Datasets:

Languages:
English
License:
boudinfl commited on
Commit
8166dab
·
1 Parent(s): 09fb934

adding test/dev

Browse files
Files changed (6) hide show
  1. .gitattributes +2 -0
  2. .gitignore +5 -0
  3. README.md +73 -0
  4. dev.jsonl +3 -0
  5. kptimes.py +166 -0
  6. test.jsonl +3 -0
.gitattributes CHANGED
@@ -35,3 +35,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
35
  *.mp3 filter=lfs diff=lfs merge=lfs -text
36
  *.ogg filter=lfs diff=lfs merge=lfs -text
37
  *.wav filter=lfs diff=lfs merge=lfs -text
 
 
 
35
  *.mp3 filter=lfs diff=lfs merge=lfs -text
36
  *.ogg filter=lfs diff=lfs merge=lfs -text
37
  *.wav filter=lfs diff=lfs merge=lfs -text
38
+ dev.jsonl filter=lfs diff=lfs merge=lfs -text
39
+ test.jsonl filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+
2
+ **.DS_Store
3
+ .idea
4
+ .ipynb_checkpoints
5
+ src/
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - unknown
4
+ language_creators:
5
+ - unknown
6
+ languages:
7
+ - en
8
+ licenses:
9
+ - cc-by-4-0
10
+ multilinguality:
11
+ - monolingual
12
+ task_categories:
13
+ - text-mining
14
+ - text-generation
15
+ task_ids:
16
+ - keyphrase-generation
17
+ - keyphrase-extraction
18
+ size_categories:
19
+ - 100K<n<1M
20
+ pretty_name: KPTimes
21
+ ---
22
+
23
+ # KPTimes Benchmark Dataset for Keyphrase Generation
24
+
25
+ ## About
26
+
27
+ KPTimes is a dataset for benchmarking keyphrase extraction and generation models.
28
+ The dataset is composed of 290K news articles in English collected from the [New York Times](https://www.nytimes.com/) and the [Japan
29
+ Times](https://www.japantimes.co.jp/).
30
+ Keyphrases were annotated by editors in a semi-automated manner (that is, editors revise a set of keyphrases proposed by an algorithm and provide additional keyphrases).
31
+ Details about the dataset can be found in the original paper [(Gallina et al., 2019)][gallina-2019].
32
+
33
+ Reference (indexer-assigned) keyphrases are also categorized under the PRMU (<u>P</u>resent-<u>R</u>eordered-<u>M</u>ixed-<u>U</u>nseen) scheme as proposed in [(Boudin and Gallina, 2021)][boudin-2021].
34
+
35
+ Text pre-processing (tokenization) is carried out using `spacy` (`en_core_web_sm` model) with a special rule to avoid splitting words with hyphens (e.g. graph-based is kept as one token).
36
+ Stemming (Porter's stemmer implementation provided in `nltk`) is applied before reference keyphrases are matched against the source text.
37
+ Details about the process can be found in `prmu.py`.
38
+
39
+ ## Content and statistics
40
+
41
+ The dataset contains the following test split:
42
+
43
+ | Split | # documents | #words | # keyphrases | % Present | % Reordered | % Mixed | % Unseen |
44
+ | :--------- | ----------: | -----: | -----------: | --------: | ----------: | ------: | -------: |
45
+ | Train | 259,923 | - | - | - | - | - | - |
46
+ | Validation | 10,000 | - | - | - | - | - | - |
47
+ | Test | 20,000 | - | - | - | - | - | - |
48
+
49
+ The following data fields are available :
50
+
51
+ - **id**: unique identifier of the document.
52
+ - **title**: title of the document.
53
+ - **abstract**: abstract of the document.
54
+ - **keyphrases**: list of reference keyphrases.
55
+ - **prmu**: list of <u>P</u>resent-<u>R</u>eordered-<u>M</u>ixed-<u>U</u>nseen categories for reference keyphrases.
56
+ - **date**: publishing date (YYYY/MM/DD)
57
+ - **author**: author of the article (<meta name="author"/>)
58
+ - **categories**: categories of the article (1 or 2 categories)
59
+ - **headline**: self-explanatory (<meta property="og:description"/>)
60
+ - **file_name**: last part of the url, this is not a primary key
61
+ - **url**: original url of the document
62
+
63
+ ## References
64
+
65
+ - (Gallina et al., 2019) Ygor Gallina, Florian Boudin, and Beatrice Daille. 2019.
66
+ [KPTimes: A Large-Scale Dataset for Keyphrase Generation on News Documents][gallina-2019].
67
+ In Proceedings of the 12th International Conference on Natural Language Generation, pages 130–135, Tokyo, Japan. Association for Computational Linguistics.
68
+ - (Boudin and Gallina, 2021) Florian Boudin and Ygor Gallina. 2021.
69
+ [Redefining Absent Keyphrases and their Effect on Retrieval Effectiveness][boudin-2021].
70
+ In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 4185–4193, Online. Association for Computational Linguistics.
71
+
72
+ [gallina-2019]: https://aclanthology.org/W19-8617/
73
+ [boudin-2021]: https://aclanthology.org/2021.naacl-main.330/
dev.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da31abf3768ec7acb3dfd5b0f6d6a9761edd232163475af12a528a5e2765975c
3
+ size 51044613
kptimes.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """KPTimes benchmark dataset for keyphrase extraction an generation."""
2
+
3
+
4
+ import csv
5
+ import json
6
+ import os
7
+
8
+ import datasets
9
+
10
+
11
+ # TODO: Add BibTeX citation
12
+ # Find for instance the citation on arxiv or on the dataset repo/website
13
+ _CITATION = """\
14
+ @inproceedings{gallina-etal-2019-kptimes,
15
+ title = "{KPT}imes: A Large-Scale Dataset for Keyphrase Generation on News Documents",
16
+ author = "Gallina, Ygor and
17
+ Boudin, Florian and
18
+ Daille, Beatrice",
19
+ booktitle = "Proceedings of the 12th International Conference on Natural Language Generation",
20
+ month = oct # "{--}" # nov,
21
+ year = "2019",
22
+ address = "Tokyo, Japan",
23
+ publisher = "Association for Computational Linguistics",
24
+ url = "https://aclanthology.org/W19-8617",
25
+ doi = "10.18653/v1/W19-8617",
26
+ pages = "130--135",
27
+ abstract = "Keyphrase generation is the task of predicting a set of lexical units that conveys the main content of a source text. Existing datasets for keyphrase generation are only readily available for the scholarly domain and include non-expert annotations. In this paper we present KPTimes, a large-scale dataset of news texts paired with editor-curated keyphrases. Exploring the dataset, we show how editors tag documents, and how their annotations differ from those found in existing datasets. We also train and evaluate state-of-the-art neural keyphrase generation models on KPTimes to gain insights on how well they perform on the news domain. The dataset is available online at https:// github.com/ygorg/KPTimes.",
28
+ }
29
+ """
30
+
31
+ # You can copy an official description
32
+ _DESCRIPTION = """\
33
+ KPTimes benchmark dataset for keyphrase extraction an generation.
34
+ """
35
+
36
+ # TODO: Add a link to an official homepage for the dataset here
37
+ _HOMEPAGE = "https://aclanthology.org/W03-1028.pdf"
38
+
39
+ # TODO: Add the licence for the dataset here if you can find it
40
+ _LICENSE = "Apache 2.0 License"
41
+
42
+ # TODO: Add link to the official dataset URLs here
43
+ # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
44
+ # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
45
+ _URLS = {
46
+ "test": "test.jsonl",
47
+ "train": "train.jsonl",
48
+ "dev": "dev.jsonl"
49
+ }
50
+
51
+
52
+ # TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
53
+ class KPTimes(datasets.GeneratorBasedBuilder):
54
+ """TODO: Short description of my dataset."""
55
+
56
+ VERSION = datasets.Version("1.1.0")
57
+
58
+ # This is an example of a dataset with multiple configurations.
59
+ # If you don't want/need to define several sub-sets in your dataset,
60
+ # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
61
+
62
+ # If you need to make complex sub-parts in the datasets with configurable options
63
+ # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
64
+ # BUILDER_CONFIG_CLASS = MyBuilderConfig
65
+
66
+ # You will be able to load one or the other configurations in the following list with
67
+ # data = datasets.load_dataset('my_dataset', 'first_domain')
68
+ # data = datasets.load_dataset('my_dataset', 'second_domain')
69
+ BUILDER_CONFIGS = [
70
+ datasets.BuilderConfig(name="raw", version=VERSION, description="This part of my dataset covers the raw data."),
71
+ ]
72
+
73
+ DEFAULT_CONFIG_NAME = "raw" # It's not mandatory to have a default configuration. Just use one if it make sense.
74
+
75
+ def _info(self):
76
+ # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
77
+ if self.config.name == "raw": # This is the name of the configuration selected in BUILDER_CONFIGS above
78
+ features = datasets.Features(
79
+ {
80
+ "id": datasets.Value("string"),
81
+ "title": datasets.Value("string"),
82
+ "abstract": datasets.Value("string"),
83
+ "keyphrases": datasets.features.Sequence(datasets.Value("string")),
84
+ "prmu": datasets.features.Sequence(datasets.Value("string")),
85
+ "date": datasets.Value("string"),
86
+ "author": datasets.Value("string"),
87
+ "categories": datasets.features.Sequence(datasets.Value("string")),
88
+ "headline": datasets.Value("string"),
89
+ "file_name": datasets.Value("string"),
90
+ "url": datasets.Value("string"),
91
+ }
92
+ )
93
+ return datasets.DatasetInfo(
94
+ # This is the description that will appear on the datasets page.
95
+ description=_DESCRIPTION,
96
+ # This defines the different columns of the dataset and their types
97
+ features=features, # Here we define them above because they are different between the two configurations
98
+ # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
99
+ # specify them. They'll be used if as_supervised=True in builder.as_dataset.
100
+ # supervised_keys=("sentence", "label"),
101
+ # Homepage of the dataset for documentation
102
+ homepage=_HOMEPAGE,
103
+ # License for the dataset if available
104
+ license=_LICENSE,
105
+ # Citation for the dataset
106
+ citation=_CITATION,
107
+ )
108
+
109
+ def _split_generators(self, dl_manager):
110
+ # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
111
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
112
+
113
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
114
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
115
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
116
+ urls = _URLS
117
+ data_dir = dl_manager.download_and_extract(urls)
118
+ return [
119
+ datasets.SplitGenerator(
120
+ name=datasets.Split.TRAIN,
121
+ # These kwargs will be passed to _generate_examples
122
+ gen_kwargs={
123
+ "filepath": os.path.join(data_dir["train"]),
124
+ "split": "train",
125
+ },
126
+ ),
127
+ datasets.SplitGenerator(
128
+ name=datasets.Split.TEST,
129
+ # These kwargs will be passed to _generate_examples
130
+ gen_kwargs={
131
+ "filepath": os.path.join(data_dir["test"]),
132
+ "split": "test"
133
+ },
134
+ ),
135
+ datasets.SplitGenerator(
136
+ name=datasets.Split.VALIDATION,
137
+ # These kwargs will be passed to _generate_examples
138
+ gen_kwargs={
139
+ "filepath": os.path.join(data_dir["dev"]),
140
+ "split": "dev",
141
+ },
142
+ ),
143
+ ]
144
+
145
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
146
+ def _generate_examples(self, filepath, split):
147
+ # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
148
+ # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
149
+ with open(filepath, encoding="utf-8") as f:
150
+ for key, row in enumerate(f):
151
+ data = json.loads(row)
152
+ # Yields examples as (key, example) tuples
153
+ yield key, {
154
+ "id": data["id"],
155
+ "title": data["title"],
156
+ "abstract": data["abstract"],
157
+ "keyphrases": data["keyphrases"],
158
+ "prmu": data["prmu"],
159
+ "date": data["date"],
160
+ "author": data["author"],
161
+ "categories": data["categories"],
162
+ "headline": data["headline"],
163
+ "file_name": data["file_name"],
164
+ "url": data["url"],
165
+ }
166
+
test.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4865feb314e9a19e58b25cb12c7d24ea7608375822ab928ecaf0d50175fd79a
3
+ size 85085194