File size: 1,548 Bytes
cfd04a4
 
6cddbe0
 
 
 
 
 
 
 
cfd04a4
6cddbe0
 
acaa4ca
6cddbe0
1c6223a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
---
license: cc-by-nc-sa-4.0
language:
- de
tags:
- embeddings
- clustering
- benchmark
size_categories:
- 10K<n<100K
---
This dataset can be used as a benchmark for clustering word embeddings for <b>German</b>. 

The datasets contains news article titles and is based on the dataset of the [One Million Posts Corpus](https://ofai.github.io/million-post-corpus/) and [10kGNAD](https://github.com/tblock/10kGNAD). It contains 10'267 unique samples, 10 splits with 1'436 to 9'962 samples and 9 unique classes. Splits are built similarly to MTEB's [TwentyNewsgroupsClustering](https://huggingface.co/datasets/mteb/twentynewsgroups-clustering).

Have a look at German Text Embedding Clustering Benchmark ([Github](https://github.com/ClimSocAna/tecb-de), [Paper](https://arxiv.org/abs/2401.02709)) for more infos, datasets and evaluation results.

If you use this dataset in your work, please cite the following paper: 

```
@inproceedings{wehrli-etal-2023-german,
    title = "{G}erman Text Embedding Clustering Benchmark",
    author = "Wehrli, Silvan  and
      Arnrich, Bert  and
      Irrgang, Christopher",
    editor = "Georges, Munir  and
      Herygers, Aaricia  and
      Friedrich, Annemarie  and
      Roth, Benjamin",
    booktitle = "Proceedings of the 19th Conference on Natural Language Processing (KONVENS 2023)",
    month = sep,
    year = "2023",
    address = "Ingolstadt, Germany",
    publisher = "Association for Computational Lingustics",
    url = "https://aclanthology.org/2023.konvens-main.20",
    pages = "187--201",
}
```