Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
cyrilzhang commited on
Commit
91ef5c9
·
1 Parent(s): 8dfc16d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -0
README.md CHANGED
@@ -32,3 +32,38 @@ dataset_info:
32
  dataset_size: 918480000
33
  ---
34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  dataset_size: 918480000
33
  ---
34
 
35
+ Data for [**Flip-Flop Language Modeling**](https://arxiv.org/abs/2306.00946). The task is to correctly execute the sequential operations of a 1-bit register. The Transformer architecture, despite being apparently built for this operation, makes sporadic extrapolation errors (*attention glitches*). An open challenge is to fix these without recourse to long-tailed data or a recurrent architecture. Splits reflect the FFLM setup from the paper:
36
+ - `train`: 1.6M sequences from FFL(0.8) *(256 instructions, 80% ignore, 10% read, 10% write)*.
37
+ - `val`: 16K sequences from FFL(0.8).
38
+ - `val_dense`: 4K sequences from FFL(0.1).
39
+ - `val_sparse`: 160K sequences from FFL(0.98).
40
+
41
+ Usage
42
+ ---
43
+ ```python
44
+ import torch
45
+ import datasets
46
+
47
+ dataset = datasets.load_dataset('synthseq/flipflop')
48
+ dataset['train'][0] # {'text': 'w1i1w0i0 ...
49
+
50
+ def tokenize_batch(batch):
51
+ mapping = {'w': 0, 'r': 1, 'i': 2, '0': 3, '1': 4}
52
+ tokenized_batch = [[mapping[char] for char in s] for s in batch['text']]
53
+ return {'tokens': torch.tensor(tokenized_batch, dtype=torch.int64)}
54
+
55
+ dataset.set_transform(tokenize_batch)
56
+ dataset['train'][0] # {'tokens': tensor([0, 4, 2, 4, 0, 3, 2, 3, 2 ...
57
+ ```
58
+
59
+ Citation
60
+ ---
61
+
62
+ ```
63
+ @article{liu2023exposing,
64
+ title={Exposing Attention Glitches with Flip-Flop Language Modeling},
65
+ author={Liu, Bingbin and Ash, Jordan T and Goel, Surbhi and Krishnamurthy, Akshay and Zhang, Cyril},
66
+ journal={arXiv preprint arXiv:2306.00946},
67
+ year={2023}
68
+ }
69
+ ```