taqwa92 commited on
Commit
5f53c9a
·
1 Parent(s): c6646a1

Upload tm_data.py

Browse files
Files changed (1) hide show
  1. tm_data.py +250 -0
tm_data.py ADDED
@@ -0,0 +1,250 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """Untitled2.ipynb
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1Jy8fwFO774TM_FTwK-0to2L0qHoUAT-U
8
+ """
9
+
10
+ # -*- coding: utf-8 -*-
11
+ """MGB2.ipynb
12
+ Automatically generated by Colaboratory.
13
+ Original file is located at
14
+ https://colab.research.google.com/drive/15ejoy2EWN9bj2s5ORQRZb5aTmFlcgA9d
15
+ """
16
+
17
+ import datasets
18
+ import os
19
+
20
+
21
+ _DESCRIPTION = "MGB2 speech recognition dataset AR"
22
+ _HOMEPAGE = "https://arabicspeech.org/mgb2/"
23
+ _LICENSE = "MGB-2 License agreement"
24
+ _CITATION = """@misc{https://doi.org/10.48550/arxiv.1609.05625,
25
+ doi = {10.48550/ARXIV.1609.05625},
26
+
27
+ url = {https://arxiv.org/abs/1609.05625},
28
+
29
+ author = {Ali, Ahmed and Bell, Peter and Glass, James and Messaoui, Yacine and Mubarak, Hamdy and Renals, Steve and Zhang, Yifan},
30
+
31
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
32
+
33
+ title = {The MGB-2 Challenge: Arabic Multi-Dialect Broadcast Media Recognition},
34
+
35
+ publisher = {arXiv},
36
+
37
+ year = {2016},
38
+
39
+ copyright = {arXiv.org perpetual, non-exclusive license}
40
+ }
41
+ """
42
+ _DATA_ARCHIVE_ROOT = "Data/archives/"
43
+ _DATA_URL = {
44
+ "test": _DATA_ARCHIVE_ROOT + "mgb2_wav.test.zip",
45
+ "dev": _DATA_ARCHIVE_ROOT + "mgb2_wav.dev.zip",
46
+ "train": _DATA_ARCHIVE_ROOT + "mgb2_wav.train.zip",
47
+
48
+ #"train": [_DATA_ARCHIVE_ROOT + f"mgb2_wav_{x}.train.tar.gz" for x in range(48)], # we have 48 archives
49
+ }
50
+ _TEXT_URL = {
51
+ "test": _DATA_ARCHIVE_ROOT + "mgb2_txt.test.zip",
52
+ "dev": _DATA_ARCHIVE_ROOT + "mgb2_txt.dev.zip",
53
+ "train": _DATA_ARCHIVE_ROOT + "mgb2_txt.train.zip",
54
+ }
55
+
56
+
57
+
58
+ def absoluteFilePaths(directory):
59
+ for dirpath,_,filenames in os.walk(directory):
60
+ for f in filenames:
61
+ yield os.path.abspath(os.path.join(dirpath, f))
62
+
63
+
64
+ class MGDB2Dataset(datasets.GeneratorBasedBuilder):
65
+ def _info(self):
66
+ return datasets.DatasetInfo(
67
+ description=_DESCRIPTION,
68
+ features=datasets.Features(
69
+ {
70
+ "path": datasets.Value("string"),
71
+ "audio": datasets.Audio(sampling_rate=16_000),
72
+ "sentence": datasets.Value("string"),
73
+ }
74
+ ),
75
+ supervised_keys=None,
76
+ homepage=_HOMEPAGE,
77
+ license=_LICENSE,
78
+ citation=_CITATION,
79
+ )
80
+
81
+ def _split_generators(self, dl_manager):
82
+ wav_archive = dl_manager.download(_DATA_URL)
83
+ txt_archive = dl_manager.download(_TEXT_URL)
84
+ test_dir = "dataset/test"
85
+ dev_dir = "dataset/dev"
86
+ train_dir = "dataset/train"
87
+
88
+
89
+ print("Starting write datasets.........................................................")
90
+
91
+
92
+ if dl_manager.is_streaming:
93
+ print("from streaming.........................................................")
94
+
95
+
96
+
97
+
98
+ return [
99
+ datasets.SplitGenerator(
100
+ name=datasets.Split.TEST,
101
+ gen_kwargs={
102
+ "path_to_txt": test_dir + "/txt",
103
+ "path_to_wav": test_dir + "/wav",
104
+ "wav_files": dl_manager.iter_archive(wav_archive['test']),
105
+ "txt_files": dl_manager.iter_archive(txt_archive['test']),
106
+ },
107
+ ),
108
+ datasets.SplitGenerator(
109
+ name=datasets.Split.VALIDATION,
110
+ gen_kwargs={
111
+ "path_to_txt": dev_dir + "/txt",
112
+ "path_to_wav": dev_dir + "/wav",
113
+ "wav_files": dl_manager.iter_archive(wav_archive['dev']),
114
+ "txt_files": dl_manager.iter_archive(txt_archive['dev']),
115
+ },
116
+ ),
117
+ datasets.SplitGenerator(
118
+ name=datasets.Split.TRAIN,
119
+ gen_kwargs={
120
+ "path_to_txt": train_dir + "/txt",
121
+ "path_to_wav": train_dir + "/wav",
122
+ "wav_files": dl_manager.iter_archive(wav_archive['train']),
123
+ "txt_files": dl_manager.iter_archive(txt_archive['train']),
124
+ },
125
+ ),
126
+ ]
127
+ else:
128
+ print("from non streaming.........................................................")
129
+
130
+
131
+ dstZipFileName=txt_archive['test']
132
+
133
+ sz=os.path.getsize(dstZipFileName)
134
+
135
+ print("file size=",sz)
136
+
137
+
138
+ #test_txt_files=dl_manager.extract(txt_archive['test']);
139
+
140
+ #flist=os.listdir(test_txt_files)
141
+
142
+ #print(flist)
143
+
144
+ #f = open(test_txt_files, 'r')
145
+ #file_contents = f.read()
146
+ #print (file_contents)
147
+ #f.close()
148
+
149
+ return [
150
+ datasets.SplitGenerator(
151
+ name=datasets.Split.TEST,
152
+ gen_kwargs={
153
+ "path_to_txt": test_dir + "/txt",
154
+ "path_to_wav": test_dir + "/wav",
155
+ "wav_files": absoluteFilePaths(dl_manager.extract(wav_archive['test'])),
156
+ "txt_files": absoluteFilePaths(dl_manager.extract(txt_archive['test'])),
157
+ "data_type":2,
158
+ },
159
+ ),
160
+ datasets.SplitGenerator(
161
+ name=datasets.Split.VALIDATION,
162
+ gen_kwargs={
163
+ "path_to_txt": dev_dir + "/txt",
164
+ "path_to_wav": dev_dir + "/wav",
165
+ "wav_files": absoluteFilePaths(dl_manager.extract(wav_archive['dev'])),
166
+ "txt_files": absoluteFilePaths(dl_manager.extract(txt_archive['dev'])),
167
+ "data_type":1,
168
+ },
169
+ ),
170
+ datasets.SplitGenerator(
171
+ name=datasets.Split.TRAIN,
172
+ gen_kwargs={
173
+ "path_to_txt": train_dir + "/txt",
174
+ "path_to_wav": train_dir + "/wav",
175
+ "wav_files": absoluteFilePaths(dl_manager.extract(wav_archive['train'])),
176
+ "txt_files": absoluteFilePaths(dl_manager.extract(txt_archive['train'])),
177
+ "data_type":0,
178
+ },
179
+ ),
180
+ ]
181
+ print("end of generation.........................................................")
182
+
183
+
184
+ #0 --> train
185
+ #1--> validation
186
+ #2-->test
187
+
188
+ def _generate_examples(self, path_to_txt, path_to_wav, wav_files, txt_files,data_type):
189
+ """
190
+ This assumes that the text directory alphabetically precedes the wav dir
191
+ The file names for wav and text seem to match and are unique
192
+ We can use them for the dictionary matching them
193
+ """
194
+
195
+ print("start of generate examples.........................................................")
196
+
197
+ print("txt file names............................",txt_files)
198
+ print("wav_files names....................................",wav_files)
199
+
200
+ examples = {}
201
+ id_ = 0
202
+ # need to prepare the transcript - wave map
203
+ for item in txt_files:
204
+
205
+
206
+ #print("copying txt file...............",item)
207
+
208
+ if type(item) is tuple:
209
+ # iter_archive will return path and file
210
+ path, f = item
211
+ txt = f.read().decode(encoding="utf-8").strip()
212
+ else:
213
+ # extract will return path only
214
+ path = item
215
+ with open(path, encoding="utf-8") as f:
216
+ txt = f.read().strip()
217
+
218
+ #if os.path.exists(path_to_txt)==False:
219
+ # os.makedirs(path_to_txt)
220
+ #if path.find(path_to_txt) > -1:
221
+ # construct the wav path
222
+ # which is used as an identifier
223
+ wav_path = os.path.split(path)[1].replace("_utf8", "").replace(".txt", ".wav").strip()
224
+ #print(wav_path)
225
+ examples[wav_path] = {
226
+ "sentence": txt,
227
+ "path": wav_path,
228
+ }
229
+
230
+ #for wf in wav_files:
231
+ #print(wf)
232
+ for item in wav_files:#wf:
233
+ #print(item)
234
+ if type(item) is tuple:
235
+ path, f = item
236
+ wav_data = f.read()
237
+ else:
238
+ path = item
239
+ with open(path, "rb") as f:
240
+ wav_data = f.read()
241
+ #if os.path.exists(path_to_wav)==False:
242
+ # os.makedirs(path_to_wav)
243
+ #if path.find(path_to_wav) > -1:
244
+ wav_path = os.path.split(path)[1].strip()
245
+ if not (wav_path in examples):
246
+ print("wav file mismatch:",wav_path)
247
+ continue
248
+ audio = {"path": path, "bytes": wav_data}
249
+ yield id_, {**examples[wav_path], "audio": audio}
250
+ id_ += 1