johnowhitaker commited on
Commit
8ebccbf
·
1 Parent(s): 1c8a416

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +23 -1
README.md CHANGED
@@ -37,4 +37,26 @@ dataset_info:
37
  ---
38
  # Dataset Card for "latent_lsun_church_128px"
39
 
40
- [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  ---
38
  # Dataset Card for "latent_lsun_church_128px"
39
 
40
+ Each image is cropped to 128px square and encoded to a 4x16x16 latent representation using the same VAE as that employed by Stable Diffusion
41
+
42
+ Decoding
43
+ ```python
44
+ from diffusers import AutoencoderKL
45
+ from datasets import load_dataset
46
+ from PIL import Image
47
+ import numpy as np
48
+ import torch
49
+ # load the dataset
50
+ dataset = load_dataset('tglcourse/latent_lsun_church_128px')
51
+ # Load the VAE (requires access - see repo model card for info)
52
+ vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")
53
+ latent = torch.tensor([dataset['train'][0]['latent']]) # To tensor (bs, 4, 16, 16)
54
+ latent = (1 / 0.18215) * latent # Scale to match SD implementation
55
+ with torch.no_grad():
56
+ image = vae.decode(latent).sample[0] # Decode
57
+ image = (image / 2 + 0.5).clamp(0, 1) # To (0, 1)
58
+ image = image.detach().cpu().permute(1, 2, 0).numpy() # To numpy, channels lsat
59
+ image = (image * 255).round().astype("uint8") # (0, 255) and type uint8
60
+ image = Image.fromarray(image) # To PIL
61
+ image # The resulting PIL image
62
+ ```