Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
boudinfl commited on
Commit
5f79a50
·
1 Parent(s): 830aaef

update stats

Browse files
Files changed (2) hide show
  1. README.md +6 -6
  2. stats.ipynb +88 -21
README.md CHANGED
@@ -11,18 +11,18 @@ Details about the inspec dataset can be found in the original paper [(Hulth, 200
11
  Reference (indexer-assigned) keyphrases are also categorized under the PRMU (<u>P</u>resent-<u>R</u>eordered-<u>M</u>ixed-<u>U</u>nseen) scheme as proposed in [(Boudin and Gallina, 2021)][boudin-2021].
12
 
13
  Text pre-processing (tokenization) is carried out using `spacy` (`en_core_web_sm` model) with a special rule to avoid splitting words with hyphens (e.g. graph-based is kept as one token).
14
- Stemming (Porter's stemmer implementation provided in `nltk`) is performed before reference keyphrases are matched against the source text.
15
  Details about the process can be found in `prmu.py`.
16
 
17
  ## Content and statistics
18
 
19
  The dataset is divided into the following three splits:
20
 
21
- | Split | # documents | # keyphrases | % Present | % Reordered | % Mixed | % Unseen |
22
- | :--------- | ----------: | -----------: | --------: | ----------: | ------: | -------: |
23
- | Train | 1,000 | 9.79 | 77.83 | 9.90 | 6.30 | 5.98 |
24
- | Validation | 500 | 9.15 | 77.90 | 9.82 | 6.74 | 5.54 |
25
- | Test | 500 | 9.83 | 78.49 | 9.82 | 6.76 | 4.92 |
26
 
27
  The following data fields are available :
28
 
 
11
  Reference (indexer-assigned) keyphrases are also categorized under the PRMU (<u>P</u>resent-<u>R</u>eordered-<u>M</u>ixed-<u>U</u>nseen) scheme as proposed in [(Boudin and Gallina, 2021)][boudin-2021].
12
 
13
  Text pre-processing (tokenization) is carried out using `spacy` (`en_core_web_sm` model) with a special rule to avoid splitting words with hyphens (e.g. graph-based is kept as one token).
14
+ Stemming (Porter's stemmer implementation provided in `nltk`) is applied before reference keyphrases are matched against the source text.
15
  Details about the process can be found in `prmu.py`.
16
 
17
  ## Content and statistics
18
 
19
  The dataset is divided into the following three splits:
20
 
21
+ | Split | # documents | #words | # keyphrases | % Present | % Reordered | % Mixed | % Unseen |
22
+ | :--------- | ----------: | -----: | -----------: | --------: | ----------: | ------: | -------: |
23
+ | Train | 1,000 | 141.7 | 9.79 | 78.00 | 9.85 | 6.22 | 5.93 |
24
+ | Validation | 500 | 132.2 | 9.15 | 77.96 | 9.82 | 6.75 | 5.47 |
25
+ | Test | 500 | 134.8 | 9.83 | 78.70 | 9.92 | 6.48 | 4.91 |
26
 
27
  The following data fields are available :
28
 
stats.ipynb CHANGED
@@ -2,7 +2,7 @@
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
- "execution_count": 4,
6
  "id": "eba2ee81",
7
  "metadata": {},
8
  "outputs": [
@@ -17,7 +17,7 @@
17
  {
18
  "data": {
19
  "application/vnd.jupyter.widget-view+json": {
20
- "model_id": "1ee1af5876804725adcd149763bd27b8",
21
  "version_major": 2,
22
  "version_minor": 0
23
  },
@@ -37,14 +37,14 @@
37
  },
38
  {
39
  "cell_type": "code",
40
- "execution_count": 20,
41
  "id": "4ba72244",
42
  "metadata": {},
43
  "outputs": [
44
  {
45
  "data": {
46
  "application/vnd.jupyter.widget-view+json": {
47
- "model_id": "a14738b9d72b45d29d24cd764e272fd3",
48
  "version_major": 2,
49
  "version_minor": 0
50
  },
@@ -61,16 +61,16 @@
61
  "text": [
62
  "statistics for train\n",
63
  "# keyphrases: 9.79\n",
64
- "% P: 77.83\n",
65
- "% R: 9.90\n",
66
- "% M: 6.30\n",
67
- "% U: 5.98\n"
68
  ]
69
  },
70
  {
71
  "data": {
72
  "application/vnd.jupyter.widget-view+json": {
73
- "model_id": "59a4352f94d84ada80beb34607d63425",
74
  "version_major": 2,
75
  "version_minor": 0
76
  },
@@ -87,16 +87,16 @@
87
  "text": [
88
  "statistics for validation\n",
89
  "# keyphrases: 9.15\n",
90
- "% P: 77.90\n",
91
  "% R: 9.82\n",
92
- "% M: 6.74\n",
93
- "% U: 5.54\n"
94
  ]
95
  },
96
  {
97
  "data": {
98
  "application/vnd.jupyter.widget-view+json": {
99
- "model_id": "77346b747c5248fb9566d8665c7017bb",
100
  "version_major": 2,
101
  "version_minor": 0
102
  },
@@ -112,19 +112,17 @@
112
  "output_type": "stream",
113
  "text": [
114
  "statistics for test\n",
115
- "# keyphrases: 9.83\n",
116
- "% P: 78.49\n",
117
- "% R: 9.82\n",
118
- "% M: 6.76\n",
119
- "% U: 4.92\n"
120
  ]
121
  }
122
  ],
123
  "source": [
124
  "from tqdm.notebook import tqdm\n",
125
  "\n",
126
- "\n",
127
- "\n",
128
  "for split in ['train', 'validation', 'test']:\n",
129
  " \n",
130
  " P, R, M, U, nb_kps = [], [], [], [], []\n",
@@ -144,10 +142,79 @@
144
  " print(\"% U: {:.2f}\".format(sum(U)/len(U)*100))"
145
  ]
146
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147
  {
148
  "cell_type": "code",
149
  "execution_count": null,
150
- "id": "4e4dcdab",
151
  "metadata": {},
152
  "outputs": [],
153
  "source": []
 
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
+ "execution_count": 1,
6
  "id": "eba2ee81",
7
  "metadata": {},
8
  "outputs": [
 
17
  {
18
  "data": {
19
  "application/vnd.jupyter.widget-view+json": {
20
+ "model_id": "6b71557b1f2b4fb48282f7d5d4a4fe37",
21
  "version_major": 2,
22
  "version_minor": 0
23
  },
 
37
  },
38
  {
39
  "cell_type": "code",
40
+ "execution_count": 2,
41
  "id": "4ba72244",
42
  "metadata": {},
43
  "outputs": [
44
  {
45
  "data": {
46
  "application/vnd.jupyter.widget-view+json": {
47
+ "model_id": "5ece754125e04f6ca8856ab3d924eec6",
48
  "version_major": 2,
49
  "version_minor": 0
50
  },
 
61
  "text": [
62
  "statistics for train\n",
63
  "# keyphrases: 9.79\n",
64
+ "% P: 78.00\n",
65
+ "% R: 9.85\n",
66
+ "% M: 6.22\n",
67
+ "% U: 5.93\n"
68
  ]
69
  },
70
  {
71
  "data": {
72
  "application/vnd.jupyter.widget-view+json": {
73
+ "model_id": "f607af2e66a94ece874b8c5ebea207f4",
74
  "version_major": 2,
75
  "version_minor": 0
76
  },
 
87
  "text": [
88
  "statistics for validation\n",
89
  "# keyphrases: 9.15\n",
90
+ "% P: 77.96\n",
91
  "% R: 9.82\n",
92
+ "% M: 6.75\n",
93
+ "% U: 5.47\n"
94
  ]
95
  },
96
  {
97
  "data": {
98
  "application/vnd.jupyter.widget-view+json": {
99
+ "model_id": "54e7f57783e74ca9b5f7815eb6413031",
100
  "version_major": 2,
101
  "version_minor": 0
102
  },
 
112
  "output_type": "stream",
113
  "text": [
114
  "statistics for test\n",
115
+ "# keyphrases: 9.82\n",
116
+ "% P: 78.70\n",
117
+ "% R: 9.92\n",
118
+ "% M: 6.48\n",
119
+ "% U: 4.91\n"
120
  ]
121
  }
122
  ],
123
  "source": [
124
  "from tqdm.notebook import tqdm\n",
125
  "\n",
 
 
126
  "for split in ['train', 'validation', 'test']:\n",
127
  " \n",
128
  " P, R, M, U, nb_kps = [], [], [], [], []\n",
 
142
  " print(\"% U: {:.2f}\".format(sum(U)/len(U)*100))"
143
  ]
144
  },
145
+ {
146
+ "cell_type": "code",
147
+ "execution_count": 3,
148
+ "id": "4e08f80f",
149
+ "metadata": {},
150
+ "outputs": [],
151
+ "source": [
152
+ "import spacy\n",
153
+ "\n",
154
+ "nlp = spacy.load(\"en_core_web_sm\")\n",
155
+ "\n",
156
+ "# https://spacy.io/usage/linguistic-features#native-tokenizer-additions\n",
157
+ "\n",
158
+ "from spacy.lang.char_classes import ALPHA, ALPHA_LOWER, ALPHA_UPPER\n",
159
+ "from spacy.lang.char_classes import CONCAT_QUOTES, LIST_ELLIPSES, LIST_ICONS\n",
160
+ "from spacy.util import compile_infix_regex\n",
161
+ "\n",
162
+ "# Modify tokenizer infix patterns\n",
163
+ "infixes = (\n",
164
+ " LIST_ELLIPSES\n",
165
+ " + LIST_ICONS\n",
166
+ " + [\n",
167
+ " r\"(?<=[0-9])[+\\-\\*^](?=[0-9-])\",\n",
168
+ " r\"(?<=[{al}{q}])\\.(?=[{au}{q}])\".format(\n",
169
+ " al=ALPHA_LOWER, au=ALPHA_UPPER, q=CONCAT_QUOTES\n",
170
+ " ),\n",
171
+ " r\"(?<=[{a}]),(?=[{a}])\".format(a=ALPHA),\n",
172
+ " # ✅ Commented out regex that splits on hyphens between letters:\n",
173
+ " # r\"(?<=[{a}])(?:{h})(?=[{a}])\".format(a=ALPHA, h=HYPHENS),\n",
174
+ " r\"(?<=[{a}0-9])[:<>=/](?=[{a}])\".format(a=ALPHA),\n",
175
+ " ]\n",
176
+ ")\n",
177
+ "\n",
178
+ "infix_re = compile_infix_regex(infixes)\n",
179
+ "nlp.tokenizer.infix_finditer = infix_re.finditer"
180
+ ]
181
+ },
182
+ {
183
+ "cell_type": "code",
184
+ "execution_count": null,
185
+ "id": "6f219825",
186
+ "metadata": {},
187
+ "outputs": [
188
+ {
189
+ "data": {
190
+ "application/vnd.jupyter.widget-view+json": {
191
+ "model_id": "cecaef36d18c43caa6c8386cb67cdd96",
192
+ "version_major": 2,
193
+ "version_minor": 0
194
+ },
195
+ "text/plain": [
196
+ " 0%| | 0/1000 [00:00<?, ?it/s]"
197
+ ]
198
+ },
199
+ "metadata": {},
200
+ "output_type": "display_data"
201
+ }
202
+ ],
203
+ "source": [
204
+ "for split in ['train', 'validation', 'test']:\n",
205
+ " doc_len = []\n",
206
+ " for sample in tqdm(dataset[split]):\n",
207
+ " doc_len.append(len(nlp(sample[\"title\"])) + len(nlp(sample[\"abstract\"])))\n",
208
+ " \n",
209
+ " print(\"statistics for {}\".format(split))\n",
210
+ " print(\"avg doc len: {:.1f}\".format(sum(doc_len)/len(doc_len)))\n",
211
+ " "
212
+ ]
213
+ },
214
  {
215
  "cell_type": "code",
216
  "execution_count": null,
217
+ "id": "9cdd2319",
218
  "metadata": {},
219
  "outputs": [],
220
  "source": []