Upload folder using huggingface_hub
Browse files- README.md +95 -0
- data/test.zip +3 -0
- data/train.zip +3 -0
- dtd.py +94 -0
README.md
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
dataset_info:
|
3 |
+
features:
|
4 |
+
- name: image
|
5 |
+
dtype: image
|
6 |
+
- name: label
|
7 |
+
dtype:
|
8 |
+
class_label:
|
9 |
+
names:
|
10 |
+
'0': banded
|
11 |
+
'1': blotchy
|
12 |
+
'2': braided
|
13 |
+
'3': bubbly
|
14 |
+
'4': bumpy
|
15 |
+
'5': chequered
|
16 |
+
'6': cobwebbed
|
17 |
+
'7': cracked
|
18 |
+
'8': crosshatched
|
19 |
+
'9': crystalline
|
20 |
+
'10': dotted
|
21 |
+
'11': fibrous
|
22 |
+
'12': flecked
|
23 |
+
'13': freckled
|
24 |
+
'14': frilly
|
25 |
+
'15': gauzy
|
26 |
+
'16': grid
|
27 |
+
'17': grooved
|
28 |
+
'18': honeycombed
|
29 |
+
'19': interlaced
|
30 |
+
'20': knitted
|
31 |
+
'21': lacelike
|
32 |
+
'22': lined
|
33 |
+
'23': marbled
|
34 |
+
'24': matted
|
35 |
+
'25': meshed
|
36 |
+
'26': paisley
|
37 |
+
'27': perforated
|
38 |
+
'28': pitted
|
39 |
+
'29': pleated
|
40 |
+
'30': polka-dotted
|
41 |
+
'31': porous
|
42 |
+
'32': potholed
|
43 |
+
'33': scaly
|
44 |
+
'34': smeared
|
45 |
+
'35': spiralled
|
46 |
+
'36': sprinkled
|
47 |
+
'37': stained
|
48 |
+
'38': stratified
|
49 |
+
'39': striped
|
50 |
+
'40': studded
|
51 |
+
'41': swirly
|
52 |
+
'42': veined
|
53 |
+
'43': waffled
|
54 |
+
'44': woven
|
55 |
+
'45': wrinkled
|
56 |
+
'46': zigzagged
|
57 |
+
splits:
|
58 |
+
- name: train
|
59 |
+
num_bytes: 448550
|
60 |
+
num_examples: 3760
|
61 |
+
- name: test
|
62 |
+
num_bytes: 220515
|
63 |
+
num_examples: 1880
|
64 |
+
download_size: 625712354
|
65 |
+
dataset_size: 669065
|
66 |
+
---
|
67 |
+
|
68 |
+
# [DTD: Describable Textures Dataset](https://www.robots.ox.ac.uk/~vgg/data/dtd/)
|
69 |
+
|
70 |
+
The Describable Textures Dataset (DTD) is an evolving collection of textural images in the wild, annotated with a series of human-centric attributes, inspired by the perceptual properties of textures.
|
71 |
+
This data is made available to the computer vision community for research purposes
|
72 |
+
|
73 |
+
## Usage
|
74 |
+
|
75 |
+
```python
|
76 |
+
from datasets import load_dataset
|
77 |
+
|
78 |
+
dataset = load_dataset('tanganke/dtd')
|
79 |
+
```
|
80 |
+
|
81 |
+
- **Features:**
|
82 |
+
- **Image**: The primary data type, which is a digital image used for classification. The format and dimensions of the images are not specified in this snippet but should be included if available.
|
83 |
+
- **Label**: A categorical feature representing the texture or pattern class of each image. The dataset includes 46 classes with descriptive names ranging from 'banded' to 'zigzagged'.
|
84 |
+
- **Class Labels**:
|
85 |
+
- '0': banded
|
86 |
+
- '1': blotchy
|
87 |
+
- '2': braided
|
88 |
+
- ...
|
89 |
+
- '45': wrinkled
|
90 |
+
- '46': zigzagged
|
91 |
+
|
92 |
+
- **Splits**: The dataset is divided into training and test subsets for model evaluation.
|
93 |
+
- **Training**: containing 3760 examples with a total size of 448,550 bytes.
|
94 |
+
- **Test**: containing 1880 examples with a total size of 220,515 bytes.
|
95 |
+
|
data/test.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:173d40121e4f4ee90e09e5082ab76e124355297b3b72670aec49463115c953bd
|
3 |
+
size 177943979
|
data/train.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81bc25a565bf38343376b04f55d1fd81c0e03fb5a2005734d3c06d16ef99ade2
|
3 |
+
size 447768375
|
dtd.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datasets
|
2 |
+
from datasets.data_files import DataFilesDict
|
3 |
+
from datasets.packaged_modules.imagefolder.imagefolder import ImageFolder, ImageFolderConfig
|
4 |
+
|
5 |
+
logger = datasets.logging.get_logger(__name__)
|
6 |
+
|
7 |
+
|
8 |
+
class GTSRB(ImageFolder):
|
9 |
+
R"""
|
10 |
+
DTD dataset for image classification.
|
11 |
+
"""
|
12 |
+
|
13 |
+
BUILDER_CONFIG_CLASS = ImageFolderConfig
|
14 |
+
BUILDER_CONFIGS = [
|
15 |
+
ImageFolderConfig(
|
16 |
+
name="default",
|
17 |
+
features=("images", "labels"),
|
18 |
+
data_files=DataFilesDict({split: f"data/{split}.zip" for split in ["train", "test"]}),
|
19 |
+
)
|
20 |
+
]
|
21 |
+
|
22 |
+
classnames = [
|
23 |
+
"banded",
|
24 |
+
"blotchy",
|
25 |
+
"braided",
|
26 |
+
"bubbly",
|
27 |
+
"bumpy",
|
28 |
+
"chequered",
|
29 |
+
"cobwebbed",
|
30 |
+
"cracked",
|
31 |
+
"crosshatched",
|
32 |
+
"crystalline",
|
33 |
+
"dotted",
|
34 |
+
"fibrous",
|
35 |
+
"flecked",
|
36 |
+
"freckled",
|
37 |
+
"frilly",
|
38 |
+
"gauzy",
|
39 |
+
"grid",
|
40 |
+
"grooved",
|
41 |
+
"honeycombed",
|
42 |
+
"interlaced",
|
43 |
+
"knitted",
|
44 |
+
"lacelike",
|
45 |
+
"lined",
|
46 |
+
"marbled",
|
47 |
+
"matted",
|
48 |
+
"meshed",
|
49 |
+
"paisley",
|
50 |
+
"perforated",
|
51 |
+
"pitted",
|
52 |
+
"pleated",
|
53 |
+
"polka-dotted",
|
54 |
+
"porous",
|
55 |
+
"potholed",
|
56 |
+
"scaly",
|
57 |
+
"smeared",
|
58 |
+
"spiralled",
|
59 |
+
"sprinkled",
|
60 |
+
"stained",
|
61 |
+
"stratified",
|
62 |
+
"striped",
|
63 |
+
"studded",
|
64 |
+
"swirly",
|
65 |
+
"veined",
|
66 |
+
"waffled",
|
67 |
+
"woven",
|
68 |
+
"wrinkled",
|
69 |
+
"zigzagged",
|
70 |
+
]
|
71 |
+
|
72 |
+
clip_templates = [
|
73 |
+
lambda c: f"a photo of a {c} texture.",
|
74 |
+
lambda c: f"a photo of a {c} pattern.",
|
75 |
+
lambda c: f"a photo of a {c} thing.",
|
76 |
+
lambda c: f"a photo of a {c} object.",
|
77 |
+
lambda c: f"a photo of the {c} texture.",
|
78 |
+
lambda c: f"a photo of the {c} pattern.",
|
79 |
+
lambda c: f"a photo of the {c} thing.",
|
80 |
+
lambda c: f"a photo of the {c} object.",
|
81 |
+
]
|
82 |
+
|
83 |
+
def _info(self):
|
84 |
+
return datasets.DatasetInfo(
|
85 |
+
description="DTD dataset for image classification.",
|
86 |
+
features=datasets.Features(
|
87 |
+
{
|
88 |
+
"image": datasets.Image(),
|
89 |
+
"label": datasets.ClassLabel(names=self.classnames),
|
90 |
+
}
|
91 |
+
),
|
92 |
+
supervised_keys=("image", "label"),
|
93 |
+
task_templates=[datasets.ImageClassification(image_column="image", label_column="label")],
|
94 |
+
)
|