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Preface to the Second Edition

Like the first edition, which it replaces, this volume is inspired by two great questions:
“How does the brain work?” and “How can we build intelligent machines?”” As in the first
edition, the heart of the book is a set of close to 300 articles in Part IIT which cover the
whole spectrum of Brain Theory and Neural Networks. To help readers orient themselves
with respect to this cornucopia, I have written Part I to provide the elementary background
on the modeling of both brains and biological and artificial neural networks, and Part II
to provide a series of road maps to help readers interested in a particular topic steer through
the Part III articles on that topic. More on the motivation and structure of the book can be
found in the Preface to the First Edition, which is reproduced after this. I also recommend
reading the section “How to Use This Book”—one reader of the first edition who did not
do so failed to realize that the articles in Part III were in alphabetical order, or that the
Contributors list lets one locate each article written by a given author.

The reader new to the study of Brain Theory and Neural Networks will find it wise to
read Part I for orientation before jumping into Part III, whereas more experienced readers
will find most of Part I familiar. Many readers will simply turn to articles in Part III of
particular interest at a given time. However, to help readers who seek a more systematic
view of a particular subfield of Brain Theory and Neural Networks, Part I provides 22
Road Maps, each providing an essay linking most of the articles on a given topic. (I say
“most” because the threshold is subjective for deciding when a particular article has more
than a minor mention of the topic in a Road Map.) The Road Maps are organized into 8
groups in Part II as follows:

Grounding Models of Neurons and Networks
Grounding Models of Neurons
Grounding Models of Networks
Brain, Behavior, and Cognition
Neuroethology and Evolution
Mammalian Brain Regions
Cognitive Neuroscience
Psychology, Linguistics, and Artificial Intelligence
Psychology
Linguistics and Speech Processing
Artificial Intelligence
Biological Neurons and Networks
Biological Neurons and Synapses
Neural Plasticity
Neural Coding
Biological Networks
Dynamics and Learning in Artificial Networks
Dynamic Systems
Learning in Artificial Networks
Computability and Complexity
Sensory Systems
Vision
Other Sensory Systems
Motor Systems
Robotics and Control Theory
Motor Pattern Generators
Mammalian Motor Control
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X Preface to the Second Edition

Applications, Implementations, and Analysis
Applications
Implementation and Analysis

The authors of the articles in Part III come from a broad spectrum of disciplines—such
as biomedical engineering, cognitive science, computer science, electrical engineering,
linguistics, mathematics, physics, neurology, neuroscience, and psychology—and have
worked hard to make their articles accessible to readers across the spectrum. The utility
of each article is enhanced by cross-references to other articles within the body of the
article, and lists at the end of the article referring the reader to road maps, background
material, and related reading.

To get some idea of how radically the new edition differs from the old, note that the
new edition has 285 articles in Part III, as against the 266 articles of the first edition. Of
the articles that appeared in the first edition, only 9 are reprinted unchanged. Some 135
have been updated (or even completely rewritten) by their original authors, and more than
30 have been written anew by new authors. In addition, there are over 100 articles on new
topics. The primary shift of emphasis from the first edition has been to drastically reduce
the number of articles on applications of artificial neural networks (from astronomy to
steelmaking) and to greatly increase the coverage of models of fundamental neurobiology
and neural network approaches to language, and to add the new papers which are now
listed in the Road Maps on Cognitive Neuroscience, Neural Coding, and Other Sensory
Systems (i.e., other than Vision, for which coverage has also been increased). Certainly,
a number of the articles in the first edition remain worthy of reading in themselves, but
the aim has been to make the new edition a self-contained introduction to brain theory and
neural networks in all its current breadth and richness.

The new edition not only appears in print but also has its own web site.

Acknowledgments

My foremost acknowledgment is again to Prue Arbib, who served as Editorial Assistant
during the long and arduous process of eliciting and assembling the many, many contri-
butions to Part III. I thank the members of the Editorial Advisory Board, who helped
update the list of articles from the first edition and focus the search for authors, and I thank
these authors not only for their contributions to Part III but also for suggesting further
topics and authors for the Handbook, in an ever-widening circle as work advanced on this
new edition. I also owe a great debt to the hundreds of reviewers who so constructively
contributed to the final polishing of the articles that now appear in Part III. Finally, I thank
the staff of P. M. Gordon Associates and of The MIT Press for once again meeting the
high standards of copy editing and book production that contributed so much to the success
of the first edition.

Michael A. Arbib
Los Angeles and La Jolla
October 2002
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Preface to the First Edition

This volume is inspired by two great questions: “How does the brain work?” and “How
can we build intelligent machines?” It provides no simple, single answer to either question
because no single answer, simple or otherwise, exists. However, in hundreds of articles it
charts the immense progress made in recent years in answering many related, but far more
specific, questions.

The term neural networks has been used for a century or more to describe the networks
of biological neurons that constitute the nervous systems of animals, whether invertebrates
or vertebrates. Since the 1940s, and especially since the 1980s, the term has been used for
a technology of parallel computation in which the computing elements are “artificial neu-
rons” loosely modeled on simple properties of biological neurons, usually with some adap-
tive capability to change the strengths of connections between the neurons.

Brain theory is centered on “computational neuroscience,” the use of computational
techniques to model biological neural networks, but also includes attempts to understand
the brain and its function through a variety of theoretical constructs and computer analo-
gies. In fact, as the following pages reveal, much of brain theory is not about neural
networks per se, but focuses on structural and functional “networks” whose units are in
scales both coarser and finer than that of the neuron. Computer scientists, engineers, and
physicists have analyzed and applied artificial neural networks inspired by the adaptive,
parallel computing style of the brain, but this Handbook will also sample non-neural ap-
proaches to the design and analysis of “intelligent” machines. In between the biologists
and the technologists are the connectionists. They use artificial neural networks in psy-
chology and linguistics and make related contributions to artificial intelligence, using neu-
ron-like unites which interact “in the style of the brain” at a more abstract level than that
of individual biological neurons.

Many texts have described limited aspects of one subfield or another of brain theory
and neural networks, but no truly comprehensive overview is available. The aim of this
Handbook is to fill that gap, presenting the entire range of the following topics: detailed
models of single neurons; analysis of a wide variety of neurobiological systems; “connec-
tionist” studies; mathematical analyses of abstract neural networks; and technological ap-
plications of adaptive, artificial neural networks and related methodologies. The excite-
ment, and the frustration, of these topics is that they span such a broad range of disciplines,
including mathematics, statistical physics and chemistry, neurology and neurobiology, and
computer science and electrical engineering, as well as cognitive psychology, artificial
intelligence, and philosophy. Much effort, therefore, has gone into making the book ac-
cessible to readers with varied backgrounds (an undergraduate education in one of the
above areas, for example, or the frequent reading of related articles at the level of the
Scientific American) while still providing a clear view of much of the recent specialized
research.

The heart of the book comes in Part III, in which the breadth of brain theory and neural
networks is sampled in 266 articles, presented in alphabetical order by title. Each article
meets the following requirements:

1. It is authoritative within its own subfield, yet accessible to students and experts in a
wide range of other fields.

2. It is comprehensive, yet short enough that its concepts can be acquired in a single
sitting.

3. It includes a list of references, limited to 15, to give the reader a well-defined and
selective list of places to go to initiate further study.

4. It is as self-contained as possible, while providing cross-references to allow readers to
explore particular issues of related interest.
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xii Preface to the First Edition

Despite the fourth requirement, some articles are more self-contained than others. Some
articles can be read with almost no prior knowledge; some can be read with a rather general
knowledge of a few key concepts; others require fairly detailed understanding of material
covered in other articles. For example, many articles on applications will make sense only
if one understands the “backpropagation” technique for training artificial neural networks;
and a number of studies of neuronal function will make sense only if one has at least some
idea of the Hodgkin-Huxley equation. Whenever appropriate, therefore, the articles include
advice on background articles.

Parts T and II of the book provide a more general approach to helping readers orient
themselves. Part I: Background presents a perspective on the “landscape” of brain theory
and neural networks, including an exposition of the key concepts for viewing neural net-
works as dynamic, adaptive systems. Part II: Road Maps then provides an entrée into the
many articles of Part III, with “road maps” for 23 different themes. The “Meta-Map,*
which introduces Part II, groups these themes under eight general headings which, in and
of themselves, give some sense of the sweep of the Handbook:

Connectionism: Psychology, Linguistics, and Artificial Intelligence
Dynamics, Self-Organization, and Cooperativity

Learning in Artificial Neural Networks

Applications and Implementations

Biological Neurons and Networks

Sensory Systems

Plasticity in Development and Learning

Motor Control

A more detailed view of the structure of the book is provided in the introductory section
“How to Use this Book.” The aim is to ensure that readers will not only turn to the book
to get good brief reviews of topics in their own specialty, but also will find many invitations
to browse widely—finding parallels amongst different subfields, or simply enjoying the
discovery of interesting topics far from familiar territory.

Acknowledgments

My foremost acknowledgment is to Prue Arbib, who served as Editorial Assistant during
the long and arduous process of eliciting and assembling the many, many contributions to
Part III; we both thank Paulina Tagle for her help with our work. The initial plan for the
book was drawn up in 1991, and it benefited from the advice of a number of friends,
especially George Adelman, who shared his experience as Editor of the Encyclopedia of
Neuroscience. Refinement of the plan and the choice of publishers occupied the first few
months of 1992, and I thank Fiona Stevens of The MIT Press for her support of the project
from that time onward.

As can be imagined, the plan for a book like this has developed through a time-consum-
ing process of constraint satisfaction. The first steps were to draw up a list of about 20
topic areas (similar to, but not identical with, the 23 areas surveyed in Part II), to populate
these areas with a preliminary list of over 100 articles and possible authors, and to recruit
the first members of the Editorial Advisory Board to help expand the list of articles and
focus on the search for authors. A very satisfying number of authors invited in the first
round accepted my invitation, and many of these added their voices to the Editorial Ad-
visory Board in suggesting further topics and authors for the Handbook.

I was delighted, stimulated, and informed as I read the first drafts of the articles; but I
have also been grateful for the fine spirit of cooperation with which the authors have
responded to editorial comments and reviews. The resulting articles not only are authori-
tative and accessible in themselves, but also have been revised to match the overall style
of the Handbook and to meet the needs of a broad readership. With this I express my
sincere thanks to the editorial advisors, the authors, and the hundreds of reviewers who so
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Preface to the First Edition xiii

constructively contributed to the final polishing of the articles that now appear in Part III;
to Doug Gordon and the copy editors and typesetters who transformed the diverse styles
of the manuscripts into the style of the Handbook; and to the graduate students who helped
so much with the proofreading.

Finally, I want to record a debt that did not reach my conscious awareness until well
into the editing of this book. It is to Hiram Haydn, who for many years was editor of The
American Scholar, which is published for general circulation by Phi Beta Kappa. In 1971
or so, Phi Beta Kappa conducted a competition to find authors to receive grants for books
to be written, if memory serves aright, for the Bicentennial of the United States. I submitted
an entry. Although I was not successful, Mr. Haydn, who had been a member of the jury,
wrote to express his appreciation of that entry, and to invite me to write an article for the
Scholar. What stays in my mind from the ensuing correspondence was the sympathetic
way in which he helped me articulate the connections that were at best implicit in my
draft, and find the right voice in which to “speak” with the readers of a publication so
different from the usual scientific journal. I now realize that it is his example I have tried
to follow as I have worked with these hundreds of authors in the quest to see the subject
of brain theory and neural networks whole, and to share it with readers of diverse interests
and backgrounds.

Michael A. Arbib

Los Angeles and La Jolla
January 1995
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How to Use This Book

More than 90% of this book is taken up by Part III, which, in 285 separately authored
articles, covers a vast range of topics in brain theory and neural networks, from language
to motor control, and from the neurochemistry to the statistical mechanics of memory.
Each article has been made as self-contained as possible, but the very breadth of topics
means that few readers will be expert in a majority of them. To help the reader new to
certain areas of the Handbook, 1 have prepared Part I: Background and Part IT: Road Maps.
The next few pages describe these aids to comprehension, as well as offering more infor-
mation on the structure of articles in Part III.

Part I: Background: The Elements of Brain Theory and Neural Networks

Part T provides background material for readers new to computational neuroscience or
theoretical approaches to neural networks considered as dynamic, adaptive systems. Sec-
tion I.1, “Introducing the Neuron,” conveys the basic properties of neurons and introduces
several basic neural models. Section 1.2, “Levels and Styles of Analysis,” explains the
interdisciplinary nexus in which the present study of brain theory and neural networks is
located, with historical roots in cybernetics and with current work going back and forth
between brain theory, artificial intelligence, and cognitive psychology. We also review the
different levels of analysis involved, with schemas providing the functional units inter-
mediate between an overall task and neural networks. Finally, Section 1.3, “Dynamics and
Adaptation in Neural Networks,” provides a tutorial on the concepts essential for under-
standing neural networks as dynamic, adaptive systems. We close by stressing that the full
understanding of the brain and the improved design of intelligent machines will require
not only improvements in the learning methods presented in Section 1.3, but also fuller
understanding of architectures based on networks of networks, with initial structures well
constrained for the task at hand.

Part II: Road Maps: A Guided Tour of Brain Theory and Neural Networks

The reader who wants to survey a major theme of brain theory and neural networks, rather
than seeking articles in Part III one at a time, will find in Part II a set of 22 road maps
that, among them, place every article in Part III in a thematic perspective. Section II.1
presents a Meta-Map, which briefly surveys all these themes, grouping them under eight
general headings:

Grounding Models of Neurons and Networks
Grounding Models of Neurons
Grounding Models of Networks
Brain, Behavior, and Cognition
Neuroethology and Evolution
Mammalian Brain Regions
Cognitive Neuroscience
Psychology, Linguistics, and Artificial Intelligence
Psychology
Linguistics and Speech Processing
Artificial Intelligence
Biological Neurons and Networks
Biological Neurons and Synapses
Neural Plasticity
Neural Coding
Biological Networks
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Xvi How to Use This Book

Dynamics and Learning in Artificial Networks
Dynamic Systems
Learning in Artificial Networks
Computability and Complexity
Sensory Systems
Vision
Other Sensory Systems
Motor Systems
Robotics and Control Theory
Motor Pattern Generators
Mammalian Motor Control
Applications, Implementations, and Analysis
Applications
Implementation and Analysis

This ordering of the themes has no special significance. It is simply one way to approach
the richness of the Handbook, making it easy for you to identify one or two key road maps
of special interest. By the same token, the order of articles in each of the 22 road maps
that follow the Meta-Map is one among many such orderings. Each road map starts with
an alphabetical listing of the articles most relevant to the current theme. The road map
itself will provide suggestions for interesting traversals of articles, but this need not imply
that an article provides necessary background for the articles it precedes.

Part III: Articles

Part III comprises 285 articles. These articles are arranged in alphabetical order, both to
make it easier to find a specific topic (although a Subject Index is provided as well, and
the alphabetical list of Contributors on page 1241 lists all the articles to which each author
has contributed) and because a given article may be relevant to more than one of the
themes of Part II, a fact that would be hidden were the article to be relegated to a specific
section devoted to a single theme. Most of these articles assume some prior familiarity
with neural networks, whether biological or artificial, and so the reader new to neural
networks is encouraged to master the material in Part I before tackling Part III.

Most articles in Part III have the following structure: The introduction provides a non-
technical overview of the material covered in the whole article, while the final section
provides a discussion of key points, open questions, and linkages with other areas of brain
theory and neural networks. The intervening sections may be more or less technical, de-
pending on the nature of the topic, but the first and last sections should give most readers
a basic appreciation of the topic, irrespective of such technicalities. The bibliography for
each article contains about 15 references. People who find their favorite papers omitted
from the list should blame my editorial decision, not the author’s judgment. The style I
chose for the Handbook was not to provide exhaustive coverage of research papers for the
expert. Rather, references are there primarily to help readers who look for an introduction
to the literature on the given topic, including background material, relevant review articles,
and original research citations. In addition to formal references to the literature, each article
contains numerous cross-references to other articles in the Handbook. These may occur
either in the body of the article in the form THE TITLE OF THE ARTICLE IN SMALL CAPS,
or at the end of the article, designated as “Related Reading.” In addition to suggestions
for related reading, the reader will find, just prior to the list of references in each article,
a mention of the road map(s) in which the article is discussed, as well as background
material, when the article is more advanced.

In summary, turn directly to Part III when you need information on a specific topic.
Read sections of Part I to gain a general perspective on the basic concepts of brain theory
and neural networks. For an overview of some theme, read the Meta-Map in Part II to
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choose road maps in Part II; read a road map to choose articles in Part III. A road map
can also be used as an explicit guide for systematic study of the area under review. Then
continue your exploration through further use of road maps, by following cross-references
in Part III, by looking up terms of interest in the index, or simply by letting serendipity
take its course as you browse through Part III at random.
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I.1. Introducing the Neuron 3

How to Use Part 1

Part I provides background material, summarizing a set of concepts
established for the formal study of neurons and neural networks by
1986. As such, it is designed to hold few, if any, surprises for
readers with a fair background in computational neuroscience or
theoretical approaches to neural networks considered as dynamic,
adaptive systems. Rather, Part I is designed for the many readers—
be they neuroscience experimentalists, psychologists, philosophers,
or technologists—who are sufficiently new to brain theory and
neural networks that they can benefit from a compact overview of
basic concepts prior to reading the road maps of Part II and the
articles in Part III. Of course, much of what is covered in Part I is
also covered at some length in the articles in Part III, and cross-
references will steer the reader to these articles for alternative ex-
positions and reviews of current research. In this exposition, as
throughout the Handbook, we will move back and forth between
computational neuroscience, where the emphasis is on modeling
biological neurons, and neural computing, where the emphasis
shifts back and forth between biological models and artificial neural
networks based loosely on abstractions from biology, but driven
more by technological utility than by biological considerations.
Section 1.1, “Introducing the Neuron,” conveys the basic prop-
erties of neurons, receptors, and effectors, and then introduces sev-
eral simple neural models, including the discrete-time McCulloch-
Pitts model and the continuous-time leaky integrator model.
References to Part III alert the reader to more detailed properties
of neurons which are essential for the neuroscientist and provide
interesting hints about future design features for the technologist.
Section 1.2, “Levels and Styles of Analysis,” is designed to give
the reader a feel for the interdisciplinary nexus in which the present
study of brain theory and neural networks is located. The selection
begins with a historical fragment which traces our federation of
disciplines back to their roots in cybernetics, the study of control
and communication in animals and machines. We look at the way
in which the research addresses brains, machines, and minds, going

I.1. Introducing the Neuron

We introduce the neuron. The dangerous word in the preceding
sentence is the. In biology, there are radically different types of
neurons in the human brain, and endless variations in neuron types
of other species. In brain theory, the complexities of real neurons
are abstracted in many ways to aid in understanding different as-
pects of neural network development, learning, or function. In neu-
ral computing (technology based on networks of “neuron-like”
units), the artificial neurons are designed as variations on the ab-
stractions of brain theory and are implemented in software, or VLSI
or other media. There is no such thing as a “typical” neuron, yet
this section will nonetheless present examples and models which
provide a starting point, an essential set of key concepts, for the
appreciation of the many variations on the theme of neurons and
neural networks presented in Part III.

An analogy to the problem we face here might be to define ve-
hicle for a handbook of transportation. A vehicle could be a car, a
train, a plane, a rowboat, or a forklift truck. It might or might not
carry people. The people could be crew or passengers, and so on.
The problem would be to give a few key examples of form (such
as car versus plane) and function (to carry people or goods, by
land, air, or sea, etc.). Moreover, we would find interesting exam-
ples of co-evolution: for example, modern highway systems would

back and forth between brain theory, artificial intelligence, and cog-
nitive psychology. We then review the different levels of analysis
involved, whether we study brains or intelligent machines, and the
use of schemas to provide intermediate functional units that bridge
the gap between an overall task and the neural networks which
implement it.

Section 1.3, “Dynamics and Adaptation in Neural Networks,”
provides a tutorial on the concepts essential for understanding neu-
ral networks as dynamic, adaptive systems. It introduces the basic
dynamic systems concepts of stability, limit cycles, and chaos, and
relates Hopfield nets to attractors and optimization. It then intro-
duces a number of basic concepts concerning adaptation in neural
nets, with discussions of pattern recognition, associative memory,
Hebbian plasticity and network self-organization, perceptrons, net-
work complexity, gradient descent and credit assignment, and
backpropagation. This section, and with it Part I, closes with a
cautionary note. The basic learning rules and adaptive architectures
of neural networks have already illuminated a number of biological
issues and led to useful technological applications. However, these
networks must have their initial structure well constrained (whether
by evolution or technological design) to yield approximate solu-
tions to the system’s tasks—solutions that can then be efficiently
and efficaciously shaped by experience. Moreover, the full under-
standing of the brain and the improved design of intelligent ma-
chines will require not only improvements in these learning meth-
ods and their initialization, but also a fuller understanding of
architectures based on networks of networks. Cross-references to
articles in Part III will set the reader on the path to this fuller
understanding. Because Part I focuses on the basic concepts estab-
lished for the formal study of neurons and neural networks by 1986,
it differs hardly at all from Part I of the first edition of the Hand-
book. By contrast, Part II, which provides the road maps that guide
readers through the radically updated Part III, has been completely
rewritten for the present edition to reflect the latest research results.

not have been created without the pressure of increasing car traffic;
most features of cars are adapted to the existence of sealed roads,
and some features (e.g., cruise control) are specifically adapted to
good freeway conditions. Following a similar procedure, Part III
offers diverse examples of neural form and function in both biology
and technology.

Here, we start with the observation that a brain is made up of a
network of cells called neurons, coupled to receptors and effectors.
Neurons are intimately connected with glial cells, which provide
support functions for neural networks. New empirical data show
the importance of glia in regeneration of neural networks after dam-
age and in maintaining the neurochemical milieu during normal
operation. However, such data have had very little impact on neural
modeling and so will not be considered further here. The input to
the network of neurons is provided by receptors, which continually
monitor changes in the external and internal environment. Cells
called motor neurons (or motoneurons), governed by the activity
of the neural network, control the movement of muscles and the
secretion of glands. In between, an intricate network of neurons (a
few hundred neurons in some simple creatures, hundreds of billions
in a human brain) continually combines the signals from the re-
ceptors with signals encoding past experience to barrage the motor
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neurons with signals that will yield adaptive interactions with the
environment. In animals with backbones (vertebrates, including
mammals in general and humans in particular), this network is
called the central nervous system (CNS), and the brain constitutes
the most headward part of this system, linked to the receptors and
effectors of the body via the spinal cord. Invertebrate nervous sys-
tems (neural networks) provide astounding variations on the ver-
tebrate theme, thanks to eons of divergent evolution. Thus, while
the human brain may be the source of rich analogies for technol-
ogists in search of “artificial intelligence,” both invertebrates and
vertebrates provide endless ideas for technologists designing neural
networks for sensory processing, robot control, and a host of other
applications. (A few of the relevant examples may be found in the
Part II road maps, Vision, Robotics and Control Theory, Motor
Pattern Generators, and Neuroethology and Evolution.)

The brain provides far more than a simple stimulus-response
chain from receptors to effectors (although there are such reflex
paths). Rather, the vast network of neurons is interconnected in
loops and tangled skeins so that signals entering the net from the
receptors interact there with the billions of signals already travers-
ing the system, not only to yield the signals that control the effec-
tors but also to modify the very properties of the network itself, so
that future behavior will reflect prior experience.

The Diversity of Receptors

Rod and cone receptors in the eyes respond to light, hair cells in
the ears respond to pressure, and other cells in the tongue and the
mouth respond to subtle traces of chemicals. In addition to touch
receptors, there are receptors in the skin that are responsive to
movement or to temperature, or that signal painful stimuli. These
external senses may be divided into two classes: (1) the proximity
senses, such as touch and taste, which sense objects in contact with
the body surface, and (2) the distance senses, such as vision and
hearing, which let us sense objects distant from the body. Olfaction
is somewhere in between, using chemical signals “right under our
noses” to sense nonproximate objects. Moreover, even the proxi-
mate senses can yield information about nonproximate objects, as
when we feel the wind or the heat of a fire. More generally, much
of our appreciation of the world around us rests on the unconscious
fusion of data from diverse sensory systems.

The appropriate activity of the effectors must depend on com-
paring where the system should be—the current target of an on-
going movement—with where it is now. Thus, in addition to the

Dendrites

external receptors, there are receptors that monitor the activity of
muscles, tendons, and joints to provide a continual source of feed-
back about the tensions and lengths of muscles and the angles of
the joints, as well as their velocities. The vestibular system in the
head monitors gravity and accelerations. Here, the receptors are
hair cells monitoring fluid motion. There are also receptors to moni-
tor the chemical level of the bloodstream and the state of the heart
and the intestines. Cells in the liver monitor glucose, while others
in the kidney check water balance. Receptors in the hypothalamus,
itself a part of the brain, also check the balance of water and sugar.
The hypothalamus then integrates these diverse messages to direct
behavior or other organs to restore the balance. If we stimulate the
hypothalamus, an animal may drink copious quantities of water or
eat enormous quantities of food, even though it is already well
supplied; the brain has received a signal that water or food is lack-
ing, and so it instructs the animal accordingly, irrespective of what-
ever contradictory signals may be coming from a distended
stomach.

Basic Properties of Neurons

To understand the processes that intervene between receptors and
effectors, we must have a closer look at “the” neuron. As already
emphasized, there is no such thing as a typical neuron. However,
we will summarize properties shared by many neurons. The “basic
neuron” shown in Figure 1 is abstracted from a motor neuron of
mammalian spinal cord. From the soma (cell body) protrudes a
number of ramifying branches called dendrites; the soma and den-
drites constitute the input surface of the neuron. There also extrudes
from the cell body, at a point called the axon hillock (abutting the
initial segment), a long fiber called the axon, whose branches form
the axonal arborization. The tips of the branches of the axon, called
nerve terminals or boutons, impinge on other neurons or on effec-
tors. The locus of interaction between a bouton and the cell on
which it impinges is called a synapse, and we say that the cell with
the bouton synapses upon the cell with which the connection is
made. In fact, axonal branches of some neurons can have many
varicosities, corresponding to synapses, along their length, not just
at the end of the branch.

We can imagine the flow of information as shown by the arrows
in Figure 1. Although “conduction” can go in either direction on
the axon, most synapses tend to “communicate” activity to the den-
drites or soma of the cell they synapse upon, whence activity passes
to the axon hillock and then down the axon to the terminal arbo-

Synaptic terminal

\

Axon hillock

Cell body

\

7,

Figure 1. A “basic neuron” abstracted from a
motor neuron of mammalian spinal cord. The
dendrites and soma (cell body) constitute the ma-

\ jor part of the input surface of the neuron. The

axon is the “output line.” The tips of the branches
of the axon form synapses upon other neurons or
upon effectors (although synapses may occur
along the branches of an axon as well as at the
ends). (From Arbib, M. A., 1989, The Meta-

Axonal arborization

phorical Brain 2: Neural Networks and Beyond,
New York: Wiley-Interscience, p. 52. Repro-
duced with permissions. Copyright © 1989 by
John Wiley & Sons, Inc.)
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rization. The axon can be very long indeed. For instance, the cell
body of a neuron that controls the big toe lies in the spinal cord
and thus has an axon that runs the complete length of the leg. We
may contrast the immense length of the axon of such a neuron with
the very small size of many of the neurons in our heads. For ex-
ample, amacrine cells in the retina have branchings that cannot
appropriately be labeled dendrites or axons, for they are short and
may well communicate activity in either direction to serve as local
modulators of the surrounding network. In fact, the propagation of
signals in the “counter-direction” on dendrites away from the soma
has in recent years been seen to play an important role in neuronal
function, but this feature is not included in the account of the “basic
neuron” given here (see DENDRITIC PROCESSING—titles in SMALL
CAPS refer to articles in Part III).

To understand more about neuronal “communication,” we em-
phasize that the cell is enclosed by a membrane, across which there
is a difference in electrical charge. If we change this potential dif-
ference between the inside and outside, the change can propagate
in much the same passive way that heat is conducted down a rod
of metal: a normal change in potential difference across the cell
membrane can propagate in a passive way so that the change occurs
later, and becomes smaller, the farther away we move from the site
of the original change. This passive propagation is governed by the
cable equation

v PV

at ox?

If the starting voltage at a point on the axon is V,, and no further
conditions are imposed, the potential will decay exponentially, hav-
ing value V,,, = Ve " at distance x from the starting point, where
the length unit, the length constant, is the distance in which the
potential changes by a factor of 1/e. This length unit will differ
from axon to axon. For “short” cells (such as the rods, cones, and
bipolar cells of the retina), passive propagation suffices to signal a
potential change from one end to the other; but if the axon is long,
this mechanism is completely inadequate, since changes at one end
will decay almost completely before reaching the other end. For-
tunately, most nerve cells have the further property that if the
change in potential difference is large enough (we say it exceeds a
threshold), then in a cylindrical configuration such as the axon, a
pulse can be generated that will actively propagate at full amplitude
instead of fading passively.

If propagation of various potential differences on the dendrites
and soma of a neuron yields a potential difference across the mem-
brane at the axon hillock which exceeds a certain threshold, then
a regenerative process is started: the electrical change at one place
is enough to trigger this process at the next place, yielding a spike
or action potential, an undiminishing pulse of potential difference
propagating down the axon. After an impulse has propagated along
the length of the axon, there is a short refractory period during
which a new impulse cannot be propagated along the axon.

The propagation of action potentials is now very well under-
stood. Briefly, the change in membrane potential is mediated by
the flow of ions, especially sodium and potassium, across the mem-
brane. Hodgkin and Huxley (1952) showed that the conductance
of the membrane to sodium and potassium ions—the ease with
which they flow across the membrane—depends on the transmem-
brane voltage. They developed elegant equations describing the
voltage and time dependence of the sodium and potassium con-
ductances. These equations (see the article AXONAL MODELING in
Part III) have given us great insight into cellular function. Much
mathematical research has gone into studying Hodgkin-Huxley-
like equations, showing, for example, that neurons can support
rhythmic pulse generation even without input (see OSCILLATORY
AND BURSTING PROPERTIES OF NEURONS), and explicating trig-

gered long-distance propagation. Hodgkin and Huxley used curve
fitting from experimental data to determine the terms for conduc-
tance change in their model. Subsequently, much research has
probed the structure of complex molecules that form channels
which selectively allow the passage of specific ions through the
membrane (see ION CHANNELS: KEYS TO NEURONAL SPECIALI-
ZATION). This research has demonstrated how channel properties
not only account for the terms in the Hodgkin-Huxley equation,
but also underlie more complex dynamics which may allow even
small patches of neural membrane to act like complex computing
elements. At present, most artificial neurons used in applications
are very simple indeed, and much future technology will exploit
these “subneural subtleties.”

An impulse traveling along the axon from the axon hillock trig-
gers new impulses in each of its branches (or collaterals), which
in turn trigger impulses in their even finer branches. Vertebrate
axons come in two varieties, myelinated and unmyelinated. The
myelinated fibers are wrapped in a sheath of myelin (Schwann cells
in the periphery, oligodendrocytes in the CNS—these are glial
cells, and their role in axonal conduction is the primary role of glia
considered in neural modeling to date). The small gaps between
successive segments of the myelin sheath are called nodes of Ran-
vier. Instead of the somewhat slow active propagation down an
unmyelinated fiber, the nerve impulse in a myelinated fiber jumps
from node to node, thus speeding passage and reducing energy
requirements (see AXONAL MODELING).

Surprisingly, at most synapses, the direct cause of the change in
potential of the postsynaptic membrane is not electrical but chem-
ical. When an impulse arrives at the presynaptic terminal, it causes
the release of transmitter molecules (which have been stored in the
bouton in little packets called vesicles) through the presynaptic
membrane. The transmitter then diffuses across the very small syn-
aptic cleft to the other side, where it binds to receptors on the
postsynaptic membrane to change the conductance of the postsyn-
aptic cell. The effect of the “classical” transmitters (later we shall
talk of other kinds, the neuromodulators) is of two basic kinds:
either excitatory, tending to move the potential difference across
the postsynaptic membrane in the direction of the threshold (de-
polarizing the membrane), or inhibitory, tending to move the po-
larity away from the threshold (hyperpolarizing the membrane).
There are some exceptional cell appositions that are so large or
have such tight coupling (the so-called gap junctions) that the im-
pulse affects the postsynaptic membrane without chemical media-
tion (see NEOCORTEX: CHEMICAL AND ELECTRICAL SYNAPSES).

Most neural modeling to date focuses on the excitatory and in-
hibitory interactions that occur on a fast time scale (a millisecond,
more or less), and most biological (as distinct from technological)
models assume that all synapses from a neuron have the same
“sign.” However, neurons may also secrete transmitters that mod-
ulate the function of a circuit on some quite extended time scale.
Modeling that takes account of this neuromodulation (see SYN-
APTIC INTERACTIONS and NEUROMODULATION IN INVERTEBRATE
NERVOUS SYSTEMS) will become increasingly important in the fu-
ture, since it allows cells to change their function, enabling a neural
network to switch dramatically its overall mode of activity.

The excitatory or inhibitory effect of the transmitter released
when an impulse arrives at a bouton generally causes a subthresh-
old change in the postsynaptic membrane. Nonetheless, the coop-
erative effect of many such subthreshold changes may yield a po-
tential change at the axon hillock that exceeds threshold, and if this
occurs at a time when the axon has passed the refractory period of
its previous firing, then a new impulse will be fired down the axon.

Synapses can differ in shape, size, form, and effectiveness. The
geometrical relationships between the different synapses impinging
on the cell determine what patterns of synaptic activation will yield
the appropriate temporal relationships to excite the cell (see
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DENDRITIC PROCESSING). A highly simplified example (Figure 2)
shows how the properties of nervous tissue just presented would
indeed allow a simple neuron, by its very dendritic geometry, to
compute some useful function (cf. Rall, 1964, p. 90). Consider a
neuron with four dendrites, each receiving a single synapse from a
visual receptor, so arranged that synapses A, B, C, and D (from
left to right) are at increasing distances from the axon hillock. (This
is not meant to be a model of a neuron in the retina of an actual
organism; rather, it is designed to make vivid the potential richness
of single neuron computations.) We assume that each receptor re-

Axon hillock

S

acts to the passage of a spot of light above its surface by yielding
a generator potential which yields, in the postsynaptic membrane,
the same time course of depolarization. This time course is prop-
agated passively, and the farther it is propagated, the later and the
lower is its peak. If four inputs reached A, B, C, and D simulta-
neously, their effect may be less than the threshold required to
trigger a spike there. However, if an input reaches D before one
reaches C, and so on, in such a way that the peaks of the four
resultant time courses at the axon hillock coincide, the total effect
could well exceed threshold. This, then, is a cell that, although very

Figure 2. An example, conceived by

Wilfrid Rall, of the subtleties that can be
revealed by neural modeling when den-

A
B
c
D

dritic properties (in this case, length-
dependent conduction time) are taken

Threshold Threshold

into account. As shown in Part C, the ef-
fect of simultaneously activating all in-
puts may be subthreshold, yet the cell
may respond when inputs traverse the cell
from right to left (D). (From Arbib,
M. A., 1989, The Metaphorical Brain 2:
Neural Networks and Beyond, New Y ork:
Wiley-Interscience, p. 60. Reproduced
with permission. Copyright © 1989 by

John Wiley & Sons, Inc.)
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simple, can detect direction of motion across its input. It responds
only if the spot of light is moving from right to left, and if the
velocity of that motion falls within certain limits. Our cell will not
respond to a stationary object, or one moving from left to right,
because the asymmetry of placement of the dendrites on the cell
body yields a preference for one direction of motion over others
(for a more realistic account of biological mechanisms, see DIREC-
TIONAL SELECTIVITY). This simple example illustrates that the form
(i.e., the geometry) of the cell can have a great impact on the func-
tion of the cell, and we thus speak of form-function relations. When
we note that neurons in the human brain may have 10,000 or more
synapses upon them, we can understand that the range of functions
of single neurons is indeed immense.

Receptors and Effectors

On the “input side,” receptors share with neurons the property of
generating potentials, which are transmitted to various synapses
upon neurons. However, the input surface of a receptor does not
receive synapses from other neurons, but can transduce environ-
mental energy into changes in membrane potential, which may then
propagate either actively or passively. (Visual receptors do not gen-
erate spikes; touch receptors in the body and limbs use spike trains
to send their message to the spinal cord.) For instance, the rods and
cones of the eye contain various pigments that react chemically to
light in different frequency bands, and these chemical reactions, in
turn, lead to local potential changes, called generator potentials, in
the membrane. If the light falling on an array of rods and cones is
appropriately patterned, then their potential changes will induce
interneuron changes to, in turn, fire certain ganglion cells (retinal
output neurons whose axons course toward the brain). Properties
of the light pattern will thus be signaled farther into the nervous
system as trains of impulses (see RETINA).

At the receptors, increasing the intensity of stimulation will
increase the generator potential. If we go to the first level of neu-
rons that generate pulses, the axons “reset” each time they fire a
pulse and then have to get back to a state where the threshold and
the input potential meet. The higher the generator potential, the
shorter the time until they meet again, and thus the higher the
frequency of the pulse. Thus, at the “input” it is a useful first
approximation to say that intensity or quantity of stimulation is
coded in terms of pulse frequency (more stimulus ~ more spikes),
whereas the quality or type of stimulus is coded by different lines
carrying signals from different types of receptors. As we leave the
periphery and move toward more “computational” cells, we no
longer have such simple relationships, but rather interactions of
inhibitory cells and excitatory cells, with each inhibitory input
moving a cell away from, and each excitatory input moving it
toward, threshold.

To discuss the “output side,” we must first note that a muscle is
made up of many thousands of muscle fibers. The motor neurons
that control the muscle fibers lie in the spinal cord or the brainstem,
whence their axons may have to travel vast distances (by neuronal
standards) before synapsing upon the muscle fibers. The smallest
functional entity on the output side is thus the motor unit, which
consists of a motor neuron cell body, its axon, and the group of
muscle fibers the axon influences.

A muscle fiber is like a neuron to the extent that it receives its
input via a synapse from a motor neuron. However, the response
of the muscle fiber to the spread of depolarization is to contract.
Thus, the motor neurons which synapse upon the muscle fibers can
determine, by the pattern of their impulses, the extent to which the
whole muscle comprised of those fibers contracts, and can thus
control movement. (Similar remarks apply to those cells that se-
crete various chemicals into the bloodstream or gut, or those that
secrete sweat or tears.)

Synaptic activation at the motor end-plate (i.e., the synapse of a
motor neuron upon a muscle fiber) yields a brief “twitch” of the
muscle fiber. A low repetition rate of action potentials arriving at
a motor end-plate causes a train of twitches, in each of which the
mechanical response lasts longer than the action potential stimulus.
As the frequency of excitation increases, a second action potential
will arrive while the mechanical effect of the prior stimulus still
persists. This causes a mechanical summation or fusion of con-
tractions. Up to a point, the degree of summation increases as the
stimulus interval becomes shorter, although the summation effect
decreases as the interval between the stimuli approaches the re-
fractory period of the muscle, and maximum tension occurs. This
limiting response is called a tetanus. To increase the tension exerted
by a muscle, it is then necessary to recruit more and more fibers to
contract. For more delicate motions, such as those involving the
fingers of primates, each motor neuron may control only a few
muscle fibers. In other locations, such as the shoulder, one motor
neuron alone may control thousands of muscle fibers. As descend-
ing signals in the spinal cord command a muscle to contract more
and more, they do this by causing motor neurons with larger and
larger thresholds to start firing. The result is that fairly small fibers
are brought in first, and then larger and larger fibers are recruited.
The result, known as Henneman’s Size Principle, is that at any
stage, the increment of activation obtained by recruiting the next
group of motor units involves about the same percentage of extra
force being applied, aiding smoothness of movement (see MOTO-
NEURON RECRUITMENT).

Since there is no command that a neuron may send to a muscle
fiber that will cause it to lengthen—all the neuron can do is stop
sending it commands to contract—the muscles of an animal are
usually arranged in pairs. The contraction of one member of the
pair will then act around a pivot to cause the expansion of the other
member of the pair. Thus, one set of muscles extends the elbow
joint, while another set flexes the elbow joint. To extend the elbow
joint, we do not signal the flexors to lengthen, we just stop signaling
them to contract, and then they will be automatically lengthened
as the extensor muscles contract. For convenience, we often label
one set of muscles as the “prime mover” or agonist, and the op-
posing set as the antagonist. However, in such joints as the shoul-
der, which are not limited to one degree of freedom, many muscles,
rather than an agonist-antagonist pair, participate. Most real move-
ments involve many joints. For example, the wrist must be fixed,
holding the hand in a position bent backward with respect to the
forearm, for the hand to grip with its maximum power. Synergists
are muscles that act together with the main muscles involved. A
large group of muscles work together when one raises something
with one’s finger. If more force is required, wrist muscles may also
be called in; if still more force is required, arm muscles may be
used. In any case, muscles all over the body are involved in main-
taining posture.

Neural Models

Before presenting more realistic models of the neuron (see PER-
SPECTIVE ON NEURON MODEL COMPLEXITY; SINGLE-CELL MOD-
ELS), we focus on the work of McCulloch and Pitts (1943), which
combined neurophysiology and mathematical logic, using the all-
or-none property of neuron firing to model the neuron as a binary
discrete-time element. They showed how excitation, inhibition, and
threshold might be used to construct a wide variety of “neurons.”
It was the first model to tie the study of neural nets squarely to the
idea of computation in its modern sense. The basic idea is to divide
time into units comparable to a refractory period so that, in each
time period, at most one spike can be generated at the axon hillock
of a given neuron. The McCulloch-Pitts neuron (Figure 3A) thus
operates on a discrete-time scale, ¢t = 0, 1, 2, 3, . . ., where the
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Figure 3. a, A McCulloch-Pitts neuron operating on a discrete-time scale.
Each input has an attached weight w;, and the neuron has a threshold 0.
The neuron “fires” at time ¢ + 1 just in case the weighted values of its
inputs at time ¢ is at least . b, Settings of weights and threshold for neurons
that function as an AND gate (i.e., the output fires if x; and x, both fire).
¢, An OR gate (the output fires if x; or x,, or both fire). d, A NOT gate (the
output fires if x; does NOT fire).

time unit is (in biology) on the order of a millisecond. We write
y(t) = 1 if a spike does appear at time 7, and y(f) = 0 if not. Each
connection, or synapse, from the output of one neuron to the input
of another has an attached weight. Let w; be the weight on the ith
connection onto a given neuron. We call the synapse excitatory if
w; > 0, and inhibitory if w; < 0. We also associate a threshold 0
with each neuron, and assume exactly one unit of delay in the effect
of all presynaptic inputs on the cell’s output, so that a neuron “fires”
(i.e., has value 1 on its output line) at time ¢ + 1 if the weighted
value of its inputs at time 7 is at least 6. Formally, if at time # the
value of the ith input is x,() and the output one time step later is
y(t + 1), then

yit + 1) = 1 if and only if X, wx, () = 0

Parts b through d of Figure 3 show how weights and threshold
can be set to yield neurons that realize the logical functions AND,
OR, and NOT. As a result, McCulloch-Pitts neurons are sufficient
to build networks that can function as the control circuitry for a
computer carrying out computations of arbitrary complexity; this
discovery played a crucial role in the development of automata
theory and in the study of learning machines. Although the
McCulloch-Pitts neuron no longer plays an active part in compu-
tational neuroscience, it is still widely used in neural computing,
especially when it is generalized so that the input and output values
can lie anywhere in the range [0, 1] and the function f(Zwx(1)),
which yields y(f + 1), is a continuously varying function rather
than a step function. However, it is one thing to define model neu-
rons with sufficient logical power to subserve any discrete com-
putation; it is quite another to understand how the neurons in actual
brains perform their tasks. More generally, the problem is to select
just which units to model, and to decide how such units are to be
represented. Thus, when we turn from neural computing to com-
putational neuroscience, we must turn to more realistic models of
neurons. On the other hand, we may say that neural computing
cannot reach its full power without applying new mechanisms
based on current and future study of biological neural networks
(see the road map Biological Neurons and Synapses).

Modern brain theory no longer uses the binary model of the
neuron, but instead uses continuous-time models that either rep-

resent the variation in average firing rate of the neuron or actually
capture the time course of membrane potentials. It is only through
such correlates of measurable brain activity that brain models can
really feed back to biological experiments. Such models also re-
quire the brain theorist to know a great deal of detailed anatomy
and physiology as well as behavioral data. Hodgkin and Huxley
(1952) have shown us how much can be learned from analysis of
membrane properties about the propagation of electrical activity
along the axon: Rall (1964; cf. Figure 2) was a leader in showing
that the study of membrane properties in a variety of connected
“compartments” of membrane in dendrite, soma, and axon can help
us understand small neural circuits, as in the OLFACTORY BULB
(q.v.) or for DENDRITIC PROCESSING (q.v.). Nonetheless, in many
cases, the complexity of compartmental analysis makes it more
insightful to use a more lumped representation of the individual
neuron if we are to assemble the model neurons to analyze large
networks. A computer simulation of the response of a whole brain
region which analyzed each component at the finest level of detail
available would be too large to run on even a network of computers.
In addition to the importance of detailed models of single neurons
in themselves, such studies can also be used to fine-tune more ec-
onomical models of neurons, which can then serve as the units in
models of large networks, whether to model systems in the brain
or to design artificial neural networks which exploit subtle neural
capabilities.

We may determine units in the brain physiologically, e.g., by
electrical recording, and anatomically, e.g., by staining. In many
regions of the brain, we have an excellent correlation between
physiological and anatomical units; that is, we know which ana-
tomical entity yields which physiological response. Unfortunately,
this is not always the case. We may have data on the electrophys-
iological correlates of animal behavior, and anatomical data as well,
yet not know which specific cell, defined anatomically, yields an
observed electrophysiological response. Another problem that we
confront in modeling is that we have both too much and too little
anatomical detail: too much in that there are many synapses that
we cannot put into our model without overloading our capabilities
for either mathematical analysis or computer simulation, and too
little in that we often do not know which details of synaptology
may determine the most important modes of behavior of a partic-
ular region of the brain. Judicious choices from available data, and
judicious hypotheses concerning missing data, must thus be made
in setting up a model, leading to the design of experiments whose
results may either confirm these hypotheses or lead to their modi-
fication. An important point of good modeling methodology is thus
to set up simulations in such a way that we can use different con-
nectivity on different simulations, both to test alternative hypoth-
eses and to respond to new data as they become available.

The simplest “realistic” model consonant with the above material
is the leaky integrator model. Although some biological neurons
communicate by the passive propagation (cable equation) of mem-
brane potential down their (necessarily short) axons, most com-
municate by the active propagation of “spikes.” The generation and
propagation of such spikes has been described in detail by the
Hodgkin-Huxley equations. However, the leaky integrator model
omits such details. It is a continuous-time model based on using
the firing rate (e.g., the number of spikes traversing the axon in the
most recent 20 ms) as a continuously varying output measure of
the cell’s activity, in which the internal state of the neuron is de-
scribed by a single variable, the membrane potential at the spike
initiation zone. The firing rate is approximated by a simple, sigmoid
function of the membrane potential. That is, we introduce a func-
tion ¢ of the membrane potential m such that g(m) increases from
0 to some maximum value as m increases from —o to + (e.g.,
the sigmoidal function k/[I + exp(—m/0)], increasing from O to its
maximum k). Then the firing rate M(#) of the cell is given by the
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equation:
M@ = o(m()
The time evolution of the cell’s membrane potential is given by
a differential equation. Consider first the simple equation

T# = —m(t) + h (D

We say that m(?) is in an equilibrium if it does not change under
the dynamics described by the differential equation. However,
dm(t)/dt = 0 if and only if m(t) = h, so that & is the unique
equilibrium of Equation 1. To get more information, we now in-
tegrate Equation 1 to get
m) = e "m@0) + (1 — e "k
which tends to the resting level h with time constant t with increas-
ing ¢ so long as 7 is positive. We now add synaptic inputs to obtain
dm(t)
T —_— =

- —m() + 2 wiX() + h )

where X;(¢) is the firing rate at the ith input. Thus, an excitatory
input (w; > 0) will be such that increasing it will increase dm(z)/
dt, while an inhibitory input (w; < 0) will have the opposite effect.
A neuron described by Equation 2 is called a leaky integrator neu-
ron. This is because the equation

dm(t)
‘L' —_— =
dt

would simply integrate the inputs with scaling constant ,

> wiXi(0) 3)

1 T
m(T) = m(0) + ;L 2 wX(ndt )

but the —m(f) term in Equation 3 opposes this integration by a
“leakage” of the potential m(¢) as it tries to return to its input-free
equilibrium /.

It should be noted that, even at this simple level of modeling,
there are alternative models. In the foregoing model, we have used
subtractive inhibition. But there are inhibitory synapses which
seem better described by shunting inhibition which, applied at a
given point on a dendrite, serves to divide, rather than subtract
from, the potential change passively propagating from more distal
synapses. Again, the “lumped frequency” model cannot model the
relative timing effects crucial to our motion detector example (see
Figure 2). These might be approximated by introducing appropriate
delay terms

dm(t)
‘C —_—
dt

Another class of neuron models—spiking neurons, including
integrate-and-fire neurons—are intermediate in complexity be-
tween leaky integrator models in which the output is the average
firing rate (see RATE CODING AND SIGNAL PROCESSING) and de-
tailed biophysical models in which the fine details of action poten-
tial generation are modeled using the Hodgkin-Huxley equation. In
these intermediate models, the output is a spike whose timing is
continuously variable as a result of cellular interactions, but the
spike is represented simply by its time of occurrence, with no in-
ternal structure. For example, one may track the continuous vari-
able (4), then generate a spike each time this quantity reaches
threshold, while simultaneously resetting the integral to some base-
line value (see INTEGRATE-AND-FIRE NEURONS AND NETWORKS).

—m@®) + Z wX(t — 1) + h

Such models include the ability to transmit information very rap-
idly through small temporal differences between the spikes sent out
by different neurons (see SPIKING NEURONS, COMPUTATION WITH).

All this reinforces the observation that there is no modeling ap-
proach that is automatically appropriate. Rather, we seek to find
the simplest model adequate to address the complexity of a given
range of problems. The articles in Part III of the Handbook will
provide many examples of the diversity of neural models appro-
priate to different tasks.

More Detailed Properties of Neurons

In Section 1.3, the only details we will add to the neuron models
just presented will be various, relatively simple, rules of synaptic
plasticity. This level of detail (though with many variations) will
suffice for a fair range of models of biological neural networks,
and for a range of current work on artificial neural networks
(ANNS5). The road map Biological Neurons and Synapses in Part
II surveys a set of articles that demonstrate that biological neurons
are vastly more complex than the present models suggest. Other
road maps show the special structures revealed in ‘“‘special-
purpose” neural circuitry in different species of animals. Table 1
lists some of the relevant articles on such circuits, together with
the specific animal types on which the studies were based. The
point is that much is to be learned from features specific to many
different types of nervous systems, as well as from studies in hu-
mans, monkeys, cats, and rats that focus on commonalities with
the human nervous system.

An appreciation of this complexity is necessary for the compu-
tational neuroscientist wishing to address the increasingly detailed
database of experimental neuroscience, but it should also prove
important for the technologist looking ahead to the incorporation
of new capabilities into the next generation of ANNs. Nonetheless,
much can be accomplished with simple models, as we shall see in
Section 1.3.

Table 1. A Sampling of Articles Showing the Lessons to be Learned
from the Study of Nervous Systems Very Different from Those of
Humans

Crustacean Stomatogastric System Crabs and lobsters

Development of Retinotectal Maps Frogs

Echolocation: Cochleotopic and Bats
Computational Maps

Electrolocation Electric fish

Half-Center Oscillators Underlying Rhythmic ~ Various
Movements

Invertebrate Models of Learning

Locomotion, Invertebrate

Aplysia and Hermissenda
Various insects

Locust Flight: Components and Mechanisms  Locusts
in the Motor

Motor Primitives Frogs

Neuromodulation in Invertebrate Nervous Various
Systems

Oscillatory and Bursting Properties of Various
Neurons

Scratch Reflex Turtles

Sound Localization and Binaural Processing Owls

Spinal Cord of Lamprey: Generation of Lampreys
Locomotor Patterns

Visual Course Control in Flies Flies

Visuomotor Coordination in Frog and Toad Frogs and toads

Visuomotor Coordination in Salamander Salamanders
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10 Part I: Background

[.2. Levels and Styles of Analysis

Many articles in this book show the benefits of interplay between
biology and technology. Nonetheless, it is essential to distinguish
between studying the brain and building an effective technology
for intelligent systems and computation, and to distinguish among
the various levels of investigation that exist (from the molecular to
the system level) in these related, but by no means identical, dis-
ciplines. The present section provides a fuller sense of the disci-
plines that come together in brain theory and neural networks, and
of the different levels of analysis involved in the study of complex
biological and technological systems.

A Historical Fragment

Perhaps the simplest history of brain theory and neural networks
would restrict itself to just three items: studies by McCulloch and
Pitts (1943), Hebb (1949), and Rosenblatt (1958). These publica-
tions introduced the first model of neural networks as “computing
machines,” the basic model of network self-organization, and the
model of “learning with a teacher,” respectively. (Section 1.3 pro-
vides a semitechnical introduction to this work and a key set of
currently central ideas that build upon it.) The present historical
fragment is designed to take us up to 1948, the year preceding the
publication of Hebb’s book, to reveal our present federation of
disciplines as the current incarnation of what emerged in the 1940s
and is aptly summed up in the title of the book, Cybernetics: Or
Control and Communication in the Animal and the Machine (Wie-
ner, 1948). But whereas Wiener’s view of cybernetics was domi-
nated by concepts of control and communication, our subject is
dominated by notions of parallel and distributed computation, with
special attention to learning in neural networks. On the other hand,
notions of information and statistical mechanics championed by
Wiener have reemerged as a strong strand in the study of neural
networks today (see, e.g., the articles FEATURE ANALYSIS and STA-
TISTICAL MECHANICS OF NEURAL NETWORKS in Part III). The ar-
ticles in Part III will make abundantly clear how far we have come
since 1948, and also how many problems remain. My intent in the
present “fragment” is to enrich the reader’s understanding of cur-
rent contributions by using a selective historical tour to place them
in context.

Noting that the Greek word cybernetics (icvofiepvetea) means the
helmsman of a ship (cf. the Latin word gubernator, which gives
us the word “governor” in English), Wiener (1948) used the term
for a subject in which feedback played a central role. Feedback is
the process whereby, e.g., the helmsman notes the “error,” the ex-
tent to which he is off course, and “feeds it back” to decide which
way to move the rudder. We can see the importance of this concept
in endowing automata (“self-moving” machines) with flexible be-
havior. Two hundred years earlier, in L’Homme machine, La Met-
trie had suggested that such automata as the mechanical duck and
flute player of Vaucanson indicated the possibility of one day build-
ing a mechanical man that could talk. While these clockwork au-
tomata were capable of surprisingly complex behavior, they lacked
a crucial aspect of animal behavior, let alone human intelligence:
they were unable to adapt to changing circumstances. In the fol-
lowing century, machines were built that could automatically
counter disturbances to restore desired performance. Perhaps the
best-known example of this is Watt’s governor for the steam en-
gine, which would let off excess steam if the velocity of the engine
became too great. This development led to Maxwell’s (1868) paper,
“On Governors,” which laid the basis for both the theory of neg-
ative feedback and the study of system stability (both of which are
discussed in Section I.3). Negative feedback was feedback in which
the error (in Watt’s case, the amount by which actual velocity ex-

ceeded desired velocity) was used to counteract the error; stability
occurred if this feedback was apportioned to reduce the error to-
ward zero. Bernard (1878) brought these notions back to biology
with his study of what Cannon (1939) would later dub homeostasis,
observing that physiological processes often form circular chains
of cause and effect that could counteract disturbances in such vari-
ables as body temperature, blood pressure, and glucose level in the
blood. In fact, following publication of Wiener’s 1948 book, the
Josiah Macy, Jr., Foundation conferences, in which many of the
pioneers of cybernetics were involved, became referred to as the
Cybernetics Group, with the proceedings entitled Cybernetics: Cir-
cular Causal and Feedback Mechanisms in Biological and Social
Systems, (see Heims, 1991, for a history of the conferences and
their participants).

The nineteenth century also saw major developments in the
understanding of the brain. At an overall anatomical level, a major
achievement was the understanding of localization in the cerebral
cortex (see Young, 1970, for a history). Magendie and Bell had
discovered that the dorsal roots of the spinal cord were sensory,
carrying information from receptors in the body, while the ventral
roots (on the belly side) were motor, carrying commands to the
muscles. Fritsch and Hitzig, and then Ferrier, extended this prin-
ciple to the brain proper, showing that the rear of the brain con-
tains the primary receiving areas for vision, hearing, and touch,
while the motor cortex is located in front of the central fissure.
All this understanding of localization in the cerebral cortex led to
the nineteenth century neurological doctrine, perhaps best exem-
plified in Lichtheim’s (1885) development of the insights of Broca
and Wernicke into brain mechanisms of language, which viewed
different mental “faculties” as being localized in different regions
of the brain. Thus, neurological deficits were to be explained as
much in terms of lesions of the connections linking two such
regions as in terms of lesions to the regions themselves. We may
also note a major precursor of the connectionism of this volume,
where the connections are those between neuron-like units rather
than anatomical regions: the associationist psychology of Alex-
ander Bain (1868), who represented associations of ideas by the
strengths of connections between “neurons” representing those
ideas.

Around 1900, two major steps were taken in revealing the finer
details of the brain. In Spain, Santiago Ramén y Cajal (e.g., 1906)
gave us exquisite anatomical studies of many regions of the brain,
revealing the particular structure of each as a network of neurons.
In England, the physiological studies of Charles Sherrington (1906)
on reflex behavior provided the basic physiological understanding
of synapses, the junction points between the neurons. Somewhat
later, in Russia, Ivan Pavlov (1927), extending associationist psy-
chology and building on the Russian studies of reflexes by Sech-
enov in the 1860s, established the basic facts on the modifiability
of reflexes by conditioning (see Fearing, 1930, for a historical
review).

A very different setting of the scene for cybernetics came from
work in mathematical logic in the 1930s. Kurt Godel published his
famous Incompleteness Theorem in 1931 (see Arbib, 1987, for a
proof as well as a debunking of the claim that Godel’s theorem sets
limits on machine intelligence). The “formalist” program initiated
by David Hilbert, which sought to place all mathematical truth
within a single formal system, had reached its fullest expression in
the Principia Mathematica of Whitehead and Russell. But Godel
showed that, if one used the approach offered in Principia Math-
ematica to set up consistent axioms for arithmetic and prove the-
orems by logical deduction from them, the theory must be incom-
plete, no matter which axioms (“knowledge base”) one started
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with—there would be true statements of arithmetic that could not
be deduced from the axioms.

Following Godel’s 1931 study, many mathematical logicians
sought to formalize the notion of an effective procedure, of what
could and could not be done by explicitly following an algorithm
or set of rules. Kleene (1936) developed the theory of partial re-
cursive functions; Turing (1936) developed his machines; Church
(1941) developed the lambda calculus, the forerunner of McCar-
thy’s list processing language, LISP, a one-time favorite of artificial
intelligence (Al) workers; while Emil Post (1943) introduced sys-
tems for rewriting strings of symbols, of which Chomsky’s early
formalizations of grammars in 1959 were a special case. Fortu-
nately, these methods proved to be equivalent. Whatever could be
computed by one of these methods could be computed by any other
method if it were equipped with a suitable “program.” It thus came
to be believed (Church’s thesis) that if a function could be com-
puted by any machine at all, it could be computed by each one of
these methods.

Turing (1936) helped chart the limits of the computable with his
notion of what is now called a Turing machine, a device that fol-
lowed a fixed, finite set of instructions to read, write, and move
upon a finite but indefinitely extendible tape, each square of which
bore a symbol from some finite alphabet. As one of the ingredients
of Church’s thesis, Turing offered a “psychology of the computa-
ble,” making plausible the claim that any effectively definable com-
putation, that is, anything that a human could do in the way of
symbolic manipulation by following a finite and completely ex-
plicit set of rules, could be carried out by such a machine equipped
with a suitable program. Turing also provided the most famous
example of a noncomputable problem, “the unsolvability of the
Halting Problem.” Let p be the numerical code for a Turing ma-
chine program, and let x be the code for the initial contents of a
Turing machine’s tape. Then the halting function h(p, x) = 1 if
Turing machine p will eventually halt if started with data x; oth-
erwise it is 0. Turing showed that there was no “computer program”
that could compute 4.

And so we come to 1943, the key year for bringing together the
notions of control mechanism and intelligent automata.

In “A Logical Calculus of the Ideas Immanent in Nervous Ac-
tivity,” McCulloch and Pitts (1943) united the studies of neuro-
physiology and mathematical logic. Their formal model of the neu-
ron as a threshold logic unit (see Section I.1) built on the neuron
doctrine of Ramén y Cajal and the excitatory and inhibitory syn-
apses of Sherrington, using notation from the mathematical logic
of Whitehead, Russell, and Carnap. McCulloch and Pitts provided
the “physiology of the computable” by showing that the control
box of any Turing machine, the essential formalization of symbolic
computation, could be implemented by a network (with loops) of
their formal neurons. The ideas of McCulloch and Pitts influenced
John von Neumann and his colleagues when they defined the basic
architecture of stored program computing. Thus, as electronic com-
puters were built toward the end of World War II, it was understood
that whatever they could do could be done by a network of neurons.

Craik’s (1943) book, The Nature of Explanation, viewed the
nervous system “as a calculating machine capable of modeling or
paralleling external events,” suggesting that the process of forming
an “internal model” that paralleled the world is the basic feature of
thought and explanation. In the same year, Rosenblueth, Wiener,
and Bigelow published “Behavior, Purpose and Teleology.” En-
gineers had noted that if feedback used in controlling the rudder of
a ship were too brusque, the rudder would overshoot, compensatory
feedback would yield a larger overshoot in the opposite direction,
and so on and so on as the system wildly oscillated. Wiener and
Bigelow asked Rosenblueth whether there was any corresponding
pathological condition in humans and were given the example of
intention tremor associated with an injured cerebellum. This evi-

dence for feedback within the human nervous system (see MOTOR
CONTROL, BIOLOGICAL AND THEORETICAL) led the three scientists
to advocate that neurophysiology move beyond the Sherringtonian
view of the CNS as a reflex device adjusting itself in response to
sensory inputs. Rather, setting reference values for feedback sys-
tems could provide the basis for analysis of the brain as a purposive
system explicable only in terms of circular processes, that is, from
nervous system to muscles to the external world and back again
via receptors.

Such studies laid the basis for the emergence of cybernetics,
which in turn gave birth to a number of distinct new disciplines,
such as Al, biological control theory, cognitive psychology, and
neural modeling, which each went their separate ways in the 1970s.
The next subsection introduces a number of these disciplines and
the relations between them; this analysis will continue in many
articles in Part III of the Handbook.

Brains, Machines, and Minds

Brains. Brain theory comprises many different theories as to how
the structures of the brain can subserve such diverse functions as
perception, memory, control of movement, and higher mental func-
tion. As such, it includes both attempts to extend notions of com-
puting, as well as applications of modern electronic computers to
explore the performance of complex models. An example of the
former is the study of cooperative computation between different
structures in the brain which seeks to offer a new paradigm for
computing that transcends classical notions associated with serial
execution of symbolic programs. For the latter, computational neu-
roscience makes systematic use of mathematical analysis and com-
puter simulation to provide ever better models of the structure and
function of living brains, building on earlier work in both neural
modeling and biological control theory.

Machines. Artificial intelligence studies how computers may be
programmed to yield “intelligent” behavior without necessarily at-
tempting to provide a correlation between structures in the program
and structures in the brain. Robotics is related to Al but emphasizes
the flexible control of machines (robots) which have receptors (e.g.,
television cameras) and effectors (e.g., wheels, legs, arms, grippers)
that allow them to interact with the world.

Brain theory has spawned a companion field of neural comput-
ing, which involves the design of machines with circuitry inspired
by, but which need not faithfully emulate, the neural networks of
brains. Many technologists usurp the term “neural networks” for
this latter field, but we will use it as an umbrella term which may,
depending on context, describe biological nervous systems, models
thereof, and the artificial networks which (sometimes at great re-
move) they inspire. When the emphasis is on “higher mental func-
tions,” neural computing may be seen as a new branch of Al (see
the road map Artificial Intelligence in Part II), but it also contrib-
utes to robotics (especially to those robot designs inspired by anal-
ysis of animal behavior), and to a wide range of technologies, in-
cluding those based on image analysis, signal processing, and
control (see the road map Applications).

For the latter work, many people emphasize adaptive neural net-
works which, without specific programming, can adjust their con-
nections through self-organization or to meet specifications given
by some teacher. There are also significant contributions to the
systematic design, rather than emergence through learning, of neu-
ral networks, especially for applications in low-level vision (such
as stereopsis, optic flow, and shape-from-shading). However, com-
plex problems cannot, in general, be solved by the tuning or the
design of a single unstructured network. For example, robot control
may integrate a variety of low-level vision networks with a set
of competing and cooperating networks for motor control and its
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planning. Brain theory and neural computing thus have to address
the analysis and design, respectively, of networks of networks (see,
e.g., HYBRID CONNECTIONIST/SYMBOLIC SYSTEMS and MODULAR
AND HIERARCHICAL LEARNING SYSTEMS).

Minds. Here, I want to distinguish the brain from the mind (the
realm of the “mental”). In great part, brain theory seeks to analyze
how the brain guides the behaving organism in its interactions with
the dynamic world around it, but much of the control of such in-
teractions is not mental, and much of what is mental is subsymbolic
and/or unconscious (see PHILOSOPHICAL ISSUES IN BRAIN THEORY
AND CONNECTIONISM and CONSCIOUSNESS, NEURAL MODELS OF).
Without offering a precise definition of “mental,” let me just say
that many people can agree on examples of mental activity (per-
ceiving a visual scene, reading, thinking, etc.) even if they take the
diametrically opposite philosophical positions of dualism (mind
and brain are separate) or monism (mind is a function of brain).
They would then agree that some mental activity (e.g., contempla-
tion) need not result in overt “interactions with the dynamic real
world,” and that much of the brain’s activity (e.g., controlling nor-
mal breathing) is not mental. Face recognition seems to be a mental
activity that we do not carry out through symbol manipulation.
Indeed, even psychologists who reject Freud’s particular psycho-
sexual theories accept his notion that much of our mental behavior
is shaped by unconscious forces (for an assessment of Freud and
an account of consciousness, see Arbib and Hesse, 1986).
Cognitive psychology attempts to explain the mind in terms of
“information processing” (a notion which is continuing to change).
It thus occupies a middle ground between brain theory and Al in
which the model must explain psychological data (e.g., what tasks
are hard for humans, people’s ability at memorization, the devel-
opment of the child, patterns of human errors, etc.) but in which
the units of the model need not correspond to actual brain struc-
tures. In the 1960s and 1970s, the majority of cognitive psychol-
ogists formulated their theories in terms of information theory and/
or symbol manipulation, while theories of biological organization
were ignored. However, workers in both Al and cognitive psy-
chology now pay increasing attention to the cooperative compu-
tation paradigm. The term connectionism has come to be used for
studies that model human thought and behavior in terms of parallel
distributed networks of neuron-like units, with learning mediated
by changes in strength of the connections between these elements
(see COGNITIVE MODELING: PSYCHOLOGY AND CONNECTIONISM).
The study of brain theory and neural networks thus has a twofold
aim: (1) to enhance our understanding of human thought and the
neural basis of human and animal behavior (brain theory), and (2)
to learn new strategies for building “intelligent” machines or adap-
tive robots (neural computing). In either case, we seek organiza-
tional principles that will help us understand how neurons (whether
biological or artificial) can work together to yield complex patterns
of behavior. Brain theory requires empirical data to shape and con-
strain modeling, but in return provides concepts and hypotheses to
shape and constrain experimentation. In neural computing, the cri-
terion for success is the design of a machine that can perform a
task cheaply, reliably, and effectively, even if, in the process of
making the best use of available (e.g., silicon) technology, the final
design departs radically from the biological neural network that
inspired it. It will be important in reading this Handbook, then, to
be clear as to whether a particular study is an exercise in brain
theory/computational neuroscience or in Al/neural computing.
What will not be in doubt is that the influence of these subjects
works both ways: not only can brain mechanisms inspire new tech-
nology, but new technologies provide metaphors to drive new the-
ories of brain function. To this it must be added that most workers
in ANNs know little of brain function, and relatively few neuro-
scientists have a deep understanding of brain theory or know much

of neural computing beyond the basic ideas of Hebbian plasticity
and, perhaps, backpropagation (see Section 1.3). However, the level
of interchange has increased since the first edition of this Handbook
appeared, and this new edition is designed to further increase the
flow of information between these scientific communities.

Levels of Analysis

Whether the emphasis is on humans, animals, or machines, it be-
comes clear that we can seek insight at many different levels of
analysis; from large information processing blocks down to the
finest details of molecular structure. Much of psychology and lin-
guistics looks at human behavior “from the outside,” whether
studying overall competence or attending to details of performance.
Neuropsychology relates behavior to the interaction of various
brain regions. Neurophysiology studies the activity of neurons,
both to understand the intrinsic properties of the neurons and to
help understand their role in the subsystems dissected out by the
neuropsychologist, such as networks for pattern recognition or for
visuomotor coordination. Molecular and cell biology and biophys-
ics correlate the structure and connectivity of the membranes and
subcellular systems which constitute cells with the way these cells
transform incoming patterns or subserve memory by changing
function with repeated interactions.

These differing levels make it possible to focus individual re-
search studies, but they are ill-defined, and a scientist who works
on any one level needs to make occasional forays, both downward
to find mechanisms for the functions studied, and upward to un-
derstand what role the studied function can play in the overall
scheme of things. Top-down modeling starts from some overall
behavior and explains it in terms of the interaction of high-level
functional units, while bottom-up modeling starts from the inter-
action of individual neurons (or even smaller units) to explain net-
work properties. It requires a judicious blend of the two to connect
the clear overview of crucial questions to the hard data of neuro-
science or, in the case of neural engineering, to the details of im-
plementation. Most successful modeling will be purely bottom-up
or top-down only in its initial stages, if at all—constraints on an
initial top-down model will be given, for example, by the data on
regional localization offered by the neurologist, or the circuit-cell-
synapse studies of much current neuroscience.

We must now distinguish the brain’s computation from connec-
tionist computation “in the style of the brain.” If a connectionist
model succeeds in describing some psychological input/output be-
havior, it may become an important hypothesis that its internal
structure is “real” (see RECURRENT NETWORKS: NEUROPHYSIO-
LOGICAL MODELING). In general, however, much additional work
will be required to find and assimilate neurophysiological data to
provide brain models in which the neurons are not mere formal
units but actually represent biological neurons in the brain.

Much study of the brain is guided by evolutionary and compar-
ative studies of animal behavior and brain function (cf. EvoLUTION
OF THE ANCESTRAL VERTEBRATE BRAIN and related articles in the
road map Neuroethology and Evolution). The information about
the function of the human brain that is gained in the neurological
clinic or during neurosurgery can thus be supplemented by humane
experimentation on animals. (However, as evidenced by Table
1 of Section I.1, we can learn a great deal by studying the differ-
ences, as well as the similarities, between the brains of different
species.) We learn by stimulating, recording from, or excising por-
tions of an animal’s brain and seeing how the animal’s behavior
changes. We may then compare such results with observations us-
ing such techniques as positron emission tomography (PET) or
functional magnetic resonance imaging (fMRI) of the relative ac-
tivity of different parts of the human brain during different tasks
(see IMAGING THE GRAMMATICAL BRAIN, IMAGING THE MOTOR
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BRAIN, and IMAGING THE VISUAL BRAIN). The grand aim of cog-
nitive neuroscience (as neuropsychology has now become; see the
Cognitive Neuroscience road map) is to use clinical data and brain
imaging to form a high-level view of the involvement of various
brain regions in human cognition, using single-cell activity re-
corded from animals engaged in analogous behaviors to suggest
the neural networks underlying this involvement (see SYNTHETIC
FuncTIONAL BRAIN MAPPING). The catch, of course, is that the
“analogous behaviors” of animals are not very analogous at all
when it comes to such symbolic activities as language and reason-
ing. In Part III, we will see that “higher mental functions” tend to
be modeled more in connectionist terms constrained (if at all) by
psychological or psycholinguistic data (cf. the Part II road maps
Psychology and Linguistics and Speech Processing), while the
greatest successes in seeking the neural underpinnings of human
behavior have come in areas such as vision, memory, and motor
control, where we can make neural network models of animal an-
alogues of human capabilities (cf. the road maps Vision, Other
Sensory Systems, Neural Plasticity, Biological Networks, Motor
Pattern Generators, and Mammalian Motor Control).

We also learn from the attempt to reproduce various aspects of
human behavior in a robot, even though human action, memory,
learning, and perception are far richer than those of any machine
yet built or likely to be built in the near future (see BIOLOGICALLY
INSPIRED ROBOTICS). Thus, when we suggest that the brain can be
thought of in some ways as a (highly distributed) computer, we are
not trying to reduce humans to the level of extant machines, but
rather to understand ways in which machines give us insight into
human attributes. This type of study has been referred to as cyber-
netics, extending the concept of Norbert Wiener, who, as we have
seen, defined the subject as “the study of control and communi-
cation in man and machine.”

To the extent that they address “higher mental function,” the
studies presented in this Handbook suggest that there is no single
“thing” called intelligence, but rather a plexus of properties that,
taken one at a time, may be little cause for admiration, but any
sizable collection of which will yield behavior that we would label
as intelligent. Turing (1950) argued that we would certainly regard
a machine as intelligent if it could pass the following test: An
experimenter sits in a room with two teletypes by which she con-
ducts a “conversation” with two systems. One is a human, the other
is a machine, but the experimenter is not told which is which. If,
after asking many questions, she is likely to have much doubt about
which is human and which is machine, we should, says Turing,
concede intelligence to the machine. However, unless one dog-
matically insists that being intelligent entails behaving in a human
way, it is “harder” for a machine to pass this Turing test than to be
intelligent. For instance, whereas a computer can answer problems
in arithmetic quickly and correctly, a much more complex program
would be required to ensure that it answered as slowly and errati-
cally as a human. Turing’s aim was not to find a necessary set of
conditions to ensure intelligence, but rather to devise a test which,
if passed by a machine, would convince most skeptics that the
machine had intelligence.

Schema Theory

The analysis of complex systems, whether they subserve natural or
artificial intelligence, requires a coarser grain of analysis to com-
plement that of neural networks. To make sense of the brain, we
often divide it into functional systems—such as the motor system,
the visual system, and so on—as well as into structural subsys-
tems—ifrom the spinal cord and the hippocampus to the various
subdivisions of the prefrontal cortex. Similarly, in distributed Al
(see MULTIAGENT SYSTEMS), the solution of a task may be distrib-
uted over a complex set of interacting agents, each with their

dedicated processors for handling the information available to them
locally. Thus, both neuroscience and artificial intelligence require
a language for expressing the distribution of function across units
intermediate between overall function and the final units of analysis
(e.g., neurons or simple instructions).

Since the “units of thought” or the subfunctions of a complex
behavior may be quite high-level compared to the fine-grain com-
putation of the myriad neurons in the human brain, SCHEMA THE-
ORY (q.v.; see also Arbib, 1981; Arbib, Erdi, and Szentdgothai,
1998, chap. 3) complements connectionism by providing a bridging
language between functional description and neural networks. It is
based on a theory of the concurrent activity of interacting functional
units called schemas. Perceptual schemas are those used for per-
ceptual analysis, while motor schemas are those which provide the
control systems that can be coordinated to effect a wide variety of
movement. Other schemas compete and cooperate to meld action,
internal state, and perception in an ongoing action-perception cycle.

Figure 4A represents brain theory, while Figure 4B offers a simi-
lar but distinct picture for distributed AI. We may model the brain
either functionally, analyzing some behavior in terms of interacting
schemas, or structurally, through the interaction of anatomically
defined units, such as brain regions (cf. the examples in the road
map Mammalian Brain Regions) or substructures of these re-
gions, such as layers or columns. In brain theory, we ultimately
seek an explanation in terms of neural networks, since the neuron
may be considered the basic unit of function as well as of structure,
and much further work in computational neuroscience seeks to ex-
plain the complex functionality of real neurons in terms of “sub-
neural” units, such as membrane compartments, channels, spines,
and synapses. What makes the story more subtle is that, in general,
a functional analysis proceeding “top-down” from some overall
behavior need not map directly into a “bottom-up” analysis pro-
ceeding upward from the neural circuitry (brain theory) or basic set
of processors (distributed Al), and that several iterations from the
“middle out” may be required to bring the structural and functional
accounts into consonance. Brain theory may then seek to replace
an initially plausible schema analysis with one whose schemas may
be constituted by an assemblage of schemas which can each be
embodied in one structure (without denying that a given brain re-
gion may support the activity of multiple schemas). The schemas
that serve as the functional units in our initial hypotheses about the
decomposition of some overall function may well differ from the
more refined hypotheses which provide an account of structural
correlates as well. On the other hand, distributed AI may adopt any
schema analysis that is technologically effective, and the schemas
may be implemented in whatever medium is appropriate, whether
as conventional computer programs, ANNSs, or special-purpose de-
vices. These different approaches then rest on effective design of
VLSI “chips” or other computing materials (cf. the road map Im-
plementation and Analysis).

For brain theory, the top-level schemas must be “large” enough
to allow an analysis of behavior at or near the psychological level,
yet also be subject to successive decomposition down to a level
that may, in certain cases, be implemented in specific neural net-
works. We again distinguish a schema as a functional unit from a
neural network as a structural unit. A given schema may be dis-
tributed across several neural networks; a given neural network
may be involved in the implementation of several different sche-
mas. The same will be true for relating connectionist units to single
biological neurons. If there is to be a fuller rapprochement between
connectionism and neuropsychology, it will be important to use a
vocabulary (or context) that allows one to make the necessary dis-
tinctions between connectionist and biological neurons.

A top-down analysis (decomposing a function) may suggest that
a certain schema is embedded in a certain part of the brain; we can
then marshal the available data from anatomy and neurophysiology
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Figure 4. Views of level of analysis of brain and behavior (A) and a distributed technological system (B), highlighting the role of schemas as an intermediate

level of functional analysis in each case.

to assess whether the circuitry can, indeed, subserve an instance of
that schema. It often happens that the empirical data are inadequate.
We then make hypotheses for experimental confirmation. Alter-
natively, bottom-up analysis of a brain region (assembling its con-
stituents) may suggest that it subserves a different schema from
that originally hypothesized, and we must then conduct a new top-
down analysis in the light of these newfound constraints.

To illuminate the notion of experimental insight modifying an
initial top-down analysis, we consider an example from Rana com-
putatrix, a set of models of visuomotor coordination in the frog
and toad (cf. VISUOMOTOR COORDINATION IN FROG AND TOAD).
Frogs and toads snap at small moving objects and jump away from
large ones (to oversimplify somewhat). Thus, a simple schema-
model of the frog brain might simply postulate four schemas: two
perceptual schemas (processes for recognizing objects or situa-
tions) and two motor schemas (processes for controlling some
structured behavior). One perceptual schema would recognize
small moving objects and activate a motor schema for approaching
the prey; the other would recognize large moving objects and ac-
tivate a motor schema for avoiding the predator. Lesion experi-
ments can put such a model to the test if it is enhanced by hypoth-
eses on the localization of each schema in the brain. It was thought
that the tectum (a key visual region in the animal’s midbrain) was
the locus for recognizing small moving objects, while the pretec-
tum (a region just in front of the tectum) was the locus for recog-
nizing large moving objects. Based on these localization hypoth-
eses, the model described would predict that an animal with a
lesioned pretectum would be unresponsive to large objects, but
would respond normally to small objects. However, the facts are
quite different. A pretectum-lesioned toad will approach moving
objects, both large and small, and does not exhibit avoidance be-
havior. This has led to a new schema model in which a perceptual
schema to recognize large moving objects is still localized in the
pretectum, but the tectum now contains a perceptual schema for all
moving objects. We then add that activity of the pretectal schema
not only triggers the avoidance motor schema but also inhibits ap-
proach. This new schema model still yields the normal behavior to
large and small moving objects, but also fits the lesion data, since
removal of the pretectum removes inhibition, meaning that the ani-

mal will now approach any moving object (Ewert and von Seelen,
1974).

We have thus seen how schemas may be used to provide fal-
sifiable models of the brain, using lesion experiments to test
schema models of behavior, and leading to new functional models
that better match the structure of the brain. Note again that, in
different species, the map from function to brain structure may be
different, while in distributed Al the constraints are not those of
analysis but rather those of design—namely, for a given function
and a given set of processors, a schema decomposition must be
found that will map most efficiently onto a network of processors
of a certain kind.

While the brain may be considered a network of interacting
“boxes” (anatomically distinguishable structures), there is no rea-
son to expect each such box to mediate a single function that is
well-defined from a behavioral standpoint. We have just seen that
the frog tectum is implicated in both approach and (when modu-
lated by pretectum) avoidance behavior. The language of schemas
lets us express hypotheses about the various functions that the brain
performs without assuming localization of any one function in any
one region, but also allows us to express the way in which many
regions participate in a given function, or a given region partici-
pates in many functions.

The style of cooperative computation (see COOPERATIVE PHE-
NOMENA) exhibited in both schema theory and connectionism is
far removed from serial computation and the symbol-based ideas
that have dominated conventional Al. As we shall see in example
after example in Part II1, the brain has many specialized areas, each
with a partial representation of the world. It is only through the
interaction of these regions that the unity of behavior of the animal
emerges, and the human is no different in this regard. The repre-
sentation of the world is the pattern of relationships between all
its partial representations. Much work in Al contributes to schema
theory, even when it does not use this term. For example, Brooks
(1986) builds robot controllers using layers made up of asynchro-
nous modules that can be considered to be a version of schemas
(see REACTIVE ROBOTIC SYSTEMS). This work shares with schema
theory, with its mediation of action through a network of schemas,
the point that no single, central, logical representation of the world
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[.3. Dynamics and Adaptation in Neural Networks 15

needs link perception and action. It is also useful to view cooper-
ative computation as a social phenomenon. A schema is a self-
contained computing agent (object) with the ability to communi-
cate with other agents, and whose function is specified by some
behavior. Whereas schema theory was motivated in great part by
the study of interacting brain regions (other influences are reviewed

in SCHEMA THEORY), much early work in distributed Al was mo-
tivated by a social analogy in which the schemas were thought of
as “agents” analogous to people interacting in a social setting to
compete or cooperate in solving some overall problem, a theme
elaborated on by Minsky (1985) and whose current status is re-
viewed in MULTIAGENT SYSTEMS.

[.3. Dynamics and Adaptation in Neural Networks

Section 1.1 introduced a number of key concepts from the biologi-
cal study of neurons, stressing the diversity of neurons both within
the human CNS and across species. It presented several simple
models of neurons, noting that computational neuroscience has
gone on to produce more subtle and complicated neuronal models,
while neural computing tends to use simple neurons augmented by
“learning rules” for changing connection strengths on the basis of
“experience.” The purpose of this section is to introduce two key
approaches that dominate the modern study of neural networks: (1)
the study of neural networks as dynamic systems (developed more
fully in the road map Dynamic Systems), and (2) the study of
neural networks as adaptive systems (see Learning in Artificial
Networks). To make this section essentially self-contained, we
start by recalling the definitions of the McCulloch-Pitts and leaky
integrator neurons from Section 1.1, but we do this in the context
of a general, semiformal, introduction to dynamic systems.

Dynamic Systems

We motivate the notion of dynamic systems by considering how
to abstract the interaction of an organism (or a machine) with its
environment. The organism will be influenced by aspects of the
current environment—the inputs to the organism—while the activ-
ity of the environment will be responsive in turn to aspects of the
current activity of the organism, the outputs of the organism. The
inputs and outputs that actually enter into a theory of the organism
(or machine) are a small sampling of the flux of its interactions
with the rest of the universe. There is essentially no limit to how
many variables one could include in the analysis; a crucial task in
any theory building is to pick the “right” variables.

Depending on the context, we will use the word system to denote
either the physical reality (which we cannot know in its entirety)
or the abstraction with which we approximate it. Inputs and outputs
do not constitute a complete description of a system. We cannot
predict how someone will answer a question unless we know her
state of knowledge; nor can we tell how a computer will process
its data unless we know the instructions controlling its computa-
tion. In short, we must include a description of the internal state
of the system which determines what it will extract from its current
stimulation in determining its current actions and modifying its
internal state. Our abstraction of any real system contains five
elements:

1. The set of inputs: those variables of the environment which we
believe will affect the system behavior of interest to us.

2. The set of outputs: those variables of the system which we
choose to observe, or which we believe will significantly affect
the environment.

3. The set of states: those internal variables of the system (which
may or may not also be output variables) which determine the
relationship between input and output. Essentially, the state of
a system is the system’s “internal residue of the past”: when we

know the state of a system, no further information about the past
behavior of the system will enable us to refine predictions of
the way in which future inputs and outputs of the system will
be related.

4. The state-transition function: that function which determines
how the state will change when the system obtains various
inputs.

5. The output function: that function which determines what output
the system will yield with a given input when in a given state.

Any system in which the state-transition function and output
function uniquely determine the new state and output from a spec-
ification of the initial state and subsequent inputs is called a deter-
ministic system. If, no matter how carefully we specify subsequent
inputs to a system, we cannot specify exactly what will be the
subsequent states and outputs, we say the system is probabilistic
or stochastic. A stochastic treatment may be worthwhile, either
because we are analyzing systems, which are “inescapably” sto-
chastic (e.g., at the quantum level), or because we are analyzing
macroscopic systems, which lend themselves to a stochastic de-
scription by ignoring “fine details” of microscopic variables. For
example, it is usually more reasonable to describe a coin in terms
of a 0.5 probability of coming up heads than to measure the initial
placement of the coin on the finger and the thrust of the thumb in
sufficient detail to determine whether the coin will come up heads
or tails.

Continuous-Time Systems

In Newtonian mechanics, the state of the system comprises the
positions of its components, which are directly observable, and
their velocities, which can be estimated from the observed trajec-
tory over a period of time. Time is continuous (i.e., characterized
by the set R of real numbers), and the way in which the state
changes is described by a differential equation: classical mechanics
provides the basic example of continuous-time systems in which
the present state and input determine the rate at which the state
changes. This requires that the input, output, and state spaces be
continuous spaces in which such continuous changes can occur.
Consider the simple example of a point mass undergoing rectilinear
motion. At any time, its position y(¢) is the observable output of
the system, and the force u(f) acting upon it is the input applied to
the system. Newton’s third law says that the force applied to the
system equals the mass times the acceleration y() = mu(t), where
the acceleration () is the second derivative of y(f). According to
Newton’s laws, the state of the system is given by the position and
velocity of the particle. We call the position-velocity pair, at any
time, the instantaneous state q(t) of the system. In fact, the earlier
equation gives us enough information to deduce the rate of change
dq(t)/dt of this state. Using standard matrix formalism, we thus
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This is an example of a linear system in which the rate of change
of state depends linearly on the present state and input, and the
present output depends linearly on the present state. That is, there
are matrices F, G, and H such that

dq(r)
i Fq(®) + Gu(@®); y() = Hq(?)

More generally, a physical system can be expressed by a pair of
equations:

dat)
dt

y@®) = glg(®)

The first expresses the rate of change dq(r)/dt of the state as a
function of both the state g(7) and the input or control vector u(z)
applied at any time f; the second reads the output from the current
state.

We now present the definition of a leaky integrator neuron as a
continuous-time system. The internal state of the neuron is its mem-
brane potential, m(z), and its output is the firing rate, M(z). The state
transition function of the cell is expressed as

flg®), u®)

dml(t
T % = —m®) + D wX®) + h )
while the output function of the cell is given by the equation
M) = a(m(r)) (2)
Thus, if there are m inputs X(t), i = 1, ..., m, then the input

space of the neuron is R”, with current value (X,(?), . . ., X,,(¢)),
while the state and output spaces of the neuron both equal R, with
current values m(f) and M(¢), respectively.

Let us now briefly (and semiformally) see how a neural network
comprised of leaky integrator neurons can also be seen as a
continuous-time system in this sense. As typified in Figure 5, we
characterize a neural network by selecting N neurons (each with
specified input weights and resting potential) and by taking the
axon of each neuron, which may be split into several branches

'

input output

lines lines

'

\ J

Figure 5. A neural network viewed as a system. The input at time ¢ is the
pattern of firing on the input lines, the output is the pattern of firing on the
output lines; and the internal state is the vector of firing rates of all the
neurons of the network.

carrying identical output signals, and either connecting each line
to a unique input of another neuron or feeding it outside the net to
provide one of the K network output lines. Then every input to a
given neuron must be connected either to an output of another
neuron or to one of the (possibly split) L input lines of the network.
Thus the input set X = R, the state set Q = R", and the output
set Y = RX.If the ith output line comes from the jth neuron, then
the output function is determined by the fact that the ith component
of the output at time 7 is the firing rate M(1) = g,(M (1)) of the jth
neuron at time ¢. The state transition function for the neural network
follows from the state transition functions of each of the N neurons

dm(1)
T =
dt
as soon as we specify whether X(7) is the output M(?) of the kth

neuron or the value x,(f) currently being applied on the /th input
line of the overall network.

—m(H) + X wyXy () + I 3)
J

Discrete-Time Systems

In contrast to continuous-time systems, which must have continu-
ous state spaces on which the differential equations for the state
transition function can be defined, discrete-time systems may have
either continuous or discrete state spaces. (A discrete state space
is just a set with no specific metric or topological structure.) For
example, a McCulloch-Pitts neuron is considered to operate on a
discrete-time scale, t = 0, 1, 2, 3, .. ., and has connection weights
w; and threshold 6. If at time ¢ the value of the ith input is x,(?),
then the output one time step later, y(r + 1), equals 1 if and only
if Zwx(t) = 0. If there are m inputs (x,(?), . . . , x,,(¢)), then, since
inputs and outputs are binary, such a neuron has input set = {0,
1}™, state set = output set {0, 1} (we treat the current state and
output as being identical). On the other hand, the important learning
scheme known as backpropagation (defined later) is based on neu-
rons which operate on discrete time, but with both input and output
taking continuous values in some range, say [0, 1].

In computer science, an automaton is a discrete-time system with
discrete input, output, and state spaces. Formally, we describe an
automaton by the sets X, Y, and Q of inputs, outputs, and states,
respectively, together with the next-state function 3: Q X X = Q
and the output function f: Q — Y. If the automaton is in state ¢ and
receives input x at time 7, then its next state will be d(g, x) and its
next output will be f(q). It should be clear that a McCulloch-Pitts
neural network (i.e., a network like that shown in Figure 5, but a
discrete-time network with each neuron a McCulloch-Pitts neuron)
functions like a finite automaton, as each neuron changes state syn-
chronously on each tick of the time scale t = 0, 1, 2, 3, . . ..
Conversely, it can be shown (see Arbib, 1987; the result was es-
sentially, though inscrutably, due to McCulloch and Pitts, 1943)
that any finite automaton can be simulated by a suitable
McCulloch-Pitts neural network.

Stability, Limit Cycles, and Chaos

With the previous discussion, we now have more than enough ma-
terial to understand the crucial dynamic systems concept of stability
and the related concepts of limit cycles and chaos (see COMPUTING
WITH ATTRACTORS and CHAOS IN NEURAL SYSTEMS). We want to
know what happens to an “unperturbed” system, i.e., one for which
the input is held constant (possibly with some specific “null input,”
usually denoted by 0, the “zero” input in X). An equilibrium is a
state ¢ in which the system can stay at rest, i.e., such that d(g, 0)
= g (discrete time) or dg/dt = f(g, 0) = 0 (continuous time). The
study of stability is concerned with the issue of whether or not this
rest point will be maintained in the face of slight disturbances. To
see the variety of equilibria, we use the image of a sticky ball
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rolling on the “hillside” of Figure 6. We say that point A on the
“hillside” in this diagram is an unstable equilibrium because a
slight displacement from A will tend to increase over time. Point
B is in a region of neutral equilibrium because slight displacements
will tend not to change further, while C is a point of stable equi-
librium, since small displacements will tend to decrease over time.
Note the word “small”: in a nonlinear system like that of Figure 6,
a large displacement can move the ball from the basin of attraction
of C (the set of states whose dynamics tends toward C) to another
one. Clearly, the ball will not tend to return to C after a massive
displacement that moves the ball to the far side of A’s hilltop.
Many nonlinear systems have another interesting property: they
may exhibit limit cycles. These are closed trajectories in the state
space, and thus may be thought of as “dynamic equilibria.” If the
state of a system follows a limit cycle, we may also say it oscillates
or exhibits periodic behavior. A limit cycle is stable if a small
displacement will be reduced as the trajectory of the system comes
closer and closer to the original limit cycle. By contrast, a limit
cycle is unstable if such excursions do not die out. Research in
nonlinear systems has also revealed what are called strange at-
tractors. These are attractors which, unlike simple limit cycles,
describe such complex paths through the state space that, although
the system is deterministic, a path that approaches the strange at-
tractor gives every appearance of being random. The point here is
that very small differences in initial state may be amplified with
the passage of time, so that differences that at first are not even
noticeable will yield, in due course, states that are very different
indeed. Such a trajectory has become the accepted mathematical
model of chaos, and it is used to describe a number of physical
phenomena, such as the onset of turbulence in a weather system,
as well as a number of phenomena in biological systems (see
CHAOS IN BIOLOGICAL SYSTEMS; CHAOS IN NEURAL SYSTEMS).

Hopfield Nets

Many authors have treated neural networks as dynamical systems,
employing notions of equilibrium, stability, and so on, to classify
their performance (see, e.g., Grossberg, 1967; Amari and Arbib,
1977; see also COMPUTING WITH ATTRACTORS). However, it was
a paper by John Hopfield (1982) that was the catalyst in attracting
the attention of many physicists to this field of study. In a
McCulloch-Pitts network, every neuron processes its inputs to de-
termine a new output at each time step. By contrast, a Hopfield net
is a net of such units with (1) symmetric weights (w; = w;;) and
no self-connections (w; = 0), and (2) asynchronous updating. For
instance, let s; denote the state (0 or 1) of the ith unit. At each time

Basin of
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C

Figure 6. An energy landscape: For a ball rolling on the “hillside,” point
A is an unstable equilibrium, point B lies in a region of neutral equilibrium,
and point C is a point of stable equilibrium. Point C is called an attractor:
the basin of attraction of C comprises all states whose dynamics tend toward
C.

step, pick just one unit at random. If unit i is chosen, s; takes the
value 1 if and only if Zw;s; = 0,. Otherwise s; is set to 0. Note that
this is an autonomous (input-free) network: there are no inputs
(although instead of considering 6; as a threshold we may consider
—0; as a constant input, also known as a bias).

Hopfield defined a measure called the energy for such a net (see

ENERGY FUNCTIONALS FOR NEURAL NETWORKS)
E= - E siswy + > 50, 1)
ij i

This is not the physical energy of the neural net but a mathematical
quantity that, in some ways, does for neural dynamics what the
potential energy does for Newtonian mechanics. In general, a me-
chanical system moves to a state of lower potential energy just as,
in Figure 6, the ball tends to move downbhill. Hopfield showed that
his symmetrical networks with asynchronous updating had a simi-
lar property.

For example, if we pick a unit and the foregoing firing rule does
not change its s;, it will not change E. However, if s; initially equals
0, and Zwy;s; = 0, then s; goes from 0 to 1 with all other s; constant,
and the “energy gap,” or change in E, is given by

ysJ Jt

AE = =% X\ (wys; + wis) + 0,
J

-> wys;s; + 0, by symmetry
J

= 0 since D, wys; = 0;
Similarly, if s; initially equals 1, and Zwys; < 0, then s; goes from
1 to 0 with all other s; constant, and the energy gap is given by

AEZEWUSJ»—QI-<O

In other words, with every asynchronous updating, we have AE =
0. Hence the dynamics of the net tends to move E toward a mini-
mum. We stress that there may be different such states—they are
local minima, just as, in Figure 6, both D and E are local minima
(each of them is lower than any “nearby” state) but not global
minima (since C is lower than either of them). Global minimization
is not guaranteed.

The expression just presented for AE depends on the symmetry
condition, w; = wy, for without this condition, the expression

would instead be AE = —(Y2)Z(w;s; + wjs;) + 0; and in this
case, Hopfield’s updating rule need not yield a passage to energy
minimum, but might instead yield a limit cycle, which could be
useful in, e.g., controlling rhythmic behavior (see, e.g., RESPIRA-
TORY RHYTHM GENERATION). In a control problem, a link w;; might
express the likelihood that the action represented by i would pre-
cede that represented by j, in which case w; = wj; is normally
inappropriate.

The condition of asynchronous update is crucial, too. If we con-
sider the simple “flip-flop” with w;, = w,; = l and 0, = 0, =
0.5, then the McCulloch-Pitts network will oscillate between the
states (0, 1) and (1, 0) or will sit in the states (0, 0) or (1, 1); in
other words, there is no guarantee that it will converge to an equi-
librium. However, with E = —(Y2)Z;s;5,w; + Zs,0;, we have E(0,
0) = 0,E0,1) = E(1,0) = 0.5, and E£(1, 1) = 0, and the Hopfield
network will converge to the global minimum at either (0, 0) or
1, 1).

Hopfield also aroused much interest because he showed how a
number of optimization problems could be “solved” using neural
networks. (The quotes around “solved” acknowledge the fact that
the state to which a neural network converges may represent a local,
rather than a global, optimum of the corresponding optimization
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18 Part I: Background

problem.) Such networks were similar to the “constraint satisfac-
tion” networks that had already been studied in the computer vi-
sion community. (In most vision algorithms—see, e.g., STEREO
CORRESPONDENCE—constraints can be formulated in terms of
symmetric weights, so that w; = wj; is appropriate.) The aim,
given a “constraint satisfaction” problem, is to so choose weights
for a neural network so that the energy E for that network is a
measure of the overall constraint violation. A famous example is
the Traveling Salesman Problem (TSP): There are n cities, with
a road of length /; joining city i to city j. The salesman wishes
to find a way to visit the cities that is optimal in two ways: each
city is visited only once, and the total route is as short as possible.
We express this as a constraint satisfaction network in the follow-
ing way: Let the activity of neuron N; express the decision to go
straight from city 7 to city j. The cost of this move is simply [,
and so the total “transportation cost” is X;/;N;. It is somewhat
more challenging to express the cost of violating the “visit a city
only once” criterion, but we can reexpress it by saying that, for
city j, there is one and only one city i from which j is directly
approached. Thus, X(XN; — 1)> = 0 just in case this constraint
is satisfied; a non-zero value measures the extent to which this
constraint is violated. This can then be mapped into the setting of
weights and thresholds for a Hopfield network. Hopfield and Tank
(1986) constructed chips for this network which do indeed settle
very quickly to a local minimum of E. Unfortunately, there is no
guarantee that this minimum is globally optimal. The article Op-
TIMIZATION, NEURAL presents this and a number of other neurally
based approaches to optimization. The article SIMULATED AN-
NEALING AND BOLTZMANN MACHINES shows how noise may be
added to “shake” a system out of a local minimum and let it settle
into a global minimum. (Consider, for example, shaking that is
strong enough to shake the ball from D to A, and thus into the
basin of attraction of C, in Figure 6, but not strong enough to
shake the ball back from C toward D.)

Adaptation in Dynamic Systems

In the previous discussion of neural networks as dynamic systems,
the dynamics (i.e., the state transition function) has been fixed.
However, just as humans and animals learn from experience, so do
many important applications of ANNs depend on the ability of
these networks to adapt to the task at hand by, e.g., changing the
values of the synaptic weights to improve performance. We now
introduce the general notion of an adaptive system as background
to some of the most influential “learning rules” used in adaptive
neural networks. The key motivation for using learning networks
is that it may be too hard to program explicitly the behavior that
one sees in a black box, but one may be able to drive a network
by the actual input/output behavior of that box, or by some de-
scription of its trajectories, to cause it to adapt itself into a network
which approximates that given behavior. However, as we will

stress at the end of this section, a learning algorithm may not solve
a problem within a reasonable period of time unless the initial
structure of the network is suitable.

Adaptive Control

A key problem of technology is to control a complex system so
that it behaves in some desired way, whether getting a space probe
on course to Mars or a steel mill to produce high-quality steel. A
common situation that complicates this control problem is that the
controlled system may not be known accurately; it may even
change its character somewhat with time. For example, as fuel is
depleted, the mass and moments of inertia of the probe may change
in unpredicted ways. The adaptation problem involves determin-
ing, on the basis of interaction with a given system, an appropriate
“model” of the system which the controller can use in solving the
control problem.

Suppose we have available an identification procedure which
can find an adequate parametric representation of the controlled
system (see IDENTIFICATION AND CONTROL). Then, rather than
build a controller specifically designed to control this one system,
we may instead build a general-purpose controller which can ac-
commodate to any reasonable set of parameters. The controller then
uses the parameters which the identification procedure provides as
the best estimate of the controlled system’s parameters at that time.
If the identification procedure can make accurate estimates of the
system’s parameters as quickly as they actually change, the con-
troller will be able to act efficiently despite fluctuations in con-
trolled system dynamics. The controller, when coupled to an iden-
tification procedure, is an adaptive controller; that is, it adapts its
control strategy to changes in the dynamics of the controlled sys-
tem. However, the use of an explicit identification procedure is only
one way of building an adaptive controller. Adaptive neural nets
may be used to build adaptive procedures which may directly mod-
ify the parameters in some control rule, or identify the system in-
verse so that desired outputs can be automatically transformed into
the inputs that will achieve them. (See SENSORIMOTOR LEARNING
for the distinction between forward and inverse models.)

Pattern Recognition

In the setup shown in Figure 7, the preprocessor extracts from the
environment a set of “confidence levels” for various input features
(see FEATURE ANALYSIS), with the result represented by a vector
of d real numbers. In this formalization, any pattern x is represented
by a point (X;, X, . . . , Xq) in a d-dimensional Euclidean space R¢
called the pattern space. The pattern recognizer then takes the pat-
tern and produces a response that may have one of K distinct values
where there are K categories into which the patterns must be sorted;
points in R? are thus grouped into at least K different sets (see
CONCEPT LEARNING and PATTERN RECOGNITION). However, a

r
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- p Pattern
— r Classification
ognition [—%
Input _,] (: Recog ] Vector
Pattern I z Network ——p Figure 7. One strategy in pattern recognition is to precede the
-»> s adaptive neural network by a fixed layer of “preprocessors” or
° “feature extractors” which replace the image by a finite vector
r for further processing. In other approaches, the functions defined
s

by the early layers of the network may themselves be subject to
training.
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category might be represented in more than one region of RY. To
take an example from visual pattern recognition (although the the-
ory of pattern recognition networks applies to any classification of
R9), a and A are members of the category of the first letter of the
English alphabet, but they would be found in different connected
regions of a pattern space. In such cases, it may be necessary to
establish a hierarchical system involving a separate apparatus to
recognize each subset, and a further system that recognizes that the
subsets all belong to the same set (a related idea was originally
developed by Selfridge, 1959; for adaptive versions, see MODULAR
AND HIERARCHICAL LEARNING SYSTEMS). Here we avoid this
problem by concentrating on the case in which the decision space
is divided into exactly two connected regions.

We call a function f: R? = R a discriminant function if the
equation f(x) = 0 gives the decision surface separating two regions
of a pattern space. A basic problem of pattern recognition is the
specification of such a function. It is virtually impossible for hu-
mans to “read out” the function they use (not to mention how they
use it) to classify patterns. Thus, a common strategy in pattern
recognition is to provide a classification machine with an adjustable
function and to “train” it with a set of patterns of known classifi-
cation that are typical of those with which the machine must ulti-
mately work. The function may be linear, quadratic, polynomial,
or even more subtle yet, depending on the complexity and shape
of the pattern space and the necessary discriminations. The exper-
imenter chooses a class of functions with parameters which, it is
hoped, will, with proper adjustment, yield a function that will suc-
cessfully classify any given pattern. For example, the experimenter
may decide to use a linear function of the form

J) = wix; + wox, + o0+ owex, + owygg

(i.e., a McCulloch-Pitts neuron!) in a two-category pattern classi-
fier. The equation f(x) = 0 gives a hyperplane as the decision
surface, and training involves adjusting the coefficients (w,, w,,
... s Wy, Way 1) so that the decision surface produces an acceptable
separation of the two classes. We say that two categories are lin-
early separable if an acceptable setting of such linear weights ex-
ists. Thus, pattern recognition poses (at least) the following chal-
lenges to neural networks:

(a) Find a “good” set of preprocessors. Competitive learning
based on Hebbian plasticity (see COMPETITIVE LEARNING, as well
as the following text) provides one way of finding such features by
extracting statistically significant patterns from a set of input pat-
terns. For example, if such a network were exposed to many, but
only, letters of the Roman alphabet, then it would find that certain
line segments and loops occurred repeatedly, even if there were no
teacher to tell it how to classify the patterns.

(b) Given a set of preprocessors and a set of patterns which have
already been classified, adjust the connections of a neural network
so that it acts as an effective pattern recognizer. That is, its response
to a preprocessed pattern should usually agree well with the clas-
sification provided by a teacher.

(c) Of course, if the neural network has multiple layers with
adaptable synaptic weights, then the early layers can be thought of
as preprocessors for the later layers, and we have a case of super-
vised, rather than Hebbian, formation of these “feature detectors”—
emphasizing features which are not only statistically significant
elements of the input patterns but which also serve to distinguish
usefully to which class a pattern belongs.

Associative Memory

In pattern recognition, we associate a pattern with a “label” or
“category.” Alternatively, an associative memory takes some “key”
as input and returns some “associated recollection” as output (see
ASSOCIATIVE NETWORKS). For example, given the sound of a word,

we may wish to recall its spelling. Given a misspelled word, we
may wish to recall the correctly spelled word of which it is most
plausibly a “degraded image.” There are two major approaches to
the use of neural networks as associative memories:

In nonrecurrent neural networks, there are no loops (i.e., we
cannot start at any neuron and “follow the arrows” to get back to
that neuron). We use such a network by fixing the pattern of inputs
as the key, and holding them steady. Since the absence of loops
ensures that the input pattern uniquely determines the output pat-
tern (after the new inputs have time to propagate their effects
through the network), this uniquely determined output pattern is
the recollection associated with the key.

In recurrent networks, the presence of loops implies that the
input alone may not determine the output of the net, since this will
also depend on the initial state of the network. Thus, recurrent
networks are often used as associative memories in the following
way. The inputs are only used transiently to establish the initial
state of the neural network. After that, the network operates auton-
omously (i.e., uninfluenced by any inputs). If and when it reaches
an equilibrium state, that state is read out as the recollection as-
sociated with the key.

In either case, the problem is to set the weights of the neural
network so that it associates keys as accurately as possible with the
appropriate recollections.

Learning Rules

Most learning rules in current models of “lumped neurons” (i.e.,
those that exclude detailed analysis of the fine structure of the neu-
ron or the neurochemistry of neural plasticity) take the form of
schemes for adjusting the synaptic weights, the “ws.” The two clas-
sic learning schemes for McCulloch-Pitts-type formal neurons are
due to Hebb (see HEBBIAN SYNAPTIC PLASTICITY) and Rosenblatt
(the perceptron, see PERCEPTRONS, ADALINES, AND BACKPROPA-
GATION), and we now introduce these in turn.

Hebbian Plasticity and Network Self-Organization

In Hebb’s (1949) learning scheme (see HEBBIAN SYNAPTIC PLAS-
TICITY), the connection between two neurons is strengthened if both
neurons fire at the same time. The simplest example of such a rule
is to increase wy; by the following amount:

Awy; = kyx;

where synapse w;; connects a presynaptic neuron with firing rate x;
to a postsynaptic neuron with firing rate y,. The trouble with the
original Hebb model is that every synapse will eventually get
stronger and stronger until they all saturate, thus destroying any
selectivity of association. Von der Malsburg’s (1973) solution was
to normalize the synapses impinging on a given neuron. To accom-
plish this, one must first compute the Hebbian “update” Aw; =
kx;y; and then divide this by the total putative synaptic weights to
get the final result which replaces w; by

wy + Awy
E (ij + Aij)
k

where the summation k extends over all inputs to the neuron. This
new rule not only increases the strengths of those synapses with
inputs strongly correlated with the cell’s activity, but also decreases
the synaptic strengths of other connections in which such correla-
tions did not arise.

Von der Malsburg was motivated by the pattern recognition
problem and was concerned with how individual cells in his net-
work might come to be tuned so as to respond to one particular
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input “feature” rather than another (see OCULAR DOMINANCE AND
ORIENTATION COLUMNS for background as well as a review of
more recent approaches). This exposed another problem with
Hebb’s rule: a lot of nearby cells may, just by chance, all have
initial random connectivity which makes them easily persuadable
by the same stimulus; alternatively, the same pattern might occur
many times before a new pattern is experienced by the network. In
either case, many cells would become tuned to the same feature,
with not enough cells left to learn important and distinctive fea-
tures. To solve this, von der Malsburg introduced lateral inhibition
into his model. In this connectivity pattern, activity in any one cell
is distributed laterally to reduce (partially inhibit) the activity of
nearby cells. This ensures that if one cell—call it A—were espe-
cially active, its connections to nearby cells would make them less
active, and so make them less likely to learn, by Hebbian synaptic
adjustment, those features that most excite A.

In summary, then, when the Hebbian rule is augmented by a
normalization rule, it tends to “sharpen” a neuron’s predisposition
“without a teacher,” getting its firing to become better and better
correlated with a cluster of stimulus patterns. This performance is
improved when there is some competition between neurons so that
if one neuron becomes adept at responding to a pattern, it inhibits
other neurons from doing so (COMPETITIVE LEARNING). Thus, the
final set of input weights to the neuron depends both on the initial
setting of the weights and on the pattern of clustering of the set of
stimuli to which it is exposed (see DATA CLUSTERING AND LEARN-
ING). Other “post-Hebbian” rules, motivated both by technological
efficiency and by recent biological findings, are discussed in several
articles in Part III, including HEBBIAN LEARNING AND NEURONAL
REGULATION and POST-HEBBIAN LEARNING ALGORITHMS.

In the adaptive architecture just described, the inputs are initially
randomly connected to the cells of the processing layer. As a result,
none of these cells is particularly good at pattern recognition. How-
ever, by sheer statistical fluctuation of the synaptic connections,
one will be slightly better at responding to a particular pattern than
others are; it will thus slightly strengthen those synapses which
allow it to fire for that pattern and, through lateral inhibition, this
will make it harder for cells initially less well tuned for that pattern
to become tuned to it. Thus, without any teacher, this network
automatically organizes itself so that each cell becomes tuned for
an important cluster of information in the sensory inflow. This is
a basic example of the kind of phenomenon treated in SELF-
ORGANIZATION AND THE BRAIN.

Perceptrons

Perceptrons are neural nets that change with “experience,” using
an error-correction rule designed to change the weights of each
response unit when it makes erroneous responses to stimuli that
are presented to the network. We refer to the judge of what is
correct as the “teacher,” although this may be another neural net-
work, or some environmental input, rather than a signal supplied
by a human teacher in the usual schoolroom sense. Consider the
case in which a set R of input lines feeds a Pitts-McCulloch neural
network whose neurons are called associator units and which in
turn provide the input to a single McCulloch-Pitts neuron (called
the output unit of the perceptron) with adjustable weights (w, . . .,
w,) and threshold 6. (In the case of visual pattern recognition, we
think of R as a rectangular “retina” onto which patterns may be
projected.) A simple perceptron is one in which the associator units
are not interconnected, which means that it has no short-term mem-
ory. (If such connections are present, the perceptron is called cross-
coupled. A cross-coupled perceptron may have multiple layers and
loops back from an “earlier” to a “later” layer.) If the associator
units feed the pattern x = (xy, . . ., x,) to the output unit, then the
response of that unit will be to provide the pattern discrimination

with discriminant function f(x) = wyx; + ... + wyx; — 6. In
other words, the simple perceptron can only compute a linearly
separable function of the pattern as provided by the associator
units. The question asked by Rosenblatt (1958) and answered by
many others since (cf. Nilsson, 1965) was, “Given a simple per-
ceptron (i.e., only the synaptic weights of the output unit are ad-
justable), can we ‘train’ it to recognize a given linearly separable
set of patterns by adjusting the ‘weights’ on various interconnec-
tions on the basis of feedback on whether or not the network clas-
sifies a pattern correctly?” The answer was “Yes: if the patterns are
linearly separable, then there is a learning scheme which will even-
tually yield a satisfactory setting of the weights.” The best-known
perceptron learning rule strengthens an active synapse if the effer-
ent neuron fails to fire when it should have fired, and weakens an
active synapse if the neuron fires when it should not have done so:

Awy; = kY; — Yix;

As before, synapse w;; connects a presynaptic neuron with firing
rate x; to a postsynaptic neuron with firing rate y;, but now Y; is the
“correct” output supplied by the “teacher.” (This is similar to the
Widrow-Hoff [1960] least mean squares model of adaptive control;
see PERCEPTRONS, ADALINES, AND BACKPROPAGATION.) Notice
that the rule does change the response to x; “in the right direction.”
If the output is correct, ¥; = y; and there is no change, Aw; = 0.
If the output is too small, then ¥; — y; > 0, and the change in w;
will add Aw;x; = k(Y; — y)xx; > 0 to the output unit’s response
to (x;, . . . , x,). Similarly, if the output is too large, then ¥; — y;
< 0, Aw; will add k(Y; — y;)x;x; < O to the output unit’s response.
Thus, there is a sense in which the new setting w' = w + Aw
classifies the input pattern x “more nearly correctly” than w does.
Unfortunately, in classifying x “more correctly” we run the risk of
classifying another pattern “less correctly.” However, the percep-
tron convergence theorem (see Arbib, 1987, pp. 66—69, for a proof)
shows that Rosenblatt’s procedure does not yield an endless see-
saw, but will eventually converge to a correct set of weights if one
exists, albeit perhaps after many iterations through the set of trial
patterns.

ij

Network Complexity

The perceptron convergence theorem states that, if a linear sepa-
ration exists, the perceptron error-correction scheme will find it.
Minsky and Papert (1969) revivified the study of perceptrons (al-
though some Al workers thought they had killed it!) by responding
to such results with questions like, “Your scheme works when a
weighting scheme exists, but when does there exist such a setting
of the weights?” More generally, “Given a pattern-recognition
problem, how much of the retina must each associator unit ‘see’ if
the network is to do its job?” Minsky and Papert studied when it
was possible for a McCulloch-Pitts neuron (no matter how trained)
to combine information in a single preprocessing layer to perform
a given pattern recognition task, such as recognizing whether a
pattern X of 1s on the retina (the other retinal units having output
0) is connected, that is, whether a path can be drawn from any 1
of X to another without going through any Os. Another question
was to determine whether X is of odd parity, i.e., whether X con-
tains an odd number of 1s. The question is, “How many inputs are
required for the preprocessing units of a simple perceptron to suc-
cessfully implement f7” We can get away with using a single ele-
ment, computing an arbitrary Boolean function, and connecting it
to all the units of the retina. So the question that really interests us
is whether we can get away with a response unit connected to
proprocessors, each of which receives inputs from a limited set of
retinal units to make a global decision by synthesizing an array of
local views.

We convey the flavor of Minsky and Papert’s approach by the
example of XOR, the simple Boolean operation of addition modulo
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2, also known as the exclusive-or. If we imagine the square with
vertices (0, 0), (0, 1), (1, 1), and (1, 0) in the Cartesian plane, with
(x1, x,) being labeled by x; © x,, we have Os at one diagonally
opposite pair of vertices and 1s at the other diagonally opposite
pair of vertices. It is clear that there is no way of interposing a
straight line such that the 1s lie on one side and the Os lie on the
other side. However, we shall prove it mathematically to gain in-
sight into the techniques used by Minsky and Papert.

Consider the claim that we wish to prove wrong: that there ac-
tually exists a neuron with threshold 6 and weights « and f such
that x; @ x, = 1 if and only if ax; + fx, = 6. The crucial point
is to note that the function of addition modulo 2 is symmetric;
therefore, we must also have x; @ x, = 1 if and only if fix; + ax,
= 6, and, so, adding together the two terms, we have x; ® x, = 1
if and only if (2)(a + P)(x; + x,) = 0. Writing (2)(a + p) as
7, we see that we have reduced three putative parameters «, f3, and
0 to just two, namely y and 0.

We now set t = x; + x, and look at the polynomial yr — 6. It
is a degree 1 polynomial, but note: at t = 0, yr — 0 must be less
than zero (0 D 0 = 0); at r = 1, it is greater than or equal to zero
OD1 =100 = 1);and at ¢ = 2, it is again less than zero (1
@ 1 = 0). This is a contradiction—a polynomial of degree 1 cannot
change sign from positive to negative more than once. We conclude
that there is no such polynomial, and thus that there is no threshold
element which will add modulo 2.

We now understand a general method used again and again by
Minsky and Papert: start with a pattern-classification problem. Ob-
serve that certain symmetries leave it invariant. For instance, for
the parity problem (is the number of active elements even or odd?),
which includes the case of addition modulo 2 when the retina has
only two units, any permutation of the points of the retina would
leave the classification unchanged. Use this to reduce the number
of parameters describing the circuit. Then lump items together to
get a polynomial and examine actual patterns to put a lower bound
on the degree of the polynomial, fixing things so that this degree
bounds the number of inputs to the response unit of a simple
perceptron.

Minsky and Papert provide many interesting theorems (for the
proof of an illustrative sample, see Arbib, 1987, pp. 82-84). As
just one example, we may note that they prove that the parity func-
tion requires preprocessors big enough to scan the whole retina if
the preprocessors can only be followed by a single McCulloch-
Pitts neuron. By contrast, to tell whether the number of active reti-
nal inputs reaches a certain threshold only requires two inputs per
neuron in the first layer. (For other complexity results, see the ar-
ticles listed in the road map Computability and Complexity.)

Gradient Descent and Credit Assignment

The implication of the results on “network complexity” is clear: if
we limit the complexity of the units in a neural network, then in
general we will need many layers, rather than a single layer, if the
network is to have any chance of being trained to realize many
“interesting” functions. This conclusion motivates the study of
training rules for multilayer perceptrons, of which the most widely
used is backpropagation. Before describing this method, we first
discuss two general notions of which it is an important exemplar:
gradient descent and credit assignment.

In discussing Hopfield networks, we introduced the metaphor of
an “energy landscape” (see Figure 6). The asynchronous updates
move the state of the network (the vector of neural activity levels)
“downhill,” tending toward a local energy minimum. Our task now
is to realize that the metaphor works again on a far more abstract
level when we consider learning. In learning, the dynamic variable
is not the network state, but rather the vector of synaptic weights
(or whatever other set of network parameters is adjusted by the

learning rules). We now conduct gradient descent in weight space.
At each step, the weights are adjusted in such a way as to improve
the performance of the network. (As in the case of the simple per-
ceptron, the improvement is a “local” one based on the current
situation. It is, in this case, a matter for computer simulation to
prove that the cumulative effect of these small changes is a network
which solves the overall problem.)

But how do we recognize which “direction” in weight space is
“downhill”? Suppose success is achieved by a complex mechanism
after operating over a considerable period of time (for example,
when a chess-playing program wins a game). To what particular
decisions made by what particular components should the success
be attributed? And, if failure results, what decisions deserve blame?
This is closely related to the problem known as the “mesa” or
“plateau” problem (Minsky, 1961). The performance evaluation
function available to a learning system may consist of large level
regions in which gradient descent degenerates to exhaustive search,
so that only a few of the situations obtainable by the learning sys-
tem and its environment are known to be desirable, and these sit-
uations may occur rarely.

One aspect of this problem, then, is the femporal credit assign-
ment problem. The utility of making a certain action may depend
on the sequence of actions of which it is a part, and an indication
of improved performance may not occur until the entire sequence
has been completed. This problem was attacked successfully in
Samuel’s (1959) learning program for playing checkers. The idea
is to interpret predictions of future reward as rewarding events
themselves. In other words, neutral stimulus events can themselves
become reinforcing if they regularly occur before events that are
intrinsically reinforcing. Such temporal difference learning (see
REINFORCEMENT LEARNING) is like a process of erosion: the origi-
nal uninformative mesa, where only a few sink holes allow gradient
descent to a local minimum, is slowly replaced by broader valleys
in which gradient descent may successfully proceed from many
different places on the landscape.

Another aspect of credit assignment concerns structural factors.
In the simple perceptron, only the weights to the output units are
to be adjusted. This architecture can only support maps which are
linearly separable as based on the patterns presented by the pre-
processors, and we have seen that many interesting problems re-
quire preprocessing units of undue complexity to achieve linear
separability. We thus need multiple layers of preprocessors, and,
since one may not know a priori the appropriate set of preproces-
sors for a given problem, these units should be trainable too. This
raises the question, “How does a neuron deeply embedded within
a network ‘know’ what aspect of the outcome of an overall action
was ‘its fault’?” This is the structural credit assignment problem.
In the next section, we shall study the most widely used solution
to this problem, called backpropagation, which propagates back to
a hidden unit some measure of its responsibility.

Backpropagation is an “adaptive architecture™: it is not just a
local rule for synaptic adjustment; it also takes into account the
position of a neuron in the network to indicate how the neuron’s
weights are to change. (In this sense, we may see the use of lateral
inhibition to improve Hebbian learning as the first example of an
adaptive architecture in these pages.) This adaptive architecture is
an example of “neurally inspired” modeling, not modeling of actual
brain structures; and there is no evidence that backpropagation rep-
resents actual brain mechanisms.

Backpropagation

The task of backpropagation is to train a multilayer (feedforward)
perceptron (or MLP), a loop-free network which has its units ar-
ranged in layers, with a unit providing input only to units in the
next layer of the sequence. The first layer comprises fixed input
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22 Part I: Background

units; there may then be several layers of trainable “hidden units”
carrying an internal representation, and finally, there is the layer of
output units, also trainable. (A simple perceptron then corresponds
to the case in which we view the input units as fixed associator
units, i.e., they deliver a preprocessed, rather than a “raw,” pattern
which connect directly to the output units without any hidden units
in between.) For what follows, it is crucial that each unit not be
binary: it has both input and output taking continuous values in
some range, say [0, 1]. The response is a sigmoidal function of the
weighted sum. Thus, if a unit has inputs x; with corresponding
weights wy, the output x; is given by x; = f(Xwx,), where f; is a
sigmoidal function, say

1
1 + 67()( + 0)

with 6, being a bias or threshold for the unit.
The environment only evaluates the output units. We are given
a training set of input patterns p and corresponding desired target
patterns #” for the output units. With o the actual output pattern
elicited by input p, the aim is to adjust the weights in the network
to minimize the error
E= X > =R

patterns p output neurons k

filx) =

Rumelhart, Hinton, and Williams (1986) were among those who
devised a formula for propagating back the gradient of this evalu-
ation from a unit to its inputs. This process can continue by back-
propagation through the entire net. The scheme seems to avoid
many false minima. At each trial, we fix the input pattern p and
consider the corresponding “restricted error”

E = ; (t — o)’

where k ranges over designated “output units.” The net has many
units interconnected by weights Wy, The learning rule is to change
w;; 80 as to reduce E by gradient descent:
Aw; = _E 22 (4 - 01\»)%
awy; 2 awy;
Consider a net divided into m + 1 layers, with nets in layer g
+ 1 receiving all their inputs from layer g; with layer O comprising
the input units; and layer m comprising the output units. If i is an
output unit (remember, w;; connects from j to i) then the only non-
zero term in the last equation has k = i. Now o, = Zw;0; where
w;; 7 0 only for o; which are outputs from the previous layer. We
thus have

af;(z Wilornl)

Aw;: = 2(t; — o;
Wij (¢ 07) o

=2t — o)fio;
y
where f is the derivative of the activation function evaluated at
the activation level in; = Zw;o; to unit i. Thus Aw;; for an output
unit i is proportional to J,0;, where 6; = (t; — 0)f .

Next, suppose that i is a hidden unit whose output drives only
output units:

afk(E wk,O,)

aw;;

However, the only o, that depends on wy; is 0;, and so

3fk<2 Wklol) Bfk(z Wk101> 5
0!

B do, WU = [fwvul - [fio]

oL f kWil - [f;oj]-

Aw; =2 2 (t, — 0p)
k

Iwy;

so that Aw; = 22(t, —

Recalling that 6, = (t, — o,)f for an output unit k, we may
rewrite this as

AWz;f = 2(2 (5kwki>f i/oj
k

Thus, Aw,; is proportional to d,0;, with 6; = (Zdwy,) f |, where
k runs over all units which receive unit i’s output. More generally,
we can prove the following, by induction on how many layers back
we must go to reach a unit:

Proposition. Consider a layered loop-free net with error E =
St — 0y)% where k ranges over designated “output units,” and
let the weights w;; be changed according to the gradient descent
rule
doy
0,) —X
%) oy
Then the weights may be changed inductively, working back
from the output units, by the rule

Aw

ij:

—dElow; = 2 2 (1, —
k

Aw;; is proportional to J,0;

where:

Basis Step: 0; = (t; — o,)f | for an output unit.

Induction Step: If i is a hidden unit, and if J, is known for all
units that receive unit i’s output, then 6; = (Z,0,w;,)f i, where k
runs over all units which receive unit i’s output.

Thus the “error signal” d; propagates back layer by layer from
the output units. In X,0,w,, unit i receives error propagated back
from a unit k to the extent to which i affects k. For output units,
this is essentially the delta rule given by Widrow and Hoff (1960)
(see PERCEPTRONS, ADALINES, AND BACKPROPAGATION).

The theorem just presented tells us how to compute Aw,; for
gradient descent. It does not guarantee that the above step-size is
appropriate to reach the minimum, nor does it guarantee that the
minimum, if reached, is global. The backpropagation rule defined
by this proposition is, thus, a heuristic rule, not one guaranteed to
find a global minimum, but is still perhaps the most diversely used
adaptive architecture. Many other approaches to learning, including
some which are “neural-like” in at best a statistical sense, rather
than being embedded in adaptive neural networks, may be found
in the road map Learning in Artificial Networks (not just neural
networks).

A Cautionary Note

The previous subsections have introduced a number of techniques
that can be used to make neural networks more adaptive. In a typ-
ical training scenario, we are given a network N which, in response
to the presentation of any x from some set of input patterns, will
eventually settle down to produce a corresponding y from the set
Y of the network’s output patterns. A training set is then a sequence
of pairs (xg, y,) from X X Y, 1 = k = n. The foregoing results say
that, in many cases (and the bounds are not yet well defined), if we
train the net with repeated presentations of the various (x, y;), it
will converge to a set of connections which cause N to compute a
function f: X — Y with the property that, over the set of k’s from
1 to n, the f(x) “correlate fairly well” with the y,. Of course, there
are many other functions g: X — Y such that the g(x;) “correlate
fairly well” with the y,, and they may differ wildly on those “tests”
x in X that do not equal an x;, in the training set. The view that one
may simply present a trainable net with a few examples of solved
problems, and it will then adjust its connections to be able to solve
all problems of a given class, glosses over three main issues:

(a) Complexity: Is the network complex enough to encode a so-
lution method?
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[.3. Dynamics and Adaptation in Neural Networks 23

(b) Practicality: Can the net achieve such a solution within a fea-
sible period of time? and

(c) Efficacy: How do we guarantee that the generalization achieved
by the machine matches our conception of a useful solution?

Part III provides many “snapshots” of the research underway to
develop answers to these problems (for the “state of play” see, for
example, LEARNING AND GENERALIZATION: THEORETICAL
Bounps; PAC LEARNING AND NEURAL NETWORKS; and VAPNIK-
CHERVONENKIS DIMENSION OF NEURAL NETWORKS). Nonetheless,
it is clear that these training techniques will work best when train-
ing is based on an adaptive architecture and an initial set of weights
appropriate to the given problem. Future work on the neurally in-
spired design of intelligent systems will involve many domain-
specific techniques for system design, such as those exemplified in
the road maps Vision and Robotics and Control Theory, as well
as general advances in adaptive architectures.

Envoi

With this, our tour of some of those basic landmarks of Brain
Theory and Neural Networks established by 1986 is complete. I
now invite each reader to follow the suggestions of the section
“How to Use this Book” of the Handbook to begin exploring the
riches of Part III, possibly with the guidance of a number of the
road maps in Part II.

Acknowledgments. All of Part I is a lightly edited version of
Part I as it appeared in the first edition of the Handbook. Section
I.1 is based in large part on material contained in Section 2.3 of
Arbib (1989), while Section 1.3 is based on Sections 3.4 and 8.2.
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IL.1. The Meta-Map 27

How to Use Part II

Part II provides a guided tour of our subject in the form of 22 road
maps, each of which provides an overview of a single theme in
brain theory and neural networks and offers a précis of Part III
articles related to that theme. The road maps are grouped under
eight general headings:

Grounding Models of Neurons and Networks
Brain, Behavior, and Cognition

Psychology, Linguistics, and Artificial Intelligence
Biological Neurons and Networks

Dynamics and Learning in Artificial Networks
Sensory Systems

Motor Systems

Applications, Implementations, and Analysis

Part II starts with the meta-map (Section 1I.1), which is designed
to give some sense of the diversity yet interconnectedness of the
themes taken up in this Handbook by quickly surveying the 22
different road maps. We then offer eight sections, one for each of

II.1. The Meta-Map

There is no one best path for the study of brain theory and neural
networks, and you should use the meta-map simply to get a broad
overview that will help you choose a path that is pleasing, or useful,
to you.

Grounding Models of Neurons and Networks

Grounding Models of Neurons
Grounding Models of Networks

The articles surveyed in these two road maps can be viewed as
continuing the work of Part I, providing the reader with a basic
understanding of the models of both biological and artificial neu-
rons and neural networks that are developed in the 285 articles in
Part III. The road maps will help each reader decide which of these
articles provide necessary background for their own reading of the
Handbook.

Brain, Behavior, and Cognition

Neuroethology and Evolution
Mammalian Brain Regions
Cognitive Neuroscience

The road map Neuroethology and Evolution places the following
road map, Mammalian Brain Regions, in a dual perspective. First,
by reviewing work on modeling neural mechanisms of the behavior
of a variety of nonmammalian animals, it helps us understand the
wealth of subtle neural computations available in other species,
enriching our study of nervous systems that are closer to that of
humans. When we focus on ethology (animal behavior), we often
study the integration of perception and action, thus providing a
useful complement to the many articles that focus on a subsystem
in relative isolation. Second, by offering a number of articles on
both biological and artificial evolution, we take the first steps in
understanding the ways in which different neural architectures may
emerge across many generations. Turning to the mammalian brain,
we first look at Mammalian Brain Regions. We will also study

the above headings, that comprise the 22 road maps. In the road
maps, we depart from the convention used elsewhere in this text
whereby titles in capitals and small capitals are used for cross-
references to all other articles. In the road maps, we reserve capitals
and SMALL CAPITALS for articles on the tour, and we use titles in
quotation marks to refer to related articles that are not primary to
the current road map. We will use boldface type to refer to road
maps and other major sections in Part II.

Every article in Part III occurs in at least one road map, and a
few articles appear in two or even three road maps. Clearly, certain
articles unequivocally have a place in a given road map, but as I
considered articles that were less central to a given theme, my
decisions on which articles to include became somewhat arbitrary.
Thus, I invite you to read each road map to get a good overview
of the main themes of each road map, and then continue your ex-
ploration by browsing Part III and using the articles listed under
Related Reading and the index of the Handbook to add your own
personal extensions to each map.

the role of these brain regions in other road maps as we analyze
such functions as vision, memory, and motor control. We shall see
that every such function involves the “cooperative computation” of
a multiplicity of brain regions. However, Mammalian Brain Re-
gions reviews those articles that focus on a single brain region and
give some sense of how we model its contribution to key neural
functions. The road map Cognitive Neuroscience then pays special
attention to a range of human cognitive functions, including per-
ception, action, memory, and language, with emphasis on the range
of data now available from imaging of the active human brain and
the challenges these data provide for modeling.

Psychology, Linguistics, and Artificial Intelligence

Psychology
Linguistics and Speech Processing
Artificial Intelligence

Our next three road maps—Psychology, Linguistics and Speech
Processing, and Artificial Intelligence—are focused more on the
effort to understand human psychology than on the need to under-
stand the details of neurobiology. For example, the articles on Psy-
chology may overlap those on Cognitive Neuroscience, but over-
all the emphasis shifts to “connectionist” models in which the
“neurons” rarely correspond to the actual biological neurons of the
human brain (the underlying structure). Rather, the driving idea is
that the functioning of the human mind (the functional expression
of the brain’s activity) is best explored through a parallel, adaptive
processing methodology in which large populations of elements
are simultaneously active, pass messages back and forth between
each other, and can change the strength of their connections as they
do so. This is in contrast to the serial computing methodology,
which is based on the computing paradigm that was dominant from
the 1940s through the 1970s and that now is complemented in
mainstream computer science by work in grid-based computing,
embedded systems, and teams of intelligent agents.

In short, connectionist approaches to psychology and linguistics
use “neurons” that are more like the artificial neurons used to build
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28 Part II: Road Maps

new applications for parallel processing than they are like the real
neurons of the living brain.

In dividing this introduction to connectionism into three themes,
I have first distinguished those aspects of connectionist psychology
that relate to perception, memory, emotion, and other aspects of
cognition in general from those specifically involved in connec-
tionist linguistics before turning to artificial intelligence. The road
map Psychology also contains articles that address philosophical
issues in brain theory and connectionism, including the notion of
consciousness, as well as articles that approach psychology from a
developmental perspective. The road map Linguistics and Speech
Processing presents connectionist models of human language per-
formance as well as approaches (some more neural than others) to
technologies for speech processing. The central idea in connec-
tionist linguistics is that rich linguistic representations can emerge
from the interaction of a relatively simple learning device and a
structured linguistic environment, rather than requiring the details
of grammar to be innate, captured in a genetically determined uni-
versal grammar. The road map Artificial Intelligence presents ar-
ticles whose themes are similar to those in Psychology in what
they explain, but are part of artificial intelligence (AI) because the
attempt is to get a machine to exhibit some intelligent-like behav-
ior, without necessarily meeting the constraints imposed by exper-
imental psychology or psycholinguistics. “Classical” symbolic Al
is contrasted with a number of methods in addition to the primary
concentration on neural network approaches. The point is that,
whereas brain theory seeks to know “how the brain does it,” Al
must weigh the value of artificial neural networks (ANNs) as a
powerful technology for parallel, adaptive computation against that
of other technologies on the basis of efficacy in solving practical
problems on available hardware. The reader will, of course, find a
number of models that are of equal interest to psychologists and to
Al researchers.

The articles gathered in these three road maps will not exhaust
the scope of their subject matter, for at least two reasons. First, in
addition to connectionist models of psychological phenomena,
there are many biological models that embody genuine progress in
relating the phenomena to known parts of the brain, perhaps even
grounding a phenomenon in the behavior of identifiable classes of
biological neurons. Second, while Artificial Intelligence will focus
on broad thematic issues, a number of these also appear in applying
neural networks in computer vision, speech recognition, and else-
where using techniques elaborated in articles of the road map
Learning in Artificial Networks.

Biological Neurons and Networks

Biological Neurons and Synapses
Neural Plasticity

Neural Coding

Biological Networks

The next four road maps, Biological Neurons and Synapses, Neu-
ral Plasticity, Neural Coding, and Biological Networks, are ones
that, for many readers, may provide the appropriate entry point for
the book as a whole, namely, an understanding of neural networks
from a biological point of view. The road map Biological Neurons
and Synapses gives us some sense of how sophisticated real bio-
logical neurons are, with each patch of membrane being itself a
subtle electrochemical structure. An appreciation of this complex-
ity is necessary for the computational neuroscientist wishing to
address the increasingly detailed database of experimental neuro-
science on how signals can be propagated, and how individual neu-
rons interact with each other. But such complexity may also pro-
vide an eye opener for the technologist planning to incorporate new
capabilities into the next generation of ANNs. The road map Neu-
ral Plasticity then charts from a biological point of view a variety

of specific mechanisms at the level of synapses, or even finer-
grained molecular structures, which enable the changes in the
strength of connections that underlie both learning and develop-
ment. A number of such mechanisms have already implied a variety
of learning rules for ANNs (see Learning in Artificial Networks),
but they also include mechanisms that have not seen technological
use. This road map includes articles that analyze mechanisms that
underlie both development and regeneration of neural networks and
learning in biological systems. However, I again stress to the reader
that one may approach the road maps, and the articles in Part III
of this Handbook, in many different orders, so that some readers
may prefer to study the articles described in the road map Learning
in Artificial Networks before or instead of studying those on neu-
robiological learning mechanisms.

Two more road maps round out our study of Biological Neurons
and Networks. The simplest models of neurons either operate on
a discrete-time scale or measure neural output by the continuous
variation in firing rate. The road map Neural Coding examines the
virtues of other alternatives, looking at both the possible gains in
information that may follow from exploiting the exact timing of
spikes (action potentials) as they travel along axonal branches from
one neuron to many others, and the way in which signals that may
be hard to discern from the firing of a single neuron may be reliably
encoded by the activity of a whole population of neurons. We then
turn to articles that chart a number of the basic architectures
whereby biological neurons are combined into Biological Net-
works—although clearly, this is a topic expanded upon in many
articles in Part III which are not explicitly presented in this road
map.

Dynamics and Learning in Artificial Networks

Dynamic Systems
Learning in Artificial Networks
Computability and Complexity

The next three road maps—Dynamic Systems, Learning in Ar-
tificial Networks, and Computability and Complexity—provide
a broad perspective on the dynamics of neural networks considered
as general information processing structures rather than as models
of a particular biological or psychological phenomenon or as so-
lutions to specific technological problems. Our study of Dynamic
Systems is grounded in studying the dynamics of a neural network
with fixed inputs: does it settle down to an equilibrium state, and
to what extent can that state be seen as the solution of some problem
of optimization? Under what circumstances will the network ex-
hibit a dynamic pattern of oscillatory behavior (a limit cycle), and
under what circumstances will it undergo chaotic behavior (tra-
versing what is known as a strange attractor)? This theme is ex-
panded by the study of cooperative phenomena. In a gas or a mag-
net, we do not know the behavior of any single atom with precision,
but we can infer the overall “cooperative” behavior—the pressure,
volume, and temperature of a gas, or the overall magnetization of
a magnet—through statistical methods, methods which even extend
to the analyses of such dramatic phase transitions as that of a piece
of iron from an unmagnetized lump to a magnet, or of a liquid to
a gas. So, too, can statistical methods provide insight into the large-
scale properties of neural nets, abstracting away from the detailed
function of individual neurons, when our interest is in statistical
patterns of behavior rather than the fine details of information pro-
cessing. This leads us to the study of self-organization in neural
networks, in which we ask for ways in which the interaction be-
tween elements in a neural network can lead to the spontaneous
expression of pattern; whether this pattern is constituted by the
pattern of activity of the individual neurons or by the pattern of
synaptic connections which records earlier experience.
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With this question of earlier experience, we have fully made the
transition to the study of learning, and we turn to the road map
which focuses on Learning in Artificial Networks, complement-
ing the road map Neural Plasticity. (This replaces two road maps
from the first edition—Learning in Artificial Neural Networks, De-
terministic, and Learning in Artificial Neural Networks, Statisti-
cal—for two reasons: (1) the use of statistical methods in the study
of learning in ANNSs is so pervasive that the attempt to distinguish
deterministic and statistical approaches to learning is not useful,
and (2) the statistical analysis of learning in ANNSs has spawned a
variety of statistical methods that are less closely linked to neuro-
biological inspiration, and we wish these, too, to be included in our
road map.) The study of Computability and Complexity then pro-
vides a rapprochement between neural networks and a number of
ideas developed within the mainstream of computer science, es-
pecially those arising from the study of complexity of computa-
tional structures. Indeed, it takes us back to the very foundations
of the theory of neural networks, in which the study of McCulloch-
Pitts neurons built on earlier work on computability to inspire the
later development of automata theory.

Sensory Systems
Vision
Other Sensory Systems

Vision has been the most widely studied of all sensory systems,
both in brain theory and in applications and analysis of ANNs, and
thus has a special road map of its own. Other Sensory Systems,
treated at less length in the next road map, include audition, touch,
and pain, as well a number of fascinating special systems such as
electrolocation in electric fish and echolocation in bats.

Motor Systems

Robotics and Control Theory
Motor Pattern Generators
Mammalian Motor Control

The next set of road maps—Robotics and Control Theory, Motor
Pattern Generators, and Mammalian Motor Control—ad-
dresses the control of movement by neural networks. In the study
of Robotics and Control Theory, the adaptive properties of neural
networks play a special role, enabling a control system, through
experience, to become better and better suited to solve a given
repertoire of control problems, guiding a system through a desired
trajectory, whether through the use of feedback or feedforward.
These general control strategies are exemplified in a number of
different approaches to robot control. The articles in the road map
Motor Pattern Generators focus on subconscious functions, such
as breathing or locomotion, in vertebrates and on a wide variety of

pattern-generating activity in invertebrates. The reader may wish
to turn back to the road map Neuroethology and Evolution for
other studies in animal behavior (neuroethology) which show how
sensory input, especially visual input, and motor behavior are in-
tegrated in a cycle of action and perception. Mammalian Motor
Control places increased emphasis on the interaction between neu-
ral control and the kinematics or dynamics of limbs and eyes, and
also looks at various forms of motor-related learning. In showing
how the goals of movement can be achieved by a neural network
through the time course of activity of motors or muscles, this road
map overlaps some of the issues taken up in the more applications-
oriented road map, Robotics and Control Theory. Much of the
material on biological motor control is of general relevance, but
the road map also includes articles on primate motor control that
examine a variety of movements of the eyes, head, arm, and hand
which are studied in a variety of mammals but are most fully ex-
pressed in primates and humans. Of course, as many readers will
be prepared to notice by now, Mammalian Motor Control will,
for some readers, be an excellent starting place for their study,
since, by showing how visual and motor systems are integrated in
a number of primate and human behaviors, it motivates the study
of the specific neural network mechanisms required to achieve
these behaviors.

Applications, Implementations, and Analysis

Applications
Implementation and Analysis

We then turn to a small set of Applications of neural networks,
which include signal processing, speech recognition, and visual
processing (but exclude the broader set of applications to astron-
omy, speech recognition, high-energy physics, steel making, tele-
communications, etc., of the first edition, since The Handbook of
Neural Computation [Oxford University Press, 1996] now provides
a large set of articles on ANN applications). Since a neural network
cannot be applied unless it is implemented, whether in software or
hardware, we close with the road map Implementation and Anal-
ysis. The implementation methodologies include simulation on a
general-purpose computer, emulation on specially designed neu-
rocomputers, and implementation in a device built with electronic
or photonic materials. As for analysis, we present articles in the
nascent field of neuroinformatics which combines database meth-
odology, visualization, modeling, and data analysis in an attempt
to master the explosive growth of neuroscience data. (In Europe,
the term neuroinformatics is used to encompass the full range of
computational approaches to brain theory and neural networks. In
the United States, some people use neuroinformatics to refer solely
to the use of databases in neuroscience. Here we focus on the mid-
dle ground, where the analysis of data and the construction of mod-
els are brought together.)

I1.2. Grounding Models of Neurons and Networks

The first two road maps expand the exposition of Part I by pre-
senting basic models of neurons and networks that provide the
building blocks for many of the articles in Part III.

Grounding Models of Neurons

AXONAL MODELING
DENDRITIC PROCESSING

HEBBIAN SYNAPTIC PLASTICITY

PERCEPTRONS, ADALINES, AND BACKPROPAGATION
PERSPECTIVE ON NEURON MODEL COMPLEXITY
REINFORCEMENT LEARNING

SINGLE-CELL MODELS

SPIKING NEURONS, COMPUTATION WITH

This road map introduces classes of neuron models of increasing
complexity and attention to detail. The point is that much can be
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learned even at high degrees of abstraction, while other phenomena
can be understood only by attention to subtle details of neuronal
function. The reader of this Handbook will find many articles ex-
ploring biological phenomena and technological applications at dif-
ferent levels of complexity. The implicit questions will always be,
“Do all the details matter?” and “Is the model oversimplified?”” The
answers will depend both on the phenomena under question and
on the current subtlety of experimental investigations. After intro-
ducing articles that present neuron models across the range of
model complexity, the road map concludes with a brief look at the
most widely analyzed forms of synaptic plasticity.

Classes of neuron models can be defined by how they treat the
train of action potentials issued by a neuron (see the road map
Neural Coding). Many models assume that information is carried
in the average rate of pulses over a time much longer than a typical
pulse width, with the occurrence times of particular pulses simply
treated as jitter on an averaged analog signal. A neural model in
such a theory might be a mathematical function which produces a
real-valued output from its many real-valued inputs; that function
could be linear or nonlinear, static or adaptive, and might be in-
stantiated in analog silicon circuits or in digital software. Examples
given of such models in SINGLE-CELL MODELS are the McCulloch-
Pitts model, the perceptron model, Hopfield neurons, and polyno-
mial neurons. However, some models assume that each single neu-
ral pulse carries reliable, precisely timed information. A neural
model in such a theory fires only upon the exact coincidence of
several input pulses, and quickly “forgets” when it last fired, so
that it is always ready to fire upon another coincidence. The sim-
plest such models are the integrate-and-fire models. The article con-
cludes by briefly introducing the Hodgkin-Huxley model of squid
axon, based on painstaking analysis (without benefit of electronic
computers) of data from the squid giant axon, and then introduces
modified single-point models, compartmental models, and com-
putation with both passive dendrites and active dendrites. SPIKING
NEURONS, COMPUTATION WITH provides more detail on those neu-
ron models of intermediate complexity in which the output is a
spike whose timing is continuously variable as a result of cellular
interactions, providing a model of biological neurons that offers
more details than firing rate models but without the details of bio-
physical models. The virtues of such models include the ability to
transmit information very quickly through small temporal differ-
ences between the spikes sent out by different neurons. Information
theory can be used to quantify how much more information about
a stimulus can be extracted from spike trains if the precise timing
is taken into account. Moreover, computing with spiking neurons
may prove of benefit for technology.

AXONAL MODELING is centered on the Hodgkin and Huxley
model, arguably the most successful model in all of computational
neuroscience. The article shows how the Hodgkin-Huxley equa-
tions extend the cable equation to describe the ionic mechanisms
underlying the initiation and propagation of action potentials. The
vast majority of contemporary biophysical models use a mathe-
matical formalism similar to that introduced by Hodgkin and Hux-
ley, even though their model of the continuous, deterministic, and
macroscopic permeability changes of the membrane was achieved
without any knowledge of the underlying all-or-none, stochastic,
and microscopic ionic channels. The article also describes the dif-
ferences between myelinated and nonmyelinated axons; and briefly
discusses the possible role of heavily branched axonal trees in in-
formation processing.

PERSPECTIVE ON NEURON MODEL COMPLEXITY then shows how
this type of modeling might be extended to the whole cell. The key
point is that one neuron with detailed modeling of dendrites (es-
pecially with nonuniform distributions of synapses and ion chan-
nels) can perform tasks that would require a network of many sim-
ple binary units to duplicate. The point is not to choose the most

complex model of a neuron but rather to seek an intermediate level
of complexity which preserves the most significant distinctions be-
tween different “compartments” of the neuron (soma, various por-
tions of the dendritic tree, etc.). The challenge is to demonstrate a
useful computation or discrimination that can be accomplished
with a particular choice of compartments in a neuron model, and
then show that this useful capacity is lost when a coarser decom-
position of the neuron is used. DENDRITIC PROCESSING especially
emphasizes developments in compartmental modeling of dendrites,
arguing that we are in the midst of a “dendritic revolution” that has
yielded a much more fascinating picture of the electrical behavior
and chemical properties of dendrites than one could have imagined
only a few years ago. The dendritic membrane hosts a variety of
nonlinear voltage-gated ion channels that endow dendrites with po-
tentially powerful computing capabilities. Moreover, the classic
view of dendrites as carrying information unidirectionally, from
synapses to the soma, has been transformed: dendrites of many
central neurons also carry information in the “backward” direction,
via active propagation of the action potentials from the axon to the
dendrites. These “reversed” signals can trigger plastic changes in
the dendritic input synapses. Moreover, it is now known that the
fine morphology as well as the electrical properties of dendrites
change dynamically, in an activity-dependent manner.

If the most successful model in all of computational neurosci-
ence is the Hodgkin-Huxley model, then the second most success-
ful is Hebb’s model of “unsupervised” synaptic plasticity. The for-
mer was based on rigorous analysis of empirical data; the latter was
initially the result of theoretical speculation on how synapses might
behave if assemblies of cells were to work together to store and
reconstitute thoughts and associations. HEBBIAN SYNAPTIC PLAS-
TICITY notes that predictions derived from Hebb’s postulate can be
generalized for different levels of integration (synaptic efficacy,
functional coupling, adaptive change in behavior) by simply ad-
justing the variables derived from various measures of neural ac-
tivity and the time-scale over which it operates. The article ad-
dresses five major issues: Should the definition of “Hebbian”
plasticity refer to a simple positive correlational rule of learning,
or are there biological justifications for including additional
“pseudo-Hebbian” terms (such as synaptic depression due to disuse
or competition) in a generalized phenomenological algorithm?
What are the spatiotemporal constraints (e.g., input specificity, tem-
poral associativity) that characterize the induction process? Do the
predictions of Hebbian-based algorithms account for most forms
of activity-dependent dynamics in synaptic transmission through-
out phylogenesis? On which time-scales (perception, learning, ep-
igenesis) and at which stage of development of the organism (em-
bryonic, “critical” postnatal developmental periods, adulthood) are
activity-dependent changes in functional links predicted by Hebb’s
rule? Are there examples of correlation-based plasticity that con-
tradict the predictions of Hebb’s postulate (termed anti-Hebbian
modifications)? The article thus frames many important issues to
be developed in the articles of the road map Neural Plasticity but
that are also implicit, for example, in articles reviewed in the road
maps Psychology and Linguistics and Speech Processing, in
which Hebbian (and other) learning rules are used for “formal neu-
rons” that are psychological abstractions rather than representation
of real neurobiological neurons or even biological neuron pools.
Two other articles serve to introduce the basic learning rules that
have been most central in both biological analysis and connection-
ist modeling. Supervised learning adjusts the weights in an attempt
to respond to explicit error signals provided by a “teacher,” which
may be external, or another network in the same “brain.” This
model was introduced in the perceptron model, which is reviewed
in PERCEPTRONS, ADALINES, AND BACKPROPAGATION (of which
more details in the next road map, Grounding Models of Net-
works). On the other hand, REINFORCEMENT LEARNING (of which
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more details in the road map Learning in Artificial Networks)
shows how networks can improve their performance when given
general reinforcement (“that was good,” “that was bad”) by a critic,
rather than the explicit error information offered by a teacher.

Grounding Models of Networks

ASSOCIATIVE NETWORKS

COMPUTING WITH ATTRACTORS

PERCEPTRONS, ADALINES, AND BACKPROPAGATION
RADIAL BAsIS FUNCTION NETWORKS
SELF-ORGANIZING FEATURE MAPS

SPIKING NEURONS, COMPUTATION WITH

The mechanisms and implications of association—the linkage of
information with other information—have a long history in psy-
chology and philosophy. ASSOCIATIVE NETWORKS discusses as-
sociation as realized in neural networks as well as association in
the more traditional senses. Many neural networks are designed as
pattern associators, which link an input pattern with the “correct”
output pattern. Learning rules are designed to construct useful link-
ages between input and output patterns whether in feedforward
neural network architectures or in a network whose units are re-
currently interconnected. Special attention is given to the critical
importance of data representation at all levels of network operation.
PERCEPTRONS, ADALINES, AND BACKPROPAGATION introduces the
perceptron rule and the LMS (least-mean-squares) algorithm for
training feedforward networks with multiple adaptive elements,
where each element can be seen as an adaptive linear combiner of
its inputs followed by a nonlinearity which produces the output. It
then presents the major extension provided by the backpropagation
algorithm for training multilayer neural networks—which can be
viewed as dividing the input space into regions bounded by hy-
perplanes, one for the thresholded output of each neuron of the
output layer—and shows how this technique has been used to at-
tack problems requiring neural networks with high degrees of non-
linearity and precision.

COMPUTING WITH ATTRACTORS shows how neural networks (of-
ten seen now as operating in continuous time) may be viewed as
dynamic systems (a theme developed in great detail by the articles
of the road map Dynamic Systems). This article describes how to
compute with networks with feedback, with the input of a com-
putation being set as an initial state for the system and the result
read off a suitably chosen set of units when the network has “settled
down.” The state a dynamical system settles into is called an at-
tractor, so this paradigm is called computing with attractors. It is
possible to settle down into an equilibrium state, or into periodic
or even chaotic patterns of activity. (An interesting possibility, not
considered in this article, is to perform computations based on the
transient approach to the attractor, rather than on the basis of the
attractor alone.) The Hopfield model for associative memory is
used as the key example, showing its dynamic behavior as well as
how the connections necessary to embed desired patterns can be

learned and how the paradigm can be extended to time-dependent
attractors.

SELF-ORGANIZING FEATURE MAPS (SOFMs) introduces a fa-
mous version of competitive learning based on a layer of adaptive
“neurons” that gradually develops into an array of feature detectors.
The learning method is an augmented Hebbian method in which
learning by the element most responsive to an input pattern is
“shared” with its neighbors. The result is that the resulting “com-
pressed image” of the (usually higher-dimensional) input space
forms a “topographic map” in which distance relationships in the
input space (expressing, e.g., pattern similarities) are approximately
preserved as distance relationships between corresponding excita-
tion sites in the map, while clusters of similar input patterns tend
to become mapped to areas in the neural layer whose size varies in
proportion to the frequency of the occurrence of their patterns.
From a statistical point of view, the SOFM provides a nonlinear
generalization of principal component analysis.

SPIKING NEURONS, COMPUTATION WITH discusses both the use
of spiking neurons as a useful approximation to biological neurons
and the study of networks of spiking neurons as a formal model of
computation for which the assumptions need not be biological (see
also “Integrate-and-Fire Neurons and Networks”). If the spiking
neurons are not subject to significant amounts of noise, then one
can carry out computations in networks of spiking neurons where
every spike matters, and some finite network of spiking neurons
can simulate a universal Turing machine. Spiking neurons can also
be used as computational units that function like radial basis func-
tions in the temporal domain. Another code uses the order of firing
of different neurons as the relevant signal conveyed by these neu-
rons. Firing rates of neurons in the cortex are relatively low, making
it hard for the postsynaptic neuron to “read” the firing rate of a
presynaptic neuron. However, networks of spiking neurons can
carry out complex analog computations if the inputs of the com-
putation are presented in terms of a space rate or population code.

The last article in this road map gives an example of the utility
of studying networks in which the response properties of the in-
dividual units are designed not as abstractions from biological neu-
rons, but rather because their response functions have mathemati-
cally desirable properties. A multilayer perceptron can be viewed
as dividing the input space into regions bounded by hyperplanes,
one for the thresholded output of each neuron of the output layer.
RADIAL BAsis FUNCTION NETWORKS describes an alternative ap-
proach to decomposition of a pattern space into regions, describing
the clusters of data points in the space as if they were generated
according to an underlying probability density function. Thus the
perceptron method concentrates on class boundaries, while the ra-
dial basis function approach focuses on regions where the data
density is highest, constructing global approximations to functions
using combinations of basis functions centered around weight vec-
tors. The article shows that this approach not only has a range of
useful theoretical properties but also is practically useful, having
been applied efficiently to problems in discrimination, time-series
prediction, and feature extraction.

I1.3. Brain, Behavior, and Cognition

Neuroethology and Evolution

CoOMMAND NEURONS AND COMMAND SYSTEMS
CRUSTACEAN STOMATOGASTRIC SYSTEM

ECHOLOCATION: COCHLEOTOPIC AND COMPUTATIONAL MAPS
ELECTROLOCATION

EVOLUTION AND LEARNING IN NEURAL NETWORKS
EVOLUTION OF ARTIFICIAL NEURAL NETWORKS
EVOLUTION OF GENETIC NETWORKS

EVOLUTION OF THE ANCESTRAL VERTEBRATE BRAIN
HippoCAMPUS: SPATIAL MODELS
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LANGUAGE EVOLUTION AND CHANGE

LANGUAGE EVOLUTION: THE MIRROR SYSTEM HYPOTHESIS

LOCOMOTION, VERTEBRATE

LocusT FLIGHT: COMPONENTS AND MECHANISMS IN THE MOTOR

MOTOR PRIMITIVES

NEUROETHOLOGY, COMPUTATIONAL

OLFACTORY CORTEX

SCRATCH REFLEX

SENSORIMOTOR INTERACTIONS AND CENTRAL PATTERN
GENERATORS

SOUND LOCALIZATION AND BINAURAL PROCESSING

SPINAL CORD OF LAMPREY: GENERATION OF LOCOMOTOR
PATTERNS

VisUAL COURSE CONTROL IN FLIES

VISUOMOTOR COORDINATION IN FROG AND TOAD

VISUOMOTOR COORDINATION IN SALAMANDER

Many readers will come to the Handbook with one of two main
motivations: to understand the human brain, or to explore the po-
tential of ANNs as a technology for adaptive, parallel computation.
The present road map emphasizes a third motivation: to study neu-
ral mechanisms in creatures very different from humans and their
mammalian cousins—for the intrinsic interest of discovering the
diverse neural architectures that abound in nature, for the sugges-
tions these provide for future technology, and for the novel per-
spective on human brain mechanisms offered by seeking to place
them in an evolutionary perspective.

Ethology is the study of animal behavior, in which our concern
is with the circumstances under which a particular motor pattern
will be deployed as an appropriate part of the animal’s activity.
Neuroethology, then, is the study of neural mechanisms underlying
animal behavior. The emphasis is thus on an integrative, systems
approach to the neuroscience of the animal being studied, as dis-
tinct from a reductionist approach to, for example, the neurochem-
istry of synaptic plasticity. Of course, a major aim of this Handbook
is to create a context in which the reader can see both approaches
to the study of nervous systems and ponder how best to integrate
them. In particular, the reader will find many examples of the neu-
roethology of mammalian systems in a wide variety of other road
maps, such as Cognitive Neuroscience, Vision, Other Sensory
Systems, and Mammalian Motor Control. However, the present
road map is designed to guide the reader to articles on a number
of fascinating nonmammalian systems—as well as a few “exotic”
mammalian systems—as a basis for a brief introduction of the evo-
lutionary approach to biological and artificial neural networks.

NEUROETHOLOGY, COMPUTATIONAL suggests that computa-
tional neuroethology applies not only to animals but also to non-
biological autonomous agents, such as some types of robots and
simulated embodied agents operating in virtual worlds (see also
“Embodied Cognition”). The key element is the use of sophisti-
cated computer-based simulation and visualization tools to study
the neural control of behavior within the context of “agents” that
are both embodied and situated within an environment. Other ex-
amples include specific neuroethological modeling directed toward
specific animals (the computational frog Rana computatrix and the
computational cockroach Periplaneta computatrix) and their im-
plications for the rebirth of ideas first introduced by Grey Walter
in his 1950s design of Machina speculatrix and later developed in
the book Vehicles by Valentino Braitenberg.

If a certain interneuron is stimulated electrically in the brain of
a marine slug, the animal then displays a species-specific escape
swimming behavior, although no predator is present. If in a toad a
certain portion of the optic tectum is stimulated in this manner,
snapping behavior is triggered, although no prey is present. In both
cases, a stimulus produces a rapid ballistic response. Such com-
mand functions provide the sensorimotor interface between sensory

pattern recognition and localization, on the one side, and motor
pattern generation on the other. COMMAND NEURONS AND COM-
MAND SYSTEMS analyzes the extent to which a motor pattern gen-
erator (MPG) may be activated alone or in concert with others
through perceptual stimuli mediated by a single “command neu-
ron” (as in the marine slug) or by more diffuse “command systems”
(as in the toad). Three articles then focus specifically on visuomotor
coordination. VISUAL COURSE CONTROL IN FLIES explains the
mechanisms underlying the extraction of retinal motion patterns in
the fly, and their transformation into the appropriate motor activity.
Rotatory large-field motion can signal unintended deviations from
the fly’s course and initiate a compensatory turn; image expansion
can signal that the animal approaches an obstacle and initiates a
landing or avoidance response; and discontinuities in the retinal
motion field indicate nearby stationary or moving objects. Since
many of the cells responsible for motion extraction are large and
individually identifiable, the fly is quite amenable to an analysis of
sensory processing. Similarly, the small number of muscles and
motor neurons used to generate flight maneuvers facilitates studies
of motor output. VISUOMOTOR COORDINATION IN SALAMANDER
shows how low-level mechanisms add up to produce complicated
behaviors, such as the devious approach of salamanders to their
prey. Coarse coding models demonstrate how the location of an
object may be encoded with high accuracy using only a few neu-
rons with large, overlapping receptive fields. (This fits with the fact
that the brains of salamanders are anatomically the simplest among
vertebrates, containing only about 1 million neurons—frogs have
up to 10 times and humans 10 million times as many neurons.) The
models have been extended to the case where several objects are
presented to the animal by linking a segmentation network and a
winner-take-all-like object selection network to the coarse coding
network in a biologically plausible way. Compensation of back-
ground movement, selection of an object, saccade generation, and
approach and snapping behavior in salamanders have also been
modeled successfully, in line with behavioral and neurobiological
findings. Again, VISUOMOTOR COORDINATION IN FROG AND TOAD
stresses that visuomotor integration implies a complex transfor-
mation of sensory data, since the same locus of retinal activation
might release behavior directed toward the stimulus (as in prey
catching) or toward another part of the visual field (as in predator
avoidance). The article also shows how the efficacy of visual stim-
uli to release a response is determined by many factors, including
the stimulus situation, the motivational state of the organism itself,
and previous experience with the stimulus (learning and condition-
ing), and the physical condition of the animal’s CNS (e.g., brain
lesions). In addition, other types of sensory signals can modulate
frogs’ and toads’ response to certain moving visual stimuli. For
example, the efficacy of a visual stimulus may be greatly enhanced
by the presence of prey odor.

MOTOR PRIMITIVES and SCRATCH REFLEX are two of the articles
on nonmammalian animal behaviors that are described more fully
in the road map Motor Pattern Generators. These articles ex-
amine the behavior elicited in frogs and turtles, respectively, by an
irritant applied to the animal’s skin. The former article examines
the extent to which motor behaviors can be built up through a
combination of a small set of basic elements; the latter emphasizes
how the form of the scratch reflex changes dramatically, depending
on the locus of the irritant. Other articles in the road map Motor
Pattern Generators describe mechanisms underlying a variety of
forms of locomotion (swimming, walking, flying).

SOUND LOCALIZATION AND BINAURAL PROCESSING uses data
from owls, which are exquisitely skillful in using auditory signals
to locate their prey, even in the dark, to anchor models which ex-
plain how information from the two ears is brought together to
localize the source of a sound. The article focuses on the use of
interaural time difference (ITD) as one way to estimate the azi-
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muthal angle of a sound source. It describes one biological model
(ITD detection in the barn owl’s brainstem) and two psychological
models. The underlying idea is that the brain attempts to match the
sounds in the two ears by shifting one sound relative to the other,
with the shift that produces the best match assumed to be the one
that just balances the “real” ITD.

ECHOLOCATION: COCHLEOTOPIC AND COMPUTATIONAL MAPS
explores the highly specialized auditory system used by mustached
bats to analyze the return signals from the biosonar pulses they
emit for orientation and for hunting flying insects. Each biosonar
pulse consists of a long constant-frequency (CF) component fol-
lowed by a short frequency-modulated (FM) component. The CF
components constitute an ideal signal for target detection and the
measurement of target velocity (relative motion in a radial direction
and wing beats of insects), whereas the short FM components are
suited for ranging, localizing, and characterizing a target. The ar-
ticle shows how different parameters of echoes received by the bat
carry different types of information about a target and how these
may be structured in computational maps via parallel-hierarchical
processing of different types of biosonar signals. These maps guide
the bat’s behavior. ELECTROLOCATION discusses another “exotic”
sensory system related to behavior, this time the electrosensory
systems of weakly electric fish. Animals with active electrosensory
systems generate an electrical field around their body by means of
an electrical organ located in the trunk and tail, and measure this
field via electroreceptors embedded in the skin. Distortions of the
electrical field due to animate or inanimate targets in the environ-
ment or signals generated by other fish provide inputs to the system,
and several distinct behaviors can be linked to patterns of electro-
sensory input. The article focuses on progress in understanding
electrolocation behavior and on the neural implementation of an
adaptive filter that attenuates the effects of the fish’s own
movements.

We now turn to motor systems. CRUSTACEAN STOMATOGASTRIC
SYSTEM shows that work on the rhythmic motor patterns of the
four areas of the crustacean stomach, the esophagus, cardiac sac,
gastric mill, and pylorus, has identified four widely applicable
properties. First, rhythmicity in these highly distributed networks
depends on both network synaptic connectivity and slow active
neuronal membrane properties. Second, modulatory influences can
induce individual networks to produce multiple outputs, “switch”
neurons between networks, or fuse individual networks into single
larger networks. Third, modulatory neuron terminals receive net-
work synaptic input. Modulatory inputs can be sculpted by network
feedback and become integral parts of the networks they modulate.
Fourth, network synaptic strengths can vary as a function of pattern
cycle period and duty cycle.

The lamprey is a very primitive form of fish whose spinal cord
supports a traveling wave of activity that yields the swimming
movements of the animal’s body, yet also persists (“fictive swim-
ming”) when the spinal cord is isolated from the body and kept
alive in a dish. SPINAL CORD OF LAMPREY: GENERATION OF Lo-
COMOTOR PATTERNS reviews the data which ground a circuit dia-
gram for the spinal cord circuitry, then shows how the lamprey
locomotor network has been simulated. There are a number of neu-
romodulators present in the lamprey spinal cord that alter the output
of the locomotor network. These substances, such as serotonin,
dopamine, and tachykinins, offer good opportunities to test our
knowledge of the locomotor system by combining the cellular and
synaptic actions of the modulators into detailed network models.
However, models that do not depend on details of individual cells
have also proved useful in advancing our understanding of lamprey
locomotion such as the control of turning. Other models probe the
nature of the coupling among the rhythm generators, explaining
how it may be that the speed of the head-to-tail propagation of the
rhythmic activity down the spinal cord can vary with the speed of

swimming even though conduction delays in axons are fixed. Lo-
cusT FLIGHT: COMPONENTS AND MECHANISMS IN THE MOTOR
stresses that locust flight motor patterns are generated by an inter-
active mixture of the intrinsic properties of flight neurons, the
operation of complex circuits, and phase-specific proprioceptive
input. These mechanisms are subject to the concentrations of cir-
culating neuromodulators and are also modulated according to the
demands of a constantly changing sensory environment to produce
adaptive behaviors. The system is flexible and able to operate de-
spite severe ablations, and then to recover from these lesions. SEN-
SORIMOTOR INTERACTIONS AND CENTRAL PATTERN GENERATORS
analyzes basic properties of the biological systems performing sen-
sorimotor integration. The article discusses both the impact of sen-
sory information on central pattern generators and the less well-
understood influence of motor systems on sensory activity.
Interaction between motor and sensory systems is pervasive, from
the first steps of sensory detection to the highest levels of process-
ing. While there is no doubt that cortical systems contribute to
sensorimotor integration, the article questions the view that motor
cortex sends commands to a passively responsive spinal cord. Mo-
tor commands are only acted upon as spinal circuits integrate their
intrinsic activity with all incoming information.

Turning to evolution, we find two classes of articles. We first
look at those which focus on simulated evolution in ANNS, with
emphasis on the role of evolution as an alternative learning mech-
anism to fit network parameters to yield a network better adapted
to a given task. We then turn to articles more closely related to
comparative and evolutionary neurobiology.

When neural networks are studied in the broader biological con-
text of artificial life (i.e., the attempt to synthesize lifelike phenom-
ena within computers and other artificial media), they are some-
times characterized by genotypes and viewed as members of
evolving populations of networks in which genotypes are inherited
from parents to offspring. EVOLUTION OF ARTIFICIAL NEURAL
NETWORKS shows how ANNs can be evolved by using evolution-
ary algorithms (also known as genetic algorithms). An initial popu-
lation of different artificial genotypes, each encoding the free pa-
rameters (e.g., the connection strengths and/or the architecture of
the network and/or the learning rules) of a corresponding neural
network, is created randomly. (An important challenge for future
research is to study models in which the genotypes are more “bio-
logical” in nature, and less closely tied to direct description of the
phenotype.) The population of networks is evaluated in order to
determine the performance (fitness) of each individual network.
The fittest networks are allowed to reproduce by generating copies
of their genotypes, with the addition of changes introduced by ge-
netic operators such as mutations (i.e., the random change of a few
genes that are selected randomly) or crossover (i.e., the combina-
tion of parts of the genotype derived from two reproducing net-
works). This process is repeated for a number of generations until
a network that satisfies the performance criterion set by the exper-
imenter is obtained. LOCOMOTION, VERTEBRATE shows that the
combination of neural models with biomechanical models has an
important role to play in addressing the evolutionary challenge of
seeing what modifications may have occurred in the locomotor
circuits between the generation of traveling waves for swimming
(the most ancestral vertebrates were close to the lamprey), the gen-
eration of standing waves for walking, and the generation of mul-
tiple gaits for quadruped locomotion, and on to biped locomotion.
One example uses “genetic algorithms” to model the transition
from a lamprey-like spinal cord that supports traveling waves to a
salamander-like spinal cord that supports both traveling waves for
swimming and “standing waves” for terrestrial locomotion, and
then shows how vision may modulate spinal activity to yield lo-
comotion toward a goal (see also VISUOMOTOR COORDINATION IN
SALAMANDER).
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EVOLUTION AND LEARNING IN NEURAL NETWORKS then extends
the analysis of ANN evolution to networks that are able to adapt
to the environment as a result of some form of lifetime learning.
Where evolution is capable of capturing relatively slow environ-
mental changes that might encompass several generations, learning
allows an individual to adapt to environmental changes that are
unpredictable at the generational level. Moreover, while evolution
operates on the genotype, learning affects the phenotype, and phe-
notypic changes cannot directly modify the genotype. The article
shows how ANNSs subjected both to an evolutionary and a lifetime
learning process have been studied to look at the advantages, in
terms of performance, of combining two different adaptation tech-
niques and also to help understand the role of the interaction be-
tween learning and evolution in natural organisms. Continuing this
theme, LANGUAGE EVOLUTION AND CHANGE offers another style
of “connectionist evolution,” placing a number of connectionist
models of basic forms of language processing in an evolutionary
perspective. In some cases, connectionist networks are used as sim-
ulated agents to study how social transmission via learning may
give rise to the evolution of structured communication systems. In
other cases, the specific properties of neural network learning are
enlisted to help illuminate the constraints and processes that may
have been involved in the evolution of language. The article sur-
veys this connectionist research, starting from the emergence of
early syntax, to the role of social interaction and constraints on
network learning in the subsequent evolution of language, to lin-
guistic change within existing languages.

With this we turn to the study of evolution in the sense of natural
selection in biological systems, building on the insights of Charles
Darwin. Since brains do not leave fossils, evolutionary work is
more at the level of comparative neurobiology, looking at the ner-
vous systems of currently extant species, then trying to build a
“family tree” of possible ancestors. The idea is that we may gain
deeper insights into the brains of animals of a given species if we
can compare them with the brains of other species, make plausible
inferences about the brain structure of their common ancestor, and
then seek to relate differences between the current brains and the
putative ancestral brains by relating these changes to the possible
evolutionary pressures that caused each species to adapt to a spe-
cific range of environments. EVOLUTION OF THE ANCESTRAL VER-
TEBRATE BRAIN notes that efforts to understand how the evolving
brain has adapted to specific environmental constraints are com-
plicated because there are always several ways to implement a cer-
tain function within existing connections using molecular and cel-
lular mechanisms. In any case, adult diversity is viewed as the
outcome of divergent genetic developmental mechanisms. Thus,
study of adult structures is aided by placing adult structures within
their developmental history as structured by the genes that guide
such development. The article introduces a possible prototype of
the ancestral vertebrate brain, followed by a scenario for mecha-
nisms that may have diversified the ancestral vertebrate brain. Evo-
lution of the brainstem oculomotor system is used as a focal case
study.

The study of gene expression patterns is playing an increasingly
important role in the empirical study of brains and neurons, and
the pace of innovation in this area has greatly accelerated with the
publication of two maps of the human genome as well as genome
maps for more and more other species. As of 2002, however, the
impact of “genomic neuroscience” on computational neuroscience
is still small. To help readers think about the promise of increasing
this impact, we not only have the discussion in EVOLUTION OF THE
ANCESTRAL VERTEBRATE BRAIN of how during development the
CNS becomes polarized and then subdivides into compartments,
each characterized by specific pattern of gene expression, but also
a companion article, EVOLUTION OF GENETIC NETWORKS, which
outlines some of the computational problems in modeling genetic

networks that can direct the establishment of a diversity of neuronal
networks in the brain. Since neuronal networks are composed of a
wide variety of different cell types, the final fate or end-stage of
each cell type represents the outcome of a dynamic amalgamation
of gene networks. Genetic networks not only determine the cell
fate acquisition from the original stem cell, they also govern contact
formation between the cell populations of a given neuronal net-
work. There are intriguing parallels between the establishment and
functioning of genetic networks with those of neuronal networks,
which can range from simple (on-off switch) to complex. To give
some sense of the complexity of organismic development, the ar-
ticle outlines how intracellular as well as cell-cell interactions mod-
ify the complexity of gene interactions involved in genetic net-
works to achieve an altered status of cell function and, ultimately,
the connection alterations in the formation of neuronal networks.

OLFACTORY CORTEX describes how, during phylogeny, the pa-
leocortex and archicortex develop in extent and complexity but
retain their three-layered character, whereas neocortex emerges in
mammals as a five- to six-layered structure. It stresses the evolu-
tionary significance of the olfactory cortex and includes an account
for brain theorists interested in principles of cortical organization
of the early appearance of the olfactory cortex in phylogeny. Cer-
tainly, the cerebral cortex is a distinctive evolutionary feature of
the mammalian brain (which does not mean that it is “better” than
structures in other genera to which it may be more or less related),
and the next articles give two perspectives on its structure. “Grasp-
ing Movements: Visuomotor Transformations” presents the inter-
actions of visual areas of parietal cortex with the F5 area of pre-
motor cortex in the monkey brain in serving the visual control of
hand movements. The companion article, LANGUAGE EVOLUTION:
THE MIRROR SYSTEM HYPOTHESIS, starts from the observations
that monkey F5 contains a special set of “mirror neurons” active
not only when the monkey performs a specific grasp, but also when
the monkey sees others perform a similar task; that F5 is homol-
ogous to human Broca’s area, an area of cortex usually thought of
as related to speech production; but that Broca’s area also seems
to contain a mirror system for grasping. These facts are used to
ground a new theory of the evolution of the human brain mecha-
nisms that support language. It adds a neurological “missing link”
to the long-held view that imitation and communication based on
hand signs may have preceded the emergence of human mecha-
nisms for extensive vocal communication. With this example to
hand, the reader is invited to look through the book for articles that
study specific brain mechanisms or specific behaviors in a number
of species more or less related to the human. The challenge then is
to chart what aspects are common to human brains and the brains
more generally of primates, mammals, or even vertebrates; and
then, having done so, to see what, if any, distinctive properties
human brain and behavior possess. One can then seek an evolu-
tionary account which illuminates these human capacities. For ex-
ample, it is well known that the human hippocampus is crucial for
the creation of episodic memories, our memories of episodes lo-
cated in specific contexts of space and time (though these memories
are eventually consolidated outside hippocampus). On the other
hand, HippOCAMPUS: SPATIAL MODELS emphasizes the role of the
hippocampus and related brain regions in building a map of spatial
relations in the rat’s world. To what extent can we come to better
understand human episodic memory by looking for the generaliza-
tion from a spatial graph of the environment to one whose nodes
are linked in both space and time?

Mammalian Brain Regions

AUDITORY CORTEX
AUDITORY PERIPHERY AND COCHLEAR NUCLEUS
BasaL GANGLIA
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CEREBELLUM AND CONDITIONING

CEREBELLUM AND MOTOR CONTROL

COLLICULAR VISUOMOTOR TRANSFORMATIONS FOR GAZE
CONTROL

GRASPING MOVEMENTS: VISUOMOTOR TRANSFORMATIONS

HippOCAMPAL RHYTHM GENERATION

HipPOCAMPUS: SPATIAL MODELS

MoTOR CORTEX: CODING AND DECODING OF DIRECTIONAL
OPERATIONS

NEUROANATOMY IN A COMPUTATIONAL PERSPECTIVE

OLFACTORY BULB

OLFACTORY CORTEX

PREFRONTAL CORTEX IN TEMPORAL ORGANIZATION OF ACTION

RETINA

SOMATOSENSORY SYSTEM

THALAMUS

VisuAL CORTEX: ANATOMICAL STRUCTURE AND MODELS OF
FuNcTION

VISUAL SCENE PERCEPTION

This road map introduces the conceptual analysis and neural net-
work modeling of a variety of regions of the mammalian brain. The
fact that these regions recur in many articles not listed above em-
phasizes complementary ways of exploring the mammalian brain
in a top-down fashion, starting either from the gross anatomy (what
does this region of the brain do? the approach of this road map) or
from some function (sensory, perceptual, memory, motor control,
etc., as in other road maps). These top-down approaches may be
contrasted with bottom-up approaches, which may start from neu-
rons and seek to infer properties of circuits, or may start from
biophysics and neurochemistry and seek to infer properties of neu-
rons (as in much of the road map Biological Neurons and Syn-
apses). It must be stressed that whole books can be, and have been,
written on each of the brain regions discussed below. The aim of
each article is to get the reader started by seeing how a selection
of biological data can be addressed by models that seek to illumi-
nate them. In some cases (especially near the sensory or motor
periphery), the function of a region is clear, and there is little ques-
tion as to which phenomena the brain theorist is to explain. But in
more central regions, what the experimentalist observes may vary
wildly with the questions that are asked, and what the modeler has
to work with is more like a Rorschach blot than a well-defined
picture.

NEUROANATOMY IN A COMPUTATIONAL PERSPECTIVE notes that
a vertebrate brain contains so many neurons, and each neuron has
so many connections, that the task of neuroanatomy is not so much
to study all the connections in detail, but rather to reveal the typical
structural properties of a particular part of the brain, which then
provide clues to understanding its various functions. Large brains
have comparatively more cortical white matter (i.e., regions con-
taining only axons) than small brains. Moreover, distant elements
in a large brain may not be able to collaborate efficiently because
of the transmission delays from one point to the other. The way
out of this problem may be a higher degree of functional speciali-
zation of cortical regions in larger brains. The article provides many
data on cortical structure (my favorite is that there are 4 kilometers
of axons in each cubic millimeter of mouse cortex) and argues that
the data fit Hebb’s theory of cell assemblies in that precisely pre-
determined connections are not required since, as a result of learn-
ing, the patterns of interactions between neurons will be different
for each brain. What is crucial, however, is an initial connectivity
sufficiently rich to allow as many constellations of neuronal activity
as possible to be detected and “learned” in the connections.

Many of the articles in this road map are associated with sensory
systems: vision, body sense (the somatosensory system), hearing
(the auditory system), and smell (the olfactory system). Several
articles then discuss brain regions more associated with motor con-

trol, learning, and cognition. Five articles take us through the visual
system. We start with the RETINA, the outpost of the brain that
contains both light-sensitive receptors and several layers of neurons
that “preprocess” these responses. Instead of simply coding light
intensity, the retina transforms visual signals in a multitude of ways
to code properties of the visual world, such as contrast, color, and
motion. The article develops a conceptual theory to explain how
the structure of the retina is related to its function of coding visual
signals. One hypothesis is that much of the retina’s signal coding
and structural detail is derived from the need to optimally amplify
the signal and eliminate noise. But retinal circuitry is diverse. The
exact details are probably related to the ecological niche occupied
by the organism. In mammals, the retinal output branches into two
pathways, the collicular pathway and the geniculostriate pathway.
The destination of the former is the midbrain region known as the
superior colliculus. COLLICULAR VISUOMOTOR TRANSFORMA-
TIONS FOR GAZE CONTROL charts the role of this brain region in
controlling saccades, rapid eye movements that bring visual targets
onto the fovea. Even this basic activity involves the cooperation of
many brain regions; conversely, the function of the superior col-
liculus is not restricted to eye movements (“Visuomotor Coordi-
nation in Frog and Toad” charts the role of the tectum, which is
homologous to the superior colliculus, in approach and avoidance
behavior). By virtue of its topographical organization, the superior
colliculus has become a key area for experimental and modeling
approaches to the question of how sensory signals can be trans-
formed into goal-directed movements. Moreover, the activity in the
superior colliculus during saccades to auditory and somatosensory
targets conforms to the same motor map, suggesting that consid-
erable sensorimotor remapping must take place.

In mammals, the geniculostriate pathway travels from retina via
a specialized region of thalamus called the lateral geniculate nu-
cleus to the primary visual cortex, which is also called the striate
cortex because of its somewhat striated appearance. The thalamus
has many divisions, not only those involved with sensory path-
ways, but also those involved in loops linking the cortex to other
brain regions like the cerebellum and basal ganglia. The thalamus
is the gateway through which all sensory inputs, except olfaction,
are relayed to the cortex. THALAMUS shows that the thalamus can
effectively control the flow of information to the cortex: during
waking, it may subserve attention, selectively enhancing certain
inputs to the cortex and attenuating others; during slow-wave sleep,
the firing mode of thalamic cells changes, effectively closing the
gateway and diminishing the influence of external stimuli on the
cortex. Massive feedback from the cortex to the thalamus suggests
that the entire thalamo-cortico-thalamic loop plays a role in sus-
taining and synchronizing cortical activity. Furthermore, certain
thalamic nuclei appear to constitute an integral part of the signal
flow between different cortical areas. The article reviews the ana-
tomical and neurophysiological data and concludes with a brief
discussion of models of the role of thalamus in thalamocortical
interactions (see also “Adaptive Resonance Theory” and “Sleep
Oscillations™), arguing that the organization of the projections to
and from the thalamus is essential to understanding thalamic
function.

VISUAL CORTEX: ANATOMICAL STRUCTURE AND MODELS OF
FuUNCTION reviews features of the microcircuitry of the primary
visual cortex, area V1, and physiological properties of cells in its
different laminae. It then outlines several hypotheses as to how
the anatomical structure and connections might serve the func-
tional organization of the region. For example, a connectionist
model of layer IVc of V1 demonstrated that the gradient of change
in properties of the layer could indeed be replicated using den-
dritic overlap through the lower two-thirds of the IVc layer. How-
ever, it was insufficient to explain the continuous and sharply
increasing field size and contrast sensitivity observable near the
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top of the layer. However, this discrepancy led to new experiments
and related changes in the model which resulted in a good repli-
cation of the actual physiological data and required only feedfor-
ward excitation. The article continues by analyzing the anatomical
substrates for orientation specificity and for surround modulation
of visual responses, and concludes by discussing the origins of
patterned anatomical connections. VISUAL SCENE PERCEPTION
moves beyond V1 to chart the bifurcation of V1 output in mon-
keys and humans into a pathway that ascends to the parietal cortex
(the dorsal “where/how” system involved in object location and
setting of parameters for action) and a pathway that descends to
inferotemporal cortex (the ventral “what” system involved in ob-
ject recognition) (see also “Dissociations Between Visual Pro-
cessing Modes”).

SOMATOSENSORY SYSTEM argues that the tactile stimulus rep-
resentation changes from an original form (more or less isomorphic
to the stimulus itself) to a completely distributed form (underlying
perception) in a series of partial transformations in successive sub-
cortical and cortical networks. At the level of primary somatosen-
sory cortex, the neural image of the stimulus is sensitive to shape
and temporal features of peripheral stimuli, rather than simply re-
flecting the overall intensity of local stimulation. The processing
of somatosensory information is seen as modular on two different
scales: macrocolumnar in terms of “segregates” such as the cortical
barrels seen in rodent somatosensory cortex, each of which receives
its principal input from one of the facial whiskers; and minicol-
umnar, with each minicolumn in a segregate receiving afferent con-
nections from a unique subset of the thalamic neurons projecting
to that segregate. The article argues that the causal factors involved
in body/object interactions are represented by the pyramidal cells
of somatosensory cortical areas in such a way that their ascending,
lateral, and feedback connections develop an internal working
model of mechanical interactions of the body with the outside
world. Such an internal model can endow the somatosensory cortex
with powerful interpretive and predictive capabilities that are cru-
cial for haptic perception (i.e., tactile perception of proximal sur-
roundings) and for control of object manipulation.

The auditory system is introduced in two articles. AUDITORY
PERIPHERY AND COCHLEAR NUCLEUS spells out how the auditory
periphery transforms a very high information rate acoustic stimulus
into a series of lower information rate auditory nerve firings, with
the incoming acoustic information split across hundreds of nerve
fibers to avoid loss of information. The transformation involves
complex mechanical-to-electrical transformations. The cochlear
nucleus continues this process of parallelization by creating mul-
tiple representations of the original acoustic stimulus, with each
representation presumably emphasizing different acoustic features
that are fed to other brainstem structures, such as the superior oli-
vary complex, the nuclei of the lateral lemniscus, and the inferior
colliculus. These parallel pathways are believed to be specialized
for the processing of different auditory features used for sound
source classification and localization. From the inferior colliculus,
auditory information is passed via the medial geniculate body in
the thalamus to the auditory cortex. AUDITORY CORTEX stresses
the crucial role that auditory cortex plays in the perception and
localization of complex sounds. Although recent studies have ex-
panded our knowledge of the neuroanatomical structure, the sub-
divisions, and the connectivities of all central auditory stages, rela-
tively little is known about the functional organization of the
central auditory system. Nevertheless, a few auditory tasks have
been broadly accepted as vital for all mammals, such as sound
localization, timbre recognition, and pitch perception. The article
discusses a few of the functional and stimulus feature maps that
have been found or postulated, and relates them to the more intu-
itive and better understood case of the echolocating bats (cf. “Ech-
olocation: Cochleotopic and Computational Maps”).

The olfactory system is distinctive in that paths from periphery
to cortex do not travel via a thalamic nucleus. The olfactory path-
way begins with the olfactory receptor neurons in the nose, which
project their axons to the olfactory bulb. The function of the olfac-
tory bulb is to perform the initial stages of sensory processing of
the olfactory signals before sending this information to the olfac-
tory cortex. The study of the olfactory system offers prime exam-
ples of seeking a “basic circuit” that defines the irreducible mini-
mum of neural components necessary for a model of the functions
carried out by a region. OLFACTORY BULB offers examples of in-
formation processing without impulses and of output functions of
dendrites (dendrodendritic synapses). The olfactory cortex is de-
fined as the region of the cerebral cortex that receives direct con-
nections from the olfactory bulb and is subdivided into several
areas that are distinct in terms of details of cell types, lamination,
and sites of output to the rest of the brain. The main area involved
in olfactory perception is the piriform (also called prepyriform)
cortex, which projects to the mediodorsal thalamus, which in turn
projects to the frontal neocortex. This is often regarded as the main
olfactory cortex, and is the subject of the article OLFACTORY COR-
TEX. Olfactory cortex is the earliest cortical region to differentiate
in the evolution of the vertebrate forebrain and is the only region
within the forebrain to receive direct sensory input. Models of ol-
factory cortex emphasize the importance of cortical dynamics, in-
cluding the interactions of intrinsic excitatory and inhibitory cir-
cuits and the role of oscillatory potentials in the computations
performed by the cortex.

We now introduce motor cortex, then turn to three systems re-
lated to motor control and to visuomotor coordination in mammals
(cf. the road map Mammalian Motor Control): cortical areas in-
volved in grasping, the basal ganglia, and cerebellum. MOTOR
CORTEX: CODING AND DECODING OF DIRECTIONAL OPERATIONS
spells out the relation between the direction of reaching and
changes in neuronal activity that have been established for several
brain areas, including the motor cortex. The cells involved each
have a broad tuning function, the peak of which is viewed as the
“preferred” direction of the cell. A movement in a particular direc-
tion will engage a whole population of cells. It is found that the
weighted vector sum of their neuronal preferences is a “population
vector” which points in (close to) the direction of the movement
for discrete movements in 2D and 3D space. GRASPING MOVE-
MENTS: VISUOMOTOR TRANSFORMATIONS shows the tight coupling
between (specific subregions of) parietal and premotor cortex in
controlling grasping. The AIP region of inferior parietal lobe ap-
pears to play a fundamental role in extracting intrinsic visual prop-
erties (“affordances”) from the object for organizing grasping
movements. The extracted visual information is then sent to the F5
region of premotor cortex, there activating neurons that code grip
types congruent to the size, shape, and orientation of the object. In
addition to visually activated neurons in AIP, there are AIP cells
whose activity is linked to motor activity, possibly reflecting cor-
ollary discharges sent by F5 back to the parietal cortex. (For the
possible relation of grasping to language, and the homology be-
tween F5 and Broca’s area, see “Language Evolution: The Mirror
System Hypothesis.”)

The basal ganglia include the striatum, the globus pallidus, the
substantia nigra, and the subthalamic nucleus. BASAL GANGLIA
stresses that all of these structures are functionally subdivided into
skeletomotor, oculomotor, associative, and limbic territories. The
basal ganglia can be viewed as a family of loops, each taking its
origin from a particular set of functionally related cortical fields,
passing through the functionally corresponding portions of the
basal ganglia, and returning to parts of those same cortical fields
by way of specific zones in the dorsal thalamus. The article reviews
models of the basal ganglia that attempt to incorporate appropriate
anatomical or physiological data, but not those that use only generic
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neural network architectures. Some models work at a compara-
tively low level of detail (membrane properties of individual neu-
rons and microanatomical features) and restrict themselves to a
single component of the basal ganglia nucleus; others work at the
system level with the basal ganglia as a whole and with their in-
teractions with related structures (e.g., thalamus and cortex). Since
dopamine neurons discharge in relation to conditions involving the
probability and imminence of behavioral reinforcement, dopamine
neurons have been seen as playing a role in striatal information
processing analogous to that of an “adaptive critic” in connectionist
networks (cf. “Reinforcement Learning” and “Dopamine, Roles
of”).

The division of function between cerebellum and basal ganglia
remains controversial. One view is that the basal ganglia play a
role in determining when to initiate one phase of movement or
another, and that the cerebellum adjusts the metrics of movement,
tuning different movements and coordinating them into a graceful
whole. CEREBELLUM AND MOTOR CONTROL reviews a number of
models for cerebellar mechanisms underlying the learning of motor
skills. Cerebellum can be decomposed into cerebellar nuclei and a
cerebellar cortex. The only output cells of the cerebellar cortex are
the Purkinje cells, and their only effect is to provide varying levels
of inhibition on the cerebellar nuclei. Each Purkinje cell receives
two types of input—a single climbing fiber, and many tens of thou-
sands of parallel fibers. The most influential model of cerebellar
cortex has been the Marr-Albus model of the formation of associ-
ative memories between particular patterns on parallel fiber inputs
and Purkinje cell outputs, with the climbing fiber acting as “training
signal.” Later models place more emphasis on the relation between
the cortex and nuclei, and on the way in which the subregions of
this coupled cerebellar system can adapt and coordinate the activity
of specific motor pattern generators. The plasticity of the cerebel-
lum is approached from a different direction in CEREBELLUM AND
CONDITIONING. Many experiments indicate that the cerebellum is
involved in learning and performance of classically conditioned
reflexes. The article reviews a number of models of the role of
cerebellum in rabbit eye blink conditioning, providing a useful
complement to models of the role of cerebellum in motor control.

The hippocampus has been implicated in a variety of memory
functions, both as working memory and as basis for long-term
memory. It was also the site for the discovery of long-term poten-
tiation (LTP) in synapses (see “Hebbian Synaptic Plasticity”).
Structurally, hippocampus is the simplest form of cortex. It con-
tains one projection cell type, whose cell bodies are confined to a
single layer, and receives inputs from all sensory systems and as-
sociation areas. HIPPOCAMPUS: SPATIAL MODELS builds on the
finding that single-unit recordings in freely moving rats have re-
vealed “place cells” in subfields of the hippocampus whose firing
is restricted to small portions of the rat’s environment (the corre-
sponding “place fields”). These data underlie the seminal idea of
the hippocampus as a spatial map (cf. “Cognitive Maps”). The
article reviews the data and describes some models of hippocampal
place cells and of their role in circuits controlling the rat’s navi-
gation through its environment. HIPPOCAMPAL RHYTHM GENERA-
TION provides data and models on theta and other rhythms as well
as epileptic discharges, and also introduces the key cell types of
the hippocampus and a number of interconnections between the
hippocampus that seem to play a key role in the generation of these
patterns of activity.

Finally, we turn to prefrontal cortex, the association cortex of
the frontal lobes. It is one of the cortical regions to develop last
and most in the course of both primate evolution and individual
ontogeny. PREFRONTAL CORTEX IN TEMPORAL ORGANIZATION OF
ACTION suggests that the late morphological development of this
cortex in both cases is related to its support of higher cognitive
functions involving the capacity to execute novel and complex ac-

tions, which reaches its maximum in the adult human brain. The
lateral region of prefrontal cortex is involved in the representation
and temporal organization of sequential behavior. This article em-
phasizes the physiological functions of the lateral prefrontal cortex
in the temporal organization of behavior. Temporal integration of
sensory and motor information, through active short-term memory
(working memory) and prospective set, supports the goal-directed
performance of the perception-action cycle. This role extends to
the temporal organization of higher cognitive operations, including,
in the human, language and reasoning.

Cognitive Neuroscience

CORTICAL MEMORY

COVARIANCE STRUCTURAL EQUATION MODELING

EEG AND MEG ANALYSIS

EMOTIONAL CIRCUITS

EVENT-RELATED POTENTIALS

HEMISPHERIC INTERACTIONS AND SPECIALIZATION

IMAGING THE GRAMMATICAL BRAIN

IMAGING THE MOTOR BRAIN

IMAGING THE VISUAL BRAIN

IMITATION

LESIONED NETWORKS AS MODELS OF NEUROPSYCHOLOGICAL
DEFICITS

NEUROLINGUISTICS

NEUROLOGICAL AND PSYCHIATRIC DISORDERS

NEUROPSYCHOLOGICAL IMPAIRMENTS

PREFRONTAL CORTEX IN TEMPORAL ORGANIZATION OF ACTION

SEQUENCE LEARNING

STATISTICAL PARAMETRIC MAPPING OF CORTICAL ACTIVITY
PATTERNS

SYNTHETIC FUNCTIONAL BRAIN MAPPING

Cognitive neuroscience has been boosted tremendously in the last
decade by the rapid development and increasing use of techniques
to image the active human brain. The road map thus starts with
several articles on ways of observing activity in the human brain
and then examines various human cognitive functions.

The organization of large masses of neurons into synchronized
waves of activity lies at the basis of phenomena such as the elec-
troencephalogram (EEG) and evoked potentials, as well as the mag-
netoencephalogram (MEG). The EEG consists of the electrical ac-
tivity of relatively large neuronal populations that can be recorded
from the scalp, while the MEG can be recorded using very sensitive
transducers arranged around the head. EEG AND MEG ANALYSIS
reviews methods of quantitative analysis that have been applied to
extract information from these signals, providing an indispensable
tool for sleep and epilepsy research. Epilepsy is a neurological
disorder characterized by the occurrence of seizures, sudden
changes in neuronal activity that interfere with the normal func-
tioning of neuronal networks, resulting in disturbances of sensory
or motor activity and of the flow of consciousness. During an ep-
ileptic seizure, the neuronal network exhibits typical oscillations
that usually propagate throughout the brain, involving progres-
sively more brain systems. These oscillations are revealed in the
EEG (see also “Hippocampal Rhythm Generation”). In general, the
same brain sources account for the EEG and the MEG, with the
reservation that the MEG reflects magnetic fields perpendicular to
the skull that are caused by tangential current dipolar fields,
whereas the EEG/MEG reflects both radial and tangential fields.
This property can be used advantageously to disentangle radial
sources lying in the convexity of cortical gyri from tangential
sources lying in the sulci.

EVENT-RELATED POTENTIALS shows how cortical event-related
potentials (ERPs) arise from synchronous interactions among large
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numbers of participating neurons. These include dense local inter-
actions involving excitatory pyramidal neurons and inhibitory in-
terneurons, as well as long-range interactions mediated by axonal
pathways in the white matter. Depending on the types of interaction
that occur in a specific behavioral condition, cortical networks may
display different states of synchrony, causing their ERPs to oscil-
late in different frequency bands, designated delta (0—4 Hz), theta
(5-8 Hz), alpha (9-12 Hz), beta (13-30 Hz), and gamma (31-100
Hz). Depending on the location and size of the recording and ref-
erence electrodes, recorded cortical field potentials integrate neural
activity over a range of spatial scales: from the intracortical local
field potential (LFP) to the intracranial electrocorticogram (ECoG)
to the extracranial electroencephalogram (EEG). ERP studies have
shown that local cortical area networks are able to synchronize and
desynchronize their activity rapidly with changes in cognitive state.
When incorporated into ANNs, the result could be a metastable
large-scale neural network design that recruits and excludes sub-
networks according to their ability to reach consensual local pat-
terns, with the ability to implement behavioral schemas and adapt
to changing environmental conditions.

Positron emission tomography (PET) and functional magnetic
resonance imaging (fMRI) provide means for seeing which brain
regions are significantly more active in one task rather than another.
Functional neuroimaging is generally used to make inferences
about functional anatomy on the basis of evoked patterns of cortical
activity. Functional anatomy involves an understanding of what
each part of the brain does, and how different brain systems interact
to support various sensorimotor and cognitive functions. Large-
scale organization can be inferred from techniques that image the
hemodynamic and metabolic sequelae of evoked neuronal re-
sponses. PET measures regional cerebral blood flow (rCBF) and
fMRI measures oxygenation changes. Their spatial resolution is on
the order of a few millimeters. Because PET uses radiotracers, its
temporal resolution is limited to a minute or more by the half-life
of the tracers employed. However, fMRI is limited only by the
biophysical time constants of hemodynamic responses themselves
(a few seconds).

STATISTICAL PARAMETRIC MAPPING OF CORTICAL ACTIVITY
PATTERNS considers the neurobiological motivations for different
designs and analyses of functional brain imaging studies, noting
that the principles of functional specialization and integration serve
as the motivation for most analyses. Statistical parametric mapping
(SPM) is used to identify functionally specialized brain regions that
respond selectively to experimental cognitive or sensorimotor
changes, irrespective of changes elsewhere. SPM is a voxel-based
approach (a voxel is a volume element of a 3D image) employing
standard inferential statistics. SPM is a mass-univariate approach,
in the sense that each data sequence, from every voxel, is treated
as a univariate response. The massive numbers of voxels are ana-
lyzed in parallel, and dependencies among them are dealt with us-
ing random field theory (see “Markov Random Field Models in
Image Processing”).

One approach to systems-level neural modeling aims at deter-
mining the network of brain regions mediating a specific cognitive
task. This means finding the nodes of the network (i.e., the brain
regions), and determining the task-dependent functional strengths
of their interregional anatomical linkages. COVARIANCE STRUC-
TURAL EQUATION MODELING describes techniques applied to the
correlations between PET- or fMRI-determined regional brain ac-
tivities. These correlations are viewed as “functional connectivi-
ties.” They thus vary from task to task, as different patterns of
excitation and inhibition are routed through the anatomical con-
nections of these regions. Examples of questions that can be an-
swered using this approach are: (1) As one learns a task, do the
functional links between specific brain regions change their values?
(2) In cases of similar performance, are the same brain networks

being used by normals and patients? The method is illustrated with
studies of object and spatial vision showing cross-talk between the
dorsal and ventral streams (see “Visual Scene Perception”), which
implies that they need not be functionally independent. The article
stresses the concept of a neural context, where the functional rele-
vance of a particular region is determined by its interactions with
other areas. Because the pattern of interactions with other con-
nected areas differs from task to task, the resulting cognitive opera-
tions may vary within a single region as it engages in different
tasks.

SYNTHETIC FUNCTIONAL BRAIN MAPPING analyzes ways in
which models of neural networks grounded in primate neurophys-
iology can be used as the basis for predictions of the results of
human brain imaging. This is crucial for furthering our understand-
ing of the neural basis of behavior. Covariance structural equation
modeling helps identify the nodes of the region-by-region network
corresponding to a cognitive task, especially when there is little or
no nonhuman data available (e.g., most language tasks). Synthetic
functional brain mapping uses primate data to form hypotheses
about the neural mechanisms whereby cognitive tasks are imple-
mented in humans, with PET and fMRI data providing constraints
on the possible ways in which these neural systems function. This
is illustrated in relation to the mechanisms underlying saccadic eye
movements and working memory.

The next three articles focus on what we are learning about vi-
sion, motor activity, and language from functional brain imaging.
IMAGING THE VISUAL BRAIN addresses functional brain imaging of
visual processes, with emphasis on limits in spatial and temporal
resolution; constraints on subject participation; and trade-offs in
experimental design. The articles focuses on retinotopy, visual mo-
tion perception, visual object representation, and voluntary mod-
ulation of attention and visual imagery, emphasizing some of the
areas where modeling and brain theory might be testable using
current imaging tools. IMAGING THE MOTOR BRAIN shows that the
behavioral form and context of a movement are important deter-
minants of functional activity within cortical motor areas and the
cerebellum, stressing that functional imaging of the human motor
system requires one to study the interaction of neurological and
cognitive processes with the biomechanical characteristics of the
effectors. Multiple neural systems must interact to successfully per-
form motor tasks, encode relevant information for motor learning,
and update behavioral performance in real time. The article dis-
cusses how evidence from functional imaging studies provides
insight into motor automaticity as well as the role of internal mod-
els in movement. The article also discusses novel mathematical
techniques that extend the scope of functional imaging experimen-
tation.

IMAGING THE GRAMMATICAL BRAIN reviews brain imaging re-
sults that support the author’s view that linguistic rules are neurally
real and form a constitutive element of the human language faculty.
The focus is on linguistic combinations at the sentence level; but
an analysis of cerebral representation of phonological units and of
word meaning in its isolated and compositional aspects is provided
as background. The study of brain mechanisms supporting lan-
guage is further advanced in NEUROLINGUISTICS. Neurolinguistics
began as the study of the language deficits occurring after brain
injuries, and is rooted in the conceptual model of Broca’s aphasia,
Wernicke’s aphasia, and other aphasic syndromes established over
a hundred years ago. The article presents data and analyses for
between-stage information flow, dynamics of within-stage pro-
cessing, unitary representations and activation, and processing by
constraint satisfaction. (For more background on these two articles,
see the road map Linguistics and Speech Processing.)

PREFRONTAL CORTEX IN TEMPORAL ORGANIZATION OF ACTION
emphasizes the physiological functions of the lateral prefrontal cor-
tex in the temporal organization of behavior, highlighting active
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short-term memory (working memory) and prospective set. The
two cooperate toward temporally integrating sensory and motor
information by mediating cross-temporal contingencies of behavior
(see also “Competitive Queuing for Planning and Serial Perfor-
mance”). This temporal integration supports the goal-directed per-
formance of the perception-action cycle. It is a role that extends to
the temporal organization of higher cognitive operations, including
language and reasoning in humans. CORTICAL MEMORY stresses
that some components of memory are localized in discrete domains
of cortex, while others are more widely distributed. It outlines a
view of network memory in the neocortex that is supported by
empirical evidence from neuropsychology, behavioral neurophys-
iology, and neuroimaging. Its essential features are the acquisition
of memory by the formation and expansion of networks of neo-
cortical neurons through changes in synaptic transmission; and the
hierarchical organization of memory networks, with a hierarchy of
networks in posterior cortex for perceptual memory and another in
frontal cortex for executive memory. SEQUENCE LEARNING char-
acterizes behavioral sequences in terms of their serial, temporal,
and abstract structure, and analyzes the associated neural process-
ing systems (see also “Temporal Pattern Processing”). Temporal
structure is defined in terms of the durations of elements (and the
possible pauses that separate them), and intuitively corresponds to
the familiar notion of rhythm. Abstract structure is defined in terms
of generative rules that describe relations between repeating ele-
ments within a sequence. Thus, the two sequences A-B-C-B-A-C
and D-E-F-E-D-F are both generated from the same abstract struc-
ture 123-213. The article focuses on how the different dimensions
of sequence structure can be encoded in neural systems, citing be-
havioral studies in different patient and control groups and related
simulation studies. A recurrent network for manipulating abstract
structural relations is implemented in a distributed network that
potentially includes the perisylvian cortex in and around Broca’s
area. It is argued that both transfer of sequence knowledge between
domains and abstract rule representation are likely to be neuro-
physiological realities.

Complementing sequence learning is the study of imitation, the
ability to recognize and reproduce others’ actions. Imitation is also
related to fundamental capabilities for social cognition such as the
recognition of conspecifics, the attribution of others’ intentions,
and the ability to deceive and to manipulate others’ states of mind.
IMITATION bridges between biology and engineering, reviewing the
cognitive and neural processes behind the different forms of imi-
tation seen in animals and showing how studies of biological pro-
cesses influence the design of robot controllers and computational
algorithms. Theoretical models have been proposed to, e.g., distin-
guish between purely associative imitation (low-level) and sequen-
tial imitation (high-level). It is argued that modeling of imitation
will lead to a better understanding of the neural mechanisms at the
basis of social cognition and will offer new perspectives on the
evolution of animal abilities for social representation (see “Lan-
guage Evolution: The Mirror System Hypothesis™ for more on evo-
lution and imitation).

EMOTIONAL CIRCUITS stresses the distinction between emotional
experiences and the underlying processes that lead to emotional
experiences. (See also “Motivation” for a discussion of the moti-
vated or goal-directed behaviors that are often accompanied by
emotion or affect.) The article is grounded in studies of how the
brain detects and evaluates emotional stimuli and how, on the basis
of such evaluations, appropriate responses are produced, treating
emotion as a function that allows the organism to respond in an
adaptive manner to challenges in the environment rather than being
inextricably compounded with the subjective experience of emo-
tion. The amygdala is shown to play a major role in the evaluation
process. It is argued that fearful stimuli follow two main routes.
The fast route involves the thalamo-amygdala pathway and re-
sponds best to simple stimulus features, while the slow route in-

volves the thalamo-cortical-amygdala pathway and carries more
complex features (such as context). The expression of fear is me-
diated by the outputs of the amygdala to brainstem and hypothal-
amus, while the experience of fear involves the prefrontal cortex.

One cerebral hemisphere may perform better than the other for
such diverse tasks as language, handedness, visuospatial process-
ing, emotion and its facial expression, olfaction, and attention. Be-
havioral lateralization has not only been demonstrated in people,
but also in rodents, birds, primates, and other animals in areas such
as vocalization and motor preferences. Many anatomical, biochem-
ical, and physiological asymmetries exist in the brain, but it is
generally unclear which, if any, of these asymmetries actually con-
tribute to hemispheric specialization. Pathways such as the corpus
callosum connecting the hemispheres appear to mediate both ex-
citatory and longer-term inhibitory interactions between the hemi-
spheres. HEMISPHERIC INTERACTIONS AND SPECIALIZATION first
considers models of hemispheric interactions that do not incorpo-
rate hemispheric differences, and conversely, models examining
the effects of hemispheric differences that do not incorporate hemi-
spheric interactions. It then looks in more detail at recent studies
demonstrating how both hemispheric interactions and differences
influence the emergence of lateralization in models where lateral-
ization is not initially present.

As we already saw in, e.g., NEUROLINGUISTICS, cognitive neuro-
psychology uses neurological data on the performance of brain-
damaged patients to constrain models of normal cognitive function.
LESIONED NETWORKS AS MODELS OF NEUROPSYCHOLOGICAL
DEFICITS surveys how connectionist techniques have been em-
ployed to model the operation and interaction of “modules” in-
ferred from the neurological data. The advantage over “box-and-
arrow” models is that removing neurons or connections in
connectionist models leads to natural analogues of real brain dam-
age. Moreover, such models let one explore the possibility that
processing is actually more distributed and interactive than the
older models implied. The article discusses the effects of simulated
lesioning on various models, constructed either as feedforward net-
works or as attractor networks, paying special attention to the mis-
leading artifacts that may arise when large brains are modeled by
small ANNs. Continuing with this theme, NEUROPSYCHOLOGICAL
IMPAIRMENTS cautions that the inferences that link a neuropsycho-
logical impairment to a particular theory in cognitive neuroscience
are not as direct as one might at first assume. The brain is a dis-
tributed and highly interactive system, such that local damage to
one part can unleash new modes of functioning in the remaining
parts of the system. The article emphasizes neural network models
of cognition and the brain that provide a framework for reasoning
about the effects of local lesions in distributed, interactive systems.
In many cases a model’s behavior after lesioning is somewhat
counterintuitive and so can lead to very different interpretations
regarding the nature of the normal system. A model of neglect
dyslexia shows how an impairment in a prelexical attentional pro-
cess could nevertheless show a lexicality effect. Prosopagnosia is
an impairment of face recognition that can occur relatively inde-
pendently of impairments in object recognition. The behavior of
some prosopagnosic patients seems to suggest that that recognition
and awareness depend on dissociable and distinct brain systems.
However, a model of covert face recognition demonstrates how
dissociation may occur without separate systems. NEUROLOGICAL
AND PSYCHIATRIC DISORDERS shows how neural modeling may be
harnessed to investigate the pathogenesis and potential treatment
of brain disorders by studying the relation between the “micro-
scopic” pathological alterations of the underlying neural networks
and the “macroscopic” functional and behavioral disease manifes-
tations that characterize the network’s function. The article reviews
computational studies of the neurological disorders of Alzheimer’s
disease, Parkinson’s disease, and stroke, and the psychiatric dis-
orders of schizophrenia and affective disorders.
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Psychology

ANALOGY-BASED REASONING AND METAPHOR

ASSOCIATIVE NETWORKS

COGNITIVE DEVELOPMENT

COGNITIVE MAPS

COGNITIVE MODELING: PSYCHOLOGY AND CONNECTIONISM

COMPOSITIONALITY IN NEURAL SYSTEMS

CONCEPT LEARNING

CONDITIONING

CONSCIOUSNESS, NEURAL MODELS OF

DEVELOPMENTAL DISORDERS

EMBODIED COGNITION

EMoOTIONAL CIRCUITS

FACE RECOGNITION: PSYCHOLOGY AND CONNECTIONISM

MOTIVATION

PHILOSOPHICAL ISSUES IN BRAIN THEORY AND CONNECTIONISM

SCHEMA THEORY

SYSTEMATICITY OF GENERALIZATIONS IN CONNECTIONIST
NETWORKS

Much classical psychology was grounded in notions of associa-
tion—of ideas, or of stimulus and response—which were well de-
veloped in the philosophy of Hume, but with roots going back as
far as Aristotle. ASSOCIATIVE NETWORKS shows how these old
ideas gain new power because neural networks can provide mech-
anisms for the formation of associations that automatically yield
many further properties. One of these is that neural networks will
in many cases have similar responses to similar inputs, a property
that is exploited in the study of ANALOGY-BASED REASONING AND
METAPHOR. Analogy and metaphor have been characterized as
comparison processes that permit one domain to be seen in terms
of another. Indeed, many of the advantages suggested for connec-
tionist models—representation completion, similarity-based gen-
eralization, graceful degradation, and learning—also apply to anal-
ogy, yet analogical processing poses significant challenges for
connectionist models. Analogy and metaphor involve structured
pattern matching, structured pattern completion, and a focus on
common relational structure rather than on common object de-
scriptions. The article analyzes current connectionist models of
analogy and metaphor in terms of representations and associated
processes, not in terms of brain function. Challenges for future
research include building analogical models that can preserve struc-
tural relations over incrementally extended analogies and that can
be used as components of a broader cognitive system such as one
that would perform problem solving. Indeed, people continually
deal with composite structures whether they result from aggrega-
tion of symbols in a natural language into syllables, words, and
sentences or aggregation of visual features into contour and re-
gions, objects, and complete scenes. COMPOSITIONALITY IN NEU-
RAL SYSTEMS addresses the question of what sort of neural dynam-
ics allows composite structures to emerge, with the grouping and
binding of parts into interpretable wholes. To this day it is still
disputed whether ANNS are capable of adequately handling com-
positional data, and if so, which type of network is most suitable.
Basic results have been obtained with simple recurrent networks,
but some researchers argue that more complicated dynamics (see,
e.g., “Synchronization, Binding and Expectancy”) or dynamics
similar to classical symbolic processing mechanisms are necessary
for successful modeling of compositionality. In a related vein, Sys-
TEMATICITY OF GENERALIZATIONS IN CONNECTIONIST NETWORKS
presents the current “state of play” for Fodor and Pylyshyn’s cri-
tique of connectionist architecture. They claimed that human cog-

nitive abilities “come in clumps” (i.e., the abilities are systemati-
cally related), and that this systematic relationship does not hold
in connectionist networks. The present article examines claims and
counterclaims concerning the idea that learning in connectionist
architectures can engender systematicity, with special attention
paid to studies based on simple recurrent networks (SRNs) and
recursive auto-associative memory (RAAM). The conclusion is
that, for now, evidence for systematicity in such simple networks
is rather limited. (One may ponder the fact that animal brains are
vastly more complex than a single SRN or RAAM.)

The “units of thought” afforded by connectionist “neurons” are
quite high level compared to the fine-grain computation of the myr-
iad neurons in the human brain, and their properties may hence be
closer to those of entire neural networks than to single biological
neurons. Moreover, future connectionist accounts of cognition will
certainly involve the coordination of connectionist modules (see,
e.g., “Hybrid Connectionist/Symbolic Systems”). SCHEMA THE-
ORY complements neuroscience’s well-established terminology for
levels of structural analysis (brain region, neuron, synapse) with a
functional vocabulary, a framework for analysis of behavior with
no necessary commitment to hypotheses on the localization of each
schema (unit of functional analysis), but which can be linked to a
structural analysis whenever appropriate. The article focuses on
two issues: structuring perceptual and motor schemas to provide
an action-oriented account of behavior and cognition (as relevant
to the roboticist as the ethologist), and how schemas describing
animal behavior may be mapped to interacting regions of the brain.
Schema-based modeling becomes part of neuroscience when con-
strained by data provided by, e.g., human brain mapping, studies
of the effects of brain lesions, or neurophysiology. The resulting
model may constitute an adequate explanation in itself or may pro-
vide the framework for modeling at the level of neural networks
or below. Such a neural schema theory provides a functional/struc-
tural decomposition, in strong contrast to models that employ learn-
ing rules to train a single neural network to respond as specified
by some training set.

Connectionism can apply many different types of ANN tech-
niques to explain psychological phenomena, and the article CoG-
NITIVE MODELING: PSYCHOLOGY AND CONNECTIONISM places a
sample of these in perspective. The general idea is that much of
psychology is better understood in terms of parallel networks of
adaptive units than in terms of serial symbol processing, and that
connectionism gains much of its power from using very simple
units with explicit learning rules. The article points out that con-
nectionist models of cognition can be used both to model cognitive
processes and to simulate the performance of tasks and that, unlike
many traditional computational models, they are not explicitly pro-
grammed by the investigator. However, important aspects of the
performance of a connectionist net are controlled by the researcher,
so that the achievement of a good fit to the psychological data
depends both on the way in which analogs to the data are derived
and on the results of “extensional programming,” such as decisions
about the selection and presentation of training data. The article
also notes the work of “cognitive connectionists,” whose compu-
tational experiments have demonstrated the ability of connectionist
representations to provide a promisingly different account of im-
portant characteristics of cognition (compositionality and syste-
maticity), previously assumed to be the exclusive province of the
classical symbolic tradition. PHILOSOPHICAL ISSUES IN BRAIN THE-
ORY AND CONNECTIONISM asks the following questions: (1) Do
neural systems exploit classical compositional and systematic rep-
resentations, distributed representations, or no representations at
all? (2) How do results emerging from neuroscience help constrain
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cognitive scientific models? (3) In what ways might embodiment,
action, and dynamics matter for understanding the mind and the
brain? There is a growing emphasis on the computational econo-
mies afforded by real-world action and the way larger structures
(of agents and artifacts) both scaffold and transform the shape of
individual reason. However, rather than seeing representations as
opposed to interactive dynamics, the article advocates a broader
vision of the inner representational resources themselves, stressing
the benefits of converging influences from robotics, systems-level
neuroscience, cognitive psychology, evolutionary theory, Al, and
philosophical analysis. This philosophical theme is further devel-
oped in CONSCIOUSNESS, NEURAL MODELS OF, which reviews the
basic ways in which consciousness has been defined, relevant neu-
ropsychological data, and preliminary progress in neural modeling.
Among the characteristics needed for consciousness are temporal
duration, attentional focus, binding, bodily inputs, salience, past
experience, and inner perspective. Brain imaging, as well as in-
sights into single-cell activity and the effects of brain deficits, is
leading to a clearer picture of the neural correlates of conscious-
ness. The article presents a specific attention control model of the
emergence of awareness in which experience of the prereflective
self is identified with the corollary discharge of the attention move-
ment control signal. This signal is posited to reside briefly in its
buffer until the arrival of the associated attended input activation
at its own buffer. The article concludes by reviewing other neural
models of consciousness.

Much of the early work on ANNs was inspired by the problem
of “Pattern Recognition” (q.v.). CONCEPT LEARNING provides a
general introduction to recent work, placing such ideas in a psy-
chological perspective. Concepts are mental representations of
kinds of objects, events, or ideas. The article focuses on learning
mental representations of new concepts from experience and how
mental representations of concepts are used to make categorization
decisions and other kinds of judgments. The article reviews five
types of concept learning models: rule models, prototype models,
exemplar models, mixed models, and neuroscientific models. The
mechanisms discussed briefly here are developed at greater length
in many articles in the road map Learning in Artificial Networks.
The psychology of concept learning receives special application in
the study of FACE RECOGNITION: PSYCHOLOGY AND CONNECTION-
1sM, which relates connectionist approaches to face recognition to
psychological theories for the subtasks of representing faces and
retrieving them from memory, comparing human and model per-
formance along these dimensions.

Many of the concepts of connectionist psychology are strongly
related to work in behaviorism, but neural networks provide a
stronger “internal structure” than stimulus-response probabilities.
Connectionist research has enriched a number of concepts that
seemed “anticognitive” by embedding them in mechanisms,
namely, neural nets, which can both support internal states and
yield stimulus-response pairs as part of a general input-output map.
This is shown in CONDITIONING. During conditioning, animals
modify their behavior as a consequence of their experience of the
contingencies between environmental events. This article presents
formal theories and neural network models that have been proposed
to describe classical and operant conditioning. During classical
conditioning, animals change their behavior as a result of the con-
tingencies between the conditioned stimulus (CS) and the uncon-
ditioned stimulus (US). Contingencies may vary from very simple
to extremely complex ones. For example, in Pavlov’s proverbial
experiment, dogs were exposed to the sound of a bell (CS) followed
by food (US). At the beginning of training, animals salivated (gen-
erated an unconditioned response, UR) only when the US was pre-
sented. With an increasing number of CS-US pairings, CS presen-
tations elicited a conditioned response (CR). The article discusses
variations in the effectiveness of the CS, the US, and the CS and

US together, as well as attentional models. During operant (or in-
strumental) conditioning, animals change their behavior as a result
of a triple contingency between its responses (R), discriminative
stimuli (SD), and the reinforcer (US). Animals are exposed to the
US in a relatively close temporal relationship with the SD and R.
As in “Reinforcement Learning” (q.v.), during operant condition-
ing animals learn by trial and error from feedback that evaluates
their behavior but does not indicate the correct behavior. The article
discusses positive reinforcement and negative reinforcement. Such
ideas are further developed in COGNITIVE MAPS. Tolman intro-
duced the notion of a cognitive map to explain animals’ capacity
for place learning, latent learning, detours, and shortcuts. In some
models, Tolman’s vicarious trial-and-error behavior has been re-
garded as reflecting the animal’s comparison of different expectan-
cies: at choice points, animals make a decision after sampling the
intensity of the activation elicited by the various alternative paths.
Other models still use Tolman’s stimulus-approach view and as-
sume that animals approach the place with the strongest appetitive
activation, thereby performing a gradient ascent toward the goal.
In addition to storing the representation of the environment in the
terms of the contiguity between places, cognitive maps can store
information about differences in height and the type of terrain be-
tween adjacent places, contain a priori knowledge of the space to
be explored, distinguish between roads taken and those not taken,
and keep track of which places have been examined. Neural net-
works with more than two layers can also be used to represent both
the contiguity between places and the relative position of those
places. Hierarchical cognitive maps can represent the environment
at multiple levels. In contrast to their nonhierarchical counterparts,
hierarchical maps can plan navigation in large environment, use a
smaller number of connections in their networks, and have shorter
decision times.

Learning in neural nets can be either supervised or unsupervised,
and supervision can be in terms of a specific error signal or some
general reinforcement. However, in real animals, these signals
seem to have some “heat” to them, which brings us to the issues
of motivation and emotion. Motivated or goal-directed behaviors
are sets of motor actions that direct an animal toward a particular
goal object. Interaction with the goal either promotes the survival
of an individual or maintains the species. Motivated behaviors in-
clude sleep/wake, ingestive, reproductive, thermoregulatory, and
aggressive/defensive behaviors (see also “Pain Networks”). They
are often accompanied by emotion or affect. Given the difficulty
of defining the terms drive, instinct, and motivation with respect to
the neural substrates of behavior, MOTIVATION adopts a neural sys-
tems approach that discusses what and how particular parts of the
brain contribute to the expression of behaviors that have a moti-
vated character. The approach is based on Hullian incentive models
of motivation, where the probability of a particular behavior de-
pends on the integration of information from systems that control
circadian timing and regulate arousal state, inputs derived from
interosensory information that encode internal state (e.g., hydration
state, plasma glucose, leptin, etc.), modulatory hormonal inputs
such as gonadal steroids that mediate sexual behavior, and inputs
derived from classic sensory modalities. EMOTIONAL CIRCUITS an-
alyzes the nature of emotion, emphasizing its role in behavior rather
than the subjective feelings that accompany human emotions, then
examines the role of brain structures such as the amygdala, the
interaction of body and cognitive states, and the status of neural
modeling. The expression of fear is seen as mediated by the outputs
of the amygdala to lower brain centers (brainstem, hypothalamus),
while the experience of fear involves the prefrontal cortex.

Finally, we turn to development, a theme of special concern in
connectionist linguistics (see the next road map). COGNITIVE DE-
VELOPMENT reviews connectionist models of the origins of knowl-
edge, the mechanisms of change, and the task-dependent nature of
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developing knowledge across a variety of domains. In each case,
the models provided explicit instantiations and controlled tests of
specific theories of development, and allowed the exploration of
complex, emergent phenomena. However, most connectionist
models are “fed” their input patterns regardless of what they output,
whereas even very young children shape their environments based
on how they behave. Moreover, most connectionist models are de-
signed for and tested on a single task within a single domain,
whereas children face a multitude of tasks across a range of do-
mains each day. Capturing such features of development will re-
quire future models to take in a variety of types of information and
learn how to perform successfully across a number of tasks. DE-
VELOPMENTAL DISORDERS uses the comparison of different abnor-
mal phenotypes to explore further the modeling of the developing
mind/brain. The article reviews recent examples of connectionist
models of developmental disorders. Autism is a developmental dis-
order characterized primarily by deficits in social interaction, com-
munication, and imagination, but also by a range of secondary def-
icits. One hypothesis suggests that these structural deficits are
consistent with too few neurons in some brain areas, such as the
cerebellum, and too many neurons in other areas, such as the amyg-
dala and hippocampus. This grounds a simple connectionist model
trained on categorization tasks linking such differences in neuro-
computational constraints to some of the secondary deficits found
in autism. Other models relate disordered feature maps or hidden
unit numbers to higher-level cognitive deficits that characterize au-
tism. Developmental dyslexia has been modeled by changing pa-
rameters in models of the normal processes of reading. Another
model captures some features of specific language impairment, spe-
cifically the difficulty of affected patients in learning rule-based
inflectional morphology in verbs, using an attractor network map-
ping between semantic codes and phonological codes. The article
also reports new empirical findings on Williams syndrome patients
which reveal a deficit in generalizing knowledge of inflectional
patterns to novel forms. Alterations in the initial computational
constraints of a connectionist model of past tense development are
shown to account for some of the patterns seen in such data, dem-
onstrating how different computational constraints interact in the
process of development. Connectionist models thus provide a pow-
erful tool with which to investigate the role of initial computational
constraints in determining the trajectory of both typical and atypical
development, ensuring that selective deficits in developmental dis-
orders are seen in terms of the outcome of the developmental pro-
cess itself.

Linguistics and Speech Processing

CONSTITUENCY AND RECURSION IN LANGUAGE

CONVOLUTIONAL NETWORKS FOR IMAGES, SPEECH, AND TIME
SERIES

HIDDEN MARKOV MODELS

IMAGING THE GRAMMATICAL BRAIN

LANGUAGE ACQUISITION

LANGUAGE EVOLUTION AND CHANGE

LANGUAGE EvOLUTION: THE MIRROR SYSTEM HYPOTHESIS

LANGUAGE PROCESSING

MOTOR THEORIES OF PERCEPTION

NEUROLINGUISTICS

OPTIMALITY THEORY IN LINGUISTICS

PAST TENSE LEARNING

READING

SPEECH PROCESSING: PSYCHOLINGUISTICS

SPEECH PRODUCTION

SPEECH RECOGNITION TECHNOLOGY

The traditional grounding of linguistics is in grammar, a systematic
set of rules for structuring the sentences of a particular language.

Much modern work in linguistics has been dominated by the ideas
of Noam Chomsky, who placed the notion of grammar in a math-
ematical framework. His ideas have gone through successive stages
in which the formulation of grammars has changed radically. How-
ever, two themes have remained stable in the “generative linguis-
tics” that has grown from his work:

* There is a universal grammar which defines what makes a lan-
guage human, and each human language has a grammar that is
simply a parametric variation of the universal grammar.

* Language is too complicated for a child to learn from scratch;
instead a child has universal grammar as an innate mental ca-
pacity. When the child hears example sentences of a language,
they set parameters in the universal grammar so that the child
can then acquire the grammar of the particular language.

Connectionist linguistics attacks this reasoning on two fronts:

* It says that language processing is better understood in terms of
connectionist processing, which, as a performance model (i.e., a
model of behavior, as distinct from a competence model, which
gives a static representation of a body of knowledge), can give
an account of errors as well as regularities in language use.

* It notes that connectionism has powerful learning tools that
Chomsky has chosen to ignore. With those tools, connectionism
can model how children could acquire language on the basis of
far less specific mental structures than those posited in universal
grammar.

LANGUAGE PROCESSING reviews many application of connec-
tionist modeling. Despite the insights gained into syntactic struc-
ture across languages, the formal study of language has revealed
relatively little about learning and development. Thus, as we shall
see later in this road map, the connectionist program for under-
standing language has concentrated on the process of change, ex-
ploring topics such as language development, language breakdown,
the dynamics of representation in complex systems which them-
selves may be receiving changing input, and even the evolution of
language. The article briefly reviews models of lexical processing
(reading single words, recognizing spoken words, and word pro-
duction) as well as higher-level processing. It concludes that there
has been important progress in many areas of connectionist-based
research into language processing, and this modeling influences
both psychological and neuropsychological experimentation and
observation. However, it concedes that the major debates on top-
down feedback, on the capacity of connectionist models to capture
the productivity and systematicity of human language, and on the
degree of modularity in language processing remain to be settled.

CONSTITUENCY AND RECURSION IN LANGUAGE then provides
more detail on connectionist approaches to syntax. Words group
together to form coherent building blocks, constituents, within a
sentence, so that “The girl liked a boy” decomposes into “the girl”
and “liked a boy,” forming a subject noun phrase (NP) and a verb
phrase (VP), respectively. In linguistics, grammar rules such as
Sentence S = NP VP determine how constituents can be put to-
gether to form sentences. To capture the full generativity of human
language, recursion needs to be introduced into the grammar. For
example, if we add the rules NP — (det) N(PP) (noun with optional
determiner and prepositional phrase) and PP — Preposition NP,
then the rules are recursive, because in this case, NP can invoke
rules that eventually call for another instance of NP. This article
discusses how constituency and recursion may fit into a connec-
tionist framework, and the possible implications this may have for
linguistics and psycholinguistics.

LANGUAGE ACQUISITION presents models used by developmen-
tal connectionists to support the claim that rich linguistic represen-
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tations can emerge from the interaction of a relatively simple learn-
ing device and a structured linguistic environment. The article
reviews connectionist models of lexical development, inflectional
morphology, and syntax acquisition, stressing that these models use
similar learning algorithms to solve diverse linguistic problems.
PAsT TENSE LEARNING then presents issues in word morphology
as a backdrop for a detailed discussion of the prime debate between
a rule-based and a connectionist account of language processing,
over the forming of regular and irregular past tenses of verbs in
English. The dual mechanism model—use the general rule
“add-ed” unless an irregular past tense is found in a table of ex-
ceptions—was opposed by the view that all past tenses, even for
regular verbs, are formed by a connectionist network. The article
concludes that most researchers now agree that the mental pro-
cessing of irregular inflections is not rule governed but rather works
much like a connectionist network. Certainly, rules provide an in-
tuitively appealing explanation for regular behavior. Indeed, people
are clearly able to consciously identify regularities and describe
them with explicit rules that can then be deliberately followed, but
this does not imply that a neural encoding of these rules, rather
than a connectionist network which yields rule-like behavior, is the
better account of “mental reality.” The matter is subtle because the
brain is composed of neurons. Thus the issue is not “Does the
brain’s language processing use neural networks?” but whether or
not the activity of those networks is best described as explicitly
encoding a set of rules.

READING covers connectionist models of reading and associated
processes, including the reading disorder known as dyslexia. Where
a skilled reader can recognize many thousands of printed words,
each in a fraction of a second, with no noticeable effort, a dyslexic
child may need great effort to recognize a printed word as a par-
ticular word. Most connectionist networks for reading are models
of word recognition. However, word recognition is more than an
analytic letter-by-letter process that translates spelling into pho-
nology, and so the synthetic-analytic debate provides the organiz-
ing theme for this article. The authors argue that, rather than see
modeling word recognition as a distinct, separable component of
reading, it may be better to investigate more integrative, nonlinear
iterative network models. However, SPEECH PROCESSING: Psy-
CHOLINGUISTICS reviews attempts to capture psycholinguistic data
using connectionist models, with the primary focus on speech seg-
mentation and word recognition. This article analyzes how far the
problem of segmenting speech into words occurs independently of
word recognition; considers the interplay of connectionist models
of word recognition with empirical research and theory; and as-
sesses the gap that remains between psycholinguistic studies of
speech processing and modeling of the human brain. Although data
from neuropsychology and functional imaging are becoming in-
creasingly important (see IMAGING THE GRAMMATICAL BRAIN and
NEUROLINGUISTICS), the main empirical constraints on psycholin-
guistic models are derived from laboratory studies of human lan-
guage processing that are unrelated to neural data. The article sug-
gests that connectionist modeling helps bridge the gulf between
psycholinguistics and neuroscience by employing computational
models that embody at least some of the computational principles
of the brain.

IMAGING THE GRAMMATICAL BRAIN notes that there is little
agreement on the best way to analyze language. Contrary to the
connectionist approach (see, e.g., PAST TENSE LEARNING), the au-
thor sees inventories of combinatorial rules, and stores of complex
objects of several types over which these rules operate, as being at
the core of language. The “language faculty,” in this view, inheres
in a cerebrally represented knowledge base (rule system) and in
algorithms that instantiate it. It is divided into levels for the iden-
tification and segmentation of speech sounds (universal phonetics),
a system that enables the concatenation of phonetic units into se-

quences (phonology), then into words (morphology, where word
structure is computed), sentences (syntax), and meaning (lexical
and compositional semantics). The article reviews results emanat-
ing from brain imaging that support the neural reality of linguistic
rules as a constitutive element of the human language faculty. The
focus is on linguistic combinations at the sentence level, but an
analysis of cerebral representation of phonological units and of
word meaning in its isolated and compositional aspects is provided
as background. The study of brain mechanisms supporting lan-
guage is further advanced in NEUROLINGUISTICS. Neurolinguistics
began as the study of the language deficits occurring after brain
injuries and is rooted in the conceptual model of Broca’s aphasia,
Wernicke’s aphasia, and other aphasic syndromes established over
a hundred years ago. However, thanks to recent research, critical
details are now seen differently, and finer details have been added.
Speech and language are now recognized as the products of inter-
acting dynamic systems, with major implications for modeling nor-
mal and abnormal performance and for understanding their neural
substrates. The article analyzes between-stage information flow,
dynamics of within-stage processing, unitary representations and
activation, and processing by constraint satisfaction. How the cog-
nitive elements (nodes) of psychological theorizing correspond to
actual neuronal activity is not known for certain. However, the
article suggests that the attractor states that can occur in recurrent
networks are viable candidates for behaving as nodes. Indeed,
many modeling efforts in neurolinguistics have been concerned
with the consequences of relatively large-scale assumptions about
stages and connections (see “Lesioned Networks as Models of Neu-
ropsychological Deficits”).

On the output side, SPEECH PRODUCTION focuses on work in
motor control, dynamical systems and neural networks, and lin-
guistics that is critical to understanding the functional architecture
and characteristics of the speech production system. The central
point is that spoken word forms are not unstructured wholes but
rather are composed from a limited inventory of phonological
units that have no independent meaning but that can be (relatively
freely) combined and organized in the construction of word forms.
The production of speech by the lips, tongue, vocal folds, velum,
and respiratory system can thus be understood as arising from
choreographed linguistic action units. However, when phonolog-
ical units are made manifest in word and sentence production,
their spatiotemporal realization by the articulatory system, and
consequent acoustic character presented to the auditory system, is
highly variable and context dependent. The speech production sys-
tem is sometimes viewed as having two components, one (tradi-
tionally referred to as phonology) concerned with categorical and
linguistically contrastive information, and the other concerned
with gradient, noncontrastive information (traditionally referred to
as phonetics). However, current work in connectionist and dynam-
ical systems models blurs this dichotomy. MOTOR THEORIES OF
PERCEPTION reviews reasons why speech scientists have doubted
the claim that the speech motor system participates in speech per-
ception and then argues against such doubts, showing that the
theory accrues credibility when it is set in the larger context of
investigations of perception, action, and their coupling. The mirror
neurons in primates (see LANGUAGE EVOLUTION: THE MIRROR
SysTEM HYPOTHESIS) are seen as providing an existence proof of
neuronal perceptuomotor couplings. The article further argues
that, although the motor theory of speech perception was moti-
vated by requirements of speaking and listening, real-world func-
tional perception-action coupling is central to the “design” of ani-
mals more generally.

We have already contrasted connectionism with rule-based
frameworks that account for linguistic patterns through the se-
quential application of transformations to lexical entries. OPTIMAL-
ITY THEORY IN LINGUISTICS introduces optimality theory (OT) as
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a framework for linguistic analysis that has largely supplanted rule-
based frameworks within phonology; it has also been applied to
syntax and semantics, though not as widely. Generation of utter-
ances in OT involves two functions, Gen and Eval. Gen takes an
input and returns a (possibly infinite) set of output candidates.
Some candidates might be identical to the input, others modified
somewhat, others unrecognizable. Eval chooses the candidate that
best satisfies a set of ranked constraints; this optimal candidate
becomes the output. The constraints can conflict, so the constraints’
ranking, which differs from language to language, determines the
outcome. One language might eliminate consonant clusters by de-
leting consonants; another might retain all input consonants. OT
was partly inspired by neural networks, employing as it does the
ideas of optimization, parallel evaluation, competition, and soft,
conflicting constraints. OT can be implemented in a neural network
with constraints that are implemented as connection weights. The
network implements a Lyapunov function that maximizes “har-
mony” (Z;a;wya;: the sum, for all pairs i, j of neurons, of the prod-
uct of the neurons’ activations and their connection weight). Hi-
erarchically structured representations (e.g., consonants and vowels
grouped into syllables) can be represented as matrices of neurons,
where each matrix is the tensor product of a vector for a linguistic
unit and a vector for its position in the hierarchy.

An approach to language that emphasizes the learning processes
of each new speaker rather than the existence of a set of immutable
rules shared by all humans seems well equipped to approach the
issue of how a language changes from generation to generation.
Computational modeling has been used to test competing theories
about specific aspects of language evolution under controlled cir-
cumstances. Connectionist networks have been used as simulated
agents to study how social transmission via learning may give rise
to the evolution of structured communication systems. In other
cases, properties of neural network learning are enlisted to help
illuminate the constraints and processes that may have been in-
volved in the evolution of language. LANGUAGE EVOLUTION AND
CHANGE surveys this connectionist research, starting from the
emergence of early syntax and continuing on to the role of social
interaction and constraints on network learning in subsequent evo-
lution of language. It also discusses linguistic change within exist-
ing languages, showing how the inherent generalization ability of
neural networks makes certain errors in language transmission from
one generation to the next more likely than others. (However, such
models say more about the simplification of grammars than about
how language complexity arises in the first place.) Where this ar-
ticle stresses computational efficacy of various models proposed
for the emergence of features characteristic of current human lan-
guages, LANGUAGE EVOLUTION: THE MIRROR SYSTEM HYPOTH-
EsIS focuses on brain mechanisms shared by humans with other
primates, and seeks to explain how these generic mechanisms
might have become specialized during hominid evolution to sup-
port language. It is argued that imitation and pantomime provide a
crucial bridging capability between general primate capabilities for
action recognition and the language readiness of the human brain.

At present, the state of play may be summarized as follows:
generative linguistics has shown how to provide grammatical rules
that explain many subtle sentence constructions of English and
many other languages, revealing commonalities and differences be-
tween languages, with the differences in some cases being reduced
to very elegant and compact formulations in terms of general rules
with parametric variations. However, in offering the notion of uni-
versal grammar as the substrate for language acquisition, generative
linguistics ignores issues of learning that must, in any case, be faced
in explaining how children acquire the large and idiosyncratic vo-
cabulary of their native tongue. Connectionist linguistics, on the
other hand, has made great strides in bringing learning to the center,
not only showing how specific language skills (e.g., use of the past

tense) may be acquired, but also providing insight into psycholin-
guistics, the study of language behavior. However, connectionist
linguistics still faces two major hurdles: it lacks the systematic
overview of language provided by generative linguistics, and little
progress has been made in developing a neurolinguistic theory of
the contributions of specific brain regions to language capabilities.
It is one thing to train an ANN to yield a convincing model of
performance on the past tense; it is quite another to offer an account
of how this skill interfaces with all the other aspects of language,
and what neural substrates are necessary for their acquisition by
the human child.

The remaining articles look at speech processing from a tech-
nological perspective rather than in relation to human psycholin-
guistic data. SPEECH RECOGNITION TECHNOLOGY introduces the
way computer systems that transcribe speech waveforms into
words rely on digital signal processing and statistical modeling
methods to analyze and model the speech signal. Although com-
mercial technology is typically not based on connectionist methods,
neural network processing is commonly seen as a promising alter-
native to some of the current algorithms, and the article focuses on
speech recognizers that process large-vocabulary continuous
speech and that use multilayer feedforward neural networks. Tra-
ditional speech recognition systems follow a hierarchical architec-
ture. A grammar specifies the sentences allowed by the application.
(Alternatively, for very large vocabulary systems, a statistical lan-
guage model may be used to define the probabilities of various
word sequences in the domain of application.) Each word allowed
by the grammar is listed in a dictionary that specifies its possible
pronunciations in terms of sequences of phonemes which are fur-
ther decomposed into smaller units whose acoustic realizations are
represented by statistical acoustic models. When a speech wave-
form is input to a recognizer, it is first processed by a front-end
unit that extracts a sequence of observations, or “features,” from
the raw signal. This sequence of observations is then decoded into
the sequence of speech units whose acoustic models best fit the
observations and that respect the constraints imposed by the dic-
tionary and language model. Hidden Markov models (HMMs) have
been an essential part of the toolkit for continuous speech recog-
nition, as well as other complex temporal pattern recognition prob-
lems such as cursive (handwritten) text recognition, time-series pre-
diction, and biological sequence analysis. HIDDEN MARKOV
MODELS describes the use of deterministic and stochastic finite
state automata for sequence processing, with special attention to
HMMs as tools for the processing of complex piecewise stationary
sequences. It also describes a few applications of ANNS to further
improve these methods. HMMs allow complex learning problems
to be solved by assuming that the sequential pattern can be decom-
posed into piecewise stationary segments, with each stationary seg-
ment parameterized in terms of a stochastic function. The HMM is
called “hidden” because there is an underlying stochastic process
(i.e., the sequence of states) that is not directly observable but that
nonetheless affects the observed sequence of events. CONVOLU-
TIONAL NETWORKS FOR IMAGES, SPEECH, AND TIME SERIES shows
how shift invariance is obtained in convolutional networks by forc-
ing the replication of weight configurations across space. This takes
the topology of the input into account, enabling such networks to
force the extraction of local features by restricting the receptive
fields of hidden units to be local, and enforcing a built-in invariance
with respect to translations, or local distortions of the inputs.

Artificial Intelligence

ARTIFICIAL INTELLIGENCE AND NEURAL NETWORKS

BAYESIAN NETWORKS

COMPETITIVE QUEUING FOR PLANNING AND SERIAL
PERFORMANCE
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COMPOSITIONALITY IN NEURAL SYSTEMS

CONNECTIONIST AND SYMBOLIC REPRESENTATIONS

DECISION SUPPORT SYSTEMS AND EXPERT SYSTEMS

DyYNAMIC LINK ARCHITECTURE

GRAPHICAL MODELS: PARAMETER LEARNING

GRAPHICAL MODELS: PROBABILISTIC INFERENCE

GRAPHICAL MODELS: STRUCTURE LEARNING

HyYBRID CONNECTIONIST/SYMBOLIC SYSTEMS

MEMORY-BASED REASONING

MULTIAGENT SYSTEMS

SCHEMA THEORY

SEMANTIC NETWORKS

STRUCTURED CONNECTIONIST MODELS

SYSTEMATICITY OF GENERALIZATIONS IN CONNECTIONIST
NETWORKS

In the 1950s, the precursors of today’s fields of artificial intelli-
gence and neural networks were still subsumed under the general
heading of cybernetics. Much of the work in the 1960s sought to
distance artificial intelligence (AI) from its cybernetic roots, em-
phasizing models of, e.g., logical inference, game playing, and
problem solving that were based on explicit symbolic representa-
tions manipulated by serial computer programs. However, work in
computer vision and in robotics (discussed in the road maps Vision
and Robotics and Control Theory, respectively) showed that this
distinction was never entirely convincing, since these were areas
of Al that made use of parallel computation and numerical trans-
formations. For a while, a case could be made that the use of par-
allelism might be appropriate for peripheral sensing and motor con-
trol but not for the “central” processes involved in ‘“real”
intelligence. However, work from at least the mid-1970s onward
has made this fallback position untenable. For example, in the
HEARSAY system, speech understanding was achieved not by se-
rial manipulation of symbolic structures but by the action (implic-
itly distributed, though in the 1970s still implemented on a serial
computer) of knowledge sources (what we would now call
“agents”) to update numerical confidence levels of multiple hy-
potheses distributed across a set of “levels” in a data structure
known as a blackboard. MULTIAGENT SYSTEMS introduces the
methodology that has grown out of such beginnings. What consti-
tutes an “individual” can be highly subjective: an individual to one
researcher can, to another, be a complex distributed system com-
prised of finer-grained agents. Research in brain theory has dealt
with different levels, from neurons to brain regions to humans
whereas Al work in multi-agent systems has focused on coarse-
grained levels of individuality and interaction, where the goal is to
draw upon sociological, political, and economic insights. The ar-
ticle is designed to survey enough of this work on multi-agent
systems to foster comparisons between the ANN, brain theory, and
multi-agent approaches. A crucial notion is that agents either have
or learn models of the agents with which they interact. These mod-
els allow agents to avoid dealing with malicious or broken agents.
Agents may even build nested models of the other agents that in-
clude an agent’s models of other agents, and so on. By using their
models of each other, the agents loosely organize themselves into
self-reinforcing communities of trust, avoiding unproductive future
interactions with other agents. In another branch of Al, work on
expert systems—information systems that represent expert knowl-
edge for a particular problem area as a set of rules, and that perform
inferences when new data are entered—provided an important ap-
plication success in which numerical confidence values played a
role, but with the emphasis still on manipulation of hypotheses
through the serial application of explicit rules. As shown in DE-
CISION SUPPORT SYSTEMS AND EXPERT SYSTEMS, we now see
many cases in which the application of separate rules is replaced
by transformations effected in parallel by (trainable) neural net-

works. A decision system is either a decision support system or an
expert system in the classic Al sense. The article reviews results
on connectionist-based decision systems. In particular, trainable
knowledge-based neural networks can be used to accumulate both
knowledge (rules) and data, building adaptive decision systems
with incremental, on-line learning.

As the general overview article ARTIFICIAL INTELLIGENCE AND
NEURAL NETWORKS makes clear, there are many problems for
which the (not necessarily serial) manipulation of symbolic struc-
tures can still outperform connectionist approaches, at least with
today’s software running on today’s hardware. Nonetheless, if we
define Al by the range of problems it is to solve—or the “packets
of intelligence” it is to implement—then it is no longer useful to
define it in opposition to connectionism. In general, the technolo-
gist facing a specific problem should choose between, or should
combine, connectionist and symbolic approaches on the basis of
efficacy, not ideology. On occasion, for rhetorical purposes, authors
will use the term Al for a serial symbolic methodology distinct
from connectionism. However, we will generally use it in an ex-
tended sense of a technology that seeks to realize aspects of intel-
ligence in machines by whatever methods work best. The term
symbolic Al will then be used for the “classical” approach. The
article examines the relative merits of symbolic Al systems and
neural networks, and ways of attempting to bridge between the two.
In brain theory, everything, whether symbolic or not, is, in the final
analysis, implemented in a neural network. But even here, an anal-
ysis of the brain will often best be conducted in terms of interacting
subsystems that are not all fully explicated in neural network terms.
SCHEMA THEORY complements neuroscience’s well-established
terminology for levels of structural analysis (brain region, neuron,
synapse) with a framework for analysis of behavior with no nec-
essary commitment to hypotheses on the localization of each
schema (unit of functional analysis), but which can be linked to a
structural analysis whenever appropriate. The article focuses on
two issues: structuring perceptual and motor schemas to provide
an action-oriented account of behavior and cognition (as relevant
to the roboticist as the ethologist), and how schemas describing
animal behavior may be mapped to interacting regions of the brain.
Schema-based modeling becomes part of neuroscience when con-
strained by data provided by, e.g., human brain mapping, studies
of the effects of brain lesions, or neurophysiology. The resulting
model may constitute an adequate explanation in itself or may pro-
vide the framework for modeling at the level of neural networks
or below. Such a neural schema theory provides a functional/struc-
tural decomposition, in strong contrast to models that employ learn-
ing rules to train a single, otherwise undifferentiated, neural net-
work to respond as specified by some training set. HYBRID
CONNECTIONIST/SYMBOLIC SYSTEMS reviews work on hybrid sys-
tems that integrate neural (ANN) and symbolic processes. Cogni-
tive processes are not homogeneous, and so some are best captured
by symbolic models and others by connectionist models. Corre-
spondingly, from a technological viewpoint, Al systems for prac-
tical applications can benefit greatly from a proper combination of
different techniques combining, e.g., symbolic models (for captur-
ing explicit knowledge) and connectionist models (for capturing
implicit knowledge).

Use of the term systematicity in relation to connectionist net-
works originated with Fodor and Pylyshyn’s critique of connec-
tionist architecture. They claimed that human cognitive abilities are
systematically related in a way that does not hold in connectionist
networks, unlike formal systems akin to propositional logic. Sys-
TEMATICITY OF GENERALIZATIONS IN CONNECTIONIST NETWORKS
starts by noting that this critique made no reference to learning-
based generalization, and then proceeds to examine claims and
counterclaims concerning the claim that learning in connectionist
architectures can engender systematicity. Special attention is paid
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to studies based on simple recurrent networks (SRNs) and recursive
auto-associative memory (RAAM). The article suggests that, for
now, evidence for systematicity in such simple networks is rather
limited. Perhaps this is not so surprising, given that there is little
evidence of systematicity in most animals, and animal brains are
vastly more complex than SRNs or RAAMSs. Compare “Language
Evolution: The Mirror System Hypothesis” for a discussion of how
evolution may have shaped the human brain to extend capabilities
shared with other species to yield novel human cognitive abilities.

The notion of representation plays a central role in Al. As dis-
cussed in SEMANTIC NETWORKS, one classic form of representation
in Al is the semantic network, in which nodes represent concepts
and links represent relations between them. Semantic networks
were originally developed for couching “semantic” information,
either in the psychologist’s sense of static information about con-
cepts or in the semanticist’s sense of the meanings of natural lan-
guage sentences. However, they are also used as a general knowl-
edge representation tool. The more elaborate types of semantic
networks are similar in their representational abilities to sophisti-
cated forms of symbolic logic. The article discusses various ways
of implementing or emulating semantic networks in neural net-
works, and of forming hybrid semantic network-neural network
systems. STRUCTURED CONNECTIONIST MODELS emphasizes those
neural networks in which the translation from symbolic to neural
is fairly direct: nodes become “neurons,” but now processing is
done by neural interactions rather than by an “inference engine”
acting on a passive representation. At the other extreme, certain
neural networks (connectionist, rather than biological) may trans-
form input “questions” to output “answers” via the distributed ac-
tivity of neurons whose firing conditions have no direct relationship
to the concepts that might normally arise in a logical analysis of
the problem (cf. “Past Tense Learning”). In the fully distributed
version of the latter approach, each “item” (concept or mental ob-
ject) is represented as a pattern of activity distributed over a com-
mon pool of nodes. However, if “John” and “Mary,” for example,
are represented as patterns of activity over the entire network such
that each node in the network has a specific value in the patterns
for “John” and “Mary,” respectively, then how can the network
represent “John” and “Mary” at the same time? To address such
problems, the structured approach often employs small clusters of
nodes that act as “focal” nodes for concepts and provide access to
more elaborate structures that make up the detailed encoding of
concepts (cf. “Localized Versus Distributed Representations”). The
discussion of these varying styles of representation is continued in
CONNECTIONIST AND SYMBOLIC REPRESENTATIONS. In symbolic
representations, the heart of mathematics and many models of cog-
nition, symbols are meaningless entities to which arbitrary signif-
icance may be assigned. Composing ordered tuples from symbols
and other tuples allows us to create an infinitude of complex struc-
tures from a finite set of tokens and combination rules. Inference
in the symbolic framework is founded on structural comparison
and rule-governed manipulation of these objects. However, Al
makes extensive use of nondeductive reasoning methods. Symbol-
ists have moved to more complex formalizations of cognitive pro-
cesses, using heuristic and unsound inference rules. Connectionists
explore a radical alternative: that cognitive processes are mere ep-
iphenomena of a completely different type of underlying system,
whose operations can never be adequately formalized in symbolic
language. The article examines representation and processing is-
sues in the connectionist move from classical discrete, set-theoretic
semantics to a continuous, statistical, vector-based semantics.

In symbolic Al, two concepts can be linked by providing a
pointer between them. In a neural net, the problem of “binding”
the two patterns of activity that represent the concepts is a more
subtle one, and several models address the use of rapidly changing
synaptic strengths to provide temporary “assemblages” of currently

related data. This theme is developed not only in STRUCTURED
CONNECTIONIST MODELS, but also in the articles COMPOSITION-
ALITY IN NEURAL SYSTEMS (how can inferences about a structure
be based on the way it is composed of various elements?), and
“Object Structure, Visual Processing” (combining visual elements
of an object into a recognizable whole). DYNAMIC LINK ARCHI-
TECTURE, the basic methodology, views the brain’s data structure
as a graph composed of nodes connected by links. Both units and
links bear activity variables changing on the rapid time scale of
fractions of a second. The nodes play the role of symbolic elements.
The intensity of activity measures the degree to which a node is
active in a given time interval, signifying the degree to which the
meaning of the node is alive in the mind of the animal, while
correlations of activity between nodes quantify the degree to which
the signal of one node is related to that of others. The strength of
links can change on two time scales, represented by two variables
called temporary weight and permanent weight. The permanent
weight corresponds to the usual synaptic weight, can change on the
slow time scale of learning, and represents permanent memory. The
temporary weight can change on the same time scale as the node
activity—it is what makes the link dynamic. On this view, dynamic
links constitute the glue by which higher data structures are built
up from more elementary ones.

Complementing the theme of representation in symbolic Al has
been that of planning, going from (representations of) the current
state and some desired state to a sequence of operations that will
transform the former to the latter. COMPETITIVE QUEUING FOR
PLANNING AND SERIAL PERFORMANCE presents neural network
studies based on two assumptions: that more than one plan repre-
sentation can be simultaneously active in a planning layer, and that
which plan to enact next is chosen as the most active plan repre-
sentation by a competition in a second neural layer. Once a plan
wins the competition and is used to initiate a response, its repre-
sentation is deleted from the field of competitors in the planning
layer, and the competition is re-run. This iteration allows the two-
layer network to transform an initial activity distribution across
plan representations into a serial performance. Such models pro-
vide a very different basis for control of serial behavior than that
given by recurrent neural networks. The article suggests that such
a system was probably an ancient invention in the evolution of
animals yet may still serve as a viable core for the highest levels
of planning and skilled sequencing exhibited by humans.

The final articles in this road map are not on neural nets per se,
but instead provide related methods that add to the array of tech-
niques extending Al beyond the serial, rule-based approach.
BAYESIAN NETWORKS provides an explicit method for following
chains of probabilistic inference such as those appropriate to expert
systems, extending Bayes’s rule for updating probabilities in the
light of new evidence. The nodes in a Bayesian network represent
propositional variables of interest and the links represent infor-
mational or causal dependencies among the variables. The depen-
dencies are quantified by conditional probabilities for each node
given its parents in the network. The network supports the com-
putation of the probabilities of any subset of variables given evi-
dence about any other subset, and the reasoning processes can op-
erate on Bayesian networks by propagating information in any
direction. GRAPHICAL MODELS: PROBABILISTIC INFERENCE intro-
duces the graphical models framework, which has made it possible
to understand the relationships among a wide variety of network-
based approaches to computation, and in particular to understand
many neural network algorithms and architectures as instances of
a broader probabilistic methodology. Graphical models use graphs
to represent and manipulate joint probability distributions. The
graph underlying a graphical model may be directed, in which case
the model is often referred to as a belief network or a Bayesian
network, or the graph may be undirected, in which case the model
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is generally referred to as a Markov random field. The articles
GRAPHICAL MODELS: STRUCTURE LEARNING and GRAPHICAL
MODELS: PARAMETER LEARNING present learning algorithms that
build on these inference algorithms and allow parameters and struc-
tures to be estimated from data. (A fuller précis of the three articles
on graphical models can be found in the road map Learning in
Artificial Networks.) Finally, MEMORY-BASED REASONING ap-
plies massively parallel computing to answer questions about a new
situation by searching for data on the most similar stored instances.
Memory-based reasoning (MBR) refers to a family of nearest-
neighbor-like methods for making decisions or classifications.
Where nearest-neighbor methods generally use a simple overlap
distance metric, MBR uses variants of the value distance metric.

MBR and neural nets form decision surfaces differently, and so
will perform differently. MBR can become arbitrarily accurate if
large numbers of cases are available, and if these cases are well
behaved and properly categorized, whereas neural nets cannot re-
spond well to isolated cases but tend to be good at smooth extrap-
olation. For each article reviewed in this paragraph, the reader may
ponder whether these methods are alternatives to connectionist Al,
or whether they can contribute to the emergence of a technologi-
cally efficacious hybrid. As stated before, where brain theory seeks
to know “how the brain does it,” Al must weigh the value of ANNs
as a powerful technology for parallel, adaptive computation against
that of other technologies on the basis of efficacy in solving prac-
tical problems on available hardware.

I1.5. Biological Neurons and Networks

Biological Neurons and Synapses

ACTIVITY-DEPENDENT REGULATION OF NEURONAL
CONDUCTANCES

AXONAL MODELING

B1oPHYSICAL MECHANISMS IN NEURONAL MODELING

BIOPHYSICAL MOSAIC OF THE NEURON

DENDRITIC PROCESSING

DENDRITIC SPINES

DIFFUSION MODELS OF NEURON ACTIVITY

IoN CHANNELS: KEYS TO NEURONAL SPECIALIZATION

NEOCORTEX: BASIC NEURON TYPES

NEOCORTEX: CHEMICAL AND ELECTRICAL SYNAPSES

OSCILLATORY AND BURSTING PROPERTIES OF NEURONS

PERSPECTIVE ON NEURON MODEL COMPLEXITY

SINGLE-CELL MODELS

SYNAPTIC INTERACTIONS

SYNAPTIC NOISE AND CHAOS IN VERTEBRATE NEURONS

SYNAPTIC TRANSMISSION

TEMPORAL DYNAMICS OF BIOLOGICAL SYNAPSES

Nearly all the articles in the road maps Psychology, Linguistics
and Speech Processing, and Artificial Intelligence discuss net-
works made of very simple neurons describable by a single internal
variable, either binary or real-valued (the “membrane potential’)
and that communicate with other neurons by a simple (generally
nonlinear) function of that variable, sometimes referred to as the
firing rate. Incoming signals are usually summed linearly via “syn-
aptic weights,” and these weights in turn may be adjusted by simple
learning rules, such as the Hebbian rule, the perceptron rule, or a
reinforcement learning rule. Such simplifications remain valuable
both for technological application of ANNs and for approximate
models of large biological networks. Nonetheless, biological neu-
rons are vastly more complex than these single-compartment mod-
els suggest. An appreciation of this complexity is necessary for the
computational neuroscientist wishing to address the increasingly
detailed database of experimental neuroscience. It is also important
for the technologist looking ahead to the incorporation of new ca-
pabilities into the next generation of ANNs.

The neocortex is functionally parcellated into vertical columns
(~0.5 mm in diameter) traversing all six layers. These columns
have no obvious anatomical boundaries, and the topographic map-
ping of afferent and efferent pathways probably determines their
locations and dimensions as well as their functions. NEOCORTEX:
Basic NEURON TYPEs shows that these apparently stereotypical
microcircuits are composed of a daunting variety of precisely and

intricately interconnected neurons and argues that this neuronal di-
versification may provide a foundation for maximizing the com-
putational abilities of the neocortex. All anatomical cell types can
display multiple discharge patterns and molecular expression pro-
files. Different cell types are synaptically interconnected according
to complex organizational principles to form intricate stereotypical
microcircuits. The article challenges neural network modelers to
incorporate and account for this cellular diversity and the role of
different cells in the computational capability of cortical microcir-
cuits. NEOCORTEX: CHEMICAL AND ELECTRICAL SYNAPSES sum-
marizes the diverse functional properties of synapses in neocortex.
These synapses tend to be small, but their structure and biochem-
istry are complex. Both chemical and electrical synapses exist in
neocortex. Chemical synapses are the “usual synapses” of neural
network models, and are far more abundant. They use a chemical
neurotransmitter that is packaged presynaptically into vesicles, re-
leased in quantized (vesicle-multiple) amounts, and binds to post-
synaptic receptors that either open an ion channel directly (voltage-
dependent ion channels) or modulate the channel through an
intracellular molecule that links the activated receptor to the open-
ing or closing of the channel. The latter molecule is called a “sec-
ond messenger,” to contrast it with the case in which the transmitter
itself provides a “primary message” that acts directly on the chan-
nel, in this case called “ligand-gated.” Second-messenger-based
synaptic interaction occurs on a slower time scale than ligand-gated
interaction and is called neuromodulation, since it may modulate
the behavior of the postsynaptic neuron over a time scale of seconds
or minutes rather than milliseconds (cf. “Neuromodulation in In-
vertebrate Nervous Systems” and ‘“Neuromodulation in Mamma-
lian Nervous Systems”). The essential element of an electrical syn-
apse is a protein called a connexin; 12 connexins form a single
intercytoplasmic ion channel, and a cluster of such channels con-
stitutes a gap junction. Electrical synapses provide a direct pathway
that allows ionic current or small organic molecules to flow from
the cytoplasm of one cell to that of another. Short-term dynamics
allow synapses to serve as temporal filters of neural activity. Long-
term synaptic plasticity provides specific, localized substrates for
various forms of memory. Modulation of synaptic function by neu-
rotransmitters (see “Neuromodulation in Mammalian Nervous Sys-
tems”) provides a mechanism for globally altering the properties
of a neural circuit during changes of behavioral state. Each of these
functions has diverse forms that vary between synapses, depending
on their site within the cortical circuit (and elsewhere in the brain).

PERSPECTIVE ON NEURON MODEL COMPLEXITY discusses the
wide range of model complexity, from very simple to rather com-
plex neuron models. Which model to choose depends, in each case,
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on the context, such as how much information we already have
about the neurons under consideration and what questions we wish
to answer. The use of more realistic neuron models when seeking
functional insights into biological nervous systems does not mean
choosing the most complex model, at least in the sense of including
all known anatomical and physiological details. Rather, the key is
to preserve the most significant distinctions between regions (soma,
proximal dendritic, distal dendritic, etc.), using “compartmental
modeling,” whereby one compartment represents each functionally
distinct region. SINGLE-CELL MODELS starts by reviewing the “sim-
ple” models of Part I (the McCulloch-Pitts, perceptron, and Hop-
field models) and the slightly more complex polynomial neuron. It
then turns to more realistic biophysical models, most of which are
explored in further detail in this road map. These include the Hodg-
kin-Huxley model of squid axon, integrate-and-fire models, mod-
ified single-point models, cable and compartmental models, and
models of synaptic conductances.

Before turning to a detailed analysis of mechanisms of neuronal
function, we first consider an article that offers a high-level view
of the neuron, but this time a stochastic one. Most nerve cells en-
code their output as a series of action potentials, or spikes, that
originate at or close to the cell body and propagate down the axon
at constant velocity and amplitude. DIFFUSION MODELS OF NEU-
RON ACTIVITY studies the membrane potential of a single neuron
as engaged in a stochastic process that will eventually bring it to
the threshold for spike initiation. This leads to the first-passage-
time problem, inferring the distribution of neuronal spiking based
on the “first passage” of the membrane potential from its resting
value to threshold. In addition to using stochastic differential equa-
tions, the article shows how the Wiener and Ornstein-Uhlenbeck
neuronal models can be obtained as the limit of a Markov process
with discrete state spaces. Besides these models, characterized by
additive noise terms appearing in the corresponding stochastic dif-
ferential equations, the article also reviews diffusion models with
multiplicative noise, showing that these can be used not only for
the description of steady-state firing under constant stimulation, but
also for effects of periodic stimulation.

Now for the details of neuronal function. The ionic mechanisms
underlying the initiation and propagation of action potentials were
elucidated in the squid giant axon by a number of workers, most
notably Hodgkin and Huxley. Variations on the Hodgkin-Huxley
equation underlie the vast majority of contemporary biophysical
models. AXONAL MODELING describes this model and its assump-
tions, introduces the two classes of axons (myelinated and non-
myelinated) found in most animals, and concludes by briefly com-
menting on the possible functions of axonal branching in
information processing. The Hodgkin-Huxley equation was bril-
liantly inferred from detailed experiments on conduction of nerve
impulses. Much research since then has revealed that the basis for
these equations is provided by “channels,” structures built from a
few macromolecules and embedded in the neuron which, in a
voltage-dependent way, can selectively allow different ions to pass
through the cell membrane to change the neuron’s membrane po-
tential. Similarly, channels (also known in this case as receptors)
in the postsynaptic membrane can respond to neurotransmitters,
chemicals released from the presynaptic membrane, to change the
neuron’s local membrane potential in response to presynaptic input.
These changes, local to the synapse, must propagate down the den-
drites and across the cell body to help determine whether or not
the axon will “pass threshold” and generate an action potential. IoN
CHANNELS: KEYS TO NEURONAL SPECIALIZATION notes that chan-
nels not only produce action potentials but can set a particular firing
pattern, latency, rthythm, or oscillation for the firing of these spikes.
Each neuronal class is endowed with a different set of channels,
and the diversity of channels between different types of neurons
explains the functional classes of neurons found in the brain. Some

neurons fire spontaneously, some show adaptation, some fire in
bursts, and so on. Therefore, a channel-based cellular physiology
is relevant to questions about the role of different brain regions in
overall function.

Biophysically detailed compartmental models of single neurons
typically aim to quantitatively reproduce membrane voltages and
currents in response to some sort of “synaptic” input. We may think
of them as “Hodgkin-Huxley-Rall” models, based on the hypoth-
esis of the neuron as a dynamical system of nonlinear membrane
channels distributed over an electrotonic cable skeleton. Such mod-
els can incorporate as much biophysical detail as desired (or prac-
tical), but in general, all include some explicit assortment of
voltage-dependent and transmitter-gated (synaptic) membrane
channels. BIOPHYSICAL MECHANISMS IN NEURONAL MODELING
first presents general issues regarding model formulations and data
interpretation. It then describes the modeling of various features of
Hodgkin-Huxley-Rall models, including Hodgkin-Huxley and
Markov kinetic descriptions of voltage- and second-messenger-
dependent ion channels as well as methods for describing intracel-
lular calcium dynamics and the associated buffer systems and
membrane pumps. The models for each of these mechanisms are
at an intermediate level of biophysical detail, appropriate for de-
scribing macroscopic variables (e.g., membrane currents, ionic con-
centrations) on the scale of the entire cell or anatomical compart-
ments thereof. Similar models of synaptic mechanisms are covered
in SYNAPTIC INTERACTIONS, which provides kinetic models of how
synaptic currents arise from ion channels whose opening and clos-
ing are controlled (gated) directly or indirectly by the release of
neurotransmitter. The article compares several models of synaptic
interaction, focusing on simple models based on the kinetics of
postsynaptic receptors, and shows how these models capture the
time courses of postsynaptic currents of several types of synaptic
responses, as well as synaptic summation, saturation, and
desensitization.

The membrane potential of central neurons undergoes synaptic
noise, fluctuations that depend on both the summed firing of action
potentials by neurons presynaptic to the investigated cell and the
spontaneous release of transmitter. SYNAPTIC NOISE AND CHAOS
IN VERTEBRATE NEURONS argues that, despite its random appear-
ance, synaptic noise may be a true signal associated with neural
coding, possibly a chaotic one. In addition to reviewing tools for
detecting chaotic behavior, the article pays special attention to
Mauthner cells, a pair of identified neurons in the hindbrain of
teleost fishes. When the fish is subjected to an unexpected stimulus,
one of the cells triggers an escape reaction. Their excitability is
controlled by powerful inhibitory presynaptic interneurons that
continuously generate an intense synaptic noise. While it is still an
open question whether this synaptic noise exhibits deterministic
chaos or is truly random, it is worth stressing that the “noise” has
adaptive value for the fish: the variability along output pathways
introduces uncertainty in the expression of the reflex, and therefore
enhances the fish’s success in evading predators.

TEMPORAL DYNAMICS OF BIOLOGICAL SYNAPSES complements
the many studies of synaptic plasticity in the Handbook that focus
on long-term changes in synaptic strength by showing how synaptic
function can be profoundly influenced by activity over time scales
of milliseconds to seconds. Synapses that exhibit such short-term
plasticity are powerful computational elements that can have pro-
found impact on cortical circuits (cf. “Dynamic Link Architec-
ture”). Short-term plasticity includes both synaptic depression and
a number of components of short-term enhancement (facilitation,
augmentation, and posttetanic potentiation) acting over increas-
ingly longer periods of time. Synaptic facilitation appears to result
from enhanced transmitter release due to elevated presynaptic cal-
cium levels, while depression is believed to result, in part, from
depletion of a readily releasable pool of vesicles. Depression ap-
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pears to be a particularly prominent feature of transmission at ex-
citatory synapses onto pyramidal cells. In addition to having com-
plex short-term dynamics, synapses are stochastic, and it is argued
that constructive roles for unreliable transmission become apparent
when short-term plasticity is considered in connection with sto-
chastic transmission, with synapses acting as stochastic temporal
filters of their presynaptic spike trains. Indeed, SYNAPTIC TRANS-
MISSION is concerned with the uncertainties introduced by noise
and their relation to synaptic plasticity. The probability that a single
activated synapse will release neurotransmitter has a broad distri-
bution, well fitted by a gamma function, with a mean near 0.3. The
dynamic regulation of synaptic strength depends on a complicated
set of mechanisms that record the history of synaptic use over many
time scales, and serve to filter the incoming spike train in a way
that reflects the past use of the synapse. The article provides equa-
tions which describe how synaptic use determines the number of
vesicles available for release, and for the release probability in turn.

OSCILLATORY AND BURSTING PROPERTIES OF NEURONS offers
a dynamic systems analysis of the linkage between a fascinating
variety of endogenous oscillations (neuronal rhythms) and appro-
priate sets of channels. However, membrane potential oscillations
with apparently similar characteristics can be generated by different
ionic mechanisms, and a given cell type may display several dif-
ferent firing patterns under different neuromodulatory conditions.
Here, membrane dynamics are described by coupled differential
equations, the behavior modes by attractors (cf. “Computing with
Attractors”), and the transitions between modes by bifurcations.
The rest state is represented by a time-independent steady state,
and repetitive firing is represented by a limit cycle. (“Silicon Neu-
rons” shows how such differential equations can be directly
mapped into an electronic circuit built using analog VLSI, to allow
real-time exploration of the behavior of quite realistic neural
models.)

Roughly a dozen different types of ion channels contribute to
the membrane conductance of a typical neuron. ACTIVITY-
DEPENDENT REGULATION OF NEURONAL CONDUCTANCES takes as
its starting point the fact that the electrical characteristics of a neu-
ron depend on the number of channels of each type active within
the membrane and on how these channels are distributed over the
surface of the cell. A complex array of biochemical processes con-
trols the number and distribution of ion channels by constructing
and transporting channels, modulating their properties, and insert-
ing them into and removing them from the neuron’s membrane.
The point to note here is that channels are small groupings of large
molecules, and they are assembled on the basis of genetic instruc-
tions in the cell nucleus. Thus, changing which genes are active
(i.e., regulating gene expression) can change the set of channels in
a cell, and thus the characteristics of the cell. In fact, electrical
activity in the cell can affect a range of processes, from activity-
induced gene expression to activity-dependent modulation of as-
sembled ion channels. Channel synthesis, insertion, and modula-
tion are much slower than the usual voltage- and ligand-dependent
processes that open and close channels. Thus, consideration of
activity-dependent regulation of conductances introduces a dynam-
ics acting on a new, slower time scale into neuronal modeling, a
feedback mechanism linking a neuron’s electrical characteristics to
its activity. A similar theme is developed in BIOPHYSICAL MOSAIC
OF THE NEURON, which is structured around the metaphor of the
mosaic neuron. A mosaic is a collection of discrete parts, each with
unique properties, that are fitted together in such a way that an
image emerges from the whole in a nonobvious way. Similarly, the
neuronal membrane is packed with a diversity of receptors and ion
channels and other proteins with a recognizable distribution. In
addition, the cytoplasm is not just water with ions, but a mosaic of
interacting molecular systems that can directly affect the functional
properties of membrane proteins. The argument is that, just as a

mosaic painting provokes perception of a complete image out of a
maze of individually diversified tiles, so a given neuron performs
a well-defined computational role that depends not only on the
network of cells in which it is embedded, but also to a large extent
on the dynamic distribution of macromolecules throughout the cell.

DENDRITIC PROCESSING focuses on dendrites as electrical input-
output devices that operate on a time scale range of several to a
few hundred milliseconds. (See “Dendritic Learning” for modeling
of the plasticity of dendritic function and the assertion that the
concept of “overall connection strength between two neurons” is
ill-defined, since it is the distribution of synapses in relation to
dendritic geometry that proves crucial.) The input to a dendrite
consists of temporal patterns of synaptic inputs spatially distributed
over the dendritic surface, whereas the output is (except, for ex-
ample, in the case of dendrodendritic interactions) an ionic current
delivered to the soma for transformation there, via a threshold
mechanism, to a train of action potentials at the axon. The article
discusses how the morphology, electrical properties, and synaptic
inputs of dendrites interact to perform their input-output operation.
It uses cable theory and compartmental modeling to model the
spread of electric current in dendritic trees. The variety of excitable
(voltage-gated) channels that are found in many types of dendrites
enrich the computational capabilities of neurons, with interaction
proceeding in both directions, away from and toward the soma.
Computer modeling methods for neurons offer numerical methods
for solving the equations describing branched cables. DENDRITIC
SPINES are short appendages found on the dendrites of many dif-
ferent cell types. They are composed of a bulbous “head” connected
to the dendrite by a thin “stem.” An excitatory synapse is usually
found on the spine head, and some spines also have a second,
usually inhibitory, synapse located on or near the spine stem. Mod-
els in which the spine is represented as a passive electrical circuit
show that the large resistance of a thin spine stem can attenuate a
synaptic input delivered to the spine head. Other models address
calcium diffusion and plasticity in spines. Current research focuses
on the hypothesis that the spine stem provides a diffusional resis-
tance that allows calcium to become concentrated in the spine head
and calcium-dependent reactions to be localized to the synapse.
This could be very important for plasticity changes, such as those
that occur with long-term potentiation.

Neural Plasticity

AXONAL PATH FINDING

CEREBELLUM AND CONDITIONING

CEREBELLUM AND MOTOR CONTROL

CEREBELLUM: NEURAL PLASTICITY

CONDITIONING

DENDRITIC LEARNING

DEVELOPMENT OF RETINOTECTAL MAPS

DyNAMIC LINK ARCHITECTURE

HABITUATION

HEBBIAN LEARNING AND NEURONAL REGULATION

HEBBIAN SYNAPTIC PLASTICITY

INFORMATION THEORY AND VISUAL PLASTICITY

INVERTEBRATE MODELS OF LEARNING: APLYSIA AND
HERMISSENDA

NMDA RECEPTORS: SYNAPTIC, CELLULAR, AND NETWORK
MODELS

OCULAR DOMINANCE AND ORIENTATION COLUMNS

PosT-HEBBIAN LEARNING ALGORITHMS

SHORT-TERM MEMORY

SOMATOTOPY: PLASTICITY OF SENSORY MAPS

TEMPORAL DYNAMICS OF BIOLOGICAL SYNAPSES

Most studies of learning in ANNs involve a variety of learning
rules, inspired in great part by the psychological hypotheses of
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Hebb and Rosenblatt (cf. Section 1.3) about ways in which synaptic
connections may change their strength as a result of experience. In
recent years, much progress has been made in tracing the processes
that underlie the plasticity of synapses of biological neurons. The
present road map samples this research together with related mod-
eling. Although the emphasis will be on synaptic plasticity, several
articles stress the role of axonal growth in forming new connec-
tions, and the road map closes with an article suggesting that
changes in location of synapses may be just as important as changes
in synaptic strength.

Hebb’s idea was that a synapse (what we would now call a Heb-
bian synapse) strengthens when the presynaptic and postsynaptic
elements tend to be coactive. The plausibility of this hypothesis
has been enhanced by the neurophysiological discovery of a syn-
aptic phenomenon in the hippocampus known as long-term poten-
tiation (L'TP), which is induced by a Hebbian mechanism. Hebb’s
postulate has received various modifications to address, e.g., the
saturation problem.

HEBBIAN SYNAPTIC PLASTICITY shows that a variety of experi-
mental networks ranging from the abdominal ganglion in the in-
vertebrate Aplysia to visual cortex and the CAl region of hip-
pocampus offer converging validation of Hebb’s postulate on
strengthening synapses by (more or less) coincident presynaptic
and postsynaptic activity. In these networks, similar algorithms of
potentiation can be implemented using different cascades of second
messengers triggered by activation of synaptic and/or voltage-
dependent conductances. Most cellular data supporting Hebb’s pre-
dictions have been derived from electrophysiological measure-
ments of composite postsynaptic potentials or synaptic currents, or
of short-latency peaks in cross-correlograms, which cannot always
be interpreted simply at the synaptic level. The basic conclusion of
these experiments is that covariance between pre- and postsynaptic
activity upregulates and downregulates the “effective” connectivity
between pairs of functionally coupled cells. The article thus sug-
gests that what changes according to a correlational rule is not so
much the efficacy of transmission at a given synapse, but rather a
more general coupling term mixing the influence of polysynaptic
excitatory and inhibitory circuits linking the two cells, modulated
by the diffuse network background activation. Replacing this com-
posite interaction by a single coupling term defines an ideal Heb-
bian synapse.

The crucial role played in the CAl form of LTP by channels
called NMDA receptors in the synapses is further explained in
NMDA RECEPTORS: SYNAPTIC, CELLULAR, AND NETWORK MOD-
ELS. NMDA receptors are subtypes of receptors for the excitatory
neurotransmitter glutamate and are involved in diverse physiolog-
ical as well as pathological processes. They mediate a relatively
“slow” excitatory postsynaptic potential, and act as coincidence
detectors of presynaptic and postsynaptic activity. The interactions
between the slow NMDA-mediated and fast AMPA-mediated cur-
rents provide the basis for a range of dynamic properties that con-
tribute to diverse neuronal processes. NMDA receptors have at-
tracted much interest in neuroscience because of their role in
learning and memory. Their ability to act as coincidence detectors
make them an ideal molecular device for producing Hebbian syn-
apses. The article reviews data related to the biological character-
istics of NMDA receptors and models that have been used to de-
scribe their function in isolated membrane patches, in neurons, and
in complex circuits.

A classic problem with Hebb’s original rule is that it only
strengthens synapses. But this means that all synapses would even-
tually saturate, depriving the cell of its pattern separation ability.
A number of biologically inspired responses to this problem are
described in the next two articles. HEBBIAN LEARNING AND NEU-
RONAL REGULATION stresses that, for both computational and bio-
logical reasons, Hebbian plasticity will involve many synapses of

the same neuron. Biologically, synaptic interactions are inevitable
as synapses compete for the finite resources of a single neuron.
Computationally, neuron-specific modifications of synaptic effi-
cacies are required in order to obtain efficient learning, or to faith-
fully model biological systems. Hence neuronal regulation, a pro-
cess modulating all synapses of a postsynaptic neuron, is a general
phenomenon that complements Hebbian learning. The article
shows that neuronal regulation may answer important questions,
such as: What bounds the positive feedback loop of Hebbian learn-
ing and guarantees some normalization of the synaptic efficacies
of a neuron? How can a neuron acquire specificity to particular
inputs without being prewired? How can memories be maintained
throughout life while synapses suffer degradation due to metabolic
turnover? In unsupervised learning, neuronal regulation allows for
competition between the various synapses on a neuron and leads
to normalization of their synaptic efficacies. In supervised learning,
neuronal regulation improves the capacity of associative memory
models and can be used to guarantee the maintenance of biological
memory systems. Our basic tour of Hebbian learning concludes
with POST-HEBBIAN LEARNING ALGORITHMS. This article starts by
observing that Hebb’s original postulate was a verbally described
phenomenological rule, without specification of detailed mecha-
nisms. Subsequent work has shown the computational usefulness
of many variations of the original learning rule. This article pre-
sents background material on conditioning, neural development,
and physiologically realistic cellular-level learning phenomena as
a prelude to a review of several families of rules providing com-
putational implementations of Hebbian-inspired rules.
CEREBELLUM AND MOTOR CONTROL reviews a number of mod-
els for cerebellar mechanisms underlying the learning of motor
skills. Cerebellum can be decomposed into cerebellar nuclei and a
cerebellar cortex. The only output cells of the cerebellar cortex are
the Purkinje cells, and their only effect is to provide varying levels
of inhibition on the cerebellar nuclei. Each Purkinje cell receives
two types of input: a single climbing fiber, and many tens of thou-
sands of parallel fibers. The most influential model of cerebellar
cortex has been the Marr-Albus model of the formation of associ-
ative memories between particular patterns on parallel fiber inputs
and Purkinje cell outputs, with the climbing fiber acting as “training
signal.” Later models place more emphasis on the relation between
the cortex and nuclei, and on the way in which the subregions of
this coupled cerebellar system can adapt and coordinate the activity
of specific motor pattern generators. The plasticity of the cerebel-
lum is approached from a different direction in CEREBELLUM AND
CONDITIONING. Many experiments indicate that the cerebellum is
involved in learning and performance of classically conditioned
reflexes; the present article reviews a number of models of the role
of cerebellum in rabbit eyelid conditioning. (A more general per-
spective on conditioning is given in CONDITIONING and described
more fully in the road map Psychology, which describes several
formal theories and neural network models for classical and operant
conditioning.) Inspired by the Marr-Albus hypothesis, neurophys-
iological research eventually showed that coincidence of climbing
fiber and parallel fiber activity on a Purkinje cell led to long-term
depression (LTD) of the synapse from parallel fiber to Purkinje
cell. CEREBELLUM: NEURAL PLASTICITY offers readers an exhaus-
tive overview of the data on the neurochemical mechanisms un-
derlying this form of plasticity. The authors conclude that the tim-
ing conditions for LTD induction may account for the temporal
specificity of cerebellar motor learning, and suggest that an im-
portant future development in the field will be to study develop-
mental aspects of LTD in relation to acquisition of motor skills.
However, the article cites only one model of LTD. It is clear that
there are immense challenges to neural modelers in exploring the
implications of the plethora of neurochemical interactions swirling
about this single class of synaptic plasticity and, by implication,
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the variety of different mechanisms expressed elsewhere in the ner-
vous system.

There is now strong evidence for a process of short-term memory
(STM) involved in performing tasks requiring temporary storage
and manipulation of information to guide appropriate actions.
SHORT-TERM MEMORY addresses three issues: What are the dif-
ferent types of STM traces? How do intrinsic and synaptic mech-
anisms contribute to the formation of STM traces? How do STM
traces translate into long-term memory representation of temporal
sequences? The stress is on the computational mechanisms under-
lying these processes, with the suggestion that these mechanisms
may well underlie a wide variety of seemingly different biological
processes. The article examines both the short-term preservation of
patterns of neural firing in a circuit and ways in which short-term
maintained activity may be transferred into long-term memory
traces.

There is no hard and fast line between the cellular mechanisms
underlying the development of the nervous system and those in-
volved in learning. Nonetheless, the former emphasizes the ques-
tions of how one part of the brain comes to be connected to another
and how overall patterns of connectivity are formed, while the latter
tends to regard the connections as in place, and asks how their
strengths can be modified to improve the network’s performance.
Studies of regeneration—the reforming of connections after dam-
age to neurons or cell tracts—are thus associated more with de-
velopmental mechanisms than with learning per se. Another sig-
nificant area of research that complements development is that of
aging, but there is still too little work relating aging to neural
modeling.

Study of the regeneration of retinotopic eye-brain maps in frogs
(i.e., neighboring points in the frog retina map, in a one-to-many
fashion, to neighboring points in the optic tectum) has been one of
the most fruitful areas for theory-experiment interaction in neuro-
science. Following optic nerve section, optic nerve fibers tended to
regenerate connections with those target neurons to which they
were connected before surgery, even after eye rotation. This sug-
gests that each cell in both retina and tectum has a unique chemical
marker signaling 2D location, and that retinal axons seek out tectal
cells with the same positional information. However, in experi-
ments in which lesions were made in goldfish retina or tectum, it
was found that topographic maps regenerated in conformance with
whatever new boundary conditions were created by the lesions;
e.g., the remaining half of a retina would eventually connect in a
retinotopic way to the whole of the tectum, rather than just to the
half to which it was originally connected. Although there is wide
variation between species in the degree of order existing in the optic
nerve, it is almost always the case that the final map in the tectum
is ordered to a greater extent than is the optic nerve. Theory and
experiment paint a subtle view in which genetics sets a framework
for development, but the final pattern of connections depends both
on boundary conditions and on patterns of cellular activity. This
view is now paradigmatic for our understanding of how patterns of
neural connectivity are determined. The development of such maps
appears to proceed in two stages: the first involves axon guidance
independent of neural activity; the second involves the refinement
of initially crude patterns of connections by processes dependent
on neural activity. AXONAL PATH FINDING focuses on the former
events, while DEVELOPMENT OF RETINOTECTAL MAPS discusses
the latter. Understanding the molecular basis of retinotectal map
formation has been transformed since the appearance of the first
edition of the Handbook by discoveries centering on ephrins and
the corresponding Eph receptors. The Eph/ephrins come in two
families, A and B, with the A family important for mapping along
the rostral-caudal axis of the tectum, while the B family may be
important for mapping along the dorsal-ventral axis. Most models
of development of retinotectal maps take synaptic strengths as their

primary variable between arrays of retinal and tectal locations, with
initial synaptic strengths then updated according to rules that de-
pend in various ways on correlated activity, competition for tectal
space, molecular gradients, and fiber-fiber interactions. However,
actual movement or branching of axons to find their correct targets
is rarely considered. Thus, future computational models of retino-
tectal map formation should take into account data on Eph receptors
and ephrin ligands, data on the guidance of retinal axons that enter
the tectum by ectopic routes, and the results of retinal and tectal
ablation and transplantation experiments. Up to now, the great ma-
jority of theoretical work in the neural network tradition has fo-
cused on changes in synaptic strengths within a fixed connectional
architecture, but how axons chart their initial path toward the cor-
rect target structure has generally not been addressed. AXONAL
PATH FINDING reviews recent experimental work addressing how
retinal ganglion cell axons find the optic disk, how they then exit
the retina, why they grow toward the optic chiasm, why some then
cross at the midline while others do not, and so on—a body of
knowledge that now has the potential to be framed and interpreted
in terms of theoretical models. Whereas work in neural networks
has usually focused on processes such as synaptic plasticity that
are dependent on neural activity, models for axon guidance must
generally be phrased in terms of activity-independent mechanisms,
particularly guidance by molecular gradients. Many fundamental
questions remain unresolved, for which theoretical models have the
potential to make an important contribution. What is the minimum
gradient steepness detectable by a growth cone, and how does this
vary with the properties of the receptor-ligand interaction and the
internal state of the growth cone? How is a graded difference in
receptor binding internally converted into a signal for directed
movement? And, how do axons integrate multiple cues?

OCULAR DOMINANCE AND ORIENTATION COLUMNS studies two
issues that go beyond basic map formation to provide further in-
sight into activity-dependent development. When cells in layer [Vc
of visual cortex are tested to see which eye drives them more
strongly, it is found that ocular dominance takes the form of a
zebra-stripe-like pattern of alternating dominance. Model and ex-
periment support the view that the stripes are not genetically spec-
ified but instead form through network self-organization. Another
classic example is the formation of orientation specificity. A num-
ber of models are reviewed in light of current data, both theoretical
analysis based on the idea that leading eigenvectors dominate (cf.
“Pattern Formation, Biological” and “Pattern Formation, Neural’’)
and computer simulations.

TEMPORAL DYNAMICS OF BIOLOGICAL SYNAPSES complements
the many studies of synaptic plasticity in the Handbook that focus
on long-term changes in synaptic strength by showing the impor-
tance of fast synaptic changes over time scales of milliseconds to
seconds. Short-term plasticity includes both synaptic depression
and a number of components of short-term enhancement (facilita-
tion, augmentation, and posttetanic potentiation) acting over in-
creasingly longer periods of time. In addition to having complex
short-term dynamics, synapses are stochastic (see “Synaptic Trans-
mission”), and it is argued that constructive roles for unreliable
transmission become apparent when short-term plasticity is con-
sidered in connection with stochastic transmission, with synapses
acting as stochastic temporal filters of their presynaptic spike trains.
DyNAMIC LINK ARCHITECTURE develops the theme of fast synaptic
changes at the level of network function, viewing the brain’s data
structure as a graph composed of nodes connected by links whose
strength can change on two time scales, represented by two vari-
ables called temporary weight and permanent weight. The perma-
nent weight corresponds to the usual synaptic weight, can change
on the slow time scale of learning, and represents permanent mem-
ory. The temporary weight can change on the same time scale as
the node activity, providing the dynamic links that, according to
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this model, constitute the glue by which higher data structures are
built up from more elementary ones.

INFORMATION THEORY AND VISUAL PLASTICITY demonstrates
some features of information theory that are relevant to the relaying
of information in cortex and presents cases in which information
theory led people to seek methods for Gaussianizing the input dis-
tribution and, in other cases, to seek learning goals for non-
Gaussian distributions. The MDL principle (see “Minimum De-
scription Length Analysis”) was presented as a learning goal which
takes into account the complexity of the decoding network. In par-
ticular, the article connects entropy-based methods, projection pur-
suit, and extraction of simple cells in visual cortex.

As can be seen from the above, neural network models of de-
velopment and regeneration have been dominated by studies of the
visual system. The next article, however, takes us to the somato-
sensory system. Research in the past decade has demonstrated plas-
tic changes at all levels of the adult somatosensory system in a
wide range of mammalian species. Changes in the relative levels
of sensory stimulation as a result of experience or injury produce
modifications in sensory maps. SOMATOTOPY: PLASTICITY OF SEN-
SORY MAPs discusses which features of somatotopic maps change
and under what conditions, the mechanisms that may account for
these changes, and the functional consequences of sensory map
changes.

Just as the giant squid axon provided invaluable insights into the
active properties of neural membrane summarized in the Hodgkin-
Huxley equation, so have invertebrates provided many insights into
other basic mechanisms (see “Neuromodulation in Invertebrate
Nervous Systems” and “Crustacean Stomatogastric System” for
two examples). INVERTEBRATE MODELS OF LEARNING: APLYSIA
AND HERMISSENDA does the same for basic learning mechanisms.
A ganglion (localized neural network) of these invertebrates can
control a variety of different behaviors, yet a given behavior such
as a withdrawal response may be mediated by 100 neurons or less.
Moreover, many neurons are relatively large and can be uniquely
identified, functional properties of an individual cell can be related
to a specific behavior, and changes in cellular properties during
learning can be related to specific changes in behavior. Biophysical
and molecular events underlying the changes in cellular properties
can then be determined and mathematically modeled. The present
article illustrates this with studies of two gastropod mollusks: as-
sociative and nonassociative modifications of defensive siphon and
tail withdrawal reflexes in Aplysia and associative learning in
Hermissenda.

HABITUATION describes one of the simplest forms of learning,
the progressive decrement in a behavioral response with repeated
presentations of the eliciting stimulus, and reveals the complexity
in this apparent simplicity. This article reviews the fundamental
characteristics of habituation and describes experimental prepara-
tions in which the neural basis of habituation has been examined
as well as attempts to model habituation. Experimental studies have
identified at least two important neural mechanisms of habituation,
homosynaptic depression within the reflex circuit and extrinsic de-
scending modulatory input. A number of systems are put forward
as good candidates for future modeling. Habituation of defensive
reflexes was among the first types of learning explained success-
fully at the cellular level. Habituation in the crayfish tail-flip reflex,
due to both afferent depression as well as descending inhibition,
offers the opportunity to analyze the interaction and cooperativity
of mechanisms intrinsic and extrinsic to the reflex circuit. The nem-
atode C. elegans offers the possibility of a genetic analysis of
habituation.

As shown in “Dendritic Processing,” dendrites are highly com-
plex structures, both anatomically and physiologically, and are the
principal substrates for information processing within the neuron.
DENDRITIC LEARNING assesses the consequences of axodendritic

structural plasticity for learning and memory, countering the view
that neural plasticity is limited to the strengthening and weakening
of existing synaptic connections. In particular, the article supports
the view that long-term storage may involve the correlation-based
sorting of synaptic contacts onto the many separate dendrites of a
target neuron. In the models offered in this article, the output of
the cell represents the sum of a moderately large set of separately
thresholded dendritic subunits, so that a single neuron as modeled
here is equivalent to a conventional ANN built from two layers of
point neurons. As a result, the concept of “overall connection
strength between two neurons” is no longer well defined, for it is
the distribution of synapses in relation to dendritic geometry that
proves crucial.

Neural Coding

ADAPTIVE SPIKE CODING

INTEGRATE-AND-FIRE NEURONS AND NETWORKS

LOCALIZED VERSUS DISTRIBUTED REPRESENTATIONS

MOTOR CORTEX: CODING AND DECODING OF DIRECTIONAL
OPERATIONS

OPTIMAL SENSORY ENCODING

PopuLATION CODES

RATE CODING AND SIGNAL PROCESSING

SENSORY CODING AND INFORMATION TRANSMISSION

SPARSE CODING IN THE PRIMATE CORTEX

SYNCHRONIZATION, BINDING AND EXPECTANCY

SYNFIRE CHAINS

In the McCulloch-Pitts neuron, the output is binary, generated on
a discrete-time scale; at the other extreme, the Hodgkin-Huxley
equations can create a dazzling array of patterns of axonal activity
in which the shape as well as the timing of each spike is continu-
ously variable. In between, we have models such as the leaky in-
tegrator model, in which only the rate of firing of a cell is signifi-
cant, while in the spiking neuron model the timing but not the shape
of spikes is continuously variable. This raises the question of how
sensory inputs and motor outputs, let alone “thoughts” and other
less mental intervening variables, are coded in neural activity. In
answering this question, we must not only seek to understand the
significance of the firing pattern of an individual neuron but also
probe how variables may be encoded in patterns of firing distrib-
uted across a whole population of neurons.

Retinotopic feature maps are the norm near the visual periphery
and up into the early stages of the visual cortex. Here, the firing of
a cell peaks for stimuli that fall on a specific patch of the retina
and also for a specific feature. Perhaps the most famous example
of this is provided by the simple cells discovered in visual cortex
by Hubel and Wiesel, which are edge-sensitive cells tuned both for
the retinal position and orientation of the edge. In such studies, the
cell is characterized by its firing rate during presentation of the
stimulus. Similar results are seen for other feature types (see “Fea-
ture Analysis”) and other sensory systems. The issue of how other
information may be coded by activity in the nervous systems of
animals is addressed in a number of articles. LOCALIZED VERSUS
DISTRIBUTED REPRESENTATIONS asks whether the final neural en-
coding of visual recognition of one’s grandmother, say, involves
neurons that respond selectively to “grandmother”—so-called
“egrandmother cells”—or whether the sight of grandmother is never
made explicit at the single neuron level, with the representation
instead distributed across a large number of cells, none of which
responds selectively to “grandmother” alone. Few neuroscientists
argue that individual neurons might explicitly represent particular
objects, but many connectionists have used localist representations
to model phenomena that include word and letter perception, al-
though they generally insist that the units in their models are not
real neurons. The article examines neurophysiological evidence
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that both distributed and local coding are used in high-order visual
areas and then goes “against the stream” by forwarding computa-
tional reasons for preferring representations that are more localist
in some parts of the brain, before examining how work on temporal
coding schemes has changed the nature of the local versus distrib-
uted debate. SPARSE CODING IN THE PRIMATE CORTEX marshals
theoretical reasons and experimental evidence suggesting that the
brain adopts a compromise between distributed and local represen-
tations that is often referred to as sparse coding. This thesis is
illustrated with data on object recognition and face recognition in
inferotemporal cortex (the “what” pathway) in monkey.

Perhaps the best-known example of motor coding is that de-
scribed in MOTOR CORTEX: CODING AND DECODING OF DIREC-
TIONAL OPERATIONS for the relation between the direction of reach-
ing and changes in neuronal activity that have been established for
several brain areas, including the motor cortex. The cells involved
each have a broad tuning function the peak of which is considered
to be the “preferred” direction of the cell. A movement in a partic-
ular direction will engage a whole population of cells. It is found
that, during discrete movements in 2D and 3D space, the weighted
vector sum of these neuronal preferences is a “population vector”
which points in (close to) the direction of the movement. Such
examples underlie the more general analysis given in POPULATION
CoDES. Population codes are computationally appealing both be-
cause the overlap among the neurons’ tuning curves allows precise
encoding of values that fall between the peaks of two adjacent
tuning curves and because many cortical functions, such as sen-
sorimotor transformations, can be easily modeled with population
codes. The article focuses on decoding, or reading out, population
codes. Neuronal responses are noisy, leading to the need for good
estimators for the encoded variables. The article reviews the vari-
ous estimators that have been proposed, and considers their neu-
ronal implementations. Moreover, there are cases where it is rea-
sonable to assume that population activity codes for more than just
a single value, and could even code for a whole probability distri-
bution. The goal of decoding is then to recover an estimate of this
probability distribution.

INTEGRATE-AND-FIRE NEURONS AND NETWORKS shows how
these models offer potential principles of coding and dynamics. At
the single neuron level, it is shown that coherent input is more
efficient than incoherent spikes in driving a postsynaptic neuron.
Questions discussed for homogeneous populations include condi-
tions under which it is possible, in the absence of an external stim-
ulus, to stabilize a population of spiking neurons at a reasonable
level of spontaneous activity, and the relation of frequency of col-
lective oscillations to neuronal parameters, and how rapidly popu-
lation activity responds to changes in the input. An extension to
mixed excitatory/inhibitory populations as found in the cortex is
also discussed. SYNCHRONIZATION, BINDING AND EXPECTANCY ar-
gues that the “binding” of cells that correspond to features of a
given visual object may exploit another dimension of cellular fir-
ing, namely, the phase at which a cell fires within some overall
rhythm of firing. The article presents data consistent with the pro-
posal that the synchronization of responses on a time scale of mil-
liseconds provides an efficient mechanism for response selection
and binding of population responses. Synchronization also in-
creases the saliency of responses because it allows for effective
spatial summation in the population of neurons receiving conver-
gent input from synchronized input cells. SYNFIRE CHAINS were
introduced to account for the appearance of precise firing sequences
with long interspike delays, dealing with the ways in which such
chains might be generated, activity propagation along the chain,
how synfire chains can be used to compute, and how they might
be detected in electrophysiological recordings. A synfire chain is
composed of many pools (or layers) of neurons connected in a
feedforward fashion. In a random network with moderate connec-
tivity, many synfire chains can be found by chance, but such ran-

dom synfire chains may not function reproducibly unless the syn-
aptic connections are strengthened by some appropriate learning
rule. A given neuron can participate in more than one synfire chain.
The extent to which such repeated membership can take place with-
out compromising reproducibility is known as the memory capacity
of synfire chains. Synfire chains may be considered a special case
of the “cell assembly” suggested by Hebb. However, in Hebb’s
concepts the cell assembly was a network with multiple feedback
connections, whereas the synfire chain is a feedforward net. This
allows for much faster computations by synfire chains. While not-
ing that there have also been criticisms of the theory, the article
argues that classical anatomy and physiology of the cortex sustain
the idea that activity may be organized in synfire chains and that
one can create compositional systems from synfire chains.

RATE CODING AND SIGNAL PROCESSING investigates ways in
which the sequence of spike occurrence times may encode the in-
formation that a neuron communicates to its targets. Spike trains
are often quite variable under seemingly identical stimulation con-
ditions. Does this variability carry information about the stimulus?
The term rate coding is applied in situations where the precise
timing of spikes is thought not to play a significant role in carrying
sensory information. The article analyzes the sensory information
conveyed by two types of rate codes, mean firing rate codes and
instantaneous firing rate codes, by adapting classical methods of
statistical signal processing to the analysis of neuronal spike trains.
While focusing on various examples of rate coding, such as that of
neurons of weakly electric fish sensitive to electrical field ampli-
tude, the article also notes cases in which spike timing plays a
crucial role.

Recent years have seen an increasing number of quantitative
studies of neuronal coding based on Shannon’s information theory,
in which the “information” or “entropy” of a message is a purely
statistical measure based on the probability of the message within
an ensemble: the less likely the message is to occur, the greater its
information content. SENSORY CODING AND INFORMATION TRANS-
MISSION reviews two recent approaches to measuring transmitted
information. The first is based on direct estimation of the spike
train entropies in terms of which transmitted information is defined;
the second is based on an expansion to second order in the length
of the spike trains. The meaning of any signal that we receive from
our environment is modulated by the context within which it ap-
pears. ADAPTIVE SPIKE CODING explores the analysis of “context”
as the statistical ensemble in which the signal is embedded. Inter-
preting a message requires both registering the signal itself and
knowing something about this statistical ensemble. The relevant
temporal or spatial ensemble depends on the task. Information the-
oretically, representations that appropriately take into account the
statistical properties of the incoming signal are more efficient (see
OPTIMAL SENSORY ENCODING and “Information Theory and Visual
Plasticity”). The article focuses on neural adaptation, reversible
change in the response properties of neurons on short time scales.
Since the first observations of adaptation in spiking neurons, it had
been suggested that adaptation serves a useful function for infor-
mation processing, preventing a neuron from continuing to transmit
redundant information, viewing both the filtering and the threshold
function of a neuron as adaptive functions of the input that may
implement the goal of increasing information transmission. Issues
include adaptation to the stimulus distribution, with the information
about the ensemble read off from the statistics of spike time dif-
ferences; the separation of different time scales in adaptation; and
adaptation of receptive fields. The article also explores the role of
calcium and of channel dynamics in providing adaptation
mechanisms.

OPTIMAL SENSORY ENCODING focuses on the visual system,
seeking to understand what type of data encoding for signals pass-
ing from retina to cerebral cortex could reduce the data rate without
significant information loss, exploiting the fact that nearby image
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pixels tend to convey similar signals and thus carry redundant in-
formation. One strategy is to transform the original redundant sig-
nal (e.g., in photoreceptors) to nonredundant signals in the retinal
ganglion cells or cortical neurons, as in the Infomax proposal. The
article presents different coding schemes with different advantages.
The retinal code has the advantage of small and identical receptive
field (RF) shapes, involving shorter neural wiring and easier spec-
ifications. The cortical multiscale code is preferred when invariance
is needed for objects moving in depth. Again, whereas the Infomax
principle applies well to explain the RFs of the more numerous
class of retinal ganglion cells, the P cells in monkeys or X cells in
cats, another class of ganglion cells, M cells in monkeys or Y cells
in cats, have RFs that are relatively larger, color unselective, and
tuned to higher temporal frequencies. These M cells do not extract
the maximum information possible (Infomax) about the input but
can serve to extract the information as quickly as possible. It is
argued that information theory is more likely to find its application
in the early stages of the sensory processing, before information is
selected or discriminated for any specific cognitive task, and that
optimal sensory coding in later stages of sensory pathways will
depend on cognitive tasks that require applications of alternative
theories.

Biological Networks

CORTICAL HEBBIAN MODULES

CORTICAL POPULATION DYNAMICS AND PSYCHOPHYSICS
DoPAMINE, ROLES OF

HippocAMPAL RHYTHM GENERATION
INTEGRATE-AND-FIRE NEURONS AND NETWORKS
LAYERED COMPUTATION IN NEURAL NETWORKS
NEUROMODULATION IN INVERTEBRATE NERVOUS SYSTEMS
NEUROMODULATION IN MAMMALIAN NERVOUS SYSTEMS
RECURRENT NETWORKS: NEUROPHYSIOLOGICAL MODELING
SLEEP OSCILLATIONS

TEMPORAL INTEGRATION IN RECURRENT MICROCIRCUITS

We turn now to studies of biological neural networks, a study com-
plemented by articles in the road map Mammalian Brain Regions
and in other road maps on sensory systems, memory, and motor
control.

CoRTICAL HEBBIAN MODULES models the activity seen in cor-
tical networks during the delay period following the presentation
of the stimulus in a delay match-to-sample or delay eye-movement
task. The rates observed are in the range of about 10-20 spikes/s,
with the subset of neurons that sustain elevated rates being selective
of the sample stimulus and concentrated in localized columns in
associative cortex. The article shows how to model these selective
activity distributions through the autonomous local dynamics in the
column. The model presents neural elements and synaptic struc-
tures that can reproduce the observed neuronal spike dynamics;
showing how Hebbian synaptic dynamics can give rise, in a process
of training, to a synaptic structure in the local module capable of
sustaining selective activity during the delay period. The mathe-
matical framework for the analysis is provided by the mean field
theory of statistical mechanics.

LAYERED COMPUTTION IN NEURAL NETWORKS abstracts from
the biology to present a general framework for modeling compu-
tations performed in layered structures (which occur in many parts
of the vertebrate and invertebrate brain, including the optic tectum,
the avian visual wulst, and the cephalopod optic lobe, as well as
the mammalian cerebral cortex). A general formalism is presented
for the connectivity between layers and the dynamics of typical
units of each layer. Information processing capabilities of neural
layers include filter operations; lateral cooperativity and competi-
tion that can be used in, e.g., stereo vision and winner-take-all;

topographic mapping that underlies the allocation of cortical neu-
rons to different parts of the visual field (fovea/periphery), or the
processing of optic flow patterns; and feature maps and population
coding, which may be applied both to sensory systems and to “mo-
tor fields” of neurons so that the flow of activity in motor areas can
predict initiated movements. In a related vein, CORTICAL Popu-
LATION DYNAMICS AND PSYCHOPHYSICS describes cortical popu-
lation dynamics in the form of structurally simple differential equa-
tions for the neurons’ firing activities, using a model class
introduced by Wilson and Cowan. The Wilson-Cowan model is
powerful enough to reproduce a variety of cortical phenomena and
captures the dynamics of neuronal populations seen in a variety of
experiments, yet simple enough to allow for analytical treatment
that yields an understanding of the mechanisms leading to the ob-
served behavior. The model is applied here to explain dynamical
properties of the primate visual system on different levels, reaching
from single neuron properties like selectivity for the orientation of
a stimulus up to higher cognitive functions related to the binding
and processing of stimulus features in psychophysical discrimina-
tion experiments.

HippocAMPAL RHYTHM GENERATION notes that global brain
states in both normal and pathological situations may be associated
with spontaneous rhythmic activities of large populations of neu-
rons. This article presents data and models on the main such states
associated with the hippocampus: the two main normally occurring
states—the theta rhythm with the associated gamma oscillation,
and the irregular sharp waves (SPW) with the associated high-
frequency (ripple) oscillation—and a pathological brain state as-
sociated with epileptic seizures. Several different modeling strate-
gies are compared in studying rhythmicity in the hippocampal CA3
region.

SLEEP OSCILLATIONS analyzes cortical and thalamic networks at
multiple levels, from molecules to single neurons to large neuronal
assemblies, with techniques ranging from intracellular recordings
to computer simulations, to illuminate the generation, modulation,
and function of brain oscillations. Sleep is characterized by syn-
chronized events in billions of synaptically coupled neurons in thal-
amocortical systems. The early stage of quiescent sleep is associ-
ated with EEG spindle waves, which occur at a frequency of 7 to
14 Hz; as sleep deepens, waves with slower frequencies appear on
the EEG. The other sleep state, associated with rapid eye move-
ments (REM sleep) and dreaming, is characterized by abolition of
low-frequency oscillations and an increase in cellular excitability,
very much like wakefulness, although motor output is markedly
inhibited. Activation of a series of neuromodulatory transmitter
systems during arousal blocks low-frequency oscillations, induces
fast thythms, and allows the brain to recover full responsiveness.

It is a truism that similarity of input-output behavior is no guar-
antee of similarity of internal function in two neural networks. In
particular, a recurrent neural network trained by backpropagation
to mimic some biological function may have little internal resem-
blance to the neural networks responsible for that function in the
living brain. Nonetheless, RECURRENT NETWORKS: NEUROPHYSI-
OLOGICAL MODELING demonstrates that dynamic recurrent net-
work models (see “Recurrent Networks: Learning Algorithms” for
the formal background) can provide useful tools to help systems
neurophysiologists understand the neural mechanisms mediating
behavior. Biological experiments typically involve bits of the sys-
tem; neural network models provide a method of generating work-
ing models of the complete system. Confidence in such models is
increased if they not only simulate dynamic sensorimotor behavior
but also incorporate anatomically appropriate connectivity. The
utility of such models is illustrated in the analysis of four types of
biological function: oscillating networks, primate target tracking,
short-term memory tasks, and the construction of neural
integrators.

As is evident in the road map Biological Neurons and Synap-
ses, not all neurons are alike: they show a rich variety of conduc-
tances that endow them with different functional properties. These
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properties and hence the collective activity of interacting groups of
neurons are not fixed, but are instead subject to modulation. The
term neuromodulation usually refers to the effect of neurochemi-
cals such as acetylcholine, dopamine, norepinephrine, and seroto-
nin, and other substances, including neuropeptides. By contrast
with the rapid transmission of information through the nervous
system by excitatory and inhibitory synaptic potentials, neuromod-
ulators primarily activate receptor proteins, which do not contain
an ion channel (metabotropic receptors). These receptors in turn
activate enzymes, which change the internal concentration of sub-
stances called second messengers. Second messengers cause slower
and longer-lasting changes in the physiological properties of neu-
rons, resulting in changes in the processing characteristics of the
neural circuit. NEUROMODULATION IN INVERTEBRATE NERVOUS
SYSTEMS stresses that the sensory information an animal needs
depends on a number of factors, including its activity patterns and
motivational state. The modulation of the sensitivities of many sen-
sory receptors is shown for a stretch receptor in crustaceans. Mod-
ulators can activate, terminate, or modify rhythmic pattern-
generating networks. One example of such “polymorphism” is that
neuromodulation can reconfigure the same network to produce ei-
ther escape swimming or reflexive withdrawal in the nudibranch
mollusk Tritonia. Mechanisms and sites of neuromodulation in-
clude alteration of intrinsic properties of neurons, alteration of syn-
aptic efficacy by neuromodulators, and modulation of neuromus-
cular junctions and muscles. All this makes clear the subtlety of
neuronal function that must be addressed by computational neu-
roscience and that may inspire the design of a new generation of
artificial neurons. Turning to the mammalian brain, we find that
the anatomical distribution of fibers releasing neuromodulatory
substances in the brain is usually very diffuse, with the activity of
a small number of neuromodulatory neurons influencing the func-
tional properties of broad regions of the brain. NEUROMODULATION
IN MAMMALIAN NERVOUS SYSTEMS starts by summarizing phys-
iological effects of neuromodulation, including effects on resting
membrane potential of pyramidal cells and interneurons, spike fre-
quency adaptation, synaptic transmission, and long-term potentia-
tion. It is stressed that the effect of a neurochemical is receptor
dependent: a single neuromodulator such as serotonin can have
dramatically different effects on different neurons, depending on
the type of receptor it activates. Indeed, a chemical may function
as a neurotransmitter for one receptor and as a neuromodulator for
another. The second half of the article reviews neural network mod-
els that help us understand how neuromodulatory effects that ap-
pear small at the single neuron level may have a significant effect
on dynamical properties when distributed throughout a network.
The article reviews several different models of the function of mod-
ulatory influences in neural circuits, including noradrenergic mod-
ulation of attentional processes (strangely, noradrenergic neurons
are those sensitive to norepinephrine), dopaminergic modulation
(by dopamine) of working memory, cholinergic modulation (by
acetylcholine) of input versus internal processing, and modulation
of oscillatory dynamics in cortex and thalamus. DOPAMINE, ROLES

OF then focuses specifically on roles of dopamine in both neuro-
modulation and in synaptic plasticity. Dopamine is a neuromodu-
lator that originates from small groups of neurons in the ventral
tegmental area, the substantia nigra, and in the diencephalon. Do-
paminergic projections are in general very diffuse and reach large
portions of the brain. The time scales of dopamine actions are di-
verse, from a few hundred milliseconds to several hours. The article
focuses on the mesencephalic dopamine centers because they are
the most studied, and because they are thought to be involved in
diseases such as Tourette’s syndrome, schizophrenia, Parkinson’s
disease, Huntington’s disease, drug addiction, and depression.
These centers are also involved in such normal brain functions as
working memory, reinforcement learning, and attention. The article
discusses the biophysical effects of dopamine, how dopamine lev-
els influence working memory, the ways in which dopamine re-
sponses resemble the reward prediction signal of the temporal dif-
ference model of reinforcement learning, and the role of dopamine
in allocation of attention.

INTEGRATE-AND-FIRE NEURONS AND NETWORKS presents rela-
tively simple models that take account of the fact that most bio-
logical neurons communicate by action potentials, or spikes (see
also “Spiking Neurons, Computation with”). In contrast to the stan-
dard neuron model used in ANNSs, integrate-and-fire neurons do
not rely on a temporal average over the pulses. Instead, the pulsed
nature of the neuronal signal is taken into account and considered
as potentially relevant for coding and information processing.
However, integrate-and-fire models do not explicitly describe the
form of an action potential. Integrate-and-fire and similar spiking
neuron models are phenomenological descriptions on an interme-
diate level of detail. Compared to other single-cell models, they
allow coding principles to be discussed in a transparent manner.
Moreover, the dynamics in networks of integrate-and-fire neurons
can be analyzed mathematically, and large systems with thousands
of neurons can be simulated rather efficiently.

TEMPORAL INTEGRATION IN RECURRENT MICROCIRCUITS hy-
pothesizes that the ability of neural computation in behaving or-
ganisms to produce a response at any time that depends appropri-
ately on earlier sensory inputs and internal states rests on acommon
principle by which neural microcircuits operate in different cortical
areas and species. The article argues that, while tapped delay lines,
finite state machines, and attractor neural networks are suitable for
modeling specific tasks, they appear to be incompatible with results
from neuroanatomy (highly recurrent diverse circuitry) and neu-
rophysiology (fast transient dynamics of firing activity with few
attractor states). The authors thus view the transient dynamics of
neural microcircuits as the main carrier of information about past
inputs, from which specific information needed for a variety of
different tasks can be read out in parallel and at any time by dif-
ferent readout neurons. This approach leads to computer models of
generic recurrent circuits of integrate-and-fire neurons for tasks that
require temporal integration of inputs and, it is argued, provides a
new conceptual framework for the experimental investigation of
neural microcircuits and larger neural systems.
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Dynamic Systems

AMPLIFICATION, ATTENUATION, AND INTEGRATION
CANONICAL NEURAL MODELS

CHAINS OF OSCILLATORS IN MOTOR AND SENSORY SYSTEMS
CHAOS IN BIOLOGICAL SYSTEMS

CHAOS IN NEURAL SYSTEMS

COLLECTIVE BEHAVIOR OF COUPLED OSCILLATORS
COMPUTING WITH ATTRACTORS

COOPERATIVE PHENOMENA

DyNAMICS AND BIFURCATION IN NEURAL NETS
DYNAMICS OF ASSOCIATION AND RECALL
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ENERGY FUNCTIONALS FOR NEURAL NETWORKS
OPTIMIZATION, NEURAL

PATTERN FORMATION, BIOLOGICAL

PATTERN FORMATION, NEURAL

PHASE-PLANE ANALYSIS OF NEURAL NETS
SELF-ORGANIZATION AND THE BRAIN
SHORT-TERM MEMORY

STATISTICAL MECHANICS OF NEURAL NETWORKS
STOCHASTIC RESONANCE

WINNER-TAKE-ALL NETWORKS

Much interest in ANNs has been based on the use of trainable
feedforward networks as universal approximators for functions f:
X — Y from the input space X to the output space Y. However, their
provenance was more general. The founding paper of Pitts and
McCulloch established the result that, by the mid-1950s, could be
rephrased as saying that any finite automaton could be simulated
by a network of McCulloch-Pitts neurons. A finite automaton is a
discrete-time dynamic system; that is, on some suitable time scale,
it specifies the next state g(t + 1) as a function d(g(?), x(¢)) of the
current state and input (for articles related to automata and theory
of computation, see the road map Computability and Complex-
ity). But a neuron can be modeled as a continuous-time system (as
in a leaky integrator neuron with the membrane potential as the
state variable). A network of continuous-time neurons can then be
considered as a continuous-time system with the rate of change of
the state (which could, for example, be a vector whose elements
are the membrane potentials of the individual neurons) defined as
a function ¢(r) = f(q(), x(¢)) of the current state and input. When
the input is held constant, the network (whether discrete- or
continuous-time) may be analyzed by dynamical systems theory.
COMPUTING WITH ATTRACTORS shows some of the benefits of such
an approach. In particular, a net with internal loops may go to
equilibrium (providing a state from which the answer to some prob-
lem may be read out), enter a limit cycle (undergoing repetitive
oscillations which are useful in control of movement, and in other
situations in which a “clock cycle” is of value), or exhibit chaotic
behavior (acting in an apparently random way, even though it is
deterministic). In particular, the article builds on the notion of a
Hopfield network. Hopfield contributed much to the resurgence of
interest in neural networks in the 1980s by associating an “energy
function” with a network, showing that if only one neuron changed
state at a time, a symmetrically connected net would settle to a
local minimum of the energy, and that many optimization problems
could be mapped to energy functions for symmetric neural nets.
ENERGY FUNCTIONALS FOR NEURAL NETWORKS uses the notion of
Lyapunov function from the dynamical study of ordinary differ-
ential equations to show how the definition of energy function and
the conditions for convergence to a local minimum can be broad-
ened considerably. (Of course, a network undergoing limit cycles
or chaos will not have an energy function that is minimized in this
sense.) OPTIMIZATION, NEURAL shows that this property can be
exploited to solve combinatorial optimization problems that require
a more or less exhaustive search to achieve exact solutions, with a
computational effort growing exponentially or worse with system
size. The article shows that ANN methods can provide heuristic
methods that yield reasonably good approximate solutions. Recur-
rent network methods based on deterministic annealing use an in-
terpolating continuous (analog) space, allowing for shortcuts to
good solutions (compare “Simulated Annealing and Boltzmann
Machines”). The key to the approach offered here is the technique
of mean-field approximation from statistical mechanics. While
early neural optimizations were confined to problems encodable
with a quadratic energy in terms of a set of binary variables, in the
past decade the method has been extended to deal with more gen-
eral problem types, both in terms of variable types and energy

functions, and has evolved to a general-purpose heuristic for com-
binatorial optimization.

DYNAMICS AND BIFURCATION IN NEURAL NETS notes that the
powerful qualitative and geometric tools of dynamical systems the-
ory are most useful when the behavior of interest is stationary in
the sense that the inputs are at most time or space periodic. It then
shows how to analyze what kind of behavior we can expect over
the long run for a given neural network. In ANNSs, the final state
may represent the recognition of an input pattern, the segmentation
of an image, or any number of machine computations. The station-
ary states of biological neural networks may correspond to cogni-
tive decisions (e.g., binding via synchronous oscillations) or to
pathological behavior such as seizures and hallucinations. Another
important issue that is addressed by dynamical systems theory is
how the qualitative dynamics depends on parameters. The quali-
tative change of a dynamical system as a parameter is changed is
the subject of bifurcation theory, which studies the appearance and
disappearance of branches of solutions to a given set of equations
as some parameters vary. This article shows how to use these tech-
niques to understand how the behavior of neural nets depends on
both the parameters and the initial states of the network. PHASE-
PLANE ANALYSIS OF NEURAL NETS complements the study of bi-
furcations with a technique for studying the qualitative behavior of
small systems of interacting neural networks whose neurons are,
essentially, leaky integrator neurons. A complete analysis of such
networks is impossible but when there are at most two variables
involved, a fairly complete description can be given. The article
introduces this qualitative theory of differential equations in the
plane, analyzing two-neuron networks that consist of two excit-
atory cells, two inhibitory cells, or an excitatory and inhibitory cell.
While planar systems may seem to be a rather extreme simplifi-
cation, it is argued that in some local cortical circuits we can view
the simple planar system as representing a population of coupled
excitatory and inhibitory neurons. Computational methods are a
very powerful adjunct to this type of analysis. The article concludes
with comments on numerical methods and software.

CANONICAL NEURAL MODELS starts from the observation that
various models of the same neural structure could produce different
results. It thus shows how to derive results that can be observed in
a class or a family of models. To exemplify the utility of consid-
ering families of neural models instead of a single model, the article
shows how to reduce an entire family of Hodgkin-Huxley-type
models to a canonical model. A model is canonical for a family if
there is a continuous change of variables that transforms any other
model from the family into this one. As an example, a canonical
phase model is presented for a family of weakly coupled oscillators.
The change of variables does not have to invertible, so the canon-
ical model is usually lower-dimensional, simple, and tractable, and
yet retains many important features of the family. For example, if
the canonical model has multiple attractors, then each member of
the family has multiple attractors.

Chaotic phenomena, in which a deterministic law generates com-
plicated, nonperiodic, and unpredictable behavior, exist in many
real-world systems and mathematical models. Chaos has many in-
triguing characteristics, such as sensitive dependence on initial con-
ditions. CHAOS IN BIOLOGICAL SYSTEMS provides a view of the
appearance of this phenomenon of “deterministic randomness” in
a variety of models of physical and biological systems. Features
used in assessing time series for chaotic behavior include the power
spectrum, dimension, Lyapunov exponent, and Poincaré map. Ex-
amples are given from ion channels through cellular activity to
complex networks, and “dynamical disease” is characterized by
qualitative changes in dynamics in biological control systems.
However, the high dimensions of biological systems and the en-
vironmental fluctuations that lead to nonstationarity make con-
vincing demonstration of chaos in vivo (as opposed to computer
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models) a difficult matter. CHAOS IN NEURAL SYSTEMS looks at
chaos in the dynamics of axons, neurons, and networks. An open
issue is to understand the significance, if any, of observed fluctu-
ations that appear chaotic. Does a neuron function well despite
fluctuations in the timing between spikes, or are the irregularities
essential to its task? And if the irregularities are essential to the
task, is there any reason to expect that deterministic (chaotic) ir-
regularities would be better than random ones? The vexing question
of whether chaos adds functionality to neural networks is still open
(see also “Synaptic Noise and Chaos in Vertebrate Neurons”). STO-
CHASTIC RESONANCE is a nonlinear phenomenon whereby the ad-
dition of a random process, or “noise,” to a weak incoming signal
can enhance the probability that it will be detected by a system.
Information about the signal transmitted through the system is also
enhanced. The information content or detectability of the signal is
degraded for noise intensities that are either smaller or larger than
some optimal value. Stochastic resonance has been demonstrated
at several levels in biology, from ion channels in cell membranes
to animal and human cognition, perception, and, ultimately,
behavior.

PATTERN FORMATION, BIOLOGICAL presents a general method-
ology, based on analysis of the largest eigenvalue, for tracing the
asymptotic behavior of a dynamical system, and applies it to the
problem of biological pattern formation. Turing originally consid-
ered the problem of how animal coat patterns develop. He sug-
gested that chemical markers in the skin comprise a system of
diffusion-coupled chemical reactions among substances called
morphogens. Turing showed that in a two-component reaction-
diffusion system, a state of uniform chemical concentration can
undergo a diffusion-driven instability, leading to the formation of
a spatially inhomogeneous state. In population biology, patchiness
in population densities is the norm rather than the exception. In
developmental biology, groups of previously identical cells follow
different developmental pathways, depending on their position, to
yield the rich spectrum of mammalian coat patterns and the patterns
found in fishes, reptiles, mollusks, and butterflies. The article closes
with a mechanical model of the process of angiogenesis (genesis
of the blood supply) and network formation of endothelial cells in
the extracellular matrix, as well as a new approach for predicting
brain tumor growth. PATTERN FORMATION, NEURAL shows that the
Turing mechanism for spontaneous pattern formation plays an im-
portant role in studying two key questions on the large-scale func-
tional and anatomical structure of cortex: How did the structure
develop? What forms of spontaneous and stimulus-driven neural
dynamics are generated by such a cortical structure? In the neural
context, interactions are mediated not by molecular diffusion but
by long-range axonal connections. This neural version of the Tur-
ing instability has been applied to many problems concerning the
dynamics and development of cortex. In the former case, pattern
formation occurs in neural activity; in the latter it occurs in synaptic
weights. In most cases there exists some underlying symmetry in
the model that plays a crucial role in the selection and stability of
the resulting patterns.

Complementing this theme of pattern formation, SELF-
ORGANIZATION AND THE BRAIN contrasts the algorithmic division
of labor between programmer and computer in most current man-
made computers with the view of the brain as a dynamical system
in which ordered structures arise by processes of self-organization.
It argues that, whereas the theory of self-organization has so far
focused on the establishment of static structures, the nervous sys-
tem is concerned with the generation of purposeful, nested pro-
cesses evolving in time. However, if a self-organizing system is to
create the appropriate patterns, quite a few control parameters in a
system must all be put in the right ballpark. The article argues that,
in view of the variability of the physiological state of the nervous
system, evolution must have developed general mechanisms to ac-

tively and autonomously regulate its systems such as to produce
interesting self-organized processes and states. The process of brain
organization is seen as a cascade of steps, each one taking place
within the boundary conditions established by the previous one,
but the theory of such cascades is still nonexistent, posing massive
challenges for future research. COOPERATIVE PHENOMENA offers a
related perspective, developing what has been a major theme in
physics for the last century: statistical mechanics, which shows
how, for example, to average out the individual variations in po-
sition and velocity of the myriad molecules in a gas to understand
the relationship between pressure, volume, and temperature, or to
see how variations in temperature can yield dramatic phase tran-
sitions, such as from ice to water or from water to steam. The article
places these ideas in a general setting, stressing the notion of an
order parameter (such as temperature in the previous example) that
describes the macroscopic order of the system and whose variation
can yield qualitative changes in system behavior. Unlike a control
parameter, which is a quantity imposed on the system from the
outside, an order parameter is established by the system itself via
self-organization. The argument is mainly presented at a general
level, but the article concludes by briefly examining cooperative
phenomena in neuroscience, including pattern formation (see also
PATTERN FOrRMATION, BioLocGicaL), EEG, MEG, movement co-
ordination, and hallucinations (see also PATTERN FORMATION,
NEURAL).

STATISTICAL MECHANICS OF NEURAL NETWORKS introduces the
reader to some of the basic methods of statistical mechanics and
shows that they can be applied to systems made up of large num-
bers of (formal) neurons. Statistical mechanics has studied magnets
as lattices with an atomic magnet (modeled as, e.g., a spin that can
be up or down) at each lattice point, and this has led to the statistical
analysis of neural networks as “spin glasses,” where firing and
nonfiring correspond to “spin up” and “spin down,” respectively.
It has also led to the study of “Markov Random Field Models in
Image Processing,” in which the initial information at each lattice
site represents some local features of the raw image, while the final
state allows one to read off a processed image.

COLLECTIVE BEHAVIOR OF COUPLED OSCILLATORS explains the
use of phase models (here, the phase is the phase of an oscillation,
not the type of phase whose transition is studied in statistical me-
chanics) to help understand how temporal coherence arises over
populations of densely interconnected oscillators, even when their
frequencies are randomly distributed. The phase oscillator model
for neural populations exemplifies the idea that certain aspects of
brain functions seem largely independent of the neurophysiological
details of the individual neurons while trying to recover phase in-
formation, i.e., the kind of information encoded in the form of
specific temporal structures of the sequence of neuronal spikings.
The article reviews the collective behavior of coupled oscillators
using the phase model and assuming all-to-all type interconnec-
tions. Despite this simplification, a great variety of collective be-
haviors is exhibited. Special attention is given to the onset and
persistence of collective oscillation in frequency-distributed sys-
tems, splitting of the population into a few subgroups (clustering),
and the more complex collective behavior called slow switching.
Collections of oscillators that send signals to one another can phase
lock, with many patterns of phase differences. CHAINS OF OSCIL-
LATORS IN MOTOR AND SENSORY SYSTEMS discusses a set of ex-
amples that illustrate how those phases emerge from the oscillator
interactions. Much of the work was motivated by spatiotemporal
patterns in networks of neurons that govern undulatory locomotion.
The original experimental preparation to which this work was ap-
plied is the lamprey central pattern generator (CPG) for locomo-
tion, but the mathematics is considerably more general. The article
discusses several motor systems, then turns to the procerebral lobe
of Limax, the common garden slug, to illustrate chains of oscillators
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in a sensory system. Since the details of the oscillators often are
not known and difficult to obtain, the object of the mathematics is
to find the consequences of what is known, and to generate sharper
questions to motivate further experimentation.

AMPLIFICATION, ATTENUATION, AND INTEGRATION focuses on
the computational role of the recurrent connections in networks of
leaky integrator neurons. Setting the transfer function f(u) to be
simply u in the network equations yields a linear network that can
be completely analyzed using the tools of linear systems theory.
The article describes the properties of linear networks and gives
some examples of their application to neural modeling. In this
framework, it is shown how recurrent synaptic connectivity can
either attenuate or speed up responses; both effects can occur si-
multaneously in the same network. Besides amplification and at-
tenuation, a linear network can also carry out temporal integration,
in the sense of Newtonian calculus, when the strength of feedback
is precisely tuned for an eigenmode, so that its gain and time con-
stant diverge to infinity. Finally, it is noted that the linear compu-
tations of amplification, attenuation, and integration can be ascribed
to a number of brain areas.

WINNER-TAKE-ALL NETWORKS presents a number of designs for
neural networks that solve the following problem: given a number
of networks, each of which provides as output some “confidence
measure,” find in a distributed manner the network whose output
is strongest. Two important variants of winner-take-all are k-
winner-take-all, where the k largest inputs are identified, and soft-
max, which consists of assigning each input a weight so that all
weights sum to 1 and the largest input receives the biggest weight.
The article first describes softmax and shows how winner-take-all
can be derived as a limiting case; it then describes how they can
both be derived from probabilistic, or energy function, formula-
tions; and it closes with a discussion of VLSI and biological mech-
anisms. “Modular and Hierarchical Learning Systems” addresses a
somewhat related topic: Given a complex problem, find a set of
networks, each of which provides an approximate solution in some
region of the state space, together with a gating network that can
combine these approximations to yield a globally satisfactory so-
lution (i.e., blend the “good” solutions rather than extract the “best”
solution).

DYNAMICS OF ASSOCIATION AND RECALL uses dynamical stud-
ies to analyze the pattern recall process and its relation with the
choice of initial state, the properties of stored patterns, noise level,
and network architecture. For large networks and in global recall
processes, the strategy is to derive dynamical laws at a macroscopic
level (i.e., dependent on many neuron states). The challenge is to
find the smallest set of macroscopic quantities which will obey
closed deterministic equations in the limit of an infinitely large
network. The article focuses on simple Hopfield-type models, but
closes with a discussion of some variations and generalizations.
SHORT-TERM MEMORY asks: What are the different types of STM
traces? How do intrinsic and synaptic mechanisms contribute to the
formation of STM traces? How do STM traces translate into long-
term memory representation of temporal sequences? The stress is
on computational mechanisms underlying these processes with the
suggestion that these mechanisms may well underlie a wide variety
of seemingly different biological processes. The article examines
both the short-term preservation of patterns of neural firing in a
circuit and ways in which short-term maintained activity may be
transferred into long-term memory traces.

Learning in Artificial Networks

ADAPTIVE RESONANCE THEORY

ASSOCIATIVE NETWORKS

BACKPROPAGATION: GENERAL PRINCIPLES
BAYESIAN METHODS AND NEURAL NETWORKS

BAYESIAN NETWORKS

COMPETITIVE LEARNING

CONVOLUTIONAL NETWORKS FOR IMAGES, SPEECH, AND TIME
SERIES

DATA CLUSTERING AND LEARNING

DYNAMICS OF ASSOCIATION AND RECALL

ENSEMBLE LEARNING

EVOLUTION AND LEARNING IN NEURAL NETWORKS

EVOLUTION OF ARTIFICIAL NEURAL NETWORKS

GAUSSIAN PROCESSES

GENERALIZATION AND REGULARIZATION IN NONLINEAR LEARN-
ING SYSTEMS

GRAPHICAL MODELS: PARAMETER LEARNING

GRAPHICAL MODELS: PROBABILISTIC INFERENCE

GRAPHICAL MODELS: STRUCTURE LEARNING

HELMHOLTZ MACHINES AND SLEEP-WAKE LEARNING

HIDDEN MARKOV MODELS

INDEPENDENT COMPONENT ANALYSIS

LEARNING AND GENERALIZATION: THEORETICAL BOUNDS

LEARNING NETWORK TOPOLOGY

LEARNING AND STATISTICAL INFERENCE

LEARNING VECTOR QUANTIZATION

MINIMUM DESCRIPTION LENGTH ANALYSIS

MODEL VALIDATION

MODULAR AND HIERARCHICAL LEARNING SYSTEMS

NEOCOGNITRON: A MODEL FOR VISUAL PATTERN RECOGNITION

NEUROMANIFOLDS AND INFORMATION GEOMETRY

PATTERN RECOGNITION

PERCEPTRONS, ADALINES, AND BACKPROPAGATION

PrINCIPAL COMPONENT ANALYSIS

RADIAL BASIS FUNCTION NETWORKS

RECURRENT NETWORKS: LEARNING ALGORITHMS

REINFORCEMENT LEARNING

SELF-ORGANIZING FEATURE MAPS

SIMULATED ANNEALING AND BOLTZMANN MACHINES

STATISTICAL MECHANICS OF GENERALIZATION

STATISTICAL MECHANICS OF ON-LINE LEARNING AND
GENERALIZATION

STOCHASTIC APPROXIMATION AND EFFICIENT LEARNING

SUPPORT VECTOR MACHINES

TEMPORAL PATTERN PROCESSING

TEMPORAL SEQUENCES: LEARNING AND GLOBAL ANALYSIS

UNIVERSAL APPROXIMATORS

UNSUPERVISED LEARNING WITH GLOBAL OBJECTIVE FUNCTIONS

YING-YANG LEARNING

The majority of articles in this road map deal with learning in
artificial neural networks. Nonetheless, the road map is titled
“Learning in Artificial Networks” to emphasize the inclusion of a
body of research on statistical inference and learning that can be
seen either as generalizing neural networks or as analyzing other
forms of networks, such as Bayesian networks and graphical
models.

The fundamental difference between a system that learns and
one that merely memorizes is that the learning system generalizes
to unseen examples. Much of our concern is with supervised learn-
ing, getting a network to behave in a way that successfully ap-
proximates some specified pattern of behavior or input-output re-
lationship. In particular, much emphasis has been placed on
feedforward networks which have no loops, so that the output of
the net depends on its input alone, since there is then no internal
state defined by reverberating activity. The most direct form of this
is a synaptic matrix, a one-layer neural network for which input
lines directly drive the output neurons and a “supervised Hebbian”
rule sets synapses so that the network will exhibit specified input-
output pairs in its response repertoire. This is addressed in ASso-
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CIATIVE NETWORKS, which notes the problems that arise if the
input patterns (the “keys” for associations) are not orthogonal vec-
tors. Association also extends to recurrent networks, but in such
systems of “dynamic memories” (e.g., Hopfield networks) there are
no external inputs as such. Rather the “input” is the initial state of
the network, and the “output” is the “attractor” or equilibrium state
to which the network then settles. For neurons whose output is a
sigmoid function of the linear combination of their inputs, the
memory capacity of the associative memory is approximately
0.15n, where n is the number of neurons in the net. Unfortunately,
such an “attractor network” memory model has many spurious
memories, i.e., equilibria other than the memorized patterns, and
there is no way to decide whether a recalled pattern was memorized
or not. DYNAMICS OF ASSOCIATION AND RECALL (see the road map
Dynamic Systems for more details) shows how to move away from
microscopic equations at the level of individual neurons to derive
dynamical laws at a macroscopic level that characterize association
and recall in Hopfield-type networks (with some discussion of var-
iations and generalizations).

Historically, the earliest forms of supervised learning involved
changing synaptic weights to oppose the error in a neuron with a
binary output (the perceptron error-correction rule), or to minimize
the sum of squares of errors of output neurons in a network with
real-valued outputs (the Widrow-Hoff rule). This work is charted
in PERCEPTRONS, ADALINES, AND BACKPROPAGATION, which also
charts the extension of these classic ideas to multilayered networks.
In multilayered networks, there is the structural credit assignment
problem: When an error is made at the output of a network, how
is credit (or blame) to be assigned to neurons deep within the net-
work? One of the most popular techniques is called backpropaga-
tion, whereby the error of output units is propagated back to yield
estimates of how much a given “hidden unit” contributed to the
output error. These estimates are used in the adjustment of synaptic
weights to these units within the network. BACKPROPAGATION:
GENERAL PRINCIPLES places this idea in a broader framework by
providing an overview of contributions that enrich our understand-
ing of the pros and cons (such as “plateaus”) of this adaptive
architecture. It also assesses the biological plausibility of
backpropagation.

The underlying theoretical grounding is that, given any function
f: X— Y for which X and Y are codable as input and output patterns
of a neural network, then, as shown in UNIVERSAL APPROXIMA-
TORS, f can be approximated arbitrarily well by a feedforward net-
work with one layer of hidden units. The catch, of course, is that
many, many hidden units may be required for a close fit. It is thus
often treated as an empirical question whether there exists a suffi-
ciently good approximation achievable in principle by a network
of a given size—an approximation that a given learning rule may
or may not find (it may, for example, get stuck in a local optimum
rather than a global one). Gradient descent methods have also been
extended to adapt the synaptic weights of recurrent networks. The
backpropagation algorithm for feedforward networks has been suc-
cessfully applied to a wide range of problems, but what can be
implemented by a feedforward network is just a static mapping of
the input vectors. However, to model dynamical functions of brains
or machines, one must use a system capable of storing internal
states and implementing complex dynamics. RECURRENT NET-
WORKS: LEARNING ALGORITHMS presents, then, learning algo-
rithms for recurrent neural networks that have feedback connec-
tions and time delays. In a recurrent network, the state of the system
can be encoded in the activity pattern of the units, and a wide
variety of dynamical behaviors can be programmed by the connec-
tion weights. A popular subclass of recurrent networks consists of
those with symmetric connection weights. In this case, the network
dynamics is guaranteed to converge to a minimum of some “en-
ergy” function (see “Energy Functionals for Neural Networks” and

“Computing with Attractors”). However, steady-state solutions are
only a limited portion of the capabilities of recurrent networks. For
example, they can transform an input sequence into a distinct out-
put sequence, and they can serve as a nonlinear filter, a nonlinear
controller, or a finite-state machine. This article reviews the learn-
ing algorithms for training recurrent networks, with the main focus
on supervised learning algorithms. (See “Recurrent Networks:
Neurophysiological Modeling” for the use of such networks in
modeling biological neural circuitry.)

One useful perspective for supervised learning views learning as
hill-climbing in weight space, so that each “experience” adjusts the
synaptic weights of the network to climb (or descend) a meta-
phorical hill for which “height” at a particular point in “weight
space” corresponds to some measure of the performance of the
network (or the organism or robot of which it is a part). When the
aim is to minimize this measure, the learning process is then an
example of what mathematicians call gradient descent. The term
reinforcement comes from studies of animal learning in experi-
mental psychology, where it refers to the occurrence of an event,
in the proper relation to a response, that tends to increase the prob-
ability that the response will occur again in the same situation.
REINFORCEMENT LEARNING describes a form of “semisupervised”
learning where the network is not provided with an explicit form
of error at each time step but rather receives only generalized re-
inforcement (“you’re doing well”; “that was bad!”), which yields
little immediate indication of how any neuron should change its
behavior. Moreover, the reinforcement is intermittent, thus raising
the temporal credit assignment problem (see also “Reinforcement
Learning in Motor Control”): How is an action at one time to be
credited for positive reinforcement at a later time? The solution is
to build an “adaptive critic” that learns to evaluate actions of the
network on the basis of how often they occur on a path leading to
positive or negative reinforcement. Methods for this assessment of
future expected reinforcement include temporal difference (TD)
learning and Q-learning (see “Q-Learning for Robots”). Current
reinforcement learning research includes parameterized function
approximation methods; understanding how exploratory behavior
is best introduced and controlled; learning under conditions in
which the environment state cannot be fully observed; introducing
various forms of abstraction such as temporally extended actions
and hierarchy; and relating computational reinforcement learning
theories to brain reward mechanisms (see “Dopamine, Roles of”).

The task par excellence for supervised learning is pattern rec-
ognition—the problem of classifying objects, often represented as
vectors or as strings of symbols, into categories. Historically, the
field of pattern recognition started with early efforts in neural net-
works (see PERCEPTRONS, ADALINES, AND BACKPROPAGATION).
While neural networks played a less central role in pattern recog-
nition for some years, recent progress has made them the method
of choice for many applications. As PATTERN RECOGNITION dem-
onstrates, properly designed multilayer networks can learn complex
mappings in high-dimensional spaces without requiring compli-
cated hand-crafted feature extractors. To rely more on learning, and
less on detailed engineering of feature extractors, it is crucial to
tailor the network architecture to the task, incorporating prior
knowledge to be able to learn complex tasks without requiring
excessively large networks and training sets. ENSEMBLE LEARNING
describes algorithms that, rather than finding one best hypothesis
to explain the data, construct a set (sometimes called a committee
or ensemble) of hypotheses and then have those hypotheses vote
to classify new patterns. Ensemble methods are often much more
accurate than any single hypothesis. For example, the representa-
tional problem arises when the hypothesis space does not contain
any hypotheses that are good approximations to the true decision
function f. In some cases, a weighted sum of hypotheses expands
the space of functions that can be represented. Hence, by taking a
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weighted vote of hypotheses, the learning algorithm may be able
to form a more accurate approximation to f. The bulk of research
into ensemble methods has focused on constructing ensembles of
decision trees. The article introduces the techniques of bagging and
boosting, among others, and analyzes their relative merits under
different conditions.

Many specific architectures have been developed to solve par-
ticular types of learning problem. ADAPTIVE RESONANCE THEORY
(ART) bases learning on internal expectations. A pattern matching
process compares an external input with the internal memory of
various coded patterns. ART matching leads either to a resonant
state, which persists long enough to permit learning, or to a parallel
memory search. If the search ends at an established code, the mem-
ory representation may either remain the same or incorporate new
information from matched portions of the current input. When the
external world fails to match an ART network’s expectations or
predictions, a search process selects a new category, representing
a new hypothesis about what is important in the present
environment.

The neocognitron (see NEOCOGNITRON: A MODEL FOR VISUAL
PATTERN RECOGNITION) was developed as a neural network model
for visual pattern recognition that addresses the specific question,
“How can a pattern be recognized despite variations in size and
position?” by using a multilayer architecture in which local features
are replicated in many different scales and locations. More gener-
ally, as shown in CONVOLUTIONAL NETWORKS FOR IMAGES,
SPEECH, AND TIME SERIES, shift invariance in convolutional net-
works is obtained by forcing the replication of weight configura-
tions across space. Moreover, the topology of the input is taken
into account, enabling such networks to force the extraction of local
features by restricting the receptive fields of hidden units to be
local, and enforcing a built-in invariance with respect to transla-
tions, or local distortions of the inputs. The idea of connecting units
to local receptive fields on the input goes back to the perceptron in
the early 1960s, and was almost simultaneous with Hubel and Wie-
sel’s discovery of locally sensitive, orientation-selective neurons in
the cat’s visual system.

Just as a polynomial of too high a degree is not useful for curve
fitting, a network that is too large will fail to generalize well, and
will require longer training times. Smaller networks, with fewer
free parameters, enforce a smoothness constraint on the function
found. For best performance, it is therefore desirable to find the
smallest network that will “fit” the training data. To create a neural
network, a designer typically fixes a network topology and uses
training data to tune its parameters such as connection weights.
The designer, however, often does not have enough knowledge to
specify the ideal topology. It is thus desirable to learn the topology
from training data as well. LEARNING NETWORK TOPOLOGY re-
views algorithms that adjust network topology, adding neurons and
removing neurons during the learning process, to arrive at a net-
work appropriate to a given task. For topology learning, a bias is
added to prefer smaller models. It is often found that this bias
produces a neural network that has better generalization and is more
interpretable. This framework is applied to learning the topologies
of both feedforward neural networks and BAYESIAN NETWORKS.
In Bayesian networks, all the nodes of the network are given and
set, and one searches for a topology by adding or deleting links.

Many articles in the Handbook emphasize situations where, e.g.,
learning from examples is stochastic in the sense that examples are
randomly generated and the network behavior is thus to be analyzed
from a statistical point of view. Statistical estimation identifies the
mechanism underlying stochastic phenomena. LEARNING AND STA-
TISTICAL INFERENCE studies learning by using such statistical no-
tions as Fisher information, Bayesian loss, and sequential estima-
tion, as well as the Expectation-Maximization (EM) algorithm for
estimating hidden variables. Nonlinear neurodynamics, learning,

and self-organization are seen as adding new concepts to statistical
science. The article examines the dynamical behaviors of a learning
network under a general loss criterion. The behavior of learning
curves is related to neural network complexity to elucidate the dis-
crepancy between training and generalization errors. This perspec-
tive is further developed in NEUROMANIFOLDS AND INFORMATION
GEOMETRY. A neural network is specified by its architecture and a
number of parameters such as synaptic weights and thresholds. Any
neural network of this architecture is specified by a point in the
parameter space. Learning takes place in the parameter space and
a learning process is represented by a trajectory. The article pre-
sents the approach of information geometry which sees the geo-
metrical structure of the parameter space as given by a Riemannian
manifold. The article shows how dynamical behaviors of neural
learning on these “neuromanifolds” are related to the underlying
geometrical structures, using multilayer perceptrons and Boltz-
mann machines as examples.

GENERALIZATION AND REGULARIZATION IN NONLINEAR LEARN-
ING SYSTEMS sets forth the essential relationship between multi-
variate function estimation in a statistical context and supervised
machine learning. Given a training set consisting of (input, output)
pairs (x;, y;), the task is to construct a map that generalizes well in
that, given a new value of x, the map will provide a reasonable
prediction for the hitherto unobserved output associated with this
x. Regularization simplifies the problem by applying constraints to
the construction of the map that reduce the generalization error (see
also “Probabilistic Regularization Methods for Low-Level Vi-
sion”). Ideally, these constraints embody a priori information con-
cerning the true relationship between input and output, though vari-
ous ad hoc constraints have sometimes been shown to work well
in practice. Feedforward neural nets, radial basis functions, and
various forms of splines all provide regularized or regularizable
methods for estimating “smooth” functions of several variables
from a given training set. Which method to use depends on the
particular nature of the underlying but unknown “truth,” the nature
of any prior information that might be available about this “truth,”
the nature of any noise in the data, the ability of the experimenter
to choose the various smoothing or regularization parameters well,
and so on.

MODULAR AND HIERARCHICAL LEARNING SYSTEMS solves a
complex learning problem by dividing it into a set of subproblems.
In the context of supervised learning, modular architectures arise
when the data can be described by a collection of functions, each
of which works well over a relatively local region of the input
space, allocating different modules to different regions of the space.
The challenge is that, in general, the learner is not provided with
prior knowledge of the partitioning of the input space. To solve
this, a “gating network” can learn which module to “listen to” in
different situations. The learning algorithms described here solve
the credit assignment problem by computing a set of posterior prob-
abilities that can be thought of as estimating the utility of different
modules in different parts of the input space. An EM algorithm (cf.
LEARNING AND STATISTICAL INFERENCE), an alternative to gradient
methods, can be derived for estimating the parameters of both the
modular system and its extension to hierarchical architectures. The
latter arise when we assume that the data are well described by a
multiresolution model in which regions are divided recursively into
subregions.

BAYESIAN METHODS AND NEURAL NETWORKS shows how to
apply Bayes’s rule for the use of probabilities to quantify inferences
about hypotheses from given data. The idea is to take the predic-
tions p(dlh;) made by alternative models /; about data d, and the
prior probabilities of the models p(h;), and obtain the posterior
probabilities p(h;d) of the models given the data, using Bayes’s
rule in the form p(h)d) = p(dlh;)p(h;)/p(d). To apply this to neural
networks, regard a supervised neural network as a nonlinear param-
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eterized mapping from an input x to an output y = y(x; w), which
depends continuously on the “weights” parameter w. The idea is
to choose w from a weight space with some given probability dis-
tribution p(w) so as to maximize the likelihood of the nets yielding
the given set of (input, output) observations. The Bayesian frame-
work deals with uncertainty in a natural, consistent manner by com-
bining prior beliefs about which models are appropriate with how
likely each model would be to have generated the data. This results
in an elegant, general framework for fitting models to data that,
however, may be compromised by computational difficulties in car-
rying out the ideal procedure. There are many approximate Bayes-
ian implementations, using methods such as sampling, perturbation
techniques, and variational methods. In the case of models linear
in their parameters, Bayesian neural networks are closely related
to GAUSSIAN PROCESSES (q.v.), where many of the computational
difficulties of dealing with more general stochastic nonlinear sys-
tems can be avoided. Traditionally, neural networks are graphical
representations of functions in which the computations at each node
are deterministic. By contrast, networks in which nodes represent
stochastic variables are called graphical models (see BAYESIAN
NETWORKS and GRAPHICAL MODELS: PROBABILISTIC INFERENCE).

RADIAL BAsis FuNcTIiON NETWORKS applies Bayesian methods
to the case where the approximation to the given y = y(x; w) is
based on a network using combinations of “radial basis” functions,
each of which is “centered” around a weight vector w, so that the
response to input x depends on some measure of “distance” of x
from w, rather than on the dot product w - x = Zwux; as in many
formal neurons. The distribution of the w’s may be determined by
some form of clustering (see DATA CLUSTERING AND LEARNING).
Further learning adjusts the connection strengths to a neuron whose
outputs give an estimate of, e.g., the posterior probability p(clx)
that class c is present given the observation (network input) x. How-
ever, it is easier to model other related aspects of the data, such as
the unconditional distribution of the data p(x) and the likelihood of
the data, p(xlc), and then recreate the posterior from these quantities
according to Bayes’s rule, p(cilx) = p(c;)p(xlc)/p(x).

GAUSSIAN PROCESSES continues the Bayesian approach to neural
network learning, placing a prior probability distribution over pos-
sible functions and then letting the observed data “sculpt” this prior
into a posterior using the available data. One can place a prior
distribution P(w) on the weights w of a neural network to induce
a prior over functions P(y(x;w)) but the computations required to
make predictions are not easy, owing to nonlinearities in the sys-
tem. A Gaussian process, defined by a mean function and covari-
ance matrix, can prove useful as a way of specifying a prior directly
over function space—it is often simpler to do this than to work
with priors over parameters. Gaussian processes are probably the
simplest kind of function space prior that one can consider, being
a generalization of finite-dimensional Gaussian distributions over
vectors. A Gaussian process is defined by a mean function (which
we shall usually take to be identically zero), and a covariance func-
tion C(x, x") which indicates how correlated the value of the func-
tion y is at x and x’. This function encodes our assumptions about
the problem (e.g., that the function is smooth and continuous) and
will influence the quality of the predictions. The article shows how
to use Gaussian processes for classification problems, and describes
how data can be used to adapt the covariance function to the given
prediction problem.

MINIMUM DESCRIPTION LENGTH ANALYSIS shows how ideas re-
lating to minimum description length (MDL) have been applied to
neural networks, emphasizing the direct relationship between MDL
and Bayesian model selection methods. The classic MDL approach
defined the information in a binary string to be the length of the
shortest program with which a general-purpose computer could
generate the string. The Bayes bridge is obtained by replacing the
Bayesian goal of inferring the “most likely” model M from a set

of observations by minimizing the length of an encoded message
which describe M as well as the data D expressed in term of M.
MDL and Bayesian methods both formalize Occam’s razor in that
a complex network is preferred only if its predictions are suffi-
ciently more accurate.

UNSUPERVISED LEARNING WITH GLOBAL OBJECTIVE FUNCTIONS
makes the point that even unsupervised learning involves an im-
plicit training signal based on the network’s ability to predict its
own input, or on some more general measure of the quality of its
internal representation. The main problem in unsupervised learning
research is then seen as the formulation of a performance measure
or cost function for the learning to generate this internal supervisory
signal. The cost function is also known as an objective function,
since it sets the objective for the learning process. The article re-
views three types of unsupervised neural network learning proce-
dures: information-preserving algorithms, density estimation tech-
niques, and invariance-based learning procedures. The first method
is based on the preservation of mutual information I,;, = H(x) —
H(xly) between the input vector x and output vector y, where H(x)
is the entropy of random variable x and H(xly) is the entropy of
the conditional distribution of x given y. The second approach is
to assume a priori a class of models that constrains the general
form of the probability density function and then to search for the
particular model parameters defining the density function (or mix-
ture of density functions) most likely to have generated the ob-
served data (cf. the earlier discussion of Bayesian methods). Fi-
nally, invariance-based learning extracts higher-order features and
builds more abstract representations. Once again, the approach is
to make constraining assumptions about the structure that is being
sought, and to build these constraints into the network’s architec-
ture and/or objective function to develop more efficient, specialized
learning procedures.

The Bayesian articles stress the “global” statistical idea of “find
the weights which, according to given probability distributions
maximize some expectation” as distinct from the deterministic idea
of adjusting the weights at each time step to provide a local incre-
ment in performance on the current input. However, gradient de-
scent provides an important tool for finding the weight settings
which decrease some stochastic expectation of error, too. STO-
CHASTIC APPROXIMATION AND EFFICIENT LEARNING shows that
gradient descent has a long tradition in the literature of stochastic
approximation. Any stochastic process that can be interpreted as
minimizing a cost function based on noisy gradient measurements
in a sequential, recursive manner may be considered to be a sto-
chastic approximation. “Sequential” means that each estimate of
the location of a minimum is used to make a new observation,
which in turn immediately leads to a new estimate; “recursive”
means that the estimates depend on past gradient measurements
only through a fixed number of scalar statistics. Such on-line al-
gorithms are useful because they enjoy significant performance ad-
vantages for large-scale learning problems. The article describes
their properties using stochastic approximation theory as a very
broad framework, and provides a brief overview of newer insights
obtained using information geometry (see NEUROMANIFOLDS AND
INFORMATION GEOMETRY) and replica calculations (see STATIS-
TICAL MECHANICS OF ON-LINE LEARNING AND GENERALIZATION).

In order to understand the performance of learning machines,
and to gain insight that helps to design better ones, it is helpful to
have theoretical bounds on the generalization ability of the ma-
chines. The determination of such bounds is the subject of LEARN-
ING AND GENERALIZATION: THEORETICAL BOUNDS. Here it is nec-
essary to formalize the learning problem and turn the question of
how well a machine generalizes into a mathematical question. The
article adopts the formalization used in statistical learning theory,
which is shown to include both pattern recognition and function
learning. The road map Computability and Complexity gives
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more information on this and related articles, such as “PAC Learn-
ing and Neural Networks” and “Vapnik-Chervonenkis Dimension
of Neural Networks,” which offer bounds on the performance of
learning methods. SUPPORT VECTOR MACHINES addresses the (bi-
nary) pattern recognition problem of learning theory: given two
classes of objects, to assign a new object to one of the two classes.
Trying to find the best classifier involves notions of similarity in
the set X of inputs. Support vector machines (SVMs) build a de-
cision function as a kernel expansion corresponding to a separating
hyperplane in a feature space. SVMs rest on methods for the se-
lection of the patterns on which the kernels are centered and in the
choice of weights that are placed on the individual kernels in the
decision function. SVMs and other kernel methods have a number
of advantages compared to classical neural network approaches,
such as the absence of spurious local minima in the optimization
procedure, the need to tune only a few parameters, and modularity
in the design. Kernel methods connect similarity measures, nonli-
nearities, and data representations in linear spaces where simple
geometric algorithms are performed.

The passage of the “energy” of a Hopfield network to a local
minimum can be construed as a means for solving an optimization
problem. The catch is the word “local” in local minimum—the
solution may be the best in the neighborhood, yet far better solu-
tions may be located elsewhere. One resolution of this is described
in SIMULATED ANNEALING AND BOLTZMANN MACHINES. At the
expense of great increases in time to convergence, simulated an-
nealing escapes local minima by adding noise, which is then grad-
ually reduced (“lowering the temperature”). The initially high tem-
perature (i.e., noise level) stops the system from getting trapped in
“high valleys” of the energy landscape, the lowering of temperature
allows optimization to occur in the “deepest valley” once it has
been found. The Boltzmann machine then applies this method to
design a class of neural networks. These machines use stochastic
computing elements to extend discrete Hopfield networks in two
ways: they replace the deterministic, asynchronous dynamics of
Hopfield networks with a randomized local search dynamics, and
they replace the Hebbian learning rule with a more powerful sto-
chastic learning algorithm.

Turning from neural networks to another form of network struc-
ture, BAYESIAN NETWORKS (as distinct from BAYESIAN METHODS
AND NEURAL NETWORKS) provides an explicit method for follow-
ing chains of probabilistic inference such as those appropriate to
expert systems, extending the Bayes’s rule for updating probabil-
ities in the light of new evidence. The nodes in a Bayesian network
represent propositional variables of interest and the links represent
informational or causal dependencies among the variables. The de-
pendencies are quantified by conditional probabilities for each
node, given its parents in the network. The network supports the
computation of the probabilities of any subset of variables, given
evidence about any other subset, and the reasoning processes can
operate on Bayesian networks by propagating information in any
direction. HELMHOLTZ MACHINES AND SLEEP-WAKE LEARNING
starts by observing that since unsupervised learning is largely con-
cerned with finding structure among sets of input patterns, it is
important to take advantage of cases in which the input patterns
are generated in a systematic way, thus forming a manifold that
has many fewer dimensions than the space of all possible activation
patterns. The Helmholtz machine is an analysis-by-synthesis
model. The key idea is to have an imperfect generative model train
a better analysis or recognition model, and an imperfect recognition
model train a better generative model. The generative model for
the Helmholtz machine is a structured belief network (i.e., Bayesian
network) that is viewed as a model for hierarchical top-down con-
nections in the cortex. New inputs are analyzed in an approximate
fashion using a second structured belief network (called the rec-
ognition model), which is viewed as a model for the standard,

bottom-up connections in cortex. The generative and recognition
models are learned from data in two phases. In the wake phase, the
recognition model is used to estimate the underlying generators for
a particular input pattern, and then the generative model is altered
so that those generators are more likely to have produced the input
that is actually observed. In the sleep phase, the generative model
fantasizes inputs by choosing particular generators stochastically,
and then the recognition model is altered so that it is more likely
to report those particular generators if the fantasized input were
actually to be observed. YING-YANG LEARNING further develops
this notion of simultaneously building up two pathways, a bottom-
up pathway for encoding a pattern in the observation space into its
representation in a representation space, and a top-down pathway
for decoding or reconstructing a pattern from an inner representa-
tion back to a pattern in the observation space. The theory of Bayes-
ian Ying-Yang harmony learning formulates the two-pathway
approach in a general statistical framework, modeling the two path-
ways via two complementary Bayesian representations of the joint
distribution on the observation space and representation space. The
article shows how a number of major learning problems and meth-
ods can be seen as special cases of this unified perspective. More-
over, the ability of Ying-Yang learning for regularization and
model selection is placed in an information-theoretic perspective.
GRAPHICAL MODELS: PROBABILISTIC INFERENCE introduces a
generalization of Bayesian networks. The graphical models frame-
work provides a clean mathematical formalism that has made it
possible to understand the relationships among a wide variety of
network-based approaches to computation, and in particular to un-
derstand many neural network algorithms and architectures as in-
stances of a broader probabilistic methodology. Graphical models
use graphs to represent and manipulate joint probability distribu-
tions. The graph underlying a graphical model may be directed, in
which case the model is often referred to as a belief network or a
Bayesian network, or the graph may be undirected, in which case
the model is generally referred to as a Markov random field. A
graphical model has both a structural component, encoded by the
pattern of edges in the graph, and a parametric component, encoded
by numerical “potentials” associated with sets of edges in the
graph. General inference algorithms allow statistical quantities
(such as likelihoods and conditional probabilities) and information-
theoretic quantities (such as mutual information and conditional
entropies) to be computed efficiently. The article closes by noting
that many neural network architectures are special cases of the
general graphical model formalism, both representationally and al-
gorithmically. Special cases of graphical models include essentially
all models of unsupervised learning, as well as Boltzmann ma-
chines, mixtures of experts, and radial basis function networks,
while many other neural networks, including the classical multi-
layer perceptron, can be profitably analyzed from the viewpoint of
graphical models. The next two articles present learning algorithms
that build on these inference algorithms and allow parameters and
structures to be estimated from data. GRAPHICAL MODELS: PARAM-
ETER LEARNING discusses the learning of parameters for a fixed
graphical model. As noted, each node in the graph represents a
random variable, while the edges in the graph represent the quali-
tative dependencies between the variables; the absence of an edge
between two nodes means that any statistical dependency between
these two variables is mediated via some other variable or set of
variables. The quantitative dependencies between variables that are
connected via edges are specified via parameterized conditional
distributions, or more generally nonnegative “potential functions.”
The pattern of edges is the structure of the graph, while the param-
eters of the potential functions are parameters of the graph. The
present article assumes that the structure of the graph is given, and
shows how to then learn the parameters of the graph from data.
GRAPHICAL MODELS: STRUCTURE LEARNING turns to the simul-

TLFeBOOK



I1.6. Dynamics and Learning in Artificial Networks 63

taneous learning of parameters and structure. Real-world applica-
tions of such learning abound, the example presented being an anal-
ysis of data regarding factors that influence the intention of high
school students to attend college. For simplicity, the article focuses
on directed-acyclic graphical models, but the basic principles thus
defined can be applied more generally. The Bayesian approach is
emphasized, and then several common non-Bayesian approaches
are mentioned briefly.

COMPETITIVE LEARNING is a form of unsupervised learning in
which each input pattern comes, through learning, to be associated
with the activity of one or at most a few neurons, leading to sparse
representations of data that are easy to decode. Competitive learn-
ing algorithms employ some sort of competition between neurons
in the same layer via lateral connections. This competition limits
the set of neurons to be affected in a given learning trial. Hard
competition allows the final activity of only one neuron, the stron-
gest one to start with, whereas in soft competition the activity of
the lateral neurons does not necessarily drive all but one to zero.
One form of competitive learning algorithm can be described as an
application of a successful single-neuron learning algorithm in a
network with lateral connections between adjacent neurons. The
lateral connections are needed so that each neuron can be inhibited
from adapting to a feature of the data already captured by other
neurons. A second family of algorithms uses the competition be-
tween neurons for improving, sharpening, or even forming the fea-
tures extracted from the data by each single neuron. DATA CLUS-
TERING AND LEARNING emphasizes the related idea of data
clustering, discovering, and emphasizing structure that is hidden in
a data set (e.g., the pronounced similarity of groups of data vectors)
in an unsupervised fashion. There is a delicate trade-off: not to
superimpose too much structure, and yet not to overlook structure.
The choice of data representation predetermines what kind of clus-
ter structures can be discovered in the data. Formulating the search
for clusters as an optimization problem then supports validation of
clustering results by checking that the cluster structures found in a
data set vary little from one data set to a second data set generated
by the same data source. The two tasks of clustering, density es-
timation and data compression, are tightly related by the fact that
the correct identification of the probability model of the source
yields the best code for data compression. PRINCIPAL COMPONENT
ANALYSIS shows how, in data compression applications like image
or speech coding, a distribution of input vectors may be economi-
cally encoded, with small expected values of the distortions, in
terms of eigenvectors of the largest eigenvalues of the correlation
matrix that describes the distribution of these patterns (these ei-
genvectors are the “principal components”). However, it is usually
not possible to find the eigenvectors on-line. The ideal solution is
then replaced by a neural network learning rule embodying a con-
strained optimization problem that converges to the solution given
by the principal components. INDEPENDENT COMPONENT ANALY-
sis (ICA) is a linear transform of multivariate data designed to
make components of the resulting random vector as statistically
independent (factorial) as possible. In signal processing it is used
to attack the problem of the blind separation of sources, for example
of audio signals that have been mixed together by an unknown
process (the “cocktail party effect”). In the area of neural networks
and brain theory, it is an example of an information-theoretic un-
supervised learning algorithm. When an ICA network is trained on
an ensemble of natural images, it learns localized-oriented recep-
tive fields qualitatively similar to those found in area V1 of mam-
malian visual cortex. ICA has been used to decompose multivariate
brain data into components that help us understand task-related
spatial and temporal brain dynamics. Thus the same neural network
algorithm is being used both as an explanation of brain properties
and as a method of probing the brain. Where principal component
analysis (PCA) uses second-order statistics (the covariance matrix)

to remove correlations between the elements of a vector, ICA uses
statistics of all orders. PCA attempts to decorrelate the outputs,
while ICA attempts to make the outputs statistically independent.
The most widely used adaptive, on-line method for ICA is also the
most “neural-network-like” and is the one described in the body of
this article.

SELF-ORGANIZING FEATURE MAPS introduces the self-
organizing feature map (SOFM or SOM; also known as a Kohonen
map), a nonlinear method by which features can be obtained with
an unsupervised learning process. It is based on a layer of adaptive
“neurons” that gradually develops into an array of feature detectors.
The linking of input signals to response locations in the map can
be viewed as a nonlinear projection from a signal or input space to
the (usually) 2D map layer. The learning method is an augmented
Hebbian method in which learning by the element most responsive
to an input pattern is “shared” with its neighbors. The result is that
the resulting “compressed image” of the (usually higher-dimen-
sional) input space has the property of a topographic map that re-
flects important metric and statistical properties of the input signal
distribution: distance relationships in the input space (expressing,
e.g., pattern similarities) are approximately preserved as distance
relationships between corresponding excitation sites in the map,
and clusters of similar input patterns tend to become mapped to
areas of the neural array whose size varies in proportion to the
frequency of the occurrence of their patterns. This resembles in
many ways the structure of topographic feature maps found in
many brain areas, for which the SOFM offers a neural model that
bridges the gap between microscopic adaptation rules postulated at
the single neuron or synapse level and the formation of experi-
mentally better accessible, macroscopic patterns of feature selec-
tivity in neural layers. From a statistical point of view, the SOFM
provides a nonlinear generalization of principal component analy-
sis and has proved valuable in many application contexts.

In order to give a quantitative answer to the question of how
well the trained network will be able to classify an input that it has
not seen before, it is common to assume that all inputs, both from
the training set and the test set, are produced independently and at
random. Clearly, the generalization error depends on the specific
algorithm that was used during the training, and its calculation
requires knowledge of the network weights generated by the learn-
ing process. In general, these weights will be complicated functions
of the examples, and an explicit form will not be available in most
cases. The methods of statistical mechanics provide an approach
to this problem, which often enables an exact calculation of learn-
ing curves in the limit of a very large network. In the statistical
mechanics approach one studies the ensemble of all networks that
implement the same set of input/output examples to a given ac-
curacy. In this way the typical generalization behavior of a neural
network (in contrast to the worst or optimal behavior) can be de-
scribed. We thus turn to two articles that apply the methods intro-
duced in the article “Statistical Mechanics of Neural Networks”:
STATISTICAL MECHANICS OF ON-LINE LEARNING AND GENERAL-
IZATION emphasizes on-line learning in which training examples
are dealt with one at a time, while STATISTICAL MECHANICS OF
GENERALIZATION empbhasizes off-line or memory-based methods,
where learning is guided by the minimization of a cost function as
averaged over the whole training set. From a statistical physics
point of view, the distinction is between systems that can be
thought of as being in a state of thermal equilibrium (off-line ~
on-equilibrium) and away-from-equilibrium situations where the
network is not allowed to extract all possible information from a
set of examples (on-line =~ off-equilibrium). While on-line learning
is an intrinsically stochastic process, the restriction to large net-
works, together with assumptions about the statistical properties of
the inputs, permits a concise description of the dynamics in terms
of coupled ordinary differential equations. These deterministic
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equations govern the average evolution of quantities that com-
pletely define the macroscopic state of the ANN. The average is
taken with respect to the data, which is straightforward if the pre-
sented examples are statistically independent. The probability that
the network will make a mistake on the new input defines its gen-
eralization error for a given training set. Its average over many
realizations of the training set, as a function of the number of ex-
amples, gives the so-called learning curve. Calculation of the learn-
ing curve requires knowledge of the network weights generated by
the learning process, for which an explicit form will not be avail-
able in most cases. The methods of statistical mechanics provide
an approach to this problem, in many cases yielding an exact cal-
culation of learning curves in the “thermodynamic limit” of a very
large network in which the network size increases in proportion to
the number of training examples, while the statistical or
information-theoretic approach is applicable to the learning curve
of a medium-size network (cf. LEARNING AND STATISTICAL
INFERENCE).

MODEL VALIDATION shows how the data analyst tries to infer a
“model” that summarizes functional dependencies that may be ob-
served in a given set of empirical data. A good model fit should
reproduce the behavior of the studied system in the parameter range
to be explained by the model study. Model complexity has to be
controlled to avoid both missing essential features of the system
(underfitting) and adapting to irrelevant fluctuations in the data
(overfitting). Model validation provides the crucial step in model-
ing between model synthesis and analysis, assessing how appro-
priate the model is to gain insight into the real-world system. Model
validation can make use of bounds of the VC type (cf. “Vapnik-
Chervonenkis Dimension of Neural Networks”), which usually
contain a complexity term that accounts for the flexibility of the
hypothesis class and a fitting term that measures the contraction of
measure due to the large number of samples. It is shown how these
terms can be controlled either by numerical methods like cross-
validation and bootstrap or by analytical techniques from compu-
tational learning theory. The trade-off between model complexity
and goodness of fit and its relation to the computational complexity
of learning remains a deep challenge for research.

HIDDEN MARKOV MODELS describes the use of deterministic and
stochastic finite state automata for sequence processing, with spe-
cial attention to hidden Markov models as tools for the processing
of complex piecewise stationary sequences. It also describes a few
applications of ANNSs to further improve these methods. HMMs
allow complex sequential learning problems to be solved by as-
suming that the sequential pattern can be decomposed into piece-
wise stationary segments, with each stationary segment parameter-
ized in terms of a stochastic function. The HMM is called “hidden”
because there is an underlying stochastic process (i.e., the sequence
of states) that is not observable but that affects the observed se-
quence of events.

TEMPORAL PATTERN PROCESSING notes that time is embodied
in a temporal pattern in two different ways: the temporal order
among the components of a sequence and the temporal duration of
the elements (see also “Sequence Learning”). A sequence is defined
as complex if it contains repetitions of the same subsequence, and
otherwise is simple. For the generation of complex sequences, the
correct successor can be determined only by knowing components
prior to the current one. We refer to the prior subsequence required
to determine the current component as the context of the compo-
nent. Temporal processing requires that a neural network have a
capacity of short-term memory (STM) in order to maintain a com-
ponent for some time. Time warping is challenging because we
would like to have invariance over limited warping, but dramatic
change in relative duration must be recognized differently. Another
fundamental ability of human information processing is chunking,
which, in the context of temporal processing, means that frequently
encountered and meaningful subsequences organize into chunks

that form basic units for further chunking at a higher level. TEM-
PORAL SEQUENCES: LEARNING AND GLOBAL ANALYSIS studies
how elementary pattern sequences may be represented in neural
structures at a low architectural and computational cost, seeking to
understand mechanisms to memorize spatiotemporal associations
in a robust fashion within model neural networks. The article fo-
cuses on formal neural networks where the interplay between neu-
ral and synaptic dynamics and, in particular, the role of transmis-
sion delays can be analyzed using methods from nonlinear
dynamics and statistical mechanics. Among the questions studied
are how to train a network so that its limit cycles will resemble
taught sequences. Such simplified systems are necessarily carica-
tures of biological structures yet suggest aspects that are important
for more elaborate approaches to real neural systems.

EVOLUTION OF ARTIFICIAL NEURAL NETWORKS adds another
temporal dimension to the biological process of adaptation,
namely, that of evolution. Rather than adapt the weights of a single
network to solve a problem in the network’s “lifetime,” the evo-
lutionary approach applies the methodology of genetic algorithms
to evolve a population of neural networks over several generations
so that the population becomes better and better suited to some
computational ecology. EVOLUTION AND LEARNING IN NEURAL
NETWORKS extends this selection of networks on the basis of the
result of their adaptation to the environment through lifetime learn-
ing. The article shows how studies of ANNs that are subjected both
to an evolutionary and a lifetime learning process have been con-
ducted to look at the advantages, in terms of performance, of com-
bining two different adaptation techniques or to help understand
the role of the interaction between learning and evolution in natural
organisms.

Computability and Complexity

ANALOG NEURAL NETS: COMPUTATIONAL POWER

LEARNING AND GENERALIZATION: THEORETICAL BOUNDS
NEURAL AUTOMATA AND ANALOG COMPUTATIONAL COMPLEXITY
PAC LEARNING AND NEURAL NETWORKS

UNIVERSAL APPROXIMATORS

VAPNIK-CHERVONENKIS DIMENSION OF NEURAL NETWORKS

The 1930s saw the definition of an abstract notion of computability
when it was discovered that the set of functions on the natural
numbers, f: N = N, computable by a Turing machine (an abstrac-
tion from following a finite set of rules to calculate on a finite but
extendible tape, each square of which could hold one of a fixed set
of symbols), lambda functions (which later came to be better
known as functions computable by programs written in LISP), and
general recursive functions (a class of functions obtained from very
simple numerical functions by repeated application of composition,
minimization, etc.), were identical. As general-purpose electronic
computers were developed and used in the 1940s and 1950s, it was
firmly established that these computable functions were precisely
the functions that could be computed by such computers with suit-
able programs, provided there were no limitations on computer
memory or computation time. This set the stage for the develop-
ment of complexity theory in the 1960s and beyond: to chart the
different subsets of the computable functions that would be ob-
tained when restrictions were placed on computing resources.
Many classification or pattern recognition tasks can be formu-
lated as mappings between subsets of multidimensional vector
spaces by using a suitable coding of inputs and outputs, and many
types of feedforward networks are universal in the sense that, given
enough adjustable synaptic weights, they can approximate any
mapping between subsets of Euclidean spaces. UNIVERSAL AP-
PROXIMATORS surveys recent developments in the mathematical
theory of feedforward networks and includes proofs of the universal
approximation capabilities of perceptron and radial basis function
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networks with general activation and radial functions, and provides
estimates of rates of approximation. The article also characterizes
sets of multivariable functions that can be approximated without
the “curse of dimensionality,” which is an exponentially fast scal-
ing of the number of parameters with the number of variables.

NEURAL AUTOMATA AND ANALOG COMPUTATIONAL COMPLEX-
ITY explores what happens when the discrete operations of con-
ventional automata theory are replaced by a computing model in
which operations on real numbers are treated as basic. Whereas
classical automata describe digital machines, neural models fre-
quently require a framework of analog computation defined on a
continuous phase space, with a dynamics characterized by the ex-
istence of real constants that influence the macroscopic behavior
of the system. Moreover, unlike the flow in digital computation,
analog models do not include local discontinuities. Neural net-
works with real weights are more powerful than traditional models
of computation in that they can compute more functions within
given time bounds. However, the practicality of an approach based
on infinite precision real operations remains to be seen. Nonethe-
less, the new attention to real numbers has renewed complexity
theory and introduced many open problems in computational learn-
ing theory and neural network theory. The article thus pays special
attention to analog computation in the presence of noise. ANALOG
NEURAL NETS: COMPUTATIONAL POWER then analyzes the exact
and approximate representational power of feedforward and recur-
rent neural nets with synchronous update, with a brief discussion
of networks of spiking neurons and their relation to sigmoidal nets.
Learning complexity increases with increasing representational
power of the underlying neural model and care has to be exercised
to strike a balance between representational power on the one hand
and learning complexity on the other. However, the emphasis of
the article is on representational power, i.e., on what can be rep-
resented with networks using a given set of activation functions,
rather than on learning complexity. Splines (i.e., piecewise poly-
nomial functions) have turned out to be powerful approximators,
and they are used here as the benchmark class of activation func-
tions. Much attention is given to studying the properties that a class
of activation functions needs to reach the approximation power of
splines.

PAC LEARNING AND NEURAL NETWORKS discusses the “prob-
ably approximately correct” (PAC) learning paradigm as it applies
to ANNs. Roughly speaking, if a large enough sample of ran-
domly drawn training examples is presented, then it should be
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Vision

ADAPTIVE RESONANCE THEORY

COLLICULAR VISUOMOTOR TRANSFORMATIONS FOR GAZE
CONTROL

COLOR PERCEPTION

CONTOUR AND SURFACE PERCEPTION

CORTICAL POPULATION DYNAMICS AND PSYCHOPHYSICS

DIRECTIONAL SELECTIVITY

DiISSOCIATIONS BETWEEN VISUAL PROCESSING MODES

DyNAMIC LINK ARCHITECTURE

DyNAMIC REMAPPING

FACE RECOGNITION: NEUROPHYSIOLOGY AND NEURAL
TECHNOLOGY

FACE RECOGNITION: PSYCHOLOGY AND CONNECTIONISM

FAST VISUAL PROCESSING

likely that, after learning, the neural network will classify most
other randomly drawn examples correctly. The PAC model for-
malizes the terms “likely” and “most.” The two main issues in
PAC learning theory are how many training examples should be
presented, and whether learning can be achieved using a fast al-
gorithm. These are known, respectively, as the sample complexity
and computational complexity problems. PAC learning makes use
of the Vapnik-Chervonenkis dimension (VC-dimension) as a com-
binatorial parameter that measures the “expressive power” of a
family of functions. This parameter is described more fully in
VAPNIK-CHERVONENKIS DIMENSION OF NEURAL NETWORKS.
Bounds for the VC-dimension of a neural net N provide estimates
for the number of random examples that are needed to train N so
that it has good generalization properties (i.e., so that the error of
N on new examples from the same distribution is very small, with
probability very close to 1). Typically, the VC-dimension for a
class of networks grows polynomially (in many cases, between
linearly and quadratically) with the number of adjustable param-
eters of the neural network. In particular, if the number of training
examples is large compared to the VC-dimension, the network’s
performance on training data is a reliable indication of its future
performance on subsequent data. The bounds on training set size
tend to be large, since they provide generalization guarantees si-
multaneously for any probability distribution on the examples and
for any training algorithm that minimizes disagreement on the
training examples. Tighter bounds are available for some special
distributions and specific training algorithms. This theme is further
developed in LEARNING AND GENERALIZATION: THEORETICAL
BouNnDs in relation to three learning problems: pattern recogni-
tion, regression estimation, and density estimation. Because of the
looseness of its bounds as well as the difficulty of evaluating
them, VC theory was until recently largely neglected by practi-
tioners. This has changed markedly with the development of sup-
port vector machines. Using nonlinear similarity measures, re-
ferred to as kernels, one can reduce a large class of learning
algorithms to linear algorithms in an associated feature space. For
the linear algorithms, a VC analysis can be carried out, identifying
precisely the factors that need to be controlled to achieve high
generalization ability in a variety of learning tasks. “Support Vec-
tor Machines” casts these factors into a convex optimization
framework, leading to efficient and mathematically well-founded
algorithms that have been shown to produce state-of-the-art results
on a large variety of problems.

FEATURE ANALYSIS

GABOR WAVELETS AND STATISTICAL PATTERN RECOGNITION
GLOBAL VISUAL PATTERN EXTRACTION

IMAGING THE VISUAL BRAIN

INFORMATION THEORY AND VISUAL PLASTICITY

KALMAN FILTERING: NEURAL IMPLICATIONS

LAMINAR CORTICAL ARCHITECTURE IN VISUAL PERCEPTION
MARKOV RANDOM FIELD MODELS IN IMAGE PROCESSING
MOTION PERCEPTION: ELEMENTARY MECHANISMS

MOTION PERCEPTION: NAVIGATION

NEOCOGNITRON: A MODEL FOR VISUAL PATTERN RECOGNITION
OBJECT RECOGNITION

OBJECT RECOGNITION, NEUROPHYSIOLOGY

OBIJECT STRUCTURE, VISUAL PROCESSING

OCULAR DOMINANCE AND ORIENTATION COLUMNS
ORIENTATION SELECTIVITY
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PERCEPTION OF THREE-DIMENSIONAL STRUCTURE

PROBABILISTIC REGULARIZATION METHODS FOR LOW-LEVEL
VISION

PursuiT EYE MOVEMENTS

RETINA

SENSOR FUSION

STEREO CORRESPONDENCE

SYNCHRONIZATION, BINDING AND EXPECTANCY

TENSOR VOTING AND VISUAL SEGMENTATION

VISUAL ATTENTION

VISUAL CORTEX: ANATOMICAL STRUCTURE AND MODELS OF
FuNcTION

VISUAL SCENE PERCEPTION

VISUAL SCENE SEGMENTATION

The topic of Vision has provided one of the most fertile fields of
investigation both for brain theorists and for technologists con-
structing ANN . Six articles in the road map Mammalian Brain
Regions—RETINA, COLLICULAR VISUOMOTOR TRANSFORMA-
TIONS FOR GAZE CONTROL, “Thalamus,” VISUAL CORTEX: ANA-
TOMICAL STRUCTURE AND MODELS OF FUNCTION, and VISUAL
SCENE PERCEPTION—introduce various brain regions associated
with vision. It is important to emphasize the role of “active vision”
in gaining information relevant for animals and robots considered
as real-time perception-action systems. This is a theme that is fur-
ther developed in the road maps Neuroethology and Evolution
and Mammalian Motor Control. Nonetheless, many articles in
the present road map will analyze vision as the process of discov-
ering from images what is present in the world: we may see active
vision as more like the mode of vision employed by the “where/
how” system described in VISUAL SCENE PERCEPTION, whereas
“passive” vision may be closer to the role of the “what” pathway.
DISSOCIATIONS BETWEEN VISUAL PROCESSING MODES explores
the notion that the visual system has two kinds of jobs to do. One
is to support visual cognition, the other is to drive visually guided
behavior. Qualitative information about location may be adequate
for cognition, but the sensorimotor function needs quantitative ego-
centrically calibrated spatial information to guide motor acts. The
article reviews evidence from neurophysiology, neurological anal-
ysis of patients, and psychophysics that the two systems should be
modeled as separate maps of visual space rather than as a single
visual representation with two readouts. Moreover, spatial infor-
mation can flow from the cognitive to the sensorimotor represen-
tation, but not in the other direction.

However, even “passive” vision is not so passive, since atten-
tional mechanisms are constantly moving the eyes to foveate on
items of particular relevance to the current interests of the organ-
ism. COLLICULAR VISUOMOTOR TRANSFORMATIONS FOR GAZE
CONTROL reviews the role of the superior colliculus in the control
of gaze shifts (combined eye-head movements) and its possible
involvement in the control of eye movements in 3D space (direc-
tion and depth). During attentive fixation, the “Vestibulo-Ocular
Reflex” (VOR) and slow vergence maintain binocular foveal fixa-
tion to correct for body movements. When the task requires in-
spection of an eccentric stimulus, a complex synergy of coordinated
movements comes into play. Such refixations typically involve a
rapid combined eye-head movement (saccadic gaze shift) and often
require binocular adjustment in depth (vergence). By virtue of its
topographical organization, the superior colliculus has become a
key area for experimental and modeling approaches to the question
of how sensory signals can be transformed into goal-directed move-
ments. Interestingly, the superior colliculus is not driven by visual
input alone. Auditory and somatosensory cues are transformed to
register with the visual map in the colliculus for the control of
saccades. SENSOR FUSION picks up this theme of ways in which
sensory information can be brought together in the brains of diverse

animals (snakes, cats, monkeys, and humans) and surveys biolog-
ically inspired technological implementations (such as the use of
infrared to enhance vision). PURSUIT EYE MOVEMENTS takes us
from saccadic “jumps” to those smooth eye movements involved
in following a moving target. Current models of pursuit include
“image motion” models, “target velocity” models, and models that
address the role of prediction in pursuit. These models make no
explicit reference to the neural structures that might be responsible,
but the article analyzes the neural pathways for pursuit, stressing
the importance of both visual areas of the cerebral cortex and ocu-
lomotor regions of the cerebellum.

The RETINA, the outpost of the brain that contains both light-
sensitive receptors and several layers of neurons that “preprocess”
these responses, transforms visual signals in a multitude of ways
to code properties of the visual world such as contrast, color, and
motion. The article suggests that much of the retina’s signal coding
and structural detail is derived from the need to optimally amplify
the signal and eliminate noise. But retinal circuitry is diverse. The
exact details are probably related to the ecological niche occupied
by the organism. In mammals, the retinal output branches into two
pathways, the collicular pathway and the geniculostriate pathway.
The destination of the former is the midbrain region known as the
superior colliculus, discussed above. VISUAL CORTEX: ANATOMI-
CAL STRUCTURE AND MODELS OF FUNCTION reviews features of
the microcircuitry of the target of the geniculostriate pathway, the
primary visual cortex (area V1), and discusses the physiological
properties of cells in its different laminae. It then outlines several
hypotheses as to how the anatomical structure and connections
might serve the functional organization of the region. For example,
a connectionist model of layer IVc of V1 demonstrated that the
gradient of change in properties of the layer could indeed be rep-
licated using dendritic overlap through the lower two-thirds of the
IVc layer. However, it was insufficient to explain the continuous
and sharply increasing field size and contrast sensitivity observable
near the top of the layer. The article shows how this discrepancy
led to new experiments and related changes in the model which
resulted in a good replication of the actual physiological data and
required only feedforward excitation. The article goes on to analyze
the anatomical substrates for orientation specificity and for sur-
round modulation of visual responses, and concludes by discussing
the origins of patterned anatomical connections. OCULAR DoMI-
NANCE AND ORIENTATION COLUMNS discusses further properties
of cells in layer [IVc of V1. When these cells are tested to see which
eye drives them more strongly, it is found that ocular dominance
takes the form of a zebra-stripe-like pattern of alternating domi-
nance. Within this high-level organization are “hypercolumns” de-
voted to a particular retinotopic region of visual space, each hy-
percolumn being further refined into columns whose cells are best
responsive to edges of the same specific orientation. The article
also presents models for how these structures might form through
self-organization during development. The article reviews data on
the orientation specificity of cells of V1 and their columnar orga-
nization, and offers models for the way in which development may
yield such features of cortical structure. GABOR WAVELETS AND
STATISTICAL PATTERN RECOGNITION shows how the response
properties of many cells in primary visual cortex may be better
described by what are called “Gabor wavelets” than as simple edge
detectors. Each Gabor wavelet responds best to patterns of a given
spatial frequency and orientation within a given neighborhood. The
article relates this notion to both biology and technology. The de-
tection of edge information from within a visual scene is an essen-
tial component of visual processing. This processing is believed to
be initiated in the primary visual cortex, where individual neurons
are known to act as feature detectors of the orientation of edges
within the visual scene. Individual neurons can have an orientation
preference (which states that neuron’s preferred orientation of the
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angle of edges) and orientation selectivity (which measures the
neuron’s sensitivity as a detector of orientation). ORIENTATION SE-
LECTIVITY focuses on mechanisms of orientation selectivity in the
visual cortex, arguing that the orientation preference of each neuron
and the orderly orientation preference map in cortex are likely to
be consequences of a pattern of feedforward convergence. How-
ever, the selectivity observed in steady-state and orientation dy-
namics experiments cannot be achieved by a purely feedforward
model. Corticocortical inhibition is a crucial ingredient in the emer-
gence of orientation selectivity in the visual cortex, while the rela-
tive importance of corticocortical excitation in enhancing orienta-
tion selectivity is still under investigation but appears to be more
significant for the function of complex cells than for simple cells
in V1. Moving beyond the orientation features of primary visual
cortex, INFORMATION THEORY AND VISUAL PLASTICITY demon-
strates some aspects of information theory that are relevant to re-
laying information in cortex and connects entropy-based methods,
projection pursuit, and extraction of simple cells in visual cortex.
FEATURE ANALYSIS offers a more general view of the character-
ization of visual features based on the redundancy of the visual
signal and the transformation of the signal as it passes along the
visual pathway. Describing a particular cell as an “x detector” im-
plies that the cell responds when and only when that particular
feature is present (e.g., an edge detector responds only in the pres-
ence of an edge), but the article argues that describing cells in the
early visual system as “detectors” of any type of feature is mis-
leading. Features are useful for describing natural images because
the latter have massive informational redundancy. Image space it-
self is too vast to search directly. Feature analysis depends on the
proposition that the search for particular objects can be concen-
trated in a subspace of image space, the feature space. Localized
receptive fields in primary visual cortex provide the primitive basis
set for the feature space of vision. These form the basis for the
elaboration of neurons responding selectively to geometrical fea-
tures in area TE of the inferotemporal cortex (IT), and these in turn
from the basis for object recognition in different but overlapping
areas of IT.

Given that cells in the early stages of the visual system, at least,
provide a distributed (more or less retinotopic) set of “features” (in
some suitably general sense, given the above caution, of patterns
that yield the best response rather than patterns that yield the only
response), the issue arises of how those features that correspond to
a single object in the visual scene are bound together. CONTOUR
AND SURFACE PERCEPTION introduces parallel interacting subsys-
tems that follow complementary processing strategies. Boundary
formation proceeds by spatially linking oriented contrast measures
along smooth contour patterns, while perceptual surface attributes,
such as lightness or texture, are derived from local ratio measures
of image contrast of regions lying within contours. Mechanisms of
both subsystems mutually interact to resolve initial ambiguities and
to generate coherent representations of surface layout. Represen-
tations of intrinsic scene characteristics are constrained in terms of
the consistency of the set of solutions, which often involve smooth-
ness assumptions for correlated feature estimates. These consis-
tency constraints are typically based on the laws of physical image
generation. The article reviews fundamental approaches to com-
putation of intrinsic scene characteristics and various neural models
of boundary and surface computation. Each model involves lateral
propagation of signals to interpolate and smooth sparse estimates.

ADAPTIVE RESONANCE THEORY (ART) bases learning on inter-
nal expectations. A pattern matching process (both for visual pat-
terns and in other domains) compares an external input with the
internal memory code for various patterns. ART matching leads
either to a resonant state, which persists long enough to permit
learning, or to a parallel memory search. If the search ends at an
established code, the memory representation may either remain the

same or incorporate new information from matched portions of the
current input. When the external world fails to match an ART net-
work’s expectations or predictions, a search process selects a new
category, representing a new hypothesis about what is important in
the present environment. LAMINAR CORTICAL ARCHITECTURE IN
VisuAaL PERCEPTION uses the LAMINART model (an extension of
ART) to propose functional roles for cortical layers in visual per-
ception. Neocortex has an intricate design that exhibits a charac-
teristic organization into six distinct cortical layers, but few models
have addressed the functional utility of the laminar organization
itself in the control of behavior. LAMINART integrates data about
visual perception and neuroscience for such processes as preatten-
tive grouping and attention. It is suggested that the functional roles
for cortical layers proposed here—binding together distributed cor-
tical data through a combination of bottom-up adaptive filtering
and horizontal associations, and modulating it with top-down
attention—generalize, with appropriate specializations, to other
forms of sensory and cognitive processing.

CORTICAL POPULATION DYNAMICS AND PSYCHOPHYSICS mod-
els cortical population dynamics to explain dynamical properties
of the primate visual system on different levels, reaching from sin-
gle neuron properties like selectivity for the orientation of a stim-
ulus up to higher cognitive functions related to the binding and
processing of stimulus features in psychophysical discrimination
experiments. On the other hand, SYNCHRONIZATION, BINDING AND
EXPECTANCY argues that the “binding” of cells that correspond to
a given visual object may exploit another dimension of cellular
firing, namely, the phase at which a cell fires within some overall
rhythm of firing. The article presents data consistent with the pro-
posal that the synchronization of responses on a time scale of mil-
liseconds provides an efficient mechanism for response selection
and binding of population responses. Synchronization also in-
creases the saliency of responses because it allows for effective
spatial summation in the population of neurons receiving conver-
gent input from synchronized input cells. VISUAL SCENE SEGMEN-
TATION tackles the segmentation of a visual scene into a set of
coherent patterns corresponding to objects. Objects appear in a nat-
ural scene as the grouping of similar sensory features and the seg-
regation of dissimilar ones. Studies in visual perception, in partic-
ular Gestalt psychology, have uncovered a number of principles
for perceptual organization, such as proximity, similarity, con-
nectedness, and relatedness in memory. Scene segmentation re-
quires neural networks to address the binding problem. The tem-
poral correlation approach is to encode the binding by the
correlation of temporal activities of feature-detecting cells. A spe-
cial form of temporal correlation is oscillatory correlation, where
the basic units are neural oscillators. The article first reviews non-
oscillatory approaches in scene segmentation, and then turns to
oscillatory approaches. The temporal correlation approach is fur-
ther developed in DYNAMIC LINK ARCHITECTURE, which views the
brain’s data structure as a graph composed of nodes connected by
links, where both units and links bear activity variables changing
on the rapid time scale of fractions of a second. The nodes play the
role of symbolic elements. Dynamic links constitute the glue by
which higher data structures are built up from more elementary
ones.

Beyond the basic issue of how the visual scene is segmented
(how visual elements are grouped) into possibly meaningful wholes
lies the question of determining for a region so determined its color,
motion, distance, shape, etc. These issues are addressed in the next
set of articles. COLOR PERCEPTION stresses that color is not a local
property inferred from the wavelength of light hitting a patch of
retina but is a property of regions of space that depends both on
the light they reflect and on the surrounding context. Our visual
system “recreates” the world in the form of boundaries that contain
surfaces, and color perception involves the perception of aspects
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of these surfaces. Matching surfaces with the same reflectance
properties in different parts of the visual scene or under different
illuminants are the two problems of color constancy. In addition,
wavelength signals can be used in the course of perceiving form
or motion independent of their role in the subjective experience of
color. DIRECTIONAL SELECTIVITY first reviews models of retinal
direction selectivity (which contributes to oculomotor responses
rather than motion perception). Older models depend on the way
in which amacrine and other cells of the retina are connected to the
ganglion cells, the retinal output cells. A newer model is based on
the directionality of synaptic interactions on the dendrites of ama-
crine cells, involving a spatial asymmetry in the inputs and outputs
of a dendrodendritic synapse, and its shunting inhibition. It is ar-
gued that development of this latter mechanism might involve Heb-
bian processes driven by spontaneous activity and light. Cortical
directional selectivity (which does contribute to motion perception
as well as the control of eye movements) involves many cortical
regions. Directionally sensitive cells in primary visual cortex (V1)
project to middle temporal cortex (MT) where directional selectiv-
ity becomes more complex, MT cells typically having larger re-
ceptive fields. From MT, the motion pathway projects to middle
superior temporal cortex. Cortical directional selectivity has been
modeled in three manners: as a spatially asymmetric excitatory
drive followed by multiplication or squaring, via a spatially asym-
metric nonlinear inhibitory drive, and through a spatially asym-
metric linear inhibitory drive followed by positive feedback. This
selectivity might involve Hebbian processes driven by spontaneous
activity and binocular interactions. The issues in this article have
some overlap with those presented in MOTION PERCEPTION: ELE-
MENTARY MECHANISMS, which emphasizes measurement of the
direction and speed of movement of features in the 2D image link-
ing successive views to infer optic flow, which is the pattern of
image velocities that is projected onto the retina. The article dis-
cusses the cortical correlates of these various representations. Mo-
TION PERCEPTION: NAVIGATION shows how, when an observer
moves through the world, the optic flow can inform him about his
own motion through space and about the 3D structure and motion
of objects in the scene. This information is essential for tasks such
as the visual guidance of locomotion through the environment and
the manipulation and recognition of objects. This article focuses
on the recovery of observer motion from optic flow. It includes
strategies for detecting moving objects and avoiding collisions, dis-
cusses how optic flow may be used to control actions, and describes
the neural mechanisms underlying heading perception. GLOBAL VI-
SUAL PATTERN EXTRACTION continues the study of neural mech-
anisms which mediate between the extraction of local edge and
contour information by orientation-selective simple cells in pri-
mary visual cortex (V1) and the high levels of cortical form vision
in inferior temporal cortex (IT), where many neurons are sensitive
to complex global patterns, including objects and faces. The ventral
form vision pathway includes at least areas V1, V2, V4, TEO, and
TE (the highest level of IT), raising the question of what processes
occur at these intervening stages to transform local V1 orientation
information into global pattern representations. Essentially the
same question may be posed in cortical motion processing along
the dorsal pathway comprising V1, V2, MT, MST, and higher pa-
rietal areas. V1 neurons extract only local motion vectors perpen-
dicular to moving edge segments, while MST neurons are sensitive
to complex optic flow patterns, including expansion. This article
suggests answers to these analogous questions about transitions
from local to global processing in both motion and form vision by
focusing on intermediate levels of these two pathways, mainly V4
and MST.

PERCEPTION OF THREE-DIMENSIONAL STRUCTURE reviews vari-
ous computational models for inferring an object’s 3D structure
from different types of optical information, such as shading, tex-

ture, motion, and stereo, and examines how the performance of
these models compares with the capabilities and limitations of hu-
man observers in judging different aspects of 3D structure under
varying viewing conditions. In particular, stereoscopic vision ex-
ploits the fact that points in a 3D scene will in general project to
different positions in the images formed in the left and right eyes.
The differences in these positions are termed disparities. The stereo
correspondence problem is to identify which points in a pair of
stereo images correspond to a single point in 3D space. Solving
this problem allows the stereo pair to be mapped into a single
representation, called a disparity map, that makes explicit the dis-
parities of various points common to both images, thus revealing
the distance of various visual elements from the observer. Depth
perception is then completed by determining depth values for all
points in the images. STEREO CORRESPONDENCE notes that various
constraints have been used to help determine which features on the
two eyes should be matched in inferring depth. These include com-
patibility of matching primitives, cohesivity, uniqueness, figural
continuity, and the ordering constraint. Various neural network
stereo correspondence algorithms are then reviewed, and the prob-
lems of surface discontinuities and uncorrelated points, and of
transparency, are addressed. The article also reviews neurophysi-
ological studies of disparity mechanisms.

A more abstract approach to the correspondence problem, from
the perspective of computer vision rather than psychology or neu-
rophysiology, is offered in TENSOR VOTING AND VISUAL SEGMEN-
TATION. In 3D, as we have seen, surfaces are inferred from bin-
ocular images by obtaining depth hypotheses for points and/or
edges. In image sequence analysis, the estimation of motion and
shape starts with local measurements of feature correspondences,
which gives noisy data for the subsequent computation of scene
information. Hence, any salient structure estimator must be able to
handle the presence of multiple structures and their interaction in
the presence of noisy data. This article analyzes approaches to ad-
dress early to midlevel vision problems, emphasizing the tensor
voting methodology for the robust inference of multiple salient
structures such as junctions, curves, regions, and surfaces from any
combination of points, curve elements, and surface patch element
inputs in 2D and 3D. The article describes two regularization for-
malisms, one that imposes certain physical constraints so that the
search space can be constrained and algorithmically tractable, and
another using a Bayesian formalism to transform an ill-posed prob-
lem into one of functional optimization.

PROBABILISTIC REGULARIZATION METHODS FOR LOWwW-LEVEL
VISION offers regularization theory (cf. “Generalization and Reg-
ularization in Nonlinear Learning Systems”) as a general mathe-
matical framework to deal with the fact that the problem of infer-
ring 3D structure from 2D images is ill-posed: there are many
spatial configurations compatible with a given 2D image or set
(motion sequence, stereo pair, etc.) of images. The issue then be-
comes to find which spatial configuration is most probable. We
have already seen a number of constraints associated with stereo
vision. Deterministic regularization theory defines a “cost func-
tion,” which combines a measure of how close a spatial configu-
ration comes to yielding the given image (set) with a measure of
the extent to which the configuration violates the constraints, and
then seeks that configuration which minimizes this cost. The pres-
ent article emphasizes a more general probabilistic approach in
which the “actual” field f and the observed field g are considered
as realizations of random fields, with the reconstruction of f un-
derstood as an estimation problem. MARKOV RANDOM FIELD MoOD-
ELS IN IMAGE PROCESSING views the task of image modeling as
being one of finding an adequate representation of the intensity
distribution of a given image. What is adequate often depends on
the task at hand. The general properties of the local spatiotemporal
structure of images or image sequences are characterized by a Mar-
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kov random field (MRF) in which the probability distribution for
the image intensity and a further set of other attributes (edges,
texture, and region labels) at a particular location are conditioned
on values in a neighborhood of pixels (picture elements or image
points). The observed quantities are usually noisy, blurred images.
The article presents five steps of MRF image modeling within
a Bayesian estimation/inference paradigm, and provides a number
of examples. Particular attention is paid to maximum a posteriori
(MAP) estimates. MRF image models have proved versatile
enough to be applied to image and texture synthesis, image resto-
ration, flow field segmentation, and surface reconstruction.
KALMAN FILTERING: NEURAL IMPLICATIONS introduces Kalman
filtering, which, under linear and Gaussian conditions, produces a
recursive estimate of the hidden state of a dynamic system, i.e.,
one that is updated with each subsequent (noisy) measurement of
the observed system. The article shows how Kalman filtering pro-
vides insight into visual recognition and the role of the cerebellum
in motor control. In particular, it presents a hierarchically organized
neural network for visual recognition, with each intermediate level
of the hierarchy receiving two kinds of information: bottom-up
information from the preceding level, and top-down information
from the higher level. For its implementation, the model uses a
multiscale estimation algorithm that may be viewed as a hierar-
chical form of the extended Kalman filter that is used to simulta-
neously learn the feedforward, feedback, and prediction parameters
of the model on the basis of visual experiences in a dynamic en-
vironment. The resulting adaptive process involves a fast dynamic
state-estimation process that allows the dynamic model to antici-
pate incoming stimuli, as well as a slow Hebbian learning process
that provides for synaptic weight adjustments in the model.
IMAGING THE VISUAL BRAIN addresses functional brain imaging
of visual processes, with emphasis on limits in spatial and temporal
resolution, constraints on subject participation, and trade-offs in
experimental design. The articles focuses on retinotopy, visual mo-
tion perception and visual object representation, and voluntary
modulation of attention and visual imagery, emphasizing some of
the areas where modeling and brain theory might be testable using
current imaging tools. VISUAL ATTENTION offers data and hypoth-
eses for cortical mechanisms to overtly and covertly shift attention
(i.e., with and without eye movements). Attention guides where to
look next based on both bottom-up (image-based) and top-down
(task-dependent) cues—and indeed, the anatomy of the visual sys-
tem includes extensive feedback connections from later stages and
horizontal connections within each layer. Vision appears to rely on
sophisticated interactions between coarse, massively parallel, full-
field preattentive analysis systems and the more detailed, circum-
scribed, and sequential attentional analysis system. The articles
focus on the brain area involved in visual attention and then ana-
lyzes a variety of relevant mechanisms. Yet, having stressed the
way in which we normally take a number of shifts of attention to
fully take in the details of a visual scene, it is intriguing to learn
how much can be absorbed in a single fixation. FAST VISUAL Pro-
CESSING notes that much information can be extracted from briefly
glimpsed scenes, even at presentation rates of around 10 frames/s,
a technique known as rapid sequential visual presentation (RSVP).
Since interspike intervals for neurons are seldom shorter than 5 ms,
the underlying algorithms should involve no more than about 20
sequential, though massively parallel, steps. There is an important
distinction in neural computation between feedforward processing
models and those with recurrent connections that allow feedback
and iterative processing. Pure feedforward models (e.g., multilayer
perceptrons, MLPs) can operate very quickly in parallel hardware.
The article argues that even in systems that use extensive recurrent
connections, the fastest behavioral responses may essentially de-
pend on a single feedforward processing wave. It looks at how
detailed measurements of processing speed can be combined with

anatomical and physiological constraints to constrain models of
how the brain performs such computations.

There is a vast literature on pattern recognition in neural net-
works (see, for example, “Pattern Recognition” and “Concept
Learning”). Here we discuss articles on face recognition and object
recognition. The recognition of other individuals, and in particular
the recognition of faces, is a major prerequisite for human social
interaction and indeed has been shown to employ specific brain
mechanisms. The ability to recognize people from their faces is
part of a spectrum of related skills that include face segmentation
(i.e., finding faces in a scene or image) and estimation of the pose,
direction of gaze, and the person’s emotional state. FACE RECOG-
NITION: NEUROPHYSIOLOGY AND NEURAL TECHNOLOGY starts with
a review of relevant neurophysiology. Brain injury can lead to pro-
sopagnosia, the loss of ability to recognize individual faces, while
leaving intact the ability to recognize general objects. Single-unit
recordings in the IT cortex of macaque monkeys have revealed
neurons with a high responsiveness to the presence of a face, an
individual, or the expression on the face, and neural models for
face recognition are reviewed in relation to such data. The article
then focuses on computational theories that are inspired by neural
ideas (see DYNAMIC LINK ARCHITECTURE; GABOR WAVELETS AND
STATISTICAL PATTERN RECOGNITION) but that find their justifica-
tion in the construction of successful computer systems for the
recognition of human faces even when the gallery of possible faces
is very large indeed. FACE RECOGNITION: PSYCHOLOGY AND CON-
NECTIONISM provides a brief history of connectionist approaches
to face recognition and surveys the broad range of tasks to which
these models have been applied. The article relates the models to
psychological theories for the subtasks of representing faces and
retrieving them from memory, comparing human and model per-
formance along these dimensions.

OBJECT RECOGNITION focuses on models of viewpoint-invariant
object recognition that are constrained by psychological data on
human object recognition. It present three main approaches to ob-
ject recognition—invariant based, model based, and appearance
based—and analyzes the strengths of each of these in a framework
of decision complexity, noting the trade-off between representa-
tions that emphasize invariance and those designed for discrimi-
nability. The analysis shows that it is unlikely for a single form of
representation to satisfy all kinds of object recognition tasks a hu-
man or other visual animal may encounter. The article thus argues
that a key ingredient in a comprehensive brain theory for object
recognition is a computational framework that allows on-demand
selection or adaptation of representations based on the current task
and proposes a simple “first past the post” scheme (a temporal
winner-take-all scheme) for self-selecting the most appropriate
level of abstraction, given a finite set of available representations
along a visual processing pathway.

OBJECT STRUCTURE, VISUAL PROCESSING emphasizes structure-
processing tasks that call for separate treatment of various frag-
ments of the visual stimulus, each of which spans only a fraction
of the visual extent of the object or scene under consideration.
Examples of structural tasks include recognition of part-part sim-
ilarities, and identifying a region in an object toward which an
action can be directed. After discussing object form processing in
computer vision and relevant neurophysiological data on primate
vision, the article focuses on two neuromorphic models of visual
structure processing. The JIM model implements a recognition-by-
components scenario based on geons (“‘geometrical elements,”
which are generalized cylinders formed by moving a cross-section
along a possibly curved axis). The Chorus of Fragments model
exploits both the “what” and the “where” streams of visual cortex
to recognize fragments no matter what their position, but then uses
their approximate spatial relationships to see whether they together
form cues for the recognition of an object. In particular, then, it
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avoids the binding problem of explicitly linking neural activity
related to a specific object as a prerequisite to analysis of that ob-
ject’s characteristics. (By contrast, SYNCHRONIZATION, BINDING
AND EXPECTANCY argues that the brain does solve the binding
problem, and does so by synchronization of neural firing for those
neurons related to a single object.)

OBJECT RECOGNITION, NEUROPHYSIOLOGY reviews some theo-
retical approaches to object recognition in the context of mainly
neurophysiological evidence. It also considers briefly the analysis
of visual scenes. Scene analysis is relevant to object recognition
because scenes may themselves be recognized initially at a holistic,
object-like level, providing a context or “gist” that influences the
speed and accuracy of recognition of the constituent objects. The
article proposes that object recognition is based on a distributed,
view-based representation in which objects are recognized on the
basis of multiple, 2D-feature-selective neurons. Specialist cells ap-
pear to play a role in associating such feature combinations into
certain nontrivial image transformations, coding for a certain per-
centage of all stimuli in a largely view-invariant manner. The article
offers evidence that a convergent hierarchy is used to build invar-
iant representations over several stages, and that at each stage lat-
eral competitive processes are at work between the neurons. It is
argued that the association of views of objects observed over the
course of time could play a key role in building up object repre-
sentations. The review focuses mainly on the “what” stream of IT
cortex, seen as the center of object recognition. VISUAL SCENE
PERCEPTION also brings in the “where/how” stream of parietal cor-
tex as it analyzes how mechanisms that integrate schemas for rec-
ognition of different objects into the perception of some overall
scene may be linked to the distributed planning of action. It also
presents recent neurophysiology suggesting how the context of a
natural scene may modify the response properties of neurons re-
sponsive to visual features. The article compares three ap-
proaches—the slide-box metaphor, short-term memory in the VI-
SIONS system, and the visuospatial scratchpad—for creating a
theory of how the visual perception of objects may be integrated
with the perception of spatial layout. The first two stress a schema-
theoretic approach, while the latter is strongly tied to visual neu-
rophysiology and modeling in terms of quasi-neural attractor net-
works. The aim is to open the way to future research that will
embed the study of visual scene perception in an action-oriented
integration of IT and parietal visual systems.

Other Sensory Systems

AUDITORY CORTEX

AUDITORY PERIPHERY AND COCHLEAR NUCLEUS
AUDITORY SCENE ANALYSIS

ECHOLOCATION: COCHLEOTOPIC AND COMPUTATIONAL MAPS
ELECTROLOCATION

OLFACTORY BULB

OLFACTORY CORTEX

PAIN NETWORKS

PROSTHETICS, SENSORY SYSTEMS

SENSOR FUSION

SOMATOSENSORY SYSTEM

SOMATOTOPY: PLASTICITY OF SENSORY MAPS
SOUND LOCALIZATION AND BINAURAL PROCESSING

Here we analyze sensory systems other than vision—e.g., touch,
audition, and pain. Moreover, when one sense cannot provide all
the necessary information, complementary observations may be
provided by another sense. For example, touch complements vision
in placing a peg in a hole when the effector occludes the agent’s
view. Also, senses may offer competing observations, such as the
competition between vision and the vestibular system in maintain-

ing balance (and its occasional side effect of seasickness). Another
type of interplay between the senses is the use of information ex-
tracted by one sense to focus the attention of another sense, coor-
dinating the two, as in audition cueing vision. SENSOR FUSION ex-
plores a number of ways sensory information is brought together
in the brains of diverse animals (snakes, cats, monkeys, humans)
and surveys biologically inspired technological implementations
(such as the use of infrared to enhance vision). (See also “Collicular
Visuomotor Transformations for Gaze Control” for an important
example of sensor fusion—the transformation of auditory and so-
matosensory cues into a visual map for the control of rapid eye
movements.)

The road map Mammalian Brain Regions introduced a number
of regions linked to sensory systems other than vision, but we will
now meet a number of related and additional topics as well. So-
MATOSENSORY SYSTEM shows how the somatosensory system
changes the tactile stimulus representation from a form more or
less isomorphic to the stimulus to a completely distributed form in
a series of partial transformations in successive subcortical and
cortical networks. It further argues that the causal factors involved
in body/object interactions are explicitly represented by an internal
model in the pyramidal cells of somatosensory cortex that is crucial
for haptic perception of proximal surroundings and for control of
object manipulation. Somatotopy, a dominant feature of subdivi-
sions of the somatosensory system, is defined by a topographic
representation, or map, in the brain of sensory receptors on the body
surface. SOMATOTOPY: PLASTICITY OF SENSORY MAPS shows that
these orderly representations of cutaneous receptors in the spinal
cord, lower brainstem, thalamus, and neocortex represent both the
peripheral distribution of receptors and dynamic aspects of brain
function. The article reviews evidence for somatosensory plasticity
involving cortical reorganization after peripheral injury and as a
result of training. The article analyzes the features of somatotopic
maps that change, the contribution of subcortical changes to cor-
tical plasticity, the mechanisms involved, and the functional con-
sequences of sensory map changes. An important issue is the re-
lation between the plasticity of the sensory and motor systems.

PAIN NETWORKS adds a new dimension to bodily sensation. The
pain system encodes information on the intensity, location, and
dynamics of tissue-threatening stimuli but differs from other sen-
sory systems in its “emotional-motivational” factors (see also “Mo-
tivation”). In the pain system, these factors strongly modulate the
relation between stimulus and felt response. At one extreme is al-
lodynia, a state in which the slightest touch with a cotton wisp is
agonizing. People display wide individual and trial-to-trial vari-
ability in the amount of pain reported following administration of
calibrated noxious stimuli; pain sensation is subject to ongoing
modulation by a complex of extrinsic (stimulus-generated) and in-
trinsic (CNS-generated) state variables. The article spells out how
these act in the CNS as well as the periphery.

AUDITORY PERIPHERY AND COCHLEAR NUCLEUS spells out how
the auditory periphery parcels out acoustic stimulus across hun-
dreds of nerve fibers, and how the cochlear nucleus continues this
process by creating multiple representations of the original acoustic
stimulus. The article emphasizes monaural signal processing,
whereas SOUND LOCALIZATION AND BINAURAL PROCESSING
shows how information from the two ears is brought together. The
article focuses on the use of interaural time difference (ITD) as one
way to estimate the azimuthal angle of a sound source. It describes
one biological model (ITD detection in the barn owl’s brainstem)
and two psychological models. The underlying idea is that the brain
attempts to match the sounds in the two ears by shifting one sound
relative to the other, with the shift that produces the best match
assumed to be the one that just balances the “real” ITD. AUDITORY
CORTEX stresses the crucial role that auditory cortex plays in the
perception and localization of complex sounds, examining auditory
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tasks vital for all mammals, such as sound localization, timbre rec-
ognition, and pitch perception. AUDITORY SCENE ANALYSIS dis-
cusses how the auditory system parses the acoustic mixture that
reaches the ears of an animal to segregate a targeted sound source
from the background of other sounds. The first stage, segmentation,
decomposes the acoustic mixture into its constituent components.
In the second stage, acoustic components that are likely to have
arisen from the same environmental event are grouped, forming a
perceptual representation (stream) that describes a single sound
source. At the physiological level, segmentation corresponds (at
least in part) to peripheral auditory processing, which performs a
frequency analysis of the acoustic input, whereas the physiological
substrate of auditory grouping is much less well understood. The
article focuses on models that are at least physiologically plausible,
while noting that other models of auditory scene analysis adopt a
more abstract information processing perspective.

ECHOLOCATION: COCHLEOTOPIC AND COMPUTATIONAL MAPS
provides us with a more detailed understanding of the auditory
system in a very special class of mammals, the bats. Mustached
bats emit echolocation (ultrasonic) pulses for navigation and for
hunting flying insects. On the basis of the echo, prey must be de-
tected and distinguished from the background clutter of vegetation,
characterized as appropriate for consumption, and localized in
space for orientation and prey capture. The bats emit ultrasonic
pulses that consist of a long constant-frequency component fol-
lowed by a short frequency-modulated component. Each pulse-
echo combination provides a discrete sample of the continuously
changing auditory scene. The auditory network contains two key
design features: neurons that are sensitive to combinations of pulse
and echo components, and computational maps that represent sys-
tematic changes in echo parameters to extract the relevant
information.

Electrolocation is another sense that helps the animal locate
itself in its world, but this time the animals are electric fishes
rather than bats, and the signals are electrical rather than auditory.
ELECTROLOCATION relates its topic to the general issue of mech-
anisms that facilitate the processing of relevant signals while re-
jecting noise, and of attentional processes that select which stimuli
are to be attended to. Weakly electric fish generate an electrical
field around their body and measure this field via electroreceptors
embedded in the skin to “electrolocate” animate or inanimate tar-
gets in the environment. The article emphasizes a widespread but
poorly understood characteristic of sensory processing circuits,
namely, the presence of massive descending or feedback connec-
tions by which higher centers presumably modulate the operation
of lower centers. Not only are response gain and receptive field
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Robotics and Control Theory

ARM AND HAND MOVEMENT CONTROL
BI10LOGICALLY INSPIRED ROBOTICS
IDENTIFICATION AND CONTROL

MoOTOR CONTROL, BIOLOGICAL AND THEORETICAL
POTENTIAL FIELDS AND NEURAL NETWORKS
Q-LEARNING FOR ROBOTS

REACTIVE ROBOTIC SYSTEMS

REINFORCEMENT LEARNING IN MOTOR CONTROL
RoBOT ARM CONTROL

ROBOT LEARNING

organization controlled by these descending connections, but there
are adaptive filtering mechanisms that can reject stimuli that oth-
erwise might mask critical functions. This use of stored sensory
expectations for the cancellation or perhaps the identification of
specific input patterns may yield insights into diverse neural cir-
cuits, including the cochlear nuclei and the cerebellum, in other
species.

Two articles introduce data and models for the olfactory system
(see also the road map Mammalian Brain Regions). OLFACTORY
BuLB describes the special circuitry involved in basic preprocess-
ing, while OLFACTORY CORTEX presents a dynamical systems anal-
ysis of further olfactory processing. The olfactory bulb receives
input from the sensory neurons in the olfactory epithelium and
sends its outputs to the olfactory cortex, among other brain regions.
The bulb was one of the first regions of the brain for which com-
partmental models of neurons were constructed, which led to some
of the first computational models of functional microcircuits. OL-
FACTORY BULB gives an overview of olfactory bulb cells and cir-
cuits, current ideas about the computational functions of the bulb,
and modeling studies to investigate these functions. The olfactory
cortex is defined as the region of the cerebral cortex that receives
direct connections from the olfactory bulb. It is the earliest cortical
region to differentiate in the evolution of the vertebrate forebrain
and the only region within the forebrain to receive direct sensory
input. Moreover, the olfactory cortex has the simplest organization
among the main types of cerebral cortex. OLFACTORY CORTEX thus
views it as a model for understanding basic principles underlying
cortical organization.

Finally, a very different view of sensory systems is provided by
PROSTHETICS, SENSORY SYSTEMS, which discusses how informa-
tion collected by electronic sensors may be delivered directly to
the nervous system by electrical stimulation. After assessing the
amenability of all sensory modalities (hearing, vision, touch, pro-
prioception, balance, smell, and taste), the article focuses on au-
ditory and visual prostheses. The great success story has been with
cochlear implants. Here the article reviews improved temporospa-
tial representations of speech sounds, combined electrical and
acoustic stimulation in patients with residual hearing, and psycho-
physical correlates of performance variability. Since a prosthesis
does not necessarily match natural neural encoding of a stimulus,
the success of the prosthesis depends in part on the plasticity of the
human brain as it remaps to accommodate this new class of signals.
For example, the success of cochlear implants rests in part on the
ability of auditory cortex to remap itself in a similar fashion to the
remapping of somatosensory cortex described in SOMATOTOPY:
PLASTICITY OF SENSORY MAPS.

ROBOT NAVIGATION
SENSORIMOTOR LEARNING

As noted in the “Historical Fragment” section of Part I, the inter-
change between biology and technology that characterizes the
study of neural networks is an outgrowth of work in cybernetics in
the 1940s. One of the keys to cybernetics was control (the other
was communication of the kind studied in information theory). It
is thus appropriate that control theory should have become a major
application area for neural networks as well as being a key concept
of brain theory. The objective of control is to influence the behavior
of a dynamical system in some desired fashion. The latter includes
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maintaining the outputs of systems at constant values (regulation)
or forcing them to follow prescribed time functions (tracking).
Maintaining the altitude of an aircraft or the glucose level in the
blood at constant values are examples of regulation; controlling a
rocket to follow a given trajectory is an example of tracking. Mo-
TOR CONTROL, BIOLOGICAL AND THEORETICAL sets forth the basic
cybernetic concepts. A motor control system acts by sending motor
commands to a controlled object, often referred to as “the plant,”
which in turn acts on the local environment. The plant or the en-
vironment has one or more variables which the controller attempts
to regulate. If the controller bases its actions on signals which are
not affected by the plant output, it is said to be a feedforward
controller. If the controller bases its actions on a comparison be-
tween desired behavior and the controlled variables, it is a feedback
controller. “Motor Pattern Generation” provides a related perspec-
tive (see the road map Motor Pattern Generators).

The major advantage of negative feedback control, in which the
controller seeks constantly to cancel the feedback error, is that it
is a very simple, robust strategy that operates well without exact
knowledge of the controlled object, and despite internal or external
disturbances. The advantage of feedforward control is that it can,
in the ideal case, give perfect performance with no error between
the reference and the controlled variable. The main disadvantages
are the practical difficulties in developing an accurate controller,
and the lack of corrections for unexpected disturbances. IDENTIFI-
CATION AND CONTROL explores the major strategy for developing
an accurate controller, namely to “identify” the plant as belonging
to (or more precisely, being well approximated by) a system ob-
tained from a general family of systems by setting a key set of
parameters (e.g., the coefficients in the matrices of a linear system).
By coupling a controller to an identification procedure, one obtains
an adaptive controller that can handle an unknown plant even if its
dynamics are (slowly) changing. In both biology and many tech-
nological applications, nonlinearities and uncertainties play a major
role, and linear approximations are not satisfactory. The article
presents research using neural networks to handle these nonlinear-
ities and examines the theoretical assumptions that have to be made
when such networks are used as identifiers and controllers.

REINFORCEMENT LEARNING IN MOTOR CONTROL recalls the
general theory introduced in “Reinforcement Learning” and pro-
ceeds to note its utility in motor control. Many motor skills are
attained in the absence of explicit feedback about muscle contrac-
tions or joint angles. In contrast to supervised learning, such learn-
ing depends on “reinforcement” (or evaluative feedback; it need
not involve pleasure or pain), which tells the learner whether or
not, and possibly by how much, its behavior has improved, or pro-
vides an indication of success or failure. Instead of trying to match
a standard of correctness, a reinforcement learning system tries to
maximize the goodness of behavior as indicated by evaluative feed-
back. To do this, it has to actively try alternatives, compare the
resulting evaluations, and use some kind of selection mechanism
to guide behavior toward the better alternatives. Q-LEARNING FOR
RoOBOTS applies reinforcement learning techniques to robot control.
Q-learning does not require a model of the robot-world interaction,
and it uses learning examples in the form of triplets (situation,
action, Q-value), where the Q-value is the utility of executing the
action in the situation. Q-learning involves three different func-
tions, evaluation, memorization, and updating. Heuristically
adapted Q-learning has proved successful in applications such as
obstacle avoidance, wall following, go-to-the-nest, etc., using
neural-based implementations such as multilayer perceptrons
trained with backpropagation, or self-organizing maps.

SENSORIMOTOR LEARNING explains how neural nets can acquire
“models” of some desired sensorimotor transformation. A forward
model is a representation of the transformation from motor com-
mands to movements, in other words, a model of the controlled

object. An inverse model is a representation of the transformation
from desired movements to motor commands, and so can be used
as the controller for the controlled object. The managing of multiple
models, each with their own range of applicability in given tasks,
is given special attention. ROBOT LEARNING focuses on learning
robot control, the process of acquiring a sensorimotor control strat-
egy for a particular movement task and movement system. The
article offers a formal framework within which to discuss robot
learning in terms of the different methods that have been suggested
for the learning of control policies, such as learning the control
policy directly, learning the control policy in a modular way, in-
direct learning of control policies, imitation learning, and learning
of motor control components. The article also reviews specific
function approximation problems in robot learning, including neu-
ral network approaches. ROBOT ARM CONTROL addresses related
issues concerning the availability of precise mappings from physi-
cal space or sensor space to joint space or motor space. Robot arm
controllers are usually hierarchically structured from the lowest
level of servomotors to the highest levels of trajectory generation
and task supervision. In each case an actual motion is made to
follow as closely as possible a commanded motion through the use
of feedback. The difference lies in the coordinate systems used at
each level. At least four coordinate spaces can be distinguished:
the task space (used to specify tasks, possibly in terms of sensor
readings), the workspace (6D Cartesian coordinates defining a po-
sition and orientation of the end-effector), the joint space (intrinsic
coordinates determining a robot configuration), and the actuator
space (in which actual motions are commanded). Correlational pro-
cedures carry out feature discovery or clustering and are often used
to represent a given state space in a compact and topology-
preserving manner, using procedures such as those described in
“Self-Organizing Feature Maps.” Error-minimization procedures
require explicit data on input-output pairs; their goal is to build a
mapping from inputs to outputs that generalizes adequately using,
e.g., the least-mean-squares (LMS) rule and backpropagation. In
between both extremes lie procedures that use reinforcement learn-
ing to build a mapping that maximizes reward. ARM AND HAND
MOVEMENT CONTROL discusses some of the most prominent reg-
ularities of arm and hand control, and examines computational and
neural network models designed to explain them. The analysis re-
veals an interesting competition between explanations sought on
the neural, biomechanical, perceptual, and computational levels
that has created its share of controversy. Whereas some topics, such
as internal model control, have gained solid grounding, the impor-
tance of the dynamic properties of the musculoskeletal system in
facilitating motor control, the role of real-time perceptual modu-
lation of motor control, and the balance between dynamical systems
models versus optimal control-based models are still seen as of-
fering many open questions.

BIOLOGICALLY INSPIRED ROBOTICS describes how modern ro-
botics may learn from the way organisms are constructed biologi-
cally and how this creates adaptive behaviors. (I cannot resist not-
ing here the acronym introduced by R. I. Damper, R. L. B. French,
and T. W. Scutt, 2000, ARBIB: An Autonomous Robot Based on
Inspiration from Biology, Robotics and Autonomous Systems,
31:247-274.) Research on autonomous robots based on inspiration
from biology ranges from modeling animal sensors in hardware to
guiding robots in target environments to investigating the interac-
tion between neural learning and evolution in a variety of robot
tasks. After reviewing the historical roots of the subject, the article
provides a general introduction to biologically inspired robotics,
with special emphasis on the ideas that the robot is situated in the
world and that many complex behaviors are emergent properties
of the collective effects of linking a variety of simple behaviors.
REACTIVE ROBOTIC SYSTEMS provides a conceptual framework for
robotics that is rooted in “Schema Theory” (q.v.) rather than sym-
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bolic Al Here, robot behavior is controlled by the activation of a
collection of low-level primitive behaviors (schemas), and complex
behavior emerges through the interaction of these schemas and the
complexities of the environment in which the robot finds itself.
This work was inspired in part by studies of animal behavior (see,
e.g., “Neuroethology, Computational” and related articles dis-
cussed in the road maps on Motor Pattern Generators and Neu-
roethology and Evolution). However, the article not only shows
the power of reactive robots in many applications, it also notes the
utility of hybrid systems capable of using deliberative reasoning as
well as reactive execution (which fits with an evolutionary view of
the human brain in which reactive systems handle many functions
but can be overruled or orchestrated by, e.g., the deliberative ac-
tivities of prefrontal cortex).

ROBOT NAVIGATION examines how to get a mobile robot to
move to its destination efficiently (e.g., along short trajectories)
and safely (i.e., without colliding). If a target location is either
visible or identified by a landmark (or sequence of landmarks), a
simple stimulus-response strategy can be adopted. However, if tar-
gets are not visible, the robot needs a model (or map) of the en-
vironment encoding the spatial relationships between its present
and desired locations. Sensor uncertainty, together with the inac-
curacy of the robot’s actuators and the unpredictability of real en-
vironments, makes the design of mobile robot controllers a difficult
task. It has thus proved desirable to endow robots with learning
capabilities in order to acquire autonomously their control system
and to adapt their behavior to never experienced situations. The
article thus reviews neural approaches to localization, map build-
ing, and navigation. More specifically, POTENTIAL FIELDS AND
NEURAL NETWORKS examines biological findings on the use of
potential fields (which represent, e.g., the force field that drives the
motor output of an animal or part of an animal, such as a limb) to
characterize the control and learning of motor primitives. The no-
tion of potential fields has also been used to model externally in-
duced constraints as well as internally constructed sensorimotor
maps for robot motion control. A robot can reach a stable config-
uration in its environment by following the negative gradient of its
potential field. In this case, the configurations reached will be lo-
cally stable but may not be optimal with respect to some behavioral
criterion. This deficit can be overcome either by incorporating a
global motion planner or by using a harmonic function that does
not contain any local minima. The article further indicates how
potential field-based motion control can benefit from the use of
ANN-based learning. There are links here to the more biological
concerns of the articles “Cognitive Maps,” “Hippocampus: Spatial
Models,” and “Motor Primitives.”

Motor Pattern Generators

CHAINS OF OSCILLATORS IN MOTOR AND SENSORY SYSTEMS

CoMMAND NEURONS AND COMMAND SYSTEMS

CRUSTACEAN STOMATOGASTRIC SYSTEM

GAIT TRANSITIONS

HALF-CENTER OSCILLATORS UNDERLYING RHYTHMIC
MOVEMENTS

LOCOMOTION, INVERTEBRATE

LOCOMOTION, VERTEBRATE

LocusT FLIGHT: COMPONENTS AND MECHANISMS IN THE MOTOR

MOTOR PATTERN GENERATION

MOTOR PRIMITIVES

RESPIRATORY RHYTHM GENERATION

SCRATCH REFLEX

SENSORIMOTOR INTERACTIONS AND CENTRAL PATTERN
GENERATORS

SPINAL CORD OF LAMPREY: GENERATION OF LOCOMOTOR
PATTERNS

MOTOR PATTERN GENERATION provides an overview of the basic
building blocks of behavior (see “Motor Control, Biological and
Theoretical” for more general background) to be expanded upon in
many of the following articles. The emphasis is on rhythmic be-
haviors (such as flight or locomotion), but a variety of “one-off”
motor patterns (as typified in a frog snapping at its prey) are also
studied. The crucial notion is that a central pattern generator (CPG),
an autonomous neural circuit, can yield a good “sketch” of a move-
ment, but that the full motor pattern generator (MPG) augments
the CPG with sensory input which can adjust the motor pattern to
changing circumstances (e.g., the pattern of locomotion varies
when going uphill rather than on level terrain, or when the animal
carries a heavy load). SENSORIMOTOR INTERACTIONS AND CEN-
TRAL PATTERN GENERATORS discusses both the impact of sensory
information on CPGs and the influence of motor systems on sen-
sory activity. It stresses that interaction between motor and sensory
systems is pervasive, from the first steps of sensory detection to
the highest levels of processing, emphasizing that descending mo-
tor commands are only acted upon by spinal circuits when these
circuits integrate their intrinsic activity with all incoming
information.

CoMMAND NEURONS AND COMMAND SYSTEMS analyzes the ex-
tent to which an MPG may be activated alone or in concert with
others through perceptual stimuli mediated by a single “command
neuron” or by more diffuse “command systems.” Command func-
tions provide the sensorimotor interface between sensory pattern
recognition and localization, on the one side, and motor pattern
generation on the other. For example, if a certain interneuron is
stimulated electrically in the brain of a marine slug, the animal then
displays a species-specific escape swimming behavior, although no
predator is present. If in a toad a certain brain area of the optic
tectum is stimulated in this manner, snapping behavior is triggered,
although no prey is present. In both cases, a stimulus produces a
rapid ballistic response.

MoTOR PRIMITIVES and SCRATCH REFLEX look at two behaviors
(the former studied in frogs, the latter primarily in turtles) elicited
by an irritant applied to the animal’s skin. In each case, the position
at which the limb is aimed varies with the position of the irritant;
there is somatotopic (i.e., based on place on the body) control of
the reflex. In both frog and turtle, and thus more generally, spinal
cord neural networks can by themselves generate complex senso-
rimotor transformations even when disconnected from supraspinal
structures. Moreover, each reflex has different “modes.” To under-
stand this, just think of scratching your lower back. As the scratch
site moves higher, the positioning of the limb changes continuously
with the position of the irritant until the irritant moves up so much
that you make a discontinuous switch to the “over-the-shoulder”
mode of back-scratching. The mode changes in these two articles
may be compared to the GAIT TRANSITIONS (q.v.), discussed below.
In any case, we see here two important issues: how is an appropriate
pattern of action chosen, and how is the chosen pattern parameter-
ized on the basis of sensory input? MOTOR PRIMITIVES advances
the idea that CPGs construct spinal motor acts by recruiting a few
motor primitives from a set encoded in the spinal cord. The best
evidence comes from examination of wiping movements and mi-
crostimulation of frog spinal cord, where movements are con-
structed as a sequencing and combination of a collection of force-
field motor primitives or fundamental elements. “Visuomotor
Coordination in Frog and Toad” discusses how the frog’s motor
acts may be assembled on the basis of visual input.

With this, we switch to articles in which the emphasis is on
rhythmic behavior, with rather little concern for the spatial structure
of the movement (for example, the discussion of locomotion will
focus on coordinating the rhythms of the legs when the animal
progresses straight ahead, rather than on how these rhythms are
modified when the animal traverses uneven terrain or turns to avoid
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an obstacle). CRUSTACEAN STOMATOGASTRIC SYSTEM analyzes
specific circuits of identified neurons controlling the chewing (by
teeth inside the stomach) behavior of crustaceans. Of particular
interest is the finding that neuropeptides (see “Neuromodulation in
Invertebrate Nervous Systems”) can change the properties of cells
and the strengths of connections so that, e.g., a cell can become a
pacemaker or a previously ineffective connection can come to exert
a strong influence, and with this a network can dramatically change
its overall behavior. Thus, the change of “mode” may be under the
control of an explicit chemical “switch” of underlying cellular
properties. Of course, in some systems, different input patterns of
excitation and inhibition may enable a given circuit to act in one
of several modes; while in other cases the change of mode may
involve the transfer of control from one neural circuit to another.
LocoMOTION, INVERTEBRATE focuses on invertebrate locomotion
systems for which quantitative modeling has been done, reviewing
computer models of swimming, flying, crawling, and walking, pay-
ing special attention to the interaction of neural networks with the
biomechanical systems they control. The article also reviews the
use of biologically inspired locomotion controllers in robotics,
stressing their distributed nature, their robustness, and their com-
putational efficiency. Conversely, robots can serve as an important
new modeling methodology for testing biological hypotheses. Lo-
CUST FLIGHT: COMPONENTS AND MECHANISMS IN THE MOTOR nar-
rows the focus to one specific invertebrate motor system. The ar-
ticle emphasizes the interactions of the intrinsic properties of flight
neurons, the operation of complex circuits, and phase-specific pro-
prioceptive input, all subject to the concentrations of circulating
neuromodulators. Locust flight can adapt to the demands of a con-
stantly changing sensory environment, and the flight system is flex-
ible and able to operate despite severe ablations and then to recover
from these lesions.

HALF-CENTER OSCILLATORS UNDERLYING RHYTHMIC MOVE-
MENTS looks at a set of minimal circuits for generating rhythmic
behavior, starting with the half-center oscillator model first pro-
posed to account for the observation that spinal cats (i.e., cats in
which connections between brain and spinal cord had been severed)
could produce stepping movements even when all sensory feedback
from the animal’s motion was eliminated. The article shows the
utility of models of this type in analyzing rhythms in invertebrates
as well as vertebrates—the pelagic mollusk Clione, tadpoles, and
lampreys—in terms of the intrinsic membrane properties of the
component neurons interacting with reciprocal inhibition to initiate
and sustain oscillation in these networks. SPINAL CORD OF LAM-
PREY: GENERATION OF LOCOMOTOR PATTERNS marks an important
transition: from seeing how one network can oscillate to seeing
how the oscillation of a series of networks can be coordinated.
Experiments show that neural circuitry in isolated pieces of the
spinal cord of lamprey (a jawless, primitive type of fish) can exhibit
oscillations, and when these pieces constitute an intact spinal cord,
they all oscillate with the same frequency but form a “traveling
wave” with a phase relationship that in the complete fish would
yield a wave of bending progressing down the fish from head to
tail to yield the coordinated “wiggling” that yields swimming. The
article reviews the interaction between experimentation and mod-
eling stimulated by such findings. RESPIRATORY RHYTHM GEN-
ERATION presents several alternative models of breathing and eval-
uates them against mammalian data. These data point to the
importance both of endogenous bursting neurons and of network
interactions in generating the basic rthythm. In most models, rhyth-
mogenesis is either pacemaker or network driven. The article re-
views the data and these models, and then points the way to future
models that clarify the integration of endogenous bursting with
network interactions. LOCOMOTION, VERTEBRATE shows how neu-
ral networks in the spinal cord generate the basic rhythmic patterns
necessary for vertebrate locomotion, while higher control centers

interact with the spinal circuits for posture control and accurate
limb movements, and by sending higher-level commands such as
stop and go signals, speed, and heading of motion. In mammals,
evolution of the CPGs has been accompanied by important modi-
fications of the descending pathways under the requirements of
complex posture control and accurate limb movements, although
the extent of the respective changes remains unknown. Computer
models that combine neural models with biomechanical models are
seen as having an important role to play in studying these issues.
One example uses “genetic algorithms” to model the transition
from a lamprey-like spinal cord that supports traveling waves to a
salamander-like spinal cord that supports both traveling waves for
swimming and “standing waves” for terrestrial locomotion, and
shows how vision may modulate spinal activity to yield locomotion
toward a goal (see also “Visuomotor Coordination in Salaman-
der”).

CHAINS OF OSCILLATORS IN MOTOR AND SENSORY SYSTEMS
abstracts from the specific circuitry to show how oscillators and
their coupling can be characterized in a way that allows the proof
of mathematical theorems about patterns of coordination. CPGs are
discussed not only for the spinal cord of lamprey, but also for the
crayfish swimmeret system and the leech network of swimming. In
the context of locomotion, each oscillator is likely to be a local
subnetwork of neurons that produces rhythmic patterns of mem-
brane potentials. Since the details of the oscillators often are not
known and are difficult to obtain, the object of the mathematics is
to find the consequences of what is known, and to generate sharper
questions to motivate further experimentation. GAIT TRANSITIONS
also studies its topic (e.g., the transition from walking to running)
from the abstract perspective of dynamical systems.

Mammalian Motor Control

ACTION MONITORING AND FORWARD CONTROL OF MOVEMENTS

ARM AND HAND MOVEMENT CONTROL

BASAL GANGLIA

CEREBELLUM AND MOTOR CONTROL

COLLICULAR VISUOMOTOR TRANSFORMATIONS FOR GAZE
CONTROL

EQUILIBRIUM POINT HYPOTHESIS

EYE-HAND COORDINATION IN REACHING MOVEMENTS

GEOMETRICAL PRINCIPLES IN MOTOR CONTROL

GRASPING MOVEMENTS: VISUOMOTOR TRANSFORMATIONS

HippocAMPUS: SPATIAL MODELS

IMAGING THE MOTOR BRAIN

LiMB GEOMETRY, NEURAL CONTROL

MOTOR CONTROL, BIOLOGICAL AND THEORETICAL

MoOTOR CORTEX: CODING AND DECODING OF DIRECTIONAL
OPERATIONS

MOTONEURON RECRUITMENT

MUSCLE MODELS

OPTIMIZATION PRINCIPLES IN MOTOR CONTROL

PROSTHETICS, MOTOR CONTROL

PursuiT EYE MOVEMENTS

REACHING MOVEMENTS: IMPLICATIONS FOR COMPUTATIONAL
MODELS

REINFORCEMENT LEARNING IN MOTOR CONTROL

RODENT HEAD DIRECTION SYSTEM

SENSORIMOTOR LEARNING

VESTIBULO-OCULAR REFLEX

Muscle transduces chemical energy into force and motion, thereby
providing power to move the skeleton. Because of the intricacies
of muscle microstructure and architecture, no comprehensive mod-
els are yet able to predict muscle performance completely. MUSCLE
MODELS reviews three classes of models each fulfilling a more
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narrowly defined objective, ranging from attempts to understand
the molecular level (cross-bridge models) through lumped param-
eter mechanical models to input-output models of whole muscle
behavior that can be used as part of a broader study of basic mus-
culoskeletal biomechanics or issues of neural control. A motor neu-
ron together with the muscle fibers that it innervates constitutes a
motor unit, and each muscle is a composite structure whose force-
generating components, the motor units, are typically heteroge-
neous. Such aggregates can produce much larger forces than a sin-
gle motor unit. MOTONEURON RECRUITMENT shows how the motor
units can be recruited in the service of reflexes, voluntary move-
ment, and posture. The article considers mechanisms that compen-
sate for muscle fatigue and yielding, models the possible role of
Renshaw cells in linearization or equalization of motor neuron pool
responses, and considers the possible role of cerebellum in control
of motor neuron gain, as well as the roles of motor cortex in motor
neuron recruitment.

PROSTHETICS, MOTOR CONTROL deals with the use of electrical
stimulation to alter the function of motor systems, either directly
or indirectly. The article presents three clinical applications. Ther-
apeutic electrical stimulation is electrically produced exercise in
which the beneficial effect occurs primarily off-line as a result of
trophic effects on muscles and perhaps the CNS. Neuromodulatory
stimulation is preprogrammed stimulation that directly triggers or
modulates a function without ongoing control or feedback from the
patient, and functional electrical stimulation (FES) provides pre-
cisely controlled muscle contractions that produce specific move-
ments required by the patient to perform a task. The article also
describes subsystems for muscle stimulation, sensory feedback,
sensorimotor regulation, control systems, and command signals,
most of which are under development to improve on-line control
of FES.

MoTOR CONTROL, BIOLOGICAL AND THEORETICAL sets forth the
basic cybernetic concepts. A motor control system acts by sending
motor commands to a controlled object, often referred to as “the
plant,” which in turn acts on the local environment. The plant or
the environment has one or more variables that the controller at-
tempts to regulate. If the controller bases its actions on signals that
are not affected by the plant output, it is said to be a feedforward
controller. The full understanding of movement must rest on a full
analysis of the integration of neural networks with the biomechan-
ics of the skeletomuscular system. Nonetheless, much has been
learned about limb control from a more abstract viewpoint, as the
next four articles show. Optimization theory has become an im-
portant aid to discovering organizing principles that guide the gen-
eration of goal-directed motor behavior, specifying the results of
the underlying neural computations without requiring specific de-
tails of the way those computations are carried out. OPTIMIZATION
PRINCIPLES IN MOTOR CONTROL concedes that not all motor be-
haviors are necessarily optimal but argues that attempts to identify
optimization principles can yield a useful taxonomy of motor be-
havior. The hypothesis is that in performing a motor task, the brain
produces coordinated actions that minimize some measure of per-
formance (such as effort, smoothness, etc.). The article reviews
several studies in which such ideas were examined in the context
of planar upper limb movements, comparing the purely kinematic
minimum jerk model with the more dynamics-based minimum
torque change model. Bur how does one go from a kinematic de-
scription of the movement of the hand to the pattern of muscle
control that yields it? There are still many competing hypotheses.
One approach seeks to find control systems that yield optimal tra-
jectories in the absence of disturbances. Another starts from the
observation that a muscle is like a controlled-length spring: set its
length, and it will naturally return to the equilibrium length that
was set. The EQUILIBRIUM POINT HYPOTHESIS builds on this a
systems-level description of how the nervous system controls the

muscles so that a stable posture is maintained or a movement is
produced. In this framework, the controller is composed of muscles
and the spinal-based reflexes, and the plant is the skeletal system.
The controller defines a force field that is meant to capture the
mechanical behavior of the muscles and the effect of spinal re-
flexes. The equilibrium point hypothesis views motion as a gradual
postural transition, and it is suggested that for the case of multijoint
arm movements, one can predict the hand’s motion if the supra-
spinal system smoothly shifts the equilibrium point from the start
point to a target location. GEOMETRICAL PRINCIPLES IN MOTOR
CoNTROL considers a different transition, that from the spatial rep-
resentation of a motor goal to a set of appropriate neuromuscular
commands, which is in many respects similar to a coordinate trans-
formation. (A word of caution: The matter is subtle because the
brain rarely has neurons whose firing encodes a single coordinate.
Consider, for example, retinotopic coding as distinct from the spe-
cific use of (x, y) or (r, 0) coordinates. Thus the issue is whether
the activity in certain networks is better described as encoding one
representation than another, such as those related to the eye rather
than those related to the shoulder.) The article describes three types
of coordinate system—end-point coordinates, generalized coordi-
nates, and actuator coordinates—each representing a particular
“point of view” on motor behavior, then examines the geometrical
rules that govern the transformations between these classes of co-
ordinates. It shows how a proper representation of dynamics may
greatly simplify the transformation of motor planning into action.
LiMB GEOMETRY, NEURAL CONTROL offers another perspective,
starting from a discussion of the role of extrinsic and intrinsic co-
ordinates when a human makes a movement. Multijointed coor-
dination complicates the problem of motor control. Consider the
case of arm movements. The activation of an elbow flexor will
always contribute a flexor torque at the elbow, but the resulting
elbow movement can be flexion, extension, or no motion at all,
depending on the actively produced torque at the shoulder. Al-
though in principle a coordinated motor action could be planned
muscle by muscle, a more parsimonious solution is to plan more
global goals at higher levels of organization and let the lower-level
controllers specify the implementation details. The article reviews
issues related to the kinematic aspects of limb geometry control for
arm movements and for posture and gait.

Fast, coordinated movements depend on the nervous system be-
ing able to use copies of motor control signals (the corollary dis-
charge) to compute expectations of how the body will move, rather
than always waiting for sensory feedback to signal the current state
of the body. ACTION MONITORING AND FORWARD CONTROL OF
MOVEMENTS spells out three functions of corollary discharge. The
stability of visual perception during eye movements was one of the
first physiological applications proposed for an internal comparison
between a movement and its sensory outcome. Second, goal-
directed behavior implies that the action should continue until the
goal has been satisfied, so that motor representations must involve
not only forward mechanisms for steering the action but also mech-
anisms for monitoring its course and checking its completion.
Third, similar processes have been postulated for actions aimed at
complex and relatively long-term goals, for comparing the repre-
sentation of the intended action to the actual action and compen-
sating for possible mismatch between the two. Clearly, the effective
use of corollary discharge rests on the brain having learned the
relation between current state, motor command, and the movement
that ensues. SENSORIMOTOR LEARNING explains how neural nets
can acquire forward and inverse “models” of some desired senso-
rimotor transformation. The managing of multiple models, each
with its own range of applicability in given tasks, is given special
attention. The relevance of such models to the role of cerebellum
(CEREBELLUM AND MOTOR CONTROL) is briefly noted, as is the
idea that these models may act by controlling lower-level “Motor
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Primitives” (q.v.). REINFORCEMENT LEARNING IN MOTOR CON-
TROL, which presents general learning strategies based on adaptive
neural networks, is treated further in the road map Robetics and
Control Theory.

With this background, we turn to articles primarily concerned
with visually controlled behaviors for which neurophysiological
data are available from the mammalian (and in many cases the
monkey) brain, as well as behavioral and, in some cases, imaging
data for humans. The road map takes us from basic unconscious
behaviors to those involving skilled action. The vestibulo-ocular
reflex (VOR) serves to stabilize the retinal image by producing eye
rotations that counterbalance head rotations. Vestibular nuclei neu-
rons are much more than a simple relay; their functions include
multimodality integration, temporal signal processing, and adap-
tive plasticity. VESTIBULO-OCULAR REFLEX reviews the empirical
data, as well as control-theoretic and neural network models for
the neural circuits that mediate the VOR. These perform diverse
computations that include oculomotor command integration, tem-
poral signal processing, temporal pattern generation, and experi-
ence-dependent plasticity.

COLLICULAR VISUOMOTOR TRANSFORMATIONS FOR GAZE CON-
TROL analyzes the role of superior colliculus in the control of the
rapid movement, called a saccade, of the eyes toward a target. The
article touches on afferent and efferent mapping, target selection,
visuomotor transformations in motor error maps, remapping mod-
els, and coding of dynamic motor error. The theme of remapping
is pursued in DYNAMIC REMAPPING, which distinguishes “one-
shot” remapping (updating the internal representation in one opera-
tion to compensate for an entire movement) from a continuous
remapping process based on the integration of a velocity signal or
the relaxation of a recurrent network. In both cases, the problem
amounts to moving a hill of activity in neuronal maps. The article
uses data on arm movements as well as saccades. Models can be
constrained by considering deficits that accompany localized le-
sions in humans. These data not only provide valuable insights into
the nature of remappings but they might also help bridge the gap
between behavior and single-cell responses. PURSUIT EYE MOVE-
MENTS takes us from saccadic “jumps” to those smooth eye move-
ments involved in following a moving target. Current models of
pursuit vary in their organization and in the features of pursuit that
they are designed to reproduce. Three main types of model are
“image motion” models, “target velocity” models, and models that
address the role of prediction in pursuit. However, these models
make no explicit reference to the neural structures that might be
responsible. The article thus analyzes the neural pathways for pur-
suit, stressing the importance of both visual areas of the cerebral
cortex and oculomotor regions of the cerebellum, to set goals for
future modeling.

IMAGING THE MOTOR BRAIN shows that the behavioral form and
context of a movement are important determinants of functional
activity within cortical motor areas and the cerebellum, stressing
that functional imaging of the human motor system requires one to
study the interaction of neurological and cognitive processes with
the biomechanical characteristics of the limb. Neuroimaging shows
that multiple neural systems and their functional interactions are
needed to successfully perform motor tasks, encode relevant infor-
mation for motor learning, and update behavioral performance in
real time. The article discusses how evidence from functional im-
aging studies provides insight into motor automaticity as well as
the role of internal models in movement.

Two articles explore the way in which the rat charts the spatial
structure of its environment, using both “landmark cues” and a
sense of its head orientation with respect to some key aspects of
its environment. HIPPOCAMPUS: SPATIAL MODELS starts with the
finding that single-unit recordings in freely moving rats have re-
vealed “place cells” in fields CA3 and CAl of the hippocampus,

so called because their firing is restricted to small portions of the
rat’s environment (the corresponding place fields), but the firing
properties of place cells change when the rat is placed in a new
environment. The article focuses on data and models for the role
of place cell firing in the rat’s navigation (see “Cognitive Maps”
for a less neurophysiological approach to the same general issues).
RODENT HEAD DIRECTION SYSTEM focuses on head direction cells
in a number of brain areas that fire maximally when the rat’s head
is pointed in a specific preferred direction, with a gradual falloff in
firing as the heading departs from that direction. Head direction is
not a simple reflection of sensory stimuli since, for example, the
neural coding can be updated when the animal turns in the dark.
The authors analyze such phenomena using attractor networks.

The next six articles are concerned with reaching and grasping.
MoTOR CORTEX: CODING AND DECODING OF DIRECTIONAL
OPERATIONS spells out the relation between the direction of reach-
ing and changes in neuronal activity that have been established for
several brain areas, including the motor cortex. The cells involved
each have a broad tuning function, the peak of which denotes the
“preferred” direction of the cell. A movement in a particular direc-
tion will engage a whole population of cells. It is found that the
weighted vector sum of these neuronal preferences is a “population
vector” that points in (close to) the direction of the movement for
discrete movements in 2D and 3D space. Further observations link
this population encoding to speed of movement as well as to prep-
aration for movement. The present article addresses the question
of how movement variables are encoded in the motor cortex and
how this information could be used to drive a simulated actuator
that mimics the primate arm. ARM AND HAND MOVEMENT CON-
TROL discusses some of the most prominent regularities of arm and
hand control, and examines computational and neural network
models designed to explain them. The analysis reveals the contro-
versies engendered by competition between explanations sought on
different levels—neural, biomechanical, perceptual, or computa-
tional. Although some topics, such as internal model control, have
gained solid grounding, the importance of the dynamic properties
of the musculoskeletal system in facilitating motor control, the role
of real-time perceptual modulation of motor control, and the bal-
ance between dynamical systems models versus optimal control-
based models are still seen as offering many open questions.
REACHING MOVEMENTS: IMPLICATIONS FOR COMPUTATIONAL
MODELS reviews a number of issues that are emerging from neu-
rophysiological studies of motor control and stresses their impli-
cations for development of future models. Data on movement plan-
ning, trajectory generation, temporal features of cortical activity,
and overlapping polymodal gradients are used to set challenges for
computational models that will meet the demands of both func-
tional competence and biological plausibility.

EYE-HAND COORDINATION IN REACHING MOVEMENTS focuses
on possible mechanisms responsible for visually guiding the hand
toward a point within the prehension space. Reaching at a visual
target requires transformation of visual information about target
position into a frame of reference suitable for the planning of hand
movement. Accurate encoding of target location requires concom-
itant foveal and extraretinal signals. The most popular hypothesis
to explain how trajectories are planned is that the trajectory is spec-
ified as a vector in the arm’s joint space, with joint angle variations
controlled in a synergic way (temporal coupling). The motor com-
mand initially sent to the arm is based on an extrafoveal visual
signal; at the end of the ocular saccade, the updated visual signal
is used to adjust the ongoing trajectory. Because of consistent de-
lays in sensorimotor loops, the rapid path corrections observed dur-
ing reaching movements cannot be attributed to sensory informa-
tion only but must rely on a “forward model” of arm dynamics. In
any case, where this article focuses on how the hand is brought to
a target, GRASPING MOVEMENTS: VISUOMOTOR TRANSFORMA-
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TIONS emphasizes the neural mechanisms that control the shaping
of the hand itself to grasp an object, noting the crucial preshaping
of the hand during reaching prior to grasping the object. The anal-
ysis emphasizes the cooperative computation of visual mechanisms
in parietal cortex with motor mechanisms in premotor cortex to
integrate sensing and corollary discharge throughout the move-
ment.

CEREBELLUM AND MOTOR CONTROL reviews a number of mod-
els of the role of the cerebellum in building “internal models” to
improve motor skills. The article asserts that motor control and
learning in the brain employ a modsular approach in which multiple
controllers coexist, with each controller suitable for one or a small
set of contexts. The basic idea is that, to select the appropriate
controller or controllers at each moment, each of the multiple in-

verse models is augmented with a forward model that determines
the responsibility each controller should assume during movement.
This view is exemplified in the MOSAIC (MOdular Selection And
Identification Control) model. Recent human brain imaging studies
have started to accumulate evidence supporting multiple internal
models of tools in the cerebellum. (One caveat: The article stresses
the idea that the cerebellum provides complete motor controllers;
other authors emphasize the idea that the cerebellum provides a
corrective side path that learns how best to augment controllers
located elsewhere in the brain.) Finally, BASAL GANGLIA reviews
the structure of this system in terms of multiple loops, with special
emphasis on those involved in skeletomotor and oculomotor func-
tions. It also reviews the role of dopamine in motor learning and
the mechanisms underlying Parkinson’s disease.

I1.9. Applications, Implementations, and Analysis

Applications

BRAIN-COMPUTER INTERFACES

DECISION SUPPORT SYSTEMS AND EXPERT SYSTEMS
FILTERING, ADAPTIVE

FORECASTING

KALMAN FILTERING: NEURAL IMPLICATIONS
PROSTHETICS, MOTOR CONTROL

PROSTHETICS, NEURAL

PROSTHETICS, SENSORY SYSTEMS

The road map Robotics and Control Theory presents a number
of applications of neural networks. Here we offer a representative
(but by no means exhaustive) set of other applications, a list that
can be augmented by the study of many other road maps. Examples
include a variety of topics in vision and speech processing (see the
road maps Vision and Linguistics and Speech Processing, re-
spectively). As noted in the Preface, the discussion of applications
of ANNS in areas from astronomy to steel making was a feature of
the first edition of the Handbook that is not reproduced in the sec-
ond edition.

Several articles review the various contributions of adaptive neu-
ral networks to signal processing. FILTERING, ADAPTIVE notes that
adaptive filtering has found widespread use in noise canceling and
noise reduction, channel equalization, cochannel signal separation,
system identification, pattern recognition, fetal heart monitoring,
and array processing. The parameters of an adaptive filter are ad-
justed to “learn” or track signal and system variations according to
a task-specific performance criterion. The field of adaptive filtering
was derived from work on neural networks and adaptive pattern
recognition. An adaptive filter can be viewed as a signal combiner
consisting of a set of adjustable weights (or coefficients represented
by a polynomial) and an algorithm (learning rule) that updates these
weights using the filter input and output, as well as other available
signals. The filter may include internal signal feedback, whereby
delayed versions of the output are used to generate the current
output, and it may contain some nonlinear components. The single-
layer perceptron is a well-known type of adaptive filter that has a
binary output nonlinearity (see ‘“Perceptrons, Adalines, and Back-
propagation”). The article focuses on the most widely used adaptive
filter architecture and describes in some detail two representative
adaptive algorithms: the least-mean-square algorithm and the con-
stant modulus algorithm. KALMAN FILTERING: NEURAL IMPLICA-
TIONS then introduces Kalman filtering, a powerful idea rooted in
modern control theory and adaptive signal processing. Under linear

and Gaussian conditions, the Kalman filter produces a recursive
estimate of the hidden state of a dynamic system, i.e., one that is
updated with each subsequent (noisy) measurement of the observed
system, with the estimate being optimum in the mean-square-error
sense. The Kalman filter provides an indispensable tool for the
design of automatic tracking and guidance systems, and an en-
abling technology for the design of recurrent multilayer perceptrons
that can simulate any finite-state machine. In the context of neu-
robiology, Kalman filtering provides insights into visual recogni-
tion and motor control. Related applications are discussed in FORE-
CASTING. Neural nets, mostly of the standard backpropagation type,
have been used with great success in many forecasting applications.
This article looks at the use of neural nets for forecasting with
particular attention to understanding when they perform better or
worse than other technologies, showing how the success of neural
networks in forecasting depends significantly on the characteristics
of the process being forecast.

A decision support system is an information system that helps
humans make a decision on a given problem, under given circum-
stances and constraints. Expert systems are information systems
that contain expert knowledge for a particular problem area and
perform inferences when new data are entered that may be partial
or inexact. They provide a solution that is expected to be similar
to the solution provided by experts in the field. DECISION SUPPORT
SYSTEMS AND EXPERT SYSTEMS uses the collective term decision
system to refer to either a decision support system or an expert
system. The article discusses how neural networks can be employed
in a decision system. Such systems help humans in their decision
process and so should be comprehensible by humans. The article
reviews results of connectionist-based decision systems. In partic-
ular, trainable knowledge-based neural networks can be used to
accumulate both knowledge (rules) and data, building adaptive de-
cision systems with incremental, on-line learning. (For further de-
velopments related to the construction of expert systems, see
“Bayesian Networks” and the three articles on “Graphical
Models.”)

BRAIN-COMPUTER INTERFACES discusses the use of on-line anal-
ysis of brainwaves to derive information about a subject’s mental
state as a basis for driving some external action, such as selecting
a letter from a virtual keyboard or moving a robotics device, pro-
viding an alternative communication and control channel that does
not depend on the brain’s normal output pathway of peripheral
nerves and muscles, which may be nonfunctional in some patients.
The brainwave signals may be evoked potentials generated in re-
sponse to external stimuli or components associated with sponta-
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neous mental activity. Targets for current research include the ex-
traction of local components of brain activity with fast dynamics
that subjects can consciously control. The article reviews the chal-
lenge of developing classifiers that work while the subject operates
a brain-actuated application, with ANNs providing robust ap-
proaches to on-line learning. These studies are complemented by
a range of articles on prosthetics. PROSTHETICS, NEURAL provides
an overview of the physical components that tend to be common
to all neural prosthetic systems. It emphasizes the biophysical fac-
tors that constrain the sophistication of those interfaces. Electro-
neural interfaces for both stimulation of and recording from neural
tissue are analyzed in terms of biophysics and electrochemistry. It
is also shown how the design of practical neural prostheses must
address the systems hardware issues of power and data manage-
ment and packaging. PROSTHETICS, SENSORY SYSTEMS focuses on
sensory prostheses, in which information is collected by electronic
sensors and delivered directly to the nervous system by electrical
stimulation of pathways in or leading to the parts of the brain that
normally process a given sensory modality. After assessing the
amenability of all sensory modalities (hearing, vision, touch, pro-
prioception, balance, smell, and taste) the article focuses on audi-
tory and visual prostheses. The great success story has been with
cochlear implants. Here the article reviews improved temporospa-
tial representations of speech sounds, combined electrical and
acoustic stimulation in patients with residual hearing, and psycho-
physical correlates of performance variability. Visual prostheses
are still in their early days, with no general agreement on the most
promising site to apply electrical stimulation to the visual path-
ways. The article reviews the cortical approach and the retinal ap-
proach. Finally, it is noted that since a prosthesis does not neces-
sarily match natural neural encoding of a stimulus, the success of
the prosthesis depends in part on the plasticity of the human brain
as it remaps to accommodate this new class of signals. PROSTHET-
1ICS, MOTOR CONTROL deals with the subset of neural prosthetic
interfaces that employ electrical stimulation to alter the function of
motor systems, either directly or indirectly. The article presents
three clinical applications. Therapeutic electrical stimulation is
electrically produced exercise in which the beneficial effect occurs
primarily off-line as a result of trophic effects on muscles and per-
haps the CNS; neuromodulatory stimulation is preprogrammed
stimulation that directly triggers or modulates a function without
ongoing control or feedback from the patient; and functional elec-
trical stimulation (FES) provides precisely controlled muscle con-
tractions that produce specific movements required by the patient
to perform a task. The article describes subsystems for muscle
stimulation, sensory feedback, sensorimotor regulation, control
systems, and command signals, most of which are under devel-
opment to improve on-line control of FES. Electrical stimulation
of the nervous system is also being used to treat other disorders,
including spinal cord stimulation to control pain and basal ganglia
stimulation to control parkinsonian dyskinesias.

To close this road map, we note the importance of using special-
purpose VLSI chips to gain the full efficiency of artificial neural
network in various applications. Such chips are among the methods
for implementation of neural networks discussed in the next road
map, Implementation and Analysis.

Implementation and Analysis

ANALOG VLSI IMPLEMENTATIONS OF NEURAL NETWORKS
BIOPHYSICAL MECHANISMS IN NEURONAL MODELING
BRAIN SIGNAL ANALYSIS

DATABASES FOR NEUROSCIENCE

DiGiTaL VLSI FOR NEURAL NETWORKS

GENESIS SIMULATION SYSTEM

NEUROINFORMATICS

NEUROMORPHIC VLSI CIRCUITS AND SYSTEMS

NEURON SIMULATION ENVIRONMENT

NEUROSIMULATION: TOOLS AND RESOURCES

NSL NEURAL SIMULATION LANGUAGE

PHOTONIC IMPLEMENTATIONS OF NEUROBIOLOGICALLY INSPIRED
NETWORKS

PROGRAMMABLE NEUROCOMPUTING SYSTEMS

SILICON NEURONS

STATISTICAL PARAMETRIC MAPPING OF CORTICAL ACTIVITY
PATTERNS

Briefly, a neural network (whether an artificial neural network for
technological application or a simulation of a biological neural net-
work in computational neuroscience) can be implemented in three
main ways: by programming a general-purpose electronic com-
puter, by programming an electronic computer designed for neural
net implementation, or by building a special-purpose device to em-
ulate a particular network or parametric family of networks. We
discuss these three approaches in turn, and then review a number
of articles describing tools and methods for the analysis of brain
signals and related activity.

NEUROSIMULATION: TOOLS AND RESOURCES reviews neurosi-
mulators, i.e., programs designed to reduce the time and effort re-
quired to build models of neurons and neural networks. A neuro-
simulator requires, at the very least, a highly developed interface,
a scalable design (e.g., through parallel hardware), and extendibil-
ity with new neural network paradigms. The review includes pro-
grams for modeling networks of biological neurons as well as pro-
grams for kinetic modeling of intracellular signaling cascades and
regulatory genetic networks but does not cover connectionist sim-
ulators. It provides a general picture of the capabilities of several
neurosimulators, highlighting some of the best features of the vari-
ous programs, and also describes ongoing efforts to increase com-
patibility among the various programs. Compatibility allows mod-
els built with one neurosimulator to be independently evaluated
and extended by investigators using different programs, thereby
reducing duplication of effort, and also allows models describing
different levels of complexity (molecular, cellular, network) to be
related to one another. The next three articles present some of the
methods necessary for efficient simulation of detailed models of
single neurons (see, e.g., the articles “Axonal Modeling” and “Den-
dritic Processing” in the Biological Neurons and Synapses road
map). BIOPHYSICAL MECHANISMS IN NEURONAL MODELING is a
primer on biophysically detailed compartmental models of single
neurons (see the road map Biological Neurons and Synapses for
a fuller précis), but contributes to the topic of neurosimulators by
illustrating examples of model definitions using the Surf-Hippo
Neuron Simulation System, providing a minimal syntax that fa-
cilitates model documentation and analysis. GENESIS SimMuLA-
TION SYSTEM describes GENESIS (GEneral NEural SImulation
System), which was developed to support “structurally realistic”
simulations, computer-based implementations of models designed
to capture the anatomical structure and physiological characteristics
of the neural system of interest. GENESIS has been widely used
for single-cell “compartmental” modeling but is also used for large
network models, using libraries of ion channels and complete cell
models, respectively. NEURON is a neurosimulator that was first
developed for simulating empirically based models of biological
neurons with extended geometry and biophysical mechanisms that
are spatially nonuniform and kinetically complex. This function-
ality has been enhanced to include extracellular fields, linear cir-
cuits to emulate the effects of nonideal instrumentation, models of
artificial (integrate-and-fire) neurons, and networks that can involve
any combination of artificial and biological neuron models. NEU-
RON SiMULATION ENVIRONMENT shows how these capabilities
have been implemented so as to achieve computational efficiency
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while maintaining conceptual clarity, i.e., the knowledge that what
has been instantiated in the computer model is an accurate repre-
sentation of the user’s conceptual model. Where NEURON has
been primarily used for detailed modeling of single neurons, NSL
NEURAL SIMULATION LANGUAGE provides methods for simulating
very large networks of relatively simple (artificial or biological
simulation) neurons. NSL (pronounced “Nissl”’) models focus on
modularity, a well-known software development strategy in dealing
with large and complex systems. Full understanding of a system is
gained both by simulating modules in isolation and by designing
computer experiments that follow the dynamics of the interactions
between the various modules. An NSL model can be described
either by direct programming in NSLM, the NSL (compiled) Mod-
eling language, or by using the Schematic Capture System (SCS),
a visual programming interface to NSLM supporting the descrip-
tion of module assemblages. ‘“Phase-Plane Analysis of Neural
Nets” introduces the qualitative theory of differential equations in
the plane for analyzing neural networks. Computational methods
are a very powerful adjunct to this type of analysis. The article
concludes with comments on numerical methods and software. Be-
tween them, the articles reviewed in this paragraph make clear the
challenge of providing multilevel neurosimulation environments in
which one can move effortlessly between the levels of schemas
(functional decomposition of an overall behavior), large neural net-
works, detailed models of single neurons, and neurochemical mod-
els of synaptic plasticity. To be fully effective, such an environment
will also need visualization tools, and the ability to access a data-
base to provide experimental results for comparison with model-
based predictions.

The next two articles address the digital, parallel implementation
of neural networks. DIGITAL VLSI FOR NEURAL NETWORKS starts
by looking at the differences between digital and analog design
techniques, with a focus on analyzing cost-performance trade-offs
in flexibility (Amdahl’s Law), and then considers the use of stan-
dard VLSI processors in parallel configurations for ANN emula-
tion. The Adaptive Solutions CNAPS custom digital ANN proces-
sor is then discussed to convey a sense of some of the issues
involved in designing digital structures for ANN emulation. Al-
though this chip is no longer produced, it is still being used and
provides a good vehicle for understanding the trade-offs inherent
in emulating neural structures digitally. Finally, the article looks at
field programmable gate array (FPGA) technology as a promising
vehicle for digital implementation of ANNs. PROGRAMMABLE
NEUROCOMPUTING SYSTEMS emphasizes that the design of spe-
cialized digital neurocomputers has exploited three items common
to many neural (ANN) algorithms to improve cost/performance:
the limited numeric precision required; the inherently high data
parallelism, where the same operation is performed across large
arrays of data; and communication patterns restricted enough to
allow broadcast buses or unidirectional rings to support parallel
execution of many common neural network algorithms. However,
in the future, the work of commercial design teams to incorporate
multimedia-style kernels into the workloads they consider during
the design of new microprocessors will have as a by-product the
ability to dramatically improve performance for ANN algorithms.
This suggests that in the future there will be greatly reduced interest
in special-purpose neurocomputers but much attention to software
strategies to optimize ANN performance on commercially available
Microprocessors.

However, the above three assumptions are not so useful in the
implementation of detailed “compartmental” models of neurons.
Here, attention has been paid to the design of highly special-
purpose analog VLSI circuits. Digital VLSI assigns a different cir-
cuit to each bit of information that is to be stored and processed.
Each circuit is driven to the limit so that it settles into a 0-state or
a 1-state, passing through a linear voltage-current regime to get

from one saturation state to the other. Thus, if a synaptic weight is
to be stored with eight-bit precision in digital VLSI, it requires
eight such circuits. By contrast, the linear regime of a single circuit
element on a VLSI chip can store data with about three bits of
precision with far less “real estate” on the chip, and with far less
power loss. The price, of course, is that precision cannot be guar-
anteed on the same scale as for digital circuits, but in many neural
net applications, analog precision is more than adequate. ANALOG
VLSI IMPLEMENTATIONS OF NEURAL NETWORKS provides an over-
view of the implementation of circuitry in analog VLSI, and then
summarizes a number of technological implementations of such
analog chips for ANNs. The article introduces the difference be-
tween the constraints imposed by the biological and silicon media
and emphasizes that letting the silicon medium constrain the design
of a system results in more efficient methods of computation. Spe-
cial emphasis is given to five properties of a silicon synapse that
are essential for building large-scale adaptive analog VLSI synaptic
arrays. This article focuses on building neural network integrated
circuits (IC), and especially on building connectionist neural net-
work models. SILICON NEURONS takes the same implementation
methodology into the realm of computational neuroscience. Bio-
logical neural networks are difficult to model because they are com-
posed of large numbers of nonlinear elements and have a wide
range of time constants. Simulation on a general-purpose digital
computer slows dramatically as the number and coupling of ele-
ments increase. By contrast, silicon neurons operate in real time,
and the speed of the network is independent of the number of neu-
rons or their coupling. On the other hand, high connectivity still
poses problems in 2D chip layouts, and the design of special-
purpose hardware is a significant investment, particularly if it is
analog hardware, since analog VLSI still lacks a general set of easy-
to-use design tools. In any case, NEUROMORPHIC VLSI CIRCUITS
AND SYSTEMS charts the virtues of using analog VLSI to build
“neuromorphic” chips, i.e., chips whose design is based on the
structure of actual biological neural networks. Biological systems
excel at sensory perception, motor control, and sensorimotor co-
ordination by sustaining high computational throughput with min-
imal energy consumption. Neuromorphic VLSI systems employ
distributed and parallel representations and computation akin to
those found in their biological counterparts. The high levels of
system integration offered in VLSI technology make it attractive
for the implementation of highly complex artificial neuronal sys-
tems, even though the physics of the liquid-crystalline state of bio-
logical structures is different from the physics of the solid-state
silicon technologies. The article provides a basic foundation in de-
vice physics and presents a set of specific circuits that implement
certain essential functions that exemplify the breadth possible
within this design paradigm. However, VLSI-based neural net-
works have difficulty in scaling up or interconnecting multiple neu-
ral chips to incorporate large numbers of neuron units in highly
interconnected architectures without significantly increasing the
computational time. This motivates the use of optical interconnec-
tions. The success of optic fibers as media for telecommunications
has been complemented by the use of holograms and spatial light
modulators as mechanisms for storing and processing information
via patterns of light (photonics) rather than patterns of electrons
(electronics). The current state of photonic approaches to neural
network implementation is charted in PHOTONIC IMPLEMENTA-
TIONS OF NEUROBIOLOGICALLY INSPIRED NETWORKS, which
provides a perspective on the use of holography as a technique for
building adaptive connection matrices for ANNs, as well as earlier
discussions of holography as a metaphor for the working of
associative memory in actual brains. In photonic implementation
of neurobiologically inspired networks, optical (free-space or
through-substrate) techniques enable an increase in the number
of neuron units and the interconnection complexity by using the
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off-chip (third) dimension. This merging of optical and photonic
devices with electronic circuitry provides additional features such
as parallel weight implementation, adaptation, and modular
scalability.

The remaining articles provide a number of perspectives on the
analysis of data on the brain.

BRAIN SIGNAL ANALYSIS reviews applications of ANNs to brain
signal analysis, including analysis of the EEG and MEG, the elec-
tromyogram (EMG), and computed tomographic (CT) images and
magnetic resonance (MR) brain images, and to series of functional
MR brain images (fMRI). Since most medical signals usually are
not produced by variations in a single variable or factor, many
medical problems, particularly those involving decision making,
must involve a multifactorial decision process. In these cases,
changing one variable at a time to find the best solution may never
reach the desired objective, whereas multifactorial ANN ap-
proaches may be more successful. The review is organized accord-
ing to the nature of brain signals to be analyzed and the role that
ANNSs play in the applications.

STATISTICAL PARAMETRIC MAPPING OF CORTICAL ACTIVITY
PATTERNS describes the construction of statistical maps to test hy-
potheses about regionally specific effects like “activations” during
brain imaging studies. Statistical parametric maps (SPMs) are im-
age processes with voxel values that are, under the null hypothesis,
distributed according to a known probability density function (usu-
ally Student’s T or F distributions), analyzing each and every voxel
using any standard (univariate) statistical test. The resulting statis-
tical parameters are assembled into an image, the SPM. SPM{T}
refers to an SPM comprising 7 statistics; similarly, SPM{F} de-
notes an SPM of F statistics. SPMs are interpreted as spatially
extended statistical processes by referring to the probabilistic be-
havior of stationary Gaussian fields. Unlikely excursions of the
SPM are interpreted as regionally specific effects, attributable to
the sensorimotor or cognitive process that has been manipulated
experimentally.

NEUROINFORMATICS presents an integrated view of neuroinfor-
matics that combines tools for the storage and analysis of neuro-
science data with the use of computational models in structuring

masses of such data. In Europe, neuroinformatics is a term used to
encompass the full range of computational approaches to brain the-
ory and neural networks. In the United States, some people use the
term neuroinformatics solely to refer to databases in neuroscience.
Taking the perspective of the Handbook, this article sees the key
challenge for neuroinformatics to be to integrate insights from syn-
thetic data obtained from running a model with data obtained em-
pirically from studying the animal or human brain. The problem is
that the data, and thus the models, of neuroscience are so diverse.
Neuroscience integrates anatomy, behavior, physiology, and chem-
istry, and studies levels from molecules to compartments and neu-
rons up to biological neural networks and on to the behavior of
organisms. The article thus presents an architecture for a federation
of databases of empirical neuroscientific data in which results from
diverse laboratories can be integrated. It further advocates a cu-
mulative approach to modeling in neuroscience that facilitates the
reusability (with appropriate changes) of modules within current
neural models, with the pattern of re-use fully documented and
tightly constrained by the linkage with this federation of databases.
DATABASES FOR NEUROSCIENCE then focuses on the issues in con-
structing such databases. In order to be able to integrate such di-
verse sources, the various communities within the neurosciences
must begin to develop standards for their community’s data. Neu-
roscientists use many different and incompatible data formats that
do not allow for the free exchange of data, and the article stresses
the need for standards for the description of the actual data (i.e., a
formalized description of the metadata), possibly using extensible
markup language (XML) technologies. (On a related theme, NEU-
ROSIMULATION: TOOLS AND RESOURCES examines two of the en-
abling neurosimulation technologies that will allow modelers to
compare and modify models, verify one another’s simulations, and
extend models with their own tools.) One possible solution to in-
tegrating data from sources with heterogeneous data and represen-
tation is to extend the conventional wrapper-mediator architecture
with domain-specific knowledge. The article concludes with anal-
ysis of a specific database of brain images (the fMRI Data Center)
and a comprehensive table of neuroscience databases constructed
to date.
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Action Monitoring and Forward Control of Movements

Marc Jeannerod

Introduction

Monitoring its own output is thought to be a basic principle of
functioning of the nervous system. This idea, inherited from the
cybernetic era, and still operational now, is based on the notion of
a comparison of the actual output of the system with the expected,
or desired, output. In the domain of motor control, for example, it
is assumed that each time the motor centers generate an outflow
signal for producing a movement, a “copy” of this command (the
“efference copy”) is retained. The reafferent inflow signals gener-
ated by the movement (e.g., visual, proprioceptive) are compared
with the copy. If a mismatch between the two types of signals is
recorded, new commands are generated until the actual outcome of
the movement corresponds to the desired movement. This com-
parison cannot be made, however, until the reafferent signals and
the efference copy have been rendered compatible with one an-
other. Proprioceptive signals, in principle, should be directly com-
patible with motor output (they arise from the same muscles and
joints that are activated during the movement). Visual signals, by
contrast, are generated in a set of coordinates quite different from
those of motor output. Thus, a common set of coordinates must be
computed to make the comparison useful.

The efference copy can only measure the performance error
when the action comes to execution. In order to give this mecha-
nism a predictive role in anticipating the effects of an action, one
must assume the existence of a more complex “internal model” of
that action. Such a model should be able to simulate the action
generation process without waiting for the sensory reafference, or
even without performing it. According to Wolpert, Ghahramani,
and Jordan (1995), a combination of two processes is required:
“The first process uses the current state estimate and motor com-
mand to predict the next state by simulating the movement dynam-
ics with a forward model. The second process uses a model of the
sensory output process to predict the sensory feedback from the
current state estimate. The sensory error—the difference between
actual and predicted sensory feedback—is used to correct the state
estimate resulting from the forward model” (p. 1881). Several pos-
sible applications for this mechanism are reviewed in the following
discussion.

Stability of Visual Perception and Target Localization

The stability of visual perception during eye movements was one
of the first physiological applications proposed for an internal com-
parison between a movement and its sensory outcome. When one
moves one’s eyes across the visual field, objects tend to appear
stationary in spite of their displacement on the retina; if, however,
the same displacement is produced by an external agent (e.g., by
gently pressing against the eye at the external canthus), objects no
longer appear stationary. To account for this phenomenon, it has
been conjectured that the command signals to the eye muscles are
effective in remapping the visual scene and canceling out the visual
displacement. In the absence of this signal, the visual displacement
becomes visible. Sperry (1950) coined the term of “corollary dis-
charge” (CD) for the centrally arising discharge that reaches the
visual centers as a corollary of any command generated by the
motor centers. In this way, the visual centers can distinguish the
retinal displacement related to a self-generated movement from that
produced by a moving scene. Visual changes produced by a move-
ment of the eye are normally “canceled” by a CD of a correspond-
ing size and direction. If, however, the CD is absent or does not

correspond to the visual changes (e.g., when the eye is pressed),
these changes are not canceled and are read by the visual system
as having their origin in the external world. The combination of
the retinal signals and the extraretinal command signals (CD) thus
produces a perceived stability of the visual world (Jeannerod, Ken-
nedy, and Magnin, 1979). Signals arising from eye muscle propri-
oceptors also contribute to visual stability during eye movements
(see Gauthier, Nommay, and Vercher, 1990). A CD type of regu-
lation should in principle be more advantageous, however, because
of its timing: a discharge propagating directly from the motor to
the visual centers should be available to the visual system earlier
than discharges arising from the periphery.

The same logic used for perceptual visual stability can also apply
to egocentric localization of visual targets. The retinal position of
a target cannot in itself be sufficient for its localization in space
because, as the eyes move in the head, and the head moves on the
trunk, several different retinal positions correspond to the same
spatial locus. The spatial location of the target must therefore be
reconstructed by combining eye/head position signals with the po-
sition of the target on the retina. The relationships between the
retinal error signal (the position of the target on the retina) and the
eye position signal were first formalized by Robinson (1975). In
this influential model, the efference copy from eye position is de-
rived from the output of a neural integrator that maintains the eye
at a given position during fixation. It is this signal of actual eye
position that is combined with retinal error to provide other motor
systems (e.g., the arm) with the target location information. Eye
movements are not generated on the basis of retinal error. Instead,
the driving signal for the eye to reach the desired eye position
relative to the head is the eye motor error signal. This signal is
obtained by “subtracting” the actual change in eye position in orbit
from the desired position. The movement stops when the motor
error equals zero.

Guitton (1992) was able to directly demonstrate the dynamic
nature of this process, by showing that output neurons from the
superior colliculus—the tectoreticular (TR) neurons—code the
change in eye motor error during the movement. Before the move-
ment takes place, a TR neuron with a preferred vector correspond-
ing to the desired eye position will be activated and will drive the
eye movement generator. As the movement progresses and motor
error is reduced, other TR neurons coding for smaller vectors will
be activated until the error is zero. At this point, a TR neuron coding
for a zero vector will be activated and fixation will be maintained.
Guitton postulates that an internal representation of change in gaze
position is generated and compared with the desired gaze position
to yield instantaneous gaze motor error. If one assumes that this
error is the parameter represented topographically on the collicular
map, one can conceive how this signal will activate the proper
sequence of TR neurons. Hence Guitton’s hypothesis of a moving
“hill” of activity shifting across the collicular map, from the caudal
part where large vectors are encoded to the rostral part where fix-
ation vectors are encoded. There are some difficulties with this
model, however, notably with the timing of discharges in the su-
perior colliculus which, in order to be suitable for coding motor
error, should precede those of the eye movement generator.

Representation of Goals of Movements

Goal-directed behavior implies that the action should continue until
the goal has been satisfied. Motor representations must therefore
involve not only forward mechanisms for steering and directing the
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action, but also mechanisms for monitoring its course and for
checking its completion. This error correction mechanism implies
a short-term storage of outflow information processed at each level
of action generation. Because reafferent signals during execution
of a movement are normally delayed with respect to the command
signal, the comparison mechanism must look ahead in time and
produce an estimate of the movement velocity corresponding to the
command. The image of this estimated velocity is used for com-
puting the actual position of the limb with respect to the target
(Hoff and Arbib, 1992). It is only because the current state of the
action is monitored on-line (rather than after the movement ter-
minates), that corrections can be applied without delay as soon as
the deviation of the current trajectory from the desired trajectory is
detected. A subtle mechanism postulated by Miles and Evarts
(1979) for the regulation of movements could be useful here. They
pointed out that the discharge of muscle spindles in the agonist
muscle during a movement (due to the co-activation of the gamma
motoneurons) exactly fulfills the criterion for an efference copy
that propagates “upward” and is an exact copy of the motor input
sent to the alpha motoneurons. This signal could well be used for
on-line comparison with incoming signals resulting from the limb
movement.

It has been proposed that the information stored in the compar-
ison process should encode, not joint rotations or kinematic param-
eters, but final configurations (of the body, of the moving segments,
etc.) as they should arise at the end of the action. In other words,
the goal of the action, rather than the action itself, would be rep-
resented in the internal model of the action. This hypothetical
mechanism is supported by experimental arguments. Desmurget et
al. (1995) recorded reach and grasp movements directed at a handle
that had to be grasped with a power grip. When the orientation of
the handle was suddenly changed at the onset of a movement, the
arm smoothly shifted from the optimal configuration initially
planned to reach the object to another optimal configuration cor-
responding to the object in its new orientation. The shift was
achieved by simultaneous changes at several joints (shoulder ab-
duction, wrist rotation), so that the final grasp was effected in the
correct position. In this case the comparison between the desired
and the actual arm position could be effected dynamically through
a process similar to that which has been proposed to solve the
problem of coordinate transformation during goal-directed move-
ments. The position of an object in space is initially coded in ex-
trinsic (e.g., visual) coordinates. In order to be matched by the
moving limb, however, this position must be transferred into an
intrinsic coordinate frame. If the position of the object in extrinsic
coordinates and the position of the extremity of the limb in intrinsic
coordinates coincide (that is, if these positions correspond to the
same point in the two systems of coordinates), the action should
logically be considered as terminated (see Carrozzo and Lacquaniti,
1994).

In addition to matching the movement trajectory to the repre-
sentation of the intended movement, this mechanism has also other
potential functions for the control of movements. The comparison
between corollary and incoming signals might be used to produce
a correspondence between the motor command and the amount of
muscular contraction, even if the muscular plant is not linear. Other
nonlinearities may also arise from interaction of the moving limb
with external forces, especially if it is loaded (for a review, see
Weiss and Jeannerod, 1998). This mapping problem, which is a
critical factor for producing accurate limb movements, is less im-
portant for eye movements, where interactions with the external
force field are minimal and where the load of the moving segment
is constant. In this case, the pattern of command issued by the eye
movement generator should unequivocally reflect the final desired
position of the eye, that is, the position where the retinal error is
zero.

Action Monitoring

At a still higher level, that of actions aimed at complex and rela-
tively long-term goals, similar processes have been postulated for
comparing the representation of the intended action to the actual
action and compensating for possible mismatch between the two.
Several studies, using brain imaging techniques, have focused on
identifying neural structures that would fulfill the requirements for
a comparison mechanism or an error detecting device. Carter et al.
(1998) studied the activity of the anterior cingulate gyrus, a region
lying on the medial cortical surface of the frontal lobe, in a letter
detection task designed to increase error rates and manipulate re-
sponse competition. Activity was found to increase during erro-
neous responses, but also during correct responses in conditions of
high levels of response competition. They concluded that the an-
terior cingular gyrus detects conditions under which errors are
likely to occur, rather than errors themselves. This result suggests
that action-monitoring mechanisms anticipate the occurrence of er-
rors, by using internal models of the effects of the action on the
world. In other words, the sensory consequences of an action are
evaluated before they occur, even in conditions in which the action
may not be executed. This mechanism can also become a powerful
means of determining whether a sensory event is produced by our
own action or by an external agent (and ultimately, if an action is
self-produced or not). Blakemore, Rees, and Frith (1998) compared
brain activity during the processing of externally produced tones
and the processing of tones resulting from self-produced move-
ments. They found an increase in the right inferior temporal lobe
activity when the tones were externally produced, suggesting that
this area would be inhibited by the volitional system in the self-
produced condition. This result raises interesting questions about
the possible consequences of a dysfunction of such a system. In-
creased activity in the primary auditory areas in the temporal lobe
has been observed during auditory hallucinations in psychotic pa-
tients (Dierks et al., 1999). Hence, it is possibility that a defective
self-monitoring system would produce false attribution of one’s
own speech to an external source.

Road Map: Mammalian Motor Control

Related Reading: Collicular Visuomotor Transformations for Gaze Con-
trol; Consciousness, Neural Models of; Eye-Hand Coordination in
Reaching Movements; Schema Theory; Sensorimotor Learning
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Activity-Dependent Regulation of Neuronal

Conductances
Larry F. Abbott and Eve Marder

Introduction

An enormous amount of both theoretical and experimental work
has focused on the implications of activity-dependent synaptic
plasticity for development, learning, and memory. Less attention
has been paid to the fact that the intrinsic characteristics of indi-
vidual neurons change during development (Spitzer and Ribera,
1998) and can be modified by activity (Franklin, Fickbohm, and
Willard, 1992; Desai, Rutherford, and Turrigiano, 1999), yet these
too play a vital role in shaping network function.

The electrical characteristics of a neuron depend on the numbers
of channels of various types that are active within the cell mem-
brane and on how these channels are distributed over the surface
of the cell. The conventional approach to developing a conduc-
tance-based model is to attempt to measure all the ionic currents
expressed by a neuron, describe them with Hodgkin-Huxley equa-
tions, and finally assemble the neuron model (Koch and Segev,
1998). This approach is based on the assumptions that individual
neurons of a given class have the same ionic currents expressed at
the same levels and that a neuron expresses the same currents
whenever it is sampled under a specified set of experimental con-
ditions. However, these assumptions appear to be contradicted by
experimental evidence (see, e.g., Liu et al., 1998). In addition, it is
rarely possible to make all of the measurements needed to construct
a conductance-based model in this manner. Most neurons have
many types of ion channels with complex spatial distributions. It
is unlikely that all these currents and their spatial distributions can
be measured. As a result, conventional conductance-based models
depend on considerable hand-tuning of parameters. Each attempt
to make neurons more biologically realistic is accompanied by a
worsening of this problem. Hand-tuning a detailed, multicompart-
ment, conductance-based model can be extremely time consuming
and frustrating.

Neurons accomplish the feat of expressing appropriate numbers
of ion channels in the relevant locations without running months
of computer simulations. This suggests that a set of parameter ad-
justment mechanisms may allow neurons to self-tune their con-
ductance densities to produce specific electrophysiological prop-
erties. A number of attempts have been made at incorporating such
mechanisms into conductance-based neuron models (Bell, 1992;
LeMasson, Marder, and Abbott, 1993; Siegel, Marder, and Abbott,
1994; Liu et al., 1998; Golowasch et al., 1999; Stemmler and Koch,
1999). Self-tuning activity-dependent models provide an alterna-
tive approach to modeling neurons and networks. This class of
models does not assume that neurons necessarily have the same
conductance densities over time, nor that individual neurons of a
well-defined class are identical. Rather, they depend on simple neg-
ative feedback mechanisms to develop and maintain sets of con-

ductances that produce particular firing patterns and response char-
acteristics. In these models, a second-messenger system, which
may involve Ca®* influx and a variety of Ca>* sensors, guides the
expression of the membrane conductances in a self-regulating
manner.

Results
A Model Neuron with Self-Regulating Conductances

Self-regulating models are constructed by specifying a set of activ-
ity sensors and the rules by which they modify conductance den-
sities. Experimental work indicates that the intracellular Ca®>* con-
centration is a good indicator of neuronal activity. Intracellular
Ca’™ concentrations become elevated in response to activity and
fall during inactive periods (Ross, 1989). Many Ca®*-dependent
cellular processes, controlled by a variety of Ca®?* sensors that
monitor Ca®* entry through different ion channels, can affect chan-
nel densities (Bito, Deisseroth, and Tsien, 1997; Barish, 1998;
Finkbeiner and Greenberg, 1998). The intracellular Ca®" concen-
tration itself, or sensors of inward Ca? ™" currents, can thus be used
as feedback elements that monitor activity and change conduc-
tances. In general, when the neuron’s activity is high, the activity-
dependent rules decrease excitability, and when activity is low,
they increase excitability by modifying appropriate conductances.

A model neuron constructed on these principles can start with
almost any initial conductance densities and self-assemble a set of
maximal conductances that produce particular intrinsic character-
istics and patterns of activity. An example of a model spontane-
ously developing a set of maximal conductances that produces
bursting behavior, starting from an initially silent state, is shown
in Figure 1 (Liu et al., 1998). This illustrates but one example of
the many ways that the model can generate bursting activity. Vir-
tually any initial state leads ultimately to bursting, but, interest-
ingly, the sets of conductances constructed by the model differ from
trial to trial, although the final pattern of bursting is always similar
to that shown in Figure 1. Thus, there is a non-unique map between
maximal conductances and activity. The final set of conductances
depends on initial conditions and is variable, even though the pat-
tern of activity produced by the model is not.

A Model Network with Self-Regulating Conductances

Circuits of self-regulating neurons can self-assemble into func-
tional circuits. This can be illustrated using a simplified model of
the pyloric circuit of the crab stomatogastric ganglion (STG). The
pyloric rhythm of the STG consists of alternating bursts of activity
in several neurons, including the lateral pyloric (LP) and pyloric
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Figure 1. Self-assembly of a bursting model neuron (B) starting from dif-
ferent initial conditions (A). A and B represent the voltage traces at the
beginning and end of the self-tuning process. (Adapted from Liu et al.,
1998).

(PY) neurons, and the anterior burst (AB)/pyloric dilator (PD)
pacemaker unit. The model shown in Figure 2 is a three-neuron
circuit with individual neurons and synaptic connections similar to
those of the LP and PY neurons and the AB/PD unit of the STG.
Each model neuron consists of two compartments and has maximal
conductances that are regulated by activity as described in the pre-
vious section.

When isolated from each other, the individual AB/PD, LP, and
PY neurons of the model, like the neuron model shown in Figure
1, self-assemble their conductances. A novel feature of the circuit
model is apparent when a realistic pattern of fixed synaptic con-
nections is established between the model cells. In this case, the

Model

A Proctolin ON Stn intact
hu ol 0 e Lt a1 T

B Proctolin OFF Blocked sin

basbidoabite V11

Experimental

vn
AB/PD PD

C Recovery Recovery
e fen o e o e

ANNANAN nareo XA oo

Figure 2. Comparison of a network model and experimental data. A, Con-
trol conditions in the model (left) and experiment (right). There is a triphasic
motor pattern, revealed in the extracellular lvn recording. Intracellular PD
recordings are also shown. In the model, the AB/PD and LP neurons contain
a proctolin current. In the experiment, the modulatory inputs in the stn were
left intact. B, Immediately after the modulatory inputs are removed, rhyth-
mic activity is lost. Modulatory inputs are removed in the model by setting
the proctolin current to zero. In the experiment, impulse activity in the stn
was blocked to prevent the release of the neuromodulators. C, Activity
eventually resumes. In the model, the activity-dependent sensors in each
cell respond to the change in activity seen in B, and slowly modify the
conductances of each of the model neurons, resulting in the recovery of
rhythmic network activity, as occurred in the experimental case. (Adapted
from Golowasch et al., 1999.)

entire network self-assembles to generate a pattern of activity simi-
lar to the triphasic rhythm recorded in the intact STG, and it can
do so from any initial configuration of the maximal conductances
of the three neurons (Golowasch et al., 1999). Interestingly, the
intrinsic maximal conductances and responses properties of the in-
dividual model neurons are different if they self-assemble as a cou-
pled circuit rather than in isolation. When assembled in a circuit,
each of the model neurons ends up similar to its biological coun-
terpart when acutely isolated, and the entire network generates re-
alistic rhythmic activity. Thus, a cell-autonomous, activity-depen-
dent regulatory rule is sufficient to self-assemble an entire circuit,
at least in this example. It is not necessary to use any sensor that
monitors the output of the whole circuit. Rather, each neuron takes
care of its own activity, and the resultant circuit is tuned as a con-
sequence of each cell’s independent self-adjustment.

Comparison with Data from STG Organ Culture

Generation of the pyloric rhythm normally requires the presence
of neuromodulatory substances released from axon terminals of the
stomatogastric nerve (stn). If the stn is cut or blocked, rhythmic
activity slows considerably or ceases. However, if the preparation
is maintained over a period of days without stn modulatory input,
rhythmic activity eventually resumes (Golowasch et al., 1999).
Thus, it appears that prolonged removal of modulatory input alters
the configuration of the pyloric circuit, allowing it to operate in-
dependently of the modulators that it normally requires.

The right side of Figure 2 shows the basic experimental result.
Before blockade of the stn, the preparation shown on the right side
of Figure 2A displayed a robust pyloric rhythm. Immediately fol-
lowing blockade of action potential conduction along the stn, the
rhythm completely terminated (Figure 2B, right). However, when
the block was maintained for approximately 24 hours, rhythmic
pyloric activity resumed (Figure 2C, right). This recovery may be
due, at least in part, to changes in the intrinsic properties of the
neurons of the STG induced by the shift in activity following stn
blockade, which allows the pyloric network to operate in the ab-
sence of neuromodulatory input.

This hypothesis can be studied, using the model discussed in the
previous section, by including a proctolin conductance to simulate
the effects of neuromodulators released by stn axons. The peptide
proctolin is only one of many substances released from axon ter-
minals of the s, but it is a particularly potent modulator of the
pyloric network. Figure 2 compares the behavior of the model with
experimental results. Initially, the activity of the model network
with the proctolin current included (Figure 2A, left) was similar to
the pyloric activity of the experimental preparation with the s
intact (Figure 2A, right). To simulate the effects of blocking the
stn, the proctolin conductance in the LP and AB/PD neurons was
set to zero (Figure 2B, left). This immediately terminated the rhyth-
mic activity of the model network, duplicating the effect of block-
ing the st in the real preparation (Figure 2B, right). The suppres-
sion of the rhythm following the elimination of the proctolin
conductance caused the activity-dependent conductance regulation
mechanisms to modify the maximal conductances of the model
neurons. This resulted in restoration of the pyloric rhythm in the
model network after elimination of the proctolin conductance (Fig-
ure 2C, left), matching the natural resumption of the rhythm (Figure
2C, right).

It is important to stress that although the pyloric rhythms in
Figures 2A and 2C look similar, they are produced by quite differ-
ent cellular mechanisms. In Figure 2A, the existence of the rhythm
depends on the presence of the modulatory proctolin current, while
in Figure 2C the rhythms are produced in the absence of the
modulator.
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Discussion

The homeostatic regulation of neuronal circuits is an essential ele-
ment in their development and maintenance as functioning systems.
This is often ignored in the construction of neural networks, be-
cause fixed parameters are adjusted and used to control network
function. Biological systems do not have the luxury of using fixed
constants, because of the continual recycling of the proteins from
which they are built. As a consequence, biological networks are
typically more robust than artificial networks, and they are self-
assembling. The work described here is an attempt to incorporate
these features into neural network models.

The model studies described have revealed several interesting
consequences of activity-dependent regulation of conductances: (1)
Conductance regulation stabilizes a model neuron against activity
shifts caused by extracellular perturbations. (2) Intrinsic properties
of model neurons are modified by sustained shifts in activity. (3)
The regulation scheme described here, applied as a local regulator
of channel density in a multicompartment model, can produce a
realistic spatial distribution of conductances. (4) Regulation of the
activity of individual neurons in a network may, in some case, be
sufficient for the development and maintenance of a network pat-
tern requiring coordination across neurons.

One of the most significant messages provided by models of
conductance regulation is that the same mechanisms that develop
and maintain membrane conductances are likely to modify these
conductances in response to long-lasting changes in the activity of
the neuron. Furthermore, different neurons, or the same neuron at
different times, may exhibit similar characteristics and activity
while expressing membrane conductances at quite different levels.
These observations make it apparent that neuron models must be
much more flexible and dynamic than has conventionally been the
case.

Road Map: Biological Neurons and Synapses
Background: Ion Channels: Keys to Neuronal Specialization
Related Reading: Biophysical Mosaic of the Neuron

Adaptive Resonance Theory
Gail A. Carpenter and Stephen Grossberg

Introduction

Principles derived from an analysis of experimental literatures in
vision, speech, cortical development, and reinforcement learning,
including attentional blocking and cognitive-emotional interac-
tions, led to the introduction of adaptive resonance as a theory of
human cognitive information processing (Grossberg, 1976a,
1976b). The theory has evolved as a series of real-time neural net-
work models that perform unsupervised and supervised learning,
pattern recognition, and prediction (Levine, 2000; Duda, Hart, and
Stork, 2001). Models of unsupervised learning include ART 1 (Car-
penter and Grossberg, 1987) for binary input patterns and fuzzy
ART (Carpenter, Grossberg, and Rosen, 1991) for analog input
patterns. ARTMAP models (Carpenter et al., 1992) combine two
unsupervised modules to carry out supervised learning. Many var-
iations of the basic supervised and unsupervised networks have
since been adapted for technological applications and biological
analyses.
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Match-Based Learning, Error-Based Learning,
and Stable Fast Learning

A central feature of all ART systems is a pattern matching pro-
cess that compares an external input with the internal memory
of an active code. ART matching leads either to a resonant state,
which persists long enough to permit learning, or to a parallel
memory search. If the search ends at an established code, the
memory representation may either remain the same or incorpo-
rate new information from matched portions of the current input.
If the search ends at a new code, the memory representation
learns the current input. This match-based learning process is
the foundation of ART code stability. Match-based learning al-
lows memories to change only when input from the external
world is close enough to internal expectations, or when some-
thing completely new occurs. This feature makes ART systems
well suited to problems that require on-line learning of large and
evolving databases.
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Match-based learning is complementary to error-based learning,
which responds to a mismatch by changing memories so as to re-
duce the difference between a target output and an actual output,
rather than by searching for a better match. Error-based learning is
naturally suited to problems such as adaptive control and the learn-
ing of sensorimotor maps, which require ongoing adaptation to
present statistics. Neural networks that employ error-based learning
include backpropagation and other multilayer perceptrons (MLPs)
(Duda et al., 2001; see BACKPROPAGATION: GENERAL PRINCIPLES).

Many ART applications use fast learning, whereby adaptive
weights converge to equilibrium in response to each input pattern.
Fast learning enables a system to adapt quickly to inputs that occur
rarely but that may require immediate accurate recall. Remember-
ing details of an exciting movie is a typical example of learning on
one trial. Fast learning creates memories that depend on the order
of input presentation. Many ART applications exploit this feature
to improve accuracy by voting across several trained networks,
with voters providing a measure of confidence in each prediction.

Coding, Matching, and Expectation

Figure 1 illustrates a typical ART search cycle. To begin, an input
pattern I registers itself as a short-term memory activity pattern x
across a field of nodes F; (Figure 1A). Converging and diverging
pathways from F, to a coding field F,, each weighted by an adap-
tive long-term memory trace, transform x into a net signal vector
T. Internal competitive dynamics at F, further transform T, gen-
erating a compressed code y, or content-addressable memory. With

@ — b)

(©) (d)

I I

Figure 1. An ART search cycle imposes a matching criterion, defined by
a dimensionless vigilance parameter p, on the degree of match between a
bottom-up input I and the top-down expectation V previously learned by
the F, code y chosen by I. See text for discussion of A through D sequence.

strong competition, activation is concentrated at the F, node that
receives the maximal F; — F, signal; in this winner-take-all mode,
only one code component remains positive (see WINNER-TAKE-
ALL NETWORKS).

Before learning can change memories, ART treats the chosen
code as a hypothesis, which it tests by matching the rop-down ex-
pectation of y against the input that selected it (Figure 1B). Parallel
specific and nonspecific feedback from F, implements matching as
a real-time locally defined network computation. Nodes at F; re-
ceive both learned excitatory signals and unlearned inhibitory sig-
nals from F,. These complementary signals act to suppress those
portions of the pattern I of bottom-up inputs that are not matched
by the pattern V of top-down expectations. The residual activity
x* represents a pattern of critical features in the current input with
respect to the chosen code y. If y has never been active before, x*
= x = I, and F, registers a perfect match.

Attention, Search, Resonance, and Learning

If the matched pattern x* is close enough to the input I, then the
memory trace of the active F, code converges toward x*. The prop-
erty of encoding an attentional focus of critical features is key to
code stability. This learning strategy differentiates ART networks
from MLPs, which typically encode the current input rather than a
matched pattern, and hence employ slow learning across many in-
put trials to avoid catastrophic forgetting.

ART memory search begins when the network determines that
the bottom-up input I is too novel or unexpected with respect to
the active code to satisfy a matching criterion. The search process
resets the F, code y before an erroneous association to x* can form
(Figure 1C). After reset, medium-term memory within the F; = F,
pathways (Carpenter and Grossberg, 1990) biases the network
against the previously chosen node, so that a new code y* may be
chosen and tested (Figure 1D).

The ART matching criterion is determined by a parameter p
called vigilance, which specifies the minimum fraction of the input
that must remain in the matched pattern in order for resonance to
occur. Low vigilance allows broad generalization, coarse catego-
ries, and abstract memories. High vigilance leads to narrow gen-
eralization, fine categories, and detailed memories. At maximal
vigilance, category learning reduces to exemplar learning. While
vigilance is a free parameter in unsupervised ART networks, in
supervised networks vigilance becomes an internally controlled
variable that triggers a search after rising in response to a predictive
error. Because vigilance then varies across learning trials, the mem-
ories of a single ARTMAP system typically exhibit a range of
degrees of refinement. By varying vigilance, a single system can
recognize both abstract categories, such as faces and dogs, and
individual examples of these categories.

Supervised Learning and Prediction

An ARTMAP system includes a pair of ART modules, ART, and
ART, (Figure 2). During supervised learning, ART, receives a
stream of patterns {a™} and ART), receives a stream of patterns
{b®}, where b is the correct prediction given a™. An associative
learning network and a vigilance controller link these modules to
make the ARTMAP system operate in real time, creating the min-
imal number of ART, recognition categories, or hidden units,
needed to meet accuracy criteria. A minimax learning rule enables
ARTMAP to learn quickly, efficiently, and accurately as it con-
jointly minimizes predictive error and maximizes code compres-
sion in an on-line setting. A baseline vigilance parameter p, sets
the minimum matching criterion, with smaller p, allowing broader
categories to form. At the start of a training trial, p, = p,. A pre-
dictive failure at ART,, increases p, just enough to trigger a search,
through a feedback control mechanism called match tracking. A
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Figure 2. The general ARTMAP network for supervised learning includes
two ART modules. For classification tasks, the ART, module may be
simplified.

newly active code focuses attention on a different cluster of input
features, and checks whether these features are better able to predict
the correct outcome. Match tracking allows ARTMAP to learn a
prediction for a rare event embedded in a cloud of similar frequent
events that make a different prediction.

ARTMAP employs a preprocessing step, called complement
coding, which, by normalizing input patterns, solves a potential
category proliferation problem (Carpenter et al., 1991). Comple-
ment coding doubles the number of input components, presenting
to the network both the original feature vector and its complement.
In neurobiological terms, complement coding uses both on-cells
and off-cells to represent an input pattern. The corresponding on-
cell portion of a weight vector encodes features that are consistently
present in category exemplars, while the off-cell portion encodes
features that are consistently absent. Small weights in complemen-
tary portions of a category representation encode as uninformative
those features that are sometimes present and sometimes absent.

Distributed Coding

Winner-take-all activation in ART networks supports stable coding
but causes category proliferation when noisy inputs are trained with
fast learning. In contrast, distributed McCulloch-Pitts activation in
MLPs promotes noise tolerance but causes catastrophic forgetting
with fast learning (see LOCALIZED VERSUS DISTRIBUTED REPRE-
SENTATIONS). Distributed ART (dART) models are designed to
bridge these two worlds: distributed activation enhances noise tol-
erance, while new system dynamics retain the stable learning ca-
pabilities of winner-take-all ART systems (Carpenter, 1997). These
networks automatically apportion learned changes according to the
degree of activation of each coding node, which permits fast as
well as slow distributed learning without catastrophic forgetting.
New learning laws and rules of synaptic transmission in the re-
configured dART network (Figure 3) sidestep computational prob-
lems that occur when distributed coding is imposed on the archi-
tecture of a traditional ART network (Figure 1). The critical design
element that allows dART to solve the catastrophic forgetting prob-
lem of fast distributed learning is the dynamic weight. This quantity
equals the rectified difference between coding node activation and
an adaptive threshold, thereby combining short-term and long-term
memory in the network’s fundamental computational unit.
Thresholds 7 in paths projecting directly from an input field F|,
to a coding field F, obey a distributed instar (dInstar) learning law,

|F, CODE

SEARCH

F0 INPUT

Figure 3. A distributed ART (dART) architecture retains the stability of
WTA ART networks but allows the F, code to be distributed across arbi-
trarily many nodes.

which reduces to an instar law when coding is winner-take-all.
Rather than adaptive gain, learning in the F;, = F), paths resembles
the redistribution of synaptic efficacy (RSE) observed by Markram
and Tsodyks (1996) at neocortical synapses. In these experiments,
pairing enhances the strength, or efficacy, of synaptic transmission
for low-frequency test inputs, but fails to enhance, and can even
depress, synaptic efficacy for high-frequency test inputs. In the
dART learning system, RSE is precisely the computational dy-
namic needed to support real-time stable distributed coding.

Thresholds 7;; in paths projecting from the coding field F, to a
matching field F; obey a distributed outstar (dOutstar) law, which
realizes a principle of atrophy due to disuse to learn the network’s
expectations with respect to the distributed coding field activation
pattern. As in winner-take-all ART systems, dART compares top-
down expectation with the bottom-up input at the matching field,
and quickly searches for a new code if the match fails to meet the
vigilance criterion.

Discussion: Applications, Rules,
and Biological Substrates

ART and dART systems are part of a growing family of self-
organizing network models that feature attentional feedback and
stable code learning. Areas of technological application include
industrial design and manufacturing, the control of mobile robots,
face recognition, remote sensing land cover classification, target
recognition, medical diagnosis, electrocardiogram analysis, signa-
ture verification, tool failure monitoring, chemical analysis, circuit
design, protein/DNA analysis, three-dimensional visual object rec-
ognition, musical analysis, and seismic, sonar, and radar recogni-
tion (e.g., Caudell et al., 1994; Griffith and Todd, 1999; Fay et al.,
2001). A book by Serrano-Gotarredona, Linares-Barranco, and An-
dreou (1998) discusses the implementation of ART systems as
VLSI microchips. Applications exploit the ability of ART systems
to learn to classify large databases in a stable fashion, to calibrate
confidence in a classification, and to focus attention on those fea-
tural groupings that the system deems to be important based on
experience. ART memories also translate to a transparent set of IF-
THEN rules that characterize the decision-making process and may
be used for feature selection.

ART principles have further helped explain parametric behav-
ioral and brain data in the areas of visual perception, object rec-
ognition, auditory source identification, variable-rate speech and
word recognition, and adaptive sensorimotor control (e.g., Levine,
2000; Page, 2000). One area of recent progress concerns how the
neocortex is organized into layers, clarifying how ART design prin-
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ciples are found in neocortical circuits (see LAMINAR CORTICAL
ARCHITECTURE IN VISUAL PERCEPTION).

Pollen (1999) resolves various past and current views of cortical
function by placing them in a framework he calls adaptive reso-
nance theories. This unifying perspective postulates resonant feed-
back loops as the substrate of phenomenal experience. Adaptive
resonance offers a core module for the representation of hypothe-
sized processes underlying learning, attention, search, recognition,
and prediction. At the model’s field of coding neurons, the contin-
uous stream of information pauses for a moment, holding a fixed
activation pattern long enough for memories to change. Intrafield
competitive loops fixing the moment are broken by active reset,
which flexibly segments the flow of experience according to the
demands of perception and environmental feedback. As Pollen
(1999, pp. 15-16) suggests, “[I]t may be the consensus of neuronal
activity across ascending and descending pathways linking multi-
ple cortical areas that in anatomical sequence subserves phenom-
enal visual experience and object recognition and that may underlie
the normal unity of conscious experience.”

Road Maps: Learning in Artificial Networks; Vision
Related Reading: Competitive Learning; Helmholtz Machines and Sleep-
Wake Learning; Laminar Cortical Architecture in Visual Perception
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Adaptive Spike Coding

Adrienne Fairhall and William Bialek

Introduction

The meaning of any signal that we receive from our environment
is modulated by the context within which it appears. Our interpre-
tation of color, a spoken phoneme, or a patch of luminance depends
critically on its context. Although “context” may be a rather ab-
stract notion, it is often reasonable to understand the term as mean-
ing the statistical ensemble in which the signal is embedded. In-
terpreting a message requires both registering the signal itself and
knowing something about this statistical ensemble. The relevant
temporal or spatial ensemble depends on the task. The context may
be highly local; we interpret appropriately gradations of light and
dark in a scene where local brightness typically varies over orders
of magnitude (see FEATURE ANALYSIS). For tasks such as decision
making, the relevant statistics may reflect complex descriptions of
the world accumulated over long periods.

Neural representations at every level of information processing
should be similarly modulated by context. Information theoreti-
cally, this has measurable advantages: representations that appro-
priately take into account the statistical properties of the incoming
signal are more efficient. Since the 1950s it has been suggested that
efficiency is a design principle of the nervous system, allowing
neurons to transmit more useful information with their limited dy-
namic range (see OPTIMAL SENSORY ENCODING). Thus, one ex-
pects that learning the context and implementing this knowledge
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through coding strategy is inherent in the formation of represen-
tations.

Such adjustments occur over a wide range of time scales.
Through the genetic code, species adapt to environmental changes
over many generations. In a single individual, learning, imple-
mented through neural plasticity, continues throughout life in re-
sponse to experience of the world; perceptual learning is stored
even at low levels of neural information processing (see SOMA-
TOTOPY: PLASTICITY OF SENSORY MAPS). In the article, we discuss
even more rapid changes: neural adaptation, which we take to mean
reversible change in the response properties of neurons on short
time scales.

Since Adrian’s first observations of adaptation in spiking neu-
rons, it has been suggested that adaptation serves a useful function
for information processing, preventing a neuron from continuing
to transmit redundant information and increasing its responsiveness
to new stimuli. Within the simplified picture of a neuron as a com-
bination of linear filtering followed by a threshold, or a decision
rule for spiking, either or both of the two components—the filter
and the threshold function—may be adaptive functions of the input,
and both may implement the goal of increasing information trans-
mission. We will discuss both of these possibilities.

Neurons in every sensory modality have been shown to have
adaptive properties, and the mechanisms governing various types
of adaptation have been at least partially explored (Torre et al.,

TLFeBOOK



Adaptive Spike Coding 91

1995). Here we will discuss adaptation as the simplest form of
learning and memory. We describe recent experiments that explic-
itly aim to link the phenomenology of adaptive spike coding to its
functional relevance, in particular to improved information trans-
mission. A common feature of adaptation is the existence of mul-
tiple time scales. In examining mechanisms, we concentrate on
recent work suggesting that the long time scales retaining short-
term memory can be generated through single-cell properties.

Adaptive Coding

Adaptation of neural firing rate to stationary stimuli has been seen
in all modalities of the primary sensory system. In the visual sys-
tem, photoreceptors adapt to light level, and retinal ganglion cells
show rapid contrast gain control. The trade-offs and information
processing gains due to adaptation in insect eyes, relevant also for
the vertebrate retina, are discussed in Laughlin (1989). Mechano-
receptors in the somatosensory system have been classified into
four main types of cells, three of which are distinguished by the
time scales of their adaptation (rapidly and slowly adapting), and
these time scales in part determine the cells’ function: slowly adapt-
ing cells are implicated in the perception of spatial form and tex-
ture, while the experience of flutter and of motion is mediated by
rapidly adapting cells (Johnson, 2001). Thus, the dynamics of ad-
aptation can determine a neuron’s functional role.

Adaptation is not limited to primary receptors. In visual cortex,
V1 neurons show contrast adaptation, which is thought to occur
entirely at the level of cortex. The motion aftereffect, a familiar
phenomenon whereby following exposure to motion in one direc-
tion, the visual field appears to move in the opposite direction, is
thought to be due to adaptation of direction-sensitive neurons in
visual cortex.

Adaptation to a Distribution

Understanding the significance of adaptation for information pro-
cessing requires going beyond fixed stimuli. Recently, studies have
focused on adaptation to the stimulus distribution. This approach
is necessary to characterize coding information theoretically: the
evaluation of a coding strategy requires considering the entire en-
semble of inputs and outputs. In Smirnakis et al. (1997), retinal
ganglion cells were stimulated with dynamic movies of flickering
light intensity where the mean light level was fixed but the variance
was switched periodically from one value to another. The spike
rate of the neurons showed typical adaptive behavior (Figure 1):
following an increase in variance, the firing rate increased initially,
but gradually returned to a considerably lower level; a decrease in
variance led to a sudden dip in firing rate, with eventual recovery.

The experiments of Smirnakis et al. (1997) consider only firing
rate. However, the timing of single spikes can convey a great deal
of information about the stimulus. In the visual system of the fly,
in particular the motion-sensitive identified neuron H1 in the fly’s
lobula plate, much is understood about single-spike coding, pro-
viding an excellent opportunity to study the effects of adaptation
in detail.

HI1 responds to a simple stimulus, wide-field horizontal motion.
The neuron is characterized by its input/output relation P(spikels),
or the probability of a spike given the projection s of the dynamic
stimulus onto a relevant feature, determined by reverse correlation.

When the system has reached steady state through exposure to
a zero-mean, white noise velocity stimulus with a given variance
o2, its input/output relation is measured. The resulting curves, mea-
sured for a range of values of the variance, are shown in Figure 2.
Clearly, the input/output relation is not a fixed property of the sys-
tem but adapts to the distribution of inputs. Indeed, it does so in
such a way that the stimulus appears to be measured in units of its
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Figure 1. Firing rate of rabbit retinal ganglion cells in response to a flicker
stimulus where the variance of the light intensity / switches periodically in
time. (From Smirnakis S. M., et al., 1997, Adaptation of retinal processing
to image contrast and spatial scale, Nature, 386: 69-73. Copyright 1997,
Macmillan Publishers Ltd.; reprinted with permission.)
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Figure 2. (a) A set of input/output relations relating the probability of
spiking to the velocity stimulus, measured for stationary white noise stimuli
with different variances. (b) The curves differ only by a scale factor as is
shown by normalizing the stimulus by its standard deviation. In this case
the curves coincide. (From Brenner, N., Bialek, W., and de Ruyter van
Steveninck, R. R., 2001, Adaptive rescaling maximizes information trans-
mission, Neuron, 26:695-702. Copyright 2000, Elsevier Science, reprinted
with permission.)

standard deviation; when the curves are replotted with the stimulus
normalized by its RMS value, they superimpose. Thus, a scale fac-
tor A multiplying the stimulus, and thereby matching the dynamic
range of the response to the distribution of the inputs, is a degree
of freedom for the system. The value of 4 chosen by the system
achieves a maximum of information transmission (Brenner, Bialek,
and de Ruyter van Steveninck, 2000).

This is a simple form of learning: the system gauges the standard
deviation of the signal and modifies its response properties to adjust
its dynamic range to the range of inputs. The adjustment must take
some time, as the new distribution must be sampled from examples.
This sets fundamental physical and statistical limits for the sys-
tem’s estimate of the current variance. We can examine the time
scale for learning (Fairhall et al., 2001) by, as in the retina exper-
iments described earlier, switching periodically between two dis-
tributions. The firing rate shows the same pattern of adaptation as
was seen in the experiments of Smirnakis et al. (1997), but this
pattern need not correspond to the time scale for adjustment of the
input/output relation. Indeed, it was found that the scale factor of
the input/output relations, measured dynamically, adjusts much
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more rapidly than the relaxation time of the rate—on the order of
100 ms, compared with several seconds. This short time scale is
consistent with the limits imposed by estimates of noise from the
photoreceptors. One can verify that the dynamic adaptation of the
input/output relation maintains information transmission through
the system by computing how much information one can extract
from the spikes about the stimulus (see SENSORY CODING AND
INFORMATION TRANSMISSION and Fairhall et al., 2001). The infor-
mation rate recovers on comparably short time scales.

For the decoder, a potential drawback of adaptive coding is am-
biguity: it is necessary to know the context in order to interpret the
signal correctly. Thus, information about the context must be con-
veyed independently. Although this information might be carried
by other neurons in the network, here the information about the
ensemble is carried simultaneously by the same spike train: it can
be read off, either through the rate (taking into account the delays
due to the slow relaxation) or, more accurately, through the vari-
ance dependence of the statistics of spike time differences (Fairhall
et al., 2001). Thus, for the code of H1, spikes carry multiple mean-
ings: in absolute timing, as precise markers of single stimulus
events, and in relative timing, as indicators of the stimulus
ensemble.

Multiple Time Scales

The slow relaxation of the rate appears to be related to a commonly
observed property of adapting primary sensory neurons: a power
law decay of the firing rate r, r ~ ¢t~ «. More generally, in the case
just presented, the rate is close to the fractional derivative of the
logarithm of the stimulus variance. For each frequency w, fractional
differentiation shifts the frequency component by a constant phase,
and scales each component by <, where « is a power less than 1.
Some of the properties of a fractional differentiator are illustrated
in Figure 3. Several examples of a power law decay of the rate
following a step change in stimulus amplitude were collected by
Thorson and Biederman-Thorson (1974; Figure 4) and more have
since been observed; examples include various invertebrate mech-
anoreceptors and photoreceptors, mammalian carotid sinus baro-
receptors, and cat retinal ganglion cells.

We have noted a separation of time scales in the adaptation of
the input/output relation compared with the rate. This type of ad-
aptation on its own signals the existence of many time scales.
Power-law scaling implies the lack of a typical time scale or the
presence of multiple time scales. Fractional differentiation is non-
local; the response at time ¢, is affected by times t < f,. This is a
linear “memory” mechanism.

a stimulus b stimulus

response response

Figure 3. Illustration of some properties of a fractional differentiator with
exponent & = 0.3. (a) A step function stimulus leads to a power law de-
caying rate. In a log-log plot the curve would appear as a straight line with
slope —a. (b) A square wave leads to a similar adaptation curve as shown
in Figure 1.
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Figure 4. Four curves showing power law adaptation in response to a step
increase in stimulus in four different receptors: cockroach leg mechano-
receptor, in response to distortion of the tactile spine on the femur (curve
A); slit sensillum on the leg of the hunting spider in response to 1,200 Hz
sound (curve B); slowly adapting stretch receptor of the crayfish (curve C);
and increase of response over light-adapted level of Limulus lateral-eye
eccentric cell to an increase in light intensity (curve D). (Examples from
Thorson, J., and Biedermann-Thorson, M., 1974, Distributed relaxation
processes in a sensory adaptation, Science, 183:161-172. Copyright 1974,
American Association for the Advancement of Science; reprinted with
permission.)

Such adaptation is particularly interesting both because it is so
prevalent and because it may have an important role in optimizing
information transmission. Fractional-differentiation-like behavior
is observed in fly photoreceptors, and in that case, the exponent of
the fractional differentiator appears to be matched to the spectrum
of natural stimuli (van Hateren and Snippe, 2001). Thus the effect
of the transformation is to whiten the spectrum of natural signals.
Because many natural stimuli have power-law characteristics, it is
intriguing to speculate that fractional differentiation at the sensory
periphery may be a general neural mechanism for whitening input
statistics.

Mechanisms

Adaptation requires retaining memory of activity over extended
time scales. These long time scales can arise from a number of
sources. Intracellular calcium concentration has been identified as
playing an important role in information processing, acting as a
slowly changing “integrator” of activity. Other forms of adaptation,
particularly the power-law-like behavior discussed in the previous
section, are also likely to be a property of single cells rather than
of the network. Recent biophysical studies show that membrane
dynamics can have long time scales that retain memory of the his-
tory of stimulation/activity over hundreds of seconds (Marom,
1998). This could be brought about either by the modification of
intrinsic properties or by intrinsic properties that have built-in long
time scales through state-dependent inactivation (Turrigiano, Mar-
der, and Abbott, 1996; Marom, 1998).

Calcium as an Integrator of Activity

Each spike introduces a roughly constant amount of calcium into
the cell through voltage-dependent Ca®>* channels. The Ca®* con-
centration then decays slowly. Thus, [Ca?*] can be modeled as a
leaky integrator of activity, with a decay time scale of ca. 100 ms.
This calcium signal can allow activity-dependent regulation of sub-
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sequent neural activity through the modification of conductances
(see ACTIVITY-DEPENDENT REGULATION OF NEURONAL CONDUC-
TANCES).

Recent evidence indicates that single-cell properties may con-
tribute to contrast adaptation in cortex (Sanchez-Vives, Nowak, and
McCormick, 2000). Previous work has shown that contrast adap-
tation is associated with hyperpolarization of the membrane poten-
tial in cat area 17 neurons. By stimulating the neurons directly with
injected current, effects similar to contrast adaptation are seen
(though less dramatically than to real visual input). This suggests
that these effects can be induced through the modulation of intrinsic
cell properties; the activation of Ca®*- and Na*-dependent potas-
sium conductances is indicated.

State-Dependent Channel Dynamics

In some cases the relevant dynamics may be due to the complex
behavior of the channels themselves. Recently it has become clear
that the dynamics of inactivation provide the membrane with the
possibility for extended history dependence (Marom, 1998).

A simplified picture of the gating of voltage-gated ion channels
is a three-state scheme:

Ce0oal (D

where channels can be either closed (C), open (O), or inactivated
(D). Generally, the transition between closed and open is voltage-
dependent and rapid, on the order of the duration of an action po-
tential. The transition between open and inactivated, on the other
hand, is voltage-independent and can have very long time scale
dynamics. Intriguingly, studies in vitro show that some sodium
channel types have inactivation rates that scale with the duration
of the input (Marom, 1998), providing time scales of up to several
minutes. The precise mechanism underlying this large variety of
time scales is not yet well understood; it is hypothesized that the
system cascades through a multiplicity of inactivation states. Ear-
lier theoretical work has shown that the coupling of many states
leads to a scaling relation between the duration of activity and the
rate of recovery from inactivation.

In a step closer to a realistic preparation, the dynamic clamp was
applied to cultured stomatogastric ganglion neurons to add an ef-
fective slowly inactivating potassium current (Turrigiano et al.,
1996). As had been observed previously, this produced long delays
to firing during depolarization, and an increase in excitability with
a time scale much longer than the duration of the input. Further,
the slow channel dynamics produced a long-lasting effect on the
firing properties of the neuron.

In vivo, the contribution of slowly inactivating sodium channels
to power-law-like adaptation has been suggested. Mechanosensory
neurons in the cockroach femoral tactile spine have been shown to
display power-law adaptation. From intracellular measurements,
Basarsky and French (1991) found that the spike rate adaptation is
due to cumulative slowing of the recovery of the membrane poten-
tial between spikes. Previous work had demonstrated that calcium
channel blockers or blockers of Ca®*-activated K* channels did
not reduce adaptation, while modifying sodium channel inactiva-
tion did.

These mechanisms might be seen as primitives for short-term
“learning and memory.”

Modeling

Historically, attempts to model adaptation have considered the pro-
cess to involve a dynamic threshold. More recently, modeling ap-
proaches have taken a functional perspective on the outcome of
adaptation and have proposed algorithms whereby the conduc-
tances may adjust to provide the cell with desirable properties, such

as approximately constant activity (see ACTIVITY-DEPENDENT
REGULATION OF NEURONAL CONDUCTANCES). Closer to our earlier
discussion, Stemmler and Koch (1999) derive a learning rule for
conductances that maximizes the mutual information between input
and output, where the output is taken to be the neuron’s firing rate.
The learning rule adjusts conductances at every new presentation
of the stimulus, subject to biologically plausible constraints. Under
this learning rule, a realistic conductance-based model neuron was
indeed able to learn a changing distribution and adjust its firing
statistics accordingly. The time scales treated were orders of mag-
nitude longer than those observed experimentally in Fairhall et al.
(2001) and predicted theoretically from statistical considerations.
Experimental evidence is still required to determine whether such
a model is realistic.

As noted, many adaptation processes in sensory receptors follow
a power-law relaxation. Assuming that most elementary processes
involve a single time scale, with exponential dynamics, Thorson
and Biederman-Thorson (1974) proposed that power laws may
arise from a superposition of many elementary processes with a
wide range of time scales. From the definition of the gamma
function,

1 B
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a power law may be generated by a weighted sum of exponentials
with a range of time scales. This distribution was considered to be
generated through geometric factors, such as the inhomogeneous
distribution of elements within the receptor.

This model has met with some skepticism because of the re-
quirements both for a continuous distribution of time scales and
for these to be present in the appropriate proportions. It has been
noted that power-law-like behavior results from much less stringent
conditions: the superposition of only a few exponentials can pro-
duce a power law over the decade or two normally available to
experiment. However, recent experimental advances, outlined in
the previous section, may provide a better underpinning for the
derivation of power-law adaptation from membrane mechanisms.

Adaptation of Receptive Fields

As noted in the Introduction, a neuron can be modeled as a com-
bination of feature extraction (linear filtering) and a nonlinear de-
cision function (or threshold). Although we have discussed the ef-
fects of adaptation on the nonlinear decision function, adaptation
can also affect the feature that causes the neuron to spike: the re-
ceptive field can depend on the ensemble of inputs. Although this
result had been frequently observed in work on invertebrate vision,
recent experiments demonstrate analogous results for cortical re-
ceptive fields. Sceniak et al. (1999) show that the extent of spatial
summation implemented by neurons in V1 depends adaptively on
contrast; this has parallels in the adaptation of filters in retina
(Laughlin, 1989). Theunissen, Sen, and Doupe (2000) found that
the spatiotemporal receptive fields of neurons in auditory cortex
showed a strong dependence on the stimulus ensemble. This is a
natural consequence of neural nonlinearity, but such a dependence
is also necessary for optimal information processing.

Discussion

The ubiquity of adaptation throughout the nervous system should
be proof of its fundamental importance. Although the phenome-
nology of adaptation, particularly to constant stimuli, has been ex-
tensively explored, recent experimental and theoretical approaches
have made contact with the principles of information theory in
order to evaluate adaptive coding. For fly motion-sensitive neurons,
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it was found that the coding strategy of the system adapts rapidly
and continuously to track dynamic changes in the statistics of the
stimulus.

We have discussed a variety of mechanisms that may implement
adaptive coding at the level of single cells. Although it is likely
that systems will implement such important behavior at many lev-
els, it is appealing that the simplest elements of neural computation
have the power to carry out dynamic aspects of information
processing.

Road Map: Neural Coding
Related Reading: Population Codes; Sensory Coding and Information
Transmission
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Amplification, Attenuation, and Integration

H. Sebastian Seung

Introduction

Differential equations such as

™ X = f<2 Wix; + bi) (1
J

have long been used to model networks of interacting neurons (Er-
mentrout, 1998; PHASE-PLANE ANALYSIS OF NEURAL NETS). The
activity of neuron i is represented by a single dynamical variable
x;, and its input-output characteristics by a single transfer function
f- There are more biophysically realistic descriptions of neural net-
works that include many dynamical variables per neuron, in order
to explicitly model dendritic integration, action potential genera-
tion, and synaptic transmission. Nevertheless, simplified models
like that in Equation 1 have been useful for understanding how the
computational properties of neural networks are related to their
synaptic organization.

The parameter W;; in Equation 1 represents the strength of the
synapse from neuron j to i. These synapses are termed recurrent,
as they connect to other neurons in the same network. Feedforward
synaptic input from outside the network is implicit in the bias b,.
The feedforward synapses could be made explicit by writing
b; = b} + 3,V,.z,, where z, are input neuron activities, V,, the
strengths of the feedforward synapses, and b? any intrinsic ten-
dency of neuron i to be active. But the feedforward connections
will be left implicit in the following, so as to focus on the com-
putational role of the recurrent connections.

Accordingly, the biases b; in Equation 1 will be regarded as the
inputs to the network, while the activities x; are the outputs. If there
were no recurrent synapses (W; = 0 for all i and j), then each
neuron { would respond by low-pass filtering the signal f(b;) with
time constant . When there are recurrent synapses, a general char-

acterization of the response properties of a network is difficult, but
the situation is greatly simplified when nonlinearity is neglected.
Putting the transfer function f(x) = u in Equation 1 yields the linear
network

g

™o+ x = > Wx, + b, )
J

which can be completely analyzed using the tools of linear systems
theory. The modest goal of this article is to describe some prop-
erties of linear networks and give examples of their application to
neural modeling.

In particular, the focus is on the role of recurrent synaptic con-
nectivity. Provided that they do not lead to instability, the recurrent
connections alter both the gain and speed of response to feedfor-
ward input. Either they amplify and slow down responses to feed-
forward input, or they attenuate and speed up responses. Both ef-
fects can occur simultaneously in the same network, as can be seen
by mathematically transforming the network of interacting neurons
into a set of noninteracting eigenmodes. The effect of the recurrent
synapses generally varies from mode to mode.

Besides amplification and attenuation, a linear network can also
carry out the operation of temporal integration, in the sense of
Newtonian calculus. This happens when the strength of feedback
is precisely tuned for an eigenmode, so that its gain and time con-
stant diverge to infinity.

Admittedly, the neglect of nonlinearity is a step away from bio-
logical realism. Nevertheless, linear models are important because
they give insight into the local behavior of nonlinear networks,
which can often be linearly approximated in the vicinity of fixed
points. And the linear computations of amplification, attenuation,
and integration have been ascribed to a number of brain areas.
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Autapse

The simplest example of a recurrent synapse is a single neuron
with a synapse onto itself, or autapse, in the terminology of neu-
rophysiology. For this case, the dynamics (Equation 2) takes the
form

™+ x=Wx + b 3)

The autapse has strength W and is said to be excitatory if W > 0
and inhibitory if W < 0. The example is not meant to be a realistic
model of a biological autapse; it is only a simple illustration of
some of the effects of recurrent synaptic connections. The param-
eter W will also be called the strength of feedback, in the termi-
nology of engineering. Without feedback (W = 0), the neuron acts
as a low-pass filter of input b with time constant . When the effect
of feedback is considered, the first distinction that has to be made
is between the unstable W > 1 and the stable W < 1 cases. (Dis-
cussion of the borderline W = 1 case is postponed until later.)

If W > 1, the autapse is unstable, as can be seen by solving
Equation 3 for input b that is constant in time. The solution diverges
exponentially to infinity, because the feedback is so strong that it
leads to runaway instability. Note that in a more realistic model,
the growth of this runaway instability would eventually be limited
by nonlinearity, but in the idealized linear model (Equation 3),
divergence to infinity is possible.

If W < 1, the autapse is stable, and the dynamics (Equation 3)
can be rewritten in the form

L i4x= L @
T—w T T T ow

From this formula can be read two numbers that characterize the
autapse: the steady-state gain, and the time constant of response.
The gain is operationally defined by holding the input constant and
allowing the output to relax to the steady-state value x,, = b/(1 —
W). Then the steady-state gain, defined as the ratio of output x.. to
input b, is 1/(1 — W). By this definition, the gain is exactly unity
in the case of no feedback (W = 0). Positive (W > 0) and negative
(W < 0) feedback have different effects. Positive feedback ampli-
fies, boosting the gain to a value greater than 1. Negative feedback
attenuates, making the gain less than 1.

Positive and negative feedback also have opposite effects on the
speed of response. The time constant of the exponential relaxation
to the steady state is /(1 — W). In the case of no feedback, this is
equal to the fundamental time constant 7. But positive feedback
lengthens the time constant, while negative feedback shortens it.
This means that there is a trade-off between amplification and
speed, sometimes known as the gain-bandwidth trade-off. Intui-
tively speaking, the trade-off arises because feedback amplification
requires that the signal circulate in the feedback loop, so that more
amplification requires more time.

In summary, a feedback loop containing a perfectly linear ele-
ment behaves in a simple way. Positive feedback (W > 0) amplifies
and slows down response, assuming that it doesn’t lead to insta-
bility. Negative feedback (W < 0) attenuates and speeds up
response.

The idea of amplification by positive feedback has been promi-
nent in a number of models of primary visual cortex (Douglas et
al., 1995). Neurons in layer 4 receive both feedforward drive from
the thalamus and recurrent input from other cortical neurons. It has
been proposed that the recurrent interactions amplify the responses
to feedforward input. To test this idea, Ferster and colleagues re-
corded from layer 4 neurons. They inactivated corticocortical in-
puts both by cooling (Ferster, Chung, and Wheat, 1996) and elec-
trical stimulation (Chung and Ferster, 1998). In both cases, they
measured a two- or threefold reduction in the amplitude of cortical

responses to visual stimulation, which was interpreted as a loss of
amplification by positive feedback.

The above discussion omitted the special case of W = 1, which
is the borderline between stability and instability. For W # 1, there
was exactly one steady state, which was either stable or unstable,
depending on whether W was less than or greater than 1. In contrast,
if W = 1, there is not a unique steady state. The number of steady
states depends on b. There are infinitely many if » = 0, and none
at all if b # 0. To understand the case of non-zero b, it is helpful
to return to Equation 3, which reduces to 7x = b. In other words,
the response x is the time integral of b. Therefore, a linear autapse
can act as an integrator, if the strength of feedback is precisely
tuned (Seung et al., 2000). Variants of this idea have been used to
model neural integrators, brain areas that integrate their inputs in
the sense of Newtonian calculus (Robinson, 1989).

Mutually Inhibitory Pair

While the autapse illustrates the gain-bandwidth trade-off in feed-
back amplification, it involves only a single neuron, and cannot
capture genuine population behaviors. A more interesting example
consists of two linear neurons with mutual inhibition:

™+ x; = —fx, + by %)
Ty, + X, = —fx; + b, 6)

The parameter £ is assumed to be positive, so that the interaction
is inhibitory. This dynamics is more complex than Equation 3 be-
cause it involves two differential equations that are coupled to each
other. Luckily, it turns out that the equations can be decoupled by
adding and subtracting them.

Adding the two equations yields an equation for the common
mode x. = x; + X,

d
TE(M +x) + (g +x) = =0+ x) + (b + b)) (T

Comparison with Equation 3 reveals that the common mode be-
haves like an autapse with negative feedback. Therefore the com-
mon mode attenuates its input b; + b, with steady-state gain 1/(1
+ ) and time constant 7/(1 + f).

Similarly, subtracting the two equations yields an equation for
the differential mode x;, = x; — x5,

d
T —x) + (5 —x) = B — x) + (b — b)) (8

dt
The differential mode behaves like an autapse with positive feed-
back. If f > 1, the differential mode is unstable. If f < 1, then the
differential mode amplifies its input b; — b, with steady-state gain
1/(1 — p) and time constant /(1 — f).

To recapitulate, transforming from (x;, x,) to (x., x,) formally
decoupled the mutually inhibitory pair of neurons into two “virtual”
autapses. Note that the transformation is reversible, as x; and x,
can be reconstructed from the common and differential modes, e.g.,
xX; = (x, + xp)/2.

A striking aspect of this example is that mutual inhibition has
completely opposite effects on the common and differential modes.
For the common mode, inhibition mediates negative feedback,
which leads to attenuation. But inhibition mediates positive feed-
back for the differential mode, which leads to amplification.

The general lesson to be drawn is that no direct correspondence
exists between the sign of synaptic connections and the sign of
feedback. This is because a synapse is local, belonging to just two
neurons. In contrast, feedback strength is global, belonging to a
distributed mode of the network. As will be described below, the
feedback strength is given in general by the eigenvalues of the
synaptic weight matrix W. The autapse is a special exception for
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which the sign of the synaptic connection directly corresponds to
the sign of feedback, but this does not hold true in general.

The idea that inhibition between neurons can amplify differences
has been used to explain the fact that visual systems are more
sensitive to relative luminance, or contrast, than to absolute lumi-
nance. For example, the Limulus retina consists of visual receptors
that are topographically organized in a two-dimensional network
and interact via lateral inhibition. Measurements of retinal output
reveal enhancement of luminance differences, a fact that has been
successfully explained using network models that are generaliza-
tions of the mutually inhibitory pair considered here (Hartline and
Ratliff, 1972).

The special case f = 1 is also of interest. It is the borderline of
stability for the differential mode. If b, — b, is zero, then the
differential mode x; — x, is constant in time, according to Equation
8, while the common mode x; + x, converges exponentially to the
value (b, + b,)/2. This is a simple example of a line attractor, a
line of fixed points to which all trajectories are attracted (Seung,
1996). More complex nonlinear network models with approximate
line attractors have been used to model the phenomenon of persis-
tent neural activity (Seung, 1996; Zhang, 1996).

Note that having a continuous set of fixed points is an unusual
situation, requiring the precise tuning of the inhibitory strength /8
and the differential input b, — b,. When b; — b, is non-zero, then
it is integrated by the differential mode. In this case, inhibitory
interactions yield an integrator, in contrast to the autapse, which
requires excitatory feedback to integrate. Robinson et al. proposed
that lateral inhibition is the mechanism of the oculomotor neural
integrator, which converts vestibular and other velocity-coded in-
puts into eye position outputs (Cannon, Robinson, and Shamma,
1983).

General Network

For a general network of N neurons, the effects of feedback can be
understood via eigensystem analysis. It is convenient to rewrite the
dynamics in Equation 2 in matrix-vector form as

d
T 7 x + x Wx + b )

where x and b are vectors and W is the synaptic weight matrix.

Suppose that the weight matrix can be factorized as W = SAS ™!,
where A is a real diagonal matrix and S is a real invertible matrix.
A sufficient condition for a real diagonalization is that the weight
matrix W be symmetric, but this is not a necessary condition. The
diagonal entries of A are the eigenvalues of W. The columns of §
are the right eigenvectors of W, and the rows of S™! are the left
eigenvectors.

Recall that transforming to the common and differential modes
simplified the dynamics of the mutually inhibitory pair. The ana-
logue here is to change from x and b to

= 85"'% b=5"

These vectors can be used to express x and b as linear combinations
of the right eigenvectors, x = S%¥ and b = Sb.

The transformation of Equation 9 is effected by multiplying with
s

d .
Tzf+f=S71Wx+b (10)
= S7'WSt + b (11)

= Af + b (12)

Writing out the last expression component by component yields

where /, is the ath diagonal element of A, or equivalently the ath
eigenvalue of W. This is a great simplification: the network (Equa-
tion 9) of N interacting neurons has been transformed into N non-
interacting “virtual” autapses. Each autapse has feedback with
strength given by the eigenvalues 1,. Assuming that the eigenval-
ues are less than or equal to 1, each autapse can perform the opera-
tions of amplification, attenuation, or integration.

Discussion

In this article, some effects of recurrent synaptic connectivity on
linear networks were characterized. The autapse example demon-
strated that there is a gain-bandwidth trade-off in amplification and
attenuation by feedback, and the possibility of integration when
feedback is precisely tuned. The mutually inhibitory pair illustrated
the decoupling of an interacting network into “virtual” autapses,
and also illustrated that the sign of feedback is not directly related
to the sign of synaptic connections. Such a decoupling is generally
possible for any synaptic weight matrix W that is diagonalizable
with all real eigenvalues.

More generally, the eigenvalues (and eigenvectors) are complex
numbers. When an eigenvalue of W has a non-zero imaginary part,
the corresponding eigenmode exhibits oscillatory behavior. Ac-
cordingly, linear analyses have been used to explain the existence
of oscillations in some neural network models (Li and Hopfield,
1989).

It is natural to ask whether the concepts introduced above have
any relevance for nonlinear neural networks. A simple way of mod-
eling nonlinearity is to introduce a threshold for activation by
choosing f(x) = max{x, 0} for the transfer function in Equation 1.
Because the resulting dynamics are piecewise linear, eigenvalues
and eigenvectors are still essential for mathematical analysis (Had-
eler and Kuhn, 1987; Hahnloser et al., 2000), but the threshold
nonlinearity leads to a richer variety of dynamical behaviors. A full
discussion of threshold linear networks is beyond the scope of this
article, but let us briefly reconsider the example of a mutually in-
hibitory pair of neurons presented with inputs that are constant in
time. For linear neurons, the mutual inhibition caused differences
in input to be amplified in the steady-state response. If the neurons
are instead threshold linear, winner-take-all behavior can result for
some choices of model parameters. Then only a single neuron is
active at steady state, no matter how small the difference in inputs
may be (Amari and Arbib, 1977). As in the purely linear case, the
difference in steady-state outputs is greater than the difference in
inputs. However, this behavior cannot be explained in terms of a
simple linear amplification. For a more detailed explanation, see
WINNER-TAKE-ALL NETWORKS.

Road Map: Dynamic Systems
Background: 1.3. Dynamics and Adaptation in Neural Networks
Related Reading: Pattern Formation, Neural; Winner-Take-All Networks
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Analog Neural Networks, Computational Power

Bhaskar DasGupta and Georg Schnitger

Introduction

The last two decades have seen a surge in theoretical techniques to
design and analyze the performance of neural nets as well as novel
applications of neural nets to various applied areas. Theoretical
studies on the computational capabilities of neural nets have pro-
vided valuable insights into the mechanisms of these models.

In subsequent discussion, we distinguish between feedforward
neural nets and recurrent neural nets. The architecture of a feed-
forward net N is described by an interconnection graph and the
activation functions of N. A node (processor or neuron) v of N
computes a function

k
yv(E a, i, + bv) (1)
i=1

of its inputs u,, . . . , u,,. These inputs are either external (i.e.,
representing the input data) or internal (i.e., representing the out-
puts of the immediate predecessors of v). The coefficients a,,,,, (re-
spectively b,) in Equation 1 are the weights (respectively threshold)
of node v, and the function y, is the activation function of v. No
cycles are allowed in the interconnection graph, and the output of
designated nodes provides the output of the network. A recurrent
neural net, on the other hand, allows cycles, thereby providing po-
tentially higher computational capabilities. The state u, of node v
in a recurrent net is updated over time according to

k
ut + 1) = yv(E a,, u,(®) + bv) )
i=1

In this article, we emphasize the exact and approximate repre-
sentational power of feedforward and recurrent neural nets. This
line of research can be traced back to Kolmogorov (1957), who
essentially proved the first existential result on the (exact) repre-
sentation capabilities of neural nets (cf. UNIVERSAL APPROXIMA-
TORS). The need to work with “well-behaved” activation functions,
however, enforces approximative representations of target func-
tions, and the question of the approximation power (with limited
resources) becomes fundamental.

The representation power of neural nets has immediate conse-
quences for learning, since we cannot learn (approximately) what
we cannot represent (approximately). On the other hand, the com-
plexity of learning increases with increasing representational power
of the underlying neural model, and care must be exercised to strike
a balance between representational power, on the one hand, and

learning complexity, on the other. The emphasis of this article is
on representational power, i.e., what can be represented with net-
works using a given set of activation functions, rather than on learn-
ing complexity.

In this article, we discuss only a small subset of the literature on
this topic. After introducing the basic notation, we discuss the rep-
resentational power of feedforward and recurrent neural nets. There
follows a brief discussion of networks of spiking neurons and their
relation to sigmoidal nets, with a summary statement.

Models and Basic Definitions

In this section we present the notation and basic definitions used
in subsequent sections. For real-valued functions we measure the
approximation quality of function f by function g (over a domain
D C R") by the Chebychev norm,

If = glp = sup{lf(x) — gl : x € D}

(the subscript D will be omitted when clear from the context). To
emphasize the selection of activation functions, we introduce the
concept of I'-nets for a class I" of real-valued activation functions.
A T-net N assigns only functions in I" to nodes. We assume that
each function in I is defined on some subset of R, and require that
I" contain the identity function by default (thus allowing weighted
additions as node outputs). Finally, we restrict our attention to I'-
nets with a single output node.

The depth of a feedforward net N is the length of the longest
path of the (acyclic) interconnection graph of N, and the size of N'
is the number of nodes. The hidden nodes are all nodes excluding
all input nodes and the output node.

The class of important activation functions is rather large and
includes, among others, the binary threshold function

0 ifx=0,
He) = {1 if x > 0,
the cosine squasher, the Gaussian, the standard sigmoid a(x) = 1/
(1 + e™%), the hyperbolic tangent, (generalized) radial basis func-
tions, polynomials and trigonometric polynomials, splines, and ra-
tional functions.
Care must be exercised when using a neural net with continuous
activation functions to compute a Boolean-valued function, since
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in general, the output node computes a real number. A standard
output convention in this case is as follows (see Maass, 1994):

Definition 1. A T'-net N' computes a Boolean function F: R" —
{0, 1} with separation ¢ > 0 if there is some ¢ € R such that for
any input x € R”, the output node of N' computes a value that is
at least t + ¢ if F(x) = 1, and at most t — & otherwise.

Recurrent neural nets, unlike their feedforward counterparts, al-
low loops in their interconnection graph. Certainly asynchronous
recurrent nets are an important neural model, but we assume in
Equation 2 that all nodes update synchronously at each time step.
Typically, besides internal and external data lines, some of the in-
puts and outputs are validation lines, indicating if there is any input
or output present at the time.

Computational Power of Feedforward Nets

The simple perceptron as a feedforward neural net with one layer
has only limited computational abilities. For instance, if we restrict
ourselves to one-node simple perceptrons and assume monotone,
but otherwise arbitrary, activation functions, then the XOR function
XOR(xy, x,) = x; © x, cannot be computed.

On the other hand, if we choose the binary threshold function #
as activation function, then the learning problem for simple per-
ceptrons is efficiently solvable by linear programming. This posi-
tive result is also extendable to a large class of activation functions,
including the standard sigmoid. But simple perceptrons should not
be underestimated, since the problem of approximately minimizing
the missclassification ratio (when the target function is not repre-
sentable as a simple perceptron) has been shown to be (probably)
intractable (Arora et al., 1997).

However, the power of feedforward nets increases significantly
when networks of more layers are considered. In fact, a result of
Kolmogorov (refuting Hilbert’s 13th problem for continuous func-
tions), when translated into neural net terminology, shows that any
continuous function can be computed exactly by a feedforward net
of depth 3.

Theorem 1 (Kolmogorov, 1957). Let n be a natural number. Then
there are continuous functions 4y, . . ., hy, . : [0, 1] = R such
that any continuous function f: [0, 1]" = R can be represented as

2n+1 n
fo = X g(E a,-h,-oc,»))

j=1

i=

where the function g as well as the weights «;, . . . , @, depend

on f.

But, unfortunately, the function g depends on the function to be
represented. Moreover, the functions h; are nondifferentiable and
hence cannot be used by current learning algorithms. For further
discussion, we refer the reader to Poggio and Girosi (1989).

However, if we only allow everywhere differentiable activation
functions (such as the standard sigmoid), then we can only repre-
sent everywhere differentiable target functions. Thus, one has to
relax the requirement of exact representation, and demand only that
the approximation error (in an appropriate norm) is small. Applying
the Stone-Weierstrass theorem one obtains, for instance, (trigono-
metric) polynomials as universal approximators, and hence we get
neural nets with one hidden layer as universal approximators.

Cybenko (1989) considers activation functions from the class of
continuous discriminatory functions. This class contains, for in-
stance, sigmoidal functions, i.e., continuous functions ¢ satisfying

1 ast— +>
0 ast—> —

a(t) — {

Theorem 2. Let o be a continuous discriminatory function and let
f: 10, 11" = R be a continuous target function. Then, for every ¢
> 0 and for sufficiently large N (where N depends on the target
function f and ¢), there exist weights «;;, w; and thresholds ﬁ_,-, such
that | f — gl <e where g = = w, - o(Z{_, a; - x; + ).

In particular, one hidden layer suffices to approximate any con-
tinuous function by sigmoidal nets within arbitrarily small error.
Further results along this line are shown by Hornik; Stinchcombe
and White; Funahashi, Moore, and Poggio; and Poggio and Girosi,
to mention just a few. Whereas most arguments in the above-
mentioned results are nonconstructive, Carroll and Dickinson de-
scribe a method using Radon transforms to approximate a given L,
function to within a given mean square error.

Barron (1993) discusses the approximation quality achievable
by sigmoidal nets of small size. In particular, let B7(0) denote the
n-dimensional ball with radius r around 0 and letf : B7(0) = R be
the target function. Assume that F is the magnitude distribution of
the Fourier transform of f.

Theorem 3 (Barron, 1993). Let g be any sigmoidal function. Then
for every probability measure ¢ and for every N there exist weights
a;;, w; and thresholds f;, such that

N n 2
f (f(x) —S w0 (E o x + ﬁ,)) u(dv)
IB1(0) j=1 i=1
_Qfr -l Fdw)?
o N

Set Cy = Jr+ lwl - F(dw), and the approximation error achievable
by sigmoidal nets of size N is bounded by (2 - Cf)Z/N. However,
C; may depend superpolynomially on n, and the curse of dimen-
sionality may strike. As an aside, the best achievable squared error
for linear combinations of N basis functions will be at least Q(C,/
n - N') for certain functions f (Barron, 1993), and hence neural
networks are superior to conventional approximation methods from
this point of view.

The results just enumerated show that depth-2 feedforward nets
are universal approximators. This dramatically increased comput-
ing power, however, has a rather negative consequence. Kharitonov
(1993) showed that under certain cryptographic assumptions, no
efficient learning algorithm will be able to predict the input-output
behavior of binary threshold nets with a fixed number of layers.
This result holds even when experimentation is allowed, that is,
when the learning algorithm is allowed to submit inputs for
classification.

In the next section, we compare important activation functions
in terms of their approximation power, when resources such as
depth and size are limited. The following section discusses net-
works of spiking neurons. Lower size bounds for sigmoidal nets
are mentioned when we compare networks of spiking neurons and
sigmoidal nets.

Efficient Approximation by Feedforward Nets

Our discussion will be informal, and we refer the reader to
DasGupta and Schnitger (1993) for details. Our goal is to compare
activation functions in terms of the size and depth required to obtain
tight approximations. Another resource of interest is the Lipschitz
bound of the net, which is a measure of the numerical stability of
the circuit. Informally speaking, for a net N to have Lipschitz-
bound L, we first demand that all weights and thresholds of N be
bounded in absolute value by L. Moreover, we require that each
activation function of N have (the conventional) Lipschitz-bound
L on the inputs it receives. Finally, the actually received inputs
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have to be bounded away from regions with higher Lipschitz
bounds.

We formalize the notion of having essentially the same approx-
imation power.

Definition 2. Let I'| and I', be classes of activation functions.

(a) We say that I', simulates I'; (denoted by I'} = I',) if and only
if there is a constant k = 1 such that for all I';-nets C, of size
at most s, depth at most d, and Lipschitz bound 2°, there is a
I',-circuit C, of size at most (s + 1)X, depth at most k - (d +
1), and Lipschitz bound 26+, such that

Ic, - C2||[—1,1]" =277

(b) We say that I'; and I', are equivalent if and only if I'; = I,
and [, =T,.

In other words, when simulating classes of gate functions, we
allow depth to increase by a constant factor size and the logarithm
of the Lipschitz bound to increase polynomially. The relatively
large Lipschitz bounds should not come as a surprise, since the
negative exponential error 2~° requires correspondingly large
weights in the simulating circuit.

Splines (i.e., piecewise polynomial functions) have turned out to
be powerful approximators, and they are our benchmark class of
activation functions; in particular, we assume that a spline net of
size s has as its activation functions splines of degree at most s
with at most one knot. Which properties does a class I" of activation
functions need to reach the approximation power of splines? The
activation functions should be able to approximate polynomials as
well as the binary threshold # with few layers and relatively few
nodes.

Tightly approximating polynomials is not difficult as long as
there is at least one “sufficiently smooth” nontrivial function y €
I'. The crucial problem is to obtain a tight approximation of ¥. It
turns out that y-nets achieve tight approximations of 3¢ whenever

Iy(x) — y(x + el= O(e/x?)
# 0

f yu)du

Let us call a function with these two properties strongly sigmoidal.
(We are actually demanding too much, since it suffices to tightly
approximate a strongly sigmoidal function y by small I'-nets with
few layers.) Let us call a class I" powerful if there is at least one
“sufficiently smooth” nontrivial function in I' and if a strongly
sigmoidal function can be approximated as demanded above.

Examples of powerful singleton classes include, for instance,
1/x as a prime example, and more generally any rational function
that is not a polynomial, exp(x) (since exp(—x) is strongly sig-
moidal) and In(x) (since In(x + 1) — In(x) is strongly sigmoidal),
any power x @ provided « is not a natural number, and the standard
sigmoid as well as the Gaussian exp(—x?).

forx = 1, e=0 and

Theorem 4.

(a) Assume that I' is powerful. Then splines = I.

(b) The following classes of activation function have equivalent
approximation power: splines (of degree s for nets of size s),
any rational function that is not a polynomial, any power x«
(provided « is not a natural number), the logarithm (for any
base), exp(x), and the Gaussian exp(— x?).

Notably missing from the list of equivalent activation functions
are polynomials, trigonometric polynomials, and the binary thresh-
old function # (or, more generally, low-degree splines). Low-

degree splines turn out to be properly weaker. The same applies to
polynomials, even if we allow any polynomial of degree s an ac-
tivation function for nets of size s. Finally, sine nets cannot be
simulated (as defined in Definition 2), for instance by nets of stan-
dard sigmoids, and we conjecture that the reverse is also true,
namely, that nets of standard sigmoids cannot be simulated effi-
ciently by sine nets.

What happens if we relax the required approximation quality
from 2% to s ¢, when simulating nets of depth d and size s? Linear
splines and the standard sigmoid are still not equivalent, but the
situation changes completely if we count the number of inputs
when determining size and if we restrict the Lipschitz bound of the
target function to be at most s~ . With this modification an even
larger class of important functions, including linear splines, poly-
nomials, and the sine function, turn out to be equivalent with the
standard sigmoid.

The situation for Boolean input and output is somewhat com-
parable. Maass, Schnitger, and Sontag, and subsequently DasGupta
and Schnitger constructed Boolean functions that are computed by
sigmoidal nets of constant size (i.e., independent of the number of
input bits), whereas ¥-nets of constant size do not suffice. (See
Maass, 1994, for a more detailed discussion.) However, Maass
(1993) showed that spline nets of constant degree, constant depth,
and polynomial size (in the number of input bits) can be simulated
by #-nets of constant depth and polynomial size. This simulation
holds without any restriction on the weights used by the spline net.

Thus, analog computation does help for discrete problems, but
apparently by not too much. For a thorough discussion of discrete
neural computation, see Siu, Roychowdhury, and Kailath (1994).

Sigmoidal Nets and Nets of Spiking Neurons

A formal model of networks of spiking neurons is defined in Maass
(1997); see SPIKING NEURONS, COMPUTATION WITH. The architec-
ture is described by a directed graph G = (V, E), with V as the set
of nodes and E as the set of edges. We interpret nodes as neurons
and edges as synapses, and assign to each neuron v a threshold
function ®, : R™ = R*. (R" denotes the set of nonnegative reals.)
The value of ® (¢t — t') measures the “reluctance” (or the threshold
to be exceeded) of neuron v to fire at time ¢ (¢ > ¢'), assuming that
v has fired at time ¢'. This reluctance can be overcome only if the
potential P,(¢) of neuron v at time ¢ is at least correspondingly as
large.

The potential of v at time ¢ depends on the recent firing history
of the presynaptic neurons (or the immediate predecessors) u of v.
In particular, if the synapse between neurons # and v has the effi-
cacy (or weight) w,,, if ¢,,(t — s) is the response to the firing of
neuron u at time s (s < ) and if the presynaptic neuron u has fired
previously for the times in the set Fire!, then the potential at time
t is defined as

Pt)= 2 2 Wy et — s A3)

(u,v)EE s€eFire!,

Two models, namely deterministic (respectively noisy) nets of
spiking neurons, are distinguished. The deterministic version as-
sumes that neuron v fires whenever its potentials P, () reach @, (¢
— ") (with most recent firing "), whereas the more realistic noisy
version assumes that the firing probability increases with increasing
difference P, (1) — ©,(t — 1).

Thus we can complete the definition of the formal model, as-
suming that a response function ¢, : R* — R as well as the weight
w,, is assigned to the synapse between u and v. The model com-
putes by transforming a spike train of inputs into a spike train of
outputs. For instance assuming temporal coding with constants 7'
and c, the output of a designated neuron with firing times 7 + ¢ -
tyooo, T+ c 31, .. isdefinedast, ..., t,....
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The power of spiking neurons shows for the example of the

element distinctness function ED, with real inputs xy, . . ., x,,, where
1 if x; = x; for some i # j,
ED,(x) = {0 if lx,; — x| = 1 for all i # j,

arbitrary otherwise.

We assume that the inputs xy, . . . , x,, are represented by n input
trains of single spikes. Now it is easy to choose a simple threshold
function as well as simple (and indeed identical) response functions
such that even a single spiking neuron with unit weights is capable
of computing ED,,. On the other hand, any sigmoidal net computing
ED, requires at least (n — 4)/2 — 1 hidden units (Maass, 1997).
This result is also the strongest lower size bound for sigmoidal nets
computing a specific function; the argument builds on techniques
from Sontag (1997).

Certainly this one-neuron computation requires time, because of
the temporal input coding, but the same applies to sigmoidal net-
works, since, from the point of neurobiology, the x;’s will be ob-
tained after sampling the firing rate of their input neurons.

Nets of spiking neurons are capable of simulating #-nets with
at most the same size, and hence are properly stronger than ¥-nets
and at least in some cases stronger than sigmoidal nets. Thus, care-
ful timing is an advantage that synchronized models cannot
overcome.

Computational Power of Recurrent Nets

The computational power of recurrent nets is investigated in Sie-
gelmann and Sontag (1994, 1995). (See also Siegelmann, 1998, for
a thorough discussion of recurrent nets and analog computation in
general.) Recurrent nets include feedforward nets, and thus the re-
sults for feedforward nets apply to recurrent nets as well. But re-
current nets gain considerably more computational power with in-
creasing computation time. In the following discussion, for the sake
of concreteness, we assume that the piecewise linear function

0 ifx=0
nx) = x if0=x=1
1 ifx=1

is chosen as the activation function. We concentrate on binary input
and assume that the input is provided one bit at a time.

First of all, if weights and thresholds are integers, then each node
computes a bit. Recurrent nets with integer weights thus turn out
to be equivalent to finite automata, and they recognize exactly the
class of regular language over the binary alphabet {0, 1}.

The computational power increases considerably for rational
weights and thresholds. For instance, a “rational” recurrent net is,
up to a polynomial time computation, equivalent to a Turing ma-
chine. In particular, a network that simulates a universal Turing
machine does exist, and one could refer to such a network as “uni-
versal” in the Turing sense. It is important to note that the number
of nodes in the simulating recurrent net is fixed (i.e., does not grow
with increasing input length).

Irrational weights provide a further boost in computation power.
If the net is allowed exponential computation time, then arbitrary
Boolean functions (including noncomputable functions) are rec-
ognizable. However, if only polynomial computation time is al-

lowed, then nets have less power and recognize exactly the lan-
guages computable by polynomial-size Boolean circuits.

Discussion

We have discussed the computing power of neural nets, including
universal approximation results for feedforward and recurrent neu-
ral networks as well as efficient approximation by feedforward nets
with various activation functions. We emphasize that this survey
is far from complete. For instance, we omitted important topics
such as the VAPNIK-CHERVONENKIS DIMENSION OF NEURAL NET-
WORKS (q.v.) and the complexity of discrete neural computation.

Important open questions relate to proving better upper and
lower bounds for sigmoidal nets computing (or approximating)
specific functions, and achieving a better understanding of size and
depth trade-offs for important function classes. Other neural mod-
els, such as networks of spiking neurons, significantly change the
computing power, and the questions we have identified apply to
these models as well.

Road Map: Computability and Complexity

Background: 1.3. Dynamics and Learning in Neural Networks

Related Reading: Neural Automata and Analog Computational Complex-
ity; PAC Learning and Neural Networks; Universal Approximators

References

Arora, S., Babai, L., Stern, J., and Sweedyk, Z., 1997, The hardness of
approximate optima in lattices, codes and systems of linear equations,
J. Comput. Syst. Sci., 54:317-331.

Barron, A. R., 1993, Universal approximation bounds for superpositions of
a sigmoidal function, IEEE Trans. Inform. Theory, 39:930-945.

Cybenko, G., 1989, Approximation by superposition of a sigmoidal func-
tion, Math. Control Signals Syst., 2:303-314.

DasGupta B., and Schnitger, G., 1993, The Power of Approximating: A
Comparison of Activation Functions, NIPS 5, 615-622. Available:
http://www.cs.uic.edu/~dasgupta/resume/publ/papers/approx.ps.Z

Kharitonov, M., 1993, Cryptographic hardness of distribution specific
learning, in Proceedings of the 25th ACM Symposium on the Theory of
Computing, pp. 372-381.

Kolmogorov, A. N., 1957, On the representation of continuous functions
of several variables by superposition of continuous functions of one
variable and addition, Dokl. Akad. Nauk USSR, 114:953-956.

Maass, W., 1993, Bounds for the computational power and learning com-
plexity of analog neural nets, in Proceedings of the 25th Annual ACM
Symposium on the Theory of Computing, pp. 335-344.

Maass, W., 1994, Sigmoids and Boolean threshold circuits, in Theoretical
Advances in Neural Computation and Learning (V. P. Roychowdhury,
K. Y. Siu, and A. Orlitsky, Eds.), Boston: Kluwer, pp. 127-151.

Maass, W., 1997, Networks of spiking neurons: The third generation of
neural network models, Neural Netw., 10:1659-1671.

Poggio, T., and Girosi, F., 1989, A theory of networks for approximation
and learning, Artif. Intell. Memorandum, No. 1140.

Siegelmann, H. T., 1998, Neural Networks and Analog Computation: Be-
yond the Turing Limit, Boston: Birkhduser. 4

Siegelmann, H. T., and Sontag, E. D., 1994, Analog computation, neural
networks, and circuits, Theoret. Comput. Sci., 131:331-360.

Siegelmann, H. T., and Sontag, E. D., 1995, On the computational power
of neural nets, J. Comput., 50:132—150.

Siu, K.-Y., Roychowdhury, V. P., and Kailath, T., 1994, Discrete Neural
Computation: A Theoretical Foundation, Englewood Cliffs, NJ: Prentice
Hall. &

Sontag, E. D., 1997, Shattering all sets of k points in general position re-
quires (k — 1)/2 parameters, Neural Computat., 9:337-348.

TLFeBOOK



Analog VLSI Implementations of Neural Networks 101

Analog VLSI Implementations of Neural Networks

Paul Hasler and Jeff Dugger

Introduction

The primary goal of analog implementations of neural networks is
to incorporate some level of realistic biological modeling of adap-
tive systems into engineering systems built in silicon. We cannot
simply duplicate biological models in silicon media because the
constraints imposed by the biological media and the silicon media
are not identical. Approaches that have been successful begin with
the constraints that the silicon medium imposes on the learning
system. Therefore, letting the silicon medium constrain the design
of a system results in more efficient methods of computation.

We will focus our attention on issues concerning building neural
network integrated circuits (ICs), and in particular on building con-
nectionist neural network models. Connectionist neural networks,
loosely based on biological computation and learning, can be useful
for biological modeling if the limitations are understood. These
neural systems are typically built as mappings of mathematical
models into analog silicon hardware either by using standard build-
ing blocks (i.e., Gilbert multipliers: Mead, 1989) or by taking ad-
vantage of device physics (Hasler et al., 1995). This approach, re-
lated to investigations of adaptation and learning in neurobiological
systems, provides the minimum necessary model of synaptic in-
teraction between neurons, even for biological models. Neuro-
morphic (Mead, 1989, see also NEUROMORPHIC VLSI CIRCUITS
AND SYSTEMS) and connectionist approaches develop adaptive sys-
tems from different levels of neural inspiration, and therefore lead
to different levels of model complexity. Adding dendritic interac-
tions and precise models of biological learning (e.g., LTP) to the
connectionist model yields more biological realism. Implementa-
tions of fuzzy systems typically follow a similar approach to im-
plementations of neural networks. The related field of cellular neu-
ral networks (CNNs), started by Chua, is particularly concerned
with the circuit techniques used to build locally connected two-
dimensional (2D) meshes of neuron processors (Chua, 1998), but
the architecture design is fundamentally different and imposes dif-
ferent constraints on implementation.

First Layer

Neural Network Basics Focused
on Implementation Issues

Figure 1 shows the basic feedforward structure typically used in
neural network implementations. Most approaches focus on feed-
forward structures, since feedback systems and networks with time
dynamics (e.g., time delays) are straightforward extensions for sil-
icon implementation, although the algorithm design is considerably
more difficult. In this model, we encode a neuron’s activity as an
analog quantity based on the mean spiking rate in a given time
window. One can build linear or nonlinear filters at the input to the
sigmoid function. Typically, a low-pass filter is built or modeled,
since that will naturally occur for a given implementation or will
set a desired convergence to an attractor (i.e., recurrent networks).
This model is excellent for describing neurobiology if only mean-
firing-rate behavior with minimal dendritic interactions is consid-
ered.

A basic model synapse (either digital or analog) must be able to
store a weight, multiply its input with the stored weight, and adapt
that weight based on a function of the input and a fed-back error
signal. We model feedforward computation mathematically as

i = wyx; 2y = Wx (1)

where x; is the jth input (x is a vector of inputs), y; is the ith output
(y is a vector of outputs), and wy; is the stored weight at position
(i,j) (W is a matrix of weights). The result of this output is passed
through a nonlinear function

z; = tanh(a(y; — 0)) (2)

where we designate z; as the result of the computation, a is a gain
factor, and 0,- is a variable threshold value. Other nonlinear func-
tions, like radial basis functions (see RADIAL Basis FUNCTION
NETWORKS), are also often used, which would typically modify the

Figure 1. Classic picture of a two-layer neural
network from the perspective of implementating
these networks in hardware. The neural networks
are layers of simple processors, called neurons,

that are interconnected through weighting ele-
ments, called synapses. The neurons aggregate
the incoming inputs (including a threshold or off-

set) and are applied through a tanh(-) nonline-

arity. The synapse elements, which in general are ing

— out

far more numerous than the neuron elements,
must multiply the incoming signal by an inter-
nally stored value, called the weight, and must
adapt this weight according to a particular learn-
ing rule. Learning rules implemented in silicon
are typically functions of correlations of signals
passing through each synapse processor.

g
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Wx computation. We model the weight adaptation mathematically
as

e D, xe 3)

dt

where e is a vector of error signals that is fed back along various
rows. We call this an outer-product learning rule, or a local learning
rule, because of the xe” computation. The outer-product learning
rule is dependent on the choice of f(W, xe”) and the choice of the
error signal.

Several learning algorithms have been proposed that conform to
this functional form; representative examples can be found else-
where in the Handbook. Learning algorithms usually divide into
two categories, supervised and unsupervised. Supervised algo-
rithms adapt the weights based on the input signals and a super-
visory signal to train the network to produce an appropriate re-
sponse. In many supervised algorithms (see PERCEPTRONS,
ADALINES, AND BACKPROPAGATION) this weight change is a time
average of the product of the input and some fed-back error signal
(e =y — ¥, where ¥ is the target signal). Unsupervised algorithms
adapt the weights based only on the input and output signals, and
in general the weights are a function of the input statistics. Al-
though these learning algorithms result in very different results,
both weight-update rules are similar from an implementation view-
point. Most unsupervised algorithms are based on Hebbian learning
algorithms, which correspond to neurobiological evidence of learn-
ing (see HEBBIAN SYNAPTIC PLASTICITY). For a Hebbian synapse,
the weight change is a time average of the product of the input and
output activity (e = y).

Neural Network Implementations: Architecture Issues

Before considering circuit implementations of neurons and syn-
apses, we first frame the overall architecture issues involved in
implementing neural networks. In most implementations, a single
layer of synapses is built as mesh architectures connected to a col-
umn of neuron processors (Figure 2). Because silicon ICs are 2D,
mesh architectures work optimally with 2D routing constraints.

Feedforward Computation

Figure 2A shows the typical mesh implementation of feedforward
computation for a single-layer architecture. A mesh of processors
is an optimal communication architecture for interconnect limited
systems, which is the case for small synapse elements. Currents are
preferred for outputs, because the summation typically required for
most connectionist models is easily performed on a single wire,
and voltages are preferred for inputs because they are easy to broad-
cast. Local processing is defined as interaction between physically
close elements, voltage broadcast along global lines (inputs), or
current/charge summation along a wire (outputs). As a result, each
synapse has only to compute the local computation: W, x;. Because
the synapses store a weight value, the picture in Figure 2A resem-
bles an analog memory that allows a full matrix-vector multipli-
cation in the equivalent of one memory column access. This ap-
proach, called analog computing arrays, is defined and its
implication for signal processing is described elsewhere (Kucic et
al., 2001). Figure 2B shows how to modify a mesh architecture
when considering m-nearest-neighbor connections. Other sparse

X ) X3 X4
> Vi P V2| 2 Vi3 P Ve
> 5= Ews
> War | P V2| P Was| P Ve
> v =Zwyx
W31 = Waz| ¥ Wiz | > Wi
v Y Y > y, =2 w..x
Y3 = & W5 %
@
X X X. X
\Q‘ Was Wse l—) We7 Wrg W9
X, \ \
Waq |—>\?i Wss f—> Vo6 W77 !—> Wsg L—>\
X3 \ \ \ \
\—>LW43 |—>\—>| Ws4 |—> Wes W76 We7 N
Figure 2. Typical architectures for neural network implemen-
tations. Although the routing looks complicated in Figure 1, it
M M M M M can easily be implemented in a mesh architecture. A, Diagram
Y4 ¥s Y6 ¥7 Ys of the classic mesh architecture, typically used for fully con-
nected architectures. B, Diagram of a mesh processor architec-
® ture optimized for nearest-neighbor computations.
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encodings require digital communication and processing to handle
the addressing schemes (i.e., address translation tables) and addi-
tional complexity (i.e., multiplexing scheme to access the inputs of
each synapse).

To implement a neuron, we need a function that can compute a
tanh(-) function. Fortunately, this function occurs in many IC cir-
cuits using either BJT or MOSFET (subthreshold or above-
threshold) devices, such as the differential transistor pair (Mead,
1989). Since we only need a column of neuron circuits, they do
not have the same area constraints that are imposed on synapse
elements. Dynamics (e.g., low-pass filtering) are usually achieved
by adding additional capacitance. Often one needs a current to per-
form voltage conversion between the summed synapse outputs and
tanh(-) output, as well as at the output of a differential transistor
pair. This conversion often can be nonlinear, or it may have to be
nonlinear to interface with later processing stages.

Adaptive Neural Network Architectures

Synapses require both feedforward and adaptation computations;
therefore, architectural constraints imposed by the learning algo-
rithm are an essential consideration for any neural network. Only
learning algorithms that scale to large numbers of inputs and out-
puts are practical. A single-layer architecture with a local super-
vised or unsupervised rule of the form of Equation 3 only requires
communicating the error signal along each row (Figure 3). The
complexity of the synapse computation will depend on the partic-
ular learning rule. Many complicated algorithms, such as the gen-
eralized Hebbian algorithm (GHA) (Hasler and Akers, 1992) and
INDEPENDENT COMPONENT ANALYSIS (ICA) (g.v.), require addi-
tional matrix-vector multiplications, but can be developed into a
mesh architecture. Algorithms requiring matrix-matrix multiplica-
tions are difficult in standard IC technologies.

For multilayer algorithms, the architecture gets more compli-
cated, particularly for supervised algorithms such as multilayer
backpropagation. To extend the basic silicon synapse to a back-
propagating synapse, we need an additional function: we need an
output current that is the product of the fed-back error signal (drain
voltage) and stored weight. We show this architecture in Figure
4A. This additional function results in two issues, one concerning
the signal-to-noise ratio of the resulting error signal and the other
concerning the overall synapse size. The effect of these small error
signals, even without the resolution issues, is a slow learning rate.

The neural network literature is replete with possible alternative
approaches, but we will base our proposed research on the Helm-

Figure 3. Learning in a single layer. We
can build either supervised algorithms
(LMS is explicitly shown) or unsuper-
vised one-layer networks in this architec- X X2 X3
ture. For a one-layer supervised case, Z is

A
Y

x|

holtz machine concept (see HELMHOLTZ MACHINES AND SLEEP-
WAKE LEARNING). Our primary reason for using this approach rests
on our desire to use single-layer networks as primitives for building
larger networks, as well as the fact that this reciprocal adaptive
single-layer network architecture is seen in various models of sen-
sory neurosystems, such as the pathways from retina to LGN to
V1 or some of the pathways between the cochlea and auditory
cortex (Al). Figure 4B considers a two-layer network implemen-
tation of a backpropagation-like learning rule using this Helmholtz
block. In this case, we double the number of layers, and therefore
double the effective synapse size; for a backpropagation algorithm,
we require the same number of floating-gate multipliers, but with
significant additional implementation costs that greatly increase the
synapse complexity. This approach seems more IC-friendly for the
development of adaptive multilayer algorithms than backpropaga-
tion approaches, although its digital implementation is nominally
equivalent to backpropagation approaches. This approach directly
expands to multiple layers and could be used in limited reconfi-
gurable networks because we are building networks with single
adaptive layers. Starting with the single-layer network as the basic
building block simplifies the abstraction toward system develop-
ment.

Resulting Synapse Design Criteria

Because the synapse is the critical element of any neural network
implementation, we state five properties of a silicon synapse that
are essential for building large-scale adaptive analog VLSI synaptic
arrays (Hasler et al., 1995):

1. The synapse must store a weight permanently in the absence of
learning.

2. The synapse must compute an output current as the product of
its input signal and its synaptic weight.

3. The synapse must modify its weight at least using outer-product
learning rules.

4. The synapse must consume minimal silicon area, thereby max-
imizing the number of synapses in a given area.

5. The synapse must dissipate a minimal amount of power; there-
fore, the synaptic array is not power constrained.

Achieving all five requirements requires a detailed discussion of
the circuits used to implement a synapse, which is the subject of
the next section.

Symbol for One Layer

the desired or target output signal vector, *
where e =17z — % Further, one might

apply a nonlinear function to the resulting — > |

x|
N

error signal; in LMS, one applies a non-
linear function to counteract the effect of # v}

the sigmoid in the feedforward path.
Many unsupervised rules, like Hebbian or

Oja rules, can be formulated as 2 = f(z). * *
One can schematically represent this net-

N)l

work from its terminals, X, z, and Z, as L _— -

shown from its block diagram. Finally,

the nonlinear (sigmoid) elements typi- + v}

cally convert current to voltage.
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Figure 4. Possible architectures for adaptive multilayer neural networks.
A, Implementation for backpropagation networks. There are many forms
and modifications, but from an implementation viewpoint, these approaches
can be modified toward this architecture. This approach significantly in-
creases synapse size, because one typically requires the complexity of two
synapses for weight feedback. Further, this approach limits some circuit
approaches to building dense synapses. The output from the hidden layer,
or layer 1, is y, and the error signal given to the hidden layer is e,. The
synapses in the second layer must also output a current proportional to the
product of error * stored weight; the sum of these currents along a column
is the error for the next layer. As a result, the synapses on the second layer
must be more complex. B, Implementation using Helmholtz machine con-
cepts. This approach requires twice as many synapses for all but the first
layer, which yields the same complexity as the backpropagation ap-
proaches. This approach will converge to the same steady states and re-
quires only a modular tiling of single-layer networks; its reciprocal feed-
back has a similar feel to communication between layers of cortical
neurons.

Neural Network Implementation: Synapse Circuits
Early Research in Synapse Design

Several neural networks have been built in analog silicon hardware.
Several good recent implementation techniques can be found in

Cauwenberghs and Bayoumi (1999); here we present an overview.
From the architecture discussions, we require a synapse block
where an input voltage should modulate an output current, which
is summed along a line; therefore, most implementations employ
a variable resistance or transconductance element. As a result, a
primary issue in synapse circuit designs is developing dense mul-
tiplier circuits, because multiplication of an input by a weight is
fundamental to every synapse. Earlier approaches for implemen-
tating the feedforward synapse computation included fixed resis-
tances (which were among the earliest implementations), switched-
capacitor implementations (Tsividis and Satyanarayana, 1987),
Gilbert multiplier cells (Mead, 1989), and linearized conductance
elements (Dupuie and Ismail, 1990; Cauwenberghs, Neugebaur,
and Yariv, 1991; Hasler and Akers, 1992). Intel’s ETANN chip
was the first commercially available neural network IC that used
floating gates for weight storage (Holler et al., 1989). One of the
most successful implementations of a large-scale adaptive neural
system was the Heuralt-Juetten algorithm, but it required a great
deal of circuit complexity (Cohen and Andreou, 1992). Other re-
searchers have implemented unsupervised learning and backprop-
agation algorithms, with mixed success (Furman, White, and Abidi,
1988; Hasler and Akers, 1992). Successful analog implementations
of connectionist networks have included algorithmic modifications
that facilitate implementation in silicon. The history of this field
has shown that the success of an implementation is strongly cor-
related with the degree to which the algorithm is adapted to the
silicon medium.

Synapses in previous silicon implementations have required
large circuit complexity because they have typically been con-
structed using traditional circuit building blocks to realize memory,
computation, and adaptation functions separately, rather than tak-
ing advantage of device physics to combine these functions in a
compact circuit element. Not only does large circuit complexity
consume tremendous circuit area and power, but the chance of a
network operating correctly decreases exponentially with cell size.

The most difficult problem to overcome when building efficient
adaptive circuits is the effect of p-n junction leakage currents (Has-
ler et al., 1995; Hasler and Minch, 2002). First, since many imple-
mentations dynamically store their weight parameters on a capac-
itor, these junction leakage currents typically limit the hold time,
on the order of seconds; therefore, weight storage often becomes a
critical concern in many of these applications. Several on-chip re-
freshing schemes have been proposed and built (Hasler and Akers,
1992) and are currently finding applications in various ICs (Cau-
wenberghs and Bayoumi, 1999). Second, since real-time learning
often requires time constants from 10 ms to days, junction leakage
currents limit the use of capacitor storage techniques, unless pro-
hibitively large capacitor areas are used. Weight update schemes
based on weight perturbation methods, i.e., where the error signal
is based on random known changes in the weights, can often work
in these constraints if some form of dynamic refreshing scheme is
used (Cauwenberghs and Bayoumi, 1999). Often, junction leakage
is too large for many adaptive system problems.

Single-Transistor Learning Synapses

Current research into analog neural network ICs pursues two di-
rections. The first direction is based on refreshable DRAM ele-
ments with adaptation using weight perturbation techniques (Cau-
wenberghs and Bayoumi, 1999). The second direction is based on
a wide range of techniques using floating-gate synapses. Floating
gates have seen use in neural networks as storage elements (Holler
et al., 1989), which eliminates the long-term weight storage issues
but still results in fairly complex synapse circuits. Here, we briefly
describe the potential of using floating-gate synapses.

The single-transistor learning synapse (STLS), or transistor syn-
apse, makes use of device physics and constraints inherent to the
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Figure 5. Layout, cross-section, and circuit diagram of
the floating-gate pFET in a standard double-poly n-well

Input Capacitor

Floating Gate
Transistor

MQOS Tunneling
Capacitor
Floating Gate

MOSIS process. The cross-section corresponds to the
horizonatal line slicing through the layout view. The
pFET transistor is the standard pFET transistor in the n-
well process. The gate input capacitively couples to the
floating gate by either a poly-poly capacitor, a diffused
linear capacitor, or a MOS capacitor, as seen in the cir-
cuit diagram (not explicitly shown in the other figures).

We add floating-gate charge by electron tunneling, and
we remove floating-gate charge by hot-electron injec-
tion. The tunneling junctions used by the single-transis-
tor synapses is a region of gate oxide between the po-
lysilicon floating gate and n-well (a MOS capacitor).

—«—— Metal | Layer —»

Between V,,, and the floating gate is our symbol for a
tunneling junction, a capacitor with an added arrow des-
ignating the charge flow.
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silicon medium to realize learning and adaptation functions, rather
than direct implementation of learning rules using traditional circuit
building blocks (Hasler et al., 1995). This technology is rooted in
floating-gate circuits (Hasler and Lande, 2001; Hasler and Minch,
2002) in which multiple features of a floating-gate transistor are
used, not just the nonvolatile storage (Figure 5). These elements
utilize physical characteristics of the silicon medium, such as elec-
tron tunneling and hot-electron injection, which traditionally have
posed problems for engineers. The starting point for this technol-
ogy is a floating-gate transistor (Hasler et al., 1995; Kucic et al.,
2001) operating with subthreshold currents and configured to si-
multaneously store permanently the weight charge, compute an
output current that is the product of the input signal and the synaptic
weight, and modify its weight charge based on many outer-product
learning rules. This approach meets all five requirements for a sil-
icon synapse. These weights can be automatically programmed,
which enables setting fixed weights, setting initial bias conditions,
and employing weight perturbation learning rules (Kucic et al.,
2001). Further, by setting the appropriate boundary circuits for the
synapse array, we can get a wide range of learning rules by con-
tinuously enabling our programming mechanisms during compu-
tation (Kucic et al., 2001). One form of the learning rules looks
like

Wi j

dt

where 7 is the adaptation time constant and # is the strength of the
correlating term.

T

= 77E[xiej] - Wi (€]

Road Map: Implementation and Analysis
Related Reading: Digital VLSI for Neural Networks; Photonic Implemen-
tations of Neurobiologically Inspired Networks; Silicon Neurons
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Analogy-Based Reasoning and Metaphor

Dedre Gentner and Arthur B. Markman

Introduction

Analogy and metaphor have been characterized as comparison pro-
cesses that permit one domain to be seen in terms of another. They
are important to connectionism for two reasons. First, there is an
affinity at the descriptive level: many of the advantages suggested
for connectionist models—representation completion, similarity-
based generalization, graceful degradation, and learning—also ap-
ply to analogy (Barnden, 1994). Second, analogical processing
poses significant challenges for connectionist models. Analogy in-
volves the comparison of systems of relations between items in a
domain. To model analogy requires representations that include
internal relations. Many connectionist models have concentrated
instead on statistical learning of correlational patterns over featural
or dimensional representations.

Tenets of Analogy and Metaphor

Analogy derives from the perception of relational commonalities
between domains that are dissimilar on the surface. These corre-
spondences often suggest new inferences about the target domain.
Analogy has been widely studied in humans. In the past decade,
psychological research on analogy has converged on a set of bench-
mark phenomena against which models of analogy can be mea-
sured. These eight benchmarks, shown in Table 1, can be organized
according to four processing principles. Analogy and metaphor in-
volve (1) structured pattern matching; (2) structured pattern com-
pletion, (3) a focus on common relational structure rather than on
common object descriptions, and (4) flexibility in that (a) the same
domain may yield different interpretations in different compari-
sons, and (b) a single comparison may yield multiple distinct in-
terpretations. Any model of analogy must account for these
phenomena.

We begin by reviewing the principles and benchmarks, and then
discuss current connectionist models of analogy and metaphor. Our
discussion takes place at Marr’s computational and algorithmic

Table 1. Eight Benchmark Phenomena of Analogy

1. Relational Similarity Analogies involve relational
commonalities; object commonalities
are optional.

Analogical mapping involves one-to-one
correspondence and parallel
connectivity.

In interpreting analogy, connected
systems of relations are preferred over
sets of isolated relations.

Analogical inferences are generated via
structural completion.

Differences that are connected to the
commonalities of a pair are rendered
more salient by a comparison.

6. Flexibility (1): Interactive  Analogy interpretation depends on both
Interpretation terms. The same term yields different
interpretations in different
comparisons.

Analogy allows multiple interpretations
of a single comparison.

People typically perceive both
interpretations of a cross-mapping and
prefer the relational interpretation.

2. Structured Pattern
Matching

3. Systematicity

4. Candidate Inferences

5. Alignable Differences

7. Flexibility (2): Multiple
Interpretation
8. Cross-mapping

levels, at which cognition is explained in terms of representations
and associated processes. We will not evaluate the models in terms
of brain function, partly because the neural basis is not yet under-
stood, but also because we believe a computational model must
first justify itself as a cognitive account. We will focus mainly on
analogy, which has been well studied at the processing level. Much
of what we know about analogy can be applied to metaphor as
well. Later, we will explore ways in which analogy and metaphor
may differ.

Structured Pattern Matching

The defining characteristic of analogy and many metaphors is the
alignment of relational structure. Alignment involves finding struc-
turally consistent matches (those observing parallel connectivity
and one-to-one correspondence). Parallel connectivity requires that
matching relations have matching arguments; one-fo-one corre-
spondence limits any element in one representation to at most one
matching element in the other representation (Gentner and Mark-
man, 1997; Holyoak and Thagard, 1995). For example, in the anal-
ogy “The atom is like the solar system,” the nucleus in the atom
(the target) corresponds to the sun in the solar system (the base)
and the electrons to the planets, because they play similar roles in
a common relational structure: e.g., revolve (sun, planets) and re-
volve (nucleus, electron). The sun is not matched to both the nu-
cleus and the electron, as that violates one-to-one correspondence.
Another characteristic of analogy is relational focus: objects cor-
respond by virtue of playing like roles and need not be similar (e.g.,
the nucleus need not be hot).

There is considerable evidence that people can align two situa-
tions, preserving connected systems of commonalities and making
the appropriate lower-order substitutions. For example, Clement
and Gentner (1991) showed people analogous stories and asked
them to state which of two assertions shared by base and target
was most important to the match. Subjects chose the assertion con-
nected to matching causal antecedents. More generally, people’s
correspondences are based both on the goodness of the local match
and on its connection to a larger matching system (Markman and
Gentner, 1993). This finding demonstrates the systematicity prin-
ciple: Analogies seek connected systems of matching relations
rather than isolated relational matches.

When making comparisons, it often occurs that nonidentical
items are matched by virtue of playing a common role in the match-
ing system. These corresponding but nonidentical elements give
rise to alignable differences, and have been shown to be salient
outputs of the comparison process (Gentner and Markman, 1997).
In contrast, aspects of one situation that have no correspondence
in the other, called nonalignable differences, are not salient outputs
of comparison. For example, when comparing the atom to the solar
system, the fact that atoms have electrons and solar systems have
planets is an alignable difference. The fact that solar systems have
asteroids, while atoms have nothing that corresponds to asteroids,
is a nonalignable difference.

Structured Pattern Completion

Analogical reasoning also involves the mapping of inferences from
one domain to another. Thus, a partial representation of the target
is completed based on its structural similarity to the base. For ex-
ample, Clement and Gentner (1991) extended the findings de-
scribed earlier by deleting some key matching facts from the target
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story and asking subjects to make a new prediction about the target
based on the analogy with the base story. Consistent with the pre-
vious result, subjects mapped just those predicates that were caus-
ally connected to other matching predicates.

Flexibility: Interactive Interpretation

Analogy and metaphor are flexible in important ways. Indeed,
Barnden (1994) suggests that analogy and metaphor may reconcile
connectionism’s flexibility with symbolic Al’s structure-sensitiv-
ity. One way that analogy and metaphor are flexible is that the
interpretations are interactions between the two terms. The same
item can take part in many comparisons, with different aspects of
the representation participating in each comparison.

For example, Spellman and Holyoak (1992) compared politi-
cians’ analogies for the Gulf War. Some likened it to World War
II, implying that the United States was acting to stop a tyrant,
whereas others likened it to Vietnam, implying that the United
States had embroiled itself in a potentially endless conflict between
two other opponents. Comparisons with different bases highlighted
different features of the target. Flexibility is also evident when the
same base term is combined with different targets. For example,
the metaphor “A lake is a mirror” highlights that a lake has a flat
reflective surface, whereas “Meditation is a mirror” highlights the
self-examination aspect of meditation.

Flexibility: Multiple Interpretations
of the Same Comparison

A more striking kind of flexibility is that a single base-target com-
parison can give rise to multiple distinct interpretations. For a com-
parison like “Cameras are like tape recorders,” people can readily

(a)

Relational

Object
Match

Match

Figure 1. Sets of object triads containing a cross-mapping. A cross-
mapping occurs when two similar objects play different roles in a matching
relational system. In this case, the similar objects have different relative

provide an object-level interpretation (“Both are small mechanical
devices”) or a relational interpretation (“Both record events for later
display”). Interestingly, children tend to prefer the former and
adults the latter.

Despite this flexibility, people generally maintain structural con-
sistency within an interpretation. In one study, Spellman and Hol-
yoak (1992) asked subjects to map the Gulf War onto World War
II (WWII). They asked “If Saddam Hussein corresponds to Hitler,
who does George Bush correspond to?” Some subjects chose
Franklin Delano Roosevelt, whereas others chose Winston Chur-
chill. The key finding was that, when asked to make a further map-
ping for the United States in 1991, subjects chose structurally con-
sistent correspondences. Those who mapped Bush to Roosevelt
usually mapped the US-1991 to the US-during-WWII, and those
who mapped Bush to Churchill mapped the US-1991 to Britain-
during-WWIIL.

An extreme case of conflicting interpretations is cross-mapping,
in which the object similarities suggest different correspondences
than do the relational similarities. For example, in the comparison
between “Spot bit Fido” and “Fido bit Rover,” Fido is cross-
mapped. When presented with cross-mapped comparisons, people
can compute both alignments. Research suggests that adding
higher-order relational commonalities increases people’s prefer-
ence for the relational alignment, whereas increasing the richness
of the local object match increases people’s preference for the ob-
ject match. For example, people are more likely to select the re-
lational correspondence in Figure 1B than in Figure 1A. This ex-
ample also illustrates that the analogical processes we describe can
apply to perceptual as well as conceptual materials. The ability to
compute relational interpretations (even for the cross-mappings) is
central to human analogizing across a wide range of domains.

This flexibility and the ability to process cross-mappings have
significant implications for the comparison process, because they

Relational
Match

Object
Match

sizes. (A) shows a sparse pair of objects that are likely to have few distin-
guishing attributes, whereas (B) shows a rich pair of objects that are likely
to have many distinguishing attributes.
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mean that simulations cannot simply be trained to generate a par-
ticular kind of interpretation. Rather, the comparison process must
be able to determine both object matches and structural matches
and to attend selectively to one or the other.

Connectionism and Analogical Mapping

As the preceding review makes clear, a central aspect of analogical
reasoning and metaphor is alignment and mapping between struc-
tured representations. Symbolic models—e.g., Falkenhainer, For-
bus, and Gentner’s (1989) structure-mapping engine (SME)—have
been able to pass the eight benchmarks in Table 1. Advances in
connectionist models of analogy and metaphor have come with the
development of techniques for representing structure (e.g., Hinton,
1991; STRUCTURED CONNECTIONIST MODELS). The best-
developed models to date have been models of analogy rather than
models of metaphor, and so we will focus on the analogy models
here. We will discuss differences between analogy and metaphor
in the following section.

An early connectionist model of analogy was ACME (Holyoak
and Thagard, 1989). This model was a localist constraint-satisfac-
tion network in which the nodes represented possible correspon-
dences between elements in the base and target. Nodes were created
using the constraint of semantic matching via a table that deter-
mined which predicates were seen as semantically similar. Nodes
were connected in accordance with structural consistency, with
nodes for consistent matches getting excitatory links and nodes for
inconsistent matches getting inhibitory links. Finally, a pragmatic
constraint was added by activating nodes related to goals and cor-
respondences known in advance. After this activation was set up,
the network was allowed to settle, and the most active nodes (above
some threshold) determined the correspondences between base and
target found by the system. The interpretation found by ACME
need not maintain structural consistency, which can lead to prob-
lems in making inferences. Hummel, Burns, and Holyoak (1994)
point out that the implementation of the pragmatic constraint often
causes the important node(s) to map to everything in the other
analog. Finally, because ACME settles on a single interpretation
of an analogy, its solution to cross-mappings merges the object and
relational interpretations.

A model of analogy has also been developed using tensor prod-
uct representations (Smolensky, 1990). In a tensor product, two
vectors X and Y are bound by taking the outer product of these
vectors, YXT. The outer product normally forms a matrix, but a
vector can be constructed from this matrix by concatenating its
columns. Given X and YX7, the vector Y can be obtained as YX'X
if X is a unit vector. Variable bindings can thus be captured by
using one vector to represent a predicate and the other to represent
its argument.

Tensor products have been used in a distributed connectionist
model—STAR—that performs a:b::c:d analogies (Halford et al.,
1994). STAR represents binary relations (R(a, b)) using tensor
products of rank 3 (which are like the binary tensor products just
described except that three vectors are bound together). In this
model, long-term memory consists of a matrix of tensor products
corresponding to various relations the system knows about. To pro-
cess an analogy, the model takes the a and b terms and probes long-
term memory to find a relation between them. It then takes this
relation and the c term of the analogy and finds a fourth term that
shares that relation with the ¢ term. This model uses a distributed
connectionist representation to perform a one-relation analogical
reasoning task. Thus, STAR performs analogy through retrieval of
known relations. STAR cannot generate multiple distinct interpre-
tations of a comparison. If the system knows many different items
that could be the answer to the analogy, the output vector is a

combination of them all. Finally, this model does not make use of
higher-order relational structure to constrain its matches.

Perhaps the most complete connectionist model of analogy is
Hummel and Holyoak’s (1997) LISA, which operates over struc-
tured representations by using temporal synchrony in unit firing to
encode relations. The connections between relations and their ar-
guments are maintained by having individual units, which represent
concepts, fire in phase with units that represent particular relational
bindings (STRUCTURED CONNECTIONIST MODELS). For example,
to represent kiss (John, Mary) nodes for kiss, John and agent fire
in phase. Nodes for kiss, Mary and patient also fire in phase (but
out of phase with those for John and agent). Furthermore, each
node representing a concept is connected to a distributed represen-
tation designed to capture the meaning of that concept. The se-
mantic similarity of any two concepts is just the dot product of the
vectors in the distributed representations of those concepts. Finally,
higher-order relations are represented in LISA by chunking rela-
tions that are arguments to higher-order relations into a single node.

Mapping takes place in LISA by selecting one domain (either
the base or the target) as a driver. A role-argument binding is ac-
tivated in the driver, and activation flows from the active nodes to
the distributed semantic representation, and from the semantic
nodes to localist concept nodes in the other domain. LISA has a
limited-capacity working memory of 4-6 nodes. This working
memory holds onto the correspondences from a small number of
previous firings, thus allowing some influence of higher-order re-
lational structure. If the role bindings for a higher-order relation
are fired followed by the role bindings for the relational arguments
of that higher order relation, then the correspondences suggested
by the higher order relation can influence the mapping given to its
argument. Trainable connections between nodes in the base and
target are updated only after a certain number of firing cycles (de-
pending on the size of working memory). LISA has been tested on
a number of analogy problems. It tends to make relational map-
pings for analogies, and generally finds structurally consistent cor-
respondences. The model selects either the relational mapping or
the object mapping for a cross-mapping. On any given run, LISA
arrives at only one interpretation; however if the order in which
nodes in the driver are activated is varied, the system can find
different interpretations on different runs. Finally, because the
model can use complex representations, it can use different aspects
of the representation of a domain in different comparisons involv-
ing that domain.

LISA is the only extant model of analogical mapping to include
an explicit working memory constraint. At present, two major ques-
tions remain. First, the order in which statements are activated in
the driver—a crucial determinant of the outcome of a match—is
currently decided by the modeler. Second, the model has not been
tested on large representations of the base and target. Thus, it is
not clear how it will perform on these representations.

How Metaphor Differs from Analogy

The previous section focused on connectionist models of analogy.
There has been little work on connectionist models of metaphor.
To some degree, models of analogy could be extended to metaphor.
In this section, we discuss some differences between analogy and
metaphor that are relevant for developing a connectionist model of
metaphor.

Metaphors are nonliteral assertions of likeness. They may be
phrased as comparisons, in simile form (“A cloud is like a sponge”)
or as class inclusions, in metaphor form (“A cloud is a sponge”).
When a novel metaphor is being processed, the two domains in the
metaphor are compared using the same process that is applied to
analogy. Unlike analogy, however, metaphors need not focus ex-
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clusively on relations. For example, the example above could be
interpreted as a cloud that is fluffy, which would focus on an at-
tribute of sponges that clouds also possess. This metaphor can also
be given a relational interpretation. For example, it might be inter-
preted to mean that both clouds and sponges soak up water and
give it back later. Typically, adults (but not children) prefer rela-
tional interpretations of metaphors to attribute interpretations.

There are three key ways in which metaphors differ from anal-
ogies. First, whereas analogies tend to have explanatory-predictive
functions, metaphors may have expressive purposes and may affect
the mood of the piece in which they are embedded. Thus, the pri-
mary impact of a metaphor might come in the emotions that it
brings out rather than on the information in the comparison that is
promoted. Second, not all metaphors are necessarily processed as
comparisons. Glucksberg and his colleagues (e.g., Glucksberg and
Keysar, 1990) suggest that metaphors might be processed as class
inclusion statements rather than as comparisons. While there is
debate as to exactly when metaphors are processed as comparisons
or as class inclusion statements, some evidence suggests that novel
metaphors and similes (e.g., “Some cults are termites”) are pro-
cessed by alignment and mapping, whereas conventional meta-
phors (e.g., “Some people are sheep”) may be processed by ac-
cessing a stored metaphorical word sense. Finally, there are often
systems of related metaphors in a language (Lakoff and Johnson,
1980). For example, English has a system of metaphors in which
anger is described as heated fluid in a container (e.g., “Mary was
boiling mad. The pressure built up in her until she finally exploded
with rage.”). These metaphorical systems might reflect a large-scale
mapping between a base and target domain.

One model of system metaphors has been developed by Naray-
anan (1999). This model uses a localist connectionist system to
handle extended metaphors such as the anger as heated fluid ex-
ample above. In this system, the connection between a base and
target domain is assumed to be established by convention, so there
is no mapping mechanism for constructing new correspondences.
Instead, the model focuses on how understanding a physical base
domain can aid the comprehension of an abstract target. The model
has a detailed localist network representation of the base domain
in which actions can be simulated as transitions through the net-
work. After simulating a possible outcome in the physical domain,
the established mapping to the target domain is used by passing
activation from the base to corresponding nodes in a belief network
representing the target. In this way, metaphorical inferences can be
drawn from base to target. These inferences are confined to existing
correspondences between the domains; there is no mechanism for
establishing new correspondences. A variety of constraints on
metaphor interpretation such as the intent of the speaker can be
incorporated into the model by treating them as additional sources
of activation.

It may be possible to extend connectionist models of analogy to
metaphor. Connectionist models may be well suited to capturing
emotional aspects of metaphor. Associations between emotions and
words (and word sounds) are unlikely to be mediated by strictly
symbolic and rule-based processes. Thus, the kinds of soft con-
straints that are easily implemented in connectionist models might
be particularly well suited to understanding this aspect of metaphor
comprehension.

Discussion

Analogical and metaphor processing rely heavily on structurally
governed correspondences between the two domains. This leads to

the eight benchmarks summarized in Table 1 that pose a challenge
for any model of analogy. Connectionist models that address these
phenomena have focused on techniques for representing and pro-
cessing structured representations. LISA, which uses structured
representations and structure-sensitive processing, accounts for
many of the phenomena in Table 1, although some additional spec-
ification and testing of the model is still required.

Some challenges for future research include (1) building analog-
ical models that can preserve structural relations over incrementally
extended analogies such as are used in reasoning, (2) developing
models that can be used as components of a broader cognitive
system such as one that would perform problem solving, and (3)
developing models that can handle novel and conventional
metaphors.

Road Map: Psychology

Related Reading: Associative Networks; Compositionality in Neural Sys-
tems; Concept Learning; Systematicity of Generalizations in Connec-
tionist Networks
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Arm and Hand Movement Control

Stefan Schaal

Introduction

The control of arm and hand movements in human and nonhuman
primates has fascinated researchers in psychology, neuroscience,
robotics, and numerous related areas. To the uninitiated observer,
movement appears effortless. It is only when trying to duplicate
such skills with artificial systems or when examining the under-
lying neural substrate that one discovers a surprising complexity
that, so far, has prevented us from understanding the biological
implementation, how to repair neural damage, and how to create
human-like robots with a human level of movement skills.

Research directed toward understanding motor control can be
approached on different levels of abstraction. For example, such
research may entail examining the biochemical mechanisms of neu-
ronal firing, the representational power of single neurons and pop-
ulations of neurons, neuroanatomical pathways, the biomechanics
of the musculoskeletal system, the computational principles of bio-
logical feedback control and learning, or the interaction of percep-
tion and action. No matter which level of inquiry is chosen, how-
ever, ultimately we need to solve the “reverse engineering”
problem of how the properties of each level correlate with the char-
acteristics of skillful behavior. Motor control of the arm and hand
is an excellent example of the difficulties that arise in the reverse
engineering problem. Behavioral research has discovered a variety
of regularities in this movement domain, but it is hard to determine
on which level they arise. Moreover, most of these regularities were
examined in isolated arm or hand movement studies, whereas co-
ordination of the arm and hand is a coupled process in which hand
and arm movement influence each other. In this article, we discuss
some of the most prominent regularities of arm and hand control
and consider where these regularities come from, with a particular
focus on computational and neural network models. It will become
apparent that an interesting competition exists among explanations
sought on the neural, biomechanical, perceptual, or computational
level. These competing explanations have created a large amount
of controversy in the research community over the years.

Behavioral Phenomena of Arm and Hand Control

Most movement skills can be achieved in an infinite number of
ways. For instance, during reaching for an object, an arbitrary hand
path can be taken between starting point and end point, and the
path can be traversed at arbitrary speed profiles. Moreover, because
of the excess of the number of degrees of freedom in primate move-
ment systems, there is an infinite number of ways for realizing a
chosen hand path through postural configurations (see ROBOT ARM
CoNTROL). On the biomechanical level there is even more redun-
dancy, because there are many more muscles than degrees of free-
dom in the human body, and the redundancy increases on the neu-
ronal level. Thus, it is extremely unlikely that two different
individuals would use similar movement strategies to accomplish
the same movement goal. Surprisingly, however, behavioral re-
search did find a large number of regularities, not just across in-
dividuals of a given species but also across different species (see,
e.g., Flash and Sejnowski, 2001). These regularities or invariants
have become central to understanding perceptuomotor control, as
they seem to indicate some fundamental organizational principles
in the central nervous system (CNS).

Bell-Shaped Velocity Profiles and Curvature
in Reaching Movements

About 20 years ago, Morasso (see OPTIMIZATION PRINCIPLES IN
MoTorR CoNTROL) discovered that in point-to-point reaching

movements in humans, the hand path in Cartesian (external) space
was approximately straight and the tangential velocity trajectory
along the path could be characterized by a symmetric bell shape,
a result that was duplicated in monkeys. In contrast, velocity pro-
files in joint space and muscle space were much more complex.
These findings gave rise to the hypothesis that point-to-point reach-
ing movements are planned in external coordinates and not in in-
ternal ones. Later, more detailed examinations of reaching move-
ments revealed that, although approximately straight, reaching
movement showed a characteristic amount of curvature as a func-
tion of where in the workspace the starting point and end point of
the movement were chosen. Also, the symmetry of the velocity
profile varies systematically as a function of movement speed (e.g.,
Bullock and Grossberg, 1988). These behavioral phenomena gave
rise to a variety of models to explain them.

Initial computational models of reaching focused on accounting
for the bell-shaped velocity profile of hand movement, employing
principles of optimal control based on a kinematic optimization
criterion for movement planning that favors smooth acceleration
profiles of the hand (see OPTIMIZATION PRINCIPLES IN MOTOR
CONTROL). As this theory would produce perfectly straight-line
movements in Cartesian space and perfectly symmetric bell-shaped
velocity profiles, the observed violation of these features in behav-
ioral expression was explained by assuming that these movement
plans were executed imperfectly by an equilibrium point controller
(see EQUILIBRIUM PoINT HYPOTHESIS). Thus, the behavioral fea-
tures of point-to-point movements were attributed to perfect motor
planning and imperfect motor execution.

An alternative viewpoint was suggested by Kawato and co-
workers (see OPTIMIZATION PRINCIPLES IN MOTOR CONTROL and
EqQuiLIBRIUM POINT HYPOTHESIS). Their line of research empha-
sizes that the CNS takes the dynamical properties of the muscu-
loskeletal system into account and plans trajectories that minimize
“wear and tear” in the actuators, expressed as a minimum torque-
change or minimum motor-command-change optimization crite-
rion. According to this overall view, the behavioral features of arm
and hand control are an intentional outcome of an underlying com-
putational principle that employs models of the entire movement
system and its environment.

Recently, Harris and Wolpert (see OPTIMIZATION PRINCIPLES IN
Motor CoNTROL) suggested that the features of arm and hand
movement could also be due to the noise characteristics of neural
firing, i.e., the decreasing signal-to-noise ratio of motor neurons
with increasing firing frequency. Thus, the neuronal level together
with the behavioral goal of accurate reaching was held responsible
for behavioral characteristics.

Several other suggestions were made to account for features of
arm and hand control. Perceptual distortion could potentially con-
tribute to the curvature features in reaching, and dynamical prop-
erties of feedback loops in motor planning could generate asym-
metries of bell-shaped velocity profiles (Bullock and Grossberg,
1988). Moreover, imperfection of motor learning (see SENSORI-
MOTOR LEARNING) and delays in the control system could equally
play into explaining behavior.

Movement Segmentation

For efficient motor learning, it seems mandatory that movement
systems plan on a higher level of abstraction than individual motor
commands, as otherwise the search space for exploration during
learning would become too large to find appropriate actions for a
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new movement task (see ROBOT LEARNING). Movement primitives
(see MOTOR PRIMITIVES), also called units of action, basis behav-
iors, or gestures (see SPEECH PRODUCTION), could offer such an
abstraction. Pattern generators in invertebrates and vertebrates (see
MOTOR PATTERN GENERATION) and the few different behavioral
modes of oculomotor control (e.g., VOR, OKR, smooth pursuit,
saccades, vergence) can be seen as examples of such movement
primitives. For arm and hand control, however, whether some form
of units of actions exist is a topic of ongoing research (Sternad and
Schaal, 1999). Finding behavioral evidence for movement segmen-
tation could thus provide some insight into the existence of move-
ment primitives.

Since the 1980s, kinematic features of hand trajectories have
been used as one major indicator to investigate movement seg-
mentation. From the number of modes of the tangential velocity
profile of the hand in linear and curvilinear drawing movements,
it was concluded that arm movements may generally be created
based on discrete strokes between start points, via points, and end
points, and that these strokes are piecewise planar in three-
dimensional movement (for a review, see Sternad and Schaal,
1999). From these and subsequent studies, stroke-based movement
generation and piecewise planarity of the hand movement in Car-
tesian space became one of the main hypotheses for movement
segmentation (Flash and Sejnowski, 2001).

Recent work (Sternad and Schaal, 1999), however, reinterpreted
these indicators of movement segmentation partially as an artifact,
in particular for rhythmic movement, that, surprisingly, was also
assumed to be segmented into planar stokes. Human and robot
experiments demonstrated that features of apparent movement seg-
mentation could also arise from principles of trajectory formation
that use oscillatory movement primitives in joint space. When such
oscillations are transformed by the nonlinear direct kinematics of
an arm (see ROBOT ARM CONTROL) into hand movement, complex
kinematic features of hand trajectories can arise that are not due to
movement segmentation. Sternad and Schaal (1999) therefore sug-
gested that movement primitives may be better sought in terms of
dynamic systems theory, looking for dynamical regimes like point
and limit cycle attractors and using perturbation experiments to find
principles of segmenting movements into these basic regimes.

The 2/3 Power Law

Another related behavioral feature of primate hand movements tra-
jectories, the 2/3 power law, was discovered by Lacquaniti et al.
(in Flash and Sejnowski, 2001). In rhythmic drawing movements,
the authors noted a power law relationship with proportionality
constant k between the angular velocity a(f) of the hand and the
curvature of the trajectory path c(?):

a(ty = ke ey

There is no physical necessity for movement systems to satisfy this
relation between kinematic (i.e., velocity) and geometric (i.e., cur-
vature) properties of hand movements. Since the power law has
been reproduced in numerous behavioral experiments (Viviani and
Flash, 1995, in Flash and Sejnowski, 2001) and even in population
code activity in motor cortices (Schwartz and Moran, 1999, in
Flash and Sejnowski, 2001), it may reflect an important principle
of movement generation in the CNS.

The origins of the power law, however, remain controversial.
Schaal and Sternad (2001) reported strong violations of the power
law in large-scale drawing patterns and, in accordance with other
studies, interpreted it as an epiphenomenon of smooth movement
generation (Flash and Sejnowski, 2001). Nevertheless, the power
law remains an interesting descriptive feature of regularities of
human motor control and has proved to be useful even in model-

ing the perception of movement (see MOTOR THEORIES OF
PERCEPTION).

The Speed-Accuracy Trade-off

In rapid reaching for a target, the movement time MT of reaching
the target was empirically found to depend on the distance A of the
start point of movement from the target and the target width W—
equivalent to the required accuracy of reaching—in a logarithmic
relationship: MT = a + b log2(2A/W), where a and b are propor-
tionality constants in this so-called Fitts’ law or speed-accuracy
trade-off. Since Fitts’ law is a robust phenomenon of human arm
and hand movement, many computational models used it as a way
to verify their validity. Unfortunately, Fitts’ law has been modeled
in many different ways, including models from dynamic system
theory, noise properties of neuronal firing, and computational con-
straints in movement planning (for a review, see Mottet and
Bootsma, 2001; Bullock and Grossberg, 1988). Thus, it seems that
the constraints provided by Fitts’ law are too nonspecific to give
clear hints as to the organization of the nervous system. Neverthe-
less, the empirical phenomenon of Fitts’ law remains a behavioral
landmark.

Resolution of Redundancy

As mentioned earlier, during reaching for a target in external space,
the excess number of degrees of freedom in the human body’s
kinematic structure usually allows an infinite number of postures
for each hand position attained during the reaching trajectory. An
active area of research in motor control is thus concerned with how
redundancy is resolved, whether there is within- or across-subject
consistency of the resolution of redundancy, and whether it is pos-
sible to deduce constraints on motor planning and execution from
the resolution of redundancy.

Early studies by Cruse et al. (in Bullock, Grossberg, and
Guenther, 1993) demonstrated that redundancy resolution was well
described by a multiterm optimization criterion that primarily tries
to keep joint angular position as far as possible away from the
extreme positions of each joint and also minimizes some physio-
logical cost. According to this explanation, when a reaching move-
ment is initiated in a rather unnatural posture, the movement slowly
converges to the optimal posture on the way to the goal, rather than
achieving optimality immediately. This strategy resembles the
method of resolved motion rate control in control theory, suggested
as a neural network model of human motor planning by Bullock et
al. (1993). Grea, Desmurget, and Prablanc (2000) observed similar
behavior in reaching and grasping movements. Noting that the final
posture at a grasp target was highly repeatable even if the target
changed its position and orientation during the course of the reach-
ing movement, the authors concluded that the CNS plans the final
Jjoint space position for reaching and grasping, not just the final
hand position. However, the optimization methods proposed by
Bullock et al. (1993) could result in similar behavior, without the
CNS explicitly planning the final joint space posture. An elegant
alternative view to optimization methods is suggested in GEOMET-
RICAL PRINCIPLES IN MOTOR CONTROL (q.v.), where motor control
and planning based on force fields is emphasized. It is evident more
work will be needed before a final conclusion can be reached on
the issue of redundancy resolution.

Reaching and Grasping

The coordination of reaching and grasping offers at least three im-
portant windows onto motor control. First, reaching and grasping
require a resolution of redundancy, as outlined in the previous sec-
tion. However, small changes in target orientation can lead to the
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need for drastic changes in arm and hand posture at the target, such
that movement planning requires carefully chosen strategies for
successful control. Second, reaching and grasping are two separate
motor behaviors that may or not be executed independently of each
other. This issue allows researchers to examine the superposition
and sequencing of movement primitives. Third, grasping has a
more interesting perceptual component than reaching, since appro-
priate grasp points, grasping strategies, and grasping forces need
to be selected as a function of target shape, size, and weight. The
principles of perceptuomotor coordination can thus be examined in
well-controlled experiments, including the grasping of objects that
induce visual illusions.

Among the key features of reaching and grasping are the follow-
ing: (1) a fast initial arm movement to bring the hand close to the
target, (2) a slow approach movement when the hand is near the
target, and (3) a preshaping phase of the hand with initial progres-
sive opening of the grip, followed by closure of the grip until the
object size is matched and the object is finally grasped (Jeannerod
et al., 1995; Arbib and Hoff, 1993, in Jeannerod et al., 1995). Al-
though early models of reaching and grasping assumed indepen-
dence of these different phases and simply executed them in a pro-
grammatic way, behavioral perturbation studies that changed the
target size, orientation, or distance revealed a coupling between the
phases (for a review, see Jeannerod et al., 1995), such that, e.g.,
the preshaping partially reversed when the target distance was sud-
denly increased. Using optimization principles, Hoff and Arbib (in
Jeannerod et al., 1995) developed a model of these interactions by
structuring the reach-and-grasp system in appropriate perceptual
and motor schemas (see SCHEMA THEORY), including abstraction
of the multifingered hand in terms of two or more virtual fingers
to simultaneously model different grip types (e.g., precision grip,
power grip) and their opposition spaces for contact selection. This
model can also be mapped onto the known functional cortical anat-
omy in primates. Grip force selection and the anticipation of object
properties has been studied by a number of authors (e.g., Flanagan
and Beltzner, 2000), who generally agree that the CNS seems to
use internal models to adjust grip force. From studies of the reso-
lution of redundancy, it was concluded that the entire arm posture
at the target seems to be planned in advance (Grea et al., 2000),
but this result may need differentiation as outlined in the previous
section. In general, there seems to be a consensus that behavioral
features of reaching and grasping are carefully planned by the CNS
and are not accidental.

Motor Learning

Because of continuous change in body size and biomechanical
properties throughout development, the ability to learn motor con-
trol is of fundamental importance in biological movement systems.
Moreover, when it comes to arm and hand control, primates show
an unusual flexibility in devising new motor skills to solve novel
tasks. Learning must therefore play a pivotal role in computational
models of motor control.

One of the most visible research impacts of motor learning was
the controversy between equilibrium point control (see EQUILIB-
RIUM POINT HYPOTHESIS) and internal model control (see SENSO-
RIMOTOR LEARNING and CEREBELLUM AND MOTOR CONTROL).
Proponents of equilibrium point control believed that the learning
of internal models is too complicated to be plausible for biological
information processing, while proponents of internal model control
accumulated evidence that various, in particular fast, movement
behaviors cannot be accounted for by equilibrium point control. At
present, there seems to be an increasing consensus that internal
model control is a viable concept for biological motor learning, and
that the equilibrium point control strategy in its original and ap-
pealing simplicity is not tenable. Behavioral learning experiments

that were created in the wake of the equilibrium point control dis-
cussion sparked a new branch of research on motor learning (see
SENSORIMOTOR LEARNING and GEOMETRICAL PRINCIPLES IN MoO-
TOR CONTROL). Adaptation to virtual force fields, to altered per-
ceptual environments, or to virtual objects are among the main
behavioral paradigms to investigate motor learning, with the goal
of better understanding the time course, representations, control
circuits, retention, and functional anatomy of motor learning (see
SENSORIMOTOR LEARNING).

Interlimb Coordination

In robotics, the control of two limbs can be accomplished as if the
two systems were completely independent, thus reducing the con-
trol problem to that of controlling two robots instead of one. In
biological motor control, such independence does not exist, and a
rich area of behavioral investigation examines the computational
principles and constraints that arise from the coordination of mul-
tiple limbs. In arm and hand control, the approach of dynamic
pattern formation (e.g., Kelso, 1995) has been a prominent meth-
odology to account for interlimb coordination. In this approach,
motor control in general and interlimb coordination in particular
are viewed as an assembly of the required degrees of freedom of
the motor system into a task-oriented attractor landscape (Saltzman
and Kelso, 1987, in Kelso, 1995). Interlimb coordination is thus
conceived of as the result of coupling terms in nonlinear differential
equations. An important question thus arises as to what kind of
equations model the control of movement, and what kind of vari-
ables cause the coupling. A variety of models of movement gen-
eration with nonlinear dynamics approaches were suggested, based
on differential equations, that either generate movement plans
(Kelso, 1995; Sternad, Dean, and Schaal, 2000) or directly generate
forces. The origin of coupling between limbs, however, remains an
issue of controversy. Possible sources could be perceptual, propri-
oceptive, purely planning-based, interaction force-based, a pref-
erence for homologous muscle activation, or neural crosstalk. By
demonstrating that the orientation of limbs in external space can
explain a certain class of interlimb coordination, recent behavioral
results (Mechsner et al., 2001) emphasized that perceptual coupling
may be much more dominant than previously suspected. In general,
however, there seems to be a strong need for detailed computational
modeling to elucidate the computational and neuronal principles of
interlimb coordination.

Intralimb Coordination

Investigations of intralimb coordination seek to uncover the spe-
cific principles by which individual segments of a limb move rela-
tive to one other. Models of arm and hand control that are based
on optimal control (see OPTIMIZATION PRINCIPLES IN MOTOR CON-
TROL) or optimal resolution of redundancy automatically solve the
intralimb coordination problem by means of their optimization
framework; any kind of special behavioral features would be
considered accidental. However, some research has considered
whether some special rules of information processing by the CNS
can be deduced from the regularities of intralimb coordination. For
reaching movements, the simple mechanism of joint interpolation
can account for a large set of behavioral features when the onset
times of the movements in individual degrees of freedom are stag-
gered, an older observation that has been confirmed in more recent
work (Desmurget et al., 1995). For rhythmic movement, it is of
interest to know how the oscillations in individual degrees of free-
dom remain phase-locked to each other, and whether there are pre-
ferred phase-locked modes (Schaal et al., 2000). As in interlimb
coordination, models of nonlinear differential equations seem the
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most suitable for capturing the effects of rhythmic intralimb
dynamics.

Perception-Action Coupling

Most of the behavioral studies outlined in the previous sections
were primarily concerned with specific aspects of motor control
and less with issues of perceptuomotor control. However, the in-
teraction of perception and action reveals many constraints on the
nervous system. In the behavioral literature, there is a large body
of research that examines particular perceptuomotor skills, such as
the rhythmic coordination of arm movement during the juggling of
objects or the interaction of external forces and limb dynamics to
generate movement (e.g., Sternad, Duarte, et al., 2000). This inter-
esting topic cannot be discussed in detail here.

Discussion

Behavioral phenomena of arm and hand movement have sparked
arich variety of computational models on various levels of abstrac-
tion. Although some topics, such as internal model control, have
gained solid ground in recent years (Flash and Sejnowski, 2001),
many other issues remain controversial and deserve more detailed
and computational investigations. Perhaps the most interesting top-
ics for future research are the importance of the dynamic properties
of the musculoskeletal system in facilitating motor control, the role
of real-time perceptual modulation of motor control, and dynamic
systems models versus optimal control-based models.

Road Maps: Mammalian Motor Control; Robotics and Control Theory

Related Reading: Eye-Hand Coordination in Reaching Movements;
Grasping Movements: Visuomotor Transformations; Limb Geometry,
Neural Control; Robot Arm Control; Sensorimotor Learning
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Networks

Relative Advantages
Advantages of Neural Networks

One of the main benefits claimed for NN is graceful degradation,
especially when they are of the distributed variety (LOCALIZED
VERSUS DISTRIBUTED REPRESENTATIONS). A computational sys-
tem is said to exhibit graceful degradation when it can tolerate
significant corruption of its input or internal workings. The toler-
ation consists of the system’s continuing to perform usefully,
though not necessarily perfectly. In NNs, input imperfection is typ-
ically a matter of corruption of individual input activation vectors.
Internal corruption usually takes the form of deletions of nodes or
links or corruptions of the link weights.

Symbolic Al systems, on the other hand, tend not to degrade
gracefully. Consider a simple rule-based system. A small corrup-
tion of an input data structure is likely to make it fail to match the
precise form expected by the rules that would otherwise have ap-
plied, so that they totally fail to be enabled. Equally, other rules
might erroneously be enabled. Similarly, even minor damage to a
rule can have very large effects on how the system operates.
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As a special case of graceful degradation, NNs sometimes ex-
hibit error correction, whereby an erroneous or corrupted pattern
on an input bank of units leads to a corrected version of the pattern
appearing in the network, enabling the network to proceed as if the
correct version had been provided. Related to this type of error
correction is pattern completion, whereby an incomplete pattern is
filled out to become a more complete pattern somewhere in the
network.

Also related to graceful degradation is automatic similarity-
based generalization, in which previously unseen inputs that are
sufficiently similar to training inputs lead naturally to behavior that
is usefully similar to (or captures central tendencies in) the behavior
elicited by the training inputs. There is a sense in which similarity
of representations induces similarity of processing more readily
than it does in symbolic Al: there is, by and large, a higher degree
of naturally achievable continuity in the mapping from inputs to
outputs. In addition, previously unseen blends of different repre-
sentations will naturally tend to lead to processing that is a blend
of the processing that would have arisen from the different repre-
sentations that have been blended together. Such behavior is pos-
sible in symbolic Al but specific system-design effort is needed to
achieve it.

Importantly, NNs can learn generalizations or category proto-
types by exposure to instances, through fairly straightforward, uni-
form weight modification procedures. These generalizations or pro-
totypes come to be implicit in the adjusted weights. Although
learning is intensively studied in symbolic Al, and some learning
paradigms in symbolic Al involve adjustment of numerical param-
eters akin to NN weights, symbolic processing does not provide
any specific support to these paradigms. The paradigms could
therefore be said to arise less easily and naturally out of symbolic
processing than out of NN activity.

The preceding properties of NNs have found their application in
content-based access (or associative access) to long-term memory
(see AssSOCIATIVE NETWORKS). This can take two different forms.
First, let us assume, as usual, that a neural net’s long-term memory
is its set of weights. The manipulation of an input vector by the
network can be thought of as the bringing to bear of particular
content-relevant long-term memories on that vector. Second, in any
NN that learns a map from particular inputs to particular outputs,
an output can be thought of as a particular long-term memory re-
called directly on the basis of the content of the input. Content-
based access is not as easily provided in symbolic systems imple-
mented in conventional computers, although it can be obtained to
some useful degree by sophisticated indexing schemes (see Bon-
issone et al. in Barnden and Holyoak, 1994), associative computer
memories, or hashing (see Touretzky in Hinton, 1991, for
discussion).

NNs can have emergent rule-like behavior. Such behavior can
be described, approximately at least, as the result of following sym-
bolic rules, even though the system does not contain representa-
tions of explicit rules (see Elman, 1991). Emergent rule-like be-
havior is a central issue in the application of neural networks to
high-level cognitive tasks.

More generally, NNs tend to be more sensitive to subtle contex-
tual effects than symbolic Al systems are, because multiple sources
of information can more easily be brought to bear in a gracefully
interacting and parallel way. This property of NNs facilitates soft
constraint satisfaction. That is, it is possible to arrange for some
hypotheses to compete and cooperate with each other, gradually
influencing each other’s levels of confidence until a stable set of
hypotheses is found. Each hypothesis is represented by a node or
group of nodes in the neural network, and the constraints are en-
coded by links joining those nodes or groups. The constraint-
satisfaction is soft because no individual constraint needs to be
satisfied absolutely. By contrast, although many symbolic Al sys-

tems are designed to do constraint satisfaction, the symbolic frame-
work provides no special support for it, particularly when the con-
straints are soft.

Finally, NNs are an inherently parallel model of computation
whose parallelism is straightforwardly realizable in a physical
substrate.

Advantages of Symbolic Al Systems

The symbolic framework is better than NNs at encoding and ma-
nipulating the complex, dynamic structures of information that ap-
pear to be needed in cognition. These structures can, for instance,
be interpretations of natural language utterances, descriptions of
complex scenes, complex plans of action, or conclusions drawn
from other information. The encodings of such structures, whether
these encodings are symbolic or otherwise, need to have the fol-
lowing important properties. (See also Shastri in Barnden and Pol-
lack, 1991.)

1. The encodings must often be highly temporary—for instance,
encodings of interpretations of natural language sentences and
encodings of intermediate conclusions during reasoning need to
be rapidly created, modified, and discarded. Although activation
patterns in NNs are temporary, temporariness is challenging for
NNs when it is combined with properties 2—6.

2. The encoding technique must allow the encoded structures to
combine information items (e.g., word senses) that have never
been combined before, or never been combined in quite the
same way, in the experience of the system.

3. The encodings must allow the encoded information to have
widely varying structural complexity. Natural language sen-
tence interpretations provide illustrations of this point.

4. In particular, the encoded structures can be multiply nested. In
the sentence “John believes that Peter’s angry behavior toward
Mary caused her to write him a strongly worded letter,” the
anger description is nested within a causation description that
is nested within a belief report.

5. A given type of information can appear at different levels of
nesting. A system might have to represent a sitting room that
has a wall that bears a picture that itself depicts a dining room.
As another illustration, a belief might be about a hope that is
about a belief.

6. A given type of information may also have to be multiply in-
stantiated in other ways, as when, for instance, there are three
love relationships that need to be simultaneously represented.

Turning to manipulations, cognitive systems must exhibit strong
properties of systematicity of processing—each information struc-
ture J that one cares to mention has an extremely large class of
variants that must be able to be subjected to the same sort of pro-
cessing as J is; and the class of variants is far too large to imagine
that each variant is processed by a separate piece of neural network
or a separate symbolic module. So, we must have symbolic Al
systems and NNs capable of very flexible and general processing.
(See also SYSTEMATICITY OF GENERALIZATIONS IN CONNECTION-
IST NETWORKS.)

The variable-binding problem for neural networks is one man-
ifestation of the need for systematicity of processing. Suppose one
wishes a neural network to make inferences that obey the following
rule: X is jealous of Z whenever X loves Y, Y loves Z, and X, Y,
and Z are distinct people. In this statement of the rule, the variables
X, Y, and Z can be replaced by any suitable people-descriptions,
such as “Joe Bloggs’ father’s boss.” The systematicity issue in this
example is that of avoiding having replication of machinery for all
the different possible combinations of values for these variables.
(Each such combination is a J in the terms of the previous para-
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graph.) This issue can also be thought of as the variable binding
problem for the example, even if a neural network dealing with it
does not have any explicit representation of the rule or the variables
in it. In the special case in which a neural network implements the
rule as a subnetwork and has particular units, subnetworks, or ac-
tivation patterns that play the role of the three variables, the variable
binding problem, in a narrower sense now, is the problem of how
the network is to be able to “bind” such a unit, subnetwork, or
activation pattern to a particular value at any given moment, and
how the binding is to be used in processing.

Cognitive systems must also exhibit a high degree of structure-
sensitivity in their processing. Pieces of information that have com-
plex structure must be processed in ways that are heavily dependent
on their structure as such, not (just) on the nature of constituents
taken individually. For example, consider the operation of inferring
from “not both A and B” that “not A or not B.” The operation is
independent of what A and B are—it is only the “not both . . . and
...” structure that is important.

These features of information structure encodings and manipu-
lations combine to distinguish the types of information that neural
networks for reasoning, natural language understanding, etc. must
deal with from the types of information that typical neural networks
cater for. Traditional NN techniques were originally developed
largely for specific “low level” applications, such as restricted
forms of pattern recognition, or for limited forms of pattern asso-
ciation. Because of the resulting continuing limitations in most
applications of NNss, it has been sufficient for NNs to adhere, by
and large, to the following restrictions (although almost every re-
striction is violated by some NN subparadigm). These restrictions
cause difficulty in trying to apply NNs to natural language under-
standing, common-sense reasoning, and the like.

1. There is typically no dynamic, rapid creation and destruction of
nodes and links. Therefore, temporary information cannot be
encoded in temporary network topology changes. (Some of this
effect can, however, be obtained by techniques such as dynamic
links described in DYNAMIC LINK ARCHITECTURE (q.V.), or by
higher-order units, whose activation is sensitive to weighted
sums of products of input values, rather than just to weighted
sums of input values.)

2. Links in NN are not differentiated by labeling, unlike the links
in symbolic structures such as SEMANTIC NETWORKS (q.v.).
Therefore, in an NN, information that could otherwise be put
into link labels has to be encoded somehow in activation values,
weights, extra links, or other features of network topology, add-
ing significantly to the cumbersomeness of the net and its pro-
cessing. (See Barnden and Srinivas, 1991, for more discussion.)

3. The resolution of NN activation values is generally not fine
enough to allow them individually to encode complex symbolic
structures. Most typically, activation values merely encode con-
fidence levels of some sort.

4. Pointers are usually not allowed. That is, activation values or
patterns are not allowed to act as names or addresses of parts
of the network itself.

5. Stored programs are not allowed. That is, activation values or
patterns cannot act as instructions (names of internal computa-
tional actions).

Further Comparative Remarks

The advantages claimed here for NNs are not clearcut. For instance,
there are types of Al systems that readily exhibit forms of graceful
degradation, pattern completion, and similarity-based generaliza-
tion. In particular, as Barnden in Barnden and Holyoak (1994) ar-
gues in detail and other researchers have noted, these benefits are
natural properties of suitably designed symbolic analogy-based rea-

soning systems (see ANALOGY-BASED REASONING AND META-
PHOR and also MEMORY-BASED REASONING).

Just as NNs support some types of learning more readily than
symbolic Al systems do, the converse holds as well. Symbolic Al
systems, by virtue of their ability to handle complex temporary
information structures, are in a better position to perform various
types of rapid learning, proceeding in large steps rather than
lengthy, gradual weight modification. For instance, a symbolic Al
system is in a good position to reason about why some plan of
action failed, and thus quickly and greatly amend relevant parts of
its knowledge base or planning strategies. Also, the ability of neural
networks to learn generalizations is often hindered by elaborate,
extensive training regimes. It is true that in some learning regimes,
such as some forms of Hebbian learning, final weights are calcu-
lated in a direct way from single presentations of training items.
But more typically, the number of training-item presentations one
needs to make to the network runs to tens or hundreds of thousands
before useful results can be obtained.

NNs are good at allowing hypotheses to be held with varying
degrees of confidence, the degrees being realized as activation lev-
els. However, it is commonplace also in symbolic Al to have nu-
merical degrees of confidence. These appear in DECISION SUPPORT
SYSTEMS AND EXPERT SYSTEMS (q.v.) and elsewhere. However,
the normal properties of activation spread and activation combi-
nation in NN support confidence levels in a natural way. In sym-
bolic Al systems the computations have to be specially and ex-
plicitly designed.

The contrasts between neural networks and symbolic Al that
were presented earlier are clouded by the fact that NNs can be
implementational. Implementational NNs are exact implementa-
tions of symbol processing schemes of the sort used in traditional
symbolic Al systems. That is, network-unit activations (and/or link
weights, possibly) can be regarded as exactly encoding symbolic
representations as used in traditional Al systems—such as logic
formulas, frames, schemas, or pieces of semantic network—and
changes in network state can be regarded as exactly encoding tra-
ditional symbolic manipulation steps—such as traversal, concate-
nation, and rearrangement of structures—that are used in traditional
Al for directly effecting reasoning, planning, natural language un-
derstanding, etc. See, for example, Barnden’s and Shastri’s chap-
ters in Barnden and Pollack (1991) and Lange and Wharton’s chap-
ter in Barnden and Holyoak (1994).

The nonimplementational style includes NNs that can be use-
fully viewed as approximately manipulating traditional symbolic
objects in traditional ways. However, the nearer an NN is to being
implementational, the more it runs the danger of inheriting the dis-
advantages of symbolic Al, such as the tendency to lack graceful
degradation.

Bridging the Gap

The discrepancy in the relative advantages of (nonimplementa-
tional) NNs and symbolic Al systems has been the focus of much
attention during the last decade or so (see, e.g., Barnden and Pol-
lack, 1991; Browne and Sun, 2001; Hinton, 1991; Jagota et al.,
1999; McGarry, Wermter, and Mclntyre, 1999). We shall review
here some representative attempts to tackle the problem.

A common approach to extending conventional types of NN
processing to handle complex dynamic structures is to use reduced
representations, also known as compressed encodings. See, e.g.,
Hinton, Pollack, and St. John’s chapter and McClelland’s chapter
in Hinton (1991), as well as Elman (1991). A reduced representa-
tion is a single activation vector that is created from the several
activation vectors that encode the constituents of the structure in
such a way that the resulting vector is of roughly the same size as
each of the constituents’ vectors. For example, the constituents
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could be words, and a sequence of word encodings could represent
a sentence. The reduced representation is then a roughly word-sized
vector for the whole sentence.

One architecture used to produce reduced representations of se-
quences of items is a Simple Recurrent Network (SRN). An SRN
is typically a three-layer network in which the input to the middle
layer consists of an item in the sequence together with the previous
activation pattern in the middle layer itself. As a result of back-
propagation training, the encodings produced in the middle layer
are compressed vectors representing the current input in the context
of the history of items presented to the network so far. SRNs have
been successfully used, for instance, for predicting the category of
the next word in a sentence being inputed (Elman, 1991).

A more general-purpose architecture for producing recurrent
compressed encodings is Pollack’s Recursive Auto-Associative
Memory (RAAM) (see Pollack in Hinton, 1991). The input and
output layers are divided up into segments that hold constituent
encodings. The net is trained to map sequences of constituent en-
codings to themselves. The activation pattern that appears on the
hidden layer of the trained network in response to a particular se-
quence of constituent encodings on the input layer is the com-
pressed encoding for the sequence. (And a compressed encoding
can be decoded by placing it in the hidden layer: a close approxi-
mation, hopefully, to the sequence of constituent encodings appears
on the output layer.) Also, during training, a hidden layer pattern
can be copied into any of the segments in the input and output
layer, leading to the ability of the network to handle recursive struc-
tures some of whose constituents are themselves sequences of con-
stituents. An example of such a structure is the sentence “John
knows that Sally is clever,” thought of as having the sentence
“Sally is clever” as a constituent.

There are some indications that compressed encodings can sup-
port holistic structure-sensitive processing by means of conven-
tional NN techniques such as feedforward association networks
(see, e.g., Chalmers, 1990; Pollack in Hinton, 1991). The process-
ing is holistic in that the encodings are not uncompressed into the
individual activation vectors that encode their notional constitu-
ents. For example, Chalmers successfully trained a three-layer
backpropagation network to transform compressed encodings of
active English sentences into compressed encodings of their pas-
sive counterparts. The hidden layer had the same size as the input
and output layers (the size of a compressed encoding) and the net
operated in one pass of activation, so that it cannot have been work-
ing by first decoding the input compressed encodings into the cor-
responding sequence of constituent encodings.

However, in-depth analysis of RAAM-like systems (Kolen,
1994) reveals that the computation depends on very fine tuning of
synaptic weights and highly precise activation levels. The impli-
cation is that holistic computation based on RAAM-generated en-
codings is sensitive to noise, which is a significant drawback given
that graceful degradation is a major argument for using neural net-
works. An additional complication associated with all of the afore-
mentioned techniques of generating reduced representations is the
lengthy process of weight training.

These problems are avoided in a related approach of which a
central example is the Holographic Reduced Representation (HRR)
technique of Plate (1995). See also Rachkovskij and Kussul (2001).
HRRs use predefined combination operations (circular convolu-
tions) to produce compressed encodings. No training is required
and both encoding as well as decoding are performed in a single
step. What is more important, though, is that these transformations
offer a more comprehensive account of systematicity. Given a suf-
ficiently large size of code vectors, not only can HRRs recursively
bind any number of elements, but also, using simple vector addi-
tion, multiple bindings can be combined further to form collections
of predicates. Such collections retain superficial and structural sim-

ilarity of structures, so that decoding is not necessary to estimate
an item’s relevance for certain types of computation. If necessary,
any one predicate can be readily extracted using inverse operations,
although not without some loss of information due to the nature of
circular convolution and vector addition. The operations introduce
some degree of noise, which is further amplified by the decoding
transformation. However, it can be rectified using an auto-
associative memory to recover the original elements. Using this
approach, Plate (1995) shows how HRRs can be used to represent
sequences and more complex structures, and how to achieve chunk-
ing and variable binding.

In a different approach to bridging the gap, Barnden in Barnden
and Holyoak (1994) capitalizes on the comment made previously
that symbolic analogy-based reasoning possesses many of the main
advantages of nonimplementational NNs. The claim is that an im-
plementational NN that implements a symbolic analogy-based rea-
soning system inherits those advantages, as well as the symbolic
Al advantage with respect to complex dynamic information
structures.

The preceding approaches assume that it is worthwhile to de-
velop gap-bridging systems that are neural networks in their en-
tirety, rather than developing systems that are some combination
of NN machinery with symbolic Al machinery (where the latter is
given no NN realization). The latter, hybrid, strategy is a popular
approach to bridging the gap (McGarry et al., 1999). The simpler
types of hybridization occur in systems that have largely separate
neural and symbolic modules (see, e.g., Hendler in Barnden and
Pollack, 1991). But more intimate hybridizations have been devel-
oped, for instance, in networks where an individual node or link
can act partially like those in neural networks and partially like
those in symbolic networks.

Although the more implementational an NN is the more it risks
inheriting disadvantages of symbolic Al, it may still be that some
of the implementational NN techniques could be adapted for use
in gap-bridging systems that escape those disadvantages. There-
fore, we will now look at some of the techniques.

A crucial aspect of implementational NN is the way in which
they allow representational items to be rapidly and temporarily
combined so as to form encodings of temporary complex infor-
mation structures. One form of this dynamic combination (or tem-
porary association) issue is the variable binding problem, and a
closely related form is the role binding problem. The variable bind-
ing problem was described previously. The role binding problem
is concerned with giving specific values to the roles (slots) in pred-
icates, frames, schemas, and the like.

An immediately obvious, and somewhat natural, approach to
dynamic combination is to combine network nodes or assemblies
by adding new links or giving non-zero weights to existing zero-
weight links. However, this method is highly cumbersome because
network structure is not data that is directly manipulable by the
network itself. Another rather similar approach is to facilitate ex-
isting (non-zero-weight) connection paths, between nodes/assem-
blies that are to be combined, by activating intermediate nodes on
the paths. These nodes are called binding nodes. Since the dynamic
combination structure is now encoded in the activation levels of
binding nodes, the net can more easily analyze that structure. How-
ever, the processing is still cumbersome (Barnden and Srinivas,
1991).

A distinctly different approach is to deem nodes/assemblies to
be bound together when they fire in synchrony (see STRUCTURED
CONNECTIONIST MODELS, COMPOSITIONALITY IN NEURAL SYS-
TEMS, and DYNAMIC LINK ARCHITECTURE). See in particular Shas-
tri in Barnden and Pollack (1991), and Henderson and Lane (1998).
The method is an important special case of the more general notion
of binding nodes together by giving them similar spatiotemporal
activation patterns. This is the pattern-similarity association tech-
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nique: see Barnden and Srinivas (1991) and Barnden in Barnden
and Pollack (1991).

Distinctly different again is the use of positional encodings of
dynamic combinations. In the more developed forms of this idea
(see Barnden in Barnden and Pollack, 1991), activation patterns are
dynamically combined by being put into suitable relative positions
with respect to each other, much as bit-strings in computer memory
can be put into contiguous memory locations to form records.

A somewhat pointer-like technique has been implemented: see
Lange and Wharton in Barnden and Holyoak (1994). Different
parts of the network are capable of emitting activation patterns that
are thought of as their “signatures.” Other parts can then tempo-
rarily hold signatures and thereby point, in a sense, to the parts that
possess the signatures.

One noteworthy way of achieving temporary association is the
use of auto-associative memories with rapid Hebbian learning, as
in van der Velde (1995). Van der Velde demonstrates how multiple
elements can be stored in a single network while preserving their
ordering. Each element in the sequence refers to the next and pre-
vious ones by unique pointers that constitute part of the memory
trace in an auto-associative module. Using this approach, van der
Velde builds a conventional stack-based generator of center-
embedded sentences. Despite its implementational architecture,
this model manages to retain the graceful-degradation property of
nonimplementational NNs. Hebbian association was also used by
Hadley et al. (2001) to achieve a strong from of systematicity.

Finally, Smolensky in Hinton (1991) proposed an abstract but
influential binding and structure-representation approach based on
tensors. Some realizations of this approach involve binding nodes,
but the approach can be seen to subsume other concrete techniques
as well.

Discussion

One theme of this review has been that the relative advantages of
symbolic Al and NN are less clear-cut than is usually implied. In
particular, although NNs have been successful for some purposes
and can have advantages such as graceful degradation, most NN
research has not addressed the complex information processing is-
sues routinely tackled in symbolic Al research. The latter field has
contributed much more, for instance, to the study of how natural
language discourse can be understood and common-sense reason-
ing performed. Nevertheless, pursuing nonsymbolic approaches to
the problems is beneficial for as long as the symbolic approaches
fail to provide all the answers.

Some of the open questions in the area of this review are: Is it
actually necessary to go beyond symbolic Al in order to account
for complex cognition? If it is, should symbolic Al be dispensed
with entirely, or is some amount of complex symbol-processing
unavoidable? How can reasoning, natural language understanding,

Associative Networks
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Introduction

The operation of association involves the linkage of information
with other information. Although the basic idea is simple, associ-
ation gives rise to a particular form of computation, powerful and
idiosyncratic. The mechanisms and implications of association
have a long history in psychology and philosophy. Association is

etc. be effected by neural networks without just implementing con-
ventional symbol processing? How can different styles of system,
e.g., implementational and nonimplementational neural networks,
or neural networks and non-neural systems, be gracefully combined
into hybrid systems?
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also the most natural form of neural network computation. This
article will discuss association as realized in neural networks as
well as association in the more traditional senses.

Neural networks are often justified as abstractions of the archi-
tecture of the nervous system. They are composed of a number of
computing units, roughly modeled on neurons, joined together by
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connections that are roughly modeled on the synapses connecting
real neurons together. The basic computational entity in a neural
network is related to the pattern of activity shown by the units in
a group of many units.

Because of the use of activity patterns—mathematized as state
vectors—as computational primitives, the most common neural
network architectures are pattern transformers which take an input
pattern and transform it into an output pattern by way of system
dynamics and a set of connections with appropriate weights. In a
very general sense, therefore, neural networks are frequently de-
signed as pattern associators, which link an input pattern with the
“correct” output pattern. Learning rules are designed to construct
accurate linkages. The most common feedforward neural network
architectures realize this linkage by way of connections between
layers of units (Figure 1). There may be a single set of modifiable
connections between input and output (Figure 1B), or multiple lay-
ers of connections (Figure 1C). Another common architecture is
realized by a single layer of units where the units in the layer are
recurrently interconnected (Figure 1A).

One common design goal of a feedforward associator (Figures
1B and 1C) is to realize what Kohonen (1977) has labeled hetero-
association, that is, to link input and output patterns that need have
no relation to each other. Another possibility is to realize what
Kohonen has called autoassociation, where the input and output
patterns are identical. Recurrent networks (Figure 1A) are well
suited to autoassociation.

Figure 1. Three common basic neural network architectures. A, A set of
units connects recurrently to itself by way of modifiable connections. (The
connections are drawn as reciprocal.) B, A feedforward network in which
an input pattern is transformed to an output pattern by way of a layer of
modifiable connections. C, A more general feedforward network. An input
layer projects to an intermediate layer of units. The intermediate layer is
often called a hidden layer because it may not be accessible from outside
the network. The hidden layer then projects to the output units.

Because the input and output patterns must correspond to infor-
mation about the real world, the data representation is of critical
importance at all levels of network operation. For example, simple
pattern recognizers are often realized by neural networks as a spe-
cial form of pattern associator by assuming a particular output rep-
resentation, one where a single active output unit corresponds to
the category of the input. Different categories correspond to dif-
ferent active output units. This highly localized representation is
sometimes called a grandmother cell representation, because it im-
plies that only when one particular unit is active is “grandmother”
being represented. The alternative representation is called a dis-
tributed representation, where representation of a concept like
“grandmother” may contain many active units. Choice of represen-
tation makes a major difference in how networks are used and how
well they work, and is usually more important than the exact choice
of network architecture and learning rule. A common situation in
engineering applications of neural networks is to have a distributed
representation at the input of the network and a grandmother cell
representation at the output. In the vertebrate nervous system there
is little evidence for this output representation; essentially all nor-
mal motor acts involve the coordinated discharge of large groups
of neurons. Distributed activity patterns are associated with dis-
tributed patterns from one end of most biological networks to the
other in vertebrates (but see LOCALIZED VERSUS DISTRIBUTED
REPRESENTATIONS), though there are some examples of extreme
selectivity in invertebrates. The degree of distribution is a matter
for experimental investigation.

Neural Network Associators

Let us give an example of how easily neural network learning rules
and architectures give rise to associative behavior. Consider the
two-layer network diagrammed in Figure 1B. Consider a situation
where a pattern of activity, a state vector f, is present at the input
set of units and another pattern, state vector g, is shown by the
output set of units.

We want to link two patterns so that when f is presented to the
input of the network, g will be generated at the output. In this two-
layer network (two layers of units, one layer of connections), we
will assume that the connections initially are zero and we want to
change them to make the association between patterns fand g. We
will also assume that all connection strengths are potentially
changeable and the set of connection strengths forms a connection
matrix (or synaptic matrix) which we will call W, for “weights.”

We have to propose a learning rule, but we also have to make
some additional assumptions about the entire system. For example,
virtually all artificial neural network learning assumes that the net-
work is learning discrete pairs of patterns, that is, learning takes
place only occasionally, when the time is ripe. One could speculate
that learning in animals is a dangerous operation—after all, the
nervous system is being rewired—and is kept under tight control.
Primates are unusual in the degree of learned flexibility their ner-
vous system allows. There is physiological evidence that amount
of learning is controlled by diffuse biochemical processes. Dan-
gerous and striking events, causing a biochemical upheaval, give
rise to what have been called “flashbulb memories” where every-
thing, including totally irrelevant detail, is learned. (“Where were
you when John F. Kennedy was assassinated?” is practically guar-
anteed to involve a flashbulb memory in those old enough to re-
member it. September 11, 2001, provides a modern example.) Pre-
sumably this corresponds to an undiscriminating “learn” command.
In terms of modeling, these observations mean that the decision to
learn is decoupled from the act of learning.

Let us assume that we have an input pattern and an output pattern
and we wish to associate them for good and sufficient reasons. We
assume that we can impress pattern f on the input set of units and
pattern g on the output set of units. By far the most common net-
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work learning rule used is one or another variant of what is called
the “Hebb synapse,” described in Hebb (1949). Perhaps the most
quoted sentence in the neural network literature is from Hebb:
“When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth pro-
cess or metabolic change takes place in one or both cells, such that
A’s efficiency as one of the cells firing B, is increased.” (Hebb,
1949:62). The essence of the Hebb synapse is that there has to be
a conjunction of activity on the two sides of the connection.

There is good physiological evidence for the existence of some
form of Hebb synapse in parts of the mammalian central nervous
system (see HEBBIAN SYNAPTIC PLASTICITY). However, there are
a number of “technical” problems involved in mathematically de-
scribing the resulting system. The original formulation by Hebb
was concerned with coincident excitation. Nothing was said about
coincident inhibition or about coincident excitation and inhibition.
Also, the exact function determining strength of modification was
not given, and, in fact, is not known. A common assumption in
artificial network theory is to assume some version of what is called
the generalized Hebb rule or the outer product rule. This states
that the change in strength of a connection during learning is given
by the product of activities on the two sides of the connection, that
is, if W; is the strength of the connection, then the change in
strength AW,; is proportional to the product, f;g;, where f; is the
activity of the jth input unit and g; is the activity of the ith output
unit. This convenient expression may have only a weak relationship
to physiological reality.

Given the generalized Hebb rule, if we have only a single pair
of vectors to associate, the results can be written compactly as

W = ngf"

where # is a learning constant and W is the connection (or weight)
matrix.

By making an additional assumption about the properties of the
individual neural elements, this rule leads almost immediately to a
simple pattern associator called the linear associator. Suppose the
elementary computing units are linear, so that the output is given
by the inner product between input activity and connection
strengths. Then the output pattern is given by the matrix product
of an input pattern f and the connection matrix W; that is, the output
of the network is Wf. Because we know what W is—it was con-
structed by the generalized Hebb rule—we can compute the output
pattern,

(output pattern) = Wf = ngf"f = (constant)g

since ff is a constant, the squared length of f. The output pattern
is a constant multiple of g and, except for length, we have recon-
structed the learned associate of f, that is, g.

Suppose we have a whole set of associations {f’— g} that we
want to teach the network. (Superscripts stand for individual pattern
vectors.) If we assume that the overall strength of a connection is
the algebraic sum of its past history (an unsupported assumption),
then we have the weight matrix W given by

W= S gt

Notice that in the special case where the input patterns {f i} are
orthogonal, that is, f'f/ = 0if i # j,

Wf' = (constant)g’

because the contributions to the output pattern from the other terms
forming W are identically zero since they involve the inner product
[fif] = f,-T]?. This model, and in fact most simple network models,
make the prediction that outer product associators will work best
and most reliably with representations where different input asso-
ciations are as orthogonal as possible. For this reason, some cortical

models in the neuroscience literature have explicitly discussed as-
pects of cortical processing in terms of orthogonalization. The most
complete reference for the linear associator and related models is
Kohonen (1977, 1984).

It is possible to change almost any assumption and still have an
associator. Hebb learning rules of virtually any kind give rise to
associative systems. As only one example, the nonlinear Hebbian
associator proposed by Willshaw, Buneman, and Longuet-Higgins
(1969) used binary connections—with strengths either one or
zero—and the resulting system still worked nicely as a pattern
associator.

Supervised Networks

The outer product associator is less accurate with nonorthogonal
patterns. However, observed distortions and human performance
are sometimes remarkably similar. (See Anderson, 1995, chap. 11,
for a model of “concept formation” that emerges when correlated
inputs are stored in the linear associator.)

Most designers of artificial networks prefer networks to produce
accurate reproductions of learned associations rather than interest-
ing distortions. (This seemingly natural assumption is not neces-
sarily a good one.) Supervised network algorithms can perform
more accurate association. Examples of such algorithms would in-
clude the Widrow-Hoff (LMS) algorithm, the perceptron, back-
propagation, and many others. The basic mechanism employed is
error correction. Suppose we have an initial training set of patterns
to be learned. This means we know what the output patterns are
for a number of input patterns. We take an input from the training
set and let the network generate an output pattern. We then compare
the desired output pattern and the actual output pattern in some
way. This process generates an error signal. The network is then
modified using a learning rule so as to reduce the error signal.

The most commonly used error signal is based on the distance
between the actual and desired output; however, other error signals
can be more desirable. For example, one could incorporate a term
penalizing large numbers of connections or large values of con-
nection strength. The network learning problem reduces to a min-
imization problem where the space formed by the connection
strengths (weight space) is searched to find the point where error
is reduced to as low a value as possible. This process requires the
use of control structures that can be complex; for example, there
is assumed to be an omniscient supervisor who compares desired
and actual network output and computes the error term as well as
implements the mechanisms to change connection strengths appro-
priately. The structure of these algorithm is designed to produce
good pattern association whether or not this is the aim of the net-
work architects. (See PERCEPTRONS, ADALINES, AND
BACKPROPAGATION.)

Autoassociative Models

We have described association as pattern linkage. However, there
are alternative descriptions in the neural network literature. For
example, in the first sentence of the second chapter of their text-
book, Introduction to the Theory of Neural Computation, Hertz,
Krogh, and Palmer (1991) write, “Associative memory is the ‘fruit
fly’ or ‘Bohr atom’ problem of the field” (p. 11). Their definition
of association is: “Store a set of patterns ( . . . in such a way that
when presented with a new pattern {;, the network responds by
producing whichever one of the stored patterns most closely resem-
bles {;” (p. 11). This is not, however, a description of association
but of a content addressable memory where input of partial or noisy
information is used to retrieve the correct stored information. The
source of this limited view of association lies in the ability of auto-
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associative systems to reconstruct missing or noisy parts of learned
patterns.

Consider the autoassociative version of the linear associator.
Suppose we learn one pattern, f, of length 1, with learning constant
n = 1. Then

W= fT and W= f

Suppose we take vector f, with n elements, and set to zero some of
the elements, forming a new vector, f'. Let us make a second
vector, f”, from only the elements that were set to zero in f'. Then
f'+ f"=fandf’' f'T = 0.Iff' is input to the autoassociator,

Wi =+ O+ T = (constanyf

where the constant is related to the length of £ In operation, by
putting a part of f, f', into the network, we retrieve all of f, bar a
constant. This behavior is often referred to as the reconstructive or
holographic property of neural networks. Of course, more subtle
problems arise when W stores multiple vectors. Anyway, this type
of memory is associative because if, for example, the state vector
was meaningfully partitioned, then f' is associatively linked to f"
and vice versa in the sense that input of one pattern will produce
the other. This kind of associator produces intrinsically bidirec-
tional links (i.e., f' = f" and f" — f'), unlike feedforward hetero-
associators (f = g).

Some nonlinear “attractor” neural networks with dynamics that
minimize energy functions develop their associative abilities
largely from their autoassociative architecture. The best-known ex-
amples of this kind of associator are Hopfield networks and parallel
feedback networks such as the BSB (Brain State in a Box) model
(Anderson, 1995, chap. 15). For a general review of attractor net-
works, see Amit (1989) and COMPUTING WITH ATTRACTORS.
Multilayer autoassociators are also possible. The multilayer en-
coder networks, which require the output pattern to be as accurate
a reconstruction as possible of the input pattern, also have this form.
Many autoassociative networks have close ties to known statistical
techniques such as PRINCIPAL COMPONENT ANALYSIS.

A related associative attractor model, called a bidirectional as-
sociative memory, or BAM (Kosko, 1988), is a nonlinear dynamical
system with a reciprocal feedback structure. It assumes two layers
of units, as well as pairs of associations to be learned, as in a
heteroassociator. There are connections from both input to output
and output to input. Given f and g patterns to be learned, assumed
to be binary vectors, we can form both a forward and a backward
connection matrix. If fis input, then g will be given as the output;
g at the output will give rise to f at the input because of the back-
ward connections. Suppose the input is not exactly what was
learned. After a few passes back and forth through the system, it
can be shown that the network will stabilize, in the noise-free case,
to the learned f and g.

Psychological Association

We have shown how neural networks easily form associators of
many different kinds. We will now discuss a little of the history
of association in psychology to show how associators form a style
of computation with considerable power as well as severe
limitations.

The major outlines of one way to use an associative computer
can be found clearly expressed in Aristotle in the fourth century
B.C. Aristotle made two important claims about memory structure:
First, the elementary unit of memory is a sense image, that is, a
sensory-based set of information. Second, links between these el-
ementary memories serve as the basis for higher-level cognition.
An English translation by Richard Sorabji (1969) used the term
memory for the elementary memory unit and recollection for rea-
soning by associations between elementary units. Aristotle dis-

cussed at length how one “computes” with memorized sense im-
ages. The word recollection was used in the translation to denote
this process: “Acts of recollection happen because one change is
of a nature to occur after another.” That is, Aristotle proposed a
linkage mechanism between memories. He suggested several ways
that linkage could occur: by temporal succession or by “something
similar, or opposite, or neighboring.” This list of the mechanisms
for the formation of associations is approximately what would be
given today by psychologists.

Recollection in Aristotle’s sense was computation. It was a dy-
namic and flexible process: “[R]ecollecting is, as it were, a sort of
reasoning.” Aristotle argued that properly directed recollection is
capable of discovering new truths, using memorized sense images
as the raw material and learning to traverse new paths through
memory (Figure 2).

A practical problem with such an associative net is branching,
that is, what to do if there is more than one link leaving an ele-
mentary memory. Aristotle was aware of this problem: “[I]t is pos-
sible to move to more than one point from the same starting point.”
A general solution to the branching problem requires a nonlinear
mechanism to select one or the other branch.

The most influential psychologists in the twentieth century were
the behaviorists, in particular B. F. Skinner, the Harvard psychol-
ogist whose ideas about reinforcement learning unfortunately dom-
inated much of the theoretical discussion in psychology for several
decades. This school held that learning formed an associative link
between a stimulus and a specific response. The link could be
strengthened by positive reinforcement (to a first approximation,
something useful or pleasant, or the cessation of something un-
pleasant) or weakened by negative reinforcement (either absence
of something pleasant or something actively unpleasant) when the
response followed the stimulus. A number of careful experiments
showed that there were accurate quantitative “laws of learning” that
were followed by animals in some simple situations.

It was debatable whether this view of association is useful in
more complex situations. From the beginning, human behavior has
seemed to humans to be far richer than stimulus-response (S — R)
association. In the 1950s Skinner wrote a book attempting to ex-
plain language behavior using associative rules. In a famous book
review, Chomsky (1957) pointed out that simple S — R association
cannot do some kinds of linguistic computation. The argument used

O Elementary "memories”

- Associative Links

Possible Paths: abdhi, acgi, abei, ...

Figure 2. A simple model of associative computation. Elementary mem-
ories (“sense images,” according to Aristotle) are associatively linked (ar-
rows) to other sense images. Branches are possible, and they present some
difficulties. There are many possible paths through the network. Forming
and traversing links between elementary memories is the basis of mental
computation.
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was that Skinner was proposing a well-defined computing machine
with his associative model and that this computing machine was
not powerful enough to do the computations we know language
users perform. The simple S = R models of Skinner had about as
much computing power as the simplest heteroassociative neural
networks, which no one claimed were general-purpose computers.
However, supervised network learning algorithms applied without
insight may produce systems with only this degree of overall com-
putational power.

“Connectionist”” Models

Much modern work using association assumes that the entities
linked, and the links themselves, can have complex internal struc-
ture. Flexible systems capable of complex reasoning can be pro-
duced by using labeled links: for example, a robin IS-A bird, an
IS-A link, or “Fred is the father of Herb,” meaning that there is an
associative link between Fred and Herb and that the link carries
the relationship “Father-of.” Complex and sophisticated computa-
tional models, semantic neworks, can be built from these pieces.

In the 1980s, many of those interested in semantic network mod-
els started working with neural networks. The term connectionism
was often used to indicate the application of neural networks to
high-level cognition. Recently there have been many attempts to
apply networks to reasoning, to complex concept structures, and,
in particular, to language understanding. A heated but illuminating
debate arose from an early connectionist paper by Rumelhart and
McClelland (1986) that used a neural network to simulate the way
young children learn past tenses of verbs. Past tense learning had
always been considered to be a good example of the application
and misapplication of a specific rule, suggesting symbolic pro-
cessing. Rumelhart and McClelland’s neural network acted as if it
were using rules, but the rule-like behavior was the result of gen-
eralizing from examples and learning specific cases (see PAST
TENSE LEARNING). Perhaps because this model was such a direct
attack on the existence of rules in language, a vigorous counterat-
tack developed. As one example, a long paper by Pinker and Prince
(1988) finished its abstract with the sentence, “We conclude that
connectionists’ claims about the dispensability of rules in expla-
nations in the psychology of language must be rejected, and that,
on the contrary, the linguistic and developmental facts provide
good evidence for such rules” (p. 74). The vigor of the attack is
perhaps due in part to the authors’ feeling that the connectionists
had violated the “central dogma of modern cognitive science,
namely that intelligence is the result of processing symbolic ex-
pressions” (Pinker and Prince, p. 74). Many other cognitive sci-
entists feel that the “central dogma” is actually more like a central,
and open, question.

Less well known outside psychology are several associative neu-
ral network models that were constructed to explain the fine struc-
ture of experimental data in more traditional areas of psychology
such as verbal learning. An interesting example of such a model is
the TODAM model of Murdock (see CLASSICAL LEARNING THE-
ORY AND NEURAL NETWORKS in the first edition). TODAM and
variants blur the distinction between the network and the represen-
tation. In the associative networks we have discussed, there are two
formally distinct entities, state vectors and connection matrices. In
the TODAM class of models, the association is stored with the
items themselves and is therefore the same type of entity. TODAM
makes a number of testable qualitative predictions about a wide
range of data from the classical verbal learning literature. Recently,
models assuming networks composed of large numbers of local
networks (a “network of networks”) suggest that networks like
TODAM might be realizable with neural networks.

Discussion and Open Questions

An often proclaimed virtue of neural networks is their ability to
generalize effectively and to do computation based on similarity.
Having learned example associations from a training set, the net-
work can then generate correct answers to new examples. Many
have pointed out the formal similarity of neural networks to ap-
proximation and interpolation as studied in numerical analysis. A
properly designed neural network can act as a useful adaptive in-
terpolator with good, even optimal, generalization around the re-
gion of the learned examples. However, it is not easy for neural
networks to make good generalizations other than by approxima-
tion and interpolation. On this basis, Fodor and Pylyshyn (1988)
made some telling arguments against the promiscuous application
of connectionism to cognition (see SYSTEMATICITY OF GENERAL-
1ZATIONS IN CONNECTIONIST NETWORKS). The essential criticism
they made is one that an engineer would be happy to make: As-
sociative neural networks are such an inefficient way to compute
that it would be foolish to build a cognitive system like that. Neural
networks do not generalize well outside of a restricted definition
based on mathematical interpolation, they cannot reason effec-
tively, and they cannot extrapolate in any meaningful sense. These
criticisms are part of a battle involving the limitations of associa-
tion that has been going on for centuries. Fodor and Pylyshyn com-
mented, “It’s an instructive paradox that the current attempt to be
thoroughly modern and ‘take the brain seriously’ should lead to a
psychology not readily distinguishable from the worst of Hume
and Berkeley” (p. 64).

Fodor and Pylyshyn contrasted neural network associators with
what they call the classical view of mental operation. In essence,
this view postulates “a language of thought”; that is, “mental rep-
resentations have a combinatorial syntax and semantics” (p. 12).
The classical view is dominant in virtually all branches of tradi-
tional artificial intelligence and linguistics. The power of the digital
computer arises in part from the fact that it is designed to be an
extreme example of this organization: a programming language
operating on data is the prototype of the classical view.

Suppose we have a sentence of the form A and B that we hold
is true. An example Fodor and Pylyshyn used is John went to the
store and Mary went to the store. The truth of this sentence logi-
cally entails the truth of Mary went to the store. This conclusion
arises from the rules of logic and of grammar. It is not easy for an
associative neural network to handle this problem. Such a network
could easily learn that John went to the store and Mary went to the
store is associated with Mary went to the store. But the power of
the classical approach arises from the fact that every sentence
of this form gives rise to the same result. Given the huge number
of possible sentences, it makes practical sense to assume that some
kind of logical syntax exists. It would be hard to figure out how
language could function without some global rule-like operations,
however implemented.

The ability to understand and answer sentences or phrases that
are new to the listener is hard to explain purely with association.
To give one example (see MENTAL ARITHMETIC USING NEURAL
NETWORKS in the first edition), consider number comparisons such
as “Is 7 bigger than 57" There are nearly 100 such single-digit
comparisons, nearly 10,000 two-digit comparisons, and so on.
Children cannot possibly learn them as individual cases.

If there is a qualitative difference between human and animal
cognition, it lies right here. There have been attempts to build neu-
ral networks that realize parts of the classical account, with indif-
ferent success (see Hinton, 1991). Is it possible to build a neural
network based largely on natural associators that can reproduce the
kind of rule-governed behavior—even in limited domains—that
does in fact seem to be part of human cognition? A neural network
with this ability would allow for much more powerful and useful
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generalization than current networks provide. It may not be easy
to find this solution. There are many animals with complex nervous
systems capable of associative learning, but only our own species,
one out of millions of species, is really effective at using these
powerful extensions to association.

[Reprinted from the First Edition]
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Auditory Cortex
Shihab A. Shamma

Introduction

The auditory cortex plays a critical role in the perception and lo-
calization of complex sounds. It is the last station in a long chain
of processing centers that begins with the cochlea of the inner ear
and passes through the cochlear nuclei (CN), the superior olivary
complex (SOC), the lateral lemniscus, the inferior colliculus (IC),
and the medial geniculate body (MGB) (Figure 1). Recent studies
have expanded our knowledge of the neuroanatomical structure,
the subdivisions, and the connectivities of all central auditory
stages (Winer, 1992). However, apart from the midbrain cochlear
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Figure 1. Schematic representation of the multiple stages of processing in
the mammalian auditory pathway. Sound is analyzed in the cochlea, and
an estimate of the acoustic spectrum (an auditory spectrum) is known to be
extracted at the cochlear nucleus (Blackburn and Sachs, 1990). The tono-
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and binaural SOC nuclei, relatively little is known about the func-
tional organization of the central auditory system, especially com-
pared to the visual and motor systems. Consequently, modeling
cortical auditory networks is complicated by uncertainty about ex-
actly what the cortical machinery is trying to accomplish.

One exception to this state of affairs is the highly specialized
echolocating bat, in which these uncertainties are much relieved by
the existence of a stereotypical behavioral repertoire that is closely
linked to the animal’s acoustic environment (see ECHOLOCATION:
COCHLEOTOPIC AND COMPUTATIONAL MAPS). This has made it
possible to construct a functional map of the auditory cortex, which

Primary Auditory Cortex (A1)

T

suprasylvian
fissure

isofrequency planes

Central Auditory Processing
(SOC, IC, MGB)

tonotopic axis

topic organization of the cochlea is preserved all the way up to the cortex,
where it has a two-dimensional layout. The isofrequency plane encodes
perhaps other features of the stimulus.
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revealed the specific acoustic features extracted and represented in
the cortex. In turn, these cortical maps have acted as a guide to
discovering the organization and nature of the transformations oc-
curring in lower auditory centers such as the MGB, IC, and SOC.
Thus, it has become meaningful in these species to investigate and
model cortical and other central auditory neural networks.

In other mammals, it is more difficult to isolate an auditory be-
havior and its associated stimulus features with comparable spec-
ificity. Nevertheless, a few tasks have been broadly accepted as
vital for all species, such as sound localization, timbre recognition,
and pitch perception. For each, evidence of various functional and
stimulus feature maps has been found or postulated, a significant
number of them in the last few years. In this review, we elaborate
on a few examples of such maps and relate them to the more in-
tuitive and better understood case of the echolocating bats. In each
example, our goal is to determine how and whether models of the
underlying neural networks can further our understanding of the
auditory cortex.

Parcellization and Neuroanatomy
of the Auditory Cortex

The layout and neural structure of the auditory cortex is in many
respects similar to that of other sensory cortices (Winer, 1992). For
instance, based on cytoarchitectonic criteria and patterns of con-
nectivity, it is subdivided into a primary auditory field (AI) and
several other surrounding fields, e.g., the anterior auditory field (A)
and the secondary auditory cortex (AIl). The number and specific
arrangement of surrounding fields vary among different species,
reflecting presumably the complexity of the animal’s acoustic en-
vironment. The Al, and possibly other fields, is further subdivided
into smaller regions, serving perhaps different functional roles,
such as echo delay and amplitude measurements in the bat (see
ECHOLOCATION: COCHLEOTOPIC AND COMPUTATIONAL MAPS).

The anatomical parcellization of the auditory cortex into differ-
ent fields is mirrored by physiologically based divisions. Most im-
portant is the systematic frequency organization in different fields,
or so-called tonotopic maps. For example, Al cells are spatially
ordered based on the tone frequency to which they best respond,
i.e., their best frequency (BF). They also respond vigorously to the
onset of a tone and exhibit little evidence of adaptation to its re-
peated presentations. In other fields, cells may be less frequency
selective, may respond more adaptively, or may be totally unre-
sponsive to single tones, preferring more spectrally or temporally
complex stimuli. A sudden change in these response patterns or in
the gradual spatial order of the tonotopic map is usually taken to
signify a border between different fields. In the cat, which has the
most extensively mapped auditory cortex, four well-ordered tono-
topic fields have been described, together with many other less
precise secondary areas (Clarey, Barone, and Imig, 1992).

Timbre: Models for the Encoding of Spectral Profiles

Recognizing and classifying environmental sounds is critical for
the survival and propagation of many animals. Although a multi-
tude of cues are responsible, the single most important one is the
shape of the so-called spectral envelope (or the spectral profile) of
the sound. It is largely this cue that allows us to distinguish between
speech vowels or between different instruments playing the same
note. The spectral profile emerges early in the auditory system as
the sound is analyzed into different frequency bands, in effect dis-
tributing its energy across the tonotopic axis (the auditory sensory
epithelium) (Figure 1). As far as the central auditory system is
concerned, the spectral profile is a one-dimensional (1D) pattern of
activation analogous to the two-dimensional (2D) distribution of
light intensity on the retina.

An important organizational feature of the central auditory sys-
tem is the expansion of the 1D tonotopic axis of the cochlea into
a 2D sheet, with each frequency represented by an entire sheet of
cells (Figure 1). An immediate question thus arises as to the func-
tional purpose of this expansion and the nature of the acoustic
features that might be mapped along these isofrequency planes. For
example, one might conjecture that the amplitude or the local shape
of the spectrum is explicitly represented along this new dimension.

In general, there are two ways in which the spectral profile can
be encoded in the central auditory system. The first is absolute,
that is, the spectral profile is encoded in terms of the absolute in-
tensity of sound at each frequency. Such an encoding would in
effect combine both the shape information and the overall level.
The second way is relative, in which the spectral profile shape is
encoded separately from the overall loudness of the stimulus. Ex-
amples of each of these two hypotheses are discussed next.

The Best-Intensity Model

The first hypothesis is motivated primarily by the strongly non-
monotonic responses as a function of stimulus intensity observed
in many cortical and other central auditory cells (Clarey et al.,
1992). In a sense, one can view such a cell’s response as being
selective to (or encoding) a particular intensity. Consequently, a
population of such cells, tuned to different frequencies and inten-
sities, can provide an explicit representation of the spectral profile
by their spatial pattern of activity (Figure 2). This scheme is not a
true transformation of the spectral features represented, but rather
is strictly a change in the means of the representation. The most
compelling example of such a representation is that in the DSCF
area of Al in the mustache bat. However, an extension of this hy-
pothesis to multicomponent stimuli (as depicted in Figure 2) has
not been demonstrated in any species.

The Multiresolution Analysis Model

The second hypothesis, in which the relative shape of the spectrum
is encoded, is supported by physiological experiments in cat and
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Figure 2. Schematic diagram of the way in which the spectral profile (lower
plot) can be encoded by arrays of nonmonotonic cells (circles) tuned to
different BFs (along the tonotopic axis) and best intensifies (BIs). The black
circles signify strongly activated cells, whereas the white circles indicate
weakly activated cells. Thus, a peak in the input pattern located at a given
BF and at an intensity of 40 dB would best activate cells with the same BF
and BI
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ferret AL, coupled with psychoacoustical studies in human subjects.
The data reveal a substantial transformation of the way the spectral
profile is represented centrally. Specifically, besides the tontopic
axis, two features of the response areas of Al neurons (the analogue
of the receptive fields in the visual system) are found to be topo-
graphically mapped across the isofrequency planes. They are the
bandwidth and symmetry of the response areas, depicted schemat-
ically in Figure 3A as the scale and symmetry axes, respectively.
In addition, auditory cortical units exhibit systematic response pat-
terns to dynamic spectra that give rise to complex and varied spec-
trotemporal response areas, as depicted in Figure 3B. These re-
sponse properties are discussed in greater detail below.

Changes in response area bandwidths. Cell response areas, i.e.,
the excitatory and inhibitory responses they exhibit to a tone of
various frequencies and intensities, change their bandwidth in
orderly fashion along the isofrequency planes (Mendelson and
Schneiner, 1990). Near the center of Al, cells are narrowly tuned.
Toward the edges, they become more broadly tuned. This orderly
progression occurs at least twice, and it correlates with several other
response parameters such as increasing response thresholds toward
the edges.

An intuitively appealing implication of this finding is that re-
sponse areas of different bandwidths are selective to spectral pro-
files of different widths. Thus, broad spectral profiles (e.g., broad
peaks or gross trends, such as spectral tilts due to preemphasis)
would best drive cells with wide response areas. Similarly, nar-
rower spectral profiles (e.g., sharp peaks or edges, or fine details
of the spectral profile) would best be represented in the responses
of cells with more compact response areas. In effect, having a range
of response areas at different widths allows us to encode the spec-
tral profile at different scales or levels of detail (resolution). From
a mathematical perspective, this is basically equivalent to analyzing
the spectral profile into different scales or “bands,” much like per-
forming a Fourier transform of the profile, hence representing it as
a weighted sum of elementary sinusoidal spectra (usually known
as ripples; Shamma, Versnel, and Kowalski, 1995). Coarser scales
then correspond to the “low-frequency” ripples, while finer scales
correspond to the “high-frequency” ripples.

Changes in response area asymmetry. Response areas exhibit
systematic changes in the symmetry of their inhibitory response
areas. For instance, cells in the center of Al have sharply tuned
excitatory responses around a BF, flanked by symmetric inhibitory
response areas. Toward the edges, the inhibitory response areas
become significantly more asymmetric, with inhibition dominated
by either higher or lower than BF frequencies. This trend is re-
peated at least twice across the length of the isofrequency plane.

It is intuitively clear that response areas with different symme-
tries would respond best to input profiles that match their sym-
metry. For instance, an odd-symmetric response area would re-
spond best if the input profile had the same local odd-symmetry
and worst if it had the opposite odd-symmetry. As such, one can
state that a range of response areas of different symmetries (sym-
metry axis in Figure 3A) is capable of encoding the shape of a local
region in the profile. From an opposite perspective, it can be shown
mathematically that the local symmetry of a pattern can be changed
by manipulating only the phase of its Fourier transform (Wang and
Shamma, 1995). Therefore, the axis of response area asymmetries
in effect is able to encode the phase of the profile transform, thus
providing a complementary description to that of the magnitude
along the scale axis described above.

Dynamics of cortical responses to spectral profile changes.
Auditory cortical units also exhibit systematic and selective re-
sponses to dynamic spectra. Specifically, when stimulated by com-
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Figure 3. A, Schematic diagram of the three representational axes thought
to exist in Al: the tonotopic (BF) axis, the scale (or bandwidth) axis, and
the symmetry axis. B, Examples of spectrotemporal response fields mea-
sured from two auditory cortical units of the ferret. In each panel, the
strength of the response is represented by the darkness of the display, with
black indicating excitatory areas and white indicating regions of suppressed
activity. Note that the excitatory central region defines the BF of the unit.
Such STRFs exhibit a variety of bandwidths, asymmetry of inhibition rela-
tive to the BF, directional selectivity, and temporal dynamics. For instance,
the unit in the top panel has significantly slower dynamics and much more
asymmetric inhibition about the BF than the unit in the bottom panel. (From
Simon, J. Z., Depireux, D. A., and Shamma, S. A., 1998, Representation
of complex spectrain auditory cortex, in Psychophysical and Physiological
Advances in Hearing: Proceedings of the 11th International Symposium on
Hearing (A. R. Palmer, A. Ress, A. Q. Summerfield, and R. Meddis Eds.),
London: Whurr, 1998, pp. 513-520. Reprinted with permission.)
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plex sounds with rippled spectra like those described above, cor-
tical units display preference not only to ripple density and phase,
but also to the velocity at which the ripple is drifted past the BF
of the cell. Unit selectivities span a wide range of best ripple ve-
locities, from about 20 cycles/s (Hz), down to as low as 1-2 Hz
(Kowalski, Depireux, and Shamma, 1996). In addition, auditory
cortical units usually exhibit a range of directional sensitivities to
upward- and downward-moving ripples.

This directional selectivity is probably directly linked to re-
sponses to frequency-modulated (FM) tones, a subject that has been
the focus of extensive neural network modeling. These stimuli are
important because they mimic the dynamic aspects of many natural
vocalizations, as in speech consonant-vowel combinations or the
trills of many birds and other animal sounds. The effects of ma-
nipulating two specific parameters of the FM sweep, its direction
and rate, have been well studied. In several species and at almost
all central auditory stages, cells can be found that are selectively
sensitive to the FM direction and rate. Most studies have confirmed
a qualitative theory in which directional selectivity arises from an
asymmetric pattern of inhibition in the response area of the cell

(Wang and Shamma, 1995), whereas rate sensitivity is correlated
to the bandwidth of the response area (Heil, Langner, and Scheich,
1992).

The full spectrotemporal response fields. All of above mentioned
response area features are integrated into a unified spectrotemporal
response area (or field) as illustrated in Figure 3B (deCharms,
Blake, and Merzenich, 1998). The full spectrotemporal response
field (STRF) summarizes all the response selectivities of a unit by
the relative locations, widths, duration, and orientation of its ex-
citatory and inhibitory fields. The overall picture that emerges from
these findings is that Al decomposes the auditory spectrum into a
multidimensional representation with multiple resolutions along
both spectral and temporal dimensions, as illustrated in Figure 4.
This spectrotemporal decomposition essentially segregates diverse
perceptual features into different streams, e.g., fast, spectrally broad
sounds (consonants) from the relatively slow, voiced vowels and
the finely resolved harmonics (pitch cues) (Wang and Shamma,
1995). This kind of multiscale analysis is closely analogous to the
well-studied organization of receptive fields in the primary visual

A Time Waveform B Auditory Spectrogram
{2000 _
p— rJ
= = == - {1000
- ‘.‘h - O
" i o~ TR
g
{250 &
. . ‘ . . , ‘ : . 4125
0 200 400 600 8OO 1000 200 400 GO0 8OO 1000

Time (ms Time (ms)

)
Multiresolution Cortical Filters and Outputs

iy | | |
[ Fast Rate
b

Figure 4. Schematic of the cortical rep-
resentation of complex dynamic sound
spectra. A, The time waveform of the
acoustic signal /Come home right away/.
B, The time-frequency representation of
the signal (or the auditory spectogram)
generated in the early stages of the au-
ditory system. The y-axis represents the
logarithmic frequency axis of the cochlea
(or the tonotopic axis, as depicted in Fig-
ure 1). C, Cortical multiscale analysis of
the auditory spectrogram along the spec-
tral and temporal dimensions. Each panel
represents the activity of a population of
cortical cells with the (idealized model)
STRF shown in the inset above it. Arrow
direction represent the phase of the re-
sponse; the strength of the response is in-
dicated by the darkness of the display, as
in Figure 3B. The two top panels are for
broadly tuned but relatively fast STRFs
that are selective to motion in opposite
directions. The bottom panels are for nar-
rowly tuned and relatively slow units.
Different features of the spectrogram are
emphasized in different panels. For in-
stance, harmonics (pitch cues) are seen in
the lower (fine-scale) panels, whereas on-
sets due to different consonents are seen
only in the upper (fast-rate) panels.
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cortex (De-Valois and De-Volois, 1990), and may reflect a general
principle of analysis of sensory patterns in all other sensoricortical
areas.

Models of Pitch Representation in the Central
Auditory System

A sound complex consisting of several harmonics is heard with a
strong pitch at the fundamental frequency of the harmonic series,
even if there is no energy at all at that frequency. This percept has
been variously called the missing fundamental, virtual pitch, or
residue pitch. A large number of psychoacoustical experiments
have been carried out to elucidate the nature of this percept and its
relationship to the physical parameters of the stimulus. Basically,
all models fall into one of two camps. In the first camp, the pitch
is extracted explicitly from the harmonic spectral pattern. This can
be accomplished in a variety of ways, such as by finding the best
match between the input pattern and various harmonic templates
assumed to be stored in the brain (Goldstein, 1973). In the second
camp, the pitch is extracted from the periodicities in the time-
waveform of responses in the auditory pathway, which can be es-
timated, for example, by computing their autocorrelation functions.
In this kind of model, some form of organized delay lines are as-
sumed to exist so that the computations can be done, much like
those that seem to exist in the FM-FM area of the mustached bat.

In all pitch models, however, the extracted pitch is assumed to
be finally represented as a spatial map in higher auditory centers.
This is because many studies have confirmed that neural synchrony
to the repetitive features of a stimulus, be it the waveform of a tone
or its AM modulations, becomes progressively worse toward the
cortex (Langner, 1992). It is a remarkable aspect of pitch that,
despite its fundamental and ubiquitous role in auditory perception,
only a few reports exist of physiological evidence of spatial pitch
maps, and none has been independently confirmed. One source is
NMR scans of the primary auditory cortex in human subjects. The
other source of evidence is multiunit mappings in various central
auditory structures (Schreiner and Langner, 1988).

Of course, the difficulty of finding spatial pitch maps in the au-
ditory cortex may be due to the fact that it does not exist. This
possibility is counterintuitive, given the results of ablation studies
showing that bilateral cortical lesions in the auditory cortex se-
verely impair the perception of pitch of complex sounds but do not
affect the fine discrimination of frequency and intensity of simple
tones. Another possibility is that the maps sought are not at all as
straightforward as we imagine. For example, harmonic complexes
may evoke stereotypical patterns that are distributed over large ar-
eas in the auditory cortex, and not localized, as the simple notion
of a pitch map implies (Wang and Shamma, 1995). Finally, it is
also possible that Al simply functions as one stage that projects
sufficient temporal or spectral cues for later cortical stages to ex-
tract the pitch explicitly.

Models of Sound Localization

It has been recognized for many years that the auditory cortex (and
especially the Al) is involved in sound localization. Detailed phys-
iological studies further confirmed that Al cells are rather sensitive
to all kinds of manipulations of the binaural stimulus (Clarey et
al., 1992). For instance, changing either of the two most important
binaural cues, the interaural level difference (ILD) or interaural
time difference (ITD), causes substantial changes in their firing rate
patterns. This sensitivity to interaural cues has its origins early in
the auditory pathway, at the SOC, where the first convergence of
binaural inputs occurs. However, despite this diversity, two ele-
ments typical of a functional organization of Al have been lacking.
The first missing element is a significant transformation of the
single-unit responses. For example, if ILD-sensitive cells are to

encode the location of a sound source based on this cue, they ought
to become uniformly more stable with overall sound intensity. This,
however, does not seem to be the case (Semple and Kitzes, 1993).
The second element lacking is a topographical distribution of the
responses with respect to these cues or to a more complex com-
bination of features (e.g., a map of acoustic space derived from
ILD and ITD cues, as in the barn owl) (Sullivan and Konishi, 1986).

A map of auditory space has indeed been found in the superior
colliculus of several mammals. No such map, however, has yet
been detected in Al or other cortical fields despite intensive efforts
(Clarey et al., 1992). What has been found, however, is a topo-
graphic order of certain binaural responses along the isofrequency
planes of Al Specifically, cells excited equally well by sounds from
both ears (called EE cells) and others inhibited by ipsilateral sounds
(called EI cells) are found clustered in alternating bands that par-
allel the tonotopic axis. One possible functional model that utilizes
such maps assumes that EI cells are tuned to particular ILDs, and
hence encode the location of a sound source based on this cue. EE
cells, in contrast, would encode the absolute level of the sound.
However, there is little evidence to support this hypothesis in the
sense that neither EE nor EI cells are particularly stable encoders
of specific ILD or absolute sound levels. An alternative hypothesis
recently proposed is that these cells encode the absolute levels of
the stimulus at each ear, rather than the difference and average
binaural levels, as previously postulated (Semple and Kitzes,
1993). Finally, it has also been proposed that Al units encode the
spatial location of a stimulus through unique patterns of temporal
firing, ones that can be discerned using more elaborate pattern rec-
ognition neural networks (Middlebrooks et al., 1994).

Discussion

The study of central auditory function has reached a sufficiently
advanced stage to allow meaningful quantitative and neuronal net-
work models to be formulated. In most mammals, these models are
still systemic in nature, with a primary focus on understanding the
overall functional organization of the cortex and other central au-
ditory structures. In the bat and other specialized animals, the mod-
els are somewhat more detailed, addressing specific neuronal mech-
anisms, such as the coincidences and the delay lines of the FM-FM
areas. The auditory system, with its multitude of diverse functions
and its combination of temporal and spatial processes, should thus
prove to be a valuable window into the brain and an effective ve-
hicle for understanding the brain’s underlying mechanisms.

Road Maps: Mammalian Brain Regions; Other Sensory Systems

Related Reading: Auditory Periphery and Cochlear Nucleus; Auditory
Scene Analysis; Echolocation: Cochleotopic and Computational Maps;
Sound Localization and Binaural Processing
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Auditory Periphery and Cochlear Nucleus

David C. Mountain

Introduction

The auditory periphery transforms a very high information rate
acoustic signal into a group of lower information rate neural sig-
nals. This process of parallelization is essential because the poten-
tial information rate in the acoustic stimulus is on the order of 0.5
megabits per second, and yet typical auditory nerve (AN) fibers
have maximum sustained firing rates of 200 per second. The coch-
lear nucleus (CN) continues the process of parallelization by cre-
ating multiple representations of the original acoustic stimulus,
with each representation emphasizing different acoustic features.
The major ascending auditory pathways are summarized in Fig-
ure 1. Sound is collected by the external ear (pinna) and passes
through the ear canal to the eardrum (tympanic membrane), where
it excites the middle ear. The middle ear couples the acoustic en-
ergy to the fluids of the cochlea, where transduction takes place.
The sensory cells of the cochlea (hair cells) convert the mechanical
signal to an electrical signal, which is then encoded by the fibers
of the auditory nerve and transmitted to the CN in the brainstem.
Within the CN, parallel information streams are created that feed
other brainstem structures such as the superior olivary complex
(SOC), the nuclei of the lateral lemniscus (NLL), and the inferior
colliculus (IC). These parallel pathways are believed to be spe-
cialized for the processing of different auditory features that are
used for sound source classification and localization. From the IC,
auditory information is passed on to the medial geniculate body
(MGB) in the thalamus, and from there to the auditory cortex.

External Ear

The head and pinna modify the magnitude and phase of the acoustic
signal reaching the tympanic membrane in such a way as to provide
important cues for sound source localization (Shaw in Gilkey and
Anderson, 1997). The transfer function relating tympanic mem-
brane pressure to pressure in the free field is called the head-related
transfer function (HRTF) and changes with sound source elevation
and azimuth.

Three major mechanisms contribute to the creation of the HRTF.
The distance between the ears in most mammals is sufficient to
create significant interaural time delays (ITDs) for sound sources
off to the side of the head, and the head is large enough to create
interaural level differences (ILDs) for frequencies where the wave-
length is comparable or smaller than the head. For higher frequen-
cies (above 5 kHz in humans), multiple resonant modes in the pinna
add further complexity. These modes are preferentially excited by

sound waves from some directions but not others, resulting in an
HRTF with peaks and valleys that change with sound source
direction.

Middle Ear and Cochlear Mechanics

The middle ear consists of the tympanic membrane, the three
middle-ear bones (ossicles), and the Eustachian tube. The primary
function of the middle ear is to match the low acoustic impedance
of air to the high acoustic input impedance of the cochlea. The
middle-ear transfer function (ratio of intracochlear pressure to ear
canal pressure) is high-pass in nature (Rosowski in Hawkins et al.,
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Figure 1. The major ascending auditory pathways. See text for explanation
of abbreviations.
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1996) and plays a major role in determining the audiogram for a
given species.

The cochlea consists of a spiral-shaped, fluid-filled tube embed-
ded in the temporal bone (Slepecky in Dallos, Popper, and Fay,
1996). It is separated into three longitudinal compartments by two
membranes: the basilar membrane (BM) and Reissner’s membrane.
From a hydromechanical and physiological point of view, the BM
is the more important of the two. It supports the organ of Corti,
which contains the sensory hair cells. Pressure changes in the co-
chlear fluids produced by the middle ear excite a mechanical trav-
eling wave that propagates along the BM. The traveling wave mag-
nitude peaks at a location that depends on stimulus frequency: high
frequencies peak near the base and low frequencies peak near the
apex.

Direct measurements of BM motion demonstrate that, at low
sound levels, the response can be highly tuned, with each cochlear
location only responding to a narrow range of frequencies (Hub-
bard and Mountain in Hawkins et al., 1996). BM tuning decreases
at high sound levels and appears to involve the presence of a group
of sensory cells, the outer hair cells (OHCs). All hair cells respond
to mechanical stimuli with voltage changes, but in the case of the
OHGCs, voltage changes result in cell length changes (Holley in
Dallos et al., 1996). These voltage-dependent length changes ap-
pear to be mediated by voltage-sensitive transmembrane proteins.
This novel form of electromotility is piezoelectric in nature, allow-
ing the length changes to achieve very high velocities.

Many hydromechanical models have been proposed to explain
these findings (Hubbard and Mountain in Hawkins et al., 1996; de
Boer in Dallos et al., 1996), but these hydromechanical models are
computationally intense. As a result, it is common practice to rep-
resent cochlear mechanics with a bank of digital bandpass filters
that capture the salient features of the mechanical frequency re-
sponse (Hubbard and Mountain in Hawkins et al., 1996). Filters of
this type reproduce the magnitude of the cochlear frequency re-
sponse reasonably well, but they cannot reproduce the changes in
cochlear tuning that occur with changes in stimulus level. In order
to replicate the nonlinear features of cochlear mechanics in filter-
bank models, some authors have used filters with parameters that
change with stimulus level (cf. Zhang et al., 2001).

Inner Hair Cells

The inner hair cells (IHCs) are the receptor cells that provide most
of the input to the auditory nerve. Although much progress has
been made in measuring basilar membrane motion, little direct data
exist to explain how this motion gets coupled to the IHC hair bun-
dle. Comparisons of IHC receptor potentials to inferred BM motion
have led to the hypothesis that hair-bundle motion is a high-pass
filtered version (cutoff frequency ~400 Hz) of BM motion. Alter-
natively, Mountain and Cody (1999) have proposed a model in
which the OHCs, through their electromotility, displace the IHC
hair bundles more directly, perhaps via movements of the tectorial
membrane, rather than via enhanced BM motion.

The mechanical-to-electrical transduction process in hair cells is
extremely sensitive, resulting in receptor potentials on the order of
1 mV for hair-bundle displacements of 1 nm. This transduction
process is believed to be the result of tension-gated channels lo-
cated in the hair bundle (Mountain and Hubbard in Hawkins et al.,
1996). The relationship between stereocilia displacement x and the
mechanically induced conductance change G(x) is most commonly
modeled using a first-order Boltzmann model (Mountain and Hub-
bard in Hawkins et al., 1996).

Although IHCs also contain voltage-dependent conductances
(Kros in Dallos et al., 1996), most models include only the me-
chanically sensitive conductance coupled to a linear leakage resis-
tance and a linear membrane capacitance. The RC nature of the

membrane acts as a low-pass filter with a cutoff frequency of
around 1 kHz. The effect of this filter is to produce an IHC response
that follows the fine structure of the stimulus waveform at low
frequencies, while at high frequencies it follows the signal envelope
(Mountain and Hubbard in Hawkins et al., 1996).

If a linear filter bank is used to represent cochlear mechanics,
then it is often desirable to use a rectification function that includes
considerable compression to accommodate the large dynamic range
of many acoustic signals. Since the D.C. receptor potentials of IHCs
measured using best-frequency tones appear to grow as a logarith-
mic function of sound pressure, a combination of a half-wave rec-
tifier followed by a logarithmic compressor provides a reasonable
model (Mountain and Hubbard in Hawkins et al., 1996).

Auditory Nerve

AN fibers, the cell bodies of which are located in the SG, are di-
vided into two classes, depending on their morphology. Each IHC
synapses with 10 to 30 type I AN (AN-I) fibers (Ryugo in Webster,
Popper, and Fay, 1992). In most mammals, AN-I fibers synapse
only with a single IHC. In contrast, type II fibers (AN-II), which
innervate the OHCs, synapse with multiple hair cells. AN-I fibers
exhibit spontaneous activity in the absence of sound, and they are
often segregated into low (LSR), medium (MSR), and high (HSR)
spontaneous rate categories. The pattern of this spontaneous activ-
ity is random and is usually modeled as a Poisson or dead-time
modified Poisson process. Spontaneous rate tends to correlate with
threshold, with HSR fibers being the most sensitive to sound
stimuli.

The average firing rate of AN fibers in response to sustained
tones is tuned, mimicking the responses at the BM. The peristi-
mulus time histogram (PSTH) exhibits an initial rapid increase,
followed by adaptation (Figure 2) to a lower steady-state rate (Rug-
gero in Popper and Fay, 1992). The steady-state response has only
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Figure 2. Typical auditory nerve and cochlear nucleus peristimulus time
histograms. See text for explanation of abbreviations.
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a limited dynamic range, typically saturating at sound levels of
approximately 20 dB above the fiber’s threshold. There are three
components to the adaptation. The fastest component, rapid adap-
tation, has a time constant of a few milliseconds and creates an
onset response with a large dynamic range. The second component,
short-term adaptation, has a time constant of a few tens of milli-
seconds. It creates a slower component immediately after the onset
response that has a smaller dynamic range, similar to that of the
steady-state response. The third component of adaptation operates
on a time scale of seconds and is not included in most auditory
models.

On a finer time scale, the instantaneous firing rate (IFR) of AN
fibers can be modulated on a cycle-by-cycle basis by the acoustic
stimulus (phase locking) up to about 4 kHz (Ruggero in Popper
and Fay, 1992). The fast dynamics of the AN IFR, coupled with
only modest frequency resolution, suggests that we should think of
the AN representation as that of a spectrogram that has been op-
timized more for temporal resolution than for spectral resolution.
This excellent temporal resolution plays an important role in sound-
source localization, which relies heavily on cues from interaural
time delays.

Scant biophysical data are available for the IHC synapse, but
since adaptation is not observed in the IHC receptor potentials,
adaptation must be taking place in the IHC-AN synapse. The ad-
aptation processes are most commonly assumed to be the result of
synaptic vesicle depletion. Synaptic vesicles are typically divided
into two or more pools. One of these pools represents vesicles that
are docked at the active zones and is often referred to as the re-
leasable pool or the immediate pool. Additional vesicles, which are
located near the release sites but appear to be tethered to the cy-
toskeleton, are not available for immediate release (Mountain and
Hubbard in Hawkins et al., 1996).

Cochlear Nucleus Anatomy

The two CN are the first and only brainstem structures to receive
input from the AN. The CN can be anatomically subdivided into
several subdivisions, each of which appears to perform a different
physiological function. The major subdivisions are the ventral co-
chlear nucleus (VCN), which is further divided into anteroventral
(AVCN) and posteroventral (PVCN) subdivisions, and the DC nu-
cleus (DCN). Fibers of the AN travel through the core of the co-
chlear spiral and enter the AVCN, where they branch. The ascend-
ing branch innervates the AVCN and the descending branch travels
through the PVCN and enters the DCN. The ventral regions are
surrounded by the marginal shell, which is made up of the small-
cell cap (SCC) and the granule-cell layer (GCL). Within a subdi-
vision, the low-frequency fibers project to more ventral regions and
the high-frequency fibers project to more dorsal regions. This or-
derly arrangement of characteristic frequencies is referred to as a
tonotopic projection.

Cochlear Nucleus Response Types

The most commonly used physiological classification scheme in
the CN is based on the PSTH. These histograms are derived by
averaging the responses to short tone bursts presented at the cell’s
characteristic frequency (Rhode and Greenberg in Popper and Fay,
1992). Figure 2 illustrates six of the most common PSTH types
found in the CN. The primary-like (PL) PSTHs are similar to the
PSTHs recorded from AN fibers. The primary-like with notch
(PLy) response type is similar to the PL type but with better syn-
chrony to the stimulus onset, followed by a transient dip in response
due to refractory effects. The chopper-cell PSTHs exhibit period-
ically modulated activity at the beginning of the histogram, which
is the result of the regular firing pattern of these cells becoming

synchronized to the stimulus onset. This chopping effect can either
be sustained (Cg) or transient (Cp). The onset cell PSTHs all have
large responses to the stimulus onset, followed by reduced or non-
existent activity during the remainder of the stimulus. The onset
chopper (O¢) PSTH exhibts a transient chopping response after the
onset, whereas the O, type (not shown) shows little or no response
after the onset response. Other PSTH types include the pauser (P)
and build-up (B) types. The P-type PSTH is characterized by an
onset response followed by a period of no activity, which is then
followed by a slow build-up of activity. The B-type (not shown) is
similar to the P-type but lacks the initial onset response. The dif-
ferent PSTH types are believed to be the result, in part, of differ-
ences in intrinsic membrane properties and different degrees of AN
fiber convergence and synaptic effectiveness.

Cochlear Nucleus Neural Circuits

Octopus Cells

Octopus cells are located in the PVCN and are characterized by
long, thick primary dendrites that usually arise from one side of
the cell body and give the cell the appearance of an octopus. The
dendrites of octopus cells are oriented perpendicular to the path of
incoming AN fibers (Oertel et al., 2000) which means that they
receive input from a range of characteristic frequencies. The lower
CF fibers synapse on the soma and the higher CF fibers synapse
on the dendrites. Octopus cells generally exhibit onset (Oy) re-
sponses (Rhode and Greenberg in Popper and Fay, 1992) and
appear to be more sensitive to broadband stimuli than AN fibers
(Oertel et al., 2000). Functionally, octopus cells appear to act as
coincidence detectors that detect synchronous events across AN
fibers and may form part of networks involving other subthalamic
nuclei devoted to processing temporal features such as duration,
periodicity, and echo delay. The octopus cells project to contralat-
eral VNLL terminating in calyx endings (Schwartz in Webster et
al., 1992). The secure nature of these terminals reinforces the no-
tion that octopus cells play a role in temporal processing. VNLL
is primarily a monaural nucleus (Irvine in Popper and Fay, 1992)
that provides inhibitory input to the IC (Schwartz in Webster et al,
1992). The octopus cells also provide diffuse innervation to peri-
olivary areas of the SOC (Schwartz in Webster et al., 1992).

Stellate Cells

The stellate cells (SCs) of the VCN are hypothesized to be part of
a system that uses a rate code to represent the acoustic spectrum
(Rhode and Greenberg in Popper and Fay, 1992). Stellate cells have
dendrites that extend away from the soma in all directions and often
divide to form secondary and tertiary dendrites. The SCs can be
divided into two classes, based on the path taken by their axons.
The T-stellate cells project out of the CN by way of the trapezoid
body (hence the name T), and the D-stellate cells are interneurons
with axons that follow a descending path (hence the name D) on
their way to the DCN and contralateral CN. The dendrites of T-
stellate cells (also called planar cells) end in tufts and are generally
aligned with the isofrequency plane created by the path of AN
fibers, whereas those of D-stellate cells (also called radiate cells)
extend radially across the isofrequency planes and branch spar-
ingly. Both T- and D-stellate cells have terminal collaterals in the
multipolar cell region of the PVCN and in the DCN (QOertel et al.,
1990; Doucet and Ryugo, 1997).

D-stellate cells exhibit O¢ responses (Figure 2), have a large
dynamic range (80 dB or more), and, as would be expected from
their dendritic morphology, are more broadly tuned than AN fibers.
In contrast, T-stellate cells exhibit C responses (Figure 2) and have
frequency tuning characteristics similar to those of AN fibers. Stel-
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late cells have a more regular firing pattern than AN fibers and do
not preserve timing information as well as the AN fibers do (Rhode
and Greenberg in Popper and Fay, 1992).

The basic stellate-cell circuit is illustrated in Figure 3A. The D-
stellate cells receive excitatory input from AN-I fibers with a range
of CFs and inhibitory input that is believed to come from Golgi
cells, which in turn appear to receive their input from AN-II fibers
(Ferragamo, Golding, and Oertel, 1998). Golgi cells are small in-
hibitory interneurons located in the marginal shell with dendrites
that branch extensively near the cell body (Cant in Webster et al.,
1992). The Golgi cell axons branch even more extensively, forming
a plexus with thousands of endings in nearby regions. In contrast
to the D-stellate cells, the T-stellate cells receive excitatory input
from AN-I fibers with a narrow range of CFs, and they receive
inhibitory input from D-stellate cells as well as from vertical cells
located in the deep DCN (Ferragamo et al., 1998). The DCN ver-
tical cells receive excitatory input from AN-I fibers with a narrow
range of CFs and are strongly inhibited by the more broadly tuned
D-stellate cells. The T-stellate cells are the output neurons of this
circuit; their axons project to the IC.

Bushy Cells

The major cell types of the AVCN are the spherical bushy cells
(SBCs) and the globular bushy cells (GBCs). The term bushy cell
refers to their appearance, with short primary dendrites that origi-
nate from one hemisphere of the cell body and give rise to a pro-
fusion of thin, shrub-like appendages. SBCs are believed to play
an important role in sound localization and are specialized to pre-
serve timing information. The basic SBC circuit is shown in Figure
3B. SBCs receive their excitatory input from AN-I fibers tuned to
a narrow range of frequencies, and in most respects SBCs have
response properties, such as their primary-like PSTHs (Figure 2),
that are very similar to those of AN fibers. The AN fibers that
synapse on the SBC cell body give rise to very large synaptic end-

To Inferior
Colliculus

ings known as the endbulbs of Held (Cant in Webster et al., 1992).
These very secure synapses, in combination with a low-threshold
potassium conductance in the SBCs, enhance phase locking to the
acoustic stimulus (presumably through a coincidence mechanism)
to be even more precise than that found in the AN. SBCs receive
inhibitory input from vertical cells in the DCN. This inhibitory
input is delayed with respect to the excitatory input from the AN
and not as effective as the excitatory input, but it may play a role
in echo suppression (Rhode and Greenberg in Popper and Fay,
1992).

SBCs project to the ipsilateral and contralateral medial superior
olive (MSO), where timing differences (ITD) between the two ears
are processed, and the ipsilateral lateral superior olive (LSO),
where amplitude differences (ILD) are processed (Oliver in Web-
ster et al., 1992). SBCs project as well to more central nuclei such
as the contralateral ventral nucleus of the lateral lemniscus (VNLL)
(Oertel and Wickesberg in Oertel, Fay, and Popper, 2002).

The innervation pattern of the GBC is similar to that of the SBC
(Figure 3B) and forms a second part of the ILD pathway. They tend
to have dendritic fields that are somewhat larger than SBCs and
are preferentially contacted by HSR fibers. GBCs, like SBCs, re-
ceive extensive input from AN-I fibers on their cell bodies, but
these synapses are smaller than the endbulb type found on SBCs.
GBCs have response properties similar to those of AN fibers with
PLy PSTHs (Figure 2B), but with a higher degree of synchroni-
zation to the acoustic input (Yin in Oertel et al., 2002).

SBCs project primarily to the contralateral SOC, specifically the
medial nucleus of the trapezoid body (MNTB), which provides
inhibitory input to the LSO (Oliver and Huerta in Webster et al.,
1992). The SBC axonal endings terminate in a calyx surrounding
the cell bodies of the principal cells of the MNTB. This synaptic
specialization suggests that timing is important in the ILD pathway
as well as in the ITD pathway. Other projections of the GBCs
include the ipsilateral lateral nucleus of the trapezoid body (LNTB),
the contralateral VNLL, and periolivary nuclei on both sides (Yin
in Oertel et al., 2002).

To Inferior
Colliculus

To MSO, LSO,
VNLL, IC

From
Dorsal
Column
and Spinal
Trigeminal
Nuclei

Cochlear Mechanics

Increasing CF
Cochlear Mechanics

Increasing CF
Cochlear Mechanics

A

B

C

Figure 3. Examples of neural circuits in the cochlear nucleus. Excitatory connections are indicted by solid lines and inhibitory connections are indicated by
broken lines. A, The stellate cell circuit. B, The sperical bushy cell circuit. C, The fusiform circuit. See text for explanation of abbreviations.
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Fusiform and Giant Cells

The DCN is believed to be involved in processing spectral cues
that are important for sound source location, especially source el-
evation. Cats with lesions to the DCN output pathways exhibit
significant deficits in their ability to orient to sources at different
locations (Young and Davis in Oertel et al., 2002). The DCN is
usually subdivided into three layers, a superficial or molecular
layer, an intermediate layer called the granular or fusiform cell
layer, and a polymorphic or deep layer. The principal cells of the
DCN are the fusiform cells (from which the fusiform cell layer gets
its name) and the giant cells located in the deep layer. The apical
dendrites of fusiform cells (also called pyramidal cells) are highly
branched and extend up into the molecular layer, while the less
highly branched basal dendrites extend down into the deep layer.
The dendritic morphology of the giant cells is more diverse, rang-
ing from elongate to radiate (Cant in Webster et al., 1992). Beneath
the fusiform cells are a group of cells called vertical cells. These
cells have their dendritic and axonal arbors confined to an isofre-
quency lamina. There are two groups of vertical cells. The more
superficial group gives rise to only a local axon, the deeper group
gives rise to axons that project to the VCN (Rhode, 1999).

The fusiform cell circuit is shown in Figure 3C. The basal den-
drites of fusiform cells receive excitatory input from AN-I fibers
with a limited range of CFs, a narrow-band inhibitory input from
the vertical cells of the DCN, and a wide-band inhibitory input
from the D-stellate cells of the VCN. The inhibitory input from the
vertical cells is quite strong, and as a result, fusiform cells respond
poorly or not at all to pure tones. They respond well to broadband
stimuli except when there is a spectral notch at the characteristic
frequency, in which case these cells are strongly inhibited (Rhode
and Greenberg in Popper and Fay, 1992). As a result of these prop-
erties, fusiform cell models create a spectral representation that
accentuates spectral notches (Hancock and Voigt, 1999), which are
important features of the HRTF for determining sound source el-
evation. The fusiform cells also receive excitatory input on their
apical dendrites from the granule cells, which in turn receive input
from the dorsal column and spinal trigeminal nuclei of the soma-
tosensory system. This somatosensory input appears to modify
DCN response properties based on head and pinna position (Kanold
and Young, 2001).

The giant cell circuit (not shown) is similar to the fusiform cell
circuit except that the giant cells do not receive direct input from
granule cells and AN input to the giant cells spans a large range of
characteristic frequencies. Fusiform and giant cells project to the
contralateral ICC and also project to the contralateral DNLL, which
provides inhibitory input to both ICs (Oliver and Huerta in Webster
et al., 1992).

Discussion

Significant progress has been made in understanding the anatomy
and physiology of the subthalamic auditory pathways, but many
questions remain. For example, the experimental data suggest that
OHC:s contribute to the tuned response of the BM and IHCs, but
how OHCs perform their function is not well understood. Much of
the basic circuitry of the CN has been worked out, but it is not
clear how many subpopulations exist for each of the basic cell types

described in this article. And perhaps the greatest question of all
is, how is information in the parallel pathways leaving the CN
reintegrated into a unified percept by higher centers? To answer
these questions, future research will need to take an integrated ap-
proach, with computational models being used to aid the design
and interpretation of anatomical and physiological experiments.
These models will need to incorporate the major features of indi-
vidual cell types as well as the interactions between cell types at
different levels of the auditory system. Efforts to create suitable
large-scale models have begun (cf. Hawkins et al., 1996), but much
remains to be done.

Road Maps: Mammalian Brain Regions; Other Sensory Systems

Related Reading: Auditory Cortex; Auditory Scene Analysis; Echoloca-
tion: Cochleotopic and Computational Maps; Sound Localization and
Binaural Processing; Thalamus
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Auditory Scene Analysis
Guy J. Brown

Introduction

We usually listen in environments that contain many simulta-
neously active sound sources. The auditory system must therefore
parse the acoustic mixture that reaches our ears to segregate a target
sound source from the background of other sounds. Bregman
(1990) describes this process as auditory scene analysis (ASA) and
suggests that it takes place in two conceptual stages. The first stage,
segmentation, decomposes the acoustic mixture into its constituent
components. In the second stage, acoustic components that are
likely to have arisen from the same environmental event are
grouped, forming a perceptual representation (stream) that de-
scribes a single sound source. Streams are subjected to higher-level
processing, such as language understanding.

Bregman’s account makes a distinction between schema-driven
and primitive mechanisms of grouping. Schema-driven grouping
applies learned knowledge of sound sources such as speech in a
top-down manner (in this regard, the term “schema” refers to a
recurring pattern in the acoustic environment). Primitive mecha-
nisms operate on the acoustic signal in a bottom-up fashion and
are well described by Gestalt heuristics such as proximity and com-
mon fate (see CONTOUR AND SURFACE PERCEPTION). Primitive or-
ganization is both simultaneous and sequential. Simultaneous
grouping operates on concurrent sounds, using principles such as
similarity of fundamental frequency. Sequential grouping com-
bines acoustic events over time, according to heuristics such as
temporal proximity and frequency proximity.

At the physiological level, segmentation corresponds (at least in
part) to peripheral auditory processing, which performs a frequency
analysis of the acoustic input. To a first approximation, this fre-
quency analysis can be modeled by a bank of band-pass filters with
overlapping passbands, in which each channel simulates the filter-
ing characteristics of one location on the basilar membrane (see
AUDITORY PERIPHERY AND COCHLEAR NUCLEUS). From the output
of each filter, a simulation of the auditory nerve response can be
obtained by rectification and compression or from a detailed model
of inner hair cell function. In contrast, the physiological substrate
of auditory grouping is much less well understood (Feng and Rat-
nam, 2000). As a result, models of ASA tend to be functional in
approach. In the current review, we focus on models that are at
least physiologically plausible; however, it should be noted that
there is also a substantial literature that has addressed computa-
tional modeling of ASA from a more abstract information-
processing perspective (e.g., Rosenthal and Okuno, 1998).

Models of Sequential Grouping

Sequential grouping can be demonstrated by playing listeners a
repeating sequence of two alternating tones with different frequen-
cies (ABAB . . .). When the sequence is played rapidly or when
the frequency separation between the tones is large, the sequence
is heard to split into separate streams (A-A- . .. and B-B- . . .).
This phenomenon is known as auditory streaming (Bregman,
1990). Listeners are able to direct their attention to only one of the
streams, which appears to be subjectively louder than the other.
Auditory streaming may therefore be regarded as an example of
figure-ground separation.

Auditory streaming may be viewed as a consequence of sequen-
tial grouping heuristics that allocate tones to streams depending on
their proximity in time and frequency. Several modeling studies
have demonstrated that such principles can be implemented by rela-
tively low-level physiological mechanisms. For example, Beauvois

and Meddis (1996) describe a model of auditory streaming that has
its basis in mechanisms of peripheral auditory function. The model
utilizes two pathways: one in which auditory nerve activity is
smoothed by temporal integration and an “excitation-level” path
that adds a cumulative random element to the output of the tem-
poral integration path. Firing activity is considered in three auditory
filter channels: one at the frequency of each tone and one in be-
tween them. The channel with the highest activity in the excitation-
level pathway is selected as the dominant “foreground” percept;
the remaining channels are attenuated and become the “back-
ground.” This simple model quantitatively matches auditory
streaming phenomena, such as the effect of rate of presentation and
frequency separation. Furthermore, the inclusion of a random ele-
ment in the model (which is assumed to originate from the sto-
chastic nature of auditory nerve firing patterns) explains how spon-
taneous shifts of attention can occur.

McCabe and Denham (1997) have extended the Beauvois and
Meddis model by applying similar principles within a two-layer
neural architecture. In their model, “foreground” and “background”
neural arrays are connected by reciprocal inhibitory connections,
which ensure that activity appearing in one array does not appear
in the other (Figure 1). Their network is sensitive to frequency
proximity because the strength of inhibitory feedback is related to
the frequency difference between acoustic components. Addition-
ally, each layer receives a recurrent inhibitory feedback related to
the reciprocal of its own activity. As a result, previous activity in
the network tends to suppress differences in subsequent stimuli.
This mechanism may be viewed as a neural implementation of
Bregman’s (1990) “old plus new heuristic,” which states that the
auditory system prefers to interpret a current sound as a continua-
tion of a previous sound unless there is strong evidence to the
contrary. The inclusion of this heuristic within McCabe and Den-
ham’s model allows it to explain the effect of background orga-
nization on the perceptual foreground.

Attentional
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| stream

Acoustic
input

Background

Foreground 2
streaming array

streaming array
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stream
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Figure 1. McCabe and Denham’s model of auditory stream segregation.
Foreground and background streams are encoded by separate neural arrays,
which have reciprocal inhibitory connections. Each layer also receives re-
current inhibition. Solid circles indicate excitatory connections; open circles
indicate inhibitory connections. (Modified from McCabe and Denham
(1997).)
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A more central explanation for auditory streaming is given by
Todd (1996), who suggests that mechanisms of rhythm perception
and stream segregation are underlain by cortical maps of
periodicity-sensitive cells. In his model, periodicity detection leads
to a spatial representation of the temporal pattern of the stimulus
in terms of its amplitude modulation (AM) spectrum. Acoustic
events whose AM spectra are highly correlated (as judged by a
neural cross-correlation mechanism) are perceptually grouped,
whereas events with uncorrelated AM spectra are segregated.
Todd’s model is able to qualitatively replicate the dependence of
auditory streaming on tone frequency and temporal proximity.

The models of Todd (1996) and McCabe and Denham (1997)
suggest that the auditory responses associated with different
streams are encoded spatially in neural arrays. An alternative is that
auditory streams are encoded temporally. For example, Wang
(1996) suggests a principle of oscillatory correlation, which is a
development of von der Malsburg’s temporal correlation theory
(von der Malsburg and Schneider, 1986). In Wang’s scheme, neural
oscillators alternate rapidly between relatively stable states of ac-
tivity (the active phase) and inactivity (the silent phase). Oscillators
that encode features of the same stream are synchronized (phase
locked with zero phase lag) and are desynchronized from oscillators
that represent different streams.

Wang has implemented the oscillatory correlation principle in a
model of auditory streaming, in which oscillators are arranged
within a two-dimensional time-frequency network. The time axis
of the network is assumed to be constructed by a systematic ar-
rangement of neural delay lines. Each oscillator is connected to
others in its neighborhood with excitatory connections whose
strength diminishes with increasing distance in time and frequency.
In addition, every oscillator sends excitation to a global inhibitor,
which feeds back inhibition to each oscillator in the network. Os-
cillators that are close in time and frequency tend to synchronize
because the excitatory connections between them are strong. How-
ever, groups of oscillators that do not receive mutually supportive
excitation tend to desynchronize because of the action of the global
inhibitor. As the network dynamics evolve, the combined effects
of local excitation and global inhibition cause streams of synchro-
nized oscillators to form. The model qualitatively reproduces a
number of auditory streaming phenomena. However, the oscilla-
tory dynamics proceed rapidly, so Wang’s network is not able to
account for the gradual buildup of the auditory streaming effect
over time.

Models of Simultaneous Grouping

Simultaneous grouping mechanisms exploit differences in the char-
acteristics of concurrent sounds in order to perceptually segregate
them. For example, the ability of listeners to identify two simul-
taneously presented vowels (“double vowels”) can be improved by
introducing a difference in fundamental frequency (FO) between
the vowels (Bregman, 1990). Apparently, simultaneous grouping
mechanisms are able to segregate the acoustic components related
to each FO and hence retrieve the spectra of the two vowels.
Meddis and Hewitt (1992) describe a model of double-vowel
identification based on the correlogram, a model of auditory pitch
analysis. A correlogram is formed by computing a running auto-
correlation at the output of each auditory filter channel, giving a
two-dimensional representation in which frequency and time lag
are represented on orthogonal axes. Meddis and Hewitt suggest that
the correlogram could be computed neurally by using a system of
delay lines and coincidence detectors. The FO of one of the vowels
is identified from the correlogram, and channels whose response is
dominated by that FO are removed, thus allowing a clearer view of
the second vowel. This mechanism fails to separate the vowels
when they both have the same FO and successfully predicts that

vowel identification performance improves when a difference in FO
is introduced.

The Meddis and Hewitt model is based on a strategy of “exclu-
sive allocation” (Bregman, 1990); all of the energy in a single au-
ditory filter channel is allocated to one vowel or the other. How-
ever, this need not be the case. De Cheveigné (1997) describes an
approach that uses a “neural cancellation filter” to partition the
energy in each channel between vowel percepts. In his scheme, a
correlogram is computed, and the fundamental period of one of the
vowels is identified. This period is canceled in each channel by a
neural comb filter, which is implemented by a neuron with a de-
layed inhibitory input. This mechanism removes firing activity with
a periodicity equal to the inhibitory delay. An advantage of de
Cheveigné’s approach is that it predicts an increase in listeners’
performance with increasing difference in FO for vowels that are
weak in comparison to a harmonic background. The Meddis and
Hewitt model is unable to reproduce this result because its exclu-
sive allocation scheme tends to remove the evidence for a weak
vowel when the stronger vowel is canceled.

Brown and Wang (1997) have described a neural oscillator
model of vowel segregation, which is essentially an implementa-
tion of Meddis and Hewitt’s (1992) scheme within an oscillatory
correlation framework. In their model, each channel of the corre-
logram is associated with a neural oscillator. Oscillators corre-
sponding to channels that are dominated by the same FO become
synchronized and are desynchronized from channels that are dom-
inated by a different FO. When there is no difference in FO between
the two vowels, a single group of synchronized oscillators forms.
However, when a difference in FO is introduced, the two vowels
are segregated according to their FOs, and the channels making up
each vowel are encoded as separate groups of synchronized
oscillators.

Von der Malsburg and Schneider (1986) describe a related model
of simultaneous grouping based on temporal correlation of neural
responses. Their scheme employs a neural architecture in which
each member of a fully connected network of excitatory cells (E-
cells) receives an input from one auditory filter channel. In addition,
E-cells receive inhibition from a common inhibitory cell (H-cell).
E-cells that receive simultaneous inputs tend to become synchro-
nized by the excitatory links between them and tend to become
desynchronized from other cells owing to the influence of inhibi-
tion from the H-cell. The network therefore displays a sensitivity
to the common onset of acoustic components and may be regarded
as implementing a Gestalt principle of common fate (Bregman,
1990).

The Role of Temporal Continuity

With the exception of that of Wang (1996), relatively few modeling
studies have demonstrated the integration of simultaneous and se-
quential grouping principles within the same computational frame-
work. However, several studies have shown how a complex time-
frequency mixture can be organized using simultaneous grouping
principles and temporal continuity constraints.

Grossberg (1999) describes a multistage model of ASA that im-
plements grouping by common FO and good continuation. The first
stage of his model builds redundant spectral representations of the
acoustic input in a “spectral stream” layer. Each stream is repre-
sented by a separate neural array. These representations are filtered
by neural “harmonic sieves,” which connect a node in a “pitch
stream” layer with spectral regions near to the harmonics of the
corresponding pitch value. Pitch representations compete across
streams to select a winner, and the winning pitch node sends top-
down signals via harmonic connections to the spectral stream layer.
According to an adaptive resonance theory (ART) matching rule,
frequency components in the spectral stream that are consistent
with the top-down signal are selected, and others are suppressed
(see ADAPTIVE RESONANCE THEORY). Selected components reac-
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tivate their pitch node, and further top-down signals are produced.
In this way, a resonance develops that binds together the frequency
components constituting a sound source and its corresponding
pitch.

Grossberg’s model is able to account for simple simultaneous
grouping phenomena, such as the perceptual fusion of components
with the same FO. His model also reproduces the auditory conti-
nuity illusion (Bregman, 1990), in which a pure tone is heard to
continue through a brief interrupting noise, even though the tone
is not physically present during the noise burst. It is able to do so
because a resonance develops for the tone that is maintained during
the noise burst. The ART matching rule then selects the tone from
the noise, and competitive interactions cause the tone and residual
noise to be allocated to different streams.

Wang and Brown (1999) describe a neural oscillator model
whose two-layer architecture echoes the two conceptual stages of
ASA. The first (segmentation) layer consists of a two-dimensional
time-frequency grid of oscillators with a global inhibitor (Figure
2). In this layer, excitatory connections are formed between audi-
tory filter channels that have a similar temporal response. As a
result, segments form in the time-frequency plane and thus corre-
spond to harmonics and formants. The global inhibitor ensures that
each segment desynchronizes from the others; the first layer there-
fore embodies the segmentation stage of ASA, in which the acous-
tic signal is split into its constituent elements. The second layer
receives an input from the first layer. Also, segments in the second
layer are connected by excitatory links if they represent time-
frequency regions that are dominated by the same F0. As a result,
synchronized groups of segments emerge in the second layer, each
of which corresponds to a stream with harmonically related
components.

Models of Schema-Driven Grouping

Liu, Yamaguchi, and Shimizu (1994) describe a neural oscillator
model of vowel recognition that may be regarded as an implemen-
tation of schema-driven grouping. The model consists of an input
layer and three layers of oscillators labeled A, B, and C, which are
likened to regions of the auditory cortex. The A (“feature extrac-
tion”) layer identifies local peaks in the acoustic spectrum and en-

Grouping
layer

Segment
layer

inhibitor

Figure 2. The two-layer neural oscillator model of Wang and Brown
(1999). In the first layer, segments are formed that correspond to harmonics
and formants. The second layer groups segments according to their fun-
damental frequency (F0); those with the same FO form a stream in which
all oscillators are synchronized and are desynchronized from other streams.
(Modified from Wang and Brown (1999).)

codes them as separate groups of oscillations, which are assumed
to correspond to vowel formants. The B (“feature linking”) layer
acts as a simple associative memory, in which hardwired connec-
tions encode the relationship between formant frequencies for dif-
ferent vowels. Associative interactions between the B layer, to-
gether with top-down and bottom-up interactions between the A
and B layers, lead to the activation of a vowel in terms of a global
pattern of synchronized oscillations. The C (“evaluation”) layer
assesses the synchronization in each formant region and outputs a
vowel category. Top-down reinforcement from the B center confers
robustness in noise; it is demonstrated that the model is able to
recognize vowels robustly in the presence of multispeaker babble.

Discussion

The modeling studies reviewed here propose a neurobiological ba-
sis for the principles of auditory organization expounded in Breg-
man’s account of ASA. Clearly, the models differ in their level of
explanation, ranging from peripheral (Beauvois and Meddis, 1996)
to cortical (Todd, 1996). Without exception, their approach is func-
tional; currently, there is insufficient knowledge about the physi-
ological mechanisms of ASA to attempt a detailed physiological
model. It is likely that future research in this field will see a closer
synergy between computational modeling studies and neurophys-
iological investigation.

Various strategies have been proposed for the neural encoding
of auditory streams. Beauvois and Meddis (1996) stress that the
perceptual separation of sounds need not imply a physical separa-
tion of their corresponding representations; in their model, auditory
filter channels belonging to a nonattended stream are simply atten-
vated. This contrasts with the approaches described by Grossberg
(1999) and McCabe and Denham (1997), in which different audi-
tory streams are encoded by separate neural arrays. A further ap-
proach is to encode streams temporally in the responses of syn-
chronized neural firing patterns (von der Malsburg and Schneider,
1986; Wang, 1996). Although all of these approaches are plausible,
none are currently supported by strong neurophysiological
evidence.

Many models of ASA require systematic time delays longer than
those currently known to exist in the auditory system. Models of
double-vowel separation based on the correlogram require delays
of the order of 20 ms (Meddis and Hewitt, 1992; de Cheveigné,
1997). Similarly, it is questionable whether the system of delay
lines employed in Wang’s (1996) neural oscillator model is phys-
iologically realizable. The temporal correlation architecture of von
der Malsburg and Schneider (1986) does not suffer from this dif-
ficulty, since their network does not have an explicit time axis.
However, the explanatory power of their model is weak in com-
parison to Wang’s model, because temporal and frequency rela-
tionships between acoustic inputs are not preserved.

Generally speaking, the role of auditory attention has been ne-
glected in computer models of ASA. In auditory streaming, a lis-
tener’s attention can shift randomly between organizations or may
be consciously directed to the high or low tones. The model of
Beauvois and Meddis (1996) accounts for the former but not the
latter. Similarly, McCabe and Denham’s model includes an atten-
tional input (Figure 1), but it is not utilized in their simulations.
Wang (1996) suggests that in a neural oscillator framework, atten-
tion is paid to a stream when its constituent oscillators reach their
active phases; attention therefore alternates quickly among the
streams in turn. However, such a scheme does not explain how
listeners are able to direct their attention to a particular stream over
a sustained period of time.

Also, few models have attempted to model the interaction be-
tween top-down and bottom-up grouping mechanisms. In principle,
the mechanism of recurrent neural connections described by Liu et
al. (1994) could form the basis for such a model. Similarly, Gross-
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berg’s (1999) ART scheme could form the basis for a grouping
mechanism in which bottom-up features interact with top-down
information about the characteristics of sound sources.

The motivation for most of the studies reviewed here is to gain
insight into the mechanisms of ASA through computational mod-
eling. However, computer sound separation devices have many
real-world applications, such as in hearing prostheses and as pre-
processors for robust automatic speech recognition in noise. For
example, Wang and Brown (1999) have applied their model to the
separation of voiced speech from interfering sounds, with some
success. Because they are founded on neurobiological principles,
such approaches to sound separation may offer performance ad-
vantages over other techniques, such as blind statistical methods.

Road Map: Other Sensory Systems

Related Reading: Auditory Periphery and Cochlear Nucleus; Contour and
Surface Perception; Dynamic Link Architecture; Echolocation: Cochleo-
topic and Computational Maps
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Axonal Modeling
Christof Koch and Ojvind Bernander

Introduction

Axons are highly specialized “wires” that conduct the neuron’s
output signal to target cells—in the case of cortical pyramidal cells
up to 10,000 other cortical neurons. As such they are highly spe-
cialized, with a relatively stereotypical behavior. Most authors
agree that their role in signaling is largely limited to making sure
that whatever pulse train is put into one end of the axon is rapidly
and faithfully propagated to the other end. This is in contrast to the
complexity of electrical events occurring at the cell body and in
the dendritic tree, where the information from thousands of syn-
apses is integrated.

Despite the uniformity of electrical behavior, there is great mor-
phological variability that largely reflects a trade-off between prop-
agation speed and packing density. Axonal size varies over four
orders of magnitude: diameters range from 0.2-um fibers in the
mammalian central nervous system to 1 mm in squid; lengths range
from a few hundred microns to over a meter for motor neurons
(Kandel, Schwartz, and Jessell, 2000). Some axons are bound only
by the thin cellular membrane, while others are wrapped in multiple
sheaths of myelin. An example of an axonal arbor is shown in
Figure 1.

The majority of nerve cells encode their output as a series of
brief voltage pulses. These pulses, also referred to as action poten-
tials or spikes, originate at or close to the cell body of nerve cells
and propagate down the axon at constant amplitude. Their shape
is relatively constant across species and types of neurons. Common
to all is the rapid upstroke (depolarization) of the membrane above
0 mV and the subsequent, somewhat slower, downstroke (repolar-
ization) toward the resting potential and slightly beyond to more
hyperpolarized potentials. At normal temperatures, the entire se-
quence occurs within less than 1 ms. A minority of cell types are
axonless and appear to use graded voltage as output, such as cells

of double vowels with a network of neural oscillators, Neural Networks,
10:1547-1558.

de Cheveigné, A., 1997, Concurrent vowel identification: III. A neural
model of harmonic interference cancellation, J. Acoust. Soc. Am.,
101:2857-2865.

Feng, A. S., and Ratnam, R., 2000, Neural basis of hearing in real-world
situations, Annu. Rev. Psychol., 51:699-725. &

Grossberg, S., 1999, Pitch-based streaming in auditory perception, in Mu-
sical Networks: Parallel Distributed Perception and Performance (N.
Griffith and P. Todd, Eds.), Cambridge, MA: MIT Press, pp. 117-140.

Liu, F., Yamaguchi, Y., and Shimizu, H., 1994, Flexible vowel recognition
by the generation of dynamic coherence in oscillator neural networks:
Speaker-independent vowel recognition, Biol. Cybern., 71:105-114.

McCabe, S. L., and Denham, M. J., 1997, A model of auditory streaming,
J. Acoust. Soc. Am., 101:1611-1621.

Meddis, R., and Hewitt, M. J., 1992, Modelling the identification of con-
current vowels with different fundamental frequencies, J. Acoust. Soc.
Am., 91:233-245.

Rosenthal, D., and Okuno, H. G. (Eds.), 1998, Computational Auditory
Scene Analysis, Mahwah, NJ: Lawrence Erlbaum Associates. 4

Todd, N., 1996, An auditory cortical theory of primitive auditory grouping,
Network: Comput. Neural Syst., 7:349-356.

von der Malsburg, C., and Schneider, W., 1986, A neural cocktail-party
processor, Biol. Cybern., 54:29-40.

Wang, D., 1996, Primitive auditory segregation based on oscillatory cor-
relation, Cogn. Sci., 20:409—456. &

Wang, D., and Brown, G. J., 1999, Separation of speech from interfering
sounds based on oscillatory correlation, IEEE Trans. Neural Networks,
10:684-697.

in the early part of the retina or interneurons in invertebrates (Rob-
erts and Bush, 1981). Action potentials are such a dominant feature
of the nervous system that for a considerable period of time it was
widely held—and still is in parts of the neural network commu-
nity—that all neuronal computations involve only these all-or-none
events. This belief provided much of the impetus behind the neural
network models originating in the late 1930s and early 1940s (see
SINGLE-CELL MODELS).

The ionic mechanisms underlying the initiation and propagation
of action potentials were elucidated in the squid giant axon by a
number of workers, most notably Hodgkin and Huxley (1952). To-
day, with the widespread availability of cheap and almost unlimited
computational power, it is very difficult to imagine the difficulty
that Hodgkin and Huxley faced 50 years ago. Not only did they
have to derive a proper mathematical formalism based on incom-
plete data, they also had to solve a nonlinear partial differential
equation, the cable equation, using a very primitive hand calculator.

For this work they shared, together with Eccles, the 1963 Nobel
prize in physiology and medicine (for a historical overview, see
Hodgkin, 1976). Their model has played a paradigmatic role in
biophysics; indeed, the vast majority of contemporary biophysical
models use essentially the same mathematical formalism Hodgkin
and Huxley introduced 50 years ago. This is all the more surprising
because the kinetic description of the continuous, deterministic, and
macroscopic membrane permeability changes within the frame-
work of the Hodgkin-Huxley model was achieved without any
knowledge of the underlying all-or-none, stochastic, and micro-
scopic ionic channels.

Given its importance, we will describe the Hodgkin-Huxley
model and its assumptions in some detail in the following section.
We then introduce the two classes of axons found in most animals,
myelinated and nonmyelinated, and describe their differences. Ax-

TLFeBOOK



136 Part III: Articles

ons possess heavily branched axonal trees. We conclude the over-
view by briefly alluding to additional complications that arise when
attempting to understand the role and function of axonal trees in
information processing. For a useful book on the biophysics of
dendrites and axons and their computational function, see Koch
(1999). For a monograph on the axon in health and disease, see
Waxman, Kocsis, and Stys (1995).

The Hodgkin-Huxley Model of Action
Potential Generation

Electrical current in nerve cells is carried by the flow of ions
through membrane proteins called channels. The concentration of
sodium ions is high in the extracellular fluid and low in the intra-
cellular axoplasm. This concentration gradient gives rise to a ten-
dency for sodium ions to flow into the cell. At some membrane
potential, termed the reversal potential, the effect of the concen-
tration gradient will be canceled by the electrical gradient, and so
the net flow of sodium ions will be zero at that point. The channel

Figure 1. Axonal terminations. An axon from nucleus
isthmi terminating in turtle tectum was labeled with
horseradish peroxidase and reconstructed from a series
of parallel sections. The thick parent trunk (3 um) is
wrapped in myelin and shows a node of Ranvier (trian-
gles). The thin (<1 gm) branches are nonmyelinated and
are home to approximately 3,600 synaptic boutons (bul-
bous thickenings), where contact is made onto other
cells. The boutons vary greatly in size but average about
1.5 um in diameter. (From Sereno, M. 1., and Ulinski,
P. S., 1987, Caudal topographic nucleus isthmi and the
rostral nontopographic nucleus isthmi in the turtle, Pseu-
demys scripta, J. Comp. Neurol., 261:319-346. Copy-
right © 1987 by Wiley-Liss. Reprinted by permission of
John Wiley & Sons, Inc.)

transitions into its closed state by virtue of a conformational state
in the underlying molecular structure. In the model, this is de-
scribed by a change in the m variable. A similar situation holds for
potassium ions flowing through separate potassium-selective chan-
nels, except that the concentration gradient is reversed.

In the squid giant axon, the membrane potential is determined
by three conductances: a voltage-independent (passive) leak con-
ductance, g, a voltage-dependent (active) sodium conductance,
gna» and an active potassium conductance, gx. The equivalent cir-
cuit used to model the membrane is shown in Figure 2. The con-
ductances are in series with batteries, the values of which corre-
spond to the respective reversal potentials of the ionic currents, E,,
Eya.. and Eg. The outside is connected to ground under the as-
sumption that the resistivity of the external medium is negligible.

The time course of an action potential is illustrated in Figure 3.
In this simulation of a membrane patch, a brief current pulse ini-
tiates an action potential. Before stimulation, the membrane voltage
is at rest, V,, = —65 mV. At this potential, gy, and gk are almost
fully inactivated. g is still much larger than gy, and the membrane
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Figure 2. Schematic of ionic channel and neuronal membrane: Equivalent
circuit of axonal membrane. The Hodgkin-Huxley model of squid axon
incorporates a capacitance and three conductances. Two of the conduc-
tances are voltage dependent (active), gy, and gk, while the third is a pas-
sive “leak” conductance, g; The maximal conductances are 120, 36, and
0.3 ms/cm?, respectively. Each conductance is in series with a battery that
defines the reversal potential for each conductance type. The values are
Ey. = 50, Ex = —77,and E; = —54.3 mV. See text for the voltage
dependences of gy, and gg. The top rail corresponds to the axoplasm (in-
side) of the axon, while the bottom rail, grounded, is the external medium.
When a membrane action potential or space clamp is modeled, only one
compartment is used, as shown, and the spatial structure of the membrane
is ignored. When propagating action potentials are modeled, the specific
resistivity of the axoplasm, R, = 34.5 Qcm, cannot be ignored. R, is then
modeled as a series of resistors connecting identical compartments that
correspond to different spatial locations along the axon. The membrane
capacitance is 1 um F/cm?.

is dominated by the leak current and the residual potassium current.
The applied current slowly depolarizes the membrane by charging
up the capacitance. As V,, approaches threshold (V, ~ —50 mV),
sodium channels begin to open up, allowing for the influx of Na*
ions, which further depolarizes the membrane. About 1 ms later,
two events occur to bring the voltage back toward and somewhat
beyond the resting value: the sodium conductance inactivates, that
is, the sodium channels slowly close again, and potassium channels
open up, causing an outward current to flow. This outward current
forces the membrane potential below the resting value of —65 mV
(hyperpolarization), but the K* conductance too eventually deac-
tivates, allowing g, to pull V,, back to rest.

Mathematical Formulation
The equation describing the circuit in Figure 2 is:

av,
dt

Cc = gl(El - Vm) + gNa(ENa - Vm) + gK(EK - Vm) (1)

While g, is constant, gy, and gg are time and voltage dependent:

8Na = GNa : m(t)3h(t)

gk = Gy n(*
where the constants Gy, and Gy are the maximal conductances and
the time and voltage dependence reside in the so-called gating vari-
ables, described by the state variables m, h, and n. These fictitious
variables follow first-order kinetics, relaxing exponentially toward
a steady-state value x., with a time constant 7,:

dm me(V,) — m

dt T, (V,)
dh h(V,) — h
dr (Vi)
dn _ nV,) —n
a V)
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Figure 3. Action potential. Computed action potential in response to a 0.5-
ms current pulse of 0.4-nA amplitude (solid lines) compared to a subthresh-
old response following a 0.35-nA current pulse (dashed lines). A, Time
course of the two ionic currents. Note their large sizes compared to the
stimulating current. B, Membrane potential in response to sub- and supra-
threshold stimuli. The injected current charges up the membrane capacity
(with an effective membrane time constant ¢ = 0.85 ms), enabling suffi-
cient Iy, to be recruited to outweigh the increase in /i (due to the increase
in driving potential). The smaller current pulse fails to trigger an action
potential, but causes a depolarization followed by a small hyperpolarization
due to activation of I. C, Dynamics of the gating variables. Sodium acti-
vation m changes much more rapidly than either & or n. The long time
course of potassium activation n explains why the membrane potential takes
12 ms after the potential has first dipped below the resting potential to return
to baseline level. (From Koch, C., 1999, Biophysics of Computation, Cam-
bridge, MA: MIT Press, p. 150.)

The steady-state activations (.., h.., and n.,) have a sigmoidal de-
pendence on voltage. The activation variables m and n have the
asymptotes limy, _,_., m.., n,, = 0,limy, .. m,., n,, = 1, while the
reverse holds for the inactivation variable h. That i is, for very neg-
ative voltages, the m and n variables shut off current flow through
both channel types, while at very positive potentials, the & particle
shuts off the sodium current. The time “constants” (z,,, 7;, and 7,,)
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are not constant with respect to voltage but rather have a roughly
bell-shaped dependence, with peaks in the — 80 to —40 mV range.
The x., and 7, values were the ones actually measured by Hodgkin
and Huxley using a series of voltage clamp steps. Instead of fitting
these curves directly with mathematical functions, which would be
sufficient for simulation purposes, they chose to express x.. and 7,
in terms of the variables «, and f,:

aX
X, = —>
a/\,’ + ﬂ.’(

1
‘L' = —,—,—|—_—|—_m
* ax—"_ﬁx

where «, and 5, depend on V,, as follows:

0.1V, — 40) AV —65)18
W = Sy Pe=deT
1
@, = 0.07¢Vin— 69720 = —
7 B eVm=35/10 4
_0.01(V,, — 55) _ (V,,— 65)/80
G = S _y Peo= 01235

Note that the dimensions of 7,, «,, and f3, are all in units of 1/s,
while n, is a pure number.

These rate constants assume a temperature of 6.3°C. At higher
temperatures, they should be multiplied by a factor of around 3 per
10°C. The functional forms were chosen by Hodgkin and Huxley
for two reasons. First, they were among the simplest that fit the
data, and second, they resemble the equations that govern the
movement of a charged particle in a constant field.

There is no direct way to map this set of equations in a simple
manner onto the known molecular correlates of ionic channels,
except that many voltage-dependent ionic channels possess four
identical subunits, close or identical to the exponent of the acti-
vation variable that determines the momentary conductance. How
the molecular structure and physical chemistry of these membrane
pores explain the high throughput (up to 10® ions per second) and
selectivity (the potassium channel is at least 10,000 times more
permeant to K™ than to Na™ ions) has been revealed in stunning
detail for potassium channels by atomic-resolution pictures of them
(Doyle et al., 1998).

Conceptually, x..(V,,) can be thought of as the probability that
an x particle will be in the open state at potential V,,. Each particle
follows a two-state Markov model, where «, is the rate constant
from the closed to the open state and S, is the rate constant from
the open to the closed state. The time courses of the three variables
are graphed in Figure 3.

This mathematical formalism was laid down in 1952. Since then,
most models of voltage-dependent conductances—not only in ax-
ons, but also in cell bodies, and dendrites—have used the same
formalism, with only minor modifications (Koch and Segev, 1998).

The macroscopic Hodgkin-Huxley equations are both continu-
ous and deterministic, yet the underlying microscopic ionic chan-
nels are binary and stochastic. That is, a correct biophysical for-
mulation of the dynamics of the membrane potential needs to take
into account the well-known probabilistic behavior of these ionic
channels. However, given the large number of channels involved
in axonal spike initiation and propagation, it is usually appropriate
to approximate the system using the deterministic Hodgkin-Huxley
equations. This is not to say, however, that for thin fibers with very
high input impedances, a small number of channels, and close to
the threshold, stochastic variation in channel behavior might not
have large-scale effects on the timing of action potentials (Schneid-
man, Freedman, and Segev, 1998; Koch, 1999).

Action Potential Propagation

Equation 1 describes a patch of membrane with no spatial extent.
This corresponds to the original experiments, in which the axon
was “space-clamped”: a long electrode was inserted into the axon
along its axis, removing any spatial dependence. In response to
stimulation, the whole membrane would fire simultaneously as a
single isopotential unit. More commonly, one end of the axon is
stimulated and an action potential propagates to the other end. The
equation that governs extended structures is the cable equation:

v, d oV,
c = ——— + gE —V,)

ot R, ox*
+ gnalBna — Vi) + gx(Ex — V,) ()

where d is the axon diameter, C is the membrane capacity, and R,
is the intracellular resistivity. The equation rests on the assumption
of radial symmetry, i.e., radial current flow can be neglected, leav-
ing only one spatial dimension, the distance x along the cable, in
addition to t. If the last two (active) terms are dropped from the
right-hand side, we are left with the classical cable equation for
passive cables (see DENDRITIC PROCESSING). Associated with that
equation is the space constant ) = 1//g,R,, which is the distance
across which the membrane potential decays a factor e in an infinite
cable under steady-state conditions.

Figure 4 shows the result of a simulation of a 100-cm-long axon
of diameter d = 1 mm. One end was stimulated with a brief current
pulse and the voltage was graphed for five positions along the axon.
The form of the action potential is very similar to that in Figure 3;
furthermore, the action potential is self-similar as it propagates,
showing no signs of dispersion.

The total delay from one end to the other is about 5 ms, giving
an average velocity of about 20 m/s. By assuming a constant con-
duction velocity—that is, by postulating the existence of a wave,
Va(x, t) = V,(x — vi)—Equation 2 shows that the velocity is
proportional to the square root of axon diameter: v o /d (Rushton,
1951). Indeed, in a truly remarkable test of their model, Hodgkin
and Huxley estimated the velocity to be 18.8 m/s, a value within
10% of the experimental value of 21.2 m/s. This is surprisingly
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Figure 4. A propagating action potential. Solution to the complete Hodg-
kin-Huxley model for a long piece of squid axon for a brief suprathreshold
current pulse. This pulse generates an action potential that travels down the
cable and is shown here at the origin as well as 2 and 3 cm away from the
stimulating electrode (solid lines). Note that the shape of the action potential
remains invariant due to the nonlinear membrane. If the amplitude of the
current pulse is halved, only a local depolarization is generated (dashed
curve), which depolarizes the membrane 2 cm away by a mere 0.5 mV (not
shown). This illustrates the dramatic difference between active and passive
voltage propagation. (From Koch, C., 1999, Biophysics of Computation,
Cambridge, MA: MIT Press, p. 162.)
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accurate, considering that the model was derived from a space-
clamped axon. This represents one of the rare instances in which a
neurobiological model has made a successful quantitative predic-
tion. The square root relationship had been discovered experimen-
tally in the squid in the late 1930s.

Myelinated and Nonmyelinated Fibers

The principle of action potential generation and propagation ap-
pears to be very similar across neuronal types and species. One
important evolutionary invention is that of myelination in the ver-
tebrate phylum. Myelin sheaths are white fatty extensions of
Schwann cells or neuroglial cells that are wrapped in many layers
around axons. Myelin is a major component of the white matter of
the brain, as opposed to the gray matter of neocortex, which has a
high concentration of cell bodies and dendrites. The myelin sheaths
extend for up to 1-2 mm along the axon (the internodes) and are
separated by the nodes of Ranvier, which are only a few micro-
meters long. The internodal distance appears to be approximately
linear in fiber diameter.

Myelin insulates the axon from the surrounding medium, in-
creasing the membrane resistance and decreasing the capacitance.
This reduces the electrotonic length of the axon for both DC and
AC signals, making the cable electrically shorter, thereby signifi-
cantly increasing the propagation speed. While a 1-mm nonmye-
linated axon in the squid has an associated propagation speed of
only about 20 m/s (Hodgkin and Huxley, 1952), a myelinated 20-
um vertebrate axon can reach over 100 m/s. For a nonmyelinated
axon to reach that velocity, it would have to be an inch thick! This
reduction in axon diameter allows for a much higher packing den-
sity while conserving speed.

It has been shown both experimentally and theoretically that the
velocity of propagation is linear or slightly sublinear in the fiber
diameter for myelinated axons. Figure 5 compares the spike prop-
agation velocity for myelinated and nonmyelinated axons for small
diameters. The myelinated axons overtake nonmyelinated ones al-
ready in the submicrometer range.

As opposed to their uniform distribution in nonmyelinated nerve,
the voltage-gated channels in myelinated nerve are highly segre-
gated between node and internode (Hille, 1992). The nodal mem-
brane has a high concentration of fast sodium channels (between
700 and 2,000 per um?) and voltage-independent leak channels.
The internodal membrane has a low concentration of potassium
and leak channels and is virtually devoid of sodium channels. Here,
the repolarization of the membrane following the initial phase of
the spike is via the leak channels and sodium inactivation. This
low density of channels in the internodal membrane, which makes
up the more than 99% of the axonal membrane, reduces the average
current density across the membrane, resulting in great savings in
metabolic energy. Most of the activity occurs at the nodes of Ran-
vier, while the propagation along the internodes is chiefly passive.

In summary, myelin provides three advantages: propagation
speed and packing density are both dramatically increased, while
power consumption is decreased.

The Axonal Tree

Some axons branch profusely in the vicinity of the cell body. Oth-
ers send off one or a few branches that course through the body
for up to a meter before branching. Others extend for a few milli-
meters, giving rise to axonal arbors at regular intervals. The axon
often arises at the “axon hillock,” a somatic bulge opposite from
the trunk of the dendritic tree, though other arrangements are pos-
sible, such as the axon’s emanating from the dendrite rather than
the soma.

/ Myelinated

(m/sec) /

Nonmyelinated

K R R R

Diameter (um)

Figure 5. Spike propagation velocity and axonal diameter. The propagation
velocity has a square root dependence on diameter for nonmyelinated ax-
ons. For myelinated axons, the dependence is linear or slightly sublinear.
Myelination increases velocity for axons as thin as 0.2 um, which are
among the smallest found in the brain. (Adapted from Waxman and Ben-
nett, 1972.)

Figure 1 shows an example of a terminal arbor in turtle tectum
from a cell originating in nucleus isthmi. This particular axon has
a 3-um myelinated parent trunk and initial daughter branches.
These give rise to hundreds of thin, highly varicosed daughter
branches that lack myelin. The varicosities are usually the location
of synaptic boutons, a local thickening where action potentials trig-
ger the release of neurotransmitter, which in turn induces a con-
ductance change in the postsynaptic target neuron. Boutons of
some neurons may receive synaptic input that can inhibit this signal
transmission, a process known as presynaptic inhibition. The 3,600
boutons on this arbor average 1.5 um in diameter, though the size
is highly variable, with a few boutons being as large as 7 um.

The propagation speed along an unbranched axon depends on
the diameter, as discussed earlier. In addition, a delay might be
introduced at branch points, at varicosities at presynaptic terminals,
and at locations where the diameter changes abruptly (Manor,
Koch, and Segev, 1991). The delay may be negative (a speed-up),
depending on the geometrical aspects, in particular the diameter of
the parent branch in relation to that of the daughter branches. In a
simulation of a 3.5-mm-long branched terminal axonal tree, Manor
et al. found that the total axonal delay from the cell body to the
synaptic terminals ranged from about 3 ms to 6 ms. Most of this
delay (67%—78%) arose from the properties of unbranched, uni-
form cables; 16%—26% resulted from branch point delays, and 6%—
7% from the presence of varicosities. In theory, the delay at a single
branch point may be as large as 2 ms or more, if the temperature
is low and the impedance mismatch is large. If the mismatch is too
large, however, branch point failure may occur, a condition in
which the action potential fails to propagate beyond the branch
point. The concept of branch point filtering has been put forth by
Chung, Raymond, and Lettvin (1970): the branch point may con-
stitute a point of control where selective transmission occurs, al-
lowing the axonal tree to distribute action potentials only to a sub-
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set of nerve terminals. Experimentally, little is known concerning
the amplitude of temporal dispersion of action potentials due to
axonal branching.

While the axonal propagation delay may seem an unavoidable
fact of life that slows down neural communication, it may also have
important computational advantages. For instance, sound locali-
zation (see SOUND LOCALIZATION AND BINAURAL PROCESSING) in
the barn owl depends on interaural time differences as small as a
tenth of a millisecond and is apparently obtained by using the axon
as a delay line (Konishi, 1992), and several models of brain func-
tion depend critically on the exact timing of inputs from different
sources. Although delays may be imposed by the dendritic trees at
the input end of the neuron, the axons are also important candidates
for this function.

Debanne and colleagues (1997) discovered that action potentials
can be selectively filtered at or beyond axonal branch points via a
fast-inactivating A-type of potassium conductance. When a cell is
hyperpolarized, a depolarizing step within 10-20 ms that would
normally trigger an action potential fails to do so in hippocampal
cell bodies. The reason for this selective block is a G-like K™
conductance present somewhere along the axon. If de-inactivated
by long-lasting hyperpolarization, it filters out single isolated
spikes. It could thereby act to enhance the signal-to-noise ratio of
neuronal firing. To what extent this is a general mechanism or an
exception to the rule that axons faithfully transmit action potentials
from their site of initiation close to the cell body to their postsyn-
aptic target structures remains to be seen.

Over the past several decades, the formalism introduced by
Hodgkin and Huxley in 1952—voltage- and time-dependent acti-
vation and inactivation variables that determine the current value
of the various membrane conductances—has become the de facto
standard for modeling an amazing variety of phenomena, including
adaptation, calcium-dependent conductances, plateau potentials,
first- and second-order inactivation, oscillatory discharges, and sev-
eral varieties of bursting.

Road Maps: Biological Neurons and Synapses; Grounding Models of
Neurons

Related Reading: Activity-Dependent Regulation of Neuronal Conduc-
tances; Ion Channels: Keys to Neuronal Specialization; Oscillatory and
Bursting Properties of Neurons

Axonal Path Finding
Geoffrey J. Goodhill

Introduction

Many stages are involved in constructing a biological nervous sys-
tem. Following the migration of neurons to their proper locations
and their phenotypic specification, the initial pattern of connections
forms between different regions (Sanes, Reh, and Harris, 2000).
Making the right connections is crucial for proper function, and
often requires axons to navigate over long distances with great
precision (Tessier-Lavigne and Goodman, 1996). Until recently,
relatively little was known about this process experimentally; how-
ever, the past decade has seen a dramatic increase in knowledge
(at least qualitatively) concerning the molecules and mechanisms
involved (Mueller, 1999). These insights are now being applied to
understanding how axons can be made to regenerate to appropriate
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targets after injury to the adult nervous system, such as spinal cord
injury.

Until now, the bulk of theoretical work in the neural network
tradition has focused on changes in synaptic strengths within a
fixed connectional architecture. Although local sprouting within the
target has sometimes been considered (as has “sculpting,” based
on the assumption that when synaptic strengths go to zero, the
physical connection is lost), how axons chart their initial path to-
ward the correct target structure has generally not been addressed.
An example is the mapping from the eye to more central targets in
the brain. Abundant theoretical models address how topographic
maps form once axons reach the tectum or visual cortex (see DE-
VELOPMENT OF RETINOTECTAL MAPS; SELF-ORGANIZING FEATURE
Maps; and OCULAR DOMINANCE AND ORIENTATION COLUMNS),
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but no theoretical work specifically addresses how retinal ganglion
cell axons find the optic disc, how they then exit the retina, why
they grow toward the optic chiasm, why some then cross at the
midline while others do not, and so on. In recent years important
insight into such issues has been gained through innovative exper-
imental work, creating a body of knowledge that now has the po-
tential to be framed and interpreted in terms of theoretical models.
A crucial point is that, whereas work in neural networks has usually
focused on processes such as synaptic plasticity that are dependent
on neural activity, models for axon guidance must generally be
phrased in terms of activity-independent mechanisms, particularly
guidance by molecular gradients. In this article we first review
some of the important experimental data regarding axon guidance,
and then discuss some of the theoretical concepts that are relevant
to this area.

Experimental Data

Several basic types of mechanisms have been identified to guide
axons. (For more detailed discussions of the data summarized in
this section, see Tessier-Lavigne and Goodman, 1996; Mueller,
1999; and Song and Poo, 2001.) First, axons can be channeled in
particular directions by boundaries of permissive or inhibitory mol-
ecules. For instance, a “railroad track” of a permissive molecule
may lock an axon into a particular trajectory, or a “wall” of an
inhibitory molecule may keep it away from an undesired region.
Second, axons can be pushed or pulled by “vector” signals in the
form of molecular gradients. These gradients are often established
by diffusion of a soluble molecule away from the target region.
Third, the path to a distant target may be broken into several short
segments, each involving a different type of cue, thus simplifying
the problem of long-range guidance. Fourth, once one “pioneering”
axon has reached the target, it is often the case that following axons
simply fasciculate with (stick to) the pioneering axon. In each of
these cases the molecules involved may be substrate-bound (ex-
pressed on cell membranes or bound to cells or to the extracellular
space) or diffusible (diffusing through the extracellular space).

Figure 1. A, Electron micrograph of a growth cone at the end of an axon
(here the growth cone is resting on a surface irregularly covered with coated
beads). The long finger-like protrusions are filopodia. Growth cones are
typically about 0.01 mm across. (From Rosentreter, S. M., Davenport,
R. W., Loschinger, J. Huf, J., Jung, J., and Bonhoeffer, F., 1998, Response
of retinal ganglion cell axons to striped linear gradients of repellent guid-
ance molecules, J. Neurobiol., 37:541-562. © 1998, John Wiley & Sons,
Inc. Reprinted with permission.) B, Interaction of constraints for guidance
by a target-derived diffusible factor. The graph shows, at each distance, the

In the last few years the number of molecules specifically im-
plicated in axon guidance has jumped from virtually none to around
100, most of them previously unknown. (Note that we distinguish
between guidance factors and growth factors: the latter category,
which includes the neurotrophins, are often essential for axons to
extend, but so far have mostly not been shown to play an active
role in axon guidance in vivo.) Guidance factors can be organized
into several main families based on their molecular structure, in-
cluding the netrins, semaphorins, slits, and ephrins. There is an
astonishing amount of evolutionary conservation in these familes.
Homologous molecules perform analogous guidance functions in
animals ranging from nematodes to flies to mammals, indicating
that the basic molecular tools for wiring a nervous system were
established hundreds of millions of years ago. Molecules involved
in axon guidance are also often involved in the analogous che-
motactic event of cell migration, and recent findings even suggest
some commonality with the signal transduction mechanisms im-
portant for chemotaxis of leukocytes. Although it was originally
thought that the different types of guidance mechanisms might be
segregated between different families of molecules, it is now clear
that this is not the case. For instance, the same molecule can be
attractive in one context but repulsive in another, or it may nor-
mally be substrate-bound but have a soluble fragment that can
diffuse.

Guidance signals for axons are detected and transduced by the
growth cone, a dynamic and motile structure at the tip of the de-
veloping axon. This consists of a central region surrounded by web-
like veils called lamellipodia, and long, finger-like protrusions
called filopodia (Figure 14). Receptors expressed on the surface of
the growth cone can bind molecules of the families mentioned
above. The resulting signals are then converted by complex internal
transduction pathways into differential rates of actin polymeriza-
tion in different parts of the growth cone so as to move it forward,
left, or right. Dissection of the signaling networks responsible for
converting a graded difference in receptor binding into directed
movement is currently a very active area of research. One intriguing
finding is that the concentration of cAMP within the growth cone
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time at which two constraints are satisfied: the low concentration limit,
where not enough receptors are bound for a gradient signal to be detected
(assumed to be K;/100, with K, = 1 nM), and the fractional change con-
straint (assumed to be AC/C = 1%). The region between the two curves
in each graph is where guidance is possible. The guidance limit imposed
by the fractional change constraint once the gradient has stabilized is 1 mm.
However, guidance range is extended at earlier times, when the fractional
change constraint has yet to take full effect.
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helps determine how the growth cone responds to a gradient cue:
if the cAMP level is above a certain threshold, the growth cone is
attracted; if the cAMP level is below that threshold, the growth
cone is repelled.

Theoretical Models
Gradient Detection

Several different areas of theoretical development are relevant to
the emerging picture of axon guidance. The general topic of che-
motaxis has inspired a large body of theoretical analysis. However,
most work has focused on bacteria and leukocytes, and it remains
to be established how relevant these models are to axon guidance.
Perhaps most important in this category are theories describing the
fundamental physical limits on the minimum steepness of gradients
detectable by any small sensing device. The key hypothesis, first
rigorously formulated by Berg and Purcell (1977), is that gradient
detection is limited by inherent statistical fluctuations in receptor
binding. They calculated the statistical noise in a concentration
measurement AC, ;. by a small sensing device that arises from
inevitable stochastic variations in the number of receptors bound
at any instant. The fractional root mean square error in the mea-
surement of a concentration difference between two spatially or
temporally separated points is then V/’EACmise/C, where C is the
average concentration at the sensing device. For a true gradient
to be detected, it must be steep enough so that the actual concentra-
tion difference between the two points, AC,.4, is such that
ACyrq > J2AC gise- ACpoie/C can be calculated from first prin-
ciples using various simplifying assumptions. This approach has
been applied to growth cones by Goodhill and Urbach (1999), who
derived estimates for the minimum gradient steepness detectable
by an axon for a diffusible gradient of order 1% and for a substrate-
bound gradient of order 10%. The difference arises because of the
lower encounter rate between receptor and ligand molecules for a
bound versus a diffusible gradient. Goodhill and Urbach (1999)
also showed that the movement of filopodia does not significantly
increase the encounter rate, which suggests that filopodia increase
gradient sensitivity only by increasing the effective size of the
growth cone. However, this approach assumes that the receptor-
ligand reaction is diffusion-limited, which may not be the case for
the molecules involved in axon guidance. Theoretical work follow-
ing Berg and Purcell (1977), while still generally founded on the
basic assumption that gradient detection is limited by the signal-
to-noise ratio, has attempted to relax this and some other assump-
tions, but these models have not yet been specifically applied to
growth cones.

Growth Cones

Theoretical models have been proposed to account for filopodial
dynamics. Based on experimentally determined distributions for
parameters such as rates of filopodial initiation, extension, and re-
traction, filopodial length, and angular orientation, Buettner and
colleagues (e.g., Buettner, 1995) have developed simulation mod-
els describing filopodial structure as a function of time, and growth
cone trajectories both during normal growth and when a target is
encountered. Goodhill and Urbach (1999) presented a model of
growth cone trajectories based on the assumption that each filo-
podium makes a noisy (in Berg and Purcell’s sense) estimate of
the concentration in the direction it is pointing, that more filopodia
are generated in the direction of higher concentration, and that each
filopodium exerts a pull on the growth cone. Other models have
proposed hypotheses about how actin and microtubule dynamics
lead to filopodia formation, though these models have yet to fully
engage with what is known about these processes experimentally.

Another theoretically interesting aspect of growth cones is the
signaling events that convert a small difference in receptor binding
into a large directed movement. Meinhardt (1999) and others have
proposed reaction-diffusion-type models in which a small inhom-
ogeneity in an initially uniform system is amplified via the inter-
action of a short-range activator with a longer-range inhibitor.
However, to return the system to a uniform state so that the direc-
tional preference of the growth cone can change with time, a second
type of reaction with a longer time constant is invoked, and direct
experimental evidence for such processes in growth cones is cur-
rently lacking. Tranquillo and Lauffenburger (1987), in the context
of leukocyte chemotaxis, simulated and analyzed a model in which
two pools of receptors (one on each side of the cell) communicated
information about the degree of binding via a single intracellular
messenger. This model was quite successful at accounting for vari-
ous aspects of leukocyte movement, and subsequent versions by
Tranquillo and colleagues have examined more complex assump-
tions regarding the internal signaling dynamics. Bacterial chemo-
taxis has been extensively studied from the perspective of signal
transduction, and theoretical models have been effective at explain-
ing the large amount now known experimentally about this system.
A major focus of such models has been to explain the process by
which bacteria adapt to background levels of ligand so that they
can detect small changes in concentration over many orders of mag-
nitude of absolute concentration. Although such analyses of sig-
naling mechanisms in other chemotacting systems have the poten-
tial to be applied to growth cones, it is unclear how similar these
systems really are. More generally there is increasing interest in
mathematical modeling of the signal transduction pathways under-
lying cell behavior as a whole, although again, there is little appli-
cation as yet of these theoretical ideas to axon guidance.

Diffusible Gradients and Optimal Gradients

An important class of gradients for guiding axons both in vivo and
in vitro consists of gradients established by diffusion. Hentschel
and van Ooyen (1999) investigated a possible role for diffusion in
controlling axon fasciculation. They considered a population of
axons being guided by a target-derived diffusible factor, and hy-
pothesized that in addition, each axon releases a diffusible attrac-
tant that pulls it toward the other axons, hence leading to fascicu-
lation as they grow together toward the target. To account for
defasciculation at the target, they hypothesized that each axon also
releases a repulsive factor for other axons at a rate dependent on
the concentration of the target-derived factor. As the axons ap-
proach the target, this repulsive force overcomes the attractive
force, leading to defasciculation.

Another approach is to analyze the gradient shapes expected
from diffusion processes in particular situations and how these con-
strain the spatiotemporal domains in which guidance is possible
(see Goodhill, 1998, for a review). Goodhill considered a source
releasing a diffusible factor at a constant rate into an infinite, spa-
tially uniform three-dimensional volume, a problem for which there
is a closed-form solution. As long as the gradient is not too steep,
the fractional change in concentration AC/C across the growth cone
width a is AC/C = (dC/dr)(a/C), and can be straightforwardly cal-
culated. It has the perhaps surprising characteristic that, for fixed
r, AC/C decreases with t. That is, the largest fractional change at
any distance occurs immediately after the source starts releasing
factor. For large t, AC/C asymptotes at a/r. Thus: (1) At small times
after the start of production the factor is very unevenly distributed.
The concentration C falls quickly to almost zero moving away from
the source, the gradient is steep, and the percentage change across
the growth cone AC/C is everywhere large. (2) As time passes, the
factor becomes more evenly distributed. C everywhere increases,
but AC/C everywhere decreases. (3) For large times, C tends to an
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inverse variation with the distance from the source r, while AC/C
tends to a/r independent of all other parameters. The equation for
AC/C can be compared with the size of the smallest gradient the
growth cone can detect to yield the regions of parameter space
found in which guidance is possible (Figure 1B). Based on data for
leukocyte chemotaxis it was assumed that gradient detection occurs
when AC/C = p and C = C,,, where p is a threshold assumed
independent of C. The positions and times for which the gradient
calculated above satisfies these criteria were examined, given ap-
propriate estimates for the relevant parameters. For large times (a
few days) after the start of factor production, the maximum range
is independent of the diffusion constant and is about 1 mm. This
value fits well with both in vitro and in vivo observations. At earlier
times, however, the factor is more unevenly distributed, being more
concentrated around the source. This makes the fractional change
larger than at later times, increasing the range over which guidance
can occur. Depending on the parameters, the model predicts that
guidance may be possible at distances of several millimeters before
the distribution of factor equilibriates. It is conceivable that such a
mechanism might be utilized in vivo to extend guidance range be-
yond the 1 mm limit imposed once the gradient has stabilized.

Similarly, one may inquire as to the optimal gradient shape, in
the sense of the shape that guides an axon over the largest possible
distance. Assuming the minimal fractional change is constant (not
dependent on absolute concentration), the optimal shape is clearly
exponential; the maximum guidance distance turns out to be about
1 cm (Goodhill, 1998). It is conceivable that substrate-bound gra-
dients could achieve this shape, and in fact the size of the chick
tectum at the time retinotectal maps are forming is about 1 cm.
Assuming instead that the minimal fractional change varies with
concentration, as predicted by Berg and Purcell, and also assuming
a high concentration limit, the order of magnitude of the result
remains at 1 cm (Goodhill and Urbach, 1999). More generally, this
type of analysis raises the issue of overall scaling between different
species. A guidance mechanism (e.g., target-derived diffusible gra-
dient) that works for a small animal will not work in a large animal
if the anatomy is simply scaled up. In general, the scale and struc-
ture of the anatomy of, say, the elephant nervous system at the time
at which long-range navigation occurs are not known in sufficient
detail to allow proper comparison with the same features in, say,
the rat.

Retinotectal Maps

The most well-developed area of axon guidance modeling concerns
the formation of topographic maps in the optic tectum (reviewed
in Goodhill and Richards, 1999). The hypothesis of chemospecit-
icity, that graded distributions of molecules are somehow matched
to graded distributions of complementary molecules in the tectum
so as to form a topographic map, was first proposed qualitatively
by Sperry (1963). Although a great deal of experimental work en-
sued to investigate how such gradients may actually operate,
matched gradients of receptors in the retina and ligands in the tec-
tum were discovered only in the mid-1990s. These receptors/
ligands are of the Eph/ephrin family, which currently are under
intense experimental investigation. Theoretical modeling started in
the 1970s (e.g., Willshaw and von der Malsburg, 1979), and early
models were based directly on molecular gradients. A key finding
was that some kind of normalization is essential to prevent all axons

from targeting the same part of tectum. Although modeling based
on gradients has continued (e.g., Gierer, 1987), the focus of most
modeling work changed to activity-dependent processes. Here only
synaptic strength changes within a fixed architecture are generally
considered, rather than the earlier stage of how axons traverse large
expanses of the tectum. Data and models in this area are discussed
in greater detail in DEVELOPMENT OF RETINOTECTAL MAPS (q.V.).

Discussion

Current experimental work in axon guidance is dominated by tech-
niques and hypotheses at the molecular level. The data are also
rapidly evolving, with new molecules and mechanisms important
for guidance being discovered at a very fast rate. However, many
fundamental questions remain unresolved, and theoretical models
have the potential to make an important contribution to answering
these questions. What is the minimum gradient steepness detectable
by a growth cone, and how does this vary with the properties of
the receptor-ligand interaction and the internal state of the growth
cone? How is a graded difference in receptor binding internally
converted into a signal for directed movement? How do axons in-
tegrate multiple cues? And, perhaps most relevant to human health,
how can regenerating axons be encouraged to grow toward and
reconnect with appropriate targets after injury?

Road Map: Neural Plasticity
Related Reading: Development of Retinotectal Maps
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Backpropagation: General Principles

Michael A. Arbib

Introduction

Perceptrons are neural nets that use an error-correction rule to
change the weights of each unit that makes erroneous responses to
stimuli that are presented to the network. As already explained in
PERCEPTRONS, ADALINES, AND BACKPROPAGATION (q.v.) and Sec-
tion 1.3: “Dynamics and Adaptation in Neural Networks,” back-
propagation is a family of methods for training a multilayer per-
ceptron, a loop-free network that has its units arranged in layers,
with each unit providing input only to units in the next layer of the
sequence. The first layer comprises input units; there may then be
several layers of trainable “hidden units” carrying an internal rep-
resentation, and finally there is the layer of output units, also with
trainable synaptic weights.

Rumelhart, Hinton, and Williams (1986) is the most influential
paper on the error backpropagation method, providing a formula
(see the Proposition below) for propagating back the gradient of
error evaluation from a unit to the units that provide its inputs.
Since the formulas involve derivatives, the input and output of each
unit must take continuous values in some range, here taken to be
[0, 1]. The response is a sigmoidal function of the weighted sum.
Werbos (1995) provides a historical perspective on precursors of
their paper. As a specific example of such a precursor, LEARNING
AND STATISTICAL INFERENCE (q.v.) presents a general stochastic
descent on-line learning procedure (Amari, 1967), which, when
applied to the multilayer perceptron, yields the error backpropa-
gation method.

Proposition. Consider a layered loop-free net with error E =
St — 0y)?, where k ranges over designated output units, and let
the weights w; be changed according to the gradient descent rule

Aw; = S 22 (4 - 01\»)%
awy; X awy;
Then the weights may be changed inductively, working back from
the output units, by the rule Aw;; is proportional to 6;0;, where
Basis Step: 9; = (t; — 0;)f " for an output unit.
Induction Step: If i is a hidden unit, and if J, is known for all
units that receive unit i’s output, then §; = (=, d,w,,)f i, where k
runs over all units that receive unit i’s output. O

Thus the “error signal” d; propagates back layer by layer from
the output units. In 2, dwy, unit i receives error propagated back
from a unit & to the extent to which i affects k.

The above proposition tells us how to compute Aw;; for the on-
line backpropagation algorithm that adjusts the weights in response
to each single input pattern, using the “local error” of the network
with its current weight settings for that input. It does not guarantee
that the above step size is appropriate to reach the minimum, nor
does it guarantee that the minimum, if reached, is global. The back-
propagation rule defined by this proposition is, thus, a heuristic
rule, not one guaranteed to find a global minimum. The batch ver-
sion of the algorithm cycles through a complete training set of
input-output pairs (x;, y,), (X, ¥2), - . . , (X, Yy), With gradient
descent applied to the cumulative error of each cycle, until no fur-
ther changes are required.

As the index to this Handbook attests, backpropagation has been
perhaps the most diversely used adaptive architecture, especially
in technological applications. The purpose of this article is neither
to introduce the basics of backpropagation (again, see PERCEP-
TRONS, ADALINES, AND BACKPROPAGATION and Section 1.3: Dy-

namics and Adaptation in Neural Networks) nor to survey its ap-
plications (see SPEECH RECOGNITION TECHNOLOGY for one
example of a careful analysis of the pros and cons of using multi-
layer perceptrons), but instead to place backpropagation in a
broader context by providing a road map for a number of contri-
butions elsewhere in the Handbook that enrich our basic under-
standing of this adaptive architecture. The article also assesses the
biological plausibility of backpropagation.

Auto-Encoding

A basic application for backpropagation networks has been to find
compressed representations. In this case, a network with one hidden
layer is trained to become an auto-encoder or auto-associator by
learning the identity function: making the desired states of the N
output units identical to the states of the N input units for each
input-output pair in the training sample. Data compression is
achieved by making the number of hidden units M < N. Moreover,
the features discovered by the hidden units may be useful for pro-
cessing tasks, such as classification of the input patterns. However,
as shown in UNSUPERVISED LEARNING WITH GLOBAL OBEJCTIVE
FuUNCTIONS, it may not be possible to relate the activities of indi-
vidual hidden units to specific features that may be found by other
means to characterize complicated input patterns. One way to con-
strain the hidden unit representation is to add extra penalty terms
to the error function. For example, a penalty term on hidden unit
activations can be chosen that causes these units to represent high-
dimensional data as localized bumps of activity in a lower-
dimensional constraint surface. This encourages the hidden units
to form a map-like representation that best characterizes the input.
Other penalty terms lead to other encodings, such as sparse or com-
binatorial representations (see MINIMUM DESCRIPTION LENGTH
ANALYSIS).

RAAM networks (Pollack, 1990) are three-layer backpropaga-
tion networks whose input and output layers are each divided into
regions. The network is trained to “auto-associate,” i.e., to repro-
duce a given pattern of input on the output layer. The purpose of
this training is to permit condensed, distributed encodings of K-
tuples of information (i.e., the subpatterns presented to the K re-
gions of the input layer) to be developed on the hidden layer. Once
such a distributed encoding has been developed for a given K-tuple
of information, that encoding may later be presented as input to a
single region of the input layer, while the remaining input regions
receive similarly derived distributed encodings, so that the network
then develops codes for K-tuples of information. The network may
then be trained to auto-associate on this more complex set of input
information. Iterating the procedure yields codes for K-tuples of K-
tuples, and so on, thus making possible condensed distributed en-
codings for entire tree structures in the RAAM’s hidden layer. Sys-
TEMATICITY OF GENERALIZATIONS IN CONNECTIONIST NETWORKS
(q.v.) discusses the implications of such techniques for the ability,
or otherwise, of connectionist models to capture human abilities
for symbol processing.

Stochasticity and Plateaus

STOCHASTIC APPROXIMATION AND EFFICIENT LEARNING (q.v.)
notes that both on-line and batch backpropagation seek a weight
vector w that minimizes the error function, but stresses the statis-
tical notion that inputs must follow some probability distribution
so that what we really seek to minimize is the error as averaged
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over all examples. But should we average over the few examples
available in the training set, or over all the complete probability
distribution “given by Nature”? The first average is named empir-
ical risk and measures only the training set performance. The sec-
ond average is called the expected risk and measures the much more
interesting generalization performance (Vapnik, 1998). The Hand-
book introduces a stochastic gradient descent algorithm in which
each iteration consists of picking a single random example and
updating the weight vector w accordingly. This stochastic gradient
descent does not need to remember which examples were visited
during the previous iterations, making this algorithm suitable for
the on-line adaptation of deployed systems. In such a situation, the
stochastic gradient descent directly optimizes the expected risk,
since the examples are randomly drawn from the “ground truth”
distribution. The stochastic gradient descent can also pick examples
from a finite training set. This procedure optimizes the empirical
risk. The number of iterations is usually larger than the size of the
training set. The examples are therefore presented multiple times
to the network.

LEARNING AND STATISTICAL INFERENCE (q.v.) offers a general
method, called Fisher efficiency, of assessing the success of an
estimator relating input and output patterns. It then notes that, al-
though backpropagation learning has been used widely, it is not
Fisher efficient. Moreover, the method may converge to one of the
local minima of the error landscape, which might be different from
the global minimum. Intriguingly, convergence may be drastically
slow because of “plateaus.” The error decreases quickly at the be-
ginning of learning, but its rate of decrease becomes extremely
slow. After surprisingly many steps, the error again decreases rap-
idly. This is understood as showing that weights are trapped in a
“plateau” that is not a local minimum but nonetheless provides a
region of weight space that learning takes very long to escape from.

Saad and Solla (1995) used statistical mechanics to show that
plateaus exist because of the “symmetry” in the hidden units: the
output and hence the error measure is invariant under permutations
of hidden units in the multilayer perceptron. Whereas this property
leads to phase transitions in equilibrium batch training (see STA-
TISTICAL MECHANICS OF GENERALIZATION), the effect in on-line
training is that the system approaches a symmetric state from ge-
neric initial conditions. STATISTICAL MECHANICS OF ON-LINE
LEARNING AND GENERALIZATION (q.v.) discusses how the prop-
erties of such plateaus can be investigated in detail by linearizing
the dynamics close to the fixed point (Biehl, Riegler, and Wohler,
1996). Figure 1 in STATISTICAL MECHANICS OF ON-LINE LEARNING
AND GENERALIZATION (q.v.) provides a simple example of the
breaking of permutation symmetry during learning, showing a typ-
ical learning curve in which the learning process is dominated by
a pronounced plateau state in which hardly any progress is made
while the number of examples increases. Only after an extended
period of time does the system leave the plateau and approach its
asymptotic state exponentially fast. In the case displayed in the
figure, the system is very close to a perfectly symmetric
configuration.

There are various acceleration methods for the backpropagation
learning rule, but they cannot eliminate plateaus. NEUROMANI-
FOLDS AND INFORMATION GEOMETRY (q.v.) shows that the natural
gradient method (Amari, 1998), based on the Riemannian structure
of a neuromanifold, not only eliminates plateaus but is Fisher
efficient.

Recurrent Neural Networks

A feedforward network is just a static mapping of input vectors to
output vectors, whereas our brain is a high-dimensional nonlinear
dynamical system, replete with loops. This provides one motivation
(another is technological) for the study of learning algorithms for
recurrent neural networks, which have feedback connections and

time delays. In a recurrent network, the state of the system can be
encoded in the activity pattern of the units, and a wide variety of
dynamical behaviors can be encoded by the connection weights.
Network dynamics that converge to a minimum of an “energy”
function (see COMPUTING WITH ATTRACTORS) have proved impor-
tant for associative memory tasks and optimization networks. How-
ever, steady-state solutions (fixed-point attractors) are only a lim-
ited portion of the capabilities of recurrent networks. A recurrent
network can serve as a sequence recognition system or as a se-
quential pattern generator. RECURRENT NETWORKS: LEARNING AL-
GORITHMS (q.v.) reviews the learning algorithms for training re-
current networks, focusing on supervised learning algorithms for
recurrent networks, with only a brief overview of reinforcement
and unsupervised learning algorithms.

Recurrent neural networks use the additional degree of freedom
provided by a priori unlimited processing time in order to map the
information appropriately. For example, simple recurrent networks
(SRNs; Elman, 1990) augments the three-layer backpropagation
network with a supplementary context layer of the same size as the
hidden layer. Reciprocal links between the hidden layer and the
context layer create a loop enabling any activation pattern currently
present on the hidden layer to be merged with the activation pattern
currently present in the context layer, and vice versa. An extension
of the backpropagation algorithm trains these connections as well.
Essentially, the activity in the context and hidden layers may be
seen as an internal state, so that training serves to update both the
definition of a “next-state function” as well as the reading of the
output from the internal state in such a way as to enable the system
to better and better approximate a training set, which now consists
of pairs of input and output sequences, rather than one-shot input
vectors and output vectors CONSTITUENCY AND RECURSION IN
LANGUAGE (q.v.) exemplifies the use of SRNs in connectionist
linguistics.

Other Perspectives

To create a neural network, a designer typically fixes a network
topology and uses training data to tune its parameters, such as con-
nection weights. The designer, however, often does not have
enough knowledge to specify the ideal topology. In the case of a
multilayer perceptron, the only free parameter in “topology space”
is the number of hidden units. Too few hidden units and the current
task is unlearnable; too many units and the network learns the noise
as well as the task relationships. It is thus desirable to learn the
topology from training data as well. LEARNING NETWORK TOPOL-
OGY (q.v.) looks at learning as a search in the space of topologies
as well as in weight space. In particular, it provides a general mea-
sure of the “goodness” of a topology and some search strategies
over the space of topologies to find the best one. This framework
is applied to learning the topologies of both feedforward neural
networks and Bayesian belief nets (see BAYESIAN NETWORKS).

A basic strategy to avoid false minima is Boltzmann learning
(see SIMULATED ANNEALING AND BOLTZMANN MACHINES). Here
the units respond in stochastic fashion to their inputs. The degree
of “stochasticity” is controlled by a parameter 7. As T = — o, the
unit becomes deterministic; as 7 — o, the unit becomes very noisy.
T is often referred to as “temperature,” as part of the comparison
of large neural networks with the systems treated by statistical me-
chanics (see STATISTICAL MECHANICS OF NEURAL NETWORKS).
Convergence to the global optimum is aided by starting at high T
and gradually lowering it—this is the process of “simulated
annealing”—with the intuition being that the initial high noise
“bumps the system out of the high valleys” of the error landscape,
while the eventual low noise allows it to settle in the “low valleys.”

MODULAR AND HIERARCHICAL LEARNING SYSTEMS (q.v.) re-
places the training of a single network by the training of a set of
networks that forms a “mixture of experts,” the idea being that each
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network will become expert at processing inputs from a region of
the input space, while a gating network will learn which experts to
rely on for processing a given input. As an alternative to gradient
methods, Jordan and Jacobs (1994) developed an Expectation-
Maximization (EM) algorithm (McLachlan and Krishnan, 1997,
give a general treatment of the EM algorithm) that is particularly
useful for models in which the expert networks and gating networks
have simple parametric forms. Each iteration of the algorithm con-
sists of two phases: (1) a recursive propagation upward and down-
ward in the tree of modules to compute posterior probabilities (the
“E step”), and (2) solution of a set of local weighted maximum
likelihood problems at the nonterminals and terminals of the tree
(the “M step”). Jordan and Jacobs (1994) tested this algorithm on
a nonlinear system identification problem (the forward dynamics
of a 4-degrees-of-freedom robot arm) and reported that it converged
nearly two orders of magnitude faster than backpropagation in a
comparable multilayer perceptron network.

GRAPHICAL MODELS: PROBABILISTIC INFERENCE (q.v.) tells us
that many neural network architectures are special cases of the
general graphical model formalism that the article presents. Special
cases of graphical models include essentially all of the models de-
veloped under the rubric of “unsupervised learning,” as well as
Boltzmann machines, mixtures of experts, and radial basis function
networks. It is argued that many other neural networks, including
the classical multilayer perceptron of the present article, can be
analyzed profitably from the point of view of graphical models.

Biological Considerations

REINFORCEMENT LEARNING IN MOTOR CONTROL (q.v.) notes the
importance of supervised learning in motor control, but stresses
that reinforcement learning (in which positive reinforcement sig-
nals success on a task and increasing negative reinforcement gives
a measure of increasingly poor performance, but where no explicit
error signal for the network’s output units is available) is more
plausible in many situations involving motor learning; and, indeed,
DopaMINE, ROLES OF (q.v.) shows that certain reinforcement
learning methods seem to fit well with the action of dopamine in
the brain.

However, RECURRENT NETWORKS: NEUROPHYSIOLOGICAL
MODELING (q.v.) argues for the utility of backpropagation as a tool
for studying actual networks in the brain. The argument here is that
backpropagation provides a means for the computational neurosci-
entist to adjust the parameters within a given neural network ar-
chitecture to see whether there is indeed a parameter setting (whose
robustness can then be studied) that yields a given type of behavior.
The article presents backpropagation not as a model for biological
learning, simply as an effective method of obtaining a solution.
Biologically plausible learning algorithms will also find similar
solutions, but usually take longer. For example, Mazzoni, Ander-
sen, and Jordan (1991) argued that reinforcement learning gave a
more biologically plausible learning rule than backpropagation in
their study of a network model of cortical area 7a.

But what is the evidence that backpropagation is biologically
implausible? HEBBIAN SYNAPTIC PLASTICITY (q.v.) makes a par-
tial case for biological plausibility. While conceding that there is
no evidence that the backpropagation formula represents actual
brain mechanisms, it summarizes new evidence suggesting that ac-
tivity in one neuron may affect presynaptic neurons, and even neu-
rons presynaptic to those. One might call this qualitative back-
propagation to stress that the evidence says nothing about the
quantitative plausibility of the generalized delta rule. The ability to
patch (make local electrode recordings and current injections) at
different distances from the soma of a biological neuron has sug-
gested that action potentials propagate back from the soma into the
dendrites as well as in the “conventional” direction, from dendrites

to soma (see DENDRITIC PROCESSING). HEBBIAN SYNAPTIC PLAS-
TICITY (q.v.) discusses three distinct mechanisms by which back-
propagating spikes can be seen as the “binding signal” emitted by
the soma to modify differentially synapses that are active within a
precise temporal window. Moreover, the study of identified neu-
rons and synapses in low-density hippocampal cultures has re-
vealed extensive but selective spread of both long-term potentiation
(LTP) and long-term depression (LTD) from the site of induction
to other synapses in the network (see Bi and Poo, 2001, for a re-
view). LTD induced at synapses between two glutamatergic neu-
rons can spread to other synapses made by divergent outputs of the
same presynaptic neuron, to synapses made by other convergent
inputs on the same postsynaptic cell, and can even spread in a
retrograde direction to depress synapses afferent to the presynaptic
neuron (the evidence for qualitative backpropagation). In contrast,
LTP can exhibit only lateral spread and backpropagation to the
synapses associated with the presynaptic neuron.

Discussion

Backpropagation has provided an effective and widely used archi-
tecture for the training of artificial neural networks. We recalled
the generalized delta rule for multilayer perceptrons, illustrated its
utility with two examples of auto-encoder networks, and showed
how the methodology could be extended to recurrent networks.
However, statistical analysis showed that backpropagation has
problems—a particular example being the likelihood of backprop-
agation training of multilayer perceptrons getting trapped in
plateaus—as well as advantages. We thus provided pointers to sto-
chastic descent methods that avoided these pitfalls, as well as not-
ing extensions of, and alternatives to, backpropagation that can
usefully be added to the repertoire of those who train artificial neu-
ral networks.

As for biology, we saw that backpropagation may serve as a
computational tool to estimate the parameters of a particular bio-
logical network even though it does not model the actual learning
processes within that network. On the other hand, evidence of
“spike backpropagation” provides inspiration for a family of subtle
new learning rules that allow the activity of a neuron to affect the
neurons presynaptic to its input neurons, but this offers no direct
support for the specific formulas of the generalized delta rule. Fi-
nally, it should be noted that the modeling and theory summarized
in this article are based on neurons with sigmoid outputs. Such
units are useful both in artificial neural networks and in connec-
tionist modeling. They can also be considered biological models if
their real-valued output is seen to represent a moving-window
mean of spiking frequency of the biological neurons (see RATE
CODING AND SIGNAL PROCESSING). However, there are cases in
which it seems that a better fit to the biology can be obtained if the
local temporal structure of spikes in the output of each neuron is
taken into account (SPIKING NEURONS, COMPUTATION WITH). This
suggests the importance of seeking to define learning rules that do
take detailed spike placement, rather than local firing rates, into
account. The data reviewed in HEBBIAN SYNAPTIC PLASTICITY
(q.v.) may lead brain modelers in the right direction but, unfortu-
nately, no efficient learning algorithm for networks of spiking neu-
rons, whether biological or not, has yet gained wide acceptance.

Road Map: Learning in Artificial Networks

Background: 1.3. Dynamics and Adaptation in Neural Networks; Percep-
trons, Adalines, and Backpropagation

Related Reading: Computing with Attractors; Hebbian Synaptic Plasticity;
Learning and Statistical Inference; Recurrent Networks: Learning Al-
gorithms; Statistical Mechanics of On-Line Learning and Generalization;
Stochastic Approximation and Efficient Learning

TLFeBOOK



Basal Ganglia 147

References

Amari, S., 1967, Theory of adaptive pattern classifiers, I[EEE Trans. Elec.
Comp., EC-16:299-307.

Amari, S., 1998, Natural gradient works efficiently in learning, Neural
Computat., 10:251-276.

Biehl, M., Riegler, P., and Wohler, C., 1996, Transient dynamics of on-
line learning in two-layered neural networks, J. Phys. A, 29:4769.

Bi, G., and Poo, M., 2001, Synaptic modification by correlated activity:
Hebb’s postulate revisited, Annu. Rev. Neurosci., 24:139-166. &

Elman, J. L., 1990, Finding structure in time, Cogn. Sci., 14:179-212. &

Jordan, M. L., and Jacobs, R. A., 1994, Hierarchical mixtures of experts and
the EM algorithm, Neural Computat., 6:181-214.

Mazzoni, P., Andersen, R. A., and Jordan, M. L., 1991, A more biologically
plausible learning rule than backpropagation applied to a network model
of cortical area 7a, Cereb. Cortex, 1:293-307.

Basal Ganglia

Tony J. Prescott, Kevin Gurney, and Peter Redgrave

Introduction

Lying on either side of the forebrain/midbrain boundary, at the hub
of the mammalian brain, the basal ganglia are a group of highly
interconnected brain structures with a critical influence over move-
ment and cognition. The importance of these nuclei for a cluster of
human brain disorders, including Parkinson’s disease, Hunting-
ton’s disease, and schizophrenia, has produced a century or more
of strong clinical interest, and a prodigious volume of neurobio-
logical research. Given the wealth of relevant data, and a pressing
need for a better functional understanding of these structures, the
basal ganglia provide one of the most exciting prospects for com-
putational modeling of brain function.

This article will begin by summarizing aspects of the functional
architecture of the mammalian basal ganglia and will then describe
the computational approaches that have been developed over the
course of the past decade (see also Houk, Davis, and Beiser, 1995;
Wickens, 1997; Gillies and Arbuthnott, 2000). An important task
for an appraisal of computational models is to provide a framework
for comparing pieces of work that can differ radically in their
breadth of focus, level of analysis, computational premises, and
methodology, and whose relative merits can consequently be dif-
ficult to ascertain (I.2. Levels and Styles of Analysis). Here, we
first distinguish between models that attempt to incorporate appro-
priate biological data (anatomical and/or physiological) and those
that attempt an explanation of function using generic neural net-
work architectures. This review will discuss only those models that
incorporate known neurobiological constraints and will consider
some of the implications for these models of recent biological data.
The models can be divided in two main categories: (1) those that
work at a comparatively low level of detail (membrane properties
of individual neurons and micro-anatomical features) and that re-
strict themselves to a single component of the basal ganglia nu-
cleus; and (2) those that deal at the “system level” with the basal
ganglia as a whole and/or with their interactions with related struc-
tures (e.g., thalamus and cortex). In this article we will also seek
to classify system level models in terms of the primary computa-
tional role that is being addressed by the neural substrate.

The neuromodulator dopamine is known to play a vital role in
regulating basal ganglia processing and also in mediating learning
within the basal ganglia. Although some of the likely regulatory
functions of dopamine will be considered in this article, a fuller
discussion of this topic, including hypotheses and models con-
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cerned with the role of dopamine in learning from reinforcement,
are the subject of a separate article (DOPAMINE, ROLES OF).

Key Architectural Features

There have been many excellent summaries of the functional anat-
omy of the basal ganglia (e.g., Mink, 1996; Smith et al., 1998), the
following therefore focuses on those aspects most relevant to un-
derstanding the models discussed in this article.

The principle structures of the rodent basal ganglia (Figure 1)
are the striatum (consisting of the caudate, the putamen, and the
ventral striatum), the subthalamic nucleus (STN), the globus pal-
lidus (GP), the substantia nigra (SN), and the entopeduncular nu-
cleus (EP) (homologous to the globus pallidus internal segment in
primates). These structures are massively interconnected and form
a functional subsystem within the wider brain architecture. There
is a growing consensus that the basal ganglia nuclei can be region-
ally subdivided on the basis of their topographically organized con-
nectivity with each other and with cortical and thalamic regions.
Current views of information processing within the basal ganglia
are heavily influenced by this suggestion of multiple parallel loops
or channels.

The principle input components of the basal ganglia are the stria-
tum and the STN. Afferent connections to both of these structures
originate from virtually the entire brain, including cerebral cortex,
many parts of the brainstem (via the thalamus), and the limbic
system. Input connections provide phasic (intermittent) excitatory
Input.

The main output nuclei of the basal ganglia are the substantia
nigra pars reticulata (SNr) and the entopeduncular nucleus (EP).
Output structures provide extensively branched efferents to the
thalamus (which project back to the cerebral cortex), and to pre-
motor areas of the midbrain and brainstem. Most output projections
are normally (tonically) active and inhibitory.

To make sense of the intrinsic connectivity of the basal ganglia
it is important to recognize that the main projection neurons from
the striatum (medium spiny cells) form two widely distributed
populations differentiated by their efferent connectivity and
neurochemistry.

One population comprises neurons with mainly D1-type dopa-
mine receptors and projects to the output nuclei (SNr and EP). In
the prevailing informal model of the basal ganglia (Albin, Young,
and Penney, 1989) this projection constitutes the so-called direct
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Figure 1. Basal ganglia anatomy of the rat: A. Internal pathways. B. External pathways. Excitatory and inhibitory pathways are denoted by solid and gray
lines, respectively; not all connections are shown. See text for key to abbreviations.

pathway to the output nuclei (see Figure 2A). Efferent activity from
these neurons suppresses the tonic inhibitory firing in the output
structures, which in turn disinhibits targets in the thalamus and
brainstem.

A second population of striatal output neurons has predomi-
nantly D2-type dopamine receptors. This group projects primarily
to the globus pallidus (GP) whose tonic inhibitory outputs are di-
rected both to the output nuclei (SNr and EP) and to the STN. The
inhibitory projection from D2 striatal neurons constitutes the first
leg of an indirect pathway to the output nuclei. Since this pathway
has two inhibitory links (Striatum-GP, GP-STN), followed by an
excitatory one (STN-EP/SNr), the net effect of striatal activity is

Cortex;’thalamug

(a)

(striatum (DZH
indirect

[striatum [D@

direct

striatum (D1

to activate output nuclei, which increases inhibitory control of the
thalamus and brainstem.

The main source of dopamine innervation to the striatum is the
substantia nigra pars compacta (SNc). Interestingly, the D1 and
D2 striatal populations respond differently to dopaminergic trans-
mission, activation of D1 receptors having a predominantly ex-
citatory effect while D2 receptor activation appears to be mainly
inhibitory. This arrangement seems to provide dopaminergic con-
trol of a “push/pull” mechanism subserved by the direct (inhibi-
tory) and indirect (net excitatory) basal ganglia pathways. Impor-
tantly, a key input to the SNc is from striatal areas known as
striosomes (areas that project to EP/SNr are known as matri-
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BG output control signals
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Figure 2. Functional interpretations of the basal ganglia: (a) Informal mod-
els stress the “direct” and “indirect” pathways and leave the functional
consequences of their intera