shunk031 commited on
Commit
672f30e
·
unverified ·
1 Parent(s): 1d9dac8

Refactor (#5)

Browse files

* refactor loading script

* update test

* update CI

* update

* update

* update

* update

* fix for CI

* update README.md

Files changed (4) hide show
  1. .github/workflows/ci.yaml +3 -3
  2. MSCOCO.py +439 -332
  3. README.md +273 -0
  4. tests/MSCOCO_test.py +16 -0
.github/workflows/ci.yaml CHANGED
@@ -44,6 +44,6 @@ jobs:
44
  --no-site-packages \
45
  --cache-dir=/dev/null
46
 
47
- # - name: Run tests
48
- # run: |
49
- # poetry run pytest --color=yes -rf
 
44
  --no-site-packages \
45
  --cache-dir=/dev/null
46
 
47
+ - name: Run tests
48
+ run: |
49
+ poetry run pytest --color=yes -rf
MSCOCO.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import json
2
  import logging
3
  import os
@@ -89,6 +90,104 @@ _URLS = {
89
  },
90
  }
91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92
 
93
  @dataclass
94
  class AnnotationInfo(object):
@@ -250,21 +349,21 @@ class InstancesAnnotationData(AnnotationData):
250
  image_data = images[image_id]
251
  iscrowd = bool(json_dict["iscrowd"])
252
 
253
- if decode_rle:
254
- segmentation_mask = cls.rle_segmentation_to_mask(
255
  segmentation=segmentation,
256
  iscrowd=iscrowd,
257
  height=image_data.height,
258
  width=image_data.width,
259
  )
260
- assert segmentation_mask.shape == image_data.shape
261
- else:
262
- segmentation_mask = cls.compress_rle(
263
  segmentation=segmentation,
264
  iscrowd=iscrowd,
265
  height=image_data.height,
266
  width=image_data.width,
267
  )
 
268
  return cls(
269
  #
270
  # for AnnotationData
@@ -327,22 +426,21 @@ class PersonKeypointsAnnotationData(InstancesAnnotationData):
327
  image_data = images[image_id]
328
  iscrowd = bool(json_dict["iscrowd"])
329
 
330
- if decode_rle:
331
- segmentation_mask = cls.rle_segmentation_to_mask(
332
  segmentation=segmentation,
333
  iscrowd=iscrowd,
334
  height=image_data.height,
335
  width=image_data.width,
336
  )
337
- assert segmentation_mask.shape == image_data.shape
338
- else:
339
- segmentation_mask = cls.compress_rle(
340
  segmentation=segmentation,
341
  iscrowd=iscrowd,
342
  height=image_data.height,
343
  width=image_data.width,
344
  )
345
-
346
  flatten_keypoints = json_dict["keypoints"]
347
  num_keypoints = json_dict["num_keypoints"]
348
  keypoints = cls.get_person_keypoints(flatten_keypoints, num_keypoints)
@@ -397,32 +495,6 @@ class CaptionExample(BaseExample):
397
  annotations: List[CaptionAnnotationDict]
398
 
399
 
400
- def generate_captions_examples(
401
- image_dir: str,
402
- images: Dict[ImageId, ImageData],
403
- annotations: Dict[ImageId, List[CaptionsAnnotationData]],
404
- licenses: Dict[LicenseId, LicenseData],
405
- ) -> Iterator[Tuple[int, CaptionExample]]:
406
- for idx, image_id in enumerate(images.keys()):
407
- image_data = images[image_id]
408
- image_anns = annotations[image_id]
409
-
410
- assert len(image_anns) > 0
411
-
412
- image = _load_image(
413
- image_path=os.path.join(image_dir, image_data.file_name),
414
- )
415
- example = asdict(image_data)
416
- example["image"] = image
417
- example["license"] = asdict(licenses[image_data.license_id])
418
-
419
- example["annotations"] = []
420
- for ann in image_anns:
421
- example["annotations"].append(asdict(ann))
422
-
423
- yield idx, example # type: ignore
424
-
425
-
426
  class CategoryDict(TypedDict):
427
  category_id: CategoryId
428
  name: str
@@ -444,38 +516,6 @@ class InstanceExample(BaseExample):
444
  annotations: List[InstanceAnnotationDict]
445
 
446
 
447
- def generate_instances_examples(
448
- image_dir: str,
449
- images: Dict[ImageId, ImageData],
450
- annotations: Dict[ImageId, List[InstancesAnnotationData]],
451
- licenses: Dict[LicenseId, LicenseData],
452
- categories: Dict[CategoryId, CategoryData],
453
- ) -> Iterator[Tuple[int, InstanceExample]]:
454
- for idx, image_id in enumerate(images.keys()):
455
- image_data = images[image_id]
456
- image_anns = annotations[image_id]
457
-
458
- if len(image_anns) < 1:
459
- logger.warning(f"No annotation found for image id: {image_id}.")
460
- continue
461
-
462
- image = _load_image(
463
- image_path=os.path.join(image_dir, image_data.file_name),
464
- )
465
- example = asdict(image_data)
466
- example["image"] = image
467
- example["license"] = asdict(licenses[image_data.license_id])
468
-
469
- example["annotations"] = []
470
- for ann in image_anns:
471
- ann_dict = asdict(ann)
472
- category = categories[ann.category_id]
473
- ann_dict["category"] = asdict(category)
474
- example["annotations"].append(ann_dict)
475
-
476
- yield idx, example # type: ignore
477
-
478
-
479
  class KeypointDict(TypedDict):
480
  x: int
481
  y: int
@@ -492,37 +532,300 @@ class PersonKeypointExample(BaseExample):
492
  annotations: List[PersonKeypointAnnotationDict]
493
 
494
 
495
- def generate_person_keypoints_examples(
496
- image_dir: str,
497
- images: Dict[ImageId, ImageData],
498
- annotations: Dict[ImageId, List[PersonKeypointsAnnotationData]],
499
- licenses: Dict[LicenseId, LicenseData],
500
- categories: Dict[CategoryId, CategoryData],
501
- ) -> Iterator[Tuple[int, PersonKeypointExample]]:
502
- for idx, image_id in enumerate(images.keys()):
503
- image_data = images[image_id]
504
- image_anns = annotations[image_id]
505
 
506
- if len(image_anns) < 1:
507
- # If there are no persons in the image,
508
- # no keypoint annotations will be assigned.
509
- continue
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
510
 
511
- image = _load_image(
512
- image_path=os.path.join(image_dir, image_data.file_name),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
513
  )
514
- example = asdict(image_data)
515
- example["image"] = image
516
- example["license"] = asdict(licenses[image_data.license_id])
517
 
518
- example["annotations"] = []
519
- for ann in image_anns:
520
- ann_dict = asdict(ann)
521
- category = categories[ann.category_id]
522
- ann_dict["category"] = asdict(category)
523
- example["annotations"].append(ann_dict)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
524
 
525
- yield idx, example # type: ignore
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
526
 
527
 
528
  class MsCocoConfig(ds.BuilderConfig):
@@ -558,6 +861,7 @@ class MsCocoConfig(ds.BuilderConfig):
558
 
559
  self._year = year
560
  self._task = coco_task
 
561
  self.decode_rle = decode_rle
562
 
563
  def _check_year(self, year: int) -> None:
@@ -568,7 +872,7 @@ class MsCocoConfig(ds.BuilderConfig):
568
  assert task in self.TASKS, task
569
  elif isinstance(task, list) or isinstance(task, tuple):
570
  for t in task:
571
- assert self.TASKS, task
572
  else:
573
  raise ValueError(f"Invalid task: {task}")
574
 
@@ -585,6 +889,16 @@ class MsCocoConfig(ds.BuilderConfig):
585
  else:
586
  raise ValueError(f"Invalid task: {self._task}")
587
 
 
 
 
 
 
 
 
 
 
 
588
  @classmethod
589
  def config_name(cls, year: int, task: Union[str, Sequence[str]]) -> str:
590
  if isinstance(task, str):
@@ -596,178 +910,6 @@ class MsCocoConfig(ds.BuilderConfig):
596
  raise ValueError(f"Invalid task: {task}")
597
 
598
 
599
- def _load_image(image_path: str) -> PilImage:
600
- return Image.open(image_path)
601
-
602
-
603
- def _load_annotation_json(ann_file_path: str) -> JsonDict:
604
- logger.info(f"Load annotation json from {ann_file_path}")
605
- with open(ann_file_path, "r") as rf:
606
- ann_json = json.load(rf)
607
- return ann_json
608
-
609
-
610
- def _load_licenses_data(license_dicts: List[JsonDict]) -> Dict[LicenseId, LicenseData]:
611
- licenses = {}
612
- for license_dict in license_dicts:
613
- license_data = LicenseData.from_dict(license_dict)
614
- licenses[license_data.license_id] = license_data
615
- return licenses
616
-
617
-
618
- def _load_images_data(
619
- image_dicts: List[JsonDict],
620
- tqdm_desc: str = "Load images",
621
- ) -> Dict[ImageId, ImageData]:
622
- images = {}
623
- for image_dict in tqdm(image_dicts, desc=tqdm_desc):
624
- image_data = ImageData.from_dict(image_dict)
625
- images[image_data.image_id] = image_data
626
- return images
627
-
628
-
629
- def _load_categories_data(
630
- category_dicts: List[JsonDict],
631
- tqdm_desc: str = "Load categories",
632
- ) -> Dict[CategoryId, CategoryData]:
633
- categories = {}
634
- for category_dict in tqdm(category_dicts, desc=tqdm_desc):
635
- category_data = CategoryData.from_dict(category_dict)
636
- categories[category_data.category_id] = category_data
637
- return categories
638
-
639
-
640
- def _load_captions_data(
641
- ann_dicts: List[JsonDict],
642
- tqdm_desc: str = "Load captions data",
643
- ) -> Dict[ImageId, List[CaptionsAnnotationData]]:
644
- annotations = defaultdict(list)
645
- for ann_dict in tqdm(ann_dicts, desc=tqdm_desc):
646
- ann_data = CaptionsAnnotationData.from_dict(ann_dict)
647
- annotations[ann_data.image_id].append(ann_data)
648
- return annotations
649
-
650
-
651
- def _load_instances_data(
652
- ann_dicts: List[JsonDict],
653
- images: Dict[ImageId, ImageData],
654
- decode_rle: bool,
655
- tqdm_desc: str = "Load instances data",
656
- ) -> Dict[ImageId, List[InstancesAnnotationData]]:
657
- annotations = defaultdict(list)
658
- ann_dicts = sorted(ann_dicts, key=lambda d: d["image_id"])
659
-
660
- for ann_dict in tqdm(ann_dicts, desc=tqdm_desc):
661
- ann_data = InstancesAnnotationData.from_dict(
662
- ann_dict, images=images, decode_rle=decode_rle
663
- )
664
- annotations[ann_data.image_id].append(ann_data)
665
-
666
- return annotations
667
-
668
-
669
- def _load_person_keypoints_data(
670
- ann_dicts: List[JsonDict],
671
- images: Dict[ImageId, ImageData],
672
- decode_rle: bool,
673
- tqdm_desc: str = "Load person keypoints data",
674
- ) -> Dict[ImageId, List[PersonKeypointsAnnotationData]]:
675
- annotations = defaultdict(list)
676
- ann_dicts = sorted(ann_dicts, key=lambda d: d["image_id"])
677
-
678
- for ann_dict in tqdm(ann_dicts, desc=tqdm_desc):
679
- ann_data = PersonKeypointsAnnotationData.from_dict(
680
- ann_dict, images=images, decode_rle=decode_rle
681
- )
682
- annotations[ann_data.image_id].append(ann_data)
683
- return annotations
684
-
685
-
686
- def get_features_base_dict():
687
- return {
688
- "image_id": ds.Value("int64"),
689
- "image": ds.Image(),
690
- "file_name": ds.Value("string"),
691
- "coco_url": ds.Value("string"),
692
- "height": ds.Value("int32"),
693
- "width": ds.Value("int32"),
694
- "date_captured": ds.Value("string"),
695
- "flickr_url": ds.Value("string"),
696
- "license_id": ds.Value("int32"),
697
- "license": {
698
- "url": ds.Value("string"),
699
- "license_id": ds.Value("int8"),
700
- "name": ds.Value("string"),
701
- },
702
- }
703
-
704
-
705
- def get_features_instance_dict(decode_rle: bool):
706
- if decode_rle:
707
- segmentation_feature = ds.Image()
708
- else:
709
- segmentation_feature = {
710
- "counts": ds.Sequence(ds.Value("int64")),
711
- "size": ds.Sequence(ds.Value("int32")),
712
- }
713
- return {
714
- "annotation_id": ds.Value("int64"),
715
- "image_id": ds.Value("int64"),
716
- "segmentation": segmentation_feature,
717
- "area": ds.Value("float32"),
718
- "iscrowd": ds.Value("bool"),
719
- "bbox": ds.Sequence(ds.Value("float32"), length=4),
720
- "category_id": ds.Value("int32"),
721
- "category": {
722
- "category_id": ds.Value("int32"),
723
- "name": ds.Value("string"),
724
- "supercategory": ds.Value("string"),
725
- },
726
- }
727
-
728
-
729
- def get_features_captions() -> ds.Features:
730
- features_dict = get_features_base_dict()
731
- annotations = ds.Sequence(
732
- {
733
- "annotation_id": ds.Value("int64"),
734
- "image_id": ds.Value("int64"),
735
- "caption": ds.Value("string"),
736
- }
737
- )
738
- features_dict.update({"annotations": annotations})
739
-
740
- return ds.Features(features_dict)
741
-
742
-
743
- def get_features_instances(decode_rle: bool) -> ds.Features:
744
- features_dict = get_features_base_dict()
745
- annotations = ds.Sequence(get_features_instance_dict(decode_rle=decode_rle))
746
- features_dict.update({"annotations": annotations})
747
- return ds.Features(features_dict)
748
-
749
-
750
- def get_features_person_keypoints(decode_rle: bool) -> ds.Features:
751
- features_dict = get_features_base_dict()
752
- features_instance_dict = get_features_instance_dict(decode_rle=decode_rle)
753
- features_instance_dict.update(
754
- {
755
- "keypoints": ds.Sequence(
756
- {
757
- "state": ds.Value("string"),
758
- "x": ds.Value("int32"),
759
- "y": ds.Value("int32"),
760
- "v": ds.Value("int32"),
761
- }
762
- ),
763
- "num_keypoints": ds.Value("int32"),
764
- }
765
- )
766
- annotations = ds.Sequence(features_instance_dict)
767
- features_dict.update({"annotations": annotations})
768
- return ds.Features(features_dict)
769
-
770
-
771
  def dataset_configs(year: int, version: ds.Version) -> List[MsCocoConfig]:
772
  return [
773
  MsCocoConfig(
@@ -785,16 +927,16 @@ def dataset_configs(year: int, version: ds.Version) -> List[MsCocoConfig]:
785
  coco_task="person_keypoints",
786
  version=version,
787
  ),
788
- MsCocoConfig(
789
- year=year,
790
- coco_task=("captions", "instances"),
791
- version=version,
792
- ),
793
- MsCocoConfig(
794
- year=year,
795
- coco_task=("captions", "person_keypoints"),
796
- version=version,
797
- ),
798
  ]
799
 
800
 
@@ -822,19 +964,8 @@ class MsCocoDataset(ds.GeneratorBasedBuilder):
822
  return config.task
823
 
824
  def _info(self) -> ds.DatasetInfo:
825
- if self.task == "captions":
826
- features = get_features_captions()
827
- elif self.task == "instances":
828
- features = get_features_instances(
829
- decode_rle=self.config.decode_rle, # type: ignore
830
- )
831
- elif self.task == "person_keypoints":
832
- features = get_features_person_keypoints(
833
- decode_rle=self.config.decode_rle, # type: ignore
834
- )
835
- else:
836
- raise ValueError(f"Invalid task: {self.task}")
837
-
838
  return ds.DatasetInfo(
839
  description=_DESCRIPTION,
840
  citation=_CITATION,
@@ -884,57 +1015,33 @@ class MsCocoDataset(ds.GeneratorBasedBuilder):
884
  ann_dir = os.path.join(base_annotation_dir, "annotations")
885
  ann_file_path = os.path.join(ann_dir, f"{self.task}_{split}{self.year}.json")
886
 
887
- ann_json = _load_annotation_json(ann_file_path=ann_file_path)
 
 
888
 
889
  # info = AnnotationInfo.from_dict(ann_json["info"])
890
- licenses = _load_licenses_data(license_dicts=ann_json["licenses"])
891
- images = _load_images_data(image_dicts=ann_json["images"])
892
 
893
  category_dicts = ann_json.get("categories")
894
  categories = (
895
- _load_categories_data(category_dicts=category_dicts)
896
  if category_dicts is not None
897
  else None
898
  )
899
 
900
- config: MsCocoConfig = self.config # type: ignore
901
- if config.task == "captions":
902
- yield from generate_captions_examples(
903
- annotations=_load_captions_data(
904
- ann_dicts=ann_json["annotations"],
905
- ),
906
- image_dir=image_dir,
907
- images=images,
908
- licenses=licenses,
909
- )
910
- elif config.task == "instances":
911
- assert categories is not None
912
- yield from generate_instances_examples(
913
- annotations=_load_instances_data(
914
- images=images,
915
- ann_dicts=ann_json["annotations"],
916
- decode_rle=self.config.decode_rle, # type: ignore
917
- ),
918
- categories=categories,
919
- image_dir=image_dir,
920
- images=images,
921
- licenses=licenses,
922
- )
923
- elif config.task == "person_keypoints":
924
- assert categories is not None
925
- yield from generate_person_keypoints_examples(
926
- annotations=_load_person_keypoints_data(
927
- images=images,
928
- ann_dicts=ann_json["annotations"],
929
- decode_rle=self.config.decode_rle, # type: ignore
930
- ),
931
- categories=categories,
932
- image_dir=image_dir,
933
  images=images,
934
- licenses=licenses,
935
- )
936
- else:
937
- raise ValueError(f"Invalid task: {config.task}")
 
 
 
938
 
939
  def _generate_test_examples(self, test_image_info_path: str):
940
  raise NotImplementedError
 
1
+ import abc
2
  import json
3
  import logging
4
  import os
 
90
  },
91
  }
92
 
93
+ CATEGORIES: Final[List[str]] = [
94
+ "person",
95
+ "bicycle",
96
+ "car",
97
+ "motorcycle",
98
+ "airplane",
99
+ "bus",
100
+ "train",
101
+ "truck",
102
+ "boat",
103
+ "traffic light",
104
+ "fire hydrant",
105
+ "stop sign",
106
+ "parking meter",
107
+ "bench",
108
+ "bird",
109
+ "cat",
110
+ "dog",
111
+ "horse",
112
+ "sheep",
113
+ "cow",
114
+ "elephant",
115
+ "bear",
116
+ "zebra",
117
+ "giraffe",
118
+ "backpack",
119
+ "umbrella",
120
+ "handbag",
121
+ "tie",
122
+ "suitcase",
123
+ "frisbee",
124
+ "skis",
125
+ "snowboard",
126
+ "sports ball",
127
+ "kite",
128
+ "baseball bat",
129
+ "baseball glove",
130
+ "skateboard",
131
+ "surfboard",
132
+ "tennis racket",
133
+ "bottle",
134
+ "wine glass",
135
+ "cup",
136
+ "fork",
137
+ "knife",
138
+ "spoon",
139
+ "bowl",
140
+ "banana",
141
+ "apple",
142
+ "sandwich",
143
+ "orange",
144
+ "broccoli",
145
+ "carrot",
146
+ "hot dog",
147
+ "pizza",
148
+ "donut",
149
+ "cake",
150
+ "chair",
151
+ "couch",
152
+ "potted plant",
153
+ "bed",
154
+ "dining table",
155
+ "toilet",
156
+ "tv",
157
+ "laptop",
158
+ "mouse",
159
+ "remote",
160
+ "keyboard",
161
+ "cell phone",
162
+ "microwave",
163
+ "oven",
164
+ "toaster",
165
+ "sink",
166
+ "refrigerator",
167
+ "book",
168
+ "clock",
169
+ "vase",
170
+ "scissors",
171
+ "teddy bear",
172
+ "hair drier",
173
+ "toothbrush",
174
+ ]
175
+
176
+ SUPER_CATEGORIES: Final[List[str]] = [
177
+ "person",
178
+ "vehicle",
179
+ "outdoor",
180
+ "animal",
181
+ "accessory",
182
+ "sports",
183
+ "kitchen",
184
+ "food",
185
+ "furniture",
186
+ "electronic",
187
+ "appliance",
188
+ "indoor",
189
+ ]
190
+
191
 
192
  @dataclass
193
  class AnnotationInfo(object):
 
349
  image_data = images[image_id]
350
  iscrowd = bool(json_dict["iscrowd"])
351
 
352
+ segmentation_mask = (
353
+ cls.rle_segmentation_to_mask(
354
  segmentation=segmentation,
355
  iscrowd=iscrowd,
356
  height=image_data.height,
357
  width=image_data.width,
358
  )
359
+ if decode_rle
360
+ else cls.compress_rle(
 
361
  segmentation=segmentation,
362
  iscrowd=iscrowd,
363
  height=image_data.height,
364
  width=image_data.width,
365
  )
366
+ )
367
  return cls(
368
  #
369
  # for AnnotationData
 
426
  image_data = images[image_id]
427
  iscrowd = bool(json_dict["iscrowd"])
428
 
429
+ segmentation_mask = (
430
+ cls.rle_segmentation_to_mask(
431
  segmentation=segmentation,
432
  iscrowd=iscrowd,
433
  height=image_data.height,
434
  width=image_data.width,
435
  )
436
+ if decode_rle
437
+ else cls.compress_rle(
 
438
  segmentation=segmentation,
439
  iscrowd=iscrowd,
440
  height=image_data.height,
441
  width=image_data.width,
442
  )
443
+ )
444
  flatten_keypoints = json_dict["keypoints"]
445
  num_keypoints = json_dict["num_keypoints"]
446
  keypoints = cls.get_person_keypoints(flatten_keypoints, num_keypoints)
 
495
  annotations: List[CaptionAnnotationDict]
496
 
497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
498
  class CategoryDict(TypedDict):
499
  category_id: CategoryId
500
  name: str
 
516
  annotations: List[InstanceAnnotationDict]
517
 
518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
519
  class KeypointDict(TypedDict):
520
  x: int
521
  y: int
 
532
  annotations: List[PersonKeypointAnnotationDict]
533
 
534
 
535
+ class MsCocoProcessor(object, metaclass=abc.ABCMeta):
536
+ def load_image(self, image_path: str) -> PilImage:
537
+ return Image.open(image_path)
538
+
539
+ def load_annotation_json(self, ann_file_path: str) -> JsonDict:
540
+ logger.info(f"Load annotation json from {ann_file_path}")
541
+ with open(ann_file_path, "r") as rf:
542
+ ann_json = json.load(rf)
543
+ return ann_json
 
544
 
545
+ def load_licenses_data(
546
+ self, license_dicts: List[JsonDict]
547
+ ) -> Dict[LicenseId, LicenseData]:
548
+ licenses = {}
549
+ for license_dict in license_dicts:
550
+ license_data = LicenseData.from_dict(license_dict)
551
+ licenses[license_data.license_id] = license_data
552
+ return licenses
553
+
554
+ def load_images_data(
555
+ self,
556
+ image_dicts: List[JsonDict],
557
+ tqdm_desc: str = "Load images",
558
+ ) -> Dict[ImageId, ImageData]:
559
+ images = {}
560
+ for image_dict in tqdm(image_dicts, desc=tqdm_desc):
561
+ image_data = ImageData.from_dict(image_dict)
562
+ images[image_data.image_id] = image_data
563
+ return images
564
+
565
+ def load_categories_data(
566
+ self,
567
+ category_dicts: List[JsonDict],
568
+ tqdm_desc: str = "Load categories",
569
+ ) -> Dict[CategoryId, CategoryData]:
570
+ categories = {}
571
+ for category_dict in tqdm(category_dicts, desc=tqdm_desc):
572
+ category_data = CategoryData.from_dict(category_dict)
573
+ categories[category_data.category_id] = category_data
574
+ return categories
575
+
576
+ def get_features_base_dict(self):
577
+ return {
578
+ "image_id": ds.Value("int64"),
579
+ "image": ds.Image(),
580
+ "file_name": ds.Value("string"),
581
+ "coco_url": ds.Value("string"),
582
+ "height": ds.Value("int32"),
583
+ "width": ds.Value("int32"),
584
+ "date_captured": ds.Value("string"),
585
+ "flickr_url": ds.Value("string"),
586
+ "license_id": ds.Value("int32"),
587
+ "license": {
588
+ "url": ds.Value("string"),
589
+ "license_id": ds.Value("int8"),
590
+ "name": ds.Value("string"),
591
+ },
592
+ }
593
+
594
+ @abc.abstractmethod
595
+ def get_features(self, *args, **kwargs) -> ds.Features:
596
+ raise NotImplementedError
597
+
598
+ @abc.abstractmethod
599
+ def load_data(
600
+ self, ann_dicts: List[JsonDict], tqdm_desc: Optional[str] = None, **kwargs
601
+ ):
602
+ raise NotImplementedError
603
 
604
+ @abc.abstractmethod
605
+ def generate_examples(
606
+ self,
607
+ image_dir: str,
608
+ images: Dict[ImageId, ImageData],
609
+ annotations: Dict[ImageId, List[CaptionsAnnotationData]],
610
+ licenses: Dict[LicenseId, LicenseData],
611
+ **kwargs,
612
+ ):
613
+ raise NotImplementedError
614
+
615
+
616
+ class CaptionsProcessor(MsCocoProcessor):
617
+ def get_features(self, *args, **kwargs) -> ds.Features:
618
+ features_dict = self.get_features_base_dict()
619
+ annotations = ds.Sequence(
620
+ {
621
+ "annotation_id": ds.Value("int64"),
622
+ "image_id": ds.Value("int64"),
623
+ "caption": ds.Value("string"),
624
+ }
625
  )
626
+ features_dict.update({"annotations": annotations})
627
+ return ds.Features(features_dict)
 
628
 
629
+ def load_data(
630
+ self,
631
+ ann_dicts: List[JsonDict],
632
+ tqdm_desc: str = "Load captions data",
633
+ **kwargs,
634
+ ) -> Dict[ImageId, List[CaptionsAnnotationData]]:
635
+ annotations = defaultdict(list)
636
+ for ann_dict in tqdm(ann_dicts, desc=tqdm_desc):
637
+ ann_data = CaptionsAnnotationData.from_dict(ann_dict)
638
+ annotations[ann_data.image_id].append(ann_data)
639
+ return annotations
640
+
641
+ def generate_examples(
642
+ self,
643
+ image_dir: str,
644
+ images: Dict[ImageId, ImageData],
645
+ annotations: Dict[ImageId, List[CaptionsAnnotationData]],
646
+ licenses: Dict[LicenseId, LicenseData],
647
+ **kwargs,
648
+ ) -> Iterator[Tuple[int, CaptionExample]]:
649
+ for idx, image_id in enumerate(images.keys()):
650
+ image_data = images[image_id]
651
+ image_anns = annotations[image_id]
652
+
653
+ assert len(image_anns) > 0
654
+
655
+ image = self.load_image(
656
+ image_path=os.path.join(image_dir, image_data.file_name),
657
+ )
658
+ example = asdict(image_data)
659
+ example["image"] = image
660
+ example["license"] = asdict(licenses[image_data.license_id])
661
+
662
+ example["annotations"] = []
663
+ for ann in image_anns:
664
+ example["annotations"].append(asdict(ann))
665
+
666
+ yield idx, example # type: ignore
667
+
668
+
669
+ class InstancesProcessor(MsCocoProcessor):
670
+ def get_features_instance_dict(self, decode_rle: bool):
671
+ segmentation_feature = (
672
+ ds.Image()
673
+ if decode_rle
674
+ else {
675
+ "counts": ds.Sequence(ds.Value("int64")),
676
+ "size": ds.Sequence(ds.Value("int32")),
677
+ }
678
+ )
679
+ return {
680
+ "annotation_id": ds.Value("int64"),
681
+ "image_id": ds.Value("int64"),
682
+ "segmentation": segmentation_feature,
683
+ "area": ds.Value("float32"),
684
+ "iscrowd": ds.Value("bool"),
685
+ "bbox": ds.Sequence(ds.Value("float32"), length=4),
686
+ "category_id": ds.Value("int32"),
687
+ "category": {
688
+ "category_id": ds.Value("int32"),
689
+ "name": ds.ClassLabel(
690
+ num_classes=len(CATEGORIES),
691
+ names=CATEGORIES,
692
+ ),
693
+ "supercategory": ds.ClassLabel(
694
+ num_classes=len(SUPER_CATEGORIES),
695
+ names=SUPER_CATEGORIES,
696
+ ),
697
+ },
698
+ }
699
 
700
+ def get_features(self, decode_rle: bool) -> ds.Features:
701
+ features_dict = self.get_features_base_dict()
702
+ annotations = ds.Sequence(
703
+ self.get_features_instance_dict(decode_rle=decode_rle)
704
+ )
705
+ features_dict.update({"annotations": annotations})
706
+ return ds.Features(features_dict)
707
+
708
+ def load_data( # type: ignore[override]
709
+ self,
710
+ ann_dicts: List[JsonDict],
711
+ images: Dict[ImageId, ImageData],
712
+ decode_rle: bool,
713
+ tqdm_desc: str = "Load instances data",
714
+ ) -> Dict[ImageId, List[InstancesAnnotationData]]:
715
+ annotations = defaultdict(list)
716
+ ann_dicts = sorted(ann_dicts, key=lambda d: d["image_id"])
717
+
718
+ for ann_dict in tqdm(ann_dicts, desc=tqdm_desc):
719
+ ann_data = InstancesAnnotationData.from_dict(
720
+ ann_dict, images=images, decode_rle=decode_rle
721
+ )
722
+ annotations[ann_data.image_id].append(ann_data)
723
+
724
+ return annotations
725
+
726
+ def generate_examples( # type: ignore[override]
727
+ self,
728
+ image_dir: str,
729
+ images: Dict[ImageId, ImageData],
730
+ annotations: Dict[ImageId, List[InstancesAnnotationData]],
731
+ licenses: Dict[LicenseId, LicenseData],
732
+ categories: Dict[CategoryId, CategoryData],
733
+ ) -> Iterator[Tuple[int, InstanceExample]]:
734
+ for idx, image_id in enumerate(images.keys()):
735
+ image_data = images[image_id]
736
+ image_anns = annotations[image_id]
737
+
738
+ if len(image_anns) < 1:
739
+ logger.warning(f"No annotation found for image id: {image_id}.")
740
+ continue
741
+
742
+ image = self.load_image(
743
+ image_path=os.path.join(image_dir, image_data.file_name),
744
+ )
745
+ example = asdict(image_data)
746
+ example["image"] = image
747
+ example["license"] = asdict(licenses[image_data.license_id])
748
+
749
+ example["annotations"] = []
750
+ for ann in image_anns:
751
+ ann_dict = asdict(ann)
752
+ category = categories[ann.category_id]
753
+ ann_dict["category"] = asdict(category)
754
+ example["annotations"].append(ann_dict)
755
+
756
+ yield idx, example # type: ignore
757
+
758
+
759
+ class PersonKeypointsProcessor(InstancesProcessor):
760
+ def get_features(self, decode_rle: bool) -> ds.Features:
761
+ features_dict = self.get_features_base_dict()
762
+ features_instance_dict = self.get_features_instance_dict(decode_rle=decode_rle)
763
+ features_instance_dict.update(
764
+ {
765
+ "keypoints": ds.Sequence(
766
+ {
767
+ "state": ds.Value("string"),
768
+ "x": ds.Value("int32"),
769
+ "y": ds.Value("int32"),
770
+ "v": ds.Value("int32"),
771
+ }
772
+ ),
773
+ "num_keypoints": ds.Value("int32"),
774
+ }
775
+ )
776
+ annotations = ds.Sequence(features_instance_dict)
777
+ features_dict.update({"annotations": annotations})
778
+ return ds.Features(features_dict)
779
+
780
+ def load_data( # type: ignore[override]
781
+ self,
782
+ ann_dicts: List[JsonDict],
783
+ images: Dict[ImageId, ImageData],
784
+ decode_rle: bool,
785
+ tqdm_desc: str = "Load person keypoints data",
786
+ ) -> Dict[ImageId, List[PersonKeypointsAnnotationData]]:
787
+ annotations = defaultdict(list)
788
+ ann_dicts = sorted(ann_dicts, key=lambda d: d["image_id"])
789
+
790
+ for ann_dict in tqdm(ann_dicts, desc=tqdm_desc):
791
+ ann_data = PersonKeypointsAnnotationData.from_dict(
792
+ ann_dict, images=images, decode_rle=decode_rle
793
+ )
794
+ annotations[ann_data.image_id].append(ann_data)
795
+ return annotations
796
+
797
+ def generate_examples( # type: ignore[override]
798
+ self,
799
+ image_dir: str,
800
+ images: Dict[ImageId, ImageData],
801
+ annotations: Dict[ImageId, List[PersonKeypointsAnnotationData]],
802
+ licenses: Dict[LicenseId, LicenseData],
803
+ categories: Dict[CategoryId, CategoryData],
804
+ ) -> Iterator[Tuple[int, PersonKeypointExample]]:
805
+ for idx, image_id in enumerate(images.keys()):
806
+ image_data = images[image_id]
807
+ image_anns = annotations[image_id]
808
+
809
+ if len(image_anns) < 1:
810
+ # If there are no persons in the image,
811
+ # no keypoint annotations will be assigned.
812
+ continue
813
+
814
+ image = self.load_image(
815
+ image_path=os.path.join(image_dir, image_data.file_name),
816
+ )
817
+ example = asdict(image_data)
818
+ example["image"] = image
819
+ example["license"] = asdict(licenses[image_data.license_id])
820
+
821
+ example["annotations"] = []
822
+ for ann in image_anns:
823
+ ann_dict = asdict(ann)
824
+ category = categories[ann.category_id]
825
+ ann_dict["category"] = asdict(category)
826
+ example["annotations"].append(ann_dict)
827
+
828
+ yield idx, example # type: ignore
829
 
830
 
831
  class MsCocoConfig(ds.BuilderConfig):
 
861
 
862
  self._year = year
863
  self._task = coco_task
864
+ self.processor = self.get_processor()
865
  self.decode_rle = decode_rle
866
 
867
  def _check_year(self, year: int) -> None:
 
872
  assert task in self.TASKS, task
873
  elif isinstance(task, list) or isinstance(task, tuple):
874
  for t in task:
875
+ assert t, task
876
  else:
877
  raise ValueError(f"Invalid task: {task}")
878
 
 
889
  else:
890
  raise ValueError(f"Invalid task: {self._task}")
891
 
892
+ def get_processor(self) -> MsCocoProcessor:
893
+ if self.task == "captions":
894
+ return CaptionsProcessor()
895
+ elif self.task == "instances":
896
+ return InstancesProcessor()
897
+ elif self.task == "person_keypoints":
898
+ return PersonKeypointsProcessor()
899
+ else:
900
+ raise ValueError(f"Invalid task: {self.task}")
901
+
902
  @classmethod
903
  def config_name(cls, year: int, task: Union[str, Sequence[str]]) -> str:
904
  if isinstance(task, str):
 
910
  raise ValueError(f"Invalid task: {task}")
911
 
912
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
913
  def dataset_configs(year: int, version: ds.Version) -> List[MsCocoConfig]:
914
  return [
915
  MsCocoConfig(
 
927
  coco_task="person_keypoints",
928
  version=version,
929
  ),
930
+ # MsCocoConfig(
931
+ # year=year,
932
+ # coco_task=("captions", "instances"),
933
+ # version=version,
934
+ # ),
935
+ # MsCocoConfig(
936
+ # year=year,
937
+ # coco_task=("captions", "person_keypoints"),
938
+ # version=version,
939
+ # ),
940
  ]
941
 
942
 
 
964
  return config.task
965
 
966
  def _info(self) -> ds.DatasetInfo:
967
+ processor: MsCocoProcessor = self.config.processor
968
+ features = processor.get_features(decode_rle=self.config.decode_rle)
 
 
 
 
 
 
 
 
 
 
 
969
  return ds.DatasetInfo(
970
  description=_DESCRIPTION,
971
  citation=_CITATION,
 
1015
  ann_dir = os.path.join(base_annotation_dir, "annotations")
1016
  ann_file_path = os.path.join(ann_dir, f"{self.task}_{split}{self.year}.json")
1017
 
1018
+ processor: MsCocoProcessor = self.config.processor
1019
+
1020
+ ann_json = processor.load_annotation_json(ann_file_path=ann_file_path)
1021
 
1022
  # info = AnnotationInfo.from_dict(ann_json["info"])
1023
+ licenses = processor.load_licenses_data(license_dicts=ann_json["licenses"])
1024
+ images = processor.load_images_data(image_dicts=ann_json["images"])
1025
 
1026
  category_dicts = ann_json.get("categories")
1027
  categories = (
1028
+ processor.load_categories_data(category_dicts=category_dicts)
1029
  if category_dicts is not None
1030
  else None
1031
  )
1032
 
1033
+ config: MsCocoConfig = self.config
1034
+ yield from processor.generate_examples(
1035
+ annotations=processor.load_data(
1036
+ ann_dicts=ann_json["annotations"],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1037
  images=images,
1038
+ decode_rle=config.decode_rle,
1039
+ ),
1040
+ categories=categories,
1041
+ image_dir=image_dir,
1042
+ images=images,
1043
+ licenses=licenses,
1044
+ )
1045
 
1046
  def _generate_test_examples(self, test_image_info_path: str):
1047
  raise NotImplementedError
README.md CHANGED
@@ -1,3 +1,276 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # Dataset Card for MSCOCO
2
 
3
  [![CI](https://github.com/shunk031/huggingface-datasets_MSCOCO/actions/workflows/ci.yaml/badge.svg)](https://github.com/shunk031/huggingface-datasets_MSCOCO/actions/workflows/ci.yaml)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - crowdsourced
4
+ language:
5
+ - en
6
+ language_creators:
7
+ - found
8
+ license:
9
+ - cc-by-4.0
10
+ multilinguality:
11
+ - monolingual
12
+ pretty_name: MSCOCO
13
+ size_categories: []
14
+ source_datasets:
15
+ - original
16
+ tags:
17
+ - image-captioning
18
+ - object-detection
19
+ - keypoint-detection
20
+ - stuff-segmentation
21
+ - panoptic-segmentation
22
+ task_categories:
23
+ - image-segmentation
24
+ - object-detection
25
+ - other
26
+ task_ids:
27
+ - instance-segmentation
28
+ - semantic-segmentation
29
+ - panoptic-segmentation
30
+ ---
31
+
32
  # Dataset Card for MSCOCO
33
 
34
  [![CI](https://github.com/shunk031/huggingface-datasets_MSCOCO/actions/workflows/ci.yaml/badge.svg)](https://github.com/shunk031/huggingface-datasets_MSCOCO/actions/workflows/ci.yaml)
35
+
36
+ ## Table of Contents
37
+ - [Dataset Card Creation Guide](#dataset-card-creation-guide)
38
+ - [Table of Contents](#table-of-contents)
39
+ - [Dataset Description](#dataset-description)
40
+ - [Dataset Summary](#dataset-summary)
41
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
42
+ - [Languages](#languages)
43
+ - [Dataset Structure](#dataset-structure)
44
+ - [Data Instances](#data-instances)
45
+ - [Data Fields](#data-fields)
46
+ - [Data Splits](#data-splits)
47
+ - [Dataset Creation](#dataset-creation)
48
+ - [Curation Rationale](#curation-rationale)
49
+ - [Source Data](#source-data)
50
+ - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
51
+ - [Who are the source language producers?](#who-are-the-source-language-producers)
52
+ - [Annotations](#annotations)
53
+ - [Annotation process](#annotation-process)
54
+ - [Who are the annotators?](#who-are-the-annotators)
55
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
56
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
57
+ - [Social Impact of Dataset](#social-impact-of-dataset)
58
+ - [Discussion of Biases](#discussion-of-biases)
59
+ - [Other Known Limitations](#other-known-limitations)
60
+ - [Additional Information](#additional-information)
61
+ - [Dataset Curators](#dataset-curators)
62
+ - [Licensing Information](#licensing-information)
63
+ - [Citation Information](#citation-information)
64
+ - [Contributions](#contributions)
65
+
66
+ ## Dataset Description
67
+
68
+ - **Homepage:** https://cocodataset.org/#home
69
+ - **Repository:** https://github.com/shunk031/huggingface-datasets_MSCOCO
70
+ - **Paper (Preprint):** https://arxiv.org/abs/1405.0312
71
+ - **Paper (ECCV2014):** https://link.springer.com/chapter/10.1007/978-3-319-10602-1_48
72
+ - **Leaderboard (Detection):** https://cocodataset.org/#detection-leaderboard
73
+ - **Leaderboard (Keypoint):** https://cocodataset.org/#keypoints-leaderboard
74
+ - **Leaderboard (Stuff):** https://cocodataset.org/#stuff-leaderboard
75
+ - **Leaderboard (Panoptic):** https://cocodataset.org/#panoptic-leaderboard
76
+ - **Leaderboard (Captioning):** https://cocodataset.org/#captions-leaderboard
77
+ - **Point of Contact:** [email protected]
78
+
79
+ ### Dataset Summary
80
+
81
+ > COCO is a large-scale object detection, segmentation, and captioning dataset. COCO has several features:
82
+ > - Object segmentation
83
+ > - Recognition in context
84
+ > - Superpixel stuff segmentation
85
+ > - 330K images (>200K labeled)
86
+ > - 1.5 million object instances
87
+ > - 80 object categories
88
+ > - 91 stuff categories
89
+ > - 5 captions per image
90
+ > - 250,000 people with keypoints
91
+
92
+ ### Supported Tasks and Leaderboards
93
+
94
+ [More Information Needed]
95
+
96
+ ### Languages
97
+
98
+ [More Information Needed]
99
+
100
+ ## Dataset Structure
101
+
102
+ ### Data Instances
103
+
104
+ #### 2014
105
+
106
+ - captioning dataset
107
+
108
+ ```python
109
+ import datasets as ds
110
+
111
+ dataset = ds.load_dataset(
112
+ "shunk031/MSCOCO",
113
+ year=2014,
114
+ coco_task="captions",
115
+ )
116
+ ```
117
+
118
+ - instances dataset
119
+
120
+ ```python
121
+ import datasets as ds
122
+
123
+ dataset = ds.load_dataset(
124
+ "shunk031/MSCOCO",
125
+ year=2014,
126
+ coco_task="instances",
127
+ decode_rle=True, # True if Run-length Encoding (RLE) is to be decoded and converted to binary mask.
128
+ )
129
+ ```
130
+
131
+ - person keypoints dataset
132
+
133
+ ```python
134
+ import datasets as ds
135
+
136
+ dataset = ds.load_dataset(
137
+ "shunk031/MSCOCO",
138
+ year=2014,
139
+ coco_task="person_keypoints",
140
+ decode_rle=True, # True if Run-length Encoding (RLE) is to be decoded and converted to binary mask.
141
+ )
142
+ ```
143
+
144
+ #### 2017
145
+
146
+ - captioning dataset
147
+
148
+ ```python
149
+ import datasets as ds
150
+
151
+ dataset = ds.load_dataset(
152
+ "shunk031/MSCOCO",
153
+ year=2017,
154
+ coco_task="captions",
155
+ )
156
+ ```
157
+
158
+ - instances dataset
159
+
160
+ ```python
161
+ import datasets as ds
162
+
163
+ dataset = ds.load_dataset(
164
+ "shunk031/MSCOCO",
165
+ year=2017,
166
+ coco_task="instances",
167
+ decode_rle=True, # True if Run-length Encoding (RLE) is to be decoded and converted to binary mask.
168
+ )
169
+ ```
170
+
171
+ - person keypoints dataset
172
+
173
+ ```python
174
+ import datasets as ds
175
+
176
+ dataset = ds.load_dataset(
177
+ "shunk031/MSCOCO",
178
+ year=2017,
179
+ coco_task="person_keypoints",
180
+ decode_rle=True, # True if Run-length Encoding (RLE) is to be decoded and converted to binary mask.
181
+ )
182
+ ```
183
+
184
+ ### Data Fields
185
+
186
+ [More Information Needed]
187
+
188
+ ### Data Splits
189
+
190
+ [More Information Needed]
191
+
192
+ ## Dataset Creation
193
+
194
+ ### Curation Rationale
195
+
196
+ [More Information Needed]
197
+
198
+ ### Source Data
199
+
200
+ [More Information Needed]
201
+
202
+ #### Initial Data Collection and Normalization
203
+
204
+ [More Information Needed]
205
+
206
+ #### Who are the source language producers?
207
+
208
+ [More Information Needed]
209
+
210
+ ### Annotations
211
+
212
+ [More Information Needed]
213
+
214
+ #### Annotation process
215
+
216
+ [More Information Needed]
217
+
218
+ #### Who are the annotators?
219
+
220
+ [More Information Needed]
221
+
222
+ ### Personal and Sensitive Information
223
+
224
+ [More Information Needed]
225
+
226
+ ## Considerations for Using the Data
227
+
228
+ ### Social Impact of Dataset
229
+
230
+ [More Information Needed]
231
+
232
+ ### Discussion of Biases
233
+
234
+ [More Information Needed]
235
+
236
+ ### Other Known Limitations
237
+
238
+ [More Information Needed]
239
+
240
+ ## Additional Information
241
+
242
+ ### Dataset Curators
243
+
244
+ [More Information Needed]
245
+
246
+ ### Licensing Information
247
+
248
+ > The annotations in this dataset along with this website belong to the COCO Consortium and are licensed under a [Creative Commons Attribution 4.0 License](https://creativecommons.org/licenses/by/4.0/legalcode).
249
+ >
250
+ > ## Images
251
+ > The COCO Consortium does not own the copyright of the images. Use of the images must abide by the Flickr Terms of Use. The users of the images accept full responsibility for the use of the dataset, including but not limited to the use of any copies of copyrighted images that they may create from the dataset.
252
+ >
253
+ > ## Software
254
+ > Copyright (c) 2015, COCO Consortium. All rights reserved. Redistribution and use software in source and binary form, with or without modification, are permitted provided that the following conditions are met:
255
+ > - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
256
+ > - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
257
+ > - Neither the name of the COCO Consortium nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
258
+ >
259
+ > THIS SOFTWARE AND ANNOTATIONS ARE PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
260
+
261
+ ### Citation Information
262
+
263
+ ```bibtex
264
+ @inproceedings{lin2014microsoft,
265
+ title={Microsoft coco: Common objects in context},
266
+ author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence},
267
+ booktitle={Computer Vision--ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13},
268
+ pages={740--755},
269
+ year={2014},
270
+ organization={Springer}
271
+ }
272
+ ```
273
+
274
+ ### Contributions
275
+
276
+ Thanks to [COCO Consortium](https://cocodataset.org/#people) for creating this dataset.
tests/MSCOCO_test.py CHANGED
@@ -1,12 +1,23 @@
 
 
1
  import datasets as ds
2
  import pytest
3
 
 
 
4
 
5
  @pytest.fixture
6
  def dataset_path() -> str:
7
  return "MSCOCO.py"
8
 
9
 
 
 
 
 
 
 
 
10
  @pytest.mark.parametrize(
11
  argnames="decode_rle,",
12
  argvalues=(
@@ -46,3 +57,8 @@ def test_load_dataset(
46
  )
47
  assert dataset["train"].num_rows == expected_num_train
48
  assert dataset["validation"].num_rows == expected_num_validation
 
 
 
 
 
 
1
+ import os
2
+
3
  import datasets as ds
4
  import pytest
5
 
6
+ from MSCOCO import CATEGORIES, SUPER_CATEGORIES
7
+
8
 
9
  @pytest.fixture
10
  def dataset_path() -> str:
11
  return "MSCOCO.py"
12
 
13
 
14
+ @pytest.mark.skipif(
15
+ condition=bool(os.environ.get("CI", False)),
16
+ reason=(
17
+ "Because this loading script downloads a large dataset, "
18
+ "we will skip running it on CI."
19
+ ),
20
+ )
21
  @pytest.mark.parametrize(
22
  argnames="decode_rle,",
23
  argvalues=(
 
57
  )
58
  assert dataset["train"].num_rows == expected_num_train
59
  assert dataset["validation"].num_rows == expected_num_validation
60
+
61
+
62
+ def test_consts():
63
+ assert len(CATEGORIES) == 80
64
+ assert len(SUPER_CATEGORIES) == 12