Datasets:
adding statistics
Browse files- README.md +6 -6
- stats.ipynb +177 -0
README.md
CHANGED
@@ -4,7 +4,7 @@
|
|
4 |
|
5 |
Inspec is a dataset for benchmarking keyphrase extraction and generation models.
|
6 |
The dataset is composed of 2,000 abstracts of scientific papers collected from the [Inspec database](https://www.theiet.org/resources/inspec/).
|
7 |
-
Keyphrases were annotated by professional indexers in an uncontrolled setting
|
8 |
Details about the inspec dataset can be found in the original paper:
|
9 |
- Anette Hulth. 2003.
|
10 |
[Improved automatic keyword extraction given more linguistic knowledge](https://aclanthology.org/W03-1028).
|
@@ -19,11 +19,11 @@ Reference (indexer-assigned) keyphrases are also categorized under the PRMU (<u>
|
|
19 |
|
20 |
The dataset is divided into the following three splits:
|
21 |
|
22 |
-
| Split | # documents |
|
23 |
-
| :---------
|
24 |
-
| Train | 1,000 |
|
25 |
-
| Test | 500 |
|
26 |
-
| Validation | 500 |
|
27 |
|
28 |
The following data fields are available :
|
29 |
|
|
|
4 |
|
5 |
Inspec is a dataset for benchmarking keyphrase extraction and generation models.
|
6 |
The dataset is composed of 2,000 abstracts of scientific papers collected from the [Inspec database](https://www.theiet.org/resources/inspec/).
|
7 |
+
Keyphrases were annotated by professional indexers in an uncontrolled setting (that is, not limited to thesaurus entries).
|
8 |
Details about the inspec dataset can be found in the original paper:
|
9 |
- Anette Hulth. 2003.
|
10 |
[Improved automatic keyword extraction given more linguistic knowledge](https://aclanthology.org/W03-1028).
|
|
|
19 |
|
20 |
The dataset is divided into the following three splits:
|
21 |
|
22 |
+
| Split | # documents | # keyphrases | % Present | % Mixed | % Reordered | % Unseen |
|
23 |
+
| :--------- | ----------: | -----------: | --------: | ------: | ----------: | -------: |
|
24 |
+
| Train | 1,000 | 9.79 | 77.83 | 9.90 | 6.30 | 5.98 |
|
25 |
+
| Test | 500 | 9.15 | 77.90 | 9.82 | 6.74 | 5.54 |
|
26 |
+
| Validation | 500 | 9.83 | 78.49 | 9.82 | 6.76 | 4.92 |
|
27 |
|
28 |
The following data fields are available :
|
29 |
|
stats.ipynb
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 4,
|
6 |
+
"id": "eba2ee81",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stderr",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"No config specified, defaulting to: inspec/raw\n",
|
14 |
+
"Reusing dataset inspec (/Users/boudin-f/.cache/huggingface/datasets/taln-ls2n___inspec/raw/1.1.0/156f7172f117a205a845b4378fa15df490952487673e2d2fff33b39c1173b661)\n"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"data": {
|
19 |
+
"application/vnd.jupyter.widget-view+json": {
|
20 |
+
"model_id": "1ee1af5876804725adcd149763bd27b8",
|
21 |
+
"version_major": 2,
|
22 |
+
"version_minor": 0
|
23 |
+
},
|
24 |
+
"text/plain": [
|
25 |
+
" 0%| | 0/3 [00:00<?, ?it/s]"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
"metadata": {},
|
29 |
+
"output_type": "display_data"
|
30 |
+
}
|
31 |
+
],
|
32 |
+
"source": [
|
33 |
+
"from datasets import load_dataset\n",
|
34 |
+
"\n",
|
35 |
+
"dataset = load_dataset('taln-ls2n/inspec')"
|
36 |
+
]
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"cell_type": "code",
|
40 |
+
"execution_count": 20,
|
41 |
+
"id": "4ba72244",
|
42 |
+
"metadata": {},
|
43 |
+
"outputs": [
|
44 |
+
{
|
45 |
+
"data": {
|
46 |
+
"application/vnd.jupyter.widget-view+json": {
|
47 |
+
"model_id": "a14738b9d72b45d29d24cd764e272fd3",
|
48 |
+
"version_major": 2,
|
49 |
+
"version_minor": 0
|
50 |
+
},
|
51 |
+
"text/plain": [
|
52 |
+
" 0%| | 0/1000 [00:00<?, ?it/s]"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"metadata": {},
|
56 |
+
"output_type": "display_data"
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"name": "stdout",
|
60 |
+
"output_type": "stream",
|
61 |
+
"text": [
|
62 |
+
"statistics for train\n",
|
63 |
+
"# keyphrases: 9.79\n",
|
64 |
+
"% P: 77.83\n",
|
65 |
+
"% R: 9.90\n",
|
66 |
+
"% M: 6.30\n",
|
67 |
+
"% U: 5.98\n"
|
68 |
+
]
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"data": {
|
72 |
+
"application/vnd.jupyter.widget-view+json": {
|
73 |
+
"model_id": "59a4352f94d84ada80beb34607d63425",
|
74 |
+
"version_major": 2,
|
75 |
+
"version_minor": 0
|
76 |
+
},
|
77 |
+
"text/plain": [
|
78 |
+
" 0%| | 0/500 [00:00<?, ?it/s]"
|
79 |
+
]
|
80 |
+
},
|
81 |
+
"metadata": {},
|
82 |
+
"output_type": "display_data"
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"name": "stdout",
|
86 |
+
"output_type": "stream",
|
87 |
+
"text": [
|
88 |
+
"statistics for validation\n",
|
89 |
+
"# keyphrases: 9.15\n",
|
90 |
+
"% P: 77.90\n",
|
91 |
+
"% R: 9.82\n",
|
92 |
+
"% M: 6.74\n",
|
93 |
+
"% U: 5.54\n"
|
94 |
+
]
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"data": {
|
98 |
+
"application/vnd.jupyter.widget-view+json": {
|
99 |
+
"model_id": "77346b747c5248fb9566d8665c7017bb",
|
100 |
+
"version_major": 2,
|
101 |
+
"version_minor": 0
|
102 |
+
},
|
103 |
+
"text/plain": [
|
104 |
+
" 0%| | 0/500 [00:00<?, ?it/s]"
|
105 |
+
]
|
106 |
+
},
|
107 |
+
"metadata": {},
|
108 |
+
"output_type": "display_data"
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"name": "stdout",
|
112 |
+
"output_type": "stream",
|
113 |
+
"text": [
|
114 |
+
"statistics for test\n",
|
115 |
+
"# keyphrases: 9.83\n",
|
116 |
+
"% P: 78.49\n",
|
117 |
+
"% R: 9.82\n",
|
118 |
+
"% M: 6.76\n",
|
119 |
+
"% U: 4.92\n"
|
120 |
+
]
|
121 |
+
}
|
122 |
+
],
|
123 |
+
"source": [
|
124 |
+
"from tqdm.notebook import tqdm\n",
|
125 |
+
"\n",
|
126 |
+
"\n",
|
127 |
+
"\n",
|
128 |
+
"for split in ['train', 'validation', 'test']:\n",
|
129 |
+
" \n",
|
130 |
+
" P, R, M, U, nb_kps = [], [], [], [], []\n",
|
131 |
+
" \n",
|
132 |
+
" for sample in tqdm(dataset[split]):\n",
|
133 |
+
" nb_kps.append(len(sample[\"keyphrases\"]))\n",
|
134 |
+
" P.append(sample[\"prmu\"].count(\"P\") / nb_kps[-1])\n",
|
135 |
+
" R.append(sample[\"prmu\"].count(\"R\") / nb_kps[-1])\n",
|
136 |
+
" M.append(sample[\"prmu\"].count(\"M\") / nb_kps[-1])\n",
|
137 |
+
" U.append(sample[\"prmu\"].count(\"U\") / nb_kps[-1])\n",
|
138 |
+
" \n",
|
139 |
+
" print(\"statistics for {}\".format(split))\n",
|
140 |
+
" print(\"# keyphrases: {:.2f}\".format(sum(nb_kps)/len(nb_kps)))\n",
|
141 |
+
" print(\"% P: {:.2f}\".format(sum(P)/len(P)*100))\n",
|
142 |
+
" print(\"% R: {:.2f}\".format(sum(R)/len(R)*100))\n",
|
143 |
+
" print(\"% M: {:.2f}\".format(sum(M)/len(M)*100))\n",
|
144 |
+
" print(\"% U: {:.2f}\".format(sum(U)/len(U)*100))"
|
145 |
+
]
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"cell_type": "code",
|
149 |
+
"execution_count": null,
|
150 |
+
"id": "4e4dcdab",
|
151 |
+
"metadata": {},
|
152 |
+
"outputs": [],
|
153 |
+
"source": []
|
154 |
+
}
|
155 |
+
],
|
156 |
+
"metadata": {
|
157 |
+
"kernelspec": {
|
158 |
+
"display_name": "Python 3 (ipykernel)",
|
159 |
+
"language": "python",
|
160 |
+
"name": "python3"
|
161 |
+
},
|
162 |
+
"language_info": {
|
163 |
+
"codemirror_mode": {
|
164 |
+
"name": "ipython",
|
165 |
+
"version": 3
|
166 |
+
},
|
167 |
+
"file_extension": ".py",
|
168 |
+
"mimetype": "text/x-python",
|
169 |
+
"name": "python",
|
170 |
+
"nbconvert_exporter": "python",
|
171 |
+
"pygments_lexer": "ipython3",
|
172 |
+
"version": "3.10.2"
|
173 |
+
}
|
174 |
+
},
|
175 |
+
"nbformat": 4,
|
176 |
+
"nbformat_minor": 5
|
177 |
+
}
|