File size: 73,035 Bytes
3a7f06a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
{"nwo":"Cadene\/bootstrap.pytorch","sha":"e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c","path":"bootstrap\/lib\/options.py","language":"python","identifier":"Options.save","parameters":"(self, path_yaml)","argument_list":"","return_statement":"","docstring":"Write options dictionary to a yaml file","docstring_summary":"Write options dictionary to a yaml file","docstring_tokens":["Write","options","dictionary","to","a","yaml","file"],"function":"def save(self, path_yaml):\n        \"\"\" Write options dictionary to a yaml file\n        \"\"\"\n        Options.save_yaml_opts(self.options, path_yaml)","function_tokens":["def","save","(","self",",","path_yaml",")",":","Options",".","save_yaml_opts","(","self",".","options",",","path_yaml",")"],"url":"https:\/\/github.com\/Cadene\/bootstrap.pytorch\/blob\/e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c\/bootstrap\/lib\/options.py#L278-L281"}
{"nwo":"Cadene\/bootstrap.pytorch","sha":"e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c","path":"bootstrap\/lib\/options.py","language":"python","identifier":"Options.load_yaml_opts","parameters":"(source)","argument_list":"","return_statement":"return result","docstring":"Load options dictionary from a yaml file","docstring_summary":"Load options dictionary from a yaml file","docstring_tokens":["Load","options","dictionary","from","a","yaml","file"],"function":"def load_yaml_opts(source):\n        \"\"\" Load options dictionary from a yaml file\n        \"\"\"\n        result = {}\n        if isinstance(source, str):\n            with open(source, 'r') as yaml_file:\n                options_dict = yaml.safe_load(yaml_file)\n        elif isinstance(source, dict):\n            options_dict = source\n        else:\n            raise TypeError('Unsupported source type: {}'.format(type(source)))\n        includes = options_dict.get('__include__', False)\n        if includes:\n            if type(includes) != list:\n                includes = [includes]\n            for include in includes:\n                filename = '{}\/{}'.format(os.path.dirname(source), include)\n                if os.path.isfile(filename):\n                    parent = Options.load_yaml_opts(filename)\n                else:\n                    parent = Options.load_yaml_opts(include)\n                merge_dictionaries(result, parent)\n        merge_dictionaries(result, options_dict)  # to be sure the main options overwrite the parent options\n        result.pop('__include__', None)\n        result = OptionsDict(result)\n        return result","function_tokens":["def","load_yaml_opts","(","source",")",":","result","=","{","}","if","isinstance","(","source",",","str",")",":","with","open","(","source",",","'r'",")","as","yaml_file",":","options_dict","=","yaml",".","safe_load","(","yaml_file",")","elif","isinstance","(","source",",","dict",")",":","options_dict","=","source","else",":","raise","TypeError","(","'Unsupported source type: {}'",".","format","(","type","(","source",")",")",")","includes","=","options_dict",".","get","(","'__include__'",",","False",")","if","includes",":","if","type","(","includes",")","!=","list",":","includes","=","[","includes","]","for","include","in","includes",":","filename","=","'{}\/{}'",".","format","(","os",".","path",".","dirname","(","source",")",",","include",")","if","os",".","path",".","isfile","(","filename",")",":","parent","=","Options",".","load_yaml_opts","(","filename",")","else",":","parent","=","Options",".","load_yaml_opts","(","include",")","merge_dictionaries","(","result",",","parent",")","merge_dictionaries","(","result",",","options_dict",")","# to be sure the main options overwrite the parent options","result",".","pop","(","'__include__'",",","None",")","result","=","OptionsDict","(","result",")","return","result"],"url":"https:\/\/github.com\/Cadene\/bootstrap.pytorch\/blob\/e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c\/bootstrap\/lib\/options.py#L291-L316"}
{"nwo":"Cadene\/bootstrap.pytorch","sha":"e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c","path":"bootstrap\/lib\/utils.py","language":"python","identifier":"env_info","parameters":"()","argument_list":"","return_statement":"return info","docstring":"Collects information about the environment, for reproducibility","docstring_summary":"Collects information about the environment, for reproducibility","docstring_tokens":["Collects","information","about","the","environment","for","reproducibility"],"function":"def env_info():\n    \"\"\" Collects information about the environment, for reproducibility \"\"\"\n    info = {}\n    info['python_version'] = sys.version\n    info['command'] = subprocess.list2cmdline(sys.argv)\n    with open(os.devnull, 'w') as devnull:\n        info['pip_modules'] = subprocess.check_output(['pip', 'freeze'], stderr=devnull)\n        try:\n            git_branch_cmd = ['git', 'rev-parse', '--abbrev-ref', 'HEAD']\n            info['git_branch'] = subprocess.check_output(git_branch_cmd, stderr=devnull).strip().decode('UTF-8')\n            git_local_commit_cmd = ['git', 'rev-parse', 'HEAD']\n            git_status_cmd = ['git', 'status']\n            git_origin_commit_cmd = ['git', 'rev-parse', 'origin\/{}'.format(info['git_branch'])]\n            git_diff_origin_commit_cmd = ['git', 'diff', 'origin\/{}'.format(info['git_branch'])]\n            info['git_origin_commit'] = subprocess.check_output(git_origin_commit_cmd, stderr=devnull)\n            git_log_since_origin_cmd = ['git', 'log', '--pretty=oneline', '{}..HEAD'.format(info['git_origin_commit'])]\n            info['git_local_commit'] = subprocess.check_output(git_local_commit_cmd, stderr=devnull)\n            info['git_status'] = subprocess.check_output(git_status_cmd, stderr=devnull)\n            info['git_diff_origin_commit'] = subprocess.check_output(git_diff_origin_commit_cmd, stderr=devnull)\n            info['git_log_since_origin'] = subprocess.check_output(git_log_since_origin_cmd, stderr=devnull)\n        except subprocess.CalledProcessError:\n            pass\n    info['creation_time'] = time.strftime('%y-%m-%d-%H-%M-%S')\n    info['sysname'] = os.uname()[0]\n    info['nodename'] = os.uname()[1]\n    info['release'] = os.uname()[2]\n    info['version'] = os.uname()[3]\n    info['architecture'] = os.uname()[4]\n    info['user'] = os.environ['USER']\n    info['path'] = os.environ['PWD']\n    info['conda_environment'] = os.environ.get('CONDA_DEFAULT_ENV', '')\n    info['environment_vars'] = dict(os.environ)\n    info = {k: info[k].decode(\"UTF-8\") if type(info[k]) == bytes else info[k] for k in info}\n    return info","function_tokens":["def","env_info","(",")",":","info","=","{","}","info","[","'python_version'","]","=","sys",".","version","info","[","'command'","]","=","subprocess",".","list2cmdline","(","sys",".","argv",")","with","open","(","os",".","devnull",",","'w'",")","as","devnull",":","info","[","'pip_modules'","]","=","subprocess",".","check_output","(","[","'pip'",",","'freeze'","]",",","stderr","=","devnull",")","try",":","git_branch_cmd","=","[","'git'",",","'rev-parse'",",","'--abbrev-ref'",",","'HEAD'","]","info","[","'git_branch'","]","=","subprocess",".","check_output","(","git_branch_cmd",",","stderr","=","devnull",")",".","strip","(",")",".","decode","(","'UTF-8'",")","git_local_commit_cmd","=","[","'git'",",","'rev-parse'",",","'HEAD'","]","git_status_cmd","=","[","'git'",",","'status'","]","git_origin_commit_cmd","=","[","'git'",",","'rev-parse'",",","'origin\/{}'",".","format","(","info","[","'git_branch'","]",")","]","git_diff_origin_commit_cmd","=","[","'git'",",","'diff'",",","'origin\/{}'",".","format","(","info","[","'git_branch'","]",")","]","info","[","'git_origin_commit'","]","=","subprocess",".","check_output","(","git_origin_commit_cmd",",","stderr","=","devnull",")","git_log_since_origin_cmd","=","[","'git'",",","'log'",",","'--pretty=oneline'",",","'{}..HEAD'",".","format","(","info","[","'git_origin_commit'","]",")","]","info","[","'git_local_commit'","]","=","subprocess",".","check_output","(","git_local_commit_cmd",",","stderr","=","devnull",")","info","[","'git_status'","]","=","subprocess",".","check_output","(","git_status_cmd",",","stderr","=","devnull",")","info","[","'git_diff_origin_commit'","]","=","subprocess",".","check_output","(","git_diff_origin_commit_cmd",",","stderr","=","devnull",")","info","[","'git_log_since_origin'","]","=","subprocess",".","check_output","(","git_log_since_origin_cmd",",","stderr","=","devnull",")","except","subprocess",".","CalledProcessError",":","pass","info","[","'creation_time'","]","=","time",".","strftime","(","'%y-%m-%d-%H-%M-%S'",")","info","[","'sysname'","]","=","os",".","uname","(",")","[","0","]","info","[","'nodename'","]","=","os",".","uname","(",")","[","1","]","info","[","'release'","]","=","os",".","uname","(",")","[","2","]","info","[","'version'","]","=","os",".","uname","(",")","[","3","]","info","[","'architecture'","]","=","os",".","uname","(",")","[","4","]","info","[","'user'","]","=","os",".","environ","[","'USER'","]","info","[","'path'","]","=","os",".","environ","[","'PWD'","]","info","[","'conda_environment'","]","=","os",".","environ",".","get","(","'CONDA_DEFAULT_ENV'",",","''",")","info","[","'environment_vars'","]","=","dict","(","os",".","environ",")","info","=","{","k",":","info","[","k","]",".","decode","(","\"UTF-8\"",")","if","type","(","info","[","k","]",")","==","bytes","else","info","[","k","]","for","k","in","info","}","return","info"],"url":"https:\/\/github.com\/Cadene\/bootstrap.pytorch\/blob\/e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c\/bootstrap\/lib\/utils.py#L47-L80"}
{"nwo":"Cadene\/bootstrap.pytorch","sha":"e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c","path":"bootstrap\/models\/model.py","language":"python","identifier":"Model.eval","parameters":"(self)","argument_list":"","return_statement":"","docstring":"Activate evaluation mode","docstring_summary":"Activate evaluation mode","docstring_tokens":["Activate","evaluation","mode"],"function":"def eval(self):\n        \"\"\" Activate evaluation mode\n        \"\"\"\n        super(Model, self).train(mode=False)\n        self.mode = 'eval'","function_tokens":["def","eval","(","self",")",":","super","(","Model",",","self",")",".","train","(","mode","=","False",")","self",".","mode","=","'eval'"],"url":"https:\/\/github.com\/Cadene\/bootstrap.pytorch\/blob\/e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c\/bootstrap\/models\/model.py#L28-L32"}
{"nwo":"Cadene\/bootstrap.pytorch","sha":"e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c","path":"bootstrap\/models\/model.py","language":"python","identifier":"Model.train","parameters":"(self)","argument_list":"","return_statement":"","docstring":"Activate training mode","docstring_summary":"Activate training mode","docstring_tokens":["Activate","training","mode"],"function":"def train(self):\n        \"\"\" Activate training mode\n        \"\"\"\n        super(Model, self).train(mode=True)\n        self.mode = 'train'","function_tokens":["def","train","(","self",")",":","super","(","Model",",","self",")",".","train","(","mode","=","True",")","self",".","mode","=","'train'"],"url":"https:\/\/github.com\/Cadene\/bootstrap.pytorch\/blob\/e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c\/bootstrap\/models\/model.py#L34-L38"}
{"nwo":"Cadene\/bootstrap.pytorch","sha":"e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c","path":"bootstrap\/models\/model.py","language":"python","identifier":"Model.cuda","parameters":"(self, device_id=None)","argument_list":"","return_statement":"return self._apply(lambda t: t.cuda(device_id))","docstring":"Moves all model parameters and buffers to the GPU.\n\n            Args:\n                device_id (int, optional): if specified, all parameters will be\n                    copied to that device","docstring_summary":"Moves all model parameters and buffers to the GPU.","docstring_tokens":["Moves","all","model","parameters","and","buffers","to","the","GPU","."],"function":"def cuda(self, device_id=None):\n        \"\"\" Moves all model parameters and buffers to the GPU.\n\n            Args:\n                device_id (int, optional): if specified, all parameters will be\n                    copied to that device\n        \"\"\"\n        self.is_cuda = True\n        return self._apply(lambda t: t.cuda(device_id))","function_tokens":["def","cuda","(","self",",","device_id","=","None",")",":","self",".","is_cuda","=","True","return","self",".","_apply","(","lambda","t",":","t",".","cuda","(","device_id",")",")"],"url":"https:\/\/github.com\/Cadene\/bootstrap.pytorch\/blob\/e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c\/bootstrap\/models\/model.py#L40-L48"}
{"nwo":"Cadene\/bootstrap.pytorch","sha":"e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c","path":"bootstrap\/models\/model.py","language":"python","identifier":"Model.cpu","parameters":"(self)","argument_list":"","return_statement":"return self._apply(lambda t: t.cpu())","docstring":"Moves all model parameters and buffers to the CPU.","docstring_summary":"Moves all model parameters and buffers to the CPU.","docstring_tokens":["Moves","all","model","parameters","and","buffers","to","the","CPU","."],"function":"def cpu(self):\n        \"\"\" Moves all model parameters and buffers to the CPU.\n        \"\"\"\n        self.is_cuda = False\n        return self._apply(lambda t: t.cpu())","function_tokens":["def","cpu","(","self",")",":","self",".","is_cuda","=","False","return","self",".","_apply","(","lambda","t",":","t",".","cpu","(",")",")"],"url":"https:\/\/github.com\/Cadene\/bootstrap.pytorch\/blob\/e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c\/bootstrap\/models\/model.py#L50-L54"}
{"nwo":"Cadene\/bootstrap.pytorch","sha":"e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c","path":"bootstrap\/models\/model.py","language":"python","identifier":"Model.prepare_batch","parameters":"(self, batch)","argument_list":"","return_statement":"return batch","docstring":"Prepare a batch with two functions: cuda_tf and detach_tf (only in eval mode)","docstring_summary":"Prepare a batch with two functions: cuda_tf and detach_tf (only in eval mode)","docstring_tokens":["Prepare","a","batch","with","two","functions",":","cuda_tf","and","detach_tf","(","only","in","eval","mode",")"],"function":"def prepare_batch(self, batch):\n        \"\"\" Prepare a batch with two functions: cuda_tf and detach_tf (only in eval mode)\n        \"\"\"\n        if self.is_cuda:\n            batch = self.cuda_tf()(batch)\n        if self.mode == 'eval':\n            batch = self.detach_tf()(batch)\n        return batch","function_tokens":["def","prepare_batch","(","self",",","batch",")",":","if","self",".","is_cuda",":","batch","=","self",".","cuda_tf","(",")","(","batch",")","if","self",".","mode","==","'eval'",":","batch","=","self",".","detach_tf","(",")","(","batch",")","return","batch"],"url":"https:\/\/github.com\/Cadene\/bootstrap.pytorch\/blob\/e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c\/bootstrap\/models\/model.py#L56-L63"}
{"nwo":"Cadene\/bootstrap.pytorch","sha":"e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c","path":"bootstrap\/models\/model.py","language":"python","identifier":"Model.forward","parameters":"(self, batch)","argument_list":"","return_statement":"return out","docstring":"Prepare the batch and feed it to the network, criterion and metric.\n\n            Returns:\n                out (dict): a dictionary of outputs","docstring_summary":"Prepare the batch and feed it to the network, criterion and metric.","docstring_tokens":["Prepare","the","batch","and","feed","it","to","the","network","criterion","and","metric","."],"function":"def forward(self, batch):\n        \"\"\" Prepare the batch and feed it to the network, criterion and metric.\n\n            Returns:\n                out (dict): a dictionary of outputs\n        \"\"\"\n        batch = self.prepare_batch(batch)\n        net_out = self.network(batch)\n\n        cri_out = {}\n        if self.mode in self.criterions:\n            cri_tmp = self.criterions[self.mode](net_out, batch)\n            if cri_tmp is not None:\n                cri_out = cri_tmp\n\n        met_out = {}\n        if self.mode in self.metrics:\n            met_tmp = self.metrics[self.mode](cri_out, net_out, batch)\n            if met_tmp is not None:\n                met_out = met_tmp\n\n        out = {}\n        if type(net_out) is dict:\n            for key, value in net_out.items():\n                out[key] = value\n        if type(cri_out) is dict:\n            for key, value in cri_out.items():\n                out[key] = value\n        if type(met_out) is dict:\n            for key, value in met_out.items():\n                out[key] = value\n        return out","function_tokens":["def","forward","(","self",",","batch",")",":","batch","=","self",".","prepare_batch","(","batch",")","net_out","=","self",".","network","(","batch",")","cri_out","=","{","}","if","self",".","mode","in","self",".","criterions",":","cri_tmp","=","self",".","criterions","[","self",".","mode","]","(","net_out",",","batch",")","if","cri_tmp","is","not","None",":","cri_out","=","cri_tmp","met_out","=","{","}","if","self",".","mode","in","self",".","metrics",":","met_tmp","=","self",".","metrics","[","self",".","mode","]","(","cri_out",",","net_out",",","batch",")","if","met_tmp","is","not","None",":","met_out","=","met_tmp","out","=","{","}","if","type","(","net_out",")","is","dict",":","for","key",",","value","in","net_out",".","items","(",")",":","out","[","key","]","=","value","if","type","(","cri_out",")","is","dict",":","for","key",",","value","in","cri_out",".","items","(",")",":","out","[","key","]","=","value","if","type","(","met_out",")","is","dict",":","for","key",",","value","in","met_out",".","items","(",")",":","out","[","key","]","=","value","return","out"],"url":"https:\/\/github.com\/Cadene\/bootstrap.pytorch\/blob\/e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c\/bootstrap\/models\/model.py#L65-L96"}
{"nwo":"Cadene\/bootstrap.pytorch","sha":"e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c","path":"bootstrap\/models\/model.py","language":"python","identifier":"DefaultModel._init_network","parameters":"(self, engine=None)","argument_list":"","return_statement":"return net_factory(engine)","docstring":"Create the network using the bootstrap network factory","docstring_summary":"Create the network using the bootstrap network factory","docstring_tokens":["Create","the","network","using","the","bootstrap","network","factory"],"function":"def _init_network(self, engine=None):\n        \"\"\" Create the network using the bootstrap network factory\n        \"\"\"\n        return net_factory(engine)","function_tokens":["def","_init_network","(","self",",","engine","=","None",")",":","return","net_factory","(","engine",")"],"url":"https:\/\/github.com\/Cadene\/bootstrap.pytorch\/blob\/e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c\/bootstrap\/models\/model.py#L141-L144"}
{"nwo":"Cadene\/bootstrap.pytorch","sha":"e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c","path":"bootstrap\/models\/model.py","language":"python","identifier":"DefaultModel._init_criterions","parameters":"(self, engine=None)","argument_list":"","return_statement":"return criterions","docstring":"Create the two criterions using the bootstrap criterion factory","docstring_summary":"Create the two criterions using the bootstrap criterion factory","docstring_tokens":["Create","the","two","criterions","using","the","bootstrap","criterion","factory"],"function":"def _init_criterions(self, engine=None):\n        \"\"\" Create the two criterions using the bootstrap criterion factory\n        \"\"\"\n        # by default all modes have criterions\n        if engine:\n            modes = list(engine.dataset.keys())  # [train, val] for mnist\n        else:\n            modes = ['train', 'eval']\n\n        criterions = {}\n        for mode in modes:\n            tmp_cri = cri_factory(engine, mode)\n            if tmp_cri is not None:\n                criterions[mode] = tmp_cri\n        return criterions","function_tokens":["def","_init_criterions","(","self",",","engine","=","None",")",":","# by default all modes have criterions","if","engine",":","modes","=","list","(","engine",".","dataset",".","keys","(",")",")","# [train, val] for mnist","else",":","modes","=","[","'train'",",","'eval'","]","criterions","=","{","}","for","mode","in","modes",":","tmp_cri","=","cri_factory","(","engine",",","mode",")","if","tmp_cri","is","not","None",":","criterions","[","mode","]","=","tmp_cri","return","criterions"],"url":"https:\/\/github.com\/Cadene\/bootstrap.pytorch\/blob\/e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c\/bootstrap\/models\/model.py#L146-L160"}
{"nwo":"Cadene\/bootstrap.pytorch","sha":"e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c","path":"bootstrap\/models\/model.py","language":"python","identifier":"DefaultModel._init_metrics","parameters":"(self, engine=None)","argument_list":"","return_statement":"return metrics","docstring":"Create the two metrics using the bootstrap metric factory","docstring_summary":"Create the two metrics using the bootstrap metric factory","docstring_tokens":["Create","the","two","metrics","using","the","bootstrap","metric","factory"],"function":"def _init_metrics(self, engine=None):\n        \"\"\" Create the two metrics using the bootstrap metric factory\n        \"\"\"\n        # by default all modes have metrics\n        if engine:\n            modes = list(engine.dataset.keys())\n        else:\n            modes = ['train', 'eval']\n\n        metrics = {}\n        for mode in modes:\n            tmp_met = met_factory(engine, mode)\n            if tmp_met is not None:\n                metrics[mode] = tmp_met\n        return metrics","function_tokens":["def","_init_metrics","(","self",",","engine","=","None",")",":","# by default all modes have metrics","if","engine",":","modes","=","list","(","engine",".","dataset",".","keys","(",")",")","else",":","modes","=","[","'train'",",","'eval'","]","metrics","=","{","}","for","mode","in","modes",":","tmp_met","=","met_factory","(","engine",",","mode",")","if","tmp_met","is","not","None",":","metrics","[","mode","]","=","tmp_met","return","metrics"],"url":"https:\/\/github.com\/Cadene\/bootstrap.pytorch\/blob\/e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c\/bootstrap\/models\/model.py#L162-L176"}
{"nwo":"Cadene\/bootstrap.pytorch","sha":"e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c","path":"bootstrap\/models\/model.py","language":"python","identifier":"SimpleModel.forward","parameters":"(self, batch)","argument_list":"","return_statement":"return out","docstring":"The forward call to the network uses batch['data'] instead of batch","docstring_summary":"The forward call to the network uses batch['data'] instead of batch","docstring_tokens":["The","forward","call","to","the","network","uses","batch","[","data","]","instead","of","batch"],"function":"def forward(self, batch):\n        \"\"\" The forward call to the network uses batch['data'] instead of batch\n        \"\"\"\n        batch = self.prepare_batch(batch)\n        net_out = self.network(batch['data'])\n\n        cri_out = {}\n        if self.mode in self.criterions:\n            cri_tmp = self.criterions[self.mode](net_out, batch)\n            if cri_tmp is not None:\n                cri_out = cri_tmp\n\n        met_out = {}\n        if self.mode in self.metrics:\n            met_tmp = self.metrics[self.mode](cri_out, net_out, batch)\n            if met_tmp is not None:\n                met_out = met_tmp\n\n        out = {}\n        if type(net_out) is dict:\n            for key, value in net_out.items():\n                out[key] = value\n        if type(cri_out) is dict:\n            for key, value in cri_out.items():\n                out[key] = value\n        if type(met_out) is dict:\n            for key, value in met_out.items():\n                out[key] = value\n        return out","function_tokens":["def","forward","(","self",",","batch",")",":","batch","=","self",".","prepare_batch","(","batch",")","net_out","=","self",".","network","(","batch","[","'data'","]",")","cri_out","=","{","}","if","self",".","mode","in","self",".","criterions",":","cri_tmp","=","self",".","criterions","[","self",".","mode","]","(","net_out",",","batch",")","if","cri_tmp","is","not","None",":","cri_out","=","cri_tmp","met_out","=","{","}","if","self",".","mode","in","self",".","metrics",":","met_tmp","=","self",".","metrics","[","self",".","mode","]","(","cri_out",",","net_out",",","batch",")","if","met_tmp","is","not","None",":","met_out","=","met_tmp","out","=","{","}","if","type","(","net_out",")","is","dict",":","for","key",",","value","in","net_out",".","items","(",")",":","out","[","key","]","=","value","if","type","(","cri_out",")","is","dict",":","for","key",",","value","in","cri_out",".","items","(",")",":","out","[","key","]","=","value","if","type","(","met_out",")","is","dict",":","for","key",",","value","in","met_out",".","items","(",")",":","out","[","key","]","=","value","return","out"],"url":"https:\/\/github.com\/Cadene\/bootstrap.pytorch\/blob\/e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c\/bootstrap\/models\/model.py#L191-L219"}
{"nwo":"Cadene\/bootstrap.pytorch","sha":"e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c","path":"bootstrap\/models\/metrics\/accuracy.py","language":"python","identifier":"accuracy","parameters":"(output, target, topk=None, ignore_index=None)","argument_list":"","return_statement":"return res","docstring":"Computes the precision@k for the specified values of k","docstring_summary":"Computes the precision","docstring_tokens":["Computes","the","precision"],"function":"def accuracy(output, target, topk=None, ignore_index=None):\n    \"\"\"Computes the precision@k for the specified values of k\"\"\"\n    topk = topk or [1, 5]\n\n    if ignore_index is not None:\n        target_mask = (target != ignore_index)\n        target = target[target_mask]\n        output_mask = target_mask.unsqueeze(1)\n        output_mask = output_mask.expand_as(output)\n        output = output[output_mask]\n        output = output.view(-1, output_mask.size(1))\n\n    maxk = max(topk)\n    batch_size = target.size(0)\n\n    _, pred = output.topk(maxk, 1, True, True)\n    pred = pred.t()\n    correct = pred.eq(target.view(1, -1).expand_as(pred))\n\n    res = []\n    for k in topk:\n        correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)\n        res.append(correct_k.mul_(100.0 \/ batch_size)[0])\n    return res","function_tokens":["def","accuracy","(","output",",","target",",","topk","=","None",",","ignore_index","=","None",")",":","topk","=","topk","or","[","1",",","5","]","if","ignore_index","is","not","None",":","target_mask","=","(","target","!=","ignore_index",")","target","=","target","[","target_mask","]","output_mask","=","target_mask",".","unsqueeze","(","1",")","output_mask","=","output_mask",".","expand_as","(","output",")","output","=","output","[","output_mask","]","output","=","output",".","view","(","-","1",",","output_mask",".","size","(","1",")",")","maxk","=","max","(","topk",")","batch_size","=","target",".","size","(","0",")","_",",","pred","=","output",".","topk","(","maxk",",","1",",","True",",","True",")","pred","=","pred",".","t","(",")","correct","=","pred",".","eq","(","target",".","view","(","1",",","-","1",")",".","expand_as","(","pred",")",")","res","=","[","]","for","k","in","topk",":","correct_k","=","correct","[",":","k","]",".","view","(","-","1",")",".","float","(",")",".","sum","(","0",",","keepdim","=","True",")","res",".","append","(","correct_k",".","mul_","(","100.0","\/","batch_size",")","[","0","]",")","return","res"],"url":"https:\/\/github.com\/Cadene\/bootstrap.pytorch\/blob\/e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c\/bootstrap\/models\/metrics\/accuracy.py#L19-L42"}
{"nwo":"Cadene\/bootstrap.pytorch","sha":"e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c","path":"bootstrap\/models\/networks\/data_parallel.py","language":"python","identifier":"gather","parameters":"(outputs, target_device, dim=0)","argument_list":"","return_statement":"","docstring":"r\"\"\"\n    Gathers tensors from different GPUs on a specified device\n      (-1 means the CPU).","docstring_summary":"r\"\"\"\n    Gathers tensors from different GPUs on a specified device\n      (-1 means the CPU).","docstring_tokens":["r","Gathers","tensors","from","different","GPUs","on","a","specified","device","(","-","1","means","the","CPU",")","."],"function":"def gather(outputs, target_device, dim=0):\n    r\"\"\"\n    Gathers tensors from different GPUs on a specified device\n      (-1 means the CPU).\n    \"\"\"\n    def gather_map(outputs):\n        out = outputs[0]\n        if torch.is_tensor(out):\n            return Gather.apply(target_device, dim, *outputs)\n        if out is None:\n            return None\n        if isinstance(out, dict):\n            if not all((len(out) == len(d) for d in outputs)):\n                raise ValueError('All dicts must have the same number of keys')\n            return type(out)(((k, gather_map([d[k] for d in outputs]))\n                              for k in out))\n        return type(out)(map(gather_map, zip(*outputs)))\n\n    # Recursive function calls like this create reference cycles.\n    # Setting the function to None clears the refcycle.\n    try:\n        return gather_map(outputs)\n    finally:\n        gather_map = None","function_tokens":["def","gather","(","outputs",",","target_device",",","dim","=","0",")",":","def","gather_map","(","outputs",")",":","out","=","outputs","[","0","]","if","torch",".","is_tensor","(","out",")",":","return","Gather",".","apply","(","target_device",",","dim",",","*","outputs",")","if","out","is","None",":","return","None","if","isinstance","(","out",",","dict",")",":","if","not","all","(","(","len","(","out",")","==","len","(","d",")","for","d","in","outputs",")",")",":","raise","ValueError","(","'All dicts must have the same number of keys'",")","return","type","(","out",")","(","(","(","k",",","gather_map","(","[","d","[","k","]","for","d","in","outputs","]",")",")","for","k","in","out",")",")","return","type","(","out",")","(","map","(","gather_map",",","zip","(","*","outputs",")",")",")","# Recursive function calls like this create reference cycles.","# Setting the function to None clears the refcycle.","try",":","return","gather_map","(","outputs",")","finally",":","gather_map","=","None"],"url":"https:\/\/github.com\/Cadene\/bootstrap.pytorch\/blob\/e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c\/bootstrap\/models\/networks\/data_parallel.py#L6-L29"}
{"nwo":"Cadene\/bootstrap.pytorch","sha":"e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c","path":"bootstrap\/engines\/engine.py","language":"python","identifier":"Engine.generate_view","parameters":"(self)","argument_list":"","return_statement":"","docstring":"Generate a view.html via an asynchronous call to `self.view.generate()`","docstring_summary":"Generate a view.html via an asynchronous call to `self.view.generate()`","docstring_tokens":["Generate","a","view",".","html","via","an","asynchronous","call","to","self",".","view",".","generate","()"],"function":"def generate_view(self):\n        \"\"\" Generate a view.html via an asynchronous call to `self.view.generate()`\n        \"\"\"\n        if self.view is not None:\n            if hasattr(self.view, 'current_thread') and self.view.current_thread.is_alive():\n                Logger()('Skipping view generation: another view is already being generated', log_level=Logger.WARNING)\n                Logger()('Consider removing batch entries from views.items in order to speed it up', log_level=Logger.WARNING)\n            else:\n                # TODO: Redesign this threading system so it wont slow down training\n                # Python threads don't really exist, because of the interpreter lock\n                # we might need multi-proessing or some other way.\n                self.view.current_thread = threading.Thread(target=self.view.generate)\n                self.view.current_thread.start()","function_tokens":["def","generate_view","(","self",")",":","if","self",".","view","is","not","None",":","if","hasattr","(","self",".","view",",","'current_thread'",")","and","self",".","view",".","current_thread",".","is_alive","(",")",":","Logger","(",")","(","'Skipping view generation: another view is already being generated'",",","log_level","=","Logger",".","WARNING",")","Logger","(",")","(","'Consider removing batch entries from views.items in order to speed it up'",",","log_level","=","Logger",".","WARNING",")","else",":","# TODO: Redesign this threading system so it wont slow down training","# Python threads don't really exist, because of the interpreter lock","# we might need multi-proessing or some other way.","self",".","view",".","current_thread","=","threading",".","Thread","(","target","=","self",".","view",".","generate",")","self",".","view",".","current_thread",".","start","(",")"],"url":"https:\/\/github.com\/Cadene\/bootstrap.pytorch\/blob\/e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c\/bootstrap\/engines\/engine.py#L31-L43"}
{"nwo":"Cadene\/bootstrap.pytorch","sha":"e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c","path":"bootstrap\/engines\/engine.py","language":"python","identifier":"Engine.hook","parameters":"(self, name)","argument_list":"","return_statement":"","docstring":"Run all the callback functions that have been registered\n            for a hook.\n\n            Args:\n                name: the name of the hook","docstring_summary":"Run all the callback functions that have been registered\n            for a hook.","docstring_tokens":["Run","all","the","callback","functions","that","have","been","registered","for","a","hook","."],"function":"def hook(self, name):\n        \"\"\" Run all the callback functions that have been registered\n            for a hook.\n\n            Args:\n                name: the name of the hook\n        \"\"\"\n        if name in self.hooks:\n            for func in self.hooks[name]:\n                func()","function_tokens":["def","hook","(","self",",","name",")",":","if","name","in","self",".","hooks",":","for","func","in","self",".","hooks","[","name","]",":","func","(",")"],"url":"https:\/\/github.com\/Cadene\/bootstrap.pytorch\/blob\/e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c\/bootstrap\/engines\/engine.py#L57-L66"}
{"nwo":"Cadene\/bootstrap.pytorch","sha":"e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c","path":"bootstrap\/engines\/engine.py","language":"python","identifier":"Engine.register_hook","parameters":"(self, name, func)","argument_list":"","return_statement":"","docstring":"Register a callback function to be triggered when the hook\n            is called.\n\n            Args:\n                name: the name of the hook\n                func: the callback function (no argument)\n\n            Example usage:\n\n            .. code-block:: python\n\n                def func():\n                    print('hooked!')\n\n                engine.register_hook('train_on_start_batch', func)","docstring_summary":"Register a callback function to be triggered when the hook\n            is called.","docstring_tokens":["Register","a","callback","function","to","be","triggered","when","the","hook","is","called","."],"function":"def register_hook(self, name, func):\n        \"\"\" Register a callback function to be triggered when the hook\n            is called.\n\n            Args:\n                name: the name of the hook\n                func: the callback function (no argument)\n\n            Example usage:\n\n            .. code-block:: python\n\n                def func():\n                    print('hooked!')\n\n                engine.register_hook('train_on_start_batch', func)\n        \"\"\"\n        if name not in self.hooks:\n            self.hooks[name] = []\n        self.hooks[name].append(func)","function_tokens":["def","register_hook","(","self",",","name",",","func",")",":","if","name","not","in","self",".","hooks",":","self",".","hooks","[","name","]","=","[","]","self",".","hooks","[","name","]",".","append","(","func",")"],"url":"https:\/\/github.com\/Cadene\/bootstrap.pytorch\/blob\/e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c\/bootstrap\/engines\/engine.py#L68-L87"}
{"nwo":"Cadene\/bootstrap.pytorch","sha":"e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c","path":"bootstrap\/engines\/engine.py","language":"python","identifier":"Engine.resume","parameters":"(self, map_location=None)","argument_list":"","return_statement":"","docstring":"Resume a checkpoint using the `bootstrap.lib.options.Options`","docstring_summary":"Resume a checkpoint using the `bootstrap.lib.options.Options`","docstring_tokens":["Resume","a","checkpoint","using","the","bootstrap",".","lib",".","options",".","Options"],"function":"def resume(self, map_location=None):\n        \"\"\" Resume a checkpoint using the `bootstrap.lib.options.Options`\n        \"\"\"\n        Logger()('Loading {} checkpoint'.format(Options()['exp']['resume']))\n        self.load(Options()['exp']['dir'],\n                  Options()['exp']['resume'],\n                  self.model, self.optimizer,\n                  map_location=map_location)\n        self.epoch += 1","function_tokens":["def","resume","(","self",",","map_location","=","None",")",":","Logger","(",")","(","'Loading {} checkpoint'",".","format","(","Options","(",")","[","'exp'","]","[","'resume'","]",")",")","self",".","load","(","Options","(",")","[","'exp'","]","[","'dir'","]",",","Options","(",")","[","'exp'","]","[","'resume'","]",",","self",".","model",",","self",".","optimizer",",","map_location","=","map_location",")","self",".","epoch","+=","1"],"url":"https:\/\/github.com\/Cadene\/bootstrap.pytorch\/blob\/e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c\/bootstrap\/engines\/engine.py#L89-L97"}
{"nwo":"Cadene\/bootstrap.pytorch","sha":"e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c","path":"bootstrap\/engines\/engine.py","language":"python","identifier":"Engine.eval","parameters":"(self)","argument_list":"","return_statement":"","docstring":"Launch evaluation procedures","docstring_summary":"Launch evaluation procedures","docstring_tokens":["Launch","evaluation","procedures"],"function":"def eval(self):\n        \"\"\" Launch evaluation procedures\n        \"\"\"\n        Logger()('Launching evaluation procedures')\n\n        if Options()['dataset']['eval_split']:\n            # self.epoch-1 to be equal to the same resumed epoch\n            # or to be equal to -1 when not resumed\n            self.eval_epoch(self.model, self.dataset['eval'], self.epoch - 1, logs_json=True)\n\n        Logger()('Ending evaluation procedures')","function_tokens":["def","eval","(","self",")",":","Logger","(",")","(","'Launching evaluation procedures'",")","if","Options","(",")","[","'dataset'","]","[","'eval_split'","]",":","# self.epoch-1 to be equal to the same resumed epoch","# or to be equal to -1 when not resumed","self",".","eval_epoch","(","self",".","model",",","self",".","dataset","[","'eval'","]",",","self",".","epoch","-","1",",","logs_json","=","True",")","Logger","(",")","(","'Ending evaluation procedures'",")"],"url":"https:\/\/github.com\/Cadene\/bootstrap.pytorch\/blob\/e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c\/bootstrap\/engines\/engine.py#L99-L109"}
{"nwo":"Cadene\/bootstrap.pytorch","sha":"e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c","path":"bootstrap\/engines\/engine.py","language":"python","identifier":"Engine.train","parameters":"(self)","argument_list":"","return_statement":"","docstring":"Launch training procedures\n\n            List of the hooks:\n\n            - train_on_start: before the full training procedure","docstring_summary":"Launch training procedures","docstring_tokens":["Launch","training","procedures"],"function":"def train(self):\n        \"\"\" Launch training procedures\n\n            List of the hooks:\n\n            - train_on_start: before the full training procedure\n\n        \"\"\"\n        Logger()('Launching training procedures')\n\n        self.hook('train_on_start')\n        while self.epoch < Options()['engine']['nb_epochs']:\n            self.train_epoch(self.model, self.dataset['train'], self.optimizer, self.epoch)\n\n            if Options()['dataset']['eval_split']:\n                out = self.eval_epoch(self.model, self.dataset['eval'], self.epoch)\n\n                if 'saving_criteria' in Options()['engine'] and Options()['engine']['saving_criteria'] is not None:\n                    for saving_criteria in Options()['engine']['saving_criteria']:\n                        if self.is_best(out, saving_criteria):\n                            name = saving_criteria.split(':')[0]\n                            Logger()('Saving best checkpoint for strategy {}'.format(name))\n                            self.save(Options()['exp']['dir'], 'best_{}'.format(name), self.model, self.optimizer)\n\n            Logger()('Saving last checkpoint')\n            self.save(Options()['exp']['dir'], 'last', self.model, self.optimizer)\n            self.epoch += 1\n\n        Logger()('Ending training procedures')","function_tokens":["def","train","(","self",")",":","Logger","(",")","(","'Launching training procedures'",")","self",".","hook","(","'train_on_start'",")","while","self",".","epoch","<","Options","(",")","[","'engine'","]","[","'nb_epochs'","]",":","self",".","train_epoch","(","self",".","model",",","self",".","dataset","[","'train'","]",",","self",".","optimizer",",","self",".","epoch",")","if","Options","(",")","[","'dataset'","]","[","'eval_split'","]",":","out","=","self",".","eval_epoch","(","self",".","model",",","self",".","dataset","[","'eval'","]",",","self",".","epoch",")","if","'saving_criteria'","in","Options","(",")","[","'engine'","]","and","Options","(",")","[","'engine'","]","[","'saving_criteria'","]","is","not","None",":","for","saving_criteria","in","Options","(",")","[","'engine'","]","[","'saving_criteria'","]",":","if","self",".","is_best","(","out",",","saving_criteria",")",":","name","=","saving_criteria",".","split","(","':'",")","[","0","]","Logger","(",")","(","'Saving best checkpoint for strategy {}'",".","format","(","name",")",")","self",".","save","(","Options","(",")","[","'exp'","]","[","'dir'","]",",","'best_{}'",".","format","(","name",")",",","self",".","model",",","self",".","optimizer",")","Logger","(",")","(","'Saving last checkpoint'",")","self",".","save","(","Options","(",")","[","'exp'","]","[","'dir'","]",",","'last'",",","self",".","model",",","self",".","optimizer",")","self",".","epoch","+=","1","Logger","(",")","(","'Ending training procedures'",")"],"url":"https:\/\/github.com\/Cadene\/bootstrap.pytorch\/blob\/e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c\/bootstrap\/engines\/engine.py#L111-L139"}
{"nwo":"Cadene\/bootstrap.pytorch","sha":"e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c","path":"bootstrap\/engines\/engine.py","language":"python","identifier":"Engine.train_epoch","parameters":"(self, model, dataset, optimizer, epoch, mode='train')","argument_list":"","return_statement":"","docstring":"Launch training procedures for one epoch\n\n            List of the hooks:\n\n            - train_on_start_epoch: before the training procedure for an epoch\n            - train_on_start_batch: before the training precedure for a batch\n            - train_on_forward: after the forward of the model\n            - train_on_backward: after the backward of the loss\n            - train_on_update: after the optimization step\n            - train_on_print: after the print to the terminal\n            - train_on_end_batch: end of the training procedure for a batch\n            - train_on_end_epoch: before saving the logs in logs.json\n            - train_on_flush: end of the training procedure for an epoch","docstring_summary":"Launch training procedures for one epoch","docstring_tokens":["Launch","training","procedures","for","one","epoch"],"function":"def train_epoch(self, model, dataset, optimizer, epoch, mode='train'):\n        \"\"\" Launch training procedures for one epoch\n\n            List of the hooks:\n\n            - train_on_start_epoch: before the training procedure for an epoch\n            - train_on_start_batch: before the training precedure for a batch\n            - train_on_forward: after the forward of the model\n            - train_on_backward: after the backward of the loss\n            - train_on_update: after the optimization step\n            - train_on_print: after the print to the terminal\n            - train_on_end_batch: end of the training procedure for a batch\n            - train_on_end_epoch: before saving the logs in logs.json\n            - train_on_flush: end of the training procedure for an epoch\n        \"\"\"\n        utils.set_random_seed(Options()['misc']['seed'] + epoch)  # to be able to reproduce exps on reload\n        Logger()('Training model on {}set for epoch {}'.format(dataset.split, epoch))\n        model.train()\n\n        timer = {\n            'begin': time.time(),\n            'elapsed': time.time(),\n            'process': None,\n            'load': None,\n            'run_avg': 0\n        }\n        out_epoch = {}\n        batch_loader = dataset.make_batch_loader()\n\n        self.hook(f'{mode}_on_start_epoch')\n        for i, batch in enumerate(batch_loader):\n            timer['load'] = time.time() - timer['elapsed']\n            self.hook(f'{mode}_on_start_batch')\n\n            optimizer.zero_grad()\n            out = model(batch)\n            self.hook(f'{mode}_on_forward')\n\n            if not torch.isnan(out['loss']):\n                out['loss'].backward()\n            else:\n                Logger()('NaN detected')\n            # torch.cuda.synchronize()\n            self.hook(f'{mode}_on_backward')\n\n            optimizer.step()\n            # torch.cuda.synchronize()\n            self.hook(f'{mode}_on_update')\n\n            timer['process'] = time.time() - timer['elapsed']\n            if i == 0:\n                timer['run_avg'] = timer['process']\n            else:\n                timer['run_avg'] = timer['run_avg'] * 0.8 + timer['process'] * 0.2\n\n            Logger().log_value(f'{mode}_batch.epoch', epoch, should_print=False)\n            Logger().log_value(f'{mode}_batch.batch', i, should_print=False)\n            Logger().log_value(f'{mode}_batch.timer.process', timer['process'], should_print=False)\n            Logger().log_value(f'{mode}_batch.timer.load', timer['load'], should_print=False)\n\n            for key, value in out.items():\n                if torch.is_tensor(value):\n                    if value.numel() <= 1:\n                        value = value.item()  # get number from a torch scalar\n                    else:\n                        continue\n                if isinstance(value, (list, dict, tuple)):\n                    continue\n                if key not in out_epoch:\n                    out_epoch[key] = []\n                out_epoch[key].append(value)\n                Logger().log_value(f'{mode}_batch.' + key, value, should_print=False)\n\n            if i % Options()['engine']['print_freq'] == 0 or i == len(batch_loader) - 1:\n                Logger()(\"{}: epoch {} | batch {}\/{}\".format(mode, epoch, i, len(batch_loader) - 1))\n                Logger()(\"{} elapsed: {} | left: {}\".format(\n                    ' ' * len(mode),\n                    datetime.timedelta(seconds=math.floor(time.time() - timer['begin'])),\n                    datetime.timedelta(seconds=math.floor(timer['run_avg'] * (len(batch_loader) - 1 - i)))))\n                Logger()(\"{} process: {:.5f} | load: {:.5f}\".format(' ' * len(mode), timer['process'], timer['load']))\n                Logger()(\"{} loss: {:.5f}\".format(' ' * len(mode), out['loss'].data.item()))\n                self.hook(f'{mode}_on_print')\n\n            timer['elapsed'] = time.time()\n            self.hook(f'{mode}_on_end_batch')\n\n        Logger().log_value(f'{mode}_epoch.epoch', epoch, should_print=True)\n        for key, value in out_epoch.items():\n            Logger().log_value(f'{mode}_epoch.' + key, np.asarray(value).mean(), should_print=True)\n\n        self.hook(f'{mode}_on_end_epoch')\n        Logger().flush()\n        self.hook(f'{mode}_on_flush')","function_tokens":["def","train_epoch","(","self",",","model",",","dataset",",","optimizer",",","epoch",",","mode","=","'train'",")",":","utils",".","set_random_seed","(","Options","(",")","[","'misc'","]","[","'seed'","]","+","epoch",")","# to be able to reproduce exps on reload","Logger","(",")","(","'Training model on {}set for epoch {}'",".","format","(","dataset",".","split",",","epoch",")",")","model",".","train","(",")","timer","=","{","'begin'",":","time",".","time","(",")",",","'elapsed'",":","time",".","time","(",")",",","'process'",":","None",",","'load'",":","None",",","'run_avg'",":","0","}","out_epoch","=","{","}","batch_loader","=","dataset",".","make_batch_loader","(",")","self",".","hook","(","f'{mode}_on_start_epoch'",")","for","i",",","batch","in","enumerate","(","batch_loader",")",":","timer","[","'load'","]","=","time",".","time","(",")","-","timer","[","'elapsed'","]","self",".","hook","(","f'{mode}_on_start_batch'",")","optimizer",".","zero_grad","(",")","out","=","model","(","batch",")","self",".","hook","(","f'{mode}_on_forward'",")","if","not","torch",".","isnan","(","out","[","'loss'","]",")",":","out","[","'loss'","]",".","backward","(",")","else",":","Logger","(",")","(","'NaN detected'",")","# torch.cuda.synchronize()","self",".","hook","(","f'{mode}_on_backward'",")","optimizer",".","step","(",")","# torch.cuda.synchronize()","self",".","hook","(","f'{mode}_on_update'",")","timer","[","'process'","]","=","time",".","time","(",")","-","timer","[","'elapsed'","]","if","i","==","0",":","timer","[","'run_avg'","]","=","timer","[","'process'","]","else",":","timer","[","'run_avg'","]","=","timer","[","'run_avg'","]","*","0.8","+","timer","[","'process'","]","*","0.2","Logger","(",")",".","log_value","(","f'{mode}_batch.epoch'",",","epoch",",","should_print","=","False",")","Logger","(",")",".","log_value","(","f'{mode}_batch.batch'",",","i",",","should_print","=","False",")","Logger","(",")",".","log_value","(","f'{mode}_batch.timer.process'",",","timer","[","'process'","]",",","should_print","=","False",")","Logger","(",")",".","log_value","(","f'{mode}_batch.timer.load'",",","timer","[","'load'","]",",","should_print","=","False",")","for","key",",","value","in","out",".","items","(",")",":","if","torch",".","is_tensor","(","value",")",":","if","value",".","numel","(",")","<=","1",":","value","=","value",".","item","(",")","# get number from a torch scalar","else",":","continue","if","isinstance","(","value",",","(","list",",","dict",",","tuple",")",")",":","continue","if","key","not","in","out_epoch",":","out_epoch","[","key","]","=","[","]","out_epoch","[","key","]",".","append","(","value",")","Logger","(",")",".","log_value","(","f'{mode}_batch.'","+","key",",","value",",","should_print","=","False",")","if","i","%","Options","(",")","[","'engine'","]","[","'print_freq'","]","==","0","or","i","==","len","(","batch_loader",")","-","1",":","Logger","(",")","(","\"{}: epoch {} | batch {}\/{}\"",".","format","(","mode",",","epoch",",","i",",","len","(","batch_loader",")","-","1",")",")","Logger","(",")","(","\"{} elapsed: {} | left: {}\"",".","format","(","' '","*","len","(","mode",")",",","datetime",".","timedelta","(","seconds","=","math",".","floor","(","time",".","time","(",")","-","timer","[","'begin'","]",")",")",",","datetime",".","timedelta","(","seconds","=","math",".","floor","(","timer","[","'run_avg'","]","*","(","len","(","batch_loader",")","-","1","-","i",")",")",")",")",")","Logger","(",")","(","\"{} process: {:.5f} | load: {:.5f}\"",".","format","(","' '","*","len","(","mode",")",",","timer","[","'process'","]",",","timer","[","'load'","]",")",")","Logger","(",")","(","\"{} loss: {:.5f}\"",".","format","(","' '","*","len","(","mode",")",",","out","[","'loss'","]",".","data",".","item","(",")",")",")","self",".","hook","(","f'{mode}_on_print'",")","timer","[","'elapsed'","]","=","time",".","time","(",")","self",".","hook","(","f'{mode}_on_end_batch'",")","Logger","(",")",".","log_value","(","f'{mode}_epoch.epoch'",",","epoch",",","should_print","=","True",")","for","key",",","value","in","out_epoch",".","items","(",")",":","Logger","(",")",".","log_value","(","f'{mode}_epoch.'","+","key",",","np",".","asarray","(","value",")",".","mean","(",")",",","should_print","=","True",")","self",".","hook","(","f'{mode}_on_end_epoch'",")","Logger","(",")",".","flush","(",")","self",".","hook","(","f'{mode}_on_flush'",")"],"url":"https:\/\/github.com\/Cadene\/bootstrap.pytorch\/blob\/e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c\/bootstrap\/engines\/engine.py#L141-L233"}
{"nwo":"Cadene\/bootstrap.pytorch","sha":"e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c","path":"bootstrap\/engines\/engine.py","language":"python","identifier":"Engine.eval_epoch","parameters":"(self, model, dataset, epoch, mode='eval', logs_json=True)","argument_list":"","return_statement":"return out","docstring":"Launch evaluation procedures for one epoch\n\n            List of the hooks (``mode='eval'`` by default):\n\n            - mode_on_start_epoch: before the evaluation procedure for an epoch\n            - mode_on_start_batch: before the evaluation precedure for a batch\n            - mode_on_forward: after the forward of the model\n            - mode_on_print: after the print to the terminal\n            - mode_on_end_batch: end of the evaluation procedure for a batch\n            - mode_on_end_epoch: before saving the logs in logs.json\n            - mode_on_flush: end of the evaluation procedure for an epoch\n\n            Returns:\n                out(dict): mean of all the scalar outputs of the model, indexed by output name, for this epoch","docstring_summary":"Launch evaluation procedures for one epoch","docstring_tokens":["Launch","evaluation","procedures","for","one","epoch"],"function":"def eval_epoch(self, model, dataset, epoch, mode='eval', logs_json=True):\n        \"\"\" Launch evaluation procedures for one epoch\n\n            List of the hooks (``mode='eval'`` by default):\n\n            - mode_on_start_epoch: before the evaluation procedure for an epoch\n            - mode_on_start_batch: before the evaluation precedure for a batch\n            - mode_on_forward: after the forward of the model\n            - mode_on_print: after the print to the terminal\n            - mode_on_end_batch: end of the evaluation procedure for a batch\n            - mode_on_end_epoch: before saving the logs in logs.json\n            - mode_on_flush: end of the evaluation procedure for an epoch\n\n            Returns:\n                out(dict): mean of all the scalar outputs of the model, indexed by output name, for this epoch\n        \"\"\"\n        utils.set_random_seed(Options()['misc']['seed'] + epoch)  # to be able to reproduce exps on reload\n        Logger()('Evaluating model on {}set for epoch {}'.format(dataset.split, epoch))\n        model.eval()\n\n        timer = {\n            'begin': time.time(),\n            'elapsed': time.time(),\n            'process': None,\n            'load': None,\n            'run_avg': 0\n        }\n        out_epoch = {}\n        batch_loader = dataset.make_batch_loader()\n\n        self.hook('{}_on_start_epoch'.format(mode))\n        for i, batch in enumerate(batch_loader):\n            timer['load'] = time.time() - timer['elapsed']\n            self.hook('{}_on_start_batch'.format(mode))\n\n            with torch.no_grad():\n                out = model(batch)\n            # torch.cuda.synchronize()\n            self.hook('{}_on_forward'.format(mode))\n\n            timer['process'] = time.time() - timer['elapsed']\n            if i == 0:\n                timer['run_avg'] = timer['process']\n            else:\n                timer['run_avg'] = timer['run_avg'] * 0.8 + timer['process'] * 0.2\n\n            Logger().log_value('{}_batch.batch'.format(mode), i, should_print=False)\n            Logger().log_value('{}_batch.epoch'.format(mode), epoch, should_print=False)\n            Logger().log_value('{}_batch.timer.process'.format(mode), timer['process'], should_print=False)\n            Logger().log_value('{}_batch.timer.load'.format(mode), timer['load'], should_print=False)\n\n            for key, value in out.items():\n                if torch.is_tensor(value):\n                    if value.dim() <= 1:\n                        value = value.item()  # get number from a torch scalar\n                    else:\n                        continue\n                if isinstance(value, (list, dict, tuple)):\n                    continue\n                if key not in out_epoch:\n                    out_epoch[key] = []\n                out_epoch[key].append(value)\n                Logger().log_value('{}_batch.{}'.format(mode, key), value, should_print=False)\n\n            if i % Options()['engine']['print_freq'] == 0:\n                Logger()(\"{}: epoch {} | batch {}\/{}\".format(mode, epoch, i, len(batch_loader) - 1))\n                Logger()(\"{}  elapsed: {} | left: {}\".format(\n                    ' ' * len(mode),\n                    datetime.timedelta(seconds=math.floor(time.time() - timer['begin'])),\n                    datetime.timedelta(seconds=math.floor(timer['run_avg'] * (len(batch_loader) - 1 - i)))))\n                Logger()(\"{}  process: {:.5f} | load: {:.5f}\".format(' ' * len(mode), timer['process'], timer['load']))\n                self.hook('{}_on_print'.format(mode))\n\n            timer['elapsed'] = time.time()\n            self.hook('{}_on_end_batch'.format(mode))\n\n        out = {}\n        for key, value in out_epoch.items():\n            out[key] = sum(value) \/ len(value)\n\n        Logger().log_value('{}_epoch.epoch'.format(mode), epoch, should_print=True)\n        for key, value in out.items():\n            Logger().log_value('{}_epoch.{}'.format(mode, key), value, should_print=True)\n\n        self.hook('{}_on_end_epoch'.format(mode))\n        if logs_json:\n            Logger().flush()\n\n        self.hook('{}_on_flush'.format(mode))\n        return out","function_tokens":["def","eval_epoch","(","self",",","model",",","dataset",",","epoch",",","mode","=","'eval'",",","logs_json","=","True",")",":","utils",".","set_random_seed","(","Options","(",")","[","'misc'","]","[","'seed'","]","+","epoch",")","# to be able to reproduce exps on reload","Logger","(",")","(","'Evaluating model on {}set for epoch {}'",".","format","(","dataset",".","split",",","epoch",")",")","model",".","eval","(",")","timer","=","{","'begin'",":","time",".","time","(",")",",","'elapsed'",":","time",".","time","(",")",",","'process'",":","None",",","'load'",":","None",",","'run_avg'",":","0","}","out_epoch","=","{","}","batch_loader","=","dataset",".","make_batch_loader","(",")","self",".","hook","(","'{}_on_start_epoch'",".","format","(","mode",")",")","for","i",",","batch","in","enumerate","(","batch_loader",")",":","timer","[","'load'","]","=","time",".","time","(",")","-","timer","[","'elapsed'","]","self",".","hook","(","'{}_on_start_batch'",".","format","(","mode",")",")","with","torch",".","no_grad","(",")",":","out","=","model","(","batch",")","# torch.cuda.synchronize()","self",".","hook","(","'{}_on_forward'",".","format","(","mode",")",")","timer","[","'process'","]","=","time",".","time","(",")","-","timer","[","'elapsed'","]","if","i","==","0",":","timer","[","'run_avg'","]","=","timer","[","'process'","]","else",":","timer","[","'run_avg'","]","=","timer","[","'run_avg'","]","*","0.8","+","timer","[","'process'","]","*","0.2","Logger","(",")",".","log_value","(","'{}_batch.batch'",".","format","(","mode",")",",","i",",","should_print","=","False",")","Logger","(",")",".","log_value","(","'{}_batch.epoch'",".","format","(","mode",")",",","epoch",",","should_print","=","False",")","Logger","(",")",".","log_value","(","'{}_batch.timer.process'",".","format","(","mode",")",",","timer","[","'process'","]",",","should_print","=","False",")","Logger","(",")",".","log_value","(","'{}_batch.timer.load'",".","format","(","mode",")",",","timer","[","'load'","]",",","should_print","=","False",")","for","key",",","value","in","out",".","items","(",")",":","if","torch",".","is_tensor","(","value",")",":","if","value",".","dim","(",")","<=","1",":","value","=","value",".","item","(",")","# get number from a torch scalar","else",":","continue","if","isinstance","(","value",",","(","list",",","dict",",","tuple",")",")",":","continue","if","key","not","in","out_epoch",":","out_epoch","[","key","]","=","[","]","out_epoch","[","key","]",".","append","(","value",")","Logger","(",")",".","log_value","(","'{}_batch.{}'",".","format","(","mode",",","key",")",",","value",",","should_print","=","False",")","if","i","%","Options","(",")","[","'engine'","]","[","'print_freq'","]","==","0",":","Logger","(",")","(","\"{}: epoch {} | batch {}\/{}\"",".","format","(","mode",",","epoch",",","i",",","len","(","batch_loader",")","-","1",")",")","Logger","(",")","(","\"{}  elapsed: {} | left: {}\"",".","format","(","' '","*","len","(","mode",")",",","datetime",".","timedelta","(","seconds","=","math",".","floor","(","time",".","time","(",")","-","timer","[","'begin'","]",")",")",",","datetime",".","timedelta","(","seconds","=","math",".","floor","(","timer","[","'run_avg'","]","*","(","len","(","batch_loader",")","-","1","-","i",")",")",")",")",")","Logger","(",")","(","\"{}  process: {:.5f} | load: {:.5f}\"",".","format","(","' '","*","len","(","mode",")",",","timer","[","'process'","]",",","timer","[","'load'","]",")",")","self",".","hook","(","'{}_on_print'",".","format","(","mode",")",")","timer","[","'elapsed'","]","=","time",".","time","(",")","self",".","hook","(","'{}_on_end_batch'",".","format","(","mode",")",")","out","=","{","}","for","key",",","value","in","out_epoch",".","items","(",")",":","out","[","key","]","=","sum","(","value",")","\/","len","(","value",")","Logger","(",")",".","log_value","(","'{}_epoch.epoch'",".","format","(","mode",")",",","epoch",",","should_print","=","True",")","for","key",",","value","in","out",".","items","(",")",":","Logger","(",")",".","log_value","(","'{}_epoch.{}'",".","format","(","mode",",","key",")",",","value",",","should_print","=","True",")","self",".","hook","(","'{}_on_end_epoch'",".","format","(","mode",")",")","if","logs_json",":","Logger","(",")",".","flush","(",")","self",".","hook","(","'{}_on_flush'",".","format","(","mode",")",")","return","out"],"url":"https:\/\/github.com\/Cadene\/bootstrap.pytorch\/blob\/e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c\/bootstrap\/engines\/engine.py#L235-L324"}
{"nwo":"Cadene\/bootstrap.pytorch","sha":"e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c","path":"bootstrap\/engines\/engine.py","language":"python","identifier":"Engine.is_best","parameters":"(self, out, saving_criteria)","argument_list":"","return_statement":"return False","docstring":"Verify if the last model is the best for a specific saving criteria\n\n            Args:\n                out(dict): mean of all the scalar outputs of model indexed by output name\n                saving_criteria(str):\n\n            Returns:\n                is_best(bool)\n\n            Example usage:\n\n            .. code-block:: python\n\n                out = {\n                    'loss': 0.2,\n                    'acctop1': 87.02\n                }\n\n                engine.is_best(out, 'loss:min')","docstring_summary":"Verify if the last model is the best for a specific saving criteria","docstring_tokens":["Verify","if","the","last","model","is","the","best","for","a","specific","saving","criteria"],"function":"def is_best(self, out, saving_criteria):\n        \"\"\" Verify if the last model is the best for a specific saving criteria\n\n            Args:\n                out(dict): mean of all the scalar outputs of model indexed by output name\n                saving_criteria(str):\n\n            Returns:\n                is_best(bool)\n\n            Example usage:\n\n            .. code-block:: python\n\n                out = {\n                    'loss': 0.2,\n                    'acctop1': 87.02\n                }\n\n                engine.is_best(out, 'loss:min')\n        \"\"\"\n        if ':min' in saving_criteria:\n            name = saving_criteria.replace(':min', '')\n            order = '<'\n        elif ':max' in saving_criteria:\n            name = saving_criteria.replace(':max', '')\n            order = '>'\n        else:\n            error_msg = \"\"\"'--engine.saving_criteria' named '{}' does not specify order,\n            you need to chose between '{}' or '{}' to specify if the criteria needs to be minimize or maximize\"\"\".format(\n                saving_criteria, saving_criteria + ':min', saving_criteria + ':max')\n            raise ValueError(error_msg)\n\n        if name not in out:\n            raise KeyError(\"'--engine.saving_criteria' named '{}' not in outputs '{}'\".format(name, list(out.keys())))\n\n        if name not in self.best_out:\n            self.best_out[name] = out[name]\n            return True\n        else:\n            if eval('{} {} {}'.format(out[name], order, self.best_out[name])):\n                self.best_out[name] = out[name]\n                return True\n\n        return False","function_tokens":["def","is_best","(","self",",","out",",","saving_criteria",")",":","if","':min'","in","saving_criteria",":","name","=","saving_criteria",".","replace","(","':min'",",","''",")","order","=","'<'","elif","':max'","in","saving_criteria",":","name","=","saving_criteria",".","replace","(","':max'",",","''",")","order","=","'>'","else",":","error_msg","=","\"\"\"'--engine.saving_criteria' named '{}' does not specify order,\n            you need to chose between '{}' or '{}' to specify if the criteria needs to be minimize or maximize\"\"\"",".","format","(","saving_criteria",",","saving_criteria","+","':min'",",","saving_criteria","+","':max'",")","raise","ValueError","(","error_msg",")","if","name","not","in","out",":","raise","KeyError","(","\"'--engine.saving_criteria' named '{}' not in outputs '{}'\"",".","format","(","name",",","list","(","out",".","keys","(",")",")",")",")","if","name","not","in","self",".","best_out",":","self",".","best_out","[","name","]","=","out","[","name","]","return","True","else",":","if","eval","(","'{} {} {}'",".","format","(","out","[","name","]",",","order",",","self",".","best_out","[","name","]",")",")",":","self",".","best_out","[","name","]","=","out","[","name","]","return","True","return","False"],"url":"https:\/\/github.com\/Cadene\/bootstrap.pytorch\/blob\/e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c\/bootstrap\/engines\/engine.py#L326-L370"}
{"nwo":"Cadene\/bootstrap.pytorch","sha":"e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c","path":"bootstrap\/engines\/engine.py","language":"python","identifier":"Engine.load","parameters":"(self, dir_logs, name, model, optimizer, map_location=None)","argument_list":"","return_statement":"","docstring":"Load a checkpoint\n\n            Args:\n                dir_logs: directory of the checkpoint\n                name: name of the checkpoint\n                model: model associated to the checkpoint\n                optimizer: optimizer associated to the checkpoint","docstring_summary":"Load a checkpoint","docstring_tokens":["Load","a","checkpoint"],"function":"def load(self, dir_logs, name, model, optimizer, map_location=None):\n        \"\"\" Load a checkpoint\n\n            Args:\n                dir_logs: directory of the checkpoint\n                name: name of the checkpoint\n                model: model associated to the checkpoint\n                optimizer: optimizer associated to the checkpoint\n        \"\"\"\n        path_template = os.path.join(dir_logs, 'ckpt_{}_{}.pth.tar')\n\n        Logger()('Loading model...')\n        model_state = torch.load(path_template.format(name, 'model'), map_location=map_location)\n        model.load_state_dict(model_state)\n\n        if Options()['dataset']['train_split'] is not None:\n            if os.path.isfile(path_template.format(name, 'optimizer')):\n                Logger()('Loading optimizer...')\n                optimizer_state = torch.load(path_template.format(name, 'optimizer'), map_location=map_location)\n                optimizer.load_state_dict(optimizer_state)\n            else:\n                Logger()('No optimizer checkpoint', log_level=Logger.WARNING)\n\n        if os.path.isfile(path_template.format(name, 'engine')):\n            Logger()('Loading engine...')\n            engine_state = torch.load(path_template.format(name, 'engine'), map_location=map_location)\n            self.load_state_dict(engine_state)\n        else:\n            Logger()('No engine checkpoint', log_level=Logger.WARNING)","function_tokens":["def","load","(","self",",","dir_logs",",","name",",","model",",","optimizer",",","map_location","=","None",")",":","path_template","=","os",".","path",".","join","(","dir_logs",",","'ckpt_{}_{}.pth.tar'",")","Logger","(",")","(","'Loading model...'",")","model_state","=","torch",".","load","(","path_template",".","format","(","name",",","'model'",")",",","map_location","=","map_location",")","model",".","load_state_dict","(","model_state",")","if","Options","(",")","[","'dataset'","]","[","'train_split'","]","is","not","None",":","if","os",".","path",".","isfile","(","path_template",".","format","(","name",",","'optimizer'",")",")",":","Logger","(",")","(","'Loading optimizer...'",")","optimizer_state","=","torch",".","load","(","path_template",".","format","(","name",",","'optimizer'",")",",","map_location","=","map_location",")","optimizer",".","load_state_dict","(","optimizer_state",")","else",":","Logger","(",")","(","'No optimizer checkpoint'",",","log_level","=","Logger",".","WARNING",")","if","os",".","path",".","isfile","(","path_template",".","format","(","name",",","'engine'",")",")",":","Logger","(",")","(","'Loading engine...'",")","engine_state","=","torch",".","load","(","path_template",".","format","(","name",",","'engine'",")",",","map_location","=","map_location",")","self",".","load_state_dict","(","engine_state",")","else",":","Logger","(",")","(","'No engine checkpoint'",",","log_level","=","Logger",".","WARNING",")"],"url":"https:\/\/github.com\/Cadene\/bootstrap.pytorch\/blob\/e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c\/bootstrap\/engines\/engine.py#L372-L400"}
{"nwo":"Cadene\/bootstrap.pytorch","sha":"e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c","path":"bootstrap\/engines\/engine.py","language":"python","identifier":"Engine.save","parameters":"(self, dir_logs, name, model, optimizer)","argument_list":"","return_statement":"","docstring":"Save a checkpoint\n\n            Args:\n                dir_logs: directory of the checkpoint\n                name: name of the checkpoint\n                model: model associated to the checkpoint\n                optimizer: optimizer associated to the checkpoint","docstring_summary":"Save a checkpoint","docstring_tokens":["Save","a","checkpoint"],"function":"def save(self, dir_logs, name, model, optimizer):\n        \"\"\" Save a checkpoint\n\n            Args:\n                dir_logs: directory of the checkpoint\n                name: name of the checkpoint\n                model: model associated to the checkpoint\n                optimizer: optimizer associated to the checkpoint\n        \"\"\"\n        path_template = os.path.join(dir_logs, 'ckpt_{}_{}.pth.tar')\n\n        Logger()('Saving model...')\n        model_state = model.state_dict()\n        torch.save(model_state, path_template.format(name, 'model'))\n\n        Logger()('Saving optimizer...')\n        optimizer_state = optimizer.state_dict()\n        torch.save(optimizer_state, path_template.format(name, 'optimizer'))\n\n        Logger()('Saving engine...')\n        engine_state = self.state_dict()\n        torch.save(engine_state, path_template.format(name, 'engine'))","function_tokens":["def","save","(","self",",","dir_logs",",","name",",","model",",","optimizer",")",":","path_template","=","os",".","path",".","join","(","dir_logs",",","'ckpt_{}_{}.pth.tar'",")","Logger","(",")","(","'Saving model...'",")","model_state","=","model",".","state_dict","(",")","torch",".","save","(","model_state",",","path_template",".","format","(","name",",","'model'",")",")","Logger","(",")","(","'Saving optimizer...'",")","optimizer_state","=","optimizer",".","state_dict","(",")","torch",".","save","(","optimizer_state",",","path_template",".","format","(","name",",","'optimizer'",")",")","Logger","(",")","(","'Saving engine...'",")","engine_state","=","self",".","state_dict","(",")","torch",".","save","(","engine_state",",","path_template",".","format","(","name",",","'engine'",")",")"],"url":"https:\/\/github.com\/Cadene\/bootstrap.pytorch\/blob\/e7d55b52fe8d819de7ea3da8b1027d4a3dcc9e0c\/bootstrap\/engines\/engine.py#L402-L423"}