|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" WMT16 English-Romanian Translation Data with further preprocessing """ |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import csv |
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {WMT16 English-Romanian Translation Data with further preprocessing}, |
|
authors={}, |
|
year={2016} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = "WMT16 English-Romanian Translation Data with further preprocessing" |
|
_HOMEPAGE = "http://www.statmt.org/wmt16/" |
|
_LICENSE = "" |
|
|
|
|
|
_DATA_URL = "/static-proxy?url=https%3A%2F%2Fcdn-datasets.huggingface.co%2Ftranslation%2Fwmt_en_ro.tar.gz%26quot%3B%3C%2Fspan%3E%3C!-- HTML_TAG_END --> |
|
|
|
|
|
class Wmt16EnRoPreProcessedConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for wmt16.""" |
|
|
|
def __init__(self, language_pair=(None, None), **kwargs): |
|
"""BuilderConfig for wmt16 |
|
|
|
Args: |
|
for the `datasets.features.text.TextEncoder` used for the features feature. |
|
language_pair: pair of languages that will be used for translation. Should |
|
contain 2-letter coded strings. First will be used at source and second |
|
as target in supervised mode. For example: ("se", "en"). |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
name = "%s%s" % (language_pair[0], language_pair[1]) |
|
|
|
description = ("Translation dataset from %s to %s") % (language_pair[0], language_pair[1]) |
|
super(Wmt16EnRoPreProcessedConfig, self).__init__( |
|
name=name, |
|
description=description, |
|
version=datasets.Version("1.1.0", ""), |
|
**kwargs, |
|
) |
|
|
|
|
|
assert "en" in language_pair, ("Config language pair must contain `en`, got: %s", language_pair) |
|
source, target = language_pair |
|
non_en = source if target == "en" else target |
|
assert non_en in ["ro"], ("Invalid non-en language in pair: %s", non_en) |
|
|
|
self.language_pair = language_pair |
|
|
|
|
|
|
|
class Wmt16EnRoPreProcessed(datasets.GeneratorBasedBuilder): |
|
|
|
BUILDER_CONFIGS = [ |
|
Wmt16EnRoPreProcessedConfig( |
|
language_pair=("en", "ro"), |
|
), |
|
] |
|
|
|
def _info(self): |
|
source, target = self.config.language_pair |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{"translation": datasets.features.Translation(languages=self.config.language_pair)} |
|
), |
|
supervised_keys=(source, target), |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
dl_dir = dl_manager.download_and_extract(_DATA_URL) |
|
|
|
source, target = self.config.language_pair |
|
non_en = source if target == "en" else target |
|
path_tmpl = "{dl_dir}/wmt_en_ro/{split}.{type}" |
|
|
|
files = {} |
|
for split in ("train", "val", "test"): |
|
files[split] = { |
|
"source_file": path_tmpl.format(dl_dir=dl_dir, split=split, type="source"), |
|
"target_file": path_tmpl.format(dl_dir=dl_dir, split=split, type="target"), |
|
} |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs=files["train"]), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs=files["val"]), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs=files["test"]), |
|
] |
|
|
|
def _generate_examples(self, source_file, target_file): |
|
"""This function returns the examples in the raw (text) form.""" |
|
with open(source_file, encoding="utf-8") as f: |
|
source_sentences = f.read().split("\n") |
|
with open(target_file, encoding="utf-8") as f: |
|
target_sentences = f.read().split("\n") |
|
|
|
assert len(target_sentences) == len(source_sentences), "Sizes do not match: %d vs %d for %s vs %s." % ( |
|
len(source_sentences), |
|
len(target_sentences), |
|
source_file, |
|
target_file, |
|
) |
|
|
|
source, target = self.config.language_pair |
|
for idx, (l1, l2) in enumerate(zip(source_sentences, target_sentences)): |
|
result = {"translation": {source: l1, target: l2}} |
|
|
|
if all(result.values()): |
|
yield idx, result |
|
|