flexible is in-
sertion sort. This is the method people often use to sort bridge hands: consider
the elements one at a time, inserting each in its proper place among those already
considered (keeping them sorted). The element being considered is inserted merely
by moving larger elements one position to the right and then inserting the element
into the vacated position, as shown in Figure 8.2. The S in the second position is
larger than the A, so it doesn’t have to be moved. When the O in the third position
is encountered, it is exchanged with the S to put A O S in sorted order, etc.

This process is implemented in the following program. For each i from 2 to
N, the elements a[1],...,a[1] are sorted by putting a [1] into position among
the sorted list of elements ina[1],...,a[1i-1]:
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insertion(int a[], int N)
{
int i, 3j, v;
for (1 = 2; i <= N; i++)
{
v =alil; j = i;
while (a[j-1]1 > v)
{ aljl = al3-11; j3--: }

alil = v;

}

As in selection sort, the elements to the left of the index i are in sorted order
during the sort, but they are not in their final position, as they may have to be
moved to make room for smaller elements encountered later. However, the array
is fully sorted when the index reaches the right end.

There is one more important detail to consider: the procedure insertion
doesn’t work for most inputs! The while will run past the left end of the array
when v is the smallest element in the array. To fix this, we put a “sentinel” key in
a[0], making it at least as small as the smallest element in the array. Sentinels
are commonly used in situations like this to avoid including a test (in this case
j>1) that almost always succeeds within the inner loop.

If for some reason it is inconvenient to use a sentinel (for example, perhaps
the smallest key is not easily defined) then the test while >1 && a[j-1]1>v
could be used, This is unattractive because j=1 happens only rarely, so why should
we test frequently for it within the inner loop? Note that when j does equal 1,
the test above will not access a [ j-1] because of the way logical expressions are
evaluated in C—some other languages might do an out-of-bounds array access in
such a case. Another way to handle this situation in C is to use a break or goto
out of the while loop. (Some programmers prefer to goto some lengths to avoid
goto instructions, for example by performing an action within the loop to ensure
that the loop terminates. In this case, such a solution hardly seems justified, since
it makes the program no clearer and adds overhead every time through the loop to
guard against a rare event.)

Digression: Bubble Sort

An elementary sorting method that is often taught in introductory classes is bubble
sort: keep passing through the file, exchanging adjacent elements, if necessary;
when no exchanges are required on some pass, the file is sorted. An implementation
of this method is given below. '
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bubble (int a[], int N)
{
int i, 3, t;
for (i = N; 1 >= 1; i--)
for (3 = 2; j <= i; j++)
if (alj-1] > aiiD
{ t =alj-11; alj-1]1 = al[jl; alj]l = t; }

It takes a moment’s reflection to convince oneself that this works at ail. To do so,
note that whenever the maximum element is encountered during the first pass, it
is exchanged with each of the elements to its right, until it gets into position at the
right end of the array. Then on the second pass, the second largest element will be
put into position, etc. Thus bubble sort operates as a type of selection sort, though
it does much more work to get each element into position.

‘Performance Characteristics of Elementary Sorts

Direct illustrations of the operating characteristics of selection sort, insertion sort,
and bubble sort are given in Figures 8.3, 8.4, and 8.5. These diagrams show the
contents of the array a for each of the algorithms after the outer loop has been
iterated N /4, N /2, and 3N /4 times (starting with a random permutation of the
integers 1 to N as input). In the diagrams, a square is placed at position (i, j)
for a{i]=5. An unordered array is thus a random display of squares; in a sorted
array each square appears above the one to its left. For clarity in the diagrams, we
show permutations (rearrangements of the integers 1 to N), which, when sorted,
have the squares all aligned along the main diagonal. The diagrams show how the
different methods progress towards this goal.

Figure 8.3 shows how selection sort moves from left to right, putting elements
in their final position without looking back. What is not apparent from this diagram

s » 0] [J
F o ., o . '— "'. 5, "'-
s n » . L "m LI
. | . = ¥ . "y
" r" .'- w " " otn
- . " .. 5.- o "
"y ..- . u - ... "y ¥
.l " .' .. u . .' " .
» L] ™
. ,.- L] -..l

Figure 8.3 Selection sorting a random permutation.
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is the fact that selection sort spends most of its time trying to find the minimum
element in the “unsorted” part of the array.

Figure 8.4 shows how insertion sort also moves from left to rlght msertmg
newly encountered elements into posmon without looking any further forward The

left part of the array is continually changing.

Figure 8.5 shows the similarity between selection sort and bubble sort. Bubble
sort “selects” the maximum remaining element at each stage, but wastes some effort
imparting some order to the “unsorted” part of the array. '

~ All of the methods are quadratic in both the worst and the average case, and
none require extra memory. Thus, comparisons among them depend upon the
length of the inner loops or on special characteristics of the input.

Property 8.1 Selection sort uses about N 2 /2 comparisons and N exchange&.-

This property is easy to see by examining Figure 8.1, which is an N-by-N table
in which a letter corresponds to each comparison. But this is just about half the

elements, those above the diagonal.

The N — 1 elements on the diagonal (not

the last) each correspond to an exchange. More precisely: for each i from 1 to
N — 1, there is one exchange and N — i comparisons, so there is a total of N — 1
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Figure 8.5 Bubble sorting a random permutation.



Elementary Sorting Methods . 103

exchanges and N — )+ (N —2)+---+2+1=N(N - 1)/2 comparisons. These
observations hold no matter what the input data is: the only part of selection sort
that does depend on the input is the number of times min is updated. In the worst
case, this could also be quadratic, but in the average case, this quantity turns out
to be only O(N logN), so we can expect the running time of selection sort to be
quite insensitive to the input. =

Property 8.2 Insertion sort uses about N? |4 comparisons and N? /8 exchanges
on the average, twice as many in the worst case.

As implemented above, the number of comparisons and of “half-exchanges” (moves)
is the same. As just argued, this quantity is easy to visualize in Figure 8.2, the
N-by-N diagram which gives the details of the operation of the algorithm. Here,
the elements below the diagonal are counted, all of them in the worst case. For
random input, we expect each element to go about halfway back, on the average,
so half of the elements below the diagonal should be counted. (It is not difficult
to make these arguments more precise.)

Property 8.3 Bubble sort uses about N? /2 comparisons and N 2 /2 exchanges
on the average and in the worst case.

In the worst case (file in reverse order), it is clear that the ith bubble sort pass
requires N — i comparisons and exchanges, so the proof goes as for selection sort.
But the running time of bubble sort does depend on the input. For example, note
that only one pass is required if the file is already in order (insertion sort is also
fast in this case). It turns out that the average-case performance is not significantly
better that the worst case, as stated, though this analysis is rather more difficult. =

Property 8.4 Insertion sort is linear for “almost sorted” files.

Though the concept of an “almost sorted” file is necessarily rather imprecise, inser-
tion sort works well for some types of non-random files that often arise in practice.
General-purpose sorts are commonly misused for such applications; actually, in-
sertion sort can take advantage of the order present in the file.

For example, consider the operation of insertion sort on a file which is already
sorted. Each element is immediately determined to be in its proper place in the file,
and the total running time is linear. The same is true for bubble sort, but selection
sort is still quadratic. Even if a file is not completely sorted, insertion sort can be
quite useful because its running time depends quite heavily on the order present in
the file. The running time depends on the number of inversions: for each element
count up the number of elements to its left which are greater. This is the distance
the elements have to move when inserted into the file during insertion sort. A
file which has some order in it will have fewer inversions in it than one which is
arbitrarily scrambled.

Suppose one wants to add a few elements to a sorted file to produce a larger
sorted file. One way to do so is to append the new elements to the end of the file,
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then call a sorting algorithm. Clearly, the the number of inversions is low in such
a file: a file with only a constant number of elements out of place will have only
a linear number of inversions. Another example is a file in which each element is
only some constant distance from its final position. Files like this can be created
in the initial stages of some advanced sorting methods: at a certain point it is
worthwhile to switch over to insertion sort.

For such files, insertion sort will outperform even the sophisticated methods
described in the next few chapters. =

To compare the methods further, one needs to analyze the cost of comparisons
and exchanges, a factor which in turn depends on the size of the records and keys.
For example, if the records are one-word keys, as in the implementations above,
then an exchange (two array accesses) should be about twice as expensive as a
comparison. In such a situation, the running times of selection and insertion sort
are roughly comparable, but bubble sort is twice as slow. (In fact, bubble sort is
likely to be twice as slow as insertion sort under almost any circumstances!) But
if the records are large in comparison to the keys, then selection sort will be best.

Property 8.5 Selection sort is linear for files with large records and small keys.

Suppose that the cost of a comparison is 1 time unit and the cost of an exchange
is M time units. (For example, this might be the case with M -word records and
1-word keys.) Then selection sort takes about N2 time for comparisons and about
NM time for exchanges to sort a file of size NM. If N = O(M), this is linear in
the amount of data. =

Sorting Files with Large Records

It is actually possible (and desirable) to arrange things so that any sorting method
uses only N “exchanges” of full records, by having the algorithm operate indirectly
on the file (using an array of indices) and then do the rearrangement afterwards.

Specifically, if the array a[1], ..., a[N] consists of large records, then we
prefer to manipulate an “index array” p[1l], ..., p[N] accessing the original
array only for comparisons. If we define p[i]=1 initially, then the algorithms
above (and all the algorithms in chapters that follow) need only be modified to
refer to a[p[i]] rather than a[i] when using a{i] in a comparison, and to
refer to p rather than a when doing data movement. This produces an algorithm
that will “sort” the index array so that p[1] is the index of the smallest element
in a, p[2] is the index of the second smallest element in a, etc. and the cost of
moving large records around excessively is avoided. The following code shows
how insertion sort might be modified to work in this way.
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insertion (int al], int p[], int N)
{
int i, 3j, v;
for (i = 0;
for (i = 2;
{
v =pli]l; J = i;
while (alpl[j-1]11 > a[v])
{ pl3] = p[3-11; 3--; }
plil = v;
}

i <= N; i++) pli] = 1i;
1 <= N; i++)

In this program, the array a is accessed only to compare keys of two records. Thus,
it could be easily modified to handle files with very large records by modifying
the comparison to access only a small field of a large record, or by making the
comparison a more complicated procedure. Figure 8.6 shows how this process
produces a permutation that specifies the order in which the array elements could
be accessed to define a sorted list. For many applications, this will suffice (the
data may not need to be moved at all). For example, one could print out the data
in sorted order simply by referring to it indirectly through the index array, as in
the sort itself.

But what if the data must actually be rearranged, as at the bottom of Figure
8.67 If there is enough extra memory for another copy of the array, this is trivial,

Before Sort

k 1 2 3 4 5 6 7 8 9 1011 12 13 14 15

atx1  [Al[s][o][R][T][1][N] [G][E][x][A] (m][P][L][E]

plk] 1 2 3 4 5 6 7 8 9 1011 12 13 14 15
After Sort

k 1 2 3 4 5 6 7 8 9 101112 13 14 15

alk] LA [N ‘
plk] 313 4 2 5 10
After Permute
k 1 2 3 4 5 6 7 8 9 1011 12 13 14 15
atx1  [AI[A][E][€]{a][1] [L][m][N][o] [P][R][S][T] [X]
plk] 1 2 3 4 5 6 7 8 9 1011 12 13 14 15

Figure 8.6 Rearranging a “sorted” array.
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but what about the more normal situation when there isn’t enough room for another
copy of the file?

In our example, the first A is in its proper position, with p[1]=1, so nothing
need be done with it. The first thing that we would like to do is to put the record
with the next smallest key (the one with index p [2]) into the second position in the
file. But before doing that, we need to save the record that is in that position, say in
t. Now, after the move, we can consider there to be a “hole” in the file at position
p[2]. But we know that the record at position p(p[2]] should eventually fili
that hole. Continuing in this way, we eventually come to the point where we need
the item originally in the second position, which we have been holding in t. In our
example, this process leads to the series of assignments t=a{2]; a{2]=a[11];
allll=a(13]: all3]=al2]); a[2]=t; . These assignments put the records
with keys A, P, and S into their proper place in the file, which can be marked
by setting p[2]=2, p[11]1=11, and p[13]1=13. (Any element with p[i]=1 is
in place and need not be touched again.) Now the process can be followed again
for the next element which is not in place, etc., and this ultimately rearranges the
entire file, moving each record only once, as in the following code:

insitu(int af], int p[], int N)
{
int i, 3, k, t;
for (i = 1; 1 <= N; i++)

if (p[i] !'= 1)
{
t = al(i]l; k = 1i;
do :
{
j = ki aljl = alplill:
k =plil; pl3l = 3;
}
while (k !'= 1);
aljl = t;
}

The viability of this technique for particular applications of course depends on the
relative size of records and keys in the file to be sorted. Certainly one would
not go to such trouble for a file consisting of small records, because of the extra
space required for the index array and the extra time required for the indirect
comparisons. But for files consisting of large records, it is almost always desirable
to use an indirect sort, and in many applications it may not be necessary to move
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the data at all. Of course, for files with- very large records, plain selection sort is
the method to use, as discussed above. B

The “index array” approach to indirection just given will work in any pro-
gramming language supporting arrays. In C it is normally convenient to develop
an implementation based on the same principle by using machine addresses of array
elements—the “true pointers” that are discussed briefly in Chapter 3. For example,
the following code implements insertion sort using an array p of pointers:

insertion(int a[], int *p[], int N)
{
int 1, j, *v;
for (1 = 0; 1 <= N; i++):pli] = &ali);
for (1 = 2; i <= N; i++)’
{
v =plil; J = i;
while (*p[j-1]1 > *v)
{ p[3] = p[3-11; J--; }
plil = v;
}

The strong relationship between pointers and arrays is one of the most distinctive
features of C. Generally, programs implemented with pointers are more efficient
but harder to understand (though for this particular application there’s not much
difference). The interested reader may wish to implement the insitu program
needed to correspond to the pointer sort given above.

In this book, we normally will directly access data in our implementations,
secure in the knowledge that pointers or index arrays could be used to avoid
excessive data movement when warranted. Because of the availability of this
indirect approach, the conclusions we draw in this chapter and those which follow
when comparing methods to sort files of integers are likely to apply to more general
situations.

Shellsort

Insertion sort is slow because it exchanges only adjacent elements. For example,
if the smallest element happens to be at the end of the array, N steps are needed
to get it where it belongs. Shellsort is a simple extension of insertion sort which
gains speed by allowing exchanges of elements that are far apart.

The idea is to rearrange the file to give it the property that taking every hth
element (starting anywhere) yields a sorted file. Such a file is said to be h-sorted.
Put another way, an s-sorted file is 4 independent sorted files, interleaved together.
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By h-sorting for some large values of 4, we can move elements in the array long
distances and thus make it easier to k-sort for smaller values of k. Using such a
procedure for any sequence of values of 4 which ends in 1 will produce a sorted
file: this is Shellsort.

Figure 8.7 shows the operation of Shellsort on our sample file with the incre-
ments ..., 13, 4, 1. In the first pass, the A in position 1 is compared to the L
in position 14, then the S in position 2 is compared (and exchanged) with the E
in position 15. In the second pass, the A T E P in positions 1, 5, 9, and 13 are
rearranged to put A E P T in those positions, and similarly for positions 2, 6, 10,
and 14, etc. The last pass is just insertion sort, but no element has to move very
far.

One way to implement Shellsort would be, for each 4, to use insertion sort
independently on each of the # subfiles. (Sentinels would not be used because
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Figure 8.7 Shellsort.
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Figure 8.8 Shellsorting a Random Permutation..

there would have to be £ of them, for the largest value of % used.) But it turns out
to be much easier than that: If we replace every occurrence of “1” by “h” (and
“2” by “h+1") in insertion sort, the resulting program /-sorts the file and leads to
a compact Shellsort implementation, as follows:

shellsort{int all, int N)
{
int i, 3, h, v;
for (h = 1; h <= N/9; h = 3*h+1l) ;
for ( ; h > 0; h /= 3)
for (1 = h+l; 1 <= N; 1 += 1)
{
v = aflil; 3 = i;
while (j>h && alj~-hl>v)
{ alj} = alj-hl; 3 -= h; }
al3l = v;

}



110 . Chapter 8

Flgure 8.9 Shellsortmg a Reverse- Ordered Permutauon

This program uses the increment sequence ..., 1093, 364, 121, 40, 13, 4, 1. Other
increment sequences might do about as well as this in practice, but some care must
be exercised, as discussed below. Figure 8.8 shows this program in operation on
a random permutation, by displaying the contents of the array a after each A-sort.

The increment sequence in this program is easy to use and leads to an efficient
sort. Many other increment sequences lead to a more efficient sort (the reader might
be amused to try to discover one), but it is difficult to beat the above program by
more than 20% even for relatively large N. (The possibility that much better
increment sequences exist is still, however, quite real.) On the other hand, there
are some bad increment sequences: for example ..., 64, 32, 16, 8, 4, 2, 1 is likely
to lead to bad performance because elements in odd positions are not compared
against elements in even positions until the end. Similarly, Shellsort is sometimes
implemented by starting at h=N (instead of initializing so as to ensure the same
sequence is always used as above). This virtually ensures that a bad sequence will
turn up for some N. '

The above description of the efficiency of Shellsort is necessarily imprecise
because no one has been able to analyze the algorithm. This makes it difficult not
only to evaluate different increment sequences, but also to compare Shellsort with
other methods analytically. Not even the functional form of the running time for
Shellsort is known (furthermore, the form depends on the increment sequence). For
the above program, two conjectures are N (log N )> and N 1?5, The running time is
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Figure 8.10 Shellsorting a Random Permutation..

not particularly sensitive to the initial ordering of the file, especially in contrast to,
say, insertion sort, which is linear for a file already in order but quadratic for a file
in reverse order. Figure 8.9 shows the operation of Shellsort on such a file.

Property 8.6 Shelisort never does more than N3/? comparisons (for the incre-
ments 1,4, 13,40,121, ... ).

The proof of this property is beyond the scope of this book, but the reader may
not only appreciate its difficulty but also be convinced that Shellsort will run well
in practice by attempting to construct a file for which Shellsort runs slowly. As
mentioned above, there are some bad increment sequences for which Shellsort may
require a quadratic number of comparisons, but the N3/2 bound has been shown
to hold for a wide variety of sequences, including the one used above. Even better
worst-case bounds are known for some special sequences.

Figure 8.10, showing a different view of Shellsort in operation, may be com-
pared with Figures 8.3, 8.4, and 8.5. This figure shows the contents of the array
after each h-sort (except the last, which completes the sort). In these diagrams, we
might imagine a rubber band, fastened at the lower left and upper right corners,
being stretched tighter to bring all the points toward the diagonal. The three dia-
grams in Figures 8.3, 8.4, and 8.5 each represent a significant amount of work by
the algorithm illustrated; by contrast, each of the diagrams in Figure 8.10 represents
only one k-sorting pass.

Shellsort is the method of choice for many sorting applications because it
has acceptable running time even for moderately large files (say, less than 5000
elements) and requires only a very small amount of code that is easy to get working.
We’ll see methods that are more efficient in the next few chapters, but they’re
perhaps only twice as fast (if that much) except for large N, and they’re significantly
more complicated. In short, if you have a sorting problem, use the above program,
then determine whether the extra effort required to replace it with a sophisticated
method will be worthwhile,
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Distribution Counting

A very special situation for which there is a simple sorting algorithm is the fol-
lowing: “sort a file of N records whose keys are distinct integers between 1 and
N.” This problem can be solved using a temporary array b with the statement
for (i = 1; i <= N; i++) bla[i]] = ali]). (Or, as we saw above,
it is possible, though more complicated, to solve thjs problem without an auxiliary
array.)

A more realistic problem in the same spirit is: “sort a file of N records whose
keys are integers between 0 and M — 1.” If M is not too large, an algorithm called
distribution counting can be used to solve this problem. The idea is to count the
number of keys with each value and then use the counts to move the records into
position on a second pass through the file, as in the following code:

for (j = 0; j < M; j++) count[j] = 0;
for (1 = 1; 1 <= N; i++) countlafi]]++;
for (J = 1; 3§ < M; j++)
count [j] = count[j-1]+count([jl;
for (L1 = N; 1 >= 1; i--)
blcount(a[i]ll--] = ali];
for (i = 1; i <= N; i++) 2[i] = b[i]:

To see how this code works, consider the sample file of integers in the top row
of Figure 8.11. The first for loop initializes the counts to 0; the second sets
count [1]=6, count {21=4, count {3]=1, and count {4]=4 because there
are six A’s, four B’s, etc. Then the third for loop adds these numbers to produce
count [11=6, count [2]=10, count [3]=11, and count [4]=15. That is,
there are six keys less than or equal to A, ten keys less than or equal to B, etc.

Now, these can be used as addresses to sort the array, as shown in the figure.
The original input array a is shown on the top line; the rest of the figure shows
the temporary array being filled. For example, when the A at the end of the file
is encountered, it’s put into location 6, since count [1] says that there are six
keys less than or equal to A. Then count [1] is decremented, since there’s now
one fewer key less than or equal to A. Then the D from the next to last position
in the file is put into location 14 and count [4] is decremented, etc. The inner
loop goes from N down to 1 so that the sort will be stable. (The reader may wish
to check this.)

This method will work very well for the type of files postulated. Furthermore,
it can be extended to produce a much more powerful method that we’ll examine
in Chapter 10.
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Figure 8.11 Distribution Counting.
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Exercises

. Give a sequence of “compare-exchange” operations for sorting four records.

. Which of the three elementary methods (selection sort, insertion sort, or bubble

sort) runs fastest for a file which is already sorted?

3. Which of the three elementary methods runs fastest for a file in reverse order?

10.

- Test the hypothesis that selection sort is the fastest of the three elementary

methods (for sorting integers), then insertion sort, then bubble sort.

. Give a good reason why it might be inconvenient to use a sentinel key for

insertion sort (aside from the one that comes up in the implementation of
Shellsort).

. How many comparisons are used by Shellsort to 7-sort, then 3-sort the keys

EASYQUESTION?

. Give an example to show why 8,4,2, 1 would not be a good way to finish off

a Shellsort increment sequence.

. Is selection sort stable? How about insertion sort and bubble sort?

. Give a specialized version of distribution counting for sorting files where ele-

‘ments have only one of two values (either x or y).

Experiment with different increment sequences for Shellsort: find one that runs
faster than the one given for a random file of 1000 elements.



Quicksort

In this chapter, we’ll study the sorting algorithm which is probably more
widely used than any other, Quicksort. The basic algorithm was invented
in 1960 by C. A. R. Hoare, and it has been studied by many people since that
time. Quicksort is popular because it’s not difficult to implement, it’s a good
“general-purpose” sort (it works well in a variety of situations), and it consumes
fewer resources than any other sorting method in many situations.

. The desirable features of the Quicksort algorithm are that it is in-place (uses
only a small auxiliary stack), requires only about N log N operations on the average
to sort N items, and has an extremely short inner loop. The drawbacks of the
algorithm are that it is recursive (implementation is complicated if recursion is not
available), it takes about N2 operations in the worst case, and it is fraglle a simple
mistake in the 1mplementat10n can go unnoticed and can cause it to perform badly
for some files.

The performance of QUICkSOI't is very well understood. It has been subjected
to a thorough mathematical analysis and very precise statements can be made about
performance issues. The analysis has been verified by extensive empirical expe-
rience, and the algorithm has been refined to the point where it is the method of
choice in a broad variety of practical sorting applications. This makes it worth-
while for us to look somewhat more carefully than for other algorithms at ways
of efficiently implementing Quicksort. Similar implementation techniques are ap-
propriate for other algorithms; with Quicksort we can use them with conﬁdence
because its performance is so well understood.

It is tempting to try to develop ways to improve Qulcksort a faster sorting
algorithm is computer science’s “better mousetrap.” Almost from the moment
Hoare first published the algorithm, “improved” versions have been appearing in the
literature. Many ideas have been tried and analyzed, but it is easy to be deceived,
because the algorithm is so well balanced that the effects of improvements in one
part of the program can be more than offset by the effects of bad performance

115
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in another part of the program. We’ll examine in some detail three modifications
which do improve Quicksort substantially.

A carefully tuned version of Quicksort is likely to run significantly faster on
most computers than any other sorting method. However, it must be cautioned
that tuning any algorithm can make it more fragile, leading to undesirable and
unexpected effects for some inputs. Once a version has been developed which
seems free of such effects, this is likely to be the program to use for a library sort
utility or for a serious sorting application. But if one is not willing to invest the
effort to be sure that a Quicksort implementation is not flawed, Shellsort might
well be a safer choice that will perform quite well for less implementation effort.

The Basic Algorithm

Quicksort is a “divide-and-conquer” method for sorting. It works by partitioning a
file into two parts, then sorting the parts independently. As we will see, the exact
position of the partition depends on the file, so the algorithm has the following
recursive structure: '

quicksort (int af]l, int 1, int r)
{
int 1i;
i1f (r > 1)
{

i = partition(l, r);
quicksort(a, 1, i-1);
quicksort (a, i+l, r);

}

The parameters 1 and r delimit the subfile within the original file that is to be
sorted; the call quicksort (1, N) sorts the whole file.

The crux of the method is the partition procedure, which must rearrange
the array to make the following three conditions hold:

(i) the element a [i] is in its final place in the array for some 1,

(it) all the elements in a[1],...,a[1i~1] are less than or equal to a[1i],

(iii) all the elementsina [i+1],...,a[r] are greater than or equalto a [i].
This can be simply and easily implemented through the following general strategy.
First, arbitrarily choose a [r] to be the element that will go into its final position.
Next, scan from the left end of the array until an element greater than a{r] is
found and scan from the right end of the array until an element less than a [r] is
found. The two elements which stopped the scans are obviously out of place in
the final partitioned array, so exchange them. (Actually, it turns out, for reasons
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described below, to be best to also stop the scans for elements equal to a[r],
even though this might seem to involve some unnecessary exhanges.) Continuing
in this way ensures that all array elements to the left of the left pointer are less
than a [r] and all array elements to the right of the right pointer are greater than
a[r]. When the scan pointers cross, the partitioning process is nearly complete:
all that remains is to exchange a [r] with the leftmost element of the right subfile
(the element pointed to by the left pointer).

Figure 9.1 shows how our sample file of keys is partitioned with this method.
The rightmost element, E, is chosen as the partitioning element. First the scan
from the left stops at the S, then the scan from the right stops at the A (as shown
on the second line of the table), and then these two are exchanged. Next the scan
from the left stops at the O, then the scan from the right stops at the E (as shown
on the third line of the table), then these two are exchanged. Next the pointers
cross. The scan from the left stops at the R, and the scan from the right stops at
the E. The proper move at this point is to exchange the E at the right with the R,
leaving the partitioned file shown on the last line of Figure 9.1.

o e
vt | o o

Figure 9.2 Partitioning a larger file.
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Of course, the partitioning process is not stable, since any key might be moved
past a large number of keys equal to it (which haven’t even been examined yet)
during any exchange.

Figure 9.2 shows the result of partitioning a larger file: with small elements on
the left and large elements on the right, the partitioned file has considerably more
“order” in it than the random file. The sort is finished by sorting the two subfiles
on either side of the partitioning element (recursively). The following program
gives a full implementation of the method.

quicksort (int all, int 1, int rx)
{
int v, i, 3, t;
S 1f (x> 1)
{
v = alr]; i = 1-1; j = r;
for (::)
{ .
while (a[++1i] < v)
while (al[-=3]1 > v) ;
if (i >= J) break;
t = ali]l; alil = aljl; aljl = t;
}
t = ali]l; ali] = alrl; alr] = t;
quicksort(a, 1, i-1);
quicksort(a, i+1, x);

In this implementation, the variable v holds the current value of the “partitioning
element” a[r] and i and j are the left and right scan pointers, respectively. The
partitioning loop is implemented as an infinite loop, with a break out when the
pointers cross. This method is actually a prototypical example of why the break
capability is useful: the reader might be amused to consider how to implement
partitioning without using a break.. o

As in insertion sort, a sentinel key is needed to stop the scan in the case that
the partitioning element is the smallest element in the file. In this implementation,
no sentinel is needed to stop the scan when the partitioning element is the largest
element in the file, because the partitioning element itself is at the right end of the
file to stop the scan. We’ll shortly see an easy way to eliminate both sentinel keys.

The “inner loop” of Quicksort involves simply incrementing a pointer and
comparing an array element against a fixed value. This is really what makes
Quicksort quick: it’s hard to imagine a simpler inner loop. The beneficial effect
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Figure 9.3 Subfiles in Quicksort.

of sentinels is also underscored here, since adding just one superfluous test to the
inner loop will have a pronounced effect on performance.

Now the two subfiles are sorted recursively, finishing the sort. Figure 9.3
traces through these recursive calls. Each line depicts the result of partitioning the
displayed subfile using the partitioning element (shaded in the diagram). If the
initial test in the program were r >= 1 rather than r > 1, then every element
would (eventually) be put into place by being used as a partitioning element; in the
implementation as given, files of size 1 are not partitioned, as indicated in Figure
9.3. A generalization of this improvement is discussed in more detail below.

The most disturbing feature of the program above is that it is very inefficient
on simple files. For example, if it is called with a file that is already sorted,
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the partitions will be degenerate, and the program will call itself N times, only
knocking off one element for each call. This means not only that the time required
will be about N2/2, but also that the space required to handle the recursion will
be about N (see below), which is unacceptable. Fortunately, there are relatively
easy ways to ensure that this worst case doesn’t occur in actual applications of the
program.

When equal keys are present in the file, two subtleties become apparent. First,
there is the question whether to have both pointers stop on keys equal to the
partitioning element, or to have one pointer stop and the other scan over them, or
to have both pointers scan over them. This question has actually been studied in
some detail mathematically, and results show that it’s best to have both pointers
stop. This tends to balance the partitions in the presence of many equal keys.
Second, there is the question of properly handling the pointer crossing in the
presence of equal keys. Actually, the program above can be slightly improved by
terminating the scans when j < i and then using quicksort (1, 3) for the
first recursive call. This is an improvement because when j=i we can put two
elements into position with the partitioning by letting the loop iterate one more
time. (This case would occur, for example, if R were E in the example above.)
It is probably worth making this change because the program as given leaves a
record with a key equal to the partitioning key in a[r], and this makes the first
partition in the call quicksort (i+1, r) degenerate because its rightmost key
is its smallest. The implementation of partitioning given above is a bit easier to
understand, however, so we’ll leave it as is in the discussions below, with the
understanding that this change should be made when large numbers of equal keys
are present.

Performance Characteristics of Quicksort

The best thing that could happen in Quicksort would be that each partitioning stage
divides the file exactly in half. This would make the number of comparisons used
by Quicksort satisfy the divide-and-conquer recurrence

Cy =2CN/2 +N.

The 2C /; covers the cost of sorting the two subfiles; the N is the cost of examining
each element, using one partitioning pointer or the other. From Chapter 6, we know
that this recurrence has the solution

Cy~NIgN.

Though things don’t always go this well, it is true that the partition falls in the
middle on the average. Taking into account the precise probability of each partition
position makes the recurrence more complicated and more difficult .to solve, but
the final result is similar.
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Property 9.1 Quicksort uses about 2N InN comparisons on the average.

The precise recurrence formula for the number of comparisons used by Quicksort
for a random permutation of N elements is

1 .
CN=N+1+1V > (Cky+Cy_g). for N > 2 with C; = Co =0.
1<k<N

The N +1 term covers the cost of comparing the partitioning element with each of
the others (two extra for where the pointers cross); the rest comes from the obser-
vation that each element £ is likely to be the partitioning element with probability
1/k, after which we are left with random files of size k - 1 and N — k.

Though it looks rather complicated, this recurrence is actually easy to solve,
in three steps. First, Co+Cy+-+-+Cy_; is the same as Cy_; +Cy_p + -+ - + Cy,
so we have )

Cn =N+1+1V > Crr
1<k<N
Second, we can eliminate the sum by multiplying both sides by N and subtracting
the same formula for N — 1:

NCy —(N - 1)Cy_1=NN +1)— (N - 1)N +2Cy_;.
This simplifies to the recurrence
‘ NCy =(N +1)Cy_,+2N.
Third, dividing both sides by N(N + 1) gives a recurrence that telescopes:
- Cy Cy_) 2 Cy_p 2 2 C

= + 4+ — 4 I i o Z L
N+1 N 'N+1 N-1 N N+1 3 L L

This exact answer is nearly equal to a sum that is easily approximated by an
integral:
Cn
N +1

~2 ¥ l~2/N1dx 21N
= - = —dx = ,
15k5Nk X

which implies the stated result. Note that 2N InN =~ 138N IgN, so that the
average number of comparisons is only about 38% higher than the best case. =

Thus, the implementation above performs very well for random files, which
makes it a very reasonable general-purpose sort for many applications. However, if
the sort is to be used a great many times or if it is to be used to sort a very large file,
then it might be worthwhile to implement several of the improvements discussed
below which can make it much less likely that a bad case will occur, reduce the
average running time by 20%, and easily eliminate the need for a sentinel key.
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Removing Recursion

As in Chapter 5, we can remove recursion in the Quicksort program by using an
explicit pushdown stack, which we think of as containing “work to be done” in
the form of subfiles to be sorted. Any time we need a subfile to process, we pop
the stack. When we partition, we create two subfiles to be processed which can be
pushed on the stack. This leads to the following nonrecursive implementation:

quicksort (int a[]l, int N)

{

int i, 1, r;
1l =1; r = N; stackinit();
for (;:)

{
while (r > 1)
{

i = partition(a, 1, r);

if (i-1 > r-i)
{ push(l); push(i-1); 1 = i+1; }

else
{ push(i+l); push(r); r

]
H
|
-
—

}
if (stackempty()) break;
r =pop(); 1 = pop();

This program differs from the description above in two important ways. First, the
two subfiles are not put on the stack in some arbitrary order, but their sizes are
checked and the larger of the two is put on the stack first. Second, the smaller of the
two subfiles is not put on the stack at all; the values of the parameters are simply
reset. This is the “end-recursion-removal” technique discussed in Chapter 5. For
Quicksort, the combination of end-recursion removal and the policy of processing
the smaller of the two subfiles first turns out to ensure that the stack need contain
room for only about IgN entries, since each entry on the stack after the top one
must represent a subfile less than half the size of the previous entry.

This is in sharp contrast to the size of the stack in the worst case in the recursive
implementation, which could be as large as N (for example, when the file is
already sorted). This is a subtle but real difficulty with a recursive implementation
of Quicksort: there’s always an underlying stack, and a degenerate case on a
large file could cause the program to terminate abnormally because of lack of
memory, behavior obviously undesirable for a library sorting routine. Below we’ll
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Figure 9.4 Subfiles in Quicksort (nonrecursive).

see ways to make degenerate cases extremely unlikely, but avoiding this problem
in a recursive implementation is difficult without end-recursion removal. (Even
switching the order in which subfiles are processed doesn’t help.)

The simple use of an explicit stack in the. program above leads to a far more
efficient program than the direct recursive implementation, but there is still over-
head that could be removed. The problem is that, if both subfiles have only one
element, an entry with r=1 is put on the stack only to be immediately taken off
and discarded. It is straightforward to change the program so that it puts no such
files on the stack. This change is even more effective when the next impfovement
described below is included—this involves ignoring small subfiles in the same way,
so the chances that both subfiles need to be ignored are much higher.
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Figure 9.5 Tree diagram of the partitioning process in Quicksort.

Of course the nonrecursive method processes the same subfiles as the recursive
method for any file; it just does them in a different order. Figure 9.4 shows the
partitions for our example: the first three partitions are the same, but then the
nonrecursive method partitions the right subfile of R first since it is smaller than
the left, etc.

If we “collapse” Figures 9.3 and 9.4 and connect each partitioning element to
the partitioning element used in its two subfiles, we get the static representation
of the partitioning process shown in Figure 9.5. In this binary tree, each subfile is
represented by its partitioning element (or itself if it is of size 1), and the subtrees of
each node are the trees representing the subfiles after partitioning. Square external
nodes in the tree represent null subfiles. (For clarity, the second A, the I, the P and
the T are shown as having two null subfiles: as discussed above, the variants of
the algorithm deal with null subfiles differently.) The recursive implementation of
Quicksort corresponds to visiting the nodes of this tree in preorder; the nonrecursive
implementation corresponds to a “visit the smaller subtree first” rule. In Chapter
14, we’ll see how this tree leads to a direct relationship between Quicksort and a
fundamental searching method.

Small Subfiles

The second improvement to Quicksort arises from the observation that a recursive
program is guaranteed to call itself for many small subfiles, so it should use as
good a method as possible when small subfiles are encountered. One obvious
way to do this is to change the test at the beginning of the recursive routine from
“if (r > 1)”toacall on insertion sort (modified to accept parameters defining
the subfile to be sorted): that is, “if (r-1 <= M) insertion(l, r) .”
Here M is some parameter whose exact value depends upon the implementation.
The value chosen for M need not be the best possible: the algorithm works about
the same for M in the range from about 5 to about 25. The reduction in the running
time is on the order of 20% for most applications.
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Figure 9.6 Quicksort (recursive, small subfiles ignored).

A slightly easier way to handle small subfiles, which is also slightly more
efficient, is to just change the test at the beginning to “1f (xr-1 > M)™: that is,
simply ignore small subfiles during partitioning. In the nonrecursive implementa-
tion, this would be done by not putting any files of less than M on the stack. After
partitioning, what is left is a file that is almost sorted. As mentioned in the previous
chapter, however, insertion sort is the method of choice for such files. That is,
insertion sort will work about as well for such a file as for the collection of little
files that it would get if it were being used directly. This method should be used
with caution, because the insertion sort is likely always to sort even if Quicksort .
has a bug which causes it not to work at all. The excessive cost may be the only

sign that something went wrong.

Figure 9.6 gives a view of this process in a large, randomly ordered array.
These diagrams graphically depict how each partition divides a subarray into two
independent subproblems to be tackled independently. A subarray in these figures
is shown as a square of randomly arranged dots; the partitioning process divides
such a square into two smaller squares, with one element (the partitioning element)
ending up on the diagonal. Elements not involved in partitioning end up quite
close to the diagonal, leaving an array which is easily handled by insertion sort.
As indicated above, the corresponding diagram for the nonrecursive implementation
of Quicksort is similar, but partitions are done in a different order.
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Median-of-Three Partitioning

The third improvement to Quicksort is to use a better partitioning element. There
are several possibilities here. The safest choice to avoid the worst case would
be a random element from the array for a partitioning element. Then the worst
case will happen with negligibly small probability. This is a simple example of a

“probabilistic algorithm,” one which uses randomness to achieve good performance
almost always, regardless of the arrangement of the input. Randomness can be a
useful tool in algorithm design, especially if some bias in the input is suspected.
However, for Quicksort it is probably overkill to put in a full random-number
generator just for this purpose: an arbitrary number will do just as well (see
Chapter 35).

.A more useful improvement is to take thrée elements from the file, then use
the median of the three for the partitioning element. If the three elements chosen
are from the left, middle, and right of the array, then the use of sentinels can be
avoided as follows: sort the three elements (using the three-exchange method in
the previous chapter), then exchange the one in the middle with a [r-11, and then
run the partitioning algorithm on a[1+1], ..., a[r-2]. This improvement is
called the median-of-three partitioning method. ‘

The median- -of-thrée method helps Quicksort in three ways. First, it makes
the worst case much more unlikely to occur in any actual sort. In order for the
sort to take N2 time, two out of the three elements examined must be among the
largest or among the smallest elements in the file, and this must happen consis-
tently through most of the partitions. Second, it eliminates the need for a sentinel
key for partitioning, since this function is served by the three elements examined
before partitioning. Third, it actually reduces the total average running time of the
algorithm by about 5%.

The combination of a nonrecursive implementation of the medlan of-three
method with a cutoff for small subfiles can improve the running time of Quicksort
over the naive recursive implementation by 25% to 30%. Further algorithmic im-
provements are possible (for example, the median of five or' more elements could
be used), but the amount of time gained will be marginal. More significant time
savings can be realized (with less effort) by coding the inner loops (or the whole
program) in assembly or machine language. Neither path is recommended except
for experts with serious sorting applications.

Selection

One application related to sorting where a full sort may not always be necessary
is the operation of finding the median of a set of numbers. This is a common
computation in statistics and in various other data processing applications. One
way to proceed would be to sort the numbers and look at the middle one, but it
turns out that we can do better, using the Quicksort partitioning process.
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The operation of finding the median is a special case of the operation of
selection: find the kth smallest of a set of numbers. Since an algorithm cannot
guarantee that a particular item is the kth smallest without having examined and
identified the k — 1 elements which are smaller and the N — k elements which are
larger, most selection algorithms can return all of the k smallest elements of a file
without a great deal of extra calculation.

Selection has many applications in the processing of experimental and other
data. The use of the median and other order statistics to divide a file into smaller
groups is very common. Often only a small part of a large file is to be saved
for further processing; in such cases, a program which can select, say, the top ten
percent of the elements of the file might be more appropriate than a full sort.

We’ve already seen an algorithm which can be directly adapted to selection, If
k is very small, then selection sort will work very well, requiring time proportional
to Nk: first find the smallest element, then find the second smallest by finding
the smallest of the remaining items, etc. For slightly larger k, we’ll see methods
in Chapter 11 which can be immediately adapted to run in time proportional to
Nlogk. An interesting method which adapts well to all values of k and runs
in linear time on the average can be formulated from the partitioning procedure
used in Quicksort. Recall that Quicksort’s partitioning method rearranges an array
alll,...,a[N] andreturns an integer i such thata[1],...,a[i~1] are less
than orequal toa[i] and a(i+1],..., a[N] are greater than or equal toa[i].
If the kth smallest element in the file is sought and we have k==i, then we’re
done. Otherwise, if k < i then we need to look for the kth smallest element
in the left subfile, and if k > i then we need to look for the (k~i)th smallest
element in the right subfile. Adjusting this argument to apply to finding the kth
smallest element in an array a[1], ..., a[r] leads immediately to the following
recursive formulation.

select (int a[l, int 1, int r, int k)
{
int 1i;
if (r > 1)
{

1 = partition(l, r);
if (1 > 1+k-1) select(a, 1, i-1, k):
if (i < 1+k-1) select(a, it+l, r, k-i);

This procedure rearranges the array so that a[1], ..., a [k-1] are less than or
equal to afk] and a[k+1],...,alr] are greater than or equal to a [k].
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Figure 9.7 Partitioning to find the median.

For example, the call select (1, N, (N+1)/2) partitions the array on its
median value. For the keys in our sorting example, this program uses only three
recursive calls to find the median, as shown in Figure 9.7. The file is rearranged
so that the median is in place with smaller elements to the left and larger elements
to the right (equal elements could be on either side), but it is not fully sorted.

Since the select procedure always ends with a call on itself, when the time
comes for the recursive call, we can simply reset the parameters and go back to
the beginning (no stack is needed to remove the recursion). Also, we can eliminate
the simple calculations involving k, as in the following implementation.

select (int a[], int N, int k)
{
int v, t, i, 4, 1, r;
1l =1; r = N;
while (r > 1)
{
v = alr]; i = 1-1; j = x;
for (;:)
{
while (af[++i] < v) ;
while (a[--3] > v) ;
if (i >= 3j) break;
t = alil; alil = aljl; alj]
}
t = aflil; alil = alr]; alr] = t;
if (1L >= k) r = i-1;
if (1 <= k) 1 = i+1;

i
o
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Figure 9.8 Finding the Median.

We use the identical partitioning procedure to Quicksort and, as with Quicksort,
could change it slightly if many equal keys are expected.

Figure 9.8 shows the selection process on a larger (random) file. As with
Quicksort, we can (very roughly) argue that, on a very large file, each partition
should roughly split the array in half, so the whole process should require about
N+N/2+N/4+N/8+...=2N comparisons. As with Quicksort, this rough
argument is not too far from the truth.

Property 9.2 Quicksort-based selection is linear-time on the average.

An analysis similar to, but significantly more complex than, that given above for
Quicksort leads to the result that the average number of comparisons is about
2N +2k In(N k) +2(N — k)In(N /(N — k), which is linear for any allowed value
of k. For k = N /2 (finding the median), this evaluates to about (2 + 2In2)N
comparisons. w

The worst case is about the same as for Quicksort: using this method to find
the smallest element in an already sorted file would result in a quadratic running
time. One could use an arbitrary or a random partitioning element, but some care
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should be exercised: for example, if the smallest element is sought, we probably
don’t want the file split near the middle. It is possible to modify this Quicksort-
based selection procedure so that its running time is guaranteed to be linear. These
modifications, while theoretically important, are extremely complex and not at all
practical.
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Exercises

. Implement a recursive Quicksort with a cutoff to insertion sort for subfiles with

less than M elements and empirically detérmine the value of M for which it
runs fastest on a random file of 1000 elements.

. Solve the previous problem for a nonrecursive implementation.

. Solve the previous problem also incorporating the median-of-three improve-

ment.

. About how long will Quicksort take to sort a file of N equal elements?

5. What is the maximum number of times during the execution of Qulckson that

10.

the largest element can be moved?

. Show how the file A B A B A B A is partitioned, using the two methods

suggested in the text.

. How many comparisons does Quicksort use to sort the keys EASYQUE

STION?

. How many “sentinel” keys are needed if insertion sort is called directly from

within Quicksort?

. Would it be reasonable to use a queue instead of a stack for a nonrecursive

implementation of Quicksort? Why or why not?

Write a program to rearrange a file so that all the elements with keys equal to
the median are in place, with smaller elements to the left and larger elements
to the right. -
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Radix Sorting

The “keys” used to define the order of the records for files for many sorting
applications can be very complicated. (For example, consider the ordering
function used in the telephone book or a library catalogue.) Because of this, it
is reasonable to define sorting methods in terms of the basic operations of “com-
- paring” two keys and “exchanging” two records. Most of the methods we have
studied can be described in terms of these two fundamental operations. For many
applications, however, it is possible to take advantage of the fact that the keys can
be thought of as numbers from some restricted range. Sorting methods that take
advantage of the digital properties of these numbers are called radix sorts. These
methods do not just compare keys: they process and compare pieces of keys.

Radix-sorting algorithms treat the keys as numbers represented in a base-M
number system, for different values of M (the radix), and work with individual
digits of the numbers. For example, consider a clerk who must sort a pile of cards
with three-digit numbers printed on them. One reasonable way for him to proceed
is to make ten piles: one for the numbers less than 100, one for the numbers
between 100 and 199, etc., place the cards in the piles, and then deal with the piles
individually, by using the same method on the next digit or by using some easier
method if there are only a few cards. This is a simple example of a radix sort with
M =10. We’ll examine this and some other methods in detail in this chapter. Of
course, with most computers it’s more convenient to work with M = 2 (or some
power of 2) rather than M = 10,

Anything that’s represented inside a digital computer can be treated as a binary
number, so many sorting applications can be recast to make feasible the use of radix
sorts operating on keys that are binary numbers. Fortunately, C provides low-level
operators that make it possible to implement such operations in a straightforward
and efficient manner. This is significant because many other languages (for ex-
ample Pascal) intentionally make it difficult to write a program that depends on
the binary representation of numbers, because different computers may use differ-
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ent representations for the same numbers. This philosophy eliminates many types
of “bit-flicking” techniques, and radix sorting in particular seems to have been a
casualty of this progressive philosophy. But the C programming language does
recognize that direct manipulation of bits is often required, and we will be able to
take advantage of this to implement radix sorts.

Bits

Given a (key represented as a) binary number, the fundamental operation needed
for radix sorts is extracting a contiguous set of bits from the number. Suppose we
are to process keys that we know are integers between 0 and 1000. We may assume
that these are represented by ten-bit binary numbers. In machine language, bits
are extracted from binary numbers by using bitwise “and” operations and shifts.
For example, the leading two bits of a ten-bit number are extracted by shifting
right eight bit positions, then doing a bitwise “and” with the mask 0000000011. In
C, these operations are implemented directly with the bit-manipulation operators
>> and &. For example, the leading two bits of a ten-bit number x are given
by (x>>8) & 03. In general, “zero all but the j rightmost bits of x” can be
implemented with x & ~(~0<<Jj) because ~ (~0<<7J) is a mask with ones in
the rightmost j bit positions, zeroes elsewhere. In our implementations of the
radix-sort algorithms, we’ll use the function

unsigned bits(unsigned x, int k, int 3j)
{ return (x >> k) & ~(~0 << J); }

to compute the j bits which appear k£ bits from the right in x. For example,
the rightmost bit of x is returned by the call bits(x,0,1). In programming
. languages that do not support bit manipulation, this operation can be simulated
by computing (x div 2k) mod 2/, though this is likely to be too inefficient to be
recommended for practical use, unless one has a compiler that is clever enough to
notice that the computation can be done with machine language “shift” and “and”
instructions as above.

Armed with this basic tool, we’ll consider two types of radix sorts which differ
in the order in which they examine the bits of the keys. We assume that the keys
are not short, so that it is worthwhile to go. to the effort of extracting their bits.
If the keys are short, then the distribution-counting method of Chapter 8 can be
used. Recall that this method can sort N keys known to be integers between 0 and
M — 1 in linear time, using one auxiliary table of size M for counts and another
of size N for rearranging records. Thus, if we can afford a table of size 28, then
b-bit keys can easily be sorted in linear time. Radix sorting comes into play if the
keys are sufficiently long (say b = 32) that this is not possible.
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The first basic method for radix sorting that we’ll consider examines the bits in
the keys from left to right. It is based on the fact that the outcome of “comparisons”
between two keys depends only on the value of the bits in the first position at which
they differ (reading from left to right). Thus, all keys with leading bit 0 appear
before all keys with leading bit 1 in the sorted file; among the keys with leading
bit 1, all keys with second bit 0 appear before all keys with second bit 1, and so
forth. The left-to-right radix sort, which is called radix exchange sort, sorts by
systematically dividing up the keys in this way.

The second basic method that we’ll consider, called straight radix sort, exam-
ines the bits in the keys from right to left. It is based on an interesting principle
that reduces a sort on b-bit keys to b sorts on 1-bit keys. We’ll see how this can
be combined with distribution counting to produce a sort that runs in linear time
under quite generous assumptions.

Radix Exchange Sort

Suppose we can rearrange the records of a file so that all those whose keys begin
with a 0 bit come before all those whose keys begin with a 1 bit. This immediately
defines a recursive sorting method: if the two subfiles are sorted independently,
then the whole file is sorted. The rearrangement (of the file) is done very much as
in the partitioning in Quicksort: scan from the left to find a key which starts with
a 1 bit, scan from the right to find a key which starts with a 0 bit, exchange, and
continue the process until the scanning pointers cross. This leads to a recursive
sorting procedure that is very similar to Quicksort:

radixexchange(int a[], int 1, int r, int b)
{
int t, i, 3;
if (r>1 && b>=0)
{

while (bits(al[i], b, 1)==0 && i<j) i++;
while (bits(alj], b, 1)!=0 && j>1i) j--;
t = ali]l; alil = aljl:; aljl = t;
}
if (bits(alr], b, 1) == 0) j++;
radixexchange(a, 1, 3-1, b-1);
radixexchange(a, j, r, b-1);
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Figure 10.1 Subfiles in radix exchange sort.
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The call radixexchange (1, N, 30) will sort the array if a[1], ..., [N]
are positive integers less than 2°2 (so that they can be represented as 31-bit binary
numbers). The variable b keeps track of the bit being examined, ranging from 30
(leftmost) down to O (rightmost). The actual number of bits that should be used
depends in a straightforward way on the application, the number of bits per word
in the machine, and the machine representation of integers and negative numbers.

This implementation is obviously quite similar to the recursive implementation
of Quicksort in Chapter 9. Essentially, the partitioning in radix-exchange sort is
like partitioning in Quicksort except that the number 2° is used as the partitioning
element instead of some number from the file. Since 2° may not be in the file, there
can be no guarantee that an element is put into its final place during partitioning.
Also, since only one bit is being examined, we can’t rely on sentinels to stop the
pointer scans; therefore the tests (i < j) are included in the scanning loops.
This results in an extra exchange for the case (1 == 7j), which could be avoided
with a break, as in the implementation of Quicksort, though in this case the
“exchange” of a [1] with itself is harmless. The partitioning stops with § equal
to 1 and all elements to the right of a [1] having 1 bits in the bth position and
all elements to the left of a[i] having O bits in the bth position. The element
a[i] itself will have a 1 bit unless all keys in the file have a 0 in position b. The
implementation above has an extra test just after the partitioning loop to cover this
case.

Figure 10.1 shows how our sample file of keys is partitioned and sorted by this
method. This can be compared with Figure 9.2 for Quicksort, though the operation
of the partitioning method is completely opaque without the binary representation
of the keys.

A 00001 | A A offlootr | A ooffijo1r | A ooofE}t | A ooooff]
S 10011 | E E ofio1 | A oofflo1 | A ooof@i | A oo0ooff]
0O 01111 | O A E 1 E ol | E o001 off]
R 10010 | L E E E E 001 off]
T 10100 | M |0 G G G

I o1001 {1 [B1oo1 | I 0.001 I

N ot110 N.111o N 0.110 N L L o110[@]
G 00111 |G M M M M 011 0[Fj]
E 60101 | E L L N N oAl
X 11000 | A o o o O iG]
A 00001 | X S i S P :

M o1101 | T T 4 R R 100ffjec R ‘400:i[0]
P 10000 | P P P 10f@oo | S 100fih | S 0]
L o1100 R R T 10ofijoo

E oo0101 | S X A

Figure 10.2 Radix exchange sort (“left-to-right” radix sort).
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Figure 10.2 shows the partition in terms of the binary representation of the
keys. A simple five-bit code is used, with the ith letter in the alphabet represented
by the binary representation of the number i. This is a simplified version of real
character codes, which use more bits (seven or eight) and represent more characters
(upper/lower case letters, numbers, special symbols). By translating the keys in
Figure 10.1 to this five-bit character code, compressing the table so that the subfile
partitioning is shown “in parallel” rather than one per line, and then transposing
rows and columns, we can show in Figure 10.2 how the leading bits of the keys
control partitioning. In this figure, each partition is indicated by a white “0” subfile
followed by a gray “1” subfile in the next diagram to the right, except that subfiles
of size 1 drop out of the partitioning process as encountered.

One serious potential problem for radix sort not brought out in this example
is that degenerate partitions (partitions with all keys having the same value for the
bit being used) can happen frequently. This situation arises commonly in real files
when small numbers (with many leading zeros) are being sorted. It also occurs for
characters: for example, suppose that 32-bit keys are made up from four characters
by encoding each in a standard eight-bit code and then putting them together. Then
degenerate partitions are likely to occur at the beginning of each character position,
since for example, lower-case letters all begin with the same bits in most character
codes. Many other similar effects are obviously of concern when sorting encoded
data.

It can be seen from Figure 10.2 that once a key is distinguished from all the
other keys by its left bits, no further bits are examined. This is a distinct advantage
in some situations, a disadvantage in others. When the keys are truly random bits,
each key should differ from the others after about g bits, which could be many
fewer than the number of bits in the keys. This is because, in a random situation,
we expect each partition to divide the subfile in half. For example, sorting a file
with 1000 records might involve only examining about ten or eleven bits from
each key (even if the keys are, say, 32-bit keys). On the other hand, notice that

Figure 10.3 Tree diagram of the partitioning process in radix-exchange sort.
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all the bits of equal keys are examined. Radix sorting simply does not work well
on files which contain many equal keys. Radix-exchange sort is actually slightly
faster than Quicksort if the keys to be sorted are comprised of truly random bits,
but Quicksort can adapt better to less random situations.

Figure 10.3, the tree that represents the partitioning process for radix exchange
sort, may be compared with Figure 9.5. In this binary tree, the internal nodes
represent the partmonmg points, and the external nodes are the keys in the file,
all of which end up in subfiles of size 1. In Chapter 17 we will see how this
tree suggests a direct relationship between radix-exchange sort and a fundamental
searching method. » '

The basic recursive implementation given above can be improved by removing
recursion and treating small subfiles differently, just as we did for Quicksort.

Straight Radix Sort

An alternative radix-sorting method is to examine the bits from right to left. This
is the method used by old computer-card-sorting machines: a deck of cards was
run through the machine 80 times, once for each -column, proceeding from right to
left. Figure 10.4 shows how a right-to-left bit-by-bit radix sort works on our file
of sample keys. The ith column in Figure 10.4 is sorted on the trailing / bits of
the keys, and. is derived from the (i — 1)st column by extracting all the keys with
a 0 in the ith bit, then all the keys with a 1 in the ith bit.

It’s not easy to be convinced that the method works; in fact it doesn t work
at all unless the one-bit partitioning process is stable. Once stability has been
identified as being important, a trivial proof that the method works can be found:

A ocoo0o01 |R T X i A [Booo1
$ 10011 | T X P A [Blooo1
O 01111 | N P A E [Blo101
R 10010 | X L | E [Blo101
T 10100 | P A A G [Eo111
I o1001 | L [ R 1 [@hoon
N o1110 | A E C] E L-11oo
G o0111 |8 | A T E M
E 00101 | O M L G N
X 11000 || E E X o
A 00001 |G R M 1 P
M o1101 | E N E L R
P 10000 | A s N M ]
L o1100 M o o] N T.o1oo
E 00101 | E G G (o] X filhooo

Figure 10.4 Straight radix sort (“right-to-left” radix sort).




140 ‘ Chapter 10

after putting keys with ith bit 0 before those with ith bit 1 (in a stable manner),
we know that any two keys appear in proper order (on the basis of the bits so
far examined) in the file either because their ith bits are different, in which case
partitioning puts them in the proper order, or because their ith bits are the same, in
which case they’re in proper order because of stability. The requirement of stability
means, for example, that the partitioning method used in the radix-exchange sort
can’t be used for this right-to-left sort.

The partitioning is like sorting a file with only two values, and the distribution
counting sort in Chapter 8 is entirely appropriate for this. If we assume that M =2
in the distribution counting program and replace a[i] by bits(a[i],k, 1),
then that program becomes a method for sorting the elemeénts of the array a on
the bit k positions from the right and putting the result in a temporary array b.
But there’s no reason to use M = 2; in fact, we should make M as large as
possible, realizing that we need a table of M counts. This corresponds to using
m bits at a time during the sort, with M = 2™, Thus, straight radix sort becomes
little more than a generalization of distribution-counting sort, as in the following
implementation for sorting a[1], ..., a[N] on the w rightmost bits:

straightradix(int a[], int b[], int N)
{
int i, j, pass, count[M-1];
for (pass = 0; pass < (w/m)-1; pass++)
{
for (j = 0; j < M; J++) count[]j] = 0;
for (i 1; 1 <= N; i++)
count [bits(a[i]l, pass*m, m)]++;
for (j = 1; J < M; j++)
count[j] = count[j-1l]l+count([]j];
for (i = N; 1 >= 1; i-=)
blcount [bits(a[i], pass*m, m)]--] = a[i];
for (1 = 1; 1 <= N; i++) a[i]l = b[i]:

This implementation assumes that the caller passes the temporary array as an input
parameter as well as the array to be sorted. The correspondence M = 2™ has
been preserved in the variable names, though readers translating to other languages
should be warned that some programming environments can’t tell the difference
between m and M. ‘

The procedure above works properly only if w is a multiple of m. Normally,
this is not a particularly restrictive assumption for radix sort: it simply corresponds
to dividing the keys to be sorted into an integral number of equal-size pieces. When
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m==w we have distribution counting sort; when m==1 we have straight radix sort,
the right-to-left bit-by-bit radix sort described in the example above.

The implementation above moves the file from a to b during each distribution
counting phase, then back to a in a simple loop. This “array copy” loop could be
eliminated if desired by making two copies of the distribution counting code, one
to sort from a into b, the other to sort from b into a.

Performance Characteristics of Radix Sorts

The running times of both basic radix sorts for sorting N records with b-bit keys
are essentially Nb. On the one hand, .one can think of this running time as being
essentially the same as N log N, since if the numbers are all different, » must be
at least log N. On the other hand, both methods usually use many fewer than Nb
operations: the left-to-right method because it can stop once differences between
keys have been found, and the right-to-left method because it can process many
bits at once.

Property 10.1 Radix-exchange sort uses on the average about N 1gN bit com-
parisons.

If the file size is a power of two and the bits are random, then we expect half
of the leading bits to be 0 and half to be 1, so the recurrence Cy = 2Cy p+N
should describe the performance, as argued for Quicksort in Chapter 9. Again,
this description of the situation is not accurate, because the partition falls in the
center only on the average (and because the number of bits in the keys is finite).
However, in this model, the partition is much more likely to be in the center than
in Quicksort, so the result stated turns out to be true. (Detailed analysis beyond
the scope of this book is required to prove this.) m

Property 10.2 Both radix sorts use less than Nb bit comparisons to sort N b-bit
keys.

In other words, the radix sorts are /inear in the sense that the time taken is pro-
portional to the number of bits of input. This follows directly from examination
of the programs: no bit is examined more than once. =

For large random files, radix-exchange sort behaves rather like Quicksort, as
shown in Figure 9.6, but straight radix sort behaves rather differently. Figure
10.5 shows the stages of straight radix sort on a random file of five-bit keys.
The progressive organization of the file during the sort shows up clearly in these
diagrams. For example, after the third stage (bottom left), the file consists of four
intermixed sorted subfiles: the keys beginning with 00 (bottom stripe), the keys
beginning with 01, etc.

Property 10.3 Straight radix sort can sort N records with b-bit keys in b/m
passes, using extra space for 2™ counters (and a buffer for rearranging the file).
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Figure 10.5 Stages of straight radix sort.

Proof of this fact is straightforward from the implementation. In particular, if we
can take m = b /4 without using too much extra memory, we get a linear sort!
The practical ramifications of this property are discussed in more detail in the next
section. m

A Linear Sort

The straight radix sort implementation given in the previous section makes b/m
passes through the file. By making m large, we get a very efficient sorting method,
as long as we have M = 2™ words of memory available. A reasonable choice is
to make m about one quarter the word-size (b/4), so that the radix sort is four
distribution counting passes. The keys are treated as base-M numbers, and each
(base-M ) digit of each key is examined, but there are only four digits per key.
(This corresponds directly to the architectural organization of many computers:
one typical organization has 32-bit words, each consisting of four 8-bit bytes. The
bits procedure then winds up extracting particular bytes from words in this case,
which obviously can be done very efficiently on such computers.) Now, each
distribution-counting pass is linear, and since there are only four of them, the
entire sort is linear, certainly the best performance we could hope for in a sort.

In fact, it turns out that we can get by with only two distribution counting

passes. (Even a careful reader is likely to have difficulty telling right from left
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by this time, so some effort may be necessary to understand this method.) We
do this by taking advantage of the fact that the file will be almost sorted if only
the leading b/2 bits of the b-bit keys are used. As with Quicksort, the sort can
be completed efficiently by using insertion sort on the whole file afterwards. This
method is obviously a trivial modification to the implementation above: to do a
right-to-left sort using the leading half of the keys, we simply start the outer loop
at pass = b/ (2*m) rather than pass=0. Then a conventional insertion sort
can be used on the nearly ordered file that results. To become convinced that a file
sorted on its leading bits is quite well-ordered, the reader should examine the first
few columns of Figure 10.2. For example, insertion sort run on the file already
sorted on the first three bits would require only six exchanges.

Using two distribution counting passes (with m about one-fourth the word size)
and then using insertion sort to finish the job will yield a sorting method that is
likely to run faster than any of the others we’ve seen for large files whose keys are
random bits. Its main disadvantage is that it requires an extra array of the same size
as the array being sorted. It is possible to eliminate the extra array using linked-list
techniques, but extra space proportional to N (for the links) is still required.

A linear sort is obviously desirable for many applications, but there are reasons
why it is not the panacea that it might seem. First, its efficiency really does
depend on the keys being random bits, randomly ordered. If this condition is not
satisfied, severely degraded performance is likely. Second, it requires exira space
proportional to the size of the array being sorted. Third, the “inner loop” of the
program actually contains quite a few instructions, so even though it’s linear, it
won’t be as much faster than Quicksort (say) as one might expect, except for quite
large files (at which point the extra array becomes a real liability). The choice
between Quicksort and radix sort is a difficult one that is likely to depend not
only on features of the application, such as key, record, and file size, but also on
features of the programming and machine environment that relate to the efficiency
of access and use of individual bits. Again, such tradeoffs need to be studied by
an expert and this type of study is likely to be worthwhile only for serious sorting
applications.
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Exercises

1. Compare the number of exchanges used by radix-exchange sort with the number
used by Quicksort for the file 001, 011, 101, 110, 000, 001, 010, 111, 110,
010. .

2. Why is it not as important to remove the recursion from the radix-exchange
sort as it was for Quicksort?

3. Modify radix-exchange sort to skip leading bits which are identical on all keys.
In what situations would this be worthwhile?

4. True or false: the running time of straight radix sort does not depend on the
order of the keys in the input file. Explain your answer.

5. Which method is likely to be faster for a file of all equal keys: radix-exchange
sort or straight radix sort?

6. True or false: both radix-exchange sort and straight radix sort examine all the
bits of all the keys in the file. Explain your answer.

7. Aside from the extra memory requirement, what is the major disadvantage of
the strategy of doing straight radix sorting on the leading bits of the keys, then
cleaning up with insertion sort afterwards?

8. Exactly how much memory is required to do a four-pass straight radix sort of
N b-bit keys?

9. What type of input file will make radix-exchange sort run the most slowly (for
very large N)?

10. Empirically compare straight radix sort with radix-exchange sort for a random
file of 1000 32-bit keys.
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Priority Queues

In many applications, records with keys must be processed in order, but
not necessarily in full sorted order and not necessarily all at once. Often
a set of records must be collected, then the largest processed, then perhaps more
records collected, then the next largest processed, and so forth. An appropriate data
structure in such an environment is one that supports the operations of inserting
a new element and deleting the largest element. Such a data structure, which
can be contrasted with queues (delete the oldest) and stacks (delete the newest)
is called a priority queue. In fact, the priority queue might be thought of as a
generalization of the stack and the queue (and other simple data structures), since
these data structures can be implemented with priority queues, using appropriate
priority assignments.

Applications of priority queues include simulation systems (where the keys
might correspond to “event times” that must be processed in order), job scheduling
in computer systems (where the keys might correspond to “priorities” indicating
which users should be processed first), and numerical computations (where the
keys might be computational errors, so the largest can be worked on first).

Later on in this book, we’ll see how to use priority queues as basic build-
ing blocks for more advanced algorithms. In Chapter 22, we’ll develop a file-
compression algorithm using routines from this chapter, and in Chapters 31 and
33, we’ll see how priority queues can serve as the basis for several fundamental
graph-searching algorithms. These are but a few examples of the important role
played by the priority queue as a basic tool in algorithm design.

It is useful to be somewhat more precise about how to manipulate a priority
queue, since there are several operations we may need to perform on priority queues
in order to maintain them and use them effectively for applications such as those
mentioned above. Indeed, the main reason that priority queues are so useful is their
flexibility in allowing a variety of different operations to be efficiently performed
on sets of records with keys. We want to build and maintain a data structure

148
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containing records with numerical keys (priorities) and supporting some of the
following operations:

Construct a priority queue from N given items.

Insert a new item.

Remove the largest item.

Replace the largest item with a new item (unless the new item is larger).
Change the priority of an item.

Delete an arbitrary specified item.

Join two priority queues into one large one.

(If records can have duplicate keys, we take “largest” to mean “any record with
the largest key value.”)

The replace operation is almost equivalent to an insert followed by a remove
(the difference being that insert/remove requires the priority queue to grow tem-
porarily by one element); note that this is quite different from a remove followed
by an insert. This is included as a separate capability because, as we will see, some
implementations of priority queues can do the replace operation quite efficiently.
Similarly, the change operation could be implemented as a delete followed by an
insert and the construct could be implemented with repeated uses of the insert op-
eration, but these operations can be directly implemented more efficiently for some
choices of data structure. The join operation requires advanced data structures for
efficient implementation; we’ll concentrate instead on a “classical” data structure
called a heap that allows efficient implementations of the first five operations.

The priority queue as described above is an excellent example of an abstract
data structure as described in Chapter 3: it is very well defined in terms of the
operations performed on it, independent of how the data is organized and processed
in any particular implementation.

Different implementations of priority queues involve different performance
characteristics for the various operations to be performed, leading to cost tradeoffs.
Indeed, performance differences are really the only differences that can arise in the
abstract data structure concept. First, we’ll illustrate this point by discussing a few
elementary data structures for implementing priority queues. Next, we’ll examine
a more advanced data structure and then show how the various operations can be
implemented efficiently using this data structure. We’ll then look at an important
sorting algorithm that follows naturally from these implementations.

Elementary Implementations

One way to organize a priority queue is as an unordered list, simply keeping the
items in an array a[l], ... , a [N] without paying attention to the key values.
(As usual, we reserve a[0] and possibly a [N+1] for sentinel values, in case
we need them.) The array a and its size N are referred to only by the priority
queue functions and are supposed to be “hidden” from the calling routines. With
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the array implementing an unordered list, construct, insert and remove are easily
implemented as follows:

static int a[maxN+1], N;
construct (int b[], int M)
{ for (N = 1; N <= M; N++) a[N] = b[N]; }
insert (int wv)
{ a[++N] = v; }
int remove ()

{

int j, max, v;

max = 1;
for (3 = 2; J <= N; j++)
if (alj] > almax]) max = J;
v = almax];
a[max] = a[N--];

return v;

The construct operation is just an array copy, and to insert, we simply increment
N and put the new item into a [N], a constant-time operation. But remove requires
scanning through the array to find the element with the largest key, which takes
linear time (all the elements in the array must be examined), then exchanging a [N]
with the element with the largest key and decrementing N. The implementation of
replace would be quite similar and is omitted.

To implement the change operation (change the priority of the item in a [k]),
we could simply store the new value, and to delete the item in a k], we could
exchange it with a [N] and decrement N, as in the last line of remove. (Recall from
Chapter 3 that such operations, which refer to individual data items, make sense
only in a “pointer” or “indirect” implementation, where a reference is maintained
for each item to its current place in the data structure.)

Another elementary organization to use is an ordered list, again using an array
alll,..., a[N] but keeping the items in increasing order of their keys. Now
remove simply involves returning a [N] and decrementing N (a constant-time op-
eration), but insert involves moving larger elements in the array right one position,
which could take linear time, and construct would involve a sort.

Any priority-queue algorithm can be turned into a sorting algorithm by repeat-
edly using .insert to build a priority queue containing all the items to be sorted,
then repeatedly using remove to. empty the priority queue, receiving the items in
reverse order. Using a priority queue represented as an unordered list in this way
corresponds to selection sort; using the ordered list corresponds to insertion sort.
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Linked lists can also be used for the unordered list or the ordered list rather
than the array implementation given above. This doesn’t change the fundamental
performance characteristics for insert, remove, or replace, but it does make it
possible to do delete and join in constant time. These implementations are omitted
here because they are so similar to the basic list operations given in Chapter 3,
and because implementations of similar methods for the searching problem (find a
record with a given key) are given in Chapter 14.

As usual, it is wise to keep these simple implementations in mind because they
often can outperform more complicated methods in many practical situations. For
example, the unordered list implementation might be appropriate in an application
where only a few “remove-largest” operations are performed as opposed to a large
number of insertions, while an ordered list would be appropriate if the items inserted
always tended to be close to the largest element in the priority queue.

Heap Data Structure

The data structure that we’ll use to support the priority queue operations involves
storing the records in an array in such a way that each key is guaranteed to be
larger than the keys at two other specific positions. In turn, each of those keys
must be larger than two more keys, and so forth. This ordering is very easy to
see if we draw the array in a two-dimensional tree structure with lines down from
each key to the two keys known to be smaller, as in Figure 11.1.

Recall from Chapter 4 that this structure is called a “complete binary tree”:
it may be constructed by placing one nod¢ (called the roor) and then proceeding
down the page and from left to right, connecting two nodes beneath each node on
the previous level until N nodes have been placed. The two nodes below each
node are called its children; the node above each node is called its parent. Now,
we want the keys in the tree to satisfy the heap condition: the key in each node
should be larger than (or equal to) the keys in its children (if it has any). Note that
this implies in particular that the largest key .is in the root.

Figure 11.1 Complete tree representation of a heap.
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Figure 11.2 Array representation of a heap.

We can represent complete binary trees sequentially within an array by simply
putting the root at position 1, its children at positions 2 and 3, the nodes at the next
level in positions 4, 5, 6 and 7, etc., as numbered in Figure 11.1. For example, the
array representation for the tree above is shown in Figure 11.2.

This natural representation is useful because it is very easy to get from a node
to its parent and children. The parent of the node in position j is in position j /2
(rounded down to the nearest integer if j is odd), and, conversely, the two children
of the node in position j are in positions 2j and 2j + 1. This makes traversal
of such a tree even easier than if the tree were implemented with a standard
linked representation (with each element containing a pointer to its parent and
children). The rigid structure of complete binary trees represented as arrays does
limit their utility as data structures, but there is just enough flexibility to allow the
implementation of efficient priority queue algorithms. A heap is a complete binary
tree, represented as an array, in which every node satisfies the heap condition. In
particular, the largest key is always in the first position in the array.

All of the algorithms operate along some path from the root to the bottom of
the heap (just moving from parent to child or from child to parent). It is easy to
see that, in a heap of N nodes, all paths have about 1g N nodes on them. (There
are about N /2 nodes on the bottom, N /4 nodes with children on the bottom, N /8
nodes with grandchildren on the bottom, etc. Each “generation” has about half as
many nodes as the next, which implies that there can be at most IgN generations.)
Thus all of the priority queue operations (except join) can be done in logarithmic
time using heaps.

Algorithms on Heaps

The priority queue algorithms on heaps all work by first making a simple structural
modification which could violate the heap condition, then traveling through the heap
modifying it to ensure that the heap condition is satisfied everywhere. Some of the
algorithms travel through the heap from bottom to top, others from top to bottom.
In all of the algorithms, we’ll assume that the records are one-word integer keys
stored in an array a of some maximum size, with the current size of the heap kept
in an integer N. As above, the array and its size are assumed to be private to the
priority queue routines: data is passed back and forth between the user and the
priority queue only through subroutine calls.

To be able to build a heap, it is necessary first to implement the insert
operation. Since this operation will increase the size of the heap by one, N must be
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Figure 11.3 Inserting a new element (P) into a heap.

incremented. Then the record to be inserted is put into a [N], but this may violate
the heap property. If the heap property is violated (the new node is greater than
its parent), then the violation can be fixed by exchanging the new node with its
parent. This may, in turn, cause a violation, and thus can be fixed in the same way.
For example, if P is to be inserted in the heap above, it is first stored in a [N] as
the right child of M. Then, since it is greater than M, it is exchanged with M, and
since it is greater than O, it is exchanged with O, and the process terminates since
it is less that X. The heap shown in Figure 11.3 results.

The code for this method is straightforward. In the following implementation,
insert adds anew item to a [N], then calls upheap (N) to fix the heap condition
violation at N:

upheap (int k)
{
int v;
v = alk]; a[0] = INT MAX;
while (alk/2] <= wv)
{ alk] = afk/21; k = k/2; }
alk] = v;
}
insert (int v)
{
a[{++N] = v;
upheap (N) ;
}

If X/2 were replaced by k-1 everywhere in this program, we would have in
essence one step of insertion sort (implementing a-priority queue with an ordered
list); here, instead, we are “inserting” the new key along the path from N to the
root. As with insertion sort, it is not necessary to do a full exchange within the
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Figure 11.4 Replacing the largest key in a heap (with C).

loop, because v is always involved in the exchanges. A sentinel key must be put
ina[0] to stop the loop for the case that v is greater than all the keys in the heap.

The replace operation involves replacing the key at the root with a new
key, then moving down the heap from top to bottom to restore the heap condition.
For example, if the X in the heap above is to be replaced with C, the first step
is to store C at the root. This violates the heap condition, but the violation can
be fixed by exchanging C with T, the larger of the two children of the root. This
creates a violation at the next level, which can again be fixed by exchanging C
with the larger of its two children (in this case S). The process continues until the
heap condition is no longer violated at the node occupied by C. In the example, C
makes it all the way to the bottom of the heap, leaving the heap depicted in Figure
11.4.

The “remove the largest” operation involves almost the same process. Since
the heap will be one element smaller after the operation, it is necessary to decrement
N, leaving no place for the element that was stored in the last position. But the
largest element (which is in a[1]) is to be removed, so the remove operation
amounts to a replace, using the element that was in a [N]. The heap shown in
Figure 11.5 is the result of removing the T from the heap in Figure 11.4 by replacing
it with the M, then moving down, promoting the larger of the two children, until
reaching a node with both children smaller than M.

Figure 11.5 Removing the largest element in a heap.
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The implementation of both of these operations is centered around the process
of fixing up a heap which satisfies the heap condition everywhere except possibly
at the root. If the key at the root is too small, it must be moved down the heap
without violating the heap property at any of the nodes touched. It turns out that
the same operation can be used to fix up the heap after the value in any position
is lowered. It may be implemented as follows:

downheap (int k)
{
int 3, wv;
v = alk];
while (k <= N/2)
{
3 = k+k;
if (J<N && al[jl<alj+1l]) J++:
if (v >= a[j]) break;
alkl = al31; k = 3;

Fhis procedure moves down the heap, exchanging the node at position k with the
larger of its two children if necessary and stopping when the node at k is larger
than both children or the bottom is reached. (Note that it is possible for the node
at k to have only one child: this case must be treated properly!) As above, a
full exchange is not needed because v is always involved in the exchanges. The
inner loop in this program is an example of a loop which really has two distinct
exits: ‘one for the case that the bottom of the heap is hit (as in the first example
above), and another for the case that the heap condition is satisfied somewhere in
the interior of the heap. This is prototypical of situations calling for use of the
break instruction.

Now the implementation of the remove operation is a direct application of this
procedure:

int remove ()
{
int v = a[l];
a[ll = a[N--];
downheap (1) ;
return v;
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The return value is set from a[1} and then the element from a[N] is put into
a[1l] and the size of the heap decremented, leaving only a call to downheap to
fix up the heap condition everywhere.

The implementation of the replace operation is only slightly more complicated:

int replace(int v)
{
af[0] = v;
downheap (0) ;
return af0];

This code uses a[0] in an artificial way: its children are O (itself) and 1, so if v
is larger than the largest element in the heap, the heap is not touched; otherwise v
is put into the heap and a [1] is returned.

The delete operation for an arbitrary element from the heap and the change
operation can also be implemented by using a simple combination of the methods
above. For example, if the priority of the element at position k is raised, then
upheap (k) can be called, and if it is lowered then downheap (k) does the job.

Property 11.1 Al of the basic operations insert, remove, replace, (downheap and
upheap), delete, and change require less than 2 1gN comparisons when performed
on a heap of N elements.

All these operations involve moving along a path between the root and the bottom
of the heap, which includes no more than 1g/N elements for a heap of size N. The
factor of two comes from downheap, which makes two comparisons in its inner
loop; the other operations require only lg/N comparisons. =

Note carefully that the join operation is not included on this list. Doing this
operation efficiently seems to require a much more sophisticated data structure.
On the other hand, in many applications, one would expect this operation to be
required much less frequently than the others.

Heapsort

An elegant and efficient sorting method can be defined from the basic operations
on heaps outlined above. This method, called Heapsort, uses no extra memory and
is guaranteed to sort N elements in about N logN steps no matter what the input.
Unfortunately, its inner loop is quite a bit longer than the inner loop of Quicksort,
and it is about twice as slow as Quicksort on the average.

The idea is simply to build a heap containing the elements to be sorted and
then to remove them all in order. One way to sort is insert the elements one
by one into an initially empty heap, as in the first two lines of the following code
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Figure 11.6 Top-down heap construction.

(which actually just implement construct (a, N)), then doN remove operations,
puiting the element removed into the place just vacated by the shrinking heap:

heapsort (int al[], int N)

{

int k;

construct (a, 0);

for (k = 1; k <= N; k++) insert(alk]):
for (k = N; k >= 1

; k—--) alk] = remove();
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Figure 11.7 Sorting from a heap, -

The priority queue procedures are used only for descriptive purposes: in an actual
implementation of the sort, we might simply use the code from the procedures to
avoid unnecessary procedure calls. More important, by allowing heapsort direct
access to the array (so that during each loop, the priority ‘queue resides in a[1],

, a[k=11), this computation is arranged so that the sort can be accomplished
mplace

Figure 11.6 shows the heaps constructed as the keys ASORTIN G E X
A M P L E are inserted in that order into an initially empty heap, and Figure 11.7
shows how those keys are sorted by removing the X, then removing the T, etc.

It is actually a little better to build the heap by going backwards through it,
making little heaps from the bottom up, as shown in Figure 11.8. This method
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Figure 11.8 Bottom-up heap construction.

views every position in the array as the root of a small heap and takes advantage
of the fact that downheap will work as well for such small heaps as for the big
heap. Working backwards through the heap, every node is the root of a heap which
is heap-ordered except possibly for the root; downheap finishes the job. (There’s
no need to do anything with the heaps of size 1, so the scan starts halfway back
through the array.)

We’ve already noted that remove can be implemented by exchanging the first
and last elements, decrementing N, and calling downheap (1). This leads to the
following implementation of Heapsort:

heapsort (int a[], int N)
{
int k, t:
for (k = N/2; k >= 1; k--) downheap(a, N, k);
while (N > 1)
{
t = afll]; all]l = a[N]; a[N] = t;
downheap(a, --N, 1);
}

Here we again abandon any notion of hiding the representation of the heap and
assume that downheap has been modified to take the array and heap size as the
first two arguments. The first for loop implements construct (a,N). Then
the while loop exchanges the largest element with the last element and repairs
the heap, as before. It is interesting to note that, though the loops in this program
seem to do very different things, they can be built around the same fundamental
procedure, '
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Figure 11.9 illustrates the data movement in Heapsort by showing the con-
tents of each heap operated on by downheap for our sorting example, just after

downheap has made the heap condition hold everywhere.

Property 11.2 Bottom-up heap construction is linear-time.

The reason for this property is that most of the heaps processed are small. For
example, to build a heap of 127 elements, the method calls downheap on (64
heaps of size 1), 32 heaps of size 3, 16 heaps of size 7, 8 heaps of size 15, 4 heaps
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of size 31, 2 heaps of size 63, and 1 heap of size 127, s0 64-0+32-1+16-2+8-
3+4-4+2-5+1-6 =120 “promotions” (twice as many comparisons) are required
in the worst case. For N = 2", an upper bound on the number of comparisons is

S k-2 k=" pn—1<N,
1<k<n

and a similar proof holds when N is not a power of two. m

This property is not of particular importance for Heapsort, since its time is still
dominated by the N logN time for sorting, but it is important for other priority-
queue applications, where a linear time construct can lead to a linear time
algorithm. Note that constructing a heap with N successive inserts requires
N logN steps in the worst case (though it turns out to be linear on the average).

Property 11.3  Heapsort uses fewer than 2N IgN comparisons to sort N elements.

A slightly higher bound, say 3N lg N, is immediate from Property 11.1. The bound
given here follows from a more careful count based on Property 11.2. w

As mentioned above, Property 11.3 is the primary reason that Heapsort is of
practical interest: the number of steps required to sort N elements is guaranteed
to be proportional to N log N, no matter what the input. Unlike the other methods
that we’ve seen, there is no “worst-case” input that will make Heapsort run slower.
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Figure 11.10 Heapsorting a random permutation: construction phase.
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Figure 11.11 Heapsorting a random permutation: sorting phase.

Figures 11.10 and 11.11 show Heapsort in operation on a larger randomly
ordered file. In Figure 11.10, the process seems to be anything but sorting, since
large elements are moving to the beginning of the file. But Figure 11.11 shows this
structure being maintained as the file is sorted by picking off the large elements.

Indirect Heaps

For many applications of priority queues, we don’t want the records moved around
at all. Instead, we want the priority queue routine not to return values but to tell
us which of the records is the largest, etc. This is akin to the “indirect sort” or
the “pointer sort” concept described in Chapter 8. Modifying the above programs
to work in this way is straightforward, though sometimes confusing. It will be
worthwhile to examine this in more detail here because it is so convenient to use
heaps in this way.

As in Chapter 8, instead of rearranging the keys in the array a the priority
queue routines will work with an array p of indices into the array a, such that
alplk]] is the record corresponding to the kth element of the heap, for k between
1 and N. (We’ll continue to assume records of one-word keys: as in Chapter 8,
a primary advantage of things in this way is that we can easily switch to more

k 1 2 3 4 5 6 7 8 9 101112131415

aix] ®OORAOOR®OEXOBDEOO®

p[k] 10 513 4 2 3 7 8 9 1 1112 6 1415

ap k) XOPROODEEPODOO®

glk] 105 6 4 2 13 7 8 9 1 1112 3 1415

Figure 11.12 Indirect heap data structures.
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complicated records and keys.) Moreover, we want to maintain another array g
which keeps the heap position of the kth array element. This is the mechanism
that we use to allow the change and delete operations. Thus the q eniry for the
largest element in the array is 1, and so on. For example, if we wished to change
the value of a[k] we could find its heap position in q[k] and use upheap or
downheap. Figure 11.12 gives the values in these arrays for our sample heap;
note that p [q[k]]1=q[p[k] 1=k for all k from 1 to N.

We start with p [k]=q[k]=k for k from 1 to N, which indicates that no
rearrangement has been done. The code for heap construction looks much the
same as before:

pgconstruct (int a[], int N)
{
int k;
for (k = 1; k <= N; k++) { plk] = k; gql[k] = k; }
for (k N/2; k >= 1; k--) pgdownheap(a, N, k);

i

(We’ll prefix implementations of priority-queue routines based on indjrect heaps
with “pqg” for identification when they are used in later chapters.)

Now, to modify downheap to work indirectly, we need only examine the
places where it references a. Where it did a comparison before, it must now
access a indirectly through p. Where it did a move before, it must now make the
move in p, not a, and it must modify q accordingly. This leads to the following
implementation;

pagdownheap (int a[], int N, int k)
{

int j, v;

v = pl[k];

while (k <= N/2)

{

J = k+k;
1f (3<N && alpljll<alp[3+111) F++;
if (alvl>=alpljl]) break;
plkl = pl3l; alpljl] = k; k = 3;

plk] = v; glv] = k;
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The other procedures given above can be modified in a similar fashion to implement
“pginsert,” “pgchange,” etc.

The above implementation exploits the fact that the items to be involved in
priority queue applications happen to be stored in an array. A more general indirect
implementation can be developed based on maintaining p as an array of pointers
to separately allocated records. In this case, more work is required to implement
the function of g (find the heap position, given the record).

Advanced Implementations

If the join operation must be done efficiently, then the implementations that
we have done so far are insufficient and more advanced techniques are needed.
Although we don’t have space here to go into the details of such methods, we can
discuss some of the considerations that go into their design.

By “efficiently,” we mean that a join should be done in about the same
time as the other operations. This immediately rules out the linkless representation
for heaps that we have been using, since two large heaps can be joined only by
moving all the elements in at least one of them to a large array. It is easy to
translate the algorithms we have been examining to use linked representations; in
fact, sometimes there are other reasons for doing so (for example, it might be
inconvenient to have a large contiguous array). In a direct linked representation,
links would have to be kept in each node pointing to the parent and both children.

It turns out that the heap condition itself seems to be too strong to allow
efficient implementation of the join operation. The advanced data structures
designed to solve this problem all weaken either the heap or the balance condition
in order to gain the flexibility needed for the join. These structures allow all the
operations to be completed in logarithmic time.
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Exercises

1. Draw the heap that results when the following operations are performed on an
initially empty heap: insert (1), insert (5), insert (2) ,lnsert (6)
replace (4), insert (8), remove, insert (7), insert (3).

’

2.1s a file in reverse sorted order a heap?

3. Give the heap that results when, starting with an empty heap, insert is called
successively for the keyss EASYQUESTION.

4. Which positions could be occupied by the 3rd largest key in a heap of size 327
Which positions could not be occupied by the 3rd smallest key in a heap of
size 327

5. Why not use a sentinel to avoid the j < N test in downheap?

6. Show how to obtain the functions of stacks and normal queues as special cases
of priority queues.

7. What is the minimum number of keys that must be moved during a “remove
the largest” operation in a heap? Draw a heap of size 15 for which the minimum
is achieved.

8. Write a program to delete the element at position d in a heap.

9. Empirically compare bottom-up heap construction with top-down heap con-
struction, by building heaps with 1000 random keys.

10. Give the contents of the q array after pqconstruct is used on a p array
containing the keyss EASYQUESTION.
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Mergesort

In Chapter 9 we studied the operation of selection, finding the kth smallest
element in a file. We saw that selection is akin to dividing a file into two
parts, the k smallest elements and the N — k largest elements. In this chapter we
examine a somewhat complementary process, merging, the operation of combining
two sorted files to make one larger sorted file. As we’ll see, merging is the basis
for a straightforward recursive sorting algorithm.

Selection and merging are complementary operations in the sense that selection
splits a file into two independent files and merging joins two independent files to
make one file. The relationship between these operations also becomes evident if
one tries to apply the “divide-and-conquer” paradigm to create a sorting method.
The file can either be rearranged so that when two parts are sorted the whole file is
sorted, or broken into two parts to be sorted and then combined to make the sorted
whole file. We’ve already seen what happens in the first instance: that’s Quicksort,
which consists basically of a selection procedure followed by two recursive calls.
Below, we’ll look at Mergesort, Quicksort’s complement in that it consists basically
of two recursive calls followed by a merging procedure.

Mergesort, like Heapsort, has the advantage that it sorts a file of N elements
in time proportional to N logN even in the worst case. The prime disadvantage of
Mergesort is that extra space proportional to N seems to be required, unless one
is willing to go to a lot of effort to overcome this handicap. The length of the
inner loop is somewhere between that of Quicksort and Heapsort, so Mergesort is
a candidate if speed is of the essence, especially if space is available. ‘Moreover,
Mergesort can be implemented so that it accesses the data primarily in a sequential
manner (one item after the other), and this is sometimes a distinct advantage.
For example, Mergesort is the method of choice for sorting a linked list, where
sequential access is the only kind of access available. Similarly, as we’ll see in
Chapter 13, merging is the basis for sorting on sequential access devices, though the
methods used in that context are somewhat different from those used for Mergesort.
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Merging

In many data processing environments a large (sorted) data file is maintained to
which new entries are regularly added. Typically, a number of new entries are
“batched,” appended to the (much larger) main file, and the whole thing is resorted.
This situation is tailor-made for merging: a much better strategy is to sort the
(small) batch of new entries, then merge it with the large main file. Merging
has many other similar applications which make its study worthwhile. We’ll also
examine a sorting method based on merging. ‘

In this chapter we’ll concentrate on programs for Iwo-way merging: programs
which combine two sorted input files to make one sorted output file. In the next
chapter, we’ll look in more detail at multiway merging, when more than two files
are involved. (The most important application of multiway merging is external
sorting, the subject of that chapter.)

To begin, suppose that we have two sorted arrays a[l], ..., a[M] and
b[1], ..., b[N] of integers which we wish to merge into a third array c[1],

.., ¢[M+N]. The following is a direct implementation of the obvious strategy of
successively choosing for ¢ the smallest remaining element from a and b:

i=1; 3 =1;

a(M+1] = INT_MAX; b[N+1l] = INT__MAX;
for (k = 1; k <= M+N; k++)
clk] = (alil<b([3j]l) ? ali++] : b[j++];

The implementation is simplified by making room in the a and b arrays for sentinel
keys with values larger than all the other keys. When the a (b) array is exhausted,
the loop simply moves the rest of the b (a) array into the c array. This method
obviously uses M +N comparisons. If a [M+1] and b [N+1] are not available for
the sentinel keys, then tests to make sure that i is always less than M and 7 is less
than N would have to be added. Another way around this difficulty is used below
for the implementation of Mergesort.

Instead of using extra space proportional to the size of the merged file, it
would be desirable to have an inplace method which uses ¢ [11, ..., cIM] for
one input and c[M+1], ..., c[M+N] for the other. At first, it is difficult to
convince oneself that this can’t be done easily, and such methods do exist, but
they are so complicated that even an inplace sort is likely to be more efficient
unless a great deal of care is exercised. We will return to this issue below.

Since extra space appears to be required for a practical implementation, we
may as well consider a linked-list implementation. In fact, this method is very well
suited to linked lists. A full implementation which illustrates all the conventions
we’ll use is given below; note that the code for the actual merge is just about as
simple as the code above:
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struct node
{ int key; struct node *next; }:
struct node *z;
struct node *merge(struct node *a, struct node *b)
{
struct node *c;
c = z;
do
if (a->key <= b->key)
{ c=->next = a; ¢ = a; a

a->next; 1}

else
{ ¢c->next = b; ¢ = b; b = b->next; }
while (¢ != 2z);

¢ = z->next; z->next
return ¢;

I
N
~

This program merges the list pointed to by a with the list pointed to by b with the
help of an auxiliary pointer c. The lists are assumed to have a dummy “tail” node,
as discussed in Chapter 3: all lists end with the dummy node z, which normally
points to itself and also serves as a sentinel, with z->key == INT MAX. During
the merge, z is used to hold onto the beginning of the newly merged list (in a
manner similar to the implementation of readlist), and c points to the end of
the newly merged list (the node whose link field must be changed to add a new
element to the list). After the merged list is built, the pointer to its first node is
retrieved from z and z is reset to point to itself.

The key comparison in merge includes equality so that the merge will be
stable, if the b list is considered to follow the a list. We’ll see below how this
stability in the merge implies stability in the sorting programs which use this merge.

Mergesort

Once we have a merging procedure, it’s not difficult to use it as the basis for
a recursive sorting procedure. To sort a given file, divide it in half, sort the
two halves (recursively), and then merge the two halves together. The following
implementation of this process sorts an array a[11], ..., a[r] (using an auxiliary
array b[1],...,b([r]):
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mergesort (int al], int 1, int r)
{
int i, 3j, k, m;
if (r > 1)
{ ,

m= (r+l)/2;
mergesort(a, 1, m);
mergesort (a, m+l, r);
for (i = mt+l; i > 1; i--) b[i-1] = a[i-1];

for (j =m; j < r; j++) blr+m-ij] = alj+ll;
for (k = 1; k <= r; k++)
alk] = (b[il<b[J]1) ? bli++] : b[j--1;

This program manages the merge without sentinels by copying the second array
into position back-to-back with the first, but in reverse order. Thus each array
serves as the “sentinel” for the other: the largest element (which is in one array or
the other) keeps things moving properly after the other array has been exhausted
for the merge. The “inner loop™ of this program is rather short (move to b, move
back to a, increment i or j, increment and test k), and could be shortened even
more by having two copies of the code (one for merging from a into b and one
for merging b into a), though this would require going back to sentinels.

Our file of sample keys is processed as shown in Figure 12.1. Each line shows
the result of a call on merge. First we merge A and S to get A S, then we merge
O and R to get O R and this with A S to get A O R S. Later we merge I T with
G N to get GIN T, and merge this with AOR Stoget AGINORST, etc..
Thus this method recursively builds up small sorted files into larger ones.

List Mergesort

This process involves enough data movement that a linked list representation should
also be considered. The following program is a direct recursive implementation of
a function which takes as input a pointer to an unsorted list and returns as its value
a pointer to the sorted version of the list. The program does this by rearranging the
nodes of the list: no temporary nodes or lists need be allocated. (It is convenient to
pass the list length as a parameter to the recursive program; alternatively, it could
be stored with the list or the program could scan the list to find its length.)
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Figure 12,1 Recursive Mergesort.
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struct node *mergesort (struct node *c)
{
struct node *a, *b;
if (c->next != z)
{

a = c¢; b = c->next->next->next;
b !

while (b != 2z)
{ ¢ = c->next; b = b->next->next; }
b = ¢c->next; c->next = z;

return merge (mergesort (a), mergesort (b));
}

return c;

This program sorts by splitting the list pointed to by ¢ into two halves pointed to
by a and b, sorting the two halves recursively, and then using merge to produce
the final result. Again, this program adheres to the convention that all lists end
with z: the input list must end with z (and therefore so does the b list), and the
explicit instruction c->next = z puts z at the end of the a list. This program
is quite simple to understand in a recursive formulation even though it is actually
a rather sophisticated algorithm.

Bottom-Up Mergesort

As discussed in Chapter 5, every recursive program has a nonrecursive analog
which, though equivalent, may perform computations in a different order. Merge-
sort is actually a prototype of the “combine and conquer” strategy which char-
acterizes many such computations, and it is worthwhile to study its nonrecursive
implementations in detail.

The simplest nonrecursive version of Mergesort processes a slightly different
set of files in a slightly different order: first scan through the list performing 1-by-1
merges to produce sorted sublists of size 2, then scan through the list performing
2-by-2 merges to produce sorted sublists of size 4, then do 4-by-4 merges to get
sorted sublists of size 8, etc., until the whole list is sorted.

Figure 12.2 shows how this method performs essentially the same merges as
in Figure 12.1 for our sample file (since its size is close to a power of two), but in
a different order. In general, logN passes are required to sort a file of N elements,
since each pass doubles the size of the sorted subfiles.

It is important to note that the actual merges made by this “bottom-up” method
are not the same as the merges done by the recursive implementation above. Con-
sider the sort of 95 elements shown in Figure 12.3. The last merge is a 64-by-31
merge, while in the recursive sort it would be a 47-by-48 merge. It is possible,
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Figure 12.2 Nonrecursive Mergesort.
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however, to arrange things so that the sequence of merges made by the two methods
is the same, though there is no particular reason to do so.

A detailed implementation of this bottom-up approach, using linked lists, is
given below.

struct node *mergesort (struct node *c)
{
int i, N;
struct node *a, *b, *head, *todo, *t;
head = (struct node *) malloc(sizeof *head);
head->next = ¢; a = z;
for (N = 1; a != head->next; N = N+N)
{
todo = head->next; ¢ = head;
while (todo != z)
{
t = todo; a = t;
for (i = 1; 1 < N; i++) t
b = t->next; t->next = z;
for (i = 1; 1 < N; i++) t
todo = t->nekt; t->next =
c->next = merge(a, b):
for (1 = 1; i <= N+N; i++) ¢ = c->next;

1

t->next;
t->next;

et

Z;

}

return head->next;

}

This program uses a “list-header” node (pointed to by head) whose link field points
to the file being sorted. Each iteration of the outer (for) loop passes through the
file, producing a linked list comprised of sorted subfiles twice as long as in the
previous pass. This is done by maintaining two pointers, one to the part of the
list not yet seen (todo) and one to the end of that part of the list for which the
subfiles have already been merged (c). The inner (while) loop merges the two
subfiles of length N starting at the node pointed to by todo, producing a subfile
of length N+N which is linked onto the c result list.

The actual merge is accomplished by saving a link to the first subfile to be
merged in a, then skipping N nodes (using the temporary link t), linking z onto
the end of a’s list, then doing the same to get another list of N nodes pointed to by
b (updating todo with the link of the last node visited), and then calling merge.
(Then c is updated by simply chasing down to the end of the list just merged.
This is a simpler (but slightly less efficient) method than the various alternatives
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Figure 12.3 Mergesorting a Random Permutation.

available, such as having merge return pointers to both the beginning and the end
or maintaining multiple pointers in each list node.)

. Bottom-up Mergesort is also an interesting method to use for an array imple-
mentation; this is left as an instructive exercise for the reader.

Performance Characteristics

Mergesort is important because it is a rather straightforward “optimal” sorting
method that can be implemented in a stable manner. These facts are relatively
easy to prove.
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Figure 12.4 Mergesorting a Reverse-Ordered Permutation.

Property 12.1 Mergesort requires about N 1gN comparisons to sort any file of N
elements.

In the implementations above, each M -by-N merge will require M +N comparisons
(this could vary by one or two depending upon how sentinels are used). Now, for
bottom-up Mergesort, lgN passes are used, each requiring about N comparisons.
For the recursive version, the number of comparisons is described by the standard
“divide-and-conquer” recurrence My = 2Mpy ;5 + N, with M; = 0. We know from
Chapter 6 that this has the solution My ~ N lgN. These arguments are both
precisely true if N is a power of two; it is left as an exercise to show that they



Mergesort . 173

hold for general N as well. Furthermore, it turns out that they also hold in the
average case.

Property 12.2 Mergesort uses extra space proportional to N .

This is clear from the implementations, though steps can be taken to lessen the
impact of this problem. Of course, if the “file” to be sorted is a linked list, the
problem does not arise, since the “extra space” (for the links) is there for another
purpose.

For arrays, first note that it is easy to do an M -by-N merge using extra space for
the smaller of the two arrays only (see Exercise 2). This cuts the space requirement
for Mergesort by half. It is actually possible to do much better and do merges
inplace, though this is unlikely to be worthwhile in practice. m»

Property 12.3 Mergesort is stable.

Since all the implementations actually move keys only during merges, it is neces-
sary to verify merely that the merges themselves are stable. But this is trivial to
show: the relative position of equal keys is undisturbed by the merging process. =

Property 12,4 Mergesort is insensitive to the initial order of its input.

In our implementations, the input determines only the order in which elements are
processed in the merges, so this statement is literally true (except for some variation
depending on how the if statement is compiled and executed, which should be
negligible). Other implementations of merging which involve an explicit test for
the first file exhausted may lead to some greater variation depending on the input,
but not much. The number of passes required clearly depends only on the size
of the file, not its contents, and each pass certainly requires about N comparisons
(actually N — O(1) on the average, as explained below). But the worst case is
about the same as the average case. m

Figure 12.4 shows bottom-up Mergesort operating on a file which is initially
in reverse order. It is interesting to compare this figure with Figure 8.9, which
shows Shellsort doing the same operation.

Figure 12.5 presents another view of Mergesort in operation on a random
permutation, for comparison with similar views in earlier chapters. In particular,
Figure 12.5 bears a striking resemblance to Figure 10.5: in this sense, Mergesort
is the “transpose” of straight radix sort!

Optimized Implementations

We have already paid some attention to the inner loop of array-based Mergesort in
our discussion of sentinels, where we saw that array bounds tests in the inner loop
could be avoided by reversing the order of one of the arrays. This calls attention to
a major inefficiency in the implementations above: the move from a to b. As we
saw for straight radix sort in Chapter 10, this move can be avoided by having two
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Figure 12.5 Mergesorting a Random Permutation.

copies of the code, one where we merge from a into b, another where we merge
from b into a. ’ ,
To accomplish these two improvements in combination, it is necessary to
change things so that merge can output arrays in either increasing or decreasing
order. Inthe nonrecursive version, this is accomplished by alternating between
increasing and decreasing output; in the recursive version, we have four recursive
routines: to merge from a (b) intob (a) with the result in decreasing or increasing
order. Either of these will reduce the inner loop of Mergesort to a comparison, a
store, two pointer increments (1 or j, and k), and a pointer test. This competes
favorably with Quicksort’s compare, increment and test, and (partial) exchange,
and Quicksort’s inner loop is executed 2InN ~ 1.38lg N times, about 38% more

often than Mergesort’s.

Recursion Revisited

The programs of this chapter, together with Quicksort, are typical of implementa-
tions of divide-and-conquer algorithms. We’ll see several algorithms with similar
structure in later chapters, so it’s worthwhile to take a more detailed look at some
basic characteristics of these implementations.

‘Quicksort is actually a “conquer-and-divide” algorithm: in a recursive imple-
mentation, most of the work is done before the recursive calls. On the other hand,
the recursive Mergesort has more the spirit of divide-and-conquer: first the file is
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divided into two parts, then each part is conquered individually. The first problem
for which Mergesort does actual processing is a small one; at the finish the largest
subfile is processed. Quicksort starts with actual processing on the largest subfile
and finishes up with the small ones.

This difference becomes manifest in the non-recursive implementations of the
two methods. Quicksort must maintain a stack, since it has to save large subprob-
lems which are divided up in a data-dependent manner. Mergesort admits a simple
nonrecursive version because the way in which it divides the file is independent
of the data, so the order in which it processes subproblems can be rearranged
somewhat to give a simpler program.

Another practical difference which manifests itself is that Mergesort is stable
(if properly implemented), Quicksort is not (without going to a lot of extra trouble).
For Mergesort, if we assume (inductively) that the subfiles have been sorted stably,
then we need be sure only that the merge is done in a stable manner, which
is easily arranged. But for Quicksort, no easy way of doing the partitioning in
a stable manner suggests itself, so the possibility of stability is foreclosed even
before the recursion comes into play.

One final note: like Quicksort or any other recursive program, Mergesort can
be improved by treating small subfiles in a different way. In the recursive versions
of the program, this can be implemented exactly as for Quicksort, either doing
small subfiles with insertion sort on the fly or doing a cleanup pass afterwards. In
the nonrecursive versions, small sorted subfiles can be built up in an initial pass
using a suitable modification of insertion or selection sort. Another idea that has
been suggested for Mergesort is to take advantage of “natural” ordering in the
file by using a bottom-up method which merges the first two sorted runs in the
file (however long they happen to be), then the next two runs, efc., repeating the
process until the file is sorted. Attractive as this may seem, it doesn’t stand up
against the standard method that we’ve discussed because the cost of identifying
the runs, which falls in the inner loop, more than offsets the savings achieved
except for certain degenerate cases (such as a file that is already sorted).

~
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Exercises

1. Implement a recursive Mergesort with a cutoff to insertion sort for subfiles with
less than M elements; determine empirically the value of M for which it runs
fastest on a random file of 1000 elements.

2. Empirically compare the recursive and nonrecursive Mergesorts for linked lists
and N = 1000.

3. Implement recursive Mergesort for an array of N integers, using an auxiliary
array of size less than N /2.

4. True or false: the running time of Mergesort does not depend on the value of
the keys in the input file. Explain your answer.

5. What is the smallest number of steps Mergesort could use (to within a constant
factor)?

6. Implement a bottom-up nonrecursive Mergesort that uses two arrays instead of
linked lists.

7. Show the merges done when the recursive Mergesort is used to sort the keys
EASYQUESTION.

8. Show the contents of the linked list at each iteration when the non-recursive
- Mergesort is used to sort the keyss EASYQUESTION.

9. Try doing a recursive Mergesort, using arrays, using the idea of doing 3-way
rather than 2-way merges.

10. Empirically test, for random files of size 1000, the claim in the text that the
idea of taking advantage of “natural” order in the file doesn’t pay off.
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External Sorting

Many important sorting applications involve processing very large files, much
too large to fit into the primary memory of any computer. Methods appro-
priate for such applications are called external methods, since they involve a large
amount of processing external to the central processing unit (as opposed to the
internal methods that we’ve looked at so far).

There are two major factors that make external algorithms quite different from
those we’ve seen. First, the cost of accessing an item is orders of magnitude greater
than any bookkeeping or calculating costs. Second, over and above this higher cost,
there are severe restrictions on access, depending on the external storage medium
used: for example, items on a magnetic tape can be accessed only in a sequential
manner.

The wide variety of external storage device types and costs makes the devel-
opment of external sorting methods very dependent on current technology. These
methods can be complicated, and many parameters affect their performance: that
a clever method might go unappreciated or unused because of a simple change in
the technology is a definite possibility in external sorting. For this reason, we’ll
concentrate in this chapter on general methods rather than on developing specific
implementations.

In short, for external sorting, the “systems” aspect of the problem is certainly as
important as the “algorithms” aspect. Both areas must be carefully considered if an
effective external sort is to be developed. The primary costs in external sorting are
for input-output. A good exercise for someone planning to implement an efficient
program to sort a very large file is first to implement an efficient program to copy
a large file, then (if that was too easy) implement an efficient program to reverse
the order of the elements in a large file. The systems problems that arise in trying
to solve these problems efficiently are similar to those that arise in external sorts.
Permuting a large external file in any non-trivial way is about as difficult as sorting
it, even though no key comparisons, etc. are required. In external sorting, we are

177
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concerned mainly with limiting the number of times each piece of data is moved
between the external storage medium and the primary memory, and being sure that
such transfers are done as efficiently as allowed by the available hardware.

External sorting methods have been developed which are suitable for the
punched cards and paper tape of the past, the magnetic tapes and disks of the
present, and emerging technologies such as bubble memories and videodisks. The
essential differences among the various devices are the relative size and speed of
available storage and the types of data access restrictions. We’ll concentrate on ba-
sic methods for sorting on magnetic tape and disk because these devices are likely
to remain in widespread use and illustrate the two fundamentally different modes
of access that characterize many external storage systems. Often, modern computer
systems have a “storage hierarchy” of several progressively slower, cheaper, and
larger memories. Many of the algorithms that we will consider can be adapted
to run well in such an environment, but we’ll deal exclusively with “two-level”
memory hierarchies consisting of main memory and disk or tape.

Sort-Merge

Most external sorting methods use the following general strategy: make a first
pass through the file to be sorted, breaking it up into blocks about the size of the
internal memory, and sort these blocks. Then merge the sorted blocks together by
making several passes through the file, creating successively larger sorted blocks
until the whole file is sorted. The data is most often accessed in a sequential
manner, a property which makes this method appropriate for most external devices.
Algorithms for external sorting strive to reduce the number of passes through the
file and to reduce the cost of a single pass to be as close to the cost of a copy as
possible.

Since most of the cost of an external sorting method is for input-output, we
can get a rough measure of the cost of a sort-merge by counting the number of
times each word in the file is read or written (the number of passes over all the
data). For many applications, the methods that we consider involve on the order
of ten or fewer such passes. Note that this implies that we’re interested in methods
that can eliminate even a single pass. Also, the running time of the whole external
sort can be easily estimated from the running time of something like the “reverse
file copy” exercise suggested above.

Balanced Multiway Merging

To begin, we’ll trace through the various steps of the simplest sort-merge procedure
for a small example. Suppose that we have records with the keys ASOR TIN
GANDMERGINGEXAMPLEonaninputtape; these are to be sorted
and put onto an output tape. Using a “tape” simply means that we’re restricted to
reading the records sequentially: the second record can’t be read until the first is
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Tape1 [AJ[O]S] = [D]M][N] = [AJ[E][X] =

Tape2 [1][R]T] » [E]G][R] = [L][m][P] =

Tape3 [AJ[GI[N] = [G[1][N] = [E] =

Tape 4
Tape5 ®

Tape6 =

Figure 13.1 Balanced three-way merge: result of the first pass.

read, and so on. Assume further that we have only enough room for three records
in our computer memory but that we have plenty of tapes available.

The first step is to read in the file three records at a time, sort them to make
three-record blocks, and output the sorted blocks. Thus, first we read in A S O
and output the block A O S, next we read in R T I and output the block IR T,
and so forth. Now, in order for these blocks to be merged together, they must be
on different tapes. If we want to do a three-way merge, then we would use three
tapes, ending up after the sorting pass with the configuration shown in Figure 13.1.

Now we’re ready to merge the sorted blocks of size three. We read the first
record off each input tape (there’s just enough room in the memory) and output
the one with the smallest key. Then the next record from the same tape as the
record just output is read in and, again, the record in memory with the smallest
key is output. When the end of a three-word block in the input is encountered,
that tape is ignored until the blocks from the other two tapes have been processed
and nine records have been output. Then the process is repeated to merge the
second three-word block on each tape into a nine-word block (which is output on
a different tape, to get ready for the next merge). By continuing in this way, we
get three long blocks configured as shown in Figure 13.2.

Tapel W
Tape2 ©
Tape3d W

Tape4 [AJ[A][G] I][N]O]R]S|T|m
Tape5 [D|[EJ[GIG]1]M]|[N][N][R] =

Tape 6 [AJE]E]L]M][P]X]

Figure 13.2 Balanced three-way merge: result of the second pass.
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Now one more three-way merge completes the sort. If we had a much longer
file with many blocks of size 9 on each tape, then we would finish the second
pass with blocks of size 27 on tapes 1, 2, and 3, then a third pass would produce
blocks of size 81 on tapes 4, 5, and 6, and so forth. We need six tapes to sort an
arbitrarily large file: three for the input and three for the output of each three-way
merge. (Actually, we could get by with just four tapes: the output could be put
on just one tape, and then the blocks from that tape distributed to the three input
tapes in between merging passes.)

This method is called the balanced multiway merge: it is a reasonable algorithm
for external sorting and a good starting point for the implementation of an external
sort. The more sophisticated algorithms below can make the sort run a little faster,
but not much. (However, when execution times are measured in hours, as is not
uncommon in external sorting, even a small percentage decrease in running time
can be quite significant.) '

Suppose that we have N words to be manipulated by the sort and an internal
memory of size M. Then the “sort” pass produces about N /M sorted blocks.
(This estimate assumes one-word records: for larger records, the number of sorted
blocks is computed by multiplying further by the record size.) If we do P-way
merges on each subsequent pass, then the number of subsequent passes is about
logp (N /M), since each pass reduces the number of sorted blocks by a factor of P.

Though small examples can help one understand the details of the algorithm,
it is best to think in terms of very large files when working with external sorts.
For example, the formula above says that using a four-way merge to sort a 200-
million-word file on a computer with a million words of memory should take a
total of about five passes. A very rough estimate of the running time can be found
by multiplying by five the running time for the reverse file copy implementation
suggested above.

Replacement Selection

It turns out that the details of the implementation can be developed in an elegant
and efficient way using priority queues. First, we’ll see that priority queues provide
a natural way to implement a multiway merge. More important, it turns out that
we can use priority queues for the initial sorting pass in such a way that they can
produce sorted blocks much longer than could fit into internal memory.

The basic operation needed to do P-way merging is repeatedly to output the
smallest of the smallest elements not yet output from each of the P blocks to be
merged. That smallest element should be replaced with the next element from the
block from which it came. The replace operation on a priority queue of size P
is exactly what is needed. (Actually, the “indirect” versions of the priority queue
routines as described in Chapter 11 are more appropriate for this application.)
Specifically, to do a P-way merge we begin by filling up a priority queue of size P
with the smallest element from each of the P inputs using the pginsert procedure
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from Chapter 11 (appropriately modified so that the smallest element rather than
the largest is at the top of the heap). Then, using the pgqreplace procedure from
Chapter 11 (modified in the same way) we output the smallest element and replace
it in the priority queue with the next element from its block.

The process of merging A O S with I R T and A G N (the first merge from
our example above), using a heap of size three in the merging process is shown in
Figure 13.3. The “keys” in these heaps are the smallest (first) key in each node.
For clarity, we show entire blocks in the nodes of the heap; of course, an actual
implementation would be an indirect heap of pointers into the blocks. First, the
A is output so that the O (the next key in its block) becomes the “key” of the
root. This violates the heap condition, so that node is exchanged with the node
containing A, G, and N. Then that A is output and replaced with the next key in
its block, the G. This does not violate the heap condition, so no further change is
necessary. Continuing in this way, we produce the sorted file (read the smallest
key in the root node of the trees in Figure 13.3 to see the keys in the order in which
they appear in the first heap position and are output). When a block is exhausted,
a sentinel is put on the heap and considered to be larger than all the other keys.
When the heap consists of all sentinels, the merge is completed. This way of using
priority queues is sometimes called replacement selection.

Thus to do a P-way merge, we can use replacement selection on a priority
queue of size P to find each element to be output in log P steps. This performance
difference has no particular practical relevance, since a brute-force implementation
can find each element to output in P steps and P is normally so small that this
cost is dwarfed by the cost of actually outputting the element. The real importance
of replacement selection is the way that it can be used in the first part of the sort-

A0S AGN) (IRT
QRTAGN (ART)X0Ss )(ARTX0s )(N_ Xos )(RT X0Ss)

(RT) a_
RT e X O@ X HC X OC X D

Figure 13.3 Replacement selection for merging, with heap of size three.
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Figure 13.4 Replacement selection for producirig initial runs.

merge process: to form the initial sorted blocks which provide the basis for the
merging passes.

The idea is to pass the (unordered) input through a large priority queue, always
writing out the smallest element on the priority queue as above, and always re-
placing it with the next element from the input, with one additional proviso: if the
new element is smaller than the last one output, then, since it could not possibly
become part of the current sorted block, it should be marked as a member of the
next block and treated as greater than all elements in the current block. When a
marked element makes it to the top of the priority queue, the old block is ended
and a new block started. Again, this is easily implemented with pginsert and
pqreplace from Chapter 11, appropriately modified so that the smallest element
is at the top of the heap and with pqreplace changed to treat marked elements
as always greater than unmarked elements.

Our example file clearly demonstrates the value of replacement selection. W1th
an internal memory capable of holding only three records, we can produce sorted
blocks of size 5, 3, 6, 4, 5, and 2, as illustrated in Figure 13.4. As before, the order
in which-the keys occupy the first position in the heap is the order in which they
are output. The shading indicates which keys in the heap -belong to which different
blocks: an element marked the same way as the element at the root belongs to
the current sorted block and the others belong to the next sorted block. The heap
condition (first key less than the second and third) is maintained throughout, with
elements in the next sorted block considered to be greater than elements in the
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current sorted block. The first run ends with I N G in the heap, since these keys
all arrived with larger keys at the root (so they couldn’t be included in the first’
run), the second run ends with A N D in the heap, etc.

Property 13.1 For random keys, the runs produced by replacement selection are
about twice the size of the heap used.

Proof of this property actually requires a rather sophisticated analysis, but it is easy
to verify experimentally. =

The practical effect of this is to save one merging pass: rather than starting
with sorted runs about the size of the internal memory and then taking a merging
pass to produce runs about twice the size of the internal memory, we can start right
off with runs about twice the size of the internal memory, by using replacement
selection with a priority queue of size M. If there is some order in the keys, then the
runs will be much, much longer. For example, if no key has more than M larger
keys before it in the file, the file will be completely sorted by the replacement
selection pass, and no merging will be necessary! This is the most important
practical reason to use the method.

In summary, the replacement selection technique can be used for both the
“sort” and the “merge” steps of a balanced multiway merge.

Property 13.2 A file of N records can be sorted using an internal memory capable
of holding M records and P + 1 tapes in about 1 +logp(N /2M ) passes.

As discussed above, we first use replacement selection with a priority queue of
size M to produce initial runs of size about 2M (in a random situation) or more (if
the file is partially ordered), then use replacement selection with a priority queue
of size P for about logp (N /2M ) (or fewer) merge passes. m

Practical Considerations

To finish implementing the sorting method outlined above, it is necessary to imple-
ment the input-output functions which actually transfer data between the processor
and the external devices. These functions are obviously the key to good perfor-
mance for the external sort, and they just as obviously require careful consideration
of some systems (as opposed to algorithm) issues. (Readers not concerned with
computers at the “systems” level may wish to skim the next few paragraphs.)

A major goal in the implementation should be to overlap reading, writing, and
computing as much as possible. Most large computer systems have independent
processing units for controlling the large-scale input/output (I/0) devices which
make this overlapping possible. The efficiency to be achieved by an external
sorting method depends on the number of such devices available.

For each file being read or written, the standard systems programming tech-
nique called double-buffering can be used to maximize the overlap of I/O with
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computing. The idea is to maintain two “buffers,” one for use by the main proces-
sor, one for use by the I/O device (or the processor which controls the 1/O device).
For input, the processor uses one buffer while the input device is filling the other.
When the processor has finished using its buffer, it waits until the input device has
filled its buffer, and then the buffers switch roles: the processor uses the new data
in the just-filled buffer while the input device refills the buffer with the data already
used by the processor. The same technique works for output, with the roles of the
processor and the device reversed. Usually the 1/O time is far greater than the
processing time and so the effect of double-buffering is to overlap the computation
time entirely; thus the buffers should be as large as possible.

A difficulty with double-buffering is that it really uses only about half the
available memory space. This can lead to inefficiency if many buffers are involved,
as is the case in P-way merging when P is not small. This problem can be dealt
with using a technique called forecasting, which requires the use of only one extra
buffer (not P) during the merging process. Forecasting works as follows. Certainly
the best way to overlap input with computation during the replacement selection
process is to overlap the input of the buffer that needs to be filled next with the
processing part of the algorithm. And it is easy to determine which buffer this
is: the next input buffer to be emptied is the one whose last item is smallest. For
example, when merging A O S with IR T and A G N we know that the third buffer
will be the first to empty, then the first. A simple way to overlap processing with
input for multiway merging is therefore to keep one extra buffer which is filled by
the input device according to this rule. When the processor encounters an empty
buffer, it waits until the input buffer is filled (if it hasn’t been filled already), then
switches to begin using that buffer and directs the input device to begin filling the
buffer just emptied according to the forecasting rule.

The most important decision to be made in the implementation of the multiway
merge is the choice of the value of P, the “order” of the merge. For tape sorting,
when only sequential access is allowed, this choice is easy: P must be one less
than the number of tape units available, since the multiway merge uses P input
tapes and one output tape. Obviously, there should be at least two input tapes, so
it doesn’t make sense to try to do tape sorting with less than three tapes.

For disk sorting, when access to arbitrary positions is allowed but is somewhat
mere expensive than sequential access, it is also reasonable to choose P to be one
less than the number of disks available, to avoid the higher cost of nonsequential
access that would be involved, for example, if two different input files were on
the same disk. Another alternative commonly used is to pick P large enough
that the sort will be complete in two merging phases: it is usually unreasonable
to try to do the sort in one pass, but a two-pass sort can often be done with a
reasonably small P. Since replacement selection produces about N /2M runs and
each merging pass divides the number of runs by P, this means that P should
be chosen to be the smallest integer with P? > N/2M. For our example of
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sorting a 200-million-word file on a computer with a one-million-word memory,
this implies that P = 11 would be a safe choice to ensure a two-pass sort. (The
right value of P could be computed exactly after the sort phase is completed.) The
best choice between these two alternatives of the lowest reasonable value of P and
the highest reasonable value of P is very dependent on many systems parameters:
both alternatives (and some in between) should be considered.

Polyphase Merging

One problem with balanced multiway merging for tape sorting is that it requires
either an excessive number of tape units or excessive copying. For P-way merging
either we must use 2P tapes (P for input and P for output) or we must copy almost
all of the file from a single output tape to P input tapes between merging passes,
which effectively doubles the number of passes to be about 2logp (N /2M ). Several
clever tape-sorting algorithms have been invented which eliminate virtually all of
this copying by changing the way in which the small sorted blocks are merged
together. The most prominent of these methods is called polyphase merging.

The basic idea behind polyphase merging is to distribute the sorted blocks
produced by replacement selection somewhat unevenly among the available tape
units (leaving one empty) and then to apply a “merge-until-empty” strategy, at
which point one of the output tapes and the input tape switch roles.

For example, suppose that we have just three tapes, and we start out with
the initial configuration of sorted blocks on the tapes shown at the top of Figure

Tape1 |AJO|R|S[T|m[1[N|m|A[G[N|=[D[E[MR|[u[G[I|N|u
Tape2 |E[G[X|w[A[M[P|m[E[L|m
‘Tape 3 L

Tapel |D/E[M|/R|m|G|I[N|m=
Tape 2 a
Tape3 |A[E|G[O[R[S[T{X|m[A[I[M|N[P|m|A[E[G|L|N|m

Tape 1 u
Tape2 |A|D|E|E|G]M[O|R|R[S|T|X|m[A]G[1]1][M|N|N]P|m

Tape3 |[A[E|G|L[N|m

Figure 13.5 TInitial stages of polyphase merging with three tapes.
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13.5. (This comes from applying replacement selection to our example file with
an internal memory that can only hold two records.) Tape 3 is initially empty, the
output tape for the first merges. Now, after three two-way merges from tapes 1
and 2 to tape 3, the second tape becomes empty, as shown in the middle of Figure
13.5. Then, after two two-way merges from tapes 1 and 3 to tape 2, the first tape
becomes empty, as shown at the bottom of Figure 13.5 The sort is completed in
two more steps. First, a two-way merge from tapes 2 and 3 to tape 1 leaves one
file on tape 2, one file on tape 1. Then a two-way merge from tapes 1 and 2 to
tape 3 leaves the entire sorted file on tape 3.

This merge-until-empty strategy can be extended to work for an arbitrary num-
ber of tapes. Figure 13.6 shows how six tapes might be used to sort 497 initial -
runs. If we start out as indicated in the first column of Figure 13.6, with Tape 2
being the output tape, Tape 1 having 61 initial runs, Tape 3 having 120 initial runs,
etc. as indicated in the first column of Figure 13.6, then after running a five-way
“merge until empty,” we have Tape 1 empty, Tape 2 with 61 (long) runs, Tape 3
with 59 runs, etc., as shown in the second column of Figure 13.6. At this point,
we can rewind Tape 2 and make it an input tape, and rewind Tape 1 and make it
the output tape. Continuing in this way, we eventually get the whole sorted file
onto Tape 1. The merge is broken up into many phases which don’t involve all
the data, but no direct copying is involved.

The main difficulty in implementing a polyphase merge is to determine how
to distribute the initial runs. It is not difficult to see how to build the table above
by working backwards: take the largest number in each column, make it zero, and
add it to each of the other numbers to get the previous column. This corresponds
to defining the highest-order merge for the previous column which could give the
present column. This technique works for any number of tapes (at least three):
the numbers which arise are “generalized Fibonacci numbers” which have many
interesting properties. Of course, the number of initial runs may not be known in
advance, and it probably won’t be exactly a generalized Fibonacci number. Thus a

Tape 1 61 0 31 15
Tape 2 0 61 30 14
Tape 3 120 59 28 12
Tape 4 116 55 24 8
Tape 5 108 47 16 0
Tape 6 92 31 0 16

@ o © A O N
AR A O N
N~
NN N N N D
DO OO O~

Figure 13.6 Run distribution for six-tape polyphase merge.
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number of “dummy” runs must be added to make the number of initial runs exactly
what is needed for the table.

The analysis of polyphase merging is complicated and interesting, and yields
surprising results. For example, it turns out that the very best method for distribut-
ing dummy runs among the tapes involves using extra phases and more dummy
runs than would seem to be needed. The reason for this is that some runs are used
in merges much more often than others.

~ Many other factors must be taken into consideration in implementing a most
efficient tape-sorting method. A major factor which we have not considered at all
is the time that it takes to rewind a tape. This subject has been studied extensively,
and many fascinating methods have been defined. However, as mentioned above,
the savings achievable over the simple multiway balanced merge are quite limited.
Even polyphase merging is better than balanced merging only for small P, and
then not substantially. For P > 8, balanced merging is likely to run faster than
polyphase, and for smaller P the effect of polyphase is basically to save two tapes
(a balanced merge with two extra tapes will run faster).

An Easier Way

Many modern computer systems provide a large virtual memory capability which
should not be overlooked in implementing a method for sorting very large files. In -
a good virtual-memory system, the programmer can address a very large amount
of data, leaving to the system the responsibility of making sure that the addressed
data is transferred from external to internal storage when needed. This strategy
relies on the fact that many programs have a relatively small “locality of reference”:
each reference to memory is likely to be to an area of memory that is relatively
close to other recently referenced areas. This implies that transfers from external
to internal storage are needed infrequently. An internal sorting method with a
small locality of reference can work very well on a virtual-memory system. (For
example, Quicksort has two “localities™ most references are near one of the two
partitioning pointers.) But check with your systems programmer before expecting
to reap significant savings: a method such as radix sorting, which has no locality
of reference whatsoever, would be disastrous on a virtual memory system, and
even Quicksort could cause problems, depending on how well the available virtual
memory system is implemented. On the other hand, the strategy of using a simple
internal sorting method for sorting disk files deserves serious consideration in a
good virtual-memory environment. :
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Exercises

1. Describe how you would do external selection: find the kth largest element
in a file of N elements, where N is much too large for the file to fit in main
memory.

2. Implement the replacement selection algorithm, then use it to test the claim
that the runs produced are about twice the internal memory size.

3. What is the worst that can happen when replacement selection is used to pro-
duce initial runs in a file of N records, using a priority queue of size M with
M <N?

4. How would you sort the contents of a disk if no other storage (except main
memory) were available for use?

5. How would you sort the contents of a disk if only one tape (and main memory)
were available for use?

6. Compare the four-tape and six-tape multiway balanced merge to polyphase
merge with the same number of tapes, for 31 initial runs.

7. How many phases does five-tape polyphase merge use when started up with
four tapes containing 26, 15, 22, and 28 runs initially?

8. Suppose the 31 initial runs in a four-tape polyphase merge are each one record
long (initially distributed 0, 13, 11, 7). How many records are there 'in each
of the files involved in the last three-way merge?

9. How should small files be handled in a Quicksort implementation to be run on
a very large file in a virtual-memory environment?

10. How would you organize an external priority queue? (Specifically, design a
way to support the insert and remove operations of Chapter 11, when the
number of elements in the priority queue could grow to be much too large for
the queue to fit in main memory.)
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SOURCES for Sorting

The primary reference for this section is Volume 3 of D. E. Knuth’s series, on
sorting and searching. Further information on virtually every topic that we’ve
touched upon can be found in this book. In particular, the results discussed here
on performance characteristics of the various algorithms are backed up there by
complete mathematical analyses.

There is a vast literature on sorting. Knuth and Rivest’s 1973 bibliography
contains hundreds of entries, and this doesn’t include the treatment of sorting in
countless books and articles on other subjects. A more up-to-date reference, with
an extensive bibliography covering work to 1984, is Gonnet’s book.

For Quicksort, the best reference is Hoare’s original 1962 paper, which sug-
gests all the important variants, including the use for selection discussed in Chapter
9. Many more details on the mathematical analysis and the practical effects of many
of the modifications and embellishments suggested over the years may be found in
this author’s 1978 book.

A good example of an advanced priority queue structure is J. Vuillemin’s “bi-
nomial queues” as implemented and analyzed by M. R. Brown. This data structure
supports all the priority queue operations in an elegant and efficient manner. The
state of the art in this type of data structure, for practical implementations, is the
“pairing heap” described by Fredman, Sedgewick, Sleator, and Tarjan.

To get an impression of the myriad details of reducing algorithms like those
we have discussed to general-purpose practical implementations, the reader would
be advised to study the reference material for his particular computer system’s sort
utility. Such material necessarily deals primarily with formats of keys, records and
files as well as many other details, and it is often interesting to identify how the
algorithms themselves are brought into play.

M. R. Brown, “Implementation and analysis of binomial queue algorithms,” SIAM
Journal of Computing, 7, 3 (August, 1978).

M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E. Tarjan, “The pairing heap:
a new form of self-adjusting heap,” Algorithmica, 1, 1 (1986). '

G. H. Gonnet, Handbook of Algorithms and Data Structures, Addison-Wesley,
Reading, MA, 1984, .

C. A, R. Hoare, “Quicksort,” Computer Journal, 5, 1 (1962).

D. E. Knuth, The Art of Computer Programming. Volume 3 : Sorting and Searching,
second printing, Addison-Wesley, Reading, MA, 1975.

R. L. Rivest and D. E. Knuth, “Bibliography 26: Computing Sorting,” Computing
Reviews, 13, 6 (June, 1972).

R. Sedgewick, Quicksort, Garland, New York, 1978. (Also appeared as the author’s
Ph.D. dissertation, Stanford University, 1975.)
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Elementary Searching Methods

A fundamental operation intrinsic to a great many computational tasks is
searching: retrieving some particular piece or pieces of information from a
large amount of previously stored information. Normally we think of the informa-
tion as divided up into records, each record having a key for use in searching. The
goal of the search is to find all records with keys matching a given search key.
The purpose of the search is usually to access information within the record (not
merely the key) for processing.

- Applications of searching are widespread, and involve a variety of different
operations. For example, a bank needs to keep track of all its customers’ account
balances and to search through them to check various types of transactions. An
airline reservation system has similar demands, in some ways, but most of the data
is rather short-lived.

Two common terms often used to describe data structures for searching are
dictionaries and symbol tables. For example, in an English language dictionary,
the “keys” are the words and the “records” the entries associated with the words
that contain the definition, pronunciation, and other information. One can prepare
for learning and appreciating searching methods by thinking about how one would
implement a system for searching in an English language dictionary. A symbol
table is the dictionary for a program: the “keys” are the symbolic names used in
the program, and the “records” contain information describing the object named.

In searching (as in sorting) we have programs that are in widespread and
frequent use, so that it will be worthwhile to study a variety of methods in some
detail. As with sorting, we’ll begin by looking at some elementary methods that are
very useful for small tables and in other special situations and illustrate fundamental
techniques exploited by more advanced methods. We’ll look at methods that store
records in arrays that are either searched with key comparisons or indexed by key
value, and we’ll look at a fundamental method that builds structures defined by the
key values.

193
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As with priority queues, it is best to think of search algorithms as belonging to
packages implementing a variety of generic operations that can be separated from
particular implementations, so that alternate implementations can be substituted
easily. The operations of interest include:

Initialize the data structure.

Search for a record (or records) having a given key.
Insert a new record.

Delete a specified record.

Join two dictionaries to make a large one.

Sort the dictionary; output all the records in sorted order.

As with priority queues, it is sometimes convenient to combine some of these
operations. For example, a search and insert operation is often included for effi-
ciency in situations where records with duplicate keys are not to be kept within the
data structure. In many methods, once it has been determined that a key does not
appear in the data structure, then the internal state of the search procedure contains
precisely the information needed to insert a new record with the given key.

Records with duplicate keys can be handled in one of several ways, depending
on the application. First, we could insist that the primary searching data structure
contain only records with distinct keys. Then each “record” in this data structure
might contain, for example, a link to a list of all records having that key. This
is-convenient in some applications since all records with a given search key are
returned with one search. A second possibility is to leave records with equal keys
in the primary searching data structure and return any record with the given key for
a search. This is simpler for applications that process one record at a time, where
the order in which records with duplicate keys are processed is not important. It is
inconvenient in terms of the algorithm design because a mechanism for retrieving
another record or all records with a given key must still be provided. A third
possibility is to assume that each record has a unique identifier (apart from the
key) and require that a search find the record with a given identifier, given the
key. A fourth possiblity is to arrange for the search program to call a specified
function for each record with the given key. Or some more complicated mechanism
might be necessary. When describing search algorithms, we mention informally
how records with equal keys might be found, without specifying precisely which
mechanism to use. Our examples generally contain equal keys.

Each of the fundamental operations listed above has important applications,
and quite a large number of basic organizations have been suggested to support
efficient use of various combinations of the operations. In this and the next few
chapters, we’ll concentrate on implementations of the fundamental functions search
and’insert (and, of course, initialize), with some comment on delete and sort when
appropriate. Like priority queues, the join operation normally requires advanced
techniques which we won’t be able to consider here.
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Sequential Searching

The simplest method for searching is simply to store the records in an array. When
a new record is to be inserted, we put it at the end of the array; when a search is to
be performed, we look through the array sequentially. The following code shows an
implementation of the basic functions using this simple organization and illustrates
some of the conventions that we’ll use in implementing searching methods.

static struct node
{ int key; int info; };
static struct node a[maxN+1l];
static int N;
seginitialize ()
{ N =20;}
int segsearch(int v)
{ .
int x = N+1;
al0].key = v; al[0].info = -1;
while (v != a[--x].key) ;
return afx].info;
}
. seqginsert (int v, int info)
{ a[++tN].key = v; a[N].info = info; }

This is an implementation supporting an abstract data type where integer Keys (key)
are use to store and recall ¢ ‘associated information” (inf o) As with sorting, it will
be necessary. in many applications to extend the programs to handle more compli-
cated records and keys, but this will make no fundamental change in the algorithms.
For example, changing int key to char *key in the declaration of node,
int v to char *v in both argument declarations, and v != a[--x].key to
strcmp (v, al--x].key) in segsearch converts the above code into a pack-

age that uses character strings instead of integers as keys. Or info could be a
pointer to a complicated record structure. ‘In such a case, this field can serve as
the record’s unique identifier for use in distinguishing among records with equal
keys. As it stands, this routine returns the info field from the first record found
that has the key sought (—1 if there is no such record):

" A sentinel record is used: its key field is initialized to the value sought to
ensure that the search will always terminate and therefore enable the inner loop to
be coded with just one completion. test. The info field of the sentinel record is set
to —1 so that value will be returned when no other record has the given key value.
This is analogous to our use of a sentinel record containing the smallest or largest
key value to simplify the coding of the inner loop of various sorting algorithms.
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Property 14.1 Sequential search (array implementation) uses N +1 comparisons
for an unsuccessful search (always) and about N /2 comparisons for a successful
search (on the average).

For unsuccessful search, this property follows directly from the code: each record
must be examined to decide that a record with any particular key is absent. For
successful search, if we assume that each record is equally likely to be sought, then
the average number of comparisons is

N+1

1
ﬁ(1+2+"'+N)=

exactly half the cost of unsuccessful search. m

Sequential searching obviously can be adapted in a natural way to use a linked-
list representation for the records. One advantage of doing so is that it becomes
easy to keep the list sorted:

static struct node

{ int key, info; struct node *next; }:
static struct node *head, *z;
listinitialize ()

{

head = (struct node *) malloc(sizeof *head) ;
z = (struct node *) malloc(sizeof *z);
head->next = z; z->next = z; z->info = -1;

int listsearch (int v)

struct node *t = head;

z—->key = v;

while (v > t->key) t = t->next;
if (v != t->key) return z->info;
return t->info;

As is customary in C, we use the while implementation given above interchange-
ably with for (z->key = v; v > t->key; t = t->next) ; (de-
pending upon whether additional code is involved). Since the list is sorted, each
search can be terminated when a record with a key not smaller than the search key
is found. Of course, the sort function is trivial for this arrangement, which might
be useful in some applications. The sorted order is easy to maintain by inserting
each new record where an unsuccessful search for it terminates:
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listinsert (int v, int info)
( .
struct node *x, *t = head;
z->key = v;
while (v > t->next->key) t = t->next;
x = (struct node *) malloc(sizeof *x);
x->next = t->next; t->next = X;
x->key = v; x->info = info;

As usual with linked lists, a dummy header node head and a tail node z allow
_substantial simplification of the code. This is coded as an alternate implementation
of the same abstract data type as the array implementation above, supporting in-
sertion, search, and initialize. We shall continue to code search algorithms in this
way, though we use slightly differing function names for clarity. Otherwise, the
implementations could be used interchangably in applications, differing only (we
expect) in time and space requirements.

Property 14.2 Sequential search (sorted list implementation) uses about N /2
comparisons for both successful and unsuccessful search (on the average).

For successful search, the situation is the same as before. For unsuccessful search, if
we assume that the search is equally likely to be terminated by the tail node z or by
each of the elements in the list (which is the case for a number of “random” search
models), then the average number of comparisons is the same as for successful
search in a table of size N + 1, or (N +2)/2.

Removing the while loop in listinsert, and removing the if state-
ment and changing the condition on the while loop to (v != t->key) in
listsearch gives an “unsorted list” implementation of sequential search with
performance characteristics about the same as for the array implementation. =

If something is known about the relative frequency of access for various
records, then substantial savings can often be realized simply by ordering the
records intelligently. The “optimal” arrangement is to put the most frequently ac-
cessed record at the beginning, the second most frequently accessed record in the
second position, etc. This technique can be very effective, especially if only a
small set of records is frequently accessed.

If information is not available about the frequency of access, then an approxi-
mation to the optimal arrangement can be achieved with a “self-organizing” search:
each time a record is accessed, move it to the beginning of the list. This method
is more conveniently implemented when a linked-list implementation is used. Of
course the running time depends on the record access distributions, so it is difficult
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to predict how the method will do in general. But it is well suited to the common
situation when many accesses to many records are close together.

Binary Search

If the set of records is large, then the total search time can be significantly reduced
by using a search procedure based on applying the “divide-and-conquer” paradigm:
divide the set of records into two parts, determine which of the two parts the key
sought belongs to, then concentrate on that part. A reasonable way to divide the
sets of records into parts is to keep the records sorted, then use indices into the
sorted array to delimit the part of the array being worked on:

int binsearch (int v)
{
int 1 = 1; int r = N; int x;
while (r >= 1)
{
x = (l4+r)/2;
if (v < a[x].key) r = x-1; else 1 = x+1;
if (v == a[x].key) return a[x].info;
}

return -1;

To find if a given key v is in the table, first compare it with the element at the
middle position of the table, If v is smaller, then it must be in the first half of the
table; if v is greater, then it must be in the second half of the table. Then apply

IAEGEEEE]

Figure 14.1 Binary search.
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Figure 14.2 Binary search in a larger file.

this method recursively. Since only one recursive call is involved, it is simpler to
express the method iteratively.

Like Quicksort and radix exchange sort, this method uses the pointers 1 and
r to delimit the subfile currently being worked on. If this subfile becomes empty,
the search is unsuccessful. Otherwise the variable x is set to point to the midpoint
of the interval, and there are three possibilities: a record with the given key is
found, or the left pointer is changed to x+1, or the right pointer is changed to
x-1, depending on whether the search value v is equal to, less than, or greater
than the key value of the record stored at a [x].

Figure 14.1 shows the subfiles examined by this method when searching for
M in a table built by inserting the keys ASEARCHINGEXAMPLE.
The interval size is at least halved at each step, so only four comparisons are used
for this search. Figure 14.2 shows a larger example, with 95 records; here only
seven comparisons are required for any search.
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Property 14.3  Binary search never uses more than Ilg N +1 comparisons for either
successful or unsuccessful search.

This follows from the fact that the subfile size is at least halved at each step: an
upper bound on the number of comparisons satisfies the recurrence Cy = Cy 2+l
with Cy = 1, which implies the stated result (Formula 2 in Chapter 6). =

It is important to note that the time required to insert new records is high
for binary search: the array must be kept sorted, so some records must be moved
to make room for any new record. If a new record has a smaller key than any
record in the table, then every entry must be moved over one position. A random
insertion requires that N /2 records be moved, on the average. Thus, this method
should not be used for applications involving many insertions. It is best suited for
situations in which the table can be “built” ahead of time, perhaps using Shellsort
or Quicksort, and then used for a large number of (very efficient) searches. '

A successful search for info associated with a key v that is present multiple
times will end somewhere within a contiguous block of records with key v. If the
application requires access to all such records, they can be found by scanning both
directions from the point where the search terminated. A similar mechanism can
be used to solve the more general problem of finding all records with keys falling
within a specified interval.

The sequence of comparisons made by the binary search algorithm is prede-
termined: the specific sequence used depends on the value of the key being sought
and the value of N. The comparison structure can be simply described by a binary
tree structure. Figure 14.3 shows the comparison structure for our example set of
keys. In searching for a record with the key M for instance, it is first compared
to H. Since M is greater, it is next compared to N (otherwise it would have been
compared to C), then it is compared to L, and then the search terminates success-
fully on the fourth comparison. Below we will see algorithms that use an explicitly
constructed binary tree structure to guide the search.

Figure 14.3 Comparison tree for binary search.
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Figure 14.4 Interpolation search.

One improvement possible in binary search is to try to guess more precisely
where the key being sought falls within the current interval of interest (rather than
blindly using the middle element at each step). This mimics the way one looks up
a number in the telephone directory, for example: if the name sought begins with
B, one looks near the beginning, but if it begins with Y, one looks near the end.
This method, called interpolation search, requires only a simple modification to
the program above. In the program above, the new place to search (the midpoint
of the interval) is computed with the statement x = (1+r) /2, which is derived
from the expression

x=l+%(r—l).

The middle of the interval is computed by adding half the size of the interval to the
left endpoint. Interpolation search simply amounts to replacing 1/2 in this formula
by an estimate of where the key might be based on the values available: 1/2 would
be appropriate if v were in the middle of the interval between a[l] .key and
alr].key, but x = 1+ (v-a[l].key)*(r-1)/(alr].key-al[l].key)
might be a better guess (assuming that the key values are numerical and evenly
distributed).

Suppose in our example that the ith letter in the alphabet is represented by
the number i. Then, in search for M, the first table position examined would be
9, since 1+ (13 — 1) % (17 — 1)/(24 - 1) = 9.3.... The search is completed in
just three steps, as shown in Figure 14.4. Other search keys are found even more
efficiently: for example the first and last elements are found in the first step. Figure
14.5 shows interpolation search on the file of 95 elements from Figure 14.2; it uses
only four comparisons where binary search required seven.

Property 14.4 Interpolation search uses fewer than 1glgN + 1 comparisons for
both successful and unsuccessful search, in files of random keys.

The proof of this fact is quite beyond the scope of this book. This function is a very
slowly growing one which can be thought of as a constant for practical purposes:
if N is one billion, IglgN < 5. Thus, any record can be found using only a few
accesses (on the average), a substantial improvement over binary search. =
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Figure 14.5 Interpolation search in a larger file.

However, interpolation search does depend heavily on the assumption that the
keys are rather well distributed over the interval: it can be badly “fooled” by
poorly distributed keys, which do commonly arise in practice. Also, the method
requires some computation: for small N, the IgN cost of straight binary search is _
close enough to Iglg N that the cost of interpolating is not likely to be worthwhile.
On the other hand, interpolation search certainly should be considered for large
files, for applications where comparisons are particularly expensive, or for external
methods where very high access costs are involved.

Binary Tree Search

Binary tree search is a simple, efficient dynamic searching method that qualifies as
one of the most fundamental algorithms in computer science. It’s classified here
as an “elementary” method because it is so simple; but in fact it is the method of
choice in many situations.

We’ve discussed trees at some length in Chapter 4. To review the terminology:
The defining property of a tree is that every node is pointed to by only one other
node called its parent. The defining property of a binary tree is that each node has
left and right links. For searching, each node also has a record with a key value;
in a binary search tree we insist that all records with smaller keys are in the left
subtree and that all records in the right subtree have larger (or equal) key values.
We’ll soon see that it is quite simple to ensure that binary search trees built by
successively inserting new nodes satisfy this defining property. An example of a
binary search tree is shown in Figure 14.6; as usual, empty subtrees are represented
by small square nodes.
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Figure 14.6 A binary search tree.

A search procedure like binarysearch immediately suggests itself for this
structure. To find a record with a given key v, first compare it against the root.
If it is smialler, go to the left subtree; if it is equal, stop; if it is greater ‘go to
the right subtree. Apply this method recursively. At each step, we’re guaranteed
that no parts of the tree other than the current subtree can contain records with
key v, and, just as the size of the interval in binary search shrinks, the “current
subtree” always gets smaller. The procedure stops either when a record with key v
is found or, if there is no such record, when the “current subtree” becomes empty.
(The words “binary,” “search,” and “tree” are admittedly somewhat overused at
this point, and the reader should be sure to understand the difference between the
binarysearch function given earlier in this chapter and the binary search trees
described here. In binary search, we used a binary tree to describe the sequence of
comparisons made by a function searching in an array; here we actually construct
a data structure of records connected with links and use it for the search.)

static struct node
{ int key, info; struct node *1, *r; };
static struct node *t, *head, *z;
int treesearch(int v)
{
struct node *x = head->r;
z->key = v
while (v != x->key)
x = (v < x->key) ? x->1 : x->r;
return x->info;

It is convenient to use a tree header node head whose right link points to the
actual root node of the tree and whose key is smaller than all other key values (for
simplicity, we use 0, assuming the keys are all positive integers). The left link of
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Figure 14.7 A binary search tree (with dummy nodes).

head is not used. The need for head will become more clear below when we
discuss insertion. If a node has no left (right) subtree then its left (right) link is
set to point to a “tail” node z. As in sequential search, we put the value sought
in z to stop an unsuccessful search. Thus, the “current subtree” pointed to by x
never becomes empty and all searches are “successful”: initializing z->info to
—1 will result in the return of that indicator of unsuccessful search according to
the convention we’ve been using.

As shown above in Figure 14.6, it is convenient to think of links that point to
z as pointing to imaginary external nodes, with all unsuccessful searches ending at
external nodes. The normal nodes that contain our keys are called internal nodes;
by introducing external nodes we can say that every internal node points to two
other nodes in the tree, even though, in our implementation, all the external nodes
are represented by the single node z. Figure 14.7 shows these links and the dummy
nodes explicitly.

The empty tree is represented by having the right link of head point to z, as
constructed by the following code:

treeinitialize ()

{

Z = (struct node *) malloc(sizeof *z);
z->1 = z; z~->r = z; z->info = -1;
head = (struct node *) malloc(sizeof *head);

head->r = z; head->key = 0;
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Figure 14.8 Searching (for I) in a binary search tree.

This initializes the links of z to point to z itself; though the programs in this
chapter never access the links of z, this initialization is “safe” and convenient for
the more advanced programs that we will see later.

Figure 14.8 shows what happens when I is sought in our sample tree, using
treesearch. First, it is compared against A, the key at the root. Since I
is greater, it is next compared against S, the key in the right child of the node
containing A. Continuing in this way, I is compared next against the E to the left
of that node, then R, then H. The links in the node containing H are pointers to z
so the search terminates: I is compared to itself in z and the search is unsuccessful.

To insert a node into the tree, we do an unsuccessful search for it, then attach
it in-place of z at the point at which the search terminated. To do the insertion,
the following code keeps track of the parent p of x as it proceeds down the tree.
When the bottom of the tree (x == z) is reached, p points to the node whose link
must be changed to point to the new node inserted.

treeinsert (int v, int info)
{
struct node *p, *x;
p = head; x = head->r;

while (x != z)

{p==x; 2= (v<x->key) ? x->1 : x->r; }
x = (struct node *) malloc(sizeof *x);
x->key = v; x->info = info; x->1 = z; x->r = z;

if (v < p->key) p->1 = x; else p->r = Xx;

In this implementation, when a new node whose key is equal to some key
already in the tree is inserted, it will be inserted to the right of the node already in
the tree. This means that nodes with equal keys can be found by simply continuing
the search from the point where t reesearch terminates, until z is encountered.
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Figure 14.9 Insertion (of I) into a binary search tree.

The tree in Figure 14.9 results when the keys A S E A R C H I are inserted
into an initially empty tree; Figure 14.10 shows the completion of our example,
when N G E X A M P L E are added. The reader should pay particular attention
to the position of equal keys in this tree: for example, even though the three As
seem to be spread out through the tree, there are no keys “between” them.

The sort function comes almost for free when binary search trees are used,
since a binary search tree represents a sorted file if you look at it the right way. In
our figures, the keys appear in order if read from left to right on the page (1gnor1ng
their height and the links). A program has only the links to work with, but a sorting
method follows directly from the defining properties of binary search trees. The
following inorder traversal will do the job (see Chapter 4):

treeprint ()
{ treeprintr (head->r); }
treeprintr (struct node *x)
{
if (x = z)
{
treeprintr (x->1);
printnode (x);
treeprintr (x->r);

}

The call treeprint () will print out the keys of the tree in order. This defines a
sorting method which is remarkably similar to Quicksort, with the node at the root
of the tree playing a role similar to that of the partitioning element in Quicksort.
A major difference is that the tree-sorting method must use extra memory- for the
links, while Quicksort sorts with only a little extra memory.
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Figure 14.10 Building a binary search tree.

The running times of algorithms on binary search trees are quite dependent
on the shapes of the trees. In the best case, the tree could be shaped like Figure
14.3, with about IgN nodes between the root and each external node. We might
expect roughly logarithmic search times on the average, because the first element
inserted becomes the root of the tree; if N keys are to be inserted at random, then
this element would divide the keys in half (on the average), and this would yield
logarithmic search times (using the same argument on the subtrees). Indeed, were
it not for the equal keys, it could happen that the tree given above for describing
the comparison structure for binary search would be built. This would be the best
case of the algorithm, with guaranteed logarithmic running time for all searches.
Actually, in a truly random situation, the root is equally likely to be any key so
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Figure 14.11 A large binary search tree.

such a perfectly balanced tree is extremely rare. But if random keys are inserted,
it turns out that the trees are nicely balanced.

Property 14.5 A search or insertion in a binary search tree requires about 2 InN
comparisons, on the average, in a tree built from N #andom keys.

For each node in the tree, the number of comparisons used for a successful search
to that node is the distance to the root. The sum of these distances for all nodes
is called the internal path length of the tree. Dividing the internal path length by
N, we get the average number of comparisons for successful search. But if Cy
denotes the average internal path length of a binary search tree of N nodes, we
have the recurrence

1
Cy =N - 1+ﬁ Z (Ck—1+CN—k)
1<k<N

with C; = 1. (The N — 1 takes into account the fact that the root contributes 1 to the
path length of each of the other N — 1 nodes in the tree; the rest of the expression
comes from observing that the key at the root (the first inserted) is equally likely
to be the kth largest, leaving random subtrees of size k — 1 and N — k.) But this
is very nearly the same recurrence we solved in Chapter 9 for Quicksort, and it
can easily be solved in the same way to derive the stated result. The argument for
unsuccessful search is similar, though slightly more complicated.

Figure 14.11 shows a large binary search tree built from a random permutation
of 95 elements. While it has some short paths and some long paths, it may be
characterized as quite well-balanced: any search will require less than twelve
comparisons, and the “average” number of comparisons to find any key in the
tree is 7.00, as compared to 5.74 for binary search. (The average number of
comparisons for a random unsuccessful search is one more than for successful
search.) Moreover, a new key can be inserted at about the same cost, flexibility
not available with binary search. However, if the keys are not randomly ordered,
the algorithm can perform badly.
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Figure 14.12 Deletion (of E) from a binary search tree.

Property 14.6 In the worst case, a search in a binary search tree with N keys can
require N comparisons.

For example, when the keys are inserted in order (or in reverse order), the binary-
tree search method is no better than the sequential search method that we saw at
the beginning of this chaptef':‘f-.Moreover, there are many other degenerate types of
trees that can lead to the same worst case (for example, consider the tree formed
when the keys A Z B 'Y C X ...are inserted in that order into an initially empty
tree). In the next chapter, we’ll examine a technique for eliminating this worst
case and making all trees look more like the best-case tree. =

Deletion

The implementations given above for the fundamental search, insert, and sort
functions using binary tree structures are quite straightforward. However, binary
trees also provide a good example of a recurrent theme in searching algorithms:
the delete function is often quite cumbersome to implement.

Consider the tree shown at the left in Figure 14.12: to delete a node is easy
if the node has no children, like L or P (lop it off by making the appropriate link
in its parent null); or if it has just one child, like A, H, or R (move the link in
the child to the appropriate parent link); or even if one of its two children has no
children, like N (use that node to replace the parent); but what about nodes higher
up in the tree, such as E?

Figure 14.12 shows one way to delete E: replace it with the node with the
next highest key (in this case H). This node is guaranteed to have at most one
child (since there are no nodes between it and the node deleted, its left link must
be null), and is easily removed. To remove E from the tree on the left in Figure
14.12, then, we make the left link of R point to the right link (N) of H, copy the
links from the node containing E to the node containing H, and make head->r
point to H. This yields the tree on the right in the figure.

The code to cover all these cases is rather more complex than the simple
routines for search and insertion, but it is worth studying carefully to prepare for
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the more complicated tree manipulations we will be doing in the next chapter.
The following procedure deletes the first node encountered in the tree with key v.
(Alternatively, one might use info to identify the node to delete.) The variable
p is used to keep track of the parent of x in the tree and the variable ¢ is used to
find the successor node of the node to be deleted. After the deletion, x is the child
of p.

treedelete (int v)

A
struct node *c, *p, *x;
z->key = v;
P = head; x = head->r;

while (v != x->key)

{ p=2x; x = (v < x->key) ? x->1 : x->r; }
t = x;
if (t->r == 2) x = x->1;
else if (t->r->1 == z) { x = x->r; x->1 = t->1; }
else

{

¢ = x->r; while (¢c->1->1 l= z) ¢ = c->1;

X = c->1; c->1 = x->r;
x->1 = t->1; x->r = t->r;
}
free(t); :
if (v < p->key) p->1 = x; else p->r = x;

The program first searches the tree in the normal way to get to the location of t in
the tree. (Actually, the main purpose of this search is to set p, so that another node
can be linked in after t is gone.) Next, the program checks three cases: if t has
no right child, then the child of p after the deletion will be the left child of t (this
would be the case for C, L, M, P, and R in Figure 14.12); if t has a right child
with no left child then that right child will be the child of p after the deletion, with
its left link copied from t (this would be the case for A and N in Figure 14.12);
otherwise, x is set to the node with the smallest key in the subtree to the right of
t; that node’s right link is copied to the left link of its parent, and both of its links
are set from t (this would be the case for H and E in Figure 14.12). To keep the
number of cases low, this code always deletes by looking to the right, even though
it might be easier in some cases to look to the left (for example, to delete H in
Figure 14.12).

The approach seems asymmetric and rather ad hoc: for example, why not
use the key immediately before the one to be deleted, instead of the one after?
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Various similar modifications have been suggested, but differences are not likely
to be noticed in practical applications, though it has been shown that the algorithm
above can tend to leave a tree slightly unbalanced (average height proportional to
V/N) if subjected to a very large number of random delete-insert pairs.

It is actually quite typical of searching algorithms to require significantly more
complicated implementations for deletion: the keys themselves tend to be integral
to the structure, and removal of a key can involve complicated repairs. One alter-
native which is often appropriate is so-called lazy deletion, where -a node is left
in the data structure but marked as “deleted” for searching purposes. In the code
above, this can be implemented by adding one further check for such nodes before
stopping the search. One must make sure that large numbers of “deleted” nodes
don’t lead to excessive waste of time or space, but this turns out not to be an issue
for many applications. Alternatively, one could periodically rebuild the entire data
structure, leaving out the “deleted” nodes.

Indirect Binary Search Trees

As we saw with heaps in Chapter 11, for many applications we want a searching
structure to simply help us find records, not move them around. For example, we
might have an array of records with keys and we might want the search routine
to give us the index into that array of the record matching a certain key. Or we
might want to remove the record with a given index from the searching structure,
but still keep it in the array for some other use.

To adapt binary search trees to such a situation, we simply make the info
field of the nodes the array index. Then we can eliminate the key field by having
the search routines access the keys in the records directly, e.g. via an instruction
like 1f (v < alx->info]) ... . However, it is often better to make a copy
of the key and use the code above just as given. This involves using an extra copy
of the keys (one in the array, one in the tree), but this allows the same function to
be used for more than one array or, as we’ll see in Chapter 27, for more than one
key field in the same array. (There are other ways to achieve this: for example, a
procedure could be associated with each tree which extracts keys from records.)

Another direct way to achieve “indirection” for binary search trees is simply
to do away entirely with the linked implementation. That is, all links just become
indices into an array a{0], ..., a[N+1] of records which contain a key field
and 1 and r index fields. Then link references such as x~>key and x = x->1
become array references such as a[x].key and x = a[x].l. No calls to
malloc are used, since the tree exists within the record array: the dummy nodes
are allocated by setting head = 0 and z = N+1; and to insert the Mth node, we
would pass M, not v, to t reeinsert, and then simply refer to a [M] . key instead
of v and replace the line containing malloc in treeinsert with x = M.

This way of implementing binary search trees to aid in searching large arrays
of records is preferred for many applications, since it avoids the extra expense
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of copying keys as in the previous paragraph, and it avoids the overhead of the
storage-allocation mechanism implied by new. Its disadvantage is that unused links
might waste space in the record array.

A third alternative is to use parallel arrays, as we did for linked lists in Chapter
3. The implementation of this is very much as described in the previous paragraph,
except that three arrays are used, one each for the keys, left links, and right links,
The advantage of this is its flexibility. Extra arrays (extra information associated
with each node) can be easily added without changing the tree manipulation code
at all, and when the search routine gives the index for a node it gives a way to
immediately access all the arrays.
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Exercises

. Implement a sequential searching algorithm which averages about N /2 steps

for both successful and unsuccessful search, keeping the records in a sorted
array.

. Give the order of the keys after records with the keys EASYQUESTI

O N have been put into an initially empty table with search and insert using
the self-organizing search heuristic.

3. Give a recursive implementation of binary search.

10.

. Suppose that a[1] == 2*i for 1 £ 1 < N. How many table positions are

examined by interpolation search during the unsuccessful search for 2k — 1?

. Draw the binary search tree that results from inserting into an initially empty

tree records with the keyss EASYQUESTION.

. Write a recursive program to compute the height of a binary tree: the longest

distance from the root to an external node.

. Suppose that we have an estimate ahead of time of how often search keys are

to be accessed in a binary tree. Should the keys be inserted into the tree in
increasing or decreasing order of likely frequency of access? Why?

. Modify binary tree search so that it keeps equal keys together in the tree. (If

any other nodes in the tree have the same key as any given node, then either
its parent or one of its children should have an equal key.)

. Write a nonrecursive program to print out the keys from a binary search tree

in order.

Draw the binary search tree that results from inserting into an initially empty
tree records with the keys EASY QU E S TIO N, and then deleting the
Q.






15

Balanced Trees

The binary-tree algorithms in the previous chapter work very well for a
wide variety of applications, but they do have the problem of bad worst-case
performance. What’s more, as with Quicksort, it’s embarrassingly true that the bad
worst case is one that’s likely to occur in practice if the user of the algorithm is not
watching for it. Files already in order, files in reverse order, files with alternating
large and small keys, or files with any large segment having a simple structure can
cause the binary-tree search algorithm to perform very badly.

_ With Quicksort, our only recourse for improving the situation was to resort
to randomness: by choosing a random partitioning element, we could rely on the
laws of probability to save us from the worst case. Fortunately, for binary tree
searching, we can do much better: there is a general technique that will enable us
to guarantee that this worst case will not occur. This technique, called balancing,
has been used as the basis for several different “balanced-tree” algorithms. We’ll
look closely at one such algorithm and discuss briefly how it relates to some of
the other methods that are used.

As will become apparent below, implementing balanced-tree algorithms is
certainly a case of “easier said than done.” Often, the general concept behind an
algorithm is easily described, but an implementation is a morass of special and
symmetric cases. The program developed in this chapter is not only an important
searching method, but it also illustrates nicely the relationship between a “high-
level” description and a “low-level” C program to implement an algorithm,

Top-Down 2-3-4 Trees

To eliminate the worst case for binary search trees, we’ll need some flexibility in
the data structures that we use. To get this flexibility, let’s assume that the nodes
in our trees can hold more than one key. Specifically, we’ll allow 3-nodes and
4-nodes, which can hold two and three keys respectively. A 3-node has three links
coming out of it, one for all records with keys smaller than both its keys, one for
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Figure 15.1 A 2-3-4 tree.

all records with keys in between its two keys, and one for all records with keys
larger than both its keys. Similarly, a 4-node has four links coming out of it, one
for each of the intervals defined by its three keys. (The nodes in a standard binary
search tree could thus be called 2-nodes: one key, two links.) We’ll see below
some efficient ways to define and implement the basic operations on these extended
nodes; for now, let’s assume we can manipulate them conveniently and see how
they can be put together to form trees.

For example, Figure 15.1 shows a 2-3-4 tree which contains the keys ASE A -
R CHIN. It is easy to see how to search in such a tree. For example, to search
for G in the tree in Figure 15.1, we would follow the middle link from the root,
since G is between E and R, then terminate the unsuccessful search at the left link
from the node containing H, I, and N.

To insert a new node in a 2-3-4 tree, we would like, as before, to do an
unsuccessful search and then hook the node on. It is easy to see what to do if the
node at which the search terminates is a 2-node: just turn it into a 3-node. For
example, X could be added to the tree in Figure 15.1 by adding it (and another link)
to the node containing S. Similarly, a 3-node can easily be turned into a 4-node.
But what should we do if we need to insert new node into a 4-node? For example,
how shall this be done if we insert G into the tree in Figure 15.1?7 One possibility
would be to hook it on as a new leftmost child of the 4-node containing H, I, and
N, but a better solution is shown in Figure 15.2: first split the 4-node into two
2-nodes and pass one of its keys up to its parent. First the 4-node containing H,
I, and N is split into two 2-nodes (one containing H, the other containing N) and
the “middle key” I is passed up to the 3-node containing E and R, turning it into
a 4-node. Then there is room for G in the 2-node containing H.

Figure 15.2 Insertion (of G) into a 2-3-4 tree.
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Figure 15.3 Building a 2-3-4 tree.

But what if we need to split a 4-node whose parent is also a 4-node? One
method would be to split the parent also, but the grandparent could also be a 4-
node, and so could its parent, etc.. we could keep having to split nodes all the
way back up the tree. An easier approach is to make sure that the parent of any
node we see won’t be a 4-node by splitting any 4-node we see on the way down
the tree. Figure 15.3 completes the construction of a 2-3-4 tree for our full set of
keys ASEARCHINGEXAMPL E. On the first line, we see that the
root node is split during the insertion of the second E; other splits occur when the
second A, the L, and the third E are inserted.

The above example shows that we can easily insert new nodes into 2-3-4 trees
by doing a search and splitting 4-nodes on the way down the tree. Specifically, as
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Figure 154 Splitting 4-nodes.

shown in Figure 15.4, every time we encounter a 2-node connected to a 4-node,
we should transform it into a 3-node connected to two 2-nodes, and every time we
encounter a 3-node connected to a 4-node, we should transform it into a 4-node
connected to two 2-nodes.

This “split” operation works because of the way not only the keys but also the
pointers can be moved around. Two 2-nodes have the same number of pointers
(four) as a 4-node, so the split can be executed without changing anything below
the split node. And a 3-node can’t be changed to a 4-node just by adding another
key; another pointer is needed also (in this case, the extra pointer provided by the
split). The crucial point is that these transformations are purely “local”: no part of
the tree need be examined or modified other than that shown in Figure 15.4. Each
of the transformations passes up one of the keys from a 4-node to its parent in the
tree and restructures links accordingly.

Note that we needn’t worry explicitly about the parent being a 4-node, since
our transformations ensure that as we pass through each node in the tree, we come
out on a node that is not a 4-node. In particular, when we come out the bottom
of the tree, we are not on a 4-node, and we can insert the new node directly by
transforming either a 2-node to a 3-node or a 3-node to a 4-node. Actually, it is
convenient to treat the insertion as a split of an imaginary 4-node at the bottom
which passes up the new key to be inserted.

One last detail: whenever the root of the tree becomes a 4-node, we’ll just
split it into three 2-nodes, as we did for our first node split in the example above.
This turns out to be slightly simpler than the alternative of waiting until the next
insertion to do. the split because we need not worry about the parent of the root.
Splitting the root (and only this operation) makes the tree grow one level “higher.”

The algorithm sketched above gives a way to do searches and insertions in
2-3-4 trees; since the 4-nodes are split up on the way from the top down, the trees
are called top-down 2-3-4 trees. What’s interesting is that, even though we haven’t
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‘ Figure 15.5 A Large 2-3-4 Tree. l

been worrying about balancing at all, the resulting trees turn out to be perfectly
balanced!

Property 15.1 Searches in N-node 2-3-4 trees never visit more than IgN +.7
nodes.

The distance from the root to every external node is the same: the transformations
that we perform have no effect on the distance from any node to the root, except
when we split the root, and in this case the distance from all nodes to the root is
increased by one. If all the nodes are 2-nodes, the stated result holds since the tree
is like a full binary tree; if there are 3-nodes and 4-nodes, the height can only be
lower. =

Property 15.2 Insertions into N -node 2-3-4 trees require fewer than 1gN +1 node
splits in the worst case and seem to require less than one node split on the average.

The worst thing that can happen is that all the nodes on the path to the insertion
point are 4-nodes, all of which would be split. But in a tree built from a random
permutation of N elements, not only is this worst case unlikely to occur, but also
few splits seem to be required on the average, because there are not many 4-nodes.
Figure 15.5 shows a tree built from a random permutation of 95 elements: there
are nine 4-nodes, only one of which is not on the bottom level. Analytical results
on the average-case performance of 2-3-4 trees have so far €luded the experts, but
empirical studies consistently show that very few splits are done. m

The description given above is sufficient to define an algorithm for searching
using 2-3-4 trees which has guaranteed good worst-case performance. However,
we are only halfway towards an actual implementation. While it would be possible
to write algorithms which actually perform transformations on distinct data types
representing 2-, 3-, and 4-nodes, most of the things that need to be done are very
inconvenient in this direct representation. (One can become convinced of this by
trying to implement -even the simpler of the two node transformations.) Further-
more, the overhead incurred in manipulating the more complex node structures is
likely to' make the algorithms slower than standard binary-tree search. The pri-
mary purpose of balancing is to provide “insurance” against a bad worst case, but
it would be unfortunate to have to pay the overhead cost for that insurance on every
run of the algorithm. Fortunately, as we’ll see below, there is a relatively simple
representation of 2-, 3-, and 4-nodes that allows the transformations to be done
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Figure 15.6 Red-black representation of 3-nodes and 4-nodes.

in a uniform way with very little overhead beyond the costs incurred by standard
binary-tree search.

Red-Black Trees

Remarkably, it is possible to represent 2-3-4 trees as standard binary trees (2-nodes
only) by using only one extra bit per node. The idea is to represent 3-nodes and
4-nodes as small binary trees bound together by “red” links; these contrast with
the “black” links that bind the 2-3-4 tree together. The representation is simple:
as shown in Figure 15.6, 4-nodes are represented as three 2-nodes connected by
red links and 3-nodes are represented as two 2-nodes connected by a red link (red
links are drawn as thick lines). (Either orientation is legal for a 3-node.)

Figure 15.7 shows one way to represent the final tree from Figure 15.3. If we
eliminate the red links and collapse together the nodes they connect, the result is
the 2-3-4 tree in Figure 15.3. The extra bit per node is used to store the color of
the link pointing to that node: we’ll refer to 2-3-4 trees represented in this way as
red-black trees.

The “slant” of each 3-node is determined by the dynamics of the algorithm to
be described below. There are many red-black trees corresponding to each 2-3-4
tree. It would be possible to enforce a rule that 3-nodes all slant the same way,
but there is no reason to do so.

These trees have many structural properties that follow directly from the way
in which they are defined. For example, there are never two red links in a row

Figure 15.7 A red-black tree. v
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along any path from the root to an external node, and all such paths have an equal
number of black links. Note that it is possible that one path (alternating black-red)
be twice as long as another (all black), but that all path lengths are still proportional
to logN.

A striking feature of Figure 15.7 is the positioning of duplicate keys. On
reflection, it is clear that any balanced tree algorithm must allow records with
keys equal to a given node to fall on both sides of that node: otherwise, severe
imbalance could result from long strings of duplicate keys. This implies that we
can’t find all nodes with a given key by continuing the searching procedure, as for
standard binary search trees. Instead, a procedure like the t reeprint procedure
in Chapter 14 must be used, or duplicate keys must be avoided as discussed at the
beginning of Chapter 14,

One very nice property of red-black trees is that the treesearch procedure
for standard binary tree search works without modification (except for the matter
of duplicate keys discussed in the previous paragraph). We’ll implement the link
colors by adding a one-bit field red to each node which is 1 if the link pointing to
the node is red, 0 if it is black; the t reesearch procedure simply never examines
that field. Thus, no “overhead” is added by the balancing mechanism to the time
taken by the fundamental searching procedure. Since each key is inserted just once,
but may be searched for many times in a typical application, the end result is that
we get improved search times (because the trees are balanced) at relatively little
cost (because no work for balancing is done during the searches).

Moreover, the overhead for insertion is very small: we have to do something
different only when we see 4-nodes, and there aren’t many 4-nodes in the tree
because we’re always breaking them up. The inner loop needs only one extra test
(if a node has two red children, it’s a part of a 4-node), as shown in the following
implementation of the insert procedure:

rbtreeinsert (int v, int info)
{
x = head; p = head; g = head;
while (x != z)
{
g9 = g9/ 9 = P/ P = X}
x = (v < x->key) ? x->1 : x->r;
if (x->1->red && x->r->red) split(v);
}
x = (struct node *) malloc(sizeof *x);
x->key = v; x->info = info; x->1 = z; x->r = z;
if (v < p->key) p->1 = x; else p->r = X;
split (v);
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Figure 15.8 Insertion (of Y) into a red-black tree.

In this program, x moves down the tree as before and gg, g, and p are kept
pointing to x’s great-grandparent, grandparent, and parent in the tree. To see why
all these links are needed, consider the addition of Y to the tree in Figure 15.7.
When the external node at the right of the 3-node containing S and X is reached,
ggisR, gis S, and p is X. Now Y must be added to make a 4-node containing
S, X, and Y, resulting in the tree shown in Figuré 15.8.

We need a pointer to R (gg) because R’s right link must be changed to point
to X, not'S. To see exactly how this comes about, we need to look at the operation
of the split procedure. Let’s consider the red-black representation for the two
transformations we must perform: if we have a 2-node connected to a 4-node; then
we should convert them into a 3-node connected to two 2-nodes; if we have a
3-node connected to a 4-node, we should convert them into a 4-node connected to
two 2-nodes. When a new node is added at the bottom, it is considered to be the
middle node of an imaginary 4-node (that is, think of z as being red, though this
is never explicitly tested).

B L 0

e Y >

Figure 15.9 Splitting 4-nodes with a color flip.
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Figure 15.10 Splitting 4-nodes with a color flip: rotation needed.

The transformation required when we encounter a 2-node connected to a 4-
node is easy, and the same transformation works if we have a 3-node connected
to a 4-node in the “right” way, as shown in Figure 15.9. Thus, split begins by
marking x to be red and the children of x to be black.

This leaves the two other situations that can arise if we encounter a 3-node
connected to a 4-node, as shown in Figure 15.10. (Actually, there are four situa-
tions, since the mirror images of these two can also occur for 3-nodes of the other
orientation.) In these cases, splitting the 4-node has left two red links in a row, an
illegal situation which must be corrected. This is easily tested for in the code: we
just marked x red, so if x’s parent p is also red, we must take further action. The
situation is not too bad because we do have three nodes connected by red links:
all we need do is transform the tree so that the red links point down from the same
node.

Fortunately, there is a simple operation which achieves the desired effect. Let’s
begin with the easier of the two, the first (top) case from Figure 15.10, where the
red links are oriented the same way. The problem is that the 3-node was oriented
the wrong way: accordingly, we restructure the tree to switch the orientation of
the 3-node and thus reduce this case to be the same as the second case from Figure
15.9, where the color flip of x and its children was sufficient. Restructuring the
tree to reorient a 3-node involves changing three links, as shown in Figure 15.11;
note that Figure 15.11 is the same as Figure 15.8, but with the 3-node containing
N and R rotated. The left link of R was changed to point to P, the right link of
N was changed to point to R, and the right link of I was changed to point to N.
Also, note carefully that the colors of the two nodes are switched.

This single rotation operation is defined on any binary search tree (if we
disregard operations involving the colors) and is the basis for several balanced-tree
algorithms, because it preserves the essential character of the search tree and is
a local modification involving only three link changes. It is important to note,
however, that doing a single rotation doesn’t necessarily improve the balance of
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Figure 15.11 Rotating a 3-node in Figure 15.8.

the tree. In Figure 15.11, the rotation brings all the nodes to the left of N one step

.closer to the root, but all the nodes to the right of R are lowered one step: in this
case the rotation makes the tree less, not more balanced. Top-down 2-3-4 trees
may be viewed simply as a convenient way to identify single rotations which are
likely to improve the balance.

Doing a single rotation involves modifying the structure of the tree, some-
thing that should be done with caution. As we saw when considering the deletion
algorithm in Chapter 14, the code is more complicated than might seem neces-
sary because there are a number of similar cases with left-right symmetries. For
example, suppose that the links y, c, and gc point to I, R, and N respectively
in- Figure 15.8. Then the transformation to Figure 15.11 is effected by the link
changes c->1 = gc->r; ge->r = ¢; y->r = gc. There are three other
analogous cases: the 3-node could be oriented the other way, or it could be on

Figure 15,12 Splitting a node in a red-black tree.
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the left side of y (oriented either way). A convenient way to handle these four
different cases is to use the search key v to “rediscover” the relevant child (c)
and grandchild (gc) of the node y. (We know that we’ll only be reorienting a
3-node if the search took us to its bottom node.) This leads to somewhat simpler
code than the alternative of remembering during the search not only the two links
corresponding to ¢ and gc but also whether they are right or left links. We have
the following function for reorienting a 3-node along the search path for v whose
parent is y:

struct node *rotate(int v, struct node *y)
{
struct node *c, *gc;
c = (v < y=>key) ? y->1 : y->r;
if (v < c—>key)
{ gc = ¢c->1; ¢c->1 = gc->r; gc->r
else '
{ gc = ¢c->r; c—>r gc->1; gc->1 = c; }
if (v < y->key) y->1 = gc; else y->r = ¢gc;
return dgc;

}

I
Q
—

If y points to the root, c is the right link of v and gc is the left link of c, this
makes exactly the link transformations needed to produce the tree in Figure 15.11
from Figure 15.8. The reader may wish to check the other cases. This function
returns the link to the top of the 3-node, but does not do the color switch itself.

Thus, to handle the third case for split (see Figure 15.10), we can make g
red, then set x to rotate (v, gg), then make x black. This reorients the 3-node
consisting of the two nodes pointed to by g and p and reduces this case to be the
same as the second case, when the 3-node was oriented the right way.

Finally, to handle the case when the two red links are oriented in different
directions (see Figure 15.10), we simply set p to rotate (v, g). This reorients
the “illegal” 3-node consisting of the two nodes pointed to by p and x. These
nodes are the same color, so no color change is necessary, and we are immediately
reduced to the third case. Combining this and the rotation for the third case is
called a double rotation for obvious reasomns.

Figure 15.12 shows the split occuring in our example when G is added.
First, there is a color flip to split up the 4-node containing H, I, and N. Next, a
double rotation is needed: the first part around the edge between I and R, and the
second part around the edge between E and 1. After these modifications, G can be
inserted on the left of H, as shown in the first tree in Figure 15.13.
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This completes the description of the operations to be performed by split.
It must switch the colors of x and its children, do the bottom part of a double
rotation if necessary and then do the single rotation if necessary, as follows:

split (int v)
{

x~>red = 1; x->l->red = 0; x->r->red = 0;
if (p->red)
{
g->red = 1;
if (v<g->key != v<p->key) p = rotate(v,g);

x = rotate(v,qgqg);
x->red = 0;
}

head->r->red = 0;

This procedure fixes the colors after a rotation and also restarts x high enough
in the tree to ensure that the search doesn’t get lost due to all the link changes.
The variables x, p, g, and gg should perhaps more properly be arguments to this
function (with x a return value); we prefer them to be global, like head and z.

If the root is a 4-node then the split procedure makes the root red: this
corresponds to transforming it, along with the dummy node above it, into a 3-
node. Of course, there is no reason to do this, so a statement is included at the end
of split to keep the root black. At the beginning of the process, it is necessary
to initialize the dummy nodes carefully, as in the following code:

A

static struct node
{ int key, info, red; struct node *1, *r; };
static struct node *head, *z, *gg, *g, *p, *x;

rbtreeinitialize()
{
z = (struct node *) malloc(sizeof *z);
z->1 = z; z->r = z; z->red = 0; z->info = -1;
head = (struct node *) malloc(sizeof *head);

head->r = z; head->key = 0; head->red = 0;

Here we simply declare the binary flag red as an integer. Depending on the needs
of the application, one normally would arrange for it to use only one bit, perhaps
the sign bit of an integer key or somewhere in the record referred to by info.
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Figure 15.13 Building a red-black tree.

Assembling the code fragments above gives a very efficient, relatively simple
algorithm for insertion using a binary tree structure that is guaranteed to take a
logarithmic number of steps for all searches and insertions. This is one of the
few searching algorithms with that property, and its use is justified whenever bad
worst-case performance simply cannot be tolerated.

Figure 15.13 shows how this algorithm constructs the red-black tree for our

- sample set of keys. Here, at a cost of only a few rotations, we get a tree that has
far better balance than the one for the same keys built in Chapter 14.

Property 15.3 A search in a red-black tree with N nodes built from random keys
seems to require about 1gN comparisons, and an insertion seems to require less
than one rotation, on the average.
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Figure 15.14 A large red-black tree.

A precise average-case analysis of this algorithm is yet to be done, but there are -
convincing results from partial analyses and simulations. Figure 15.14 shows a
tree built from the larger example we’ve been using: the average number of nodes
visited during a search for a random key in this tree is just 5.81, as compared to
7.00 for the tree built from same the keys in Chapter 14, and 5.74, the best possible
for a perfectly balanced tree. =

But the real significance of red-black trees is their worst-case performance, and
the fact that this performance is achieved at very little cost. Figure 15.15 shows
the tree built if the numbers 1 to 95 are inserted in order into an intially empty
tree; even this tree is very well-balanced. The search cost per node is just as low
as if the balanced tree were constructed by the elementary algorithm, and insertion
involves only one extra bit test and an occasional split.

Property 15.4 A search in a red-black tree with N nodes requires fewer than
2 1gN +2 comparisons, and an insertion requires fewer than one-quarter as many
rotations as comparisons.

Only “splits” that correspond to a 3-node connected to a 4-node in a 2-3-4 tree
require a rotation in the corresponding red-black tree, so this property follows from
Property 15.2. The worst case arises when the path to the insertion point consists
of alternating 3- and 4-nodes. =

Figure 15.15 A red-black tree for a degenerate case.
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To summarize: by using this method, a key in a file of, say, half a million
records can be found by comparing it against only about twenty other keys. In
a bad case, maybe twice as many comparisons might be needed, but no more.
Furthermore, very little overhead is associated with each comparison, so a very
quick search is assured.

Other Algorithms

The “top-down 2-3-4 tree” implementation using the red-black framework given in
the previous section is one of several similar strategies that have been proposed for
implementing balanced binary trees. As we saw above, it is actually the “rotate”
operations that balance the trees: we’ve been looking at a particular view of the
trees that makes it easy to decide when to rotate. Other views of the trees lead to
other algorithms, a few of which we’ll mention briefly here.

The oldest and most well-known data structure for balanced trees is the AVL
tree. These trees have the property that the heights of the two subtrees of each
node differ by at most one. If this condition is violated because of an insertion, it
turns out that it can be reinstated using rotations. But this requires an extra loop:
the basic algorithm is to search for the value being inserted, then proceed up the
tree along the path just traveled, adjusting the heights of nodes using rotations.
Also, it is necessary to know whether each node has a height that is one less than,
the same as, or one greater than the height of its sibling. This requires two bits if
encoded in a straightforward way, though there is a way to get by with just one
bit per node, using the red-black framework.

A second well-known balanced tree structure is the 2-3 free, where only 2-
nodes and 3-nodes are allowed. It is possible to implement insert using an “extra
loop” involving rotations as with AVL trees, but there is not quite enough flexi-
bility to give a convenient top-down version. Again, the red-black framework can
simplify the implementation, but it is actually better to use bottom-up 2-3-4 trees,
where we search to the bottom of the tree and insert there, then (if the bottom
node was a 4-node) move back up the search path, splitting 4-nodes and inserting
the middle node into the parent, until encountering a 2-node or 3-node as a parent,
at which point a rotation might be involved to handle cases as in Figure 15.10.
This method has the advantage of using at most one rotation per insertion, which
can be an advantage in some applications. The implementation is slightly more
complicated than for the top-down method given above.

In Chapter 18, we’ll study the most important type of balanced tree, an exten-
sion of 2-3-4 trees called B-trees. These allow up to M keys per node for large M
and are widely used for searching applications involving very large files.
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Exercises

1. Draw the top-down 2-3-4 tree built when the keys EASYQUESTION
are inserted (in that order) into an initially empty tree.

2. Draw a red-black representation of the tree from the previous question,

3. Exactly whdt links are modified by split and rotate when Z is inserted
(after Y) into the example tree for this chapter?

4, Draw the red-black tree that results when the letters A through K are inserted
in order, and describe what happens in general when keys are inserted into the
trees in ascending order.

5. How many tree links actually must be changed for a double rotation, and how
many are actually changed in the implementation given?

6. Generate two random 32-node red-black trees, draw them (either by hand or
* with a program), and compare them with the unbalanced binary search trees
built with the same keys.

7. Generate ten random 1000-node red-black trees. Compute the number of ro-
tations required to build the trees and the average distance in them from the
- root to an external node. Discuss the results.

8. With one bit per node for “color,” we can represent 2-, 3-, and 4-nodes. How
many different types of nodes could we represent if we used two bits per node
for color?

9. Rotations are required in red-black trees when 3-nodes are made into 4-nodes
in an “unbalanced” way. Why not eliminate rotations by allowing 4-nodes
to be represented as any three nodes connected by two red links (perfectly
balanced or not)?

10. Give a sequence of insertions that will construct the red-black tree shown in
Figure 15.11.
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Hashing

A completely different approach to searching from the comparison-based
tree structures of the previous chapter is provided by hashing: a method for
directly referencing records in a table by doing arithmetic transformations on keys
into table addresses. If we know that the keys are distinct integers from 1 to N,
then we can store the record with key i in table position i, ready for immediate
access with the key value. Hashing is a generalization of this trivial method for
typical searching applications when we don’t have such specialized knowledge
about the key values.

The first step in a search using hashing is to compute a hash function which
transforms the search key into a table address. Ideally, different keys should map
to different addresses, but no hash function is perfect, and two or more different
keys may hash to the same table address. The second part of a hashing search
is thus a collision-resolution process which deals with such keys. One of the
collision-resolution methods that we’ll study uses linked lists, and is appropriate in
highly dynamic situations where the number of search keys cannot be predicted in
advance. The other two collision-resolution methods that we’ll examine achieve
fast search times on records stored within a fixed array.

Hashing is a good example of a time-space tradeoff. If there were no memory
limitation, then we could do any search with only one memory access by simply
using the key as a memory address. If there were no time limitation, then we
could get by with only a minimum amount of memory by using a sequential search
method. Hashing provides a way to use a reasonable amount of both memory and
time to strike a balance between these two extremes. Efficient use of available
memory and fast access to the memory are prime concerns of any hashing method.

Hashing is a “classical” computer science problem in the sense that the various
algorithms have been studied in some depth and are very widely used. There is a

great deal of empirical and analytic evidence to support the utility of hashing for
a broad variety of applications.

231
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Hash Functions

The first problem we must address is the computation of the hash function which
transforms keys into table addresses. This is an arithmetic computation with prop-
erties similar to the random number generators that we will study in Chapter 33.
What is needed is a function which transforms keys (usually integers or short char-
acter strings) into integers in the range [0, M — 1], where M is number of records
that can fit into the amount of memory available. An ideal hash function is one
which is easy to compute and approximates a “random” function: for each input,
every output should be in some sense equally likely.

Since the methods that we will use are arithmetic, the first step is to transform
keys into numbers upon which we can perform arithmetic operations. For small
keys, this might involve no work at all in some programming environments, if
we’re allowed to use binary representations of keys as numbers (see the discussion
at the beginning of Chapter 10). For longer keys, one might contemplate removing
bits from character strings and packing them together in a machine word; however
we’ll see below a uniform way to handle keys of any length.

First, suppose that we do have a large integer which directly corresponds to
our key. Perhaps the most commonly used method for hashing is to choose M to
be prime and, for any key k, compute s(k) = k mod M. This is a straightforward
method which is easy to compute in many environments and spreads the key values
out well.

- For example, suppose that our table size is 101 and we have to compute an
index for the four-character key A K E Y: If the key is encoded the simple five-bit
code used in Chapter 10 (where the ith letter in the alphabet is represented by the
binary representation of the number i), then we may 'view it as the binary number

00001010110010111001,

which is equivalent to 44217 in decimal. Now, 44217 = 80 (mod 101), so the
key A K E Y “hashes to” position 80 in the table. There are many possible keys
and relatively few table positions, so many other keys hash to the same position
(for example, the key B A R H also has hash address 80 in the code used above).

Why does the hash table size M have to be prime? The answer to this question
depends on arithmetic properties of the mod function. In essence, we are treating
the key as a base-32 number, one digit for each character in the key. We saw that
our sample A K E Y corresponds to the number 44217, which also can be written
as

1.32%+11-32%2+5.32! +25.32°

since A is the first letter in the alphabet, K the eleventh letter, etc. Now, suppose
that we were to make the unfortunate choice M = 32: because the value of
k mod 32 is unaffected by adding multiples of 32, the hash function of any key is
simply the value of its last character! Surely a good hash function should take all
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the characters of a key into account. The simplest way to ensure that it does so is
to make M prime.

But the most typical situation is when the keys are not numbers and not
necessary short, but rather alphanumeric strings (possibly quite long). How do we
compute the hash function for something like VERYLONGKE Y ? In our
code, this corresponds to the 55-bit string

1011000101100101100101100011110111000111010110010111001,

or the number
22-321045.32%+18.328+25.327+12-326+15.329+14.324+7.323+11.322+5.321 425,

which is too large to be represented for normal arithmetic functions in most com-
puters (and we should be able to handle much longer keys). In such a situation, it
turns out that we can still compute a hash function like the one above, merely by
transforming the key piece by piece. Again, we take advantage of arithmetic prop-
erties of the mod function and of a simple computing trick called Horner's method
(see Chapter 36). This method is based on yet another way of writing the number
corresponding to keys—for our example, we write the following expression:

(22 -3245)32+18)32+25)32+12)32+15)32+ 14)32+7)32+11)32+5)32+25.

This leads to a direct arithmetic way to compute the hash function:

unsigned hash (char *v)
{
int h;
for (h = 0; *v != "\0"; v++)
h = (64*h + *v) % M;
return h;

}

Here h is the computed hash value and the constant 64 is, strictly speaking, an
implementation-dependent constant related to the alphabet size. The precise value
of this constant is actually not particularly important. A disadvantage of this
method is that it requires a few arithmetic operations for each character of the key,
which could be expensive. This can be ameliorated by processing the key in bigger
pieces. Without the %, this code would compute the number corresponding to the
key as in the equation above, but the computation would overflow for long keys.
With the % present, however, it computes the hash function precisely because of
the additive and multiplicative properties of the modulus operation, and overflow
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is avoided because the % always results in a value less than M. The hash address
computed by this program for VERYLONGKE Y with M =101 is 97.

Our implementations below use strings, not integers, as keys (see the discussion
at the beginning of Chapter 14). This is the most natural situation for describing
hashing, though, for consistency with other chapters, we use one-character strings
as keys in examples.

Separate Chaining

The hash functions above convert keys into table addresses: we still need to decide
how to handle the case when two keys hash to the same address. The most
straightforward method is simply to build, for each table address, a linked list of
the records whose keys hash to that address. Since the keys which hash to the
same table position are kept in a linked list, they might as well be kept in order.
This leads directly to a generalization of the elementary list-searching method that
we discussed in Chapter 14. Rather than maintaining a single list with a single list
header node head as discussed there, we maintain M lists with M list header nodes,
initialized as follows:

static struct node
{ char *key; int info; struct node *next; };
static struct node *heads([M], *z;
hashlistinitialize ()
{
int i; )
z = (struct node *) malloc(sizeof *z);
z->next = z; z->info = -1;
for (i = 0; 1 < M; 1i++4)
{
heads[i] = (struct node *) malloc(sizeof *z);
heads[i]~>next = z;

}

Now the list search and insert procedures for Chapter 14 can be used, modified
so that a hash function is used to choose among the lists by simply replacing
references to head by heads [hash(v) ].

xey: [Al[SI[EI[A][RI[C][HI[1][N][G][E][X][A] M][P][LI[E]

hash: 1 8 5 1 7 3 8 9 3 75 2 12 515

Figure 16.1 A hash function (M = 11).
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E-E-C-m-o o

Figure 16.2 Separate chaining.

For example, if our sample keys are successively inserted into an initially
empty table using the hash function in Figure 16.1, then the set of lists shown
in Figure 16.2 would result. This method is traditionally called separate chaining
because colliding records are “chained” together in separate linked lists. The lists
could be kept in sorted order, but maintaining- sorted lists is not as important for
this application as it was for the elementary sequential search because the lists are
quite short. Obviously, the amount of time required for a search depends on the
length of the lists (and the relative positions of the keys in them).

For an “unsuccessful search” (a search for a record with a key not in the
table), we can assume that the hash function scrambles things enough that each of
the M lists is equally likely to be searched and, as in sequential list searching, that
the list searched is only traversed halfway (on vthe‘ average). The average length
of the list examined (not counting z) for unsuccessful search in this example is
(0+4+2+2+0+4+0+2+2+1+0)/11 = 1.55. By keeping the lists in sorted order,
we could cut this time about in half. For a “successfiil search” (a search for one of
the records in the table), we assume that each record is equally likely to be sought:
seven of the keys would be found as the first list ittm examined, six would be found
as the second item examined, etc., so the average is (7-1+6:2+2-342-4)/17) = 1.94.
(This count assumes that equal keys are distinguished with a unique identifier or
some other mechanism, and. that the search routine is modified appropriately to be
able to search for each individual key.)

Property 16.1 Separate chaining reduces the number of comparisons for sequen-
tial search by a factor of M (on the average), using extra space for M links.

If N, the number of keys in the table, is much larger than M then a good approxi-
mation to the average length of the lists is N /M, since each of the M hash values
is “equally likely” by design of the hash function. As in Chapter 14, unsuccessful
searches go to the end of some list and successful searches are expected to go
about halfway down some list. =
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The implementation given above uses a hash table of links to headers of the
lists containing the actual keys. One alternative to maintaining M list-header nodes
is to eliminate them and make heads be a table of links to the first keys in the
lists. This leads to some complications in the algorithm. For example, adding a
new record to the beginning of a list becomes a different operation from adding a
new record anywhere else in a list, because it involves modifying an entry in the
table of links, not a field of a record. Yet another implementation is to put the first
key within the table. Though the alternatives use less space in some situations, M
is usually small enough in comparison to N that the extra convenience of using
list-header nodes is probably justified.

In a separate chaining implementation, M is typically chosen relatively small
$0 as not to use up a large area of contiguous memory. But it’s probably best
to choose M sufficiently large that the lists are short enough to make sequential
search the most efficient method for them: “hybrid” methods (such as using binary
trees instead of linked lists) are probably not worth the trouble. As a rule of thumb,
one might choose M to be about one-tenth the number of keys expected be be in
the table, so that the lists are expected to contain about ten keys each. One of the
virtues of separate chaining is that this decision is not critical: if more keys arrive
than expected, then searches will take a little longer; if fewer keys are in the table,
then perhaps a little extra space was used. If memory really is a critical resource,
choosing M as large as one can afford still yields a factor of M improvement in
performance.

Linear Probing

If the number of elements to be put in the hash table can be estimated in advance
and enough contiguous memory is available to hold all the Keys with some room
to spare, then it is probably not worthwhile to use any links at all in the hash
table. Several methods have been devised which store N records in a table of size
M > N, relying on empty places in the table to help with collision resolution.
Such methods are called open-addressing hashing methods.

The simplest open-addressing method is called linear probing: when there is a
collision (when we hash to a place in the table which is already occupied and whose
key is not the same as the search key), then just probe the next position in the
table, that is, compare the key in the record there against the search key. There are
three possible outcomes of the probe: if the keys match, then the search terminates
successfully; if there’s no record there, then the search terminates unsuccessfully;
otherwise probe the next position, continuing until either the search key or an
empty table position is found. If a record containing the search key is to be
inserted following an unsuccessful search, then it can simply be put into the empty
table space which terminated the search. This method is easily implemented as
follows:
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static struct node

{ char *key; int info; };
static struct node a[Mtl];
hashinitialize ()

{

int i;
for (i = 0; 1 <=M; i++)
{ a[i].key = " "; a[il.info = -1; }

}
hashinsert (char *v, int info)
{
int x = hash(v);
while (strcmp(" ",al[x].key))
x = (x+1) % M;
a[x}.key = v; al[x].info = info;

}

Linear probing requires a special key value to signal an empty spot in the table; this
program uses a single blank for that purpose. The computation x = (x+1) % M
corresponds to examining the next position (wrapping back to the beginning when
the end of the table is reached). Note that this program does not check whether
the table is filled to capacity. (What would happen in this case?) The imple-
mentation of hashsearch is similar to hashinsert: simply add the condition
“strcmp (v,al[x] .key)” to the while Joop and replace the following line,
which stores the record, by return a[x].info.

For our example set of keys with M = 19, we might get the hash values shown
in Figure 16.3. If these keys are inserted in the order given into an initially empty
table, we get the sequence shown in Figure 16.4. Note that duplicate keys appear
between the initial probe position and the next empty table position, but they need
not be contiguous.

The table size for linear probing is greater than for separate chaining, since
we must have M > N, but the total amount of memory space used is less, since
no links are used. The average number of items that must be examined for a
successful search for this example is 33/17 ~ 1.94.

vey: [AIBIEIRIRICIA NG E)X]A]MPI[LIE]

hash: 1 0 5 1183 8 9 147 5 5 11316125

Figure 16.3 A hash function (M = 19).
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 16.4 Liﬁear probing,

Property 16.2 Linear probing uses less than five probes, on the average, for a
hash table which is less than two-thirds full.

The exact formula for the average number of probes required, in terms of the “load
factor” of the hash table a = N /M, is 1/2+1/2(1 — a)? for an unsuccessful search
and 1/2 +1/2(1 — @) for a successful search. Thus, if we take « = 2/3, we get
five probes for an average unsuccessful search, as stated, and two for an average
successful search. Unsuccessful search is always the more expensive of the two:
a successful search will require less than five probes until the table is about 90%
full. As the table fills up (as o approaches 1) these numbers get very large; this
should not be allowed to happen in practice, as we discuss further below. m
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Figure 16.5 Linear probing in a larger table.

Double Hashing

Linear probing (and indeed any hashing method) works because it guarantees that,
when searching for a particular key, we look at every key that hashes to the same
table address (in particular, the key itself if it’s in the table). Unfortunately, in
linear probing, other keys are also examined, especially when the table begins to
fill up: in the example above, the search for X involved looking at G, H, and 1,
none of which had the same hash value. What’s worse, insertion of a key with
one hash value can drastically increase the search times for keys with other hash
values: in the example, an insertion at position 17 would cause greatly increased
search times for position 16. This phenomenon, called clustering, can make linear
probing tun very slowly for nearly full tables. Figure 16.5 shows clusters forming
in a larger example.

Fortunately, there is an easy way to v1rtually eliminate the clustering problem:
double hashing. The basic strategy is the same; the only difference is that, instead
of examining each successive entry following a collided position, we use a second
hash function to get a fixed increment to use for the “probe” sequence. This is
easily implemented by inserting u = h2 (v) at the beginning of the function and
changing x = (x+1) % Mto x = (x+u) % M within the while loop.

The second hash function must be chosen with some care, since otherwise the
program may not work at all. First, we obviously don’t want to have u = 0, since
that would lead to an infinite loop on collision. Second, it is important that M and
u be relatively prime here, since otherwise some of the probe sequences could be
very short (consider the case M = 2u). This is easily enforced by making M prime
and u < M. Third, the second hash function should be “different from” the first,
since otherwise a slightly more complicated clustering can occur. A function such

xeyAl[S][EJ[A)RI[C][RI[T][N][G][E][x][A][m|[P][L][E]

hash 1:1 ¢ 5 1 18 3 8 914 7 5 5 1 131612 5
hash 2:7 3 3 7 6 5 8 7 2 1 3 8 7 3 8 4 3

Figure 16.6 Double hash function (M = 19).
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Figure 16.7 Double hashing.

as hptky=M — 2 — k mod (M — 2) will produce a good range of “second” hash
values, but this is perhaps going too far, since, especially for long keys, the cost
of computing the second hash function essentially doubles the cost of the search,
only to save a few probes by eliminating clustering. In practice, a much simpler
second hash function will suffice, such as Ay(k) = 8 — (k mod 8). This function
uses only the last three bits of k; it might be appropriate to use a few more for
a large table, though the effect, even if noticable, is not likely to be significant in
practice.

For our sample keys, these functions produce the hash values shown in Figure
16.6. Figure 16.7 shows the table produced by successively inserting our sample
keys into an initially empty table using double hashing with these values.
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Figure 16.8 Double hashing in a larger table.

The average number of items examined for successful search is slightly larger
than with linear probing for this example: 35/17 ~ 2.05. But in a sparser table,
there is far less clustering, as shown in Figure 16.8. For this example, there are
twice as many clusters as for linear probing (Figure 16.5), or, equivalently, the
average cluster is about half as long.

Property 16.3 Double hashing uses fewer probes, on the average, than linear
probing.

The actual formula for the average number of probes made for double hashing
with an “independent” double-hash function is 1/(1 — «) for unsuccessful search
and - In(1 — a)/a for successful search. (These formulas are the result of deep
mathernatical analysis, and haven’t even been verified for large «.) The simpler
easy-to-compute second hash function recommended above won’t behave quite
this well, but it will be rather close, especially if enough bits are used to make
the range of values possible close to M. Practically, this means that a smaller
table can be used to get the same search times with double hashing as with linear
probing for a given application: the average number of probes is less than five for
an unsuccessful search if the table is less than 80% full, and for a successful search
if the table is less than 99% full. m

Open addressing methods can be inconvenient in a dynamic situation when an
unpredictable number of insertions and deletions may have to be processed. First,
how big should the table be? Some estimate must be made of how many insertions
are expected but performance degrades drastically as the table starts to get full. A
common solution to this problem is to rehash everything into a larger table on a
(very) infrequent basis. Second, a word of caution is necessary about deletion: a
record can’t simply be removed from a table built with linear probing or double
hashing. The reason is that later insertions into the table might have skipped over
that record, and searches for those records will terminate at the hole left by the
deleted record. A way to solve this problem is to have another special key which
can serve as a placeholder for searches but can be identified and remembered as
an empty position for insertions. Note that neither table size nor deletion are a
particular problem with separate chaining.
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Perspective

The methods discussed above have been analyzed completely and it is possible to
compare their performance in some detail. The formulas given above are sum-
marized from detailed analyses described by D. E. Knuth in his book on sorting
and searching. The formulas indicate how badly performance degrades for open
addressing as a gets close to 1. For large M and N, with a table about 90% full,
linear probing will take about 50 probes for an unsuccessful search, compared to
10 for double hashing. But in practice, one should never let a hash table get to
be 90% full! For small load factors, only a few probes are required; if small load
factors can’t be arranged, hashing shouldn’t be used.

Comparing linear probing and double hashing against separate chaining is more
complicated, because more memory is available in the open-addressing methods
(since there are no links). The value of o used should be modified to take this
into account, based on the relative size of keys and links. This means that it is not
normally justifiable to choose separate chaining over double hashing on the basis
of performance. ‘

The choice of the very best hashing method for a particular application can
be very difficult. However, the very best method is rarely needed for a given
situation, and the various methods do have similar performance characteristics as
long as the memory resource is not being severely strained. Generally, the best
course of action is to use the simple separate chaining method to reduce search
times drastically when the number of records to be processed is not known in
advance (and a good storage allocator is available) and to use double hashing to
search a set of keys whose size can be roughly predicted ahead of time.

Many other hashing methods have been developed which have application in
some special situations. Although we can’t go into details, we’ll briefly consider
two examples to illustrate the nature of specially adapted hashing methods. These
and many other methods are fully described in the books by Knuth and Gonnet.

The first, called ordered hashing, exploits ordering within an open addressing
table. In standard linear probing, we stop the search when we find an empty
table position or a record with a key equal to the search key; in ordered hashing,
we stop the search when we find a record with a key greater than or equal to
the search key (the table must be cleverly constructed to make this work). This
method turns out to reduce the time for unsuccessful search to approximately that
for successful search. (This is the same kind of improvement that comes in separate
chaining.) This method is useful for applications where unsuccessful searching is
frequently used. For example, a text-processing system might have an algorithm
for hyphenating words that works well for most words but not for bizarre cases
(such as “bizarre”). The situation could be handled by looking up all words in a
relatively small exception dictionary of words which must be handled in a special
way, with most searches likely to be unsuccessful. '
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Similarly, there are methods for moving some records around during unsuc-
cessful search to make successful searching more efficient. In fact, R. P. Brent
developed a method for which the average time for a successful search can be
bounded by a constant, giving a very useful method for applications involving
frequent successful searching in very large tables such as dictionaries.

These are only two examples of a large number of algorithmic improvements
which have been suggested for hashing. Many of these improvements are in-
teresting and have important applications. However, our usual cautions must be
raised against premature use of advanced methods except by experts with serious
searching applications, because separate chaining and double hashing are simple,
efficient, and quite acceptable for most applications.

Hashing is preferred to the binary tree structures of the previous two chapters
for many applications because it is somewhat simpler and can provide very fast
(constant) searching times, if space is available for a large enough table. Binary
tree structures have the advantagés that they are dynamic (no advance information
on the number of insertions is needed), they can provide guaranteed worst-case
performance (everything could hash to the same place even in the best hashing
method), and they support a wider range of operations (most important, the sort
function). When these factors are not important, hashing is certainly the searching
method of choice.
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Exercises

1. Describe how you might implement a hash function by making use of a good
random number generator. Would it make sense to implement a random num-
ber generator by making use of a hash function?

2. How long could it take in the worst case to insert N keys into an initially
empty table, using sepatrate chaining with unordered lists? Answer the same
question for sorted lists.

3. Give the contents of the hash table that results when the keyss EASY QU
E S TIO N are inserted in that order into an initially empty table of size 13

using linear probing. (Use h1(k) = k mod 13 for the hash function for the kth
letter of the alphabet.)

4. Give the contents of the hash table that results when the keyss EASYQUE S
TIO N are inserted in that order into an initially empty table of size 13 using
double hashing. (Use A;(k) from the previous question, s(k) = 1+(k mod 11)
for the second hash function.)

5. About how many probes are involved when double hashing is used to build a
table consisting of N equal keys?

6. Which hashing method would you use for an application in which many equal
- keys are likely to be present?

7. Suppose that the number of items to be put into a hash table is known in
advance. Under what conditions will separate chaining be preferable to double
hashing?

8. Suppose a programmer has a bug in his double-hashing code so that one of the
hash functions always returns the same value (not 0). Describe what happens
in each situation (when the first one is wrong and when the second one is
wrong).

9. What hash function should be used if it is known in advance that the key values
fall into a relatively small range?

10. Criticize the following algorithm for deletion from a hash table built with linear
probing. Scan right from the element to be deleted (wrapping as necessary) to
find an empty position, then scan left to find an element with the same hash
value. Then replace the element to be deleted with that element, leaving its
table position empty.
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Radix S eai'ching

Several searching methods proceed by examining the search keys one bit
at a time, rather than using full comparisons between keys at each step.
These methods, called radix-searching methods, work with the bits of the keys
themselves, as opposed to the transformed version of the keys used in hashing. As
with radix-sorting methods (see Chapter 10), these methods can be useful when
the bits of the search keys are easily accessible and the values of the search keys
are well distributed.

The principal advantages of radix-searching methods are that they provide
reasonable worst-case performance without the complication of balanced trees;
they provide an easy way to handle variable-length keys; some allow some savings
in space by storing part of the key within the search structure; and they can provide
very fast access to data, competitive with both binary search trees and hashing. The
disadvantages are that biased data can lead to degenerate trees with bad performance
(and data comprised of characters is biased) and that some of the methods can
make very inefficient use of space. Also, as with radix sorting, these methods are
designed to take advantage of particular characteristics of a computer’s architecture:
since they use digital properties of the keys, it’s difficult or impossible to do efficient
implementations in some high-level languages.

We’ll examine a series of methods, each one correcting a problem inherent
in the previous one, culminating in an important method which is quite useful for
searching applications where very long keys are involved. In addition, we’ll see
the analogue to the “linear-time sort” of Chapter 10, a “constant-time” search based
on the same principle.

Digital Search Trees

The simplest radix-search method is digital tree searching: the algorithm is pre-
cisely the same as that for binary tree searching, except that we branch in the tree
not according to the result of the comparison between the keys, but according to
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the key’s bits. At the first level the leading bit is used, at the second level the
second leading bit, and so on until an external node is encountered. The code for
this is virtually the same as the code for binary tree search. The only difference
is that the key comparisons are replaced by calls on the bits function that we
used in radix sorting. (Recall from Chapter 10 that bits (x,k, j) is the  bits
which appear k from the right in x; it can be efficiently implemented in machine
language by shifting right k bits, then setting to 0 all but the rightmost § bits.)

int digitalsearch(int v)
{
struct node *x = head;
int b = maxb;
z—>key = v;
while (v != x->key)
x = (bits(v,b--,1)) ? x=->r : x->1;
return x->info;

The data structures for this program are the same as those that we used for elemen-
tary binary search trees. The constant maxb is the number of bits in the keys to be
sorted. The program assumes that the first bit in each key (the (maxb-+1)st from
the right) is O (perhaps the key is the result of a call to bits with a third argument
of maxb), so that searching begins at head, a link to a tree-header node with 0
key and a left link pointing to the search tree. Thus the initialization procedure
for this program is the same as for binary tree search, except that we begin with
head->1 = z instead of head->r = z.

00001
10011
00101
10010
00011
01000
01001
01110
00111
11000
01101
10000
01100

roSxXxozZz—ITOoOImwnr

Figure 17.1 A digital search tree.
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We saw in Chapter 10 that equal keys are anathema in radix sorting; the same
is true in radix searching, not in this particular algorithm, but in the ones that we’ll
be examining later. Thus we’ll assume in this chapter that all the keys to appear
in the data structure are distinct: if necessary, a linked list could be maintained for
each key value of the records whose keys have that value. As in previous chapters,
we’ll assume that the ith letter of the alphabet is represented by the five-bit binary
representation of i. The sample keys to be used in this chapter are given in Figure
17.1. To be consistent with bits, we consider the bits as numbered 0—4, from
right to left. Thus bit 0 is A’s only nonzero bit and bit 4 is P’s only nonzero bit.

The insert procedure for digital search trees also derives directly from the
corresponding procedure for binary search trees:

digitalinsert (int v, int info)
{
struct node *p, *x = head;
int b = maxb;

while (x !'= z)
{
p = X;
X = (bits(v, b~-, 1)) ? x->r : x->1;
}
X = (struct node *) malloc(sizeof *x);
x->key = v; x->info = info; x->1 = z; x->r = z;

if (bits(v, b+l, 1)) p->r = x; else p->1 = x;

The tree built by this program when our sample keys are inserted into an initially
empty tree is shown in Figure 17.1. Figure 17.2 shows what happens when a new
key Z=11010 is added to the tree in Figure 17.1. We go right twice because the
leading two bits of Z are 1 and then we go left, where we hit the external node at
the left of X, where Z is inserted.

The worst case for trees built with digital searching is much better than for
binary search trees, if the number of keys is large and the keys are not long.
The length of the longest path in a digital search tree is the length of the longest
match in the leading bits between any two keys in the tree, and this is likely to be
relatively small for many applications (for example, if the keys are comprised of
random bits).

Property 17.1 A search or insertion in a digital search tree requires about 1g N
comparisons on the average and b comparisons in the worst case in a tree built
from N random b-bit keys.
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Figure 17.2 Insertion (of Z) into a digital search tree.

It is obvious that no path will ever be any longer than the number of bits in the
keys: for example, a digital search tree built from eight-character keys with, say,
six bits per character will have no path longer than 48, even if there are hundreds of
thousands of keys. The result that digital search trees are nearly perfectly balanced
on the average requires analysis beyond the scope of this book, though it validates
the simple intuitive notion that the “next” bit of a random key should be equally
likely to begin with a O bit as a 1 bit, so half should fall on either side of any node.
Figure 17.3 shows a digital search tree made from 95 random 7-bit keys—this tree
is quite well-balanced. m

Thus, digital search trees provide an attractive alternative to standard binary
search trees, provided that bit extraction is as easy to do as key comparison (which
is a machine-dependent consideration).

Radix Search Tries

It is quite often the case that search keys are very long, perhaps consisting of
twenty characters or more. In such a situation, the cost of comparing a search
key for equality with a key from the data structure can be a dominant cost which
cannot be neglected. Digital tree searching uses such a comparison at each tree

Figure 17.3 A large digital search tree.
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node; in this section we’ll see that it is possible in most cases to get by with only
one comparison per search.

The idea is to not store keys in tree nodes at all, but rather to put all the keys
in external nodes of the tree. That is, instead of using z for external nodes of the
structure, we put nodes which contain the search keys. Thus, we have two types of
nodes: internal nodes, which just contain links to other nodes, and external nodes,
which contain keys and no links. (Fredkin named this method “trie” because it
is useful for retrieval; in conversation this word is usually pronounced “try-ee” or
just “try” for obvious reasons.) To search for a key in such a structure, we just
branch according to its bits, as above, but we don’t compare it to anything until
we get to an external node. Each key in the tree is stored in an external node on
the path described by the leading bit pattern of the key and each search key winds
up at one external node, so one full key comparison completes the search.

Figure 17.4 shows the (binary) radix search trie for the keys A S E R C. For
example, to reach E, we go left, left, right from the root, since the first three bits
of E are 001; but none of the keys in the trie begin with the bits 101, because
an external node is encountered if one goes right, left, right. Before thinking
about insertion, the reader should ponder the rather surprising property that the
trie structure is independent of the order in which the keys are inserted: there is a
unique trie for any given set of distinct keys. '

As usual, after an unsuccessful search, we can insert the key sought by re-
placing the external node which terminated the search, provided it doesn’t contain
a key. This is the case when H is inserted into the trie of Figure 17.4, as shown
in the first trie of Figure 17.5. If the external node which terminates the search
does contain a key, then it must be replaced by an internal node which will have
the key sought and the key which terminated the search in external nodes below
it. Unfortunately, if these keys agree in more bit positions, it is necessary to add
some external nodes which correspond to no keys in the tree (or put another way,
some internal nodes with an empty external node as a child). This happens when

Figure 17.4 A radix search trie.
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Figure 17.5 Building a radix search trie.

I is inserted, as shown in the second trie of Figure 17.5. The rest of Figure 17.5
shows the completion of our example as the keys N G X M P L are added.

Implementing this method in C requires some trickery because of the neces-
sity to maintain two types of nodes, both of which could be pointed to by links in
internal nodes. This is an example of an algorithm for which a low-level imple-
mentation might be simpler than a high-level implementation. We’ll omit the code
for this because we’ll see an improvement below which avoids this problem.

The left subtree of a binary radix search trie has all the keys which have 0 for
the leading bit; the right subtree has all the keys which have 1 for the leading bit.
This leads to an immediate correspondence with radix sorting: binary trie searching
partitions the file in exactly the same way as radix exchange sorting. (Compare the
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trie above with Figure 10.1, the partitioning diagram for radix exchange sorting,
after noting that-the keys are slightly different.) This correspondence is analogous
to that between binary tree searching and Quicksort.

Property 17.2 A search or insertion in a radix search trie requires about 1IgN bit
comparisons for an average search and b bit comparisons in the worst case in a
tree built from N random b-bit keys.

As above, the worst-case result comes directly from the algorithm and the average-
case result requires mathematical analysis beyond the scope of this book, though
it validates the rather simple intuitive notion that each bit examined should be as
likely to be.a 0 bit as a 1 bit, so about half the keys should fall on each side of
any trie node. =

An annoying feature of radix tries, and one which distinguishes them from the
other types of search trees we’ve seen, is the “one-way” branching required for
keys with a large number of bits in common. For example, keys which differ only
in the last bit require a path whose length is equal to the key length, no matter how
many keys there are in the tree. The number of internal nodes can be somewhat
larger than the number of keys. ‘

Property 17.3 A radix search trie built from N random b-bit keys has about
N/In2 = I 44N nodes on the average.

Again, proof of this result is quite beyond the scope of this book, though it is
easily verified empirically. Figure 17.6 shows a trie built from 95 random 10-bit
keys which has 131 nodes. =

‘The height of tries is still limited by the number of bits in the keys, but we
would like to consider the possibility of processing records with very long keys
(say 1000 bits or more) which perhaps have some uniformity, as might arise in
encoded character data. One way to shorten the paths in the trees is to use many
more than two links per node (though this exacerbates the “space” problem of using
too many nodes); another way is to “collapse” paths containing one-way branches
into single links. We’ll discuss these methods in the next two sections.

Figure 17.6 A large radix search trie.
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Multiway Radix Searching

For radix sorting, we found that we could get a significant improvement in speed
by considering more than one bit at a time. The same is true for radix searching:
by examining m bits at a time, we can speed up the search by a factor of 2.
However, there’s a catch which makes it necessary to be more careful in applying
this idea than was necessary for radix sorting. The problem is that considering m
bits at a time corresponds to using tree nodes with M = 2" links, which can lead
to a considerable amount of wasted space for unused links.

For example, if M = 4 the trie shown in Figure 17.7 is formed for our sample
keys. To search in this trie, consider the bits in the key two bits at a time: if the
first two bits are 00, then take the left link at the first node; if they are 01 take
the second link; if they are 10 take the third link; and if they are 11 take the right
link. Then branch on the next level according to the third and fourth bits, etc.
For example, to search for T=10100 in the trie in Figure 17.7, take the third link
from the root, and thén the third link from the third child of the root to access
an external node, so the search is unsuccessful. To insert T, that node could be
replaced by a new node containing T (and four external links).

Note that there is some wasted space in this tree because of the large number
of unused external links. As M gets larger, this effect gets worse: it turns out
that the number of links used is about MN /InM for random keys. On the other
hand, this is a very efficient searching method: the running time is about logy N.
A reasonable compromise can be struck between the time efficiency of multiway
tries and the space efficiency of other methods by using a “hybrid” method with a
large value of M at the top (say the first two levels) and a small value of M (or
some elementary method) at the bottom. Again, efficient implementations of such
methods can be quite complicated, however, because of multiple node types.

For example, a two-level 32-way tree divides the keys into 1024 categories,
each accessible in two steps down the tree. This would be quite useful for files of
thousands of keys, because there are likely to be (only) a few keys per category.
On the other hand, a smaller M would be appropriate for files of hundreds of keys,
because otherwise most categories would be empty and too much space would

Figure 17.7 A 4-way radix trie.
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be wasted, and a larger M would be appropriate for files with millions of keys,
because otherwise most categories would have too many keys and too much time
would be wasted.

It is amusing to note that “hybrid” searching corresponds quite closely to the
way humans search for things, for example, names in a telephone book. The first
step is a multiway decision (“Let’s see, it starts with ‘A’”), followed perhaps by
some two-way decisions (“It’s before ‘Andrews’, but after ‘Aitken™) followed by
sequential search (* ‘Algonquin’ ...‘Algren’ ...No, ‘Algorithms’ isn’t listed!”).
Of course, computers are likely to be somewhat better than humans at multiway
search, so two levels are appropriate. Also, 26-way branching (with even more
levels) is a quite reasonable alternative to consider for keys which are composed
simply of letters (for example, in a dictionary).

In the next chapter, we’ll see a systematic way to adapt the structure to take
advantage of multiway radix searching for arbitrary file sizes.

Patricia

The radix trie searching method as outlined above has two annoying flaws: the
“one-way branching” leads to the creation of extra nodes in the tree, and there
are two different types of nodes in the tree, which complicates the code somewhat
(especially the insertion code). D. R. Morrison discovered a way to avoid both
of these problems in a method which he named Patricia (“Practical Algorithm To
Retrieve Information Coded In Alphanumeric”). The algorithm given below is not
in precisely the same form as presented by Morrison, because he was interested
in “string searching” applications of the type that we’ll see in Chapter 19. In the
present context, Patricia allows searching for N arbitrarily long keys in a tree with
just N nodes, but requires only one full key comparison per search.

One-way branching is avoided by a simple device: each node contains the
index of the bit to be tested to decide which path to take out of that node. External
nodes are avoided by replacing links to external nodes with links that point upwards
in the tree, back to our normal type of tree node with a key and two links. But in
Patricia, the keys in the nodes are not used on the way down the tree to control the
search; they are merely stored there for reference when the bottom of the tree is
reached. To see how Paricia works, we’ll first look at how it operates on a typical
tree and then examine how the tree is constructed in the first place. The Patricia
tree shown in Figure 17.8 is constructed when our example keys are successively
inserted. ‘

To search in this tree, we start at the root and proceed down the tree, using
the bit index in each node to tell us which bit to examine in the search key—we
go right if that bit is 1, left if it is 0. The keys in the nodes are not examined
at all on the way down the tree. Eventually, an upwards link is encountered:
each upward link points to the unique key in the tree that has the bits that would
cause a search to take that link. For example, S is the only key in the tree that
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Flgure 17.8 A Patricia tree.

matches the bit pattern 10+11. Thus if the key at the node pointed to by the first
upward link encountered is equal to the séarch key, then the search is successful;
otherwise it is unsuccessful. For tries, all searches terminate at external nodes,
whereupon one full key comparison is done to determine whether or not the search
was successful; for Patricia all searches terminate at upwards links, Whereupon one
full key comparison is done to determine whether or not the search was successful.
Furthermore, it’s easy to test whether a link points up, because the bit indices in
the nodes (by definition) decrease as we travel down the tree. This leads to the
following search code for Patricia, which is as simple as the code for radix tree or
trie searching:

static struct node
{ int key, info, b; struct node *1, *r; };
static struct node *head;
int patriciasearch (int v)
{
struct node *p, *x;
P = head; x = head->1;
while (p->b > x->b)
{
p = x%;
b4 (bits (v, x->b, 1)) ? x->r : x->1;

Il

}

if (v == x->key) return x->info; else return -1;

This function finds the unique node that could contain the record with key v, then
tests whether the search is indeed successful. Thus to search for Z=11010 in the
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Figure 17.9 External insertion into a Patricia tree.

above tree we go right and then up at the right link of X. The key there is not Z,
so the search is unsuccessful.

Figure 17.9 shows the result of inserting Z=11010 into the Patricia tree of
Figure 17.8. As described above, the search for Z ends at the node containing
X=11000. By the defining property of the tree, X is the only key in the tree for
which a search would terminate at that node. If Z is inserted, there would be two
such nodes, so the upward link that was followed into the node containing X must
be made to point to a new node containing Z, with a bit index corresponding to the
leftmost point where X and Z differ, and with two upward links: one pointing to
X and the other pointing to Z. This corresponds precisely to replacing the external
node containing X with a new internal node with X and Z as children in radix trie
insertion, with one-way branching eliminated by including the bit index.

Inserting T=10100 illustrates a more complicated case, as shown in Figure
17.10. The search for T ends at P=10000, indicating that P is the only key in
the tree with the pattern 10+0+. Now, T and P differ at bit 2, a position that was
skipped during the search. The requirement that the bit indices decrease as we

Figure 17.10 Internal insertion into a Patricia tree.
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go down the tree dictates that T be inserted between X and P, with an upward
self-pointer corresponding to its own bit 2. Note carefully that the fact that bit 2
was skipped before the insertion of T implies that P and R have the same bit-2
value.

These examples illustrate the only two cases that arise in insertion for Patricia.
The following implementation gives the details:

patriciainsert (int v, int info)
{
struct node *p, *t, *x;
int i = maxb;
p = head; t = head->1;
while (p->b > t=>b)

{ p=t; t = (bits(v, t->b, 1)) ? t=>r : t->1; }
if (v == t->key) return;
while (bits(t->key, i, 1) =
p = head; x = head->1;
while (p->b > x->b && x->b > 1)

{ p=x; x = (bits(v, %x->b, 1)) ? x->r : x->1; }
t = (struct node *) malloc(sizeof *t);
t->key = v; t->info = info; t->b = i;
t->1 = (bits(v, t->b, 1)) ? x : t;
t->r = (bits(v, t->b, 1)) ? t : x;
if (bits(v, p->b, 1)) p->r = t; else p->1 = t;

bits (v, i, 1)) i--;

(This code assumes that head is initialized with key field of 0, a bit index of
maxb and both links self-pointers.) First, we do a search to find the key which
must be distinguished from v. The conditions x->b <= i and p->b <= x->b
characterize the situations shown in Figures 17.10 and 17.9, respectively. Then we
determine the leftmost bit position at which they differ, travel down the tree to that
point, and insert a new node containing v at that point.

Patricia is the quintessential radix searching method: it manages to identify
the bits which distinguish the search keys and build them into a data structure (with
no surplus nodes) that quickly leads from any search key to the only key in the
data structure that could be equal. Clearly, the same technique as used in Patricia
can be used in binary radix trie searching to eliminate one-way branching, but this
only exacerbates the multiple-node-type problem. Figure 17.11 shows the Patricia
tree for the same keys used to build the trie of Figure 17.6—this tree not only has
44% less nodes, but it is quite well-balanced.

Unlike standard binary tree search, the radix methods are insensitive to the
order in which keys are inserted; they depend only upon the structure of the keys
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Figure 17.11 A large Patricia tree.

themselves. For Patricia the placement of the upwards links depends on the order
of insertion, but the tree structure depends only on the bits in the keys, as in the
other methods. Thus, even Patricia would have trouble with a set of keys like 001,
0001, 00001, 000001, etc., but for normal key sets, the tree should be relatively
well-balanced so the number of bit inspections, even for very long keys, will be
roughly proportional to lgN when there are N nodes in the tree.

Property 17.4 A Patricia trie built from N random b-bit keys has N nodes and
requires 1g N bit comparisons for an average search.

As for the other methods of this chapter, the analysis of the average case is rather
difficult: it turns out that Patricia involves one less comparison, on the average,
than-does a standard tric. m

The most useful feature of radix trie searching is that it can be done efficiently
with keys of varying length. In all of the other searching methods we have seen
the length of the key is “built into” the searching procedure in some way, so that
the running time is dependent on the length as well as the number of the keys.
The specific savings available depends on the method of bit access used. For
example, suppose we have a computer which can efficiently access 8-bit “bytes”
of data, and we have to search among hundreds of 1000-bit keys. Then Patricia
would require accessing only about 9 or 10 bytes of the search key for the search,
plus one 125-byte equality comparison, while hashing would require accessing all
125 bytes of the search key to compute the hash function plus a few equality
comparisons, and comparison-based methods require several long comparisons.
This effect makes Patricia (or radix trie searching with one-way branching removed)
the search method of choice when very long keys are involved.
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Exercises

1. Draw the digital search tree that results when the keyss EASYQUESTI
O N are inserted in that order into an initially empty tree.

2. Generate a 1000 node digital search tree and compare its height and the number
of nodes at each level against a standard binary search tree and a red-black
tree (Chapter 15) built from the same keys.

3. Find a set of 12 keys that make a particularly badly balanced digital search
trie.

4. Draw the radix search trie that results when the keyss EASYQUESTIO
N are inserted in that order into an initially empty tree.

5. A problem with 26-way multiway radix search tries is that some letters of the
alphabet are very infrequently used. Suggest a way to fix this problem.

6. Describe how you would delete an element from a multiway radix search tree.

7. Draw the Patricia tree that results when the keyss EASYQUESTION
are inserted in that order into an initially empty tree.

8. Find a set of 12 keys that make a particularly badly balanced Patricia tree.

9. Write a program that prints out all keys in a Patricia tree having the same initial
t bits as a given search key.

10. For which of the radix methods is it reasonable to write a program which prints
out the keys in sorted order? Which of the methods are not amenable to this
operation?
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External Searching

Searching algorithms appropriate for accessing items from very large files are
of immense practical importance. Searching is the fundamental operation on
large data files, and certainly consumes a very significant fraction of the resources
used in many computer installations.

We’ll be concerned mainly with methods for searching on.large disk files,
since disk searching is of the most practical interest. With sequential devices such
as tapes, searching quickly degenerates to the trivially slow method: to search'a
tape for an item, one can’t do much better than to mount the tape and read it until
the item is found. Remarkably, the methods that we’ll study can find an item from
a disk as large as a billion words with only two or three disk accesses.

As with external sorting, the “systems” aspect of using complex I/O hardware
is a primary factor in the performance of external searching methods but one we
won’t be able to study in detail. However, unlike sorting, where the external
methods are really quite different from the internal methods, we’ll see that external
searching methods are logical extensions of the internal methods that we’ve studied.

Searching is a fundamental operation for disk devices. Files are typically
organized to take advantage of particular device characteristics to make access
of information as efficient as possible. As we did with sorting, we’ll work with a
rather simple and imprecise model of “disk” devices in order to explain the principal
characteristics of the fundamental methods. Determining the best external searching
method for a particular application is extremely complicated and very dependent
on characteristics of the hardware (and systems software), and so it is quite beyond
the scope of this book. However, we can suggest some general approaches to use.

For many applications we would frequently like to change, add, delete or (most
important) quickly access small bits of information inside very, very large files. In
this chapter, we’ll examine some methods for such dynamic situations which offer
the same kinds of advantages over the straightforward methods that binary search
trees and hashing offer over binary search and sequential search.

259
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A very large collection of information to be processed using a computer is
called a database. A great deal of study has gone into methods of building,
maintaining and using databases. However, large databases have very high inertia:
once a very large database has been built around a particular searching strategy,
it can be very expensive to rebuild it around another. For this reason, the older,
static methods are in widespread use and likely to remain so, though the newer,
dynamic methods are beginning to be used for new databases.

Database applications systems typically support much more complicated oper-
ations than a simple search for an item based on a single key. Searches are often
based on criteria involving more than one key and are expected to return a large
number of records. In later chapters we’ll see some examples of algorithms which

“are appropriate for some search requests of this type, but general search requests
are sufficiently complicated that it is typical to do a sequential search over the
entire database, testing each record to see if it meets the criteria.

The methods that we will discuss are of practical importance in the imple-
mentation of large file systems in which every file has a unique identifier and
the purpose of the file system is to support efficient access, insertion and deletion
based on that identifier. Our model will consider the disk storage as divided up
into pages, contiguous blocks of information that can be efficiently accessed by
the disk hardware. Each page will hold many records; our task is to organize
the records within the pages in such a way that any record can be accessed by
reading only a few pages. We assume that the I/O time required to read a page
completely dominates the processing time required to do any computing involving
that page. As mentioned above, this model is oversimplified in many ways, but it
retains enough of the characteristics of actual external storage devices to allow us
to consider some of the fundamental methods used.

Indexed Sequential Access

Sequential disk searching is the natural extension of the elementary sequential
searching methods considered in Chapter 14: the records are stored in increasing
order of their keys, and searches are done simply by reading in the records one
after the other until one containing a key greater than or equal to the search key is
found. For example, if our search keys come rom EXTERNALSEARC
HINGEX AMPL E and we have disks capable of holding three pages of four
records each, then we have the configuration shown in Figure 18.1. (As for external
sorting, we must consider very small examples to understand the algorithms, and
think about very large examples to appreciate their performance.) Obviously, pure
sequential searching is unattractive because, for example, searching for W in Figure
18.1 would require reading all the pages.

To vastly improve the speed of a search, we can keep, for each disk, an “index”
of which keys belong to which pages on that disk, as in Figure 18.2. The first
page of each disk is its index: the small letters indicate that only the key value is



External Searching A 261

Disk 1 [ATATAJc|w[E[EJE[E|m[E[G[H][I =
Disk 2 [LTLIM[N]m[N]P]R]R]®m[S]T[X[X|m

Figure 18.1 Sequential access.

stored, not the full record and small numbers are page indices (0 means the first
page on the disk, 1 the next page, etc.). In the index, each page number appears
below the value of the last key on the previous page. (The blank is a sentinel key,
smaller than all the others, and the “+” means “look on the next disk”.) Thus, for
example, the index for disk 2 says that its first page contains records with keys
between E and I inclusive and its second page contains records with keys between
‘I and N inclusive. It is normally possible to fit many more keys and page indices
on an index page than records on a “data” page; in fact, the index for a whole disk
should require only a few pages.

To further expedite the search, these indices may be coupled with a “master
index” which tells which keys are on which disk. For our example, the master
index would say that disk 1 contains keys less than or equal to E, disk 2 contains
keys less than or equal to N (but not less than E), and disk 3 contains keys less than
or equal to X (but not less than N). The master index is likely to be small enough
that it can be kept in memory, so that most records can be found by accessing
only two pages, one for the index on the appropriate disk and one for the page
containing the appropriate record. For example, a search for W would involve first
reading the index page from disk 3, then reading the second data page from disk
3 which is the only one that could contain W. Searches for keys which appear in
the index require reading three pages: the index plus the two pages flanking the
key value in the index. If no duplicate keys are in the file, then the extra page
access can be avoided. On the other hand, if there are many equal keys in the
file, several page accesses might be called for (records with equal keys might fill
several pages). ‘

Because it combines a sequential key organization with indexed access, this
organization is called indexed sequential access. It is the method of choice for
applications in which changes to the database are likely to be made infrequently.

Disk1 HFEHHHH w[ATATAIC|m[E[E[E[E]m
pisk2 T "[(E][G[H[ T |m[L[L[M[N]=

Disk3 [ m[N[P[R[R|®m[S[T[X[X]|m

Figure 18.2 Indexed sequential access.
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The disadvantage of using indexed sequential access is that it is very inflexible.
For example, adding B to the configuration above requites that virtually the whole
database be rebuilt, with new positions for many of the keys and new values for
the indices. '

Property 18.1 A search in an indexed sequential file requires only a constant
number of disk accesses, but an insertion can involve rearranging the entire file.

Actually, the “constant” involved here depends on the number of disks and on
the relative size of records, indices and pages. For example, a large file of one-
word keys certainly couldn’t be stored on just one disk in such a way as to allow
searching with a constant number of accesses. Or, to take another absurd example
at the other extreme, a large number of very small disks each capable of holding
only one record might also be hard to search. m

B-Trees

A better way to handle searching in a dynamic situation is to use balanced trees. In
order to reduce the number of (relatively expensive) disk accesses, it is reasonable
to allow a large number of keys per node so that the nodes have a large branching
factor. Such trees were named B-trees by R. Bayer and E. McCreight, who were
the first to consider the use of multiway balanced trees for external searching.
(Many people reserve the term “B-tree” to describe the exact data structure built
by the algorithm suggested by Bayer and McCreight; we’ll use it as a generic term
to mean “external balanced trees.”)

The top-down algorithm that we used for 2-3-4 trees (see Chapter 15) extends
readily to handle more keys per node: assume that there are anywhere from 1 to
M -1 keys per node (and so anywhere from 2 to M links per node). Searching
proceeds-in a way analogous to 2-3-4 trees: to move from one node to the next,
first find the proper interval for the search key in the current node and then exit
through the corresponding link to get to the next node. Continue in this way until
an external node is reached, then insert the new key into the last internal node
reached.  As with top-down 2-3-4 trees, it is necessary to “split” nodes that are
“full” on the way down the tree: any time we see a k-node attached to an M -node,
we replace it by a (k + 1)-node attached to two (M /2)-nodes (for even splits, we
assume that M is even). This guarantees that when the bottom is reached there is
room to insert the new node.

The B-tree constructed for M = 4 and our sample keys is shown in Figure
18.3. This tree has 13 nodes, each corresponding to a disk page. Each node must
contain links as well as records. The choice M = 4, even though it leaves us with
familiar 2-3-4 trees, is meant to emphasize this point: earlier we could fit four
records per page, now only three will fit, to leave room for the links. The actual
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Figure 18.3 A B-tree.

amount of space used depends on the relative size of records and links. We’ll see
below a method which avoids this mixing of records and links.

Just as we kept the master index for indexed sequential search in memory, it’s
reasonable to keep the root node of the B-tree in memory. For the B-tree in Figure
18.3, this might indicate that the root of the subtree containing records with keys
less than or equal to E is on page O of disk 1, the root of the subtree with keys
less than or equal to N (but not less than E) is on page 1 of disk 1, and the root of
the subtree with keys greater than or equal to N is on page 2 of disk 1. The other
nodes for our example might be stored as shown in Figure 18.4.

Nodes are assigned to disk pages in this example simply by proceeding down
the tree, working from right to left at each level, assigning nodes to disk 1, then
disk 2, etc. We avoid storing null links by keeping track of when the bottom level
is reached: in this case, all nodes on disks 2, 3, and 4 have all null links (which
need not be stored). In an actual application, other considerations come into play.
For example, it might be better to avoid having all searches going through disk 1 by
assigning first to page 0 of all the disks, etc. In fact, more sophisticated strategies
are needed because of the dynamics of the tree construction (consider the difficulty
of implementing a split routine that respects either of the above strategies).

Property 18.2 A search or an insertion in a B-tree of order M with N records is
guaranteed to require fewer than logy ;; N disk accesses, a constant number for
practical purposes (as long as M is not small).

Disk1 [ AP "HERHE LG ®

pDiskz2 [A] | | |w[AJcJE] |w[E] [ [ |m=
Disk3 [EJG] [ ™[0 ] [ [ |w[L]Mm] [ =
pDiska [NJPIR] |w[s[ [ [ |w[x[X][ [ |m=

Figure 18.4 B-tree access.
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HI| [LLM|NNP] [RR][STXX]

Figure 18.5 A B-tree with records only at external nodes.

This property follows from the observation that all the nodes in the “interior” of
the B-tree (nodes which are not the root and not leaves) have between M /2 and
M keys, since they are formed from a split of a full node with M keys, and can
only grow in size (when a lower node is split). In the worst case, these nodes form
a complete tree of degree M /2, which leads immediately to the stated bound. =

Property 18.3 A B-tree of order M constructed from N random records may be
expected to have about 1 44N [M nodes.

Proof of this fact is beyond the scope of this book, but note that the amount of
space wasted ranges up to about N, in the worst case when all of the nodes are
about half full. w '

In the above example, we were forced to choose M = 4 because of the need
to save room for links. in the nodes. But we ended up not using links in most
of- the nodes, since most of the nodes in a B-tree are external and most of the
links are null. Furthermore, a much larger value of M can be used at the higher
levels of the tree if we store just keys (not full records) in the interior nodes, as in
indexed sequential access. To see how to take advantage of these observations in
our example, suppose that we can fit up to seven keys and eight links on a page, so
that we can use M = 8 for the interior nodes and M =5 for the bottom-level nodes
(not M =4 because no space for links need be reserved at the bottom). A bottom
node splits when a fifth record is added to it (into one node with two records and
one with three records); the split ends by “inserting” the key of the middle record
into the node above, where there is room because the tree above has operated as
a normal B-tree for M = 8 (on stored keys, not records). This leads to the tree
shown in Figure 18.5.

The effect for a typical application is likely to be much more dramatic since
the branching factor of the tree is increased by roughly the ratio of the record size
to key size, which is likely to be large. Also, with this type of organization, the
“index” (which contains keys and links) can be separated from the actual records,
as in indexed sequential search. Figure 18.6 shows how the tree in Figure 18.5
might be stored: the root node is on page O of disk 1 (there is room for it since
the tree in Figure 18.5 has one less node than the tree in Figure 18.3), though in
most applications it probably would be kept in memory, as above. Other comments
above regarding node placement on the disks also apply here.
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Disk 1 H w B e ™ BERFRrRrrrprrtr ™
pisk2 [AJA] | |w[AJCJE] |w[EJE] [ |m
Disk3 [EJEJG] |w[H]T] | |w[L][L[M] |m=
Diska [NINJP] |w[RIR] | |w[S]T[X[X]m=

Figure 18.6 B-tree access with records only at external nodes.

Now we have two values of M, one for the interior nodes which determines
the branching factor of the tree (M) and one for the bottom-level nodes which
determines the allocation of records to pages (Mg). To minimize the number of
disk accesses, we want to make both M; and Mg as large as possible, even at the
expense of some extra computation. On the other hand, we don’t want to make
M; huge, because then most tree nodes would be largely empty and space would
be wasted, and we don’t want to make Mp huge, because this would reduce to
sequential search of the bottom-level nodes. Usually, it is best to relate both M;
and Mp to the page size. The obvious choice for Mp is the number of records that
can fit on a page (plus one): the goal of the search is to find the page containing
the record sought. If M; is taken as the number of keys that can fit on two to
four pages, then the B-tree is likely to be only three levels deep, even for very
large files (a three-level tree with M; = 2048 can handle up to 10243, or over a
billion, entries). But recall that the root node of the tree, which is accessed for
every operation on the free, is kept in memory, so that only two disk accesses are
required to find any element in the file.

As briefly mentioned at the end of Chapter 15, a.more complicated “bottom-up”
insertion method is commonly used for B-trees (though the distinction between top-
down and bottom up methods loses importance for three-level trees). Technically,
the trees described here should be referred to as “top-down” B-trees to distinguish
them from those commonly discussed in the literature. Many other variations have
been described, some of which are quite important for external searching. For
example, when a node becomes full, splitting (and the resultant half-empty nodes)
can be forestalled by dumping some of the contents of the node into its “sibling”
node (if it’s not too full). This leads to better space utilization within the nodes,
which is likely to be a major concern in a large-scale disk searching application.

Extendible Hashing

An alternative to B-trees which extends digital searching algorithms to apply to
external searching was developed in 1978 by R. Fagin, J. Nievergelt, N. Pippenger,
and R. Strong. This method, called extendible hashing, involves two disk accesses
for each search in typical applications while at the same time allowing efficient
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Disk 1
T

: IX] Disk 2 [E|E[T[X|m

Figure 18.7 Extendible hashing: first page.

insertion. As with B-trees, our records are stored on pages which are split into two
pieces when they fill up; as with indexed sequential access, we maintain an index
which we access to find the page containing the records which match our search
key. Extendible hashing combines these approaches by using digital properties of -
the search keys.

To see how extendible hashing works, we’ll consider how it handles successive
insertions of keys from EX TERNALSEARCHINGEXAMPLE,
using pages with a capacity of up to four records. We start with an “index” with
just one entry, a pointer to the page which is to hold the records. The first four
records fit on the page, leaving the trivial structure shown in Figure 18.7.

The directory on disk 1 says that all records are on page 0 of disk 2, where
they are kept in sorted order of their keys. For reference, we also give the binary
value of the keys, using our standard encoding of the five-bit binary representation
of i for the ith letter of the alphabet. Now the page is full and must be split in
order to add the key R=10010. The strategy is simple: put records with keys that
begin with 0 on one page and records with keys that begin with 1 on another page.
This necessitates doubling the size of the directory and moving half the keys from
page 0 of disk 2 to a new page, leaving the structure shown in Figure 18.8.

Now N=01110 and A=00001 can be added, but this again fills the first page,
as shown in Figure 18.9. Another split is needed before L=01100 can be added.
To insert L=01100, then, we proceed in the same way as for the first split, by
splitting the first page into two pieces, one for keys that begin with 00 and one
for keys that begin with 01. What’s not immediately clear is what to do with the
directory. One alternative would be to simply add another entry, one pointer to

o0i0a [E .
0:0104 |E Disk 1 EE
Disk 2 [E[E] | |m[R[T[X] |m
0
1 10690 (R
10900 (T
14000 (X

Figure 18.8 Extendible hashing: directory split.
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Disk 1 2]

Disk 2 [A[E[E[N]m[R]T[X] |=

L =[]z} [Z]m]m[>]

Figure 18.9 Extendible hashing: first page again full.

each page. This is unattractive because it essentially reduces to indexed sequential
search (albeit a radix version): the directory has to be scannéd sequentially to find
the proper page during a search. Alternatively, we can just double the size of the
directory again, giving the structure shown in Figure 18.10. A new page (page 2
on disk 2) contains the keys that begin with 01 (L and N), the page which split
(page 0 on disk 2) now. contains the keys that begin with 00 (A, E, and E), and the
page containing keys that begin with 1 (R; T, and X) is unaffected, though now
there are two pointers to it, one to indicate that keys starting with 10 are stored
there, the other to indicate that keys. starting with 11 are stored there. Now we
can access any record by using the first two bits of its key to access directly the
directory entry containing the address of the page containing the record.

Keeping the records in sorted order within the pages may seem like a brute-
force simplification, but recall our basic assumptions that we do disk I/O in page
units and that processing time is negligible compared to the time to input or output
a page. Thus, keeping the records in sorted order of their keys is not a real expense:
to add a record to a page, we must read the page into memory, modify it, and write

00001
00101
00101

[ [m[m[>]

00| 01100
01 01110
10 :

1

Disk 1 34

Disk2 [A[E[E] |m[R]T[X] |m[L[N] [ |m

10010
10100
11000 -

[Ix[=ix] [T [=]]

Figure 18.10 Extendible hashing: second split.
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Disk 1 FREEEIEEm

Disk2 [AJA] [ |w[R[S|T[X[w[L]N] [ |m

Disk 3 [E[E[E[ |m

Figure 18.11 Extendible hashing: third split.

it back out. The extra time required to maintain sorted order is not likely to be
noticeable in the typical case when the pages are not large.

- Continuing a little further, we can add S=10011 and E=00101 before another
split is necessary to add A=00001. This split also requires doubling the directory,
producing the structure shown in Figure 18.11. The process of doubling the direc-
tory is simple: just read the old directory, then make the new one by writing out
each entry of the old one twice. This makes a space for the pointer to the new
page just created by the split.

In general, the structure built by extendible hashing consists of a directory
of 29 words (one for each d-bit pattern) and a set of leaf pages which contain
all records with keys beginning with a specific bit pattern (of less than or equal
to d bits). A search entails using the leading d bits of the key to index into the
directory, which contains pointers to leaf pages. Then the referenced leaf page
is accessed and searched (using any strategy) for the proper record. A leaf page
can be pointed to by more than one directory entry: to be precise, if a leaf page
contains all the records with keys beginning with a specific & bits (those not shaded
in the figures), then it will have 24-k directory entries pointing to it. In Figure
18.11, we have d = 3, and page 1 of disk 2 contains all the records with keys that
begin with a 1 bit, so there are four directory entries pointing to it.

In our example so far, each page split has required a directory split, but in
normal circumstances, the directory may be expected to split only rarely. This is
the essence of the algorithm: the extra pointers in the directory allow the structure
to accommodate dynamic growth gracefully. For example, when R is inserted
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Figure 18.12 Extendible hashing: fourth split.

into the structure in Figure 18.11, page 1 on disk 2 must be split to accommodate
the five keys that begin with a 1, but the directory does not need to grow, as
Figure 18.12 shows. The only change to the directory is that the last two pointers
are changed to point to page 1 on disk 3, the new page created in the split to
accommodate all keys in the data structure that begin with 11 (the X).

The directory contains only pointers to pages. These are likely to be smaller
than keys or records, so more directory entries will fit on each page. For our
example, we'll assume that we can fit-twice as many directory entries as records
on a page, though this ratio is likely to be much higher in practice. When the
directory spans more than one page, we keep a “root node” in memory which tells
where the directory pages are, using the same indexing scheme. For example, if
the directory spans two pages, the root node might indicate that the directory for
all the records with keys beginning with O is on page 0 of disk 1, and the directory
for all keys beginning with 1 is on page 1 of disk 1. For our example, this split
after we insert C, H, I, N, G, and E. Continuing, after we insert X, A, M, P, and
L, we get the disk storage structure shown in Figure 18.13. (For clarity, we have
reserved disk 1 for the directory, though in practice it might be mixed in with the
other pages, page 0 of each disk might be reserved, or some other strategy used.)
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Figure 18.13 Extendible hashing access.

Thus, insertion into an extendible hashing structure can involve one of three
operations, after the leaf page which could contain the search key is accessed. If
there’s room in the leaf page, the new record is simply inserted there; otherwise
the leaf page is split in two (half the records are moved to a new page). If the
directory has more than one entry pointing to that leaf page, then the directory
entries can be split as the page is. If not, the size of the directory must be doubled.

As described so far, this algorithm is very susceptible to a bad input-key
distribution: the value of d is the largest number of bits required to separate the
keys into sets small enough to fit on leaf pages, and thus if a large number of keys
agree in a large number of leading bits, the directory could become unacceptably
large. For actual large-scale applications, this problem can be headed off by hashing
the keys to make the leading bits (pseudo-)random. To search for a record, we hash
its key to get a bit sequence which we use to access the directory; the directory
tells us which page to search for a record with the same key. From a hashing
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standpoint, we can think of the algorithm as splitting nodes to take care of hash-

value collisions: hence the name “extendible hashing.” This method presents a very

attractive alternative to B-trees and indexed sequential access because it always uses

exactly two disk accesses for each search (like indexed sequential access), while

still retaining the capability for efficient insertion (like B-trees) without wasting -
very much space.

Property 18.4 With pages that can hold M records, extendible hashing may be
expected to require about 1 44(N [M) pages for a file of N records. The directory
may be expected to have about N +1 /M /M entries.

This analysis is a complicated extension of the analysis of tries referred to in the
previous chapter. When M is large, the amount of space wasted is roughly the
same as for B-trees, but for small M the directory may get too large. m

Even with hashing, extraordinary steps must be taken if large numbers of equal
keys are present. They can make the directory artificially large; and the algorithm
breaks down entirely if there are more equal keys than fit in one leaf page. (This
actually occurs in our example, since we have five E’s.) If many equal keys are
present then we could (for example) assume distinct keys in the data structure and
put pointers to linked lists of records containing equal keys in the leaf pages. To
see the complication involved, consider what would happen if the last E were to
be inserted into the structure in Figure 18.13.

A less disastrous situation to handle is that the insertion of one new key can
cause the directory to split more than once. This occurs when one more bit is
not enough to distinguish the keys on an overfull page. For example, if two keys
with the value D=00100 were to be inserted into the extendible hashing structure
of Figure 18.12, then two directory splits would be required because five bits are
needed to distinguish D from E (the fourth bit doesn’t help). This is simple to
cope with in an implementation, but must not be overlooked.

Virtual Memory

The “easier way” discussed at the end of Chapter 13 for external sorting applies
directly and trivially to the searching problem. A virtual memory is actually nothing
more than a general-purpose external searching method: given an address (key),
return the information associated with that address. However, direct use of the
virtual memory is not recommended as an easy searching application. As mentioned
in Chapter 13, virtual memories perform best when most accesses are relatively
close to previous accesses. Sorting aigorithms can be adapted to this, but the very
nature of searching is that requests are for information from arbitrary parts of the
database.
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Exercises

1. Give the contents of the B-tree that results when the keys EASYQUES
T I O N are inserted in that order into an initially empty tree, with M = 5.

2. Give the contents of the B-tree that results when the keys EASYQUEST
I O N are inserted in that order into an initially empty tree, with M = 6. Use
the variant of the method in which all the records are kept in external nodes.

3. Draw the B-tree that is built when sixteen equal keys are inserted into an
initially empty tree, with M = 5.

4, Suppose that one page from the database is destroyed. Describe how you would
handle this event for each of the B-tree structures described in the text.

5. Give the contents of the extendible hashing table that results when the keys
EASYQUESTIO N are inserted in that order into an initially empty
table, with a page capacity of four records. (Following the example in the text,
don’t hash, but use the five-bit binary representation of i as the key for the ith
letter.)

6. Give a sequence of as few distinct keys as possible which make an extendible
hashing directory grow from an intially empty table to size 16, from an initially
empty table, with a page capacity of three records.

7. Outline a method for deleting an item from an extendible hashing table.

8. Why are “top-down” B-trees better than “bottom-up” B-trees for concurrent
access to data? (For example, suppose two programs are trying to insert a new
node at the same time.)

9. Implement search and insert for internal searching using the extendible hashing
method.

10. Discuss how the program of the previous exercise compares with double hash-
ing and radix-trie searching for internal searching applications.
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SOURCES for Searching

The primary references for this section are Knuth’s Volume 3, Gonnet’s book, and
Mehlhorn’s book. Most of the algorithms we’ve studied are treated in great detail in
these books, with mathematical analyses and suggestions for practical applications.
Classical methods are covered by Knuth; the more recent methods are described
by Gonnet and Mehlhorn, with further references to the literature. These three
sources describe nearly all the “beyond the scope of this book” analyses referred
to in this section.

The material in Chapter 15 comes from Guibas and Sedgewick’s 1978 paper,
which shows how to fit many classical balanced-tree algorithms into the “red-black”
framework and gives several other implementations. There is actually quite a large
literature on balanced trees: the persistent reader might begin with that paper.
Mehlhorn’s book has detailed proofs of properties of red-black trees and similar
structures, and references to more recent work. Comer’s 1979 survey discusses
B-trees from a more practical point of view.

The extendible hashing algorithm presented in Chapter 18 comes from Fagin,
Nievergelt, Pippenger and Strong’s 1979 paper. This paper is a must for anyone
wishing further information on external searching methods: it ties together material
from our Chapters 16 and 17 to bring out the algorithm in Chapter 18. The paper
also contains a detailed analysis and a discussion of practical ramifications.

Many practical applications of the methods discussed here, especially Chapter
18, arise within the context of database systems. The study of databases is a broad,
maturing field, but basic search algorithms continue to play a fundamental part in
most systems. An introduction to this field is given in Ullman’s 1982 book.

D. Comer, “The ubiquitous B-tree,” Computing Surveys, 11 (1979).

R. Fagin, J. Nievergelt, N. Pippenger and H. R. Strong, “Extendible hashing—a
fast access method for dynamic files,” ACM Transactions on Database Systems, 4,
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String Searching

Data to be processed often does not decompose logically into independent
records with small identifiable pieces. This type of data is characterized only
by the fact that it can be written down as a string: a linear (typically very long)
sequence of characters. Of course, we have encountered strings before, for example
in Chapters 3 and 16, as they are basic data structures in C.

Strings are obviously central in word-processing systems, which provide a
variety of capabilities for the manipulation of text. Such systems process text
strings, which might be loosely defined as sequences of letters, numbers, and special
characters. These objects can be quite large (for example, this book contains over a
million characters), and efficient algorithms play an important role in manipulating
them.

Another type of string is the binary string, a simple sequence of 0 and 1
values. This is in a sense merely a special type of text string, but it is worth
making the distinction both because different algorithms are appropriate and also
because binary strings arise naturally in many applications. For example, some
computer graphics systems represent pictures as binary strings. (This book was
printed on such a system: the present page was represented at one time as a binary
string consisting of millions of bits.)

In one sense, text strings are quite different objects from binary strings, since
they are made up of characters from a large alphabet. In another sense, though,
the two types of strings are equivalent, since each text character can be represented
by (say) eight binary bits and a binary string can be viewed as a text string by
treating eight-bit chunks as characters. We’ll see that the size of the alphabet from
which the characters are taken to form a string is an important factor in the design
of string-processing algorithms.

A fundamental operation on strings is pattern matching: given a text string of
length N and a pattern of length M, find an occurrence of the pattern within the
text. (We use the term “text” even when referring to a sequence of 0-1 values or
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some other special type of string.) Most algorithms for this problem can easily be
extended to find all occurrences of the pattern in the text, since they scan through
the text sequentially and can be restarted at the point directly after the beginning
of a match to find the next match.

The pattern-matching problem can be characterized as a searching problem
with the pattern as the key, but the searching algorithms we have studied do not
apply directly because the pattern can be long and because it “lines up” with the
text in an unknown way. It is an interesting problem: several very different (and
surprising) algorithms have only recently been discovered that not only provide a
spectrum of useful practical methods but also illustrate some fundamental algorithm
design techniques.

A Short History

The algorithms we’ll be examining have an interesting history: we’ll summarize it
here to help place the various methods into perspective.

There is an obvious brute-force algorithm for string processing that is in
widespread use. While it has a worst-case running time proportional to MN,
the strings that arise in many applications lead to a running time that is virtually
always proportional to M + N . Furthermore, it is well suited to good architectural
features on most computer systems, so an optimized version provides a “standard”
that is difficult to beat with a clever algorithm.

In 1970, S. A. Cook proved a theoretical result about a particular type of
abstract machine that implied that an algorithm exists solving the pattern-matching
problem in time proportional to M + N in the worst case. D. E. Knuth and V. R.
Pratt laboriously followed through the construction Cook used to prove his theorem
(which was not intended at all to be practical) and got an algorithm that they were
then able to refine into a relatively simple practical algorithm. This seemed a rare
and satisfying example of a theoretical result with immediate (and unexpected)
practical applicability. But it turned out that J. H. Morris had discovered virtually
the same algorithm as a solution to an annoying practical problem confronting him
when implementing a text editor (he didn’t want ever to “back up” in the text
string). However, the fact that the same algorithm arose from two such different
approaches lends it credibility as a fundamental solution to the problem.

Knuth, Morris, and Pratt didn’t get around to publishing their algorithm until
1976, and in the meantime R. S. Boyer and J. S. Moore (and, independently, R. W.
Gosper) discovered an algorithm that is much faster in many applications, since
it often examines only a fraction of the characters in the text string. Many text
editors use this algorithm to achieve a noticeable decrease in response time for
string searches.

Both the Knuth-Morris-Pratt and the Boyer—Moore algonthms require some
complicated preprocessing on the pattern that is difficult to understand and has
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limited the extent to which they are used. (In fact, the story goes that an un-
known systems programmer found Morris’s algorithm too difficult to understand
and replaced it with a brute-force implementation.)

In 1980, R. M. Karp and M. O. Rabin observed that the problem is not as
different from the standard searching problem as it had seemed, and came up with
an algorithm almost as simple as the brute-force algorithm that virtually always
runs in time proportional to M +N. Furthermore, their algorithm extends easily to
two-dimensional patterns and text, which makes it more useful than the others for
picture processing. ‘

This story illustrates that the search for a “better algorithm” is still very often
justified; indeed, one suspects that there are still more developments on the horizon
even for this problem.

Brute-Force Algorithm

The obvious method for pattern matching that immediately comes to mind is just
to check, for each possible position in the text at which the pattern could match,
whether it does in fact match. The following program searches in this way for the
first occurrence of a pattern string p in a text string a:

int brutesearch(char *p, char *a)
{
int i, j, M = strlen(p), N = strlen(a):
for (1 = 0, j =0; J <MEeg& i < N; i++, J++)
while (a[i]l !=pl3l) { i -= j-1; j =0; }
if (j == M) return i-M; else return i;

The program keeps one pointer (1) into the text and another pointer () into the
pattern. As long as they point to matching characters, both pointers are incre-
mented. If 1 and j point to mismatching characters, then j is reset to point to the
beginning of the pattern and i is reset to correspond to moving the pattern to the
right one position for matching against the text. In particular, whenever the first
iteration of the while loop sets j to 0, then subsequent iterations increment i
until a text character matching the first pattern character is encountered.

If the end of the pattern is reached (j == M) then there is a match starting at
a[1-M]. Otherwise, if the end of the text is reached before the end of the pattern
is ever reached (1 == N), then there is no match: the pattern does not occur in
the text and the “sentinel” value N is returned.

In a text-editing application, the inner loop of this program is seldom iterated
and the running time is very nearly proportional to the number of text characters
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001110100101000101001110001T11
ol

10011101001 0100o0f{1Jo][1foJo]1]1J1]Jo oo 1 1 1

Figure 19.1 Brute-force string search in binary text.

examined. For example, suppose that we are looking for the pattern STING in the
text string

A STRING SEARCHING EXAMPLE CONSISTING OF ...

Then the statement j++ is executed only four times (once for each S, but twice
for the first ST) before the actual match is encountered.

On the other hand, brute-force searching can be very slow for some patterns, for
example if the text is binary (two-character), as might occur in picture processing
and systems programming applications. Figure 19.1 shows what happens when
the algorithm is used to search for the pattern 10100111 in a long binary text
string. Each line (except the last, which shows the match) consists of zero or more
characters that match the pattern followed by one mismatch. These are the “false
starts” that occur when trying to find the pattern; an obvious goal in algorithm
design is to try to limit the number and length of these. For this example, about
two characters in the pattern are examined, on average, for each text position,
though the situation can be much worse.

Property 19.1 Brute-force string searching can require about NM character com-
parisons.

The worst case is when both pattern and text are all 0’s followed by a 1. Then for
each of the N — M + 1 possible match positions, all the characters in the pattern
are checked against the text, for a total cost of M(N — M + 1). Normally M is
very small compared to N, so the total is about NM. =

Such degenerate strings are perhaps not likely in English (or C) text, but they
may well occur when binary texts are being processed, so we seek better algorithms.
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Knuth-Morris-Pratt Algorithm

The basic idea behind the algorithm discovered by Knuth, Morris, and Pratt is this:
when a mismatch is detected, our “false start” consists of characters that we know
in advance (since they’re in the pattern). Somehow we should be able to take
advantage of this information instead of backing up the i pointer over all those
known characters.

For a simple example of this, suppose that the first character in the pattern
doesn’t appear again in the pattern (say the pattern is 10000000). Then, suppose
we have a false start j characters long at some position in the text. When the
mismatch is detected, we know, by dint of the fact that j characters have matched,
that we needn’t “back up” the text pointer i, since none of the previous j-1
characters in the text can match the first character in the pattern. This change
could be implemented by replacing 1 ~= j-1 in the program above by i++.
The practical effect of this change is limited because such a specialized pattern
is not particularly likely to occur, but the idea is worth thinking about and the
Knuth-Morris-Pratt algorithm is a generalization of it. Surprisingly, it is always
possible to arrange things so that the 1 pointer is never decremented.

Fully skipping past the pattern on detecting a mismatch as described in the
previous paragraph won’t work when the pattern could match itself at the point of
the mismatch. For example, when searching for 10100111 in 1010100111 we first
detect the mismatch at the fifth character, but we had better back up to the third
character to continue the search, since otherwise we would miss the match. But
we can figure out ahead of time exactly what to do, because it depends only on
the pattern, as shown in Figure 19.2.

i nextl[]]
1 0
2 0
3 1
4 2
5 0
6 1
"7 1

Figure 19.2 Restart positions for Knuth-Morris-Pratt search.
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The array next [M] will be used to determine how far to back up when a
mismatch is detected. Imagine that we slide a copy of the first § characters of
the pattern over itself, from left to right, starting with the first character of the
copy over the second character of the pattern and stopping when all overlapping
characters match (or there are none). These overlapping characters define the
next possible place the pattern could match, if a mismatch is detected at p[7].
The distance to back up in the pattern (next [j]) is exactly the number of the
overlapping characters. Specifically, for j > 0, the value of next (7] is the
maximum k < 7 for which the first k characters of the pattern match the last k
characters of the first § characters of the pattern. As we’ll soon see, it is convenient
to define next [0] to be -1.

This next array immediately gives a way to limit (in fact, as we’ll see,
eliminate) the “backup” of the text pointer i, as discussed above. When i and j
point to mismatching characters (testing for a pattern match beginning at position
i-3+1 in the text string), then the next possible position for a pattern match is
beginning at position i -~ next [J]. But by definition of the next table, the first
next [j] characters at that position match the first next [j] characters of the
pattern, so there’s no need to back up the i pointer that far: we can simply leave
‘the i pointer unchanged and set the j pointer to next [j], as in the following
program:

int kmpsearch(char *p, char *a)
{
int i, j, M = strlen(p), N = strlen(a);
initnext (p);
for (1 =0, 3 =0; J <M&& i < N; i++, J++)
while ((J >= 0) && (alil != p[J))) J = next(jl;
if (j == M) return i-M; else return i;

When j = 0 and a[i] does not match the p[0], there is no overlap, so we want
to increment i and keep 7 set at the beginning of the pattern. This is achieved by
defining next [0] to be -1, which results in j being set to ~1 in the while loop;
then i is incremented and 7 set to O as the for loop is iterated. Functionally, this
program is the same as brutesearch, but it is likely to run faster for patterns
that are highly self-repetitive.

It remains to compute the next table. The program for this is tricky—it is
basically the same program as above, but it matches the pattern against itself:
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initnext (char *p)
{
int i, Jj, M = strlen(p);

next[0] = -1;
for (1 =0, § =-=1; i < M; i++, j++, next[i] = 3J)
while ((j >= 0) && (pl[i] '= p[3])) 3 = next([Jl;

Just after i and j are incremented, it has been determined that the first J characters
of the pattern match the characters in positions p[i~3j-11,...,p[i-11, the last
9 characters in the first 1 characters of the pattern. And this is the largest j with
this property, since otherwise a “possible match” of the pattern with itself would
have been missed. Thus, j is exactly the value to be assigned to next [1].

An interesting way to view this algorithm is to consider the pattern as fixed, so
that the next table can be “wired in” to the program. For example, the following
program is exactly equivalent to the program above for the pattern that we’ve been
considering, but it’s likely to be much more efficient.

int kmpsearch (char *a)

{

int 1 = -1;
sm: i++;
s0: if. (a[i] !'= ’1’) goto sm; i++;
sl: if (a[i] !'= 70") goto s0; i++;
s2: if (a[i] != ’17) goto s0; i++;
s3: if (a[i] != '0') goto sl; i++;
sd: if (afi] != ’07) goto s2; i++;
85: if (a[i] != "17) goto s0; i++;
!
1

s6: 1f (a[i] != ’'1") goto sl; i++;
s7: if (a[i] !'= '1")
return 1-8;

goto sl; i++;

The goto labels in this program correspond precisely to the next table. In
fact, the initnext program above that computes the next table can easily be
modified to output this program! To avoid checking whether 1 == N each time 1
is incremented, we assume that the pattern itself is stored at the end of the text as
a sentinel, in a[N], ... , a[N+M-1]. (This improvement could also be used
in the standard implementation.) This is a simple example of a “string-searching
compiler”: given a pattern, we can produce a very efficient program to scan for that
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Figure 19.3 Finite state machine for the Knuth-Morris-Pratt algorithm.

pattern in an arbitrarily long text string. We’ll see generalizations of this concept
in the next two chapters.

The program above uses just a few very basic operations to solve the string
searching problem. This means that it can easily be described in terms of a very
simple machine model called a finite-state machine. Figure 19.3 shows the finite-
state machine for the program above.

The machine consists of states (indicated by circled numbers) and transitions
(indicated by lines). Each state has two transitions leaving it: a match transition
(solid line, going right) and a non-match transition (dotted line, going left). The
states are where the machine executes instructions; the transitions are the goto
instructions. When in the state labeled “x,” the machine can perform only one
instruction: “if the current character is x then scan past it and take the match
transition, otherwise take the non-match transition.” To “scan past™ a character
means to take the next character in the string as the “current character”; the machine
scans past characters as it matches them. There are two exceptions to this: the first
state always takes a match transition and scans to the next character (essentially
this corresponds to scanning for the first occurrence of the first character in the
pattern), and the last state is a “halt” state indicating that a match has been found.
In the next chapter we’ll see how to use a similar (but more powerful) machine to

_help develop a much more powerful pattern-matching algorithm.

The alert reader may have noticed that there’s still some room for improvement
in this algorithm, because it doesn’t take into account the character that caused the
mismatch. For example, suppose that our text begins with 1011 and we are search-
ing for our sample pattern 10100111. After matching 101, we find a mismatch on
the fourth character; at this point the next table says to check the second character
of the pattern against the fourth character of the text, since, on the basis of the 101
match, the first character of the pattern may line up with the third character of the
text (but we don’t have to compare these because we know that they’re both 1’s).
However, we could not have a match here: from the mismatch, we know that the
next character in the text is not 0, as required by the pattern. Another way to see
this is to look at the version of the program with the next table “wired in™: at label
4wegoto2ifali] isnotO, but at label 2 we goto 1 if a[i] is not 0. Why not
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Figure 19.4 Knuth-Morris-Pratt finite-state machine (improved).

just go to 1 directly? Figure 19.4 shows the improved version of the finite-state
machine for our example.

Fortunately, it is easy to put this change into the algorithm. We need only
replace the statement next [1] = 3 in the initnext program by

next[1i] = (p[i] == p(j]) ? next[j] : j

Since we are proceeding from left to right, the value of next that is needed has
already been computed, so we just use it.

Property 19.2 Knuth-Morris-Pratt string searching never uses more than M + N
character comparisons.

This property is illustrated in Figure 19.5, and it is also obvious from the code:
we either increment j or reset it from the next table at most once for each i. =

Figure 19.5 shows that this method certainly uses far fewer comparisons than
the brute-force method for our binary example. However, the Knuth-Morris-Pratt
algorithm is not likely to be significantly faster than the brute-force method in
many. actual applications, because few applications involve searching for highly
self-repetitive patterns in highly self-repetitive text. However, the method does
have a major practical advantage: it proceeds sequentially through the input and
never “backs up” in the input. This makes it convenient for use on a large file

100111010010100010100111000111

: 1o off] _
100111010010100o0[1JoJ1Jefo[1]1j1]lo 001 11

Figure 19.5 Knuth-Morris-Pratt string search in binary text.
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being read in from some external device. (Algorithms requiring backup need some
complicated buffering in this situation.)

Boyer-Moore Algorithm

If “backing up” is not difficult, then a significantly faster string-searching method
can be developed by scanning the pattern from right to left when trying to match
it against the text. When searching for our sample pattern 10100111, if we find
matches on the eighth, seventh, and sixth character but not on the fifth, then we can
immediately slide the pattern seven positions to the right, and check the fifteenth
character next, because our partial match found 111, which might appear elsewhere
in the pattern. Of course, the pattern at the end does appear elsewhere in general,
so we need a next table as above.

A right-to- left version of the next table for the pattern 10110101 is shown
in Figure 19.6; in this case next [j] is the number of character positions by
which the pattern can be shifted to the right given that a mismatch in a right-to-left
scan occurred on the jth character from the right in the pattern. This is found as
before, by sliding a copy of the pattern over the last j characters of itself from
left to right, starting with the next-to-last character of the copy lined up with the
last character of the pattern and stopping when all overlapping characters match
(also taking into account the character that caused the mismatch). For example,
next [2] is 7 because, if there is a match of the last two characters and then a
mismatch in a right-to-left scan, then 001 must have been encountered in the text;
this doesn’t appear in the pattern, except possibly if the 1 lines up with the first
character in the pattern, so we can slide 7 positions to the right.

j next[j]
2 4
3 7
4 2
5 5
6 5
7 5
8 5

Figure 19.6 Restart Positions for Boyer-Moore Search.
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ING SEARCHING EXAMPLE CONSISTING OF

A STRING SEARCHING EXAMPLE CONSI[S[TING] OF

Figure 19.7 Boyer-Moore string search using the mismatched character heuristic.

This leads directly to a program that is quite similar to the above implemen-
tation of the Knuth-Morris-Pratt method. We won’t explore this in more detail
because there is a quite different way to skip over characters with right-to-left
pattern scanning that is much better in many cases.

The idea is to decide what to do next on the basis of the character that caused
the mismatch in the text as well as the pattern. The preprocessing step is to decide,
for each possible character that could occur in the text, what we would do if
that character were to cause the mismatch. The simplest realization of this leads
immediately to a quite useful program.

Figure 19.7 shows this method on our first sample text. Proceeding from right
to left to match the pattern, we first check the G in the pattern against the R (the
fifth character) in the text. Not only do these not match, but also we can notice
that R appears nowhere in the pattern, so we might as well slide it all the way past
the R. The next comparison is of the G in the pattern against the fifth character
following the R (the S in SEARCHING). This time, we can slide the pattern to the
right until its S matches the S in the text. Then the G in the pattern is compared
against the C in SEARCHING, which doesn’t appear in the pattern, so the pattern
can be slid five more places to the right. After three more five-character skips, we
arrive at the T in CONSISTING, at which point we align the pattern so that its T
matches the T in the text and find the full match. This method brings us right to
the match position at a cost of examining only seven characters in the text (and
five more to verify the match)!

This “mismatched-character” algorithm is quite easy to implement. It simply
improves a brute-force right-to-left pattern scan to initialize an array skip that
tells, for each character in the alphabet, how far to skip if that character appears in
the text and causes a mismatch during the string search. There must be an entry
in skip for each character that possibly could occur in the text: for simplicity,
we assume that we have an index function that takes a char as an argument
and returns O for blanks and i for the ith letter of the alphabet; we also assume a
subroutine initskip () that initializes the skip array to M for characters not in
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the pattern and then, for j from 0 to M-1, sets skip [index (p[3j1) ] toM-j-1.
Then the implementation is straightforward:

int mischarsearch (char *p, char *a)
{
int i, j, t, M = strlen(p), N = strlen(a);
initskip(p);
for (1 = M-1, j =M-1; j > 0; i--, j--)
while (a[i] !'= p[jl)

= gkip[index(al[i])];
(M-3 > t) ? M-J : t;
>= N} return N;

return 1i;

If the skip table were all 0 (which it never is), this would correspond to a right-
to-left version of the brute-force method, because the statement i += M- resets
i to the next position in the text string (as the pattern moves from left to right
across it); then j = M~1 resets the pattern pointer to prepare for a right-to-left
character-by-character match. As just discussed, the skip table leads to the pattern
being moved as far across the text as is warranted, most often M characters at a time
(when text characters not in the pattern are encountered). For the pattern STING,
the skip entry for G would be 0, the entry for N would be 1, the entry for I would
be 2, the entry for T would be 3, the entry for S would be 4, and the entries for all
.other letters would be 5. Thus, for example, when an S is encountered during a
right-to-left search, the i pointer is incremented by 4 so that the end of the pattern
is aligned four positions to the right of the S (and consequently the S in the pattern
lines up with the S in the text). If there were more than one S in the pattern, we
would want to use the rightmost one for this calculation: hence the skip array is
built by scanning from left to right.

Boyer and Moore suggested combining the two methods we have outlined for
right-to-left pattern scanning, choosing the larger of the two skips called for.

Property 19.3 Boyer-Moore string searching never uses more than M + N char-
acter comparisons, and uses about N [M steps if the alphabet is not small and the
pattern is not long.

The algorithm is linear in the worst case in the same way as the Knuth-Morris
Pratt method (the implementation given above, which only does one of the two
Boyer-Moore heuristics, is not linear). The “average-case” result N /M can be
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proved for various random string models, but these tend to be unrealistic, so we
shall skip the details. In many practical situations it is true that all but a few of
the alphabet characters appear nowhere in the pattern, so each comparison leads to
M characters being skipped, and this gives the stated result. m

The mismatched character algorithm obviously won’t help much for binary
strings, because there are only two possibilities for characters that cause the mis-
match (and these are both likely to be in the pattern). However, the bits can be
grouped together to make “characters” that can be used exactly as above. If we
take b bits at a time, then we need a skip table with 22 entries. The value of b
should be chosen small enough so that this table is not too large, but large enough
that most b-bit sections of the text are not likely to be in the pattern. Specifically,
there are M — b + 1 different b-bit sections in the pattern (one starting at each bit
position from 1 through M — b + 1), so we want M — b + 1 to be significantly
less than 2°. For example, if we take b to be about 1g(4M ), then the skip table
will be more than three-quarters filled with M entries. Also » must be less than
M /2, since otherwise we could miss the pattern entirely if it were split between
two b-bit text sections.

Rabin-Karp Algorithm

A brute-force approach to string searching that we didn’t examine above would
be to exploit a large memory by treating each possible M -character section of the
text as a key in a standard hash table. But it is not necessary to keep a whole
hash table, since the problem is set up so that only one key is being sought; all
we need to do is compute the hash function for each of the possible M -character
sections of the text and check if it is equal to the hash function of the pattern. The
problem with this method is that it seems at first to be just as hard to compute
the hash function for M characters from the text as it is merely to check to see if
they’re equal to the pattern. Rabin and Karp found an easy way to get around this
difficuity for the hash function we used in Chapter 16: (k) = k mod g where g
(the table size) is a large prime. In this case, nothing is stored in the hash table,
50 g can be taken to be very large,

The method is based on computing the hash function for position i in the text
given its value for position i — 1, and follows directly from a mathematical formula-
tion. Let’s assume that we translate our M characters to numbers by packing them
together in a computer word, which we then treat as an integer. This corresponds
to writing the characters as numbers in a base-d number system, where d is the
number of possible characters, The number corresponding to a[i..i + M — 1] is
thus

x=alildM ' +ali +11dM 24 .. v ali + M - 1]
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and we can assume that we know the value of 2(x) = x mod ¢. But shifting one
position right in the text simply corresponds to replacing x by

x — alild™~YYd +ali + M).

A fundamental property of the mod operation is that if we we take the remainder
when divided by ¢ after each arithmetic operation (to keep the numbers that we’re
dealing with small), then we get the same answer as if we were to perform all of
the arithmetic operations, then take the remainder when divided by g¢.

This leads to the very simple pattern-matching algorithm implemented below.
The program assumes the same index function as above, but d=32 is used for
efficiency (the multiplications might be implemented as shifts).

#define g 33554393
#define d 32
int rksearch(char *p, char *a)

{ .
int i, dM = 1, hl = 0, h2 = 0; v
int M = strlen(p), N = strlen(a);
for (1 = 1; 1 < M; i++) dM = (d*dM) % qg;
for (i 0; i < M; i++4)

{

hl (hl*d+index (p[i])) % q;

h2 = (h2*d+index(ali])) % q;

il

}
for (i
{
h2 (h2+d*g-index (a[i]) *dM) % qg;
h2 = (h2*d+index(a[i+M])) % q;
if (i > N-M) return N;
}

return i;

0; hl !'= h2; i++)

The program first computes a hash value h1 for the pattern and a hash value h2
for the first M characters of the text. (It also computes the value of ¢! mod ¢
in the variable dM:) Then it proceeds through the text string, using the technique
above to compute the hash function for the M characters starting at position i for
each i and comparing each new hash value to h1. The prime g is chosen to be
as large as possible, but small enough that (d+1) *q doesn’t cause overflow: this
requires fewer % operations than if we used the largest representable prime. (An
extra d*q is added during the h2 calculation to make sure that everything stays
positive so that the % operation works as it should.)
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Property 19.4 Rabin-Karp pattern matching is extremely likely to be linear.

This algorithm obviously takes time proportional to N + M, but note that it really
only finds a position in the text that has the same hash value as the pattern. To be
sure, we really should do a direct comparison of that text with the pattern. However,
the use of the very large value of g, made possible by the % computations and by
the fact that we needn’t keep the actual hash table around, makes it extremely
unlikely that a collision will occur. Theoretically, this algorithm could still take
O(NM) steps in the (unbelievably) worst case, but in practice it can be relied upon
to take about N + M steps. =

Multiple Searches

The algorlthms we’ve been discussing are all oriented towards a specific string-
searching problem: find an occurrence of a given pattern in a given text string.
If the same text string is to be the object of many pattern searches, then it will
be worthwhile to do some processing on the string to make subsequent searches
efficient.

Tf there are a large number of searches, the string-searching problem can be
viewed as a special case of the general searching problem that we studied in the
previous section. We simply treat the text string as N overlapping “keys,” the ith
key definedtobe a[i], ... , a[NJ, the entire text string starting at position 1.
Of course, we manipulate not the keys themselves but pointers to them: when we
need to compare keys 1 and j we do character-by-character compares starting at
positions i and 7 in the text string. (If we use a “sentinel” character larger than all
other characters at the end, then one of the keys is always greater than the other.)
Then the hashing, binary tree, and other algorithms in the previous section can be
used directly. First, an entire structure is built up from the text string, and then
efficient searches can be performed for particular patterns.

Many details need to be worked out in applying searching algorithms to strmg
searching in this way; our intent is to point this out as a viable option for some
string-searching applications. Different methods will be appropriate in different
situations. For example, if the searches will always be for patterns of the same
length, a hash table constructed with a single scan, as in the Rabin-Karp method,
will yield constant search times on the average. On the other hand, if the patterns
are to be of varying length, then one of the tree-based methods might be appropriate.
(Patricia is especially adaptable to such an application.)

Other variations in the problem can make it significantly more difficult and
lead to drastically different methods, as we’ll discover in the next two chapters.
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Exercises

1. Implement a brute-force pattern-matching algorithm that scans the pattern from
right to left.

- 2. Give the next table for the Knuth-Morris-Pratt algorithm for the pattern
AAAAAAAAA.

3. Give the next table for the Knuth-Morris-Pratt algorithm for the pattern
ABRACADABRA.

4. Draw a finite-state machine that can search for the pattern ABRACADABRA.
5. How would you search a text file for a string of 50 consecutive blanks?

6. Give the right-to-left skip table for the right-left scan for the pattern ABRA-
CADABRA.

7. Construct an example for which the right-to-left pattern scan with only the
mismatch heuristic performs badly.

8. How would you modify the Rabin-Karp algorithm to search for a given pattern
with the additional proviso that the middle character is a “wild card” (any text
character at all can match it)?

9. Implement a version of the Rabin-Karp algorithm to search for patterns in two-
" dimensional text. Assume both pattern and text are rectangles of characters.

10. Write programs to generate a random 1000-bit text string, then find all occur-
rences of the last k bits elsewhere in the string, for & = 5,10,15. (Different
methods may be appropriate for different values of k.)
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Pattern Matching

It is often desirable to do string searching with somewhat less than complete
information about the pattern to be found. For example, users of a text editor
may wish to specify only part of a pattern, or to specify a pattern which could
match a few different words, or to specify that any number of occurrences of some
specific characters should be ignored. In this chapter we’ll consider how pattern
matching of this type can be done efficiently.

The algorithms in the previous chapter have a rather fundamental dependence
on complete specification of the pattern, so we have to consider different methods.
The basic mechanisms we will consider make possible a very powerful string-
searching facility which can match complicated M -character patterns in N -character
text strings in time proportional to MN?2 in the worst case, and much faster for
typical applications. .

First, we have to develop a way to describe the patterns: a “language’’ that
can be used to specify, in a rigorous way, the kinds of partial-string-searching
problems suggested above. This language will involve more powerful primitive
operations than the simple “check if the ith character of the text string matches the
Jjth character of the pattern” operation used in the previous chapter. In this chapter,
we consider three basic operations in terms of an imaginary type of machine that
can search for patterns in a text string. Our pattern-matching algorithm will be a
way to simulate the operation of this type of machine. In the next chapter, we’ll see
how to translate from the pattern specification which the user employs to describe
his string-searching task to the machine specification which the algorithm employs
to actually carry out the search.

As we’ll see, the solution we develop to the pattern-matching problem is
intimately related to fundamental processes in computer science. For example, the
method we will use in our program to perform the string-searching task implied by
a given pattern description is akin to the method used by the C system to perform
the computational task implied by a given C program.

293
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Describing Patteins

We’ll consider pattern descriptions made up of symbols tied together with the
following three fundamental operations.

() Concatenation. This is the operation used in the last chapter. If two
characters are adjacent in the pattern, then there is.a match if and only if
the same two characters are adjacent in the text. For example, AB means
A followed by B. ,

(i) Or. This is the operation that allows us to specify alternatives in the
pattern. If we have an or between two characters, then. there is a match
if and only if either of the characters occurs in the text. We’ll denote
this operation by using the symbol + and use parentheses to combine it
with concatenation in arbitrarily' complicated ways. For example, A+B
means “either A or B”; C(AC+B)D means “either CACD or CBD”; and
(A+C)(B+C)D) means “either ABD or CBD or ACD or CCD.”

(iit) Closure. This operation allows parts of the pattern to be repeated arbi-
trarily. If we have the closure of a symbol, then there is a match if and
only if the symbol occurs any number of times (including 0). Closure
will be denoted by placing a * after the character or parenthesized group
to be repeated. For example, AB+ matches strings consisting of an A
followed by any number of B’s, while (AB)% matches strings consisting

~of alternating A’s and B’s.

A string of symbols built up using these three operations is called a regular expres-
sion. Each regular expression describes many specific text patterns. -Our goal is
to develop an algorithm that determines if any of the pattern described by a given
regular expression occur in a given text string.

We’ll concentrate on concatenation, or, and closure in order to show the. basic
principles in developing a regular-expression pattern-matching algorithm. Various
additions are commonly made in actual systems for convenience. For example,
—A might mean “match any character except A.” This not operation is the same
as an or involving all the characters except A but is much easier to use. Similarly,
“?” might mean “match any letter.” Again, this is obviously much more compact
than a large or. Other examples of additional symbols that make specification of
large patterns easier are symbols to match the beginning or end of a line, any letter
or any number, etc.

These operations can be remarkably descriptive. For example, the pattern
description ? # (ie + ei)?7+ maiches all words which have ie or ei in them (and so
are likely to be misspelled!); (1 +01) % (0 + 1) describes all strings of 0’s and 1’s
which do not have two consecutive 0’s. Obviously there are many different pattern
descriptions which describe the same strings: we must try to specify succinct
pattern descriptions just as we try to write efficient algorithms.
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The pattern-matching algorithm we’ll examine may be viewed as a general-
ization of the brute force left-to-right string searching method (the first method
looked at in Chapter 19). The algorithm looks for the leftmost substring in the
text string which matches the pattern description by scanning the text string from
left to right, testing at each position whether there is a substring beginning at that
position which matches the pattern description.

Pattern Matching Machines

Recall that we can view the Knuth-Morris-Pratt algorithm as a finite-state machine
constructed from the search pattern which scans the text. The method we will use
for regular-expression pattern matching is a generalization of this.

The finite-state machine for the Knuth-Morris-Pratt algorithm changes from
state to state by looking at a character from the text string and then changing to
one state if there’s a match, to another if not. A mismatch at any point means that
the pattern cannot occur in the text starting at that point. The algorithm itself can
be thought of as a simulation of the machine. The characteristic of the machine
that makes it easy to simulate is that it is deterministic: each state transition is
completely determined by the next input character.

To handle regular expressions, it will be necessary to consider a more powerful
abstract machine. Because of the or operation, the machine can’t determine whether
or not the pattern could occur at a given point by examining just one character; in
fact, because of closure, it can’t even determine how many characters might need to
be examined before a mismatch is discovered. The most natural way to overcome
these problems is to endow the machine with the power of nondeterminism: when
faced with more than one way to try to match the pattern, the machine should
“guess” the right one! This operation seems impossible to allow, but we will see
that it is easy to write a program to simulate the actions of such a machine.

Figure 20.1 shows a nondeterministic finite-state machine that could be used
to search for the pattern description (A*B+AC)D in a text string. (The states are
numbered, in a way that will become clear below.) Like the deterministic machine

6 7

Figure 20.1 A nondeterministic pattern recognition machine for (A*B+AC)D.
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of the previous chapter, the machine can travel from a state labeled with a character
to the state “pointed to” by that state by matching (and scanning past) that character
in the text string. What makes the machine nondeterministic is that there are some
states (called null states) which not only are not labeled, but also can “point to”
two different successor states. (Some null states, such as state 4 in the diagram,
are “no-op” states with one exit that don’t affect the operation of the machine
but facilitiate the implementation of the program which constructs the machine, as
we’ll see. State 9 is a null state with no exits, which stops the machine.) When in
such a state, the machine can go to either successor state regardless of the input
(without scanning past anything). The machine has the power to guess which
transition will lead to a match for the given text string (if any will). Note that
there are no “non-match” transitions as in the previous chapter: the machine fails
to find a match only if there is no way even to guess a sequence of transitions
leading to a match.

The machine has a unique initial state (indicated by the unattached line at the
left) and a unique final state (the small square at the right). When started out in
the initial state, the machine should be able to “recognize” any string described by

Figure 20.2 Recognizing AAABD.
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B
Ca 0

Figure 20.3 Two-state machine to recognize a character.

the pattern by reading characters and changing state according to its rules, ending
up in the “final state.” Because the machine has the power of nondeterminism, it
can guess the sequence of state changes that can lead to the solution. (But when
we try to simulate the machine on a standard computer, we’ll have to try all the
possibilities.) For example, to determine if its pattern description (A*B+AC)D can
occur in the text string

CDAABCAAABDDACDAAC

the machine would immediately report failure when started on the first or second
character; it would work some to report failure on the next two characters; it would
immediately report failure on the fifth or sixth characters; and it would guess the
sequence of state transitions shown in Figure 20.2 to recognize AAABD if started
on the seventh character.

We can construct the machine for a given regular expression by building partial
machines for parts of the expression and defining the ways in which two partial
machines can be composed into a larger machine for each of the three operations:
concatenation, or, and closure.

We start with the trivial machine to recognize a particular character. It’s
convenient to write this as a two-state machine, with an initial state (which also
Tecognizes the character) and a final state, as shown in Figure 20.3.

Now to build the machine for the concatenation of two expressions from the
machines for the individual expressions, we simply merge the final state of the first
with the initial state of the second, as shown in Figure 20.4.

Similarly, the machine for the or operation is built by adding a new null state
pointing to the two initial states and making one final state point to the other, which
becomes the final state of the combined machine, as shown in Figure 20.5.

Figure 20.4 State machine construction: concatenation.
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Figure 20.5 State machine construction: or.

Finally, the machine for the closure operation is built by making the final state
the initial state and having it point back to the old initial state and a new final state,
as shown in Figure 20.6.

A machine can be built that corresponds to any regular expression by suc-
cessively applying these rules. The states for the example machine above are
numbered in order of creation as the machine is built by scanning the pattern from
left to right, so the construction of the machine from the rules above can be easily
traced. Note that we have a two-state trivial machine for each letter in the regular
expression and that each + and * causes one state to be created (concatenation
causes one to be deleted), so the number of states is certainly less than twice the
number of characters in the regular expression.

Representing the Machine

Our nondeterministic machines will all be constructed using only the three com-
position rles outlined above, and we can take advantage of their simple structure
to manipulate them in a straightforward way. For example, no more than two
lines leave any state. In fact, there are only two types of states: those labeled by
a character from the input alphabet (with one line leaving) and unlabeled (null)
states (with two or fewer lines leaving). This means that the machine can be repre-
sented with only a few pieces of information per node. Since we will often want to
access states just by number, the most suitable organization for the machine is an
array representation. We’ll use the three parallel arrays ch, nextl, and next2,

Figure 20.6 State machine construction: closure.
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0 1 2 3 4 5 6 7 8 9

ch A B A C D
nextl 5 2 3 4 8 6 7 8 9 0
next?2 5 2 1 4 8 2 7 8 9 0

Figure 20.7 Array representation for machine of Figure 20.1.

indexed by state to represent and access the machine. It would be possible to
get by with two-thirds this amount of space, since each state really uses only two
“meaningful pieces of information, but we’ll forgo this improvement for the sake of
clarity and also because pattern descriptions are not likely to be particularly long.

The machine above can be represented as in Figure 20.7. The entries indexed
by state can be interpreted as instructions to the nondeterministic machine of
the form “If you are in state and you see ch[state] then scan the character
and go to state next1[state] (or next2[state]).” State 9 is the final state
in this example, and State 0 is a pseudo-initial state whose Next entries are the
number of the actual initial state. (Note the special representation used for null
states with 0 or 1 exits.)

We’ve seen how to build up machines from regular expression pattern descrip-
tions and how such machines might be represented as arrays. However, writing a
program to do the translation from a regular expression to the corresponding non-
deterministic machine representation is quite another matter. In fact, even writing
a program to determine if a given regular expression is legal is challenging for
the uninitiated. In the next chapter, we’ll study this operation, called parsing, in
much more detail. For the moment, we’ll assume that this translation has been
done, so that we have available the ch, nextl, and next?2 arrays representing
a particular nondeterministic machine that corresponds to the regular expression
pattern description of interest.

Simulating the Machine

The last step in the development of a general regular-expression pattern-matching
algorithm is to write a program that somehow simulates the operation of a non-
determmlstlc pattern-matching machine. The idea of writing a program that can
“guess” the right answer seems ridiculous. However, in this case it turns out that
we can keep track of all possible matches in a systematic way, so that we do
eventually encounter the correct one.
One possibility would be to develop a recursive program that mimics the
nondeterministic machine (but tries all possibilities rather than guessing the right
one). Instead of using this approach, we’ll look at a nonrecursive implementation
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that exposes the basic operating principles of the method by keeping the states
under consideration in a rather peculiar data structure called a deque.

The idea is to keep track of all states that could possibly be encountered while
the machine is “looking at” the current input character. Each of these states is
processed in turn: null states lead to two (or fewer) states, states for characters
which do not match the current input are eliminated, and states for characters which
do match the current input lead to new states for use when the machine is looking
at the next input character. Thus, we want to maintain a list of all the states that
the nondeterministic machine could possibly be in at a particular point in the text.
The problem is to design an appropriate data structure for this list.

Processing null states seems to require a stack, since we are essentially post-
poning one of two things to be done, just as in recursion removal (so the new state
should be put at the beginning of the current list, lest it get postponed indefinitely).
Processing the other states seems to require a queue, since we don’t want to exam-
ine states for the next input character until we’ve finished with the current character
(so the new state should be put at the end of the current list). Rather than choosing
between these two data structures, we’ll use both! Deques (“double-ended queues”)
combine the features of stacks and queues: a deque is a list to which items can
be added at either end. (Actually, we use an “output-restricted deque,” since we
always remove items from the beginning, not the end—that would be “dealing
from the bottom of the deck.”)

. A crucial property of the machine is that it have no “loops” consisting of just
null states, since otherwise it could decide nondeterministically to loop forever. It
turns out that this implies that the number of states on the deque at any time is
less than the number of characters in the pattern description.

The program given below uses a deque to simulate the actions of a non-
deterministic pattern-matching machine as described above. While examining a
particular character in the input, the nondeterministic machine can be in any one of
several possible states: the program keeps track of these in a deque, using proce-
dures push, put, and pop, like those in Chapter 3. Either an array representation
(as in the queue implementation in Chapter 3) or a linked representation (as in the
stack implementation in Chapter 3) could be used; the implementation is omitted.

The main loop of the program removes a state from the deque and performs
the action required. If a character is to be matched, the input is checked for the
required character: if it is found, the state transition is effected by putting the new
state at the end of the deque (so that all states involving the current character are
processed before those involving the next one). If the state is null, the two possible
states to be simulated are put at the beginning of the deque. The states involving
the current input character are kept separately from those involving the next by a
marker scan=-1 in the deque: when scan is encountered, the pointer into the
input string is advanced. The loop terminates when the end of the input is reached

" (no match found), state 0 is reached (legal match found), or only one item, the
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scan marker, is left on the deque (no match found). This leads directly to the
following implementation:

#define scan -1
int match (char *a)
{ .
int nl, n2;
int 3 = 0, N = strlen(a), state = nextl[0];
dequeinit (); put(scan);
while (state)
{

if (state == scan) Jj

{ Jt++; put(scan); }
else if (ch[state] =
]

+

al3l)
put (nextl[state

else if (ch[state]

);

14 l)

{v
nl = nextlistate]; n2 = next2[state]:
push(nl); if (nl != n2) push(n2);
}
if (dequeempty() || j==N) return 0;

state = pop():
b
return j;

}

This function takes as argument the (pointer to) the text string a that it should try
to match, using the nondeterministic machine representing the pattern in the ch,
nextl, and next2 arrays as described above. It returns the length of the shortest
initial substring of a matched by the pattern (0 if no match).

Figure 20.8 shows the contents of the deque each time a state is removed when
our sample machine is run with the text string AAABD. This diagram assumes an
array representation, as used for queues in Chapter 3: a plus sign is used to
represent scan..Each time the scan marker reaches the front of the deque (on
the bottom in the diagram), the j pointer is incremented to the next character in
the text. Thus, we start with state 5 while scanning the first character in the text
(the first A). First state 5 leads to states 2 and 6, then state 2 leads to states 1 and
3, all of which need to scan the same character and are on the beginning of the
deque. Then state 1 leads to state 2, but at the end of the deque (for the next input
character). State 3 leads to another state only while scanning a B, so it is ignored
while an A is being scanned. When the “scan” sentinel finally reaches the front
of the deque, we see that the machine could be in either state 2 or state 7 after
scanning an A. Then the program tries states 2, 1, 3, and 7 while “looking at”
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9][9]
[4][4][8]

Figure 20.8 Contents of deque during recognition of AAABD.

the second A, to discover, the second time scan reaches the front of the deque,
that state 2 is the only possibility after scanning AA. Now, while looking at the
third A, the only possibilities are states 2, 1, and 3 (the AC possibility is now
precluded). These three states are tried again, to lead eventually to state 4 after
scanning AAAB. Continuing, the program goes to state 8, scans the D and ends
up the final state. A match has been found, but, more important, all transitions
consistent with the text string have been considered.

Property 20.1 Simulating the operation of an M -state machine to look for patterns
in a text string of N characters can be done with fewer than NM state transitions
in the worst case.

The running time of match obviously depends very heavily on the pattern being
matched. However, for each of the N input characters, it would seem that it
processes at most M states of the machine, so the worst-case running time should
be proportional to MN (for each starting position in the text). Unfortunately, this
is not true for match as implemented above, because, when putting a state on
the deque, the program does not check whether it is already there, so the deque
may contain duplicate copies of the same state. This may not have much effect
in practical applications, but it can run rampant on simple pathological cases if
left unchecked. For example, this problem eventually leads to a deque with 2N-1
states when the pattern (A*A)*B is matched against a string of N A’s followed by
a B. To avoid this, the deque routines used by match must be changed to avoid
ever putting duplicate states on the deque (and therefore ensure that at most M
states are processed for each input character), either by checking explicitly or by
maintaining an array indexed by state. With this change, the grand total, for
determining whether any portion of the text string is described by the pattern, is
then O(MN?). u

Not all nondeterministic machines can be simulated so efficiently, as discussed
in more detail in Chapter 40, but the use of a simple hypothetical pattern-matching
machine in this application leads to a quite reasonable algorithm for a quite difficult
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problem. However, to complete the algorithm, we need a program which translates
arbitrary regular expressions into “machines” for interpretation by the above code.
In the next chapter, we’ll look at the implementation of such a program in the
context of a more general discussion of compilers and parsing techniques.




304 A Chapter 20

Exercises

10.

. Give a regular expression for recognizing all occurrences of four or fewer

consecutive 1’s in a binary string.

. Draw the nondeterministic pattern-matching machine for the pattern description

(A+B)*+C.

. Give the state transitions your machine from the previous exercise would make

to recognize ABBAC.

. Explain how you would modify the nondeterministic machine to handle the not

function.

. Explain how you would modify the nondeterministic machine to handle “don’t-

care” characters.

. How many different patterns can be described by a regular expression with M

or operators and no closure operators?

. Modify mat ch to handle regular expressions with the not function and “don’t-

care” characters.

. Show how to construct a pattern description of length M and a text string of

length N for which the running time of match is as large as possible.

. Implement a version of match that avoids the problem described in the proof

of Property 20.1.

Show the contents of the deque each time a state is removed when match is
used to simulate the example machine in the text with the text string ACD.
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Parsing

Several fundamental algorithms have been developed to recognize legal com-
puter programs and to decompose them into a form suitable for further pro-
cessing. This operation, called parsing, has application beyond computer science,
since it is directly related to the study of the structure of lariguage in general. For
example, parsing plays an important role in systems which try to “understand”
natural (human) languages and in systems for translating from one language to
another. One particular case of interest is translating from a “high-level” computer
language like C (suitable for human use) to a “low-level” assembly or machine
language (suitable for machine execution). A program for doing such a translation
is called a compiler. Actually, we’ve already touched upon a parsing method, in
Chapter 4 when we built a tree representing an arithmetic expression.

Two general approaches are used for parsing. Top-down methods look for a
legal program by first looking for parts of a legal program, then looking for parts of
parts, etc. until the pieces are small enough to match the input directly. Bottom-up
methods put pieces of the input together in a structured way making bigger and
bigger pieces until a legal program is constructed. In general, top-down methods
are recursive, bottom-up methods are iterative; top-down methods are thought to
be easier to implement, bottom-up methods are thought to be more efficient. The
method in Chapter 4 was bottom-up; in this chapter we study a top-down method
in detail.

A full treatment of the issues involved in parser and compiler construction is
clearly beyond the scope of this book. However, by building a simple “compiler”
to complete the pattern-matching algorithm of the previous chapter, we will be
able to consider some of the fundamental concepts involved. First we’ll construct
a top-down parser for a simple language for describing regular expressions. Then
we’ll modify the parser to make a program which translates regular expressions
into pattern-matching machines for use by the match procedure of the previous
chapter.

305
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Our intent in this chapter is to give some feeling for the basic principles of
parsing and compiling while at the same time developing a useful pattern-matching
algorithm. Certainly we cannot treat the issues involved at the level of depth
they deserve. The reader should note that subtle difficulties are likely to arise in
applying the same approach to similar problems, and that compiler construction
is a quite well-developed field with a variety of advanced methods available for
serious applications.

Context-Free Grammars

Before we can write a program to determine whether a program written in a given
language is legal, we need a description of exactly what constitutes a legal program.
This description is called a grammar: to appreciate the terminology, think of the
language as English and read “sentence” for “program” in the previous sentence
(except for the first occurrence!). Programming languages are often described by
a particular type of grammar called a context-free grammar. For example, the
context-free grammar defining the set of all legal regular expressions (as described
in the previous chapter) is given below.

(expression) ::= (term) | (term) + (expression)
(term) ::= (factor) | (factor)(term)
{factor) ::= ((expression)) | v | ({expression))+ | v+

This grammar describes regular expressions like those that we used in the last
chapter, such as (1+01)*(0+1) or (A*B+AC)D. Each line in the grammar is called
a production or replacement rule. The productions consist of terminal symbols (,
), + and * which are the symbols used in the language being described (“v,” a
special symbol, stands for any letter or digit); nonterminal symbols (expression),
(term), and (factor) which are internal to the grammar; and metasymbols ::= and
| which are used to describe the meaning of the productions. The ::= symbol,
which may be read “is a,” defines the left-hand side of the production in terms
of the right-hand side; and the | symbol, which may be read as “or,” indicates
alternative choices. The various productions, though expressed in this concise
symbolic notation, correspond in a simple way to an intuitive description of the
grammar. For example, the second production in the example grammar might be
read “a {term) is a {factor) or a (factor) followed by a (term).” One nonterminal
symbol, in this case (expression), is distinguished in the sense that a string of
terminal symbols is in the language described by the grammar if and only if there
is some way to use the productions to derive that string from the distinguished
nonterminal by replacing (in any number of steps) a nonterminal symbol by any of
the or clauses on the right-hand side of a production for that nonterminal symbol.

One natural way to describe the result of this derivation process is a parse
tree: a diagram of the complete grammatical structure of the string being parsed.
For example, the parse tree in Figure 21.1 shows that the string (A*B+AC)D is in
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Figure 21.1 Parse tree for (A*B+AC)D.

the language described by the above grammar. Parse trees like this are sometimes
used for English to break down a sentence into subject, verb, object, etc.

The main function of a parser is to accept strings which can be so derived and

reject those that cannot, by attempting to construct a parse tree for any given string.
That is, the parser can recognize whether a string is in the language described by the
grammar by determining whether or not there exists a parse tree for the string. Top-
down parsers do this by building the tree starting with the distinguished nonterminal
at the top and working down towards the string to be recognized at the bottom;
bottom-up parsers do this by starting with the string at the bottom and working
backwards up towards the distinguished nonterminal at the top. As we’ll see, if the
meanings of the strings being recognized also imply further processing, then the
parser can convert them into an internal representation which can facilitate such
processing.
" Another example of a context-free grammar may be found in the appendix
of The C Programming Language: it describes legal C programs. The principles
considered in this section for recognizing and using legal expressions apply di-
rectly to the complex job of compiling and executing C programs. For example,
the following grammar describes a very smalil subset of C, arithmetic expressions
involving addition and multiplication: ‘

(expression) ::= (term) | (term) + (expression)
(term) ::= (factor) | {factor)x (term)
(factor) ::= ({expression)) | v

These rules describe in a formal way what we were able to take for granted in
Chapter 4: they are the rules specifying what constitutes “legal” arithmetic expres-
sions. Again, v is a special symbol which stands for any letter, but in this grammar
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the letters are likely to represent variables with numeric values. Examples of legal
strings for this grammar are A+(B*C) and A*(((B+C)*(D*E))+F). We’ve already
seen a parse tree for the latter, in Chapter 4, but that tree does not correspond to
the grammar above—for example, parentheses are not explicitly included.

As we have defined things, some strings are perfectly legal both as arithmetic
expressions and as regular expressions. For example, A*(B+C) might mean “add
B to C and multiply the result by A” or “take any number of A’s followed by
either B or C.” This points out the obvious fact that checking whether a string
is legally formed is one thing, but understanding what it means is quite another.
We’ll return to this issue after we’ve seen how to parse a string to check whether
or not it is described by some grammar. .

Each regular expression is itself an example of a context-free grammar: any
language which can be described by a regular expression can also be described
by a context-free grammar. The converse is not true: for example, the concept of
“balancing” parentheses can’t be captured with regular expressions. Other types
of grammars can describe languages which context-free grammars cannot. For
example, context-sensitive grammars are the same as those above except that the
left-hand sides of productions need not be single nonterminals. The differences
between classes of languages and a hierarchy of grammars for describing them
have been very carefully worked out and form a beautiful theory which lies at the
heart of computer science.

Top-Down Parsing

One parsing method uses recursion to recognize strings from the language described
exactly as specified by the grammar. Put simply, the grammar is such a complete
specification of the language that it can be turned directly into a program!

Each production corresponds to a procedure with the name of the nonterminal
on the left-hand side. Nonterminals on the right-hand side of the input correspond
to (possibly recursive) procedure calls; terminals correspond to scanning the input
string. For example, the following procedure is part of a top-down parser for our
regular expression grammar:

expression ()
{
term() ;
if (plJ] == "'+")
{ j++; expression(); }

An string p contains the regular expression being parsed, with an index j pointing
to the character currently begin examined. To parse a given regular expression p,
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we set j to O and call expression. If this results in j being set to M, then the
regular expression is in the language described by the grammar. If not, we’ll see
below how various error conditions are handled. The first thing that expression
does is call term, which has a slightly more complicated implementation:

term()
{
factor ()
if ((pl3] == " (") || letter(p[jl)) term();

A direct translation from the grammar would simply have term call factor and
then term. This obviously won’t work because it leaves no way to exit from
term: this program would go into an infinite recursive loop if called. (Such loops
have particularly unpleasant effects in many systems.) The implementation above
gets around this by first checking the input to decide whether term should be
called. The first thing that term does is call factor, which is the only one
of the procedures that could detect a mismatch in the input. From the grammar,
we know that when factor is called, the current input character must be either
a “(” or an input letter (represented by v). This process of checking the next
character without incrementing j to decide what to do is called lookahead. For
some grammars, this is not necessary; for others, even more lookahead is required.

Now, the implementation of factor follows directly from the grammar. If
the input character being scanned is not a “(” or an input letter, a procedure error
is called to handle the error condition:

factor ()
{
if (pl3] == "'(")
{
j++; expression();
1f (pl3j] == ")’") J++; else error();
}
else if (letter(pl[jl)) J++; else error();
if (plJ] == "*") J++;

Another error condition occurs when a “)” is missing.
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expression
term
factor
(
expression
term
factor A *
term
factor B
+
expression
“term
factor A
term
factor C
)
term

factor D

Figure 21.2 Parsing (A*B+AC)D.

The expression, term, and factor functions are obviously recursive; in
fact, they are so intertwined that there’s no way to list them so that each func-
tion is declared before it is used (this presents a problem for some programming
languages).

The parse tree for a glven string gives the recursive call structure during
parsing. Figure 21.2 traces through the operation of the above three procedures
when p contains (A*B+AC)D and expression is called with j=1. Except for
the plus sign, all the “scanning” is done in factor. For readability, the characters
procedure factor scans, except for the parentheses, are put on the same line as
the factor call.

The reader is encouraged to relate this process to the grammar and the tree in
Figure 21.1. This process corresponds to traversing the tree in preorder, though the
correspondence is not exact because our lookahead strategy essentially amounted
to Changing the grammar. Since we start at the top of the tree and work down,
the origin of the “top-down” name is obvious. Such parsers are also often called
recursive-descent parsers because they move down the parse tree recursively.

The top-down approach won’t work for all possible context-free grammars.
For example, with the production {expression) ::='v | (expression) + (term), if
we were to follow the mechanical translation into C as above, we would get the
undesirable result:
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badexpression();
{
1f (letter(pljl)) Jj++; else
{
badexpression();
if (pl[3] == "+") { j++; term(); }
else error();

If this procedure were called with p[j] a nonletter (as in our example, for 5=1)
it would go into an infinite recursive loop. Avoiding such loops is a principal
difficulty in the implementation of recursive-descent parsers. For term, we used
lookahead to avoid such a loop; in this case the proper way to get around the
problem is to switch the grammar to say (term)+(expression). The occurrence of
a nonterminal as the first item on the right-hand side of a replacement rule for
itself is called left recursion. Actually, the problem is more subtle, because the left
recursion can arise indirectly, for example with the productions (expression) ::=
(term) and (term) ::= v | (expression) + (term). Recursive-descent parsers won’t
work for such grammars: they have to be transformed to equivalent grammars
without left recursion, or some other parsing method must to be used. In general,
there-is an intimate and very widely studied connection between parsers and the
grammars they recognize, and the choice of a parsing technique is often dictated
by the characteristics of the grammar to be parsed.

Bottom-Up Parsing

Though there are several recursive calls in the programs above, it is an instructive
exercise to remove the recursion systematically. Recall from Chapter 5 that each
procedure call can be replaced by a stack push and each procedure return by a
stack pop, mimicking what the C system does to implement recursion. Also, recall
that one reason to do this is that many calls which seem recursive are not truly
recursive. When a procedure call is the last action of a procedure, then a simple
goto can be used. This turns expression and term into simple loops that can
be merged and combined with factor to produce a single procedure with one
true recursive call (the call to expression within factor).

This view leads directly to a quite simple way to check whether regular ex-
pressions are legal. Once all the procedure calls are removed, we see that each
terminal symbol is simply scanned as it is encountered. The only real processing
done is to check whether there is a right parenthesis to match each left parenthesis,
whether each “+” is followed by either a letter or a “(”, and whether each “*”
follows by either a letter or a “)”. That is, checking whether a regular expression
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is legal is essentially equivalent to checking for balanced parentheses. This can
be simply implemented by keeping a counter, initialized to 0, that is incremented
when a left parenthesis is encountered and decremented when a right parenthesis
is encountered. If the counter is zero at the end of the expression, and the “+”
and “*” symbols in the expression meet the requirements just mentioned, then the
expression was legal.

Of course, there is more to parsing than simply checking whether the input
string is legal: the main goal is to build the parse tree (even if in an implicit way,
as in the top-down parser) for other processing. It turns out to be possible to do
this with programs with the same essential structure as the parenthesis checker
Just described. One type of parser which works in this way is the so-called shift-
reduce parser. The idea is to maintain a pushdown stack which holds terminal and
nonterminal symbols. Each step in the parse is either a shift step, in which the
next input character is simply pushed onto the stack, or a reduce step, in which the
top characters on the stack are matched to the right-hand side of some production
in the grammar and “reduced to” (replaced by) the nonterminal on the left side of
that production. (The main difficulty in building a shift-reduce parser is deciding
when to shift and when to reduce. This can be a complicated decision, depending
on the grammar.) Eventually all the input characters get shifted onto the stack, and
eventually the stack gets reduced to a single nonterminal symbol. The programs
in Chapters 3 and 4 for constructing a parse tree from an infix expression by first
converting the expression to postfix comprise a simple example of such a parser.

Bottom-up parsing is generally considered the method of choice for actual
programming languages, and there is an extensive literature on developing parsers
for large grammars of the type needed to describe a programming language. Our
brief description only skims the surface of the issues involved.

Compilers

A compiler may be thought of as a program which translates from one language
to another. For example, a C compiler translates programs from the C language
into the machine language of some particular computer. We’ll illustrate one way
to do this by continuing with our regular-expression pattern-matching example;
now, however, we wish to translate from the language of regular expressions to a
“language” for pattern-matching machines, the ch, next1, and next?2 arrays of
the match program of the previous chapter:

The translation process is essentially “one-to-one”: for each character in the
pattern (with the exception of parentheses) we want to produce a state for the
pattern-matching machine (an entry in each of the arrays). The trick is to keep
track of the information necessary to fill in the next1l and next2 arrays. To
do so, we’ll convert each of the procedures in our recursive-descent parser into
functions which create pattern-matching machines. Each function will add new
states as necessary onto the end of the ch, next1, and next?2 arrays, and return
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the index of the initial state of the machine created (the final state will always
be the last entry in the arrays). For example, the function given below for the
(expression) production creates the or states for the pattern-matching machine.

int expression|()
{
int tl,t2,r;
tl = term(); r = tl;
if (plj] == "+")
{
J++; statet+;
t2 = state; r = t2; state++;
setstate(t2, ' ', expression(), tl);
setstate(t2-1, ' ', state, state);
}

return r;

This function uses a procedure set state which sets the ch, next1, and next?2
array entries indexed by the first argument to the values given in the second, third,
and fourth arguments, respectively. The index state keeps track of the “current”
state* in the machine being built: Each time a new state is created, state is
incremented. Thus, the state indices for the machine corresponding to a particular
procedure call range between the value of state on entry and the value of state
on exit. The final state index is the value of state on exit. (We don’t actually
“create” the final state by incrementing state before exiting, since this makes it
easy to “merge” the final state with later initial states, as we’ll see.)

With this convention, it is easy to check (beware of the recursive call!) that
the above program implements the rule for composing two machines with the or
operation as diagrammed in the previous chapter. First the machine for the first
part of the expression is built (recursively), then two new null states are added
and the second part of the expression built. The first null state (with index t2-1)
is the final state of the machine of the first part of the expression which is made
into a “no-op” state to skip to the final state for the machine for the second part
of the expression, as required. The second null state (with index t2) is the initial
state, so its index is the return value for expression and its next1 and next2
entries are made to point to the initial states of the two expressions. Note carefully
that these are constructed in the opposite order to what one might expect, because
the value of state for the no-op state is not known until the recursive call to
expression has been made.

The function for (term) first builds the machine for a (factor) and then, if
necessary, merges the final state of that machine with the initial state of the machine
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for another (term). This is easier done than said, since state is the final state
index of the call to factor:

term()
{
int t,zr;
r = factor();

if ((p[3] == "(') || letter(pl[jl)) t = term();
return r;

We simply ignore the initial state index returned by the call to term: C requires
us to put it somewhere, so we throw it away in a temporary variable t.

The function for (factor) uses similar techniques to handle its three cases:
a parenthesis calls -for a recursive call on expression; a v calls for simple
concatenation of a new state; and a * calls for operations similar to those in
expression, according to the ¢losure diagram from the previous section:

factor ()
{
int tl1,t2,r;
tl = state:;
if (pl3] == "(")
{
j++; t2 = expression();
if (p[3] == ')’) 3++; else error();
}
else if (letter(pljl))
{
setstate (state,pl[j],state+l, state+l);
t2 = state; j++; state++;
}
else error();
if (p[j] '=7*") r = t2; else
{
setstate (state,’ 7 ,statetl,t2);
r = state; nextl([tl-1] = state;
J++; state++;
} .

return r;
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Figure 21.3 Building a pattern matching machine for (A*B+AC)D.

Figure 21.3 shows how the states are constructed for the pattern (A*B+AC)D, our

example from the previous chapter. First, state 1 is constructed for the A. Then,

state 2 is constructed for the closure operand and state 3 is attached for the B.

Next, the “+” is encountered and states 4 and 5 are built by expression, but

their fields can’t be filled in until after a recursive call to expression, and this"
eventually results in the construction of states 6 and 7. Finally, the concatenation

of the D is handled with state 8, leaving state 9 as the final state.

The final step in the development of a general regular-expression pattern-
matching algorithm is to put these procedures together with the mat ch procedure:

matchall (char *a)
{
3 = 0; state = 1;
nextl{0] = expression();
setstate(0,’ 7, nextl[0], nextl([0]);
setstate(state,’ ', 0, 0);
while (*a != ’"\0’) printf("%d ", match(a++));
printf ("\h") ;

This program prints out, for each character position in a text string a, the length of
the shortest substring starting at that postion matching a pattern p (0 if no match).
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Compiler-Compilers

The program for general regular-expression pattern-matching we have developed
in this and the previous chapter is efficient and quite useful. A version of this
program with a few added amenities (for handling “don’t-care” characters, etc.) is
likely to be among the most heavily used utilities on many computer systems.

It is interesting (some might say confusing) to reflect on this algorithm from a
more philosophical point of view. In this chapter, we have considered parsers for
unraveling the structure of regular expressions, based on a formal description of
regular expressions using a context-free grammar. Put another way, we used the
context-free grammar to specify a particular “pattern”: a sequence of characters
with legally balanced parentheses. The parser then checks to see if the pattern
occurs in the input (but considers a match legal only if it covers the entire input
string). Thus parsers, which check that an input string is in the set of strings
defined by some context-free grammar, and pattern matchers, which check that
an input string is in the set of strings defined by some regular expression, are
essentially performing the same function! The principal difference is that context-
free grammars are capable of describing a much wider class of strings. For example,
regular expressions cannot describe the set of all regular expressions.

Another difference in the programs is that the context-free grammar is “built
into” the parser, while the match procedure is “table-driven”: the same program
works for all regular expressions, once they have been translated into the proper
format. It turns out to be possible to build parsers which are table-driven in the
same way, so that the same program can be used to parse all languages which
can be described by context-free grammars. A parser generator is a program
which takes a grammar as input and produces as output a parser for the language
described by that grammar. This can be carried one step further: one can build
compilers that are table-driven in terms of both the input and the output languages.
A compiler-compiler is a program which takes two grammars (and a specification of
the relationships between them) as input and produces a compiler which translates
strings from one language to the other as output.

Parser generators and compiler-compilers are available for general use in many
computing environments, and are quite useful tools which can be used to produce
efficient and reliable parsers and compilers with a relatively small amount of effort.
On the other hand, top-down recursive-descent parsers of the type considered here
are quite serviceable for the simple grammars which arise in many applications.
Thus, as with many of the algorithms we have considered, we have a straight-
forward method appropriate for applications where a great deal of implementation
effort might not be justified, and several advanced methods that can lead to sig-
nificant performance improvements for large-scale applications. As stated above,
we’ve only scratched the surface of this extensively researched field.
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Exercises

10.

. How does the recursive-descent parser find an error in a regular expression

such as (A+B)*BC+ which is incomplete?

. Give the parse tree for the regular expression ((A+B)+(C+D)*)*.

. Extend the arithmetic expression grammar to include exponentiation, division,

and modulus operators.

. Give a context-free grammar to describe all strings with no more than two

consecutive 1’s.

. How many procedure calls are used by the recursive-descent parser to recognize

a regular expression in terms of the number of concatenation, or, and closure
operations and the number of parentheses?

. Give the ch, nextl and next2 arrays that result from building the pattern-

matching machine for the pattern ((A+B)+(C+D)*)*,.

. Modify the regular expression grammar to handle the “not” function and “don‘t-

care” characters.

. Build a general regular-expression pattern matcher based on the improved gram-

mar in your answer to the previous question.

. Remove the recursion from the recursive-descent compiler and simplify the

resulting code as much as possible. Compare the running time of the nonre-
cursive and recursive methods.

Write a compiler for simple arithmetic expressions described by the grammar
in the text. It should produce a list of “instructions” for a machine capable
of three operations: push the value of a variable onto a stack; add the top
two values on the stack, removing them from the stack, then putting the result
there; and multiply the top two values on the stack, in the same way.
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File Compression

For the most part, the algorithms we have studied have been designed primar-
ily to use as little time as possible and only secondarily to conserve space. In
this section, we’ll examine some algorithms with the opposite orientation: methods
designed primarily to reduce space consumption without using up too much time.

Ironically, the techniques we’ll examine to save space are “coding” methods from
information theory that were developed to minimize the amount of information
necessary in communications systems and were thus originally intended to save
time (not space). :

In general, most computer files have a great deal of redundancy. The methods
we will examine save space by exploiting the fact that most files have a relatively
low “information content.” File compression techniques are often used for text
files (in which certain characters appear much more often than others), “raster”
files for encoding pictures (which can have large homogeneous areas), and files for
the digital representation of sound and other analog signals (which can have large
repeated patterns).

We’ll look at an elementary algorithm for the problem (that is still quite use-
ful) and an advanced “optimal” method. The amount of space saved by these.
methods varies depending on characteristics of the file. Savings of 20% to 50%
are typical for text files, and savings of 50% to 90% might be achieved for binary
files. For some types of files, for example files consisting of random bits, little
can be gained. In fact, it is interesting to note that any general-purpose compres-
sion method must make some files longer (otherwise we could apply the method
continually to produce an arbitrarily small file).

On the one hand, one might argue that file-compression techniques are less
important than they once were because the cost of computer storage devices has
dropped dramatically and far more storage is available to the typical user than in
the past. On the other, it can be argued that file compression techniques are more
important than ever because, since so much storage is in use, the savings they

319
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make possible are greater. Compression techniques are also appropriate for stor-
age devices which allow extremely high-speed access and are by nature relatively
expensive (and therefore small).

Run-Length Encoding

The simplest type of redundancy in a file is long runs of repeated characters. For
example, consider the following string:

AAAABBBAABBBBBCCCCCCCCDABCBAAABBBBCCCD

This string can be encoded more compactly by replacing each repeated string of
characters by a single instance of the repeated character along with a count of the
number of times it is repeated. We would like to say that this string consists of
4 A’s followed by 3 B’s followed by 2 A’s followed by 5 B’s, etc. Compressing
a string in this way is called run-length encoding. When long runs are involved,
the savings can be dramatic. There are several ways to proceed with this idea,
depending on characteristics of the application. (Do the runs tend to be relatively
long? How many bits are used to encode the characters being encoded?) We’ll
look at one particular method, then discuss other options.

If we know that our string contains just letters, then we can encode counts
simply by interspersing digits with the letters. Thus our string might be encoded
as-follows:

4A3BAASBSCDABCB3A4B3CD

Here “4A” means “four A’s,” and so forth. Note that is is not worthwhile to encode
- runs of length one or two, since two characters are needed for the encoding.

For binary files, a refined version of this method is typically used to yield
dramatic savings. The idea is simply to store the run lengths, taking advantage of
the fact that the runs alternate between 0 and 1 to avoid storing the 0’s and 1’s
themselves. This assumes that there are few short runs (we save bits on a run only
if the length of the run is more than the number of bits needed to represent itself
in binary), but no run-length encoding method will work very well unless most of
the runs are long.

Figure 22.1 is a “raster” representation of the letter “q” lying on its side; this
is representative of the type of information that might be processed by a text-
formatting system (such as the one used to print this book); at the right is a list
of numbers that might be used to store the letter in a compressed form. That is,
the first line consists of 28 0’s followed by 14 1’s followed by 9 more 0’s, etc.
The 63 counts in this table plus the number of bits per line (51) contain sufficient
information to reconstruct the bit array (in particular, note that no “end-of-line”
indicator is needed). If six bits are used to represent each count, then the entire
file is represented with 384 bits, a substantial savings over the 975 bits required to
store it explicitly.
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000000000000000000000000000011111111111111000000000 28 14
000000000000000000000000001111111111111111110000000 26 18
000000000000000000000001111111111111111111111110000 23 24
000000000000000000000011111111111111111111111111000 22 26
000000000000000000001111111111111111111111111111110 2030
(0000G606000000000000011111110000000000000000001111111 19 7187
000000000000000000011111000000000000000000000011111 19 5225
000000000000000000011100000000000000000000000000111 19 3263
000000000000000000011100000000000000000000000000111 19 3263
00000000000000000001 1100000000000000000000000000111 19 3263
00000000000000000001110000000000000000000000000011 1 19 3263
(000000000000000000001111000000000000000000000001110 20 4233 1
000000000000000000000011100000000000000000000111000 22 32033
011111111111111111111111111111111111111111111111111 1 50
011111111111111111112121131111111111111111111111131111 1 50
OI11111111111111111111111111111111111111ti111111111 1 50
011111111111111111111111111111111311311111111111111 1 50

1

1

— W k3O

Orffifninattattaataaaanaaqtaata11111111n1id1ti11tin 50
(01100000000000000000000000000000000000000000000001 1 2462

Figure 22.1 A typical bitmap, with information for run-length encoding.

Run-length encoding requires separate representations for the file and its en-
coded version, so that it can’t work for all files. This can be quite inconvenient:
for example, the character-file-compression method suggested above won’t work
for character strings that contain digits. If other characters are used to encode the
counts, it won’t work for strings that contain those characters. To illustrate a way
to encode any string from a fixed alphabet of characters using only characters from
that alphabet, we’ll assume that we have only the 26 letters of the alphabet (and
spaces) to work with,

How can we make some letters represent digits and others represent parts of
the string to be encoded? One solution is to use a character that is likely to appear
only rarely in the text as a so-called escape character. Each appearance of that
character signals that the next two letters form a (count, character) pair, with counts
represented by having the ith letter of the alphabet represent the number i. Thus
our example string would be represented as follows with Q as the escape character:

QDABBBAAQEBQHCDABCBAAAQDBCCCD

The combination of the escape character, the count, and the one copy of the repeated
character is called an escape sequence. Note that it’s not worthwhile to encode
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runs less than four characters long, since at least three characters are required to
encode any run. ‘

But what if the escape character itself happens to occur in the input? We
can’t afford simply to ignore this possibility, because it is difficult to ensure that
any particular character can’t occur. (For example, someone might try to encode
a string that has already been encoded.) One solution to this problem is to use
an escape sequence with a count of zero to represent the escape character. Thus,
in our example, the space character could represent zero, and the escape sequence
“Q(space)” would represent any occurrence of Q in the input. It is interesting to
note that files containing Q are the only ones made longer by this compression
method. If a file that has already been compressed is compressed again, it grows
by at least a number of characters equal to the number of escape sequences used.

Very long runs can be encoded with multiple escape sequences. For example,
arun of 51 A’s would be encoded as QZAQYA using the conventions above. If
many very long runs are expected, it would be worthwhile to reserve more than
one character to encode the counts.

In practice, it is advisable to make both the compression and expansion pro-
grams somewhat sensitive to errors. This can be done by including a small amount
of redundancy in the compressed file so that the expansion program can be tolerant
of an accidental minor change to the file between compression and expansion. For
example, it probably is worthwhile to put “end-of-line” characters in the compressed
version of the letter “q” above, so that the expansion program can resynchronize
itself in case of an error.

Run-length encoding is not particularly effective for text files because the only
character likely to be repeated is the blank, and there are simpler ways to encode
repeated blanks. (It was used to great advantage in the past to compress text
files created by reading in punched-card decks, which necessarily contained many
blanks.) In modern systems, repeated strings of blanks are never entered, never
stored: repeated strings of blanks at the beginning of lines are encoded as “tabs”
and blanks at the ends of lines are obviated by the use of “end-of-line” indicators.
A run-length encoding implementation like the one above (but modified to handle
all representable characters) saves only about 4% when used on the text file for
this chapter (and this savings all comes from the letter “q” example!).

Variable-Length Encoding

In this section we’ll examine a file-compression technique that can save a substan-
tial amount of space in text files (and many other kinds of files). The idea is to
abandon the way in which text files are usually stored: instead of using the usual
seven or eight bits for each character, only a few bits are used for characters which
appear often and more bits for those which appear rarely.

It will be convenient to examine how the code is used on a small exam-
ple before considering how it is created. Suppose we wish to encode the string
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“ABRACADABRA.” Encoding it in our standard compact binary code with the
five-bit binary representation of i representing the ith letter of the alphabet (0 for
blank) gives the following bit sequence:

0000100010100 10000 0 100011000010010000001000101001000001

To “decode” this message, simply read off five bits at a time and convert according
to the binary encoding defined above. In this standard code the D, which appears
only once, requires the same number of bits as the A, which appears five times.
With a variable-length code, we can achieve economy in space by encoding fre-
quently used characters with as few bits as poss1b1e so that the total number of bits
used for the message is minimized.

We might try to assign the shortest bit strings to the most commonly used
letters, encoding A with 0, B with 1, R with 01, C with 10, and D with 11, so
ABRACADABRA would be encoded as

010101001101010

This uses only 15 bits compared to the 55 above, but it’s not really a code because
it depends on the blanks to delimit the charactefs. W1thout the blanks, the strmg.
010101001101010 could be decoded as RRRARBRRA or as several other strings.
Still, the count of 15 bits plus 10 delimiters is rather more compact than the
standard code, primarily because no bits are used to encode letters not appearing
in the message. To be fair, we also need to count the bits in the code itself, since
the message can’t be decoded without it, and the code does depend on the message
(other messages will have different fréquenmes of letter usage). We will consider
this issue later; for the moment we’re 1nterested in seemg how compact we can
make the message.

* First, delimiters aren’t needed if no character code is the prefix of another.
For example, if we encode A with 11, B with 00, C with 010, D with 10, and R
with 011, there is only one way to decode the 25-bit string

1100011110101110110001111

One easy way to represent the code is with a trie (see Chapter 17). In fact, any
trie with M external nodes can be used to encode any message with M different
characters. For example, Figure 22.2 shows two codes which could be used for
ABRACADABRA. The code for each character is determined by the path from
the root to that character, with O for “go left” and 1 for “go right”, as usual in a
trie. Thus, the trie at the left corresponds to the code given above; the trie at the
right corresponds to a code that produces the string

01101001111011100110100
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Figure 22.2 Two encoding tries for A, B, C, D, and R.

which is two bits shorter. The trie representation guarantees that no character code
is the prefix of another, so the string is uniquely decodable from the trie. Starting
at the root, proceed down the trie according to the bits of the message: each time
an external node is encountered, output the character at that node and restart at the
root.

But which trie is the best one to use? It turns out that there is an elegant
way to compute a trie which leads to a bit string of minimal length for any given
message. The general method for finding the code was discovered by D. Huffman
in 1952 and is called Huffiman encoding. (The implementation we’ll examine uses
some more modern algorithmic technology.)

Building the Huffman Code

The first step in building the Huffman code is to count the frequency of each
character within the message to be encoded. The following code fills an array
count [26] with the frequency counts for a message in a string a. (This program
uses the index procedure described in Chapter 19 to keep the frequency count
for the ith letter of the alphabet in count [1], with count [0] used for blanks.)

i

for (i = 0; 1 <= 26; i++) count[i] = 0;
(1]

for (i 0; 1 < M; i++) countlindex(al[i])]++;

For example, suppose we wish to encode the string “A SIMPLE STRING TO BE
ENCODED USING A MINIMAL NUMBER OF BITS.” The count table produced
is shown in Figure 22.3: there are eleven blanks, three A’s, three B’s, etc.

The next step is to build the coding trie from the bottom up according to the
frequencies. In building the trie, we’ll view it as a binary tree with frequencies
stored in the nodes: after it has been built we’ll view it as a trie for coding, as above.
First a tree node is created for each nonzero frequency, as shown on the left in the
first row of Figure 22.4 (the order in which the nodes appear is determined by the
dynamics of the algorithm described below, but is not particularly relevant to the
current discussion). Then the two nodes with the smallest frequencies are found,
and a new node is created with those two nodes as children and with frequency



File Compression , 325

ABCDEFGHIJKLMNOPQRS TUVWXYZ
k 0123456 7 8 91011121314151617181920212223242526
count{ki1 3 3 1 2 51 2 066 002 453102432000°00

Figure 22.3 Frequency counts for A SIMPLE STRING TO BE ENCODED ....

value the sum of the values of the children. This is shown on the right in the first
row of Figure 22.4. (It doesn’t matter which nodes are used if there are more than
two with the smallest frequency.) Then the two nodes with smallest frequency in
that forest are found, and a new node created in the same way, as shown in the
second row of Figure 22.4, on the left. Continuing in this way, we build up larger
and larger subtrees and at the same time reduce the number of trees in the forest
by one at each step (remove two, add one). Ultimately, all the nodes are combined
together into a single tree.

Note that nodes with low frequencies end up far down in the tree and nodes
with high frequencies end up near the root of the tree. The number labeling the
external (square) nodes in this tree is a frequency count, while the number labeling
each internal (round) node is the sum of the labels of its two children.

Now, the Huffman code is derived simply by replacing the frequencies at the
bottom nodes with the associated letters and then viewing the tree as an encoding
trie, with “left” corresponding to a code bit of 0 and “right” corresponding to a
code bit of 1, exactly as above. The trie for our example is shown in Figure 22.5.
The code for N is 000, the code for I is 001, the code for C is 110100, etc. The
small number above each node in this tree is the index into the count array where
the frequency is stored, for reference when examining the program that constructs
the tree below. Thus, for example, count [33] is 11, the sum of the frequency
counts for N and I (see also Figure 22.4), etc. ‘

Clearly, letters with high frequencies are nearer the root of the tree and are
encoded with fewer bits, so this is a good code, but why is this the best code?

Property 22.1 The length of the encoded message is equal to the weighted external
path length of the Huffman frequency tree.

The “weighted external path length” of a tree is the sum over all external nodes of
the “weight” (associated frequency count) times the distance to the root. Clearly,
this is one way to compute the length of the message: it is equivalent to the
sum over all letters of the number of occurrences times the number of bits per
occurrence. m

Property 22.2 No tree with the same frequencies in external nodes has lower
weighted external path length than the Huffman tree.

Any tree can be reconstructed by the same process that we use to construct the
Huffman tree, but not necessarily picking the two nodes of smallest weight at each
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Figure 22.4 Building a Huffman tree.
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Figure 22,5 Huffman coding trie for A SIMPLE STRING TO BE ENCODED ....

step. It can be proven by induction that no strategy can do better than that of
picking the two smallest weights first. =

The description above gives a general outline of how to compute the Huffman
encoding, in terms of algorithmic operations that we’ve studied. As usual, the step
from such a description to an actual implementation is rather instructive, so we
consider the details of the implementation next.

Implementation

The construction of the tree of frequencies involves the general process of removing
the smallest from a set of unordered elements, so we’ll use the pgdownheap
procedure from Chapter 11 to build and maintain an indirect heap on the frequency
values. Since we're interested in small values first, we’ll assume that the sense
of the inequalities in pgdownheap has been reversed. One advantage of using
indirection is that it is easy to ignore zero frequency counts. Figure 22.6 shows the
heap constructed for our example: Specifically, this heap is built by first initializing
the heap array to point to the non-zero frequency counts and then using the
padownheap procedure from Chapter 11, as follows:

for (1 =0, N = 0; 1 <= 26; i++)
if (count{i}) heap[++N] = 4i;
for (k = N; k > 0; k--) pgdownheap (k) ;
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k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
heap (k] 3 7 16211215 6 20 9 4 1314 5 2 1819 1 0
count [heap(k}]l 2 1 2 2 3 1 3 6 2 4 5 5 3 2 4 3 11

Figure 22.6 Initial heap (indirect) for Huffman tree construction.

As mentioned above, this assumes that the sense of the inequalities in the imple-
mentation of pgqdownheap has been reversed.

Now, using this procedure to construct the tree as above is straightforward:
we take the two smallest elements off the heap, add them and put the result back
into the heap. At each step we create one new count, and decrease the size of the
heap by one. This process creates N-1 new counts, one for each of the internal
nodes of the tree being created, as in the following code:

while (N > 1)
{
t = heap[l]; heap[l] = heap[N--]1;
pgdownheap (1) ;
count [26+N] = count [heap[l]]+count[t];
dad[t] = 26+N; dadl[heap[l]] = -26-N;
heap[l] = 26+N; pgdownheap (1) ;
) .
dad[26+N] = 0;.

The first two lines of this loop are actually pgremove; the size of the heap is
decreased by one. Then a new internal node is “created” with index 26+N and
given a value equal to the sum of the value at the root and value just removed.
Then this node is put at the root, which raises its priority, necessitating another
call on pgdownheap to restore order in the heap. The tree itself is represented
with an array of “parent” links: dad[t] is the index of the parent of the node
whose weight is in count [t]. The sign of dad[t] indicates whether the
node is a left or right child of its parent. For example, in the tree above we have

k 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
count [k] 60 37 23 21 16 12 1110 8 8 6 6 5 4 4 3 2
dad[k]’ 0 -2727 -2828 -2929 30 -3131 32 -32-34-35 36 -38 39

Figure 22.7 Parent link representation of Huffman tree (internal nodes).
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count [30]=21,dad[30]=-28, and count [28] =37 (indicating that the node
of weight 21 has index 30 and it is the right child of a parent with index 28 and
weight 37). Figure 22.7 gives the dad array for the internal nodes of the tree of
Figure 22.5.

The following program fragment constructs the actual Huffman code, as rep-
resented by the trie in Figure 22.5, from the representation of the coding tree
computed during the sifting process. The code is represented by two arrays: the
rightmost len [k] bits in the binary representation of the integer code [k] are
the code for the kth letter. (This representation is likely to be more compact than
a direct representation of the code as a set of binary strings.) For example, I is the
9th letter and has code 001, so code[9]=1 and len[9]=3.

for (k = 0; k <= 26; k++)
if (!count[k])
{ code(k] = 0; len[k] = 0; }
else ‘
{
i=0; j=1; t = dadik]; x = 0;
while (t)
{
if (£ <0) { x+=3; t =-t; }
-t = dadit]; 3 += j; i++;

code[k] = x; len[k] = 1i;

Finally, we can use these computed representations of the code to encode the
message:

for (j = 0; J < M; j++) ‘
for (i = len[index(al[J])l; 1 > 0; i--)
printf ("$1d", bits(code[index(al[jl)],i-1,1));

This program uses the bits procedure from Chapters 10 and 17 to access single
bits. Our sample message is encoded in only 236 bits versus the 300 used for the
straightforward encoding, a 21% savings:

0110111100100110101101011000111001111001110111011100100001111111110
1101001110101110011111000001101000100101101100101101111000010010010
0001111111011011110100010000011010011010001111000100001010010111001
01111110100011101110101001110111001
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Now, as mentioned above, the tree must be saved or sent along with the
message in order to decode it. Fortunately, this does not present any real difficulty.
It is actually necessary to store only the code array, because the radix search trie
which results from inserting the entries from that array into an initially empty tree
is the decoding tree.

Thus the storage savings quoted above is not entirely accurate, because the
message can’t be decoded without the trie and we must take into account the cost
of storing the trie (i.e., the code array) along with the message. Huffman encoding
is therefore only effective for long files where the savings in the message is enough
to offset the cost, or in situations where the coding trie can be precomputed and
used for a large number of messages. For example, a trie based on the frequencies
of occurrence of letters in the English language could be used for text documents.
For that matter, a trie based on the frequency of occurrence of characters in C
programs could be used for encoding programs (for example, “;” is likely to be
near the top of such a trie). A Huffman encoding algorithm saves about 23% when
run on the text for this chapter.

As before, for truly random files, even this clever encoding scheme won’t
work because each character will occur approximately the same number of times,
which will lead to a fully balanced coding tree and an equal number of bits per

letter in the code.
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Exercises

- 10.

. Implement compression and expansion procedures for the run-length encod-

ing method for a fixed alphabet described in the text, using Q as the escape
character. : ‘

. Could “QQ” occur somewhere in a file compressed by the method described

in the text? Could “QQQ” occur?

. Implement compression and expansion procedures for the binary file encoding

method described in the text.

. The letter “q” given in the text can be processed as a sequence of five-bit

characters. DlSCllSS the pros and cons of doing so in order to use a character-
based run-length encoding method.

. Show the construction process when the method used in the text is used to

build the Huffman coding tree for the string “ABRACADABRA.” How many
bits does the encoded message require?

. What is the Huffman code for a binary file? Give an example showing the

maximum number of bits that could be used in a Huffman code for a N-
character ternary (three-valued) file. :

. Suppose that the frequencies of the occurrence of all the characters to be en-

coded are different. Is the Huffman encoding tree unique?

. Huffman coding could be extended in a straightforward way to encode in two-

bit characters (using 4-way trees). What would be the main advantage and the
main disadvantage of doing so?

- What would be the result of breaking up a Huffman-encoded string into five-bit

characters and Huffman-encoding that string?

Implement a procedure to decode a Huffman-encoded string, given the code
and len arrays.
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Cryptology

In the previous chapter we looked at methods for encoding strings of char-
acters to save space. Of course, there is another very important reason to
encode strings of characters: to keep them secret.

Cryptology, the study of systems for secret communications, consists of two
complementary fields of study: cryptography, the design of secret communications
systems, and cryptanalysis, the study of ways to compromise secret communica-
tions systems. Cryptology primarily has been applied in military and diplomatic
communications systems, but other significant applications are becoming apparent.
Two principal examples are computer file systems (where each user would prefer
to keep his files private) and electronic funds transfer systems (where very large
amounts of money are involved). A computer user wants to keep his computer
files just as private as papers in his file cabinet, and a bank wants electronic funds
transfer to be just as secure as funds transfer by armored car. »

Except for military applications, we assume that cryptographers are “good
guys” and cryptanalysts are “bad guys™: our goal is to protect our computer files and
our bank accounts from criminals. If this point of view seems somewhat unfriendly,
it must be noted (without being over-philosophical) that by using cryptography one
is assuming the existence of unfriendliness! Of course, “good guys” must know
something about cryptanalysis, since the very best way to be sure a system is
secure is to try to compromise it yourself. (Also, there are several documented
instances of wars being brought to an end, and many lives saved, through successes
in cryptanalysis.)

Cryptology has many close connections with computer science and algorithms,
especially the arithmetic and string-processing algorithms that we have studied.
Indeed, the art (science?) of cryptology has an intimate relationship with com-
puters and computer science that is only beginning to be fully understood. Like
algorithms, cryptosystems have been around far longer than computers. Secrecy

333
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system design and algorithm design have a common heritage, and the same people
are attracted to both.

It is not clear which branch of cryptology has been affected most by the
availability of computers. Cryptographers now have available much more powerful
encryption machines than before, but they also now have more room to make a
mistake. Cryptanalysts have much more powerful tools for breaking codes than
ever before, but the codes to be broken are more comphcated Cryptanalysis can
place a huge strain on computational resources; not only was it among the first
applications areas for computers, but it still remains a principal applications area
for modern supercomputers.

More recently, the widespread use of computers has led to the emergence
of a variety of important new applications for cryptology, as mentioned above.
New cryptographic methods have recently been developed appropriate for such
applications, and these have led to the discovery of a fundamental relationship
between cryptology and an important area of theoretical computer science that
we’ll examine briefly in Chapter 45. ’

In this chapter we’ll look at some of the basic characteristics of cryptographic
algorithms. We’ll refrain from delving into detailed implementations: cryptography
is certainly a field that should be left to experts. While it’s not difficult to “keep
people honest” by encrypting things with a simple cryptographic algorithm, it is
dangerous to rely upon a method implemented by a non-expert.

Rules of the Game

The elements that go into providing a means for secure communications between
two individuals are collectively called a cryptosystem. The canonical structure of
a typical cryptosystem is diagrammed in Figure 23.1.

The sender sends a message (called the plaintext) to the receiver by transform-
ing the plaintext into a secret form suitable for transmission (called the ciphertext)
using a cryptographic algorithm (the encryption method) and some key parameters.
To read the message, the receiver must have a matching cryptographic algorithm
(the decryption method) and the same key parameters, which will transform the

Sender

00100010101000101001001101001110101001101100110101

Receiver

&t

Figure 23.1 A Typical Cryptosystem.
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ciphertext back into the plaintext, the message. It is usually assumed that the
ciphertext is sent over insecure communications lines and is available to the crypt-
analyst. It is also usually assumed that the encryption and decryption methods are
known to the cryptanalyst: his aim is to recover the plaintext from the ciphertext
without knowing the key parameters. Note that the whole system depends on some
separate prior method of communication between the sender and receiver to agree
on the key parameters. As a rule, the more key parameters, the more secure the
cryptosystem is but the more inconvenient it is to use. This situation is akin to that
for more conventional security systems: a combination safe is more secure with
more numbers on the combination lock, but it is harder to remember the combi-
nation. The parallel with conventional systems also serves as a reminder that any
security system is only as reliable as the people who have the key.

It is important to remember that economic questions play a central role in
cryptosystems. There is an economic motivation to build simple encryption and
decryption devices (since many may need to be provided and complicated devices
cost more). Also, there is an economic motivation to reduce the amount of key
information to be distributed (since a very secure and expensive method of commu-
nications must be used). Balanced against the cost of implementing cryptographic
algorithms and distributing key information is the amount of money the cryptana-
lyst would be willing to pay to break the system. For most applications, it is the
cryptographer’s aim to develop a low-cost system with the property that it would
cost the cryptanalyst much more to read messages than he would be willing to pay.
For a few applications, a “provably secure” cryptosystem may be required: one
for which it can be guaranteed that the cryptanalyst can never read messages no
matter how much he is willing to spend. (The very high stakes in some applica-
tions of cryptology naturally imply that very large amounts of money are used for
cryptanalysis.) In algorithm design, we try to keep track of costs to help us choose
the best algorithms; in cryptology, costs play a central role in the design process.

Simple Methods

Among the simplest (and among the oldest) methods for encryption is the Caesar
cipher: if a letter in the plaintext is the Nth letter in the alphabet, replace it by
the (N + K)th letter in the alphabet where K is some fixed integer (Caesar used
K = 3). The table below shows how a message is encrypted using this method
with K =1:
Plaintext: ATTACK AT DAWN
Ciphertext: BUUBDLABUAEBXO

This method is weak because the cryptanalyst has only to guess the value of K:
by trying each of the 26 choices, he can be sure that he will read the message.

A far better method is to use a general table to define the substitution to be
made: for each letter in the plaintext, the table tells which letter to put in the
ciphertext. For example, if the table gives the correspondence
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ABCDEFGHI JKLMNOPQRSTUVWXYZ
THE QUICKBROWNFXJMPDVRLAZYG

then the message is encrypted as follows:

Plaintext: ATTACK AT DAWN
Ciphertext: HVVH OTHVTQHAF

This is much more powerful than the simple Caesar cipher because the cryptanalyst
would have to try many more (about 27! > 10?) tables to be sure of reading the
message. However, “simple substitution” ciphers like this are easy to break because
of letter frequencies inherent in the language. For example, since E is the most
frequent letter in English text, the cryptanalyst could get a good start on reading
the message by looking for the most frequent letter in the ciphertext and replacing
it by E. While this might not be the right choice, it is certainly better than trying
all 26 letters. blindly. The situation gets even better (for the cryptanalyst) when
two-letter combinations (“digrams”) are taken into account: certain digrams (such
as QJ) never occur in English text while others (such as ER) are very common.
By examining frequencies of letters and combinations of letters, a cryptanalyst can
break a simple substitution cipher very easily.

One way to make this type of attack more difficult is to use more than one
table. A simple example of this is an extension of the Caesar cipher called the
Vigenere cipher: a small repeated key is used to determine the value of K for each
letter. At each step, the key letter index is added to the plaintext letter index to
determine the ciphertext letter index. Our sample plaintext, with the key ABC, is
encrypted as follows:

Key: ABCABCABCABCAB
Plaintext: ATTACK AT DAWN
Ciphertext: BVWBENACWAFDXP

For example, the last letter of the ciphertext is P, the 16th letter of the alphabet, be-
cause the corresponding plaintext letter is N (the 14th letter), and the corresponding
key letter is B (the 2nd letter).

The Vigenere cipher can obviously be made more complicated by using differ-
ent general tables for each letter of the plaintext (rather than simple offsets).- Also, -
it is obvious that the longer the key, the better. In fact, if the key is as long as the
plaintext, we have the Vernam cipher, more commonly called the one-time pad.
This is the only provably secure cryptosystem known, and it is reportedly used for
the Washington-Moscow hotline and other vital applications. Since each key letter
is used only once, the cryptanalyst can do no better than try every possible key
letter for every message position, an obviously hopeless- situation since this is as
difficult as trying all possible messages. However, using each key letter only once
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obviously leads to a severe key distribution problem, and the one-time pad is only
useful for relatively short messages which are to be sent infrequently.

If the message and key are encoded in binary, a more common scheme for
position-by-position encryption is to use the “exclusive-or” function: to encrypt
the plaintext, “exclusive-or” it (bit by bit) with the key. An attractive feature of
this method is that decryption is the same operation as encryption: the ciphertext
is the exclusive-or of the plaintext and the key, but doing another exclusive-or of
the ciphertext and the key returns the plaintext. Notice that the exclusive-or of the
ciphertext and the plaintext is the key. This seems surprising at first, but actually
many cryptographic systems have the property that the cryptanalyst can discover
the key if he knows the plaintext.

Encryption/Decryption Machines

Many cryptographic applications (for example, voice systems for military commu-
nications) involve the transmission of large amounts of data, and this makes the
one-time pad infeasible. What is needed is an approximation to the one-time pad
in which a large amount of “pseudo-key” can be generated from a small amount
of true key to be distributed.

The usual setup in such situations is as follows: an encryption machine is
fed some cryptovariables (true key) by the sender, which it uses to generate a
long stream of key bits (pseudo-key). The exclusive-or of these bits and the
plaintext forms the ciphertext. The receiver, having a similar machine and the
same cryptovariables, uses them to generate the same key stream to exclusive-or
against the ciphertext and to retrieve the plaintext.

Key generation in this context is very much like hashing and random-number
generation, and the methods discussed in Chapter 16 and 35 are appropriate for
key generation. In fact, some of the mechanisms discussed in Chapter 35 were
first developed for use in encryption/decryption machines such as those described
here. However, key generators have to be somewhat more complicated than random
number generators, because there are ways to attack simple machines. The problem
is that it might be easy for the cryptanalyst to get some plaintext (for example,
silence in a voice system), and therefore some key. If the cryptanalyst knows
enough about the machine, then the key might provide enough clues to allow the
values of all the cryptovariables at some point in time to be derived—then the
operation of the machine can be simulated and all the key calculated from that
point on.

Cryptographers have several ways to avoid such problems. One way is to make
part of the architecture of the machine itself a cryptovariable. It is usually assumed
that the cryptanalyst knows everything about the structure of the machine (maybe
one was stolen) except the cryptovariables, but if some of the cryptovariables are
used to “configure” the machine, it may be difficult to find their values. Another
method commonly used to confuse the cryptanalyst is the product cipher, where
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two different machines are combined to produce a complicated key stream (or to
drive each other). Another method is nonlinear substitution; here the translation
between plaintext and ciphertext is done in large chunks, not bit by bit. The general
problem with such complex methods is that they can be too complicated for even
the cryptographer to understand, and there always is the possibility that things may
degenerate badly for some choices of the cryptovariables.

Public-Key Cryptosystems

In commercial applications such as electronic funds transfer and (real) computer
mail, the key distribution problem is even more onerous than in the traditional
applications of cryptography. The prospect of providing long keys that must be
changed often to every citizen, while still maintaining both security and cost-
effectiveness, certainly inhibits the development of such systems. Methods have
recently been developed, however, which promise to eliminate the key distribution
problem completely. Such systems, called public-key cryptosystems, are likely to
come into widespread use in the near future. One of the most prominent of these
systems is based on some of the arithmetic algorithms we have been studying, so
we will take a close look at how it works.

The idea in public-key cryptosystems is to use a “phone book™ of encryption
keys. Everyone’s encryption key (denoted by P) is public knowledge: a person’s
key could be listed, for example, next to his number in the telephone book. Every-
one also has a secret key used for decryption; this secret key (denoted by S) is not
known to anyone else. To transmit a message M , the sender looks up the receiver’s
public lg;axy, uses it to encrypt the message, and then transmits the message. We’ll
denote the encrypted message (ciphertext) by C = P(M). The receiver uses his
private decryption key to decrypt and read the message. For this system to work,
at least the following conditions must be satisfied:

(@) S(P(M))=M for every message M.

@@i) All (S, P) pairs are distinct.

(iii) Deriving S from P is as hard as reading M .

(iv) Both S and P are easy to compute.

The first of these is a fundamental cryptographic property, the second two provide
the security, and the fourth makes the system feasible for use.

This general scheme was outlined by W. Diffie and M. Hellman in 1976,
but they had no method which satisfied all of these conditions. Such a method
was discovered soon afterwards by R. Rivest, A, Shamir, and L. Adleman. Their
scheme, which has come to be known as the RSA public-key cryptosystem, is based
on arithmetic algorithms performed on very large integers. The encryption key P is
the integer pair (N, p) and the decryption key S is the integer pair (N .s), where s is
kept secret. These numbers are intended to be very large (typically, N might be 200
digits and p and s might be 100 digits). The encryption and decryption methods
are then simple: first the message is broken up into numbers less than N (for
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example, by taking g N bits at a time from the binary string corresponding to the
character encoding of the message). Then these numbers are independently raised
to a power modulo N: to encrypt a (piece of a) message M, compute C =P (M) =
MP mod N, and to decrypt a ciphertext C, compute M = §(C)=C* mod N. In
Chapter 36 we’ll study how to perform this computation—while computing with
200-digit numbers can be cumbersome, the fact that we need only the remainder
after dividing by N means that we can keep the numbers from getting large, despite
the fact that MP and C*S themselves are impossibly large numbers.

Property 23.1 In the RSA cryptosystem, a message can be encrypted in linear
time.

For long messages, the length of the numbers used for keys may be viewed
constant—an implementation detail. Similarly, raising a number to a power is
‘done in constant time, since the numbers are not allowed to get longer than a
“constant” length. It is true that this argument hides many implementation consid-
erations related to computing with long numbers; the costs of these operations are
in fact an inhibiting factor in broadening the applicability of the method. =

Condition (iv) above is therefore satisfied, and condition (ii) can be easily
enforced. We still must make sure that the cryptovariables N, p, and s can be
chosen so as to satisfy conditions (i) and (iii). To be convinced of these requires
an exposmon of number theory which is beyond the scope of this book, but we can
outline the main ideas. First, it is necessary to generate three large (approximately
100-digit) “random” prime numbers: the largest will be s and we’ll call the other
two x and y. Then N is chosen to be the product of x and y, and p is chosen
so that ps mod (x — 1)(y — 1) = 1. It is possible to prove that, with N, p, and s
chosen in this way, we have MPS mod N = M for all messages M.

For example, with our standard encoding, the message ATTACK AT DAWN
might correspond to the 28-digit number

0120200103110001200004012314

since A is the first letter (01) in ‘the alphabet, T is the twentieth letter (20), etc.
Now, to keep the example small, we start with some 2-digit primes (rather than
100-digit, as required): take x = 47, y = 79, and s = 97. These values lead to
N = 3713 (the product of x and y) and p = 37 (the unique integer which gives a
remainder of 1 when multiplied by 97 and divided by 3588). Now, to encode the
message, we break it up into 4-digit chunks and raise to the pth power (modulo
N). This gives the encoded version

1404293235360001328422802235.

That is, 012037 = 1404, 200137 = 2932, 031137 = 3536 (mod 3713), etc. The
decoding process is the same, using s rather than p. Thus, we get the original
message back because 1404%7 = 0120, 2932%7 = 2001 (mod 3713), etc.
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The most important part of the calculations involved is the encoding of the
message, as discussed in Property 23.1 above. But there’s no cryptosystem at
all if it is not possible to compute the key variables. Though this involves both
sophisticated number theory and relatively sophisticated programs for manipulating
large numbers, the time to compute the keys is likely to be less than the square of
their length (and not proportional to their magnitude, which would be unacceptable).

Property 23.2  The keys for the RSA cryptosystem can be created without excessive
computation.

Again, some methods based on number theory beyond the scope of this book are
required; it turns out that each large prime can be generated by first generating a
large random number, then testing successive numbers starting at that point until
a prime is found. One simple method performs a calculation on a random number
that, with probability 1/2, will “prove” that the number to be tested is not prime.
(A number which is not prime will survive 20 applications of this test less than one
time out of a million, 30 applications less than 1 time out of a billion.) The last
step is to compute p: it turns out that a variant of Euclid’s algorithm (see Chapter
1) is just what is needed. m

Recall that the decryption key s (and the factors x and y of N) are to be kept
secret, and that the success of the method depends on the cryptanalyst not being
able to find the value of s, given N and p. Now, for our small example, it is easy
to discover that 3713 = 47 % 79, but if N is a 200- -digit number, one has little hope
of finding its factors. That is, s seems to be difficult to compute from knowledge
of p (and N), though no one has been able to prove that to be the case. Apparently,
finding p from s requires knowledge of x and y, and apparently it is necessary to
factor N to calculate x and y. But factoring N is thought to be very difficult: the
best factoring algorithms known would take millions of years to factor a 200-digit
number, using current technology.

An attractive feature of the RSA system is that the complicated computations
involving N, p, and s are performed only once for each user who subscribes to
the system, while the much more frequent operations of encryption and decryption
involve only breaking up the message and applying the simple exponentiation pro-
cedure. This computational simplicity, combined with all the convenience features
provided by public-key cryptosystems, make this system quite attractive for secure
communications, especially on computer systems and networks.

The RSA method has its drawbacks: the exponentiation procedure is actually
expensive by cryptographic standards, and, worse, there is the lingering possibility
that it might be possible to read messages encrypted using the method. This
is true of many cryptosystems: a cryptographic method must withstand serious
cryptanalytic attacks before it can be used with confidence.

" Several other methods have been suggested for implementing public-key cryp-
tosystems. Some of the most interesting are linked to an important class of prob-
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lems which are generally thought to be very hard (though this is not known for
sure), which we’ll discuss in Chapter 45. These cryptosystems have the interest-
ing property that a successful attack could provide insight on how to solve some
well-known difficult unsolved problems (as with factoring for the RSA method).
This link between cryptology and fundamental topics in computer science research,
along with the potential for widespread use of public-key cryptography, have made
this an active area of current research.
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Exercises

- 1. Decrypt the following message, which was encrypted with a Vigenere cipher
using the pattern CAB (repeated as necessary) for the key (on a 27-letter
alphabet, with blank preceding A): DOBHBUAASXFZWIQQ

2. What table should be used to decrypt messages that have been encrypted usmg
the table substitution method?

3. Suppose that a Vigenere cipher with a two-character key is used to encrypt
a relatively long message. Write a program to. infer the key, based on the
assumption that the frequency of occurrence of each character in odd positions
should be roughly equal to the frequency of occurrence of each character in
the even positions.

4. erte matching encryption and decryption procedures that use the “exclusive
or” operation between a binary version of the message and a binary stream
from one of the linear congruent1a1 random number generators of Chapter 35.

5. Write a program to break the method given in the previous exercise, assuming
that the first 10 characters of the message are known to be blanks.

6. Cou'd one encrypt plaintext by “and”ing it (bit by bit) with the key? Explain
why or why not.

7. True or false? Public-key cryptography makes it convenient to send the same
message to several different users. Discuss your answer.

8. What is P(S(M)) for the RSA méthod for public-key cryptography?

9. RSA encoding might involve computing M", where M might be a k-digit
number represented in an array of & integers, say. About how many operations
would be required for this computation?

10. Implement encryption/decryption procedures for the RSA method (assume that
s, p and N are all given and represented in arrays of integers of size 25).
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SOURCES for String Processing

The best sources for further information on many of the topics covered in the
chapters in this section are the original references. Knuth, Morris, and Pratt’s 1977
paper, Boyer and Moore’s 1977 paper and Karp and Rabin’s 1981 paper form the
basis for much of the material in Chapter 19. The 1968 paper by Thompson is
the basis for the regular-expression pattern matcher of Chapters 20-21. Huffman’s
1952 paper, though it predates many of the algorithmic considerations here, still
makes interesting reading. Rivest, Shamir, and Adleman describe fully the imple-
mentation and applications of their public-key cryptosystem in their 1978 paper.

The book by Standish is a good general reference for many of the topics
covered in these chapters, especially Chapters 19, 22, and 23. That book also
addresses some representations and basic practical algorithms not covered here.

Parsing and compiling are viewed by many to be the heart of computer sci-
ence: we’ve investigated one connection to algorithms, but their relationship with
programming languages, theoretical computer science and other areas is certainly
more important. Many algorithmic issues have also been studied in great detail.
The standard reference on the subject is the book by Aho, Sethi, and Ullman.

Obviously, the public literature on cryptography is rather sparse. However,
much background information on the subject may be found in the books by Kahn
and Konheim.
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Elementary Geometric Methods

Computers are being used more and more to solve large-scale problems that
are inherently geometric. Geometric objects such as points, lines and poly-
gons are the basis of a broad variety of important applications and give rise to an
interesting set of problems and algorithms,

Geometric algorithms are important in design and analysis systems modeling
physical objects ranging from buildings and automobiles to very large-scale inte-
grated circuits. A désigner working with a physical object has a geometric intuition
that is difficult to support in a computer representation. Many other applications
directly involve processing geometric data. For example, a political “gerrymander-
ing” scheme to divide a district up into areas of equal population (and that satisfy
other criteria such as putting most of the members of the other party in one area)
is a sophisticated geometric algorithm. Other applications abound in mathematics
and statistics, fields in which many types of problems can be naturally set in a
geometric representation.

Most of the algorithms we’ve studled have involved text and numbers, which
are represented-and’ processed naturally in most programming environments. In-
deed, the primitive operations required are implemented in the hardware of most
computer systems. We’ll see that the situation is different for geometric problems:
even the most elementary operations on pomts and lines can be computationally
challenging.

Geometric problems are easy to visualize, but that can be a 11ab111ty Many
problems that can be solved instantly by a person looking at a piece of paper
(example: is a given point inside a given polygon?) require non-trivial computer
programs. For more complicated problems, as in many other applications, the
method of solution appropriate for computer implementation may well be quite
different from the method of solution appropriate for a person.

One might suspect that geometric algorithms would have a long history because
of the constructive nature of ancient geometry and because useful applications are
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so widespread, but actually much of the work in the field has been quite recent.
Nonetheless, the work of ancient mathematicians is often useful in the develop-
ment of algorithms for modern computers. The field of geometric algorithms is
interesting to study because of its strong historical context, because new fundamen-
tal algorithms are still being developed, and because many important large-scale
applications require these algorithms.

Points, Lines, and Polygons

Most of the programs we’ll study operate on simple geometric objects defined in
a two-dimensional space, though we will consider a few algorithms for higher
dimensions. The fundamental object is a point, which we consider to be a pair of
integers—the “coordinates” of the point in the usual Cartesian system. A line is a
pair of points, which we assume are connected together by a straight line segment.
A polygon is a list of points: we assume that successive points are connected by
lines and that the first point is connected to the last to make a closed figure.

To work with these geometric objects, we need to decide how to represent
them. Usually we use an array representation for polygons, though a linked list or
some other representation can be used when appropriate. Most of our programs
will use the straightforward representations

struct point { int x, y; char c¢; };
struct line { struct point pl, p2; };
struct point polygon[Nmax];

Note that points are restricted to have integer coordinates. A floating point repre-
sentation could also be used. Using integer coordinates leads to slightly simpler
and more efficient algorithms, and is not as severe a restriction as it might seem.
As mentioned in Chapter 2, working with integers when possible can be a very sig-
nificant timesaver in many computing environments, because integer calculations
are typically much more efficient than floating-point calculations. Thus, when we
can get by with dealing only with integers without introducing much extra com-
plication, we will do so.

More complicated geometric objects will be represented in terms of these basic
components. For example, polygons will be represented as arrays of points. Note
that using arrays of 1ines would result in each point on the polygon being included
twice (though that still might be the natural representation for some algorithms).
Also, it is useful in some applications to include extra information associated with
each point or line; we can do this by adding an info field to the records.

We’ll use the sets of points shown in Figure 24.1 to illustrate the operation of
several geometric algorithms. The sixteen points on the left are labeled with single
letters for reference in explaining the examples, and have the integer coordinates
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Figure 24.1 Sample point sets for geometric algorithms.

shown in Figure 24.2. (The labels we use are assigned in the order in which the
points are assumed to appear in the input.) The programs usually have no reason
to refer to points “by name”; they are simply stored in an array and are referred
to by index. The order in which the points appear in the array may be important
in some of the programs: indeed, it is the goal of some geometric algorithms to
“sort” the points into some particular order. On the right in Figure 24.1 are 128
points, randomly generated with integer coordinates between 0 and 1000.

A typical program maintains an array p of points and simply reads in N pairs
of integers, assigning the first pair to the x and y coordinates of p{1], the second
pair to p[2], etc. When p represents a polygon, it is sometimes convenient to
maintain “sentinel” values p[0]1=p[N] and p [N+1]=p[1l].

Line Segment Intersection

As our first elementary geometric problem, we’ll consider determining whether or
not two given line segments intersect. Figure 24.3 illustrates some of the situations
that can arise. In the first case, the line segments intersect. In the second, the
endpoint of one segment is on the other segment: We’ll consider this an intersection

A C DEFGHI1 JKLMNZOFP
X 311 6 4 5 8 1 7 9 1410 16 1513 3 12
y 9 1 8 3 1511 6 4 7 5 1314 2 16 1210

Figure 24.2 Coordinates of points in small sample set (on the left in Figure 24.1).
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Figure 24.3 Testing whether line segments intersect: four cases.

by assuming the segments to be “closed” (endpoints are part of the segments); thus,
line segments having a common endpoint intersect. In both the last two cases in
Figure 24.3, the segments do not intersect, but the cases differ when we consider
the intersection point of the lines defined by the segments. In the fourth case this
intersection point falls on one of the segments; in the third it does not, Or, the
lines could be parallel (a special case of this that frequently turns up is when one
or both of the segments is a single point).

The straightforward way to solve this problem is to find the intersection point
of the lines defined by the line segments and then check whether this intersection
point falls between the endpoints of: both of the segments. Another easy method is
based on a tool that we’ll find useful later, so we’ll consider it in more detail. Given
three points, we want to know whether, in traveling from the first to the second to
the third, we turn counterclockwise or clockwise. For example, for points A, B,
and C in Figure 24.1 the answer is yes, but for points A, B, and D the answer is
no. This function is straightforward to compute from the equations for the lines as
follows:

int ccw(struct point p0,
struct point pl,
struct point p2 )

int dxl1, dxz, dyl, dy2;
dxl = pl.x - p0.x; dyl = pl.y - pO.y;
dx2 = p2.x - p0.x; dy2 = p2.y ~ p0.y;

if (dxl*dy2 > dyl*dx2) return +1;

if (dxl*dy2 < dyl*dx2) return -1;

if ((dx1*dx2 < 0) || (dyl*dy2 < 0)) return -1;
if ((dxl*dxl+dyl*dyl) < (dx2*dx2+dy2*dy2))

return +1;
return 0;
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To understand how the program works, first suppose that all of the quantities dx 1,
dx2, dy1, and dy2 are positive. Then note that the slope of the line connecting p0
and pl is dy1/dx1 and the slope of the line connecting p0 and p2 is dy2/dx2.
Now, if the slope of the second line is greater than the slope of the first, a “left”
(counterclockwise) turn is required in the journey from pO to pl to p2; if less, a
“right” (clockwise) turn is required. Comparing slopes in the program is slightly
inconvenient because the lines could be vertical (dx1 or dx2 could be 0): we
multiply by dx1*dx2 to avoid this. It turns out that the slopes need not be positive
for this test to work properly—checking this is left as an instructive exercise for
. the reader.

But there is another crucial omission in the description above: it ignores
all cases when the slopes are the same (the three points are collinear). In these
situations, one can envision a variety of ways to define ccw. Our choice is to make
the function three-valued: rather than the standard nonzero or zero return value we
use 1 and -1, reserving the value 0 for the case where p2 is on the line segment
between p0 and pl. If the points are collinear, and pO is between p2 and pl,
we take ccow to be -1; if p2 is between p0 and pl, we take ccw to be 0; and if
pl is between pO and p2, we take ccw to be 1. We’ll see that this convention
simplifies the coding for functions that use ccw in this and the next chapter.

This immediately gives an implementation of the intersect function. If both
endpoints of each line are on different “sides” (have different ccw values) of the
other, then the lines must intersect:

int intersect (struct line 11, struct line 12)
{
return ((ccw(ll.pl, 1ll.p2, 12.pl)
*cew(ll.pl, 1ll.p2, 12.p2)) <= 0)
&& ((cecw(l2.pl, 12.p2, 1ll.pl)
*cew (12.pl, 12.p2, 1ll.p2)) <= 0);

This solution seems to involve a fair amount of computation for such a simple
problem. The reader is encouraged to try to find a simpler solution, but should be
warned to be sure that the solution works on all cases. For example, if all four
points are collinear, there are six different cases (not counting situations where
points coincide), only four of which are intersections. Special cases like this are
the bane of geometric algorithms: they cannot be avoided, but we can lessen their
impact with primitives like ccw.

If many lines are involved, the situation becomes much more complicated. In
Chapter 27, we’ll see a sophisticated algorithm for determining whether any two
of a set of N lines intersect.
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Simple Closed Path

To get the flavor of problems dealing with sets of points, let’s consider the problem
of finding a path through a set of N given points that doesn’t intersect itself, visits
all the points, and returns to the point at which it started. Such a path is called a
simple closed path. One can imagine many applications for this: the points might
represent homes and the path the route that a mailman might take to get to each of
the homes without crossing his path. Or we might simply want a reasonable way
to draw the points using a mechanical plotter. This problem is elementary because
it asks only for any closed path connecting the points. The problem of finding
the best such path, called the traveling salesman problem, is much, much more
difficult, and we’ll.look at it in some detail in the last few chapters of this book.
In the next chapter, we’ll consider a related but much easier problem: finding the
shortest path that surrounds a set of N given points. In Chapter 31, we’ll see how
to find the best way to “connect” a set of points.

An easy way to solve the elementary problem at hand is the following. Pick
one of the points to serve as an “anchor.” Then compute the angle made by
drawing a line from each of the points in the set to the anchor and then out in the
positive horizontal direction (this is part of the polar coordinate of each point with
the anchor point as origin). Next, sort the points according to that angle. Finally,
connect adjacent points. The result is a simple closed path connecting the points,
as shown in Figure 24.4 for the points in Figure 24.1. In the small set of points,
B is used as the anchor: if the points are visited in the order

BMJLNPKFIECOAHGDRB

then a simple closed polygon will be traced out.

Figure 24.4 Simple closed paths.
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If dx and dy are the distances along the x and y axes from the anchor point to
some other point, then the angle needed in this algorithm is tan~! dy/dx. Although
the arctangent is a built-in function in C (and some other programming environ-
ments), it is likely to be slow and leads to at least two annoying extra conditions to
compute: whether dx is zero and which quadrant the point is in. Since the angle
is used only for the sort in this algorithm, it makes sense to use a function that is
much easier to compute but has the same ordering properties as the arctangent (so
that when we sort, we get the same result). A good candidate for such a function
is simply dy/(dy + dx). Testing for exceptional conditions is still necessary, but
simpler. The following program returns a number between 0 and 360 that is not
the angle made by pl and p2 with the horizontal but which has the same order
properties as that angle.

float theta(struct point pl, struct point p2)

{ . '
int dx, dy, ax, ay:
float t;
dx = p2.x - pl.x; ax = abs(dx);
dy = p2.y - pl.y; ay = abs(dy);
t = (ax+tay == 0) ? 0 : (float) dy/(ax+ay);
if (dx < 0) t = 2-t; else 1f (dy < 0) t = 4+4t;
return t*90.0; :

i

In some programming environments it may not be worthwhile to use such programs
instead of standard trigonometric functions; in others it may lead to significant
savings. (In some cases it may be worthwhile to change theta to have an integer
value, to avoid using floating point numbers entirely.)

Inclusion in a Polygon

The next problem we’ll consider is a natural one: given a point and polygon
represented as an array of points, determine whether the point is inside or outside
the polygon. A straightforward solution to this problem immediately suggests itself:
draw a long line segment from the point in any direction (long enough so that its
other endpoint is guaranteed to be outside the polygon) and count the number of
lines from the polygon that it crosses. If the number is odd, the point must be
inside; if it is even, the point is outside. This is easily seen by tracing what happens
as we come in from the endpoint on the outside: after the first line, we are inside,
after the second we are outside, etc. If we do this an even number of times, the
point at which we end up (the original point) must be outside.
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The situation is not quite so simple, however, because some intersections might
occur right at the vertices of the input polygon. Figure 24.5 shows some of the
situations that must to be handled. The first is a straightforward “outside” case;
the second is a straightforward “inside” case; in the third, the test line leaves the
polygon at a vertex (after touching two other vertices; and in the fourth, the test
line coincides with an edge of the polygon before leaving. In some cases where
the test line intersects a vertex it should count as one intersection with the polygon;
in other cases it should count as none (or two). The reader may be amused to try
to find a simple test to distinguish these cases before reading further.

The need to handle cases where polygon vertices fall on the test lines forces
us to do more than just count the line segments in the polygon intersecting the
test line. Essentially, we want to travel around the polygon, incrementing an
intersection counter whenever we go from one side of the test line to another. One

way to implement this is to simply ignore points that fall on the test line, as in the
following program:

int inside(struct point t, struct point p[], int N)

{

int i, count = 0, j = 0;
struct line 1t,lp;
pl0] = p[N]; p[N+1] = p[l];

lt.pl = t; 1lt.p2 = t; lt.p2.x = INT MAX;
for (1 = 1; 1 <= N; i++)
{
lp.pl= pl[i); lp.p2 = pli];
if (!intersect (lp,1lt))
{ v
lp.p2 = pl[jl: J = 1;
if (intersect (lp,1lt)) count++;

}

return count & 1;

This program uses a horizontal test line for ease of calculation (imagine the di-
agrams in Figure 24.5 as rotated 45 degrees). The variable j is maintained as
the index of the last point on the polygon known not to lie on the test line. The
program assumes that p[1] is the point with the smallest x coordinate among all
the points with the smallest y coordinate, so that if p[1] is on the test line, then
p (0] cannot be. The same polygon can be represented by N different p arrays,
but as this illustrates it is sometimes convenient to fix a standard rule for p[1].
(For example, this same rule is useful for p [1] as the “anchor” for the procedure
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Figure 24.5 Cases to be handled by a point-in-polygon algorithm.

suggested above for computing a simple closed polygon.) If the next point on
the polygon that is not on the test line is on the same side of the test line as the
jth point, then we need not increment the intersection counter (count); otherwise
we have an intersection. The reader may wish to check that this algorithm works
properly for the cases in Figure 24.5.

If the polygon has only three or four sides, as is true in many applications,
then such a complex program is not called for: a simpler procedure based on calls
to ccw will be adequate. Another important special case is the convex polygon, to
be studied in the next chapter, which has the property that no test line can have
more than two intersections with the polygon. In this case, a procedure like binary
search can be used to determine in O (log N) steps whether or not a point is inside.

Perspective

From the few examples given, it should be clear that it is easy to underestimate
the difficulty of solving a particular geometric problem with a computer. There
are many other elementary geometric computations that we have not treated at all.
For example a program to compute the area of a polygon makes an interesting
exercise. However, the problems we’ve looked at have provided some basic tools
that will be useful in later sections for solving the more difficult problems.

Some of the algorithms we’ll study involve building geometric structures from
a given set of points. The “simple closed polygon” is an elementary example of this.
We will need to decide upon appropriate representations for such structures, develop
algorithms to build them, and investigate their use in particular applications. As
usual, these considerations are intertwined. For example, the algorithm used in the
inside procedure in this chapter depends in an essential way on the representation
of the simple closed polygon as an ordered set of points (rather than as an unordered
set of lines). _

" Many of the algorithms we’ll study involve geometric search: we want to
krow which points from a given set are close to a given point, or which points
fall in a given rectangle, or which points are closest to one another. Many of the
algorithms appropriate for such search problems are closely related to the search
algorithms studied in Chapters 14-17. The parallels will be quite evident.



356 | A Chapter 24

Few geometric algorithms have been analyzed to the point that precise state-
ments can be made about their relative performance characteristics. As we’ve al-
ready seen, the running time of a geometric algorithm can depend on many things.
The distribution of the points themselves, the order in which they appear in the
input, and whether trigonometric functions are used can all significantly affect the
running time of geometric algorithms. As usual in such situations, however, we do
have empirical evidence that suggests good algorithms for particular applications.
Also, many of the algorithms are derived from complexity studies and are designed
for good worst-case performance.
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Exercises

10.

. Give the value of ccw for the three cases when two of the points are identical

(and the third is different), and for the case when all three points are identical.

. Give a quick algorithm for determining whether two line segments are parallel,

without using any divisions.

. Give a quick algorithm for determining whether four line segments form a

square, without using any divisions.

. Given an array of lines, how would you test to see whether they form a

simple closed polygon?

- Draw the simple closed polygoens that result from using A, C, and D in Figure

24.1 as “anchors” in the method described in the text.

- Suppose that we use an arbitrary point for the “anchor” in the method described

in the text for computing a simple closed polygon. Give conditions which such
a point must satisfy for t}}e method to work.

. What does the intersect function return when called with two copies of

the same line segment?

. Does inside call a vertex of the polygon inside or outside?

. What is the maximum value achievable by count when inside is executed

on a polygon with N vertices? Give an example supporting your answer.

Write an efficient program for determining whether a given point is inside a
given quadrilateral.
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Finding the Convex Hull

Often, when we have a large number of points to process, we’re interested in
the boundaries of the point set. People looking at a diagram of a set of points
plotted in the plane, have little trouble distinguishing those on the “inside” of the
point set from those lying on the edge. This distinction is a fundamental property
of point sets; in this chapter we’ll see how it can be precisely characterized by
looking at algorithms for separating out the “natural boundary” points.

The mathematical way to describe the natural boundary of a point set depends
on a geometric property called convexity. This is a simple concept that the reader
may have encountered before: a convex polygon has the property that any line
connecting any two points inside the polygon must itself lie entirely inside the
polygon. For example, the “simple closed polygon” that we computed in the pre-
vious chapter is decidedly nonconvex; on the other hand, any triangle or rectangle
is convex.

Now, the mathematical name for the natural boundary of a point set is the
convex hull. The convex hull of a set of points in the plane is defined to be the
smallest convex polygon containing them ail. Equivalently, the convex hull is the
shortest path surrounding the points. An obvious property of the convex hull that
is easy to prove is that the vertices of the convex polygon defining the hull are
points from the original point set. Given N points, some of them form a convex
polygon within which all the others are contained. The problem is to find those
points. Many algorithms have been developed to find the convex hull; in this
chapter we’ll examine some of the important ones.

Figure 25.1 shows our sample sets of points for Figure 24.1 and their convex
hulls. There are 8 points on the hull of the small set and 15 points on the hull
of the large set. In general, the convex hull can contain as few as three points (if
the three points form a large triangle containing all the others) or as many as all
the points (if they fall on a convex polygon, then the points comprise their own
convex hull). The number of points on the convex hull of a “random” point set

359
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Figure 25.1 Convex hulls of the points of Figure 24.1.

falls somewhere in between these extremes, as we will see below. Some algorithms

work well when there are many points on the convex hull; others work better when
there are only a few. o

A fundamental property of the convex hull is that any line outside the hull,
when moved in any direction towards the hull, hits it at one of its vertex points.
(This is an alternate way to define the hull: it is the subset of points from the point
set that could be hit by a line moving in at some angle from infinity.) In particular,
it’s easy to find a few points guaranteed to be on the hull by applying this rule
for horizontal and vertical lines: the points with the smallest and largest x and y

coordinates are all on the convex hull. This fact is used as the starting point for
the algorithms we consider.
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Rules of the Game

The input to an algorithm for finding the convex hull is of course an array of
points; we can use the point type defined in the previous chapter. The output
is a polygon, also represented as an array of points with the property that tracing
through the points in the order in which they appear in the array traces the outline of
the polygon. On reflection, this might appear to require an extra ordering condition
on the computation of the convex hull (why not just return the points on the hull
in any order?), but output in the ordered form is obviously more useful, and it
has been shown that the unordered computation is no easier to do. For all of the
algorithms that we consider, it is convenient to do the computation in place: the
array used for the original point set is also used to hold the output. The aigorithms
simply rearrange the points in the original array so that the convex hull appears in
the first M positions, in order.

From the description above, it may be clear that computing the convex hull
is closely related to sorting. In fact, a convex hull algorithm can be used to sort,
in the following way. .Given N numbers to sort, turn them into points (in polar
coordinates) by treating the numbers as angles (suitably normalized) with a fixed
radius for each point. The convex hull of this point set is an N-gon containing
all of the points. Now, since the output must be ordered in the order in which
the points appear on this polygon, it can be used to find the sorted order of the
original values (remember that the input was unordered). This is not a formal proof
that computing the convex hull is no easier than sorting, because, for example, the
cost of the trigonometric functions required to convert the numbers into points
on the polygon must be considered. Comparing convex hull algorithms (which
involve trigonometric operations) to sorting algorithms (which involve comparisons
between keys) is a bit like comparing apples to oranges, but even so it has been
shown that any convex hull algorithm must require about N logN operations, the
same as sorting (even though the operations allowed are likely to be quite different).
It is helpful to view finding the convex hull of a set of points as a kind of “two-
dimensional sort,” since frequent parallels to sorting algorithms arise in the study
of algorithms for finding the convex hull.

In fact, the algorithms we’ll study show that finding the convex hull is no
harder than sorting either: there are several algorithms that run in time proportional
to N logN in the worst case. Many of the algorithms tend to use even less time
on actual point sets, because their running time depends on how the points are
distributed and on the number of points on the hull.

As with all geometric algorithms, we have to pay some attention to degenerate
cases that are likely to occur in the input. For example, what is the convex hull
of a set of points all of which fall on the same line segment? Depending upon the
application, this could be all the points or just the two extreme points, or perhaps
any set including the two extreme points would do.- Though this seems an extreme
example, it would not be unusual for more than two points to fall on one of the line
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Figure 25.2 Package-wrapping.

segments defining the hull of a set of points. In the algorithms below, we won’t
insist that points falling on a hull edge be included, since this generally involves
more work (though we will indicate how this could be done when appropriate).
On the other hand, we won’t insist that they be omitted either, since this condition
could be tested afterwards if desired.

Package-Wrapping

The most natural convex hull algorithm, which parallels how a human would draw
the convex hull of a set of points, is a systematic way to “wrap up” the set of
points. Starting with some point guaranteed to be on the convex hull (say the one
with the smallest y coordinate), take a horizontal ray in the positive direction and



Finding the Convex Hull ) 363

“sweep” it upward until hitting another point; this point must be on the hull. Then
anchor at that point and continue “sweeping” until hitting another point, étc., until
the “package” is fully “wrapped” (the beginning point is included again). Figure
25.2 shows how the hull is discovered in this way for our samiple set of points.
Point B has the minimum y coordinate and is the starting point. Then M is the
first point hit by the sweeping ray, then L, etc. ‘

Of course, we don’t actually need to sweep through all possible angles; we just
do a standard find-the-minimum computation to find the point that would be hit
next. For each point to be included on the hull, we need to examine each point not
yet included on the hull. Thus, the method is quite similar to selection sorting—we
successively choose the “best” of the points not yet chosen, using a brute-force
search for the minimum. The actual data movement involved is depicted in Figure
25.3: the Mth line of the table shows the situation after the Mth point is added to
the hull.

The following program finds the convex hull of an array p of N points, rep-
resented as described at the beginning of Chapter 24. The basis for this imple-
mentation is the function theta developed in the previous chapter, which takes
two points pl and p2 as arguments and can be thought of as returning the angle
between pl, p2 and the horizontal (though it actually returns a more easily com-
puted number with the same ordering properties). Otherwise, the implementation
follows directly from the discussion above. A sentinel is needed for the find-the-
minimum computation: though we normally might try to arrange things so that
pl O] would be used, it is more convenient in this case to use p [N+117.
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Figure 25.3 Data movement in. package-wrapping.
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int wrap(struct point p[], int N)
{

int i, min, M;

float th, v;

struct point t;

for (min = 0, 1 = 1; i < N; 1i++4)
if (pl[i]l.y < plmin].y) min = i;

pI[N] = p[min]; th 0.0;

for (M = 0; M < N; M++)
{

t = p[M]; plM] = plmin]; plmin] = t;
min = N; v = th; th = 360.0;
for (i = M+1; 1 <= N; i++)
if (theta(p[M], pl[il) > V)
if (theta(p[M], pl[i]) < th)
{ min = i; th = theta(p[M], plmin]); }
if (min == N) return M;

First, the point with the smallest y coordinate is found and copied into p [N+1]
in order to stop the loop, as described below. The variable M is maintained as
the number of points so far included on the hull, and v is the current value of
the “sweep” angle (the angle from the horizontal to the line between p [M-1]
and p [M]). The for loop puts the last point found into the hull by exchanging
it with the Mth point, and uses the theta function from the previous chapter to
compute the angle from the horizontal made by the line between that point and
each of the points not yet included on the hull, searching for the one whose angle
is smallest among those with angles greater than v. The loop stops when the first
point (actually the copy of the first point put into p [N+11]) is encountered again.

This program may or may not return points which fall on a convex hull edge.
This situation is encountered when more than one point has the same theta value
with p [M] during the execution of the algorithm; the implementation above returns
the point first encountered among such points, even though there may be others
closer to p [M]. When it is important to find points falling on convex hull edges,
we can achieve this by changing theta to take into account the distance between
the points given as its arguments and assign the closer point a smaller value when
two points have the same angle.

The major disadvantage of package-wrapping is that in the worst case, when
all the points fall on the convex hull, the running time is proportional to N2 (like
that of selection sort). On the other hand, the method has the attractive feature that
it generalizes to three (or more) dimensions. The convex hull of a set of points
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in k-dimensional space is the minimal convex polytope containing them all, where
a convex polytope is defined by the property that any line connecting two points
inside must itself lie inside. For example, the convex hull of a set of points in
3-space is a convex three-dimensional object with flat faces. It can be found by
“sweeping” a plane until the hull is hit, then “folding” faces of the plane, anchoring
on different lines on the boundary of the hull, until the “package” is “wrapped.”
(Like many geometric algorithms, it is rather easier to explain this generalization
than to implement it!)

The Graham Scan

The next method we’ll examine, invented by R. L. Graham in 1972, is interesting
because most of the computation involved is for sorting: the algorithm includes a
sort followed by a relatively inexpensive (though not immediately obvious) com-
putation. The algorithm starts by constructing a simple closed polygon from the
points using the method of the previous chapter: sort the points using as keys the
theta function values corresponding to the angle from the horizontal made from
the line connecting each point with an ‘anchor’ point p [1] (the one with the low-
est y coordinate), so that tracing p[1], p[2], ..., pIN], p[1] gives a closed
polygon. For our example set of points, we get the simple closed polygon of the
previous chapter. Note that p [N], p[1], and p[2] are consecutive points on the
hull; by sorting, we’ve essentially run the first iteration of the package-wrapping
procedure (in both directions). '

Computation of the convex hull is completed by proceeding around, trying to
place each point on the hull and eliminating previously placed points that couldn’t
possibly be on the hull. For our example, we consider the points in the order B M
JLNPKFIECOAHG D; the first few steps are shown in Figure 25.4. At
the beginning, we know because of the sort that B and M are on the hull. When J
is encountered, the algorithm includes it on the trial hull for the first three points.

Figure 25.4 Start of Graham scan.
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Then, when L is encountered, the algorithm finds out that J couldn’t be on the huil
(since, for example, it falls inside the triangl¢ BML).

In general, testing which points to eliminate is not difficult. After each point
has been added, we assume that we have eliminated enough points that what we
have traced out so far could be part of the convex hull on the basis of the points so
far seen. As we trace around, we expect to turn left at each hull vertex. If a new
point causes us to turn right, then the point just added must be eliminated, since
there exists a convex polygon containing it. Specifically, the test for eliminating a
point uses the ccw procedure of the previous chapter, as follows. Suppose we have
determined that p[1], ..., p[M] are on the partial hull determined on the basis
of examining p[1],...,p[1-1]. When we come to examine a new pointp [i],
we eliminate p [M] from the hull if ccw (p [M],p[M-11,p([1]) is nonnegative.
Otherwise, p [M] could still be on the hull, so we don’t eliminate it.

Figure 25.5 shows the completion of this process on our sample set of points.
The situation as each new point is encountered is diagrammed: each new point is
added to the partial hull so far constructed and is then used as a “witness” for the
elimination of (zero or more) points previously considered. After L, N, and P are
added to the hull, P is eliminated when K is considered (since NPK is a right turn), -
then F and I are added, leading to the consideration of E. At this point, I must be
eliminated because FIE is a right turn, then F and K must be eliminated because
KFE and NKE are right turns.. Thus more than one point can be eliminated during
the “backup” procedure, perhaps several. Continuing in this way, the algorithm
finally arrives back at B.

The initial sort guarantees that each point is considered in turn as a possible hull
point, because all points considered earlier have a smaller theta value. Each line
that survives the “eliminations” has the property that all points so far considered
are on the same side of it, so that when we get back to p [N], which also must be
on the hull because of the sort, we have the complete convex hull of all the points.

As with the package-wrapping method, points on a hull edge may or may not
be included, though there are two distinct situations that can arise with collinear
points. First, if there are two points collinear with p[1], then, as above, the sort
using theta may or may not get them in order along their common line. Points
out of order in this situation will be eliminated during the scan. Second, collinear
points along the trial hull can arise {(and not be eliminated).

Once the basic method is understood, the implementation is straightforward,
though there are a number of details to attend to. First, the point with the maximum
x value among all points with minimum y value is exchanged with p[1]. Next,
shellsort is.used to rearrange the points (any comparison-based sorting routine
would do), modified as necessary to compare two points using their theta values
with p[1]. After the sort, p [N] is copied into p[Q] to serve as a sentinel in
case p [ 3] is not on the hull. Finally, the scan described above is performed. The
fol_lowing program finds the convex hull of the point set p[1], ..., p[N]:
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Figure 25.5 Completion of Graham scan.
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int grahamscan(struct point p[], int N)
{
int i, min, M;
struct point t;
for (min =1, 1 = 2; i <= N; i++)
if (plil.y < plmin]l.y) min = i;
for (i = 1; 1 <= N; i++)
if (pli].y == plmin].y)
if (plil.x > plmin]}.x) min = i;
t =pll]l; pll] = plminl; plmin] = t;
shellsort (p, N);
p[0] = p[N];
for (M =3, 1 = 4; i <= N; 1i++)
{
while (ccw(p[M],p[M-1],p[i]) >= 0) M--;
Mt+; t = p[M]; p[M] = p[i]; pli] = t;
}

return M;

The loop maintains a partial hull in pll1, ..., p[M], as described above. For
each new i value considered, M is decremented if necessary to eliminate points
from the partial hull and then pli] is exchanged with p[M+1] to (tentatively)
add it to the partial hull. Figure 25.6 shows the contents of the p array each time
a new point is considered for our example.

The reader may wish to check why it is necessary for the min computation
to find the point with the lowest x coordinate among all points with the lowest
y coordinate, the canonical form described in Chapter 24. As discussed above,
another subtle point is to consider the effect of the fact that collinear points lead
to equal theta values, and may not be sorted in the order in which they appear
on the line, as one might have hoped.

One reason that this method is interesting to study is that it is a simple form of
backtracking, the algorithm design technique of “try something, and if it doesn’t
work then try something else” that we’ll revisit in Chapter 44.

Interior Elimination

Almost any convex hull method can be vastly improved by a simple techique
which quickly disposes of most points. The general idea is simple: pick four
points known to be on the hull, then throw out everything inside the quadrilateral
formed by those four points. This leaves many fewer points to be considered by,
say, the Graham scan-or the package wrapping technique.
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Figure 25.6 Data movement in the Graham scan.

The four points known to be on the hull should be chosen with an eye towards
any information available about the input points. Generally, it is best to adapt the
choice of points to the distribution of the input. For example, if all x and y values
within certain ranges are equally likely (a rectangular distribution), then choosing
four points by scanning in from the comners (find the four points with the largest
and smallest sum and difference of the two coordinates) turns out to eliminate
nearly all the points. Figure 25.7 shows that this technique eliminates most points
not on the hull in our two example point sets.

In an implementation of the interior elimination method, the “inner loop” for
random point sets is the test of whether or not a given point falls within the test
quadrilateral. This can be speeded up somewhat by using a rectangle with edges
parallel to the x and y axes. The largest such rectangle which fits in the quadrilateral
described above is easy to find from the coordinates of the four points defining the
quadrilateral. Using this rectangle will eliminate fewer points from the interior,
but the speed of the test more than offsets this loss.
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Figure 25.7 Interior elimination.

Performance Issues

As mentioned in the previous chapter, geometric algorithms are somewhat harder
to analyze than algorithms in some of the other areas we’ve studied because the
input (and the output) is more difficult to characterize. It often doesn’t make sense
to speak of “random” point sets: for example, as N gets large, the convex hull of
points drawn from a rectangular distribution is extremely likely to be very close
to the rectangle defining the distribution. The algorithms we’ve looked at depend
on different properties of the point set distribution and are thus incomparable in
practice, because to compare them analytically would require an understanding of
very complicated interactions between little-understood properties of point sets. On
the other hand, we can say some things about the performance of the algorithms
that will help choosing one for a particular application.

Property 25.1 After the sort, the Graham scan is a linear-time process.

A moment’s reflection is necessary to convince oneself that this is true, since there
is a “loop-within-a-loop” in the program. However, it is easy to see that no point is
“eliminated” more than once, so the code within that doublé loop is iterated fewer
than N times. The total time required to find the convex hull using this method
is O(NV logN), but the “inner loop” of the method is the sort itself, which can be
made efficient using techniques of Chapters 8-12. =

Property 25.2 . If there are M vertices on the hull, then the “package-wrapping”
technique requires about MN steps.

First, we must compute N — 1 angles to find the minimum, then N — 2 to find the
next, then N — 3, etc., so the total number of angle computations is (N — 1)+ (N —
2)+-+++( — M +1), which is exactly equal to MN — M (M — 1)/2. To compare
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this analytically with the Graham scan would require a formula for M in terms
of N, a difficult problem in stochastic geometry. For a circular distribution (and
some others) the answer is that M is O(N 173, and for values of N which are not
large N !/3 is comparable to logN (which is the expected value for a rectangular
distribution), so this method will compete very favorably with the Graham scan.
Of course, the N2 worst case should always be taken into consideration. m

Property 25.3 The interior elimination method is linear, on the average.

Full mathematical analysis of this method would require even more sophisticated
stochastic geometry than above, but the general result is the same as that given by
intuition: almost all the points fall inside the quadrilateral and are discarded—the
number of points left over is OWN N). This is true even if the rectangle is used
as described above. This makes the average running time of the whole convex
hull algorithm proportional to N, since most points are examined only once (when
they are thrown out). On the average, it doesn’t matter much which method is
afterwards, since so few points are likely to be left. However, to protect against
the worst case (when all points are on the hull), it is prudent to use the Graham
scan. This gives an algorithm which is almost sure to run in linear time in practice
and is guaranteed to run in time proportional to N logN. =

- The average case result of Property 25.3 holds only for randomly distributed
points in a rectangle, and in the worst case nothing is eliminated by the interior
elimination method. However, for other distributions or for point sets with un-
known properties, this method is still recommended because the cost is'low (a
linear scan through the points, with a few simple tests). and the possible savings
is high (most of the points can be easily eliminated). The method also extends to
higher dimensions.-

It is possible to devise a recursive version of the interior elimination method:
find extreme points and remove points on the interior of the defined quadrilateral as
above, but then consider the remaining pbints as partitioned into subproblems which
can be solved independently, using the same method. This recursive technique is
similar to the Quicksort-like select procedure for selection discussed in Chapter
12. Like that procedure, it is vulnerable to an N? worst-case running time. For
example, if all the original points are on the convex hull, then no points are thrown
out in the recursive step. Like select, the running time is linear on the average
(though it is not easy to prove this). But because so many points are eliminated
in the first step, it is not likely to be worth the trouble to do further recurswe
decomposition in any practical application.
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Exercises

1. Suppose you know in advance that the convex hull of a set of points is a
triangle. Give an easy algorithm for finding the triangle. Answer the same
question for a quadrilateral.

2. Give an efficient method for determining whether a point falls within a given
convex polygon.

3. Implement a convex hull algorithm like insertion sort, using your method from
the previous exercise.

4. Is it strictly necessary for the Graham scan to start with a point guaranteed to
be on the hull? Explain why or why not.

5. Is it strictly necessary for the package-wrapping method to start with a point
guaranteed to be on the hull? Explain why or why not.

6. Draw a set of points that makes the Graham scan for finding the convex hull
particularly inefficient. '

7. Does the Graham scan find the convex hull of the points that make up the ver-
tices of any simple polygon? Explain why or give a counterexample showing
why not.

8. What four points should be used for the interior elimination method if the
input is assumed to be randomly distributed within a circle (using random
polar coordinates)?

9. Empirically compare the Graham scan and the package-wrapping method for
large point sets with both x and y equally likely to be between 0 and 1000.

10. Implement the interior elimination method and determine empirically how large
N should be before one might expect fifty points to be left after the methed is
used on point sets with x and y equally likely to be between 0 and 1000.
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Range Searching

Given a set of points in the plane, it is natural to ask which of those points
fall within some specified area. “List all cities within 50 miles of Princeton”
is a question of this type which could reasonably be asked if a set of points
corresponding to the cities of the U.S. were available. When the geometric shape
is restricted to be a rectangle, the issue readily extends to non-geometric problems.
For example, “list all those people between 21 and 25 with incomes between
$60,000 and $100,000” asks which “points” from a file of data on people’s names,
ages, .and incomes fall within a certain rectangle in the age-income plane.

Extension to more than two dimensions is immediate. If we want to list all
stars within 50 light-years of the sun, we have a three-dimensional problem, and
if we want the rich young people of the paragraph above to be tall and female as
well, we have a four-dimensional problem. In fact, the dimension of such problems
can get very high,

In general, we assume that we have a set of records with certain atrributes that
take on values from some ordered set. (This is sometimes called a database, though
more specific and complete definitions have been developed for this important
term.) PFinding all records in a database that satisfy specified range restrictions
on a specified set of attributes is called range searching, and is a difficult and
important problem in practical applications. In this chapter, we’ll concentrate on
the two-dimensional geometric problem in which records are points and attributes
are their coordinates, and then discuss appropriate generalizations.

The methods we’ll look at are direct generalizations of methods we have seen
for searching on single keys (in one dimension). We presume that many queries
will be made on the same set of points, so the problem splits into two parts: we
need a preprocessing algorithm, which builds the given points into a structure
supporting efficient range searching, and a range-searching algorithm, which uses
the structure to return points falling within any given (multidimensional) range.
This separation makes different methods difficult to compare, since the total cost

373
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Figure 26.1 Range searching (one-dimensional) with a binary search trec;

depends not only on the distribution of the points involved but also on the number
and nature of the queries.

The range-searching problem in one d1mens1on is to return all points falling
within a specified interval. This can be done by sorting the points for preprocessing
and then doing a binary search on the endpoints of the interval to return all the
points that fall in between. Another solution is to build a binary search tree and
then do a simple recursive traversal of the tree, returning points within the interval
and ignoring parts of the tree outside the interval. The program required is a simple
recursive tree traversal (see Chapter 4). If the left endpoint of the interval falls
to the left of the point at the root, we (recursively) search the left subtree, and
similarly for the right, checking each node we encounter to see whether its point
falls within the interval: ‘ '

struct interval { int x1, x2; }:
treerange (struct node *t; struct interval range);
{ - .
int tx1l, tx2;
if (t == z) return;
txl = (t->key >= range.xl);
tx2 = (t->key <= range.x2);
if (txl) treerange(t->1, range);
if (txl && tx2)
" /* t->key is within the range */
if (tx2) treerange(t->r, range);

This program could be made slightly more efficient by maintaining the interval int
as a global variable rather than passing its unchanged values through the recursive
calls. Figure 26.1 shows the points found when this program is run on a sample
tree. Note that the points returned do not need to be connected in the tree.
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Property 26.1 One-dimensional range searching can be done with O(N logN)
steps for preprocessing and O (R+log N) for range searching, where R is the number
of points actually falling in the range.

This follows directly from elementary properties of the search structures (see Chap-
ters 14 and 15). A balanced tree could be used, if desired. =

Our goal in this chapter will be to achieve these same running times for mul-
tidimensional range searching. The parameter R can be quite significant: given
the facility to make range queries, a user could easily formulate queries that could
require all or nearly all of the points. This type of query could reasonably be
expected to occur in many applications, but sophisticated algorithms are not nec-
essary if all queries are of this type. The algorithms we consider are designed to
be efficient for queries that are not expected to return a large number of points.

Elementary Methods

In two dimensions, our “range” is an area in the plane. For simplicity, we’ll
consider the problem of finding all points whose x coordinates fall within a given
x-interval and whose y coordinates fall within a given y-interval: that is, we seek
all points falling within a given rectangle. Thus, we’ll assume a type rect which
is a record of four integers, the horizontal and vertical interval endpoints. Our basic
operation is to test whether a point falls within a given rectangle, so we’ll assume a
function insiderect (struct point p, struct rect r) that checks
this in the obvious way, returning a nonzero value if p falls within r. Our goal
is to find all the points that fall within a given rectangle, using as few calls to
insiderect as possible.

The simplest v(zay to solve this problem is sequential search: scan through
all the points, testing each to see if it falls within the specified range (by calling
insiderect for each point). This method is in fact used in many database
applications because it is easily improved by “batching” the range queries, testing
for many different ones in the same scan through the points. In a very large
database, where the data is on an external device and the time to read it is by far
the dominating cost factor, this can be a very reasonable method: collect as many
queries as will fit in internal memory and search for them all in one pass through
the large external data file. If this type of batching is inconvenient or the database
is somewhat smaller, however, there are much better methods available.

For our geometric problem, however, sequential search seems to involve too
much work, as shown in Figure 26.2. The search rectangle is likely to contain only
a few of our points, so do we need to have to search through all the points just to
find those few? A simple first improvement to sequential search is direct application
of a known one-dimensional method along one or more of the dimensions to be
searched. One way to proceed is to find the points whose x coordinates fall within
the x range specified by the rectangle, then check the y coordinates of those points
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Figure 26.2 Two-dimensional range searching.

to determine whether or not they fall within the rectangle. Thus, points that cannot
be within the rectangle because their x coordinates are out of range are never
examined. This technique is called projection; obviously we could also project
on y. For our example, we would check E C H F and I for an x projection, as
described above, and we would check O EF K P N and L for a y projection. Note
that the set of points sought (E and F) are precisely those points that appear in
both projections.

If the points are uniformly distributed in a rectangular region, then it’s trivial
to calculate the average number of points checked. The fraction of points we would
expect to find in a given rectangle is simply the ratio of the area of that rectangle to
the area of the full region; the fraction of points we would expect to check for an x
projection is the ratio of the width of the rectangle to the width of the region, and
similarly for a y projection. For our example, using a 4-by-6 rectangle in a 16-by-
16 region means that we would expect to find 3/32 of the points in the rectangle,
1/4 of them in an x projection, and 3/8 of them in a y projection. Obviously,
under such circumstances, it’s best to project onto the axis corresponding to the
narrower of the two rectangle dimensions. On the other hand, it’s easy to construct
situations in which the projection technique could fail miserably: for example, if
the point set forms an “L” shape and the search is for a range that encloses only
the point at the corner of the “L,” then projection on either axis eliminates only
half the points.

At first glance, it seems that the projection technique could be improved some-
how to “intersect” the points that fall within the x range and the points that fall
within the y range. Attempts to do this without examining in the worst case either
all the points in the x range or all the points in the y range serve mainly to make
one appreciate the more sophisticated methods we are about to study.
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Figure 26.3 Grid method for range searching.

Grid Method

A simple but effective technique for maintaining proximity relationships among
points in the plane is to construct an artificial grid that divides the area to be
searched into small squares and keep short lists of points falling into each square.
(This technique is used in archaeology, for example.) Then, when points lying
within a given rectangle are sought, only the lists corresponding to squares that
intersect the rectangle need to be searched. In our example, only E, C, F, and K
are examined, as shown in Figure 26.3.

The main decision that remains is to determine the size of the grid: if it is too
coarse, each grid square will contain too many points, and if it is too fine, there
will be too many grid squares to search (most of which will be empty). One way
to strike a balance between these two extremes is to choose the grid size so that the
number of grid squares is a constant fraction of the total number of points. Then
the number of points in each square is expected to be about equal to some small
constant. For our small sample point set, using a 4 by 4 grid for a sixteen-point
set means that each grid square is expected to contain one point.

Below is a straightforward implementation of a program to build the grid
structure containing the points in an array p [N+1] of points of the type described
at the beginning of Chapter 24. The variable size is used to control how big
the grid squares are and thus determine the resolution of the grid. Assume for
simplicity that the coordinates of all the points fall between 0 and some maximum
value max. Then size is taken to be the width of a grid square and there are
max/size by max/size grid squares. To find which grid square a point belongs
to, we divide its coordinates by size, as in the following implementation:
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#define maxG 20
struct node { struct point p, struct node *next; };
struct node *grid[maxG] [maxG];
int size;
struct node *z;
preprocess (struct point p[], int N)
{
int i, J;
z (struct node *) malloc(sizeof *z);
for (size = 1; size*size < max*max/N; size *= 2);
for (1 = 0; i <= maxG; 1i++)
for (j = 0; J <= maxG; j++)
grid[i] [J] = z;
for (i = 0; 1 <= N; i++) insert(pli]):
}
insert (struct point p)
{
struct node *t;
t = (struct node *) malloc(sizeof *t);
t->p = p; t->next = grid([p.x/size][p.y/size];
gridlp.x/size] [p.y/size] = t;

This program uses our standard linked-list representations, with dummy tail node
z. Again, the variable max is assumed to be global, perhaps set to the maximum
coordinate value encountered at the time the points are input.

As mentioned above, how to set the variable size depends on the number
of points, the amount of memory available, and the range of coordinate values.
Roughly, to get M points per grid square, size should be chosen to be the nearest
integer to max divided by \/N /M. This leads to about N /M grid squares. These
estimates aren’t accurate for small values of the parameters, but they are useful
for most situations, and similar estimates can easily be formulated for specialized
applications. The value need not be computed exactly—the implementation above
makes size a power of two, which should make multiplication and division by
size much more efficient in most programming environments.

The above implementation uses M = 1, a commonly used choice. If space is
at a premium, a large value may be appropriate, but a smaller value is not likely
to be useful except in specialized situations.

Now, most of the work for range searching is handled simply by indexing into
the grid array, as follows:
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gridrange (struct rectangle range)
{
struct node *t;
int i, 3;
for (1 = range.xl/size; i <= range.x2/size; 1i++)
for (j = range.yl/size; j <= range.y2/size; j++)
for (t = grid[i]1[3j]; t != z; t = t->next)
if (insiderect (t->p, range))
/* point t-»p is within the range */

The running time of this program is proportional to the number of grid squares
touched. Since we were careful to arrange things so that each grid square contains
a constant number of points on the average, the number of grid squares touched is
also proportional, on the average, to the number of points examined.

Property 26.2 The grid method for range searching is linear in the number of
points in the range, on the average, and linear in the total number of points in the
worst case.

If the number of points in the search rectangle is R, then the number of grid squares
examined is proportional to R. The number of grid squares examined that do not
fall completely inside the search rectangle is certainly less than a small constant
times R, so the total running time (on the average) is linear in R. For large R, the
number of points examined that don’t fall in the search rectangle gets quite small:
all such points fall in a grid square that intersects the edge of the search rectangle,
and the number of such squares is proportional to VR for large R. Note that this
argument falls apart if the grid squares are too small (too many empty grid squares
inside the search rectangle) or too large (too many points in grid squares on the
perimeter of the search rectangle) or if the search rectangle is thinner than the grid
squares (it could intersect many grid squares but have few points inside it). =

The grid method works well if the points are well distributed over the assumed
range, but badly if they are clustered together. (For example, all the points could
fall in one grid box, which would mean that all the grid machinery gained nothing.)
The method we examine next makes this worst case very unlikely by subdividing
the space in a nonuniform way, adapting to the point set at hand. -

'I\zvo;Dimensiohal Trees

Two-dimensional (2D) trees are dynamic, adaptable data structures that are very
similar to binary trees but divide up a geometric space in a manner convenient for
use in range searching and other problems. The idea is to build binary search trees
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Figure 26.4 A two-dimensional (2D) tree.

with points in the nodes, using the y and x coordinates of the points as keys in a
strictly alternating sequence.

The same algorithm is used to insert points into 2D trees as in normal binary
search trees, but at the root we use the y coordinate (if the point to be inserted has
a smaller y coordinate than the point at the root, go left; otherwise go right), then
at the next level we use the x coordinate, then at the next level the y coordinate,
etc., alternating until an external node is encountered. Figure 26.4 shows the 2D
tree corresponding to our small sample set of points.

The significance of this technique is that it corresponds to dividing up the
plane in a simple way: all the points below the point at the root go in the left
subtree, all those above in the right subtree, then all the points above the point at
the root and to the left of the point in the right subiree go in the left subtree of the
right subtree of the root, etc.

Figures 26.5 and 26.6 show how the plane is subdivided corresponding to the
construction of the tree in Figure 26.4. First a horizontal line is drawn at the
y-coordinate of A, the first node inserted. Then, since B is below A, it goes to the
left of A in the tree, and the halfplane below A is divided with a vertical line at

Figure 26.5 Subdividing the plane with a 2D tree: initial steps.
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Figure 26.6 Subdividing the plane with a 2D tree: continuation.
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the x-coordinate of B (second diagram in Figure 26.5). Then, since C is below A,
we go left at the root, and since it is to the left of B we go left at B, and divide
the portion of the plane below A and to the left of B with a horizontal line at the y
coordinate of C (third diagram in Figure 26.5). The insertion of D is similar, then
E goes to the right of A since it is above it (first diagram of Figure 26.6), etc.

Every external node of the tree corresponds to some rectangle in the plane.
Each region corresponds to an external node in the tree; each point lies on a
horizontal or vertical line segment that deﬁnes the division made in the tree at that
point.

The code to construct 2D trees is a straightforward modification of standard
binary tree search to switch between x and y coordinates at each level.

treezDinsert (struct point p)
{
struct node *f;
int d, td;
for (d = 0, £t = head; t !'= z; d !=d)

td=d ? (p.x < t=->p.x) ! (p.y < t=->p.y):
f=t; t =+t%td ? t->1 : t->r;

f—

= (struct node *) malloc(sizeof *t);
= p; t->1 = z2; t->r = z;

t
t->p
if (td) £->1 = t; else f->r = t;

Here a node is a point together with left and right links to nodes. As usual, we
use a header node head with an artificial point (0,0) which is “less than” all the
other points so that the tree hangs off the right link of head, and an artificial node
z is used to represent all the external nodes. A boolean variable d is toggled on the
way down the tree to effect the alternating tests on x and y coordinates. Otherwise
the procedure. is identical to the standard procedure from Chapter 14.

Property 26.3 Construction of a 2D iree from N random points requires 2N InN
comparisons, on the average.

Indeed, for randomly distributed points, 2D trees have the same performance char-
acteristics as binary search trees. Both coordinates act as random “keys”. w

To do range searching using 2D trees, we first build the 2D tree from the
points in the preprocessing phase:
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preprocess (struct point p[]l, int N)
{
int 1i;
pl0l.x = 0; p[0]l.y = 0; pl[0].info = 0;
z = (struct node *) malloc(sizeof *z);
z->1 = z; z->r = z; z->p = pl[0];
head = (struct node *) malloc(sizeof *head):;
head->r = z; head->p = p[0];
for (1 = 1; i <= N; i++) treeZDinsert(pli]);

The tree is initialized, as described above, then all the points inserted. The initial-
ization code must be carefully coordinated with the start conditions for code which
travels through the tree, otherwise an annoying bug will arise with the algorithm
looking for x coordinates where the tree has y coordinates and vice versa.

Then, for range searching, we test the point at each node against the range
along the dimension used to divide the plane of that node. For our example, we
begin by going right at the root and right at node E, since our search rectangle is
entirely above A and to the right of E. Then, at node F, we must go down both
subtrees, since F falls in the x range defined by the rectangle (note carefully that
this is not the same as saying that F falls within the rectangle). Then the left
subtrees of P and K are checked, corresponding to checking the areas of the plane
that overlap the search rectangle. (See Figures 26.7 and 26.8.)

This process is easily implemented with a straightforward generalization of the
1D range procedure examined at the beginning of this chapter:

f

tree2Drange (struct node *t, struct rect range, int d)
{
int t1,t2,tx1,tx2,tyl,ty2;
if (t == z) return;
txl = range.xl < t->p.x; tx2 = t->p.x <= range.x2;
tyl = range.yl < t->p.y; ty2 t->p.y <= range.y2;

=d ? txl : tyl; £t2 = d ? tx2 : ty2;

if (tl) tree2Drange(t->1, range, !d);

1if (insiderect (t->p, range))
/* point t->p is within the range */

if (t2) tree2Drange (t->r, range, !d);
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Figure 26.7 Range searching with a 2D tree.

This procedure goes down both subtrees only when the dividing line cuts the
rectangle, which should happen infrequently for relatively small rectangles. Figure
26.8 shows the planar subdivisions and the points examined for our two examples.

Property 26.4 Range searching with a 2D tree seems to use about R +log N steps
to find R points in reasonable ranges in a region containing N points.

This method has yet to be analyzed, and the property stated is a conjecture based
purely on empirical evidence. Of course, the performance (and the analysis) is
as always very dependent on the type of range used. But the method is very
competitive with the grid method, and somewhat less dependent on “randomness”
in the point set. Figure 26.9 shows the 2D tree for our large example. m

Figure 26.8 Range searching with a 2D tree (planar subdivision).
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Figure 26.9 Range searching with a large 2D tree.

Muitidimensional Range Searching

Both the grid method and 2D trees generalize directly to more than two dimen-
sions: simple, straightforward extensions to the above algorithms immediately
yield range-searching methods that work for more than two dimensions. However,
the nature of multidimensional space calls for some caution and suggests that the
performance characteristics of the algorithms might be difficult to predict for a
particular application.

To implement the grid inethod for k-dimensional searching, we simply make
grid a k-dimensional array and use one index per dimension. The main problem
is to pick a reasonable value for size. This problem becomes quite obvious when
large k is considered: what type of grid should we use for 10-dimensional search?
The problem is that even if we use only three divisions per dimension, we need
310 orid squares, most of which will be empty, for reasonable values of N.

The generalization from 2D to £D trees is also straightforward: simply cycle
through the dimensions (as we did for two dimensions by alternating between x
and y) while going down the tree. As before, in a random situation, the resulting
trees have the same characteristics as binary search trees. Also as before, there is a
natural correspondence between the trees and a simple geometric process. In three
dimensions, branching at each node corresponds to cutting the three-dimensional
region of interest with a plane; in general we cut the k-dimensional region of
interest with a (k — 1)-dimensional hyperplane.

If k is very large, there is likely to be a significant amount of imbalance in
the kD trees, again because practical point sets can’t be large enough to exhibit
randomness over a large number of dimensions. Typically, all points in a subtree
will have the same value across several dimensions, which leads to several one-
way branches in the trees. One way to alleviate this problem is, rather than simply
cycling through the dimensions, always to use the dimension that divides up the
point set in the best way. This technique can also be applied to 2D trees. It requires
that extra information (which dimension should be discriminated upon) be stored
in each node, but it does relieve imbalance, especially in high-dimensional trees.



386 . Chapter 26

In summary, though it is easy to see how to generalize our programs for range
searching to handle multidimensional problems, such a step should not be taken
lightly for a large application. Large databases with many attributes per record can
be very complicated objects indeed, and a good understanding of ‘the characteristics
of a database is often necessary in order to develop an efficient range-searching
method for a particular application. This is a quite important problem which is
still being actively studied.
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Exercises

1
2

10.

. Write a nonrecursive version of the 1D range program given in the text.

. Write a program to print out all points from a bmary tree that do not fall in a

specified interval.

. Give the maximum and minimum number of grid squares that will be searched

in the grid method as functions of the dlmensmns of the grid squares and the
search rectangle. -

. Discuss _the idea of avoiding the search of empty grid squares’by using linked

lists: each grid square could be linked to the next nonempty grid square in the
same row and the next nonempty grid square in the same column. How would
using such a scheme affect.the grid square size to be used?

. Draw the tree and the resulting subdivision of the plane if we build a 2D tree

for our sample points starting with a vertical dividing line.

. Give a'set of points leading to a worst-case 2D tree which has no nodes with

two children; give the subdivision of the plane that results.

. Describe how to modify each of the methods to return all points that fall within

a given circle.

. Of all search rectangles with the same area, what shape is likely to make each

of the methods perform the worst?

. Which method should be preferred for range searching when the points cluster

together in large groups spaced far apart?

Draw the 3D tree that results when the points (3,1,5), (4,8,3), (8,3,9), (6,2,7),
(1,6,3), (1,3,5), (6,4,2) are inserted into an initially empty tree.
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Geometric Intersection

A natural problem that arises frequently in applications involving geometric
data is: “Given a set of N objects, do any two intersect?” The “objects”
involved may be lines, rectangles, circles, polygons, or other types of geometric
objects. When physical objects are involved, we may know that two objects can’t
occupy the same place at the same time, but it takes some effort to get a computer
program to acknowledge this fact. For example, in a system for designing and
processing integrated circuits or printed circuit boards, it is important to know that
no two wires intersect to make a short circuit. In an industrial system for designing
layouts to be executed by a numerically controlled cutting tool, it is important to
know that no two parts of the layout intersect. In computer graphics, the problem
of determining which of a set of objects is obscured from a particular viewpoint
can be formulated as a geometric intersection problem on the projections of the
objects onto the viewing plane. Even if physical objects are not involved, there are
many examples where the mathematical formulation -of a problem leads naturally
to a geometric intersection problem. For a particularly important example of this,
see Chapter 43. '

The obvious solution to the intersection problem is to check each pair of objects
to see if they intersect. Since there are about N2/2 pairs of objects, the running
time of this algorithm is proportional to N2, For a few applications, this may not
be a problem because other factors limit the number of objects to be processed.
However, for many other applications, is not uncommon to deal with hundreds of
thousands or even millions of objects. The brute-force N2 algorithm is obviously
inadequate for such applications. In this section, we’ll study a general method for
determining, in time proportional to N log N, whether any two out of a set of N
objects intersect; this method is based on algorithms presented by M. Shamos and
D. Hoey in a‘seminal 1976 paper.

First, we’ll consider an algorithm for returning all intersecting pairs among a
set of lines that are constrained to be horizontal or vertical. This makes the problem

389
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easier in one sense (horizontal and vertical lines are relatively simple geometric
objects), more difficult in another sense (returning all intersecting pairs is more
difficult than simply determining whether one such pair exists). The implementation
we’ll develop applies binary search trees and the interval range-searching program
of the previous chapter in a doubly recursive program.

Next, we’ll examine the problem of determining whether any two of a set of
N lines intersect, with no constraints on the lines. The same general strategy as
used for the horizontal-vertical case can be applied. In fact, the same basic idea
works for detecting intersections among many other types of geometric objects.
However, for lines and other objects, the extension to return all intersecting pairs
is somewhat more complicated than for the horizontal-vertical case.

Horizontal and Vertical Lines

To begin, we’ll assume that all lines are either horizontal or vertical: the two points
defining each line have either equal x coordinates or equal y coordinates, as in the
sample sets of lines shown in Figure 27.1. (This is sometimes called Manhattan
geometry because, Broadway to the contrary notwithstanding, the Manhattan street
map consists mostly of horizontal and vertical lines.) Constraining lines to be
horizontal or vertical is certainly a severe restriction, but this is far from a “toy”
problem. Indeed, this restriction is often imposed in a particular application: for
example, very large-scale integrated circuits are typically designed under this con-
straint. In the figure on the right, the lines are relatively short, as is typical in many
applications, though one can usually count on encountering a few very long lines.

The general plan of the algorithm to find an intersection in such sets of lines
is to imagine a horizontal scan line sweeping from bottom to top. Projected onto
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Figure 27.1 Two line intersection problems (Manhattan).
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Figure 27.2 Scanning for intersections: initial steps.

this scan line, vertical lines are points, and horizontal lines are intervals: as the
scan line proceeds from bottom to top, points (representing vertical lines) appear
and disappear, and horizontal lines are encountered periodically. An intersection
is found when a horizontal line is encountered representing an interval on the scan
line that contains a point representing a vertical line. Meeting the point means that
the vertical line intersects the scan line, and the horizontal line lies on the scan line,
so the horizontal and vertical lines must intersect. In this way, the two-dimensional

. problem of finding an intersecting pair of lines is reduced to the one-dimensional
range-searching problem of the previous chapter.

Of course, it is not necessary actually to “sweep” a horizontal line all the way
up through the set of lines; since we need to take action only when endpoints
‘of the lines are encountered, we can begin by sorting the lines according to their
¥ coordinate, then processing the lines in that order. If the bottom endpoint of a
vertical line is encountered, we add the x coordinate of that line to the binary search
tree (here called the x-tree); if the top endpoint of a vertical line is encountered,
we delete that line from the tree; and if a horizontal line is encountered, we do
an interval range search using its two x coordinates. As we’ll see, some care
is required to handle equal coordinates among line endpoints (by now the reader
should be accustomed to encountering such difficulties in geometric algorithms).

Figure 27.2 shows the first few steps of scanning to find the intersections in
the example on the left in Figure 27.1. The scan starts at the point with the lowest
¥ coordinate, the lower endpoint of C. Then E is encountered, then D. The rest of
the process is shown in Figure 27.3: the next line encountered is the horizontal
line G, which is tested for intersection with C, D, and E (the vertical lines that
intersect the scan line).

To implement the scan, we need only sort the line endpoints by their y coor-
dinates. For our example, this gives the list

CEDGIBFCHBAIEDHTF

Each vertical line appears twice in this list, each horizontal line appears once. For
the purposes of the line intersection algorithm, this sorted list can be thought of as a
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Figure 27.3 Scanning for intersections: completion of process.
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Figure 27.4 Data structure during scan: constructing the x-tree.

sequence of insert (vertical lines when the bottom endpoint is encountered), delete
(vertical lines when the top endpoint is encountered), and range (for the endpoints
of horizontal lines) commands. All of these “commands™ are simply calls on the
standard binary tree routines from Chapters 14 and 26, using x coordinates as keys.

Figure 27.4 shows the x-tree construction process during the scan. Each node
in the tree corresponds to a vertical line—the key used during the construction of
the tree is the x-coordinate. Since E is to the right of C, it is in C’s right subtree,
etc. The first line of Figure 27.4 corresponds to Figure 27.2; the rest to Figure
27.3. :

When a horizontal line is encountered, it is used to make a range search in the
tree: all vertical lines in the range represented by the horizontal line correspond
to intersections. In our example, the intersection between E and G is discovered,
then I, B, and F are inserted. Then C is deleted, H inserted, and B deleted. At
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this point, A is encountered, and a range search for the interval defined by A is
performed, which discovers the intersections between A and D, E, and H. Next,
the upper endpoints of I, E, D, H, and F are deleted, leading back to the empty
tree.

Implementation

The first step in the implementation is to sort the line endpoints on their y coor-
dinates. But since binary trees will be used to maintain the status of vertical lines
with respect to the horizontal scan line, they may as well be used for the initial
y sort! Specifically, we will use two “indirect” binary trees on the line set, one
with header node hy and one with header node hx. The y tree will contain all
the line endpoints, to be processed in order one at a time; the x tree will contain
the lines that intersect the current horizontal scan line. We begin by initializing
both hx and hy with 0 keys and pointers to a dummy external node z, as in
treeinitialize in Chapter 14. Then the hy tree is constructed by inserting
both y coordinates from vertical lines and the y coordinate of horizontal lines into
the binary search tree with header node hy, as follows:

buildytree ()
{

int t, x1, yl, x2, y2;

hy = bstinitialize();

for (N = 1; ; N++4)

{

t = scanf ("%d %d %d %d", &xl, &yl, &x2, &y2;
if (t == EOF) break;
lines[N].pl.x = x1; lines[N].pl.y = yl;
lines[N].p2.x = x2; lines[N].p2.y v2;
bstinsert (N, yl, hy);
if (y2 != yl) bstinsert (N, y2, hy);

This program reads in groups of four numbers that specify lines and puts them into
the 1ines array and into the binary search tree on the y coordinate. The standard
bstinsert routine from Chapter 14 is used, with the y coordinates as keys, and
indices into the array of lines as the info field. For our example set of lines, the
tree shown in Figure 27.5 is constructed.

Now, the sort on y is effected by a recursive inorder tree traversal routine (see
Chapters 4 and 14). We visit the nodes in increasing y order by visiting all the
nodes in the left subtree of the hy tree, then visiting the root, then visiting all the
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nodes in the right subtree of the hy tree. At the same time, we maintain a separate
tree (rooted at hx) as described above, to simulate the operation of passing through
a horizontal scan line:

scan (struct node *next)

{

}

int t, x1, x2, yi, v2;
struct interval range;

i1f (next == z) return;
scan{next->1});
x1 = lines[next->info].pl.x;
yl = lines[next->info].pl.y;
x2 = lines[next->info].p2.x;
v2 = lines[next->info] .p2.y;
1f (%2 < x1) { t = x2; x2 = x1; x1 = t; }
if (v2 < yl) { £t =vy2; y2 =yl; yl = t; "}
if (next->key == yl) bstinsert (next->info, x1,hx);
if (next->key == y2)
{
bstdelete (next->info, x1, hx);
range.xl = xl1; range.x2 = x2;
bstrange (hx~->r, range);

}

scan (next->r);

From the description above, it is rather straightforward to put together the code at
the point where each node is “visited”. First, the coordinates of the endpoint of the
corresponding line are fetched from the lines array, indexed by the info field

Figure 27.5 Sorting for scan using the y-tree.
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of the node. Then the key field in the node is compared against these coordinates
to determine whether this node corresponds to the upper or the lower endpoint of
the line: if it is the lower endpoint, it is inserted into the hx tree, and if it is the
upper endpoint, it is deleted from the hx tree and a range search is performed. The
implementation differs slightly from this description in that horizontal lines are
actually inserted into the hx tree, then immediately deleted, and a range search for
a one-point interval is performed for vertical lines. This makes the code properly
handle the case of overlapping vertical lines, which are considered to “intersect.”

This approach of intermixed application of recursive procedures operating on
the x and y coordinates is quite important in geometric algorithms. Another ex-
ample of this is the 2D tree algorithm of the previous chapter, and we’ll see yet
another example in the next chapter.

Property 27.1 All intersections among N horizontal and vertical lines can be
found in time proportional to N 1ogN +1, where 1 is the number of intersections.

The tree manipulation operations take time proportional to logN on the average
(if balanced trees were used, a logN worst case could be guaranteed), but the
time spent in bstrange also depends on the total number of intersections. In
general, the number of intersections can be quite large. For example, if we have
V /2 horizontal lines and N /2 vertical lines arranged in a crosshatch pattern, then
uie number of intersections is proportional to N2, m

. As with range searching, if it is known in advance that the number of inter-
sections is very large, then some brute-force approach should be used. Typically,
applications involve a “needle-in-haystack” kind of situation where a large set of
lines is to be checked for a few possible intersections.

General Line Intersection

When lines of arbitrary slope are allowed, the situation can become more com-
plicated, as illustrated in Figure 27.6. First, the various line orientations possible
make it necessary to test explicitly whether certain pairs of lines intersect—we
can’t get by with a simple interval range test. Second, the ordering relationship
between lines for the binary tree is more complicated than before, since it depends
on the current y range of interest. Third, any intersections that do occur add new
“interesting” y values that are likely to be different from the set of y values we get
from the line endpoints.

It turns out that these problems can be handled in an algorithm with the same
basic structure as given above. To simplify the discussion, we’ll consider an
algorithm for detecting whether or not there exists an intersecting pair in a set of
N lines, and then we’ll discuss how it can be extended to return all intersections.

As before, we first sort on y to divide the space into strips within which no
line endpoints appear. Just as before, we proceed through the sorted list of points,
adding each line to a binary search tree when its bottom point is encountered
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Figure 27.6 Two general line intersection problems.

and deleting it when its top point is encountered. Just as before, the binary tree
gives the order in which the lines appear in the horizontal “strip” between two
consecutive y values. For example, in the strip between the bottom endpoint of D
and the top endpoint of B in Figure 27.6, the lines should appear in the order F
B D H G. We assume that there are no intersections within the current horizontal
strip of interest: our goal is to maintain this tree structure and use it to help find
the first intersection.

To build the tree, we can’t simply use x coordinates from line endpoints as
keys (doing this would put B and D in the wrong order in the example above,
for instance). Instead, we use a more general ordering relationship: a line x is
defined to be to the right of a line y if both endpoints of x are on the same side
of y as a point infinitely far to the right, or if y is to the left of x, with “left”
defined analogously. Thus, in the diagram above, B is to the right of A and B is
to the right of C (since C isto the left of B). If x is neither to the left nor to the
right of y, then they must intersect. This generalized “line comparison” operation
can be implemented using the ccw procedure of Chapter 24. Except for the use
of this function whenever a comparison is needed, the standard binary search tree
procedures (even balanced trees, if desired) can be used. Figure 27.7 shows the
manipulation of the tree for our example between the time line C is encountered
and the time line D is encountered. Each “comparison” performed during the tree-
manipulation procedures is actually a line-intersection test: if the binary search
tree procedure can’t decide to go right or left, then the two lines in question must
intersect, and we’re finished.

. But this is not the whole story, because this generalized comparison operation
" is not. fransitive. In the example above, F is to the left of B (because B is to the
.right. of F) and B is to the left of D, but F is not to the left of D. It is essential to
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Figure 27.7 Data structure (x-tree) for general problem.

note this, because the binary tree deletion procedure assumes that the comparison
operation is fransitive: when B is deleted from the last tree in the above sequence,
the tree shown in Figure 27.7 is formed without any explicit companson of F and
D. For our intersection-testing algorithm to work correctly, we must test explicitly
that comparisons are valid each time we change the tree. structure. Specifically,
every time we make the left link of node x point to node y, we explicitly test that
the line corresponding to x is to the left of the line corresponding to y, according to
the above definition, and similarly for the right. Of course, this comparison could
result in the detection of an intersection, as it does in our example.

In summary, to test for an intersection among a set of N lines, we use the
program above, but we remove the call to range and extend the binary tree
routines to use the generalized comparison as described above. If there is no
intersection, we’ll start with a null tree and end with a null tree without finding
any incomparable lines. If there is an intersection, then the two lines that intersect
must be compared against each other at some point durmg the scanning process
and the intersection will be discovered.

- Once we’ve found an intersection, however, we can’t simply press on and
hope to find others, because the two lines that intersect should swap places in
the ordering directly after the point of intersection. One way to handle this issue
would be to use a priority queue instead of a binary tree for the y sort: initially
put lines on the priority queue according to the y coordinates of their endpoints,
then work the scan line up by successively taking the smallest y coordinate from
the priority queue and doing a binary tree insert or delete as above. When an
intersection is found, new entries are added to the priority queue for each line,
using the intersection point as the lower endpoint for each.

Another way to find all intersections, which is appropriate if not too many are
expected, is simply to remove one of the intersecting lines when an intersection is
found. Then after the scan is completed, we know that all intersecting pairs must
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involve one of those lines, and we can use a brute-force method to enumerate all
the intersections. :

Property 27.2 All intersections among N lines can be found in time proportional
to (N +1)log N, where I is the number of intersections.

This follows directly from the discussion above. m

An interesting feature of the above procedure is that it can be adapted just
by changing the generalized comparison procedure to test for the existence of an
intersecting pair among a set of more general geometric shapes. For example, if we
implement a procedure that compares two rectangles whose edges are horizontal
and vertical according to the trivial rule that rectangle x is to the left of rectangle
y if the right edge of x is to the left of the left edge of y, then we can use the
above method to test for intersection among a set of such rectangles. For circles,
we can use the x coordinates of the centers for the ordering and explicitly test
for intersection (for example, compare the distance between the centers to the sum
of the radii). Again, if this comparison procedure is used in the above method,
we have an algorithm for testing for intersection among a set of circles. The
problem of returning all intersections in such cases is much more complicated,
though the brute-force method mentioned in the previous paragraph will always
work if few intersections are expected. Another approach that will suffice for many
applications is simply to consider complicated objects as sets of lines and use the
line-intersection procedure.
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Exercises

1. How would you determine whether two. triangles intersect? Squares? Regular
n-gons for n > 47

2. In the horizontal-vertical line-intersection algorithm, how many pairs of lines
are tested for intersection in a set of lines with no intersections in the worst
case? Give a diagram supporting your answer,

3. What happens when the horizontal-vertical line-intersection procedure is used
on a set of lines with arbitrary slope?

4. Write a program to find the number of intersecting pairs among a set of N ran-
dom horizontal and vertical lines, each line generated with two random integer
coordinates between 0 and 1000 and a random bit to distinguish horizontal
from vertical.

5. Give a method for testing whether or not a given polygon is simple (doesn’t
intersect itself).

6. Give a method for testing whether one polygon is totally contained within
another.

7. Describe how you would solve the general line-intersection problem given the
- additional fact that the minimum separationi between two lines is greater than
the maximum length of the lines.

8. Give the binary tree structures that exist when the line intersection algorithm
detects the intersections in the lines of Figure 27.6 rotated by 90 degrees.

9. Are the comparison procedures for circles and Manhattan rectangles described
in the text transitive?

10. Write a program to find the number of intersecting pairs among a set of N
random lines, each line generated with random integer coordinates between 0
and 1000.
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Closest-Point Problems

Geometric problems involving points on the plane usually involve implicit
or explicit treatment of distances between the points. For example, a very
natural problem which arises in many applications is the nearest-neighbor problem:
find the point among a set of given points closest to a given new point. This seems
to involve checking the distance from the given point to each point in the set, but
much better solutions are possible. In this section we’ll look at some other distance
problems, a prototype algorithm, and a fundamental geometric structure called the
Voronoi diagram that can be used effectively for a variety of such problems in the
plane. Our approach will be to describe a general method for solving closest point
problems through careful consideration of a prototype implementation for a simple
problem.

Some of the problems that we consider in this chapter are similar to the range-
searching problems of Chapter 26, and the grid and 2D tree methods developed
there are suitable for solving the nearest-neighbor and other problems. The funda-
mental shortcoming of those methods, however, is that they rely on randomness in
the point set: they have bad worst-case performance. Our aim in this chapter is to
examine another general approach that has guaranteed good performance for many
problems, no matter what the input. Some of the methods are too complicated
for us to examine a full implementation, and they involve sufficient overhead that
the simpler methods may do better when the point set is not large or when it is
sufficiently well dispersed. However, the study of methods with good worst-case
performance will uncover some fundamental properties of point sets that should be
understood even if simpler methods are more suitable in specific situations.

The general approach we’ll examine provides yet another example of the use
of doubly recursive procedures to intertwine processing along the two coordinate
directions. The two previous methods we’ve seen of this type (kD trees and line
intersection) have been based on binary search trees; here the method is a “combine
and conquer” method based on mergesort.

401
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Closest-Pair Problem

The closest-pair problem is to find the two points that are closest together among a
set of points. This problem is related to the nearest-neighbor problem; though it is
not as widely applicable, it will serve us well as a prototype closest-point problem
in that it can be solved with an algorithm whose general recursive structure is
appropriate for other problems.

It would seem necessary to examine the distances between all pairs of points
to find the smallest such distance: for N points this would mean a running time
proportional to N2. However, it turns out that we can use sorting to get by with
examining only about N logN distances between points in the worst case (far
fewer on the average) and get a worst-case running time proportional to N logN
(far better on the average). In this section, we’ll examine such an algorithm in
detail.

The algorithm we’ll use is based on a straightforward “divide-and-conquer”
strategy. The idea is to sort the points on one coordinate, say the x coordinate,
then use that ordering to divide the points in half. The closest pair in the whole set
is either the closest pair in one of the halves or the closest pair with one member
in each half. The interesting case, of course, is when the closest pair crosses
the dividing line: the closest pair in each half can obviously be found by using
recursive calls, but how can all the pairs on either side of the dividing line be
checked efficiently?

Since the only information we seek is the closest pair of the point set, we
need examine only points within distance min of the dividing line, where min is
the smaller of the distances between the closest pairs found in the two halves. By
itself, however, this observation isn’t enough help in the worst case, since there
could be many pairs of points very close to the dividing line; for example, all the
points in each half could be lined up right next to the dividing line.

To handle such situations, it seems necessary to sort the points on y. Then
we can limit the number of distance computations involving each point as follows:
proceeding through the points in increasing y order, check if each point is inside
the vertical strip containing all points in the plane within min of the dividing line.
For each such point, compute the distance between it and any point also in the
strip whose y coordinate is less than the y coordinate of the current point, but not
more than min less. The fact that the distance between all pairs of points in each
half is at least min means that only a few points are likely to be checked.

In the small set of points on the left in Figure 28.1, the imaginary vertical
dividing line just to the right of F has eight points to the left, eight points to the
right. The closest pair on the left half is AC (or AO), the closest pair-on the right is
JM. If the points are sorted on y, then the closest pair split by the line is found by
checking the pairs HI, CI, FK (the closest pair in the whole point set), and finally
EK. For larger point sets, the band that could contain a closest pair spanning the
dividing line is narrower, as shown on the right in Figure 28.1.
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Figure 28.1 Divide-and-conquer approach to find the closest pair.

Though this algorithm is stated simply, some care is required to implement it
efficiently: for example, it would be too expensive to sort the points on y within our
recursive subroutine. We’ve seen several algorithms with running times described
by the recurrence Cy = 2Cy, + N, which implies that Cy is proportional to
N logN if we were to do the full sort on y, then the recurrence would become

= 2Cy 2 + N log N, which implies that Cy is proportional to N log? N (see
Chapter 6). To avoid this, we need to avoid the sort of y.

The solution to this problem is simple, but subtle. The mergesort method
from Chapter 12 is based on dividing the elements to be sorted exactly as the points
are divided above. We have two problems to solve and the same general method
to solve them, so we may as well solve them simultaneously! Specifically, we’ll
write one recursive routine that both sorts on y and finds the closest pair. It will
do so by splitting the point set in half, then calling itself recursively to sort the two
halves on y and find the closest pair in each half, then merging to complete the sort
on y and applying the procedure above to complete the closest-pair computation.
In this way, we avoid the cost of doing an extra y sort by intermixing the data
movement required for the sort with the data movement requlred for the closest-pair
computation.

For the y sort the split in half could be done in any way, but for the closest-pair
computation, it’s required that the points in one half all have smaller x coordinates
than the points in the other half. This is easily accomplished by sorting on x before
doing the division. In fact, we may as well use the same routine to sort on x! Once
this general plan is accepted, the implementation is not difficult to understand.

As mentioned above, the implementation will use the recursive sort and
merge procedures of Chapter 12. The first step is to modify the list structures
to hold points instead of keys, and to modify merge to check a global variable
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pass to decide how to do its comparison. If pass is 1, we should compare the
x coordinates of the two points; if pass is 2 we compare the y coordinates of the
two points. The implementation of this is straightforward:

int comp (struct node *t)
{ return (pass == 1) ? t->p.x @ t->p.y; }

struct node *merge(struct node *a, struct node *b)
{

struct node *c;

c = z;
do
if (comp(a) < comp(b)})
{ c->next = a; ¢ = a; a = a->next; }
else
{ c->next = b; ¢ = b; b = b->next; }
while (¢ != z);

¢ = z~->next; z->next
return <;

zZ;

The dummy node z which appears at the end of all lists is initialized to contain a
“sentinel” point with artificially high x and y coordinates.

To compute distances, we use another simple procedure that checks that the
distance between the two points given as arguments is less than the global variable
min. If so, it resets min to that distance and saves the points in the global variables
cpl and cp2:

check (struct point pl, struct point p2)
{
float dist;
if ((pl.y != z->p.y) && (pP2.y != z->p.y))
{
dist = sqrt{(pl.x-p2.x)*(pl.x-p2.x)
t(pl.y-p2.y) *(pl.y-p2.y));
if (dist < min)
{ min = dist; cpl = pl; cp2 = p2; };

}

Thus, the global min always contains the distance between cpl and cp2, the
closest pair found so far.



Closest-Point Problems . 405

The next step is to modify the recursive sort of Chapter 12 also to do the
closest-point computation when pass is 2, as follows:

struct node *sort (struct node *c, int N)
{
int 1i;
struct node *a, *b;
float middle;
struct point pl, p2, p3, p4;

if (c->next == z) return c;
a = c;
for (1 = 2; 1 <= N/2; i+4) ¢ = c->next;
b = c->next; c->next = z;
if (pass == 2) middle = b->p.x;
¢ = merge(sort(a, N/2), sort(b, N-(N/2)));
1f (pass == 2)
{
pl = z->p; p2 = z->p; p3 = z->p; pd = z->p;
for (a = c; a != z; a = a->next)
if (fabs(a->p.x - middle) < min)
{
check {(a->p, pl):
check (a->p, p2);
check (a->p, p3);
check (a->p, p4):;
pl = p2; p2 = p3; p3 = p4; p4d = a->p;

If pass is 1, this is exactly the recursive mergesort routine of Chapter 12: it
returns a linked list containing the points sorted on their x coordinates (because
merge has been modified as described above to compare x coordinates on the first
pass). The magic of this implementation comes when pass is 2. The program
not only sorts on y (because merge has been modified as described above to
compare y coordinates on the second pass) but also completes the closest-point
computation. Before the recursive calls the points are sorted on x: this ordering
is used to divide the points in half and to find the x coordinate of the dividing
line. After the recursive calls the points are sorted on y and the distance between
every pair of points in each half is known to be greater than min. The ordering
on y is used to scan the points near the dividing line; the value of min is used to
limit the number of points to be tested. Each point within a distance of min of the
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Figure 28.2 Recursive call tree for closest-pair computation.

dividing line is checked against each of the previous four points found within a
distance of min of the dividing line. This check is guaranteed to find any pair of
points closer together than min with one member of the pair on either side of the
dividing line. , '

Why check the previous four points, not two, three or five? This is an
amusing geometric fact which the reader may wish to verify: We know that points
that fall on the same side of the dividing line are spaced by at least min, so the
number of points falling in any circle of radius min is limited. It doesn’t hurt to
check more than four points, and it is not hard to convince oneself that four is
sufficient. ‘ ' '

- The following code invokes sort twice to effect the closest pair computation.
First, we sort on x (with pass set to 1); then we sort on y and find the closest
pair (with pass set to 2):

z = (struct node *) malloc(sizeof *z);

z->p.x = INT MAX; z->p.y = INT MAX; z->next = z;
h = (struct node *) malloc(sizeof *h); :
h->next = readlist();

min = INT MAX;

pass = 1; h->next = sort (h->next, N);

pass 2; h->next sort (h->next, N);

i
1

After these calls, the closest pair of points is found in the global variables cpl
and cp2, which are managed by the check “find the minimum” procedure.
Figure 28.2 shows the recursive call tree describing the operation of this algo-
rithm on our small set of points. An internal node in this tree represents a vertical
line dividing the points in the left and right subtree. The nodes are numbered in
the order in which the vertical lines are tried in the algorithm. This numbering
corresponds to a postorder traversal of the tree because the computation involving
the dividing line comes after the recursive calls in the program, and is simply
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another way of looking at the order in which merges are done during a recursive
mergesort (see Chapter 12).

Thus, first the line between G and O is tried and the pair GO is retained as
the closest so far. Then the line between A and D is tried, but A and D are too
far apart to change min. Then the line between O and A is tried and the pairs GD
GA and OA all are successively closer pairs. It happens for this example that no
closer pairs are found until FK, which is the last pair checked for the last dividing
line tried.

The careful reader may have noticed that we have not implemented the pure
divide-and-conquer algorithm described above—we don’t actually compute the
closest pair in the two halves, then take the better of the two. Instead, we get
the closer of the two closest pairs simply by using a global variable for min during
the recursive computation. Each time we find a closer pair, we can consider a
narrower vertical strip around the current dividing line, no matter where we are in
the recursive computation.

Figure 28.3 shows the process in detail. The x-coordinate in these diagrams is
magnified to emphasize the x orientation of the process and to point out parallels
with mergesort (see Chapter 12). We start by doing a y-sort on the four leftmost
points G O A D, by sorting G O, then sorting A D, then merging. After the merge,
the y-sort is complete, and we find the closest pair AO spanning the dividing
line. Eventually, the points are sorted on their y-coordinate and the closest pair is
computed. '

Prolierty 28.1 The closest pair in a set of N points can be found in O(N logN )
steps.

Essentially, the computation is done in the time it takes to do two mergesorts (one
on the x-coordinate, one on the y-coordinate) plus the cost of looking along the
dividing line. This cost is also governed by the recurrence Ty = Ty 5 + N (see
Chapter 6). =

The general approach we’ve used here for the closest-pair problem can be used
to solve other geometric problems. For example, another question of interest is the
all-nearest-neighbors problem: for each point we want to find the point nearest
to it. This problem can be solved using a program like the one above with extra
processing along the dividing line to find, for each point, whether there is a point
on the other side closer than its closest point on its own side. Again, the “free” y
sort is helpful for this computation.

VYoronoi Diagrams

The set of all points closer to a given point in a point set than to all other points in
the set is an interesting geometric structure called the Voronoi polygon for the point.
The union of all the Voronoi polygons for a point set is called its Voronoi diagram.
This is the ultimate in closest-point computations: we’ll see that most of the
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Figure 28.3 Closest-pair computation (x coordinate magnified).
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Figure 28.4 Voronoi Diagram.

problems we face involving distances between points have natural and interesting
solutions based on the Voronoi diagram. The diagrams for our sample point sets
are shown in Figure 28.4.

The Voronoi polygon for a point is made up of the perpendicular bisectors of
the segments linking the point to those points closest to it. Its actual definition is
the other way around: the Voronoi polygon is defined to be perimeter of the set of
all points in the plane closer to the given point than to any other point in the point
set, and each edge on the Voronoi polygon separates a given point from one of the

points “closest to” it.
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Figure 28.5 Delaunay Triangulation.
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The dual of the Voronoi diagram, shown in Figure 28.5, makes this correspon-
dence explicit: in the dual, a line is drawn between each point and all the points
“closest to” it. This is also called the Delaunay triangulation. Points x and y are
connected in the Voronoi dual if their Voronoi polygons have an edge in common.

The Voronoi diagram and the Delaunay triangulation have many properties that
lead to efficient algorithms for closest-point problems. The property that makes
these algorithms efficient is that the number of lines in both the diagram and the
dual is proportional to a small constant times N. For example, the line connecting
the closest pair of points must be in the dual, so the problem of the previous section
can be solved by computing the dual and then simply finding the minimum length
line among the lines in the dual. Similarly, the line connecting each point to its
nearest neighbor must be in the dual, so the all-nearest-neighbors problem reduces
directly to finding the dual. The convex hull of the point set is part of the dual,
so computing the Voronoi dual is yet another convex hull algorithm. We’ll see yet
another example in Chapter 31 of a problem which can be solved efficiently by
first finding the Voronoi dual.

The defining property of the Voronoi diagram means that it can be used to
solve the nearest-neighbor problem: to identify the nearest neighbor in a point set
to a given point, we need only find out which Voronoi polygon the point falls in. It
is possible to organize the Voronoi polygons in a structure like a 2D tree to allow -
this search to be done efficiently. ,

The Voronoi diagram can be computed using an algorithm with the same
géneral structure as the closest-point algorithm above. The points are first sorted
on their x coordinate. Then that ordering is used to split the points in half, leading
to two recursive calls to find the Voronoi diagram of the point set for each half,
At the same time, the points are sorted on y; finally, the two Voronoi diagrams
for the two halves are merged together. As before, this merging (done with pass
is 2) can exploit the fact that the points are sorted on x before the recursive calls
and that they are sorted on y and that the Voronoi diagrams for the two halves
have been built after the recursive calls. However, even with these aids, the merge
is quite a complicated task, and presentation of a full implementation would be
beyond the scope of this book.

The Voronoi diagram is certainly the natural structure for closest-point prob-
lems, and understanding the characteristics of a problem in terms of the Voronoi
diagram or its dual is certainly a worthwhile exercise. However, for many partic-
ular problems, a direct implementation based on the general schema given in this
chapter may be suitable. This schema is powerful enough to compute the Voronoi
diagram, so it is powerful enough for algorithms based on the Voronoi diagram,
and it may admit to simpler, more efficient code, as we saw for the closest-pair

problem.
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Exercises

. Write programs to solve the nearest-neighbor problem, first using the grid

method, then using 2D trees.

. Describe what happens when the closest;pair procedure is used on a set of

points that fall on the same horizontal line, equally spaced..

. Describe what happens when the closest-pair procedure is used on a set of

points that fall on the same vertical line, equally spaced.

. Give an algorithm that, given a set of 2N points, half with positive x coordi-

nates, half with negative x coordinates, finds the closest pair with one member

of the pair in each half. ‘

. Give the successive pairs of points assigned to cpl and cp2 when the program

in the text is run on the example points, but with A removed.

. Test the effectiveness of making min global by comparing the performance of

the implementation given to a purely recursive implementation for some large
random point set.

. Give an algorithm for finding the closest pair from a set of lines.

8. Draw the Voronoi diagram and its dual for the points A B C D E F from the

10.

sample point set.

. Give a “brute-force” method (which might require time proportional to N 2) for

computing the Voronoi diagram.

Write a program that uses the same recursive structure as the closest-pair im-
plementation given in the text to find the convex hull of a set of points.
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SOURCES for Geometric Algorithms

Much of the material described in this section has actually been developed quite
recently. Many of the problems and sotutions that we’ve discussed were presented
by M. Shamos in 1975. Shamos’ Ph.D. thesis treated a large number of geometric
algorithms, stimulated much of the recent research, and eventually developed into
the aunthoritative reference in the field, the book by Preparata and Shamos. The
field is developing quickly: the book by Edelsbrunner describes many more recent
research results.

For the most part, each of the geometric algorithms that we’ve discussed
is described in its own original reference. The convex hull algorithms treated
in Chapter 25 may be found in the papers by Jarvis, Graham, and Golin and
Sedgewick. The range-searching methods of Chapter 26 come from Bentley and
Friedman’s survey article, which contains many references to original sources (of
particular interest is Bentley’s own original article on kD trees, written while he
was an undergraduate). The treatment of the closest-point problems in Chapter
28 is based on Shamos and Hoey’s 1976 paper, and the intersection algorithms of
Chapter 27 are from their 1975 paper and the article by Bentley and Ottmann.

But the best route for someone interested in learning more about geometric al-
gorithms is to implement some and run them to learn their properties and properties
of the objects they manipulate.

J. L. Bentley, “Multidimensional binary search trees used for associative searching,”
Communications of the ACM, 18, 9 (September, 1975).

J. L. Bentley and J.H. Friedman, “Data structures for range searching,” Computing
Surveys, 11, 4 (December, 1979). ,

J. L. Bentley and T. Ottmann, “Algorithms for reporting and counting geometric
intersections,” IEEE Transactions on Computing, C-28, 9 (September, 1979).

H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, 1987.
M. Golin and R. Sedgewick, “Analysis of a simple yet efficient convex hull algo-
rithm,” in 4th Annual Symposium on Computational Geometry, ACM, 1988,

R. L. Graham, “An efficient algorithm for determining the convex hull of a finite
planar set,” Information Processing Letters, 1 (1972).

R. A. Jarvis, “On the identification of the convex hull of a finite set of points in
the plane,” Information Processing Letters, 2 (1973).

F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction,
Springer-Verlag, 1985. _

M. 1. Shamos and D. Hoey, “Closest-point problems,” in 16th Annual Symposium
on Foundations of Computer Science, IEEE, 1975,

M. L. Shamos and D. Hoey, “Geometric intersection problems,” in 17th Annual
Symposium on Foundations of Computer Science, IEEE, 1976.
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Elementary Graph Algorithms

A great many problems are naturally formulated in terms of objects and
connections between them. For example, given an airline route map of the
eastern U.S., we might be interested in questions like: “What’s the fastest way
to get from Providence to Princeton?” Or we might be more interested in money
than in time, and look for the cheapest way to get from Providence to Princeton.
To. answer such questions we need only information about interconnections (airline
routes) between objects (towns).

Electric circuits are another obvious example where interconnections between
objects play a central role. Circuit elements like transistors, resistors, and capacitors
are intricately wired together. Such circuits can be represented and processed within
a computer in order to answer simple questions like “Is everything connected
together?” as well as complicated questions like “If this circuit is built, will it
work?” Here, the answer to the first question depends only on the properties
of the interconnections (wires), while the answer to the second requires detailed
information about both the wires and the objects that they connect.

A third example is “job scheduling,” where the objects are tasks to be per-
formed, say in a manufacturing process, and interconnections indicate which jobs
should be done before others. Here we might be interested in answering questions
like “When should each task be performed?”

A graph is a mathematical object that accurately models such situations. In
this chapter, we’ll examine some basic properties of graphs, and in the next several
chapters we’ll study a variety of algorithms for answering questions of the type
posed above.

Actually, we’ve already encountered graphs in previous chapters. Linked data
structures are ‘actually representations of graphs, and some of the algorithms we’ll
see for processing graphs are similar to algorithms we’ve already seen for process-
ing trees and other structures. For example, the finite-state machines of Chapters
19 and 20 are represented with graph structures.

415
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Graph theory is a major branch of combinatorial mathematics and has been
studied intensively for hundreds of years. Many important and useful properties
of graphs have been proved, but many difficult problems have yet to be resolved.
Here we can only scratch the surface of what is known about graphs, covering
enough to be able to understand the fundamental algorithms.

Like so many of the problem domains we’ve studied, graphs have only recently
begun to be examined from an algorithmic point of view. Although some of
the fundamental algorithms are quite old, many of the interesting ones have been
discovered within the last ten years. Even trivial graph algorithms lead to interesting
computer programs, and the nontrivial algorithms we’ll examine are among the
most elegant and interesting (though difficult to understand) algorithms known.

Glossary

A good deal of nomenclature is associated with graphs. Most of the terms have
stralghtforward definitions, and it is convenient to put them in one place even
though we won’t be using some of them until later.

A graph is a collection of vertices and edges. Vertices are simple objects
that can have names and other properties; an edge is a connection between two
vertices. One can draw a graph by marking points for the vertices and drawing
lines connecting them for the edges, but it must be borne in mind that the graph
is defined independently of the representation. For example, the two drawings
in Figure 29.1 represent the same graph. We define this graph by saying that it
consists of the set of vertices ABCDEFGHIJKLM and the set of edges
between these vertices AG AB AC LM JM JL JK ED FD HI FE AF GE .

For some applications, such as the airline route example above, it might not
make sense to rearrange the vertices as in Figure 29.1 But for other applications,
such as the electric circuit application above, it is best to concentrate only on the
edges and vertices, independent of any particular geometric placement. And for

Figure 29.1 Two representations of the same graph.
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still other applications, such as the finite-state machines in Chapters 19 and 20, no
particular geometric placement of nodes is ever implied. The relationship between
graph algorithms and geometric problems is discussed in further detail in Chapter
31. For now, we’ll concentrate on “pure” graph algorithms that process simple
collections of edges and nodes.

A path from vertex x to y in a graph is a list of vertices in which successive
vertices are connected by edges in the graph. For example, BAFEG is a path from
B to G in Figure 29.1. A graph is connected if there is a path from every node
to every other node in the graph. Intuitively, if the vertices were physical objects
and the edges were strings connecting them, a connected graph would stay in one
piece if picked up by any vertex. A graph which is not connected is made up of
connected components; for example, the graph in Figure 29.1 has three connected
components. A simple path is a path in which no vertex is repeated. (For example,
BAFEGAC is not a simple path.) A cycle is a path that is simple except that the
first and last vertex are the same (a path from a point back to itself): the path
AFEGA is a cycle. .

A graph with no cycles is called a tree (see Chapter 4). A group of disconnected
trees is called a forest. A spanning tree of a graph is a subgraph that contains all
the vertices but only enough of the edges to form a tree. For example, the edges
AB AD AF DE EG form a spanning tree for the large component of the graph in
Figure 29.1, and Figure 29.2 shows a larger graph and one of its spanning trees.

Note that if we add any edge to a tree, it must form a cycle (because there is
already a path between the two vertices it connects). Also, as we saw in Chapter
4, a tree on V vertices has exactly V — 1 edges. If a graph with V vertices has

Figure 29.2 A large graph and a spanning tree for that graph.



418 . Chapter 29

less than V — 1 edges, it can’t be connected. If it has more that V — 1 edges, it
must have a cycle. (But if it has exactly V — 1 edges, it need not be a tree.)

We’ll denote the number of vertices in a given graph by V, the number of
edges by E. Note that £ can range anywhere from 0 to %V(V — 1). Graphs with
all edges present are called complete graphs; graphs with relatively few edges (say
less than V log V') are called sparse; graphs with relatively few of the possible
edges missing are called dense.

The fundamental dependence of graph topology on two parameters makes the
comparative study of graph algorithms somewhat more complicated than many
algorithms we’ve studied, because more possibilities arise. For example, one algo-
rithm may take about V 2 steps, while another algorithm for the same problem may
take (E +V)logE steps. The second algorithm would be better for sparse graphs,
but the first would be preferred for dense graphs.

Graphs as defined to this point are called undirected graphs, the simplest type
of graph. We’ll also be considering more complicated type of graphs in which
more information is associated with the nodes and edges. In weighted graphs
integers (weights) are assigned to each edge to represent, say, distances or costs.
In directed graphs, edges are “one-way”: an edge may go from x to y but not
from y to x. Directed weighted graphs are sometimes called neworks. As we’ll
discover, the extra information weighted and directed graphs contain makes them
somewhat more difficult to manipulate than simple undirected graphs.

Representation

In order to process graphs with a computer program, we first need to decide how
to represent them within the computer. We’ll look at two commonly used repre-
sentations; the choice between them depends primarily upon whether the graph is
dense or sparse, although, as usual, the nature of the operations to be performed
also plays an important role.

The first step in representing a graph is to map the vertex names to integers
between 1 and V. The main reason for doing this is to make it possible to quickly
access information corresponding to each vertex, using array indexing. Any stan-
dard searching scheme can be used for this purpose; for instance, we can translate
vertex names to integers between 1 and V by maintaining a hash table or a binary
tree that can be searched to find the integer corresponding to any given vertex
name. Since we have already studied these techniques, we assume that a function
index is available to convert from vertex names to integers between 1 and V
and a function hame to convert from integers to vertex names. To make our al-
gorithms easy to follow, we use one-letter vertex names, with the ith letter of the
alphabet corresponding to the integer i. Thus, though name and index are trivial
to implement for our examples, their use makes it easy to extend the algorithms to
handle graphs with real vertex names using techniques from Chapters 14—17.
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. Figure 29.3 Adjacency matrix representation.

The most straightforward representation for graphs is the so-called adjacency
matrix representation. A V-by-V array of boolean values is maintained, with
a[x] [y] set to 1 if there is an edge from vertex x to vertex y and O otherwise.
The adjacency matrix for the graph in Figure 29.1 is shown in Figure 29.3.
~ Notice that each edge is really represented by two bits: an edge connecting x
and y is represented by true values in both a [x] [y] and a[y] [x]. While space
can be saved by storing only half of this symmetric matrix, it is inconvenient to
do this in C and the algorithms are somewhat simpler with the full matrix. Also,
it is usually convenient to assume that there’s an “edge” from each vertex to itself,
so al[x] [x]is set to 1 for x from 1 to V. (In some cases, it is more convenient
to set the diagonal elements to 0; we’re free to do so when appropriate.)

. A graph is defined by a set of nodes and a set of edges connecting them. To
take a graph as input, we need to settle on a format for reading in these sets. One
possibility is to use the adjacency matrix itself as the input format, but, as we’ll see,
this is inappropriate for sparse graphs. Instead, we will use a more direct format:
we first read in the vertex names, then pairs of vertex names (which define edges).
As mentioned above, one easy way to proceed is to read the vertex names into a
hash table or binary search tree and assign to each vertex name an integer for use
in accessing vertex-indexed arrays like the adjacency matrix. The ith vertex read
can be assigned the integer i. For simplicity in our programs, we first read in V
and E, then the vertices and the edges. Alternatively, the input could be arranged
with a delimiter separating the vertices from the edges, and the program could
determine V and E from the input. (In our examples, we use the first V letters of
the alphabet for vertex names, so the even simpler scheme of reading V and E,
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then E pairs of letters from the first V letters of the alphabet would work.) The
order in which the edges appear is not important, since all orderings of the edges
represent the same graph and result in the same adjacency matrix, as computed by
the following program:

#define maxV 50
int j, %, y, V, E;
int al[maxV] [maxV];
adjmatrix ()
{
scanf ("$d %d\n", &V, &E);

for (x = 1; x <= V; x++)

for (y = 1; y <= V; y++) alx]ly] = 0;
for (x = 1; x <= V; x++) alx][x] = 1;
for (J = 1; j <= E; j++)

{
scanf ("%c %c\n", &vl, &v2);
x = index(vl); y = index(v2);
alxllyl = 1; alyllx] = 1;

}

The types of v1 and v2 are omitted from this program, as well as the code for
index. These can be added in a straightforward manner, depending on the graph
input representation desired. (Fot our examples, v1 and v2 could be of type char
and index could be a simple function that returns ¢ - ’A’ + 1 or something
similar.) The matrix is declared as a global variable with a predefined maximum
size, though in C it perhaps would be more proper to allocate storage for the array
once the number of vertices is known, and arrange for the array pointer to be the
return value. If desired, such a change is straightforward.

The adjacency-matrix representation is satisfactory only if the graphs to be
processed are dense: the matrix requires V2 bits of storage and V2 steps just
to initialize it. If the number of edges (the number of 1 bits