add flag for decoding RLE segmentation map (#3)
Browse files- COCOA.py +74 -28
- tests/COCOA_test.py +8 -1
COCOA.py
CHANGED
@@ -3,13 +3,12 @@ import logging
|
|
3 |
import os
|
4 |
from collections import defaultdict
|
5 |
from dataclasses import asdict, dataclass
|
6 |
-
from typing import Any, Dict, List, Literal, Optional, Tuple, Type, Union
|
7 |
|
8 |
import datasets as ds
|
9 |
import numpy as np
|
10 |
from PIL import Image
|
11 |
from PIL.Image import Image as PilImage
|
12 |
-
from pycocotools import mask as cocomask
|
13 |
from tqdm.auto import tqdm
|
14 |
|
15 |
logger = logging.getLogger(__name__)
|
@@ -146,21 +145,28 @@ class BsDsImageData(ImageData):
|
|
146 |
)
|
147 |
|
148 |
|
|
|
|
|
|
|
|
|
|
|
149 |
@dataclass
|
150 |
class RegionAnnotationData(object):
|
151 |
-
segmentation: np.ndarray
|
152 |
name: str
|
153 |
area: float
|
154 |
is_stuff: bool
|
155 |
occlude_rate: float
|
156 |
order: int
|
157 |
-
visible_mask: Optional[np.ndarray] = None
|
158 |
-
invisible_mask: Optional[np.ndarray] = None
|
159 |
|
160 |
@classmethod
|
161 |
def rle_segmentation_to_binary_mask(
|
162 |
cls, segmentation, height: int, width: int
|
163 |
) -> np.ndarray:
|
|
|
|
|
164 |
if isinstance(segmentation, list):
|
165 |
rles = cocomask.frPyObjects([segmentation], h=height, w=width)
|
166 |
rle = cocomask.merge(rles)
|
@@ -180,6 +186,8 @@ class RegionAnnotationData(object):
|
|
180 |
|
181 |
@classmethod
|
182 |
def get_visible_binary_mask(cls, rle_visible_mask=None) -> Optional[np.ndarray]:
|
|
|
|
|
183 |
if rle_visible_mask is None:
|
184 |
return None
|
185 |
return cocomask.decode(rle_visible_mask)
|
@@ -199,21 +207,28 @@ class RegionAnnotationData(object):
|
|
199 |
|
200 |
@classmethod
|
201 |
def from_dict(
|
202 |
-
cls,
|
|
|
|
|
|
|
203 |
) -> "RegionAnnotationData":
|
204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
|
206 |
-
segmentation_mask = cls.rle_segmentation_to_mask(
|
207 |
-
segmentation=segmentation,
|
208 |
-
height=image_data.height,
|
209 |
-
width=image_data.width,
|
210 |
-
)
|
211 |
-
visible_mask = cls.get_visible_mask(
|
212 |
-
rle_visible_mask=json_dict.get("visible_mask")
|
213 |
-
)
|
214 |
-
invisible_mask = cls.get_invisible_mask(
|
215 |
-
rle_invisible_mask=json_dict.get("invisible_mask")
|
216 |
-
)
|
217 |
return cls(
|
218 |
segmentation=segmentation_mask,
|
219 |
visible_mask=visible_mask,
|
@@ -237,13 +252,15 @@ class CocoaAnnotationData(object):
|
|
237 |
|
238 |
@classmethod
|
239 |
def from_dict(
|
240 |
-
cls, json_dict: JsonDict, images: Dict[ImageId, ImageData]
|
241 |
) -> "CocoaAnnotationData":
|
242 |
image_id = json_dict["image_id"]
|
243 |
|
244 |
regions = [
|
245 |
RegionAnnotationData.from_dict(
|
246 |
-
json_dict=region_dict,
|
|
|
|
|
247 |
)
|
248 |
for region_dict in json_dict["regions"]
|
249 |
]
|
@@ -282,23 +299,32 @@ def _load_images_data(
|
|
282 |
def _load_cocoa_data(
|
283 |
ann_dicts: List[JsonDict],
|
284 |
images: Dict[ImageId, ImageData],
|
|
|
285 |
tqdm_desc: str = "Load COCOA annotations",
|
286 |
-
):
|
287 |
annotations = defaultdict(list)
|
288 |
ann_dicts = sorted(ann_dicts, key=lambda d: d["image_id"])
|
289 |
|
290 |
for ann_dict in tqdm(ann_dicts, desc=tqdm_desc):
|
291 |
-
cocoa_data = CocoaAnnotationData.from_dict(
|
|
|
|
|
292 |
annotations[cocoa_data.image_id].append(cocoa_data)
|
293 |
|
294 |
return annotations
|
295 |
|
296 |
|
|
|
|
|
|
|
|
|
|
|
297 |
class CocoaDataset(ds.GeneratorBasedBuilder):
|
298 |
VERSION = ds.Version("1.0.0")
|
|
|
299 |
BUILDER_CONFIGS = [
|
300 |
-
|
301 |
-
|
302 |
]
|
303 |
|
304 |
def load_amodal_annotation(self, ann_json_path: str) -> JsonDict:
|
@@ -336,20 +362,35 @@ class CocoaDataset(ds.GeneratorBasedBuilder):
|
|
336 |
else:
|
337 |
raise ValueError(f"Invalid dataset name: {self.config.name}")
|
338 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
339 |
features_dict["annotations"] = ds.Sequence(
|
340 |
{
|
341 |
"author": ds.Value("string"),
|
342 |
"url": ds.Value("string"),
|
343 |
"regions": ds.Sequence(
|
344 |
{
|
345 |
-
"segmentation":
|
346 |
"name": ds.Value("string"),
|
347 |
"area": ds.Value("float32"),
|
348 |
"is_stuff": ds.Value("bool"),
|
349 |
"occlude_rate": ds.Value("float32"),
|
350 |
"order": ds.Value("int32"),
|
351 |
-
"visible_mask":
|
352 |
-
"invisible_mask":
|
353 |
}
|
354 |
),
|
355 |
"image_id": ds.Value("int64"),
|
@@ -500,13 +541,18 @@ class CocoaDataset(ds.GeneratorBasedBuilder):
|
|
500 |
image_dicts=ann_json["images"],
|
501 |
dataset_name=self.config.name,
|
502 |
)
|
503 |
-
annotations = _load_cocoa_data(
|
|
|
|
|
|
|
|
|
504 |
|
505 |
for idx, image_id in enumerate(images.keys()):
|
506 |
image_data = images[image_id]
|
507 |
image_anns = annotations[image_id]
|
508 |
|
509 |
if len(image_anns) < 1:
|
|
|
510 |
continue
|
511 |
|
512 |
image = _load_image(
|
|
|
3 |
import os
|
4 |
from collections import defaultdict
|
5 |
from dataclasses import asdict, dataclass
|
6 |
+
from typing import Any, Dict, List, Literal, Optional, Tuple, Type, TypedDict, Union
|
7 |
|
8 |
import datasets as ds
|
9 |
import numpy as np
|
10 |
from PIL import Image
|
11 |
from PIL.Image import Image as PilImage
|
|
|
12 |
from tqdm.auto import tqdm
|
13 |
|
14 |
logger = logging.getLogger(__name__)
|
|
|
145 |
)
|
146 |
|
147 |
|
148 |
+
class RunLengthEncoding(TypedDict):
|
149 |
+
counts: str
|
150 |
+
size: Tuple[int, int]
|
151 |
+
|
152 |
+
|
153 |
@dataclass
|
154 |
class RegionAnnotationData(object):
|
155 |
+
segmentation: Union[List[float], np.ndarray]
|
156 |
name: str
|
157 |
area: float
|
158 |
is_stuff: bool
|
159 |
occlude_rate: float
|
160 |
order: int
|
161 |
+
visible_mask: Optional[Union[np.ndarray, RunLengthEncoding]] = None
|
162 |
+
invisible_mask: Optional[Union[np.ndarray, RunLengthEncoding]] = None
|
163 |
|
164 |
@classmethod
|
165 |
def rle_segmentation_to_binary_mask(
|
166 |
cls, segmentation, height: int, width: int
|
167 |
) -> np.ndarray:
|
168 |
+
from pycocotools import mask as cocomask
|
169 |
+
|
170 |
if isinstance(segmentation, list):
|
171 |
rles = cocomask.frPyObjects([segmentation], h=height, w=width)
|
172 |
rle = cocomask.merge(rles)
|
|
|
186 |
|
187 |
@classmethod
|
188 |
def get_visible_binary_mask(cls, rle_visible_mask=None) -> Optional[np.ndarray]:
|
189 |
+
from pycocotools import mask as cocomask
|
190 |
+
|
191 |
if rle_visible_mask is None:
|
192 |
return None
|
193 |
return cocomask.decode(rle_visible_mask)
|
|
|
207 |
|
208 |
@classmethod
|
209 |
def from_dict(
|
210 |
+
cls,
|
211 |
+
json_dict: JsonDict,
|
212 |
+
image_data: ImageData,
|
213 |
+
decode_rle: bool,
|
214 |
) -> "RegionAnnotationData":
|
215 |
+
if decode_rle:
|
216 |
+
segmentation_mask = cls.rle_segmentation_to_mask(
|
217 |
+
segmentation=json_dict["segmentation"],
|
218 |
+
height=image_data.height,
|
219 |
+
width=image_data.width,
|
220 |
+
)
|
221 |
+
visible_mask = cls.get_visible_mask(
|
222 |
+
rle_visible_mask=json_dict.get("visible_mask")
|
223 |
+
)
|
224 |
+
invisible_mask = cls.get_invisible_mask(
|
225 |
+
rle_invisible_mask=json_dict.get("invisible_mask")
|
226 |
+
)
|
227 |
+
else:
|
228 |
+
segmentation_mask = json_dict["segmentation"]
|
229 |
+
visible_mask = json_dict.get("visible_mask")
|
230 |
+
invisible_mask = json_dict.get("invisible_mask")
|
231 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
return cls(
|
233 |
segmentation=segmentation_mask,
|
234 |
visible_mask=visible_mask,
|
|
|
252 |
|
253 |
@classmethod
|
254 |
def from_dict(
|
255 |
+
cls, json_dict: JsonDict, images: Dict[ImageId, ImageData], decode_rle: bool
|
256 |
) -> "CocoaAnnotationData":
|
257 |
image_id = json_dict["image_id"]
|
258 |
|
259 |
regions = [
|
260 |
RegionAnnotationData.from_dict(
|
261 |
+
json_dict=region_dict,
|
262 |
+
image_data=images[image_id],
|
263 |
+
decode_rle=decode_rle,
|
264 |
)
|
265 |
for region_dict in json_dict["regions"]
|
266 |
]
|
|
|
299 |
def _load_cocoa_data(
|
300 |
ann_dicts: List[JsonDict],
|
301 |
images: Dict[ImageId, ImageData],
|
302 |
+
decode_rle: bool,
|
303 |
tqdm_desc: str = "Load COCOA annotations",
|
304 |
+
) -> Dict[ImageId, List[CocoaAnnotationData]]:
|
305 |
annotations = defaultdict(list)
|
306 |
ann_dicts = sorted(ann_dicts, key=lambda d: d["image_id"])
|
307 |
|
308 |
for ann_dict in tqdm(ann_dicts, desc=tqdm_desc):
|
309 |
+
cocoa_data = CocoaAnnotationData.from_dict(
|
310 |
+
ann_dict, images=images, decode_rle=decode_rle
|
311 |
+
)
|
312 |
annotations[cocoa_data.image_id].append(cocoa_data)
|
313 |
|
314 |
return annotations
|
315 |
|
316 |
|
317 |
+
@dataclass
|
318 |
+
class CocoaConfig(ds.BuilderConfig):
|
319 |
+
decode_rle: bool = False
|
320 |
+
|
321 |
+
|
322 |
class CocoaDataset(ds.GeneratorBasedBuilder):
|
323 |
VERSION = ds.Version("1.0.0")
|
324 |
+
BUILDER_CONFIG_CLASS = CocoaConfig
|
325 |
BUILDER_CONFIGS = [
|
326 |
+
CocoaConfig(name="COCO", version=VERSION, decode_rle=False),
|
327 |
+
CocoaConfig(name="BSDS", version=VERSION, decode_rle=False),
|
328 |
]
|
329 |
|
330 |
def load_amodal_annotation(self, ann_json_path: str) -> JsonDict:
|
|
|
362 |
else:
|
363 |
raise ValueError(f"Invalid dataset name: {self.config.name}")
|
364 |
|
365 |
+
if self.config.decode_rle: # type: ignore
|
366 |
+
segmentation_feature = ds.Image()
|
367 |
+
visible_mask_feature = ds.Image()
|
368 |
+
invisible_mask_feature = ds.Image()
|
369 |
+
else:
|
370 |
+
segmentation_feature = ds.Sequence(ds.Value("float32"))
|
371 |
+
visible_mask_feature = {
|
372 |
+
"counts": ds.Value("string"),
|
373 |
+
"size": ds.Sequence(ds.Value("int32")),
|
374 |
+
}
|
375 |
+
invisible_mask_feature = {
|
376 |
+
"counts": ds.Value("string"),
|
377 |
+
"size": ds.Sequence(ds.Value("int32")),
|
378 |
+
}
|
379 |
+
|
380 |
features_dict["annotations"] = ds.Sequence(
|
381 |
{
|
382 |
"author": ds.Value("string"),
|
383 |
"url": ds.Value("string"),
|
384 |
"regions": ds.Sequence(
|
385 |
{
|
386 |
+
"segmentation": segmentation_feature,
|
387 |
"name": ds.Value("string"),
|
388 |
"area": ds.Value("float32"),
|
389 |
"is_stuff": ds.Value("bool"),
|
390 |
"occlude_rate": ds.Value("float32"),
|
391 |
"order": ds.Value("int32"),
|
392 |
+
"visible_mask": visible_mask_feature,
|
393 |
+
"invisible_mask": invisible_mask_feature,
|
394 |
}
|
395 |
),
|
396 |
"image_id": ds.Value("int64"),
|
|
|
541 |
image_dicts=ann_json["images"],
|
542 |
dataset_name=self.config.name,
|
543 |
)
|
544 |
+
annotations = _load_cocoa_data(
|
545 |
+
ann_dicts=ann_json["annotations"],
|
546 |
+
images=images,
|
547 |
+
decode_rle=self.config.decode_rle, # type: ignore
|
548 |
+
)
|
549 |
|
550 |
for idx, image_id in enumerate(images.keys()):
|
551 |
image_data = images[image_id]
|
552 |
image_anns = annotations[image_id]
|
553 |
|
554 |
if len(image_anns) < 1:
|
555 |
+
# The original COCO and BSDS datasets may not have amodal annotations.
|
556 |
continue
|
557 |
|
558 |
image = _load_image(
|
tests/COCOA_test.py
CHANGED
@@ -18,6 +18,10 @@ def data_dir() -> str:
|
|
18 |
return "annotations.tar.gz"
|
19 |
|
20 |
|
|
|
|
|
|
|
|
|
21 |
@pytest.mark.parametrize(
|
22 |
argnames=(
|
23 |
"dataset_name",
|
@@ -37,8 +41,11 @@ def test_load_dataset(
|
|
37 |
expected_num_train: int,
|
38 |
expected_num_validation: int,
|
39 |
expected_num_test: int,
|
|
|
40 |
):
|
41 |
-
dataset = ds.load_dataset(
|
|
|
|
|
42 |
|
43 |
assert dataset["train"].num_rows == expected_num_train # type: ignore
|
44 |
assert dataset["validation"].num_rows == expected_num_validation # type: ignore
|
|
|
18 |
return "annotations.tar.gz"
|
19 |
|
20 |
|
21 |
+
@pytest.mark.parametrize(
|
22 |
+
argnames="decode_rle,",
|
23 |
+
argvalues=(False, True),
|
24 |
+
)
|
25 |
@pytest.mark.parametrize(
|
26 |
argnames=(
|
27 |
"dataset_name",
|
|
|
41 |
expected_num_train: int,
|
42 |
expected_num_validation: int,
|
43 |
expected_num_test: int,
|
44 |
+
decode_rle: bool,
|
45 |
):
|
46 |
+
dataset = ds.load_dataset(
|
47 |
+
path=dataset_path, name=dataset_name, data_dir=data_dir, decode_rle=decode_rle
|
48 |
+
)
|
49 |
|
50 |
assert dataset["train"].num_rows == expected_num_train # type: ignore
|
51 |
assert dataset["validation"].num_rows == expected_num_validation # type: ignore
|