SMC / cantemist /using_dataset_hugginface.py
inoid's picture
Upload 4 files
d3b652c verified
# -*- coding: utf-8 -*-
"""using_dataset_hugginface.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1soGxkZu4antYbYG23GioJ6zoSt_GhSNT
"""
"""**Hugginface loggin for push on Hub**"""
###
#
# Used bibliografy:
# https://huggingface.co/learn/nlp-course/chapter5/5
#
###
import os
import time
import math
from huggingface_hub import login
from datasets import load_dataset, concatenate_datasets
from functools import reduce
from pathlib import Path
import pandas as pd
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
HF_TOKEN = ''
DATASET_TO_LOAD = 'bigbio/cantemist'
DATASET_TO_UPDATE = 'somosnlp/spanish_medica_llm'
DATASET_SOURCE_ID = '1'
#Loggin to Huggin Face
login(token = HF_TOKEN)
dataset_CODING = load_dataset(DATASET_TO_LOAD)
royalListOfCode = {}
issues_path = 'dataset'
tokenizer = AutoTokenizer.from_pretrained("DeepESP/gpt2-spanish-medium")
#Read current path
path = Path(__file__).parent.absolute()
with open( str(path) + os.sep + 'ICD-O-3_valid-codes.txt',encoding='utf8') as file:
"""
# Build a dictionary with ICD-O-3 associated with
# healtcare problems
"""
linesInFile = file.readlines()
for iLine in linesInFile:
listOfData = iLine.split('\t')
code = listOfData[0]
description = reduce(lambda a, b: a + " "+ b, listOfData[1:2], "")
royalListOfCode[code.strip()] = description.strip()
def getCodeDescription(labels_of_type, royalListOfCode):
"""
Search description associated with some code
in royalListOfCode
"""
classification = []
for iValue in labels_of_type:
if iValue in royalListOfCode.keys():
classification.append(royalListOfCode[iValue])
return classification
# raw_text: Texto asociado al documento, pregunta, caso clínico u otro tipo de información.
# topic: (puede ser healthcare_treatment, healthcare_diagnosis, tema, respuesta a pregunta, o estar vacío p.ej en el texto abierto)
# speciality: (especialidad médica a la que se relaciona el raw_text p.ej: cardiología, cirugía, otros)
# raw_text_type: (puede ser caso clínico, open_text, question)
# topic_type: (puede ser medical_topic, medical_diagnostic,answer,natural_medicine_topic, other, o vacio)
# source: Identificador de la fuente asociada al documento que aparece en el README y descripción del dataset.
# country: Identificador del país de procedencia de la fuente (p.ej.; ch, es) usando el estándar ISO 3166-1 alfa-2 (Códigos de país de dos letras.).
cantemistDstDict = {
'raw_text': '',
'topic': '',
'speciallity': '',
'raw_text_type': 'clinic_case',
'topic_type': 'medical_diagnostic',
'source': DATASET_SOURCE_ID,
'country': 'es',
'document_id': ''
}
totalOfTokens = 0
corpusToLoad = []
countCopySeveralDocument = 0
counteOriginalDocument = 0
for iDataset in dataset_CODING:
if iDataset == 'test':
for item in dataset_CODING[iDataset]:
#print ("Element in dataset")
idFile = item['id']
text = item['text']
list_of_type = item['text_bound_annotations']
labels_of_type = item['labels']
#Find topic or diagnosti clasification about the text
diagnostyc_types = getCodeDescription( labels_of_type, royalListOfCode)
counteOriginalDocument += 1
classFileSize = len(diagnostyc_types)
#If there are more clasification about the file
if classFileSize > 1:
countCopySeveralDocument += classFileSize - 1
listOfTokens = tokenizer.tokenize(text)
currentSizeOfTokens = len(listOfTokens)
totalOfTokens += currentSizeOfTokens
for iTypes in diagnostyc_types:
#print(iTypes)
newCorpusRow = cantemistDstDict.copy()
#print('Current text has ', currentSizeOfTokens)
#print('Total of tokens is ', totalOfTokens)
newCorpusRow['raw_text'] = text
newCorpusRow['document_id'] = str(idFile)
newCorpusRow['topic'] = iTypes
corpusToLoad.append(newCorpusRow)
df = pd.DataFrame.from_records(corpusToLoad)
if os.path.exists(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl"):
os.remove(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl")
df.to_json(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl", orient="records", lines=True)
print(
f"Downloaded all the issues for {DATASET_TO_LOAD}! Dataset stored at {issues_path}/spanish_medical_llms.jsonl"
)
print(' On dataset there are as document ', counteOriginalDocument)
print(' On dataset there are as copy document ', countCopySeveralDocument)
print(' On dataset there are as size of Tokens ', totalOfTokens)
file = Path(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl") # or Path('./doc.txt')
size = file.stat().st_size
print ('File size on Kilobytes (kB)', size >> 10) # 5242880 kilobytes (kB)
print ('File size on Megabytes (MB)', size >> 20 ) # 5120 megabytes (MB)
print ('File size on Gigabytes (GB)', size >> 30 ) # 5 gigabytes (GB)
#Once the issues are downloaded we can load them locally using our
local_spanish_dataset = load_dataset("json", data_files=f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl", split="train")
##Update local dataset with cloud dataset
try:
spanish_dataset = load_dataset(DATASET_TO_UPDATE, split="train")
spanish_dataset = concatenate_datasets([spanish_dataset, local_spanish_dataset])
except Exception:
spanish_dataset = local_spanish_dataset
spanish_dataset.push_to_hub(DATASET_TO_UPDATE)
print(spanish_dataset)
# Augmenting the dataset
#Importan if exist element on DATASET_TO_UPDATE we must to update element
# in list, and review if the are repeted elements