|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""The Open WebText Corpus""" |
|
|
|
|
|
import os |
|
import re |
|
from itertools import chain |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@misc{Gokaslan2019OpenWeb, |
|
title={OpenWebText Corpus}, |
|
author={Aaron Gokaslan*, Vanya Cohen*, Ellie Pavlick, Stefanie Tellex}, |
|
howpublished{\\url{http://Skylion007.github.io/OpenWebTextCorpus}}, |
|
year={2019} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
An open-source replication of the WebText dataset from OpenAI. |
|
|
|
This is a small subset representing the first 10K records from the original dataset - created for testing. |
|
|
|
The full 8M-record dataset is at https://huggingface.co/datasets/openwebtext |
|
""" |
|
|
|
_URL = "/static-proxy?url=https%3A%2F%2Fcdn-datasets.huggingface.co%2Fnlp%2Fdatasets%2Fopenwebtext%2Fopenwebtext-10k.tar.xz%26quot%3B%3C%2Fspan%3E%3C!-- HTML_TAG_END --> |
|
|
|
class Openwebtext10k(datasets.GeneratorBasedBuilder): |
|
"""The Open WebText dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="plain_text", |
|
description="Plain text", |
|
version=datasets.Version("1.0.0"), |
|
) |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features({"text": datasets.Value("string")}), |
|
homepage="https://skylion007.github.io/OpenWebTextCorpus/", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
dl_dir = dl_manager.download_and_extract(_URL) |
|
owt_dir = os.path.join(dl_dir, "openwebtext-10k") |
|
subset_xzs = [ |
|
os.path.join(owt_dir, file_name) |
|
for file_name in sorted(os.listdir(owt_dir)) |
|
if file_name.endswith("xz") |
|
] |
|
ex_dirs = dl_manager.extract(subset_xzs, num_proc=round(os.cpu_count() * 0.75)) |
|
nested_txt_files = [ |
|
[ |
|
os.path.join(ex_dir, txt_file_name) |
|
for txt_file_name in sorted(os.listdir(ex_dir)) |
|
if txt_file_name.endswith("txt") |
|
] |
|
for ex_dir in ex_dirs |
|
] |
|
txt_files = chain(*nested_txt_files) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"txt_files": txt_files}), |
|
] |
|
|
|
def _generate_examples(self, txt_files): |
|
"""Yields examples.""" |
|
for idx, filepath in enumerate(txt_files): |
|
with open(filepath, encoding="utf-8") as f: |
|
yield idx, {"text": re.sub("\n\n\n+", "\n\n", f.read()).strip()} |
|
|