Elad
commited on
Commit
·
47cfd77
1
Parent(s):
ba92bd5
fix metrics
Browse files- metrics/bleu.py +3 -3
- metrics/exact_match.py +1 -1
- metrics/f1.py +1 -1
metrics/bleu.py
CHANGED
@@ -47,14 +47,14 @@ def _get_ngrams(segment, max_order):
|
|
47 |
return ngram_counts
|
48 |
|
49 |
|
50 |
-
def compute_bleu(
|
51 |
"""Computes BLEU score of translated segments against one or more references.
|
52 |
|
53 |
Args:
|
54 |
-
reference_corpus: list of lists of references for each translation. Each
|
55 |
-
reference should be tokenized into a list of tokens.
|
56 |
translation_corpus: list of translations to score. Each translation
|
57 |
should be tokenized into a list of tokens.
|
|
|
|
|
58 |
max_order: Maximum n-gram order to use when computing BLEU score.
|
59 |
smooth: Whether or not to apply Lin et al. 2004 smoothing.
|
60 |
|
|
|
47 |
return ngram_counts
|
48 |
|
49 |
|
50 |
+
def compute_bleu(translation_corpus, reference_corpus, max_order=4, smooth=False):
|
51 |
"""Computes BLEU score of translated segments against one or more references.
|
52 |
|
53 |
Args:
|
|
|
|
|
54 |
translation_corpus: list of translations to score. Each translation
|
55 |
should be tokenized into a list of tokens.
|
56 |
+
reference_corpus: list of lists of references for each translation. Each
|
57 |
+
reference should be tokenized into a list of tokens.
|
58 |
max_order: Maximum n-gram order to use when computing BLEU score.
|
59 |
smooth: Whether or not to apply Lin et al. 2004 smoothing.
|
60 |
|
metrics/exact_match.py
CHANGED
@@ -37,4 +37,4 @@ def compute_exact_match(predictions, references):
|
|
37 |
exact_match = 0
|
38 |
for prediction, ground_truths in zip(predictions, references):
|
39 |
exact_match += metric_max_over_ground_truths(exact_match_score, prediction, ground_truths)
|
40 |
-
return
|
|
|
37 |
exact_match = 0
|
38 |
for prediction, ground_truths in zip(predictions, references):
|
39 |
exact_match += metric_max_over_ground_truths(exact_match_score, prediction, ground_truths)
|
40 |
+
return 100.0 * exact_match / len(predictions)
|
metrics/f1.py
CHANGED
@@ -53,4 +53,4 @@ def compute_f1(predictions, references):
|
|
53 |
f1 = 0
|
54 |
for prediction, ground_truths in zip(predictions, references):
|
55 |
f1 += metric_max_over_ground_truths(f1_score, prediction, ground_truths)
|
56 |
-
return
|
|
|
53 |
f1 = 0
|
54 |
for prediction, ground_truths in zip(predictions, references):
|
55 |
f1 += metric_max_over_ground_truths(f1_score, prediction, ground_truths)
|
56 |
+
return 100.0 * f1 / len(predictions)
|